
1

Discussion of the application of several landmark extraction and
matching algorithms

Francisco Rodrigues∗ and João Marafuz Gaspar†

Department of Electrical and Computer Engineering, Instituto Superior Técnico
∗francisco.rodrigues.09@tecnico.ulisboa.pt, †joao.marafuz.gaspar@tecnico.ulisboa.pt

Abstract—In this paper, we present an analysis of the application of various landmark extraction and matching algorithms in robotic

navigation. We chose to explore RANSAC and Hough Transform for landmark extraction, and Nearest Neighbor and Maximum

Likelihood for landmark matching, in order to form four models. Additionally, we also evaluated the use of Iterative Closest Point as an

additional model. Our experiments were conducted using pre-recorded ROSbags in different scenarios on a TurtleBot3 robot, and a

previously implemented FastSLAM algorithm. The results of our study demonstrate the potential of these algorithms for use in

real-world robotic navigation applications, and provide insights for future research in this field.

✦

1 Introduction

In this paper, we delve into the exciting field of landmark
extraction and matching algorithms for robotic navigation. The
ability of a robot to accurately perceive and understand its environ-
ment is crucial for it to navigate and perform tasks autonomously.

By exploring the use of techniques such as RANSAC and Hough
Transform for landmark extraction, and Nearest Neighbor and
Maximum Likelihood for landmark matching, we aim to explore
what is possible in this field. RANSAC and Hough Transform
are both widely used for feature extraction in computer vision,
and have proven to be robust and efficient. Nearest Neighbor
and Maximum Likelihood, on the other hand, are commonly used
for feature matching and have shown to be effective in different
scenarios.

In this research, we will be combining these algorithms to form
four models, as well as exploring the use of Iterative Closest Point
(ICP) as a replacement for odometry as an additional model.

Our research will be tested in real-world scenarios using pre-
recorded ROSbags on a TurtleBot3 robot and a previously imple-
mented FastSLAM algorithm.

2 Motivation

Landmark extraction and matching algorithms play a vital role
in the process of a robot accurately perceiving and understanding
its environment by enabling it to identify and track distinctive
features in its environment.

Current landmark extraction and matching algorithms have
limitations in terms of efficiency, robustness, and resilience. For
example, some algorithms may struggle in low-light or cluttered en-
vironments, while others may not be able to handle large amounts
of data. This motivated us to explore the use of state-of-the-art
techniques prevously described.

In summary, the motivation for this work is to explore the
efficiency, robustness and resilience of landmark extraction and
matching algorithms for robotic navigation, which can help to push
the boundaries of what is currently possible in the field of robotics
and increase the capabilities of autonomous systems.

3 Landmarks

In this paper, lines are utilized as landmarks in indoor environ-
ments, such as walls, due to their prevalence. It’s important to
note that using a high number of landmarks is not practical in our
implementation (see Section 5), which uses a particle filter with

individual maps for each particle. Thus, lines serve as an efficient
option as one line can represent multiple points. To understand
the representation of lines, imagine a line perpendicular to the
landmark passing through the origin. Any single landmark can then
be identified by [ρ φ]T , where ρ is the distance from the origin to
the intersection point and φ is the angle of the x-axis with the
perpendicular line – represented in Fig. 1.

x

y

ρ

φ

Fig. 1: Landmark geometric definition.

4 Algorithms

4.1 Landmark Extraction

Landmark extraction is the process of identifying and extracting
relevant features from sensor data for use in localization and
mapping.

4.1.1 Random Sample Consensus

Algorithm 1 represents the adapted RANdom SAmple Consen-
sus (RANSAC) pseudocode, which is used to extract landmarks
from the scan data. It operates by randomly selecting a sample
of S laser readings, all within D degrees from each other and
determining the best-fit line through these readings using a least-
squares approximation. Then, the number of laser readings that are
near, within X meters, the best-fit line are counted. If this number
exceeds a pre-determined threshold C, a line has been found. This
process is then repeated until no more points are available or the
maximum iteration number N is reached.

https://orcid.org/0000-0002-1787-0964
https://orcid.org/0000-0003-3196-7225

2

Algorithm 1 RANSAC for Line Extraction

Require: Set of points P, threshold distance X, minimum number of points C,
initial number of samples S, maximum degree separation D and number of
iterations N .

