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Resumo

Nesta tese, investigamos o transporte quantico em estruturas hibridas de grafeno -
monocamada-bicamada-monocamada. Primeiro consideramos a dupla camada em
empilhamento do tipo Bernal e, de seguida, generalizamos a nossa andlise para
um angulo arbitrario de rotacao entre as duas camadas. Em ambos os casos, a
transmissao através da bicamada de grafeno foi calculada para dois tipos diferentes
de conexdes aos eletrodos feitos de uma camada tnica de grafeno.

No caso da bicamada com empilhamento tipo Bernal, um algoritmo baseado na
matriz de transferéncia e num modelo de ligacao forte foi desenvolvido para obter
a transmissao balistica para além do regime de resposta linear. Observou-se que as
duas configuracgoes se comportam de maneira semelhante, quando nenhuma tensao
eletrostatica é aplicada. Na presenca de uma parede de dominio, delimitando a regidao
sob tensao da bicamada, a condutancia das duas configuracoes é similar. No entanto,
para uma tensao finita, ambas desenvolvem um hiato na condutancia caracteristico
de uma bicamada polarizada, mas apenas uma configuracdo mostra uma mudanca
abrupta na condutancia. Conclui-se ainda que para uma microestrutura com paredes
de dominio igualmente espacadas, hd uma alta sensibilidade ao tamanho do dominio.
Este fenomeno deve-se a presenca de estados topologicamente protegidos com energia
no interior do hiato e localizados nas paredes de dominio, que hibridizam a medida
que o tamanho de dominio se torna da ordem do seu comprimento de localizacao.
Mostra-se ainda que a transmissao através de uma regiao de duas camadas pode ser
manipulada por uma tensdo eletrostatica aplicada.

No caso de duas camadas de grafeno rodadas, obtivemos numericamente a condutan-
cia para estruturas com diferentes angulos de rotagdao, comensuraveis ou incomen-
suraveis. Encontramos uma forte dependéncia no dngulo de rotagio e diferenciamos
trés regimes qualitativamente diferentes: para dngulos grandes (6 2 10°), existem
fortes efeitos de comensurabilidade, aparecendo efeitos pronunciados na conduténcia
para angulos comensuraveis correspondendo a pequenas células unitarias. Também
observamos que para grandes dngulos incomensuraveis as duas camadas de grafeno
comportam-se efectivamente como se estivessem desacopladas; para angulos inter-
médios (3° < 6 < 10°), encontramos uma correlagao entre a condutancia e density of
states que sugere as propriedades de transporte podem ser usadas para determinar o
angulo de rotagao; para pequenos angulos (1° < 0 < 3°), verificAmos a condutancia
se torna uma funcdo suave do angulo. Os resultados obtidos estdo de acordo com
resultados experimentais e sugerem que a condutancia pode ser usada para determi-
nar os regimes de bandas planas, com regioes de condutividade zero correlacionadas
com hiatos na densidade de estados.

Palavras-chave: Transporte quintico, Grafeno, Bernal stacked bilayer,
twisted bilayer, Estrutura monolayer-bilayer-monolayer.






Abstract

In this thesis, we investigate quantum transport in graphene-based hybrid monolayer-
bilayer-monolayer structures. First we address the so-called Bernal stacked bilayer
and later generalise our analysis for an arbitrary twisted angle. The transmission
across a graphene bilayer region is calculated for two different types of connections
to monolayer leads, corresponding either to a flake of graphene on top of a graphene
strip or to two overlapped semi-infinite strips.

In the case of Bernal stacked bilayer graphene, a transfer matrix algorithm based
on a tight-binding model is developed to obtain the ballistic transmission beyond
linear response. We show that the two configurations, with different connections
to the leads, behave similarly when no gate voltage is applied. For a finite gate
voltage, both develop a conductance gap characteristic of a biased bilayer, but only
one shows a pronounced conductance step at the gap edge. A gate voltage domain
wall applied to the bilayer region renders the conductance of the two configurations
similar. For a microstructure consisting of equally spaced domain walls, we find a
high sensitivity to the domain size. This is attributed to the presence of topologically
protected in-gap states localized at domain walls, which hybridize as the domain size
becomes of the order of their confining scale. Our results show that transmission
through a bilayer region can be manipulated by a gate voltage in ways not previously
anticipated.

For the case of twisted bilayer graphene, we obtain the conductance numerically for
structures with different twist angles which can be commensurate or incommensu-
rate. We find a strong angle dependence with three qualitatively different regimes.
For large angles (6 2 10°) there are strong commensurability effects. Large com-
mensurate angles, corresponding to a small unit cell, appear as sharp features in
the conductance. We also observed that for large incommensurate angles, the two
graphene layers effectively decouple. For intermediate angles (3° < 6 < 10°), we find
a correlation of the conductance features with the twist angle, which suggests that
conductance measurements can be used to determine the twisting angle. For small
twisting angles (1° < 6 < 3°) we find that commensurability effects are washed
out, and the conductance becomes a smooth function of the angle. Conductance
can be used to probe the almost flat bands appearing in this regime. Our results
agree with the recent experimental findings where zero conductance regions have
been correlated with gaps in the density of states.

Keywords: Quantum transport, Graphene, Bernal stacked bilayer, Twisted
bilayer, Monolayer-bilayer-monolayer structure
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1 Introduction

1.1 Context

Until 2004, it was presumed that two-dimensional (2D) materials were thermody-
namically unstable and they could not be isolated. The argument was that dis-
placement of atoms due to thermal fluctuations can be in the order of interatomic
distances [1]. Hence, decreasing the thickness of thin films decreases their melt-
ing point and they become unstable at a thickness of few layers [2, 3]. In 2004,
graphene was experimentally discovered and the 2D graphene crystals were found
to show high crystal quality [4, 5]. Indeed, the existence of graphene can be rec-
onciled with theory and it can be argued that strong interatomic bonds guarantees
that thermal fluctuations cannot result in dislocations or other crystal defects even
at higher temperature [1]. Graphene is a flat single layer of carbon atoms tightly
packed into a 2D honeycomb lattice, and is a basic building block for graphitic
materials of all other dimensionalities. One can wrap up graphene into large 0D
fullerene, roll it into nanotubes or stack into few layers of graphene and eventually
into 3D graphite [6, 7]. Graphene possesses many intriguing properties such as large
electron mobility [8, 4] extremely high thermal conductivity [9] and extraordinary
elasticity and stiffness [10]. These peculiar properties make graphene a great candi-
date to serve as new nanoscale building blocks to create unique nanoelectronic and
nanoelectromechanical devices [11, 12].

Graphene yet has another interesting characteristic. Graphene sheets can be stacked
on top of each other to form few-layer graphene where relatively weak, van der Waals
forces keep the stack together [13, 14, 15, 16, 17, 18]. Graphene sheets consisting
of few layers are naturally obtained in the process of fabrication [19]. Few-layer
graphene combines outstanding electronic and mechanical properties [20, 21, 22].
As a very especial example of graphene hetero structures, Bernal stacked bilayer
has particular potential for next-generation nanoelectronic applications owing to its
peculiar electronic band structures [23]. Twisted bilayer as another stable form of
bilayer graphene has also attracted significant attention from both theoretical as well
as experimental researchers owing to its extraordinary optical [24, 25] and electronic
properties [26, 27, 28]. Twisted bilayer graphene (tBLG) is fabricated by the stack-
ing of two monolayers of graphene with a specific twisting angle (#); The atomic
orientation among the two layers affects interlayer coupling strength and the inter-
layer electron motion in the bilayer [29, 30, 31, 32]. As a result of tunable interlayer
coupling and band structure, twisted bilayer exhibits extraordinary potential to be
a key component of bilayer-based devices [33, 34, 35].
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Similar attempts were made to obtain other 2D crystals such as hexagonal Boron
Nitride (h-BN), metal dichalcogenides [36, 37] and hundreds of different 2D materials
[38] in search of new phenomena and applications.

A practical approach to characterize graphene-based electronic devices is to build
junctions and hybrid structures by connecting graphene flakes with different widths
and orientations [39, 40, 41]. It is of paramount importance to study the trans-
port properties of these hybrid structures as fundamental and crucial component of
graphene-based circuits. Until now, many efforts have been made in exploring ballis-
tic transport properties of graphene/bilayer junctions [42, 43, 44, 45, 46, 47, 48, 49].
These studies already revealed a high degree of tunability of the transport properties.
However, the effects of further manipulations of the gate voltage, namely through
the creation of a domain wall affecting the bilayer region [50] are yet to be investi-
gated. Furthermore, the possibility of a microstructured gate voltage with several
built-in domain walls opens up new avenues to engineer electronic transport at the
nanoscale. The aim of this thesis is to study ballistic transport of micro-structured
bilayer graphene flakes with different types of connection to monolayer. The thesis
addresses the conductance characteristics of twisted bilayer in the ballistic regime,
which, to the knowledge of the author, has not been fully addressed before.

1.2 Organization of the thesis

This section presents a brief review of the content of the thesis.

1.2.1 Summary of chapter 2

Chapter 2 contains the preliminaries needed to understand the following chapters.
The chapter starts with a survey of literature on graphene and its unique band struc-
ture based on tight-binding model approximation. It also has a concise introduction
to bilayer graphene and its different stacking, AA, AB, and twisted. The density of
states as one of the principal quantities, which is considered in this thesis, is also
briefly described. Chebyshev polynomials and their role in the kernel polynomial
method for computing density of states is emphasized. Finally, we provide a discus-
sion on the transport in mesoscopic systems and Landauer-Buttiker formalism for
quantum transport.

1.2.2 Summary of chapter 3

We start Chapter 3 with a discussion of the importance of graphene-based hybrid
structures and their presence in graphene production techniques as a natural prod-
uct. As a pedagogy warm up exercise to study transport in complex heterostructures



1.3 Original content and external material

we explore the transport properties of one dimensional (1D) chain-ladder-chain. The
simplicity of the 1D model helps us to establish our semi-analytical transfer matrix
method to get the transmission and reflection coefficient. Next, we tackle the ques-
tion of quantum transport in graphene-AB stacked bilayer-graphene. This is the
main topic of the chapter. We study two main configurations of 2D hybrid structure
using the methodology we developed for the 1D toy model. We conclude with a
summary of the results. In the Appendix we present some of the calculation steps
in detail.

1.2.3 Summary of chapter 4

In Chapter 4, we study quantum transport in twisted bilayer graphene. The struc-
ture of the system similar to that of Chapter 3 consists of monolayer-bilayer-monolayer,
but where the AB stacked bilayer is replaced by a twisted bilayer. The methodology
to get the transmission coefficients is purely numerical. We use the numerical re-
sults of transport and density of states to uncover the nature of charge transport in
such a structure. We close the chapter with a discussion and a summary. Appendix
provides a prescription to build the bilayer structure using a Python code.

1.2.4 Summary of chapter 5

Chapter 5 contains the concluding remarks and a summary of the work accomplished
in this thesis. We also address some open questions which might be interesting for
future studies.

1.3 Original content and external material

All the results presented in this thesis, except those of Chapter 2, were obtained by
the author in collaboration with co-authors of the papers mentioned at the beginning
of each section. All figures present in this text originate from the author’s and his
collaborators’ work. The numerical algorithms coded by the author rely on external
routines such as MUMPS [51] and Kwant open source package [52].The programming
languages used were Python and Mathematica.






2 Theoretical framework and numerical
methods

In this chapter, we provide the reader some background knowledge in graphene
physics and the techniques we use in the following chapters to study electronic and
transport properties. The chapter serves as a bridge to linking the result presented
in the next chapters with previously existing framework.

2.1 Two-dimensional materials

There is an enormous amount of work on two dimensional (2D) materials, including
theoretical research papers, programming packages, experimental findings, etc. This
raises the question of why so much work and effort invested in this field of science and
technology? What makes 2D materials so attractive? And why are their properties
different from three dimensional (3D) materials? The answers to these questions are
all based on the fundamental role of dimensionality as, in general, one may expect
different properties in 2D materials as compared with their bulk form. Optical and
electronic properties are usually different due to confinement of electrons but also
due to the absence of interlayer interactions, that, despite being generally quite
weak, play an essential role in determining band structure. As an example, we will
see in the next sections that bilayer graphene has different electronic bandstructure
than monolayer graphene, solely because of relatively weak interlayer interaction.

2.2 Single layer graphene

Graphene, a single layer of graphite, has been one of the first real two dimensional
materials with one atom thickness to be isolated experimentally. During the last few
decades, extensive effort was devoted to obtaining single-layer graphene sheets, with
the purpose of having access to the properties of a tightly bond one-atom-thick layer
of sp? carbon which had been predicted by theory. Not all the techniques could end
up in isolation of graphene. Many of those techniques had been tested with only
moderate success. Eventually, graphene was first isolated by Andre Geim’s group
at Manchester University in 2004 [38]. Surprisingly, the technique employed for ob-
taining real one atom thick layers with almost macroscopic lateral dimensions was
straightforward. It consists of rubbing (HOPG) against another surface, similar to
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what happens when you use a pencil. With this technique, a variety of flakes leaves
on the surface. Most of these flakes have more than ten layers, but notably, single
sheets can also be found among the resulting structures . Although the synthesis of
2D materials includes several key routes: mechanical exfoliation, chemical exfolia-
tion, and direct synthesis, to date, mechanical exfoliation turns to result in few-layer
materials with higher quality that can exhibit almost ideal electronic behavior [19].

The exfoliation technique is simple, but the low production of monolayers with this
method does not render it a reliable and economical technique. Hence, it is not
technologically applicable. However, the technique is still useful for fundamental
studies, as demonstrated by a large number of works carried out using this technique
[53]. One significant result of obtaining single-layer graphene out of HOPG using the
exfoliation method is that it proves that these high-quality flakes are stable under
ambient conditions.

2.2.1 Single electron tight-binding model and reciprocal space

Most of the exceptional features of graphene are the result of its dimensionality and
its very unique electronic bandstructure. The linear dispersion relation of electrons
near the Fermi surface mimics relativistic particles [53]. Because of this linear dis-
persion relation, low energy electrons in graphene behave as massless Dirac Fermions

[38).

In this section, we model the electronic structure of graphene using the so-called
tight-binding approximation. We start by setting up some useful notation. The
electronic structure of an isolated C atom is represented as 1s22s%2p?; in a solid-
state material, the 2s and 2p electrons hybridize while the 1s electrons remain more
or less inert. One possible result of the hybridization of the 2s and 2p electrons is
four sp? orbitals, which naturally turn to form a tetrahedral bonding structure that
takes in all the valence electrons. This is precisely what happens in diamond, the
best known solid form of carbon, which is a very good insulator (bandgap ~ 5 eV).
Nonetheless, another possibility is to form three sp? orbitals, resulting in a p-orbital.
In this scenario, the sp? orbitals arrange themselves in a plane at 120° angles, and the
resulting lattice thus turns into a honeycomb lattice. In a honeycomb arrangement,
there are two inequivalent sublattices, labeled as A and B, see Fig. 2.1, with the
environment of the corresponding atoms being mirror images of one another. The
Bravais lattice has primitive lattice vectors a; , ao as shown in Fig. 2.1, defined as

a1 = V3ae (‘f ;) ., ag = V3ac (0,1) (2.1)

where a. is the nearest-neighbor C-C spacing (=~ 1.42 A). For the sake of conve-
nience, we set v/3a.. = 1 and measure the length unit with respect to this unit. We



2.2 Single layer graphene

chose an atom in the A sublattice of graphene to be the reference atom of the unit
cell. Thus, a given atom in the plane of graphene can be tracked according to its
position, R, as

maj + nas if sublattice A
may +naz + 5 (a1 +az) if sublattice B

(b)

Figure 2.1: Schematic of graphene lattice and its Brillouin zone. (a) Shows the
primitive vectors, a; and ag and the two atoms of the unit cell labeled by A and
B. Tt also exhibits the way the cells are labeled by two indices (m,n). (b) The
first Brillouin zone of graphene and reciprocal lattice primitive vectors shown by
b; and bs. The two special points, called Dirac points, labeled by K and K'.
Circles with similar color indicate equivalent Dirac points.

Accordingly, we call the reciprocal primitive vectors of graphene by and bs. These
vectors are defined by the equation a; - b; = 27d;; and for our choice of lattice unit
cell and primitive vectors the become,

(2.2)

T Cdr (13
v i A

These two vectors are essential in defining the Brillouin zone of graphene. We set
the first Brillouin zone of the reciprocal lattice in the standard way, as bounded
by the planes bisecting the vectors to the nearest reciprocal lattice points. This
gives the first Brillouin zone (FBZ) of the graphene, which has the same form as the
original hexagons of the graphene honeycomb lattice. The only difference is that
the FBZ hexagon is rotated with respect to the original hexagons in graphene by

5, see Fig. 2.1(b). The points at the corners of the FBZ consist of two groups of
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three points. Points in each group are equivalent, so we only consider one point
from each group. There are labeled by K and K’ as in the Fig. 2.1(b). Explicitly,
their coordinates in momentum space are given by

1
(2b1 + bz) , K =

K= ==
3

(b1 + 2b2) . (2.3)

W

These two special points are not equivalent, as there is no reciprocal lattice vector
connecting them. This is clear as K— K’ = 2 (by — by) is not a reciprocal vector. It
is convenient to note at this point that for an B-sublattice atom the three nearest-
neighbor vectors in real space are given by

51 = oo (1,0), 8 = ape (-é ‘f) R R (-i Jf) . (2.4)
The negatives of these vectors give the nearest neighbors of B-sublattice. We start
by considering a tight-binding model with nearest-neighbor hopping only. The rel-
evant atomic orbital is the single (p,) (or more correctly 7) C orbital which is left
unfilled by the bonding electrons. This orbital is oriented normal to the plane of
the graphene lattice. Each orbital can accommodate two electrons with two oppo-
site spin projection £1. If we denote an orbital by its position R,,, on the plane
and with the spin o, then the nearest-neighbor tight-binding Hamiltonian takes the
following form

H=—t> bl (Rnn){ac (Rmn+61)+ ao (Rimp + 62) + ag (Rmy + 83)}+hc..

m,n,o

(2.5)

Where a' (R,,,) and b (Ry,,,) are the creation of a particle with spin o on an
atom in position R,, , on sublattice A and B, respectively. The numerical value of
the nearest-neighbor hopping matrix element ¢, which sets the overall scale of the
m-derived energy band, is believed to be about 2.8 eV [54]. Nonetheless, the exact
value is unimportant for subsequent results.

