
UNIVERSIDADE TÉCNICA DE LISBOA
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Doctor Carlos Alberto Varelas da Rocha, Professor Catedrático do Insti-
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Weak KAM and Aubry–Mather theories in an optimal switching

setting

Abstract

Dynamical systems defined by Tonelli Lagrangians have been the object of ex-

tensive study. In this direction, there is a deep connection between the classical

calculus of variations problem and aspects of the weak KAM and Aubry–Mather

theories, whence an extremely beautiful theory can be formulated. Such formu-

lation is a combination of results that have been introduced by P.L. Lions, G.

Papanicolaou, S.R.S. Varadhan, A. Fathi, J. Mather, R. Mañé, among others.

In this thesis, we extend a number of concepts of this known theory to the case

where an optimal switching system is considered. Roughly speaking, an optimal

switching problem consists of finding trajectories of a system whose dynamics can

be conveniently modified by switching between different settings or “modes”, in

order to minimize an action functional.

We mainly consider two issues: the analysis of the calculus of variations prob-

lem and the study of a generalized weak KAM–type theorem for solutions of a

weakly coupled systems of Hamilton–Jacobi equations. Our results include the

existence and regularity of action minimizers as well as necessary conditions for

minimality, and an extension of Fathi’s weak KAM theorem. These can be ap-

plied to obtain a third result, namely, the long time behavior of solutions of the

time–dependent system.

Keywords: Calculus of variations, dynamical systems, partial differential

equations, optimal switching problems, weakly coupled systems, Hamilton–Jacobi

equations, weak KAM theory, Aubry–Mather theory, quasivariational inequalities,

viscosity solutions.
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Teorias KAM fraca e de Aubry–Mather em um sistema de comutação

ótimo

Diego Marcon Farias

Doutoramento em Matematica

Orientador: Doutor Diogo Gomes

Co-Orientador: Doutor Alessio Figalli

Resumo

Sistemas dinâmicos definidos a partir de Lagrangianos de Tonelli têm sido

intensivamente estudados. Nesta direção, existe uma conexão profunda entre o

problema clássico do cálculo de variações e aspectos das teorias KAM fraca e

de Aubry–Mather, de onde uma teoria deslumbrante pode ser formulada. Tal

formulação é uma combinação de resultados introduzidos por P.L. Lions, G. Pa-

panicolaou, S.R.S. Varadhan, A. Fathi, J. Mather, R. Mañé, entre outros.

Nesta tese, estendemos alguns conceitos desta teoria já conhecida para o caso

onde um sistema de comutação ótimo é considerado. Grosseiramente falando, um

problema de comutação ótimo consiste em encontrar trajetórias ótimas em um

sistema onde a dinâmica pode ser convenientemente modificada por comutação de

estados ou modos, de tal maneira que a ação de certo funcional seja minimizada.

Consideramos principalmente duas questões: a análise do problema do cálculo

de variações e o estudo de um teorema do tipo KAM fraco para soluções de um

sistema fracamente acoplado de equações de Hamilton–Jacobi associado. Nossos

resultados incluem a existência e a regularidade de minimizantes para a ação,

condições necessárias para minimalidade e uma extensão do Teorema KAM fraco

de Fathi. Estes são então aplicados para a obtenção de um terceiro resultado, a

saber, o comportamento assimptótico de soluções do sistema com dependência do

tempo.

Palavras-chave: Cálculo de variações, sistemas dinâmicos, equações difer-

enciais parciais, problema de comutação ótimo, sistemas fracamente acoplados,

equações de Hamilton–Jacobi, teoria KAM fraca, teoria de Aubry–Mather, de-

sigualdades quasivariacionais, soluções de viscosidade.
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Chapter 1

Introduction

1.1 Overview

Dynamical systems defined by Tonelli Lagrangians have been the object of exten-

sive study. Of particular interest is the existing connection between the calculus

of variations and both the weak KAM and Aubry–Mather theories.

In the calculus of variations, a Lagrangian L : TM → R is a function defined

on the vector bundle TM of a smooth manifold M , and its action functional L,

defined on the set of absolutely continuous curves γ : [a, b] → M , a ≤ b, is given

by

L(γ) =

∫ b

a

L(γ, γ̇) ds.

In 1940, Leonida Tonelli [26] proved the existence of an absolutely continuous

minimizer of the action L, under fixed boundary conditions, that is, he proved

the existence of γ ∈ AC([a, b];M)1 for which L(γ) ≤ L(α), for all curves α ∈
AC([a, b];M) with the same endpoints. Tonelli’s method is currently known as

the direct method in the calculus of variations. Regularity of minimizers and

necessary conditions for minimality were already known:

1. Minimizers are not only absolutely continuous, but of class C2. Furthermore,

1We denote by AC([a, b];M) the set of absolutely continuous curves α : [a, b] → M , see
Chapter 2 below.
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they satisfy the Euler–Lagrange equation

d

dt

[
∂L

∂v

(
γ(t), γ̇(t)

)]
=
∂L

∂x

(
γ(t), γ̇(t)

)
, in [a, b];

More generally, minimizers have as many derivatives as the Lagrangian.

2. The energy of the system is conserved along a minimizer, that is,

E
(
γ(t), γ̇(t)

)
=
∂L

∂v

(
γ(t), γ̇(t)

)
· γ̇(t)− L

(
γ(t), γ̇(t)

)
is constant in t.

More recent are the weak KAM and the Aubry–Mather theories. The weak KAM

theory deals with finding solutions u : M → R of the stationary Hamilton–Jacobi

equation

H
(
x, du(x)

)
= c, ∀x ∈M,

where H : T ∗M → R is the Hamiltonian associated to the Lagrangian L by the

Legendre–Fenchel duality

H(x, p) := sup
v∈TxM

{
p(v)− L(x, v)

}
,

and c ∈ R a constant to be specified. In 1997, Albert Fathi [13] proved the

following.

Theorem 1 (Weak KAM). There exists a unique c0 ∈ R such that the Hamilton–

Jacobi equation

H
(
x, du0(x)

)
= c0, ∀x ∈M, (1.1)

admits a viscosity solution2 u0 : M → R.

Theorem 1 has been proved in a slightly different form by Pierre–Louis Lions,

George Papanicolaou, and Srinivasa Varadhan [20], in the case M = Td, using

a different method (namely, they used discounted infinite horizon costs together

with a stability result for viscosity solutions of Hamilton–Jacobi equations). In the

2See Definition 17, in Chapter 2, for the definition of viscosity solutions of (1.1).
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general case, Fathi obtains the solution u0 by looking at the long–time behavior

of the Lax–Oleinik semigroup

Ttu(x) := inf

{
u(γ(0)) +

∫ t

0

(
L(γ, γ̇) + c0

)
ds ;

γ ∈ AC([0, t];M), γ(t) = x

}
,

(1.2)

where c0 ∈ R is the smallest constant for which (1.1) admits a subsolution. More

precisely, he proves that, for a particular function u, the semigroup Ttu converges,

as t→ +∞, to a limit u0 that is a solution of (1.1).

On the other hand, the Aubry–Mather theory attempts to understand prop-

erties of solutions and subsolutions through the analysis of invariant objects, like

the Aubry set, the Mather set, and Mather measures.

Let us set ht : M ×M → R,

ht(x, y) = inf
γ(0)=x, γ(t)=y

∫ t

0

L
(
γ(s), γ(s)

)
ds.

Then, the projected Aubry set A, first introduced by John Mather [24] in 1991, is

the set

A =
{
x ∈M ; lim inf

t≥0

{
ht(x, x) + c0t

}
= 0
}
.

The set A is nonempty, and satisfies many useful properties. We list some of them

in the following theorem.

Theorem 2. The projected Aubry set A is nonempty, and it satisfies:

1. (Fathi [15]) If two solutions of (1.1) coincide on the Aubry set A, then they

coincide everywhere on M .

2. (Fathi-Siconolfi [17]) Every subsolution u : M → R of (1.1) is differentiable

on the projected Aubry set A. Moreover, there exists a C1 subsolution v of

(1.1) that coincides with u on A and it is a strict subsolution on M\A.

3. (Bernard [3]) Given a subsolution u of (1.1), there exists a subsolution v ∈
C1,1 that coincides with u on A, and it is strict outside A.

3



4. (Mather [23]) If x ∈ A and u is a subsolution of (1.1), then the differential

du(x) is independent of u. Moreover, the map

x ∈ A 7→ du(x) ∈ T ∗xM

is Lipschitz.

It is classical that if a viscosity subsolutions of (1.1) is differentiable at a point

x ∈ M , then H(x, du(x)) ≤ c0. Therefore, when we write that v is a strict

subsolution on M\A above, we simply mean the pointwise relation

H
(
x, dv(x)

)
< c0, ∀x ∈M\A.

To define the Mather set, we first need a couple of definitions (see also Chapter

2, §2.7). A holonomic probability measure is a probability measure µ ∈ P(TM)

such that ∫
TM

dφ(x) · v dµ(x, v) = 0, ∀ φ ∈ C1(M).

We write µ ∈ H. Following Mather [23] and Mañé [22], we wish to minimize the

relaxed action functional

µ 7→ L[µ] :=

∫
TM

L(x, v) dµ(x, v)

among all holonomic probability measures µ ∈ H. It is possible to show that

inf
µ∈H

L[µ] = −c0

and that minimizing measures exist, that is, that the infimum above is in fact a

minimum. The Mather set M̃ is then defined as

M̃ :=
⋃

L[µ]=−c0

suppµ ⊂ TM. (1.3)

It can be shown that the projected Mather set M := π(M̃) is contained in the

projected Aubry set A defined above, and an analogous of Theorem 2 holds true

on M

4



By taking advantage of these properties of the Mather set, a general asymptotic

result for the Lax–Oleinik semigroup can be proven. For example, Fathi [14] proved

the following:

Theorem 3. Given u0 ∈ C(M), the Lax–Oleinik semigroup Ttu0 converges, as

t→∞ to a critical solution v ∈ C(M) of

H
(
x, du(x)

)
= c0.

This theorem also describes the asymptotic behavior of solutions to the dy-

namical Hamilton–Jacobi equation. In fact, just observe that given u0 ∈ C(M),

the Lax–Oleinik semigroup v(t, x) := Ttu0(x) is a viscosity solution of

∂tv(t, x) +H
(
x, ∂xv(t, x)

)
= 0, on R+ ×M. (1.4)

1.2 Main results

In this thesis, we extend the previous results to the case where an optimal switching

setting is considered. An optimal switching problem consists of finding trajectories

of a system whose dynamics can be conveniently modified by switching between a

number of different settings or “modes”. Switching from one mode to another is

always allowed; however, at every switch, a positive switching cost is incurred. In

this way, we are led to minimize a generalized action of the form

J [γ, σ] :=

∫ t

0

L(γ, γ̇, σ) ds+
∑

ψ(σ−, σ+), (1.5)

where L : TM × I → R is such that L(·, ·, i) : TM → R is a Tonelli Lagrangian,

σ : [0, t] → I determines the modes at every instant of [0, t], and ψ : I × I → R
is a positive switching cost (for more precise definitions, see Chapter 3 below).

The interest in optimal switching problems and its relation with viscosity so-

lutions comes back to 1984, when Italo Capuzzo–Dolcetta and Lawrence Evans [6]

extend the notion of viscosity solution to these systems and prove that the value

functions are in fact viscosity solutions of a weakly coupled system of Hamilton–

Jacobi equations. Apparently, the problem was motivated by a variant of a stochas-

5



tic problem considered by Lawrence Evans and Avner Friedman [12], where the

solution of a Bellman equation is found as the limit of solutions of certain systems

of nonlinear equations. Capuzzo–Dolcetta and Evans were motivated by earlier

works of S.A. Belbas, and I. Capuzzo Dolcetta, M. Matzeu, J.L. Menaldi (see, for

instance [7, 2]).

We consider the following problems:

1. The calculus of variations problem associated to minimizing the action func-

tional J : We study the existence of minimizers of the action as well as gen-

eralized necessary conditions for minimality, and a conservation of energy

principle.

2. Weak KAM–type theorem for solutions of the system: Is it possible to obtain

a version of Fathi’s weak KAM theorem for this case?

3. A generalized Aubry–Mather theory associated to the system of Hamilton–

Jacobi equations: We are interested in the extension of the concepts of the

Aubry set, regular subsolutions, holonomic and minimizing measures, and,

of course, its relation with some sort of critical value.

We spend the rest of this section stating our main results. We prove both

the existence and the regularity of minimizers of the action of J . Although the

optimal switching problem has been studied for about 30 years, and the existence

of minimizers for such problems so naturally arises, we were unable to find such

result in the literature. In our method, the only extra assumption we require in

the m Tonelli Lagrangians is a uniform superlinearity3. We also obtain regularity

in space for minima. We prove:

Theorem 4. Assume I = {1, . . . ,m} is finite. Then, for every x, y ∈M , we have

existence of minimizers for the action: there exists γ = (γM , γI) ∈ AC × P with

γM(0) = x, γM(t) = y such that

Jt[γ] = inf
{
Jt[α] ; αM(0) = x, αM(t) = y

}
.

Moreover,

3See assumptions A1–A5 in Chapter 3

6



1. Minimizers are of class C2(M), meaning γM ∈ C2(M), and solve the Euler–

La-grange equation

d

ds

[
∂L

∂v

(
γM(s), γ̇M(s), γI(s)

)]
=
∂L

∂x

(
γM(s), γ̇M(s), γI(s)

)
(1.6)

in [0, t]\{t1, . . . , tN}, where tk’s are the discontinuity points of γI;

2. Along a minimizing curve, the (generalized) energy functional is conserved:

E
(
γM(s), γ̇M(s), γI(s)

)
:=

∂L

∂v

(
γM(s), γ̇M(s), γI(s)

)
· γ̇M(s)

− L
(
γM(s), γ̇M(s), γI(s)

) (1.7)

is constant in [0, t].

Next, we describe properties of the associated value functions. These value

functions solve, in the viscosity sense, a system of Hamilton–Jacobi equations of

the form [6, 19]

max
x∈M

{
Hi

(
x, dui(x)

)
,max
j 6=i

{
ui(x)− uj(x)− ψ(x, i, j)

}}
= 0, ∀ i ∈ I. (1.8)

One of our main results is a weak KAM–type theorem, analogue to the one in

Fathi [13], to the optimal switching setting. We have:

Theorem 5. There exists a unique constant c0 ∈ R satisfying:

(i) The equation

max
x∈M

{
Hi

(
x, dui(x)

)
− c0,max

j 6=i

{
ui(x)− uj(x)− ψ(x, i, j)

}}
= 0, ∀ i ∈ I,

(1.9)

admits a viscosity solution u : M × I → R;

(ii) For any c ∈ R for which (1.9) admits a subsolution with c0 replaced by c, we

have c ≥ c0.

We prove Theorem 5 by extending Fathi’s idea of looking at the long time

behavior of a generalized Lax–Oleinik semigroup we define4. Additionally, we

4We learned that Lax–Oleinik operators for similar problems have been considered before [1].

