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Abstract

In this thesis we study three different problems that are common in real options: the exit
problem, the investment problem and the the changing market problem. We assume that
the market demand is modelled by a geometric Brownian motion. We consider the profit
functions polynomials. Using the Hamilton-Jacobi-Bellman equations we solve the exit
problem. One can then easily study the investment problem and the changing market
problem, since they are related with the exit problem. We end up analysing the influence
of several parameters on our solutions to these problems.

Keywords: Real options, Hamilton-Jacobi-Bellman equations, Geometric Brownian
motion, Exit problem, Investment problem, Changing market problem.
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Resumo

Nesta tese estudamos 3 problemas diferentes que são comuns nas opções reais: O problema
de sáıda, o problema de investimento e o problema de mudança de mercados. Assumimos
que a procura do mercado é modelada por um Movimento Geométrico Browniano, e que
a função lucro é polinomial. Usando a equação de Hamilton-Jacobi-Bellman resolvemos
o problema de sáıda. Facilmente se estuda o problema de investimento e o problema de
mudança de mercados uma vez que estão relacionados com o problema de sáıda. Por fim
analisamos a influência de vários parâmetros nas soluções dos nosso problemas.

Palavras chave: Opções reais, Equação de Hamilton-Jacobi-Bellman, Movimento
Geométrico Browniano, Problema de sáıda, Problema de investimento, Problema de mu-
dança de mercados .
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Chapter 1

Introduction

1.1 Introduction

A common problem in mathematics is to determine the optimal conditions for undertaking
a particular action in order to maximize or minimize a certain function [1]. This type of
problem arises naturally in many situations in which a timing decision needs to be made,
as illustrated by the popular secretary problem [2], or for example, in the domain of real
options, for deciding when to buy or sell stock [3].
In this work we address three profit maximising problems that are often studied in rela-
tion to real options. First, we determine optimal conditions under which a firm should
permanently exit a market. We then look at optimal conditions again, but for irreversible
investment decisions. Finally, our main goal is to establish the optimal conditions for a firm
to switch irreversibly from one market characterized by the profit function Π1 to another
one characterized by the profit function Π2.
These problems generally pose difficulties due to the randomness of markets. Such diffi-
culties can nevertheless be readily overcome by using the mathematical tools of stochastic
control and optimal stopping. Solutions arising from using these tools in turn enable us
to carry out comparative statics, thus framing our problems in a more financial perspective.

The work is organised as follows: We start defining what an exit problem, an investment
problem and a changing market problem are, and present some general assumptions. In
Chapter 2 we use a linear profit function and find an optimal stopping strategy to the exit
problem and investment problem. Later we find an optimal stopping strategy for a firm
that has the option to switch from one market characterized by a linear profit function
to another market characterized by a different linear profit function. To conclude the
chapter we discuss the influence of several parameters in the value function. In Chapter
3, since in many financial problems the profit functions are monomial, we find an optimal
stopping strategy for a firm that has the option to switch from one market characterized
by a monomial profit function to a market characterized by a linear profit function and,
conversely, from linear to monomial. Finally, as in Chapter 2, we study the influence of
the drift and volatility on the value function.
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1.2 Model setup

In this section we present the model that we consider in this work. We consider a firm which
produces an established product in a stochastic environment, which is characterized by the
demand process X = {Xt : t ≥ 0}, defined on a complete filtered space (Ω, {F}t≥0,P).
Moreover, we assume that τ is a Ft-stopping time, i.e. {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft for all
t ≥ 0. We denote by S the set of all Ft-stopping times. On this work X is a geometric
Brownian motion, solution of the stochastic differential equation:

dXt = µXtdt+ σXtdWt.

with X0 = x, drift µ ∈ R, volatility σ ≥ 0, and {Wt : t ≥ 0}, being a Winner process.

On this thesis the firm’s profit function is given by Π :]0,∞[→ R, which depends only on
the demand level of the process X.
We study three different problems that are common in the real options: the ”exit problem”,
the ”investment problem” and the ”the changing market problem”.

• Exit problem:

The firm has the possibility to completely abandon the production. When the firm
decides to exit the market at time τ and the current demand is x, its value is given
by

1J(x, τ) = Ex

 τ∫
0

e−γsΠ(Xs)ds+ e−γτC

 . (1.1)

where γ is a positive interest rate and C ∈ R is the terminal cost or profit. The
function V :]0,∞[→ [0,∞[, henceforward called value function, is defined as

V(x) = sup
τ∈S

J(x, τ) (1.2)

Thus we have an optimal stopping problem, where the main goal is to maximize the
expected total pay-off.

• Investment problem:

The firm has the possibility of choosing the moment of entry in the market. In the
literature the problem is often called the ”entry problem” [4]. If the firm decides to
enter in the market at time τ, and the current demand is x, its value is given by

J̃(x, τ) = Ex

 ∞∫
τ

e−γsΠ(Xs)ds+ e−γτK

 (1.3)

1From now on we use the short notation: Ex [?] = E [?|X0 = x] .
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where K ≤ 0 represents, in this case, an entry cost. Therefore we want to find an
optimal strategy for a firm that decides to enter in the market. The firm’s value is
given by the function Ṽ :]0,∞[→ [0,∞[, which is defined by

Ṽ(x) = sup
τ∈S

J̃(x, τ) (1.4)

Therefore we have an optimal stopping problem, where the main goal is to maximize
the expected total pay-off.

• Changing market problem:

The firm has the option to switch from a market characterized by the profit function
Π1 to another market characterized by the profit function Π2. We assume that both
markets are modelled by a geometric Brownian motion with the same parameters.
In this case, the firm’s value, when the current level of demand is x, is given by

I(x, τ) = Ex

 τ∫
0

e−γsΠ1(Xs)ds+

∞∫
τ

e−γsΠ2(Xs)ds+ e−γτQ

 (1.5)

where Q ∈ R is the switching cost or profit from one market to the other. Therefore,
we want to know when it is the right moment τ to change from market 1 to market
2. The value function in this case is given by

G(x) = sup
τ∈S

I(x, τ)

Again we have an optimal stopping problem, where the main goal is to maximize the
expected total pay-off.

Without loss of generality we will assume Q = 0. This is because

I(x, τ) = Ex

 τ∫
0

e−γsΠ1(Xs)ds+

∞∫
τ

e−γs(Π2(Xs) + γQ)ds

 .
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1.3 Hamilton-Jacobi-Bellman equations

In this section, we introduce the main mathematical tools that are used along the thesis.
We do not intend to do an exhaustive study, as it is not the propose of this section. For
a detailed and comprehensive presentation of the dynamics programming principle and
Hamilton-Jacobi-Bellman equations, we refer, for instance [5, 6, 7].
Some notions of stochastic optimization and diffusion processes as well knowledge of Ito’s
Lemma and options analysis, are needed for what follows. In the upcoming chapters we
will see that the investment problem and changing market problem are related with the
exit problem. Therefore for the moment we solve the exit problem. The exit problem
defined in (1.1) can be written as follows

J(x, τ ?) = V(x)

where τ ? ∈ S. In an optimal stopping problem we want to find an optimal action, continue
or stop, for each state. Consequently, our state space is split into two regions: a continua-
tion region, which we denote by C, and a stopping region, denoted by D. As expected, in
the continuation region the optimal action is to continue. Hence, for our case, an optimal
stopping time should be τ ? = inf{t ≥ 0 : Xt /∈ C}. So, it should be intuitive that
C = {x ∈ R+ : V(x) ≥ C} and D = {x ∈ R+ : V(x) ≤ C}.
One way to address the optimal stopping problem is to solve the following variational
inequalities:

max{−γV(x) + L(V(x)) + Π(x), C − V(x)} = 0 (1.6)

where L is the infinitesimal generator defined as follows:

L(f(x)) = µxf ′(x) +
1

2
σ2x2f ′′(x) (1.7)

for f ∈ C2(R+), assuming that the stochastic process X is a geometric Brownian motion
(GBM) with drift µ and volatility σ.
This is the Hamilton-Jacobi-Bellman (HJB) equation that we need to solve in order to get
a solution to our stopping problem. To solve the HJB equation, first we use some intuition
from the problem and guess the form of the continuation region. Our continuation region
will have a threshold denoted by x?. Then we solve the ordinary differential equation
(ODE)

Π(x) + µxV ′(x) +
1

2
σ2x2V ′′(x)− γV(x) = 0 (1.8)

According to the literature [5, 6], the value function V(x) should be C1(]0,∞[). To ensure
this we use:

• The fit condition limx→x? V(x) = V(x?).

• The smooth condition limx→x? V ′(x) = V ′(x?).
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We assume that

Ex

[∫ ∞
0

e−γsΠ(Xs)ds

]
<∞. (1.9)

This assumption will be used during this thesis and guarantees that J(x, τ) is well defined,
and finite for all x and τ .