We rewrite the latter Hamiltonian in a more compact form,

H=—t Z b;rn’n,‘, {amno + @miine + Gmniie} + hec.. (2.6)

m,n,o
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Figure 2.2: Graphene bandstructure. (a) shows the 3d plot of graphene bandstruc-
ture (b) exhibits the Dirac cone and the linear behavior of the dispersion near the
charge neutrality point. (c¢) Top view of the bandstructure with superimposed
reciprocal vectors and K pints. (d) The side view of the bandstructure.

To explore the nature of electronic states in graphene, we obtain its band struc-
ture, generated by the simple Hamiltonian Eq. (2.6). We diagonalize the latter
Hamiltonian represented in creation and annihilation operators basis in order to get
eigenenergies and, consequently, the band structure. Assuming periodic boundary
conditions both in a; and ay directions and performing a Fourier transform along
the two primitive vectors we end up with a 2 x 2 matrix, which is easy to diagonal-
ize. We introduce two quantum numbers k; and kg where k1, ke € [—7/a,m/a] and
employ the Fourier transform in both primitive directions according to the following
definitions,
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By plugging these relations into Eq. (2.6) we obtain,

H=—t Y b (), (k) (1+e* 4 o2) 4 he.. (2.7)
k1,ka,0

The resulting Hamiltonian is a 2x2 matrix in the new basis \I'L = {aT (ky, ko), b (K1, kz)}
as,

H=-t) vl l f*(zk) / (Ok) ] Uy = > ULH (k) Uy, (2.8)
k,o k,o

with f (k) = 1 + e 4 ¢ika2  Diagonalization of H (k) results in the eigenvalues
of the system labeled by quantum number k,

e (k) = £|f (k)| = /3 +2cos (k- a1) +2cos (k- az) + 2cos (k- (az —a1)).

It is convenient to write the TB orthogonal eigenmodes in the form of a spinor as,

N

1 1
f (k)]

whose components correspond to the amplitudes on the A and B atoms respectively
within the unit cell labeled. For each k there are two bands in the graphene band-
structure. These two bands, as it is shown in Fig. 2.2 have two peculiar properties.
First, they touch each other at the corners of the first Brillouin zone, while gapped in
the other regions and second, near the Fermi point where they meet, the dispersion
relation is linear and isotropic in k. Conventional semiconductors have gaps in their
bandstructure, but the bandgap in graphene closes at Fermi point. In the next sec-
tion, we show how one can engineer the band structure of graphene by introducing
boundary disorders.

2.2.2 Graphene ribbons

Isolated graphene flakes have finite sizes and, consequently, edges known to be in
general of two primary forms, zigzag or armchair. In this section, we focus on
the electronic properties of graphene nanoribbons (GNRs). One can see them as
the result of broken translational invariance in either one or two directions in an
infinite graphene sheet. Depending on how the translational invariance is broken,
one can get the so-called zigzag or armchair nanoribbons, ZGNR and AGNR, see
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Armchair direction

Figure 2.3: The two types of edges in graphene are shown. (a) Zigzag edge ribbon.
Light blue rhombus is the construction bloc of ribbon. (b) Armchair edge ribbon.

Fig. 2.3. They have a 30° difference in their orientation within the lattice. Ribbons
are narrow and straight-edged stripes of graphene, which are infinite in one direction
while restricted in the other direction. The structure of the edge plays a major role
in these electronic properties. In the scope of this work, we will only focus on the
ZGNR type. The hybrid structure of monolayer-bilayer graphene (MBM), of which
we will study the transport properties, is a compound system out of a wide zigzag
edge ribbon and a bilayer region. As shown in Fig. 2.3, the ribbon has a width of
N unit cell. Similar to the Hamiltonian of the graphene sheet, we Fourier transform
the Hamiltonian, Eq. 2.6, in the direction with translational invariance. So, we can
write the tight-binding Hamiltonian of ZGNR

H (k) = —t Ni b (k1) {ano (k1) (1+€®) + anpo (k) } (2.10)

n=1,0

- tb}LV,o‘ (k1) an o (k1) (1 + e“‘“) + h.c,

where k; is momentum in aj direction. For a given quantum number k; we nu-
merically diagonalize the Hamiltonian above. The result is shown in Fig. 2.4 . By
increasing the width of the ribbon, as it is shown on the right panel, we end up in a
region which determines the number of available states for a given energy. In fact,
one could see the right panel as the projection of graphene band structure onto a
plane normal to by primitive vector. Note that no gap appears in the bandstructure,
so ZGNRs are always metallic.
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-3 -2 -1 0 1 2 3
ki

Figure 2.4: Band structure of zigzag edge nanoribbon with 14 and 122 atom thick-
ness. The zero energy flatband is due to the boundaries. Note that no gap is
present in this case for any given width of the ribbon

2.3 Bilayer graphene

This section includes a brief introduction to bilayer graphene. As we mentioned
in the previous section, exfoliation of graphene out of HOPGs can also result in
few-layer graphene. Bilayer graphene consists of two single-layer graphene sitting
on top of the other layer binding by van der Waal (vdW) interaction. Bilayer
graphene can exist in three different stacking. The three different configurations of
the layers are called AA, AB, and twisted bilayer graphene. The AA stacked bilayer
[55] is probably the simplest form of the bilayer in which each carbon atom of the
top layer is placed precisely above the corresponding atom of the bottom graphene
sheet. However, the AA stacked structure is likely to be metastable, and only a few
authors reported manufacturing AA samples. In the AB bilayer, which is also called
Bernal stacking, half of the carbon atoms of the top layer are above the atoms of
the bottom layer, while other atoms located above the centers of the bottom layer
hexagons. This is the usual order which happens in graphite in nature. The Bernal
stacked bilayer graphene is considered as the most stable phase [56]. High-quality
flakes of Bernal stacked graphene are produced and studied in many experiments.

The third type of bilayer graphene structure-twisted bilayer-consists of top graphene
layer rotated with respect to the bottom layer by some angle 6 [34, 57, 58]. Such a
configuration of layers is also stable as the twisted flakes are produced. The electronic
properties of the bilayer structures in different stacking are different. Hence, in the
following subsections, we will consider the tight-binding model of each of them sepa-
rately. Our focus will be on Bernal stacked and twisted bilayer graphene and explor-
ing their transport properties in hybrid structures of monolayer-bilayer-monolayer
(MBM). The theory of single-layer graphene is beneficial in understanding the elec-
tronic properties of its bilayer form. In fact, the theories of electronic properties
of the bilayer graphene are built upon those of the electronic structure of graphene
[54]. In the previous section, it was established that, for single-layer graphene, the
sp? hybridization between the carbon s orbital and two p orbitals results in the
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formation of a o bond between adjacent atoms. Indeed, the robustness of the lattice
structure in all carbon allotropes is directly due to ¢ bonds. It is also mentioned
that these bands have a filled shell because of the Pauli principle, which gives rise
to a valence band. The p, orbital, which is perpendicular to the graphene plane,
binds covalently with carbon atoms nearby and leads to a so-called @ band. Since
every p orbital hosts one extra electron, the m band is half-filled. In Bernal stacked
bilayer graphene hybridization of = bands of single-layer graphene forms the vdWs
interaction between the layers and sticks the two layers together. In the twisted
phase, the interlayer interaction is due to a combination of 7w and ¢ bands. The in-
terlayer spacing in the AB bilayer is estimated [59] as ¢ = 3.35 A in the equilibrium
configuration. In the AA stacked and twisted bilayer cases, the interlayer separation
could be somewhat different. The nature of the interaction between graphene sheets
in bilayer graphene was analyzed by many authors [60, 61, 62, 63, 64].

The Hamiltonian of bilayer graphene may be viewed as a generalization of the
graphene Hamiltonian, which results in a more complicated picture of electron and
hole dispersion. For instance, the dispersion relation of AB stacked bilayer demon-
strates parabolic shape at low energies, which is different from the linear behavior of
graphene dispersion relation. The electronic dispersion relation of bilayer graphene
can be engineered to develop a bandgap. Depending on a particular situation, the
gap in the spectrum can be controlled by doping, gate voltage [65, 66]. From the
point of view of electronic application, the feasibility of having a graphene-based
system with a controllable gap is of great importance and interest in designing
graphene-based transistors. While many macroscopic properties of bilayer graphene
are similar to that of the monolayer, for some applications, due to larger possibilities
for tuning their physical properties, bilayer graphene may have specific advantages
over the monolayer. Here we end our general review of bilayer physics. A reader
interested in more specialized aspects of the graphene bilayer may consider more
topical works. For transport properties of bilayer graphene, one may look at the
paper of Das Sarma et al. [67]. Bilayer photonics applications are discussed in
Ref. [68]. There is a review paper by T. Stauber in Ref. [69] regarding plasmons in
graphene-based systems. Ref. [70] has a review of nonlinear optical phenomena of
single-layer, and Bernal stacked bilayer. There is a short review on twisted bilayer
in Ref. [71]. Ref. [72] contains a detailed study of electronic and optical properties
of twisted bilayer graphene.

2.3.1 AB-stacked bilayer graphene

In this thesis, we focus on Bernal-stacked bilayer graphene. As it is more stable and
more commonly found in nature, it can be assumed any reference to bilayer graphene
is that of a Bernal stacked formation. Following our discussion from previous sec-
tions, two graphene sheets typically take an AB-stacked formation, more commonly
know as Bernal stacking, in which the A atoms in one layer are stacked below the
B atoms in the upper layer such that the A atoms in the upper layer sit above the
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center of the hexagons formed in the lower layer, see Fig. 2.5. Like the monolayer,
Bernal-stacked bilayer graphene also possesses remarkable properties. One of the
most striking characteristics of bilayer graphene is its band structure tunability. In
fact, when the bilayer is placed in an appropriately configured field-effect device, a
tunable semiconducting gap can be generated. This causes the valence and conduc-
tion bands to no longer meet at the two Dirac points, see Fig. 2.7, in the graphene
Brillouin zone [20, 65, 73, 74, 75]. In this section, we will give a tight-binding de-
scription of AB-stacked bilayer graphene and study the unique features of its band
structure with a quantitative approach.

Figure 2.5: Bilayer graphene lattice. (a) Shows the AB-stacked bilayer graphene
and the interlayer hopping ¢; = 0.35eV between A and B; atoms. (b) Exhibits
the unit cell of bilayer graphene and the primitive vectors a; and as. The tuple
(m,n) label the unit cells within the lattice.

2.3.1.1 Single electron tight-binding model

We begin our discussion of Bernal-stacked bilayer graphene by constructing the
corresponding tight-binding Hamiltonian. The model we will use is similar to that
of the monolayer, where we allow intralayer hopping between nearest neighbors and
interlayer hopping between sites of AB stacking in the two layers indexed layer 1 and
layer 2, see Fig. 2.5. As we now have two layers, we will have four atoms per unit
cell and thus expect four energy bands. The tight-binding model of a single electron
in AB-stacked bilayer graphene can be written as the sum of three Hamiltonians as,

H:H1+H2+HJ_, (211)

where Hy and Hs are the Hamiltonian of the first layer and the second layer, respec-
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tively. We use the term “first layer” to refer the bottom layer and “second layer” to
call the top layer. The third term, H |, is the interaction between the two layers.
Similar to the case of graphene we use the indices m and n to label the unit cell of
the bilayer graphene. The single-layer Hamiltonian reads,

Hy=—t Y b oo AGmne + Gmitne T Gmnito} +he.  1=1,2 (212)

m,n,o

with [ being the label for layers and a;f S (bzr o 0) creates an electron at the
position
R _ maji + nas if sublattice A
m majy +nag + 3 (a +az)  if sublattice B,

With ¢; = 0.35€eV being the interlayer hopping energy the interlayer Hamiltonian
H, for the AB-stacked bilayer graphene is

Hy=~t1 > al nob2mme +hee. (2.13)

m,n,o

Assuming periodic boundary conditions, a Fourier transform of the creation and
annihilation operators transforms the total Hamiltonian into

H=Y UlHK)U¥ (2.14)
k,o

in the reciprocal space representation where

0 fk) 0 L
H(K) = —t 1 () 8 8 f?k) (2.15)
L 0 fXk) 0

)
Uy = W | (2.16)
(k)

15



Chapter 2 Theoretical framework and numerical methods

Solving the Schrédinger equation

H (k) [¢ (k) = e (k) |4 (k)

yields the following eigenvalues and corresponding eigenvectors,

e () = 1 +5\/ (t—i)? HIF)2, (2.17)

(b) ~°

Figure 2.6: Bilayer graphene band structure. (a) Shows the k dependent 3D plot of
four-band AB stacked bilayer graphene band structure. Due to broken sublattice
symmetry, the sublattice degeneracy is lifted, and the bilayer develops a four-band
band structure. (b) Top view of the band structure and the FBZ of the bilayer.
Note that at the Dirac cone in the corners of BZ the band two parabolic bands
meet. (c) Side view of 3D band structure exhibits the parabolic behavior of the
dispersion relation at low energies near the Dirac point.

where 7, s € {—1,1}. The corresponding eigenvectors can be represented as the
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column vector of,

<

™
3

|
3

|thrs (K)) =

)
Sl

(2.18)

Er,s

-Tr

Due to the nonzero interlayer hopping ¢, the broken sublattice symmetry in AB
stacked bilayer graphene lifts the sublattice energy degeneracy and the bandstructure
now shows a parabolic behavior at low energies, see Fig. 2.6. This is why electrons in
AB bilayer is usually called massive fermions as their dispersion relation resembles
that of particles with nonzero mass.

2.3.1.2 Effect of bias gate voltage and tunable bandgap

25 N "
- ™ 7 - 4/\'
S O/ ] i\ ) i ap
r J
~2.5F L 2N
5 o 5 Ty
ky

Figure 2.7: Biased bilayer graphene

When the two graphene planes are subjected to different electrostatic potentials,
there is a breaking of symmetry between the two layers [76, 77, 78, 20]. The new
Hamiltonian becomes the

7 S 0 &

_ oy 00
H(k)=~t| " 2 Vo | (2.19)

L0 k) -%

where the onsite potential is defined as —% and % for the top and bottom layers,
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respectively.

f (k) is the same as for graphene. Diagonalization of the Hamiltonian above results
in the following dispersion relation

ers (k) =712 (%)2 +23\l (;)4 +|f (k) |2 ((‘;)2 + (t;t)j r,s € {-1,1}

(2.20)

The latter four-band dispersion relation shows the opening of a bandgap as it is
shown in Fig. 2.7. The height of the bandgap changes as the onsite potential, %,
varies. Note that the actual size of the gap is not necessarily equal to the externally
applied potential difference V. Ref. [79] contains a discussion about the gap height

and the self-consistent determination of the gap size.

2.3.2 Twisted bilayer graphene and emergent Moiré pattern

After we discussed the simple bilayer systems, namely the AB bilayers, we now ex-
plore the more complex phase of bilayer graphene called twisted-bilayer, see 2.8(a).
Before diving into the electronic properties and underlying atomic geometry of
twisted bilayer graphene, we first consider the experimental realization of such sys-
tems. Whenever two simple translationally periodic lattices are rotated with respect
to each other, a new superstructure emerges, which is generally known as a Moiré
pattern.

In the context of carbon systems, the existence of Moiré patterns has been observed
a long time ago in graphite. Small-angle rotation faults, which exist naturally in
graphite crystals due to the weak vdW interaction of the layers, are manifested via
the long-periodic Moiré patterns, which have been observed with (STM) since 1990
[80, 81, 82].

Here we address two different contexts in which the relative rotation between two
layers of graphene occurs and gives rise to Moiré patterns. One way of getting twisted
bilayer graphene is by chemical exfoliation of highly ordered pyrolytic graphite. In
this process, first, single layers of graphene are obtained by the exfoliation mechanism
producing a suspension of single layers of graphene flakes [83, 84]. In the next step,
when the flakes are deposited onto a substrate, the single-layer flakes may stick to
each other with a rotational misalignment yielding twisted flakes [84, 85].

Moiré patterns can also be induced by depositing graphene onto a substrate whose
lattice constant is different from that of graphene. For instance, vertical stacking of
hexagonal boron nitride (hBN) and graphene can also give rise to Moiré patterns,
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2.3 Bilayer graphene

thus producing a bilayer hybrid system with a large-scale Moiré structure. One in-
teresting point regarding this hybrid structure is that there is a similarity between
the atomic structure of graphene and hBN and in particular due to the weak in-
terlayer bonding, the electronic features of graphene are preserved [86, 87, 88]. It
has been shown that as a result of the small lattice mismatch between hBN and
graphene (Aa = 1.8% [89]), a Moiré structure with a periodicity of about ~ 14 nm
is present even without a mutual rotation. The particulary interesting feature of
large Moiré periodicity is that such a system is ideal for studying the effect of a long
periodic potential on the electronic structure. Many of the cited articles, as well as
Chapter 4 of this thesis, consider twist bilayers, reveal a pronounced influence of the
Moiré structure on the electron spectrum and on transport properties.

Commensurability in twisted bilayer

It is important to note that, in general, not any relative rotation of the layers yields
a periodic system. The existence of a perfect periodicity, or in another words,
translational symmetry, is necessary to employ Bloch’s theorem, which significantly
simplifies the calculation of the electronic structure. Although, the exact periodic-
ity is still possible for some special rotation angles, the translational invariance is
revoked for twisted bilayer structures. Structures that preserve translational invari-
ance are called commensurate. Commensuration conditions are known to arise for
angles 6 = 0,,, such that:

. mr r
sin = , 2.21
( 2 ) 2v/3m?2 + 3mr + 12 ( )

where m and r are mutually prime natural numbers. The detailed derivation of
the latter condition can be found in the article by Shallcross et al. [90]. A similar
derivation was presented by Lopes dos Santos et al. in [34] and more generally in
a later work [57]. An example of a commensurate structure is given in Fig. 2.8(a)
for rotation angles of # = 21.73°. Note that for this angle the Moiré is the supercell
of the tBLG. This example has the smallest supercell, among the commensurate
structures with » = 1, with only N = 14 atoms/layer. For smaller commensurate
angles, the supercell can host thousands of atoms.

