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Resumo

A modelação de escoamentos a números de Reynolds moderados é actualmente uma das áreas

principais no desenvolvimento da mecânica de fluidos computacional. A extensão considerável de es-

coamento laminar presente nestes escoamentos é incompatı́vel com a solução numérica obtida pelos

modelos de turbulência habitualmente usados, que prevêem uma extensão desprezável da região de

escoamento laminar. As metodologias baseadas na teoria da estabilidade linear, das quais o método eN

é o exemplo mais popular, podem obter resultados exactos, especialmente em estudos paramétricos.

No entanto, estas técnicas dependem de várias operações não locais, que são difı́ceis de implemen-

tar em códigos que resolvem as equações de Navier-Stokes em média de Reynolds (RANS), dado

que estes dependem fortemente em paralelização. A alternativa mais promissora para a previsão de

transição num cálculo com as equações RANS é o uso de modelos baseados em equações de trans-

porte, os chamados modelos de transição, que tem sofrido um desenvolvimento significativo nos últimos

anos. Este trabalho investiga o uso de três desses modelos, nomeadamente o modelo γ − Reθ de

Langtry e Menter, o modelo γ de Menter et al., e o modelo AFT de Coder e Maughmer. É considerado

o seu acoplamento original com o modelo k − ω SST, bem como um acoplamento novo com o modelo

k −
√
kL. Vários casos bidimensionais e tridimensionais são usados para avaliar quer os modelos de

transição, quer o modelo de turbulência subjacente ao qual estão acoplados. Os resultados focam-se

em aspectos que dizem respeito à precisão da solução numérica, e em aspectos de modelação que

influenciam directamente a solução do modelo. São avaliados factores como as condições de fronteira

da turbulência na entrada, o limitador de produção para as regiões de estagnação e a discretização

do termo convectivo nas equações de transporte do modelo de turbulência. Estes factores mostram

pouca influência para simulações sem modelo de transição nos casos testados, mas afectam sever-

amente as soluções numéricas de cálculos com modelos de transição, com um impacto directo na

localização da zona de transição. Torna-se claro que os comportamentos observados para o modelo

de turbulência subjacente quando usado sozinho não são válidos quando um modelo de transição é

incluı́do, que também leva a dificuldades numéricas acrescidas e um maior desafio em preparar as

simulações devido a condições de fronteira que não são completamente conhecidas. No entanto, o uso

de um modelo de transição melhora de forma considerável as previsões numéricas para escoamentos a

números de Reynolds moderados, reduzindo as discrepâncias entre estas e medições experimentais de

distribuições de pressão, do coeficiente de resistência de atrito e de forças aerodinâmicas, permitindo

captar extensões significativas de escoamento laminar e efeitos como bolhas de separação laminar.

Palavras-chave: Modelação de Transição; Modelação de Turbulência; Equações de Navier-

Stokes em Média de Reynolds; Verificação e Validação; Números de Reynolds Moderados.
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Abstract

The modelling of flows at moderate Reynolds numbers is currently one of the key areas in the devel-

opment of Computational Fluid Dynamics. The considerable extent of laminar flow present in these flows

is incompatible with the numerical solution obtained by the standard turbulence modelling alternatives,

which predict a negligible extent of laminar flow. Approaches based on linear stability theory, of which

the eN method is the most well-known example, can often provide accurate results, especially in regard

to parametric trends. However, these techniques depend on numerous non-local operations, which are

challenging to implement in solvers for the Reynolds-averaged Navier-Stokes (RANS) equations since

these solvers rely strongly on parallelization. The most promising alternative for the prediction of tran-

sition in a RANS calculation is the use of models based on transport equations, the so called transition

models, which have seen significant development in the recent years. This work investigates the use

of three such models, namely the γ − Reθ model by Langtry and Menter, the γ model by Menter et

al., and the AFT model of Coder and Maughmer. Both the original coupling with the k − ω SST tur-

bulence model, as well as a new coupling to the k −
√
kL turbulence model are considered. Several

two and three-dimensional test cases are used to assess both the transition models and the underlying

turbulence model to which they are coupled. The results focus on aspects which concern the numerical

accuracy of the solution, and on modelling aspects which directly influence the solution of the model.

Factors such as the inlet turbulence quantities, the production limiter for stagnation regions and the

discretization of the convection term of the turbulence transport equations are assessed. These have

a small influence in simulations without a transition model for the tested cases, but can greatly affect

numerical solutions of calculations using transition models with a direct impact on the predicted location

of transition. This makes it clear that trends observed for the underlying turbulence models when used

alone may not be valid when a transition model is included, which also leads to additional numerical

difficulties and challenging modelling setup due to unknown precise inlet boundary conditions. Nonethe-

less, using a transition model greatly improves numerical predictions for flows at moderate Reynolds

numbers, reducing the differences between these and experimental measurements of pressure coeffi-

cients, skin-friction coefficients and aerodynamic forces, and allowing for significant extents of laminar

flow and phenomena such as laminar separation bubbles to be captured.

Keywords: Transition Modelling; Turbulence Modelling; Reynolds-averaged Navier-Stokes Equa-

tions; Verification and Validation; Moderate Reynolds Numbers.
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Chapter 1

Introduction

1.1 Motivation

The simulation of transitional flows stands as one of the present challenges in the development of

Computational Fluid Dynamics (CFD) [1]. Many aerospace and maritime applications deal with flows at

high Reynolds numbers, in which the laminar region has a negligible extent. At model scale, where the

Reynolds number is low, tripping is often employed in order to cause the flow to become turbulent. This

situation is well reproduced by standard turbulence models used with the Reynolds-averaged Navier-

Stokes (RANS) equations, which are still the most common framework used for industrial applications.

These models predict transition to occur close to the stagnation point, as they were not designed for the

prediction of flow transition.

However, there are many practical applications that do not deal with high Reynolds number flows.

Examples of such cases are aerial and marine unmanned vehicles [2], small submarines [3], gliders

[4] and wind turbines [5]. For these flows, the laminar region has a considerable extent, which has a

significant impact on the forces and moments acting on the body. The same can hold true for model scale

testing of high Reynolds number applications such as marine propellers [6] if tripping is not employed,

or in methodologies that aim at taking advantage of laminar flow such as laminar wing design [7]. The

turbulence models that have been developed for the high Reynolds number flows still lead to a very small

extent of laminar flow under these conditions, an unphysical solution which fails to reproduce relevant

flow features.

These shortcomings of the standard turbulence models, along with the increasing focus on un-

manned vehicles and on drag reduction for fuel savings, have led to the recent development of transition

models. It is the aim of these models to accurately predict the location where the flow undergoes transi-

tion from laminar to turbulent, enabling the RANS equations to be used for low and moderate Reynolds

number flows. Nonetheless, these models are still fairly new and have yet to reach the degree of ma-

turity that the turbulence models used for high Reynolds number flows have attained. For this reason,

during the past decade, numerous groups from both aerospace and naval background have devoted

their attention to this topic. This is evidenced by the NASA Transition Modeling Workshop held in 2017
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[8], the AVT-313 panel group, the AIAA special session in the 2018 SciTech Forum [9] and the 1st AIAA

Transition Modeling and Prediction Workshop held in 2021 [10]. The work developed during the course

of this thesis has been a part of the workshops organized by the AVT-313 group, as well as of the 1st

AIAA Transition Modeling and Prediction Workshop.

1.2 Transition Modelling

The extensively studied and used k − ε and k − ω models are unsuitable for modelling transition

at moderate Reynolds numbers. These models were built for fully developed turbulent flows, and are

calibrated following results such as the log-law or the decay of homogeneous isotropic turbulence [11].

It is then unsurprising that they fail outside the high Reynolds number regime: according to Wilcox [11],

the k − ω model predicts transition to start at a Reynolds number of 8100, which leads to a negligible

extent of laminar flow for Reynolds numbers above 105. The Spalart-Allmaras model, commonly used

in external aerodynamics also predicts transition too far upstream. Although its formulation includes a

tripping term which can delay transition, it does not model it directly. Furthermore, the use of the tripping

term has been shown to lead to non-unique solutions [12]. In simulations using these models, the lack

of a formulation capable of accurate accounting for transition is often highlighted as one of the causes

for discrepancies between numerical and experimental results [13].

One factor that poses challenges in the modelling of transition lies in the diversity of triggering mech-

anisms. During the transition process, laminar flow becomes unstable and turbulent. The instability

is caused by flow perturbations, which can originate from the freestream and wall roughness, among

other causes. These perturbations give rise to natural transition or bypass transition depending on their

amplitude [14]. Other flow phenomena, such as flow separation, may also trigger laminar-to-turbulent

transition. In the case of turbomachinery flows, transition can be caused by the impinging wake of pre-

ceding blade rows, a process termed wake-induced transition [15]. In three-dimensional flows, transition

due to the crossflow occuring in the boundary layer, aptly named crossflow transition, may also trigger

transition either by itself or through interaction with other mechanisms.

High fidelity approaches such as Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES)

can be suitable for the prediction of transition, but come with their own setbacks. The first corresponds to

the unavoidable computational cost of these approaches which makes them unaffordable for industrial

applications [16], even for the Reynolds number range of transitional flows. Another issue is caused

by the physical nature of the transition process: an accurate simulation requires a correct specification

of flow disturbances, which is far from trivial. In the case of LES, there is also some sensitivity to the

subgrid-scale model used [17], introducing further difficulties.

One of the most successful approaches to predict transition is the eN method, developed in 1956

[18, 19]. Its formulation based on linear stability theory along with accurate predictions in natural tran-

sition scenarios have granted it considerable popularity. However, the linear stability framework is not

suitable for other transition mechanisms, and some empiricism is present in the method. In addition,

the eN method requires numerous non-local operations to be performed. This arises as a significant
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obstacle in its use as a transition prediction method coupled with solvers based on the RANS equations.

These solvers are built for High Performance Computing infrastructure making use of parallel domain

decomposition, which makes non-local operations inconvenient and expensive.

Some attempts at using low-Reynolds number turbulence models to predict transition have been

performed [20]. These modifications are usually done through the use of damping functions in some

of the model terms, without the use of any empirical correlation for transition. While they maintain

the local formulation of the underlying model, studies have found these models to be innaccurate [21].

The reason for the origin of low-Reynolds number models was to improve the modelling of turbulent

flow at lower Reynolds numbers, not to model transition. In addition, their ability to predict transition is

solely due to the similarities between the viscous sub-layer and the laminar boundary layer. Moreover,

some formulations of k − ε models suffer from numerical issues which lead to converged solutions that

are dependent on initial conditions or the solution procedure [22]. For these reasons, low Reynolds

formulations are now seldom used.

Several models based on empirical correlations have also been developed. In principle, this approach

can lead to accurate predictions, if proper correlations for a given application are selected. However,

most transition criterion are formulated based on integral parameters such as the momentum-thickness

Reynolds number. Thus, akin to the eN method, non-local operations must be performed, which preclude

these models from being easily used in a RANS environment.

Keeping in mind the requirement for a local formulation, the correlation-based γ − Reθ model [23]

became highly successful, as it was also capable of dealing with multiple transition mechanisms. The

phenomenological kT − kL − ω model of Walters and Cokljat [24], based on the concept of the laminar

fluctuation kinetic energy, has also gained some popularity in particular for turbomachinery applications,

as it is suitable for bypass transition. Another model worthy of mention is the Amplification Factor Trans-

port model of Coder and Maughmer [25]. This model attempts to mimic the procedure of the eN in a

local fashion, fully compatible with RANS formulations. Numerous other models have been proposed,

whether based on similar concepts as the aforementioned ones, or simply by combining the different

formulations in an attempt to keep their strengths. Additional extensions to these models to account for

roughness [26] or crossflow transition [27] or simply different sets of correlations [28] have also been

studied.

1.3 Main Goals

One particular aspect that the transition models addressed herein have in common is that they rely

on well established turbulence models such as the k − ω SST or Spalart-Allmaras model to handle the

turbulent regime. The purpose of the transition model is not to model the physics of the transition pro-

cess, but to identify the region of the flow which should be laminar and equivalently, where transition

should start. The laminar region is ensured by the deactivation of the underlying turbulence model,

through changes in the source terms of the turbulence transport equations. The modelling of the tran-

sition region is left to the underlying turbulence model, once the transition model no longer prevents
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the growth of turbulence kinetic energy and eddy-viscosity. As simulations with these models become

common, they reveal that some aspects that had little importance in calculations using only turbulence

models, such as the decay of turbulence in the freestream, can have a profound effect if a transition

model is used. The experience and trends observed in turbulence models at high Reynolds numbers

flows may not be the same at moderate Reynolds numbers, when additional transport equations are

used for the prediction of transition.

The scope of this dissertation is to study both the numerical properties of transition models and the

underlying turbulence models when coupled to the transition model, as well as the improved modelling

accuracy provided by the coupling of the two models. The main goal is to identify the strengths and

weaknesses of each model and to assess which may be the most adequate approaches for practical

applications. Three different transition models are considered: the γ−Reθ model of Langtry and Menter

[23], the γ model of Menter et al. [29] and the AFT model of Coder and Maughmer [30]. These models

were selected due to their widespread usage and ongoing development through the publication of exten-

sions to the models, as well as due to the fact they cover different transition mechanisms and different

modelling approaches. Although all of them have been coupled to the k−ω SST turbulence model, which

is the main turbulence model used in this thesis, an additional coupling alternative to the two-equation

k −
√
kL (KSKL) model that was developed during this work is also addressed. The selection of the

KSKL model for coupling with the transition models is based on its lower dependence on the near-wall

cell size [31].

Alternative formulations were also tested, most notably the kT − kL − ω transition model [24] and

the coupling of the SSG-LRR Reynolds stress model with the γ − Reθ transition model [32]. However,

none of these two approaches went through studies as detailed as the previously mentioned model

combinations. Regarding the kT −kL−ω model, the lack of a capability to handle flow separation, along

with difficulties in the iterative convergence of the solutions using this model [33] led to the decision of

not giving it the same thorough treatment. In the case of the coupling between the γ − Reθ and the

SSG-LRR models, the recent publication of the formulation when compared to the remaining models

prevented its application on all test cases. For this reason, the formulation of this model combination

and the results obtained with it are given in the appendix.

Nine test cases are considered to assess the different transition modelling approaches which are

studied. The simplest case consists of the flow over a flat plate, generally used to calibrate transition

models due to available data [34]. While this makes any comparison with experimental data meaning-

less, it does not influence trends on numerical aspects that may be observed, and the simplicity of the

case makes it a good stepping stone to the other test cases. The remaining two-dimensional flows

consist of five airfoils: NACA 0012, NACA 0015, Eppler 387, NLF1-0416 and S809. Most of these are

selected due to significant extent of laminar flow and available experimental data for a wide range of

angles of attack, which has led to these geometries being commonly used to evaluate transition models.

Out of the five airfoils, the NACA 0015 is the only one for which measurements of the skin-friction co-

efficient are available. On the other hand, the NACA 0012 airfoil is the only geometry for which laminar

flow separation is never involved as a triggering mechanism for transition, and it is also the only airfoil for
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which comparisons with experimental data are not performed. The three-dimensional flows are those

around the SD 7003 wing, a 6:1 prolate spheroid and a sickle wing. The SD 7003 wing is representative

of that used in sailplanes [35]. The 6:1 prolate spheroid corresponds to an idealized shape of an air-

craft fuselage or a submarine hull. Along with the sickle wing, these are prime test cases to investigate

crossflow transition.

From the numerical standpoint, one of the features explored throughout this work relates to numeri-

cal robustness. The inclusion of additional transport equations in the non-linear system and the strong

coupling between the turbulence and transition transport equations makes iterative convergence more

difficult. This is further complicated by the fact that numerous switches and limiters are present in the

models. Another aspect concerns the numerical schemes employed, namely the discretization scheme

for the convection terms of the turbulence and transition transport equations. Due to the strong interac-

tion between these equations in the studied models, along with the dependence on the turbulence decay

on the freestream where grids are typically not refined, the standard choice of a first order scheme typ-

ically used for high Reynolds number flows may not be the most adequate. The final numerical detail

studied in this thesis concerns the influence of the near-wall cell size. Evidently the use of wall func-

tions is unsuitable for the laminar region of the flow, hence the full extent of the boundary-layer must be

resolved and the shear-stress at the wall is determined from its definition. Grid generation procedures

usually aim at a value of y+
max around 1 for simulations using only a turbulence model. However, the

same criteria is also used when transition models are employed, and so the impact of this choice is stud-

ied herein. This aspect has been very recently been addressed for both simulations with and without

transition models [31, 36, 37].

Throughout this dissertation, there is a significant focus on the numerical uncertainty of the simula-

tions. Proper Verification and Validation [38] is essential to establish the credibility of numerical results.

While an adequate Validation exercise would require detailed experimental data to evaluate the mod-

elling error along with a thorough numerical study, Verification only necessitates the latter in order to

estimate the numerical error. In CFD calculations of steady flows, the dominant component of the nu-

merical error usually comes from the spatial discretization. Thus the numerical error can be assessed

through grid refinement studies. Such studies are performed for all the cases discussed in this thesis.

From a physical perspective, the first topic addressed concerns the influence of the limiter of turbu-

lence production in stagnation regions. Although for simulations without a transition model this influence

is generally small, the excess production at the stagnation point can affect the turbulence level at the

edge of the boundary-layer. In turn, considering how some of the transition models used in this study

operate, this can have a direct impact on the predicted location of transition. The second aspect which is

considered is the influence of the turbulence decay in the freestream. Dependency on freestream values

has been pointed out as a disadvantage of turbulence models as for example in the k − ω model. How-

ever, due to the physical nature of the transition process, the influence of these values on the predicted

location of transition is necessary and desirable. Lastly, the results from the simulations are compared

against experimental data for several two- and three-dimensional flows. This does not constitute a rig-

orous Validation exercise, due to the limitations provided in the definition of the test case, in particular
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the information for the inlet turbulence quantities. Without matching conditions between simulations and

experiments, formal validation of the models is not possible. Given the lack of data regarding the turbu-

lence boundary conditions, an evaluation of the modelling error is not definitive, for different conclusions

could be reached if different boundary conditions were used. Nonetheless, simulations with and without

transition models can be compared, for the solutions differ significantly so that the effect of the transition

model can be assessed regardless of the boundary conditions employed.

1.4 Thesis Outline

The remainder of this thesis is outlined as follows: Chapter 2 presents a description of the physics of

the transition process, considering some of the most prominent transition mechanisms. Approaches to

include the effects of transition in numerical simulations are also presented, ranging from the eN method,

low-Reynolds number variants of turbulence models and a literature review on the local models that are

used in this thesis.

The mathematical formulation of the problem at hand, based on the RANS-equations, is described

in Chapter 3. A full description of the turbulence and transition models used is also presented in that

chapter.

Chapter 4 describes the two- and three-dimensional test cases which are addressed in this disser-

tation. This includes defining features such as Reynolds number, geometry and angle of attack, domain

size, boundary conditions as well as grid topology and characteristics. It also details which features are

analysed in each test case and the quantities of interest which are looked at. Moreover, the flow solver

used is described in this chapter, as well as the technique used to estimate the discretization error.

The results are presented in three chapters: Chapter 5 is focused on the numerical aspects and their

impact on simulations with transition models, namely the iterative convergence behaviour, the discretisa-

tion scheme used for the turbulence and transition transport equations and the influence of the near-wall

cell size. The second part of the results is discussed in Chapter 6 and is concerned with modelling

aspects. The influence of the production limiter used for the turbulence model is discussed here, as well

as the turbulence variables specified at the inlet and their decay along the freestream, all of which can

have a significant impact on the location of transition. Comparisons with experimental results are shown

in Chapter 7, allowing a qualitative assessment of the predictive capability of the models.

The conclusions of this work are summarized in Chapter 8, including an overview of the most im-

portant aspects observed. Current limitations on the use of transition models as a predictive tool are

discussed. Suggestions for future work on transition models are also given.

There are several complementary aspects to the work developed in this thesis that are not detailed

within the text. Appendix A describes the crossflow extension used together with the transition models.

Appendix B presents the formulation of the SSG-LRR Reynolds stress model, its coupling with the

γ − Reθ model and preliminary results obtained with this model combination. The equations for the

decay of turbulence for the underlying turbulence models used in this work are derived in Appendix

C. Finally, Appendix D contains tables with the predicted values for the force coefficients as well as

6



the corresponding numerical uncertainty estimated from the grid refinement study for each of the flows

addressed in the comparison with experimental data. Tables for the location of the transition region are

also included, and available experimental data for each quantity of interest is given as well.
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Chapter 2

Laminar-to-turbulent Transition -

Theory and Modelling

This chapter is focused on the physics of the transition process and the methodologies to model or

predict transition. The first aspect is addressed in Section 2.1, which presents an overview of different

transition mechanisms such as natural transition, bypass transition, separation-induced transition and

crossflow transition. Linear stability theory is also briefly addressed in the context of natural transition.

Section 2.2 presents several alternatives for the inclusion of transitional effects in numerical simulations.

These are DNS and LES, the eN method, empirical correlations for the prediction of transition, low

Reynolds number models and transport equation based models. Considerable focus is given on the

latter, since it corresponds to the category of all models addressed in this work.

2.1 The Physics of Transition

The transition process corresponds to the instability of laminar flow due to flow perturbations, re-

sulting in turbulent flow. Hence, a proper description of the transition process is inseparable from the

definitions of laminar and turbulent flow.

In laminar flow, fluid particles follow smooth and well defined trajectories. For example, in the case

of the laminar flow inside a pipe or channel, fluid particles move along straight lines in the direction of

the axis of the pipe. The flow can be considered as adjacent layers which slide over one another without

significant mixing, due to the different velocity of each layer according to the velocity profile [39]. Laminar

flow typically occurs at small Reynolds numbers, such as in insect flight [40] and in microfluidics [41].

In the case of turbulent flow, there is no orderly movement of fluid particles: there are random ve-

locity fluctuations with a wide range of amplitudes and frequencies and in all dimensions, as turbulence

is inherently three-dimensional. Due to its random nature, the treatment of turbulent flows has to be

done statistically. Turbulent flow has greater diffusion than laminar flow, leading to increased mixing and

it occurs mainly at high Reynolds numbers [42]. Thus, there are considerable differences in the veloc-

ity profiles of laminar and turbulent flow. In addition, the growth of boundary layer thickness and other
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integral parameters such as the momentum thickness and shape factor are also significantly different.

Turbulent flow leads to a higher skin-friction at the wall when compared to laminar flow, and is more re-

sistant to flow separation. Heat transfer coefficients are also larger in turbulent flow due to the increased

mixing [39].

The transition region corresponds to the region where a given laminar flow becomes turbulent. In the

case of a boundary-layer, the location and size of the transition region will depend on the wall roughness,

the pressure gradient, and on disturbances coming in from the freestream. At small Reynolds numbers,

the diffusion of the flow dampens out the disturbances and so the flow remains laminar. However, for

higher Reynolds numbers, the action of viscosity is not able to dampen the disturbances which grow and

eventually trigger the onset of turbulent flow. Typical values for the flow over a flat plate have transition

starting at a Reynolds number of 3.5× 105 to 106 [39]. The Reynolds number at which transition starts is

termed the critical Reynolds number. Depending on how free of disturbances the flow is, the higher the

critical Reynolds number can be. The transition process is significantly different between wall-bounded

and free shear flows. Since the test cases addressed in this dissertation only correspond to the former,

transition mechanisms in free shear flows are not addressed.

An overall view of the transition process is given in Figure 2.1 for different disturbance amplitudes,

growing from left to right. Path A corresponds to natural transition, which occurs for very low disturbance

amplitudes. Path E corresponds to bypass transition, typical of turbomachinery applications where the

turbulence content in the freestream causes the transition process to be very fast and skip some of the

stages observed in natural transition. The level of turbulence in the freestream is given by the turbulence

intensity Tu, defined as the ratio between the root mean square of the velocity fluctuations and the mean

velocity. For practical purposes, natural transition is often considered to occur when the freestream

turbulence intensity is lower than 1%, while bypass transition corresponds to freestream turbulence

intensity higher than 1%. These two paths correspond to a general description of the transition process.

However, different paths for transition to turbulence may occur, related to transient growth. This consists

on the interaction of stable modes, which may under some circumstances achieve large amplitudes and

eventually cause the breakdown to turbulence.

The importance of the initial conditions on the transition process has led to considerable work on

receptivity [43]. This concerns how effects such as the freestream turbulence level, acoustic waves or

wall roughness cause disturbances in the boundary layer relating to their wavelength and amplitude.

The understanding of receptivity is essential to establish the correct initial conditions and thus to provide

an accurate description of the transition process.

While the schematic shown in Figure 2.1 is a broad description of transition, further details depend

on the instability mechanism itself. Only some of these mechanisms are discussed in detail namely

natural transition, bypass transition, separation-induced transition and crossflow transition. This choice

is motivated due to the fact that these are the most prominent mechanisms both in the test cases

addressed in this work as well as in the transition models which are subject of study. Although also

relevant, other mechanisms such as Görtler vortices [44] or attachment line contamination [45] are not

considered.
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Figure 2.1: The paths from Receptivity to Boundary Layer Turbulence, reproduced from Ref. [43].

2.1.1 Natural transition

The process of natural transition takes place when the amplitude level of the disturbances is small.

Natural transition has been extensively studied and can be characterised in different stages. The first

stage corresponds to the appearance of two-dimensional perturbations termed Tollmien-Schlichting (TS)

waves. These waves are destabilized by the viscosity of the fluid, and grow slowly. This slow growth

extends over considerable streamwise distances and eventually leads to three-dimensional instabilities

which give rise to hairpin vortices. These vortices decay and cause the formation of turbulent spots.

As the turbulent spots erupt on the flow, they merge into a fully developed turbulent boundary layer.

A depiction of the natural transition process is given in Figure 2.2. Tollmien-Schlichting waves were

only first detected in 1947 by Schubauer and Skramstad [47] although their existence had already been

theoretically established. However, it remained as a point of controversy since they were not observed

in previous experiments. This was due to a too high level of freestream disturbance, which prevented

the formation of the TS waves.

The early stages of natural transition can be properly described by linear stability theory. The basis for

linear stability theory consists on decomposing the instantaneous flow (ui) into a base steady state (Ui)

and an unsteady fluctuation (ũi) of small amplitude. The application of this process to the incompressible

Navier-Stokes equations, along with the assumption of two-dimensional, parallel or quasi-parallel flow

leads to a set of linearized equations which can be further transformed into the extensively studied Orr-

Sommerfeld equation. Regardless of the form, the stability equations form an eigenvalue problem for

the solution of the natural modes of oscillation of the boundary-layer which correspond to the TS waves.

The stream function Ψ is used to characterize a single perturbation with wave number α and amplitude
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Figure 2.2: An overview of the natural transition process. Reproduced from Ref. [46].

function ϕ through

Ψ (x, y, t) = ϕ (y) ei(αx−ωt). (2.1)

Thus, from the definition of the stream function it follows that the components of the velocity fluctuation

ũ and ṽ can be written as

ũ =
∂Ψ

∂y
= ϕ′ (y) ei(αx−ωt) (2.2)

and

ṽ = −∂Ψ

∂x
= −iαϕ (y) ei(αx−ωt) (2.3)

The Orr-Sommerfeld equation is [39]:

(
U − c

) (
ϕ′′ − α2ϕ

)
− U ′′ϕ = − i

αRe

(
ϕ′′′′ − 2α2ϕ′′ + α4ϕ

)
(2.4)

where U = U/U∞, c = c/U∞, α = αL, Re = U∞L/ν, and U∞ is the reference velocity. The prime in Eq.

2.4 indicates differentiation with respect to y/L. The quantity c is defined as c = ω/α. The boundary

layer thickness δ can be selected as the reference length L.

The solution of the Orr-Sommerfeld equation results in stability curves such as those shown in Figure

2.3. These curves show, for a given Reynolds number, the range of wave numbers for which the ampli-

tude of the perturbation is amplified. If the Reynolds number is low enough, all disturbances are damped

and no instability occurs. As the Reynolds number increases and reaches Recrit, some perturbations

may be amplified. For velocity profiles with an inflection point, there are always some perturbations

that can be amplified regardless of how high the Reynolds number is. This is called inviscid instability,

because it also happens in the limit of Re −→ ∞. If the velocity profile has no inflection point, then the

range of Reynolds numbers in which the amplitude of perturbations are amplified is much lower.

Linear stability theory cannot provide all the information regarding the transition process. The iden-

12



Figure 2.3: Example of a stability curve, taken from Ref. [42].

tification of the Reynolds number at which the disturbances start being amplified marks the start of

transition and their growth corresponds to the primary mechanisms in Figure 2.1. However, the sec-

ondary mechanisms and the next stages consist of non-linear processes, which are not captured by

linear stability theory. Another drawback is the assumption of parallel flow, which prevents the applica-

tion of linear stability theory to flows with appreciable curvature. One possible approach to deal with

these weaknesses is the use of more sophisticated approaches such as the parabolized stability equa-

tions [48, 49].

2.1.2 Bypass transition

Bypass transition is the dominant mechanism in turbomachinery, due to the high freestream turbu-

lence intensity in these applications. Wall roughness can also cause bypass transition to take place. The

main characteristic of this mechanism is the absence of Tollmien-Schlichting waves and corresponding

growth, as turbulent spots are directly produced via the influence of the high amplitude disturbances.

Consequently, this mechanism is impossible to handle using linear stability theory. In addition, bypass

transition is much faster than natural transition since the growth of the TS waves is not present.

Under conditions favorable to bypass transition, there is a distortion of the velocity profile in the pre-

transitional boundary layer as well as high-amplitude streamwise fluctuations named Klebanoff modes

[50]. These fluctuations precede the formation of turbulent spots, and it is their growth that is presumed

to be the cause for the turbulent spots.

2.1.3 Separation-induced transition

Separation-induced transition is a transition mechanism typically associated with low Reynolds num-

ber flows. This process occurs when a laminar boundary layer under an adverse pressure gradient

separates before becoming turbulent. The resulting shear layer is unstable since an inflection point is
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present in the velocity profile, causing transition to occur and the flow to become turbulent. Transition

in the free-shear layer may be caused by natural or bypass transition as discussed previously, or by the

Kelvin-Helmholtz instability. If the adverse pressure gradient is not too strong, the turbulent flow can

reattach to the wall, encapsulating the region of separated flow on a time-averaged sense, and forming

a laminar-separation bubble. A depiction of this process is shown in Figure 2.4.

Figure 2.4: Overview of the time-averaged flow of a laminar separation bubble, taken from [51].

Depending on the Reynolds number, roughness, pressure gradient and freestream turbulence, the

separated region may be larger or smaller. In the case of short bubbles, there is a small modification

of the pressure distribution. In the case of a long bubble, which may take up to 20% or 30% of the

chord, there is a region of constant pressure, aptly named pressure plateau, which corresponds to the

laminar portion of the separated flow region. The effect of a laminar separation bubble on the pressure

coefficient distribution is depicted in Figure 2.5. Laminar separation bubbles have a strong impact on the

performance of airfoils employed in UAVs or wind turbines, flows in which laminar separation bubbles

are common, through an increase in the drag coefficient [52], and also influencing lift and moment.

2.1.4 Crossflow transition

While all previously discussed mechanisms can be present in two-dimensional flows, crossflow tran-

sition can only take place in three-dimensional boundary layers. Swept wings, propellers, and wind

turbines are examples of applications where crossflow effects are significant. The crossflow instability

occurs due to a misalignment between the flow direction at the edge of the boundary layer and the flow

direction at the wall [54]. A representation of the velocity profile in a swept wing is shown in Figure 2.6.

Whereas in the freestream the pressure gradient and the centripetal force are in balance, inside

the boundary layer the streamwise velocity decreases, while the pressure gradient does not change

along the wall normal direction. Thus, the balance that was verified at the edge of the boundary layer

is not present inside it, giving rise to a secondary flow called crossflow. The crossflow velocity is the
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Figure 2.5: Pressure distribution on a laminar separation bubble, reproduced from Ref. [53].

Figure 2.6: Crossflow profile of the boundary layer on a swept wing, taken from Ref. [54].
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component of the velocity vector in the direction perpendicular to the direction of the streamline in the

freestream. Since the crossflow velocity vanishes both at the edge of the boundary layer and at the

wall, it follows that an inflection points exists in the crossflow velocity profile [54]. Similar to what was

discussed for natural transition, this inflection point provides an inviscid instability of the boundary-layer.

The crossflow instability amplifies disturbances in both stationary and travelling waves. While the lat-

ter are more relevant in high-turbulence scenarios, the former are dominant in cases with low freestream

turbulence. In the case of stationary crossflow waves, secondary instabilities are created which lead to

a ”saw-tooth” pattern of the transition line.

2.2 Modelling Transition

While the previous section dealt with distinct transition processes and their physical mechanisms, this

section is concerned with the prediction of transition in CFD. Possible approaches to predict the onset

of the transition region are discussed, ranging from the theory-based eN method to the high-fidelity

approaches such as DNS and LES, empirical correlations and criteria based on integral boundary-layer

quantities and models with local formulations that are compatible with solvers for the RANS equations.

2.2.1 Direct Numerical Simulation and Large Eddy Simulation

All stages of the transition process can be accurately simulated using Direct Numerical Simulation

(DNS) [55]. In DNS, the unsteady Navier-Stokes equations are solved without any averaging, as all flow

scales are resolved. Extremely fine grids and time steps are required, which scale strongly with the

Reynolds number of the flow. This makes this approach costly and currently unaffordable for complex

geometries or high Reynolds number flows [1, 16]. The main virtues of DNS lie in the amount of data

it can provide, which may be difficult or impossible to obtain experimentally, and the ability to prescribe

exact inflow conditions. Thus, the main use of DNS is not for industrial applications and predicting

transition, but rather to get a better description of the physical mechanisms and structures that come

into play, which can be of help in the development of new models.

In Ref. [56], DNS is used to study the effect of freestream fluctuations on separation-induced transi-

tion. It is found that if no disturbances are specified, the Kelvin-Helmholtz instability of the boundary-layer

was caused by numerical error, causing a rapid transition to turbulence. The addition of freestream tur-

bulence reduces the size of the laminar separation bubble. The influence of freestream turbulence on

laminar separation bubbles is also addressed in Ref. [57], which further details that the presence of

freestream turbulence causes the growth of Klebanoff modes in the laminar boundary-layer upstream

of the separation point. These modes undergo exponential growth in the free-shear layer, causing the

earlier transition and shorter bubble in the presence of freestream turbulence. Furthermore, it is shown

that different energy spectra lead to different sizes of the separation bubble, despite having the same

level of freestream turbulence. This is depicted in Figure 2.7.

Studies on the late stages of transition using DNS have also been performed [58]. They show that the
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Figure 2.7: Time and spanwise-averaged skin friction coefficient (left) and displacement thickness (right)
for two different energy spectra. Reproduced from Ref. [57].

late stages of transition have the same nature, regardless of being caused by Tollmien-Schlichting waves

or by Klebanoff modes. The results presented exhibit the vortical structures typical of the transition

process such as horseshoe and hairpin vortices.

In Ref. [59] the influence of distributed roughness on bypass transition caused by freestream tur-

bulence is addressed. It is shown that for large roughness elements there is no formation of turbulent

spots, unlike what happens when transition is triggered by the freestream turbulence. The combination

of roughness and freestream turbulence leads to earlier instability, causing the location of transition to

shift upstream. However, the breakdown patterns of the unstable streaks are different and depend on

whether they are caused by roughness or by freestream turbulence.

A further study on the effect of roughness is given in Ref. [60] for a swept-wing boundary layer. Both

sub-critical and critical roughness elements are studied, highlighting the different instability mechanisms

between both cases. It is shown that large elements are able to immediately cause turbulent flow.

An alternative approach to DNS is Large Eddy Simulation (LES), which consists in using a coarser

grid so that only the largest scales are resolved. In order to account for the smaller scales, a subgrid-

scale model is used. One of the earliest models, the Smagorinsky model, has been shown [61] to

be excessively dissipative, causing relaminarization of transitional flows. However other models have

proven to be reliable alternatives. One example is given in Ref. [62], which compares LES and DNS

calculations for transitional channel flow. The LES approach provides good results for the proposed

model, both in the transitional and turbulent phase.

Monokrousos et al. [63] have presented a study of bypass transition on a flat plate using both LES

and DNS. The main goal was to study the control and delay of the onset of transition based on blowing

and suction at the wall. Their results show that with a careful selection of the subgrid-scale model, the

LES results can capture details of the transition process, greatly reducing the computational cost when

compared to DNS.

A study on a turbine rotor blade [64] has shown that a flow pattern similar of DNS results is obtained

with LES. However, in the suction side of the blade, the predicted location of transition is considerably

delayed when compared to the DNS calculations. In the pressure side, the agreement between the two
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approaches is much closer. Differences are attributed to lack of grid resolution in the suction side, as

well as to the subgrid-scale model.

LES has also been applied to the simulation of separation-induced transition over a flat-plate with

imposed pressure distribution [65]. The results shown LES to be able to correctly capture the transition

mechanism in the free-shear layer as well as flow reattachment. Further work with different levels of

freestream turbulence on both a flat plate and a compressor blade [17] has shown that for low levels of

freestream turbulence, the LES results have a strong dependence on the subgrid-scale model used and

significant differences to DNS solutions are found.

Despite their potential in predicting transition, neither LES or DNS are routinely used for industrial

applications, even in the case of moderate Reynolds flows. While both alternatives can provide an

accurate description of different stages observed during transition as well as correctly predict the location

of transition, the computational resources that are required are too demanding, preventing their common

use. Furthermore, both approaches require full knowledge of unsteady flow conditions regarding to

boundary conditions as the flow disturbances must be correctly specified. This specification is far from

trivial and can greatly affect the simulation of the transition process.

2.2.2 The eN method and stability theory based approaches

The most mature approach to the prediction of transition is the so-called eN method. It was developed

independently and simultaneously by Van Ingen [18] and Smith and Gamberoni [19]. Dating back to

1956, it is still viewed in industry as a ”high-fidelity” transition prediction method. Its popularity comes

from the accurate results it has exhibited and its basis on linear stability theory.

The underlying principle of the eN method is to superimpose a disturbance in the laminar flow and to

track its growth or decay. The local linear stability equations with the parallel flow assumption are used to

compute the local amplification rate of a disturbance. The local rate is then integrated along a streamline,

in order to compute a global amplification factor, defined as the ratio between the amplitude at a given

streamwise position and the initial amplitude of the disturbance. Transition is considered to start when

the global amplification factor reaches a critical value, which is often calibrated for a specific test model

and experimental facility. It should be noted that the eN method is simply a transition prediction method,

as some other approach is needed to compute both the laminar and turbulent flow solution.