To solve the ODE (1.8) we start by solving the homogeneous differential equation

−γV (x) + µxV ′(x) +
1

2
σ2x2V ′′(x) = 0 (1.10)

This is a Cauchy-Euler equation of order 2. Making x = eu this ODE becomes

µeuV ′(eu) +
1

2
σ2e2uV ′′(eu)− γV (eu) = 0⇒

µ(V (eu))′ +
1

2
σ2[(V (eu))′′ − (V (eu))′]− γV (eu) = 0⇒

− γV (eu) + (µ− 1

2
σ2)(V (eu))′ +

1

2
σ2(V (eu))′′ = 0 (1.11)

We have, therefore, reduced (1.10) to a linear second order ODE with constant coefficients.
The characteristic polynomial of (1.11) is

1

2
σ2t2 + (µ− 1

2
σ2)t− γ = 0

The solutions of the characteristic polynomial are

t =
−(µ− 1

2
σ2)±

√
(µ− 1

2
σ2)2 + 2σ2γ

σ2
. (1.12)

Let β1 and β2 be the roots of the characteristic polynomial (1.12)

β1 =
−(µ− 1

2
σ2)−

√
(µ− 1

2
σ2)2 + 2σ2γ

σ2
<0 (1.13)

β2 =
−(µ− 1

2
σ2) +

√
(µ− 1

2
σ2)2 + 2σ2γ

σ2
>1 (1.14)

We conclude that V (eu) = A1e
β1u +A2e

β2u. Reversing the change of variable, the solution
of the homogeneous differential equation (1.10) is

V (x) = A1x
β1 + A2x

β2 . (1.15)

Therefore the solution for the ODE (1.10) is V0(x) +A1x
β1 +A2x

β2 with V0(x) a particular
solution of (1.10).
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Chapter 2

Affine profit functions

In this section we study the problems previously described when the profit function is
linear, that is, the profit function is of the form ax− b.

2.1 Exit problem

Here we solve the exit problem as described in (1.1) considering an affine profit function.
Since the firm wants to maximize it is profit, then if currently the demand is x and if
ax − b ≥ 0, for all x > 0, then the firm should never exit the market and therefore the
optimal strategy is to choose τ = ∞. On the other hand, if ax− b ≤ 0 for all x, then the
firm should exit the market right away, and thus the optimal strategy is to choose τ = 0.
In order to avoid such trivial cases we choose a ≥ 0 and b ≥ 0 such that the function ax−b
takes both positive and negative values. With this choice the function ax− b is increasing
function with respect to the demand level x.

Simple calculations prove that we may rewrite the total expected pay-off functional as
follows:

Ex

 τ∫
0

e−γs(aXs − b)ds

 = Ex

 τ∫
0

e−γsaXsds+ (e−γτ
b

γ
)

− b

γ

Therefore, V(x) = V (x)− b
γ

with

V (x) := sup
τ∈S

Ex

 τ∫
0

e−γsaXsds+ e−γτ
b

γ

 . (2.1)

Thus we have an exit problem with profit function Π(x) = ax and C = b
γ

the salvage value.
In order to solve this optimization problem, we start by studying the corresponding HJB
equation:

max

(
ax+ µxV ′(x) +

1

2
σ2x2V ′′(x)− γV (x),

b

γ
− V (x)

)
= 0. (2.2)
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As discussed in the previous chapter we assume that the condition (1.9) holds true. Indeed,
if we are considering an affine profit function, condition (1.9) holds true if and only if
γ − µ ≥ 0. In order to see this, we note that

Ex

[∫ ∞
0

e−γsaXsds

]
=

∫ ∞
0

e−γsE(aXs)ds =

∫ ∞
0

axe(µ−γ)sds

which is convergent if and only if γ−µ ≥ 0. In the previous calculation we used the formula
for the expected value of GBM [5, 7].

In order to find an optimal stopping strategy we first guess the continuation region. Since
our goal is to maximize profit, it seems reasonable that, when the initial demand is low,
we stop and gain the value b

γ
. Otherwise, if the demand is high, we remain earning Π(x),

until time τ. Therefore, the continuation region that we propose is

C = {x : x ≥ x?}.
Thus the value function V (x) should be such that V (x) = b

γ
if x < x?, and if x ≥ x? then

V (x) is solution of

µxV
′
(x) +

1

2
σ2x2V

′′
(x)− γV (x) + ax = 0. (2.3)

In order to solve (2.3), we simply note that the solution to the corresponding homogeneous
equation is A1x

β1 + A2x
β2 , with β1 and β2 given by (1.13) and (1.14) respectively. A

particular solution of (2.3) is

V0(x) = αx+ β.

Thus A1x
β1 + A2x

β2 + αx+ β is solution to (2.3) if and only if α and β are such that:

µxα + 0− γ(αx+ β) + ax = 0

which implies that α = a
γ−µ and β = 0.

Consequently all the functions of the form

V (x) =
a

γ − µ
x+ A1x

β1 + A2x
β2

are solutions of the ODE (2.3), where A1 and A2 are constants that depend on boundary
values. However when the demand is high we do not expect to exercise the exit option.
Thus, limx→∞

V (x)
V0(x)

< ∞. This holds true if and only if A2 = 0 because β2 ≥ 0 as we can
see in the appendix. Therefore

V (x) =
a

γ − µ
x+ A1x

β1 . (2.4)

As we expect to have, if x < x? then

V (x) =
b

γ
. (2.5)
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We now wish to paste (2.4) and (2.5) together in such a way that the resulting function is
the value function.
To obtain the value function all that is left, is to determine values for A1 and x?. The fit
and smooth conditions ensure that A1 and x? are unique. By the fit condition

b

γ
=

a

γ − µ
x? + A1x

?β1 ⇒ A1 =

b
γ
− a

γ−µx
?

x?β1
. (2.6)

By the smooth condition

(
b

γ
)′ = (

a

γ − µ
x? + A1x

?β1)′

⇔ 0 =
a

γ − µ
+ A1β1x

?β−1

⇔ 0 =
a

γ − µ
+ β1(

b

γx?
− a

γ − µ
)

⇔ x? =
b

a

(
γ − µ
γ

β1
β1 − 1

)
(2.7)

Since A1 =
b
γ
− a
γ−µx

?

x?β1
then, replacing x? by b

a

(
γ−µ
γ

β1
β1−1

)
, we have

A1 =

b
γ
−1

(β1−1)

(x?)β1
≥ 0.

Additionally, x? ≤ b
a
, meaning that exit is optimal for values of demand where the profit

flow ax− b is negative. To prove x? ≤ b
a
, consider the ODE (2.3) at x = x? :

−γV (x?) + µx?V ′(x?)︸ ︷︷ ︸
=0

+
1

2
σ2x?2V ′′(x?) + ax? = 0⇔

ax? − b = −1

2
σ2x?2V ′′(x?) (2.8)

To prove that 1
2
σ2x?2V ′′(x?) ≥ 0 note that

0 = V ′(x?) =
a

γ − µ
+ A1β1x

?β1−1 ⇒ A1β1x
?β1−1 = − a

γ − µ
therefore

V ′′(x?) = A1β1(β1 − 1)x?β1−2 = A1β1x
?β1−1β1 − 1

x?
= − a

γ − µ
β1 − 1

x?

Since a ≥ 0 and β1 ≤ 0 then V ′′(x?) = − a
γ−µ

β1−1
x?
≥ 0, and in view of (2.8),

it holds that x? ≤ b
a
.
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In the next proposition, we provide the value of the firm

Proposition. The solution of the optimal stopping problem defined in (??) is given by:

V(x) =

{
0 : x < x?

ax
γ−µ −

b
γ

+ A1x
β1 : x ≥ x?

(2.9)

where A1 ≥ 0 is given by (2.6) and x? ≤ b
a
, is given by (2.7).

Proof. By construction, V (x) is continuous in R+ and with continuous derivative. As
V(x) = V (x)− b

γ
, ∀x > 0, we need to prove only that V (x) is solution of the HJB equation

(2.2). In order to prove that we follow the following steps

• ax+ µxV ′(x) + 1
2
σ2x2V ′′(x)− γV (x) ≤ 0

for x ≤ x?, with V (x) given by: V (x) = b
γ
.

To see this note that

ax+ µxV ′(x) +
1

2
σ2x2V ′′(x)− γV (x) = ax− b

As x ≤ x? ≤ b
a

then ax− b ≤ 0 for x ≤ x?. The result holds.

• b
γ
− V (x) ≤ 0 for x ≥ x?

For x = x?, by the fit condition it follows that b
γ
− a

γ−µx
? − A1x

?β1 = 0, and thus

the result holds for x = x?. The function
(
b
γ
− V (x)

)
is decreasing for x ≥ x?. In

fact, by the smooth condition, the derivative computed at x = x? is equal to 0. As

−A1β1 ≥ 0 and β1 − 1 ≤ 0, then it follows that
(
b
γ
− V (x)

)′
≤ 0 for x ≥ x?.

We conclude that
(
b
γ
− V (x)

)
≤ 0 for x ≥ x?.

With this analysis we are also studying the situation of a monomial case. As we can see
in Guerra, Nunes and Oliveira [8] that the exit problem with Π(Xs) = aXθ

s − b can be
reduced to this problem. To see this we use Ito’s Lemma and conclude that Xθ

s is a GBM
with volatility σθ = σθ and drift µθ = µθ + 1

2
σ2θ(θ − 1).
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2.1.1 Comparative statics for the exit problem

In this section we study the influence of the market expectations, µ and σ, and the param-
eters a and b on the decision to exit. Simple calculations show that:

∂x?

∂σ
=
b

a

γ − µ
γ

−∂β1
∂σ

(β1 − 1)2
≤ 0

∂x?

∂µ
=
b

a

1

γ

∂β1
∂µ

(β1 − 1)2
≤ 0 (2.10)

where in the first inequality we have used the fact that ∂β1
∂σ
≥ 0 and in the second that

∂β1
∂µ
≤ 0 (see appendix for such proofs). Therefore if the drift or the volatility of the un-

certainty process X increases, the decision to exit the market is postponed.