7



obtain a regularity result for solutions of the system, in the same spirit of Bernard’s

Theorem [3]. For this matter, we need a notion of a projected Aubry set in the

optimal switching setting, which we formulate essentially in the same way it has

already been defined by Gomes-Serra [19].

We define the projected Aubry set similarly to [19], and we prove he following

theorem:

Theorem 6. The Aubry set A ⊂M × I satisfies the following properties:

1. For any A = (x, i) ∈ A, there exists a curve γ : R→ A with γ(0) = A such

that, for any subsolution u : M × I → R of (1.9), and all t1 < t2,

u
(
γ(t2)

)
− u
(
γ(t1)

)
=

∫ t2

t1

L
(
γM(s), γ̇M(s), γI(s)

)
ds

+
∑
k

ψ
(
γM(sk+1), γI(sk), γI(sk+1)

)
,

where the sum above is taken for all k such that t1 < sk < t2.

2. Suppose u is a subsolution and w is a supersolution of (1.9), and that u ≤ w

on A. Then u ≤ w in M × I.

1.3 Structure of the thesis

In Chapter 2, we describe carefully the classical calculus of variations theory in

dimension 1, including the existence of minimizers, the Euler–Lagrange equations,

and the conservation of energy principle. We also describe the connection that the

Legendre–Fenchel transform provides between the value function and the viscosity

solutions of Hamilton–Jacobi equations, including Fathi’s weak KAM theorem.

Then, we define elements of the Aubry–Mather theory and show how to obtain

subsolutions that are regular in the Aubry set. No results in this chapter are new.

Next, in Chapter 3, we proceed to the description of the optimal switching

problem. We prove the existence and regularity of minimizers for a class of “uni-

formly” Tonelli Lagrangians. A first property of the cost function is also proven,

namely, the local semiconcavity.

8



In Chapter 4, we define the Lax–Oleinik semigroup associate to the system

(1.9), and the generalized Weak KAM Theorem. At the end of the chapter, we

define the Aubry set and prove Theorem 6.

In Chapter 5 we obtain asymptotic limits of solutions to the dynamical Hamil-

ton–Jacobi system.

Finally, in Chapter 6, we discuss further topics we will present in a future work.

At the end of this thesis, we also have two appendices. In Appendix A we state

and prove Tonelli’s Existence Theorem of the calculus of variations. In Appendix

B we provide a short introduction on semiconvex and semiconcave functions.

9
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Chapter 2

Classical Theory

The purpose of this chapter is to recall the concepts that, in a way or another,

will be studied in the later chapters for switching problems. For the convenience

of the reader, we make the presentation as self–contained as possible; in the few

places where no proof is given, we provide appropriate references.

To begin with, we define Tonelli Lagrangians and its associated action func-

tional in Section 2.1. Next, in Section 2.2, we state Tonelli’s Existence Theorem

of action minimizers (a proof is postponed to Appendix A), and we prove that

they satisfy the Euler–Lagrange equations, that in turn gives us regularity of min-

imizers. Then, in Section 2.3, we use the Legendre–Fenchel duality to define the

Hamiltonian, and we prove the conservation of energy principle. In Section 2.4 we

present Fathi’s Weak KAM Theorem, and explain the ideas behind Fathi’s proof.

The existence of C1,1 subsolutions is proved in Section 2.5. Next, we proceed to

define the main elements of the Aubry–Mather theory in Sections 2.6 and 2.7.

Finally, in Section 2.8, we show that weak KAM solutions can be obtained as

the asymptotic limit of Lax–Oleinik solutions of time–dependent Hamilton–Jacobi

equations.

11



2.1 Definitions and examples

Throughout this thesis, M denotes a complete differentiable manifold and TM its

tangent bundle. We call L : TM → R a Lagrangian and

J [γ] = Ja,b[γ] :=

∫ b

a

L
(
γ(s), γ̇(s)

)
ds

its action over an absolutely continuous curve γ : [a, b] → M . We assume L is

bounded below and continuous, so that the action is well-defined with values in

R ∪ {+∞}.
By action minimizer we understand a curve γ : [a, b]→M satisfying Ja,b[γ] ≤

Ja,b[α], for any absolutely continuous curve α : [a, b] → M with the same end-

points. As we have already mentioned in the introduction, Tonelli’s theory [26]

proves to be very efficient in finding an action minimizer, whence it is fair that the

following definition carries his name.

Definition 7. (Tonelli Lagrangian) We say that L : TM → R is a Tonelli La-

grangian if it satisfies the following four conditions:

1. L is of class C2(TM);

2. The second order derivative ∂2L
∂v2

L(x, v) is positive definite, for every (x, v) ∈
TM ;

3. There exist g, a complete Riemannian metric, and a constant C ≥ 0 such

that

‖v‖x − C ≤ L(x, v),

for any v ∈ TxM , where ‖v‖x :=
√
gx(v, v), for (x, v) ∈ TM ;

4. Superlinear in the fibers above compact subsets : For every compact K ⊂M ,

and for every constant A ≥ 0, there exists a constant C ∈ R, depending on

K and on A, such that

L(x, v) ≥ A ‖v‖x + C, for all x ∈ K, v ∈ TxM

Next, we provide a few examples of Tonelli Lagrangians
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Example 8. Given a complete smooth Riemannian metric g on M , we define the

quadratic (or Riemannian) Lagrangian as

L(x, v) =
1

2
‖v‖2

x .

Example 9. If a metric is given on M , as in Example 8, and a potential U ∈
C2, U ≥ −C, is added to the quadratic Lagrangian, we again obtain a Tonelli

Lagrangian, that is known as the mechanical Lagrangian

L(x, v) =
1

2
‖v‖2

x + U(x).

Example 10. Another example was introduced by Ricardo Mañé [21]: Given a

C2 vector field X, set

L(x, v) = ‖v −X(x)‖2
x .

2.2 Existence and regularity of minimizers

In this section we prove the existence of minimizers for the action of a Tonelli

Lagrangian.

Theorem 11 (Existence of action minimizers). Assume L : TM → R is a

Tonelli Lagrangian. Then, there exists a minimizer of the action Jt under fixed

endpoints condition. More precisely, given a < b and x, y ∈ M , there exists

γ ∈ AC([a, b];M), with γ(a) = x, γ(b) = y satisfying

Jt[γ] ≤ Jt[α],

for all α ∈ AC([a, b];M) with α(a) = x, α(b) = y.

Proof. We provide a proof of this theorem in Appendix A. The proof follows the

direct method in the calculus of variations. See also [4, 15].

Remark 12. We observe that L being a Tonelli Lagrangian is more than necessary

in order to prove the existence of minimizers, like in Theorem 11. Indeed, L does

not even need to be C1. For instance, if we assume the following:
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(i) L and ∂L/∂v continuous;

(ii) L(x, ·) convex, for each fixed x;

(iii) L has superlinear growth,

then a minimizer exists. For a proof of this result, see [4, Theorem 3.7].

Next, we prove that minimizers of the action satisfy the Euler–Lagrange equa-

tions. The proof is standard and can be found in different textbooks (see, for

instance, [4, 15]).

Theorem 13 (Euler–Lagrange equations and regularity). If L : TM → R is a

Tonelli Lagrangian, and γ : [a, b] → M is an action minimizer, then γ is C2 and

it satisfies (in coordinates) the Euler–Lagrange equation

d

dt

[
∂L

∂v

(
γ(t), γ̇(t)

)]
=
∂L

∂x

(
γ(t), γ̇(t)

)
, (2.1)

for all t ∈ [a, b].

Proof. Assume γ is minimizing. Then, it is Lipschitz (see [8]). Let h : [a, b]→ M

be C1, with h(a) = 0, h(b) = 0. Then, since γ is minimizing

0 ≤ J [γ + εh]− J [γ]

ε
=

∫ b

a

L(γ + εh, γ̇ + εḣ)− L(γ, γ̇)

ε
=:

∫ b

a

f(ε, s) (2.2)

Since

f(ε, s)→ ∂L

∂x
(γ, γ̇) · h+

∂L

∂v
(γ, γ̇) · ḣ, a.e. as ε→ 0

and

|f(ε, s)| ≤ K|h|+ |ḣ| ≤ C,

the dominated convergence theorem implies

0 ≤
∫ b

a

∂L

∂x
(γ, γ̇) · h+

∂L

∂v
(γ, γ̇) · ḣ,
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for all h. In particular,

0 =

∫ b

a

∂L

∂x
(γ, γ̇) · h+

∂L

∂v
(γ, γ̇) · ḣ

=

∫ b

a

(
∂L

∂x
(γ, γ̇)− d

ds

∂L

∂v
(γ, γ̇)

)
h

(2.3)

Since h is arbitrary, the result follows.

2.3 Hamiltonian and Conservation of energy

Associated to the Lagrangian L : TM → R through the Legendre–Fenchel trans-

form is the Hamiltonian H : T ∗M → R,

H(x, p) := sup
v∈TxM

{
p(v)− L(x, v)

}
. (2.4)

Definition 14. We say that H : T ∗M → R is a Tonelli Hamiltonian if the

following conditions are satisfied:

1. H is C2(TM);

2. The second derivative along the fibers is positive definite: For every (x, p) ∈
T ∗M ,

∂H

∂p
(x, p) > 0;

3. There exist g, a complete Riemannian metric, and a constant C ≥ 0 such

that

‖p‖∗x − C ≤ H(x, p),

for any p ∈ T ∗xM , where ‖p‖∗x denotes a norm on T ∗M ;

4. Superlinear in the fibers above compact subsets: For every compact K ⊂M ,

and for every constant A ≥ 0, there exists a constant C ∈ R, depending on

K and on A, such that

H(x, p) ≥ A ‖p‖∗x + C, for all x ∈ K, p ∈ T ∗xM.
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It is standard to verify that H, given by (2.4) is a Tonelli Hamiltonian (see,

for instance [8]). Conversely, if one is given a Tonelli Hamiltonian, in the sense of

Definition 14 above, we can recover the Lagrangian L : TM → R by the reverse

Legendre–Fenchel transform

L(x, v) := sup
p∈T ∗xM

{
p(v)−H(x, p)

}
,

and prove that it is a Tonelli Lagrangian.

Definition 15. The energy functional on TM is defined as E : TM → R,

E(x, v) = H

(
x,
∂L

∂x
(x, v)

)
=
∂L

∂v
(x, v) · v − L(x, v). (2.5)

The conservation of energy principle states that the energy of the system is

conserved along trajectories, and it is the content of the following theorem:

Theorem 16. The energy is conserved along trajectories of the system, that is,

E
(
γ(t), γ̇(t)

)
=
∂L

∂v

(
γ(t), γ̇(t)

)
· γ̇(t)− L

(
γ(t), γ̇(t)

)
(2.6)

is constant in [a, b], whenever γ ∈ AC([a, b];M) is an action minimizer.

Proof. We only sketch the proof. Define the adjoint variables s 7→
(
x(s), p(s)

)
∈

T ∗M by (
x(s), p(s)

)
=

(
γ(s),

∂L

∂v

(
γ(s), γ̇(s)

))
. (2.7)

Observe that the Euler–Lagrange equation implies p ∈ C1. By the analysis of

the Legendre–Fenchel duality, it is not hard to see that (x, p) is a solution the

Hamiltonian system: 
ẋ(s) =

∂H

∂p

(
x(s), p(s)

)
ṗ(s) = −∂H

∂x

(
x(s), p(s)

)
,

(2.8)
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when s 7→
(
γ(s), γ̇(s)

)
is a minimizing trajectory. Then

d

ds
E
(
γ(s), γ̇(s)

)
=

d

ds
H
(
x(s), p(s)

)
=
∂H

∂x

(
x(s), p(s)

)
· ẋ(s) +

∂H

∂p

(
x(s), p(s)

)
· ṗ(s) = 0,

(2.9)

and the result follows.

2.4 Fathi’s weak KAM theorem

As mentioned in the introduction, the weak KAM theory is concerned with the

existence of solutions to the stationary Hamilton–Jacobi equation

H
(
x, du(x)

)
= c, (2.10)

for some c ∈ R. To begin with, we must clarify what notion of solutions we

consider. We start with the definition of a viscosity solution:

Definition 17. 1. We say that the continuous function u : M → R is a vis-

cosity subsolution of (2.10) if for all x ∈M , and for any C1 function φ such

that u− φ has a maximum at the point x, we have

H
(
x, dφ(x)

)
≤ c. (2.11)

2. We say that the continuous function u : M → R is a viscosity supersolution

of (2.10) if for all x ∈ M , and for any C1 function φ such that u − φ has a

minimum at the point x, we have

H
(
x, dφ(x)

)
≥ c. (2.12)

3. Finally, we say u : M → R is a viscosity solution of (2.10) if it is both a

viscosity subsolution and a viscosity supersolution.

In this context, the notion of a viscosity solution has different equivalent defi-

nitions. In order to present these, we recall the following definition:
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Definition 18. For a given function u : M → R, the Lax–Oleinik semigroup

Ttu : M → R is defined by

Ttu(x) := inf

{
u(γ(0)) +

∫ t

0

L
(
γ(s), γ̇(s)

)
ds

}
, (2.13)

where the infimum is taken over all absolutely continuous curves γ ∈ AC([0, t];M)

with γ(t) = x.

Our main interest in this semigroup is the variational approach that it provides

for solutions of (2.10). For the definition of a semiconcave function, see Appendix

B.

Proposition 19. Let H : T ∗M → R be a Tonelli Hamiltonian. Given a semicon-

cave function u : M → R, the following conditions are equivalent:

(i) u is a viscosity solution of (2.10);

(ii) H
(
x, du(x)

)
= c a.e. in M ;

(iii) u = Ttu+ ct, for every t ≥ 0.

Proof. See Fathi’s book [15].

In fact, we have proven:

Proposition 20. Given a semiconcave function u : M → R, the following condi-

tions are equivalent:

(i) u is a viscosity subsolution of (2.10);

(ii) H
(
x, du(x)

)
≤ c a.e. in M ;

(iii) u ≤ Ttu+ ct, for every t ≥ 0.

A similar statement holds for supersolutions.

The previous propositions provide useful ways of searching for solutions, sub-

solutions, or supersolutions. However, when in search of a solution, in general it is

not possible to find a fixed point for the Lax–Oleinik semigroup. In fact, we must

be careful with the choice of the constant we consider. The following theorem

holds (Fathi [13]; see also Lions, Papanicolaou, Varadhan [20]):
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Theorem 21 (Weak KAM). There exists a unique constant c0 ∈ R for which

H
(
x, du(x)

)
= c0 (2.14)

admits a viscosity solution u : M → R.