The calculation of the local amplification rates can be computationally expensive, since they have

to be done for different disturbance frequencies. One option to reduce the cost is to make use of pre-

computed solutions for velocity profiles of self-similar boundary layers, such as Falkner-Skan profiles

[66]. The crucial step is then to estimate the local amplification rate of the actual velocity profile from

the available database. Implementations of the eN method using this technique are often called the

database approach. An example of the application of the eN method [67] is given in Figure 2.8, and a

comparison of its results with experimental data [68] is presented in Figure 2.9.

Although it acquires a more complex form, the eN method can be extended to 3D geometries. In one

approach, two critical amplification factors are used, one for the Tollmien-Schlichting waves, and another
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Figure 2.8: N factor for different disturbance frequencies and wavelengths. Reproduced from Ref. [67].

Figure 2.9: Comparison of experimental data with linear stability theory coupled with a RANS solver for
the NLF1-0416 airfoil. Adapted from Ref. [68].
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for the crossflow mode. Another option, the so-called envelope approach, simply uses the largest ampli-

fication rate, without a decomposition in the two components. Details on these two approaches can be

found in Refs. [69, 70]. Effects such as compressibility can also play a significant role. A detailed study

on the linear stability equations for 2D and 3D compressible and incompressible flows is given in Ref.

[71].

Despite its success, the eN method has some disadvantages. Since it is based on linear stability

theory, the method can only account for the primary, linear mechanisms. This means that it cannot

describe the entire transition process, but only the start. Due to the same reason, the eN method is

only suitable for natural transition, and in principle cannot be applied in cases where bypass transition

or roughness play a role. In practice, it is still used, and the critical value for the amplification factor is

related to the freestream turbulence level to promote earlier transition. Nevertheless, the selection of the

critical value is still an empirical choice, which often relies on calibration of the method. One possibility

to improve upon the eN method is to make use of the parabolized stability equations for the computation

of the local amplification rates. This approach is able to include non-linear effects, and is not restricted

by the parallel flow assumption [72, 73].

The natural coupling of the eN method is with boundary-layer codes, since these are able to provide

the well-resolved velocity profiles that the method requires. The integration of the eN method with RANS

approaches is possible [67, 68, 74, 75] but more difficult, due to the reliance on unstructured grids

and domain decomposition. The current trends towards highly parallelized codes do not facilitate the

inclusion of non-local operations such as integration or search algorithms. Finally, since the eN method

only provides the start of transition, some other approach is needed to handle the entire transition region

in the RANS solver, since point transition can be harmful to the convergence properties of the coupled

system.

2.2.3 Empirical correlations for transition prediction

Several correlations based on experimental observations have been developed. Perhaps the most

popular one for natural transition is the correlation of Abu-Ghannam and Shaw [76]. This correlation

accounts for the effect of the pressure gradient (λθ = θ2

ν
dUe
dx ) and freestream turbulence intensity (Tu) in

order to determine the momentum-thickness Reynolds number (Reθ,t) at which transition starts.

Reθ,t = 163 + exp

[
F (λθ)

(
1− Tu

6.91

)]
, (2.5)

F (λθ) =

 6.91 + 12.75λθ + 63.34λ2
θ, λθ ≤ 0;

6.91 + 2.48λθ − 12.27λ2
θ, λθ > 0.

(2.6)

The Arnal-Habiballah-Delcourt (AHD) transition criteria [77] is adequate for natural transition. It is

given by:

Reθ,t = exp

[
52

H
− 14.8

]
− 206 exp

(
25.7Λ2T

) [
ln (16.8Tu)− 2.77,Λ2T

]
(2.7)
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Λ2T =
1

x− xtr

∫ x

xtr

λθdx. (2.8)

It has been extended for compressible flows up to a Mach number of 1.3 [78].

Mayle [14] provides a correlation for the transition onset in the case of bypass transition:

Reθ,t = 400Tu−5/8. (2.9)

The fit between the correlation and experimental data is presented in Figure 2.10.

Figure 2.10: Mayle’s correlation compared with experimental data. Reproduced from Ref. [14].

A common correlation for crossflow transition is the C1 criterion [77]. Crossflow transition takes place

when Rδ2 > Rδ2T with:

Rδ2T =

 150, H ≤ 2.31;

300
π arctan

(
0.106

(H−2.3)2.092

) (
1 + γ−1

2 M2
)
, H > 2.31,

(2.10)

where Rδ2 = Ueδ2
ν and δ2 = −

∫ δ
0

w
Ue
dy.

Although the previously mentioned correlations allow the estimation of the onset of transition, they

provide no details on the extent of the transition region. One way to do so was proposed by Dhawan and

Narasimha [79], by defining an intermitency function for the transitional and turbulent zones as:

γ = 1.0− exp
(
−0.41ξ2

)
, (2.11)

where

ξ =
x− xt

xγ=0.75 − xγ=0.25
. (2.12)
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2.2.4 Low Reynolds number models

Low Reynolds number turbulence models consist on modifications of functions or constants of exist-

ing turbulence models. The initial aim of these modifications were to improve the predictions of these

models for turbulent flow at low Reynolds numbers. One of the earliest examples of this type of model

comes from Jones and Launder [20], with a low Reynolds number k − ε model. The comparison of the

model prediction with experimental data is presented in Figure 2.11. In general, good agreement with

experimental data is observed although the authors do note that there is room for improvement in the

formulation.

Figure 2.11: Comparison of the Jones-Launder Low Reynolds number turbulence model with experi-
mental data. Reproduced from Ref. [20].

In a review by Patel and et al. [21], eight different low-Reynolds number models are compared.

These comprise seven k − ε models and one k − ω model. All models included a function modifying the

calculation of the eddy-viscosity, considered essential for model performance. This function was defined

differently for each single model, as shown in Figure 2.12. In the study, several models are deemed

unsuitable as they fail to reproduce the skin friction coefficient and velocity profiles for the simple test

case of a flat plate. Additional improvements are pointed out for the remaining models.

As low Reynolds number models showed some capability in the prediction of transition, their poten-

tial for these applications started to be investigated [80]. Due to not requiring an additional model for

transition and already describing turbulent flows, the computational cost incurred by these alternatives

was the same as for high Reynolds number flows. In the work by Schmidt and Patankar [81, 82], the

model of Jones and Launder [20] and that of Lam and Bremhorst [83] are compared with a focus on the

prediction of flow transition. They conclude that the reproduction of transition by these models is caused

by the similarities between the near-wall region in a fully turbulent boundary layer and the development
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Figure 2.12: Comparison of the function modifying the eddy-viscosity calculation for several different
low-Reynolds number models. Reproduced from Ref. [21].

of laminar boundary layers. Further work on low Reynolds number models is given in Refs. [84–86].

In the recent years, this approach has been mostly abandoned for the prediction of transition. The

coupling between the prediction of the transition region and the modelling of the viscous sub-layer pre-

vents a proper calibration of the former without sacrificing the latter. Furthermore, this approach is not

amenable to the inclusion of additional transition mechanisms such as separation-induced transition or

crossflow transition. An additional issue for low Reynolds number k − ε models lies in the fact that

these can exhibit solutions that are dependent on numerical parameters that should not affect the final

solution, such as the initial conditions or the solution procedure, which comprises their use [22]. As a

final point, the development of more sophisticated and accurate approaches outperform low Reynolds

number models in the prediction of flow transition [87].

2.2.5 Transport equation based models

A further step in the implementation of transition prediction methods in CFD calculations consists

in the use of models that incorporate transport equations, usually for the intermittency. An example of

this type of models is the model of Steelant and Dick [88], which resorts to the conditionally-averaged

Navier-Stokes equations for the modelling of bypass transition, and an intermittency equation with a

source term that aims at reproducing the intermitency distribution of Dhawan and Narasimha [79]. Such

approach leads to the solution of two sets of continuity and momentum equations, one for laminar and

transitional flow, and another for turbulent flow. For the latter, a k − ε model is used.

In their work, Suzen and Huang [89] propose a transport equation for the intermittency, which is

considered as a blending between that of Refs. [90] and [88]. This transition model is coupled to the

k − ω SST model, and it affected the turbulence model by directly multiplying the eddy-viscosity by the

intermittency. The main purpose of this approach was to combine the realistic behaviour of γ in the

crosstream direction of the Cho and Chung model [90] with the correct streamwise behaviour given by
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Steelant and Dick’s model [88]. The new model was tested for the flow over a flat plate under different

freestream turbulence values as well as different pressure gradients where it exhibited good results,

illustrated in Figure 2.13.

Figure 2.13: Comparison of Suzen and Huang’s model with experimental data and other two-equation
turbulence models. Reproduced from Ref. [89].

Pecnik et al. [91] compare the model of Suzen and Huang and a further development of the model of

Steelant and Dick [92], which solves a transport equation for a turbulence weighting factor τ . This factor

combines both the effects of the intermittency factor as well as a freestream factor meant to account

for the diffusion of turbulent eddies present in the freestream into the boundary layer. In their findings,

Pecnik et al. conclude that Steelant and Dick’s model performs better than Suzen and Huang’s model.

While the previous models are usable in a RANS environment, their formulation includes non-local

quantities such as the momentum thickness. The trend of CFD in relying on unstructured grids and

parallelization through domain decomposition introduces significant disadvantages in the algorithms re-

quired for the calculation of integral quantities. Inevitably, this stands as a significant obstacle in the

widespread usage of these models. These difficulties were identified by Menter et al. [93] in what is

the precursor work to the now widespread γ − Reθ model. Menter et al. proposed a new intermittency

based model that was used to control the production term of the k − ω SST model and avoided the

need for non-local operations. Testing of the model revealed that it did not respond properly in flows with

pressure gradients and further work was necessary, as shown in Figure 2.14.

Building upon the work done in 2002, Menter et al. publish in 2006 the γ − Reθ model [94, 95].

It is also based on a local formulation and empirical correlations to determine the onset of transition,

and is capable of handling natural, bypass and separation-induced transition. The model makes use of
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Figure 2.14: Model of Menter et al. for the flow over flat plate. Reproduced from Ref. [93].

the vorticity based Reynolds number, a concept introduced by Van Driest and Blumer [96], in order to

estimate the momentum thickness Reynolds number. Besides a transport equation for the intermittency,

the model includes a transport equation for the transition onset momentum thickness Reynolds number,

which is computed at the edge of the boundary layer through an empirical correlation that introduces

the influence of freestream turbulence and pressure gradient. The transition onset momentum thickness

Reynolds number is then diffused into the boundary layer, avoiding the need for non-local operations.

In its initial publication, the model lacked some correlations which were deemed proprietary. This

prevented direct use of the model, as alternative correlations had to be used or developed, usually using

the same cases for calibration which had been used in the original model. Examples of such approaches

are given in Refs. [28, 97–103]. The full formulation of the model including the missing correlations was

published in 2009 [23], thus ending these efforts. A comparison of the behaviour of the model when

using some of the developed correlations and the original ones [104] is illustrated in Figure 2.15.

Figure 2.15: Comparison of different correlations developed for the γ − Reθ model. Reproduced from
Ref. [104].

With the complete formulation of the model published, focus turned to its application and comparison

with available data. The study of Seyfert and Krumbein [104] compares the γ−Reθ model predictions for

several airfoils with those of the eN method. They find very good results when the freestream turbulence

intensity is lower than 0.1% and when separation-induced transition takes place. In Ref. [105] the
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accuracy of the γ − Reθ model is tested for a NACA 66-312 airfoil. The results of the model show good

agreement with experimental data regarding pressure coefficient and velocity profile in the vicinity of the

separation bubble. Lanzafame et al. [5] also shows the model to provide good results for wind turbines,

although some of the correlations are modified. The γ − Reθ model has also been used for diverse

applications such as marine propellers [6], helicopter and turbine rotor blades [106, 107], and even for

the simulation of transition on dolphins [108].

Despite its success, the γ −Reθ model is not free of flaws. Although it can handle multiple transition

mechanisms, the original formulation of the model does not account for roughness. Some groups have

developed extensions or alternative correlations capable of incorporating the effects of roughness [26,

109]. In the same sense, the model is unable to capture crossflow transition, which can be of major

importance in three dimensional flows. Several approaches to remedy this have also been proposed

[27, 110, 111]. The introduction of two transport equations for transition, along with the two equations of

the k−ω SST model, not only makes numerical robustness more difficult [112] as it inevitably increases

the computational cost due to the higher number of iterations required to iteratively converge the solution.

Furthermore, the formulation of the model is not Galilean invariant, so its application can be troublesome

on problems where walls move in respect to the coordinate system.

To address this last point, some work has been done on simplifying the model [29, 113] through the

replacement of the transport equation for Reθ for an algebraic relation which can be evaluated inside

the boundary-layer. In particular, the work of Menter et al. [29], from here on out referred to as the γ

model, has gained significant traction as a successor of the γ−Reθ model. It also eliminates the latter’s

disadvantage of not employing a Galilean invariant formulation. Due to the close resemblance between

the two models, it is expected that some of the crossflow correlations developed for the γ − Reθ model

may also be applicable for the γ model. While initially coupled to the k − ω SST turbulence model, a

formulation that enables both the γ − Reθ and γ models to be coupled to the Spalart-Allmaras model

has been proposed [114–116]. The use of the γ − Reθ model along with a Reynolds stress model has

also been presented [32].

An alternative to intermittency based models is given by Walters and Leylek [117], which resorts to

the concept of laminar kinetic energy, kL, introduced by Mayle and Schulz [118]. This relates to the high

amplitude fluctuations that are observed in the pre-transitional boundary layer for freestream turbulence

intensity above 1%, conditions that correspond to bypass transition. Despite this, the model is also built

to account for natural transition. It includes a transport equation for kL and a k − ε formulation for the

turbulent regime. Instead of relying on empirical correlations for transition, it is built based on physical

arguments. The three equations are tightly coupled through source terms which represent the transfer

of laminar kinetic energy to turbulent kinetic energy. Further developments on the k − kL − ε model

have seen it being adapted into a k − kL − ω formulation in the work by Walters and Cokljat [24]. Both

approaches avoid the computation of integral quantities, and rely only on local quantities, making them

fully compatible with commonly used RANS solvers and the k − kL − ω model in particular has become

considerably popular.

Based on the long standing success of linear stability theory, a novel approach in the prediction of
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transition has been proposed by Coder [25], termed the Amplification Factor Transport (AFT) model.

This model attempts to replicate the methodology of the eN method in a local formulation, by estimating

integral quantities through a nondimensional pressure gradient parameter. Similarly to the eN method,

it is necessary to specify a value from the critical amplification rate from which transition is considered

to start. Since its publication in 2014 [25] the model has undergone several changes. Initially coupled

with the Spalart-Allmaras model, a coupling strategy with the k − ω SST model has been developed in

Ref. [30]. Further modifications on the formulation have also seen a change in the way the pressure

gradient parameter is computed [119], as well as the addition of a transport equation for the intermittency,

changing the way the coupling with the turbulence model is done [120].

New approaches relying on the use of algebraic models [121] or models attempting to employ transi-

tion criteria in a local formulation [122] are still under development. RANS compatible transition models

comprise the current state of the art in transition modelling and prediction, as approaches with a lower

degree of modelling are too expensive for practical applications. The most widespread models are the

γ − Reθ and its one equation variant, the kT − kL − ω and the AFT models, each model with its own

range of applications. Due to its formulation, the applicability and accuracy of the γ − Reθ is inherently

connected to the correlations employed. The AFT model, as it attempts to follow linear stability theory,

should be suitable for natural transition but not for bypass transition. Accordingly, the kT − kL − ω is

mainly aimed at bypass transition since that stands at the origin of the laminar kinetic energy concept.

This situation is unsurprising as the development of a universal model capable of accounting for all

possible transition mechanisms seems unattainable.

This thesis is devoted to this class of models, which employ local formulations, as these stand as

the most promising option to incorporate the effects on transition on calculations based on the RANS

equations. Different models are selected, in order to cover different modelling methodologies. The AFT

model represents a stability based approach, whereas the γ −Reθ model is the prime candidate for the

correlation-based approach. The γ model, which stands as a simpler and more general formulation than

the γ −Reθ model, therefore eliminating some of the latter’s deficiencies, is also employed. In the early

stages of this work, the kT − kL − ω model was used as well, as an example of the approach based

on laminar kinetic energy. However, it was not as thoroughly tested as the remaining models, due to

robustness issues and poor performance when flow separation takes place [33], and as such it is not

further considered herein.
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Chapter 3

Mathematical Formulation

This chapter presents the mathematical formulation that stands as the framework of the calculations

done throughout this work. Section 3.1 presents the basis for the Reynolds-averaged Navier-Stokes

equations, which are used in all models addressed herein. The Boussinesq hypothesis is presented

in Section 3.2, along with the turbulence models used: the k − ω SST [123] and the k −
√
kL [124]

two-equation eddy-viscosity turbulence models. The formulation of each transition model studied in this

work is given in Section 3.3. These are the γ − Reθ model [23], the γ model by Menter et al. [29] and

the Amplification Factor Transport model [30, 119]. The coupling between each transition model and

turbulence model is also given in Section 3.3.

3.1 The Reynolds-averaged Navier-Stokes Equations

This work deals with the Reynolds-averaged Navier-Stokes (RANS) equations, which are the most

commonly used approach to handle turbulent flows for industrial applications. In all cases addressed

in this work, a single-phase, incompressible, Newtonian fluid is considered and as such, all relevant

equations presented include these assumptions. Under these conditions, the continuity and the Navier-

Stokes equations can be written as:
∂ui
∂xi

= 0, (3.1)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
. (3.2)

ui are the components of the instantaneous velocity, p is the instantaneous pressure relative to the

hydrostatic, ρ is the fluid’s density and µ is the dynamic viscosity of the fluid. xi are the coordinates of

the Cartesian coordinate system.

The first step in the derivation of the RANS equations is to decompose all flow variables into a mean

and fluctuating component

ui = Ui + u′i, (3.3)

p = P + p′. (3.4)
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Lowercase letters are used to represent instantaneous quantities, while uppercase letters correspond to

the mean quantities and the prime denotes the component pertaining to flow fluctuations. For statistically

steady flows, Ui is defined as

Ui = ui = lim
T→∞

1

T

∫ t0+T

t0

uidt, (3.5)

where the overline represents the averaging operator.

Applying the mean operator of Eq. 3.5 to the continuity and momentum transport equations and

replacing instantaneous variables by the Reynolds decomposition leads to the RANS equations

∂Ui
∂xi

= 0, (3.6)

ρ
∂Ui
∂t

+ ρUj
∂Ui
∂xj

= − ∂P
∂xi

+
∂

∂xj

[
µ

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
+

∂

∂xj

(
−ρu′iu′j

)
. (3.7)

The last term of the right-hand side of Eq. 3.7 is the Reynolds stress tensor and it represents the

influence of velocity fluctuations on the mean flow. As they stand, the RANS equations comprise a set

of four equations for ten different variables: the mean velocity components Ui, the mean pressure P and

the six independent components of the symmetric Reynolds stress tensor −ρu′iu′j . Important quantities

that are required in the turbulence and transition models used in this work are the mean strain rate tensor

Sij and the mean vorticity tensor Wij . These are defined as

Sij =
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
, (3.8)

Wij =
1

2

(
∂Ui
∂xj
− ∂Uj
∂xi

)
. (3.9)

Also used is the magnitude of these two tensors, referred to as the mean strain rate magnitude S and

the mean vorticity magnitude Ω, calculated through

S =
√

2SijSij , (3.10)

Ω =
√

2WijWij . (3.11)

3.2 Turbulence Models

Since there are more unknowns than equations in the RANS equations, additional relations are

needed in order to close the system. One possibility is to solve a transport equation for each component

of the Reynolds stress tensor, which is the approach undertaken by Reynolds stress models. The other

alternative is to employ Boussinesq’s hypothesis, which relates the Reynolds stress tensor to the eddy-

viscosity µt through

− ρu′iu′j = µt

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3
ρkδij . (3.12)
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Introducing Eq. 3.12 in Eq. 3.7 leads to

ρ
∂Ui
∂t

+ ρUj
∂Ui
∂xj

= − ∂P̃
∂xi

+
∂

∂xj

[
(µ+ µt)

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
, (3.13)

with

P̃ = P +
2

3
ρk. (3.14)

Although this reduces the number of unknowns, these still outnumber the number of available equations.

In order to determine µt and k, an eddy-viscosity turbulence model is required.

3.2.1 k − ω SST model

The k−ω Shear Stress Transport turbulence model is based on a blend between a k−ω formulation

and a k − ε formulation. Aiming to combine the advantages of the two models, the SST model switches

from a k − ε in the freestream and in free shear layers to the k − ω model inside the boundary-layer.

By doing so, it avoids the freestream dependency of the k − ω formulation, while retaining its superior

behaviour in the viscous layer. Initially published in 1994 [125], the version presented here corresponds

to that given in Ref. [123]. The SST model solves two transport equations, one for the turbulence kinetic

energy k and another for the turbulence specific dissipation ω:

∂ (ρk)

∂t
+
∂ (ρUjk)

∂xj
= Pk −Dk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
, (3.15)

∂ (ρω)

∂t
+
∂ (ρUjω)

∂xj
=

α

µt
Pk − ρβω2 +

∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+ 2(1− F1)

ρσω2

ω

∂k

∂xj

∂ω

∂xj
. (3.16)

The production term of the k transport equation is given by

Pk = min
(
µtS

2, 15Dk

)
, (3.17)

which includes a limiter to prevent excess turbulence production in stagnation regions, based on the

destruction term. It should be noted that the constant of 15 is a departure from the value of 20 given in

the 1994 version of the model and the value of 10 from the 2003 version. This change is motivated by

the need to ensure the limiter is only active in stagnation regions and to avoid its activation in turbulent

regions [126]. The destruction term is

Dk = ρβ∗kω. (3.18)

F1 is the blending function designed to switch between the k− ε and k−ω formulations. This is done

by a blend in the model constants, and the introduction of the cross-diffusion term in the ω equation.

The cross-diffusion term appears when the ω equation is derived from the ε equation using the relation

ω = ε/(kβ∗). The activation of the cross-diffusion term is controlled by F1, defined as

F1 = tanh
(
arg4

1

)
, (3.19)
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where

arg1 = min

[
max

( √
k

β∗ωd
,

500ν

d2ω

)
,

4ρσω2k

CDkωd2

]
, (3.20)

CDkω = max

(
2ρσω2

1

ω

∂k

∂xj

∂ω

∂xj
, 10−10

)
. (3.21)

Model constants are identified by a subscript 1 or 2 depending on what part of the formulation is

active. The blend is done through

φ = F1φ1 + (1− F1)φ2, (3.22)

where φ represents an arbitrary constant.

The eddy-viscosity is calculated according to

µt =
ρa1k

max(a1ω, SF2)
, (3.23)

with

F2 = tanh
(
arg2

2

)
, (3.24)

arg2 = max

(
2

√
k

β∗ωd
,

500ν

d2ω

)
. (3.25)

The model constants for the k − ω SST model [123] are given in Table 3.1.

Table 3.1: Model constants of the 2003 formulation of the k − ω SST turbulence model [123].

α1 α2 σk1 σk2 σω1 σω2 β1 β2 β∗ κ a1

5/9 0.44 0.85 1.0 0.5 0.856 0.075 0.0828 0.09 0.41 0.31

3.2.2 k −
√
kL model

The k −
√
kL (KSKL) [124] turbulence model has two transport equations, one for the turbulence

kinetic energy and another for Φ =
√
kL, where L represents a length scale. The two transport equations

are
∂ (ρk)

∂t
+
∂ (ρUjk)

∂xj
= Pk −Dk +

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
, (3.26)

∂ (ρΦ)

∂t
+
∂ (ρUjΦ)

∂xj
=

Φ

k
µtS

2

[
ζ1 − ζ2

(
L

Lvκ

)2
]
− ζ3ρk − 6µ

Φ

d2
fΦ +

∂

∂xj

[(
µ+

µt
σΦ

)
∂Φ

∂xj

]
. (3.27)

The production and dissipation terms of the k transport equation are given by

Pk = µtS
2, (3.28)

Dk = ρc3/4µ

k3/2

L
+ 2µ

k

d2
. (3.29)

While the production term is similar to that of the k − ω SST turbulence model, it does not include any

limiter. The dissipation term is made of two contributions. The first corresponds to the standard form of
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the dissipation term, while the second is an added term for improved modelling of the viscous sub-layer

[124]. The quantity Lvκ is calculated as

Lvκ = κ
S√

∇S · ∇S
, (3.30)

and the eddy-viscosity is

µt = min

(
ρc1/4µ Φ,

ρa1k

S

)
, (3.31)

a1 = aSST1 fb + (1− fb)aREAL1 . (3.32)

aSST1 and aREAL1 are constants and fb is a function which takes the value of one inside the boundary-

layer and zero outside. It is defined as

fb = tanh


20

(
ρc

1/4
µ Φ + µ

)
κ2ρSd2 + 0.01µ

2
 . (3.33)

All constants of the KSKL model are given in Table 3.2.

Table 3.2: Model constants of the k −
√
kL turbulence model [124].

σk σΦ ζ1 ζ2 ζ3 cµ κ aSST1 aREAL1

2/3 2/3 0.8 1.47 0.0288 0.09 0.41 0.32 0.577

3.3 Transition Models

3.3.1 γ −Reθ model

The γ − Reθ model [23] solves two transport equations, one for the intermittency γ, and another for

the transition onset momentum-thickness Reynolds number R̃eθt:

∂ (ργ)

∂t
+
∂ (ρUjγ)

∂xj
= Pγ − Eγ +

∂

∂xj

[(
µ+

µt
σf

)
∂γ

∂xj

]
, (3.34)

∂
(
ρR̃eθt

)
∂t

+
∂
(
ρUjR̃eθt

)
∂xj

= Pθt +
∂

∂xj

[
σθt (µ+ µt)

∂R̃eθt
∂xj

]
. (3.35)

The destruction or relaminarization term of the γ transport equation, Eγ , is responsible for decreasing

the value of γ in the laminar boundary-layer and can be written as

Eγ = ca2ρΩγFturb (ce2γ − 1) , (3.36)

where ca2 and ce2 are constants. The first controls the magnitude of the destruction term, while the

second enforces a minimum bound on γ. Thus, γ ≥ 1
ce2

. The Fturb function switches off Eγ in the
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turbulent boundary layer, ensuring that the flow remains turbulent and is given by

Fturb = exp

[
−
(
RT
4

)4
]
, (3.37)

with

RT =
ρk

µω
. (3.38)

The production term of the γ equation is

Pγ = Flengthca1ρS [γFonset]
0.5

(1− ce1γ) . (3.39)

The constant ce1 guarantees an upper bound on γ of 1. The Flength correlation depends on R̃eθt and

controls how fast the transition process takes place. The Fsublayer function ensures that Flength takes its

maximum value of 40 in the viscous sublayer to prevent an unphysical sharp increase of the skin friction

which could occur at higher Reynolds numbers.

Flength = Flength,1 (1− Fsublayer) + 40.0Fsublayer, (3.40)

Flength,1 =



39.8189 + (−119.270 · 10−4)R̃eθt + (−132.567 · 10−6)R̃e2
θt, R̃eθt < 400;

263.404 + (−123.939 · 10−2)R̃eθt + (194.548 · 10−5)R̃e2
θt

+(−101.695 · 10−8)R̃e3
θt, 400 ≤ R̃eθt < 596;

0.5− (3.0 · 10−4)(R̃eθt − 596.0), 596 ≤ R̃eθt < 1200;

0.3188, 1200 ≤ R̃eθt.

(3.41)

Fsublayer = exp

[
−
(
Reω
200

)2
]
, (3.42)

Reω =
ρωd2

µ
. (3.43)

The onset of transition is triggered via the Fonset function. It depends mainly on Fonset1, through

the comparison between the local vorticity-based Reynolds number, ReV , and the critical momentum

thickness Reynolds number Reθc. Fonset2 ensures a rapid change from 0 to 1, so that the production of

γ starts once Fonset1 has exceeded one. The build-up of γ during transition triggers the production term

of the k equation in the k − ω SST model, effectively increasing the eddy-viscosity and the diffusion of

the flow. In turn, this leads to a local decrease of the strain-rate magnitude S, which could cause the

transition process to stall since Fonset1 would decrease as well. In order to prevent this from happening,

the Fonset3 function is introduced [46], responsible for increasing Fonset as the turbulence Reynolds

number RT increases.

Fonset = max (Fonset2 − Fonset3, 0) , (3.44)

Fonset3 = max

[
1−

(
RT
2.5

)3

, 0

]
, (3.45)
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Fonset2 = min
(
max

(
Fonset1, F

4
onset1

)
, 2.0

)
, (3.46)

Fonset1 =
ReV

2.193Reθc
, (3.47)

ReV =
ρSd2

µ
. (3.48)

The critical momentum thickness Reynolds number Reθc is obtained from an empirical correlation

which depends only on R̃eθt.

Reθc =


(−396.035 · 10−2) + (10120.656 · 10−4)R̃eθt + (−868.230 · 10−6)R̃e2

θt

+(696.506 · 10−9)R̃e3
θt + (−174.105 · 10−12)R̃e4

θt, R̃eθt ≤ 1870;

R̃eθt −
(

593.11 + 0.482
(
R̃eθt − 1870.0

))
, 1870 < R̃eθt.

(3.49)

The production term for the R̃eθt equation is

Pθt = cθt
ρ

T

(
Reeqθt − R̃eθt

)
(1.0− Fθt) , (3.50)

where cθt is a constant and T is a timescale introduced for dimensional purposes. The production term

is built so that in the freestream, identified by Fθt = 0, the value of R̃eθt matches that given by Reeqθt . The

definitions of T and Fθt are given by:

T =
500µ

ρU2
, (3.51)

U =
√
UkUk, (3.52)

Fθt = min

[
max

(
Fwakeexp

(
−
(
d

δ

)4
)
, 1.0−

(
ce2γ − 1

ce2 − 1

)2
)
, 1.0

]
, (3.53)

δ =
375ΩµR̃eθtd

ρU2
, (3.54)

Fwake = exp

[
−
(
Reω

1 · 105

)2
]
. (3.55)

The correlation Reeqθt depends on the turbulence intensity and pressure gradient:

Reeqθt =


(
1173.51− 589.428Tu+ 0.2196Tu−2

)
F (λθ) , Tu ≤ 1.3;

331.50 (Tu− 0.5658)
−0.671

F (λθ) , Tu > 1.3.
(3.56)

F (λθ) =

 1 +
[
12.986λθ + 123.66λ2

θ + 405.689λ3
θ

]
exp

(
−
(
Tu
1.5

)1.5)
, λθ ≤ 0;

1 + 0.275 [1− exp (−35.0λθ)] exp
(
−Tu0.5

)
, λθ > 0.

(3.57)

λθ =
ρθ2
t

µ

dU

ds
, (3.58)

dU

ds
=
UmUn
U2

∂Um
∂xn

, (3.59)

Reeqθt =
ρUθt
µ

. (3.60)
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The calculation of Reeqθt is done iteratively, since the same variable is required to compute θt and

consequently, λθ and F (λθ). The turbulence intensity is calculated from

Tu = 100

√
2k/3

U
, (3.61)

where U is the velocity magnitude.

The model computes an effective intermittency γeff by

γeff = max (γ, γsep) , (3.62)

where

γsep = min

(
s1max

[
0,

(
ReV

3.235Reθc

)
− 1

]
Freattach, 2

)
Fθt, (3.63)

Freattach = exp

[
−
(
RT
20

)4
]
. (3.64)

γsep is intended to trigger transition in separated flows, with the Freattach function deactivating this

term when the flow reattaches. It should be pointed out that due to the introduction of γsep, the effective

intermittency can exceed a value of 1, unlike the transported variable γ. This boosts the production of k

whenever separation-induced transition takes place.

Table 3.3 shows the values for all the constants in the model.

Table 3.3: Constants for the γ −Reθ model [23].

ca1 ca2 ce1 ce2 cθt s1 σγ σθt
2.0 0.06 1.0 50 0.03 2 1.0 2.0

Coupling with the k − ω SST model

The coupling of the γ − Reθ transition model with the k − ω SST turbulence model is given in Refs.

[23, 46]. It is done by adapting the production and dissipation terms of the k transport equation as

follows:

Pk = γeffPk,SST , (3.65)

Dk = min (max (γeff , 0.1) , 1.0)Dk,SST . (3.66)

Pk,SST and Dk,SST are the original production and destruction terms of the SST model given in Eqs.

3.17 and 3.18 respectively. The equation for ω is not changed.

The final modification to the k − ω SST model is done by changing the F1 blending function in order

to ensure that F1 = 1 in the laminar boundary layer. Hence, F1 is now defined as:

F1 = max (F1,SST , F3) (3.67)
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where F1,SST is the definition of F1 used in the SST model and F3 is given by

F3 = exp

[
−
(
Ry
120

)8
]
, (3.68)

Ry =
ρd
√
k

µ
. (3.69)

Coupling with the k −
√
kL model

The coupling between the γ − Reθ model and the KSKL model [127] follows closely that performed

for the k − ω SST model. The production and dissipation terms of the k transport equation are changed

to

Pk = γeffPk,KSKL, (3.70)

Dk = min (max (γeff , 0.1) , 1.0)Dk,KSKL, (3.71)

where Pk,KSKL and Dk,KSKL are the original production and dissipation terms of the KSKL model

respectively. Once again, the equation for the second variable of the model, Φ, is not modified.

In order to sensitize the fb function to the laminar boundary layer, its definition is changed to

fb = max (fb,KSKL, F3) , (3.72)

where fb,KSKL corresponds to the definition of the fb function given in the KSKL model and F3 is

F3 = exp

[
−
(
Ry
120

)8
]
, (3.73)

with

Ry =
ρd
√
k

µ
. (3.74)

The KSKL model does not solve directly for ω, which is required in several of the transition model’s

functions. In order to overcome this [127], an estimate of ω based on the definition of the eddy-viscosity

is used:

ω =
ρk

µt
. (3.75)

3.3.2 γ model

The γ model [29] solves one transport equation for the intermittency γ

∂ (ργ)

∂t
+
∂ (ρUjγ)

∂xj
= Pγ − Eγ +

∂

∂xj

[(
µ+

µt
σf

)
∂γ

∂xj

]
. (3.76)

Although the form of the transport equation given in Eq. 3.76 matches that of the γ − Reθ model in Eq.

3.34, the definitions of Eγ and Pγ undergo some changes. In the case of Eγ , the form is the same as in
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Eq. 3.36, but the definition of Fturb is changed:

Eγ = ca2ρΩγFturb (ce2γ − 1) , (3.77)

Fturb = exp

[
−
(
RT
2

)4
]
. (3.78)

In the case of Pγ , the definition is simplified to

Pγ = FlengthρSγFonset (1− γ) . (3.79)

Flength, which took on the form of a correlation in the γ − Reθ model, is now a constant. On the other

hand, the structure of Fonset and subsequent functions is mostly unchanged:

Fonset = max (Fonset2 − Fonset3, 0) , (3.80)

Fonset3 = max

[
1−

(
RT
3.5

)3

, 0

]
, (3.81)

Fonset2 = min (Fonset1, 2.0) , (3.82)

Fonset1 =
ReV

2.2Reθc
. (3.83)

The main difference between the γ − Reθ and the γ model lies in the calculation of Reθc. In the

γ − Reθ model, the value of Reθt in the boundary-layer was diffused in from the freestream where it

matched an empirical correlation based on the turbulence intensity and pressure gradient. In the γ

model the correlation is evaluated inside the boundary layer, which removes the need for the diffusion

mechanism and the transport equation for R̃eθt. Hence, Reθc is obtained from

Reθc = 100.0 + 1000.0 exp (−TuLFPG) , (3.84)

where TuL is the local turbulence intensity computed from

TuL = min

(
100

√
2k/3

ωdw
, 100

)
. (3.85)

The function FPG introduces the effect of the pressure gradient in the calculation of Reθc and is

defined as:

FPG =

 min (1 + 14.68λθL, 1.5) , λθL ≥ 0;

min (1− 7.34λθL, 3.0) λθL < 0,
(3.86)

λθL = −7.57× 10−3 dV

dy

ρd2
w

µ
+ 0.0128. (3.87)

The following limiters are used to enforce positive values:

FPG = max (FPG, 0) , (3.88)
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λθL = min (max (λθL,−1.0) , 1.0) . (3.89)

The calculation of the wall-normal derivative of the wall-normal velocity dV
dy is done, following the work of

Coder [119], through the gradient of the wall distance:

dV

dy
= ∇

(
~n · ~U

)
· ~n, (3.90)

~n = ∇d. (3.91)

The constants used in the γ model are given in Table 3.4.

Table 3.4: Constants for the γ model [29].

ca2 ce2 Flength σγ
0.06 50 100 1.0

Coupling with the k − ω SST turbulence model

The coupling of the γ model with the k − ω SST model is done by modifying Pk and Dk as

Pk = γPk,SST + P limk , (3.92)

Dk = max (γ, 0.1)Dk,SST , (3.93)

where Pk,SST and Dk,SST correspond to the production and dissipation terms of k transport equation of

the original SST model, given in Eqs. 3.17 and 3.18 respectively. P limk is an additional production term

given by:

P limk = 5 max (γ − 0.2, 0) (1− γ)F limon max (3µ− µt, 0)SΩ, (3.94)

F limon = min

(
max

(
ReV
2420

− 1, 0

)
, 3

)
. (3.95)

The blending function F1 is modified in the same way as in the γ−Reθ model using Eqs. 3.67, 3.68 and

3.69.

Coupling with the k −
√
kL turbulence model

When using the γ model combined with the KSKL turbulence model, the production and dissipation

terms of the k transport equation are changed to

Pk = γPk,KSKL + P limk , (3.96)

Dk = max (γ, 0.1)Dk,KSKL. (3.97)

The P limk term is the same as that written in Eq. 3.94. Similarly to the coupling between the γ−Reθ and

KSKL models, the fb function is modified according to Eqs. 3.72, 3.73 and 3.74. The final modification
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is the value of the constant ce2 of the γ model which is changed from 50 to 250. This decreases the

minimum value of γ from 0.02 to 0.004, preventing an unphysical peak of k in the laminar boundary layer

[127]. Since ω is required in some of the γ model’s functions, the estimate of ω presented in Eq. 3.75 is

used.