Regarding the behaviour of x? with the parameters of the gain function, we have

∂x?

∂b
=

1

a

(
γ − µ
γ

β1
β1 − 1

)
≥ 0

∂x?

∂a
= − b

a2

(
γ − µ
γ

β1
β1 − 1

)
≤ 0

it follows that x? increases with b (i.e. the decision to exit the market is postponed if the
profit flow shifts upward) and decreases with the slope.

2.2 Investment problem

In the previous sections we have addressed the problem of exiting the market, and here
we solve the investment problem as described in (1.3) considering an affine profit function.
After some calculations we prove that we may rewrite the functional J̃(x, τ) as follows:

J̃(x, τ) =Ex

 ∞∫
τ

e−γs(aXs − b)ds

 (2.11)

=
ax

γ − µ
+ Ex

 τ∫
0

e−γs(−a)Xsds+ e−γτ
(−b)
γ


therefore Ṽ(x) = ax

γ−µ + V (x) where

V (x) := sup
τ∈S

Ex

 τ∫
0

e−γs(−a)Xsds+ e−γτ
(−b)
γ

 . (2.12)

Similarly to the exit problem, we need to assume a ≥ 0 and b ≥ 0 in order to avoid trivial
problems (i.e. problems where (2.11) is maximized with τ = 0 or with τ =∞). Comparing
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(2.12) with (2.1), we conclude that the problem of investment is similar to the exit problem,
where only the signs of a and b need to be changed. But this remark is misleading, as
we cannot use the solution of the exit problem derived in the previous section because the
profit function ax− b, for the investment case, is no longer an increasing function but it is
a decreasing function.
Some of the results presented for the exit problem are still valid in the investment problem.
Notably, the HJB equation is similar, just replacing a and b by −a and −b we have

max{µxV ′(x) +
1

2
σ2x2V

′′
(x)− γV (x)− ax,− b

γ
− V (x)} = 0 (2.13)

and also the homogeneous and non-homogeneous solutions, which now is:

V (x) = − a

γ − µ
x+ A1x

β1 + A2x
β2

where A1 and A2 are still to be derived. The major difference are precisely the conditions
that we use to derive A1 and A2. Here, for the investment decision, we need to guess another
continuation and stopping regions. Intuitively, to maximize the expected profit one invest
when the initial demand is low, and one exits the market when the initial demand is above
a certain level x?. Thus, the continuation region is C = {x : x ≤ x?}. Therefore in the
stopping region, the value of the firm is − b

γ
and in the continuation region V (x) is solution

of the ODE:

µxV
′
(x) +

1

2
σ2x2V

′′
(x)− γV (x) + (−a)x = 0 (2.14)

so our guess is that the solution for the value of the firm is:

V (x) =

{
− a
γ−µx+ A1x

β1 + A2x
β2 : x < x?

− b
γ

: x ≥ x?
(2.15)

Recalling that β1 ≤ 0, and since V (0) = 0 then A1 = 0. Furthermore, using a similar
approach to the one used for the exit problem, the fit and smooth pasting conditions imply
that:

A2 =
− b
γ

+ a
γ−µx

?

x?β2
(2.16)

x? =
b

a

(
γ − µ
γ

β2
β2 − 1

)
(2.17)

Similarly to the exit problem, x? is positive as β2 > 1. To prove A2 ≥ 0 we use the
expression for x? in the numerator of A2, obtaining

A2 =

b
γ

1
(β2−1)

x?β2
≥ 0.
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Additionally, x? ≥ b
a
, meaning that to invest is optimal for values of demand where the

profit flow ax− b is positive. To see this, consider (2.14) at x = x? :

−γV (x?) + µxV ′(x?) +
1

2
σ2x2V ′′(x?) + (−a)x? = 0

ax? − b =
1

2
σ2x?2V ′′(x?) (2.18)

To prove that 1
2
σ2x?2V ′′(x?) ≥ 0 note that

0 = V ′(x?) = − a

γ − µ
+ A2β2x

?β2−1 ⇒ A2β2x
?β2−1 =

a

γ − µ
therefore

V ′′(x?) = A2β2(β2 − 1)x?β2−2 = A2β2x
?β2−1β2 − 1

x?
=

a

γ − µ
β2 − 1

x?

Since a ≥ 0 then V ′′(x?) = a
γ−µ

β2−1
x?
≥ 0, and, in view of (2.18), it holds that x? ≥ b

a
.

In the next proposition, we provide the value of the firm

Proposition. Ṽ(x) is given by:

Ṽ(x) =

{
A2x

β2 : x < x?

ax
γ−µ −

b
γ

: x ≥ x?

where A2 ≥ 0 and x? ≥ b
a

are given by (2.16) and (2.17) respectively.

Proof. By construction, V (x) is continuous in R+ and with continuous derivative. As
Ṽ(x) = V (x) + ax

γ−µ , ∀x > 0, we need to prove only that V (x) is solution of the HJB

equation (2.13). We omit the proof that V (x) is the solution of the HJB equation (2.13),
because it is analogous to the exit problem.

2.2.1 Comparative statics for the investment problem

As for the exit problem for the investment problem we study the influence of the market
expectations, µ and σ, and the parameters a and b on the decision to invest. Simple
calculations show that:

∂x?

∂σ
=
b

a

γ − µ
γ

−∂β2
∂σ

(β2 − 1)2
≥ 0

∂x?

∂µ
=
b

a

1

γ

∂β2
∂µ

(β2 − 1)2
≤ 0 (2.19)

where in the first inequality we have used the fact ∂β2
∂σ
≤ 0 and in the second that ∂β2

∂µ
≤ 0

(see appendix for such proofs). Therefore if σ increases, the decision to invest is anticipated
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whereas if µ increases, it is postponed.

Regarding the behaviour of x? with the parameters of the profit function, we have

∂x?

∂b
=

1

a

(
γ − µ
γ

β2
β2 − 1

)
≥ 0

∂x?

∂a
= − b

a2

(
γ − µ
γ

β2
β2 − 1

)
≤ 0

it follows that x? increases with b (i.e. the decision to invest in the market is postponed if
the profit flow shifts upward) and decreases with the slope.
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2.3 Changing market problem

We now consider that the firm has the option to switch from one market characterized by
the profit function Π1(x) = a1x − b1, to another one characterized by the profit function
Π2(x) = a2x − b2 at time τ. We are assuming that a1, a2 ≥ 0, for the same reasons as
before. Simple calculations prove that we may rewrite the functional I(x, τ) as follows:

I(x, τ) =Ex

 τ∫
0

e−γs(a1Xs − b1)ds+

∞∫
τ

e−γs(a2Xs − b2)ds

 (2.20)

=Ex

 τ∫
0

e−γs(ãXs − b̃)ds

+ Ex

 ∞∫
0

e−γs(a2Xs − b2)ds


︸ ︷︷ ︸

=
a2
γ−µx−

b2
γ

(2.21)

with ã = (a1 − a2) and b̃ = (b1 − b2).

We will say that Π1 is more risky than Π2, if a1 ≥ a2. Moreover, if b2 ≥ b1 then Π1(x) ≥
Π2(x), and consequently it is never optimal to switch i.e.(τ = ∞). In order to avoid such
trivial case we choose b1 ≥ b2. Thus ã = (a1 − a2) ≥ 0 and b̃ = (b1 − b2) ≥ 0.
This problem can be solved using the results derived in the exit problem, with a and b
given by ã and b̃. Thus the value function for such case is given by:

G(x) =

{
a2
γ−µx−

b2
γ

+ 0 : x < x?

a2
γ−µx−

b2
γ

+ ã
γ−µx−

b̃
γ

+ A1x
β1 = a1

γ−µx−
b1
γ

+ A1x
β1 : x ≥ x?

where A1 =
b̃
γ
− ã
γ−µx

?

x?β1
≥ 0 and x? = b̃

ã

(
γ−µ
γ

β1
β1−1

)
≤ b̃

ã
= c. Note that c = b̃

ã
is precisely the

point where Π1 and Π2 intersect, therefore the value x where the firm should optimally
change from the first market to the second one is smaller or equal to the point where both
markets are equally profitable.
The other relevant case occurs when a1 ≤ a2, in that case we say that Π2 is more risky
than Π1. Furthermore, if b2 ≤ b1 then Π1(x) ≤ Π2(x), therefore we switch immediately,
i.e.τ = 0. In order to avoid such trivial case we choose b2 ≥ b1. Thus ã = (a1− a2) ≤ 0 and
b̃ = (b1 − b2) ≤ 0.
This problem can be solved using the results derived in the investment problem, with a
and b given by ã and b̃. The value function for such case is given by:

G(x) =

{
A2x

β2 + a2
γ−µx−

b2
γ

: x < x?

a1
γ−µx−

b1
γ

: x ≥ x?

where x? = b̃
ã

(
γ−µ
γ

β2
β2−1

)
≥ b̃

ã
= c and A2 =

b̃
γ
− ã
γ−µx

?

x?β2
≥ 0. Therefore the value x where the

firm should optimally change from the first market to the second one is larger or equal to
the point where both markets are equally profitable.
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When one faces the decision to change from a first market to a second market, besides the
influence of ã = a1−a2 and b̃ = b1−b2 ( which follows the same pattern as the dependency
of x? with respect to a and b in the exit and investment problems), it is also interesting to
study how x? varies when we rotate the function Π1 around Π2, keeping the intersection
point fixed.