Proof. We only sketch the proof of this theorem, by Fathi’s method. Define c0 ∈ R
to be the smallest constant c ∈ R for which H

(
x, duc(x)

)
= c admits a subsolution

uc : M → R. It is simple to verify that this infimum is attained for some function

u : M → R. Since u is a subsolution, Proposition 20 implies u ≤ Ttu + c0t, for

all t ≥ 0. For simplicity, we consider a “normalized” version of the Lax–Oleinik

semigroup

Ttu(x) = inf

{
u(γ(0)) +

∫ t

0

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds

}
, (2.15)

so that

u ≤ Ttu,

for all t ≥ 0. Now, by using the compactness of M , one proves that this value c0

is the only one for which we can find a viscosity solution of H
(
x, duc(x)

)
= c0.

Then, by the choice of c0, we prove that (see our analogue for switching problems:

Proposition 77, in Chapter 3)

sup
t≥0
‖Ttu‖L∞(M) < +∞. (2.16)

Since the Lax–Oleinik semigroup is monotone, and u is a subsolution, we have

Tsu ≤ Ttu, for every 0 ≤ s ≤ t. (2.17)

Thus, (2.16) and (2.17) imply that the pointwise limit

u∞(x) := lim
t→∞

Ttu(x) (2.18)

is well defined. Moreover, it is easily verified that u∞ is a fixed point of the

19



Lax–Oleinik semigroup:

Ttu
∞(x) = Tt( lim

s→∞
Tsu(x)) = lim

s→∞
Ts+tu(x) = u∞(x).

2.5 Existence of C1,1 critical subsolutions

In this section, we present Bernard’s proof [3] that the set of C1,1 viscosity subsolu-

tions of (2.10) is a dense subset of the set of viscosity subsolutions. More precisely,

we prove:

Theorem 22 (Bernard). Let H : T ∗M → R be a Tonelli Hamiltonian, as in

Definition 14. If the Hamilton–Jacobi equation (2.10) admits a subsolution, then

it admits a C1,1 subsolution. Furthermore, the set of C1,1 viscosity subsolutions

of (2.10) is a dense subset of the set of viscosity subsolutions, with the uniform

topology.

The idea of Bernard’s proof goes as follows: as before, we define

Ttu(x) = inf
y∈M

{
u(y) + ht(y, x)

}
, (2.19)

and we consider as well the “backwards” Lax–Oleinik semigroup

T̆tu(x) = sup
y∈M

{
u(y)− ht(x, y)

}
. (2.20)

In this section, we consider the normalized function

ht(y, x) = inf
γ

∫ t

0

[
L(γ, γ̇) + c0

]
.

We know that Ttu is semiconcave. Analogously, we can show that T̆tu is semi-

convex. Bernard shows that, if s > 0 is sufficiently small, then Ts(T̆tu) is ‘still’

semiconvex. Since it is always a semiconcave function, it has to be C1,1.

We start with a lemma:
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Lemma 23. If F is is such that

F ⊆
{
f ∈ C2 ;

∥∥D2f
∥∥
∞ ≤ C

}
.

Then, so is Ts(F), for all sufficiently small s > 0. Moreover, for f ∈ F , and

γ : [0, s]→M , γ(t) := π ◦ φHt (x, dxf), we have

Tsf(x) = f(γ(0)) +

∫ s

0

(
L(γ(t), γ̇(t)) + c0

)
dt. (2.21)

Proof. This proof makes use the Hamiltonian flow φHt . Since we never defined it,

we only sketch the proof. Fix f ∈ F . Since f ∈ C2,
{(
x, df(x)

)}
is a C1 graph,

and, for sufficiently small s > 0, we have that

φHs
(
x, df(x)

)
=
(
y, d(Tsf)(y)

)
is still a C1 graph, where y = γ(s) and γ : [0, s] → M minimizing with γ(0) = x.

Then Tsf ∈ C2, for all sufficiently small s > 0. That the Hessians are uniformly

bounded follows from the uniform bound of f ∈ F .

Proof of Theorem 22. Denote v(x) = T̆tu(x). By semiconvexity, there exist C ∈ R
and

F ⊆
{
f ∈ C2(M,R) ;

∥∥D2f
∥∥
∞ ≤ C

}
such that

v(x) = sup
f∈F

f(x), ∀ x ∈M. (2.22)

Also, for every p ∈ ∂−v(x), there exists f ∈ F such that v(x) = f(x) and p = df(x).

Since Tt preserves order, for every f ∈ F , we have Ttv ≥ Ttf ; then

Ttv(x) ≥ sup
f∈F

Ttf(x).

Now, for fixed x ∈M , consider γ : [0, s]→M minimizing curve, with γ(s) = x:

Tsv(x) = v
(
γ(0)

)
+

∫ s

0

[
L
(
γ(t), γ̇(t)

)
+ c0

]
dt. (2.23)
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By minimality, zero is in the subdifferential at γ(0) of the function

z 7→ v(z) + ht(z, x).

If we set

p :=
∂L

∂v

(
γ(0), γ̇(0)

)
,

we know −p ∈ ∂+
1 ht
(
γ(0), x

)
; thus,

p ∈ ∂−v
(
γ(0)

)
.

Then, choose f ∈ F such that v
(
γ(0)

)
= f

(
γ(0)

)
and p = df

(
γ(0)

)
. We must

have

Tsf(x) = f
(
γ(0)

)
+

∫ s

0

[
L
(
γ(t), γ̇(t)

)
+ c0

]
dt. (2.24)

This, together with (2.23), shows that Tsv is semiconvex. Therefore, u is C1,1.

2.6 Aubry set

As mentioned in the introduction, the behavior of subsolutions at each point of its

domain x ∈ M depends heavily on whether x is an element of a certain set, the

Aubry set, that we define in this section and study its main properties. For more

on the Aubry set, we refer the reader to the lecture notes [25, 18], the book [15],

and the paper [3].

Recall that we consider the ‘normalized’ cost function

ht(x, y) = inf

{∫ t

0

(
L
(
γ(s), γ̇(s)

)
+ c0

)
ds ; γ ∈ AC([0, t];M)

with γ(0) = x, γ(t) = y

}
.

Definition 24. The (projected) Aubry set A ⊂ M is defined as the set of points

x ∈M for which

lim sup
t→+∞

ht(x, x) = 0.

Our first claim is to show that every subsolution u is differentiable in the
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projected Aubry set; moreover its differential du(x) is independent of u.

Proposition 25 (Existence of critical curves). Given y ∈ A, there exists a curve

γy : R→ A such that for any critical subsolution u : M → R,

u(γ(b))− u(γ(a)) =

∫ b

a

[
L
(
γ(s), γ̇(s)

)
+ c0

]
ds,∀ a ≤ b. (2.25)

Proof. We postpone the proof of this proposition until Chapter 4.3, where we prove

a more general statement. The idea is to consider curves γk : [0, tk] → M , with

γk(0) = y, γk(t) = x for which ∫ tk

0

L(γk, γ̇k)→ 0.

Such curves exist by the definition of the projected Aubry set. Using the assump-

tions on L to show that γk must converge to a curve γy that satisfies the desired

properties.

Corollary 26. If x ∈ A, then every critical subsolution u : M → R is differen-

tiable at x,

du(x) =
∂L

∂v

(
x, γ̇(0)

)
, (2.26)

and

H
(
x, du(x)

)
= c0. (2.27)

Proof. By working locally on charts, we may assume M ⊆ Rd. Let γx : [−δ, δ] →
Rd be the critical curve given by Proposition 25, and set, for y in a neighborhood

of x, αy : [0, δ]→ Rd,

αy(s) := γx(s− δ) +
s

δ
(y − x).

Since γx ∈ C2, so is αy. Observe that the dependence on y is smooth. Define, in

a neighborhood of x,

ϕ(y) = u(x) +

∫ δ

0

L(αy, α̇y) ds−
∫ 0

−δ
L(γx, γ̇x).
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Then, ϕ ∈ C2 and touches u from above at x. Analogously, by considering

βy(s) :=
δ − s
s

(y − x) + γx(s),

we obtain a C2 function touching u from below at the point x. This proves u is

differentiable in x. Being u differentiable, Proposition 25 implies

du(x) · γ̇(0) = L
(
x, γ̇(0)

)
+ c0 ≥ L

(
x, γ̇(0)

)
+H

(
x, du(x)

)
, (2.28)

and the Legendre–Fenchel duality provides the desired result.

Since a critical curve is uniquely determined, then for every x ∈ A, and every

subsolution u, the differential du(x) is uniquely determined, namely

du(x) =
∂L

∂v

(
x, γ̇(0)

)
.

Definition 27. The Aubry set Ã ⊂ T ∗M is defined as

Ã =
{(
x, du(x)

)
∈ T ∗M ; x ∈ A and u any critical subsolution

}
. (2.29)

Theorem 28. [Mather’s Graph Theorem] The restricted projection π : Ã →M is

injective, π(Ã) = A, and the inverse

π−1 : A → Ã

is a Lipschitz graph.

Proof. By (2.26), if x ∈ A then du(x) is independent of the subsolution u, and so

x 7→ du(x) is well defined as a map. Moreover, at x ∈ A, there exist a C2 function

touching u from above and a C2 function touching u from below. Then, u is C1,1

on A; therefore, x 7→ du(x) is Lipschitz.

We explain next the behavior of subsolutions in the Aubry set. Bernard’s

Theorem given in Section 2.5 provides an elegant proof of the following:

Theorem 29 (Bernard). Let H : T ∗M → R be a Tonelli Hamiltonian. Then,
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there exists a C1,1 critical subsolution u strict outside A, that is,

H
(
x, du(x)

)
< c0, ∀x 6∈ A.

Proof. Endow the set of critical subsolutions with the C1 topology. This space is

separable, because C1(M) is, with the same topology. Then, we consider a dense

subset un of C1 subsolutions.

Claim: u defined by

u(x) =
∞∑
n=1

un(x)

2n

is a C1 subsolution that is strict outside A.

Indeed, for each x 6∈ A, since there exists a critical subsolution which is strict

in x, we have H
(
x, dun(x)

)
< c0, for some n (by density). Then, the convexity of

H implies

H
(
x, du(x)

)
≤
∑
n

H
(
x, dun(x)

)
2n

< c0.

The existence of a C1,1 subsolution follows from the density result given by Theo-

rem 22.

2.7 Mather set

In this section we describe the construction of the Mather set, following Mather

[23] and Mañè [22]. To each trajectory γ : [0,+∞]→M , we can associate a family

of probability measures {µtγ}t≥0 on TM by∫
TM

F dµtγ :=
1

t

∫ t

0

F
(
γ(s), γ̇(s)

)
ds, (2.30)

for all F : TM → R continuous. Since γ is Lipschitz, µtγ is weakly-* compact;

then, there exists a probability measure µγ on TM such that

µtnγ ⇀ µγ.
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If we consider a function ϕ ∈ C1(M), then µγ satisfies∫
dϕ(x) · v dµγ = lim

t→+∞

∫
dϕ(x) · v dµtγ

= lim
t→+∞

1

t

∫ t

0

dϕ
(
γ(s)

)
· γ̇(s) ds

= lim
t→+∞

ϕ
(
γ(t)

)
− ϕ

(
γ(0)

)
t

= 0.

(2.31)

Following Mañé [22], we define

Definition 30. We call µ ∈ P(TM) an holonomic probability measure if, for any

smooth function ϕ ∈ C1(M),∫
TM

dϕ(x) · v dµ(x, v) = 0. (2.32)

We denote by H the set of holonomic probability measures.

Mather problem. Minimize

L(µ) :=

∫
TM

(
L(x, v) + c0

)
dµ(x, v), for µ ∈ H.

It can be shown [22]

H =
{
µγ ; γ ∈ C1

per([0, t];M), t > 0
}
.

By such characterization, and the construction of µγ at the beginning of this

section, we can see that

inf
µ∈H

∫
TM

L(x, v) dµ = −c0.

Proposition 31. There exists a minimizing measure µ ∈ H, that is, µ satisfies∫
TM

L(x, v) dµ = −c0.
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Proof. By superlinearity,

H̃ := H ∩ {µ ; L(µ) ≤ −c0 + 1}

is compact and convex on P(TM). Therefore, L attains a minimum in H.

Definition 32. The Mather set M̃ is defined as

M̃ :=
⋃

L(µ)=−c0

suppµ ⊂ TM. (2.33)

The projected Mather set is defined as M := π(M̃) ⊂M .

The existence of smooth subsolutions allows us to easily prove the next propo-

sition.

Proposition 33. The projected Mather set is contained in the projected Aubry set

of Section 2.5.

Proof. Let µ be any minimizing measure, and u any C1 subsolution. Then, since

µ ∈ H, the Legendre–Fenchel inequality shows

0 =

∫
TM

du(x) · v dµ ≤
∫
TM

[
L(x, v) +H

(
x, du(x)

)]
dµ

≤
∫
TM

[
L(x, v) + c0

]
dµ = 0.

(2.34)

Therefore,

H
(
x, du(x)

)
= c0, for x ∈ π(suppµ)

and x ∈ A.

In [23], Mather proved the following theorem, that we obtain as a consequence

of the previous proposition.

Corollary 34 (Mather Graph Theorem). The restricted projection π : M̃ → M

is injective, π(M̃) =M, and the inverse

π−1 :M→ M̃
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is Lipschitz.

Proof. Follows from Proposition 33 combined with Theorem 28.

2.8 Time–dependent Hamilton–Jacobi equations

Let us now consider the time–dependent Hamilton–Jacobi equation{
∂tv(t, x) +H(x, ∂xv(t, x)) = 0, in M × (0, T ];

v(0, ·) = v0, on M × {0},
(2.35)

for a given continuous function v0 : M → R. By using the Legendre–Fenchel

duality, as in the stationary case, we are led to consider the following candidate

for a solution of (2.35):

v(t, x) := inf

{
v0(γ(0)) +

∫ t

0

L
(
γ(s), γ̇(s)

)
ds

}
= Ttv0(x), (2.36)

where the infimum is taken over all absolutely continuous curves γ ∈ AC([0, t];M)

with γ(t) = x. In fact, we have the following:

Theorem 35. If v0 : M → R is continuous, then v : M → R defined by v(t, x) :=

Ttv0(x) is a viscosity solution of (2.35).

Proof. The proof is standard and can be found, for instance, in [11]. See also,

Theorem 88, in Chapter 5.

We observe that when v0 is a critical subsolution

H
(
x, dv0(x)

)
≤ c0 on M,

then the weak KAM theorem, Theorem 1, states that Ttv0 converges as t → +∞
to a critical solution of

H
(
x, du(x)

)
= c0 on M.

This means that, in the case v0 is a critical subsolution, the asymptotic behavior

of the solution v(t, x) = Ttv0, as t→ +∞ is a weak KAM solution.
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A natural question that arises is the following: Is the asymptotic behavior of

solutions of (2.35) the same, for any continuous initial condition? In other words,

given any v0 : M → R continuous (not necessarily a subsolution), can we say

that v(t, x) = Ttu(x) converges, as t→ +∞, to a critical solution? The following

theorem gives a positive answer to this question:

Theorem 36. Given u0 ∈ C(M), the Lax–Oleinik semigroup Ttu0 converges, as

t→∞ to a critical solution v ∈ C(M) of

H
(
x, du(x)

)
= c0.