3.3.3 AFT model

The Amplification Factor Transport model [119] solves one transport equation for the local amplifica-

tion rate ñ:
∂ (ρñ)

∂t
+
∂ (ρUj ñ)

∂xj
= ρΩFcritFgrowth

dñ

dReδ2
+

∂

∂xj

[
(µ+ µt)

∂ñ

∂xj

]
. (3.98)

The various functions which are part of the source term depend on the estimate of the integral shape

factor H12 obtained by

H12 = 0.1818 +

[
HL + 2.3609

0.5178

] 1
2

, (3.99)

where HL is a local pressure-gradient parameter

HL =
d2

µ

[
∇
(
ρ~U · ∇d

)
· ∇d

]
, (3.100)

which is limited as

− 0.24 < HL < 200. (3.101)

The Fgrowth function is defined as

Fgrowth = D(H12)
[1 +m(H12)] l(H12)

2
. (3.102)

The correlations l(H12) and m(H12) are part of Drela and Giles’ work [128] and are based on the

boundary-layer growth of Falkner-Skan profiles, while D(H12) was developed for use in the AFT model.

l(H12) =
6.54H12 − 14.07

H2
12

, (3.103)

m(H12) =

(
0.058

(H12 − 4)
2

H12 − 1
− 0.068

)
1

l(H12)
, (3.104)

D(H12) =
H12

0.6202H12 − 0.6387
. (3.105)

Fcrit controls the production of ñ and is dependent on the vorticity-based Reynolds number ReV . It

should be noted that in the AFT model, the eddy-viscosity is used in ReV , unlike the definition given in

the γ −Reθ and γ models.

Fcrit =

 0, ReV < ReV,0,

1, ReV ≥ ReV,0,
(3.106)

ReV =
ρSd2

µ+ µt
, (3.107)
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ReV,0 = kVReδ2,0, (3.108)

kV = 0.2231H2
12 − 0.1617H12 + 0.1121, (3.109)

log10 (Reδ2,0) = 0.7 tanh

(
14

H12 − 1
− 9.24

)
+

2.492

(H12 − 1)
0.43 + 0.62. (3.110)

Finally, dñ
dReδ2

is given by

dñ

dReδ2
= 0.028 (H12 − 1)− 0.0345 exp

[
−
(

3.87

H12 − 1
− 2.52

)2
]
. (3.111)

Coupling with the k − ω SST turbulence model

The coupling of the AFT model to the k−ω SST model is described in Ref. [30]. It is done by adding

a term to the k transport equation, Ptrans, responsible for suppressing the production of turbulence in

the laminar region. Thus, the k transport equation becomes

∂ (ρk)

∂t
+
∂ (ρUjk)

∂xj
= Pk −Dk − Ptrans +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
, (3.112)

with

Ptrans = 0.5F1µtS

(
S − (µχ)

2

ρκ2d2 (µ+ µt)

)
ft2, (3.113)

fdamp =
χ4.23

χ4.23 + 7χ3.23 + 255
, (3.114)

µt
µ

= χfdamp. (3.115)

The calculation of χ is done iteratively using Eq. 3.114 and Eq. 3.115. The ft2 function controls when

the turbulence suppression term is active, based on the local value of ñ and the critical value Ncrit.

ft2 = [1− exp (2 (ñ−Ncrit))] exp
(
−0.05χ2

)
(3.116)

Ncrit can be set to a given value, or it can be related to the inlet turbulence intensity Tuin according to

Ref. [129]:

Ncrit = −8.43− 2.4 ln

(
Tuin(%)

100

)
. (3.117)

Similarly to the γ − Reθ and γ models, the F1 blending is modified according to Eqs. 3.67, 3.68 and

3.69.
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Chapter 4

Flow Solver and Numerical Setup

This chapter describes the entire computational and numerical setup for the test cases that are

addressed throughout this dissertation. Section 4.1 describes the flow solver used in this work. The

discretization options for the differential equations being solved are presented in Section 4.2 and details

on the procedure to estimate the discretization error and associated uncertainty are given in Section

4.3. Section 4.4 presents a description of the boundary conditions which are used in the numerical

simulations. The issue of turbulence decay is briefly addressed in Section 4.5. The description of the

test cases is divided in two sections. Section 4.6 presents the two-dimensional test cases, comprised of

a flat plate and five different airfoils: NACA 0012, NACA 0015, Eppler 387, S809 and NLF1-0416. The

grid topology is the same for the five airfoils. Therefore, it is only described in detail once for the NACA

0012 airfoil. The three-dimensional test cases consisting of the 6:1 prolate spheroid, the SD7003 wing,

and the sickle wing are addressed in Section 4.7. Geometrical considerations such as angle of attack

and domain size, as well as grid size and topology are all described in those two sections. Finally, an

overview of the aspects relevant to transition flow simulations that will be studied as well as the selected

quantities of interest is given in Section 4.8.

4.1 Flow Solver

The flow solver used for the calculations performed throughout this work is ReFRESCO [130]. It is

an incompressible flow solver aimed at the maritime community, developed and verified by the Maritime

Research Institute Netherlands in cooperation with several universities. The equations are discretised

using a finite-volume approach with cell-centered collocated variables in strong-conservation form. A

pressure-correction equation based on the SIMPLE algorithm is used to ensure mass conservation,

with a pressure-weighted interpolation method to prevent pressure oscillations [131]. Time integration

is performed implicitly with first or second-order backward schemes. At each implicit time step, the

non-linear system for velocity and pressure is linearised with Picard’s method. The implementation is

face-based, which permits grids with elements consisting of an arbitrary number of faces (hexahedrals,

tetrahedrals, prisms, pyramids, etc.) and if needed h-refinement (hanging nodes). Several other features
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such as moving and deforming grids, cavitation and acoustics models, among others, are also available

in ReFRESCO, but are not used in this work.

4.2 Solution Procedure

The general form of a transport equation for a scalar quantity φ is

∂ (ρφ)

∂t
+∇ · (ρφU) = ∇ · (Γ∇φ) + ρQφ, (4.1)

where Γ represents the diffusivity of φ and Qφ is a source or sink of φ. Integrating in control volume V

with surface S and outward normal vector n and using Gauss’s divergence theorem in Eq. 4.1, which is

the application of the finite volume method [132], leads to

∂

∂t

∫
V

(ρφ) dV +

∫
S

ρφU · ndS =

∫
S

Γ∇φ · ndS +

∫
V

ρQφdV. (4.2)

The discretization of the volume integrals is done using the midpoint rule, leading to

∫
V

fdV = fc∆V, (4.3)

where fc represents the cell center value of f and ∆V is the cell’s volume. The midpoint rule is also

used for the discretization of the surface integrals

∫
S

fdS =

Nf∑
i=1

ffiSfi , (4.4)

where ffi represents the value of f at the centre of face i and Nf is the total number of faces.

ReFRESCO has a first-order and a second-order implicit backward schemes available for the dis-

cretization of the time derivative term shown in the left hand side of Eq. 4.2. Although most of the

calculations done in this work are steady, the first-order scheme is used for the few unsteady simula-

tions performed. This choice is mainly motivated by robustness issues. The application of the first order

scheme leads to
∂

∂t

∫
V

(ρφ) dV =
(ρcφc)

j − (ρcφc)
j−1

∆t
∆V. (4.5)

The diffusion term takes the form

∫
S

Γ (∇φ · n) dS =

Nf∑
i=1

Γfi (∇φfi · Sfi) , (4.6)

where Sfi is the surface area vector. The value of ∇φfi at the face is calculated using a second order

central scheme. Non-orthogonality corrections are also applied [133].
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The convection term becomes

∫
S

ρφ (U · n) dS =

Nf∑
i=1

ρfiφfi (Ufi · Sfi) , (4.7)

where Ufi · Sfi is taken from the values of the previous iteration, which corresponds to the process of

Picard linearization. The calculation of the value of φ at the face for the convection term can be done

using a first order upwind scheme, in which the value at the face is assumed to be equal to the value at

the upwind cell center, or using a quadratic upwind scheme (QUICK)

φf = φU +
1

4

(
3

2
(φD − φU ) +

1

2
(φU − φUU )

)
(4.8)

where φD is the value of φ at the cell centre downwind of the face, φU is the value of φ at the cell

centre upwind of the face and φUU is the value of φ at the neighbouring upwind cell. Despite the

superior accuracy when compared to the first order upwind scheme, the QUICK scheme can produce

numerical oscillations. This is avoided through the introduction of flux limiters, which prevent overshoots

and undershoots. There are several flux limiters available in ReFRESCO, with the one used in this work

being described in detail in Ref. [134]. In general, the QUICK scheme with flux limiters is employed in all

transport equations for the vast majority of the calculations presented in this thesis. The few exceptions

correspond to cases where laminar flow separation occurs and to the three-dimensional geometries.

These are detailed further in this chapter, in the description of each test case.

Finally, to compute the gradients at the cell centers, required for the calculation of the diffusive fluxes

or the second order convection scheme, Gauss’s theorem is used:

∇φc =
1

∆V

Nf∑
i=1

φfiSfi . (4.9)

Two different types of relaxation methods are employed in the solution of the resulting system of

equations. The first is that of explicit relaxation in which the solution to the linear system of equations

Ax = b obtained at the end of iteration k + 1 is written as

xk+1 = xk + ωexp
(
x∗ − xk

)
, (4.10)

where xk is the solution obtained at the end of iteration k, x∗ is the result of the procedure used to solve

the linear system of equations and ωexp is the explicit relaxation factor, selected such that 0 < ωexp ≤ 1.

Choosing small values of ω tends to lead to slower, but more stable convergence. The second type of

relaxation is that of implicit relaxation. Again, considering the linear system of equations Ax = b, the

main idea of implicit relaxation is to write the equivalent expression

(
A+

1− ωimp
ωimp

dA

)
xk+1 = b+

(
1− ωimp
ωimp

dA

)
xk, (4.11)

where dA is the diagonal part of A and ωimp is the implicit relaxation factor. The use of implicit relaxation
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ensures the diagonal dominance of the matrix of the linear system. Thus, similarly to explicit relaxation,

this leads to slower, albeit more stable convergence.

There are many more aspects in the details of ReFRESCO, both in terms of the discretization, such

as non-orthogonality and eccentricity corrections, as well as the pressure-weighted interpolation method

that allows the use of collocated grids, while avoiding pressure oscillations. From the numerical point

of view, several choices for pre-conditioners are available, in addition to different choices for the solver

for the linear system of equations. While all of these features are used for the calculations, a thorough

description of each falls out of the scope of this dissertation, as they have a minimal impact on the final

solution of the iterative procedure.

4.3 Verification and Validation

The final output of a CFD calculation is a numerical solution for the equations that are being solved.

To properly evaluate the quality of the solution one needs to perform a rigorous Verification and Vali-

dation exercise. These two concepts possess different meanings [135]. Verification concerns only the

numerical solution and aims at showing that it corresponds to the solution of the mathematical model

that is solved, being often described as ”solving the equations right”. As such, the final outcome of a

Verification procedure is a numerical error or uncertainty of a given numerical simulation. Validation on

the other hand, which can be interpreted as ”solving the right equations”, is intended to show that the

selected model produces an accurate representation of reality. It involves a careful comparison with ex-

perimental data, which also has some uncertainty associated with it, and the output of such an exercise

is a modelling error or uncertainty [38].

Verification can be divided into two separate components [136]. The first corresponds to Code Ver-

ification and is mainly concerned with programming bugs in codes and algorithms, which compromise

the results of a calculation. The second component consists of Solution Verification, and it assesses the

difference between the numerical solution and the exact solution of the mathematical model, which is

generally unknown. In this thesis focus is given to Solution Verification, as Code Verification exercises

for ReFRESCO can be found in Ref. [137].

The error E of a quantity of interest φ is given by the difference between the result obtained from a

simulation φS and the true value φT .

E = φS − φT . (4.12)

This error has three distinct components

E = Em + Einput + Enum. (4.13)

The first component is the modelling error Em, which corresponds to how well the mathematical model

represents reality. It is given by the difference between the true value and the exact solution of the

mathematical model, using the exact input quantities in the simulations. The second component is the

input error Einput, which relates to differences in the settings of the numerical simulation and the physical

46



experiment. This concerns effects such as the size of the computational domain and the accuracy of

boundary conditions in terms of flow properties or even in the geometry itself. The third component is

the numerical error, Enum which is generally divided in four contributions:

1. Round-off error, Eround−off , which arises from the finite precision in which computers and algo-

rithms operate [138]. This error can be reduced by using double instead of single precision, or

quadruple instead of double precision. As spatial or time refinements are performed using finer

grids or smaller time-steps, the importance of this error increases.

2. Iterative error, Eit, a consequence of the iterative algorithms used to solve the non-linear system

of equations obtained from the discretization of all transport equations [38]. This error can be

assessed using metrics such as the L2 or L∞ norm of the residuals, which also provide a way to

control and reduce it, at the cost of more computing time.

3. Discretization error, Edisc, due to the spatial and temporal discretization [139]. It can be reduced

through grid refinement or decreasing time step. The temporal contribution only exists in the case

of unsteady flows.

4. Statistical error, Estat, present in the simulation of unsteady flows or in stochastic simulations that

use input parameters defined by distributions. In the case of unsteady flows, it is caused by the

influence of the initial condition on the final solution and can be assessed using techniques such

as those described in Ref. [140]. For stochastic simulations it is related to the sampling techniques

required to propagate the probabilistic distributions.

Enum = Eround−off + Eit + Edisc + Estat (4.14)

In this work, all calculations are performed in double precision. This justifies that for the cases at

hand, the round-off error can be considered negligible. In the same way, all simulations are ran until

the residuals of the transport equations have been significantly decreased. For the two dimensional

test cases the criteria adopted is to run all simulations until the L∞ norm of the normalized residuals of

all transport equations are under 10−8. For the three dimensional cases, this is changed to 10−6. The

normalized residuals correspond to dimensionless variable changes in a single Jacobi iteration. This

criterion is strict enough to make the iterative error negligible when compared to the discretization error.

The vast majority of the calculations also correspond to steady flows, which means that statistical error

does not exist, and that the discretization error stems only from grid refinement and not from temporal

refinement. Thus, the discretization error is the dominant component of the numerical error.

To perform an estimate of Edisc, grid refinement studies are performed in most cases. The assess-

ment of the discretization error is performed considering a power series expansion of the error

Edisc = φi − φ0 ≈ αhpi , (4.15)

where φi is the value of φ in grid i, φ0 is the exact solution of the mathematical problem, α is the error

constant, p is the order of grid convergence and hi is the typical cell size of grid i.
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In principle, the results of three geometrically similar grids would be enough to obtain the unknowns p,

α and φ0. However such is only true if the topology of the grids allows for their density to be characterized

by a single parameter, which is generally not the case for the unstructured grids used in CFD calculations

for complex geometries. Furthermore it is also required that the grids are fine enough to be in the

asymptotic range, where Eq. 4.15 is valid. Another difficulty lies in the scatter of data caused by noise in

the solution, a consequence of the limiters employed in discretization schemes and numerous switches

in the formulation of turbulence and transition models.

In order to overcome these issues, Eq. 4.15 is solved using a least-squares fit with data from more

than three grids. In addition, the procedure used aims at estimating the discretization uncertainty on grid

i, Ui, such that it defines an interval that contains the exact solution φ0 with 95% coverage

φi − Ui ≤ φ0 ≤ φi + Ui. (4.16)

The calculation of Ui depends on the estimated discretization error, on the quality of the least-squares fit

measured through the standard deviation and on the difference between the fit and the solution obtained

for grid i. The procedure is fully described in Ref. [139] and it is equivalent to the Grid Convergence

Index in the case of smooth monotonically convergent data.

Whereas Solution Verification is only concerned with how well the numerical solution obtained rep-

resents the solution of the mathematical model and thus does not require experimental information,

Validation cannot be performed without resorting to experimental data. A proper Validation exercise

needs not only experimental measurements, but also the experimental uncertainty associated with that

measurement [38]. Rigorous Verification on the numerical solution is also required, so that the numerical

uncertainty that may suitably estimated. Furthermore, the conditions of the experiment need to be care-

fully controlled, so that the influence of the input uncertainty, present in Eq. 4.13, is not overwhelming.

The strict requirements needed on the experimental data in order to perform Validation are far from

attained by the experimental data-sets available for the test cases used in this thesis. Experimental

uncertainty is rarely provided, and there is insufficient information to guide the selection of the two

turbulence variables at the inlet, which is a significant problem in the modelling of transition given its

dependence on flow perturbations. Due to the latter, input uncertainty would also have to be thoroughly

investigated. While these obstacles prevent formal Validation, comparisons between experimental data

and the numerical solutions obtained with and without transition models are performed nonetheless,

allowing a qualitative assessment of the advantages of including a transition model.

4.4 Boundary Conditions

Boundary conditions are an essential step in the setup of any CFD calculation, determining the

conditions of the flow. Given that all calculations were performed with the same flow solver, it is enough

to characterize the boundary conditions types that were employed across all cases. These correspond

to inflow, outflow, pressure, symmetry, slip wall and no-slip wall boundary conditions. Each type of
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boundary condition is treated as follows:

• Inflow boundary condition. At a boundary assigned an inflow boundary condition, constant val-

ues for the velocity components, turbulence variables and transition variables are specified at this

boundary. While the velocity and turbulence variables must be user-specified, the transition vari-

ables are automatically applied depending on the transition model being used. The remaining

variable, pressure, is obtained from the interior of the domain, considering a zero normal deriva-

tive. This boundary condition is always used at the inlet of the computational domain.

• Outflow boundary condition. At an outflow boundary, zero normal derivatives are imposed for all

variables. Despite the name, this boundary condition is only used at the outlet of the domain for a

single test case.

• Pressure boundary condition. At a pressure boundary condition, the normal derivatives of all flow

variables are set to zero, with the sole exception of the pressure, which is set to a user specified

value. This boundary condition is used for most test cases at the outlet of the domain.

• Symmetry boundary condition. This boundary condition is intended to force symmetry upon the

solution, by enforcing zero normal derivatives for all variables with the exception of the normal

velocity at the boundary, which is set to zero.

• Slip wall boundary condition. At a slip wall boundary condition, zero normal derivatives are set for

all flow variables, except for the normal velocity, which is set to zero.

• No-slip wall boundary condition. This boundary condition corresponds to solid walls. At boundaries

to which this boundary condition was assigned, all velocity components are set to zero, as well as

k and
√
kL, while ω is set at the nearest wall cell centre according to its near-wall analytic solution

[141]. Zero normal derivatives are enforced for all other flow variables.

All of the transition models used in this thesis have well-defined boundary conditions that do not

require user input. In the case of the γ − Reθ and γ models, the intermittency is set to one at the inflow

boundary, while Reθ is obtained from the turbulence intensity value using Eq. 3.56, assuming a zero

pressure gradient. For the AFT model, ñ has the value of zero at the inflow boundary. At no-slip walls,

all variables corresponding to transition models have a zero normal derivative boundary condition.

Each of the turbulence models used in this study requires the specification of values for the depen-

dent variables at the inlet. In the case of the k−ω SST model, inlet values for k and ω must be provided.

The first is generally obtained from the turbulence intensity level Tu through the assumption of isotropic

turbulence, leading to

k =
3

2
(TuV∞)

2
. (4.17)

On the other hand ω is generally not specified directly, but its value is instead computed from the eddy-

viscosity ratio µt
µ through

ω = k

(
µt
µ

)−1
1

µ
. (4.18)
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In the case of the KSKL model, the situation is the same: k is obtained from the intended turbulence

intensity and
√
kL is calculated from the desired value for µtµ .

4.5 Decay of Turbulence Quantities

The phenomena of flow transition can be regarded as a boundary value problem in the sense that

the location of transition will depend on the frequency and amplitude of the disturbances present in the

flow. In the RANS context, this information is contained in the freestream turbulence level, and as such,

most transition models are sensitive to these values. The freestream turbulence level depends on the

values set for the variables of the turbulence model set at the inlet of the computational domain.

The consequences of the choice for the values at the inlet for the turbulence quantities are small for

calculations where the turbulence models are not combined with a transition model. This is thoroughly

addressed in Ref. [142], in which this choice and its corresponding effect are considered from a con-

sistency point of view, where slight changes would be enough to affect the outcome of code verification

exercises for example. However, this choice is much more meaningful in calculations with transition

models, directly impacting the predicted location of transition. Also addressed in Ref. [142] and equally

relevant is the effect of turbulence decay. On the freestream, where the flow can be considered as

flowing uniformly along one direction, the variables of the turbulence model will decay at a rate which

depends on the values themselves, a consequence solely of the turbulence model. In transition models

such as the γ−Reθ model, which rely on the freestream level of the turbulence intensity for the prediction

of transition, the effect of turbulence decay becomes a critical factor.

The equations for the freestream decay of k and ω can be obtained from the transport equations of

each turbulence model, and a equation for µt
µ can be built from those for k and ω. The detailed process

for each of the models is given in Appendix C. For the k − ω SST model, the decay equations are

k∗ =
k∗in(

1 + β (x∗ − x∗in) k∗in

(
µ
µt

)
in
Re
) β∗
β

, (4.19)

ω∗ =
ω∗in

1 + β (x∗ − x∗in) k∗in

(
µ
µt

)
in
Re

(4.20)

where k∗ = k
U2
∞

, ω∗ = ωL
U∞

and x∗ = x
L , with L being a length scale. The equation for the decay of the

eddy-viscosity ratio is

µt
µ

=

(
µt
µ

)
in(

1 + β (x∗ − x∗in) k∗in

(
µ
µt

)
in
Re
) β∗
β −1

. (4.21)

These equations show that both k and ω undergo a steep decay while the eddy-viscosity decays

at a much slower rate, due to the exponent β∗

β − 1. In addition, it is also concluded that the decay

becomes more pronounced as the Reynolds number is increased, and that it can be reduced through

the increase of the eddy-viscosity at the inlet. The issue is further amplified due to the large distances at

which inflow boundaries are placed, whether to simulate infinite atmospheres or to prevent interactions
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between the boundary and the interior flow field. These results stem directly from the calibration of

the turbulence model, which relies on the decay of homogeneous isotropic turbulence to determine the

ratio β∗

β [141]. Therefore, these equations do not correspond to an accurate depiction of the decay of

freestream turbulence for practical applications [142].

The decay of turbulence is the main reason why high values of the eddy-viscosity at the inlet are

specified in flow calculations using transition models. It is not uncommon to see values for
(
µ
µt

)
in

ranging from 100 to 1000, as a means to maintain a moderate turbulence level throughout the region

between the inlet and the body being studied. Other alternatives consist in setting minimum values for k

and ω in this region, or to solve the transport equations without dissipation terms up to a certain plane of

the domain, which effectively transports the inlet values up until a desired location. The latter approach

is used here, as for all test cases the incoming flow is aligned with the x axis. In this sense, the variable

xF is introduced. For cells located at x < xF the transport equations of the turbulence model are solved

without dissipation terms.

Since the influence of the inlet turbulence quantities is directly evaluated in this work, and considering

their crucial role in the prediction of transition, these boundary conditions are not given in this chapter.

Furthermore, the same geometry may be used with different boundary conditions. For these reasons,

instead of being presented in the description of the test cases, turbulence boundary conditions for each

particular case are given in Chapters 5, 6 and 7.

4.6 Two-dimensional Test Cases

4.6.1 Flat plate

The flow over a flat plate is the most simple case considered herein. It is generally used for calibration

of transition models, based on experimental data available from the ERCOFTAC database [34]. The

domain is a rectangle with a length of 1.5L where L is the length of the plate which extends from x = 0

to x = L. The inlet and outlet boundaries are placed 0.25L away from the plate’s leading and trailing

edges, respectively. The height of the domain is 0.25L. The plate is modelled as a zero-thickness

surface and no effects of the leading edge curvature are considered, as these are not expected to have

a significant impact on the location of transition. The Reynolds number based on the plate’s length is

ReL = 107. An inflow boundary condition is used at the inlet, while an outflow boundary condition is set

at the outlet. Symmetry boundary conditions are set on the bottom regions upstream and downstream

of the plate. At the surface of the plate a no-slip wall boundary condition is imposed. Finally, a pressure

boundary condition is used at the top boundary of the domain.

Two sets of five grids with different topologies are used. Both sets are generated using in-house

grid generation tools [143, 144]. The first set consists of a Cartesian grid (H block) made of a single

block, with cell clustering in the streamwise direction at the leading edge and the trailing edge. The

grid topology is shown in Figure 4.1 and details on each grid are given in Table 4.1. The second set

of grids has an O topology around the leading and trailing edge of the plate, while retaining the H type
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grid on the plate. This approach avoids the highly stretched and high aspect ratio cells that propagate

downstream of the plate in the H topology. As a consequence, this set of grids leads to much faster

iterative convergence, in particular for the finest grids. An illustration of the grid for the entire domain is

shown in Figure 4.2, with a close up of the leading edge displayed in Figure 4.3. Details on each grid of

the set are given in Table 4.2. The y+
max values presented throughout the description of each test case

correspond to those obtained for calculations with the k − ω SST + γ −Reθ formulation. Although some

differences occur when changing the transition model or the underlying turbulence model, these do not

significantly impact the values presented.

x/L

y/
L

-0.25 0 0.25 0.5 0.75 1 1.25
0

0.1

0.2

Figure 4.1: H grid topology for the flat plate test case.

Table 4.1: Details for the H grids for the flat plate test case.

Grid Designation Grid 5 Grid 4 Grid 3 Grid 2 Grid 1
# of Surface faces 512 640 768 896 1024

# of Cells 73,728 115,200 165,888 225,792 294,912
y+
max 0.54 0.44 0.38 0.34 0.30
hi/h1 2.0 1.6 1.33 1.14 1.0
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0
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Figure 4.2: OH grid topology for the flat plate test case.
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Figure 4.3: Close-up of the leading edge in the OH grid topology.

Table 4.2: Details for the OH grids for the flat plate test case.

Grid Designation Grid 5 Grid 4 Grid 3 Grid 2 Grid 1
# of Surface faces 512 640 768 896 1024

# of Cells 81,920 128,000 184,320 250,880 327,680
y+
max 0.52 0.44 0.38 0.33 0.30
hi/h1 2.0 1.6 1.33 1.14 1.0

4.6.2 NACA 0012

Although it is not widely considered as a transition test case, the NACA 0012 airfoil is used in this

study at a Reynolds number of 2.88 × 106. The grid topology used for all airfoil test cases is the same,

hence it is only described once for the NACA 0012 airfoil. It consists of a multiblock structured grid

with 23 blocks. The first five blocks are adjacent to the airfoil and form a C-topology that extends slightly

downstream of the trailing edge as depicted in Figure 4.4. Blocks 6 through 12 wrap around the C-shape

effectively giving rise to an O-block topology. This is shown in Figure 4.5. The remaining blocks conform

the internal topology to the domain boundaries as shown in Figure 4.6. The angle of attack α is imposed

by rotating the inner blocks (1 to 5) of the grid. This keeps the incoming flow aligned with the x-axis. The

shape of the airfoil is obtained from the NACA 4-digit family definition [145].

The combination of the C and O topologies has significant benefits. When compared to a simple

C-type grid, it prevents the propagation to the wake of the thin cells required to properly capture the

boundary-layer. This results in cells with a very large aspect ratio, since some expansion in the stream-

wise direction is often employed, which strongly penalizes iterative convergence. On the other hand,

the use of a O-topology can cause misalignment (cell skewness) between the cell center vector and

the cell face shared by cells that are on opposite sides of the grid line that starts from the trailing edge.

One possible alternative to deal with this problem in grids with an O topology would to use a rounded

trailing edge instead of a sharp one. As shown in Figure 4.7, this is avoided in the present approach that

combines the two topologies, resulting in a grid with higher quality.

The grid refinement level present in the figures used to illustrate the grid topology is much lower than
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Figure 4.4: Depiction of the inner blocks and grid topology at the trailing edge of the NACA 0012 airfoil.
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Figure 4.5: Depiction of the blocks and grid topology around the NACA 0012 airfoil.
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Figure 4.6: Outer blocks and grid topology for the computational domain of the NACA 0012 airfoil test
case.
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Figure 4.7: Comparison of the grid at the trailing edge for the O topology (left) and the OH topology
(right).
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that used for the calculations, but it allows for a better display of the grid structure. To further describe

the grid, Table 4.3 presents the number of cells in the normal nn and tangential nt directions for each

block, for a base grid with 256 cells on the airfoil surface. For the outer blocks (13 to 23), nn represents

the number of cells in the y direction, and nt represents the number of cells in the x direction. As for

the flat-plate, the grid of the NACA 0012 and all other airfoils was generated using an in-house grid

generation tool [144].

Table 4.3: Reference number of cells for each block for a base grid with 256 cells on the surface of the
airfoil.

Blocks nt nn
1, 5, 15, 17, 19, 21 8 8

2, 4, 16, 20 120 8
3, 13, 14, 18, 22, 23 16 8

6, 7, 11, 12 8 24
8, 10 120 24

9 16 24

For α = 0◦, the airfoil’s leading edge is placed at x/c = 0 and the trailing edge is located at x/c =

1. The computational domain extends 12c upstream of the leading edge, where an inflow boundary

condition is used, and 23c downstream of the trailing edge where the pressure boundary condition is

imposed. A slip wall boundary condition is used at the top and bottom boundaries which are placed at

y = ±12c. The surface of the airfoil is modelled using a no-slip wall boundary condition. As with the

previous case, no wall functions are used. Several angles of attack ranging from α = 0◦ to α = 6◦ are

tested.

A set of 9 nearly geometrically similar grids has been generated for this airfoil. Table 4.4 details

the designation of each grid, which are identified by the number of faces on the surface of the airfoil.

Also shown is the total number of cells in the computational domain for each grid, as well as the grid

refinement ratio between each grid and the finest grid of the set, hi/h1.

Table 4.4: Details of the grid set for the NACA 0012 airfoil.

Grid Designation Grid 512 Grid 640 Grid 768 Grid 896 Grid 1024
# of Surface faces 512 640 768 896 1024

# of Cells 47,616 74,400 107,136 145,824 190,464
y+
max 0.75 0.59 0.49 0.42 0.36
hi/h1 4.0 3.2 2.67 2.29 2.0

Grid Designation Grid 1280 Grid 1536 Grid 1792 Grid 2048
# of Surface faces 1280 1536 1792 2048

# of Cells 297,600 428,544 583,296 761,856
y+
max 0.29 0.24 0.21 0.18
hi/h1 1.6 1.33 1.14 1.0

56



x/c

y/
c

-15 -10 -5 0 5 10 15 20 25
-15

-10

-5

0

5

10

15

x/c

y/
c

-0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1

Figure 4.8: Illustration of the computational domain size (left) and grid topology around the NACA 0012
airfoil (right).

4.6.3 NACA 0015

Although it also belongs to the 4-digit NACA family, the NACA 0015 airfoil test case is considerably

different from that of the NACA 0012 due to the lower Reynolds number of this test case ReL = 1.5×105.

This, along with the increased thickness of the airfoil and the higher angles of attack tested of α = 5◦

and α = 10◦, causes the dominant transition mechanism in the upper surface to be separation-induced

transition. Experimental data in the form of the skin-friction distribution is available for this airfoil [146].

As with the NACA 0012, the shape is defined according to the equation for the NACA 4-digit family.

The computational domain is also different, as it is selected to match the tunnel size for which data

was measured [146]. As such, the inlet is placed 7.2c away from the leading edge and the outlet is

located 14.5c away from the leading edge of the airfoil. The top and bottom boundaries, treated with a

slipwall boundary condition, are placed at y = ±2.5c. A depiction of the domain size and grid are given

in Figure 4.9. While the grid topology follows that described for the NACA 0012 airfoil, the level of grid

refinement is different. Details of the grid set for this case are given in Table 4.5. Furthermore, due to the

significant extent of flow separation that occurs for this flow, calculations for geometry were performed

using a first order upwind scheme for the convection term of the transport equations corresponding to

the turbulence model.

Table 4.5: Details of the grid set for the NACA 0015 airfoil.

Grid Designation Grid 1024 Grid 1280 Grid 1536 Grid 1792 Grid 2048
# of Surface faces 1024 1280 1536 1792 2048

# of Cells 391,168 611,200 880,128 1,194,592 1,564,672
y+
max 0.14 0.11 0.09 0.08 0.07
hi/h1 2.0 1.6 1.33 1.14 1.0
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Figure 4.9: Illustration of the computational domain size (left) and grid topology around the NACA 0015
airfoil (right).

4.6.4 NLF1-0416

The NLF(1)-0416 is a natural-laminar-flow airfoil, designed to keep the flow laminar for a large extent

of the airfoil without resorting to flow control techniques such as boundary-layer suction. The ultimate

goal in the design of this airfoil was to obtain lower drag coefficients for general aviation applications.

Experimental data from the Langley Low-Turbulence Pressure Tunnel at Reynolds numbers in the range

of 106 and several angles of attack is available in Ref. [147], although here the only Reynolds number

considered is 4× 106. Under these conditions, the flow in the upper surface undergoes natural transition

for most angles of attack, whereas the mechanism responsible for transition in the lower surface is

a small separation bubble. The shape of the airfoil is obtained from fitting cubic splines to the airfoil

coordinates given in [147]. Domain size and boundary conditions follow those described for the NACA

0012 airfoil. The same is valid for the grid topology, which is displayed in Figure 4.10. Grid properties

match those presented previously in Table 4.4.

This geometry has been used as a common test case for transitional flow simulations, due to the

significant extent of laminar flow on both surfaces. It was used as one of the two-dimensional test cases

in the CFD Transition Modeling and Predictive Capabilities session at the AIAA SciTech 2018 conference

[9] and in the development of coupling between the γ − Reθ model and the SSG/LRR Reynolds Stress

model [32].

4.6.5 Eppler 387

The Eppler 387 airfoil operates mainly at Reynolds numbers of the order of 105, as its main field of

applications is sailplanes. Thus, it also serves as a good test case for transition, as experimental data

concerning pressure coefficient distributions from different facilities [148, 149] is available. Additional

data in the form of force coefficients is also available from [35, 150, 151]. The airfoil coordinates available

in [149] are used for the definition of the airfoil’s shape.
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Figure 4.10: Illustration of the computational domain size (left) and grid topology around the NLF1-0416
airfoil (right).

The Reynolds number considered is 3× 105. Under these conditions conditions, the flow in the lower

surface is laminar for most angles of attack, while a laminar separation bubble encompassing around

20% of the chord is present in the upper surface. Transition takes place in the shear layer and the flow

reattaches back to the surface of the airfoil. Experimental data shows that the separated region is no

longer present at the highest angle of attack.

The domain size is the same as that used for the NACA 0012 airfoil, while the grid refinement level

matches that of the grid set described for the NACA 0015. An example of the grid and airfoil geometry

is given in Figure 4.11.

x/c

y/
c

-15 -10 -5 0 5 10 15 20 25
-15

-10

-5

0

5

10

15

x/c

y/
c

-0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1

Figure 4.11: Illustration of the computational domain size (left) and grid topology around the Eppler 387
airfoil (right).
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4.6.6 S809

The S809 airfoil is a laminar flow airfoil, designed for application in horizontal-axis wind turbines. It

was tested in the low-turbulence wind tunnel at Delft University of Technology [152] in the Netherlands.

As with the Eppler 387 and NLF1-0416 airfoils, the shape of the airfoil is determined by fitting cubic

splines to the airfoil coordinates available in [152]. Experimental data in the form of pressure coefficient

distributions, transition location in the upper and lower surfaces and force coefficients is available for a

wide range of angles of attack at a Reynolds number of 2× 106. For most angles of attack, transition is

triggered by flow separation on both surfaces of the airfoil. As the angle of attack increases past 6◦, the

mechanism for transition in the upper surface becomes natural transition. A depiction of the grid topology

is given in Figure 4.12, and the details of the grid set match those of the NACA 0012 airfoil. Similarly

to the NACA 0015 airfoil, the convection term of the transport equations of the turbulence model was

discretized using a first-order upwind scheme.

The S809 airfoil has been consistently used as a benchmark case for flow transition in CFD. It has

been used by Langtry and Menter [23] in the validation of the γ −Reθ model and by Walters and Cokljat

[24] in the validation of the kT − kL − ω model. It is one of the cases used by Medida and Baeder [115]

to validate the coupling of the Spalart-Allmaras model to the γ − Reθ model, and was also used in the

CFD Transition Modeling and Predictive Capabilities session at the AIAA SciTech 2018 conference [9].
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Figure 4.12: Illustration of the computational domain size (left) and grid topology around the S809 airfoil
(right).

4.7 Three-dimensional Test Cases

4.7.1 6:1 prolate spheroid

The 6:1 prolate spheroid is considered as an idealised submarine shape, making it representative

of such cases and explaining the interest in this particular geometry. For this reason, prolate spheroids
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have been the subject of considerable experimental work [153–156]. In particular, the data available

from [154] regarding the skin-friction coefficient in the surface of the spheroid is used in this work. The

surface of the spheroid is described by

x2 + 36y2 + 36z2 =
1

4
. (4.22)

The Reynolds number based on the spheroid’s length L is ReL = 6.5 × 106, and three different

incidence angles are tested: 5◦, 10◦, 15◦. While natural transition is the dominant mechanism at the

lower incidence angle, at α = 15◦ there is a significant crossflow component that is responsible for

transition. The computational domain is a box with length and height 200L and 100L width, where all

boundaries are approximately 100L away from the spheroid except the boundary at the symmetry plane

of the spheroid. A slip wall boundary condition is employed at the bottom, top and side boundaries, and

a pressure boundary condition is imposed at the outlet. Similarly to the airfoil cases, the incidence angle

is imposed by rotating the spheroid. Therefore, the incoming flow is always aligned with the x-axis. Flow

conditions and domain size settings follow those described in Ref. [9]. The grid on the symmetry plane

is depicted in Figures 4.13 and 4.14, while the grid on the surface of the spheroid is shown in Figure

4.15. For this case, the convection term of the momentum transport equations was discretized using a

second order upwind scheme (QUICK) without flux limiters.

Figure 4.13: Grid on the symmetry plane for the coarsest grid of the prolate spheroid test case at α = 5◦:
full computational domain (left) and block encompassing the spheroid (right).

The grids for this test case have been generated with the GridPro package [157]. The grid is a multi-

block structured grid, with an O-topology encircling the spheroid, and then conforming to the rectangular

domain. Table 4.6 presents details on the five grids generated in terms of the total number of cells (#

Cells) and the number of surface faces on the spheroid (# Surface faces). The value of y+
max obtained

for calculations with the γ − Reθ model is presented as well, showing all five grids to be well below 1.0.