The point where Π1 and Π2 intersects is c = b1−b1
a1−a2 = b̃

ã
. Then since x? = b̃

ã

(
γ−µ
γ

β1
β1−1

)
= Kc,

where K = γ−µ
γ

β1
β1−1 , we conclude that x? remains the same when we rotate the function

Π1 around Π2, keeping the intersection point fixed.
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Chapter 3

Polynomial profit functions

In this section we solve the exit and investment problems for a class of profit functions of
the form a1x

θ − a2x − b. Mathematically, this kind of functions increase the difficulty of
the problem because sometimes we cannot obtain explicitly the threshold x?.
Financially, this kind of function allow us to consider more realistic scenarios as well as
changes of the market with different types of profit functions. We consider a1, a2 ≥ 0,
and to avoid a1x

θ − a2x− b changing sign more than once, thus giving us a disconnected
continuation region, or a1x

θ− a2x− b ≷ 0, thus giving trivial solutions to our problem, we
consider b ≥ 0 and θ ≥ 1.

3.1 Exit problem

As for the exit problem with affine profit function, simple calculations prove that we may
rewrite the total expected pay-off functional as follows:

Ex

 τ∫
0

e−γs
(
a1X

θ
s − a2Xs − b

)
ds

 = Ex

[∫ τ

0

e−γs(a1Xs
θ − a2Xs)ds+ e−γτ

b

γ

]
− b

γ

Therefore V(x) = V (x)− b
γ
, with

V (x) := sup
τ∈S

Ex

 τ∫
0

e−γs(a1Xs
θ − a2Xs)ds+ e−γτ

b

γ

 . (3.1)

Then we may rewrite (3.1) as an exit problem with profit function Π(x) = a1x
θ − a2x and

salvage value C = b
γ
. In order to solve the optimization problem, we start by studying the

corresponding HJB equation:

max{µxV ′(x) +
1

2
σ2x2V

′′
(x)− γV (x) + a1x

θ − a2x,
b

γ
− V (x)} = 0 (3.2)

As discussed in section (1.3) we assume that Ex
[∫∞

0
e−γsΠ(Xs)ds

]
< ∞. The next result

guarantees that J(x, τ) is well defined, and finite for all x and τ .
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Proposition. The condition Ex
[∫∞

0
e−γs(a1X

θ
s − a2Xs)ds

]
<∞ holds true if and only if

θ ∈ [1, β2[.

Proof. Using Fubbini’s theorem we have

Ex

[∫ ∞
0

e−γs(a1X
θ
s − a2Xs)ds

]
= Ex

[∫ ∞
0

e−γsa1X
θ
sds

]
− Ex

[∫ ∞
0

e−γsa2Xsds

]
=

∫ ∞
0

e−γsEx(a1X
θ
s )ds−

∫ ∞
0

e−γsEx(a2Xs)ds

Using Ito’s Lemma, Ex(X
θ
s ) = xθe(µθ−γ)s where µθ = µθ + 1

2
σ2θ(θ − 1).

Therefore Ex[
∫∞
0
e−γsΠ(Xs)ds] is finite as long as γ − µ > 0 and γ − µθ > 0⇔ −1

2
σ2θ2 +

(1
2
σ2 − µ)θ + γ ≥ 0, which is equivalent to have θ ∈]β1, β2[. For θ ∈]β1, β2[, if µ ≥ 0, then

γ − µ ≥ γ − µθ ≥ 0. And if µ ≤ 0, then γ − µ ≥ 0 and γ − µθ ≥ 0. Since β1 ≤ 0 ≤ 1 then
Ex[
∫∞
0
e−γsΠ(Xs)ds] is finite as long θ ∈ [1, β2[.

As above, for the linear problems, we first guess the continuation region.

Since Π(x) = a1x
θ − a2x ≤ 0 for 0 ≤ x ≤ θ−1

√
a2
a1
, then when the initial demand is low, we

exit the market and gain the salvage cost b
γ
. Otherwise, if the demand is high, we remain

in production, earning Π(x) per unit time, until time τ . Therefore, the continuation region
for V (x) is C = {x : x ≥ x?}. We guess that if x ≤ x? then V (x) = b

γ
and if x ≥ x? then

V (x) is solution of

µxV
′
(x) +

1

2
σ2x2V

′′
(x)− γV (x) + a1x

θ − a2x = 0 (3.3)

Equation (3.3) is similar to equation (2.3). In particular the homogeneous part is the same.
A particular solution to (3.3) is V0(x) = αxθ − βx, therefore

V (x) = αxθ − βx+ A1x
β1 + A2x

β2

is solution to (3.3), with

α =
a1

γ − µθ − 1
2
σ2θ(θ − 1)

β =
a2

γ − µ

Therefore we guess that if x > x?

V (x) =
a1x

θ

γ − µθ
− a2x

γ − µ
+ A1x

β1 + A2x
β2 .

With an argument such as the one used in section (2), we can show that A2 = 0.
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So, we propose V (x) defined by

V (x) =

{
b
γ

: x < x?

a1xθ

γ−µθ
− a2x

γ−µ + A1x
β1 : x ≥ x?

(3.4)

We now determine values for A1 and x?, as done before for the linear problems. By the fit
condition

A1 =

a2x?

γ−µ −
a1(x?)

θ

γ−µθ
+ b

γ

(x?)β1
(3.5)

and by the smooth condition

a1θ(x
?)θ−1

γ − µθ
− a2
γ − µ

+ β1A1x
?β1−1 = 0⇔ a1(θ − β1)

γ − µθ
(x?)θ − a2(1− β1)

γ − µ
x? +

β1b

γ
= 0

The value of x? is a zero of the polynomial

f(x) :=
a1(θ − β1)
γ − µθ

(x)θ − a2(1− β1)
γ − µ

x+
β1b

γ
. (3.6)

Unfortunately, by Abel Ruffini theorem, f(x) does not have an algebraic solution for all
θ ∈ (1, β2). Even though we cannot find explicitly the threshold x? we can still find lower
and upper bounds for x?, as we will see next.

Also, we are able to prove that there is a unique positive solution x? to the equation
f(x) = 0. Since the derivative of f(x) is

f
′
(x) =

a1θ(θ − β1)
γ − µθ

(x)θ−1 − a2(1− β1)
γ − µ

then f ′(x) ≥ 0 for x ∈ [x1,∞[, where x1 is the zero of f
′
(x). Furthermore, as f(0) = β1b

γ
≤ 0

and limx→∞ f(x) = ∞, we conclude there is an unique positive solution to the equation
f(x) = 0, which we denote by x?.

We now show that y? := θ−1

√
a2
a1θ

γ−µθ
γ−µ is a lower bound of x?.

f(y?) =
a1(θ − β1)
γ − µθ

(y?)θ − a2(1− β1)
γ − µ

y? +
β1b

γ

= y?
(
a1(θ − β1)
γ − µθ

(y?)θ−1 − a2(1− β1)
γ − µ

)
+
β1b

γ

= β1

(
θ−1

√
a2
a1

γ − µθ
γ − µ

a2
γ − µ

(1− 1

θ
) +

b

γ

)
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Given that β1 ≤ 0 and (1 − 1
θ
) ≥ 0, then f(y?) ≤ 0. As f(x) ≤ 0 for x ∈ (0, x?) then

x? ≥ y? = θ−1

√
a2
a1θ

γ−µθ
γ−µ .

To find an upper bound of x?, first we consider c such that a1c
θ − a2c− b = 0.

As for f(x), the previous equation does not have an algebraic solution ∀θ ∈ (1, β2). How-
ever, we can study the function a1x

θ−a2x−b. After analysing the derivative of a1x
θ−a2x−b

we conclude a1x
θ − a2x− b ≤ 0 if x ∈ [0, c]. Therefore the following result holds:

Proposition. x? ≤ c, where c is such that a1c
θ − a2c− b = 0.

Proof. Using the fact that V (x?) = b
γ

and V ′(x?) = 0, one has

µx?V
′
(x?) +

1

2
σ2(x?)2V

′′
(x?)− γV (x?) + a1x

?θ − a2x? = 0

⇔ a1x
?θ − a2x? − b = −1

2
σ2(x?)2V

′′
(x?). (3.7)

To prove that −1
2
σ2(x?)2V

′′
(x?) ≤ 0 first note that

0 = V
′
(x?) =

a1θ

γ − µθ
x?θ−1 − a2

γ − µ
+ β1A1x

?β1−1

⇔ β1A1x
?β1−1 = −

(
a1θ

γ − µθ
x?θ−1 − a2

γ − µ

)
. (3.8)

Therefore

−1
2
σ2(x?)2V

′′
(x?) = −1

2
σ2(x?)2

(
a1θ(θ−1)
γ−µθ

x?θ−2 + β1(β1 − 1)A1x
?β1−2

)
Considering (3.8) we obtain the following upper limit to −1

2
σ2(x?)2V

′′
(x?)

−1

2
σ2(x?)2V

′′
(x?) =− 1

2
σ2(x?)2

[
a1θ(θ − 1)

γ − µθ
x?θ−2 − (β1 − 1)

x?

(
a1θ

γ − µθ
x?θ−1 − a2

γ − µ

)]
=− 1

2
σ2

[
a1θ(θ − β1)
γ − µθ

x?θ − a2(1− β1)
γ − µ

x?
]

≤− 1

2
σ2

[
a1(θ − β1)
γ − µθ

x?θ − a2(1− β1)
γ − µ

x?
]

Given that 0 = f(x?), then

a1(θ − β1)
γ − µθ

(x?)θ − a2(1− β1)
γ − µ

x? = −β1b
γ

(3.9)
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Therefore, a1x
?θ − a2x? − b = −1

2
σ2(x?)2V

′′
(x?) ≤ 1

2
σ2 β1b

γ
≤ 0. Since a1x

?θ − a2x? − b ≤ 0,

and a1x
θ − a2x− b ≤ 0 for x ∈ (0, c), then x? ≤ c meaning that exit is optimal for values

of demand where the profit flow a1x
θ − a2x− b is negative.