Moreover, v can be written as:

v(x) = inf
y∈A

{
h(y, x) + inf

z∈M
{u0(z) + h(z, y)}

}
,

where h : M ×M → R denotes the Peierls barrier

h(x, y) := lim inf
t→+∞

ht(x, y).

We present two proofs of this theorem. The first one is the original one of Fathi

[14], exploiting the invariance of Mather measures through the flow. The second

one is somehow more elementary and uses critical curves to avoid the use of the

flow.

First proof. The set {Ttu}t≥t0 , for a fixed t0 > 0, is uniformly Lipschitz. Moreover,

take ũ a critical solution given by Theorem 21, then

‖Ttu− ũ‖L∞ ≤ ‖u− ũ‖L∞ ,

and so the family is also uniformly bounded. It follows that there exists a sequence

tn → +∞ such that

Ttnu→ u∞,

by the Arzelà–Ascoli Theorem. Observe that for any C1 function w : M → R, by
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the Legendre–Fenchel inequality, we have

w
(
γ(t)

)
− w

(
γ(0)

)
≤
∫ t

0

(
L(γ, γ̇) + sup

x
H
(
x, dw(x)

))
ds, (2.37)

for any curve γ ∈ AC([0, t];M). By approximation, (2.37) holds true for any

Lipschitz function w; then, since Ttnu is Lipschitz,

Ttnu
(
γ(t)

)
− Ttnu

(
γ(0)

)
≤
∫ tn

0

(
L(γ, γ̇) + sup

x
H
(
x, dTtnu(x)

))
ds, (2.38)

for any γ ∈ AC([0, t];M).

Claim. For every x ∈M ,

H
(
x, dTtnu(x)

)
→ c0 as tn →∞. (2.39)

In fact, if consider γn : [0, tn] → M extremal with γn(tn) = x, then we have

(compare to Proposition 94 of Chapter 4)

dTtnu(x) =
∂L

∂v

(
x, γ̇n(tn)

)
, (2.40)

and the claim is the content of Lemma 37 below.

Now, by letting tn → +∞ in (2.38), we obtain

u∞
(
γ(t)

)
− u∞

(
γ(0)

)
≤
∫ t

0

(
L(γ, γ̇) + c0

)
ds, (2.41)

and we conclude u∞ is a critical subsolution. To prove that it is actually a critical

solution, consider a subsequence of tn such that sn = tn+1 − tn →∞. We have

‖Tsnu∞ − u∞‖ ≤ ‖Tsnu∞ − TsnTtnu‖+
∥∥Ttn+1u− u∞

∥∥
≤ ‖u∞ − Ttnu‖+

∥∥Ttn+1u− u∞
∥∥→ 0.

(2.42)

This shows that u∞ is a fixed point of the semigroup.

Lemma 37 (Carneiro’s Theorem). For any γn : [0, tn] → M minimizer, with
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tn →∞, there exists a subsequence sn ∈ [0, tn], such that

H

(
γn(sn),

∂L

∂v

(
γn(sn), γ̇n(sn)

))
→ c0. (2.43)

Proof. We use Riesz Representation Theorem to define a family of probability

measures µn ∈ P(TM) with support on the speed curves (γn(·), γ̇n(·)) ⊂ TM : For

any θ ∈ C(TM), set ∫
TM

θ dµn :=
1

tn

∫ tn

0

θ(γn(s), γ̇n(s)) ds. (2.44)

By compactness, the support of all measures µn lie in a fixed compact set K ⊂ TM

of the tangent bundle. Then, we can extract a subsequence such that µn ⇀ µ.

Such a limit is invariant under the Euler–Lagrange flow as well, and satisfies∫
TM

L dµ = lim
tn→∞

1

tn

∫ tn

0

L(γn(s), γ̇n(s)) ds = −c0. (2.45)

This implies that suppµ ⊂ M̃. Take a sequence (γn(sn), γ̇n(sn)) ∈ suppµn con-

verging to a point of suppµ. Since

H

(
x,
∂L

∂v

(
x, v
))

= c0 (2.46)

for points (x, v) ∈ M̃, the result follows from continuity.

2.8.1 Convergence of the Lax–Oleinik semigroup; A sec-

ond proof

The second proof we present is due to Davini and Siconolfi [10]. The idea is to

show that the limit Ttu0 exists, as t→ +∞, by looking at the ‘semilimits’:

u(x) = sup

{
lim sup
n→∞

(Ttnu0)(xn)

}
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and

u(x) = inf

{
lim inf
n→∞

(Ttnu0)(xn)

}
,

where the supremum and the infimum above are taken over all sequences xn → x

and tn → +∞. By setting

ω(u0) =
{
ψ ; ψ = lim

n
Ttnu0 for some tn → +∞

}
,

we have

u(x) = sup
{
ψ(x)

∣∣ ψ ∈ ω(u0)
}

(2.47)

and

u(x) = inf
{
ψ(x)

∣∣ ψ ∈ ω(u0)
}
. (2.48)

Note that these are well defined by the Arzelà–Ascoli Theorem, since the family

{Ttu0} is uniformly bounded and uniformly Lipschitz in t. To prove Theorem 36,

we claim, following Davini-Siconolfi [10], that

u = u = v

on M , where v : M → R is the solution of (2.10) given by the following represen-

tation formula

v(x) := inf
y∈A

{
h(y, x) + inf

z∈M

{
u0(z) + h(z, y)

}}
. (2.49)

We start with a lemma

Lemma 38. Let u and u be as defined above. Then u is a critical subsolution and

u is a critical supersolution.

Proof. We prove that u is a subsolution. The other is analogous. Fix t > 0. By

the definition of u, we know u ≥ ϕ, for any ϕ ∈ ω(u0), so that

Ttu ≥ Ttϕ, ∀ ϕ ∈ ω(u0).

Then,

Ttu ≥ sup
{
Ttϕ ; ϕ ∈ ω(u0)

}
.

32



The proof is finished once we prove

{
Ttϕ ; ϕ ∈ ω(u0)

}
=
{
ϕ ; ϕ ∈ ω(u0)

}
.

If ϕ ∈ ω(u0), we know

ϕ = lim
n
Ttnu0

for some tn → +∞. Up to a subsequence, we also know

Ttn−tu0 → ϕ̃;

then, Ttϕ̃ = limTtnu0 = ϕ.

Proposition 39. Set

v0(y) := inf
z∈M

{
u0(z) + h(z, y)

}
,

for y ∈M , so that

v(x) = inf
y∈A

{
v0(y) + h(y, x)

}
. (2.50)

Then, the following hold true:

1. v0 is the maximal subsolution with v0 ≤ u0 on M ;

2. v is a solution and it equals v0 on A;

3. If u0(y)− u0(x) ≤ h(y, x), for all x, y ∈M , then

v(x) := inf
y∈A

{
u0(y) + h(y, x)

}
. (2.51)

in M , and v0 = u0 on A.

Proof. See [10, Theorem 3.1].

Proposition 40. Let u be either a subsolution or a supersolution, and let v be the

function defined by (2.49). Then, as t→ +∞,

Ttu→ v.
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We have proved this before when u is a subsolution (Theorem 21). However,

we present this short proof, by Davini-Siconolfi.

Proof. Assume first that u0 is a subsolution; then, u0 ≤ Ttu0, for all t ≥ 0. By

Proposition 39, v is the maximal subsolution with v = u0 on A, and so we have

u0 ≤ v on M . Thus, by the monotonicity of the Lax–Oleinik semigroup, and by

observing v = Ttv, for any t ≥ 0, we obtain

u0 ≤ Ttu0 ≤ v on M.

Now, v = u0 on A implies

Ttu0 = v on A, ∀ t ≥ 0.

This means

u = u = v on A.

Hence, the comparison principle implies the same equality on M .

Next, assume u0 is a supersolution, so that u0 ≥ Ttu0, and consider

v0(y) := inf
z∈M

{
u0(z) + h(z, y)

}
,

the maximal subsolution with v0 ≤ u0 on M . Then, by monotonicity,

v0 ≤ Ttv0 ≤ Ttu0 ≤ u0,

and the maximality of v0 implies v0 = Ttv0, whence v0 is a solution. This in turn

implies v = v0 on M . Thus, again by monotonicity, we obtain

v ≤ Ttu0 ≤ u0 on M, for all t ≥ 0,

which implies v ≤ u ≤ u ≤ u0 on M. Since u is a subsolution, we must have u ≤ v

and the proof is finished.

Proposition 41. Let u, u, and v be given as before. Then,

v ≤ u ≤ u on M. (2.52)
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Proof. As in the second part of the previous proof, v0 satisfies v0 ≤ u0 on M .

Then Ttv0 ≤ Ttu0 on M . Since v0 is a subsolution, we have Ttv0 → v; therefore,

both v ≤ u and v ≤ u hold. That u ≤ u holds is immediate.

Remark 42. By Proposition 41, in order to obtain the desired convergence result

for the Lax–Oleinik semigroup, all we need to prove is that v = u on A. This is

what we prove next, with the help of critical curves constructed in Section 2.6.

Proposition 43. Let u, u, and v be given as before. Then, u ≤ v on A. Moreover,

this implies

v = u = u on M.

Proof. Let ψ ∈ ω(u0), and we claim ψ ≤ v on A. Since ψ be in the ω-limit set of

u0, ψ = limn Tσnu0 for some divergent sequence σn → +∞. It is then not difficult

to obtain a sequence sn → +∞ such that

ψ = lim
n→∞

Tsnψ.

Let γ be a critical curve, and x ∈ ω(γ), so that x = limn γ(tn), for some divergence

sequence tn → +∞. Up to extracting a subsequence, we can assume τn = tn−sn →
+∞. Since γ is a critical curve and v is a subsolution (it is in fact a solution), we

have (compare to Lemma 94)

Tsnψ
(
γ(tn)

)
− ψ

(
γ(t+ τn)

)
≤ v
(
γ(tn)

)
− v
(
γ(t+ τn)

)
+ |t|ρ(t/sn). (2.53)

If we set

η = lim
n
γ(·+ τn),

then, η is also a critical curve and, by letting n→ +∞ in (2.53), we obtain

ψ(x)− ψ(η(t)) ≤ v(x)− v(η(t)).

It only remains to show that

lim inf
t

{
ψ
(
η(t)

)
− v
(
η(t)

)}
≤ 0.
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To this order, observe

v(η(t))− v(η(0)) =

∫ t

0

L(γ, γ̇) ≥ Ttu0(η(t))− u0(η(0)).

Thus, since η(R) ⊂ A and v = u0 on A,

ψ
(
η(t)

)
− v
(
η(t)

)
≤ ψ

(
η(t)

)
− Ttu0(η(t)) + u0(η(0))− v

(
η(0)

)
≤ max

y∈A

∣∣ψ − Ttu0

∣∣. (2.54)

Since along the sequence σn → +∞, we have Tσnu0 → ψ, our claim is proved.
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Chapter 3

Optimal switching problem

In this chapter we study the optimal switching problem. In Section 3.1 we state

the problem and relatively mild assumptions on both L and ψ we need in what

follows. Next, in Section 3.2 we prove the main result of this chapter, namely

the existence of minimizers for the action Jt, given by (3.2) below. Although we

believe this is a very natural problem, we were unable to find it in the literature.

In Section 3.3 we obtain necessary conditions for (γM , γI) to be a minimizer and,

as a corollary, obtain regularity of γM , from the usual regularity theory for Tonelli

Lagrangians. In section 3.4 we prove that a conservation of energy principle holds,

which is what we naturally expect for such problems. Finally, in Section 3.5 we

prove that the cost function ht (see definitions below) is locally semiconcave, as

the usual cost function in the ‘classical’ theory of the calculus of variations is. In

the literature, Lipschitz regularity when M = Rn has been proved before (see [19,

Proposition 2.4]).

3.1 Setting of the problem

We consider the optimal switching problem. Intuitively, it consists of minimizing

an action functional in a system that allows switching between different “modes”.

In other words, we have the option of switching between given different settings

of the system for a given price, whenever it is convenient in order to minimize the

cost. We proceed for a more detailed description of the problem.
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We call, as in the classical case,

L : TM × I → R

(x, v, i) 7→ L(x, v, i)
(3.1)

a Lagrangian, where I is a given family of indices that prescribes the different

settings of our system – each i ∈ I is called a mode. We define P([a, b]; I) as the

set of piecewise constant functions

σ =
N∑
i=0

σiχ[ti,ti+1), a = t0 ≤ t1 ≤ · · · ≤ tN+1 = b,

taking values in the index set I. Then, in analogy with the classical case, we also

define the action functional of L by

Jt[γ] =

∫ t

0

L(γM(s), γ̇M(s), γI(s)) ds+
N−1∑
k=0

ψ
(
γM(tk+1), γI(tk), γI(tk+1)

)
, (3.2)

where γ = (γM , γI), with γM ∈ AC([0, t];M), γI ∈ P([0, t]; I), and γI(tk) ∈ I is

the value assumed by the piecewise constant curve γI in the largest subinterval

[ti, ti+1) ⊂ [0, t] where it is constant. The function ψ : M ×I ×I → R is assumed

to be non-negative, and it is called the switching cost. The cost function is set as

ht(x, i, y, j) := inf
{
Jt[γ] ; γ ∈ AC × P , γ(0) = (x, i), γ(t) = (y, j)

}
. (3.3)

As it might be already clear, the idea is that, when trying to minimize the action

functional, we might decide to switch from the Lagrangian i to the Lagrangian j

when we arrive at x, because it might decrease the action, even though we pay a

certain fee ψ(x, i, j) to do so.

We make the following assumptions on L and ψ:

A1. The Lagrangian L : TM×I → R is continuous, with I = {1, . . . ,m} a finite

set endowed the discrete topology. Moreover, for every i ∈ I, L(·, ·, i) is a

Tonelli Lagrangian, as in Definition 7;

A2. L(·, ·, i) is superlinear above compact sets, uniformly in i ∈ I, meaning that,
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given K ⊂ M compact, for every constant A ≥ 0, there exists a constant

C ∈ R, depending on K and A, such that

L(x, v, i) ≥ A ‖v‖x + C, for all x ∈ K, v ∈ TxM ;

A3. The switching cost function ψ : M × I × I → R is continuous and satisfies

a triangle inequality: For all distinct i, j, k ∈ I, and all x ∈M , we have

ψ(x, i, j) < ψ(x, i, k) + ψ(x, k, j);

A4. We also assume that and ψ(·, i, i) ≡ 0 and a bound from below on the

switching cost:

min
x∈M,i 6=j

ψ(x, i, j) > 0;

A5. For all i, j ∈ I, ψ(·, i, j) ∈ C2(M).

Remark 44. Condition A3 is natural in the sense that it does not allow us to

switch from Lagrangian i to j and then to k in a short period of time, just because

it would be cheaper than going straight from i to k.