The RndSelect(S,P, D) function, which randomly selects S points from
set P that span no more than D degrees on the original scan. The LSTSQ(⋆)
function, which returns the best-fit line for the set ⋆. The distance(.) function,
which returns the euclidean distance.

Ensure: Set of lines L =
{
ℓ ∈ L : ℓ = [ρ φ]T

}
.

Algorithm: RANSAC(P, X,C, S,D,N) return L
1: L ← {} ▷ intialization

2: for i = 1 to N do
3: if #P < S then ▷ check if there are still enough points to keep going
4: break
5: end if

6: A = RndSelect(S,P, D)
7: ℓi = LSTSQ(A) ▷ best-fit line for the set A
8: B = {p ∈ P : distance(p, ℓi) < X}
9: P = {p ∈ P : distance(p, ℓi) < 3X}

10: if #B > C then
11: ℓf = LSTSQ(B) ▷ best-fit line ℓf for the set B
12: Calculate r2 for this fit ▷ r2 is the coefficient of determination
13: if r2 ≥ 0.9 then
14: L = L ∪ ℓf ▷ add line ℓf to L
15: end if
16: end if
17: end for

18: return L

As depicted in Fig. 2, the points that fall within the orange
boundaries are considered inliers and are used to define the dashed
red line, while points outside of the threshold are considered
outliers and discarded.

x

y

Inliers

Outliers

Treshold lines

X

X

Fig. 2: RANSAC visualization. [1]

One of the main advantages of RANSAC is that it can robustly
fit a model to a set of data that may contain outliers. However,
the choice of the number of iterations and the threshold for
determining inliers can affect the results and it can be sensitive
to the presence of a large number of outliers.

4.1.2 Hough Transform

The Hough Transform is a widely used image processing tech-
nique used to detect lines (or any other shape that can be described
mathematically) in an image. It is based on the idea that a line in
an image can be represented as a point in the Hough Space, which
is a parameter space that describes all possible lines in the image.
The Hough Lines algorithm (see Algorithm 2) is a specification of
the Hough Transform that converts each edge point in the image to
a set of polar coordinates [ρ φ]T and then accumulates all the polar
coordinates in a two-dimensional accumulator. The accumulator is
then searched for local maxima, which correspond to lines in the
original image.

Algorithm 2 Hough Lines

Require: Image I, threshold t, resolution ∆ρ,∆φ of the accumulator A(φ, ρ).

Ensure: Set of lines L =
{
ℓ ∈ L : ℓ = [ρ φ]T

}
.

Algorithm: HoughLines()
1: A ← 0, L ← {} ▷ intializations

2: for each edge point [x y]T in I do
3: for φ = 0 to 2π do
4: ρ = x cos(φ) + y sin(φ)
5: A(φ, ρ) ++ ▷ increment the accumulator at position (ρ, φ)
6: end for
7: end for
8: A = {a ∈ A : a/max (A)} ▷ normalization
9: amax = {a ∈ A : a is local maxima ∧ a > t} ▷ find local maxima in the

accumulator above threshold t
10: L =

{
[ρ φ]T : A(φ, ρ) = amax

}
▷ list of lines corresponding to the local

maxima

11: return L

Fig. 3 shows an example of an original image on the left, with a
white square and two black lines crossing it, and the corresponding
Hough Space on the right.

(a) Input Image.

φ

ρ

(b) Hough Space.

Fig. 3: Example showing the results of a Hough transform on a
raster image containing two thick lines.

One of the main advantages of the Hough Transform is that
it can detect lines of any orientation, even if they are partially
obscured or broken. However, it can be computationally expensive
for large images.

4.2 Landmark Matching

Landmark matching is the process of comparing and matching
the extracted features from sensor data to those in the map to
estimate the current pose of the robot.