The grid refinement ratio between each grid and the finest grid (hi/h1) is also shown. It is estimated
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Figure 4.14: Grid on the symmetry plane for the coarsest grid of the prolate spheroid test case at α = 5◦

around the spheroid.

Figure 4.15: Coarsest grid on the surface of the prolate spheroid at α = 5◦: leading edge (left) half
length of the spheroid (right).
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from
hi
h1

=

(
N1

Ni

)1/3

, (4.23)

where Ni is the total number of cells of grid i.

Table 4.6: Details of the grid set used for the prolate spheroid test case.

Grid Designation Grid 5 Grid 4 Grid 3 Grid 2 Grid 1
# Cells 5.3M 10.3M 17.9M 28.3M 42.6M

# Surface faces 31,504 48,750 70,884 95,816 126,016
y+
max 0.71 0.57 0.47 0.40 0.35
hi/h1 2.0 1.61 1.33 1.14 1.0

4.7.2 SD7003 wing

The SD7003 wing has been extensively studied both numerically [158–160] and experimentally [161]

due to the long laminar separation bubble that develops over the upper surface of the wing. The

Reynolds number for this test case is ReL = 6 × 104. This makes this case a prime candidate to

assess the performance of each transition models at the lower end of the Reynolds number range of

their applications. However, this low Reynolds number creates challenges due to excessive flow sepa-

ration that is incompatible with the statistically steady flow assumption that is used for all the previous

cases.

The domain size for this test case is selected to match the wind tunnel experiment detailed in [161].

As such, the inlet is located at x/c = −2.5 and the outlet at x/c = 5. The top and bottom boundaries are

located at y/c = ±1. The two side boundaries are placed at z/c = 0 and z/c = 2.8. As for the airfoils

used in the 2D test cases, the leading edge of the wing is placed at x/c = 0. For this flow, a first order

upwind scheme was used in the discretization of the transport equations of the turbulence model.

For this test case two different three-dimensional grids are considered. The first grid has equidistant

spacing in the spanwise direction, while the second has cell clustering in one direction. For the latter

grid, the corresponding boundary at which the clustering is located is treated as a no-slip wall boundary

condition, in order to mimic the influence of the tunnel wall. For the grid with equidistant spacing, a slip

wall boundary condition is used at the side wall instead. A grid set of two-dimensional grids is also used,

in order to assess the difference between the two-dimensional computation and the three-dimensional

simulation using a slip wall boundary condition on the side walls. The two-dimensional grid has an O-

topology around the trailing edge of the airfoil, and it corresponds to a section of constant span of the

three-dimensional grid. A depiction of the 3D grid with cell clustering at the side wall is shown in Figure

4.16 and details on each grid are given in Table 4.7.

4.7.3 Sickle wing

This geometry was designed by Petzold and Radespiel [162] specifically as a test case for assessing

and validating transition prediction methods. The wing has a section with no sweep angle at the root,
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Figure 4.16: 3D grid used for the SD7003 wing with cell clustering at the root of the wing (top) and with
equidistant spanwise spacing (bottom).

Table 4.7: Details of the grid set used for the SD7003 wing test case.

Grid Designation Grid 301 (3D - no slip sidewall) Grid 301 (3D - slip sidewall) Grid 601 (2D)
# Cells 3.0M 0.75M 100,000

# Surface faces 36,000 9000 601
y+
max 0.61 0.36 0.16
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in order to reduce the influence of the boundary-layer developing on the tunnel wall, and then sections

with sweep angles of 30◦, 45◦ and 55◦. This geometry causes stronger crossflow as the wing’s tip is

approached, providing an excellent case to assess the modelling of crossflow transition. Experimental

data [163, 164] in the form of the transition line and pressure coefficient are used for this case. An

illustration of the wing shape is given in Figure 4.17.

Figure 4.17: Geometry of the sickle wing. Taken from Ref. [9].

There are several different conditions [9] that explore the effect of Reynolds number, Mach number

and angle of attack. Only one of them is considered herein, at an angle of attack of α = −2.6◦ and a

Reynolds number of Rec = 4.45 × 106. In this case, a QUICK scheme without flux limiters was used

for the convection term of the momentum transport equations, while the discretization of the same term

but for the variables of the turbulence model was done with a first order upwind scheme. At the root of

the wing, the leading edge is located at x/c = 0. As with previous cases, the incoming flow is aligned

with the x-axis. In an attempt to reproduce the dimensions of the wind tunnel, the inlet is located at

x/c = −4.6, the outlet is placed at x/c = 8.455, treated using a pressure boundary condition. The top

and bottom boundaries are located at z/c = ±1.633, and the tunnel side wall is located at y/c = 2.8. All

tunnel wall boundaries are treated with a slip wall boundary condition.

Two different sets of grids are used for this case. The first set was built using the Hexpress grid

generation package [165], resulting in an hexahedral unstructured grid. A depiction of the coarsest

grid is shown in Figure 4.18 and details of the grid set are given in Table 4.8. The second grid set

was generated using the GridPro package [157]. The coarsest grid is illustrated in Figure 4.19 and the

grid set is detailed in Table 4.9. For both grid sets, the calculation of hi/h1 is done by considering the

number of volume cells, according to Eq. 4.23. The unstructured grid set is easier to generate, but has

a lower grid quality than the multi-block structured grid due to the presence of hanging nodes and cell

misalignment.
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Figure 4.18: Grid topology at the root (left) and on the surface (right) of the sickle wing, generated with
the Hexpress software.

Table 4.8: Details of the grid set generated with the Hexpress grid generation software for the Sickle
Wing geometry.

Grid Designation Grid 5 Grid 4 Grid 3 Grid 2 Grid 1
# Cells 9,920,004 18,083,265 29,247,107 44,663,536 64,031,708

# Surface faces 217,984 324,547 452,070 599,703 767,544
y+
max 0.96 0.77 0.55 0.45 0.39
hi/h1 1.86 1.52 1.30 1.13 1.0
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Figure 4.19: Grid topology at the root (left) and on the surface (right) of the sickle wing, generated with
the GridPro software.

Table 4.9: Details of the grid set generated with the GridPro grid generation software for the Sickle Wing
geometry.

Grid Designation Grid 5 Grid 4 Grid 3 Grid 2 Grid 1
# Cells 2,870,784 5,601,600 9,657,468 13,219,600 22,742,784

# Surface faces 27,936 43,650 62,856 77,600 111,744
hi/h1 1.99 1.59 1.33 1.20 1.0
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4.8 Features and Quantities of Interest

Several distinct aspects of the calculations are addressed in this thesis, which can be mainly divided

in three groups. The first concerns numerical aspects, which are relevant in order to reduce the numer-

ical error of the simulations but do not affect the exact solution of the model. The second category is

that of modelling aspects, in which features that directly impact the final solution of the model and a final

comparison with experimental data are performed. The final group is the comparison with experimental

data. In many cases, calculations using only the underlying turbulence model without any transition

model are performed as well for comparison of trends observed with and without transition modelling.

4.8.1 Numerical aspects

The numerical robustness of the models is the first numerical aspect to be addressed. The formu-

lation of transition models is heavily coupled with the turbulence quantities or the momentum quantities

themselves. Thus it is natural to expect that the complete turbulence and transition model formulation is

not as robust as the formulation which only consists of the turbulence model. Additional difficulties may

arise when laminar flow separation takes place, which would be very unlikely to occur in a calculation

without any sort of transition modelling. Strategies to improve the formulation of the transition models

are also presented and assessed.

The second numerical aspect concerns the discretization of the convection terms of the turbulence

and transition transport equations. This is mainly irrelevant for flows at high Reynolds numbers i.e.,

when transition models are not used. The typical choice under these conditions is a first order upwind

scheme for the turbulence model, motivated by the higher numerical stability. In the context of transition

modelling, there are two factors that highlight why the discretization of the convection scheme is much

more relevant. The first consists on the decay of turbulence, which directly affects the predicted location

of transition, and leads to high gradients of the turbulence variables at the inlet, where grids are typically

coarse. The second factor is the strong coupling between the turbulence and transition models.

The third numerical feature considered is the effect of y+
max. The general criteria observed for nu-

merical calculations without transition models is y+
max < 1. This choice has been shown to depend on

the turbulence model used [31, 36]. A similar trends has been observed when transition models are

included in the simulations as well [37]. Calculations are performed considering different underlying

turbulence models and also for grid sets with different near-wall cell sizes. This serves to establish the

effect of y+
max for each underlying turbulence model, and also provides some insight on the importance

of this effect when compared to general grid refinement.

4.8.2 Modelling aspects and comparison with experimental data

One of the features investigated from the modelling point of view is the influence of the turbulence

production limiter. This limiter, which aims at avoiding excess turbulence production in stagnation re-

gions, influences the turbulence level at the edge of the boundary layer, which plays a central role in the
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prediction of transition. While it is not given much importance when a transition model is not used, this

choice can lead to discrepancies in the results due to the limiter used. In turn, this impacts not only code

verification exercises using reference solutions, but also validation and comparison with experimental

data as well.

The second modelling issue addressed concerns the influence of the turbulence boundary conditions

and turbulence decay in the freestream. As previously stated, the level of turbulence in the freestream

is crucial in the prediction of transition. The effect of slight variations of the inlet boundary conditions

are studied for both natural and separation-induced transition. Also performed are comparison studies

in which a reference turbulence level at a given location are matched, but the decay is different. A

technique to control the decay without resorting to the eddy-viscosity is also considered.

The final part of the results consists of an overall comparison with experimental data. Despite the

more difficult setup of transition flow calculations, a consequence of its higher sensitivity to aspects that

have a low impact at high Reynolds numbers, the careful use of transition models can lead to better

predictions when compared to calculations without any sort of transition modelling capability.

4.8.3 Test case overview

Not every single test case is used to address all intended numerical and modelling aspects mentioned

previously. So as to provide a clear map on what test cases are used to evaluate specific effects, this

is shown in Tables 4.10 and 4.11 for the numerical and modelling features respectively. In regards to

the comparison with experimental data, all geometries with the exception of the flat plate and the NACA

0012 are addressed.

Table 4.10: Test case selection to study the numerical features.

Iterative convergence Convective discretization scheme Effect of y+

Flat Plate X X
NACA 0012 X X
NACA 0015
Eppler 387
NLF1-0416 X X X

S809
SD 7003

6:1 Prolate Spheroid X X
Sickle Wing

4.8.4 Quantities of interest

Several distinct quantities of interest are used to evaluate the previously discussed features on tran-

sitional flow simulations. These are selected based on their adequacy for transitional flows, as well as

on the availability of experimental data for each test case.
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Table 4.11: Test case selection to study the modelling features.

Turbulence production limiter Inlet turbulence quantities
Flat Plate X X

NACA 0012 X X
NACA 0015
Eppler 387
NLF1-0416

S809
SD 7003

6:1 Prolate Spheroid X
Sickle Wing

The first quantity is the pressure coefficient distribution Cp, defined as

Cp =
p− p∞
1
2ρV

2
∞
. (4.24)

The Cp distribution can be indicative of the transition region, particularly when separation-induced tran-

sition takes place. Experimental data for it is also available for the majority of the test cases.

More difficult to obtain experimentally, but much more helpful in the analysis of flow transition is the

skin-friction coefficient Cf

Cf =
τw

1
2ρV

2
∞
, (4.25)

where τw is the shear stress at the wall, directly obtained through the no-slip condition

τw = µ

(
∂Ut
∂xn

)
w

, (4.26)

where Ut is the tangential velocity, xn is the wall normal direction, and the subscript w indicates that the

derivative is evaluated at the wall. From the Cf distribution, the start and end of both the transition region

and separated flow region, if flow separation occurs, can be easily found for two-dimensional flows. The

separated flow region is marked by the region where Cf has a negative value, with the separation and

reattachment points being identified by the locations at which Cf = 0. In the case of the transition region,

identified by the sharp increase of the skin-friction coefficient, the start of transition is considered as the

minimum of Cf and the end of transition by the maximum of Cf .

Also used are the lift and drag coefficients, expressed as Cl and Cd for the two-dimensional cases,

and as CL and CD for the three-dimensional flows. They are obtained from

Cl =
l

1
2ρV

2
∞c

, CL =
L

1
2ρV

2
∞Sref

, (4.27)

Cd =
d

1
2ρV

2
∞c

, CD =
D

1
2ρV

2
∞Sref

. (4.28)

where Sref is the reference area, l and d are the lift and drag forces per unit span obtained in the

two-dimensional calculations, and L and D are the lift and drag forces. The drag coefficient is also

considered in the individual pressure and friction contributions, identified as Cd,p and Cd,f respectively.
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For the lift coefficient, the friction component is generally negligible when compared to the friction one.

For this reason, only the total lift coefficient is considered.
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Chapter 5

Results Part I: Numerical Aspects

5.1 Introduction

This chapter is focused on the analysis of three numerical aspects pertaining to transitional flow

calculations. These affect the numerical accuracy of the calculations, but have no impact on the exact

solution of the mathematical model. The first aspect is addressed in Section 5.2 and concerns the nu-

merical robustness of the models. The iterative convergence of different transitions models is compared

both between themselves and with calculations without a transition model. Difficulties in the conver-

gence are traced back to the terms in the models which cause them, and an approach to remedy the

situation is given and extended to all transition models. Section 5.3 consists of a study on the effect of

the discretization scheme used in the convection term of the transport equations of the transition and

turbulence models. Calculations using first order and second order schemes on the convection term are

performed, in order to identify the importance of the discretization in each model. Finally, the effect of

the size of the near-wall cell is discussed in Section 5.4. This is assessed by using several sets of grids

with different sizes for the first near-wall cell. The main conclusions of the three studies are summarized

in Section 5.5.

5.2 Numerical Robustness

5.2.1 Introduction

Four test cases are considered for the study of the numerical robustness. These are the flat plate,

the NACA 0012 and Eppler 387 airfoils and the 6:1 prolate spheroid. Details on the values set for

the turbulence variables at the inlet for each case are given in Table 5.1. The value of the turbulence

intensity obtained in the freestream at the leading edge plane TuLE is given as well. The grid sets used

correspond to those described in Chapter 4.

It is also worth mentioning that an evaluation of numerical robustness through the number of itera-

tions is influenced by the relaxation parameters used in the simulations. Furthermore, the remaining two
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Table 5.1: Angle of attack and inlet turbulence quantities for each test case for the calculations performed
for the study of the numerical robustness.

Case Angle of Attack Tuin (µt/µ)in xF Ncrit TuLE
Flat Plate (OH Grid) - 1% 25 Not used - 0.64%

NACA 0012 0◦ 1% 0.1 Not used 2.6 0.01%
NLF1-0416 0◦ 1% 0.1 Not used - 0.01%

6:1 Prolate Spheroid 5◦ 0.5% 250.0 Not used - 0.14%

aspects that are addressed in this Chapter can also have an important contribution, as using second (or

higher) order schemes will lead to a decrease in the numerical robustness, with the same being true for

the use of grids with smaller sizes of the near-wall cell. In order to minimize differences owning to these

factors, all settings are kept constant across each case, with regards to relaxation parameters for each

equation, as well as the discretization scheme employed. Naturally, the same set of grids is always used

for each different model.

5.2.2 Results

The first test case addressed is the flow around the NACA 0012 airfoil. Figure 5.1 shows the evolution

of the residuals of each transport equation for the k − ω SST model without any transition model and

with each of them. Although it is only the evolution for a single calculation, it is representative of nearly

every single calculation done with a transition model. The use of any transition model leads to a higher

oscillation in the residuals when compared to the situation where only the underlying turbulence model

is employed. It can also be observed that the residuals of the transport equations associated with

the transition model are generally at least one order of magnitude higher than the remaining ones,

particularly when the iterative convergence criteria is reached. In the vast majority of cases, the use

of a transition model also leads to a higher number of iterations required to lower the residuals. This

is displayed in Figure 5.2, where the number of iterations performed for the entire grid set is shown for

each model. With the exception of the finest grid, the k − ω SST model without any transition model is

consistently the formulation that requires the fewest iterations.

The numerical robustness of the models is also deeply connected to the flow itself. Flow separation,

be it laminar or turbulent, generally introduces difficulties. However, laminar separation is not a flow

phenomena that is easily predicted without the use of a transition model. An example of this is given

by the NLF1-0416 airfoil. As displayed in Figure 5.3, the γ − Reθ model is the only one that leads to

laminar flow separation on the upper surface. Consequently, it is also the model that exhibits the worst

robustness for this case, as none of the simulations reached the set iterative convergence criteria.

The inclusion of a transition model does not necessarily entail additional difficulties due to the change

in flow regime. The later transition promoted by the use of transition models when compared to that

predicted by the k − ω SST model results in a higher skin friction coefficient level on the turbulent

regime. In the cases where separation of the turbulent flow can occur, the extent of the separated region

may be larger for the case without a transition model, thus penalizing the iterative convergence of such

simulations.
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Figure 5.1: Evolution of the residuals for the NACA 0012 airfoil on Grid 2048 using the k−ω SST model
(top left) combined with the γ − Reθ model (top right), the γ model (bottom left) and the AFT model
(bottom right).
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Figure 5.2: Number of iterations performed until the iterative convergence criteria was achieved for the
NACA 0012 airfoil with each transition model coupled to the k − ω SST turbulence model for different
grids.
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Figure 5.3: Skin friction coefficient distribution on the finest grid (left) and number of iterations performed
at each grid for each model (right) for the NLF1-0416 airfoil.

While all these effects are directly related to the iterative convergence of the simulations, they are not

inherent to the formulation of the model. The difficulties in converging a solution with separated regions

are a consequence of the steady flow approximation becoming inadequate. On the other hand, it is also

natural that the complete formulation with transition model requires more iterations: the turbulence model

still needs to be converged, and the coupling between each model also introduces further difficulties.

However, this does not mean that the formulation of transition models are entirely robust. Figure 5.4

depicts a calculation for the flat plate test case in which residual stagnation occurs and is only solved

through modification of relaxation parameters, in particular by lowering the explicit relaxation of the

equations associated with the turbulence model. This is not exclusive to the γ −Reθ model, and occurs

for other models and in other test cases as well. Even though in this case residual stagnation happens

at a level that is not excessively concerning, as the highest residual is that of γ at around 10−4, in some

other cases this may hover around 10−2 or even 10−1.
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Figure 5.4: Evolution of the residual of each transport equation for the flat plate test case when using
the γ −Reθ model on Grid 4.
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A closer inspection of the evolution of the residuals shows a periodic behaviour, typical of flow oscil-

lation between two solutions. This is shown in Figure 5.5. An analysis of the region where the maximum

residuals occur shows that the residual oscillation comes from a variation in γ in just a few cells, as this

is a localized behaviour at the transition region. The variation of γ is caused by changes in the produc-

tion and dissipation term of γ. However, since these are proportional to γ, they are also affected by it.

The root cause of this oscillating behaviour comes from the limiters in the formulation of the transition

models. In the present example, Fonset is the function responsible for the changes in γ.
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Figure 5.5: Periodic behaviour of the residuals (left) and corresponding evolution of γ and Fonset on the
cell with the highest residual (right) for the flat plate test case using the γ −Reθ model on Grid 4.

The definition of Fonset (Eq. 3.44) includes a max function, which is continuous, but its derivative

is not. An example of the issues that max or min functions can introduce is illustrated in Figure 5.6

for the Fonset3 function, which has a similar formulation. Although the function is continuous, the sharp

discontinuity in the derivative at RT = 2.5 does not promote stability. Furthermore, these functions are

limited to zero. As seen in Figure 5.5, there is a strong difference between Fonset taking low values,

which still enable the production term of γ to be active, and taking the value of zero, which forcefully cuts

off production, causing γ to decrease. In the case of the AFT model, residual stagnation may also occur

due to the discontinuous Fcrit function (Eq. 3.106) that controls the production of ñ.

The solution to this issue is also presented in Figure 5.6 and consists of adopting an alternative

formulation for Fonset3 and Fonset, which has a smooth evolution in the vicinity of RT = 2.5. Following

the work of Ref. [166], this is done by approximating the max functions as follows:

max (g1, g2) ≈

 max (g1, g2) , |g1 − g2| > − log(|p|·|pmach|)|p|
log(exp(pg1)+exp(pg2))

p , |g1 − g2| ≤ − log(|p|·|pmach|)|p|

(5.1)

In this formulation, pmach is a small value close to machine precision, while p is a value that controls

how much the approximation resembles the max function. This approach is employed simultaneously

in the Fonset and Fonset3 functions, but it is only used in cases which display difficulties in the iterative

convergence. Using this formulation on the case displayed previously leads to convergence of the
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Figure 5.6: Depiction of the Fonset function and the smooth formulation in the vicinity of RT = 2.5.

solution in under 5000 iterations, as illustrated in Figure 5.7. Another example of its application is given

in Figure 5.8 for the prolate spheroid, showing that it leads to a good behaviour, without requiring user

input midway through the computation. This example also illustrates that the level at which the residuals

stagnate can be quite high. For the AFT model this approach is not suitable, since the issue there is

caused by a discontinuity in the function itself, and not due to the application of a max function.
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Figure 5.7: Evolution of the residual of each transport equation for the flat plate test case when using
the γ −Reθ model with the smooth formulation for Fonset3 and Fonset on Grid 4.

Even though the use of Eq. 5.1 promotes numerical robustness, it is nonetheless a modification to

the original formulation of each transition model. In order to assess the potential impacts of this change,

Figure 5.9 presents a comparison of the skin friction coefficient and friction resistance for the NACA

0012 airfoil using the γ−Reθ model. Three sets of calculations are done, two with the use of Eq. 5.1 for

p = 300 and p = 600, and another with the original formulation of the models. This case does not exhibit

any problem in the iterative convergence, and so the use of the smooth variant of Fonset and Fonset3 is

not needed. This allows to check the influence of the change of the formulation on the solution itself. At

each grid level there is a decrease in Cd,f when Eq. 5.1 is used, as the solutions for p = 300 and p = 600
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Figure 5.8: Example of the residual evolution for a calculation on the prolate spheroid test case for Grid
5 using the γ−Reθ model with the original (left) and smooth (right) formulations of the Fonset and Fonset3
functions.

are nearly coincident. The decrease in Cd,f is caused by the transition location moving downstream,

although for the finest grid this corresponds to a change of only two cells.
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Figure 5.9: Convergence of the friction drag with grid refinement (left) and skin-friction coefficient dis-
tribution on the finest grid (right) for the NACA 0012 airfoil using the γ − Reθ model with the original
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5.3 Discretization Scheme

5.3.1 Introduction

All calculations performed for this section are identified by a pair of two letters. The first letter corre-

sponds to the discretization scheme used in convection term of the transport equations of the turbulence

model. The second letter is analogous but refers instead to the transport equations of the transition

model. Calculations without a transition model are performed as well. In this case, the second letter is
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not used. Three different approaches are employed:

• a first order upwind scheme, denoted by U;

• a QUICK scheme without flux limiters, identified by Q;

• a QUICK scheme with flux limiters, referenced as L.

As an example, if a set of calculations is labeled with UL, that means that set was computed using a

first order upwind scheme in the convection term of the transport equations for the turbulence variables,

and using the limited QUICK scheme for the convection term of the transport equations pertaining to the

transition model.

The three test cases considered for this study are the NACA 0012 and NLF1-0416 airfoils and the

6:1 prolate spheroid. Specific conditions are given in Table 5.2. For the NACA 0012 airfoil, all possible

combinations of schemes are tested. For the NLF1-0416 airfoil, variations are performed independently

for the turbulence and transition model, meaning that only the LL, LQ, LU, QL and UL sets are consid-

ered. Finally, for the prolate spheroid, only the influence of the scheme used on the turbulence model is

assessed, using the LL and UL sets. Furthermore, only the k − ω SST turbulence model is employed,

as the combinations of the transition models with the KSKL model are not used.

Table 5.2: Angle of attack and inlet turbulence quantities for each test case for the calculations performed
for the study of the effect of the convection discretization scheme.

Case Angle of Attack Tuin (µt/µ)in xF Ncrit TuLE
NACA 0012 0◦ 1% 0.1 Not used 2.6 0.1%
NLF1-0416 0◦ 1% 0.1 Not used 2.6 0.1%

6:1 Prolate Spheroid 5◦ 0.1917% 5.2 −1.5L 6.6 0.15%

For several of the cases presented in this section, the convergence of the quantities of interest with

grid refinement is considered. In those cases, the least squares fit of the data to Eq. 4.15 is shown and

the estimated numerical uncertainty is also provided. However, these are obtained by considering only

the data from the five finest grids. This means that for the two-dimensional geometries, the coarsest

grids are not used in the uncertainty estimation procedure. Nonetheless, they are useful to assess the

trend of the results, and are more representative of the level of grid refinement of the three-dimensional

test cases.

5.3.2 Results

Starting with the baseline calculations without a transition model, Figure 5.10 presents the friction

component of the drag coefficient for the two airfoils with different schemes employed in the turbulence

transport equations. It is evident that the effect of the flux limiters in the case of the QUICK scheme is

negligible, and the difference between the first order upwind and QUICK schemes is also very small.

The same holds true for the pressure component of the drag coefficient, shown in Figure 5.11. This

shows that in for this particular case, there is little benefit in using high order schemes in the turbulence
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model to calculate mean flow quantities, if a transition model is not used. However, this trend may not

hold for unstructured grids [167].
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Figure 5.10: Effect of the discretization scheme used for the convection term of the k−ω SST turbulence
model on Cd,f for calculations without a transition model for the NACA 0012 (left) and the NLF1-0416
(right) airfoils.
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Figure 5.11: Effect of the discretization scheme used for the convection term of the k−ω SST turbulence
model on Cd,p for calculations without a transition model for the NACA 0012 (left) and the NLF1-0416
(right) airfoils.

Considering now the calculations with the transition models, the Cf distribution for the two airfoils is

presented in Figure 5.12. In both geometries, the transition region predicted by the AFT model is located

much further upstream than that predicted by the γ − Reθ and γ models. This is a consequence of the

low value of Ncrit used in this study. While in the NACA 0012 airfoil there is no flow separation, it occurs

on the lower surface of the NLF1-0416 for the γ − Reθ and γ models and in the upper surface for the

γ −Reθ model. As such, the two airfoils exhibit different transition mechanisms.

Figures 5.13, 5.14 and 5.15 exhibit Cd,f and Cd,p with different schemes for the γ − Reθ, γ and AFT
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Figure 5.12: Skin friction coefficient distribution obtained with each transition model for the NACA 0012
(left) and the NLF1-0416 (right) airfoils.

models respectively. Differences observed between each set of calculations are more pronounced in

the friction component of the drag coefficient than in the pressure component. Regarding the scheme

used in the transition transport equations, the use of flux limiters has a negligible impact. Additionally,

only the γ − Reθ model exhibits a small difference in the solution obtained between calculations using

the first order upwind scheme or the QUICK scheme in the equations of the transition model.
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Figure 5.13: Effect of the discretization scheme used in the convection term of the transport equations
of the turbulence and transition models using the γ − Reθ model on the NACA 0012 airfoil: Cd,f (left)
and Cd,p (right).

More important is the influence of the scheme used in the equations of the turbulence model. The

use of flux limiters leads to a small difference in the calculations with the γ − Reθ model. In the case of

the γ model, there is no appreciable difference. Finally, for the AFT model, the solution on the coarse

grids when a flux limiter is inactive is similar to the one obtained when using a first order upwind scheme.

As the grid is refined, it starts to match the solution of the case where the flux limiters are active.
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Figure 5.14: Effect of the discretization scheme used in the convection term of the transport equations
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Figure 5.15: Effect of the discretization scheme used in the convection term of the transport equations
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The most significant difference comes from whether the first order upwind or QUICK scheme is used

in the turbulence transport equations, which is a common trend displayed by all transition models and

in disagreement with the trend observed in the calculations without transition model. For all models, the

use of the first order upwind scheme leads to higher values for both Cd,f and Cd,p. In the case of the

γ model, transition takes place much further upstream in the coarsest grid than in the remaining grids,

leading to significant numerical error.

Another worthwhile aspect is that Cd,f increases as the grid is refined and the QUICK scheme is used

for the transport equations of the turbulence model. However, if the first order upwind scheme is used

instead, then the increase is smaller in the case of the γ and AFT models and, for the γ −Reθ model, it

decreases with grid refinement. Nevertheless, the extrapolated solution at hi/h1 = 0 is similar regardless

of the scheme used. This shows that the comparison of numerical schemes can be misleading if the

numerical uncertainty is not assessed. Furthermore, the different trends observed with the behaviour

of Cd,f with grid refinement hint at opposing effects as the grid is refined. This is further examined in

Figure 5.16 where the Cf distribution in the vicinity of the transition region of every other grid for the LL

and UL sets using the γ − Reθ model is shown. In both sets, there is an increase of Cf in the turbulent

region with grid refinement, leading to the increase in Cd,f with grid refinement observed in the LL set.
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Figure 5.16: Skin friction coefficient distribution for the NACA 0012 airfoil and different grids using the
γ −Reθ model for the LL set (left) and for the UL set (right).

For the UL set, an additional effect occurs. The prediction of the transition region in the coarsest

grids is located slightly upstream than that of the finest grids. The shift of transition downstream as the

grid is refined promotes a higher extent of laminar flow, which acts as to decrease Cd,f . The different

convergence behaviour exhibited by the UL set, and even the lower numerical uncertainty is then caused

by the two opposing effects, which lead to an overall smaller change of Cd,f as the grid is refined, even

though the location of transition has a larger numerical error. This shows that the convergence of Cd,f

with grid refinement is affected by error cancelling.

The same effect is present in the γ model, but the shift of transition with grid refinement is not as

pronounced, as illustrated in Figure 5.17. This explains why for this model there was still an increase
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Figure 5.17: Skin friction coefficient distribution for the NACA 0012 airfoil and different grids using the γ
model for the LL set (left) and for the UL set (right).

of Cd,f with grid refinement for the UL set, albeit smaller than for the LL set. The most distinguishing

feature however is the early transition in the coarsest grid for the UL set, incurring a significant numerical

error.

The Cf distribution for the AFT model is presented in Figure 5.18. For both sets there is a slight

difference on the prediction on the coarsest grid. Similarly to the γ −Reθ model, the UL set exhibits the

largest shift of the transition region with grid refinement. In this case, however, since transition happens

much earlier for the AFT model, the increase of Cf in the turbulent region outweighs the increase of the

extent of laminar flow. Thus, Cd,f still increases with grid refinement, unlike what was observed for the

γ −Reθ model.
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Figure 5.18: Skin friction coefficient distribution for the NACA 0012 airfoil and different grids using the
AFT model for the LL set (left) and for the UL set (right).

The changes of the transition position with grid refinement when a first order upwind scheme is

used in the convection term of the turbulence model equations is the most striking feature observed.

83



Moreover, there is a clear dependence on the transition model used. For the γ − Reθ model, the shift

in the transition region can be traced to the different level of turbulence intensity in the freestream, as

displayed in Figure 5.19. The UL set shows a higher change in the freestream level of the turbulence

intensity, which decreases as the grid is refined. This is directly related to the use of coarse grids in

the freestream, which causes an underestimation of the decay. This effect is mitigated when the QUICK

scheme is used. However, the change in the level of freestream turbulence intensity alone is not enough

to justify the shift in the transition position, given that for the LL set there is also a decrease in the level of

freestream turbulence with grid refinement. Since there are no appreciable gradients of the turbulence

variables in the laminar region that would affect the transition location, it follows that the influence of the

discretization scheme also impacts the transition process itself. This observation is also consistent with

the fact that the AFT model also exhibits some dependence of the scheme used. The AFT model should

show a minimal influence of turbulence on the location of transition, since it is mostly dependent on the

value of Ncrit.
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Figure 5.19: Evolution of the turbulence intensity in the region upstream of the NACA 0012 airfoil when
using the γ −Reθ model for the LL (left) and UL (right) sets.

The previous analysis is focused on the accuracy of the simulations. Naturally, it is not to be expected

that the computations performed with the first order upwind scheme would be more accurate than those

performed with the QUICK scheme. They should, however, be more robust. In the present case for the

NACA 0012 airfoil, a total of 3 × 9 × 9 = 243 simulations were performed, corresponding to 3 transition

models, 9 grids and 9 combinations of discretization scheme. Out of the 243 simulations, 84 failed to

attain the desired level of iterative convergence.

From these, 81 correspond to the cases where the QUICK scheme without flux limiters was used

for the turbulence transport equations, regardless of the transition model used. An example of the

convergence for this case for the γ − Reθ and AFT models is shown in Figure 5.20. In spite of the

stagnation of the residual of the k transport equation, the residuals of all other variables decrease down

to machine precision. Furthermore, the stagnation of the residual of k takes place at the stagnation point

of the airfoil. As such, this issue is not related to the transition phenomena, but to the turbulence model
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itself.
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Figure 5.20: Iterative convergence evolution for the QL set and Grid 2048 using the γ −Reθ model (left)
and the AFT model (right).

As for the remaining three simulations that did not converge, all of these were done with the UU set,

one with the γ − Reθ model and two with the AFT model. Consequently, there was no added difficulty

in the iterative convergence of the simulations due to the use of the QUICK scheme with flux limiters

in either the the turbulence or transition equations. This is further strengthened by Figure 5.21 which

shows that the use of the QUICK scheme did not incur any significant increase in the number of iterations

performed. Although only three grids are shown, the trends are representative of the entire grid set.
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Figure 5.21: Number of iterations required to converge the numerical solution for the NACA 0012 using
each transition model for different levels of grid refinement and different combinations of the discretiza-
tion schemes.

All of the trends discussed for the NACA 0012 airfoil are also observed for the NLF1-0416 airfoil,

despite the different transition mechanism. Figures 5.22, 5.23 and 5.24 present the skin friction coeffi-
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cient distributions for each transition model. The use of the first order upwind scheme on the convection

term of the turbulence model leads to larger changes with grid refinement for the γ − Reθ model when

compared to the calculations performed with the QUICK scheme. For the γ model, not only does the

coarsest grid exhibit significant numerical error on the upper surface due to premature transition, but this

also happens for the two following grids in the set. The coarsest grid also exhibits some numerical error

for the AFT model, in a similar manner to the behaviour displayed in the NACA 0012 airfoil.
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Figure 5.22: Skin friction coefficient distribution for the NLF1-0416 airfoil and different grids using the
γ −Reθ model for the LL set (left) and for the UL set (right).
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Figure 5.23: Skin friction coefficient distribution for the NLF1-0416 airfoil and different grids using the γ
model for the LL set (left) and for the UL set (right).

Regarding the iterative convergence, this test case proved to be much more difficult than the previous.

A total of 144 simulations were performed and only 74 verified the set convergence criteria. All 27

calculations performed with the QUICK scheme without flux limiters on the turbulence equations did not

converge. For the γ−Reθ model, only two simulations converged. These correspond to the two coarsest

grids, when using the first order upwind scheme on the transport equations for the turbulence model.
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Figure 5.24: Skin friction coefficient distribution for the NLF1-0416 airfoil and different grids using the
AFT model for the LL set (left) and for the UL set (right).

This means that out of the 45 simulations performed with the γ−Reθ model, 43 exhibited problems with

the iterative convergence, although divergence never took place. On the other hand, for the γ model,

all simulations achieved the desired level of iterative convergence with the exception of 4, besides the

QL set. All of these were done using the coarsest grid. The only set for which the coarsest grid also

converged was for the UL set. Finally, for the AFT model, a total of 6 simulations failed to converge, with

the exception of the previously mentioned QL set. Out of the 6 simulations, two were in the LL set, two

in the LQ set, and one each in the LU and UL sets. Additionally, these span grid 512 to grid 1024, the

coarsest half of the set.

The significantly different robustness displayed by the γ − Reθ model is due to the higher extent

of separated flow predicted by this model. As discussed previously, flow separation is an obstacle to

numerical robustness when considering steady flow, and the results of the γ − Reθ model seem to in-

dicate that using the QUICK scheme in the turbulence model for those conditions may prevent iterative

convergence, although even most of the calculations using the first order upwind scheme also exhibited

problems. On the contrary, the γ and AFT models exhibit little or no flow separation respectively, which

makes iterative convergence easier. Considering the results of these two models, no significant advan-

tage in terms of robustness is achieved through the use of the first order upwind scheme on either the

turbulence or transition model for this case.

Figure 5.25 presents the number of iterations performed for each grid with the different sets. The

γ − Reθ model and the QL sets are not shown since those cases almost always hit the limit value of

50,000 iterations as previously mentioned. The behaviour of the γ model is straighforward: there is no

significant influence of the discretization scheme used for the transition model. The use of the first order

upwind scheme on the transport equations of the turbulence model only leads to a lower number of

iterations for the coarsest and finest grids. For the AFT model, there are some slight changes due to the

change of the discretization scheme used in the transition model. However, this does not occur for all

grids. The trend is similar for the UL set as there is no noticeable decrease in the number of iterations
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Figure 5.25: Number of iterations performed for the NLF1-0416 airfoil with different combinations of
discretization scheme and for each grid using the γ (left) and AFT (right) models.

Attention is now given to the flow around the 6:1 prolate spheroid. Figures 5.26, 5.27 and 5.28

present the convergence of Cd,f and Cl,p with grid refinement for the LL and UL sets for each transition

model. In all cases, the effect of grid refinement is more significant in the UL set than in the LL set.

Consequently, the estimated numerical uncertainty is also lower, with the exception of Cd,f for the AFT

model. Another relevant aspect is that for some cases, the solution at hi/h1 = 0 does not match for the

two sets, indicating that the present level of grid refinement is not enough to make a reliable estimate of

the exact solution. Furthermore, for the γ−Reθ and γ models, the solution of the two coarsest grids does

not appear to match that exhibited by the remaining grids. In the particular case of the AFT model, the

pressure component of the lift coefficient exhibits a very strong variation with grid refinement. Although

the evolution of Cd,p is not shown, it also behaves in the same manner, showing that the effect of the

discretization scheme on the turbulence transport equations is not limited to the friction component.

With regards to the iterative convergence of the calculations, difficulties for the LL set were observed

at all grids for the γ −Reθ model and for two intermediate grids when using the AFT model. The use of

the first order upwind scheme in the turbulence model did not result in any significant improvement.

5.4 Size of the First Near Wall Cell

5.4.1 Introduction

For the study of the effect of the y+ value, two test cases are considered: the flow over the flat plate

and around the NLF1-0416 airfoil. Angle of attack and inlet turbulence boundary conditions for each

geometry are given in Table 5.3. All transition and turbulence model combinations are used here. A

total of 45 grids are used for each case, organized into nine sets of five grids. While the level of grid

refinement and cell count of each grid set follows that presented in Chapter 4, the size of the cells in the
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Figure 5.26: Effect of the discretization scheme used in the convection term of the transport equations
of the turbulence and transition models using the γ − Reθ model on the 6:1 prolate spheroid: Cd,f (left)
and Cl,p (right).
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Figure 5.28: Effect of the discretization scheme used in the convection term of the transport equations
of the turbulence and transition models using the AFT model on the 6:1 prolate spheroid: Cd,f (left) and
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wall normal direction is varied.