Remark 45. Condition A4 is automatically satisfied, for instance, when M is

compact and the set of modes I is finite.

Notation We denote the elements of M × I by A = (x, i), B = (y, j), and

C = (z, k) and γ(t) =
(
γM(t), γI(t)

)
. This makes the presentation more elegant

and clear.

The purpose of this chapter is to prove the following two theorems:

Theorem 46. Let M be a complete differentiable manifold, and I = {1, . . . ,m}
a finite set. Also, let L : TM × I → R be a Lagrangian satisfying A1 and A2,

and ψ : M × I × I → R a switching cost satisfying A3 and A4. Then, for every

A,B ∈M ×I, there exists a minimizer for the action: there exists γ = (γM , γI) ∈
AC × P with γ(0) = A, γ(t) = B such that

Jt[γ] = inf
{
Jt[α] ; α ∈ AC × P , α(0) = A,α(t) = B

}
.
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Moreover,

1. Minimizers are of class C2([0, t];M), meaning γM ∈ C2([0, t];M), and solve

the Euler–Lagrange equation

d

ds

[
∂L

∂v

(
γM(s), γ̇M(s), γI(s)

)]
=
∂L

∂x

(
γM(s), γ̇M(s), γI(s)

)
(3.4)

in [0, t]\{t1, . . . , tN}, where tk’s are the points where γI has a jump;

2. Along a minimizing curve, the (generalized) energy functional is conserved:

E
(
γM(s), γ̇M(s), γI(s)

)
:=

∂L

∂v

(
γM(s), γ̇M(s), γI(s)

)
·γ̇M(s)−L

(
γM(s), γ̇M(s), γI(s)

)
(3.5)

is constant in [0, t].

In the following sections, we separate the proof of Theorem 46 into various

propositions, and in Section 3.5 we obtain the following regularity result for the

cost function:

Theorem 47. Suppose L : TM → R is a Tonelli Lagrangian satisfying A1 and

A2, and ψ : M × I × I → R a switching cost satisfying A3 and A4. Then,

1. For any i, j ∈ I, the restricted cost function ht(·, i, ·, j) : M ×M → R given

by (3.3) is locally semiconcave on M ×M .

2. For any x, y ∈M and any i, j, k ∈ I,

ht(x, i, y, j)− ht(x, i, y, k) ≤ ψ(x, j, k).

3.2 Existence of action minimizers

In this section we prove the existence of minimizers for the action Jt, under fixed

boundary conditions. As already mentioned before, we were unable to find this

result in the literature. Our proof follows the direct method in the calculus of vari-

ations. We refer the reader to [8] for an introduction to the calculus of variations

methods, or to Appendix A for a concise presentation of the results we need.
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Recall we denote elements of M × I by A = (x, i), B = (y, j), and C = (z, k)

and γ(t) = (γM(t), γI(t)). Now we are ready to prove the existence of minimizers:

Proposition 48. Assume A1–A4 hold, where Jt is defined by (3.2) and ht by

(3.3). Then, for every A,B ∈ M × I, there exists a minimizer for the action of

Jt: there exists γ ∈ AC × P with γ(0) = A and γ(t) = B such that

ht(A,B) = Jt[γ].

Proof. Assume, without loss of generality, that L ≥ 0. Let γk = (γkM , γ
k
I) be a

minimizing sequence: γk(0) = (x, i), γk(t) = (y, j) and

Jt[γk]→ ht(A,B), (3.6)

and consider partitions

P k = {0 < tk1 < · · · < tkNk < t}

of the interval [0, t] that indicate the maximal sets where the γkI ’s are constant.

Step 1. Our assumptions ensure that Nk 6→ ∞ as k → ∞, that is, we do

not reach a minimizer by increasing the number of switches. Indeed, assume, by

contradiction, that this is not the case. By A4, we have

δ := min
x∈M,i6=j∈I

ψ(x, i, j) > 0. (3.7)

Then, for any k ∈ N,

Nkδ ≤
Nk−1∑
i=0

∫ tki+1

tki

L(γkM(s), γ̇kM(s), γkI(t
k
i )) ds+

Nk−1∑
i=0

ψ(γkI(t
k
i ), γ

k
I(t

k
i+1)) = Jt[γk],

and Jt[γk] would have to be unbounded, a contradiction (ht is finite; for instance,

consider a geodesic from x to y and one switch from i to j).

Step 2. Convergence to a minimizer candidate. Step 1 implies we may assume
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Nk ≡ N , without any loss of generality. We can then write

P k := {0 ≤ tk1 ≤ · · · ≤ tkN ≤ t},

where now the intervals might not be the maximal ones where γkI ’s are constant.

Since, for every i, (tki )k is a bounded sequence of real numbers, it converges, up to

a subsequence, to some ti ∈ [0, t]. We have

0 ≤ t1 ≤ · · · ≤ tN ≤ t.

From assumption A1 and the third condition in the definition of a Tonelli La-

grangian, we obtain∫ t

0

∥∥γ̇kM(s)
∥∥
γkM (s)

ds+ C ≤
∫ t

0

L(γkM(s), γ̇kM(s), γkI(s)) ds

for some constant C ∈ R. This implies that for all s ∈ [0, t], γkM(s) lives in a

compact set. Then, A1 and the results of Appendix A) imply that there exists

γM : [0, t]→M absolutely continuous such that, up to a subsequence,

γkM → γM uniformly in [0, t],

γ̇kM ⇀ γ̇M weakly in L1.
(3.8)

With the possible exception of the initial and final points, we exclude the cases

where ti = ti+1, obtaining a limiting partition

{0 = ti0 ≤ ti1 < ti2 < · · · < ti` ≤ ti`+1
= t},

where we define γI : for ε > 0 small, we have, once k is sufficiently large, that

γkI ≡ γkI(ti∗j ) in each of the subintervals [0, ti1 − ε), (ti1 + ε, ti2 − ε), . . . , (ti`−1
+

ε, ti` − ε), (ti` + ε, t], and so we have the pointwise convergence

γkI → γI :=
`−1∑
j=0

γI(ti∗j+1
)χ[ti∗

j
,ti∗
j+1

), (3.9)
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except at most in the points ti∗j . We have γkI (0)→ i, γkI (t)→ j, because these are

constant. Assumption A3 suggests we should choose

γI(ti∗j ) := lim
s→t+

i∗
j

γI(s),

so that we switch less times.

Step 3. Lower semicontinuity. Since L ≥ 0,∫ t

0

L(γkM(s), γ̇kM(s), γkI(s)) ds ≥
∫ ti1−ε

0

L(γkM(s), γ̇kM(s), γI(ti∗0)) ds

+

∫ ti2−ε

ti1+ε

L(γkM(s), γ̇kM(s), γI(ti∗1)) ds

+ · · ·+
∫ t

ti`+ε

L(γkM(s), γ̇kM(s), γI(ti∗` )) ds

(3.10)

Notice that it might happen that some of the intervals [tki , t
k
i+1] collapse when

k →∞, and we are completely ignoring some of the switches. On the other hand,

the triangle inequality A3 and the continuity of ψ in the state-variable give

N−1∑
i=0

ψ
(
γM(tki+1), γI(t

k
i ), γI(t

k
i+1)
)

+ ε ≥ ψ
(
x, i, γI(0)+

)
+

`−1∑
j=0

ψ
(
γM(ti∗j+1

), γI(ti∗j ), γI(ti∗j+1
)
)

+ ψ
(
y, γI(t)

−, j
)

(3.11)

for all k sufficiently big. So, by adding (3.10) and (3.11), taking the lim inf on

both sides, and using the lower semicontinuity with respect to the convergence in
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(3.8) for each the integrals on the right hand side of (3.10), we obtain

ht(A,B) = lim inf
k

(∫ t

0

L(γkM(s), γ̇kM(s), γkI(s)) ds+
N−1∑
i=0

ψ(γI(t
k
i ), γI(t

k
i+1))

)

≥
∫ ti∗1

−ε

0

L(γM(s), γ̇M(s), γI(ti∗0)) ds+

∫ ti∗2
−ε

ti∗1
+ε

L(γM(s), γ̇M(s), γI(ti∗1)) ds

+ · · ·+
∫ t

ti∗
`

+ε

L
(
γM(s), γ̇M(s), γI(ti∗` )

)
ds+ ψ

(
x, i, γI(0)+

)
+

`−1∑
j=0

ψ
(
γI(ti∗j ), γI(ti∗j+1

)
)

+ ψ
(
y, γI(t)

−, j
)
,

(3.12)

for all ε > 0. Hence, let ε→ 0 to conclude

ht(A,B) ≥
∫ t

0

L(γM(s), γ̇M(s), γI(s)) ds+ ψ
(
x, i, γI(0)+

)
+

`−1∑
j=0

ψ
(
γM(ti∗j+1

), γI(ti∗j ), γI(ti∗j+1
)
)

+ ψ
(
y, γI(t)

−, j
)

= Jt[γ];

(3.13)

therefore, γ = (γM , γI) is a minimizer of the action of Jt.

3.3 Euler–Lagrange equations

In this section we obtain necessary conditions for minimality. First, we prove that

the Euler–Lagrange equations are satisfied, except possibly where γI has a jump,

and conditions for the Lagrangian L for every time where a jump exists. We also

obtain regularity results for the minimizers of the optimal switching problem. Of

course, γI ∈ P is piecewise constant and so we focus on the regularity of γM .

Assume γ = (γM , γI) is a minimizer of (3.3). Two variations are quite natural.

We can fix γM and see what happens when γI changes, or the other way around.

On the other hand, we can fix γI and see what happens when we change γM

smoothly.

Proposition 49 (Euler-Lagrange equations). Assume conditions A1 through A4
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hold. If γ = (γM , γI) is a minimizer for the action Jt given by (3.2), then, in

coordinates, the Euler–Lagrange equations are satisfied:

d

ds

[
∂L

∂v

(
γM(s), ˙γM(s), γI(s)

)]
=
∂L

∂x

(
γM(s), ˙γM(s), γI(s)

)
(3.14)

in U ≡ [0, t]\{t1, . . . , tN}, where the ti’s are the switching times.

Proof. Observe that γM |[ti,ti+1] must be a minimizer of∫ ti+1

ti

L(α(s), α̇(s), γI(ti)) ds,

among all curves α ∈ AC([ti, ti+1],M), with α(ti) = γM(ti), α(ti+1) = γM(ti+1).

Then, (3.14) follows from the classical Euler–Lagrange equations applied to the

Lagrangian L(·, ·, γI(ti)) (see Theorem 13, in Chapter 2).

Remark 50. It is important to consider the subset U in the last proof since

L( · , · , γI) ≡ L( · , · , γI(ti)) is constant in each of the subintervals (ti, ti+1) ⊂
[0, t].

As it is customary in the calculus of variations, the Euler–Lagrange equations

provide regularity properties of minimizers. For Tonelli Lagrangian actions, L ∈
Cr implies γ ∈ Cr. For a proof of such a statement, see Theorem 13, in Chapter

2 (see also [15]).

Corollary 51. Assume conditions A1 through A4 hold. If γ = (γM , γI) is a

minimizer for the action Jt given by (3.2). Then, γM is a curve of class C2 in

U = [0, 1]\{t1, . . . , tN}, Moreover, if we assume the Lagrangian L : TM × I → R
is of class Cr, so is γM in U .

Now, with the help of the Euler–Lagrange equations, we obtain the “continuity”

of the first derivative of L with respect to v.

Proposition 52 (Necessary conditions for minimality II). Assume A1–A5. If

γ = (γM , γI) ∈ AC × P is a minimizer for the action Jt, given by (3.2), then

∂L

∂v

(
γM(ti), γ̇M(ti)

−, γI(ti−1)
)

=
∂L

∂v

(
γ(ti), γ̇(ti)

+, γI(ti)
)

+ ∂xψ
(
γM(ti), γI(ti−1), γI(ti)

)
,

(3.15)
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for i = 1, . . . , N.

Proof. Let t̄ = min{ti − ti−1, ti+1 − ti} and consider ω ∈ C∞([0, t];M) such that

ω ≡ 1 in [ti − t̄/2, ti + t̄/2] and ω ≡ 0 outside [ti − t̄, ti + t̄]. Then

0 =
d

ds
Jt[γM + sω, γI ]

=

∫ t

0

(
∂L

∂x

(
γM , γ̇M , γI

)
ω +

∂L

∂v

(
γM , γ̇M , γI

)
ω̇

)
ds

+
N∑
k=0

∂xψ
(
γM(tk+1), γI(tk), γI(tk+1)

)
ω(tk+1)

=

∫ ti

ti−1

(
∂L

∂x

(
γM , γ̇M , γI

)
ω +

∂L

∂v

(
γM , γ̇M , γI

)
ω̇

)
ds

+

∫ ti+1

ti

(
∂L

∂x

(
γM , γ̇M , γI

)
ω +

∂L

∂v

(
γM , γ̇M , γI

)
ω̇

)
ds

+
N∑
k=0

∂xψ
(
γM(tk+1), γI(tk), γI(tk+1)

)
ω(tk+1)

=

∫ ti+1

ti−1

(
∂L

∂x

(
γM , γ̇M , γI

)
− d

ds

∂L

∂v

(
γM , γ̇M , γI

))
ω ds

+
∂L

∂v

(
γM(ti), γ̇M(ti)

−, γI(ti−1)
)
− ∂L

∂v

(
γM(ti), γ̇M(ti)

+, γI(ti)
)

+ ∂xψ
(
γM(ti), γI(ti−1), γI(ti)

)
=
∂L

∂v

(
γM(ti), γ̇M(ti)

−, γI(ti−1)
)
− ∂L

∂v

(
γM(ti), γ̇M(ti)

+, γI(ti)
)

+ ∂xψ
(
γM(ti), γI(ti−1), γI(ti)

)
,

(3.16)

where in the fourth equality we have used the fact that, by construction, ω(ti) = 1

and ω(ti−1) = ω(ti+1) = 0, and we have used, in the last equality, the Euler–

Lagrange equation of Theorem 49.

Remark 53. Proposition 52 shows, in particular, that when the switching cost

ψ is independent of the state variable, that is, when ψ(x, i, j) ≡ ψ(i, j), for any

i, j ∈ I, then the function

t 7→ ∂L

∂v

(
γM(t), γ̇M(t), γI(t)

)
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is continuous in [0, t], whenever γ is an action minimizer.

3.4 Conservation of Energy

In this section we define the energy functional of our system and prove a conserva-

tion of energy principle that generalizes the classical case of a single Lagrangian.

Definition 54. The energy functional E : TM × I → R is defined as

E(x, v, i) :=
∂L

∂v
(x, v, i) · v − L(x, v, i). (3.17)

Proposition 55 (Conservation of Energy). Along a minimizer of the action Jt,
given by (3.2), the energy of the system is conserved, that is,

E(γM(s), γ̇M(s), γI(s)) :=
∂L

∂v

(
γM(s), γ̇M(s), γI(s)

)
·γ̇M(s)−L

(
γM(s), γ̇M(s), γI(s)

)
is constant in [0, t], when γ = (γM , γI) is an action minimizer.