4.2.1 Nearest-neighbour

To match identified landmarks with previously seen ones, the
Nearest-neighbor (NN) approach may be used. For each previously
seen landmark, the particle’s position [x y]T is projected onto it
and onto the newly identified one, using

project
(
[x y]T

)
=

1

a2 + b2

[
b2x− aby − ac
a2x− aby − bc

]
, (1)

where and the landmark is given by ax+ by + c = 0.
If the squared Euclidean distance between the two projections is

under a defined threshold, we assume that it is the same landmark.
One of the main advantages of NN is that it is simple and easy

to implement. It is also computationally cheap, making it suitable
for real-time applications.

4.2.2 Maximum Likelihood

Maximum Likelihood (ML) is a statistical method that is
commonly used in landmark matching to determine the best
correspondence between two sets of landmarks. It is based on
the assumption that the probability of a given correspondence

3

between two landmarks is determined by the similarity between
the landmarks.

To find the best correspondence, the ML approach compares
each possible correspondence between the two sets of landmarks
and calculates the likelihood of each correspondence. The corre-
spondence with the highest likelihood is considered the best match.

Algorithm 3 Maximum Likelihood [2]

Require: Measurement zt, control ut, pose xt and the Nt−1 features known
(map) with their mean µj,t−1 and covariance Σj,t−1, for j = 1, . . . , Nt−1.
A measurement prediction function h(µt−1, xt), its Jacobian h′(µt−1, xt)
and the measurement model noise Qt. The importance factor p0 used for new
features.

Ensure: Weight w and index ĉ of maximum likelihood correspondence or feature.
Algorithm: MaximumLikelihood(zt, ut, xt, Nt−1) return ⟨w, ĉ⟩
1: for j = 1 to Nt−1 do ▷ measurement likelihoods
2: ẑj = h(µj,t−1, xt) ▷ measurement prediction
3: Hj = h′(µj,t−1, xt) ▷ calculate Jacobian
4: Qj = HjΣj,t−1H

T
j + Qt ▷ measurement covariance

5: wj = |2πQj |−1/2 exp
[
− 1

2 (zt − ẑj)
T Q−1

j (zt − ẑj)
]

▷ likelihood

correspondence
6: end for

7: wNt−1+1 = p0 ▷ importance factor, new feature
8: w = max

j=1,...,Nt−1+1
wj ▷ maximum likelihood correspondence

9: ĉ = argmax
j=1,...,Nt−1+1

wj ▷ index of ML feature

10: return ⟨w, ĉ⟩

One of the main advantages of ML estimation is that it provides
a way to estimate the parameters of a probability distribution that
best explain a given set of observations. However, since the ML
method is a probabilistic method, it does not guarantee a unique
solution.

4.3 Scan Matching

Scan matching is a technique used in robotic mapping and
localization to align two or more scans of a scene, taken at different
times or from different viewpoints, to estimate the relative pose of
the robot with respect to the environment.

4.3.1 Iterative Closest Point

Iterative Closest Point (ICP) algorithm is a widely used method
for scan matching, which has been applied in various fields such
as robotics and computer vision. The ICP algorithm aims to align
the current scan with a map of the environment, by iteratively
finding the closest point correspondences between the two (see
Fig. 4). The algorithm starts with an initial alignment and then
iteratively improves it by minimizing a distance metric between
the correspondences. The algorithm converges to the optimal
alignment when the point correspondences are in a local minimum
of the distance metric.

x

y

1

2

3

4

5
1

2

3

4

5

Fig. 4: ICP application on two sets of points. Note that the orange
arrow denotes a wrong matching from NN.

The basic idea behind the ICP algorithm is that it estimates
the transformation that aligns the two sets of points in the least
squares sense. The algorithm repeats the following steps:

• Finding the closest point correspondences between the
current scan and the map;

• Estimating the transformation that aligns the correspon-
dences, using a method such as singular value decomposi-
tion;

• Updating the alignment by applying the estimated trans-
formation to the current scan

The above can be translated to the pseudocode presented in
the Algorithm 4.

Algorithm 4 Iterative Closest Point [3]

Require: Two consecutive sets of scans Sk and Sk+1 with Nk and Nk+1 scans
each respectively, the minimum error εmin and the maximum number of
iterations, imax.

The NearestNeighbor(β ∈ Sk+1, Sk) function, which finds the nearest
point in the set Sk to the point β.