2.3.2.1 Single electron tight-binding model

Similar to AB stacked bilayer graphene, the single electron tight-binding model of
tBLG can be seen as the sum of three Hamiltonians as H = Hy + Hy + Hqo where
H () is the single layer Hamiltonian of the first (second) layer and Hy2 describes the
interaction of the layers. Unlike the Bernal stacked bilayer in which the interlayer
hopping ¢, is constant over the graphene bilayer plane, in the twisted case, the
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interlayer hopping energy has a spatial distribution. A generic form of the interlayer
hopping Hamiltonian can be written as,

Ho= Y > ti(Ri,Ro)cl (Ri)ca(Ro) + hoc (2.22)
CG{A,B} |R17R2|<r

where R; (Rg) runs over the lattice points in the first (second) layer and r is the
vicinity radius, see Fig. 2.8(b). Atom Cj is connected to atom Cjy if their spatial
separation is less than r. This is to decrease computation costs. The position-
dependent t; (R1, R2) determines the interlayer hopping between a pair of atoms
sitting on different layers. It is usually a fast decaying function of the distance
between the two atoms. In Chapter 4 we give an explicit expression for ¢ .

In general, the corresponding Schrodinger equation of the total Hamiltonian H of
tBLG can only be solved numerically. At low energies, some semi-analytical ap-
proaches can also be employed to derive quasi-band structures for tBLG [72]. In
this thesis, we will mostly rely on numerical analysis so we will not consider those
semi-analytic analysis.

2.3.2.2 Van Hove singularities in tBLG

The low energy bandstructure calculations for tBLG has shown that its bandstruc-
ture is similar to that of graphene [72]. The theory also predicted that the linear
dispersion relation near the Fermi level is present with a suppressed Fermi veloc-
ity. In fact, the avoided crossing of the two Dirac cones of the layers decreases the
band velocity, which gives rise to saddle points in the bandstructure of tBLG, see
Fig. 2.8(d), and consequently to two singularities in the density of states (DOS),
known as Van Hove Singularities (VHS). [91, 92, 93, 94]. For smaller angles < 2°
the suppression of the Fermi velocity continues until the appearance of a flatband,
with very small or no dispersion, gives rise to a sharp DOS peak in the vicinity of
Dirac point [58]. This weakly dispersive flatbands happen at the so-called magic
angles [95, 57, 96, 91, 90], see Fig. 4.8.

2.4 Density of states: kernel polynomial method

The density of states p(¢) is the number of electrons with particular energy, say,
e. It is succinctly described by the Dirac d-function expression. Denoting by {e,}
and {|n)} the eigenvalues and eigenvectors of a Hamiltonian # that describes the
dynamics of an electron system, the DOS is

p(e) mZé(s—en):Tr [5 (e—?—l)] . (2.23)
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(d)

Figure 2.8: Twisted bilayer graphene. (a) A circular region of the tBLG superlat-
tice for the commensurate angle structure of # = 21.7868°. The black rhombus is
the unit supercell of the lattice. Blue (red) dots are the atoms of the first (second)
graphene layer. Interlayer hoppings are not plotted. (b) The vicinity circle with
a radius, r, is shown. Atoms from both layers are linked if they fall in the vicinity
circle. (c¢) The relative rotation of FBZs of the two layers is shown where K (K3)
is the Dirac point of the first (second) layer. (d) The voided crossing of Dirac
cones of two layers and Van Hove points are shown.

Exactly calculating the DOS implies the diagonalization of the Hamiltonian matrix.
However, the computational resources used by diagonalization algorithms scale up
rapidly with system size as L3, which makes it challenging to model large systems.
This has placed great importance on the development of more efficient exact algo-
rithms as well as novel approximative methods. A fundamentally different approach
is to set aside the requirement for exact solutions (avoid diagonalization altogether)
and instead use approximative methods to calculate the properties of interest. In
this section, we present one such approach, the kernel polynomial method (KPM),
based on Chebyshev polynomials expansion. One of the most desirable properties
of KPM is computation time, which scales linearly with sparse matrix size N, .
The procedure is numerically very stable, so no additional computation is wasted
[97]. The approximative nature of the method presents an opportunity for additional
performance tuning. Results may be computed very quickly at low accuracy to get
an initial estimate for the problem at hand. Once the final results are required, the
accuracy can be increased at the cost of longer computation time. KPM has been
successfully applied to large quantum problems in solid-state physics [98, 99]. It
can also be used to approximate the local density of states within a tight-binding
framework [100].
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The expansion of a function in terms of Chebyshev polynomials is of the following
form, see Appendix 2.5.1,

f(z)= \/11_7 (NO + 1;1 pin T (@) (2.24)

with
= /_11 dxf (z) T, (x) (2.25)

and T,s are the Chebyshev polynomials of the first kind and can be obtained using
the following recursive relation,

Ty (z) = 22T, (z) — Th—1 (2), (2.26)
and

TO (Ji) = 1, T1 (:L‘) :T,1 (l’) = .

Chebyshev polynomials stand out as a very good choice for numerical applications.
They have good convergence properties and a close relation to the Fourier trans-
form, which allows the partial reuse of existing numerical tools. Furthermore, the
recursive relationship between Chebyshev polynomials enables the development of
a very efficient iterative routine for computing the expanded function.

The expansion Eq. (2.24) exactly replicates function f(z) by using an infinite series
of polynomials. However, if a finite series is used instead, the expansion is only
an approximation of f(z). This is the case for numerical implementations where
the order cannot possibly be infinite. For an efficient numerical solution, the key
is to find a finite set of moments u, which gives the best estimate of the desired
function. The simplest approximation is just to truncate the infinite series, limiting
the expansion to the first N moments,

1 N
[ (@)~ N (Mo + nz::l,unTn (33)> : (2.27)

A common feature of basically all Chebyshev expansions is the requirement for a
rescaling of the underlying matrix or Hamiltonian . In principle, the Chebyshev
polynomials of both first and second kind are defined on the real interval [—1,1],
whereas the quantities we are interested in depend on the eigenvalues {e,} of the
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considered (finite-dimensional) matrix. To fit this spectrum into the interval {e,}
we apply some linear transformation to the Hamiltonian and all energy scales. We
use the following scaling transformations:

. £€—¢0
s E= 2.28
e E= -, (2.28)
En — &0
n 7 E&n = ) 2.29
€ £ W ( )
. H—e
h 2.30
H Tl (2.30)

where g¢ is the middle point of the energy spectrum of #. This corresponds to
rescale the spectrum of H into the range [—1,1], i.e., €, €, € [—1,1]. We rewrite the
equation (2.23) in the following form.

:i;(s(g_en):;aznjmw(e—ﬁ) In)

p(&) = QjWTr (6(s-h)) (2.31)

where s = 2 is for the spin degeneracy, €2, is the area associated with each atom
in the material sample, i.e., a = ¢/N, where ¢ is the sample area, N, is the total
number of atoms, W is the energy bandwidth, and the symbol “T'r[...]” denotes
the trace of operator. In this way we can use the Chebyshev polynomial series to
represent operator functions.

Before looking at the moments for the DOS function, it is important to note that the
eigenvalues of T, (lAz) are T,, (¢). This relation actually is valid for all polynomials
and is not a specific property of the Chebyshev polynomials. Applying this to the
momentum expansion, we get

o= [ dep @ T, 0
-0 W/ deTr (5 (&~ 1)) T (&) (2.32)

:Qa Tr (T, (b))
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An additional numerical simplification consists of a statistical approach to calculate
moments of the trace form efficiently. This together with Eq. (2.26) can be used to
compute the momenta of the distribution. We will not dive into the details of the
statistical approach here as it is a well-known concept, and we will not implement
it directly in our calculations and computer programs. We use Kwant [52], which is
a free Python package to compute the DOS whenever needed. In Kwant, the user
can either set the number of moments N or the desired energy resolution in order
to get the DOS. An example of Python code is given in Appendix.

2.5 Quantum transport

Historically, the Drude-Sommerfeld model of transport in solid state physics was one
of the first breakthroughs that shed light on the electric and thermal conduction in
metals. The model was based on the idea that Fermi-Dirac distribution applies
for electrons in metals and only those electrons who are close to the Fermi level
contribute to the conduction. The semiclassical Drude-Sommerfeld theory could
explain Ohm'’s law in metals. It related the conductance to material’s specific quan-
tities, such as the electron density and their scattering rate and to the geometry of
a specific sample [101].

A full quantum mechanical picture of electronic transport was established between
1950 and 1960. Kubo and Greenwood developed a quantum theory of the conduc-
tance based on linear response theory, which is known as Kubo—Greenwood formula
for the electrical conductance [102, 103, 104]. At about the same time Landauer
proposed a different theoretical view on quantum transport [105]. He related the
electric current to the transmission probability of an electron that moves from the
source contact and scatters through a sample into the drain contact [106].

Left reservoir
Right reservoir

Figure 2.9: Schematic of ballistic transport in a scattering free 1D channel. k£ > 0
denotes positive velocity and gives a sense of current direction from left to right.
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Before providing a general formulation of quantum charge transport in semicon-
ductor nanostructures, let us consider a scattering free two terminal device as it is
shown in Fig. 2.9. We define the current as sum of all available channels as,

=2 Y [O B s () For (B) (2.33)

with the electron velocity being v, = k;/m. The filling factors f1, r (k;) are different
for open (T' = 1) and closed (7" = 0) channels, see Fig. 2.9, where T is the channel
transmission. If the channel is closed, all electrons passing the cross-section from
the left are reflected from the barrier and subsequently pass the same cross-section
from the right. Therefore, in a closed channel there is the same amount of right- and
left-going electrons, and the filling factors are the same for the two momentum direc-
tions, fr(r) (kz) = fr(r) (—kz). Since their velocities are opposite, the contribution
of the closed channels to the net current vanishes. Thus, we concentrate on open
channels. For open channels, the filling factors for the two momentum directions
are not the same. To realize this fact, we have to understand how the electrons get
to the waveguide. This leads us to the concept of a reservoir. Any nanostructure
taking part in quantum transport is part of an electric circuit. This means that it
is connected to large, macroscopic electric pads each kept at a certain voltage (elec-
trochemical potential). These pads contain a large number of electrons at thermal
equilibrium. These electrons are characterized by the filling factor, which depends
only on the energy and the chemical potential of the corresponding reservoir. In our
setup, the waveguide is connected to two such reservoirs: left (x — —o0) and right
(x — 00). Electrons with k; > 0 come from the left reservoir and have the filling
factor fr, (E) = fr (E — pur) and fr (E) = fr (E — pg). Electrons with k, < 0 come
to the cross-section, having passed the constriction. Therefore, they carry the filling
factor of the right reservoir, fr (E) = fr (E — pugr). Since the filling factors depend
only on the energy, it is natural to replace k, in favor of the total energy E for each
momentum direction. Since the velocity is v, = %372, we have dE = hv (k) dk,,
and this cancels the velocity in Eq. (2.33). Thus, we end up with the remarkably
simple expression,

_26 1
T hom

2e 1
=+ 5 (kL — HR)

1= 5 [ Bl (B) ~ fa (D)
BL

= GyV, (2.34)
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where we assumed zero temperature. The proportionality coefficient is called the
conductance quantum and conventionally defined as Gg = % This is because
conductance of the system, I/V, appears to be quantized in units of G . This factor
is made up from fundamental constants, does not depend on material properties,
nanostructure size, and geometry, or from a concrete theoretical model used to

evaluate the transport properties

2.5.1 Landauer-Buttiker formalism of transport

The equation. (2.34) is a specific case of the celebrated Landauer formula [106]. We
have derived the formula for the case when the transmission 7" (E), is either zero or
one. The general case is treated in this section, where we introduce scattering to the
transport problem. Modern fabrication technology allows for sophisticated semicon-
ductor heterostructures, combining and shaping different metals, using nanotubes,
molecules, and even single atoms as elements of electron transport circuits. Various
means can be used to control the transport properties of a fabricated nanostructure.
There is a common feature of all fabrication methods: two nanostructures that are
intended to be identical, that is, are made with the same design and technology, are
never identical. Besides the artificial features brought by design, there is also a dis-
order originating from defects of a different kind inevitably present in the structure.
The position of and/or potential created by such defects is random, and in most
cases, can be neither controlled nor measured.

The defects scatter electrons, affecting the transport properties. The conductance
of the structure is thus random, depending on a specific realization of disorder in the
structure and in the leads; this means there is a formidable number of uncontrol-
lable parameters. Fortunately, the transport properties of any nanostructure can
be expressed through a smaller set of parameters. The condition for this is that
electrons traverse the structure without energy loss, so they experience only elastic
scattering. These conditions for a given structure are always achieved at sufficiently
low temperature and applied voltage. The scattering is characterized by a scattering
matrix that contains information about electron wave functions far from the struc-
ture. There are many papers and textbooks covering and explaining the details of
Landauer formalism [106, 107]. Here we follow a very simple idea in order to get
the formalism without complications.

We now turn to the calculation of the current, using Eq. (2.33) as the starting point.
Let us calculate the current through a cross-section located in the left waveguide
(lead). The electrons with k, > 0 originate from the left reservoir, and their filling
factor is therefore fr, (E). Now, the electrons with k; < 0 in a given channel n are
coming from the scattering region. A fraction of these electrons originate from the
left reservoir and are reflected; they carry the filling factor fr (E£). This fraction
is determined by the probability of being reflected to channel n from all possible
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Left reservoir
Right reservoir

Figure 2.10: Schematic of ballistic transport in a two-terminal multi-channel.
Structure of two-terminal scattering matrix. We show reflection and transmis-
sion amplitudes of the electron wave coming from the left in the second transport
channel, n’ = 1.

starting channels n,

Ry (E) =Y row- (2.35)

Other electrons are transmitted through the scattering region, their filling factor
being fr (E). The resulting filling factor for k, < 0 is therefore

Ry (E) f1(E) — (1 = Ry (E)) fr(E) . (2.36)

For the current flowing from left to right we write

=2y /0°° C;—lj:ev (ks) f1 (E), (2.37)
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while for the current moving from right to left we have

_ 0 dk,
=23 [ e () [Ra (B) L (B) + (1= R (B) fr(B) . (238)

—~ J-x 2

The net current is the sum of these two currents

[=I"+1"
=23 [ en (k) (1= R () 1 (B) — fn () (2.39)
=23 [ e (k) T () U (B) — Jn ()] (2.40)
where

To derive the final equation line, we have changed k., to —k, in the second integral
in Eq. (2.38). Now we repeat the trick of the previous section, changing variables
from k, to E, and we arrive at the following expression:

1= B Ta(B)f (B~ pa) — £ (B = )] (241)

Assuming p = pur, = ppr + op, with dp < p, we can linearize the Landauer formula
[108] to obtain the conductance G = edl/dpu, which can be written as

of (e —
G0 =~y [ dey 1) L1 (2.42)
n
where Gy = % is the conductance quantum. For a system at zero temperature,

Eq. (2.42) can be simplified to G = GoT (u).

Calculation of the current in the right waveguide gives the same result: current is
conserved.
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2.5 Quantum transport

A.1 Proof of tight binding model in second quantization

In this section, using second quantization formalism, we want to introduce tight-
binding Hamiltonian.

As we know from Bloch’s theorem, eigenstates of a periodic Hamiltonian can be
presented in the form of Bloch waves

Y (r) = ey (r),

where the components of the crystal momentum k take values inside the Brillouin
zone, k € [, 7], and we have assumed that the periodicity of the lattice potential
is the same in all directions, i.e. V(r + ae;) = V(r)

p2
(277”& +V (T)) ¢k (T) = Ekl/Jk (T) .

In the second quantization formalism one can write the Hamiltonian above as follows

H= /ddm (

Let us define Wannier states as

[YR) = \ﬁzeﬂkRWJ o) = \ﬁzelkRW (2.44)

(r )) (r) . (2.43)

The first thing to notice is that the Wannier states {|¢g)} form an orthonormal
basis of the singleparticle Hilbert space, i.e. the transformation between the real
space and the Wannier representation is unitary,

=Y r)(¥rlr) = Z¢R ) [YR) 5
R

al (r) = Y95 (r) aky. (2.45)

Similarly, the unitary transformation between Bloch and Wannier states Eq. 2.44
induces an operator transformation
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T —ik-R T
ap = — e a., 2.46
1 3 iR
A = —— e’ aR . 2.47
v N R ( )

We can now use the transformation formulae Eq. (2.45) and Eq. (2.46) to formulate
a Wannier representation of the Hamiltonian Eq. (2.43). Using the fact that the
Bloch states diagonalize the single-particle Hamiltonian, we obtain

o2
H= /ddTaJf (r) (22 +V (T)) a(r)

o2
e (Soina) (2 +vo) (Sontoen)
R/

R
T d, . % _v2
= Z aRar d TibR (7‘) +V (T) ()2 (T)
2m
R.R
=Y ahaw /dd Ze_m i (r v2 V(r) — > e E ()
R R/ R \/N k/
-y G]]L{GR/i S etk R /ddrwz (7) <_V2 +V (7”)> Ve (1)
R.R N 2m
= Z ARAR 7 Ze_sz ~ik R/ /ddrﬂ)k ) Eribyr (1)
R.R NiF
= 3 ahaw 3 Bee M [t ()i (1)
R.R Niw
_ Z CLR&R/ ZEk/e—zk ‘R —ik'- R’5 w
R.R NiF
_ Z CLRCLR/ ZE e*lk R R/
R.R
=> GTRaR/tRR/ .
R.R
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2.5 Quantum transport

A.2 Polynomial expansion of a function

In general, the expansion of a given function f (x) in terms of a polynomial set p,, (z)
can be introduced as:

fl@) =2 anpn(z), (2.48)

where the expansion coefficients «,, are proportional to the scalar product of f and
Pn,

o, = A1) (2.49)

(Pnlpn)

The polynomial set p,, () must fulfill the orthogonality relations

571771
(Pnlpm) = o) (2.50)

The scalar product (f|g) between functions f(z)and g(x) is defined on the interval
[a, b] with a positive weight w(x),

b
(o) = [ w@) f@)g@)da. (251)

An expansion can be used to approximately reconstruct the desired function. It
shifts the problem from the direct solution of f(z) to the computation of expan-
sion moments a,, . Given a good choice of the polynomial set p, (z), the moment
computation can be implemented in a very efficient way

31






3 Quantum transport in hybrid
monolayer-bilayer-monolayer structures

3.1 Outline of the chapter

In this chapter we explore the nature of electronic transmission in a compound
system of monolayer-bilayer-monolayer (MBM) in one and two dimensions. As we
pointed out in Sec. 2.2 the process of obtaining graphene by exfoliation technique
leads to flakes of stacked single layers together with monolayers, hence such an
MBM structures can occur naturally in experiments. Understanding transport in
such systems is not only interesting but also potentially useful for electronic device
applications. Motivated by graphene based MBM structures, we develop a frame-
work to solve for transmission and reflection coefficients in such hybrid strips, and
calculate the strip conductance in several setups. We focus on two distinct systems.
One is an MBM structure in 1D which is basically a chain-ladder-chain system, see
Fig. 3.2, and the other is a graphene based MBM system for which we compute the
transport and discuss the results in detail.