Proof. It suffices to check it at the switching times. Let ω : [0, t]→ [0, t] be smooth

and compactly supported in [ti−1, ti+1] with ω(ti−1) = ω(ti+1) = 0 and ω ≡ 1 in

[ti−δ, ti+δ] for some small δ > 0. Define γεM : [0, t]→M as γεM(s) = γM
(
s−εw(s)

)
,

so that the function

f(ε) :=

∫ ti−1

0

L
(
γεM(s), γ̇εM(s), γI(s)

)
+

∫ ti+ε

ti−1

L
(
γεM(s), γ̇εM(s), γI(ti−1)

)
ds

+

∫ ti+1

ti+ε

L
(
γεM(s), γ̇εM(s), γI(ti)

)
ds+

∫ t

ti+1

L
(
γεM(s), γ̇εM(s), γI(s)

)
+
∑

ψ
(
γM(ti+1), γI(ti), γI(ti+1)

)
(3.18)

has a minimum at ε = 0. By differentiating with respect to ε and setting ε = 0,
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we get

0 =L
(
γ(ti), γ̇(ti)

−, γI(ti−1)
)

+

∫ ti

ti−1

(
∂L

∂x

(
γM(s), γ̇M(s), γI(ti−1)

)
· γ̇Mω

+
∂L

∂v

(
γM(s), γ̇M(s), γI(ti−1)

)
· (γ̈Mω + γ̇M ω̇)

)
ds− L

(
γM(ti), γ̇M(ti)

+, γI(ti)
)

−
∫ ti

ti−1

(
∂L

∂x

(
γM(s), γ̇M(s), γI(ti)

)
· γ̇Mω

+
∂L

∂v

(
γM(s), γ̇M(s), γI(ti)

)
· (γ̈Mω + γ̇M ω̇)

)
ds.

(3.19)

By integration by parts and the Euler–Lagrange equations, we conclude

L
(
γM(ti), γ̇M(ti)

−, γI(ti−1)
)
− ∂L

∂v

(
γM(ti), γ̇M(ti)

−, γI(ti−1)
)
· γ̇(ti)

−

= L
(
γM(ti), γ̇M(ti)

+, γI(ti)
)
− ∂L

∂v

(
γM(ti), γ̇M(ti)

+, γI(ti)
)
· γ̇+(ti),

(3.20)

as desired.

3.5 Semiconcavity of the cost

In order to prove the local semiconcavity of our cost, we use conservation of energy

to obtain a bound on the speed curves of minimizers of the action, given by the

next lemma. It basically states that the speed curve (γM , γ̇M , γI) of a minimizer γ

with initial points on a given compact K ⊂M ×I is contained in a fixed compact

of TM × I.

Lemma 56. Let K ⊂ M be a compact subset of M and assume γ = (γM , γI) is

a minimizer for Jt, given by (3.2), with γM(0) = x ∈ K, γM(t) = y ∈ K. Then,

there exist a compact set K̃ ⊂ TM and a constant C > 0 such that γM(s) ∈ K̃
and ‖γ̇M(s)‖γM (s) ≤ C, for every s ∈ [0, t].

Proof. Assume, without loss of generality, K = BR(x0) (observe this ball is com-

pact, since our metric g is complete). Clearly, d(x, y) ≤ 2R and then the constant
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speed geodesic α : [0, t] → M connecting x to y whose length is d(x, y) is com-

pletely contained in the ball B3R(x0) and

‖α̇(s)‖α(s) =
d(x, y)

t
≤ 2R

t
.

Note that the Lagrangian L(·, ·, i) is bounded on the compact set

L :=

{
(z, v) ; d(z, x0) ≤ 3R, ‖v‖z ≤

2R

t

}
⊂ TM,

for all i ∈ I. Say L(z, v, i) ≤ B, for every (z, v, i) ∈ L × I. Then, in particular,∫ t

0

L
(
γM(s), γ̇M(s), γI(s)

)
ds ≤

∫ t

0

L
(
α(s), α̇(s), γI(s)

)
ds ≤ Bt. (3.21)

Now, by the third condition in the Definition 7 of a Tonelli Lagrangian, there exists

C ∈ R such that

Ct+

∫ t

0

‖γ̇M(s)‖γM (s) ds ≤
∫ t

0

L
(
γM(s), γ̇M(s), γI(s)

)
ds. (3.22)

By putting together (3.21) and (3.22), we get

1

t

∫ t

0

‖γ̇M(s)‖γM (s) ds ≤ B − C =: C2. (3.23)

Then, for some s̄ ∈ (0, t), ‖γ̇M(s̄)‖γM (s̄) ≤ C2, and for every s ∈ [0, t],

γM(s) ∈ BtC2(γM(0)) ⊂ BtC2+3R(x0) ≡ K̄.

Now, the energy E given by (3.17) is bounded on compact sets, so if we set θ the

maximum of E on the compact set

{
(x, v, i) ∈ TM × I ; x ∈ K̄ , ‖v‖x ≤ C2

}
,

we get E
(
γM(s̄), γ̇M(s̄), γI(s̄)

)
≤ θ. Then, by the conservation of energy (see

Proposition 55), E
(
γM(t), γ̇M(t), γI(t)

)
≤ θ, for every s ∈ [0, t] and the speed
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curve of γM is contained in the compact

{
(x, v) ∈ TM ; x ∈ K̄, E(x, v, i) ≤ θ, ∀i

}
.

Thus, there exists K̃ compact, and a constant C such that γM([0, t]) ⊂ K̃ and

‖γ̇M(s)‖ ≤ C, for all s ∈ [0, t].

The local semiconcavity of c now follows as in the single Lagrangian case (cf.

[16]).

Proposition 57. For any i, j ∈ I, the cost function h̄t = ht(·, i, ·, j) : M×M → R,

where ht is given by (3.3), is locally semiconcave.

Proof. To simplify the notation, we consider the case M = Rn. The general case

follows by the same reasoning when written in charts. For x1, x2 ∈ B1(0), let

γ ∈ AC × P be such that γM(0) = x1, γM(t) = x2 and

h̄t(x1, x2) =

∫ t

0

L
(
γM(s), γ̇M(s), γI(s)

)
ds+ ψ

(
x1, i, γI(0)+

)
+

N−1∑
i=0

ψ
(
γM(ti+1), γI(ti), γI(ti+1)

)
+ ψ

(
x2, γI(t)

−, j
) (3.24)

that is, γ is an action minimizer from (x1, i) to (x2, j). We show that h̄t is semi-

concave in B1(x1) × B1(x2). By Lemma 56, there exist K ⊂ M compact and C

constant such that

γM([0, t]) ⊂ K and ‖γ̇M(s)‖ ≤ C for all s ∈ [0, t].

We then choose ε > 0 such that Cε < 1. This implies

γM([0, ε]) ⊂ B2(x1) and γM([t− ε, t]) ⊂ B2(x2).
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For y1, y2 ∈ B2, we define

γ̃M(s) =


ε− s
ε

y1 + γM(s) , for s ∈ [0, ε]

γ(s) , for s ∈ [ε, t− ε]
s− t+ ε

ε
y2 + γM(s) , for s ∈ [t− ε, t].

(3.25)

Observe that γ̃M and ˙̃γM are bounded as well. Since γ̃M(0) = x1 + y1 and γ̃M(t) =

x2 + y2, and we can take ε > 0 sufficiently small so that ε < min{t1, t− tN},

h̄t(x1 + y1, x2 + y2)− ht(x1, x2) ≤
∫ t

0

L(γ̃M , ˙̃γM , γI) ds−
∫ t

0

L(γM , γ̇M , γI) ds

+ ψ
(
x1, i, γI(0)+

)
+

N−1∑
i=0

ψ
(
γ̃M(ti+1), γI(ti), γI(ti+1)

)
+ ψ

(
x2, γI(t)

−, j
)
− ψ

(
x1, i, γI(0)+

)
−

N−1∑
i=0

ψ
(
γM(ti+1), γI(ti), γI(ti+1)

)
+ ψ

(
x2, γI(t)

−, j
)

=

∫ ε

0

L
(ε− s

ε
y1 + γM(s),−1

ε
y1 + γ̇M(s), γI(s)

)
ds

+

∫ t−ε

ε

L(γM , γ̇M , γI) ds

+

∫ t

t−ε
L
(s− t+ ε

ε
y2 + γM(s),

1

ε
y2 + γ̇M(s), γI(s)

)
ds

−
∫ t

0

L(γM , γ̇M , γI) ds

+ ψ
(
x1 + y1, i, γI(0)+

)
− ψ

(
x1, i, γI(0)+

)
+ ψ

(
x2 + y2, γI(t)

−, j
)
− ψ

(
x2, γI(t)

−, j
)
.

(3.26)

Thus,
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h̄t(x1 + y1, x2 + y2)− ht(x1, x2)

≤
∫ ε

0

[
L
(ε− s

ε
y1 + γM(s),−1

ε
y1 + γ̇M(s), γI(s)

)
− L(γM , γ̇M , γI)

]
ds

+

∫ t

t−ε

[
L
(s− 1 + ε

ε
y2 + γM(s),

1

ε
y2 + γ̇M(s), γI(s)

)
− L(γM , γ̇M , γI)

]
ds

+ ψ
(
x1 + y1, i, γI(0)+

)
− ψ

(
x1, i, γI(0)+

)
+ ψ

(
x2 + y2, γI(t)

−, j
)

− ψ
(
x2, γI(t)

−, j
)
.

(3.27)

We know L and ψ are both C2, so they are locally semiconcave. Thus, by choosing

a common modulus of continuity for L( · , ·, i) and ψ(·, i, j), i, j ∈ I, in the compact

B4(x1) ∪B4(x2)×BC(x1) ∪BC(x2), we get

h̄t(x1 + y1, x2 + y2)− h̄t(x1, x2) ≤ Ft(y1, y2) + ‖v‖w(‖v‖) + ‖z‖w(‖z‖)

≤ Ft(y1, y2) + ‖(v, z)‖w(‖(v, z)‖),
(3.28)

where

Ft(y1, y2) :=

∫ ε

0

(
ε− s
ε

∂L

∂x

(
γM , γ̇M , γI

)
· y1 −

1

ε

∂L

∂v

(
γM , γ̇M , γI

)
· y1

)
ds

+

∫ t

t−ε

(
s− 1 + ε

ε

∂L

∂x

(
γM , γ̇M , γI

)
· y2 +

1

ε

∂L

∂v

(
γM , γ̇M , γI

)
· y2

)
ds

+ ∂xψ
(
x1, i, γI(0)+

)
· y1 + ∂xψ

(
x2, γI(t)

−, j
)
· y2

(3.29)

is linear, and

v :=
(ε− s

ε
y1,−

1

ε
y1

)
, z :=

(s− t+ ε

ε
y2,

1

ε
y2

)
.

It follows that ht is locally semiconcave.

Remark 58. Proposition 57 implies in particular that h̄t is differentiable almost

everywhere.

Next, we show how Proposition 57 yields an important characterization of the

superdifferential of h̄t.
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Corollary 59. For any action minimizer γ = (γM , γI) satisfying γM(0) = x and

γM(t) = y, the linear functional Ft given by (3.29) is a superdifferential of h̄t at

the point (x, y), and it can be written as

Ft(y1, y2) =
∂L

∂v

(
γM(t), γ̇M(t), γI(t)

−) · y2 −
∂L

∂v

(
γM(0), γ̇M(0), γI(0)+

)
· y1

+ ∂xψ
(
γM(0), i, γI(0)+

)
· y1 + ∂xψ

(
γM(t), γI(t)

−, j
)
· y2.

(3.30)

In particular, if h̄t is differentiable at (x, y), then

d(x,y)h̄t · (y1, y2) =
∂L

∂v

(
γM(t), γ̇M(t), γI(t)

−) · y2 −
∂L

∂v

(
γM(0), γ̇M(0), γI(0)+

)
· y1

+ ∂xψ
(
γM(0), i, γI(0)+

)
· y1 + ∂xψ

(
γM(t), γI(t)

−, j
)
· y2.

(3.31)

Proof. Clearly, Ft given by (3.29) is a superdifferential for h̄t. We now prove the

representation formula (3.30). By Theorem 49, the Euler-Lagrange equation

d

dt

∂L

∂v

(
γM(s), γ̇M(s), γI(s)

)
=
∂L

∂x

(
γM(s), γ̇M(s), γI(s)

)
(3.32)

is satisfied in the set V ≡ [0, t1) ∪ (t1, t2) ∪ · · · ∪ (tN−1, tN) ∪ (tN , 1]. Substituting

(3.32) in (3.29) and integrating by parts (recall ε < min{t1, t− tN}), we get

Ft(y1, y2) = −∂L
∂v

(
γM(0), γ̇M(0)+, γI(0)+

)
· y1

+
∂L

∂v

(
γM(t), γ̇M(t)−, γI(t)

−) · y2

+∂xψ
(
γM(0), i, γI(0)+

)
· y1 + ∂xψ

(
γM(t), γI(t)

−, j
)
· y2

Then, apply Theorem 52 to conclude the proof of the corollary.

Remark 60. Observe that the terms ∂xψ disappear in case we have no switches

at the endpoints.

In order to finish the proof of Theorem 47, we only need to prove the following

proposition:

Proposition 61. Suppose L : TM → R is a Tonelli Lagrangian satisfying A1 and
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A2, and ψ : M ×I ×I → R a switching cost satisfying A3 and A4. Then, for any

x, y ∈M and any i, j, k ∈ I,

ht
(
(x, i), (y, j)

)
− ht

(
(x, i), (y, k)

)
≤ ψ(x, k, j).

Proof. Let γ ∈ AC([0, t];M)×P([0, t]; I) be such that γ(0) = (x, i), γ(t) = (y, k),

and

ht
(
(x, i), (y, k)

)
= Jt[γ].

Define γ̃ : [0, t+ δ]→M × I by

γ̃(s) =

{
γ(s), in [0, t);

(x, j), in [t, t+ δ].
(3.33)

Then

ht+δ
(
(x, i), (y, j)

)
≤ Jt+δ[γ̃] = ht

(
(x, i), (y, k)

)
+ δL(x, 0, j) + ψ(x, k, j).