We now prove the following lemma.

Lemma 1. a2
γ−µx

? − a1
γ−µθ

(x?)θ + b
γ

= − 1
β1

(
a1θ
γ−µθ

(x?)θ − a2
γ−µx

?
)

Proof.

f(x?) =
a1(θ − β1)
γ − µθ

(x?)θ − a2(1− β1)
γ − µ

x? +
β1b

γ
= 0⇔

=

(
a2

γ − µ
x? − a1

γ − µθ
(x?)θ +

b

γ

)
= − 1

β1

(
a1θ

γ − µθ
(x?)θ − a2

γ − µ
x?
)

Using the previous lemma we have

A1 =

a2x?

γ−µ −
a1(x?)

θ

γ−µθ
+ b

γ

(x?)β1
=
− 1
β1

(
a1θ
γ−µθ

(x?)θ − a2
γ−µx

?
)

(x?)β1

To prove that A1 ≥ 0 we study the function g(x) := − 1
β1

(
a1θ
γ−µθ

(x)θ − a2
γ−µx

)
. Since the

derivative of g(x) is − 1
β1

(
a1θ2

γ−µθ
(x)θ−1 − a2

γ−µ

)
then g′(x) ≥ 0 for x ∈ [x2,∞], where x2 is

the positive zero of g
′
(x). We now show that g(y?) = 0.

g(y?) = − 1

β1

(
a1θ

γ − µθ
(y?)θ − a2

γ − µ
y?
)

= −y
∗

β1

(
a1θ

γ − µθ
(y?)θ−1 − a2

γ − µ

)
= 0.

Since g(y?) = 0, x2 ≤ y? ≤ x? and g(x) increases for x ≥ x2 then g(x?) ≥ 0. We conclude
that A1 ≥ 0.

In the next proposition, we provide the value of the firm

Proposition. The solution of the optimal stopping problem defined on (3.1) is given by:

V(x) =

{
0 : x < x?

a1xθ

γ−µθ− 1
2
σ2θ(θ−1) −

a2x
γ−µ −

b
γ

+ A1x
β1 : x ≥ x?
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where A1 ≥ 0 is given by (3.5) and x? ∈ [y?, c] is such that f(x?) = 0, with f(x) given by

(3.6), y? = θ−1

√
a2
a1θ

γ−µθ
γ−µ and c such that a1c

θ − a2c− b = 0.

Proof. By construction, V (x) is continuous in R+ with continuous derivative. As V(x) =
V (x)− b

γ
, ∀x > 0, we need to prove only that V (x) is solution of the HJB equation (3.2).

In order to prove such result we follow the following steps

• a1xθ − a2x+ µxV ′(x) + 1
2
σ2x2V ′′(x)− γV (x) ≤ 0 for x ≤ x?, with V (x) = b

γ
.

To see this note that

a1x
θ − a2x+ µxV ′(x) +

1

2
σ2x2V ′′(x)− γV (x) = a1x

θ − a2x− b

As x ≤ x? ≤ c and f(x) ≤ 0 for x ∈ [0, c] then a1x
θ − a2x − b ≤ 0 for x ≤ x?.

Therefore the result holds.

•
(
b
γ
− V (x)

)
≤ 0 for x ≥ x?, with V (x) = a1xθ

γ−µθ
− a2x

γ−µ + A1x
β1 . By the fit condition,

the result for x = x? is trivially verified. In order to prove this for x > x?, then
we note that the function b

γ
− V (x) is decreasing for x > x?. In fact, by the smooth

condition, the derivative computed at x = x? is equal to 0. As −A1β1 ≥ 0 and

β1 − 1 ≤ 0, then it follows that
(
b
γ
− V (x)

)′
≤ 0 for x ≥ x?.

Thus we conclude that b
γ
− V (x) ≤ 0 for x ≥ x?.

3.1.1 Comparative statics for the exit problem

In this section we study the influence of the market expectation of the parameters µ, σ and
b on the decision to exit.

First we prove that ∂f
∂x?
≥ 0. Using (3.9) we have

∂f

∂x?
=
a1θ(θ − β1)
γ − µθ

(x?)θ−1 − a2(1− β1)
γ − µ

≥a1(θ − β1)
γ − µθ

(x?)θ−1 − a2(1− β1)
γ − µ

= − β1b
γx?
≥ 0.

We now study how x? varies if µ increases. By the implicit derivative theorem, we have

∂x?

∂µ
= −

∂f
∂µ

∂f
∂x?

.
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Using Lemma 1 we obtain

∂f

∂µ
=
a1θ(θ − β1)
(γ − µθ)2

(x?)θ − ∂β1
∂µ

a1
γ − µθ

(x?)θ − a2(1− β1)
(γ − µ)2

x? +
∂β1
∂µ

a2
γ − µ

x? +
∂β1
∂µ

b

γ

=
∂β1
∂µ

(
a2

γ − µ
x? − a1

γ − µθ
(x?)θ +

b

γ

)
+
a1θ(θ − β1)
(γ − µθ)2

(x?)θ − a2(1− β1)
(γ − µ)2

x?

=
∂β1
∂µ

(
− 1

β1

[
a1θ

γ − µθ
(x?)θ − a2

γ − µ
x?
])

+
a1θ(θ − β1)
(γ − µθ)2

(x?)θ − a2(1− β1)
(γ − µ)2

x?

=
a1θ

γ − µθ

(
− 1

β1

∂β1
∂µ

+
θ − β1
γ − µθ

)
(x?)θ +

a2
γ − µ

(
1

β1

∂β1
∂µ
− 1− β1
γ − µ

)
x?

To show that ∂f
∂µ
≥ 0, first we analyse the polynomial

pθ(x) :=
a1θ

γ − µθ

(
− 1

β1

∂β1
∂µ

+
θ − β1
γ − µθ

)
xθ +

a2
γ − µ

(
1

β1

∂β1
∂µ
− 1− β1
γ − µ

)
x

For the moment let’s suppose that a1 ≥ a2. If θ = 1 then using (2.10) we have that

−
∂f
∂µ

∂f
∂x?

=
∂x?

∂µ
=

b

a1 − a2
1

γ

∂β1
∂µ

(β1 − 1)2
≤ 0.

Since ∂f
∂x?
≥ 0, then for θ = 1, ∂f

∂µ
≥ 0. Substituting θ by 1, in pθ(x

?) we have

0 ≤ ∂f

∂µ

∣∣∣∣
θ=1

= p1(x
?) = −a1 − a2

γ − µ

(
1

β1

∂β1
∂µ
− 1− β1
γ − µ

)
x?

As x? > 0, then a2
γ−µ

(
1
β1

∂β1
∂µ
− 1−β1

γ−µ

)
≤ 0.

To prove that a1θ
γ−µθ

(
− 1
β1

∂β1
∂µ

+ θ−β1
γ−µθ

)
≥ 0 note that

θ−β1
γ−µθ

= θ−β1
− 1

2
σ2(θ−β1)(θ−β2)

= 2
σ2

1
(β2−θ) . Thus the derivative of θ−β1

γ−µθ
with respect to θ is

2
σ2

1
(β2−θ)2 > 0. Therefore,

(θ − β1)
γ − µθ

≥ (1− β1)
γ − µ

⇒ − 1

β1

∂β1
∂µ

+
(θ − β1)
γ − µθ

≥ − 1

β1

∂β1
∂µ

+
(1− β1)
γ − µ

≥ 0

⇒ a1θ

γ − µθ

(
− 1

β1

∂β1
∂µ

+
(θ − β1)
γ − µθ

)
≥ 0

We are now in the position to study the polynomial pθ(x), for any θ ∈ [1, β2[. Let a? such
that pθ(a

?) = 0, then
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a? = θ−1

√√√√√ a2
γ−µ

(
− 1
β1

∂β1
∂µ

+ 1−β1
γ−µ

)
a1θ
γ−µθ

(
− 1
β1

∂β1
∂µ

+ θ−β1
γ−µθ

) ⇔ a? = θ−1

√√√√√ a2
a1θ

γ − µθ
γ − µ

(
− 1
β1

∂β1
∂µ

+ 1−β1
γ−µ

)
(
− 1
β1

∂β1
∂µ

+ θ−β1
γ−µθ

)
Since the derivative of pθ(x) with respect to x is

p
′

θ(x) =
a1θ

2

γ − µθ

(
− 1

β1

∂β1
∂µ

+
(θ − β1)
γ − µθ

)
xθ−1 +

a2
γ − µ

(
1

β1

∂β1
∂µ
− (1− β1)

γ − µ

)
then pθ(x) is increasing in x, for a fixed θ, if x ≥ a0, where a0 is such that pθ

′
(a0) = 0.