First, we outline some generic features and assumptions regarding our MBM struc-
ture:

1. Monolayers are semi infinite lattices for which Bloch theorem applies, i.e. the
wave amplitude 1 (r) from one site to another site on the lattice, is different
only by a phase, meaning ¢ (r + R) = ¥R (r) where R is a lattice vector.

2. Monolayers are metallic and act as carrier reservoirs or contacts which we refer
to as leads.

3. Bilayer region is essentially made by stacking two monolayer flakes. Hence,
leads and bilayer region are made from the same material.

We will see in the following sections that the assumptions above in general result in
some simplification in the calculation while they preserve the generality of the study.
The first two assumptions also require that the monolayer leads are connected to
batteries far away from the bilayer region. This is the case in most electronic devices
since the wire bondings are usually longer than the device itself, so one can employ
Bloch theorem in the leads.

This chapter is based on both unpublished work and on the following publication
by the candidate:

33



Chapter 3  Quantum transport in hybrid monolayer-bilayer-monolayer structures

e Transmission across a bilayer graphene region, Hadi Z. Olyaei, Pedro Ribeiro,
and Eduardo V. Castro Phys. Rev. B 99, 205436 — Published 29 May 2019

This chapter is organized as follows: In Sec. 3.2, we study the transport in a hy-
brid chain-ladder-chain structure both using wave matching method and using the
transfer matrix method. In Sec. 3.3.1, we introduce the model of the physical setup
and the corresponding tight-binding formulation as well as the method for obtaining
the transmission across the bilayer region using the transfer matrix formulation. In
Sec. 3.3.2-5, some representative results of transmission are presented, including the
new types of micro-structured gated bilayer graphene. Sec. 3.3.6 contains a short
summary and the conclusions. In Sec. 3.4, we present some of the details of the
calculation of the transmission.

3.2 MBM in 1D: Transport in chain-ladder-chain hybrid
structure

In this section, we investigate the quantum transport in a 1D hybrid structure of
chain-ladder-chain (CLC) as it is shown in Fig. 3.2. We use its simplicity to establish
the theory and methodology we later employ to explore the more complex case of
graphene based MBM. In fact, the analysis of this toy-model helps us to understand
the essence of quantum transport in confined 1D and 2D systems. We will show
that the 2D graphene based MBM structure can actually be reduced to a proper 1D
problem. Hence, it is worth exploring the conductance properties of our CLC model
in detail.

As we discussed in Sec. 2.5, in mesoscopic systems where the coherent phase length
is much longer than the linear system size we can use the celebrated Landauer-
Buttiker formula in order to characterize the conductance of the system [107]. At

L . . 2
zero temperature, the conductance is given in units of quantum conductance 2% as

2e?
G () = =T (1)

where the factor T (u) is the transmission probability integrated over all available
channels in the leads and p is the chemical potential. Hence, the conductance
problem at zero temperature is equivalent to the transmission problem.

3.2.1 CLC model

Our system consists of two similar semi-infinite chains of atoms, with parameter a,
connected to a finite size ladder forming a hybrid structure. We use the nearest-
neighbor tight-binding Hamiltonian [109], to model the single electron in the chain

34



3.2 MBM in 1D: Transport in chain-ladder-chain hybrid structure

as,

H_ pain = —tZa —1)+h.c (3.1)

and for the ladder with interlayer hopping of ¢

2

Hindder = tLZal az (m) —t > S al (m)a; (m —1) + h.c, (3.2)

j:l m

where af (a) creates(annihilates) an electron in position R,, = ma and t is the hop-
ping energy of the electron from one atom to its nearest neighbors atoms. We obtain
the energy spectrum of the electron in the chain by diagonlizing the Hamiltonian
above. The following Fourier transform

ika T

aT e
)= ¥

diagonalizes the Hamiltonian, H, with N being the number of atoms in the chain.
In {aT (k:)} basis, the Hamiltonian is written as,

H = Z al (k) [~2t cos (ka)] a (k) , (3.3)

which yields the spectrum of the chain,

e = —2tcos (ka) . (3.4)

3.2.2 Transfer matrix method

A general method for solving the scattering problem is to use the wave matching
method at the boundaries. This requires the wavefunction inside the central region.
In order to avoid determining the wave amplitudes in the scattering region we make
use of transfer matrix method [110].

For the chain, the solution for the time independent Schrodinger equation H |¢) =
e|y) determines the eigenstate, 1)), and eigenenergy, ¢, of the electron. We introduce
the onsite amplitude as ¢ (m) = (m|¢) and rewrite the Schrodinger equation in its
discrete form as,

ep(m)=—tp(m+1) -ty (m—1) (3.5)
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We rewrite Eq. (3.5) in a more convenient form as

U m 1) = =0 (m) =4 (m — 1) . (3.6)

The first equality relates the amplitude of the wave on site m 4 1 with its amplitude
on two preceding sites. In other words, given amplitudes on two consecutive sites,
the amplitude on the next site can be obtained. The equations Eq. (3.6) can be
written in a matrix equation form,

U(m+1)=T()V(m), (3.7)

where the energy dependent transfer matrix T () (Transfer matrix) and the vector
wavefunction ¥ (m) read,

T(E):[? _01]’ ‘I’(m):lw?fn&@l)] '

It is important to note that the 2 x 2 matrix T is always invertible as det (T) = 1.
Having unit determinant denotes that its eigenvalues A\; and Ao are nonzero and,

AAg = 1.

The recursive method formulated with Eq. (3.7) can be employed to any finite size
chain. It is also applicable to the semi-infinite chain of our setup, Fig. 3.2. Recalling
that the Bloch theorem in the semi-infinite chain

U (m+ 1) = e*W (m) , (3.8)
we can rewrite Eq. (3.7) in the from of [111, 112],

T () ¥ (m) = %W (m) . (3.9)
The equation above is nothing but the eigenvalue problem of the transfer matrix.
by solving the equation

T(e)¢ = XC, (3.10)
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-------ﬁ-------q

LI{n \/ u{n+1
T-l

-y -y
',—’ "-g‘ ~~~
EEEEEEN ‘. N Y 7 ‘., " EEEEEESR
» v
Sfnnem=d®innn=="

Figure 3.1: Transfer matrix operation for a double chain (top) and chain (bottom).
The T matrix relates the amplitude within the blue ellipse (square) to the am-
plitudes in red ellipse (square). The inverse operation is also valid as T~! exist
for every values of €. Note that the number of atoms within the dashed square
dictates the dimension of the transfer matrix.

we obtain
2
€ € 1 1
Ay = —— &+ — ] =1 = — . 3.11
* 2t <2t) ’ ¢ 2 ( £+1)\i ) ( )

If we plug the spectrum for the chain given by Eq. (3.4) into the equation above we
confirm that

Ay = ATh = ¢tk (3.12)

As it is shown in Fig. 3.1 the act of transfer matrix by construction transfers the
wave amplitude from left to right. Hence, we interpret (™ (¢™) as the mode moving
from left to right (right to left) according to the sign in the exponential of the
corresponding eigenvalue. So, for the semi-infinite chain the wave amplitudes on
lattice points can be written as a superposition of the two left and right moving
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modes as [113],

U (m)=ATANPCH + AT (3.13)

One more useful relation is obtained if we define U = [¢*, (7],

(3.14)

\Il(m):U[AJFAT].

AT

Now, we take similar steps for the central region of our MBM setup. The discrete
Schrodinger equation for the central region can be written as,

e (m) = —thr (m + 1) =ty (m — 1) +t13b2 (m) (3.15)
€ (m) = —tha (m + 1) — tho (m — 1) +t 91 (m) , (3.16)

where ¢; (m) = (j, m|v), with |j, m) for the local-state on site m of the chain j = 1, 2.
We end up again with two recursive coupled equations for the central region. In
general the central region has a finite size. In general the central region and plays
the role of a scatterer which may have a complex structure. In fact the transfer
matrix formalism help us to avoid explicit solving of the Schrodinger equation in
the central region. The equations in Eq. (3.15) and Eq. (3.16) in its transfer matrix
form can be written as,

Up (m+1) =Tg (6) Up (m) R (3.17)

where the four by four transfer matrix, Tp (¢), and the amplitude vector, ¥p (m),
are represented as,

o A A Y1 (m)
= | 0 G0 o | =] 2 e
0 1 0 0 o (m —1)

3.2.3 Chain ladder interface and transmission coefficient

With the electron wavefunction in both leads and in the central region at hand, we
are in position to express the transmission and reflection of an electron in the left
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Figure 3.2: Hybrid chain-ladder-chain structure. Top: Shows 1 — 2 configuration
where two semi infinite leads are connected to the ladder in the central region in
opposite layers. Bottom: Exhibits 1 — 1 setup where the leads are connected to
same layer. The index m labels the position of the atoms. The interalyer hopping
is shown by ¢ where the interlyer hopping is ¢ .

lead approaching the central region. We intuitively expect a scattering process as
the central region can be considered as a barrier. As discussed in Sec. 2.5.1 deter-
mining the transmission and reflection probabilities is of utmost importance in the
Landauer-Buttiker formula for conductance. For the current scattering problem the
relation (3.14) can be rewritten in terms of transmission and reflection coefficients,
respectively 7 and r . In the left lead,

W, (m) = [ le/’(Lﬂfbﬂj)l) ] —U [ N ] , (3.19)

where we set the amplitude, A™, of the right moving mode, (T, to be one and A~
is replaced by the reflection factor r. Similarly, we set, AT = 7 and A~ = 0 for the
right lead, so that,

Vg (m) = l w}ffﬂi@l) ] =U [ AT{;pT ] . (3.20)

For a given eigen-energy, €, the transfer matrix of the central region transfers the
wave amplitudes in position m = 1 to the amplitude in m = p + 1 as follows,

Uy (p+1) =M () U (1) , (3.21)

where
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M(e) = (Tz ()",

is the p-step transfer matrix. It actually relates the amplitudes at the two interfaces,
m =1 and m = p, as

() EP; () E1§

Yo (p _ P (1
vi(p+1) | M) Y1(0) | (3.22)
Yo (p+1) 2 (0)

In general, two different configurations exist for the MBM hybrid structure. The
first case is when the two chains are connected to the same layer in the central region
and the second case happens when the leads are connected to opposite layers, see
Fig. 3.2. We name the first setup 1 — 1 (one to one) and call the second one as
1 — 2 (one to two) configuration. For the 1 — 1 setup as it is seen in Fig. 3.2,
12 (0) = Yo (p+1) = 0. These amplitudes are zero due to missing atoms. With
these conditions at the two interfaces, the equation (3.22) reads,

1 (p+1) ¢1§1§
0 _ o (1
b | MO g0 | (3.23)
2 (p) 0

The matrix equation above has six unknowns and four equations. So, we restate it
in terms of the two amplitudes in the left lead as,

Y1(p+1)
Y1 (p)

= My l wi L ] . (3.24)

Where Mj_,; relates the amplitudes of two leads of the system. One last step is to
replace the amplitudes in terms of transmission and reflection coefficients as follows,

[ 71ﬂ ] =U "My U [ 6 ] ; (3.25)
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with,

1 [ (M2oMg1 — M1 Miy)  (MazMag — MasMis) 1 (3.26)

Mo = ——
1217 Moy | (Mg Mg — MiyoMiy;)  (MigzsMigy — MyoMps)

For the 1 — 2 setup, using 13 (0) = 91 (p+ 1) = 0, we can repeat similar steps to
get,

M _
=2 (Mg M9 — MigoM1)  (MygMio — MyaMi3)

1 [ (M1oMg; — MigoMiyp)  (MiggMig — MigaM3) ] (3.27)
M2 . |

We use the Landauer-Buttiker formula, see Sec. 2.5.1, to obtain the zero temperature
conductance of the hybrid structure from its transmission coefficient, .

G (e) = Gol7 (e) I,

! 7 rq T
i N W ; \ \ /
| AW V1 § 1 WA\
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Figure 3.3: Chain-ladder-chain conductance is shown for 1 — 1 setup (a-b) and
1 — 2 setup (c-d) for several central region lengths. Note that the number of
maxima in the conductance is related with the ladder length, p. A ladder with
length p exhibits p + 1 maxima in its conductance.

where Gg = % We show some representatives of the conductance in Fig. 3.3 for
both 1 — 1, the panel (a) and ( b) and 1 — 2, the panel (¢) and (d), configurations.
We also checked these results against Kwant. The interlayer hopping is set to be
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t; = 0.1¢. This is on purpose as in the van der Waals structures the interlayer
hopping is smaller than the intraleyer hopping ¢t. An immediate consequence of such
choice, t| < t, is that the transport in the vertical direction, in general, is smaller.
This explains the lower conductance of 1 — 2 configuration compared to 1 — 1 setup.
Both setups exhibit resonant transmission as a result of interference of partial waves
scattering from the chain/ladder interfaces and mismatch in wavefunctions of leads
and the ladder [114, 115, 116].

3.3 MBM in 2D: Transmission across a bilayer graphene
region

Now we turn our attention to the problem of conductance in two dimensional MBM
structure. Our case of study is graphene honeycomb based MBM. For such system
the transmission across a graphene bilayer region is calculated for two different
types of connections to monolayer leads. A transfer matrix algorithm based on a
tight binding model is developed to obtain the ballistic transmission beyond linear
response. We show that the two configurations behave similarly when no gate voltage
is applied. For a finite gate voltage, both develop a conductance gap characteristic
of a biased bilayer, but only one to one case shows a pronounced conductance step
at the gap edge. A gate voltage domain wall applied to the bilayer region renders
the conductance of the two configurations similar. For a microstructure consisting
of equally spaced domain walls, we find a high sensitivity to the domain size. This
is attributed to the presence of topologically protected in-gap states localized at
domain walls, which hybridize as the domain size becomes of the order of their
confining scale. Our results show that transmission through a bilayer region can be
manipulated by a gate voltage in ways not previously anticipated.

The unique band structure of graphene gives rise to several alluring phenomena
which have been the subject of intense research since its experimental discovery in
2004 [8, 53, 117, 54]. In particular, its high charge-carrier mobility has rendered
graphene a highly attractive and promising component for electronic and optoelec-
tronic devices [118, 119]. Another appealing feature of graphene for device appli-
cation is its stability at the nanometer scale, ensured by the covalent bonds among
the carbon atoms [120], which is highly desirable for device-miniaturization. A
graphene-based electronic device, entirely made out of micro-structured graphene
sheets, is thus expected to reduce significantly energy dissipation and optimize
device-miniaturization and functionality [121, 122, 123]. The recent realization of
a short channel field-effect transistor, using just 9- and 13-atom wide graphene
nanoribbons [124], is a convincing step in that direction. This is to be contrasted
with mainstream semiconductor technology which usually integrates different mate-
rials and where component-interfacing can be difficult to scale-down [125].

Although a gapless conductor, the versatility of the electronic properties of graphene
make it possible to easily induce a gap. This can be done by several means: cutting
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it into nanoribbons with zigzag or armchair edges [126, 127, 128, 113]; by breaking
inversion symmetry with an appropriate substrate [129]; or applying an out-of-plain
electric filed in graphene bilayer structures [65, 130, 76, 21].

Compared to monolayer graphene, the possibility of tuning the induced gap by an
external, perpendicular electrical field, which is easily introduced through a gate
potential, makes the bilayer more suitable for device applications [131]. Not only
the gap can be tuned by a gate bias, but also a twist angle can be engineered between
the two layers [132, 94]. This leads to a strong reconstruction of the band structure
at low energies [133]. The recent observation of superconductivity and insulating
behavior in twisted bilayer graphene at the magic angles clearly shows the high
degree of tunability of this system [134, 135]. Further manipulation of the bilayer
response is possible by inserting an insulator between the two graphene layers, out of
which tunnel field effect transistors have been realized [136, 122, 137, 138, 139, 140].

Another advantage of the graphene bilayer is that its electronic structure can be ma-
nipulated by a layer-selective potential, induced by a gate voltage. The possibility
of sharply reversing the sign of voltage, thus creating a well-defined one-dimensional
boundary separating regions of constant potential, has been demonstrated recently
[50]. These domain walls support confined one-dimensional states that are topolog-
ically protected and can be used as purely one-dimensional channels [141, 142].

The ballistic transport across a bilayer graphene region has been studied at length
[42, 43, 143, 44, 45, 144, 46, 47, 48, 49]. Particular attention has been given to a setup
where a gate voltage is applied within the bilayer region [43, 143, 145, 144, 146, 49].
These studies already revealed a high degree of tunability of the transport properties.
However, the effects of further manipulations of the gate voltage, namely through the
creation of a domain wall affecting the bilayer region [50] are yet to be investigated.
Furthermore, the possibility of a microstructured gate voltage with several built-in
domain walls opens up new avenues to engineer electronic transport at the nanoscale.

The aim of this section is to study ballistic transport of micro-structured bilayer
graphene flakes with different types of connection to monolayer. Using a tight-
binding model of an AB staked bilayer flake, taken to be infinite in the transverse
direction, we observe that the conductance displays aperiodic oscillations as a func-
tion of chemical potential. The conductance in the presence of a single voltage
domain is shown to be compatible with previous results obtained within a low en-
ergy approximation. We compute the conductance in the presence of a domain
wall in the gate bias and show that, in this case, geometries with different types
of connection to monolayer leads behave similarly. We further study the effect of
a micro-structured gate bias with multiple domain walls. By changing the separa-
tion between domain-walls we explore the crossover form well separated domain-wall
states to the fully hybridized regime where in-gap states start to contribute to the
conductance. Finally, we have studied the viability of an integrated nano-transistor
for experimentally reasonable conditions finding that this setup can achieve on/off
ratios of the output current within 50 < I, /Iog < 200.
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3.3.1 Model and methods
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Figure 3.4: System setups with a bilayer region used in this work: (a) the 1 — 1
setup; (b) the 1 — 2 setup. (c) Primitive vectors a; and ag, sublattice labels A
(blue) and B (red), and unit cell labeling of the monolayer strucuture.