The grid set with the highest y+ value (grid set 9) is generated so that the coarsest grid of the set

has an average value of y+
avg ≈ 1. The intermediate set, grid set 5, is built such that for the coarsest grid

the maximum value of y+ follows y+
max ≈ 1. The grid set with the lowest y+ value, grid set 1, is created

such that y+
max ≈ 0.1. Finally, the remaining grid sets are made such that intermediate values of y+ are

obtained. This structure ensures that there are several grid sets that verify the commonly used criterion

of y+
max ≈ 1, exploring the effect of further decreasing the y+

max to levels that are rarely used.

Table 5.3: Angle of attack and inlet turbulence quantities for each test case for the calculations performed
for the study of the effect of the size of the first near wall cell and corresponding y+ value.

Case Angle of Attack Tuin (µt/µ)in xF Ncrit TuLE
Flat Plate (OH Grid) - 1% 25.0 Not used 6.0 0.64%

NLF1-0416 0◦ 3% 10.0 Not used 9.0 0.1%

This study follows that performed in Ref. [31], which was focused on the behaviour of the two

turbulence models used here, the k − ω SST and the KSKL models, as well as the Spalart-Allmaras

model, without any transition model. For that reason, calculations without transition model are not

performed here, but the trends observed in Ref. [31] are mentioned throughout the text. This study has

two main goals:

• To assess whether the influence of the size of the near-wall cell observed in Ref. [31] for calcula-

tions without transition model still holds when a transition model is included;

• To evaluate whether the prediction of the transition location is affected by y+
max.

Furthermore, the generation of the grids for the two test cases guarantees that, close to the wall, there

are no differences in the streamwise direction for grids with the same number of volume cells. Thus,

this study will also indirectly allow to qualitatively assess, for the present level of grid refinement, if

90



the prediction of the transition region is more influenced by grid refinement in the tangential or normal

direction.

5.4.2 Results

Figure 5.29 presents the average and maximum values of y+ obtained for the flat plate when using

the γ −Reθ model for each set of grids, showing the differences between each grid set. Although there

are slight changes depending on the transition model, the values do not significantly differ from those

here shown.
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Figure 5.29: Average (left) and maximum (right) y+ values obtained for the flat plate test case for each
grid using the k − ω SST turbulence model combined with the γ −Reθ transition model.

The friction resistance coefficient of the plate, CF , obtained with the k − ω SST model coupled with

each transition model is shown in Figure 5.30 both as a function of grid refinement and as the value of

y+
max. Considering the γ −Reθ model, from both plots it is clear that the obtained value of CF is directly

dependent on the value of y+
max. The extrapolated value of CF for an infinitely fine grid (hi/h1 = 0) has

significant variations for grid sets 9 through 6. Additionally there is a stronger reduction of the numerical

error by decreasing the value of y+ rather than through grid refinement. This is evidenced by the fact that

the solution of the coarsest grid of grid set 1 is closer to the extrapolated solution at hi/h1 = 0 than the

finest grids of the majority of the other grid sets. Small differences for the entire grid set are only obtained

for sets 3 through to 1, for which y+
max < 0.45 for all grids. Furthermore, in general, there is always an

increase in CF as the grid is refined. Regarding the γ and AFT models, there is a clear influence of

y+
max on the predicted value of CF . However, there exists a larger influence of the grid refinement level

than that which was observed for the γ − Reθ model. In the case of the k − ω SST + γ formulation, this

is visible in the absence of monotonic behaviour as the size of the first near wall cell is decreased, and

the larger scatter in the data. With regards to the k − ω SST + AFT combination, whereas its behaviour

follows closely that described for the k−ω SST + γ−Reθ model, the coarsest grid of grid sets 1 through

6 appears to be off the trend of the remaining grids.
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Figure 5.30: Convergence of the friction coefficient of the plate obtained with the k − ω SST model
coupled with the γ −Reθ (top), γ (middle) and AFT (bottom) models, with grid refinement (left) and with
the maximum y+ value (right).
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Figure 5.31 presents a similar analysis but for the γ − Reθ and γ models combined with the KSKL

turbulence model. For these two cases there is no significant improvement in the decrease of y+
max, as all

nine grid sets exhibit a similar behaviour. This means that the dominant source of the discretization error

comes from the overall level of grid refinement. Moreover it can be seen that the KSKL + γ formulation

possesses the highest sensitivity to the level of grid refinement.
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Figure 5.31: Convergence of the friction coefficient of the plate obtained with the KSKL model coupled
with the γ −Reθ (top) and γ (bottom) models, with grid refinement (left) and with the maximum y+ value
(right).

The comparison of all cases shows that the γ transition model is more dependent on the grid refine-

ment level than the other two transition modelling options. In addition, for the same transition model,

while the k − ω SST model is clearly more sensitive to the size of the first near wall cell than the KSKL

model, the former does require finer grids. These trends match with those observed when no transition

model is used [31]. Furthermore, comparing the estimate of the exact solution obtained for each grid set

for the k − ω SST model, regardless of the transition model used, to that obtained in Ref. [31], shows

that y+
max has more influence when a transition model is used.

A local analysis of the effect of y+
max is displayed in Figure 5.32 at Rex = 5× 105 and Rex = 5× 106.
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The first location corresponds to laminar flow for all model combinations, while at the second one, the

flow is already fully turbulent. Only the γ − Reθ model is considered, as the trends exhibited with the γ

or AFT models are similar, as observed in the grid convergence of CF . Fig. 5.32 shows that only the

set with the largest value of y+
max shows any sort of influence in the laminar region, as the remaining

solutions are nearly coincident, although there is more scatter in the data when the KSKL model is used.

The small effect of y+ is to be expected, since in the laminar region the influence of the turbulence model

should be minimal. At the turbulent region, the convergence of Cf with grid refinement follows closely

that observed for the resistance coefficient of the plate. In the case of the k − ω SST model, there is

an increase in Cf as the size of the first near wall cell is decreased, whereas this effect is minimal if the

KSKL model is used.
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Figure 5.32: Convergence of the skin-friction coefficient with grid refinement at Rex = 5× 105 (top) and
at Rex = 6×106 (bottom) for the k−ω SST (left) and KSKL models combined with the γ−Reθ transition
model.

To conclude the flat-plate test case, the evolution of the skin friction coefficient in the vicinity of the

transition region, which is depicted in Figure 5.33, is now considered. Once again, only the γ − Reθ
model is illustrated, as well as the finest and coarsest grids of the sets with highest (set 9) and lowest
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(set 1) values of y+. For the k−ω SST + γ−Reθ formulation, the start of transition is mostly independent

of y+, as it is the same for both sets. This also hints at a negligible influence of the refinement in the

wall normal direction, since if the streamwise spacing is constant the predicted location for transition is

nearly the same. However, the evolution of Cf in the transition region is affected by y+. There is also

a slight shift of transition downstream due to grid refinement, which takes place for both sets, possibly

due to the refinement in the streamwise direction. The influence of the y+ value is clearly seen in the

turbulent region. Whereas there is an increase of the Cf level with grid refinement for set 9, there is no

change in Cf in the turbulent region as the grid is refined for set 1. In the case of the KSKL + γ − Reθ,

the influence of y+ is minimal, as solution obtained in the finest grid of set 9 coincides with that of the

finest grid of set 1. On the other hand, the shift of the transition location with grid refinement is more

significant than that observed for the k − ω SST turbulence model.
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Figure 5.33: Skin friction coefficient distribution in the vicinity of the transition region for the coarsest
and finest grids of set 9 and set 1 for the k − ω SST (left) and KSKL models combined with the γ −Reθ
transition model.

Attention is now given to the NLF1-0416 airfoil, for which the maximum and average y+ values ob-

tained for the k − ω SST combined with the γ − Reθ transition model are displayed in Figure 5.34. Due

to the criteria selected for the generation of each grid set, the changes between each set are larger for

grid sets 1 through 5 than for sets 5 through 9.

Figure 5.35 presents the convergence with grid refinement of Cd,f and Cd,p for the k − ω SST +

γ − Reθ formulation. The behaviour is similar to that observed in Figure 5.30 for the flat plate case, in

that that there is a reduction of the numerical error as y+ is decreased, which is more pronounced for

sets 5 through 1. This is again visible in the fact that the solution obtained at the coarsest grid of grid

set 1 is closer to the extrapolated solution at hi/h1 = 0 than the finest grid of all other grid sets. It is

also noted that this effect is not limited to the friction drag, but it also occurs for the pressure component.

However, for the latter there is also a stronger sensitivity to the grid refinement level, as the solution at

hi/h1 = 0 is different for each grid set. This shows that finer grids are required to estimate the exact

solution of Cd,p. Equivalent plots are given in Figures 5.36 and 5.37 for the k − ω SST model along

with the γ and AFT transition models. Similarly to the previous test case, the behaviour is the same
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Figure 5.34: Average (left) and maximum (right) y+ values obtained for the NLF1-0416 airfoil test case
for each grid using the k − ω SST turbulence model combined with the γ −Reθ transition model.

regardless of the transition model used. Although not shown, the evolution of Cl,p shows the same

evolution as Cd,p, which is only natural since both are obtained from the pressure distribution. Once

again, the γ model exhibits the highest dependency on the grid refinement level.
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Figure 5.35: Convergence of the friction (left) and pressure (right) components of the drag coefficient
obtained with the k − ω SST + γ −Reθ formulation with grid refinement.

Changing the underlying turbulence model from the k − ω SST to the KSKL model, the strong sen-

sitivity to y+ becomes much smaller and the predominant effect becomes the level of grid refinement.

This is shown in Figures 5.38 and 5.39. This trend matches exactly what was seen in the flat plat test

case. The higher change of Cd,f and Cd,p in the formulations based on the k − ω SST model is again

caused by the increasing level of Cf as y+
max is decreased. On the contrary, the KSKL model exhibits a

very small change in Cf in the turbulent region.
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Figure 5.36: Convergence of the friction (left) and pressure (right) components of the drag coefficient
obtained with the k − ω SST + γ formulation with grid refinement.
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Figure 5.37: Convergence of the friction (left) and pressure (right) components of the drag coefficient
obtained with the k − ω SST + AFT formulation with grid refinement.
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Figure 5.38: Convergence of the friction (left) and pressure (right) components of the drag coefficient
obtained with the KSKL + γ −Reθ formulation with grid refinement.
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Figure 5.39: Convergence of the friction (left) and pressure (right) components of the drag coefficient
obtained with the KSKL + γ formulation with grid refinement.
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5.5 Main Remarks

The results presented in the previous section show that numerical solutions with transition models

may behave significantly different from calculations that do not use a transition model. With respect to the

numerical robustness, it is clear that the introduction of a transition model introduces more obstacles.

There is a noisy iterative convergence, with significant residual oscillations. In many cases, residual

stagnation may also occur. This is mainly due to either more challenging flow conditions, such as

laminar flow separation, or due to the switches and limiters present in the formulation of each transition

model through the form of min and max functions. The former situation is a consequence of the flow

features that can be obtained through the use of transition models, while the latter can be addressed by

using an alternative formulation for some of the limiters. While this approach greatly improves iterative

convergence in the cases where residual stagnation took place, it is still a modification of the original

model and leads to slightly earlier transition in the cases where it was tested.

In what concerns the influence of the convective discretization scheme, it is shown that for the cases

studied, in calculations where a transition model is not used there is no noticeable difference in mean

flow quantities between using a first or second order scheme in the transport equations pertaining to

the turbulence model. This justifies the common approach undertaken of using first order schemes for

these equations, in order to ensure numerical stability. The situation is much different when a transition

model is used. In this case, the influence of the discretization of the convection term of the transport

equations associated with the transition model is dependent on the transition model used. For the γ and

AFT models, the influence is minimal, while for the γ−Reθ model there is a small change. However, the

influence of the scheme used in the transport equations of the turbulence model is far more significant,

for all the transition models used. This is caused in part by the strong influence of the freestream

values of the turbulence variables which undergo a steep decay that is generally underestimated due

to insufficient grid refinement in the freestream. Moreover, for the particular case of the γ model, very

large numerical errors caused by a wrong predicted location of transition can be obtained in coarse grids

when a first order upwind scheme is used in the equations of the turbulence model.

While the study on the convective discretization scheme showed opposite trends between transitional

flow calculations and those that rely solely on the turbulence model, the study on the effect of the

maximum y+ value showed a similar behaviour. In the test cases addressed, there is a clear influence

of the size of the first near wall cell when the k − ω SST model is used as the underlying turbulence.

This is verified in both friction and pressure forces, with the most noticeable change being the increase

of Cf in the turbulent flow region as y+ is decreased. In many cases, it appears to be more beneficial

to reduce the y+ value than to refine the grid in order to decrease the numerical error. There is no

noticeable effect from the transition model used, as the three alternatives tested for the k − ω SST

model displayed the same behaviour, although it is clear that the use of some transition models requires

finer grids. Furthermore, it appears that for the present level of grid refinement, the refinement level in

the streamwise direction is more important than in the wall normal direction, if y+
max is kept the same.

On the other hand, the calculations with the KSKL model acting as the underlying turbulence model
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show a minimal influence of the size of the first near wall cell, exactly matching the trends observed for

calculations that do not use any transition model [31]. However, the use of the KSKL model is more

affected by the grid refinement level.

Considering all of the above, it is apparent that the numerical side of transitional flow calculations is

as challenging, if not more, than calculations that rely solely on a turbulence model. The now important

effect of the convection discretization scheme matches unfavourably with the added iterative conver-

gence difficulties, which may force the use of first order schemes on complex geometries. There is also

a noteworthy aspect that the numerical error arises mostly from the turbulence model itself. Most trends

observed are common and independent of the transition model used, and the discretization scheme is

much more impactful on the equations of the turbulence model than of the transition model. However,

this is only the case when a transition model is present, indicating that its use can result on a differ-

ent behaviour of the underlying turbulence model than what is seen at high Reynolds numbers when

transition modelling is not required.
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Chapter 6

Results Part II: Modelling Aspects

6.1 Introduction

This chapter is dedicated to assessing modelling aspects that affect the prediction of the onset of

transition. Section 6.2 is concerned with the effect of the limiter employed in the production term of

the transport equation for the turbulent kinetic energy in the k − ω SST turbulence model. Two forms

of the limiter are studied, the Kato-Launder limiter and the one based on the dissipation term, with

three different values for the underlying constant. The effect of the inlet boundary conditions, which

is of extreme importance for the predicted location of the transition region by any transition model, is

considered is Section 6.3. The impact of the variation of the turbulence intensity or eddy-viscosity at the

inlet is studied and the connection is made to the decay of the turbulence quantities in the freestream.

A technique to control the decay without resorting to high values of the eddy-viscosity is also presented

and assessed. The conclusions from the two studies are summarized in Section 6.4.

6.2 Turbulence Production Limiter

6.2.1 Introduction

The turbulence production limiter is a feature that is studied solely for the k − ω SST model coupled

with the different transition models, since it is not present in the KSKL model. Two different forms of the

production limiter are studied. The first is based on the dissipation term, as expressed in Eq. 3.17 and

reproduced here in a general form

Pk = min
(
µtS

2, cDk

)
. (6.1)

Three values are used for the constant c:

• 10, which is the proposed value of the 2003 version of the k − ω SST model [123];

• 15, as used for the remaining computations presented in this work in order to avoid the activation

of the limiter outside of the stagnation region [126];
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• 20, which corresponds to the original version of the k − ω SST model from 1994 [125].

The second form employed for the limiter is the Kato-Launder formulation, in which Pk is computed as

Pk = µtSΩ. (6.2)

This approach uses the vorticity to prevent the excess of turbulence production in the stagnation region

without resorting to the dissipation term.

The two test cases addressed for this study are the flow over the flat plate and around the NACA

0012 airfoil at α = 0◦. The four variants of the production limiter are tested on the two geometries, for

the k − ω SST model without any transition model and combined with the γ −Reθ, γ and AFT transition

models. The inlet boundary conditions used for each case are given in Table 6.1.

Table 6.1: Angle of attack and inlet turbulence quantities for each test case for the calculations performed
for the study of the effect of turbulence production limiter.

Case Angle of Attack Tuin (µt/µ)in xF Ncrit TuLE
Flat Plate (OH Grid) - 5.37% 280 Not used 8 2.5%

NACA 0012 0◦ 3% 100 Not used 9 0.4%
NACA 0012 0◦ 3% 10 Not used 9 0.12%
NACA 0012 0◦ 3% 1 Not used 9 0.03%
NACA 0012 0◦ 3% 0.1 Not used 9 0.01%

6:1 Prolate Spheroid 5◦ 0.5% 250 Not used - 0.15%

6.2.2 Results

The solution obtained for the skin-friction coefficient for each combination of the transition models

with the k−ω SST model on the flat plate is given in Figure 6.1. The conclusions are the same regardless

of the transition model used, as there appears no be no sensitivity to the limiter used for the production

of k. However, the same does not hold true for the NACA 0012 calculations.

Figure 6.2 shows that, for the NACA 0012 case, the skin-friction coefficient obtained with the k − ω

SST model is slightly dependent on the turbulence production limiter used. The simulation that employs

the Kato-Launder formulation exhibits a larger value of Cf in the turbulent region, while also being the

last one to exhibit transition. On the other hand, the calculations with the dissipation based limiter

present the same level of Cf in the turbulent region. The solution for c = 20 displays transition earlier,

with a gradual shift downstream as the constant of the limiter is decreased. In spite of the differences,

the location of transition differs by less than 1% of the chord between all formulations, and no significant

influence is shown by the inlet eddy-viscosity.

The usage of the γ − Reθ transition model leads to a much stronger dependence on the turbulence

production limiter, which is also influenced by the inlet eddy-viscosity. This is illustrated in Figure 6.3.

Following the trend of the k − ω SST model, the Kato-Launder formulation leads the transition location

being predicted further downstream than the other alternatives. For the case where µt/µ = 100, the

transition locations predicted by the Kato-Launder formulation and the dissipation based approach using
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Figure 6.1: Skin-friction coefficient distribution for the flat plate test case using the k−ω SST model (top
left) combined with the AFT model (top right), the γ − Reθ model (bottom left) and the γ model (bottom
right) for different formulations of the turbulence production limiter.
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Figure 6.2: Skin-friction coefficient distribution for the NACA 0012 test case in the vicinity of the leading
edge, using the k−ω SST model without a transition model, with different alternatives for the turbulence
production limiter with inlet eddy-viscosity ratio of 100 (left) and 0.1 (right).
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c = 20 differ by more than 10% of the chord. Across the range tested for the inlet eddy-viscosity, the gap

between the solutions of each limiter reduces with the decrease of the eddy-viscosity. Considering only

the approach based on the dissipation term, the solution for c = 20 and c = 15 are very similar when

µt/µ = 100, with the transition location for c = 10 being predicted around 3% of the chord downstream

of the others. As the eddy-viscosity is decreased to 10, the differences between c = 10, c = 15 and

c = 20 increase. Considering that the decrease of the eddy-viscosity causes the production term to

decrease as well, this should lead to smaller differences between each solution and less impact from

the limiter. Since that is not the case, that means that the predominant effect comes from a decrease

of the dissipation term, making the limiter more strict and providing different solutions for each value of

c. As the inlet eddy-viscosity is lowered to 1 and 0.1, the solutions for each limiter become more similar,

and the difference in the location of transition also decreases.
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Figure 6.3: Skin-friction coefficient distribution for the NACA 0012 test case, using the k − ω SST +
γ − Reθ model with different alternatives for the turbulence production limiter with inlet eddy-viscosity
ratios of 100 and 10 (left) and 1 and 0.1 (right).

The γ model shows a smaller sensitivity to the production limiter employed. As seen in Figure 6.4,

the difference in the location of transition is around 8% of the chord for µt/µ = 100 and under 2% for

µt/µ = 10. As for the remaining two cases, the difference is negligible, as the skin-friction coefficient

distributions are visually coincident. Thus, the γ model shows a smaller sensitivity to the turbulence

production limiter employed, although there is still a significant effect when higher values are used for

the inlet eddy-viscosity. Even less sensitive is the AFT model, for which there is no apparent influence of

the formulation used for the turbulence production limiter. This is given in Figure 6.5, which shows that

for any given value of the inlet eddy-viscosity, the solution is virtually independent of the limiter used.

From the Cf distribution for the four different model combinations tested, it is evident that the γ−Reθ
model is the most affected by the turbulence production limiter. In the case of the k − ω SST model

without any transition model, the influence of the limiter on the location of transition is not very strong.

This is mostly due to transition occurring close to the leading edge of the airfoil, where the effects of

different limiters should be more evident. However, when a transition model is employed, transition does

not occur upstream of x/c = 0.35, which is a considerable distance away from the stagnation region,
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Figure 6.4: Skin-friction coefficient distribution for the NACA 0012 test case, using the k − ω SST + γ
model with different alternatives for the turbulence production limiter with inlet eddy-viscosity ratios of
100 and 10 (left) and 1 and 0.1 (right).
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Figure 6.5: Skin-friction coefficient distribution for the NACA 0012 test case, using the k− ω SST + AFT
model with different alternatives for the turbulence production limiter with inlet eddy-viscosity ratios of
100 and 10 (left) and 1 and 0.1 (right).
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such that the limiter should not be active.

To further clarify the issue, the γ − Reθ model with inlet eddy-viscosity set to 10 is considered, as it

was the case that exhibited the strongest dependence on the production limiter employed. Figure 6.6

presents R̂eθt at the leading edge of the airfoil for each formulation of the production limiter. The case

where c = 20 presents the lowest values for R̂eθt, which are responsible for the earlier transition. As

the constant of the dissipation based limiter is reduced, R̂eθt increases, presenting its maximum values

when the Kato-Launder formulation is used.

Figure 6.6: Evolution of R̃eθt obtained in the vicinity of the leading edge of the NACA 0012 airfoil when
using the k−ω SST + γ−Reθ model for different approaches of the turbulence production limiter: c = 20
(top left), c = 15 (top right), c = 10 (bottom left) and the Kato-Launder formulation (bottom right).

As shown in Figure 6.7, the behaviour of R̂eθt is a direct consequence of the evolution of the tur-

bulence kinetic energy, the variable to which the production limiter is applied. For c = 20, the highest

values of k in the freestream are obtained, which result in the lowest R̂eθt field seen in Figure 6.6. As

the constant of the limiter is decreased, making it more strict, the turbulence kinetic energy decreases

as well. However, the effect of production at the stagnation region only completely dissappears for the

Kato-Launder formulation. The overall influence of the limiter is not limited to the freestream, as it affects

the boundary layer as well, according to that displayed in Figure 6.8. Ultimately, the changes in R̂eθt due
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to the different growth of k are the cause of the differences in the location of transition.

Figure 6.7: Evolution of the turbulence kinetic energy obtained in the vicinity of the leading edge of the
NACA 0012 airfoil when using the k−ω SST + γ−Reθ model for different approaches of the turbulence
production limiter: c = 20 (top left), c = 15 (top right), c = 10 (bottom left) and the Kato-Launder
formulation (bottom right).

The skin-friction coefficient distribution on the surface of the prolate spheroid obtained with the k−ω

SST + γ−Reθ model is shown in Figure 6.9 for each different option of the turbulence production limiter.

The effect of the limiter employed is more noticeable on the leeward side, close to the symmetry plane.

For higher values of c, transition occurs further upstream, as a consequence of the increased production

in the stagnation region. At the symmetry plane, a difference of around 8% of the spheroid’s length is

observed for the location of the transition region between the solutions obtained using c = 20 and c = 10.

The solution with the Kato-Launder limiter exhibits transition even further downstream than the one with

c = 10. As the azimuthal angle is decreased, the differences between each alternative decrease. There

is no significant effect of the turbulence production limiter in the windward side of the spheroid, which

exhibits mostly laminar flow for all of the numerical solutions.

The trends observed for the prolate spheroid match those previously discussed for the NACA 0012

airfoil. The location of transition exhibits a strong sensitivity to the production limiter employed in the
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Figure 6.8: Boundary-layer profiles at x/c = 0.2 of R̃eθt (left) and k (right) in the upper surface of the
NACA 0012 airfoil for different approaches of the turbulence production limiter.

Figure 6.9: Skin-friction coefficient distribution on the surface of the prolate spheroid using the k−ω SST
model combined with the γ − Reθ model for different approaches of the turbulence production limiter:
c = 20 (top left), c = 15 (top right), c = 10 (bottom left) and the Kato-Launder formulation (bottom right).
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k − ω SST turbulence model both in two and three dimensional flows. This is especially true when

high values are used for the inlet eddy-viscosity, which is generally the case for simulations employing

transition models.

6.3 Influence of Inlet Boundary Conditions & Turbulence Decay

6.3.1 Introduction

Four test cases are considered for this study. These are the flat plate, the NACA 0012 airfoil and

the sickle wing. For the flat plate, the two different grid sets described in Chapter 4 are used. Table 6.2

presents the base conditions used with the Cartesian grids. A total of nine different sets of boundary

conditions is used. These are divided in groups of three, each group corresponding to one of the

designations used in the ERCOFTAC experiments, T3AM, T3A, and T3B. Within each group, three

variants of the boundary conditions are used, labeled BC1, BC2 and BC3. Table 6.2 only presents the

BC1 set, which is built to ensure that the decay of turbulence in the freestream obtained with the k − ω

SST model matches that of the experimental data. The conditions for the BC2 set are the same as of

the BC1 set, with the exception that xF is not used, and so the decay starts at the inlet of the domain.

Finally, the BC3 set is obtained from the BC2 conditions by reducing the eddy-viscosity ratio to 0.1.

Table 6.2: Base inlet boundary conditions used with the H grids for the flat plate test case.

Designation Tuin (µt/µ)in xF Ncrit TuLE
T3AM - BC1 1.0% 7.55 −0.05L 2.6 0.72%
T3A - BC1 5.37% 12.7 −0.05L - 1.2%
T3B - BC1 7.21% 99.2 −0.05L - 3.3%

The AFT transition model is only tested for the T3AM set of cases. The reason behind this choice is

related to the specification of Ncrit according to the value of the inlet turbulence intensity following Eq.

3.117. For the Tuin values used in the T3A and T3B cases, this would lead to a negative Ncrit which

has no physical meaning, and the mathematical model would be that of the k−ω SST turbulence model

with the modification to the F1 blending function.

The second and third test cases consist of the NACA 0012 airfoil at an angle of attack of 0◦ and the

6:1 prolate spheroid at α = 5◦. For the NACA 0012, the inlet turbulence intensity is kept constant at 3%

and xF is not used. The eddy-viscosity ratio is varied from 100 to 0.1 as described in Table 6.3. For the

prolate spheroid, two sets of boundary conditions are tested, given in Table 6.4.

Table 6.3: Inlet boundary conditions used for the NACA 0012 airfoil test case.

Tuin (µt/µ)in xF Ncrit TuLE
3% 100 Not used 9.0 0.4%
3% 10 Not used 9.0 0.12%
3% 1 Not used 9.0 0.03%
3% 0.1 Not used 9.0 0.01%
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Table 6.4: Inlet boundary conditions used for the prolate spheroid test case.

Designation Tuin (µt/µ)in xF Ncrit TuLE
Set A 0.1917% 5.2 −1.5L - 0.15%
Set B 0.5% 250 Not used - 0.15%

Each of the three initial test cases serves a different purpose. The flat plate test case represents an

ideal situation where enough information is known to specify the inlet conditions, through the matching

of the freestream decay with the experimental measurements. Furthermore, since there is no pressure

gradient, it is a good case to evaluate directly the influence of freestream turbulence. The NACA 0012

airfoil represents a case where no information is known and thus the conditions are chosen arbitrarily. In

both of these test cases, variations are performed which allow a qualitative assessment of the uncertainty

associated with the inlet boundary conditions for turbulence. Finally, the prolate spheroid test case

represents a common situation in which a single data point is known, usually the freestream turbulence

intensity at a given point in the domain. In fact, the two different conditions given in Table 6.4 have

both been built so that a turbulence intensity of 0.15% is obtained at the nose of the spheroid, a general

guideline used for this case [9]. Since this is the only information known, then the eddy-viscosity is not

restricted and neither is the decay of turbulence.

Upon addressing the three previously described test cases, a modification to the k − ω SST model

is introduced, allowing for the control of the freestream turbulence decay without resorting to the eddy-

viscosity at the inlet. This modification is then tested in the three geometries addressed before. It

does not solve the lack of information in the specification of the eddy-viscosity, but it allows for it to be

uncoupled from controlling the freestream turbulence decay.

6.3.2 Sensitivity studies

The skin-friction coefficient distribution obtained for the flat plate with the different boundary condi-

tions is illustrated in Figure 6.10. Calculations using only the underlying k−ω SST model are performed

as well, showing that even the turbulence model itself exhibits some slight changes in the position of

transition depending on the inlet conditions used. Unlike the other alternatives, the AFT model exhibits

only a slight sensitivity to the change in the eddy-viscosity or turbulence decay. This effect is due to the

reliance of the model on Ncrit, meaning that all freestream information is contained in a single quantity,

which in this case is related to the turbulence intensity and constant for the entire domain.

The γ − Reθ and γ models exhibit very similar trends. For each group of boundary conditions,

the set with the less intense decay (BC1) always predicts transition further upstream than the others,

which is to be expected. With the removal of xF (BC2 set), which causes the decay to start at the

inlet of the domain rather than close to the leading edge of the plate, the position of transition moves

downstream. The effect becomes stronger when the eddy-viscosity is lowered to 0.1 (BC3) in such a

way that regardless of the inlet turbulence intensity, the solution is nearly the same. This behaviour is

also displayed by the solutions of the k−ω SST model without any transition model. The same analysis

is shown in Figure 6.11 for the γ −Reθ and γ models combined with the KSKL model. The dependence
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on the freestream boundary conditions is similar to that exhibited in the previous case.
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Figure 6.10: Skin-friction coefficient distribution for the flat plate test case using the k − ω SST model
(top left) combined with the AFT model (top right), the γ − Reθ model (bottom left) and the γ model
(bottom right).

Another common aspect between the γ − Reθ and γ transition models is the overprediction of Cf in

the laminar region. As the freestream turbulence intensity and eddy-viscosity are increased, the Cf level

predicted in the laminar region becomes higher than that of the remaining conditions and of the Blasius

solution. This behaviour is undesirable and troublesome in the sense that eddy-viscosity ratios in the

order of 100 are generally required to maintain a reasonable decay of the freestream turbulence. This is

even more critical in practical applications in which the inlet is placed much further away from the body,

leading to a larger region for turbulence to decay. While for simple geometries the use of xF alleviates

this issue, its application in complex geometries may be troublesome.

The overprediction of Cf can be traced to a deviation of the velocity profile in the laminar boundary-

layer, as indicated in Figure 6.12. This is most noticeable in case T3B-BC1, and is a direct consequence

of the significant value of the eddy-viscosity in the upper part of the boundary-layer. Due to the high

value in the freestream, the eddy-viscosity does not decrease quickly enough in the upper part of the

boundary-layer causing a distortion of the velocity profile. The non-negligible value of the eddy-viscosity
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Figure 6.11: Skin-friction coefficient distribution for the flat plate test case using the KSKL model com-
bined with the γ −Reθ model (left) and the γ model (right).

can be seen as a reduction of the effective Reynolds number, which leads to the larger Cf value.
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Figure 6.12: Velocity (left) and eddy-viscosity (right) profiles for the flat plate test case obtained with the
k − ω SST + γ −Reθ model at Rex = 104 for varying inlet boundary conditions.

The evolution of the turbulence intensity and eddy-viscosity in the freestream is portrayed in Figure

6.13. Conditions BC3 show that if the eddy-viscosity is not high enough, then the level of turbulence in

the freestream quickly decays in such a way that the value specified at the inlet has a very small impact.

All three sets of conditions (T3AM, T3A and T3B) have a nearly coincident turbulence intensity evolution

along the freestream when the eddy-viscosity ratio is set to 0.1 (BC3 set) despite the significantly differ-

ent turbulence intensity set at the inlet. Furthermore, in the region upstream of the plate, Tu decreases

by over an order of magnitude, showing the difficulty in using low values for the eddy-viscosity. As this

quantity is increased, the decay becomes less steep, and differences in the evolution of the turbulence

intensity are now visible depending on the value set at the inlet. The use of xF simply keeps the tur-

bulence quantities fixed until the desired location, changing the location at which the decay starts but

not its magnitude. A much smaller decrease is exhibited by the eddy-viscosity in the freestream, never
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exceeding one order of magnitude even along the entire domain.
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Figure 6.13: Evolution of the turbulence intensity (left) and eddy-viscosity ratio (right) in the freestream
for the flat plate test case obtained when using the k − ω + γ − Reθ model for varying inlet boundary
conditions.

Figure 6.14 presents the skin-friction coefficient distribution obtained in the finest grid for the NACA

0012 airfoil. For the k−ω SST model without the use of a transition model, the selected value for the inlet

eddy-viscosity has a minimal influence. When the γ − Reθ model is used, the location of the transition

region ranges from x/c = 0.35 to x/c = 0.7 , which naturally has a significant impact on the friction

component of the drag coefficient. On the other hand, the γ model, which presented nearly the same

behavior as γ−Reθ in the flat plate test case, shows a much smaller influence of the inlet eddy-viscosity,

as the solutions for µt/µ = 10, µt/µ = 1 and µt/µ = 0.1 are nearly coincident. This indicates this model

to be more sensitive to the pressure gradient than the γ − Reθ model. Regarding the AFT model, the

impact of the high eddy-viscosity is felt on the evolution of Cf through the transition region rather than

on the onset of transition itself.

An illustration of the velocity and R̃eθt profiles obtained with the γ − Reθ model at x/c = 0.31 are

depicted in Figure 6.15. At this location, the solution for µt/µ = 100 exhibits a slight shift of the velocity

profile, signifying the pre-transitional boundary-layer and the corresponding increase of γ and k. The

remaining solutions have a nearly coincident velocity profile in the still laminar flow. The influence of

the eddy-viscosity is seen in the profiles of R̃eθt. Outside of the boundary layer, there is a difference on

the level of R̃eθt for each solution, with the simulation with the lowest value of the inlet eddy-viscosity

exhibiting the highest level of the R̃eθt on the freestream. A noteworthy aspect is the fact that for the

simulation with µt/µ = 100, the value of R̃eθt in the boundary layer is lower than the value on the

freestream. On the contrary, for the remaining solutions, R̃eθt is higher inside the boundary layer than

in the freestream. This does not match with the diffusion mechanism that is responsible for the value of

R̃eθt in the boundary layer, as there is no production in this region. It follows then that the higher value

of R̃eθt in the boundary layer is being convected from upstream.

Further investigation is done through Figure 6.16, which shows R̃eθt in the region around the leading

edge of the airfoil for the solutions obtained with µt/µ = 10 and µt/µ = 1. Downstream of the stagnation
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Figure 6.14: Skin-friction coefficient distribution for the NACA 0012 test case using the k−ω SST model
(top left) combined with the AFT model (top right), the γ − Reθ model (bottom left) and the γ model
(bottom right) for varying inlet boundary conditions.
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there is a significant increase of R̃eθt in the freestream, a consequence of the favourable pressure

gradient, which is diffused into the boundary layer. However, the solution for µt/µ = 1 exhibits a much

higher value of R̃eθt in the freestream, a consequence of the lower value of k and its production which

is proportional to µt. In spite of the lower eddy-viscosity, diffusion is strong enough that the high value

of R̃eθt spreads into the boundary layer in this region and propagates downstream as well. This leads

to the higher values of R̃eθt observed at x/c = 0.31.

Figure 6.16: Evolution of R̃eθt obtained with the k−ω SST + γ −Reθ model at the vicinity of the leading
edge of the NACA 0012 airfoil for an inlet eddy-viscosity ratio of 10 (left) and 1 (right).

In the absence of the transport equation for R̃eθt and the diffusion mechanism, it follows that the

influence of the eddy-viscosity ought to be lower. This matches the behaviour displayed by the γ model

previously. More details are given in Figure 6.17, again for x/c = 0.31. For this model, the velocity

profiles match visually regardless of the inlet value of the eddy-viscosity. Since there is no equation for

R̃eθt, the critical momentum thickness Reynolds number Reθc which is present in the source term of the

γ equation is considered instead. The solution for the highest inlet eddy-viscosity exhibits a slightly lower

value of Reθc inside the boundary layer than the remaining cases, thus justifying the earlier transition.

The remaining cases have a very similar profile of Reθc, which matches well with the fact that transition

is exhibited in nearly the same location for those simulations.

In the case of the AFT transition model, the evolution of ñ along the boundary layer is considered in

Figure 6.18 for the cases with highest and lowest inlet eddy-viscosity. While no appreciable differences

exist in the laminar region where ñ is increasing, the two solutions exhibit different behaviours once it

reaches the limiting value of 9. In the case of the calculation with µt/µ = 100, the decrease of ñ along

the boundary layer is faster than in the simulation with µt/µ = 0.1.

Figure 6.19 presents the lift and drag coefficients obtained with each model for three different angles

of attack, showing that the trends are the same regardless of the angle of attack considered. In all cases,

the drag coefficient is most influenced quantity. For the k−ω SST model, there is a smaller scatter of the

results, and the numerical uncertainty associated with the discretization error has a larger impact than

the specification of the turbulence eddy-viscosity at the inlet. In the calculations where transition models
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Figure 6.17: Boundary-layer profiles of the streamwise velocity (left) and Reθc (right) obtained with the
k − ω SST + γ model at x/c = 0.31 for varying inlet boundary conditions.

Figure 6.18: Evolution of ñ for the k−ω SST + AFT model in the upper surface of the NACA 0012 airfoil
for an inlet eddy-viscosity ratio of 100 (left) and 0.1 (right).
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are used there are larger differences in the drag coefficient due to different values for the inlet eddy-

viscosity. In the case of the γ − Reθ transition model, this effect is clearly dominant over the numerical

uncertainty.
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Figure 6.19: Drag polar for the NACA 0012 test case using the k−ω SST model (top left) combined with
the AFT model (top right), the γ−Reθ model (bottom left) and the γ model (bottom right) for varying inlet
boundary conditions.