To prove that a? ≤ x?, we show that a? ≤ y?. This is because y? is a lower bound of x?.
Hence, by transitivity, a? ≤ x?. Recalling that

y? = θ−1

√
a2
a1θ

γ − µθ
γ − µ

,

then, multiplying the above equality by θ−1

√
− 1
β1

∂β1
∂µ

+
1−β1
γ−µ

− 1
β1

∂β1
∂µ

+
θ−β1
γ−µθ

, we have

(y?) θ−1

√√√√− 1
β1

∂β1
∂µ

+ 1−β1
γ−µ

− 1
β1

∂β1
∂µ

+ θ−β1
γ−µθ

= θ−1

√√√√ a2
a1θ

γ − µθ
γ − µ

− 1
β1

∂β1
∂µ

+ 1−β1
γ−µ

− 1
β1

∂β1
∂µ

+ θ−β1
γ−µθ

= a?.

To show that θ−1

√ (
− 1
β1

∂β1
∂µ

+
1−β1
γ−µ

)
(
− 1
β1

∂β1
∂µ

+
θ−β1
γ−µθ

) ≤ 1, note that

θ − β1
γ − µθ

≥ 1− β1
γ − µ

⇒ − 1

β1

∂β1
∂µ

+
θ − β1
γ − µθ

≥ − 1

β1

∂β1
∂µ

+
1− β1
γ − µ

⇒ θ−1

√√√√− 1
β1

∂β1
∂µ

+ 1−β1
γ−µ

− 1
β1

∂β1
∂µ

+ θ−β1
γ−µθ

≤ 1.

Therefore a? ≤ θ−1

√
a2
a1θ

γ−µθ
γ−µ = y? ≤ x?. Since a0 ≤ a? ≤ x? and pθ(x) is increasing in x for

a fixed θ, if x ≥ a0, then

0 = pθ(a
?) ≤ pθ(x

?) =
∂f

∂µ
.

Given that ∂f
∂x?
≥ 0 and ∂f

∂µ
≥ 0, then by the implicit derivative theorem, ∂x?

∂µ
≤ 0. Thus,

we conclude that x? decreases if µ increases.
Now since 1

β1

∂β1
∂µ
− 1−β1

γ−µ does not depend neither in a1 nor in a2 then, if a2 ≥ a1,
1
β1

∂β1
∂µ
− 1−β1

γ−µ ≤ 0. Therefore ∂x∗

∂µ
≤ 0 for a2 ≥ a1.
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We now study how x? varies if σ increases. First note that, by the implicit derivative
theorem

∂x?

∂σ
= −

∂f
∂σ
∂f
∂x?

(3.10)

Again using Lemma 1, we have

∂f

∂σ
=
a1(θ − β1)σ(θ(θ − 1))

(γ − µθ)2
(x?)θ − ∂β1

∂σ

a1
γ − µθ

(x?)θ +
∂β1
∂σ

a2
γ − µ

x? +
∂β1
∂σ

b

γ

=
∂β1
∂σ

(
a2

γ − µ
x? − a1

γ − µθ
(x?)θ +

b

γ

)
+
a1(θ − β1)(σθ(θ − 1))

(γ − µθ)2
(x?)θ

=
∂β1
∂σ

(
− 1

β1

[
a1θ

γ − µθ
(x?)θ − a2

γ − µ
x?
])

+
a1(θ − β1)(σ(θ(θ − 1))

(γ − µθ)2
(x?)θ

=
a1θ

γ − µθ

(
− 1

β1

∂β1
∂σ

+
(θ − β1)σ(θ − 1)

γ − µθ

)
(x?)θ +

a2
γ − µ

(
1

β1

∂β1
∂σ

)
x?.

As above, to show that ∂f
∂σ
≥ 0, we study the polynomial

qθ(x) :=
a1θ

γ − µθ

(
− 1

β1

∂β1
∂σ

+
(θ − β1)σ(θ − 1)

γ − µθ

)
xθ +

a2
γ − µ

(
1

β1

∂β1
∂σ

)
x.

Since ∂β1
∂σ
≥ 0 then − 1

β1

∂β1
∂σ
≥ 0. Therefore

(
− 1
β1

∂β1
∂σ

+ (θ−β1)σ(θ(θ−1))
γ−µθ

)
≥ 0.

Let b? be a zero of qθ(x). Then

b? = θ−1

√√√√ a2
a1θ

γ − µθ
γ − µ

− 1
β1

∂β1
∂σ

− 1
β1

∂β1
∂σ

+ (θ−β1)σ(θ(θ−1))
γ−µθ

≤ θ−1

√
a2
a1θ

γ − µθ
γ − µ

= y? ≤ x?

Since the derivative of qθ(x) with respect to x is

qθ
′
(x) =

a1θ

γ − µθ

(
− 1

β1

∂β1
∂σ

+
(θ − β1)σ(θ − 1)

γ − µθ

)
xθ +

a2
γ − µ

(
1

β1

∂β1
∂σ

)
then qθ(x) is increasing in x, for a fixed θ, if x ≥ b0, where b0 is such that qθ

′
(b0) = 0.

Given that b0 ≤ b? ≤ x? and qθ
′
(x) ≥ 0, if x ≥ b0, then

0 = qθ(b
?) ≤ qθ(x

?) =
∂f

∂σ
.

Since ∂f
∂x?
≥ 0 and ∂f

∂σ
≥ 0, then by the implicit derivative theorem, ∂x?

∂σ
≤ 0. We conclude

that x? decreases if σ increases.

Note that since ∂f
∂b

= β1
γ
≤ 0 then ∂x?

∂b
≥ 0.
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3.2 Investment problem

As for the investment problem with affine profit function, simple calculations prove that
we may rewrite functional J̃(x, τ) as follows:

J̃(x, τ) =Ex

 ∞∫
τ

e−γs
(
a1X

θ
s − a2Xs − b

)
ds


=Ex

 τ∫
0

e−γs
(
−a1Xθ

s + a2Xs

)
ds− e−γτ b

γ

+
a1x

θ

γ − µθ
− a2x

γ − µ
.

Therefore Ṽ(x) = V (x) + a1xθ

γ−µθ
− a2x

γ−µ , where

V (x) := sup
τ∈S

Ex

 τ∫
0

e−γs(−a1Xθ
s + a2Xs)ds− e−γτ

b

γ

 . (3.11)

Then the HJB equation for V (x) is

max{µxV ′(x) +
1

2
σ2x2V

′′
(x)− γV (x)− a1xθ + a2x,−

b

γ
− V (x)} = 0, (3.12)

where Π(x) = −a1xθ + a2x is the running cost and C = − b
γ

is the terminal cost.

As in the case of affine profit functions, comparing (3.1) with (3.11), we conclude that the
problem of investment is similar to the exit problem, where only the signs of a1, a2 and b
need to be changed. The main difference comes from the fact that the continuation region
for the investment problem is not the same as the continuation region for the exit problem.

To see this note that since Π(x) ≥ 0 for 0 ≤ x ≤ θ−1

√
a2
a1
, then one invests in the market

when the initial demand is low, and one exits the market when the initial demand is above
a certain level x?. Therefore, the continuation region for V (x) is C = {x : x ≤ x?}. We
conclude that for the stopping region V (x) = − b

γ
and in the continuation region the value

function is solution of the ODE:

µxV
′
(x) +

1

2
σ2x2V

′′
(x)− γV (x)− a1xθ + a2x = 0 (3.13)

After some calculations we propose V (x), for θ ∈ [1, β2[, to be

V (x) =

{
a2x
γ−µ −

a1xθ

γ−µθ
+ A2x

β2 : x < x?

− b
γ

: x ≥ x?
(3.14)

We now determine values for A2 and x?. By the fit condition

− b
γ

=
a2x

?

γ − µ
− a1(x

?)θ

γ − µθ
+ A2x

?β2 ⇒ A2 =

(
a1(x?)

θ

γ−µθ
− a2x?

γ−µ −
b
γ

)
x?β2

(3.15)
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and by the smooth condition

a2
γ − µ

− a1θ(x
?)θ−1

γ − µθ
+ β2A2x

?β2−1 = 0

⇔ a2
γ − µ

− a1θ(x
?)θ−1

γ − µθ
+ β2

(
a1(x

?)θ−1

γ − µθ
− a2
γ − µ

− b

γx?

)
= 0

⇔a1(β2 − θ)
γ − µθ

(x?)θ − a2(β2 − 1)

γ − µ
x? − β2b

γ
= 0.

The value of x? is a zero of the polynomial

f(x) :=
a1(β2 − θ)
γ − µθ

(x)θ − a2(β2 − 1)

γ − µ
x− β2b

γ
. (3.16)

Thus the investment threshold x? is the zero of f(x) which cannot be found analytically.
Following the same approach as for the exit problem, we first prove that there is a unique
positive solution x? to the equation f(x) = 0. Since the derivative of f(x) is

f
′
(x) =

a1θ(β2 − θ)
γ − µθ

(x)θ−1 − a2(β2 − 1)

γ − µ
,

then f ′(x) ≥ 0 for x ∈ [x1,∞[, where x1 is the zero of f
′
(x). Furthermore f(0) = −β2b

γ
≤ 0

and limx→∞ f(x) =∞, we conclude that there is a unique positive solution to the equation
f(x) = 0, which we denote by x?.

We now show that y? := θ−1

√
a2
a1

γ−µθ
γ−µ

β2−1
β2−θ is a lower bound of x?. First note that

f(y?) =
a1(β2 − θ)
γ − µθ

(y?)θ − a2(β2 − 1)

γ − µ
y? − β2b

γ

= y?
[
a1(β2 − θ)
γ − µθ

(y?)θ−1 − a2(β2 − 1)

γ − µ

]
− β2b

γ
= −β2b

γ
≤ 0.