Schematics of the setup for which the transmission and the conductance are studied
is shown in Fig. (3.4). The case of Fig. 3.4(a) consists of a single layer graphene
with a flake of another layer on top, the 1 — 1 setup. The second configuration
is obtained from two sheets of graphene that are partially overlapped, the 1 — 2
setup, as shown in Fig. 3.4(b). In both we consider A-B stacking. Translational
invariance along the transverse direction (y-axis) is presumed. We are interested in
the ballistic regime where the electronic mean free path is larger than the typical
length of the device. For simplicity, we consider the case of perfect contacts, which
can be replaced by infinite leads.

We model electrons in the structure using the conventional tight-binding approach
for p,—electrons [54] hopping between nearest neighbor carbon sites of the atomic
lattice shown in Fig. (3.4)(c), which can be written as H = H; + Hy + H, . Here,

Hj=—t>al 0 bjmn + bjmiin + bjmnsi] (3.28)
m,n

+ Z VYJ [a;r',m,na’j:m:n + b;r',m,nb]',m,”} + h.c (329)
m,neEBL
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3.3 MBM in 2D: Transmission across a bilayer graphene region

is the Hamiltonian of the j = 1,2 layer, and

Hi=-t. > al,.bomn+he. (3.30)
m,neBL

is the inter-layer hopping term, with a} <b;r) the creation operators of a particle in
sublattice A (B) in the (m,n) unit cell of the jth layer. The effect of an applied
gate voltage within the bilayer region is modeled by V;. The BL restriction in the
summation stands for sites belonging to the bilayer region.

ze o o [0 o o o
(@) m=e @ @ ® ° ®
ve e 0 6 & 6 (0l 6 @ o 0 o @
HO‘® ® ® 0 S B 0 0 e e e ®
0 1 2 e m m+1 p p+1
20 © @ 9 e e o o o o
(b) ™=¢ %% me e e
10,0 0 0 O @ e ¢ o
SRR

Figure 3.5: 1D effective chain obtained after Fourier transform, as described in the
main text: (a) The 1 — 1 configuration; (b) the 1 — 2 configuration.

After Fourier transformation in the y—direction, the stationary states of the 1D
effective chain for the two cases shown in Fig. (3.5) can be written as

) = 32 D (Vmhal e Ymbl ) 10} (3:31)

7j=1,2
with & the wave number along the y direction. Within the monolayer (lead) region,

we define the column vector ¥4 (m) = [ wiﬂ m ,wﬁ’i } which obeys the transfer

matrix equation (see Appendix 3.4),

U@ (m 4+ 1) =T, 0, (m) | (3.32)
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where T, is given by

I T [ 23
T, = ar l € € |2 ] ) (3.33)

with n =t (1 +eik> and & = t. For the bilayer region (1 < m < p) we define
T
W, (m) = [ Ul (m) 9% (m) } obeying

W, (m + 1) =Tpr ¥ (m) s (334)

where the transfer matrix Tpgy, is given by

—> —en 0 0
* 2 2
1 €1) e — ¢ 0 —t
Tpr = — 2 3.35
BL = g |t lZ' M%Q P —en (8:35)
en* 2
—tL %ty et g
The amplitudes at the left and the right interfaces can be related by,
Uy (p+1) = (Tpr)” i (1) (3.36)

and by the boundary conditions: w(’fz = w;?—fl,k = 0 for the 1 — 1 case, and wé,% =

@/}f_&m = 0 for the 1 — 2 case, as can be seen in Figs. 3.5(a) and 3.5(b). With these

boundary conditions one obtains the matrix M;_,; (o) relating the layer 1 in the left
to layer 1(2) in the right,

2
7,7 (p+1) = My L (1) (3.37)
where M _,;(9) are defined from Eq. (3.36) in Appendix 3.4.
Within the semi-infinite leads, Eq. (3.32) can be solved by assuming the ansatz
U2 (m) = ax NT7IGE+ a AT

with ']I‘LC,;'E = )\i(,f. The eigenvalues A+ and the eigenmodes C,;t are explicitly
derived in Appendix 3.4. In the leads we only consider propagating modes, so that
|A\| = 1. The eigenmodes are thus interpreted as left-moving, ¢ i and right-moving,

Cf , modes, according to their group velocity (see Appendix 3.4). We then use the
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3.3 MBM in 2D: Transmission across a bilayer graphene region

C,i,t eigenbasis to write the wave function in the leads,

U (m) = APIGE A s, m<d (3.38)

U, (m) = AT G L mesp, (3.39)

from which we define transmission and reflection coefficients, respectively 7 and r.
The transmission and reflection coefficients are given by,

Tk

lgﬂ ] = U_1M1—>1(2)U[ ! ] ; (3.40)
where U= [ ¢, ¢ |-

The transmission probability is then defined as T (e, k), = 1 — |rx|? = |7%|?, and the
overall transmission per transverse unit length is given by,

T(e) = % /_7; dkT (e, k) . (3.41)

Using the Landauer formula [147], we find the current per transverse unit length
across the bilayer region,

1= [deT (@) [f (e = o) = f (e = )] (3.42)

where f(e) is the Fermi distribution function and py(pug) are the chemical potential
in the left (right) lead (in the following we assume uy > pg). Assuming p = pg =
R + 0p, with o < p, we can linearize the Landauer formula [108] to obtain the
conductance G = edI /o, which can be written as

o _
G (1) = —Go / deT (e) f(;“), (3.43)
€
where Gy = % is the conductance quantum. For a system at zero temperature,

Eq. (3.43) can be simplified to G = GoT ().
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Figure 3.6: Transmission per transverse unit length near the Fermi-level for the
1 — 1 (blue), 1 — 2 (red) geometries plotted for p = 200 (a) and p = 1500 (b).
The transmission for an infinite graphene layer (black dashed-dotted) and for an
infinite bilayer (green dashed) are plotted for comparison. Inset: Transmission for
the whole bandwidth for p = 200.

3.3.2 Transmission through a bilayer graphene region

In this section, we compute the transmission amplitudes for the 1 — 1 and 1 — 2
cases. A simplifying feature is that, for both cases, there is only one propagating
incident mode associated with given €, hence the corresponding transfer matrix of the
leads is a two by two. Note that, due to electron-hole symmetry, T' (e, k) = T (+e, k).

Figure 3.6 shows the conductance for energies near the Fermi-level for the 1 — 1
(blue) and 1 — 2 (red) geometries and for two values of the scattering region size,
p = 200, (a), and for p = 1500, (b). For comparison, the conductance through an
infinite system consisting of a single (black dashed-dotted) or a double (green dashed)
graphene layer is also depicted. Note that, in these cases the total transmission
in Eq. (3.41) is simply determined by the dispersion relation. Therefore, for low

1/2

energies it behaves as o |¢| for the single layer and as o |e|"/“ for the bilayer.
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3.3 MBM in 2D: Transmission across a bilayer graphene region

For both geometries, the low energy conductance is almost twice as low as for pristine
graphene and vanishes faster, with a o |5|2 scaling behavior. The inset of Fig. 3.6(a),
depicting G for the all energies within the bandwidth, shows that, even away from
the Fermi-level, G never attains the value of the pristine case.

Another pronounced low energy feature of the transmission is the sudden increase
for energies around ¢,. Thus, as also seen in the pristine double layer case, the
conductance resolves the appearance of the higher energy band, after which two
propagating modes become available for transport within the bilayer region.

The differences between the 1 — 1 and 1 — 2 geometries are more pronounced for
higher energies. At low energies, they can be completely masked out by the finite-
size effects that yield the characteristic jumps in the conductance, Fig. 3.6(a). For
larger values of p, when the finite-size oscillations are reduced, the 1 — 1 case is
seen to have a higher conductance. This is to be expected since in this case, the
transmitted electrons do not have to change layer, which is suppressed for low values
of t).

3.3.3 Conductance through a gated bilayer graphene region
3.3.3.1 Homogeneous case

In this section, we study the effect on the transmission of a gate voltage applied
within the bilayer region. We assume that only one of the layers is affected by the
gate while the other remains at zero voltage. We study the cases for which the voltage
of the lower, V1, or upper layers, Vs, is 0.04t or ten times larger 0.4¢, which correspond
to typical values of gate voltages that can be implemented experimentally. Fig. 3.7
shows the conductance through a gated bilayer graphene region in different cases
together with a plot of the band structure of the bilayer and the single layer leads
around zero energy (computed assuming an infinite system). Fig. 3.7(b) depicts the
1 — 1 geometry for V; = 0.04t and Vo = 0 (blue) and for the swapped voltage
configuration V4 = 0 and Vo = 0.04¢ (green). The most pronounced features are
the suppression of transport for ¢ € {0,|AV|} and a jump in the conductance for
e &~ |AV] seen in 3.7(b) blue, which is not present when the gate voltages are
swapped in 3.7(b) (green). The illustrations of the band structures in Figs. 3.7(a)
and 3.7(c) help to understand this behavior. The effect of the gate voltage is to open
up a gap in the dispersion relation of the bilayer. Moreover, while for V; = V5 = 0,
the wave-function’s amplitudes are equally distributed between the two layers of the
bilayer system, for finite voltages their distribution changes drastically near the gap
edges (valence band maximum and conduction band minimum). The color coding
in Fig. 3.7(a) and 3.7(c) shows the localization of the wave-function in the upper
or lower layers. This energy-dependent layer distribution can simply explain the
conduction jump: in the case depicted in 3.7(a), after passing the energy gap the
system has suddenly available a large density of transmission modes within the lower
layer. Such matching conditions (same color, at a given energy, for the leads and
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Figure 3.7: Conductance for a gated bilayer region. Upper panels refer to the
geometry 1 — 1 (a-c) and lower panels to 1 — 2 (d-f). (b) Blue and (e) red
correspond to Vi = 0.04t and V5 = 0, computed for p = 400. For (b) green and (e)
red: the values of the voltage are swapped, i.e. V4 = 0 and Vo = 0.04¢. Notice that
the geometry 1 — 2 is unchanged under swapping the gate voltage. The unbiased
case V1 = V4 = 0 is depicted as a gray line for comparison. The dispersion relations
at low energies, computed for an infinite system, corresponding respectively to the
setups (b) blue , (b) green, and (e) red are given in (a), (c), (d) and (f). In each
panel, the central dispersion corresponds to the bilayer region and the color (and
the circle’s radius) encodes whether the wave-function is localized in the bottom
(blue and larger radius) or in the upper (red and smaller radius) layers. The left
and right dispersions correspond to a single layer and follow the same color coding.
Inset: The height of the jump in the conductance as a function of gate voltage.

the bilayer region) never arises in the opposite case, 3.7(b) green, as can be seen
in 3.7(c). The height of the jump as a function of V; is shown in 3.7(b) as an inset.
Figs. 3.7(e) depicts the transmission for the 1 — 2 geometry. This case is symmetric
under the swapping of the voltages. In this case Figs. 3.7(d) and 3.7(f) show that
the perfect matching conditions seen in 3.7(a) are never attained and thus no jump
in conductance is observed.
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Figure 3.8: (a) Conductance for the gated bilayer region computed for p = 400
for the 1 — 1 (blue) and 1 — 2 (red) geometries with V3 = 0.4t and Vo = 0
The inset depicts the opposite voltage configuration: V3 = 0 and Vo = 0.4¢.
(b) The dispersion relations at low energies, computed for an infinite system,
corresponding to the setup (a). The central dispersion corresponds to the bilayer
region and the color (and the circle’s radius) encodes whether the wave-function is
localized in the bottom (blue and larger radius) or in the upper (red and smaller
radius) layers. The left and right dispersions correspond to a single layer and
follow the same color coding.

The conductance attained when the gate voltage is increased by one order of mag-
nitude is depicted in Fig. 3.8(a) for the two geometries 1 — 1 (blue) and 1 — 2
(red) for Vi = 0.4t and V5 = 0. The inset shows the voltage swapped case, V3 = 0
and Vo = 0.4¢. Fig. 3.8(b) depicts the band structure, with the same color coding as
before, corresponding to the case 1 — 1 and Vi = 0.4t and Vo = 0. An interesting
feature of the transmission in Fig. 3.8(a) is that there are two regions where the
conduction seems to vanish. One, at higher energies, corresponds to the band-gap
and thus the suppression of the conductance is not surprising. However, the second
arises within a region where the density of states is finite. Again, the plot of the
band structure in Fig. 3.8(b) can simply explain this effect: the gap in conductance
corresponds to a region where the conducting states with support on the lower layer
become gapped, so although the total density of states is finite, there are no states
contributing to transport.
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3.3.3.2 Inhomogeneous case: single domain wall
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Figure 3.9: Conductance for the bilayer region with a gate voltage domain wall in
the middle, computed for p = 400 in the 1 — 1 (blue) and 1 — 2 (red) geometries
with Vp = 0.04¢.

In this section, we study how the transmission is affected by the presence of an
inhomogeneous gate voltage. We consider the simplest case where a gate voltage
domain wall is present in the bilayer region. We assume that the local potential at
cell m, layer j (see Fig. 3.5) is given by V,,, ; = Vp© [(—1)j (m— g)], with O(z) the
Heaviside function. Therefore, the potential difference on the left half (m < p/2) is
Vi — Vo = Vp while on the right half (m > p/2) it is Vi — Vo = =V}, which implies
a domain wall right at the middle of the bilayer region. This domain wall struc-
ture is known to support confined states, localized in the transverse direction and
extending along the wall [141], with important consequences regarding transport in
the direction of the wall [50]. The impact of a domain wall on charge transport
in the perpendicular direction has not been studied before and is analyzed in the
following. In Fig. 3.9 we show the conductance for the geometries 1 — 1 (blue)
and 1 — 2 (red) for Vj = 0.04t. The two geometries now have very similar con-
ductance, which contrasts with the case when no domain wall is present, depicted
in Figs. 3.7(b) and 3.7(f). A noticeable difference is the absence of the jump in
conductance observed for the 1 — 1 geometry in Fig. 3.7(b). Since the domain wall
reverses the layer distribution of the wave-function’s amplitudes, the perfect match-
ing conditions seen in 3.7(a) are never attained and thus no jump in conductance is
observed. We conclude that the domain wall erases the difference between the two
geometries. As shown in Ref. [141], the states confined at the domain wall originate
one-dimensional bands dispersing inside the bulk gap. In Fig. 3.9 the impact of those
states is unnoticeable, as a well resolved gap of order ~ V; is still apparent. This
can be understood as a consequence of transverse confinement. At low energies, the
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3.3 MBM in 2D: Transmission across a bilayer graphene region

wave function of these states has a decay length of the order § ~ agt/\/Vot1 > ao,
where ag is the carbon-carbon distance [141]. For Vj = 0.04¢ the decay length is
8 =~ 8ag, much smaller than the distance [ = 200ag between the domain wall and
the edges of the scattering region. Therefore, for a single domain wall, these states
do not contribute in propagating charge across the bilayer region.

3.3.4 Conductance through a microstructured biased bilayer graphene
region

We now generalize our study to multiple domain walls. Our aim is to show how
these microstructures, that are now routinely fabricated, can be used to engineer
the transmission. We consider the potential of the previous section generalized for
a periodic gated region of size [, V;,, 1 = Vp©; [m], where

1 if 2kl/ap <m < (2k+1)1/ag for k € Z
0 if else

)

O;[m] = {

and Vi, 2 = Vo (1 — ©;[m]). As a function of [, there are two qualitatively different
cases that we consider in the following: a large domain length, [ > 3, where the
edge modes along the domain wall do not hybridize and thus do not contribute
to the transport properties; and a small domain length, | < (5, for which there is
hybridization of edge modes and thus transport for energies within the bulk gap
becomes possible. Figure 3.10 shows the evolution of the conductance curves with
[. We consider, as before, Vy = 0.04¢ corresponding to § ~ 8a. In Fig. 3.10(a) we
show the conductance for | = 80ag > (. As for the | = p/2 case in the previous
section, the differences between the two geometries are not significant and there is
almost no conductance within the gap, for e € {0,Vp}. Figure 3.10(b) depicts the
conductance for a smaller value of | = 20ag. Here, there are already some states
within the gap that contribute to transport which result from the hybridization of
the edge modes along the domain walls. In Fig. 3.10(c) we set [ = 5ag, for which the
domain wall states are already fully hybridized. Note the striking similarity between
the low energy conductance and that obtained for an unbiased bilayer region, shown
in Fig. 3.6 and as a background in Figs. 3.7(b-c) and 3.7(f-g). It is clear that the
effect of the gap has been completely washed out. At higher energies, however, the
system still shows the conductance asymmetry typical of a gate biased bilayer region
[see Figs. 3.7(b-c) and 3.7(f-g)].
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Figure 3.10: Conductance for the 1 — 1 (Blue) and the 1 — 2 (red) geometries in
the presence of multiple domain walls separated by [ lattice spacings, computed
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3.3.5 Results for current at finite temperature and device application
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Figure 3.11: Current as a function of gate voltage for the setup of Fig. 3.7(b) as
a function of Vi (for Vo = 0) computed for p = 200 and different values of the
temperature for the 1 — 1 (a) and 1 — 2 (b) geometries. For ease of reading the
curves are equally shifted.