The skin-friction coefficient on the surface of the spheroid obtained with the γ−Reθ model is displayed

in Figure 6.20. The two sets of conditions tested are designed in such a way that the turbulence intensity

at the nose of the spheroid is 0.15%. In spite of this, the transition front along the spheroid is not the same

for the two cases. Set A exhibits transition further upstream than that given by set B by approximately

5%. Furthermore, set A predicts the lowest level of turbulence intensity in the freestream around the

spheroid, as the eddy-viscosity is much lower for these conditions. This shows that a single freestream

turbulence intensity level is not enough to fully characterize the problem, as different combinations of

inlet conditions can match that requirement but provide different solutions. In addition, the control of the

decay via the eddy-viscosity does not always work as expected. In the present case, conditions A have a

lower level of the eddy-viscosity and consequently have the highest decay. Nevertheless, the calculation

using those conditions exhibited transition further upstream, due to the role of the eddy-viscosity in
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diffusing the value of Reθ from the freestream inside the boundary layer.

Figure 6.20: Skin friction coefficient on the surface of the prolate spheroid with the γ − Reθ transition
model using set of boundary conditions A (left) and B (right).

6.3.3 New approach for the control of turbulence decay

The role of the eddy-viscosity in the control of the turbulence decay arises as an undesirable feature.

The main reason for this is the extremely large value required to overcome the steep decay predicted

by the underlying turbulence model. This issue is further amplified by the large distances at which inlet

boundaries are placed on the computational domain. As an example, in the present case of the prolate

spheroid, an eddy-viscosity ratio of 250 was required in order to obtain the desired level of 0.15% at the

nose of the spheroid, without using any further measures to control the decay. As seen in the flat-plate

test case, the use of a high eddy-viscosity may also impact the laminar solution. The importance of

the eddy-viscosity in controlling the decay of turbulence makes it so that the transition models, with the

exception of the AFT model, appear to be more sensitive to the inlet eddy-viscosity rather than to the

inlet turbulence intensity. In addition the true role of the eddy-viscosity in the transition model becomes

more difficult to assess, since most of its influence is felt on the freestream turbulence level.

In order to avoid using excessively high values for the inlet eddy-viscosity, alternative approaches

are required. While the use of xF is helpful, as it acts as a reduction of the size of the region along

which turbulence will decay, its application is restricted to simple flows. In a wing-body configuration,

xF would have to be located upstream of the fuselage, meaning that a significant decay can take place

before the flow encounters the wings. A similar situation can take place in the case of a propeller, where

the presence of the hub prevents xF from being located close to the propeller’s blades. A more general

approach is the use of sustaining terms in the transport equations of the turbulence model, which impose

base values for the turbulence variables. This variant of the k − ω SST model is usually denominated

as SST-sust [142]. However, this alternative was not built with a focus on transitional flows, but rather

on establishing consistency on calculations that employ only a turbulence model. Furthermore, the use

of the additional terms is active everywhere in the flowfield, including in the boundary-layer. This means
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that the sustaining terms are not allowed to take significant values, as they could corrupt the solution of

the turbulence model, restricting their use to very low turbulence intensity environments.

An analysis of the equations for the decay of k and ω in the freestream (Eqs. 4.19 and 4.20) shows

that the decay of both variables is controlled by five distinct quantities. These are: the constants of the

dissipation term in the turbulence model (β and β∗), the Reynolds number of the flow, the distance from

the inlet, the inverse of the eddy-viscosity ratio at the inlet and turbulence kinetic energy at the inlet.

Naturally, the Reynolds number of the flow is not a viable option to control the decay. The eddy-viscosity

ratio at the inlet is the most common approach and the one for which a suitable alternative would be

desirable, while the distance to the inlet is already considered in the use of xF . Using the turbulent

kinetic energy to control its own decay does not solve the issue. This leaves the constants β and β∗ as

the only option.

Following this approach, β and β∗ are redefined as

β = (1− FFS)βo + FFSβFS

β∗ = (1− FFS)β∗o + FFSβ
∗
FS ,

(6.3)

where β0 and β∗0 are the original constants of the SST model while βFS and β∗FS are given by

βFS = λβo

β∗FS = λβ∗o

(6.4)

with 0 < λ < 1. The function FFS switches from 0 inside the boundary layer to 1 in the freestream, en-

suring that the new constants of the dissipation terms are only active in the freestream, so that the model

works as intended inside the boundary layer. The formulation of FFS is based on the dimensionless total

pressure loss ∆p∗t

∆p∗t =
p+ 1

2ρV
2 −

(
pmax + 1

2ρV
2
∞
)

1
2ρV

2
∞

. (6.5)

An auxiliary variable φ is built so that 0 < φ < 1:

φ = min

(
max

(
∆p∗t −∆min

∆max −∆min
, 0

)
, 1

)
, (6.6)

where ∆min and ∆max represent limiting values for ∆p∗t . For ∆p∗t < ∆min, which represents a pressure

loss more intense than ∆min, φ is set to 0, which enforces the original constants of the k−ω SST model.

If ∆p∗t > ∆max, which signifies a small pressure loss, then φ is set to 1 and the modified constants are

used. The blending function FFS is given by

FFS = −2φ3 + 3φ2, (6.7)

which ensures a smooth behaviour of the blending function in the vicinity of FFS = 0 and FFS = 1.

Considering the application of this technique, the decay equations for k and ω in the freestream are
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now written as

k∗ =
k∗in(

1 + λβ (x∗ − x∗in) k∗in

(
µ
µt

)
in
Re
) β∗
β

, (6.8)

and

ω∗ =
ω∗in

1 + λβ (x∗ − x∗in) k∗in

(
µ
µt

)
in
Re

. (6.9)

It is worth noting that this approach does not solve the lack of knowledge regarding how to set the

decay. In fact, it adds a new degree of freedom to the problem through the introduction of λ. However,

this approach allows for the control of the decay to be uncoupled from the inlet eddy-viscosity. If λ = 1,

the original k−ω SST model is recovered. For λ < 1, the decay becomes less intense. Keeping all other

quantities constant, the decay of turbulence becomes determined by the quantity λ µ
µt

. This means that

the decay obtained when using λ = 1 and µt
µ = 10 is the same as that obtained if λ = 0.1 and µt

µ = 1.

Thus, using this approach, it is possible to mitigate the use of high values for the inlet eddy-viscosity.

This approach is tested for the flow over the flat plate, for two different values of the inlet turbulence

intensity, I = 1.0%, which corresponds to the T3AM case, and I = 5.5% for the T3A conditions. The

different combinations of the inlet eddy-viscosity and λ are given in Table 6.5. The skin-friction coefficient

and the evolution of the freestream turbulence intensity for the T3AM case are displayed in Figure 6.21.

The results show that the control of the decay of turbulence via the modified constants leads to the

same location of transition as the calculation where the control of the decay is done through the inlet

eddy-viscosity. The evolution of the freestream turbulence intensity is also the same for the two cases.

Table 6.5: Inlet boundary conditions used for the OH grids for the flat plate test case to assess the
performance of the approach to control the decay of turbulence.

Case Tuin (µt/µ)in λ xF TuLE
T3AM 1% 25 1 Not used 0.64%
T3AM 1% 0.1 1/25 = 0.004 Not used 0.64%
T3A 5.37% 280 1 Not used 2.46%
T3A 5.37% 1.0 1/280 Not used 2.46%
T3A 5.37% 0.1 0.1/280 Not used 2.46%

Similar plots are given in Figure 6.22 for the runs corresponding to the T3A conditions. This case

is more challenging, as a consequence of the higher freestream turbulence intensity, which causes a

stronger decay and thus requires a higher inlet eddy-viscosity. The evolution of the freestream turbulence

intensity is the same for all the three cases, and the location of transition is also very similar. In addition,

the use of λ to control the decay avoids the overprediction of Cf in the laminar region. However, the

level of Cf in the turbulent region is slightly affected, becoming dependent on the value of λ. While this

seems to indicate that this approach cannot be used for high values of the turbulence intensity, it is worth

noting that this approach is modifying the constants of the dissipation terms in the freestream by at least

a factor of around 280. This also means that in the region where the constants return to the original

values of the k−ω SST model, which corresponds to a thin area at the edge of the boundary layer, there

is a change in these constants by the same factor. This sudden change, especially if not done outside
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Figure 6.21: Skin friction coefficient distribution (left) and turbulence intensity evolution on the freestream
(right) on the flat plate test case for the T3AM conditions using the k − ω SST + γ −Reθ model.

of the boundary layer, can be responsible by the changes in the turbulent region.
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Figure 6.22: Skin friction coefficient distribution (left) and turbulence intensity evolution on the freestream
(right) on the flat plate test case for the T3A conditions using the k − ω SST + γ −Reθ model.

Further testing of this alternative to control the decay of turbulence is performed on the NACA 0012

airfoil at α = 0◦. The selected combinations of the boundary conditions at the inlet for turbulence and

the value of λ are given in Table 6.5. The base combinations with λ = 1 correspond to those analysed

previously and given in Table 6.3. The results for the skin friction coefficient are shown in Figure 6.23,

where only the first three conditions of Table 6.3. The calculation using the modified constants with

µt/µ = 10 and λ = 0.1 does not predict the same location for transition as the solution with µt/µ = 100

and λ = 1, even though the freestream decay of the two conditions is the same. Instead, transition is

predicted much further upstream. A comparison of the turbulence kinetic energy profiles at x/c = 0.05,

where the flow is still laminar for all conditions is shown as well. The condition that corresponds to the

control of turbulence via λ exhibits the largest value of k both inside and outside of the boundary layer.

Given that the capability of the modified constants to reproduce the freestream decay has been es-

121



Table 6.6: Inlet boundary conditions used for the NACA 0012 test case to assess the performance of the
approach to control the decay of turbulence.

Tuin (µt/µ)in λ xF TuLE
3% 100 1 Not used 0.4%
3% 10 1 Not used 0.12%
3% 10 0.1 Not used 0.4%
3% 1 1 Not used 0.03%
3% 1 0.01 Not used 0.4%
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Figure 6.23: Skin friction coefficient distribution (left) and turbulence kinetic energy profile in the bound-
ary layer (right) on the NACA 0012 test case using the k − ω SST + γ − Reθ model for the dissipation
based turbulence production limiter with c = 15.
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tablished in the previous case, it follows that the increased level of turbulence kinetic energy must follow

from another cause other than the dissipation term. The culprit lies in the production of k associated with

the stagnation region, as shown in Figure 6.24. A much stronger increase of k outside of the boundary

layer is observed in the case where µt/µ = 10 and λ = 0.1 than in the case with µt/µ = 100 and λ = 1.

Noting that the production term has the same form in the two simulations, and that it is proportional to µt,

the cause for the higher value of k for µt/µ = 10 lies in the production limiter. In the case of µt/µ = 100,

even though the eddy-viscosity is higher, the smaller dissipation term forces the limiter to be active. On

the contrary, for the case with µt/µ = 10 and λ = 0.1, despite the lower eddy-viscosity, the dissipation

term as seen in the production limiter uses the original constant of the model, which results in a higher

value for the limiter.

Figure 6.24: Evolution of the turbulence kinetic energy in the vicinity of the leading edge of the NACA
0012 airfoil for the k − ω SST + γ − Reθ model with an inlet eddy-viscosity ratio of 100 and λ = 1 (left)
and inlet eddy-viscosity ratio of 10 and λ = 0.1 (right) for the dissipation based turbulence production
limiter with c = 15.

One apparent solution to this issue would be to employ the modified dissipation constant in the tur-

bulence production limiter as well. However that does not solve the problem, since while that guarantees

that the dissipation as seen in the limiter would be the same for the two cases, the eddy-viscosity would

not be the same, thus still originating a different growth of k in the stagnation region. Thus, it would also

be required to modify the production term itself so that its magnitude would match that of the case where

the turbulence decay is controlled solely by the eddy-viscosity.

A simpler option is to change the limiter used on the production term. Instead of being dependent on

the dissipation term, the Kato-Launder formulation is applied instead. This guarantees that differences

in the dissipation term do not affect the behaviour of k close to the stagnation region. Furthermore, it

should also prevent the difference in the value of the eddy-viscosity to have any meaningful influence

over the production term and consequently over the evolution of the turbulence kinetic energy. The

conditions given on Table 6.6 are run again for the k− ω SST model using the Kato-Launder production

limiter and the γ −Reθ model.

A comparison of the k field in the vicinity of the stagnation region is shown in Figure 6.25. With the
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use of the Kato-Launder formulation, there is no significant growth of the turbulence kinetic energy in

the stagnation region. Furthermore, there are no differences due to the use of different values for the

eddy-viscosity at the inlet as observed in the previous case. As a consequence, the transition location

is no longer affected by the stagnation region as shown in Figure 6.26. It becomes solely dependent on

the decay of freestream turbulence and is not influenced by the eddy-viscosity.

Figure 6.25: Evolution of the turbulence kinetic energy in the vicinity of the leading edge of the NACA
0012 airfoil for the k − ω SST + γ − Reθ model with an inlet eddy-viscosity ratio of 100 and λ = 1 (left)
and inlet eddy-viscosity ratio of 10 and λ = 0.1 (right) for the Kato-Launder limiter.
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Figure 6.26: Skin friction coefficient distribution (left) and turbulence kinetic energy profile in the bound-
ary layer (right) on the NACA 0012 test case using the k−ω SST + γ −Reθ model for the Kato-Launder
limiter.

In order to further test the new approach to control the decay of turbulence in the freestream, addi-

tional calculations are performed for the prolate spheroid at an angle of attack of 5◦. The combination

of inlet boundary conditions and the value of the λ for each simulation are given in Table 6.7. The cal-

culation with (µt/µ)in = 250 and λ = 1 acts as the reference solution. The modification is the decay is

employed for two calculations with (µt/µ)in = 25 and (µt/µ)in = 2.5, guaranteeing the same turbulence

decay than that of the reference solution. A simulation with (µt/µ)in = 25 without any decay modification
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is also performed, to ensure that changing the eddy-viscosity in this range produces a significant effect

if it fully controls the decay. The Kato-Launder formulation is employed for the turbulence production

limiter, based upon the behaviour observed for the NACA 0012 airfoil.

Table 6.7: Inlet boundary conditions used for the 6:1 prolate spheroid test case to assess the perfor-
mance of the approach to control the decay of turbulence.

Tuin (µt/µ)in λ xF TuLE
0.5% 250 1 Not used 0.15%
0.5% 25 1 Not used 0.05%
0.5% 25 0.1 Not used 0.15%
0.5% 2.5 0.01 Not used 0.15%

Figure 6.27 presents the skin-friction coefficient distribution on the surface of the prolate spheroid for

each of conditions previously discussed. As a first point of note, reducing the eddy-viscosity ratio from

250 to 25 has a significant effect on the location of transition, in particular close to the symmetry plane on

the leeward side. However, upon activating the modification to the decay of freestream turbulence, the

overall evolution of Cf is nearly identical between each case that displays the same decay. This confirms

that the developed approach is a suitable alternative to control the decay of turbulence, allowing the use

of lower values for the inlet eddy-viscosity, fully applicable in three-dimensional flows.

6.4 Main Remarks

The results from this chapter illustrate and explore the difficulties and challenges in the usage of

transition models. The first analyzed aspect, the influence of the limiter used in the production term of

the transport equation for the turbulence kinetic energy is mostly irrelevant for simulations in which a

transition model is not used. On the other hand, depending on the transition model used, its importance

can range from negligible to significant, as a difference of over 10% of the chord was observed on

the transition location. The effect of the turbulence production limiter is also amplified by the high inlet

eddy-viscosity which is not required for calculations using only a turbulence model, but is typically used

in calculations with transition models. Out of the three models studied, the γ − Reθ model presented

the highest sensitivity to the turbulence production limiter, a consequence of the second variable of the

model and the importance of the freestream evolution of the turbulence kinetic energy. The influence

of the limiter was much smaller on the γ model, which agrees with the formulation of the model that

possesses a different mechanism in its sensitization to the freestream conditions, and negligible for the

AFT model.

Also addressed was the overall influence of each transition model to the inlet boundary conditions for

turbulence. An appropriate setting of these is crucial for the correct prediction of transition. Unfortunately,

there is very rarely enough information to fully characterize the evolution of freestream turbulence. In

many cases, only a single data point is given, usually in the form of the value of the turbulence intensity

at a given point in the domain. This is insufficient to completely describe turbulence in the numerical

calculation, for it is unknown how it will decay from that point on. The example for the prolate spheroid
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Figure 6.27: Skin-friction coefficient distribution on the surface of the prolate spheroid using the k − ω
SST model combined with the γ−Reθ model with an inlet eddy viscosity ratio of 250 and λ = 1 (top left),
an inlet eddy-viscosity ratio of 25 and λ = 1 (top right), an inlet eddy-viscosity ratio of 25 and λ = 0.1
(bottom left) and an inlet eddy-viscosity ratio of 2.5 and λ = 0.01 (bottom right).
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illustrates that different solutions can be obtained while still matching the constraint of a single turbulence

intensity level.

Each model also reacts differently to the inlet quantities. In the case of the AFT model, where

most of the information regarding the level of freestream turbulence is contained in a single variable,

Ncrit, changing the inlet boundary conditions for the turbulence variables has a small impact as long

as Ncrit remains constant. If Ncrit is related to the inlet turbulence intensity, then naturally this variable

acquires a significant influence over the location of transition. Meanwhile, the γ −Reθ model is strongly

dependent on the freestream evolution of k and its decay. Therefore, the model is very sensitive to

both the inlet turbulence intensity as well as the inlet eddy-viscosity, since the latter controls the decay

in the freestream of the former. This constitutes the reason why extremely high eddy-viscosity ratios

are generally used for transitional flow calculations, as a way to ensure a small decay of the turbulence

kinetic energy. Finally, the γ model is also sensitive to the inlet boundary conditions for turbulence, as

its formulation is similar to that of the γ − Reθ. However, the absence of the second transport equation

makes this model less dependent on the freestream evolution of k than its predecessor.

An alternative to control the decay of turbulence in the freestream is presented and explored. This

approach is built on the total pressure in order to identify the freestream, and modifies the constants of

the dissipation terms of the turbulence transport equations. Thus, the usage of high eddy-viscosity ratios

at the inlet is avoided and replaced by a single parameter that only changes the turbulence model in the

freestream. The testing of this methodology showed that a reduction of two orders of magnitude of the

eddy-viscosity is possible without compromising the solution. However, due to the effect of turbulence

production at the stagnation region, the use of the Kato-Launder formulation is required for the predicted

location of transition to be only dependent on the freestream decay.
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Chapter 7

Results Part III: Comparison with

Experimental Data

7.1 Introduction

This Chapter presents a comparison between the numerical solution and experimental data for sev-

eral test cases, some of which have not been addressed so far. Two-dimensional flows are addressed in

Section 7.2 and three-dimensional cases are discussed in Section 7.3. The conditions tested for each

geometry are given in Table 7.1. It should be mentioned that this does not correspond to a formal val-

idation exercise for any of the models. A proper validation exercise would entail full characterization of

both numerical and experimental uncertainty, with the latter not being given in the reports associated

with either test case. Furthermore, information to characterize the turbulence quantities would also be

required and the available measurements are generally insufficient to set the two turbulence variables in

the numerical calculations.

Table 7.1: Angle of attack and inlet turbulence quantities for each test case for the comparison with
experimental data study.

Geometry Angle of Attack Tuin (µt/µ)in xF Ncrit TuLE
NACA 0015 5◦, 10◦ 0.5% 0.0018 Not used - 0.01%
Eppler 387 1◦, 7◦ 1% 0.003 Not used 2.6 0.01%

S809 0◦, 1◦, 3◦, 5◦, 6◦, 7◦ 1% 1.65 Not used - 0.06%
NLF1-0416 −2◦, 0◦, 2◦, 4◦, 6◦ 1% 1.65 Not used - 0.04%
SD 7003 4◦ 0.1% 0.1 Not used - 0.09%

6:1 Prolate Spheroid 5◦, 10◦, 15◦ 0.1917% 5.2 −1.5L 6.6 0.15%
Sickle Wing −2.6◦ 0.066% 1.04 Not used - 0.04%
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7.2 Two-dimensional Flows

7.2.1 NACA 0015

The first case to be considered is that of the flow around the NACA 0015 airfoil. The skin-friction

coefficient distribution is presented in Figure 7.1 for α = 5◦ and in Figure 7.2 for α = 10◦. This case

is the only two-dimensional test case for which experimental data for Cf is available [146], obtained

through Temperature Sensitive Paint coating. The Cf line for the experimental data was obtained from

averaging along the spanwise direction, and the uncertainty exhibited corresponds to the standard de-

viation of the average. Comparing the results obtained with the γ − Reθ and the γ model shows slight

differences starting at the separation point, and extending through the separated flow region. However,

the end of transition is nearly coincident between the two numerical solutions, and so is the turbulent

region. When compared to the measurements, the numerical solutions underpredict the skin-friction

coefficient throughout most of the airfoil’s surface, a difference that is not justified by either experimental

or numerical uncertainty. Nevertheless, good agreement is observed in the obtained location and extent

of the transition region. These trends are observed at both angles of attack.
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Figure 7.1: Skin friction coefficient distribution on the upper surface of the NACA 0015 airfoil at α = 5◦

with the γ −Reθ and γ models combined with the k − ω SST turbulence model without uncertainty (left)
and with uncertainty (right).

This test case is also a good example to illustrate the importance of considering the experimental

uncertainty, making it clear that it can be substantial. For this particular flow, it is even larger than the

numerical uncertainty, which only assumes non-negligible levels during the transition region, a conse-

quence of the steep gradients of Cf in this region. Another noteworthy aspect is the increase of Cf

displayed by the experimental data for α = 5◦, starting at around x/c = 0.7. This effect is not reproduced

by the numerical simulations. Since there is no favourable pressure gradient that would justify this in-

crease, this casts some doubt on the validity of the experimental data in this region. This is confirmed

in Ref. [146], as in this region it is not possible to maintain the the heat flux uniform along the surface,

therefore affecting the estimation of Cf . For the higher angle of attack (α = 10◦, Figure 7.2), although
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Figure 7.2: Skin friction coefficient distribution on the upper surface of the NACA 0015 airfoil at α = 10◦

with the γ −Reθ and γ models combined with the k − ω SST turbulence model without uncertainty (left)
and with uncertainty (right).

there is no increase of Cf , a change in its slope is visible at x/c = 0.7.

7.2.2 S809

Figure 7.3 presents the skin friction coefficient on the surface of the S809 airfoil for an angle of attack

of 0◦. Results are given for the k − ω SST and KSKL models combined with the γ −Reθ and γ models.

For this angle of attack only, results without any transition model are given as well. All transition models

predict transition to take place at around x/c = 0.5 on the upper surface and at x/c = 0.55 on the

lower surface with small differences in the transition region. On the turbulent regime, the solutions with

transition model do not match the fully turbulent solution of the same turbulence model. Interestingly

enough, in the lower surface there is also a strong match in the turbulent region of all calculations done

with a transition model included, regardless of the underlying turbulence model.
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Figure 7.3: Skin friction coefficient distribution on the upper (left) and lower (right) surfaces of the S809
airfoil at α = 0◦ with different turbulence and transition model combinations.
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Transition is caused by the adverse pressure gradient that begins near x/c = 0.4 in the upper surface

and downstream of x/c = 0.45 in the lower surface, as illustrated in Figure 7.4. This also leads to

a small region of separated flow in both surfaces. Overall the numerical results match well with the

experimental measurements in the upper and lower surfaces. The predicted location of transition is

visible in the abrupt pressure recovery that leads to a sharp increase of Cp, a feature that is not captured

by simulations without a transition model. The details on the pressure recovery vary between each

model combination, but the visual comparison suggests that a good agreement between the numerical

solution and the experimental data is obtained. The lower surface always exhibits a laminar separation

bubble which moves slightly downstream as the angle of attack is increased and as such the ensuing

results focus on the upper surface.
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Figure 7.4: Pressure coefficient distribution on the surface of the S809 airfoil at α = 0◦ with different
turbulence and transition model combinations. Entire view (left), close-up of the transition region (right).
Experimental data from [152].

The observed trends remain as the angle of attack is increased up until α = 5◦. At these conditions,

displayed in Figure 7.5, the KSKL model combined with the γ − Reθ transition model exhibits transition

much further upstream than the remaining formulations in the upper surface. However, at this angle

of attack, a laminar separation bubble was still observed in the experiments. As a result of the earlier

transition at around x/c = 0.3, the KSKL + γ − Reθ formulation exhibits a small increase of Cp at this

location and a smoother evolution around x/c = 0.5 where the laminar separation bubble ought to be

located. The prediction of the remaining models still matches well with the experimental data.

As the angle of attack is increased to 6◦, only the formulations that rely on the γ transition model

still exhibit a laminar separation bubble at x/c = 0.5. This is depicted in Figure 7.6. At this angle of

attack, the laminar separation bubble was no longer detected in the experiments, which agrees to both

the k − ω SST and KSKL models combined with the γ − Reθ model. Even though experimental data

is not shown in this case, it is clear that the predictions given by the combinations with the γ transition

model are incorrect, since these still exhibit laminar flow separation. However, given the findings of

Section 6.3, these comparisons could be significantly different if the boundary conditions at the inlet for

the turbulence variables were slightly different than those used. Finally, at α = 7◦, the k − ω SST + γ
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Figure 7.5: Skin friction coefficient (left) and pressure coefficient (right) distributions on the surface of
the S809 airfoil at α = 5◦ with different turbulence and transition model combinations. Experimental data
from [152].

formulation still exhibits a small region of separated flow at x/c = 0.5 in anticipation of transition. The

location of transition predicted by the remaining model combinations ranges from around x/c = 0.1 to

x/c = 0.4. The pressure coefficient distribution, given in Figure 7.7 still shows strong agreement with

the experimental data, including in the region around x/c = 0.5, with the exception of the k − ω SST + γ

model combination.
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Figure 7.6: Skin friction coefficient distribution on the upper surface of the S809 airfoil at α = 6◦ (left)
and α = 7◦ (right) with different turbulence and transition model combinations.

The drag polar obtained for the previously discussed angles of attack is shown in Figure 7.8. For

the lower angles of attack there is an underprediction of the drag coefficient and overprediction of the lift

coefficient which are not covered by the numerical uncertainty. Furthermore, the solution of all models is

fairly coincident. As the angle of attack is increased up to α = 3◦, the difference in the drag coefficients

based on the experimental data and the numerical solutions decreases. However, for α ≤ 5◦, as the

transition mechanism is no longer the laminar separation bubble for all models, significant differences
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Figure 7.7: Pressure coefficient distribution on the surface of the S809 airfoil at α = 7◦ with different
turbulence and transition model combinations. Entire view (left), close-up of the transition region (right).
Experimental data from [152].

show up on the prediction of the drag coefficient. For α = 5◦ the KSKL + γ − Reθ model exhibits

a much higher drag coefficient which clearly exceeds the experimental data, a natural consequence

of the increased friction drag due to transition taking place much further upstream than the remaining

formulations. For the higher angles of attack, there is a clear underprediction of drag by most models,

with the solution that best matches the experiments being the one provided by the KSKL + γ − Reθ

formulation. As the laminar separation bubble becomes absent in the solution for each model due to

transition taking place further upstream, significant differences in the drag coefficient are observed.
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Figure 7.8: Lift coefficient as a function of the angle of attack (left) and drag polar (right) for the S809
airfoil at varying angle of attack with each transition model and experimental data from [152].

Figure 7.9 presents a comparison of the experimental and numerical locations of transition obtained

with each model in the upper and lower surface. For the numerical calculations, the uncertainty in the

estimation of the start and end of transition are shown as well in the form of the error bars. These

are determined by obtaining the locations of the start and end of transition for each grid, and applying
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the procedure described in Section 4.3. For each surface, the first symbol corresponds to the start of

transition and the second to the end of transition as obtained by the Cf distribution. All models exhibit a

good agreement in the lower surface, a consequence of the presence of the laminar separation bubble

at all angles of attack. Meanwhile for the upper surface the trends are similar to those discussed for the

drag coefficient. At the lower angles of attack there is a strong agreement between all models and the

experimental data. As α is increased and each model no longer predicts the laminar separation bubble

as the triggering mechanism for transition, much different predictions for the location of transition are

obtained.
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Figure 7.9: Start and end locations of transition on the upper and lower surface of the S809 airfoil for
varying angle of attack obtained with the k−ω SST + γ−Reθ model (top left), k−ω SST + γ model (top
right), KSKL + γ −Reθ model (bottom left) and KSKL + γ model (bottom right).

7.2.3 NLF1-0416

The next geometry to be considered is the NLF1-0416 airfoil. The Cf distribution for α = −2◦ is

presented in Figure 7.10. On the upper surface, there is moderate agreement between the predicted

location of transition for most models, with the k − ω SST + γ − Reθ model predicting it slighty further

downstream than the rest. As a consequence, and due to the sudden drop in Cf as transition starts, this
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is the only formulation that exhibits laminar flow separation. On the lower surface the transition location

shows a larger scatter, from x/c = 0.35 to x/c = 0.52, depending on the model used. The solutions for

the γ model are much more similar than those for the γ−Reθ model, considering the different underlying

turbulence models.
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Figure 7.10: Skin friction coefficient distribution on the upper (left) and lower (right) surfaces of the
NLF1-0416 airfoil at α = −2◦ with different turbulence and transition model combinations.

The pressure coefficient distribution along the surface of the airfoil is plotted in Figure 7.11 for the

lowest and highest angles of attack tested. At α = −2◦ there is an underprediction of Cp in the lower

surface. The agreement is better on the upper surface, although there is also a slight underprediction

close to the suction peak. The k−ω SST + γ−Reθ model exhibits the pressure recovery associated with

flow transition, mismatching with the experimental data. For α = 6◦ the distribution of Cp in the lower

surface now matches well with the experimental data. On the other hand, all models now overpredict

the pressure coefficient in the region around the suction peak. As the flow solution for each model

undergoes transition, the agreement with the experimental data improves.

Figure 7.12 presents the drag polar of the NLF1-0416 airfoil. For all angles of attack there is an

overprediction of the lift coefficient which becomes more noticeable as the angle of attack is increased.

At the lower angles the k − ω SST model exhibits the lowest prediction for Cd, as a consequence of the

delayed transition, resulting in an underprediction of the drag coefficient when compared to the other

models. The predictions of these are similar throughout the tested range of α.

The comparison between the experimental and numerical prediction for the location of the transition

region is given in Figure 7.13. Experimental results for the upper surface are only available for α =

−2◦, 0◦ and 2◦. For the lower surface, the only angle of attack out of those tested for which experimental

data is not given is −2◦. The k − ω SST model combined with the γ − Reθ model predicts transition

further downstream than the experiments in both the lower and upper surfaces for the lower angles of

attack. As the angle of attack increases, the experimental position of transition on the lower surface

moves downstream. This effect is barely reproduced in the numerical solutions and leads to the better

agreement in the lower surface for the higher angles. When the k − ω SST model is used with the γ
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Figure 7.11: Pressure coefficient distribution on the surface of the NLF1-0416 airfoil at α = −2◦ (left)
and α = 6◦ (right) with different turbulence and transition model combinations. Experimental data from
[147].
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Figure 7.12: Lift coefficient as a function of the angle of attack (left) and drag polar (right) for the NLF1-
0416 airfoil at varying angle of attack with each transition model and experimental data from [147].
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transition model the trends are similar, although the late prediction of transition is not as strong as before.

The solutions using the KSKL model follow the same trends, but exhibit a larger numerical uncertainty.
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Figure 7.13: Start and end locations of transition on the upper and lower surface of the NLF1-0416 for
varying angle of attack obtained with the k−ω SST + γ−Reθ model (top left), k−ω SST + γ model (top
right), KSKL + γ −Reθ model (bottom left) and KSKL + γ model (bottom right).

7.2.4 Eppler 387

The results for the Eppler 387 airfoil are given in Figures 7.14 and 7.15 for α = 1◦ and α = 7◦

respectively. For both angles of attack, the use of a transition model results on laminar flow on the entire

lower surface. On the contrary, if no transition model is used, transition takes place at around x/c = 0.2

for α = 1◦ and x/c = 0.4 for α = 7◦. As there is no flow separation in the lower surface, the pressure

distribution is not affected by the use of a transition model. On the upper surface at α = 1◦, all transition

models predict a laminar separation bubble whose length exceeds 20% of the chord. Slight differences

are observed in the Cf distribution starting from the separation point depending on the transition model

used. Differences are observed in the pressure coefficient as well until the flow has transitioned and

becomes fully turbulent. The solution of the k − ω SST model without a transition model is unable to

predict the laminar separation bubble and results in a much different and incorrect pressure distribution.
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For α = 7◦, there is no laminar separation in the experiments, which is also seen in the absence of the

corresponding pressure plateau. However both the γ − Reθ and γ models still predict flow separation,

with a shorter bubble length than for the lower angle of attack. The solution of the AFT model predicts

transition at around x/c = 0.2, preventing laminar flow separation. As a consequence, the k − ω SST +

AFT formulation presents the best match with the experimental pressure coefficient distribution.
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Figure 7.14: Skin-friction (left) and pressure (right) coefficient distributions on the surface of the Eppler
387 airfoil at α = 1◦ for different transition models and experimental data from [149] and [148].
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Figure 7.15: Skin-friction (left) and pressure (right) coefficient distributions on the surface of the Eppler
387 airfoil at α = 7◦ for different transition models and experimental data from [149] and [148].

The lift and drag coefficients are displayed in Figure 7.16. Good agreement is obtained between the

numerical solutions and the experimental data for the lift coefficient, regardless of the transition model

used. However, a significant improvement is seen in the drag coefficient when a transition model is

used, as the solution without it greatly overestimates the drag coefficient. This is naturally related to the

laminar flow prediction on the lower surface and the laminar separation bubble on the upper surface.

Different measurements exist for this airfoil at this Reynolds number, which results in some scatter and

serves as an example of possible experimental uncertainty. At α = 1◦ the γ − Reθ model predicts a
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higher drag coefficient than the remaining models, a direct consequence of the pressure distribution,

since it was the model that predicted transition the furthest downstream. At α = 7◦ there seems to be

a slight overprediction of the drag coefficient on the simulations with a transition model. The highest

drag coefficient is that obtained with the AFT model, due to the higher friction component caused by the

earlier transition. Even though the pressure distribution of the solutions obtained with the AFT model

and the k−ω SST model are visually similar, the larger extent of turbulent flow in both surfaces leads to

a much higher drag coefficient for the latter model.
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Figure 7.16: Lift coefficient as a function of the angle of attack (left) and drag polar (right) for the Eppler
387 airfoil at varying angle of attack with each transition model and experimental data [35, 148–151].

Figure 7.17 presents the locations at which the flow undergoes separation, reattachment, and the

start and end of transition. Good agreement for the flow separation and reattachment locations at α = 1◦

is observed. Although numerical uncertainty is very small due to the much higher level of grid refinement

used for this geometry, there is no information regarding the experimental uncertainty, making it difficult

to judge if any one model is better than the others. As mentioned before, no flow separation was detected

for α = 7◦, unlike the predictions of the γ − Reθ and γ models. With regards to the transition location,

the experimental location is always contained within the interval defined by the start and end positions

of the numerical solutions.

7.3 Three-dimensional Flows

7.3.1 SD7003 wing

The SD7003 wing comprises the first three dimensional test case. For this geometry, only the for-

mulations using the k − ω SST model coupled with the γ −Reθ and γ transition models are considered.

Figure 7.18 presents the Cf and Cp distributions on the surface of the wing for the two formulations.

Regardless of the transition model used, the flow on the lower surface is always laminar. On the upper

surface, both models predict a large region of separated laminar flow that starts at around x/c = 0.18.
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Figure 7.17: Location for flow separation and reattachment (left) and transition (right) for the Eppler 387
airfoil at varying angle of attack for different transition models and experimental data from [149].

The flow only reattaches close to x/c = 0.6 for the γ − Reθ model and at around x/c = 0.7 for the γ

model.

x/c

C
f 

 1
03

0 0.2 0.4 0.6 0.8 1
-10

-5

0

5

10

15

20

x/c

C
f 

 1
03

0 0.2 0.4 0.6 0.8 1
-10

-5

0

5

10

15

20

k-  SST + -Re
k-  SST + 

Lower
Surface

Upper 
Surface

x/c

-C
p

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

2

x/c

-C
p

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

2

k-  SST + -Re
k-  SST + 

Lower
Surface

Upper 
Surface

Figure 7.18: Skin-friction (left) and pressure (right) coefficient distributions on the surface of the SD7003
wing at the symmetry plane for the k − ω SST + γ − Reθ and k − ω SST + γ models for the slipwall
boundary condition case.

Under the setup with the boundary at the root of the wing being treated with a slipwall boundary

conditions, the flow is nearly two-dimensional. as the velocity component and gradients in the spanwise

direction are negligible. Upon introducing a no-slip wall boundary condition at the plane where the root

of the wing is located, the flow changes significantly, due to the boundary layer that now develops along

the wall. If a transition model is not used, the wall boundary layer is turbulent starting from the inlet, and

the flow on the wing also quickly becomes turbulent. As a consequence, no flow separation is observed,

and the only challenging feature becomes the interaction between the boundary layer developing on the

wall and on the wing. Figure 7.19 illustrates the skin-friction coefficient on the surface of the wing and at

the symmetry plane obtained in a calculation with the k − ω SST model.
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Figure 7.19: Skin-friction coefficient on the upper surface of the wing (left) and on the symmetry plane
(right) at the surface of the SD7003 wing for the k−ω SST model for the no-slip wall boundary condition
case.

The inclusion of a transition model is much more challenging. In this case, the boundary layer devel-

oping in the tunnel wall is still laminar, and the interaction with the laminar separation of the boundary

layer at the wing causes difficulties for the statistically steady approach. As such, for this test case and

using only one grid, unsteady simulations were performed. The computations were performed in two

stages. In the first stage, the unconverged steady solution was used as the initial condition, and a total

of 100 dimensionless time units were computed. For this stage, the iterative convergence criteria was

set so that at each time step, the L∞ norm of the normalised residuals was under 10−4. For the second

stage, the simulation time corresponded to 10 dimensionless time units, and the iterative criteria was

decreased to 10−6. The final solution of the first stage was used as the initial solution of the second

stage.

Figure 7.20 presents the evolution of the friction and pressure components of the drag coefficient for

the second run. Significant oscilations are observed in both quantities, regardless of the transition model

used. More importantly, even though there is a clear high frequency oscillation which corresponds to

vortex shedding on the upper surface, a periodic behaviour is not observed, i.e, there is more than one

frequency with significant amplitude.