Let δ → 0 to conclude the proof.
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Chapter 4

Weakly coupled systems of

Hamilton–Jacobi equations

The purpose of this chapter is to analyze aspects of the weak KAM theory in

the optimal switching setting. Let L : TM → R be a Tonelli Lagrangian, as

in Definition 7, for which conditions A1–A5 are valid. By the Legendre–Fenchel

duality, we associate the Hamiltonian H : T ∗M × I → R by

H(x, p, i) := sup
v∈TxM

{
p(v)− L(x, v, i)

}
. (4.1)

As in the case of a single Lagrangian, it follows that each H(·, ·, i) is a Tonelli

Hamiltonian, in the sense of Definition 14. Furthermore, we have

A2’. H(·, ·, i) is superlinear above compact sets, uniformly in i ∈ I, meaning that,

given K ⊂ M compact, for every constant A ≥ 0, there exists a constant

C ∈ R, depending on K and A, such that

H(x, p, i) ≥ A ‖p‖∗x + C, for all x ∈ K, p ∈ T ∗xM ;

As we will see in Section 4.1 below, the optimal switching problem is closely related

to the following system of Hamilton–Jacobi equations:

max
{
H
(
x, du(x, i), i

)
− c, max

j 6=i

{
u(x, i)− u(x, j)− ψ(x, i, j)

}}
= 0, (4.2)
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for every i ∈ I, and for some c ∈ R. If we define Ψu : M × I → R by

Ψu(x, i) = min
j 6=i

{
u(x, j) + ψ(x, i, j)

}
, (4.3)

we can write, more concisely,

max
{
H
(
x, du(x, i), i

)
− c, u(x, i)−Ψu(x, i)

}
= 0, (4.4)

for every i ∈ I, and for some c ∈ R. We prove the following theorem:

Theorem 62 (Weak KAM). There exists a unique c0 ∈ R for which the weakly

coupled system of Hamilton–Jacobi equations

max
{
H
(
x, du(x, i), i

)
− c0, u(x, i)−Ψu(x, i)

}
= 0 (4.5)

admits a viscosity solution1 u : M × I → R. We call such a number c0 a (gener-

alized) Mañé critical value.

Our proof of this theorem utilizes Fathi’s idea [13] of understanding the long–

time behavior of the Lax–Oleinik semigroup associated to a viscosity subsolution

of (4.5).

As we have mentioned before, we are not the first ones to consider such systems;

in fact, in a similar fashion, it is present in the early work of Capuzzo Dolcetta-

Evans [6] (see also Gomes-Serra [19]).

Here is how this chapter is organized: In Section 4.1 we define the Lax–Oleinik

semigroup associated to the optimal switching problem of last chapter, and prove

some of its properties. We also define viscosity solutions of the system (4.4) and

explain how it relates to the Lax–Oleinik semigroup. Next, in Section 4.2, we

prove a generalized version of Fathi’s weak KAM theorem, for the system studied

in Section 4.1. Finally, in Section 4.3, we define the Aubry set following [19] and

prove the results we need for the long time behavior of Lax–Oleinik of net chapter.

1We define viscosity solutions of (4.5) in Definition 66 below.
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4.1 Lax–Oleinik semigroup and viscosity solu-

tions

In this section we define a Lax–Oleinik semigroup (see Definition 63 below) and

we show how it provides a variational formulation for viscosity solutions of the

weakly coupled system (4.4). First, we give a motivation for the definition of our

semigroup.

Motivation. Assume u is a smooth solution of (4.4), and let γ = (γM , γI) :

[0, t]→M × I be such that γ(t) = (x, i) = A, and γ̇M(t) = v, for some v ∈ TxM .

Thus, from (4.4), we can write

H
(
x, du

(
γ(t)

)
, i
)
≤ c,

and by the definition of the Hamiltonian H(·, ·, i), we have

d

dt
u
(
γ(t)

)
= du

(
γ(t)

)
· γ̇M(t) ≤ L

(
γM(t), γ̇M(t), γI(t)

)
+ c.

Thus, by integrating the last inequality from tN to t, we get

u
(
γM(t), i

)
≤ u

(
γM(tN), i

)
+

∫ t

tN

[
L
(
γM(s), γ̇M(s), i

)
+ c
]
ds.

Now, (4.4) also gives us

u
(
γM(tN), i

)
≤ u

(
γM(tN), γI(tN−1)

)
+ ψ

(
γM(tN), γI(tN−1), γI(tN)

)
so that

u
(
γM(t), i

)
≤ u

(
γM(tN), γI(tN−1)

)
+

∫ t

tN

[
L
(
γM(s), γ̇M(s), i

)
+ c
]
ds

+ ψ
(
γM(tN), γI(tN−1), γI(tN)

)
.

(4.6)
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By iterating this argument, we get that

u(x, i) ≤ u
(
γM(0), γI(0)

)
+

N∑
k=0

∫ tk+1

tk

[
L
(
γM(s), γ̇M(s), γI(tk)

)
+ c
]
ds

+
N−1∑
k=0

ψ
(
γM(tk+1), γI(tk), γI(tk+1)

)
.

(4.7)

Furthermore,

u(x, i) ≤ inf

{
u
(
γM(0), γI(0)

)
+

N∑
k=0

∫ tk+1

tk

[
L
(
γM(s), γ̇M(s), γI(tk)

)
+ c
]
ds

+
N−1∑
k=0

ψ
(
γM(tk+1), γI(tk), γI(tk+1)

)}
,

(4.8)

where the infimum is taken over all absolutely continuous curves γM ∈ AC([0, t];M)

with γM(t) = x and all piecewise constant functions

γI =
N−1∑
k=0

γI(tk)χ[tk,tk+1) ∈ P

with γI(tN) = i. Note that up to now we have only utilized that the maximum in

(4.4) is less than or equal to zero. Next, we show that the right hand side of (4.8)

actually provides the variational formulation of a viscosity solution of (4.4), as we

wanted.

Definition 63. [Lax–Oleinik semigroup] For a given function u : M × I → R,

where I = {1, . . . ,m}, we define the Lax–Oleinik semigroup associated to the

Lagrangian L by Ttu : M × I → R,

Ttu(A) := inf

{
u
(
γ(0)

)
+

N∑
k=0

∫ tk+1

tk

L
(
γM(s), γ̇M(s), γI(tk)

)
ds

+
N−1∑
k=0

ψ
(
γM(tk+1), γI(tk), γI(tk+1)

)}
,

(4.9)

58



where the infimum is taken over all absolutely continuous curves γM ∈ AC([0, t];M)

and all piecewise constant functions

γI =
N−1∑
k=0

γI(tk)χ[tk,tk+1) ∈ P

with γ(t) =
(
γM(t), γ(t)

)
= (x, i) = A, as usual.

Remark 64. If we define ht : M × I ×M × I → R to be

ht(B,A) := inf

∫ t

0

L
(
γM , γ̇M , γI

)
+

N−1∑
k=0

ψ
(
γM(tk+1), γI(tk), γI(tk+1)

)
, (4.10)

where γ = (γM , γI) ∈ AC × P satisfies γ(0) = B, γ(t) = A, then we can more

concisely write

Ttu(A) = inf
B∈M×I

{
u(B) + ht(B,A)

}
.

Proposition 65. For u ∈ C(M × I), t > 0, and i ∈ I, the map x 7→ Ttu(x, i) is

semiconcave. In particular, when written in charts, we have

Ttu(x+ h, i)− Ttu(A) ≤ ∂L

∂v

(
γM(t), γ̇M(t), γI(t)

−) · h+K ‖h‖2 (4.11)

and consequently

∂L

∂v

(
γM(t), γ̇M(t), γI(t)

−) ∈ ∂+
(
Ttu
)
(x, i).

Proof. By compactness, there exists B ∈M × I such that

Ttu(A) = u(B) + ht(B,A).

Thus,

Ttu(x+ h, i)− Ttu(x, i) ≤ ht
(
B, (x+ h, i)

)
− ht(B,A).

Hence, by reasoning as in Proposition 57, we have

Ttu(x+ h, i)− Ttu(A) ≤ ∂L

∂v

(
γM(t), γ̇M(t), γI(t)

−) · h+K ‖h‖2 (4.12)
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as desired.

Let us now define what we mean by a viscosity solution of the system (4.4).

The following extends naturally the concept of a viscosity solution as introduced

by Crandall-Lions [9] (see also [6, 19]).

Definition 66. 1. We say that the continuous function u : M × I → R is

a viscosity subsolution to the system (4.4) if, for any x ∈ M and i ∈ I,

whenever the function φ : M → R is such that u(·, i)−φ admits a maximum

at x, we have

max
{
H
(
x, dφ(x), i

)
− c, u(x, i)−Ψu(x, i)

}
≤ 0. (4.13)

2. We say that u : M × I → R is a viscosity supersolution to the system (4.4)

if, for any x ∈ M and i ∈ I, whenever the function φ : M → R is such that

u(·, i)− φ admits a minimum at x, we have

max
{
H
(
x, dφ(x), i

)
− c, u(x, i)−Ψu(x, i)

}
≥ 0. (4.14)

3. The function u is said to be a viscosity solution if it is both viscosity subso-

lution and a viscosity supersolution.

Remark 67. For u : M×I → R to be a viscosity subsolution to the system (4.4),

it is necessary and sufficient that the following two conditions are satisfied:

(i) the function u(·, i) satisfies

H
(
x, du(x, i), i

)
≤ c, (4.15)

in the viscosity sense, and;

(ii) the function u(·, i) satisfies

u(x, i) ≤ Ψu(x, i) = min
j 6=i

{
u(x, j) + ψ(x, i, j)

}
.
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Analogously, for u : M × I → R to be a viscosity supersolution to the system

(4.4), it is necessary and sufficient that at least one of following two conditions are

satisfied:

(i) the function u(·, i) satisfies

H
(
x, du(x, i), i

)
≥ c, (4.16)

in the viscosity sense, or;

(ii) the function u(·, i) satisfies

u(x, i) ≥ Ψu(x, i).

Before providing an important connection between our Lax–Oleinik semigroup

and the notion solutions of (4.4) defined above, we prove a few lemmas.

Lemma 68. Let v ∈ C(M × I) and A = (x, i) ∈ M × I. Then there exists

γ = (γM , γI) minimizer for the Lax–Oleinik operator:

Ttv(A) = v
(
γ(0)

)
+ Jt[γ]. (4.17)

Moreover, if v is a subsolution of (4.4), then we can choose γ to have no switch

at the initial time.

Proof. Let A = (x, i) ∈M × I. Recall

Tsv(A) = inf
B∈M×I

{
v(B) + ht(B,A)

}
.

By compactness, and by the existence theorem of Section 2, there exists B =

(y, j) ∈M × I and γ : [0, s]→M × I, with γM(0) = y, γM(s) = x, such that

Tsv(A) = v(B) + hs(B,A)

= v(γ(0)) +

∫ s

0

L(γM , γ̇M , γI) + ψ
(
γM(0), γI(0), γI(0)+

)
+

N−1∑
`=1

ψ
(
γM(t`+1), γI(t`), γI(t`+1)

)
+ ψ(x, γI(t)

−, γI(t)).

(4.18)
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We now claim that, when v is a subsolution, γ might be chosen so that γI(0) =

γI(0)+ = j. Indeed, if we set B̃ =
(
γM(0), γI(0)+

)
, we have

Tsv(A) ≤ v(B̃) + ht(B̃, A)

= v
(
γM(0), γI(0)+

)
+

∫ s

0

L(γM , γ̇M , γI)

+
N−1∑
`=1

ψ
(
γM(t`+1), γI(t`), γI(t`+1)

)
+ ψ(x, γI(t)

−, γI(t)),

(4.19)

so that (4.18) and (4.19) give

v
(
γM(0), γI(0)

)
+ ψ

(
γM(0), γI(0), γI(0)+

)
≤ v
(
γM(0), γI(0)+

)
.

Since v is a subsolution, the other inequality is also true, and

v
(
γM(0), γI(0)

)
+ ψ

(
γM(0), γI(0), γI(0)+

)
= v
(
γM(0), γI(0)+

)
,

that is, we may choose not to switch at time t = 0.

Lemma 69. Let v be a subsolution of (4.4) and let (x, i) ∈ M × I. Then, for

sufficiently small s > 0, we might have at most one switch.

Proof. Since v is Lipschitz, there exists K1 > 0 such that

|v(z, i)− v(y, i)| ≤ K1d(z, y),

for any z, y ∈M , and for all i ∈ I. By superlinearity, for any K2 > 0, there exists

a constant C ≥ 0 such that

(K1 +K2) ‖v‖x − C ≤ L(x, v, i).
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Thus, using that v is a subsolution, we have

Tsv(A) ≥ v
(
x, γI(0)

)
+ (K1 +K2)

∫ s

0

‖γ̇M(τ)‖γM (τ) dτ − Cs+ v
(
γM(0), γI(0)

)
− v
(
x, γI(0)

)
+

N−1∑
`=1

ψ
(
γM(t`+1), γI(t`), γI(t`+1)

)
+ ψ(x, γI(t)

−, i)

≥ v
(
x, i
)
−K1d

(
γM(0), x

)
+ (K1 +K2)

∫ s

0

‖γ̇M(τ)‖γM (τ) dτ − Cs

+
N−1∑
`=1

ψ
(
γM(t`+1), γI(t`), γI(t`+1)

)
+ ψ(x, γI(t)

−, i)− ψ(x, γI(0), i)

≥ v
(
x, i
)

+K2

∫ s

0

‖γ̇M(τ)‖γM (τ) dτ − Cs+
N−1∑
`=1

ψ
(
x, γI(t`), γI(t`+1)

)
+ ψ(x, γI(t)

−, i)− ψ(x, γI(0), i) +
N−1∑
`=1

[
ψ
(
γM(t`+1), γI(t`), γI(t`+1)

)
− ψ

(
x, γI(t`), γI(t`+1)

)]
≥ v
(
x, i
)

+K2

∫ s

0

‖γ̇M(τ)‖γM (τ) dτ − Cs+
N−1∑
`=1

ψ
(
x, γI(t`), γI(t`+1)

)
+ ψ(x, γI(t)

−, i)− ψ(x, γI(0), i) +K3

N−1∑
`=1

d
(
γI(t`+1), x

)
.

(4.20)

Choose K2 ≥ K3(Ñ − 1) (recall the number of switches of minimizing curves is

uniformly bounded) so that

Tsv(A) ≥ v
(
A
)
− Cs+

N−1∑
`=1

ψ
(
x, γI(t`), γI(t`+1)

)
+ ψ(x, γI(t)

−, i)− ψ(x, γI(0), i).

(4.21)

Then, if we would have two or more switches,

N−1∑
`=1

ψ
(
x, γI(t`), γI(t`+1)

)
+ ψ(x, γI(t)

−, i)− ψ(x, γI(0), i) ≥ δ0 > 0; (4.22)
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therefore

Tsv(A) ≥ v
(
A
)

+ δ0 − Cs, (4.23)

a contradiction when s > 0 is sufficiently small.

Lemma 70. Let v be a subsolution and let (x, i) ∈M × I. Assume

v(x, i) < min
j 6=i

{
v(x, j) + ψ(x, i, j)

}
. (4.24)

Then, there exists s0 = s0(x) such that

Tsv(x, i) = inf
γM (s)=x

{
v(γM(0), i) +

∫ s

0

L(γM , γ̇M , i)

}
, ∀s ∈ [0, s0]. (4.25)

In other words, it is not worth switching between modes.

Proof. Observe that (4.24) holds true in a neighborhood of x. We claim that

s > 0 can be taken small so that any minimizing curve γ for Tt(x, i) is completely

contained in such neighborhood. In fact, Ttu(y, i) ≤ C for (t, y) ∈ [0, t0] ×M .