Ensure: The vector u⃗CM of the translational projection between the centers of
mass and the rotation matrix T of the transformation Sk+1 → Sk.

Algorithm: IterativeClosestPoint(α ∈ Sk, β ∈ Sk+1, εmax, imax) return
u⃗CM , T

1: µSk
=

1

Nk

Nk∑
i=1

αi and µSk+1
=

1

Nk+1

Nk+1∑
i=1

βi▷ Compute the centers of

mass
2: u⃗CM = µSk+1

− µSk

3: βi = βi − u⃗CM , i = 1, . . . , Nk+1▷ Translate center of mass Sk+1 → Sk

4: (ε, εold, i, T)← (∞,∞, 1, I3) ▷ Initializations
5: while εold =∞ or ε/εold < εmin or i < imax do
6: for each βi ∈ Sk+1 do ▷ nearest neighbor
7: γi = NearestNeighbor (βi,Sk)
8: end for
9: Taux = argmin

Taux
ε(Taux) = argmin

Taux
||γ − Tauxβ||22 ▷ Solve the

optimization problem with least squares solution

10: (ε, εold, i, T) =

(
min
Taux
||γ − Tauxβ||22, ε, i + 1, TTaux

)
▷ Updates

11: end while

12: return u⃗CM , T

The ICP algorithm has the advantage of being simple to
implement and computationally efficient, it is widely used for
scan matching in SLAM, however, it is known to be sensitive
to initialization and local minima. In this work, we use the ICP
algorithm in our hybrid method, as a substitude for odometry, and
still perform all other steps (RANSAC, matching, etc...) as in all
other methods.

5 Implementation

5.1 Assumptions

For this work we considered the same motion and measurement
models as in [1], which are

g(xt−1, ut, Rt) =

x+ δ̂trans cos θ

y + δ̂trans sin θ

θ + δ̂rot

 (2)

and

hj(xt, lj) =

[
ρ− x cosφ− y sinφ

φ− θ

]
, (3)

where index j refer to the j-th landmark, as well as the values for
the odometry and laser sensor covariances, Rt and Qt, represented
below, seeing as the used robot (TurtleBot3) data was the same.

Rt =

σ2
x 0 0
0 σ2

y 0
0 0 σ2

θ

 =

10mm2 0 0
0 10mm2 0
0 0 0.05mrad2

 (4)

Qt =

[
σ2
ρ 0
0 σ2

φ

]
=

[
10 cm2 0

0 300mrad2

]
(5)

4

5.2 FastSlam implementation

The task of creating a map of an environment while simulta-
neously determining the location of a moving robot is known as
SLAM (Simultaneous Localization And Mapping). One method for
solving this problem is FastSLAM, which uses a technique called
particle filtering to generate the map and localize the robot. This
approach has several advantages over traditional methods, such as
those based on Extended Kalman Filters (EKF).

In order to test the previously proposed algorithms, the Fast-
SLAM implementation from [1] was used as a baseline (the code
is available here).

5.3 Models Overview

The combination of the presented algorithms is represented in
the Table 1, where it is possible to verify the name assigned to
each combination, in order to make the writing that follows much
easier.

Table 1: Algorithm combination identification.

Algorithm
Name Landmark Extraction Landmark Matching
Model I RANSAC Nearest-neighbour
Model II RANSAC Maximum Likelihood
Model III Hough Transform Nearest-neighbour
Model IV Hough Transform Maximum Likelihood

Model V Iterative Closest Point + RANSAC + NN

5.4 Parametrization

The parameters used for the final implementation were the
following:

Table 2: Used Parametrization.

Parameter Value Description

RANSAC

N 150 Max attempts to find lines
S 6 Number of initial samples
D 10 Max degree separation [◦]
X 0.01 Max distance a reading may be from

line [m]
C 23 Number of points that must lie on a

line for it to be taken as a line

Hough Lines

lines max 5 Maximum number of lines to detect
t 50 Minimum number of votes a line must

have
ρ [−5, 5] ρ interval [m]
φ [0, π] φ interval [rad]
∆ρ 0.12 Distance resolution of the accumulator

[m]
∆φ π/4 Angle resolution of the accumulator

[rad]

Nearest Neighbor

dmax 0.5 Distance threshold [m]

Maximum Likelihood

p0 1×
10−12

Importance factor

Iterative Closest Point

εi/εi+1 0.95 Maximum error ratio
imax 5 Maximum number of iterations

6 Experimental Results

6.1 Qualitative analysis

All the experiments were made on the headquarters of Instituto
Superior Técnico – University of Lisbon.