The skin-friction coefficient over the upper surface of the wing is plotted in Figure 7.21. The uncon-

verged solution of the steady simulations with the no-slip wall boundary condition is presented as well.

As mentioned, the cases with the freeslip boundary condition result in a quasi-2d solution, with a higher

extent of separated flow being predicted by the γ model. This trend is observed as well close to the

symmetry plane for the steady solution of the case with the no-slip wall boundary condition. In fact, the

solution at the symmetry plane is very similar to that of the case with the freeslip boundary condition,

showing that this region is not significantly affected by the boundary layer of the tunnel wall. Close to the

root of the wing significant flow separation can be detected, which prevents the steady calculation from

converging. The time-averaged unsteady solution shows some differences to the steady solution across

the entire surface of the wing, a consequence from the difficulty in properly establishing the averaging
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Figure 7.20: Time evolution of the friction (left) and pressure (right) components of the drag coefficient
for the unsteady calculations of the SD7003 wing using the k − ω SST + γ − Reθ and k − ω SST + γ
models for the no-slip wall boundary condition case.

time given the irregular evolution of the flow. Most notably, the extent of flow separation close to the root

wing is smaller than in the steady solution.

A depiction of the time-averaged velocity field at the symmetry plane is given in Figure 7.22. Ex-

perimental data from [161] and the numerical solutions of the γ − Reθ and γ models are presented.

Uncertainty is not given for either case, for it was not provided in the experimental data, and only a

single grid was used in the numerical simulations, preventing its estimation through the procedure de-

scribed in Section 4.3. Regardless of the transition model used, no significant differences are visible

between the steady solution of the simulation with the no-slip boundary condition and the simulation

using the freeslip boundary condition. On the contrary, the time averaged solution of the unsteady cal-

culation exhibits a larger separation bubble than the steady simulations, with this effect being stronger

for the γ − Reθ model. All numerical calculations exhibit a laminar separation bubble that is consider-

ably larger than that from the experimental data. Furthermore, the velocity increase at the suction peak

predicted by each transition model is smaller than that observed for the experimental data. Despite the

differences observed in the velocity field, significant improvement of the solution is obtained when either

the γ −Reθ or γ transition models are used when compared to the solution of the k − ω SST model.

7.3.2 6:1 prolate spheroid

The second three-dimensional case consists of the 6:1 prolate spheroid. Figure 7.23 presents the

skin friction coefficient on the unrolled surface of the prolate spheroid for α = 5◦. x/L represents the axial

position along the surface, while the azimuthal angle Φ is considered as 0◦ at the symmetry plane on the

pressure side of the spheroid and Φ = 180◦ at the symmetry plane on the suction side. Experimental

data as well as the results obtained with different turbulence and transition modelling approaches are

shown. Not the entire surface of the spheroid is shown, as the areas corresponding to the extremities

of the spheroid are blanked out. This is done in order to achieve consistency between the experiments
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Figure 7.21: Skin-friction coefficient distribution on the upper surface of the SD7003 wing. Slipwall
boundary condition using the γ−Reθ (top left) and the γ (top right) model. Steady solution of the no-slip
wall boundary condition using the γ − Reθ (middle left) and the γ (middle right) model. Time-averaged
unsteady solution of the no-lip wall boundary condition using the γ−Reθ (bottom left) and the γ (bottom
right) model.
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Figure 7.22: Velocity field around the SD7003 wing at the symmetry plane. First row: experimental data
(left) and wall boundary condition using only the k−ω SST model (right). Second row: slipwall boundary
condition using the γ − Reθ (left) and the γ (right) model. Third row: steady solution of the no-slip wall
boundary condition using the γ−Reθ (left) and the γ (right) model. Fourth row: time-averaged unsteady
solution of the no-slip wall boundary condition using the γ −Reθ (left) and the γ (right) model.
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and the numerical solutions, as there was no measured data on those regions.

The experimental data shows a well defined transition front at around x/L = 0.5 for most azimuthal

angles from the suction side up to the pressure side, with transition corresponding to the region with

the sharp increase of Cf . None of the five modelling approaches presented is able to reproduce the

trends exhibited by the experiments. On the symmetry plane at the suction side (Φ = 180◦) all models

predict transition further upstream than the measured data. Furthermore, the Cf increase associated

with flow transition is also much faster in the numerical calculations than in the experiments. In the range

Φ = 180◦ to Φ = 150◦, as the azimuthal angle is increased, the solutions using the k−ω SST turbulence

model and the KSKL + γ formulations predict a slight shift upstream of the transition front. For the

AFT transition model the transition region always moves downstream with decreasing azimuthal angle,

whereas the KSKL + γ − Reθ combination, displays a small region where the transition region remains

at the same streamwise location, and then starts to decrease. All models are consistent in the transition

region moving downstream for Φ < 150◦ as the azimuthal angle is lowered, resulting in transition being

predicted much further downstream for most of the surface of the spheroid than the experimental data,

resulting in large modelling errors on the pressure side of the spheroid. The solution that displays the

least worst agreement with the experiments is the one obtained with the KSKL + γ − Reθ combination.

At the lower azimuthal angles there is still a significant portion of the flow that is turbulent, with a strong

reduction of that region when the transition model is changed to the γ model. The solutions obtained

using the other formulations do not exhibit transition in the displayed area of the surface of the spheroid.

As a matter of fact, none of the attempted formulations is suitable for this case as all lack the capability

to model crossflow transition. To overcome this obstacle the crossflow extension described in Appendix

A is implemented on the γ − Reθ and γ models. The results for the new model combinations using the

crossflow extension are presented in Figure 7.24. The usage of the crossflow extension is seen in the

range 60◦ < Φ < 150◦, where it leads to the transition region moving upstream. This results in a better

agreement with the experimental distribution than the previous cases where the crossflow extension

was not used. Nonetheless for Φ < 30◦, there is no effect from the crossflow extension, and transition

again takes place much further upstream than that seen in the experimental data. The new modelling

approach results in a smoother distribution when used with the γ model than with the γ − Reθ model.

This is attributed to the differences in the coupling with each model, since the extension itself is the

same. When used with the same transition model but with different underlying turbulence models, the

crossflow extension is triggered at different streamwise locations. This is visible for the γ − Reθ model,

where the effect of the crossflow extension is seen at x/c = 0.45 at Φ = 90◦. At the same azimuthal

angle and transition model but using the KSKL turbulence model instead, the crossflow extension leads

to transition at around x/c = 0.3.

For the simulations at the angle of attack of α = 10◦ the KSKL turbulence model and the AFT

transition model are no longer employed. Figure 7.25 presents the experimental skin-friction coefficient

distribution, as well as the one obtained from the numerical solutions using the k − ω SST turbulence

model with the γ −Reθ and γ models. With the increase in the angle of attack the transition front moves

upstream throughout the entire surface of the spheroid, being located at around x/L = 0.25 in the range
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Figure 7.23: Skin friction coefficient on the surface of the prolate spheroid at α = 5◦. Experimental data
[154](top left), k − ω SST + AFT model (top right), k − ω SST + γ − Reθ model (middle left), k − ω SST
+ γ model (middle right), KSKL + γ −Reθ model (bottom left) and KSKL + γ model (bottom right).
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Figure 7.24: Skin friction coefficient on the surface of the prolate spheroid at α = 5◦ with the usage of
the crossflow extension. k − ω SST + γ − Reθ model (top left), k − ω SST + γ model (top right right),
KSKL + γ −Reθ model (bottom left) and KSKL + γ model (bottom right).
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75◦ < Φ < 150◦. For Φ < 75◦, the transition front reaches around x/L = 0.6 at Φ = 0◦, which is similar

to the measurements at α = 5◦. Once again, the simulations where the crossflow extension is not

employed show large discrepancies with the experimental data. The k − ω SST + γ − Reθ formulation

now predicts transition to start downstream of the experimental data for Φ = 180◦. Once again, with

the decrease of the azimuthal angle the transition front moves upstream, close to around x/L = 0.25 at

Φ = 150◦, where it is in good agreement with the experimental data. However, further decreasing the

azimuthal angle down to Φ = 90◦ leads to the transition front to significantly shift downstream, such that

for lower azimuthal angles the flow is almost entirely laminar. Using the γ model instead of the γ − Reθ
model simply leads to an overall shift upstream of the transition front, which is more pronounced close

to Φ = 180◦.

With the use of the crossflow extension, the solutions of both transition models change significantly.

At the symmetry plane on the suction side, there is now a much closer agreement between the two

models. Once again, the transition front moves upstream as the azimuthal angle is decreased in the

range 150◦ < Φ < 180◦. However, past Φ = 150◦, the transition front keeps shifting upstream, a direct

consequence of the crossflow correlations. This effect is also seen in the experimental data, although it

is much less pronounced. The region of turbulent flow extends all the way down to Φ = 60◦, where the

transition front now moves downstream, such that in the region Φ < 45◦ the flow is laminar, unlike what

is observed in the experimental distribution. Nonetheless, the use of the crossflow extension does result

in some improvement and better agreement with the experimental data.

The results for the angle of attack of 15◦ are depicted in Figure 7.26. Only calculations using the

crossflow extension are performed. The kink in the transition front that is observed on the experimental

data at Φ = 130◦ corresponds to the location where the transition mechanism changes, as crossflow

transition is dominant for Φ < 130◦. This feature is also observed in the simulations, although the kink

is located at a higher azimuthal angle, and slightly upstream. In the region Φ > 130◦ the agreement

between the numerical solutions and the measured data is good, although at Φ = 180◦, transition is

predicted downstream of the experimental location. As a consequence of the earlier transition in the

simulations, the turbulent region with lower Cf is larger in the simulations. In the range 60◦ < Φ <

120◦ the numerical transition front matches well with that from the experiments. However, for the lower

azimuthal angles, the flow is laminar, while the experiments show a steady shift downstream of transition,

stopping at x/L = 0.8 at Φ = 0◦.

It is clear that the use of the crossflow extension improves the agreement between the numerical

solution and the experimental measurements, and is nearly indispensable for this case. However, the

nearly entirely laminar flow at the pressure side of the spheroid across all angles of attack is still an

incorrect feature that highlights some deficiencies in this formulation. In particular, there is no interac-

tion between crossflow and the other modes of transition in the crossflow extension used, which might

contribute to the discrepancies observed in the pressure side of the spheroid.
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Figure 7.25: Skin friction coefficient on the surface of the prolate spheroid at α = 10◦. Experimental data
[154](top), k − ω SST + γ −Reθ model (top left), k − ω SST + γ model (top right), k − ω SST + γ −Reθ
model with crossflow extension (bottom left) and k − ω SST + γ model with crossflow extension (bottom
right).
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Figure 7.26: Skin friction coefficient on the surface of the prolate spheroid at α = 15◦. Experimental data
[154](top), k − ω SST + γ − Reθ model with crossflow extension (bottom left) and k − ω SST + γ model
with crossflow extension (bottom right).
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7.3.3 Sickle wing

The final test case addressed is the flow around the sickle wing, starting with the unstructured grid

set. The skin friction coefficient distribution obtained with the k − ω SST model is shown in Figure 7.27,

as well as the transition line obtained from the experimental data. In both the upper and lower surfaces

of the wing, the k−ω SST model predicts transition at the leading edge of the wing, resulting in turbulent

flow across the entire surface. Naturally, the model is incapable of matching the experimental transition

front. In additional, several oscillations are observed in the skin friction coefficient, particularly in the

upper surface. This is a consequence of the unstructured grid topology used for this geometry and the

hanging nodes that occur in the grid close to the boundary layer.

Figure 7.27: Skin friction coefficient on the upper (left) and lower (right) surface of the sickle wing for the
k − ω SST model on the Hexpress grid set and experimental transition line [163, 164].

The next formulation to be considered is the k − ω SST + γ combination. Figure 7.28 presents the

results obtained for every other grid for this model. The solution for this model combination exhibits

large changes as the grid is refined. In the coarsest grid, the upper surface exhibits early transition in

the section corresponding to Ψ = 30◦, evidenced by the rapid increase of Cf . Moving away from the root

of the wing, the transition front moves downstream, and now most of the surface experiences laminar

flow. This trend is exactly the opposite of that displayed by the experimental data, where a large portion

of laminar flow is only seen in the first section, and the transition front moves upstream as one moves

towards the tip of the wing. The prediction on the lower surface is better. On the first section transition

is predicted slightly upstream of the experimental data, and slightly downstream in the final section.

However, as the grid is refined, there is a drastic change in both surfaces. For the intermediate grid,

transition now takes place soon after the leading edge, across the entire span of the wing, in both the

lower and upper surfaces. This heavily contrasts to the late transition predicted in the coarsest grid on

the upper surface, being similar to calculation without a transition model. Further refining the grid causes

additional changes in the transition front. In the upper surface there appears to be what resembles a

turbulent spot in the first section, while the outboard part of the wing in immersed in turbulent flow. This
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solution is nearly the opposite of the one obtained in the coarsest grid with regards to the regions of the

flow that are laminar or turbulent. Meanwhile, a steady shift of transition downstream is obtained in the

lower surface.

These results show the deficiencies of the γ model highlighted in Section 5.3. In this particular case,

the combination of the first order upwind scheme and the unstructured grid topology leads to drastic

changes with grid refinement, which compromise the numerical accuracy of the simulations. For this

reason, the γ model is no longer considered for this case.

Figure 7.29 presents the solution for the k − ω SST + γ − Reθ formulation. In the upper surface,

there is a good agreement between the numerical results and the transition line obtained from the

experiments at the first section, where natural transition takes place. Moving towards the tip of the wing,

the solution of the k − ω SST + γ − Reθ model shows no significant change in the position of transition

along the chordwise direction, whereas the experimental transition line moves upstream due to crossflow

transition. In a similar way to the prolate spheroid test case, this shows the inability of the γ−Reθ model

to account for crossflow transition without the use of additional correlations. In the lower surface there

is a better agreement between the calculations and the experimental data throughout the entire span of

the wing, although the differences get larger close to the tip of the wing with transition being predicted

downstream of the experimental location.

The next logical step is to employ the crossflow extension, which is done for the γ −Reθ model. The

results are given in Figure 7.30. The inclusion of the crossflow effects leads to remarkable agreement

between the numerical solution and the experimental data throughout most of the entire upper surface,

with the exception of the first section. In this region, which was correctly predicted in the absence

of the crossflow extension due to it occurring via the natural transition mechanism, transition in the

numerical results is now located upstream of the experimental transition line. On the lower surface, the

numerical transition front is now located upstream of the experimental one, whereas it was downstream

of it when no crossflow extension was used. Nevertheless, for the first and third regions of the wing,

good agreement between the calculations and the measurements is obtained.

To conclude the discussion of this test case with the unstructured grids, Figure 7.31 presents a

comparison of the pressure coefficient obtained with each model with available experimental data at

three different sections of the wing. These correspond to cuts at the middle of each section at constant

sweep angle. In the first section there is a strong waviness of the numerical pressure coefficient, a

consequence of the unstructured grid used. This behaviour is consistent across the solutions of the

three models displayed. Nonetheless, in the first section there is a good agreement with experimental

data, irrespective of which formulation is employed. In the remaining two sections, the best agreement to

the experimental results is given by the k− ω SST model solution without a transition model, and by the

solution where the crossflow correlations were used. The Cp distribution obtained with the γ−Reθ model

without the crossflow extension seems to underpredict the pressure coefficient in the lower surface in

the range 0.6 < x/c < 0.8 and to overpredict it for x/c > 0.7 in the upper surface. The latter effect is

likely caused by the late transition predicted in the upper surface.

The usage of the multiblock structured grids generated with GridPro is now considered. The skin-
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Figure 7.28: Skin friction coefficient on the surface of the sickle wing for the k − ω SST + γ model on
the Hexpress grid set and experimental transition line [163, 164]. Upper surface of the coarsest grid (top
left), lower surface of the coarsest grid (top right), upper surface of an intermediate grid (middle left),
lower surface of an intermediate grid (middle right), upper surface of the finest grid (bottom left), lower
surface of the finest grid (bottom right).
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Figure 7.29: Skin friction coefficient on the upper (left) and lower (right) surfaces of the sickle wing for
the k − ω SST + γ −Reθ model on the Hexpress grid set and experimental transition line [163, 164].

Figure 7.30: Skin friction coefficient on the upper (left) and lower (right) surfaces of the sickle wing for
the k−ω SST + γ−Reθ model using the crossflow extension on the Hexpress grid set and experimental
transition line [163, 164].

155



x/c

-C
p

0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

k-  SST 
k-  SST + -Re
k-  SST + -Re  + Crossflow
Experimental

x/c

-C
p

0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

k-  SST 
k-  SST + -Re
k-  SST + -Re  + Crossflow
Experimental

x/c

-C
p

0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

k-  SST 
k-  SST + -Re
k-  SST + -Re  + Crossflow
Experimental

Figure 7.31: Pressure coefficient distribution on the surface of the prolate spheroid obtained with the
different modelling approaches on the Hexpress grid set and experimental data [163, 164] at the middle
of the first section (top), middle of the second section (bottom left) and middle of the third section (bottom
right).
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friction coefficient distribution obtained with the k − ω SST turbulence model is exhibited in Figure 7.32

for the finest grid. Due to the grid quality, Cf displays a smooth evolution, unlike what was observed for

the unstructured grids. Aside from that, the behaviour of the skin-friction coefficient is similar throughout

the surface of the wing, exhibiting transition at the leading edge for both the upper and lower surfaces,

since no transition model is employed.

Figure 7.32: Skin-friction coefficient distribution on the upper (left) and lower (right) surface of the sickle
wing for the k − ω SST model on the GridPro grid set and experimental transition line [163, 164].

Following the same order as presented for the Hexpress grid set, Figure 7.33 presents the Cf dis-

tribution on the surface of the sickle wing obtained with the k − ω + γ model for the coarsest and finest

grids of the set. The effect of grid refinement introduces some slight changes in Cf , particularly at the

tip of the wing on the lower surface. This case contrasts heavily with solutions obtained for the Hexpress

grid set, in which grid refinement led to extreme changes in the location of transition. This highlights the

sensitivity of the γ transition model to the quality of grid used.

The convergence of the γ model for this grid set allows for its solution to be compared against the

experimental data. In the upper surface, the numerical solution exhibits transition slightly upstream than

the experimental measurement at the first constant sweep section. Moving along the span of the wing

towards the tip, there is only a small shift downstream of the transition location predicted by the γ model,

missing the onset of transition due to crossflow transition that takes place much closer to the leading

edge. On the lower surface, the γ model initially predicts transition upstream of the measured data. At

the second constant sweep section, the agreement with experimental data is better, but as the sweep

angle is again increased, the numerical solution now exhibits transition downstream of the experimental

line.

Since the k − ω SST + γ model exhibits a proper behaviour with grid refinement, simulations using

the crossflow extension for this model were also performed for the GridPro grid set. The solution for

the finest grid is exhibited in Figure 7.34. In the upper surface, there is a good agreement between

the numerical solution and the experimental data for the higher sweep angles. However, the crossflow

extension causes transition to occur much further upstream at the first section, which exhibited better
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Figure 7.33: Skin-friction coefficient distribution on the upper (left) and lower (right) surface of the sickle
wing for the k − ω SST + γ model on the GridPro grid set and experimental transition line [163, 164].
Coarsest grid (top) and finest grid (bottom).
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agreement for the previous case where the crossflow extension was not used. A similar effect takes

place in the lower surface, where the crossflow extension causes transition much further upstream for

most of the surface of the wing. However, the section with the highest sweep angle now exhibits very

good agreement with the experimental data.

Figure 7.34: Skin-friction coefficient distribution on the upper (left) and lower (right) surface of the sickle
wing for the k−ω SST + γ model using the crossflow extension on the GridPro grid set and experimental
transition line [163, 164].

Figure 7.35 presents the results obtained with the k − ω SST + γ − Reθ model. Across the entire

surface, the numerical solution is similar to that which was obtained for the Hexpress grid set, although

it is much smoother. Again, since no crossflow extension is present, the location of transition is mostly

insensitive to the increase of the sweep angle, and only displays good agreement with the experimental

measurements at the first section, which has the lowest sweep angle.

Figure 7.35: Skin-friction coefficient distribution on the upper (left) and lower (right) surface of the sickle
wing for the k−ω SST + γ−Reθ model on the GridPro grid set and experimental transition line [163, 164].

The solution obtained for the k−ω SST + γ−Reθ model with the inclusion of the crossflow extension
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is illustrated in Figure 7.36. Excellent agreement is observed in the upper surface with the exception

of the section with the lowest sweep angle, in which the crossflow extension causes transition much

further upstream than the measured data. On the lower surface, only the section with the highest sweep

angle matches well with the experimental data, with the crossflow extension leading to earlier transition

in the remaining sections of the wing. This trend is similar to that observed for the γ model, although

the shift of transition upstream due to the crossflow extension is not as strong for the γ − Reθ model. A

comparison of these results with the solutions obtained for the Hexpress grid set shows that there are

some differences at the regions where the sweep angle changes between each section and at the tip of

the wing. At the section with the lowest sweep angle, the solution obtained in the GridPro grid set also

exhibits transition slightly upstream than the solution obtained for the Hexpress grid set.

Figure 7.36: Skin-friction coefficient distribution on the upper (left) and lower (right) surface of the sickle
wing for the k − ω SST + γ − Reθ model using the crossflow extension on the GridPro grid set and
experimental transition line [163, 164].

7.4 Main Remarks

The comparison with experimental data shows that when transition is caused by laminar separation

or is located in regions of strong adverse pressure gradient, different modelling approaches lead to

very similar solutions, which tend to agree well with experimental measurements. However, outside of

these conditions, the prediction of the location of the transition region varies significantly, depending not

only on the transition model employed, but on the underlying turbulence model as well. Nonetheless,

the usage of transition models, even on the absence of sufficient information to uniquely set the inlet

boundary conditions for turbulence, generally leads to an improvement of the force predictions, namely

on the drag coefficient. For more complex three dimensional flows, the deficiencies of the models and

the inability to handle crossflow transition become evident. The latter can be solved through the use of

extensions to the models to account for crossflow, which result in much more accurate predictions for

the location of transition, albeit some discrepancies are still observed.
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The present comparison does not fit the requirements of a formal validation exercise for several

reasons. On one hand, the experimental data available does not have details on the uncertainty of the

measurements. On the other hand, the lack of detailed information for setting the turbulence quantities at

the inlet do not fully determine the boundary conditions for the problem. Furthermore, the computational

domain in most cases does not match the experimental setup, introducing additional discrepancies.

While the latter could have been easily solved, the remaining issues are due to lack of information from

the experiments, a common trend among most of the available data.
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Chapter 8

Conclusions

This work presents a detailed assessment of RANS compatible formulations to account for laminar-

to-turbulent transition modelling. This is an area where considerable attention has been devoted in the

recent years by both researchers and industry alike, with new models being proposed, studied, and

applied. These new transition models act as a complement to existing turbulence modelling approaches

that are unable to accurately predict the onset of transition to turbulent flow, resulting in largely inaccurate

solutions for flows at moderate Reynolds numbers. Thus, with the maturity of transition models so fades

the general idea that RANS modelling is not appropriate for low Reynolds numbers flows, where there

are non-negligible portions of both laminar and turbulent flow.

The first step consisted of an introduction to the physics of transition, where the classical division of

different transition mechanisms is presented. Focus is given on the transition mechanisms that are ad-

dressed throughout this work such as natural transition, bypass transition, separation-induced transition

and crossflow transition. A review of existing methods to predict transition is also performed, covering

the high fidelity methodologies such as Direct Numerical Simulation and Large Eddy Simulation, histor-

ical approaches based on linear stability theory such as the eN method, empirical correlations for the

prediction of the onset of transition and transport equation based models, which are the main subject of

study. The three transition models used are the γ − Reθ model, the γ model and the AFT model. They

are chosen based on their widespread usage and due to covering different modelling perspectives. The

coupling to different underlying turbulence models is assessed as well. The kT − kL−ω model was also

included in preliminary studies. However, its inability to accurately predict separation induced transition

and weaker numerical robustness led to the choice of leaving it out of this work.

The selected combinations of turbulence and transition models are tested for a wide range of flows.

The simplest one is the flow over a flat plate, typically used to calibrate the transition models, and a prime

candidate to assess the sensitivity to the inlet boundary conditions for turbulence, due to the absence

of a pressure gradient and surface curvature. The flow around several airfoils is considered as well.

These are the NACA 0012, NACA 0015, Eppler 387, S809 and NLF1-0416. Besides covering different

transition mechanisms, the availability of experimental data at moderate Reynolds numbers for most of

these geometries makes them good test cases to evaluate transition models. The three dimensional
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test cases consist of the SD 7003 wing, a very low Reynolds number case (Rec = 4 × 106), the 6:1

prolate spheroid, and the sickle wing, with the last two being excellent geometries to address crossflow

transition.

Rather than focusing on each geometry in particular, emphasis is given to the features of the tran-

sition models that are being studied. These are divided into two different categories. The first is that

of numerical aspects, which affect the accuracy of the solution with regards to the exact solution of the

mathematical model being solved. Within this group, three factors are considered: numerical robust-

ness, the discretization scheme used in the convection term of the transport equations associated with

the turbulence and transition models and the size of the first near wall cell and corresponding y+ value.

The second category is related to the location of transition predicted by the models and the factors that

influence it. These factors consist on the turbulence production limiter for stagnation regions, which

is inherent to the underlying turbulence model and not to the transition model, but can still impact the

location of transition, and on the overall influence of the inlet boundary conditions for the turbulence

variables. A comparison with the experimental data available for each test case is also performed within

this environment.

Regarding the numerical features, the following was concluded:

• The use of a transition model, regardless of which one is used, entails significant numerical chal-

lenges when compared to simulations that employ only a turbulence model. On one hand, the

existence of laminar flow that is more prone to flow separation can lead to difficulties, and the tight

coupling between transition and turbulence model causes a higher computational cost. Further-

more, the formulation of all transition models includes several limiters and switches which are not

continuous or do not have continuous derivatives, which can result in residual stagnation. While

the first few mentioned aspects are unavoidable, the latter can be solved by introducing smooth

variants of the functions that cause issues. This approach prevents residual stagnation in many

cases, although it can lead to transition moving slightly upstream due to the change in the model

formulation.

• In simulations without a transition model, the discretization of the convection term of the turbulence

transport equations showed a negligible impact on the accuracy of the mean flow field solution for

the tested cases. However, this is no longer the case when a transition model is added, due to

several factors. The first is that significant streamwise gradients take place in the transition region,

which may not be significantly refined since its location is generally unknown during the grid gen-

eration process. This effect is not present in simulations without a transition model. Furthermore,

the prediction of transition is heavily dependent on the freestream turbulence, which in turn de-

pends on the decay which starts and is steeper right upstream of the inlet. At this location, grids

are generally coarse, which results in an underestimation of the decay, particularly if first order

schemes are used. The combination of these two factors causes transitional flow calculations to

be much more sensitive to the discretization scheme used in the convection term of the turbulence

transport equations. On the contrary, the discretization scheme employed for the convection term
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on the transport equations of the transition model has a negligible impact.

• In what concerns the size of the first near wall cell, there is a close match between the trends

observed for simulations with and without a transition model. In both cases, there is a significant

influence of the y+ value on the predicted level of Cf on the turbulent region for the k − ω SST

model. In addition, it appears that the calculations with a transition model are more sensitive to the

size of the near wall cell. When the KSKL model is used as the underlying turbulence model, the

rule of thumb of y+ ≈ 1 leads to a much smaller influence. Furthermore, no significant sensitivity

of the transition location to the size of the first near wall cell was detected. While these trends

are equivalent to those obtained without transition model, for the k − ω SST model, a reliable

estimation of the exact solution based on grid refinement studies is more affected by y+ when a

transition model is used.

Overall, the use of a transition model leads to more challenges than calculations that use only a turbu-

lence model, a consequence of the wider range of flows that can be properly reproduced. Numerical

error, as a consequence from both the iterative and discretization components is likely to be larger than

the one obtained for a simulation without a transition model. Although recommended, the use of second

order schemes for the convection term of the turbulence transport equations may be difficult in complex

flows, thus becoming the dominant source of error. As a result, significant care must be taken in the

application of transition models, as the experience from simulations without a transition model may not

be directly translated for calculations with transition models.

In fact, this last point was also observed in the study of the modelling aspects. Both the effect of the

turbulence production limiter and the influence of the inlet boundary conditions exhibit different trends

depending on whether or not a transition model is used. The main observations are:

• The growth of turbulence in stagnation regions can affect the evolution of the turbulence kinetic

energy at the edge of the boundary layer, as well as some of the variables of the transition models.

In particular for the γ − Reθ model, differences of over 10% of the chord were observed in the

location of the transition region depending on the limiter used. While differences between the dif-

ferent approaches to limit turbulence production in stagnation regions are very small in simulations

without a transition model, the same does not necessarily hold true in calculations with transition

models.

• The influence of the turbulence boundary conditions at the inlet is the most crucial aspect in the

use of transition models. Simulations using only a turbulence model and the reproduction of flows

where trip wires or other mechanisms are used to induce turbulent flow are almost immune to

this sensitivity. On the other hand, for transitional flow simulations, this corresponds to a physical

behaviour and a desirable property of all transition models, as it represents the response of a

flow. However, in most cases, there is insufficient information to set the inlet turbulence quantities.

When information regarding the turbulence level is available, it is usually in the form of a single

data point, a turbulence intensity level at a given location in the domain. This is not enough to

fully characterize turbulence in the computations, as two variables need to be specified for the
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models used herein. Therefore, while one may know the level of turbulence at a certain location,

its evolution upstream and downstream of that location is unknown and still has some impact on

the prediction of the transition region.

• To control the decay of turbulence that is predicted by the underlying turbulence model, the general

approach is to use extremely high values of the inlet eddy-viscosity. While this approach prevents

modifications to the turbulence model, it results in eddy-viscosity profiles that attain their maximum

value outside of the boundary layer. Furthermore, if high turbulence intensity values are desired,

the required level of the eddy-viscosity may be high enough to affect the laminar boundary layer,

causing a deviation of the velocity profile and an overprediction of the skin-friction coefficient. The

approach developed to control the decay of turbulence in the freestream by modifying the constants

of the underlying turbulence model allows for lower eddy-viscosity values, but does not seem

appropriate for conditions corresponding to high levels of freestream turbulence. Furthermore, due

to the effect of stagnation regions, its applicability requires the use of the Kato-Launder production

limiter.

With regards to each individual model, the γ − Reθ model is the most all around robust approach

from a modelling standpoint. Unlike the AFT model, it is capable of dealing with a multitude of transition

triggering mechanisms, although the ability to simulate crossflow transition requires an extension to the

original model. On the numerical side, it suffers from the disadvantage of being the only transition model

with two transport equations, which makes iterative convergence slower. Nonetheless, it generally leads

to lower numerical errors than the other models. The closely related γ model is also appropriate for most

transition mechanisms. Despite generally exhibiting easier iterative convergence than the γ−Reθ model,

and being apparently less sensitive to the inlet boundary conditions, it shows tremendous sensitivity to

spatial discretization. As observed in both the two dimensional test cases and for the sickle wing,

the solution of the model can become dominated by the discretization error, resulting in inaccurate

predictions for transition. While this is easily solved in two dimensional cases, for complex flows the

application of this model can become troublesome. The intermittency based models contrast with the

AFT model in their applicability. The latter is restricted to low turbulence intensity scenarios, and does

not have any terms to handle separation induced transition. However, this model is less dependent on

freestream turbulence and its influence can be translated in a single variable, making it easier to set up.

As mentioned in the introduction to this thesis, the work developed during this thesis has been a part

of groups investigating the topic of transition modelling. In particular, calculations for the flat-plate, the

Eppler 387 and NACA 0015 airfoils and the 6:1 prolate spheroid have been presented at workshops

organized by the AVT-313 panel. Results for the flat plate, the NLF1-0416 airfoil and the prolate spheroid

have also been presented at the 1st AIAA Transition Modeling and Prediction Workshop. Given the

similar test cases employed, the trends observed in the two workshops were very similar. Nevertheless,

they led to significantly different outcomes in terms of the decision of the next steps to be undertaken. On

one hand, the workshop organized by the AIAA will focus on simpler cases in the near future. This was

motivated by the disparity of the numerical solutions, which in some cases corresponded to the same
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model on the same grid. On the other hand, the lack of agreement displayed on the prolate spheroid

between the experimental data and the numerical simulations, even when using crossflow extensions,

led the AVT-313 group into focusing on these differences.

Considering the results presented and discussed throughout this thesis, it is difficult to justify an

immediate focus on new or improved extensions or corrections to the transition models. The main

reason for this is that the level of maturity of the models is still low. As shown in this work, the application

of a transition model can be strongly influenced by the turbulence production limiter, by the discretization

scheme for the convection term of the transport equations of the turbulence model, and by the inlet

boundary conditions for turbulence. While this is not an impediment to the use of the models, it raises

difficulties in the consistency of the results. As an example, the turbulence production limiter was not

fixed in any of the workshops, and it was seldom mentioned. This omission also occurs in the literature,

and sometimes even for the inlet boundary conditions. Detailed studies are required on how each of the

mentioned features, and any others that may not have been addressed herein, influence the predictions

of the transition models. Naturally, comparisons of results by different groups such as those organized

in the previously mentioned workshops can contribute to this end.

Another path for future work consists of formal validation of the transition models. Throughout the

test cases assessed in this dissertation, the use of a transition model always resulted in a better overall

agreement with experimental data when compared to the solutions that do not employ them. This clearly

demonstrates the potential of transition models, but is not enough. Detailed experimental data, which is

not available for any of the test cases that have been explored here, is required to make proper evalua-

tions of the modelling error. This includes not only a quantification of the experimental uncertainty, but

also enough information to set both variables of the turbulence model at the inlet, eliminating any free

parameters in the computational setup. In this regard, it would be beneficial to examine geometries in

which the most common transition mechanisms play a role, in order to fully cover the range of applica-

bility of the models. Therefore, an ideal validation data set ought to include cases with natural transition,

bypass transition, separation-induced transition and crossflow transition. While the latter is suitable to

be addressed by either the prolate spheroid or the sickle wing, the remaining mechanisms can easily

be considered in the flow around an airfoil. In particular, the NLF1-0416 airfoil is a good candidate, as

depending on the angle of attack, it can cover both natural and separation-induced transition.
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Appendix A

Crossflow Extension

The crossflow extension applied to the γ−Reθ and γ models is mainly dependent on the local Helicity

Reynolds number ReHe

ReHe =
ρd2

µ

He

U
(A.1)

with the Helicity calculated as

He = ~u · (∇× ~u) . (A.2)

The velocity at the edge of the boundary layer, Ue is estimated locally by

Ue =

√
V 2
∞ +

p∞ − p
1
2ρ

, (A.3)

and its streamwise derivative is obtained through

dUe
ds

=
Ui
U

dUe
dxi

. (A.4)

The derivative in each cartesian direction can be related to the derivative of the pressure by

∂Ue
∂xi

= − 1

ρUe

∂p

∂xi
. (A.5)

A pressure gradient parameter is given by

λ+ =
ρl2

µ

dUe
ds

, (A.6)

where

l =
1

CHe,max

2

15
d, (A.7)

with the constant CHe,max = 0.6944.

The local shape factor is estimated by

H+
12 = 4.02923−

√
−8838.4λ+4 + 1105.1λ+3 − 67.962λ+2 + 17.574λ+ + 2.0593, (A.8)
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and it is used to compute the Helicity Reynolds number at transition onset, Re+
He,t, using

Re+
He,t = max

(
−456.83H+

12 + 1332.7, 150.0
)
. (A.9)

Having the local Helicity Reynolds number and the one at transition onset, a structure of functions

similar to that used in the production term of the γ transport equation in the γ − Reθ and γ models is

built:

Fonset1,CF =
ReHe

0.7Re+
He,t

, (A.10)

Fonset2,CF = min
(
max

(
Fonset1,CF , F

4
onset1,CF

)
, 2.0

)
, (A.11)

Fonset3,CF = max

(
1−

(
RT
2

)3

, 0.0

)
, (A.12)

Fonset,CF = max (Fonset2,CF − Fonset3,CF , 0.0) . (A.13)

The coupling to the γ −Reθ model is performed by changing Pγ to

Pγ =
(
Flength[γFonset]

0.5 + Flength,CF [γFonset,CF ]0.5
)
ca1ρS (1− ce1γ) . (A.14)

In the case of the γ model, since the form of the original production term is different than that of the

γ −Reθ model, the coupling is also performed differently. Thus, for the γ model, Pγ becomes

Pγ = (FlengthFonset + Flength,CFFonset,CF ) ρSγ (1− γ) . (A.15)

In both cases, the triggering functions Fonset and Fonset,CF are independent from each other, meaning

that there is no coupling between crossflow transition and natural or bypass transition.
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Appendix B

Preliminary Results for the SSG-LRR

Reynolds Stress Model

B.1 Model Equations

This model is a blend between the formulation of Speziale-Sarkar-Gatski (SSG) [168] with an ε

equation and the Launder-Reece-Rodi formulation (LRR) [169] with an ω equation. The model solves

7 transport equations [170], one for each component of the Reynolds stress tensor, identified as Rij =

ρu′iu
′
j , and an equation for ω which can be written for steady flow as:

∂(ρUkRij)

∂xk
= ρPij + ρΠij − ρεij + ρMij +

∂

∂xk

[(
µ+

D

Cµ
µt

)
∂Rij
∂xk

]
, (B.1)

∂(ρUkω)

∂xk
=
αωω

k

ρPkk
2
− βωρω2 +

∂

∂xk

[(
µ+ σω

ρk

ω

)
∂ω

∂xk

]
+ σd

ρ

ω
max

(
∂k

∂xj

∂ω

∂xj
, 0

)
. (B.2)

The source terms of the Reynolds stress equations are comprised of four different contributions. Pij

is the production term, Πij is the pressure-strain correlation, εij is the dissipation term, and Mij is the

fluctuating mass flux. This last term is neglected, thus Mij = 0.