In this section, we study the viability of an integrated nano-transistor based on the
1 — 1or 1 — 2 geometries. For this device, one aims to maximize the current
ratio between the “on” and “off” currents, I,, and I, passing through the termi-
nals, when changing between two values of the applied gate voltage. Due to its low
resistance and versatility, graphene is a natural candidate for transistor implemen-
tations. However, due to the nature of its band structure, achieving a high on/off
ratio is a technical challenge especially at finite temperature. We exploit the non-
linear behavior of the conductance obtained with the setup of Fig. 3.7(b) to optimize
the Ion/Iog and study its behavior at finite temperature. Figure (3.11) shows the
logarithmic plot of the current for the 1 — 1, panel (3.11)(a), and 1 — 2, panel
(3.11)(b), setups for different temperatures as a function of gate voltage V1. The
chemical potentials on the left and right leads were fixed at the experimentally rea-
sonable values of ur, = 0.1¢ and ug = 0. In the gate voltage interval 0 < Vi < 0.2t
this setup can achieve 50 < Io,/Iog < 200.
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3.3.6 Chapter conclusion

In this chapter we have studied the conductance in hybrid monolayer-bilayer-monolayer
structuteres both in 1D, chain-ladder-chain, and in 2D, for the case of honeycomb
lattice. We observed resonant transmission across a ladder where the number of
oscillations changes with ladder length, p. These Fabry-Perot like fluctuations are
reproducible. They are maybe due to the mismatching between the lead and bi-
layer wavefunctions at the interfaces. We have also studied the conductance across
a graphene bilayer region for two different positions of the single layer leads: the
case when the leads connect to the same layer, the 1 — 1 configuration; and the case
when the leads connect to different layers, 1 — 2 configuration. We have worked in
the limit of an infinitely wide scattering region, to avoid edge effects, and developed
a transfer matrix, tight-binding based methodology which allows going away from
linear response. We have found that, when there is no gate bias applied to the bilayer
region, the two setups, 1 — 1 and 1 — 2, have a similar behavior, with a slightly
higher conductance in the 1 — 1 configuration. The presence of a bias gate voltage
differentiates between the two configurations. Both of them develop a conductance
gap which mimics the spectral gap of a biased bilayer, but only the 1 — 1 configu-
ration shows a pronounced conductance step at one of the gap edges, extending the
results obtained in the continuum limit [43] and for ribbons of finite width [144].
This step is not present if the gate polarity is reversed. Introducing a domain wall
in the gate bias applied to the bilayer region, the conductance step disappears and
the two configurations, 1 — 1 and 1 — 2, behave again in a similar way. We have
also studied the effect of a gate bias with a multiple domain wall microstructure
applied to the bilayer region. When the separation between domains is much larger
than the localization length of the states confined at the domain walls, the multiple
domain walls states behave independently and the result is similar to the case of a
single domain wall. On decreasing the separation between domain walls, the local-
ized states start to hybridize and a finite conductance starts to appear inside the
gap. At even smaller distances, the gap is completely washed out, and only at higher
energies a conductance asymmetry characteristic of a gate biased bilayer region is
present. Finally, we have studied the viability of an integrated nano-transistor based
on the 1 — 1 or 1 — 2 geometries. For experimentally reasonable chemical potential
difference (~ 0.3 eV) and gate voltage interval (from 0 up to ~ 0.6 V) we have found
that this setup can achieve 50 < I, /Iog < 200. Summing up all the finds, it is clear
the transmission through a bilayer region can be manipulated by a gate bias in ways
not previously anticipated.
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3.4 Chapter Appendix

A. The transmission through a bilayer region

Here we detail the transfer matrix method used to obtain the transmission coefficient.
We apply Fourier transformation,

T

1
ar,. bT-m = — exp(ik:n)atmn bT-mn ,
Js ,k(J,k) /Ny; J.m, (J,,)
to the tight-binding Hamiltonian (3.28) and obtain

Hyy = =3 aj o [00jm + Ebjmern] (3.44)

j7m
BL
+ Z Vj [a;,m,k‘ajvmvk + b},m,kb‘jvm’k} + H.c.
7,m

BL
— tJ_ Z a17m7kb27m7k + H.c.
m

where n and £ are defined in the main text.
By multiplying H|vx) = ex|vr)by (m, 1, u|, for a given lattice point (m, [, u), where

m stands for position, [ for layer, and u = A, B labels sublattices, one obtains, for
the leads where m < 0 or m > p + 1,

Al B1 Bl
Ezzbm,k = _nwm,k - £¢m+l,k

B1 Al Al
eqzz)m,k = _n*wm,k - g*wm—l,k’

with wﬁff e = (m, g, lhy). We rewrite the latter equations in a matrix equation form
as

Al Al
| P T

which is equivalent to Eq. (3.32).

Similar steps can be taken to build the transfer matrix for the bilayer region where
1<m<p,
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(ex — Vi) Uiy = =i — EUPY 1 — tLh,
(er — V1) il = =il — €0t 14

(ek — Vo) ity = = — EUma i

(ek = Vo) i = =" Uik — E¥man — L1y

from which we obtain Eq. (3.34) in matrix form.

By imposing the boundary conditions for setup 1 — 1, and defining M = (Tpgp)?,
we can re-write Eq. (3.36) as

Al wAl
l " ] =M l W ] ; (3.46)
p+1,k 1,k

or equivalently,
U (p+1) = My W (1) (3.47)

where

M _
217 My, | My Mgy — MggMy;  MgpMyy — MipyMygo

1 [ My Myg — MygMy;  MioMyy — MijyMyo ]
Using the boundary condition for the setup 1 — 2, we obtain, after similar steps,

VE(p+1) =My (1), (3.48)

where

Miyy = ——
=2 MoyMy1 — MygMar  MagMyo — MysMoo

1 [ MasM31 — MzaMa1  MayMszy — MizaMoo ]
Moy '

The last step is to represent wave amplitudes \1111(2) (m) in the eigenbasis of the
transfer matrix of the leads. The characteristic equation for the eigenvalue problem
Tr(r = A(, reads,

(&) X = (22 = [&l? = Imil?) A+ & = 0, (3.49)

yielding two eigenvalues,

1
do= g (Pl -l @ ) @ a)) (350)
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where 01 = |&g| £ |nk|, corresponding to the normalized eigenvectors

1 1
GF=— _ _ (3.51

A mode with positive (negative) group velocity is considered to be the right-moving(+)
(left-moving(-)) mode. Recalling that in the leads |A\| = 1 and using Bloch theorem
for the Pristine graphene A = €'4(%¢) where ¢ (k,¢) is the conjugate momentum in
aj (propagating) direction, and plugging the latter expression into Eq. (3.49) we
obtain the mode group velocity in the propagating direction as:

de -1 N
= g T — Im (&miA (k,€)) - (3.52)
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4 Quantum transport through a twisted
bilayer graphene region

4.1 Outline of the chapter

This chapter continues the discussion of the previous chapter on the transport prop-
erties in monolayer-bilayer-monolayer (MBM) structure. Here the bilayer central
region is twisted bilayer graphene (tBLG). Following the introductory section 2.3.2,
small angle rotation faults, may naturally exist in graphite crystals as a result of
the weak van der Waals (vdW) interaction of the layers. This relative rotations
are manifested via the long-periodic Moiré patterns. It is therefore worthwhile to
consider transport in the presence of such patterns. In general, such patterns do
not lead to a regular lattice nor a well-defined reciprocal lattice as translational in-
variance is broken. In the absence of Bloch’s theory, most computation tools that
take the advantages of translational symmetry to simplify the calculations are no
longer available. Even, semi-analytical approaches, have limited validity and need
to be validated against numerical analysis. Thereforethe foundation of this chapter
is mainly based on numerical analysis. For some specific twist angles we also use
an approximation method to provide a better picture of transport in our hybrid
structure.

Similar to previous chapter, we outline some important features and assumptions
valid for our system,

1. Monolayers are semi infinite zigzag graphene ribbons with width, W.

2. Monolayers are metallic and act as carrier reservoirs or contacts which we refer
to as leads.

3. Bilayer region is essentially made by stacking of two monolayer flakes with a
relative rotation, 6, of the top layer with respect to the bottom layer.

4. In order to keep the number of atoms in the bilayer region almost constant for
different rotations, the central region is in a disk shape, see Fig. 4.1.

This chapter is based on both unpublished work and on the following publication
by the author:

e Charge transport in twisted bilayer graphene, Hadi Z. Olyaei, Bruno Amorim,
Pedro Ribeiro, and Eduardo V. Castro to be submitted soon.
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Chapter 4 Quantum transport through a twisted bilayer graphene region

The structure of the chapter is as follows: Sec. 4.2 includes an introduction to the
twisted bilayer graphene and and a literary survey. In Sec. 4.3, we we introduce
the model and describe the methodology used to calculate the conductance and
the DOS. In Sec. 4.4, some representative results of transmission are presented for
different angle regimes. Section 4.5 contains a short summary and the conclusions.

4.2 Transport in monolayer-twisted bilayer-monolayer hybrid
structure

We study the conductance across a twisted bilayer graphene coupled to single-layer
graphene leads. We find a strong angle dependence with three qualitatively different
regimes. For large angles (# 2> 10°) there are strong commensurability effects. For
large incommensurate angles, the two graphene layers effectively decouple. Large
commensurate angles, corresponding to a small unit cell, appear as sharp features
in the conductance. For intermediate angles (3° < 6 < 10°), we find a correlation
of the conductance features with the twist angle, which suggests that conductance
measurements can be used to determine the twisting angle. For small twisting
angles (1° < 6 < 3°) we find that commensurate effects are washed out and the
conductance becomes a smooth function of the angle. Conductance can be used to
probe the almost flat bands appearing in this regime. Our results agree with the
recent experimental findings where zero conductance regions have been correlated
with gaps in the density of states.

The discovery of both correlated insulating phases [135] and superconductivity [134]
in twisted bilayer graphene (tBLG) is a paradigmatic example of tunability in
two-dimensional quantum systems. By changing the twist angle between the two
graphene layers a strong renormalization of the Fermi velocity can be achieved,
with small velocities occurring for smaller angles [34]. In the small angle regime,
0 < 1°, extremely narrow bands appear at low energies, with the Fermi velocity
vanishing at specific magic angles when the bands become flat [95, 57, 96, 91, 90].
It is in this extremely narrow band regime that unexpected insulating and super-
conducting states are observed, pointing to electron correlations as key players.
This triggered an intense research interest both from the theory [148, 149, 150, 151,
152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,
169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185,
186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197] and the experimental
[198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209] sides. The flat band
regime induced by a finite twist has also been explored experimentally in graphene
double bilayers [210, 211, 212] and trilayers [213, 214], and is also relevant to other
two-dimensional materials [215, 216].

The rotation between layers introduces a long-wavelength modulation of the lattice
structure called Moiré pattern [72]. For small angles, the Moiré wavelength is much
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4.2 Transport in monolayer-twisted bilayer-monolayer hybrid structure

larger than the carbon-carbon distance, with the ratio growing as 1/6. This rep-
resents an additional difficulty regarding the theoretical description of the system,
since a single Moiré may contain several thousands of atoms in the low angle regime.
While the minimum Wannier-like tight binding parametrization describing the nar-
row band sector on the Moiré scale is still debated [217, 149, 148, 155, 158, 186],
the original atomic tight binding model rests a faithful description, despite the large
unit cells at smaller angles [95, 57, 91, 90, 218, 35].

Transport measurements in tBLG have been crucial to characterize the small angle
regime around the neutrality point. The existence of transport gaps delimiting
the Moiré band energy sector have been observed in Refs. [219, 31, 198] for tBLG
with 6 ~ 2°. These are the so called superlattice induced gaps, observed when the
Moiré bands are completely occupied, for a carrier density n = +ng, or fully empty,
n = —ng. Conductance measurements as a function of n have been performed for
0 =~ 1.1°, close to the first magic angle. Apart from the gaps at n = +ng, insulating
behavior was detected at half-filling, n = +ng/2, which cannot be explained within
the single particle picture [135]. By changing the carrier density around n = 4+ng/2,
the resistance drops to zero signaling the transition to a superconducting state for
temperatures below 7'~ 1.0K [134, 199]. Measuring the conductance allowed also
to detect insulating behavior at the fractional fillings n/ns = 1/4, 3/4 [199, 200, 209,
220], and for a larger angle, 6 ~ 1.27°, after applying pressure [199]. Furthermore,
transport measurements are sensitive to the atomic reconstruction seen at smaller
angles, § < 1° [221], and transport have been an essential tool to inspect for similar
physical behavior in twisted double bilayers [212, 210]. Conductance measurements
have also been employed recently to analyze the role of Coulomb screening in both
insulating and superconducting phases of tBLG [222].

The transport properties of tBLG have been studied theoretically in the linear regime
using the Kubo formalism in Ref. [223]. The conductivity due to small disorder
broadening of the energy states has been obtained as a function of the twist angle.
A finite concentration of vacancies was shown to suppress the conductivity in a wide
energy region. In Refs. [224, 225], impurity and phonon scattering, with particular
emphasis on the temperature dependence of the resistivity, have been discussed. In
the ballistic regime, an earlier work addressed the transport properties of nanorib-
bons with a large angle tBLG section [226]. The importance of edge effects have
been put forward due to the small width of the considered nanoribbons. Recently,
a wider single layer graphene nanoribbon with a twisted graphene flake on top was
studied in Ref. [227]. An interesting orbital magnetic structure have been predicted
at finite source-drain voltage applied only to the graphene nanoribbon. This effect is
attributed to the presence of counterflow currents first discussed in [95]. The effect
of a spatially inhomogeneous twist angle - twist disorder - in transport properties
has recently been considered in Ref. [228]. However, the ballistic conductance of
tBLG in the full twist angle regime and for both commensurate and incommensurate
structures, to the knowledge of the authors, has not been considered before. Given
the importance of conductance measurements to study the physics of this system,
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Chapter 4 Quantum transport through a twisted bilayer graphene region

usually at very low temperatures using high quality samples, knowing the behavior
of the conductance in the clean, ballistic regime is of paramount importance.

In this chapter, we address the transport properties of tBLG in the ballistic regime
from large to small twist angles. The conductance was computed both for commen-
surate and incommensurate angles. In the large angle regime, the results are shown
to be sensitive to commensurability effects. For intermediate angles, we find con-
ductance features correlating with the position of the van Hove singularities in the
density of states (DOS), which is also computed. In the small angle regime, com-
mensurability effects completely disappear. Superlattice induced gaps are clearly
resolved, in agreement with experiments.

4.3 Model and methods

Figure 4.1: Twisted bilayer setups used in this work: (a) 1 — 1 and (b) 1 — 2
setup. Vanishing blue color denotes the beginning of semi-infinite leads. Lateral
views are shown under each setup. The typical linear size of the scattering region
is hundred of nanometers.

In order to study the conductance of tBLG as a function of twist angle we define
two different setups, schematically shown in Fig. 4.1. In the first setup, shown in
Fig. 4.1(a) and denoted 1 — 1, a graphene ribbon is overlaid by a disk of single layer
graphene. The diameter of the disk is the same as the width of the ribbon. The
orientation of the disk is chosen so that the two layers define a circularly shaped
tBLG region with the desired twist angle. The second setup, denoted 1 — 2, is
shown in Fig 4.1(b). In this case we use two semi-infinite graphene ribbons with
overlapping ends. Semi-circular edges at the end of each ribbon define an almost
circular tBLG region. By adjusting the relative orientation of the ribbons we fix
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the twist angle. In both setups, the remaining of the monolayer ribbons define
semi-infinite leads.

We model p, electrons in tBLG through a microscopic tight binding Hamiltonian
reading H = Hy + Hs + H |, where H;, with [ = 1,2, is the Hamiltonian for a single
layer, and H | is the interlayer coupling. For the single layer Hamiltonian we write,

H=—t Y o,R)agR]), (4.1)
R, R}
\Rl—RﬂSa
where c;r o« (Ry) creates an electron at the Bravais lattice position Ry, of layer [ and

sublattice &« = A, B, and the constraint [R; — Rj| < a, with a = 1.42 A for the
carbon-carbon bond length, ensures nearest neighbor hopping in each layer. The
interlayer coupling is written as H, = His + Ho1, with

Hip= Y 11 (Ri,Ra)cl, (Ri) o (Ra) (4.2)
Ri,Re

where t%ﬂ (R4, Rp) is the interlayer hopping in the tight binding basis.

To parameterize the interlayer hopping in Eq. (4.2), we use the two-center approx-
imation and assume t‘fg (Rq1,R2) depends only on the distance r between the two
p.-orbitals,

#55 (R1,Ra) = 135 (1),

with r?2 = dﬁ + di for an interlayer separation d; = 3.35 A and an in-plane projected
distance d” = R1 + 71, — R2 — 7 3 between, where 7;, are the positions of the
orbital centers in the unit cell of each layer. Since the sites in A and B sublattices
correspond to the same p, orbital, we further assume that the interlayer hopping
does not depend on the sublattice index, t(féB (r) =t (r). Using the Slater-Koster
parameterization [229], we write

t1 (r) = cos® (7) Vippo (1) + sin® (7) Vopre (1) (4.3)

where the angle v is such that cos? (y) = d% /r?, and following Ref. [230] the spatial
dependence of the parameters is given by
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ol (2]
Vppre (1) = — texp [q,r <1 - Zﬂ . (4.4)

From the second neighbor intralayer hopping, ¢’ = 0.1, we fix ¢, = 3.15, and
assuming ¢r/a = q,/d, yields q, = 7.42 [72]. For the remaining parameters, we
consider t = 2.79¢eV and t; = 0.35¢€V.

To model the interlayer coupling H |, we retain hopping from each site in layer 1
to the closest sites of layer 2 in either sublattice, and vice versa, as long as |R; —
Rsy| < 0.9a. Including further distance interlayer hopping terms does not alter the
description of tBLG in a fundamental way [57]. One advantage of the truncation we
have chosen is that the first magic angle occurs at a slightly larger value, 6* ~ 1.6°,
thus for a slightly smaller Moiré cell.

The conductance, G, is computed within the Landauer approach. At zero tempera-
ture and in the linear regime, the conductance is proportional to the transmission,
T (€), for a system with chemical potential e. We define T (¢) = T (¢) /w, where w is
the width of the leads, and write the conductance as G = GoT (€), where Gy = %
is the conductance quantum. For both setups shown in Fig. 4.1, the circular tBLG
region with diameter w defines the scattering region, which, by construction, is con-
nected to two semi-infinite leads of width w. We compute the transmission, 7" (¢),
from the left lead to the right lead using the Kwant package [52]. Conductance cal-
culations are performed with a scattering region containing A" = 3.77 x 10° carbon
atoms for twist angles 2° < 6 < 58°. For structures with smaller twisting angles,
0 <6 < 2°and 58 < 6 < 60° the size is four times larger, N' = 1.56 x 10% carbon
atoms. The number of Moiré cells in the scattering region ranges from = 150 for the
smallest angles to several thousands for larger angles. DOS calculations for incom-
mensurate angles are done based on the kernel polynomial method, also provided in
Kwant. In this case, the size of the tBLG circular region was kept at N = 1.56 x 106
carbon atoms for angles in the range 2° < 6 < 58°, and N' = 4.6 x 10 carbon
atoms for smaller angles, 0 < 6 < 2° and 58 < 0 < 60°. The DOS for commensurate
structures was obtained through exact diagonalization.