6.1.1 Results on ROSbag RoundTrip_30_maio.bag

The obtained results for this ROSbag, which was taken in the
5th floor of the North Tower (Setting I), are represented in the
Figures 7-12 in the Annex.

Fig. 5: Floor plan of Setting I.

We can see that both Model I and Model III yield pretty
accurate maps of the 5th floor of the north tower. However,Models
II and IV were not able to provide a full map. Model V was able
to construct a full map, although with quite big inaccuracies in
the distance measurements. In terms of the map’s shape (that
is, ignoring the actual distances measured), the best performing
method seems to beModel I. Nevertheless, we can see thatModel
III, despite initially not matching the starting corridor with the
ending one, eventually lines them up, thus showing some recovery
capacity.

6.1.2 Results on ROSbag Civil_22_junho.bag

We also tested these same models using a ROSbag taken
on the ground floor of the civil pavilion (Setting II) –
Civil_22_junho.bag, which results are represented in the Figures
13-18 in the Annex.

Fig. 6: Floor plan of Setting II.

As we can see, the odometry data for this bag is much more
accurate, and when running models I-IV the results we get are
similarly good. Model V had some issues mapping the starting
area due to how similar it looked while traveling down the corridor.
However, we can observe in Fig. 18 that the elevator section is
mapped quite well.

6.2 Quantitative analysis

Utilizing the “measure” tool from RViz it was possible to
measure some distances on the obtained map and then compare
them with the real ones, as can be seen in the Table 3.

https://github.com/ArmindoFlores/sa-fastslam
https://fenix.tecnico.ulisboa.pt/publico/findSpaces.do?spaceID=2448131361101&method=viewSpace&_request_checksum_=928e61a84839b085a36d4619eeb836c8cafe84d8
https://fenix.tecnico.ulisboa.pt/publico/findSpaces.do?spaceID=2448131361046&method=viewSpace&_request_checksum_=c4b401c5ff11859540c0c5c4b49601dfdb22c9e8

5

Table 3: Comparison of obtained measurements.

1st corridor
length [m]

2nd corridor
length [m]

1st corridor
width [m]

Measuring Tape 15.57 15.76 1.69
Model I 15.69± 0.43 15.61± 0.43 1.64± 0.43
Model II 15.97± 0.30 15.34± 0.22 1.70± 0.22
Model III 15.06± 0.55 15.12± 0.43 1.66± 0.43
Model IV 16.1± 0.31 15.88± 0.25 1.69± 0.20
Model V 11.7± 0.43 12.06± 0.43 1.66± 0.43

Table 4: Relative errors for each model.

1st corridor
length

2nd corridor
length

1st corridor
width

Model I 0.77% 0.95% 2.96%
Model II 2.57% 2.66% 0.59%
Model III 3.28% 4.06% 1.78%
Model IV 3.40% 0.76% 0%
Model V 24.86% 23.48% 1.78%

Note that the uncertainty value was computed by measuring
the width of each of the corresponding walls.

The values closest to the ones measured directly with a mea-
suring tape are the ones obtained using Model I. We can see that
for this model all the expected values sit within the margin of error.
Models III and IV also perform quite well, with only one value that
lying outside the error margin.

As expected, Model 5 was not able to get an accurate mea-
surement of the length of the corridors because without odometry
data, laser scans far away from corners look very similar, and so it
is difficult to extrapolate any translation data.

Table 5: Model runtime per landmark.