Given that f(y?) ≤ 0 and f(x) ≤ 0 if x ∈ (0, x?) then x? ≥ y? = θ−1

√
a2
a1

γ−µθ
γ−µ

β2−1
β2−θ .

Since γ − µθ = −1
2
σ2(θ − β1)(θ − β2) then y? = θ−1

√
a2
a1

θ−β1
1−β1 .

We note that the lower bound for the investment problem is greater or equal than the
lower bound for the exit problem.

Proposition. x? ≥ c where c is such that a1c
θ − a2c− b = 0. Meaning that investment is

optimal for values of demand where the profit flow a1x
θ − a2x− b is positive.
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Proof. We omit the proof because it is analogous to the proof for the exit problem.

We now prove the following lemma

Lemma 2. a1
γ−µθ

(x?)θ − a2
(γ−µ)x

? + b
γ

= − 1
β2

(
a2
γ−µx

? − a1θ
γ−µθ

(x?)θ
)

Proof.

f(x?) =
a1(β2 − θ)
γ − µθ

(x?)θ − a2(β2 − 1)

γ − µ
x? − β2b

γ
= 0

⇒
(

a1
γ − µθ

(x?)θ − a2
γ − µ

x? − b

γ

)
= − 1

β2

[
a2

γ − µ
x? − a1θ

γ − µθ
(x?)θ

]

Using the previous lemma, we can now prove that A2 ≥ 0.

A2 =

a1(x?)
θ

γ−µθ
− a2x?

γ−µ −
b
γ

(x?)β2
=
− 1
β2

[
a2
γ−µx

? − a1θ
γ−µθ

(x?)θ
]

(x?)β2
.

Studying the function g(x) := − 1
β2

(
a2
γ−µx−

a1θ
γ−µθ

xθ
)
, we can show that g(x?) ≥ 0. Since

the derivative of g(x) is − 1
β2

(
a2
γ−µ −

a1θ2

γ−µθ
xθ−1

)
then g′(x) ≥ 0 for x ∈ [x2,∞[ where x2 is

the positive zero of g
′
(x). As g(y?) = a2y?

γ−µ
θ−1
β2−θ ≥ 0, x2 ≤ y? ≤ x?, then g(x?) ≥ g(y?) ≥ 0.

We thus conclude that A2 ≥ 0.

In the next proposition, we provide the value of the firm.

Proposition. Ṽ(x)is given by:

Ṽ(x) =

{
A2x

β2 : x < x?

a1xθ

γ−µθ− 1
2
σ2θ(θ−1) −

a2x
γ−µ −

b
γ

: x ≥ x?,

where A2 ≥ 0 is given by (3.15) and x? ≥ y? is such that f(x?) = 0, with f(x) given by

(3.16), y? = θ−1

√
a2
a1

θ−β1
1−β1 .

Proof. By construction, V (x) is continuous in R+ with continuous derivative. As Ṽ(x) =

V (x)+ a1xθ

γ−µθ− 1
2
σ2θ(θ−1)−

a2x
γ−µ , ∀x > 0, we need to prove only that V (x) is solution of the HJB

equation (3.12). We omit that V (x) is the solution of the HJB equation (3.12), because
the proof is analogous to the exit problem.
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3.2.1 Comparative statics for the investment problem

In this section we study the influence of the market expectations, µ and σ, and the param-
eters b on the decision to invest.

We begin by studying how x? varies if µ and σ increase, when b = 0. If b = 0 then

x? = c θ−1

√
θ−β1
1−β1 = y? where c = θ−1

√
a2
a1
. In this case we can solve x? analytically, and

therefore the comparative statics follows easily. Since ∂β1
∂µ
≤ 0, then

∂x?

∂µ
= c

1

θ − 1

(
θ − β1
1− β1

) 1
θ−1
−1
∂β1
∂µ

θ − 1

(1− β1)2
≤ 0

and, given that ∂β1
∂σ
≥, 0 then

∂x?

∂σ
= c

1

θ − 1

(
θ − β1
1− β1

) 1
θ−1
−1
∂β1
∂σ

θ − 1

(1− β1)2
≥ 0.

Now if b > 0, using the implicit derivative theorem, we have

∂x?

∂µ
= −

∂f
∂µ

∂f
∂x?

.

To prove that ∂f
∂x?
≥ 0, note that

∂f

∂x?
=
a1θ(β2 − θ)
γ − µθ

(x?)θ−1 − a2(β2 − 1)

γ − µ

≥a1(β2 − θ)
γ − µθ

(x?)θ−1 − a2(β2 − 1)

γ − µ
=
β2b

γx?
≥ 0.

By Lemma 2, we have

∂f

∂µ
=
a1θ(β2 − θ)
(γ − µθ)2

(x?)θ +
∂β2
∂µ

a1
γ − µθ

(x?)θ − a2(β2 − 1)

(γ − µ)2
x? − ∂β2

∂µ

a2
γ − µ

x? − ∂β2
∂µ

b

γ

=
a1θ

γ − µθ

(
1

β2

∂β2
∂µ

+
β2 − θ
γ − µθ

)
(x?)θ − a2

γ − µ

(
1

β2

∂β2
∂µ

+
β2 − 1

γ − µ

)
x?

To show that ∂f
∂µ
≥ 0, first we analyse the polynomial

pθ(x) :=
a1θ

γ − µθ

(
1

β2

∂β2
∂µ

+
β2 − θ
γ − µθ

)
xθ − a2

γ − µ

(
1

β2

∂β2
∂µ

+
β2 − 1

γ − µ

)
x

For the moment let’s suppose that a1 ≥ a2. We saw, by (2.19), that if θ = 1 then
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−
∂f
∂µ

∂f
∂x?

=
∂x?

∂µ
=

b

a1 − a2
1

γ

∂β2
∂µ

(β2 − 1)2
≤ 0.

Since ∂f
∂x?
≥ 0, then for θ = 1, ∂f

∂µ
≥ 0. Substituting θ by 1, in pθ(x

?) we have

0 ≤ ∂f

∂µ

∣∣∣∣
θ=1

= p1(x
?) =

a1 − a2
γ − µ

(
1

β2

∂β2
∂µ

+
β2 − 1

γ − µ

)
x?.

Therefore, since x? > 0, then

1

β2

∂β2
∂µ

+
β2 − 1

γ − µ
≥ 0⇒ − a2

γ − µ

(
1

β2

∂β2
∂µ

+
β2 − 1

γ − µ

)
≤ 0.

If a1θ
γ−µθ

(
1
β2

∂β2
∂µ

+ β2−θ
γ−µθ

)
were negative then pθ(x) < 0, ∀x. But since, for b = 0, y? = x? and

∂x?

∂µ
≤ 0, then 0 ≤ ∂f

∂µ

∣∣∣
b=0

= pθ(y
?), thus

a1θ

γ − µθ

(
1

β2

∂β2
∂µ

+
β2 − θ
γ − µθ

)
≥ 0,

which contradicts the statement that a1θ
γ−µθ

(
1
β2

∂β2
∂µ

+ β2−θ
γ−µθ

)
≤ 0.

Therefore one needs to study the behaviour of pθ(x), in order to prove that ∂f
∂µ
≥ 0. The

derivative of pθ(x) is given by:

p
′

θ(x) =
a1θ

2

γ − µθ

(
1

β2

∂β2
∂µ

+
β2 − θ
γ − µθ

)
xθ−1 − a2

γ − µ

(
1

β2

∂β2
∂µ

+
β2 − 1

γ − µ

)
Thus pθ

′
(x) ≥ 0 if x ≥ a0 where a0 such that pθ

′
(a0) = 0. Therefore 0 ≤ pθ(y

?) ≤ pθ(x
?) =

∂f
∂µ
.

Given that ∂f
∂x?
≥ 0 and ∂f

∂µ
≥ 0, then by the implicit derivative theorem, ∂x?

∂µ
≤ 0. We

conclude that x? decreases if µ increases. Now since − a2
γ−µ

(
1
β2

∂β2
∂µ

+ β2−1
γ−µ

)
does not depend

on a1 and a2 then, if a2 ≥ a1, − a2
γ−µ

(
1
β2

∂β2
∂µ

+ β2−1
γ−µ

)
≤ 0. Therefore, ∂x?

∂µ
≤ 0 for a2 ≥ a1.

Again using the implicit derivative theorem we have

∂x?

∂σ
= −

∂f
∂σ
∂f
∂x?

(3.17)

Using Lemma 2 we have

34



∂f

∂σ
=
a1(β2 − θ)σ(θ(θ − 1))

(γ − µθ)2
(x?)θ +

∂β2
∂σ

a1
γ − µθ

(x?)θ − ∂β2
∂σ

a2
γ − µ

x? − ∂β2
∂σ

b

γ

=
a1θ

γ − µθ

(
1

β2

∂β2
∂σ

+
(β2 − θ)σ(θ − 1)

γ − µθ

)
(x?)θ − a2

γ − µ

(
1

β2

∂β2
∂σ

)
x?.

As above, to show that ∂f
∂σ
≤ 0, we study the polynomial

qθ(x) :=
a1θ

γ − µθ

(
1

β2

∂β2
∂σ

+
(β2 − θ)σ(θ − 1)

γ − µθ

)
xθ − a2

γ − µ

(
1

β2

∂β2
∂σ

)
x.

Since β2 ≥ 0 and ∂β2
∂σ
≤ 0, then − a2

γ−µ
1
β2

∂β2
∂σ
≥ 0.