4.4 Results and Discussion

In this section, we present results for the conductance through a tBLG region as a
function of the twist angle between the two layers for both setups shown in Fig. 4.1.
We start with the analysis of general features regarding the twist angle dependence,
and then move on to discuss three dinstinct regimes: large, intermediate, and small
angles.
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4.4.1 General features

The conductance, G, of tBLG as a function of twist angle, 8, for an energy window
e € [—t,t], is shown in Figs. 4.2(a) and 4.2(b) for the two setups 1 — 2 and 1 — 1,
respectively. Generally, the conductance is lower at lower energies, increasing non
monotonously with energy for both setups, irrespective of the angle. For § = 0°, we
recover AB-stacked bilayer graphene where this general trend has previously been
observed [231]. This behavior occurs even if the scattering region is replaced by
graphene itself, in which case it is totally determined by the increasing number of
channels in the leads.

G/G,
0 0.2 0.4 0.6

-1 -0.5 0 0.5 1
e/t

Figure 4.2: Density plot of the conductance, G, as a function of twist angle, 6, and
energy, ¢, for the two setups considered in this work, 1 — 2 (a) and 1 — 1 (b).
Panel (c) shows G vs ¢ for three particular angles, §# = 3°, 13° and 23°, depicted
as dashed horizontal lines in panel (b).

In Fig. 4.2(c) the conductance of the 1 — 1 setup is shown as a function of energy
for three representative twist angles [corresponding to the three horizontal dashed
lines in Fig. 4.2(b)]. Appart from the general trend of increasing conductance with
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increasing energy, characteristic features of tBLG for small, intermediate, and large
angles can be appreciated. For small angles, the conductance is suppressed in a
wider energy region around € = 0 when compared with the other two angles. This
low energy behavior is associated with the flatband regime in tBLG, and will be
further discussed below. Intermediate and large twist angles have similar G(g) at
low energies. As will be shown below, at higher energies the intermediate angle case
first deviates from the large angle behavior at the characteristic energy of the van-
Hove singularities in tBLG. In the large angle regime, particular features of tBLG
are better appreciated as a function of twist angle. A series of peaks and deeps can
be seen in Figs. 4.2(a) and 4.2(b). As will be discussed below, these features appear
at commensurate twist angles.

4.4.2 Large twisting angles

0=27.7958°
0.4 -
<
@)
0.2 -
0 C (a) 1 I 1 C 1 1 1
-1 -0.5 0.5 1-1 -0.5 0.5 1
e/t e/t

Figure 4.3: Conductance, G, as a function of energy, ¢, for the 1 — 1 (blue) and
1 — 2 (red) setups computed at two large angles: an incommensurate structure
with twist angle # = 30° (a) and a commensurate strucutre with § = 27.7958°
(b). The black dashed curve is the conductance of graphene.

For large, incommensurate twist angles and low energies (¢ < t), the two layers
become effectively decoupled: the conductance of the 1 — 1 setup approaches that
of monolayer graphene, while for the 1 — 2 setup it is strongly suppressed as the
electrons need to tunnel to the other layer to conduct. This can be seen in particular
for = 30° in Fig. 4.3(a), where we also show the graphene conductance as a dashed
line for comparison. The low energy decoupling of large angle tBLG has also been
obtained with the Kubo formalism within the linear response regime in Ref. [223].
However, at higher energies, deviations from the single layer conductance for the
1 — 1 setup and an increasing conductance for the 1 — 2 setup can be seen in
Fig. 4.3(a). This indicates that there is always some remnant coupling even for the
largest angles, in agreement with the observations of Ref. [232].
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The 8 = 30° tBLG considered above is an example of an incommensurate structure
where no true Bravais lattice can be identified, despite the presence of the Moiré
period. In particular, for the twist angle # = 30°, tBLG has been identified as a
new type of quasicrystalline lattice with 12-fold rotational symmetry [233, 234]. For
commensurate large angles, however, the conductance of tBLG behaves differently.
This can be seen by directly inspecting Fig. 4.3(b), where we show the conductance
G(e) for a commensurate angle close to 8 = 30°. For the 1 — 1 setup, G(e) starts
to deviate from single layer graphene at lower energies, and for the 1 — 2 setup, the
low energy conductance is not suppressed as for incommensurate angles.

0.1

G/G,

0.05

0.04

0.02

(Atoms/u.c.)’

0.1
0.09

G/G,

50 100 200 400 600 800 1000
Atoms/u.c. Atoms/u.c.

Figure 4.4: Conductance, G, as a function of twist angle, 6, for the 1 — 1 (blue)
and 1 — 2 (red) setups calculated at the energy ¢ = 0.225¢ (a). The black grey
vertical lines depict the position of commensurate angles, as given by Eq. (4.5)
in the main text. Panel (b) exhibits the inverse of the size of the Wigner-Seitz
unit cell for commensurate structures versus the angle. Panel (c-d) show the
conductance values of the 1 — 2 setup for commensurate structures as a function
of size of the Wigner-Seitz unit cell for small and large unit cells respectively.

The difference between incommensurate and commensurate structures at large twist
angles is better appreciated in Fig. 4.4(a), where we plot the conductance as a
function of twist angle at the fixed energy € = 0.225¢ (easily reached via back gate
field effect). For the 1 — 1 setup a series of deaps and for the 1 — 2 setup a series of
peaks are clearly seen. These are the same peaks and deeps observed in Figs. 4.2(a)
and 4.2(b). As shown in Fig. 4.4(a), the peaks/deeps match perfectly the vertical
lines. It is also apparent that the conductance curves are symmetric with respect to
the twist angle § = 30°, and for that reason we only plot vertical lines for 8 < 30°.
The vertical lines correspond to a series of commensurate angles, obtained according

69



Chapter 4 Quantum transport through a twisted bilayer graphene region

to the relation

sin W) = ! , 4.5
( 2 2v/3m?2 + 3mr + r2 (45)

where m and r are positive coprime numbers [57]. Therefore, the peaks/deeps are
conductance signatures of commensurability. A few of the largest peaks for the
1 — 2 setup have been reported also in the incoherent regime [235]. In the ballistic
regime we see that the structure is very rich, with peaks at many commensurate
angles. In fact, we are lead to speculate that peaks (deeps) may be present at every
commensurate angle, though its relative height (depth) may hinder the observation
of most of them. This is corroborated by an apparent correlation between the
height (depth) of the peak (deep) and the size of the Wigner-Seitz unit cell for the
corresponding commensurate lattice structure, as shown in Fig. 4.4(b). There, the
inverse of the size of the Wigner-Seitz unit cell, measured in terms of the number of
atoms inside the cell, is plotted as a function of the respective commensurate angle.
By inspection it can be seen that the higher the conductance peak in Fig. 4.4(a) for
the 1 — 2 setup (the lower the deep for the 1 — 1 setup) the smaller the respective
Wigner-Seitz unit cell. The six peaks reported in Ref. [235] for the incoherent
regime correspond precisely to the six twist angles with smallest Wigner-Seitz unit
cell (higher conductance).

The conductance as a function of the size of the Wigner-Seitz unit cell for commen-
surate structures is shown in Fig. 4.4(c). In the large angle regime (unit cell sizes
< 100), it is clear that the conductance decreases as the size of the cell increases.
For intermediate to low angles (unit cell sizes = 100), this commensurability effect is
lost. This agrees with the fact that » = 1 structures, for which the unit cell coincides
with the Moiré cell, are special in the small-angle limit and determine the physics of
all types of commensurate structures [57]. For very small angles, all commensurate
structures are almost periodic repetitions of structures with » = 1.

In order to better understand the large angle commensurability effect, we have
computed the interlayer local current measured from the bottom layer to the top
layer in the 1 — 2 setup. To that purpose, the bond current operator between a
bottom layer site and a top layer site was evaluated at the energy ¢ = 0.225¢. All
the contributions that connect to a given site in the bottom layer were then added
up and the obtained local interlayer current was assigned to that bottom layer site.
The corresponding map is shown in Figs. 4.5(a-c) for three different commensurate
angles [marked with an arrow in Fig. 4.4(b)]. Positive and negative values mean
interlayer current flowing in and out of the given bottom layer site. The presence of
a periodic pattern is apparent for the three angles, as can be seen in Figs. 4.5(a-c).
We took the Fourier transform of the interlayer current by considering a rhombus
with 50 x 50 unit cells in the scattering region. The corresponding map is shown in
Figs. 4.5(d-f), respectively for the three angles considered. The Fourier transform is
extremely peaked, as inferred from the very small dark dots on a whitish background
in Figs. 4.5(d-f). The peaks exactly fall onto the first star of reciprocal lattice vectors
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Figure 4.5: (a-c) Interlayer current mapped onto the bottom layer as a density
plot at € = 0.225¢ for three commensurate structures. (d-f) 2D Fourier transform
of the interlayer current shown in (a-c) as a function of k| and k_, respectively the
longitudinal and transverse momenta relative to the direction of the bottom lead
ribbon. The arrows are two representative vectors of the first star of reciprocal
lattice vectors for the respective commensurate structure.

for the respective commensurate structure. Two representative vectors out of the
six in the first star are indicated in each panel of Fig. 4.5(d-f). These vectors
coincide with the primitive vectors of the superlattice. The primitive vectors of the
superlattice are given in Ref. [57] as,

o if gcd (1,3) =1
u | m m—+r
uz | | —-m—r 2m+r
e if ged (r,3) =3

ux .
U2 o
where ged is the greatest common divisor of » and m. It follows that the observed
periodicity for the interlayer current in Figs. 4.5(a-c) mimics the periodicity of the

commensurate structure. The picture that emerges is that each Wigner-Seitz unit
cell contributes roughly the same to the interlayer current, so that a higher con-

[ a ] (4.7)
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ductance is obtained for a higher number of Wigner-Seitz unit cells in he scattering
region. Keeping the number of atoms in the scattering region roughly the same,
commensurate angles with smaller Wigner-Seitz unit cells should have higher con-
ductance, as observed.

4.4.3 Moderate twisting angles

Figure 4.6(a) and 4.6(b) shows the conductance at three representative angles in
the moderate twist angle regime, respectively for the 1 — 1 and 1 — 2 setups and
energies |e| < 0.4t. A salient feature in this regime is the shoulder like behavior
of the conductance around two particular energies roughly symmetric around zero.
The behavior is more pronounced in the 1 — 1 setup [Fig. 4.6(a)] which has a higher
conductance, but it is clearly present in both setups. The energy scale associated
with this feature correlates with the position of the two Van Hove singularities
characteristic of tBLG at moderate twist angles. This is clearly seen with the help
of Fig. 4.6(c), where the DOS of the system (scattering region) is shown for the
three considered twist angles. The beginning of the shoulder-like feature just signals
the strong suppression of the DOS after the Van Hove singularity. A similar effect
is known to happen in single layer graphene after the Van Hove singularity [231],
though at much higher energies.

The presence of Van Hove singularities in the DOS of tBLG for the moderate twist
angle regime originates from saddle points in the energy dispersion. These saddle
points are easily understood as a consequence of the hybridization between single
layer Dirac cones [34, 57]. Due to rotation by the twist angle #, and considering
for the moment uncoupled layers with ¢; = 0, the single layer Dirac cones appear
separated in reciprocal space by a distance AK = 2K sin (g), with K = 4x/ 3v/3a.
Turning on the interlayer coupling ¢, an avoided crossing at the energy scale ¢ =
+hvy AK /2 gives rise to saddle points at the approximate energies

AK tl) . (4.8)

~+|hwp———— =
Evh ( Uf 2 2
In Fig. 4.6 the vertical dashed lines are obtained through Eq. (4.8) for the three twist
angles considered. The beginning of the shoulder-like feature in the conductance as
we increase energy is very well captured by the energy scale ., as can be seen in
Figs. 4.6(a-b).
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Figure 4.6: Conductance, G, as a function of energy, ¢, at three twist angles
6 = 8,10,12°, for the 1 — 1 (a) and 1 — 2 (b) setups. The corresponding DOS is
shown in (c¢). Vertical dashed lines depict the positions of Van Hove singularities
computed through the approximate analytical expression given in Eq. (4.8) for
the positive energy side.

4.4.4 Small twisting angles

It is in the small angle regime that most of the interesting novel phases have been
found [135, 134, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209], associated
to the presence of extremely narrow bands at low energies. Given the importance
of transport measurements in accessing these phases, and the fact that the model
we use here is considered a proper single particle description of tBLG, we address
the question of what are the conductance characteristics for this model at low twist
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angles. The first result is that in the small angle regime 1 — 1 and 1 — 2 setups
have very similar conductance at low energies. This is an indication that in this
regime the scattering region is dominated by tBLG low energy properties, which
weakens the differences between the two setups. This is to be expected whenever
the scattering region is big enough to include a considerable number of Moiré cells,
as is the case for the angles we consider. In the following we show results only for
the 1 — 1 setup.

We start with incommensurate angles. In Fig. 4.7(al-a3) the conductance at three
representative small twist angles around de flat band regime is shown for energies
le] < 0.04¢. For the model considered in this work, the flat band regime occurs at
0* ~ 1.6°, so that in Fig. 4.7(al) the conductance if for an angle slightly below 6*,
in Fig. 4.7(a2) very close to 6%, and in 4.7(a3) slightly above. To confirm that the
scattering region is indeed displaying tBLG behavior around the flat band regime we
have calculated the DOS using the Kwant package [52]. This is shown in Fig. 4.7(b1-
b3) at exactly the same angles (blue curves). The peaked DOS around zero energy,
particularly for 8 ~ 6%, is a signature of tBLG behavior. Further confirmation
comes from the DOS obtained with the plane wave expansion method [72], suitable
for incommensurate structures [133, 236]. The results are also shown in Fig. 4.7(b1-
b3) as red curves, along with the result obtained through the Kwant package (blue
curves). The agreement is remarkable despite the fact that Kwant is a construc-
tion in real space using kernel polynomial methods while the plane wave expansion
method works in reciprocal space. The plane wave expansion method allows also for
the calculation of the band structure, which is displayed in Fig. 4.7(c1-c3). There,
the appearance of very narrow bands at low energies, which become especially flat
near 0%, is apparent.
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Figure 4.7: (al-a3) Conductance, GG, as a function of energy, ¢, at three incom-
mensurate twist angles around the first magic angle 6* ~ 1.6° for the 1 — 1 setup.
(b1-b3) DOS of the scattering region used in (al-a3) is represented in blue. The
DOS obtained using the plane wave expansion method is shown in red. (cl-c3)
Band structure obtained by the plane wave expansion method.

The conductance in Figs. 4.7(a2) and 4.7(a3) has a low energy behavior which is
not found at intermediate or large twist angles, nor in single or AB-stacked bi-
layer graphene [231]: low energy finite conductance flanked by transport gaps where
the conductance vanishes. This is perfectly seen at 0* and when we approach 6*
from above. Comparison with DOS and band structure, respectively in Figs. 4.7(b)
and 4.7(c), shows that the transport gaps correlate perfectly with spectral gaps
surrounding the low energy narrow bands. These transport gaps are in perfect
agreement with those obtained experimentally when the low energy narrow bands
are completely occupied, for a carrier density n = +ng, or fully empty, n = —ng
[135, 134, 199, 200, 209, 220]. Note also the similarity between the inverted double-
well-like conductance seen at low energies for 6 ~ 2° in Fig. 4.7(a3) and the mea-
surements of Ref. [219] (compare with conductivity) and Refs. [31, 198] (compare
with inverse resistance). This points to the conclusion that the observed behavior
at small angles 6 2> 6* is still captured by the single particle description. Only very
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close to the magic angle 6* are correlation effects expected to become relevant. For
angles 6 < 6*, as the one shown in Fig. 4.7(al), the conductance still correlates well
with the electronic structure. In particular, the two side peaks seen in the DOS of
Fig. 4.7(b1) clearly match the beginning of a shoulder like feature in conductance
as energy increases in absolute value. As can be appreciated in Fig. 4.7(c1), the low
energy narrow bands are no longer well isolated from the other bands. This is the
reason why there is no transport gaps in the conductance at low energy.
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Figure 4.8: Conductance and density of states of several small commensurate an-
gles for 1 — 1 geometry. Panel(al-a3) exhibit the evolution of the emergent
conductance gap with small twist angle. Panel(b1-b3) show the evolution of the
Van Hove peaks in the density of states with angle. Panel (cl-c3) depict the
corresponding band structure obtained by exact diagonalization of the periodic
system. For comparison the DOS data obtained by exact diagonalization is also
added as red curves. The finiteness of the DOS within the band gap obtained by
Kwant is due to the boundary effects.

The results for commensurate angles are shown in Fig. 4.8. There is a close similarity
with the results obtained for nearby commensurate angles, presented in Fig. 4.7.
Commensurability effects, if present in the small twist angle regime, are significantly
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milder than at large angles. Note in particular how the transport gaps perfectly
correlate with the spectrum, as is indicated by the vertical lines on the right panels
of Fig. 4.8. We note en passant that the DOS of the scattering region, shown in blue
in Fig. 4.8(b), does not vanish in the energy region where transport gaps occur [this
also happens for the incommensurate angles shown in Fig. 4.7]. However, the plane
wave expansion method has vanishing DOS (in red) compatible with spectral gap
shown in Fig. 4.8(c). The reason is due to the open edges of the scattering region
where localized states, not contributing to conductance, exist.

4.5 Chapter conclusion

We have studied the ballistic charge transport phenomena across a twisted bilayer
graphene region. A strong angle dependence has been found, with three qualita-
tively different regimes. For large angles, there are strong commensurability effects:
at large incommensurate angles the two graphene layers effectively decouple; large
commensurate angles, corresponding to a small Wigner-Seitz unit cell, appear as
sharp features in the conductance. For intermediate angles, we have found a corre-
lation of the conductance features with the twist angle, which suggests that conduc-
tance measurements can be used to determine the twisting angle. For small angles
we have seen that commensurate effects are washed out. However, the almost flat
bands appearing in this regime give rise to distinctive conductance features. Our
results agree with the recent experimental findings where transport gaps have been
correlated with spectral gaps [219, 31, 135, 134, 199, 200, 209, 220, 198].

4.6 Chapter Appendices

A Building a finite-sized tBLG region

Here we explain how we construct a twisted bilayer region. The construction includes
the following general steps:

1. Define the primitive vectors and positions of the basis atoms within the graphene
unit cell.

2. Obtain the primitive vectors and basis atoms of the second (top) layer by
applying the rotation matrix to the primitive vectors and basis atoms of the
first layer.

3. Build the first layer in Kwant atom by atom, by assigning a zero onsite poten-
tial to a given lattice point.

4. While building the first layer, search for the neighbors of each atom on the
second layer and create them too.
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5. Assign the hopping energy to neighboring atoms according to ¢ (R1 — Rz).
6. Establish the intralayer hoppings, ¢, in layers.