The production term is

Pij = −Rik
∂Uj
∂xk

−Rjk
∂Ui
∂xk

(B.3)

and the dissipation term is modelled by

εij =
2

3
εδij , (B.4)

with

ε = Cµkω, (B.5)

k = Rii/2. (B.6)
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The pressure-strain correlation is

Πij = −
(
C1ε+

1

2
C∗1Pkk

)
aij + C2ε

(
aikakj −

1

3
aklaklδij

)
+ (C3 − C∗3

√
aklakl) kS

∗
ij

+C4k

(
aikSjk + ajkSik −

2

3
aklSklδij

)
+ C5k (aikWjk + ajkWik) (B.7)

where

aij =
Rij
k
− 2

3
δij . (B.8)

The quantity S∗ij is the compressible strain rate tensor and it is given by

S∗ij = Sij −
1

3
Skkδij . (B.9)

It is worth noting that in the case of an incompressible flow, Skk = 0 and therefore S∗ij = Sij . The

diffusion coefficient D can be written as

D = 0.5CµF1 +
2

3
0.22(1− F1). (B.10)

The vast majority of the model’s coefficients are blended in a manner similar to that of the k−ω SST

model. For any generic constant φ:

φ = F1φ
(ω) + (1− F1)φ(ε) (B.11)

where the F1 blending function is

F1 = tanh(ζ4) (B.12)

ζ = min

[
max

( √
k

Cµωd
,

500µ

ρωd2

)
,

4σ
(ε)
ω ρk

(CD)d2

]
(B.13)

(CD) = σ
(ε)
d

ρ

ω
max

(
∂k

∂xk

∂ω

∂xk
, 0

)
(B.14)

All model constants are presented in table B.1.

Table B.1: Model constants of the SSG-LRR Reynolds stress model [170].

α
(ω)
ω = 0.5556 β

(ω)
ω = 0.075 σ

(ω)
ω = 0.5 σ

(ω)
d = 0

C
(ω)
1 = 1.8 C

∗(ω)
1 = 0 C

(ω)
2 = 0 C

(ω)
3 = 0.8

C
∗(ω)
3 = 0 C

(ω)
4 = 0.5(18C

(LRR)
2 + 12)/11 C

(ω)
5 = 0.5(−14C

(LRR)
2 + 20)/11 CLRR2 = 0.52

α
(ε)
ω = 0.44 β

(ε)
ω = 0.0828 σ

(ε)
ω = 0.856 σ

(ε)
d = 1.712

C
(ε)
1 = 1.7 C

∗(ε)
1 = 0.9 C

(ε)
2 = 1.05 C

(ε)
3 = 0.8

C
∗(ε)
3 = 0.65 C

(ε)
4 = 0.625 C

(ε)
5 = 0.2

186



B.2 Coupling with the γ −Reθ Transition Model

The coupling between the SSG-LRR Reynolds stress model is fully detailed in [32]. Starting with the

changes on the turbulence model, the production, dissipation and pressure strain terms of the Reynolds

stresses transport equations are changed to

Pij = γeffPij,SSG−LRR, (B.15)

εij = min (max (γeff , 0.1) , 1.0) εij,SSG−LRR, (B.16)

Πij = γeffΠij,SSG−LRR. (B.17)

Pij,SSG−LRR, εij,SSG−LRR and Πij,SSG−LRR are the original production, dissipation and the pressure

strain correlation of the SSG-LRR model given in Equations B.3, B.4 and B.7.

As the SSG-LRR model makes use of the F1 function of the k − ω SST model, it is changed in the

same way as before:

F1 = max (F1,SSG−LRR, F3) (B.18)

where F1,SST is the original definition of F1 and F3 is given by

F3 = exp

[
−
(
Ry
120

)8
]

(B.19)

Ry =
ρd
√
k

µ
. (B.20)

In the laminar boundary layer, the production of ω vanishes for the SSG-LRR model, unlike what

happens for the SST model. In order to match the ω profile of the two conditions in the laminar boundary

layer, the production of ω is changed to

Pω = (1− Clam)αωS
2 + Clam

(
−αω

ω

k
Rik

∂Ui
∂xk

)
(B.21)

with Clam defined as

Clam =

 0, cω > γ

γ−cω
1−cω , cω ≤ γ

(B.22)

cω =

(
exp

(
−
(

420

R̂eθt

)4
))2

. (B.23)

This modification ensures that in the laminar boundary layer (γ ≈ 0.02) the production of ω matches that

of the SST model and reverts to the SSG-LRR formulation when the flow becomes turbulent (γ = 1).

There is an additional effect taking into account the value of Reθt in order to improve the behaviour of

the model in flows with a high level of freestream turbulence.

Some modifications on the transition model are performed as well. The first two correspond to new
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correlations for Flength,1 and Reθc which are now determined as

Flength,1 = 0.48 + 40.0 exp

−
(
R̂eθt

)2

32000

+ 0.46 exp

−0.5

(
R̂eθt − 330

130

)2
 . (B.24)

Reθc1 = 1.1097R̂eθt − 1.7072× 10−3R̂e2
θt + 6.5245× 10−6R̂e3

θt − 9.5545× 10−9R̂e4
θt − 6.0 exp

(
− R̂eθt

55

)
,

(B.25)

Reθc2 = 100.467+0.3615R̂eθt+9.80618×10−4R̂e2
θt−1.58628×10−6R̂e3

θt+16.1474×10−10R̂e4
θt, (B.26)

Reθc =

 Reθc1, R̂eθt < 271.38;

min (Reθc2, 1500) , R̂eθt ≥ 271.38.
(B.27)

The final modification consists in a new definition for Fonset2

Fonset2 = fbpFonsetn + (1− fbp)Fonset2 original (B.28)

with Fonset2 original corresponding to equation 3.46 and

fbp = exp

−( R̂eθt
120

)4
 (B.29)

Fonsetn =

 0, Fonset1 < 1.0

Fonset2, Fonset1 ≥ 1.0
(B.30)

B.3 Results

The results for the SSG-LRR + γ − Reθ formulation are only given for three aspects. The first is the

iterative convergence of the simulations, one of the most challenging aspects in the use of any Reynolds

stress model, which naturally does not become easier with the inclusion of the transition model. The

second aspect concerns the effect of the size of the first near wall cell and corresponding y+ value. The

final feature is the influence of the inlet boundary conditions, which is even more important considering

some of the correlations of the transition model are changed in its coupling with the SSG-LRR model.

All results are given for the flat-plate geometry.

B.3.1 Iterative convergence

A single set of calculations for the flat plate is considered to discuss the iterative convergence of

the calculations with the SSG-LRR + γ − Reθ formulation. The inlet boundary conditions for turbulence

follow those used for the the study of the effect of the y+ given in Section 5.4. The calculations discussed

here correspond to those of grid set 5. A depiction of the number of iterations required to achieve the

desired iterative convergence level is shown in Figure B.1 as well as the evolution of the residuals for

the finest grid. As expected, when the SSG-LRR model is used as the underlying turbulence model for
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the γ − Reθ model, there is a significant increase in the number of iterations performed compared to

the original coupling with the k − ω SST model, in particular for the finer grids. In terms of the evolution

of the residuals, all variables exhibit a decrease of the residuals down to 10−8 with the exception of the

shear component R12, which stagnates at a higher level.
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Figure B.1: Number of iterations performed for each grid of grid set 5 (left) and residual evolution on the
finest grid (right) for the flat plate case using the SSG-LRR Reynolds stress model combined with the
γ −Reθ transition model.

This residual stagnation is due to the realizibility constraints enforced in the code after the solution of

the transport equations. These constraints are

Rij ≥ 0, i = j (B.31)

and

|Rij | ≤
√
RiiRjj , i 6= j (B.32)

In this particular case, the solution of the SSG-LRR + γ − Reθ model fails to meet the second condition

in the laminar boundary-layer. This results in stagnation of the residual for R12 since at every iteration,

its value is imposed through the realizibility contraint and not by the transport equation. Naturally, the

influence of this change is minimal since the Reynolds stress model is not impactful in the laminar

boundary layer. For this reason, the variables of the turbulence model are not considered for the iterative

convergence criteria when the SSG-LRR + γ −Reθ formulation is used.

B.3.2 Effect of the size of the first near wall cell

The setup for the study of the size of the first near wall cell follows that described in Section 5.4. In a

similar way to the other models tested, the maximum and average y+ values obtained with the SSG-LRR

+ γ − Reθ model are given in Figure B.2. The values obtained for each grid comply with the intended

setting for each grid set.
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Figure B.2: Average (left) and maximum (right) y+ values obtained for the flat plate test case for each
grid using the SSG-LRR turbulence model combined with the γ −Reθ transition model.

The convergence of the plate’s resistance coefficient with grid refinement is shown in Figure B.3.

Again, there is a considerable dependence of the solution on the value of the maximum y+. This is

unsurprising considering that the SSG-LRR model solves an equation for ω that is similar to that of the

k − ω SST model. Therefore, it inherits the singular behaviour of ω at the wall which is the cause for the

sensitivity to the maximum y+. However, for the SSG-LRR model there is also some influence of grid

refinement, as the two coarsest grids of each set exhibit a different trend than the remaining five. This

illustrates the need for higher grid refinement when the SSG-LRR model is used.
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Figure B.3: Convergence of the friction coefficient of the plate obtained with the SSG-LRR + γ − Reθ
formulation with grid refinement (left) and with the maximum y+ value (right).

The influence of the size of the first near wall cell is naturally more significant in the turbulent region

than in the laminar region, as evidenced in Figure B.4. There are some changes in the extrapolated so-

lution at hi/h1 = 0 even at the finest grid set, a consequence of the non-monotonic behaviour observed

in the convergence of the skin-friction coefficient in the turbulent region.
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Figure B.4: Convergence of the skin-friction coefficient with grid refinement at Rex = 5 × 105 (left) and
Rex = 7× 106 (right) for the SSG-LRR model combined with the γ −Reθ transition model.

Finally, a comparison of the skin-friction coefficient distribution for the coarsest and finest grids of the

sets with highest and lowest y+ values is performed in Figure B.5. Unlike what was observed for the

k − ω SST + γ − Reθ formulation in Section 5.4, the location of transition is slightly affected by the size

of the first near wall cell when the SSG-LRR is used as the underlying turbulence model. Despite this,

the strongest effect is still that of grid refinement. In contrast to the solution of the k − ω SST model, the

coarsest and finest grids of grid set 1 do not exhibit the same level of Cf in the turbulent region. This

again shows the stronger influence of overall grid refinement on the SSG-LRR model.
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Figure B.5: Skin friction coefficient distribution in the vicinity of the transition region for the coarsest and
finest grids of set 9 and set 1 for the SSG-LRR model combined with the γ −Reθ transition model.

B.3.3 Influence of the inlet boundary conditions

The settings for the study of the influence of the inlet boundary conditions follow those described

in Table 6.2. However, only the BC2 and BC3 sets are used, as XF is not used with the SSG-LRR
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model. The resulting skin-friction coefficient distribution for each case is presented in Figure B.6. The

numerical solution of all BC3 conditions leads to laminar flow, as transition does not occur on the surface

of the plate. This shows the SSG-LRR + γ − Reθ formulation to be more dependent on the turbulence

quantities at the inlet than the remaining alternatives addressed in this thesis, as none of the other model

combinations exhibited laminar flow on the entire plate for this test case. Furthermore, even for the BC2

conditions, transition is located much further downstream than the locations predicted by all of the other

models. It is then evident that to achieve the same location of transition, the SSG-LRR model requires

higher inlet turbulence intensity and/or eddy-viscosity at the inlet.
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Figure B.6: Skin-friction coefficient distribution for the flat plate test case using the SSG-LRR model
combined with the γ −Reθ model for varying inlet boundary conditions.

The previous results seem counter-intuitive, considering that the decay of turbulence of the SSG-

LRR and the k − ω SST model ought to be similar, as shown in Appendix C. In the case of the KSKL

model, a direct comparison cannot be made since the decay is different. Figure B.7 presents the profiles

of Reθ,t and Reθ,c at x/L = 0.1 for the finest grid of the T3AM-BC3 case, the one that corresponds to

the lowest turbulence in the freestream. At this location, the solution of both models is laminar. The

profiles of Reθ,t are similar on the outside and inside the boundary layer, as expected by the similar

decay of turbulence. Some differences are observed at the edge of the boundary layer, but not to the

extent that would justify the different transition prediction. However, the Reθ,c profiles are much different,

with the solution of the SSG-LRR + γ − Reθ formulation exhibiting a constant value of 1500. This is a

consequence of the different correlation between Reθ,c and Reθ,t that is part of the coupling between the

SSG-LRR and the γ −Reθ models. As this variable is used in the production term of the intermittency, it

follows that this is the cause for the delayed transition observed for the SSG-LRR+γ −Reθ formulation.
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Figure B.7: Boundary-layer profiles at x/L = 0.1 of R̂eθt (left) and Reθ,c (right) for the flat-plate test case
when using the γ −Reθ model combined with the k − ω SST and SSG-LRR turbulence models.
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Appendix C

Equations for the Decay of Freestream

Turbulence

C.1 k − ω SST Model

The two transport equations of the k − ω SST model can be written for the steady flow of an incom-

pressible fluid as:

Uj
∂k

∂xj
= νtS

2 − β∗ωk +
∂

∂xi

(
(ν + σkνt)

∂k

∂xi

)
(C.1)

Uj
∂ω

∂xj
= Pω − βω2 +

∂

∂xi

(
(ν + σωνt)

∂ω

∂xi

)
+ CDkω (C.2)

Considering steady, uniform flow aligned with the x axis and neglecting the diffusion and cross-

diffusion terms, the equations simplify to:

U
dk

dx
= −β∗ωk (C.3)

U
dω

dx
= −β(ω)2 (C.4)

Under these conditions the eddy-viscosity is obtained from:

νt =
k

ω
(C.5)

Writing these equations using dimensionless variables k∗ = k/V 2
∞, ω∗ = ω ∗ Lref/V∞, U∗ = U/V∞,

x∗ = x/Lref with U∗ = 1 results in:

dk∗

dx∗
= −β∗ω∗k∗ (C.6)

dω∗

dx∗
= −β(ω∗)2 (C.7)
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Additionally:

k∗

ω∗
=

νt
V∞L

=
νt
ν

1

Re
(C.8)

Equations C.6 and C.7 possess an analytical solution. Starting with the ω∗ equation:

dω∗

dx∗
= −β(ω∗)2

1

(ω∗)2
dω∗ = −βdx∗∫ ω

ωin

1

(ω∗)2
dω∗ =

∫ x∗

x∗in

−βdx∗

−
[

1

ω∗

]ω
ωin

= −β(x∗ − x∗in)

1

ω∗
− 1

ω∗in
= β(x∗ − x∗in)

1

ω∗
=

1 + β(x∗ − x∗in)ω∗in
ω∗in

ω∗ =
ω∗in

1 + β(x∗ − x∗in)ω∗in
.

The k equation can now be solved as well:

dk∗

dx∗
= −β∗ω∗k∗

dk∗

dx∗
= −β∗k∗ ω∗in

1 + β(x∗ − x∗in)ω∗in
1

k∗
dk∗ = −β∗ ω∗in

1 + β(x∗ − x∗in)ω∗in
dx∫ k∗

kin

1

k∗
dk∗ = −

∫ x∗

x∗in

β∗
ω∗in

1 + β(x∗ − x∗in)ω∗in
dx

[ln k∗]
k∗

kin
= −β

∗w∗in
βw∗in

[ln (1 + β(x∗ − x∗in)ω∗in)]
x∗

x∗in

ln k∗ − lnk∗in = −β
∗

β
ln(1 + β(x∗ − x∗in)ω∗in)

ln
k∗

k∗in
= −β

∗

β
ln(1 + β(x∗ − x∗in)ω∗in)

k∗

k∗in
= (1 + β(x∗ − x∗in)ω∗in)

− β
∗
β

k∗ =
k∗in

(1 + β(x∗ − x∗in)ω∗in)
β∗
β

Making use of ω∗ = k∗ ννtRe, the equations for the decay of k and ω can be written as:

k∗ =
k∗in(

1 + β(x∗ − x∗in)k∗in

(
ν
νt

)
in
Re
) β∗
β

(C.9)
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ω∗ =
ω∗in

1 + β(x∗ − x∗in)k∗in

(
ν
νt

)
in
Re

(C.10)

C.2 KSKL Model

Again considering the steady flow of an incompressible fluid, the transport equations of the KSKL

model can be written as:

Uj
∂k

∂xj
= νtS

2 − c3/4µ

k3/2

L
− 2ν

k

d2
+

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
, (C.11)

Uj
∂Φ

∂xj
=

Φ

k
νtS

2

[
ζ1 − ζ2

(
L

Lvκ

)2
]
− ζ3k − 6ν

Φ

d2
fΦ +

∂

∂xj

[(
ν +

νt
σΦ

)
∂Φ

∂xj

]
. (C.12)

Under the assumption of steady, uniform flow aligned with the x axis, sufficiently far away from walls

and neglecting the diffusion terms, the equations simplify to:

U
dk

dx
= −c3/4µ

k3/2

L
= −c3/4µ

k2

Φ
, (C.13)

U
dΦ

dx
= −ζ3k. (C.14)

Unlike for the k−ω SST model, these equations do not appear to have a simple solution, as the equation

involving the derivative of k depends on Φ, and the equation with the derivative of Φ depends on k. To

avoid this problem, a transport equation for the eddy-viscosity is considered. In the KSKL model, and

under the assumption on uniform flow, the eddy-viscosity is computed as

νt = c1/4µ Φ. (C.15)

Hence, it follows that

U
dk

dx
= −cµ

k2

νt
, (C.16)

and

U
dνt
dx

= −c1/4µ ζ3k (C.17)

Doing a similar process for the equations of the k − ω SST model, but converting the equation for ω into

one for νt results in:

U
dk

dx
= −β∗ k

2

νt
, (C.18)

and

U
dνt
dx

= U
d kω
dx

= U

(
dk
dxω −

dω
dx k

ω2

)
=
−β∗ω2k + βω2k

ω2
= − (β∗ − β) k. (C.19)

Comparing Equations C.16 and C.17 to Equations C.18 and C.19 shows that they have the same

form, only the constants of the second equation are different. This means that the form of the decay
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equations is the same. Equation C.17 can be written as

U
dνt
dx

= − (β∗ − βKSKL) k (C.20)

with βKSKL such that the relation

c1/4µ ζ3 = β∗ − βKSKL (C.21)

is verified.

Thus, the equation for the decay of k and νt in dimensionless form in the KSKL model are given by

k∗ =
k∗in(

1 + βKSKL(x∗ − x∗in)k∗in

(
ν
νt

)
in
Re
) β∗
βKSKL

(C.22)

and
νt
ν

=

(
νt
ν

)
in(

1 + βKSKL (x∗ − x∗in) k∗in

(
ν
νt

)
in
Re
) β∗
βKSKL

−1
. (C.23)

C.3 SSG-LRR Model

The transport equations for the Reynolds stresses and specific turbulence dissipation rate in the

SSG-LRR model are given by

∂ (ρRij)

∂t
+
∂(ρUkRij)

∂xk
= ρPij + ρΠij − ρεij +

∂

∂xk

[(
µ+

D

Cµ
µt

)
∂Rij
∂xk

]
,

and

∂(ρω)

∂t
+
∂(ρUkω)

∂xk
=
αωω

k

ρPkk
2
− βωρω2 +

∂

∂xk

[(
µ+ σω

ρk

ω

)
∂ω

∂xk

]
+σd

ρ

ω
max

(
∂k

∂xj

∂ω

∂xj
, 0

)
.

Making the base assumption of steady, uniform flow aligned with the x axis, the equation for the

Reynolds stresses can be written as

∂Rij
∂x

= Pij + Πij − εij +
∂

∂xk

[(
ν +

D

Cµ
νt

)
∂Rij
∂xk

]
.

The production term, Pij has the form

Pij = −Rik
∂Uj
∂xk

−Rjk
∂Ui
∂xk

. (C.24)

Under a uniform flow field, the production term vanishes as there are no velocity derivatives. Therefore

Pij = 0. (C.25)
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The pressure-strain correlation term Πij is

Πij = −
(
C1ε+

1

2
C∗1Pkk

)
aij + C2ε

(
aikakj −

1

3
aklaklδij

)
+ (C3 − C∗3

√
aklakl) kS

∗
ij

+C4k

(
aikSjk + ajkSik −

2

3
aklSklδij

)
+C5k (aikWjk + ajkWik) .

Due to the uniform flow field assumption, the last three terms vanish, leaving

Πij = −C1εaij + C2ε

(
aikakj −

1

3
aklaklδij

)
,

with

aij =
Rij
k
− 2

3
δij .

First, we consider the shear Reynolds stresses, for which i 6= j. The pressure-strain correlation can

be written as

Πij = −C1ε
Rij
k

+ C2ε
Rik
k

Rkj
k
.

Furthermore, for the shear Reynolds stresses,

εij =
2

3
εδij = 0.

it follows then that in the equation for Rij with i 6= j, all terms are directly dependent on the shear

Reynolds stresses and independent of the normal stresses. Adding the fact that the boundary condition

at the inlet for these components of the Reynolds stress tensor is Rij = 0, it follows that Rij = 0 is the

solution in the freestream for all shear Reynolds stresses, as it satisfies both the transport equations and

the boundary conditions. We now consider the normal Reynolds stresses, for which i = j.

The pressure-strain correlation term takes the form

Πii = −C1εaii + C2ε

(
aikaki −

1

3
aklakl

)
,

while the dissipation term is the same for all normal stresses and given by

εij =
2

3
ε. (C.26)

We consider the particular case of i = j = 1 for which the pressure-strain correlation term is written
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as

Π11 = −C1ε

(
R11

k
− 2

3

)
+C2ε

((
R11

k
− 2

3

)2

+

(
R12

k

)2

+

(
R13

k

)2

−1

3

(
a2

11 + a2
22 + a2

33 + a2
12 + a2

13 + a2
23

))
,

which simplifies to

Π11 = −C1ε

(
R11

k
− 2

3

)
+C2ε

((
R11

k
− 2

3

)2

− 1

3

(
a2

11 + a2
22 + a2

33

))
.

A similar procedure for i = j = 2 and i = j = 3 yields

Π22 = −C1ε

(
R22

k
− 2

3

)
+C2ε

((
R22

k
− 2

3

)2

− 1

3

(
a2

11 + a2
22 + a2

33

))
.

and

Π33 = −C1ε

(
R33

k
− 2

3

)
+C2ε

((
R33

k
− 2

3

)2

− 1

3

(
a2

11 + a2
22 + a2

33

))
.

A comparison of the pressure strain term for all three normal components of the Reynolds stress ten-

sor shows that in the absence of the shear stresses, the transport equations for each normal Reynolds

stress are the same. Recalling that the inlet boundary condition is Rii = 2k/3, it follows that R11 = R22 =

R33 and k = 3Rii/2 throughout the freestream. These results simply state that for the SSG−LRR model

in an uniform flow field, isotropic turbulence will remain isotropic. With these results, it is trivial to build

the transport equation for k.

U
dk

dx
= U

3

2

dR11

dx
=

3

2
Π11 −

3

2
ε11 +

3

2

∂

∂xk

[(
ν +

D

Cµ
νt

)
∂R11

∂xk

]
.

Using the relation k = 3Rii/2, it follows that a11 = 0 leading to

Π11 = −C1ε

(
R11

k
− 2

3

)
+ C2ε

((
R11

k
− 2

3

)2
)

= 0 (C.27)

The dissipation term is

ε11 =
2

3
ε =

2

3
Cµkω.

Combining results, and including the assumption that the diffusion term is negligible, the equation for k
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can be written as

U
dk

dx
= −Cµkω.

Recalling that Cµ = β∗, the equation for k has the same form than the one of the k − ω SST model.

Returning now to the transport equation for ω, and applying the assumption of uniform flow and

negligible diffusion and cross-diffusion terms results in

U
dω

dx
= βωω

2. (C.28)

These two equations are exactly the same as the ones obtained for the k−ω SST model. Therefore,

the decay of freestream turbulence obeys the same equation, meaning that the decay predicted by the

two models is identical if the same inlet boundary conditions for k and ω are used.
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Appendix D

Quantification of Modelling

Differences

This chapter contains the tabulated data for the force coefficients and locations of transition for some

of the test cases addressed in Chapter 7. Discussion of the results has been performed in that sec-

tion and is not repeated here. Available experimental data and the estimated value for the numerical

(discretization) uncertainty are given as well.

Table D.1: Lift and drag coefficients for the NACA 0015 airfoil at different angles of attack.

k − ω SST
Angle of Attack Quantity γ −Reθ γ

α = 5◦
Cd × 103 16.6 ± 0.3 15.6 ± 0.08

Cl 0.65 ± 0.000 0.65 ± 0.002

α = 10◦
Cd × 103 30.1 ± 0.86 28.5 ± 0.29

Cl 0.88 ± 0.007 0.89 ± 0.003
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Table D.2: Lift and drag coefficients for the S809 airfoil at different angles of attack. Experimental data
from [152].

k − ω SST KSKL
Angle of Attack Quantity γ −Reθ γ γ −Reθ γ Exp.

α = 0◦
Cd × 103 6.53 ± 0.18 6.44 ± 0.17 6.67 ± 0.08 6.67 ± 0.24 7.08

Cl 0.149 ± 0.001 0.149 ± 0.001 0.149 ± 0.001 0.149 ± 0.001 0.14

α = 1◦
Cd × 103 6.59 ± 0.12 6.50 ± 0.08 6.73 ± 0.07 6.73 ± 0.09 7.27

Cl 0.27 ± 0.001 0.27 ± 0.001 0.27 ± 0.000 0.27 ± 0.000 0.26

α = 3◦
Cd × 103 6.85 ± 0.21 6.77 ± 0.05 6.99 ± 0.10 7.00 ± 0.18 7.17

Cl 0.52 ± 0.002 0.52 ± 0.003 0.52 ± 0.000 0.51 ± 0.002 0.51

α = 5◦
Cd × 103 7.23 ± 0.08 7.26 ± 0.05 9.13 ± 0.06 7.49 ± 0.14 6.99

Cl 0.76 ± 0.003 0.76 ± 0.001 0.73 ± 0.000 0.76 ± 0.000 0.72

α = 6◦
Cd × 103 8.35 ± 0.26 7.59 ± 0.11 10.8 ± 0.06 7.84 ± 0.20 7.79

Cl 0.87 ± 0.004 0.88 ± 0.001 0.84 ± 0.003 0.88 ± 0.001 0.79

α = 7◦
Cd × 103 10.20 ± 0.16 7.98 ± 0.08 12.3 ± 0.05 9.17 ± 0.05 12.9

Cl 0.96 ± 0.002 0.99 ± 0.005 0.94 ± 0.003 0.98 ± 0.001 0.89

Table D.3: Start and end positions of transition on the upper and lower surfaces of the S809 airfoil for
several angles of attack. Experimental data taken from [152].

k − ω SST KSKL
Angle of Attack Quantity Surface γ −Reθ γ γ −Reθ γ Exp.

α = 0◦

xstart/c Upper 0.55 ± 0.004 0.54 ± 0.002 0.54 ± 0.002 0.53 ± 0.014 0.55
xend/c Upper 0.59 ± 0.004 0.60 ± 0.001 0.56 ± 0.011 0.56 ± 0.008 0.55
xstart/c Lower 0.50 ± 0.003 0.49 ± 0.006 0.49 ± 0.008 0.48 ± 0.017 0.50
xend/c Lower 0.53 ± 0.009 0.53 ± 0.001 0.51 ± 0.017 0.51 ± 0.011 0.50

α = 1◦

xstart/c Upper 0.54 ± 0.004 0.53 ± 0.002 0.54 ± 0.006 0.53 ± 0.020 0.55
xend/c Upper 0.59 ± 0.006 0.59 ± 0.002 0.56 ± 0.014 0.55 ± 0.008 0.55
xstart/c Lower 0.50 ± 0.003 0.49 ± 0.004 0.50 ± 0.003 0.49 ± 0.011 0.50
xend/c Lower 0.54 ± 0.004 0.54 ± 0.001 0.52 ± 0.003 0.51 ± 0.008 0.50

α = 3◦

xstart/c Upper 0.54 ± 0.003 0.53 ± 0.003 0.53 ± 0.011 0.52 ± 0.007 0.54
xend/c Upper 0.58 ± 0.003 0.58 ± 0.002 0.55 ± 0.013 0.54 ± 0.022 0.54
xstart/c Lower 0.51 ± 0.004 0.50 ± 0.003 0.51 ± 0.004 0.50 ± 0.014 0.51
xend/c Lower 0.54 ± 0.003 0.54 ± 0.006 0.52 ± 0.012 0.52 ± 0.011 0.51

α = 5◦

xstart/c Upper 0.52 ± 0.003 0.052 ± 0.003 0.25 ± 0.006 0.51 ± 0.051 0.51
xend/c Upper 0.57 ± 0.190 0.57 ± 0.006 0.35 ± 0.001 0.53 ± 0.012 0.51
xstart/c Lower 0.52 ± 0.006 0.51 ± 0.006 0.51 ± 0.004 0.51 ± 0.010 0.51
xend/c Lower 0.55 ± 0.003 0.55 ± 0.001 0.53 ± 0.005 0.53 ± 0.008 0.51

α = 6◦

xstart/c Upper 0.25 ± 0.096 0.51 ± 0.003 0.15 ± 0.007 0.50 ± 0.012 0.27
xend/c Upper 0.47 ± 0.015 0.57 ± 0.013 0.23 ± 0.008 0.52 ± 0.006 0.29
xstart/c Lower 0.52 ± 0.002 0.51 ± 0.002 0.52 ± 0.006 0.51 ± 0.035 0.52
xend/c Lower 0.56 ± 0.006 0.56 ± 0.002 0.54 ± 0.024 0.54 ± 0.030 0.52

α = 7◦

xstart/c Upper 0.13 ± 0.009 0.50 ± 0.011 0.09 ± 0.014 0.35 ± 0.004 0.13
xend/c Upper 0.36 ± 0.026 0.55 ± 0.009 0.16 ± 0.008 0.43 ± 0.017 0.13
xstart/c Lower 0.53 ± 0.006 0.52 ± 0.003 0.52 ± 0.002 0.51 ± 0.008 0.52
xend/c Lower 0.56 ± 0.002 0.57 ± 0.001 0.54 ± 0.042 0.54 ± 0.003 0.52
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Table D.4: Lift and drag coefficients for the NLF1-0416 airfoil at different angles of attack. Experimental
data from [147].

k − ω SST KSKL
Angle of Attack Quantity γ −Reθ γ γ −Reθ γ Exp.

α = −2◦
Cd × 103 5.20 ± 0.03 5.78 ± 0.05 6.25 ± 0.04 6.02 ± 0.49 6.2

Cl 0.237 ± 0.000 0.233 ± 0.001 0.233 ± 0.000 0.232 ± 0.006 0.21

α = 0◦
Cd × 103 5.37 ± 0.11 5.61 ± 0.08 5.91 ± 0.20 5.84 ± 0.33 5.9

Cl 0.48 ± 0.003 0.47 ± 0.002 0.47 ± 0.003 0.47 ± 0.004 0.45

α = 2◦
Cd × 103 6.00 ± 0.23 6.26 ± 0.09 6.42 ± 0.05 6.51 ± 0.55 6.1

Cl 0.71 ± 0.003 0.71 ± 0.002 0.71 ± 0.001 0.71 ± 0.006 0.68

α = 4◦
Cd × 103 6.91 ± 0.09 7.48 ± 0.17 7.82 ± 0.06 7.76 ± 0.62 6.7

Cl 0.95 ± 0.002 0.94 ± 0.003 0.94 ± 0.001 0.94 ± 0.006 0.89

α = 6◦
Cd × 103 8.61 ± 0.08 9.22 ± 0.11 9.72 ± 0.07 9.51 ± 0.76 8.7

Cl 1.17 ± 0.003 1.16 ± 0.004 1.16 ± 0.000 1.16 ± 0.01 1.11

Table D.5: Start and end positions of transition on the upper and lower surfaces of the NLF1-0416 airfoil
for several angles of attack. Experimental data taken from [147].

k − ω SST KSKL
Angle of Attack Quantity Surface γ −Reθ γ γ −Reθ γ Exp.

α = −2◦

xstart/c Upper 0.48 ± 0.01 0.42 ± 0.00 0.43 ± 0.01 0.40 ± 0.22 0.35
xend/c Upper 0.53 ± 0.01 0.48 ± 0.01 0.45 ± 0.00 0.44 ± 0.04 0.4
xstart/c Lower 0.46 ± 0.01 0.41 ± 0.01 0.30 ± 0.01 0.38 ± 0.04 -
xend/c Lower 0.56 ± 0.01 0.51 ± 0.01 0.36 ± 0.01 0.45 ± 0.01 -

α = 0◦

xstart/c Upper 0.44 ± 0.01 0.40 ± 0.01 0.40 ± 0.01 0.37 ± 0.05 0.35
xend/c Upper 0.49 ± 0.01 0.45 ± 0.01 0.42 ± 0.00 0.41 ± 0.01 0.4
xstart/c Lower 0.62 ± 0.00 0.60 ± 0.01 0.47 ± 0.02 0.58 ± 0.01 0.5
xend/c Lower 0.65 ± 0.00 0.64 ± 0.00 0.55 ± 0.05 0.61 ± 0.00 0.55

α = 2◦

xstart/c Upper 0.41 ± 0.00 0.37 ± 0.00 0.36 ± 0.12 0.34 ± 0.10 0.325
xend/c Upper 0.45 ± 0.00 0.41 ± 0.00 0.38 ± 0.01 0.38 ± 0.01 0.375
xstart/c Lower 0.63 ± 0.00 0.62 ± 0.00 0.62 ± 0.01 0.60 ± 0.02 0.55
xend/c Lower 0.67 ± 0.01 0.66 ± 0.00 0.64 ± 0.00 0.63 ± 0.01 0.6

α = 4◦

xstart/c Upper 0.37 ± 0.01 0.28 ± 0.01 0.26 ± 0.01 0.27 ± 0.05 -
xend/c Upper 0.41 ± 0.01 0.35 ± 0.00 0.30 ± 0.00 0.31 ± 0.05 -
xstart/c Lower 0.64 ± 0.01 0.63 ± 0.01 0.63 ± 0.00 0.61 ± 0.19 0.6
xend/c Lower 0.68 ± 0.01 0.67 ± 0.00 0.65 ± 0.00 0.64 ± 0.00 0.65

α = 6◦

xstart/c Upper 0.26 ± 0.02 0.21 ± 0.00 0.18 ± 0.00 0.20 ± 0.04 -
xend/c Upper 0.32 ± 0.00 0.27 ± 0.01 0.21 ± 0.00 0.24 ± 0.02 -
xstart/c Lower 0.65 ± 0.01 0.63 ± 0.01 0.64 ± 0.01 0.63 ± 0.05 0.6
xend/c Lower 0.68 ± 0.03 0.68 ± 0.00 0.66 ± 0.00 0.65 ± 0.02 0.65

Table D.6: Lift and drag coefficients for the Eppler 387 airfoil at different angles of attack. Experimental
data from [151].

k − ω SST
Angle of Attack Quantity γ −Reθ γ AFT Exp.

α = 1◦
Cd × 103 9.62 ± 0.02 8.71 ± 0.02 8.84 ± 0.04 8.9

Cl 0.49 ± 0.000 0.48 ± 0.000 0.49 ± 0.000 0.48

α = 7◦
Cd × 103 14.13 ± 0.03 13.65 ± 0.05 14.43 ± 0.03 12.8

Cl 1.12 ± 0.000 1.12 ± 0.000 1.11 ± 0.000 1.08
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Table D.7: Start and end positions of transition on the upper surfaces of the Eppler 387 airfoil for several
angles of attack. Experimental data from [149].

k − ω SST
Angle of Attack Quantity γ −Reθ γ AFT Exp.

α = 1◦

xsep/c 0.46 ± 0.00 0.48 ± 0.00 0.48 ± 0.00 0.46
xret/c 0.73 ± 0.00 0.68 ± 0.00 0.69 ± 0.00 0.7
xstart/c 0.69 ± 0.00 0.65 ± 0.00 0.65 ± 0.00 0.64
xend/c 0.81 ± 0.00 0.78 ± 0.00 0.80 ± 0.00 0.64

α = 7◦

xsep/c 0.31 ± 0.00 0.32 ± 0.00 - -
xret/c 0.52 ± 0.00 0.50 ± 0.00 - -
xstart/c 0.50 ± 0.00 0.48 ± 0.00 0.18 ± 0.00 0.4
xend/c 0.58 ± 0.00 0.59 ± 0.00 0.37 ± 0.00 0.4

Table D.8: Lift and drag coefficients for the 6:1 prolate spheroid at different angles of attack. Simulations
without crossflow extension.

k − ω SST KSKL
Angle of Attack Quantity γ −Reθ γ AFT γ −Reθ γ

α = 5◦
CD × 103 4.93 ± 0.03 5.16 ± 0.03 4.94 ± 0.14 7.83 ± 0.06 6.19 ± 0.05
CL × 103 2.74 ± 0.02 2.73 ± 0.03 3.06 ± 0.54 4.88 ± 0.09 3.17 ± 0.04

α = 10◦
CD × 103 6.58 ± 0.15 6.9 ± 0.2 - - -
CL × 103 9.48 ± 0.17 9.95 ± 0.17 - - -

Table D.9: Lift and drag coefficients for the 6:1 prolate spheroid at different angles of attack. Simulations
with crossflow extension.

k − ω SST KSKL
Angle of Attack Quantity γ −Reθ γ γ −Reθ γ

α = 5◦
CD × 103 6.11 ± 0.12 6.77 ± 0.39 8.42 ± 0.19 7.26 ± 0.44
CL × 103 3.54 ± 0.32 3.82 ± 1.04 5.18 ± 0.07 4.04 ± 1.7

α = 10◦
CD × 103 10.72 ± 0.35 11.36 ± 1.04 - -
CL × 103 14.5 ± 0.49 15.42 ± 4.77 - -

α = 15◦
CD × 103 17.62 ± 0.14 18.45 ± 0.18 - -
CL × 103 35.32 ± 0.22 36.47 ± 0.71 - -

Table D.10: Lift and drag coefficients for the sickle wing. Simulations on the Hexpress grid set.

k − ω SST
Crossflow Extension Quantity - γ −Reθ γ

No CD × 103 9.43 ± 2.42 4.78 ± 1.05 8.48 ± 24.66
CL -0.08 ± 0.002 -0.06 ± 0.007 -0.07 ± 0.132

Yes CD × 103 - 7.87 ± 1.97 -
CL - -0.08 ± 0.007 -
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Table D.11: Lift and drag coefficients for the sickle wing. Simulations on the GridPro grid set.

k − ω SST
Crossflow Extension Quantity - γ −Reθ γ

No CD × 103 9.46 ± 0.32 4.85 ± 0.51 5.64 ± 0.27
CL -0.08 ± 0.001 -0.06 ± 0.003 -0.06 ± 0.004

Yes CD × 103 - 7.92 ± 0.75 8.63 ± 0.52
CL - -0.08 ± 0.002 -0.08 ± 0.002
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