If a1θ
γ−µθ

(
1
β2

∂β2
∂σ

+ (β2−θ)σ(θ−1)
γ−µθ

)
were positive then qθ(x) > 0, ∀x. But since for b = 0, y? =

x? and ∂x?

∂σ
≥ 0 then 0 ≥ ∂f

∂σ

∣∣
b=0

= qθ(y
?), thus a1θ

γ−µθ

(
1
β2

∂β2
∂σ

+ (β2−θ)σ(θ−1)
γ−µθ

)
≤ 0, which

contradicts the statement that a1θ
γ−µθ

(
1
β2

∂β2
∂σ

+ (β2−θ)σ(θ−1)
γ−µθ

)
≥ 0.

Therefore one needs to study the behaviour of qθ(x), in order to prove that ∂f
∂σ
≤ 0. The

derivative of qθ(x) is given by:

qθ
′
(x) =

a1θ
2

γ − µθ

(
1

β2

∂β2
∂σ

+
(β2 − θ)σ(θ − 1)

γ − µθ

)
xθ−1 − a2

γ − µ

(
1

β2

∂β2
∂σ

)
.

Thus qθ
′
(x) ≤ 0 if x ≥ b0, where b0 is such that qθ

′
(b0) = 0. Therefore 0 ≥ qθ(y

?) ≥
qθ(x

?) = ∂f
∂σ
.

Since ∂f
∂x?
≥ 0 and ∂f

∂σ
≤ 0, then by the implicit derivative theorem, ∂x?

∂σ
≥ 0. We conclude

that x? increases if σ increases.

Note that since ∂f
∂b

= −β2
γ
≤ 0 then ∂x?

∂b
≥ 0.
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3.3 Changing market problem

In this section first we consider that the firm has the option to switch from one market
characterized by a monomial profit function Π1(x) = a1x

θ−b1, to another one characterized
by a linear profit function Π2(x) = a2x − b2, at time τ. We are assuming that a1, a2 ≥ 0.
To avoid Π1(x) intersects more than once or intersect Π2(x), we assume b1 ≥ b2.

Simple calculations prove that we may rewrite the functional I(x, τ) as follows:

I(x, τ) =Ex

 τ∫
0

e−γs(a1X
θ
s − b1)ds+

∞∫
τ

e−γs(a2Xs − b2)ds

 (3.18)

=Ex

 τ∫
0

e−γs(a1X
θ
s − a2Xs − (b1 − b2))ds

+ Ex

 ∞∫
0

e−γs(a2Xs − b2)ds


︸ ︷︷ ︸

=
a2
γ−µx−

b2
γ

(3.19)

This problem can be solved using the results derived in the exit problem with polynomial
profit functions, with b = b1 − b2. Thus the value function for such case is given by:

G(x) =

{
a2
γ−µx−

b2
γ

: x < x?

a1
γ−µθ

xθ − b1
γ

+ A1x
β1 : x ≥ x?

where A1 =
a2x

?

γ−µ −
a1(x

?)θ

γ−µθ
+
b1−b2
γ

x?β1
≥ 0 and x? ≤ c is such that f(x?) = 0, with f(x) given

by (3.6), and c such that Π1(c) = Π2(c). Note that c is precisely the point where Π1 and
Π2 intersect, therefore the value x where the firm should optimally change from the first
market to the second one is smaller or equal to the point where both markets are equally
profitable.

Now we consider that the firm has the option to switch from one market characterized by a
linear profit function Π1(x) = a1x− b1, to another one characterized by a monomial profit
function Π2(x) = a2x

θ − b2 at time τ. Again we are assuming that a1, a2 ≥ 0. To avoid
Π1(x) intersects more than once or does not intersect Π2(x) we assume b1 ≤ b2.
Simple calculations prove that we may rewrite the functional I(x, τ) as follows:

I(x, τ) = Ex

 τ∫
0

e−γs(a1Xs − a2Xθ
s + (b2 − b1))ds

+ E

 ∞∫
0

e−γs(a2X
θ
s − b2)ds


︸ ︷︷ ︸

=
a2

γ−µθ
xθ− b2

γ

36



Therefore this problem can be solved using the results derived in the investment problem
with polynomial profit function, with b = b2 − b1. Thus the value function for such case is
given by:

G(x) =

{
A2x

β2 + a1
γ−µx−

b1
γ

: x < x?

a2
γ−µθ

xθ − b2
γ

: x ≥ x?

where A2 =
a2(x

?)θ

γ−µθ
−a1x

?

γ−µ −
(b2−b1)

γ

x?β2
≥ 0 and x? ≥ c is such that f(x?) = 0, with f(x) given

by (3.16), and c such that Π1(c) = Π2(c). Therefore the value x where the firm should
optimally change from the first market to the second one is larger or equal to the point
where both markets are equally profitable.
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Chapter 4

Conclusion

In this work we analysed three profit maximization problems: the ”exit problem”, the
”investment problem” and the ”changing market problem”. We assumed that the mar-
ket demand followed a Geometric Brownian Motion. We solved the exit and investment
problems for a class of profit functions of the form Π(x) = a1x

θ − a2x − b. Using the
Hamilton-Jacobi-Bellman equation, first we found the value function for the exit problem.
Even though the exit threshold could not be calculated analytically, we determined an
upper and lower bound. We then presented comparative statistics with respect to the
drift and the volatility and concluded that if the drift or the volatility of the uncertainty
process X increases, then the decision to exit the market is postponed. We then deter-
mined the value function for the investment problem. In this case we could only calculate
a lower bound for the investment threshold. Again we presented comparative statistics
with respect to the drift and the volatility and concluded that if the volatility increases,
the decision to invest is anticipated whereas if the drift increases, it is postponed. Using
the results derived in the exit problem we calculated the value function for the changing
market problem of a firm that has the option to switch from one market characterised by
a monomial profit function to a market characterised by a linear profit function. We then
presented comparative statistics with respect to the drift (denoted by µ) and the volatility
(denoted by σ) and concluded that the influence of µ and σ of the uncertainty process
X, follows the same pattern as the dependency of x? with respect to µ and σ in the exit
problem. Conversely, we calculated the value function for the changing market problem
of a firm that has the option to switch from one market characterised by a linear profit
function to a market characterised by a monomial profit function. Again we presented
comparative statistics with respect to µ and σ and concluded that the influence of µ and
σ of the uncertainty process X, follows the same pattern as the dependency of x? with
respect to µ and σ in the investment problem.

38



Bibliography

[1] Michael D Intriligator. Mathematical optimization and economic theory, volume 39.
Siam, 1971.

[2] Thomas S Ferguson. Who solved the secretary problem? Statistical science, pages
282–289, 1989.

[3] Johnathan Mun. Real options analysis: Tools and techniques for valuing strategic
investments and decisions, volume 137. John Wiley & Sons, 2002.

[4] Avinash K Dixit and Robert S Pindyck. Investment under uncertainty. Princeton
University Press, 1994.

[5] Tomas Björk. Arbitrage theory in continuous time. Oxford University Press, 2009.

[6] Kevin Ross. Stochastic control in continuous time. Lecture Notes on Continuous Time
Stochastic Control, Springer, 2008.

[7] Bernt Øksendal. Stochastic differential equations. In Stochastic differential equations,
pages 65–84. Springer, 2003.

[8] Manuel Guerra, Claudia Nunes, and Carlos Oliveira. Exit option for a class of profit
functions. International Journal of Computer Mathematics, pages 1–16, 2016.

39



Appendix

Properties of β1

In this last section we study some properties of β1 and β2.
Let P (t) = 1

2
σ2t2 + (µ− 1

2
σ2)t− γ. Then β1 and β2 are zeros of P (t).

First we study how β1 varies if we increase σ. Using the implicit derivative theorem we
have:

∂β1
∂σ

= −
∂P
∂σ
∂P
∂β1

= − σβ2
1 − σβ1

σ2β1 + (µ− 1
2
σ2)

=
σβ1(β1 − 1)√

(µ− 1
2
σ2)2 + 2σ2γ

≥ 0.

We now study how β1 varies if we increase µ. Using the implicit derivative theorem we
have:

∂β1
∂µ

= −
∂P
∂µ

∂P
∂β1

= − β1
σ2β1 + (µ− 1

2
σ2)

=
β1√

(µ− 1
2
σ2)2 + 2σ2γ

≤ 0.

Properties of β2

Lemma 3. β2 ≥ 1 for all σ and µ.

Proof.

γ ≥ µ⇒ β2 =
−(µ− 1

2
σ2) +

√
(µ− 1

2
σ2)2 + 2σ2γ

σ2

≥
−(µ− 1

2
σ2) +

√
(µ− 1

2
σ2)2 + 2σ2µ

σ2

=
−(µ− 1

2
σ2) +

√
(µ+ 1

2
σ2)2

σ2

=
−(µ− 1

2
σ2) + (µ+ 1

2
σ2)

σ2
=
σ2

σ2
= 1

First we study how β2 varies if we increase σ. Using the implicit derivative theorem we
have:

∂β2
∂σ

= −
∂P
∂σ
∂P
∂β2

= − σβ2
2 − σβ2

σ2β2 + (µ− 1
2
σ2)

= − σβ2(β2 − 1)√
(µ− 1

2
σ2)2 + 2σ2γ

≤ 0.

We now study how β2 varies if we increase µ. Using the implicit derivative theorem we
have:

∂β2
∂µ

= −
∂P
∂µ

∂P
∂β2

= − β2
σ2β2 + (µ− 1

2
σ2)

= − β2√
(µ− 1

2
σ2)2 + 2σ2γ

≤ 0.
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