7. Cut the central region in desired shape.

8. Generate the leads and attach them to the central region

1. The primitive vectors of the first layer are,

V31
ay = \/gacc <27 2)

az = V3ac. (0,1)
We build the first unit cell at R = (0,0) by creating Al and B1 sublattices at

positions,

sublattice A1 = (0,0)

sublattice B1 = a. (2, -

1\/§>

where a.. is the C-C bond length. Leads are translational invariant along a;. So
the transverse direction is as.

A given unit cell labeled by (n,m) are located at

Rl — majp + nag if sublattice Al
™ \may + nag + % (a1 +ag) if sublattice B1

in the plane (the reference atom is sublattice A). When there is no twist we have AB
stacked bilayer graphene. So, at § = 0, the primitive vectors and the basis atoms of
the second layer are defined as:

1 3
sublattice A2 = —sublattice B1 = a,. (2, {)

sublattice B2 = sublattice A1 = (0,0).
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4.6 Chapter Appendices

In tBLG the top layer is separated from the bottom layer with d, . We take into
account this separation when we define the interlayer hopping ¢ (r), but for the
construction of the top layer we ignore it as if the two layers are in the same plane.

We set the C-C bond length to be ag. = % While the first layer is fixed the second
layer is rotated around the origin where A1 and B, sit. For the second layer we have

aj} =R(0)-
a, =R (0)-

o

1

o

2

2’ 2

sublattice A2 =R (0) - (—acc —aCC\/?:)

sublattice B2 = (0,0)

With these, we build the first layer by running m and n in R}, from —M to M
and —N to N respectively. For a given unit cell, labeled by R. . on the bottom
layer we search for neighbors on the top layer at the on fly when we build the cell.
This takes place with the following prescription: Assuming that we are looking for
the neighbors of an atom within a circle with radius r, the atom X is the neighbor

of atom Y if and only if their in-plane separation is less than r

|Rx — Ry| <7 (4.9)
For a fixed Rx on the bottom layer, running Ry on the second layer, the latter
inequality determines the neighbors of atom X. Here we employ slightly different

method for spatial search. We first solve the following equation, for a given Rx in
first layer, in order to get p and g,

Rx = pa] + qa, (4.10)

Obviously, p and ¢ in general are not integers as Rx is not the lattice vector of the
top layer. We round p and ¢ to the closest integer. This in principle gives the m’
and n’of the nearest cell in the top layer to the atom at Ry.

m' = round (p)

n' = round (q)

R'r}z/earest — m/all + n/a’2 (411)
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After finding the nearest neighbor cell in the second layer, we search all those cells
which are neighbors of Ryt This is done by running the following iteration,

Y = (' i) ay + (0 + )8y, i€ {~1,0,1)

This gives the first six neighbor unit cells of atom X. One could also look for next-
next neighbors by using i,j € {—2,—1,0,1,2} depending on the value of r. Since
we set 7 = 0.9a.., the first six neighbors are enough to search within. An example
of Python code to generate a circular tBLG region is given Appendix 4.6

B Python codes

In this Appendix, an example of Python (version 3.6) code to build a circular tBLG
region is presented.

import kwant
import numpy as np
import tinyarray as ta

def Building(L=1, W=1, theta=0, lead=11, acc=1.42, dperp=3.35,
t=2.79,tp=0.35, hp_range=0.9, E_in_units_of_t=True,
acc_in_units_of_a=True, xshift=0, yshift=0):
# This function builds a tBLG with an arbitrary twist angle in
circular shape and attaches the leads to <t.
size = np.array([L, W, thetal)
primitive_vectorl = np.sqrt(3)*acc*np.array([np.sqrt(3)/2,
1/2]1) # The first layer’s unit vector
primitive_vector2 = np.sqrt(3)*acc*np.array ([0, 1]) # The
second layer’s unit wvector
Atoml = ta.array ([0, 0]) # Atom A in the first layer’s unit
cell
Atom2 = ta.array([acc/2, acc*np.sqrt(3)/2]) # Atom B in the
first layer’s unit cell
Atom4 = ta.array ([0, 0]) +xshift*primitive_vectorl+ yshiftx*
primitive_vector2 # Atom A’ in the second layer’s unit
cell
Atom3 = ta.array([-acc/2, -acc*np.sqrt(3)/2]) +xshiftx
primitive_vectorl+ yshift*primitive_vector2 # Atom B’ 1in
the second layer’s unit cell

layerl = kwant.lattice.general([primitive_vectorl,
primitive_vector2], [Atoml, Atom2], name = ’firstlayer’,
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norbs = 1) # Set the first layer hoeycomb lattice
parameters

al, bl = layerl.sublattices

TBL = kwant.Builder () # Kwant builder

theta = theta/180*np.pi # Twist angle
¢ = np.cos(theta)
s = np.sin(theta)

rotation_matrix = ta.array([[c, -s], [s, cl]) # Rotation
matrizc

rotated_Atom3 = ta.dot(rotation_matrix, Atom3) # Rotate
atom 3

rotated_Atom4 = ta.dot(rotation_matrix, Atom4) # Rotate
atom 4

rotated_primitive_vectorl = ta.dot(rotation_matrix,
primitive_vectorl) # Rotate al in the top layer

rotated_primitive_vector2 = ta.dot(rotation_matrix,
primitive_vector2) # Rotate a2 in the top layer

layer2 = kwant.lattice.general([rotated_primitive_vectorl,
rotated_primitive_vector2], [rotated_Atom3,
rotated_Atom4], name = ’secondlayer’, norbs = 1) # Set

the rotated second layer hoeycomb lattice parameters.

a2, b2 = layer2.sublattices # Build the second layer
lattice based

Mat = ta.matrix([[rotated_primitive_vectorl[0],
rotated_primitive_vector2[0]], [
rotated_primitive_vectorl[1], rotated_primitive_vector?2
(1111

invMat = np.linalg.inv(Mat)

def distance(m, n, subl, k, 1, sub2): # Determines the
distance between two atoms tn different layers

rix = m*primitive_vectorl[0] + n*primitive_vector2[0] +
subl*Atom2 [0]

rly = m*primitive_vectorl[1] + n*primitive_vector2[1] +
subl*xAtom2 [1]

r2x = kxrotated_primitive_vectorl[0] + (1-sub2)=x*

rotated_Atom3 [0] + \
l*xrotated_primitive_vector2[0]
r2y = kxrotated_primitive_vectorl[1] + (1-sub2)x*
rotated_Atom3[1] + \
lxrotated_primitive_vector2[1]
r12 = np.sqrt ((r2x-rix) **x2 + (r2y-rly) **2)

return ri2

def tperp(r = 0, acc = acc, dperp = dperp, t = t, tp = tp):
# Spatialy modulated interlayer hopping
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82

gsigma = 7.42

gpi = 3.15
rp = np.sqrt(r**2 + dperp**2)
sin2omega = r*x2/(dperp**2 + r*%*2)

cos2omega = dperp**2/(dperp**2 + r**2)
VPPsigma = tp*np.exp(gsigma*(l-rp/dperp))
VPPpi = -t*np.exp(qgpi*(l-rp/acc))

ttp = VPPsigma*cos2omega + VPPpi*sin2omega

return ttp

cutoff = tperp(r = hp_rangexacc) # Determine the cutoff

tperp below which all interlayer hoppings set to be zero

def mapp(m, n): # Finds possible hoppingd from the first to

the second layer

posx = m*primitive_vectorl[0] + n*primitive_vector2[0]

posy = m*primitive_vectorl[1] + n*primitive_vector2[1]

m2 = np.round(invMat [0, O]x(posx+rotated_Atom3[0]) +
invMat [0, 1]*(posy+rotated_Atom3[1]))

n2 = np.round(invMat[1, O]*(posx+rotated_Atom3[0]) +
invMat [1, 1]*(posy+rotated_Atom3[1]))

def hopp(m, n, m22, n22): # Interlayer hopping values
between two cells in different layers

hopala2 = np.round(tperp(r
n22, 0)), decimals=5)

hopalb2 = np.round(tperp(r = distance(m, n, 0, m22,
n22, 1)), decimals=5)

hopbla2 = np.round(tperp(r = distance(m, n, 1, m22,
n22, 0)), decimals=5)

hopb1b2 = np.round(tperp(r
n22, 1)), decimals=5)

distance(m, n, 0, m22,

distance(m, n, 1, m22,

return hopala2, hopalb2, hopbla2, hopblb2
sites = []

if hp_range >= 1.5:
watched_cells = range(-5, 6) # Define the range of
cells which need to be searched for neighbors.
elif (hp_range > O and hp_range < 1.5):
watched_cells = range(-2, 3)
else:
ValueError (’hp_range must bega non-negative_ number’
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for i in watched_cells:
for j in watched_cells:
hopala2, hopalb2, hopbla2, hopblb2
m2 + i, n2 + j)
sites.append([m, n, m2 + i, n2 + j,
hopalb2, hopbla2, hopblb2])

return sites, watched_cells

diml = [i for i in range(-L, L + 1)]

dim2 = [i for i in range(-W, W + 1)]
m, n = np.meshgrid(diml, dim2, indexing = ’ij’)
mass, watched_cells = mapp(m, n)

for i in range(-L, L+1):
for j in range(-L, L+1):
TBL[[al(i, j), bl(i, j), a2(i, j), b2(i

for k in range(len(watched_cells) **2):
mas = mass [k]
for i in range (2xL + 1):
for j in range (2*W + 1):

x1, y1 = mas[0][i, jl, mas([11[i, j]
x2, y2 = int(mas[2][i, j]), int(mas

= hopp(m, n,

hopala2,

» )11 =0

[(31li, i

hopala2, hopalb2 = mas[4][i, jl, mas[56]1[i, jI
hopbla2, hopblb2 = mas([6][i, jl, mas[7][i, j]

TBL[[al(x1l, y1), b1i(xl, yl1), a2(x2,
y2)]] = 0 # Generate sites

if hopala2>cutoff:

y2), b2(x2,

TBL[(al(xl, y1), a2(x2, y2))] = -hopala?2
if hopalb2>cutoff:
TBL[(al(x1l, y1), b2(x2, y2))] = -hopalb2
if hopbla2>cutoff:
TBL[(b1(x1l, y1), a2(x2, y2))] = -hopbla2
if hopblb2>cutoff:
TBL[(b1(x1l, y1), b2(x2, y2))] = -hopblb2
TBL[layerl.neighbors(1)] = -t # Assignement of interalyer
nearest meighbor hoppings in the first layer.
TBL[layer2.neighbors(1)] = -t # Assignement of interalyer
nearest mneighbor hoppings in the second layer.
def in_hole(site): # Generates a disk region
X, y = site.pos # position relative to centre
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center=xshift*primitive_vectorl+ yshiftx
primitive_vector2

aa = np.sqrt((x-center [0]) **2 + (y-center [0]) **2)>np.
sqrt (3) /2% (L+2 )

return aa

for site in filter(in_hole, 1list(TBL.sites())): # Delete
atoms out of disk
del TBL[site]

TBL.eradicate_dangling() # Delete all dangling atoms

sym0 = kwant.TranslationalSymmetry(layerl.vec((-1, 0))) #
Define the translational invariance along a a_{1}
direction

left_lead = kwant.Builder (sym0) # Generate the left lead
along the translationally tnvariant direction.

syml = kwant.TranslationalSymmetry(layer2.vec((1, 0)))

right_lead = kwant.Builder (syml)

for x in range(0,3): # Specify atoms and hoppings in the
leads
for y in range(-L, L+1):
left_lead[al(x, y)]1=0
left_lead[bl(x, y)]1=0
right_lead[a2(x, y)]1=0
right_lead[b2(x, y)]1=0

left_lead[layerl.neighbors()]=-t # Set the hoppings in
left lead.

right_lead[layer2.neighbors()]=-t # Set the hoppings in
right lead.

if lead==11: # Attach both leads to the frist layer.
TBL.attach_lead(left_lead )
TBL.attach_lead(left_lead.reversed () )
syst=TBL
syst=TBL.finalized ()

elif lead==12: # Attach both leads to the second layer.
TBL.attach_lead(left_lead )
TBL.attach_lead(right_lead)

syst=TBL
syst=TBL.finalized ()

elif lead==None: # No leads are attached.
syst=TBL

else:

raise NameError (’Unknown typeyof lead connections.\
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LuLLLLLLuuuuuuuuuuuuuuuuPlease ,ychooseplytoylyorylyton2y,
connextions’)

return syst, size, lead, [al, bl, a2, b2],
primitive_vectorl, primitive_vector?2

L=10 # set the width of the ribbon
W=10 # set the length of the ribbon

theta=30

# set the rotation angle

theta = theta/180*np.pi
hp_range= 1.0 # Set the interlayer hopping range (in units of
lattice paramter.)

syst, size, lead, sitefam, pvl, pv2=Building(L=L, W=L, theta
hp_range=hp_range, lead=None, xshift=0, yshift=0) #

theta,
Build

the system

al, bl, a2, b2 = sitefam
kwant .plot(syst, site_size=0.2, site_color=’black’, hop_color
hop_lw=0.1, file=’theta’+str([theta, 11])+’ .svg’, dpi

fig_size=(3,3)) # Plot the system and save %t in png

blue’,
=200,
format.

=7
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In this thesis, we theoretically investigated the transport properties of monolayer-
bilayer-monolayer (MBM) hybrid structure in 1D, chain-ladder-chain, and in 2D,
graphene-bilayer-graphene, using semi-analytical transfer matrix method and purely
numerical method based on Kwant Python package. Electrons on 1D chain and
honeycomb lattice are modeled using the single particle tight-binding Hamiltonian
in order to get the electronic structure as well as charge transport properties in the
the MBM systems. We first looked at the transport in the toy model of chain-ladder-
chain where we established and employed transfer matrix formalism. We mainly
concentrated on exploring the transmission through a bilayer graphene region for
the case of Bernal stacked and twisted bilayer graphene.

In chapter 3, we introduced the MBM hybrid structure as a naturally arising sample
in few layer graphene synthesis. The chain-ladder-chain structure as an instant ex-
ample of an MBM structure in 1D is explored as a useful and simple toy model. The
transfer matrix technique is used to yield the transmission and reflection coefficients.
Using the celebrated Landauer-Buttiker formula we have studied the conductance
across a graphene bilayer region for two different positions of the single layer leads:
the case when the leads connect to the same layer, the 1 — 1 configuration; and
the case when the leads connect to different layers, 1 — 2 configuration. We have
worked in the limit of an infinitely wide scattering region, to avoid edge effects, and
developed a transfer matrix, tight-binding based methodology which allows going
away from linear response. We have also studied the effect of a gate bias with a
multiple domain wall microstructure applied to the bilayer region. We have found
that,

e when there is no gate bias applied to the bilayer region, the two setups, 1 — 1
and 1 — 2, have a similar behavior, with a slightly higher conductance in the
1 — 1 configuration.

e The presence of a bias gate voltage differentiates between the two configura-
tions. Both of them develop a conductance gap which mimics the spectral
gap of a biased bilayer, but only the 1 — 1 configuration shows a pronounced
conductance step at one of the gap edges. This step is not present if the gate
polarity is reversed.

e Introducing a domain wall in the gate bias applied to the bilayer region, the
conductance step disappears and the two configurations, 1 — 1 and 1 — 2,
behave again in a similar way.
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When the separation between domains is much larger than the localization
length of the states confined at the domain walls, the multiple domain walls
states behave independently and the result is similar to the case of a single
domain wall.

On decreasing the separation between domain walls, the localized states start
to hybridize and a finite conductance starts to appear inside the gap. At
even smaller distances, the gap is completely washed out, and only at higher
energies a conductance asymmetry characteristic of a gate biased bilayer region
is present.

We have studied the viability of an integrated nano-transistor based on the
1 —1or1— 2 geometries. For experimentally reasonable chemical potential
difference (~ 0.3eV) and gate voltage interval (from 0 up to ~ 0.6 eV) we have
found that this setup can achieve 50 < Ion/Iog < 200. Summing up all the
finds, it is clear the transmission through a bilayer region can be manipulated
by a gate bias in ways not previously anticipated.

In chapter 4, we explored the transmission through a twisted bilayer region. In order
to keep the number of atoms almost constant at each rotation we shape the bilayer
region in a disk form. We compute the conductance and density of states using a
Kwant Python package. For small twist angles we also computed the band structure
of the twisted bilayer graphene using wave expansion technique. We found that,

There is a strong angle dependence with three qualitatively different regimes.
Large, intermediate, and small angles.

For large angles, in general, there are strong commensurability effects.

— At large incommensurate angles, the two graphene layers effectively de-
couple.

— At large commensurate angles, corresponding to a small unit cell, appear
as sharp features in the conductance.

For intermediate angles, there is a correlation of the conductance features with
the twist angle, which suggests that conductance measurements can be used
to determine the twisting angle.

For small twisting angles the commensurate effects are washed out and the
conductance becomes a smooth function of the angle. Conductance can be
used to probe the almost flat bands appearing in this regime.

Our results agree with the recent experimental findings where zero conductance
regions have been correlated with gaps in the density of states.

Regarding the transport in graphene based hybrid structures, interesting phenomena
can still be explored. It would be interesting to look at the transport in flat band
regime in detail and for both commensurate and incommensurate angle structures.
Though twisted bilayer graphene do not develop band gap, unlike its Bernal stacked
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form, it would still be interesting to study how transport respond to a gate voltage.
From computational point of view, the computation complexities, both in time and
memory, change with system size and highly paralleled computation seems to be
necessary. It would be of great interest to implement transport calculations in
graphic card bases parallel computing platforms, like CUDA, as they provide a
powerful tool to achieve highly parallelized computer codes for faster calculations.

Coming back to the primary question of chapter 2, “What is so special about
graphene?”, graphene has attracted significant attention of scientists both from fun-
damental science and applied research perspectives. Its unique electronic properties
are mainly related to its peculiar band structure and linear dispersion near its Fermi
surface. It has also been considered as a promising candidate for the post-silicon
age. Graphene on its stacked form as Bernal and twist bilayers has shown striking
properties, such as developing a controllable band gap and showing superconducting
behavior. It has immense potential in the electronic device application, for instance,
field-effect transistor, transparent electrode, etc.

At the end, uncovering the mysteries of 2D material not only can deepen our the-
oretical understanding of quantum world in similar confined systems but also can
help us to control the properties of materials at nanoscale which eventually might
end up in new physics and new nanodevices.
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