Model Run Time [µs/landmark]
HL + NN 367.09
HL + ML 229.52

RANSAC + NN 273.73
RANSAC + ML 224.14

ICP 8884.4

In Table 5 we can see the time it took to process the scans
divided by the number of existing landmarks for the various models.
We can see that models I-IV all perform similarly, with Model V
being an outlier and being more than ten times slower. This shows
us that for the first 4 models, execution is not a bottleneck and so
we are free to choose the method that yields better results.

7 Discussion

As shown in the previous section, the various models seem to
perform differently in the two studied environments. While models
I-IV were all able to generate a reasonable map in both situations,
we can see that for Setting I, Model III and Model IV were able
to recover from some of the accumulated errors and correct their
course once they returned to a previously visited place. Even so, all
models were able to take the inaccurate odometry data (especially
in the measurement of the robot’s rotation) showing resilience. As
described before, in terms of efficiency, the only outlier is Model
V, with all the other ones being able to run in real-time. In Setting
II, Model IV seems to be the most accurate, correcting the small
angle inaccuracies in odometry data.

In regards to Model V, we can see it yields a lot worse results
than all the other methods. This makes sense as we’re ignoring
the very important odometry data from the robot, but it’s still
interesting that it is able to create a map of both environments,
even it very flawed. The idea behind this method was to be used
in case odometry data from the motor sensors was not available,

either because of a system failure or because it was not available to
begin with. Due to our näıve Python implementation, this method
also ended up being very slow, to the point where it would not be
feasable to run in real-time. We also tried a C++ implementation,
however we did not manage to get the whole FastSLAM node
working in C++ to integrate with ICP within the deadline of the
project.

8 Conclusions & Real World Applications

In this paper, we have presented an analysis of the application
of various landmark extraction and matching algorithms in robotic
navigation. We have evaluated the performance of RANSAC and
Hough Transform for landmark extraction, combined with Nearest
Neighbor and Maximum Likelihood for landmark matching, as well
as the use of Iterative Closest Point (ICP) as an additional model.
Our experiments were conducted using pre-recorded ROSbags
in different scenarios on a TurtleBot3 robot, and a previously
implemented FastSLAM algorithm.

The results of our study demonstrate the potential of these
algorithms for use in real-world robotic navigation applications,
and provide some insights for future research in this field.

In terms of real-world applications, these algorithms have the
potential to be used in a wide range of robotic systems, such as
autonomous vehicles, drones, and service robots. Furthermore, the
ability to accurately extract and match landmarks can improve
the performance of robotic navigation systems, leading to more
efficient and reliable navigation in complex and dynamic environ-
ments.

For future work, we could explore the use of these algorithms
in real-world environments, in addition to further evaluating their
performance in different scenarios.

References

[1] Francisco Rodrigues, João Marafuz Gaspar, Manuel Graça, and
Tiago Lourinho. Application of FastSLAM in TurtleBot3. Technical
report, May 2022.

[2] Enrique Fernández Perdomo. Test and evaluation of the fastslam
algorithm in a mobile robot. 12 2013.

[3] Ismail Elkhrachy. Towards an Automatic Registration for Terrestrial
Laser Scaner Data. PhD thesis, 02 2008.

6

Annex

Fig. 7: Setting I map using only odometry
data.

Fig. 8: Setting I map using Model I. Fig. 9: Setting I map using Model II.

Fig. 10: Setting I map using Model III. Fig. 11: Setting I map using Model IV. Fig. 12: Setting I map using Model V.

Fig. 13: Setting II map using only odometry
data.

Fig. 14: Setting II map using Model I. Fig. 15: Setting II map using Model II.

Fig. 16: Setting II map using Model III. Fig. 17: Setting II map using Model IV. Fig. 18: Setting II map using Model V.

	Introduction
	Motivation
	Landmarks
	Algorithms
	Landmark Extraction
	Random Sample Consensus
	Hough Transform

	Landmark Matching
	Nearest-neighbour
	Maximum Likelihood

	Scan Matching
	Iterative Closest Point

	Implementation
	Assumptions
	FastSlam implementation
	Models Overview
	Parametrization

	Experimental Results
	Qualitative analysis
	Results on ROSbag RoundTrip`30`maio.bag
	Results on ROSbag Civil`22`junho.bag

	Quantitative analysis

	Discussion
	Conclusions & Real World Applications
	References