Then, for any ε > 0, there exists Cε ≥ 0 such that

− C +
1

ε

∫ s

0

‖γ̇M‖γM − Cεs ≤ u
(
γ(0)

)
+

∫ s

0

L
(
γM , γ̇M , γI

)
≤ C, (4.26)

which in turn implies

d
(
γM(0), x

)
≤
∫ s

0

‖γ̇M‖γM ≤ Cε+ Cεεs. (4.27)

Hence, given any δ > 0, we first choose ε < δ/2C, then s > 0 sufficiently small so

that Cεεs ≤ δ/2, and we have d
(
γM(0), x

)
≤ δ.

Now, suppose γI(0) = j 6= i, that is, we have one switch, for s > 0 small.

Then, since

v
(
γM(0), j

)
+ ψ

(
γM(0), j, i

)
≥ v
(
γM(0), i

)
+ δ0, (4.28)
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for some δ0 > 0, the same computation from the previous lemma shows that

Tsv(A) ≥ v
(
A
)

+ δ0 − Cs, (4.29)

where now, instead of (4.20), we use (4.28). This is again a contradiction and we

must have no switches for all times 0 < s < s0(x), if s0(x) is sufficiently small.

Next, we provide the aforementioned connection between our Lax–Oleinik semi-

group and the viscosity solutions of (4.4).

Proposition 71. A Lipschitz function u : M × I → R is a viscosity subsolution

of (4.4) if, and only if, u ≤ Ttu+ ct, for all t ≥ 0.

Proof. To simplify the notation we suppose without loss of generality that c = 0.

If u is a subsolution, then, for any curve γ : [0, t] → M × I with γ(t) = A, we

write

u(x, i)− u
(
γ(0)

)
=

N∑
k=0

[
u
(
γ(tk+1)

)
− u
(
γ(tk)

)]
=

N∑
k=0

[
u
(
γM(tk+1), γI(tk)

)
− u
(
γM(tk), γI(tk)

)]
+

N∑
k=0

[
u
(
γM(tk+1), γI(tk+1)

)
− u
(
γM(tk+1), γI(tk)

)]
≤

N∑
k=0

∫ tk+1

tk

L
(
γM(s), γ̇M(s), γI(tk)

)
ds

+
N−1∑
k=0

ψ
(
γM(tk+1), γI(tk), γI(tk+1)

)
,

(4.30)

which implies u ≤ Ttu.

Now, given (x0, i0), we take γ satisfying γ(t0) = (x0, i0), γM(t) = x, γI ≡ i0,

and γ̇M(t0) = v, so that

u(x0, i0) ≤ u
(
γM(t), i0

)
+

∫ t0

t

L
(
γM , γ̇M , i0

)
ds
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and any test function φ such that u(·, i0)− φ has a maximum at x0 satisfies

φ(x0)− φ(γM(t))

t0 − t
≤ 1

t0 − t

∫ t0

t

L
(
γM , γ̇M , γI

)
ds;

hence

dφ(x0) · v ≤ L(x0, v, i0).

Since v is arbitrary, we obtain

H
(
x0, dφ(x0), i0

)
≤ 0.

To complete the proof, we observe that the Lax–Oleinik semigroup is a solution

to a time–dependent weakly coupled system of Hamilton–Jacobi equations, see

Proposition 88. It follows that the Lax–Oleinik semigroup satisfies

Ttu(x, i) ≤ Ttu(x, j) + ψ(x, i, j).

Let t→ 0 to obtain

u(x, i) ≤ u(x, j) + ψ(x, i, j).

Proposition 72. A semiconcave function u : M × I → R is a solution of (4.4)

if, and only if, u = Ttu, ∀t.

Proof. Again, to simplify the notation we suppose without loss of generality that

c = 0. The ‘if’ part is the same as in Proposition 88, of Chapter 5. Assume now

that u : M × I → R is a solution of (4.4) and fix t > 0. This means that, for any

i ∈ I,

max
{
H
(
x, du(x), i

)
, u(x, i)−Ψu(x, i)

}
= 0, (4.31)

in the viscosity sense of Definition 66. Fix x ∈ M and i ∈ I. Let us consider two

cases.

Case 1. u(x, i) < Ψu(x, i). In this case, such inequality is true in a neighborhood

Ũ of x. We first claim that u(·, i) = Tsu(·, i) in a neighborhood of x, for all

sufficiently small times 0 < s < s(x). Indeed, the initial point of any minimizer
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must be contained in Ũ , if s > 0 is chosen sufficiently small, and Tsu(y, j) cannot

have any switches, for any y ∈ U ⊂ Ũ (See Lemma 70). In this way, since we have

H
(
y, du(y), i

)
= 0 on U

and u is semiconcave, the classical theory implies u(y, i) = Tsu(y, i), for all y ∈ U .

Now, set

A := {s;u(y, i) = Tsu(y, i) in U}.

By continuity, this set is closed in [0,+∞). But the reasoning above (combined

with the fact that u ≤ Ttu) shows it is also open. Hence, A = [0,+∞).

Case 2. u(x, i) = Ψu(x, i). Then, we have

u(x, i) = u(x, j) + ψ(x, j, i), (4.32)

for some j ∈ I\{i}. It is not hard to see that j is such that

u(x, j) < Ψu(x, j);

thus, by the same reasoning of case 1 (and by using the equation for the index j),

we must have u(x, j) = Ttu(x, j). This, together with (4.32) and Proposition 88,

implies

u(x, i) = u(x, j) + ψ(x, j, i) = Ttu(x, j) + ψ(x, j, i) ≥ Ttu(x, i).

The other inequality follows from the previous proposition and the fact that u is

a subsolution.

Until the end of this section, we list some of the various useful properties that

the Lax–Oleinik semigroup, as we defined above, satisfy.

Proposition 73. For every i ∈ I, the map u 7→ Ttu(·, i) is a weak contraction in

the L∞(M)–norm, that is, for every g, h : M × I → R continuous,

‖Ttg(·, i)− Tth(·, i)‖L∞(M) ≤ ‖g(·, i)− h(·, i)‖L∞(M) .
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Proof. The definition of the semigroup readily implies Tt(g+ c)(·, i) = Ttg(·, i) + c,

for c ∈ R. Also, if g(·, i) ≤ h(·, i), for every i ∈ I, then Ttg(·, i) ≤ Tth(·, i). So,

from

h(·, i)− ‖g(·, i)− h(·, i)‖L∞(M) ≤ g(·, i) ≤ h(·, i) + ‖g(·, i)− h(·, i)‖L∞(M)

we conclude

Tth(·, i)− ‖g(·, i)− h(·, i)‖L∞(M) ≤ Ttg(·, i) ≤ Tth(·, i) + ‖g(·, i)− h(·, i)‖L∞(M) ,

as wanted.

Proposition 74. The Lax–Oleinik semigroup defined above is in fact a semigroup,

that is,

Tt(Tsu) = Tt+s(u), ∀ t, s ≥ 0. (4.33)

Proof. First, we claim that ht, as in Remark 64, satisfies

ht+s(A,B) = inf
C∈M×I

{
ht(A,C) + hs(C,B)

}
. (4.34)

Indeed, for a given C ∈M × I, consider

γ1 : [0, t]→M × I,

γ2 : [0, s]→M × I,

with γ1(0) = A, γ1(t) = C, and γ2(0) = C, γ2(t) = B so that, if we define

γ3 : [0, t+ s]→M × I by the formula

γ3(τ) :=

{
γ1(τ), for τ ∈ [0, t];

γ2(τ − t), for τ ∈ [t, t+ s],
(4.35)
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and denoting with t3k the new partition that arises, we get

ht+s(A,B) ≤
∫ t+s

0

L(γ3
M , γ̇

3
M , γ

3
I) +

N1+N2∑
i=0

ψ(γ3
M(t3i+1), γ3

I(t
3
i ), γ

3
I(t

3
i+1))

=

∫ t

0

L(γ1
M , γ̇

1
M , γ

1
I) +

N1−1∑
i=0

ψ
(
γM(t1i+1), γ1

I(t
1
i ), γ

1
I(t

1
i+1)
)

+

∫ s

0

L(γ2
M , γ̇

2
M , γ

2
I) +

N2−1∑
i=0

ψ
(
γM(t2i+1), γ2

I(t
1
i ), γ

2
I(t

2
i+1)
)
.

(4.36)

(note ψ
(
σ3(tN1), σ

3(t)
)

= 0) Then, by taking the infimum over γ1, γ2 we obtain

ht+s(A,B) ≤ ht(A,C) + hs(C,B),

and since this is true for all C ∈M × I, we infer

ht+s(A,B) ≤ inf
C∈M×I

{
ht(A,C) + hs(C,B)

}
.

For the reverse inequality, we fix ε > 0, and choose γ : [0, t + s] → M × I such

that γ(0) = A, γ(t+ s) = B for which

ht+s(A,B) + ε ≥
∫ t+s

0

L(γM , γ̇M , γI) +
N−1∑
i=0

ψ
(
γM(ti+1), γI(ti), γI(ti+1)

)
. (4.37)

Let γ(t) = (z, k) be the intermediate point of γ at time t. Now, we define γ1 :

[0, t]→M × I, γ2 : [0, s]→M × I, respectively, by

γ1 = γ|[0,t]

and

γ2(τ) = γ|[t,t+s](τ + t)

Observe that

ht(A, γ(t)) ≤
∫ t

0

L(γ1
M , γ̇

1
M , γ

1
I) +

N1−1∑
i=0

ψ
(
γM(t1i+1), γ1

I(t
1
i ), γ

1
I(t

1
i+1)
)
, (4.38)
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and

hs(γ(t), B) ≤
∫ t+s

t

L(γ2
M , γ̇

2
M , γ

2
I) +

N2−1∑
i=0

ψ
(
γM(t2i+1), γ2

I(t
1
i ), γ

2
I(t

2
i+1)
)
, (4.39)

Hence, by adding the last two inequalities, and combining it with (4.37), we con-

clude

ht+s(A,B) + ε ≥ ht(A, γ(t)) + hs(γ(t), B)

≥ inf
C∈M×I

{
ht(A,C) + hs(C,B)

}
,

(4.40)

and since ε is arbitrary, the claim is proved.

We now turn to the proof of (4.33), which becomes simple with the help of

(4.34). In fact, for A ∈M × I, we have

Tt+su(A) = inf
B∈M×I

{
u(B) + ht+s(B,A)

}
= inf

B∈M×I

{
u(B) + inf

C∈M×I

[
ht(B,C) + hs(C,A)

]}
= inf

C∈M×I

{
hs(C,A) + inf

B∈M×I

[
u(B) + ht(B,C)

]}
= inf

C∈M×I

{
Tt(C) + hs(C,A)

}
= Ts(Ttu)(A),

(4.41)

as desired.

4.2 Weak KAM theorem in the optimal switch-

ing setting

The aim of this section is to prove Theorem 62. As in the Weak KAM Theorem

for the action of a single Lagrangian on a compact manifold, we proceed to show

that the associated Lax–Oleinik semigroup (see Definition 63 above) converges to

a viscosity solution of the system of Hamilton–Jacobi equations (4.5)

We start by showing that the critical value c0 is well defined as the infimum of

c ∈ R for which (4.4) admits a viscosity subsolution:
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Proposition 75. There exists a unique c0 ∈ R satisfying:

(i) The equation (4.4) admits a subsolution, with c replaced by c0;

(ii) For any c ∈ R such that (4.4) admits a subsolution, c ≥ c0.

Proof. Define c0 ∈ R by

c0 := inf
{
c ∈ R; (4.4) admits a subsolution

}
.

Notice that the infimum is over a nonempty set, because for big values of c, u ≡ 0

is a subsolution. Moreover, we clearly have c0 ≥ maxi c0(Li), where c0(Li) is the

Mañé critical value of L(·, ·, i); thus, c0 ∈ R.

In order to show that this infimum is in fact a minimum, let cj ∈ R be a

minimizing sequence for c0, so that there exists a subsolution uj for (4.4) with

c replaced by cj, and satisfying cj → c0. Since uj(·, i) is uniformly Lipschitz, we

know that there exists u such that uj(·, i) → u(·, i), up to a subsequence. It is

then clear that this limit u is a subsolution of (4.4) with constant c0.

From this point on, so that the notation is simplified, we consider a ‘normalized’

definition for the Lax–Oleinik semigroup, by adding the constant c0, from last

proposition, to the Lagrangians L(·, ·, i):

Ttu(A) := inf

{
u(γ(0)) +

N∑
k=0

∫ tk+1

tk

[
L
(
γM(s), γ̇M(s), γI(tk)

)
+ c0

]
ds

+
N−1∑
k=0

ψ
(
γM(tk), γI(tk), γI(tk+1)

)}
.

(4.42)

Lemma 76. Assume u : M × I → R is a subsolution of (4.4). Then, for any

t ∈ [0,∞), there exists At = (xt, it) ∈M × I such that u(At) = Ttu(At).

Proof. Assume, by contradiction, that this is not the case. Then there exists t0 > 0

such that, for every A ∈M × I,

u(A) < Tt0u(A).
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Since M is compact, we can find ε > 0 such that, for all A ∈M × I,

u(A) < Tt0u(A)− ε =: T̃t0u(A), (4.43)

so that

T̃tu(A) := inf

{
u(γ(0)) +

N∑
k=0

∫ tk+1

tk

(
L
(
γM(s), γ̇M(s), γI(tk)

)
+ c̃
)
ds

+
N−1∑
k=0

ψ
(
γM(tk), γI(tk), γI(tk+1)

)}
,

with c̃ = c0 − ε/t0. Since u is a subsolution, the monotonicity of the semigroup T̃t

implies that for any τ > 0, and any n ∈ N,

T̃τu ≤ T̃nt0+τu.

This in turn implies

ũ := sup
τ≥0

T̃τu = sup
0≤τ≤t0

T̃nt0+τu.

Observe now that, for any h > 0,

T̃hũ = sup
τ≥0

T̃τ+hu

= sup
τ≥h

T̃τu ≥ ũ,
(4.44)

so that ũ is a subsolution to

max
{
H(x, dxui, i)− c̃, max

j 6=i

{
u(x, i)− u(x, j)− ψ(x, i, j)

}}
= 0, ∀ i. (4.45)

But then, by the definition of c0, we have

c0 ≤ c̃ = c0 − ε/t0,

which is clearly a contradiction.
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Proposition 77. For every i ∈ I, Ttu(·, i) is uniformly bounded in t, meaning

sup
t≥0
‖Ttu(·, i)‖L∞(M) < +∞.

Proof. For t ≥ 0, there exists At = (xt, it) ∈ M × I such that (Ttu − u)(At) = 0.

Since Ttu(·, it)− u(·, it) is uniformly Lipschitz and vanishes at one point, we have

|Ttu(x, it)− u(x, it)| = |(Ttu− u)(x, it)− (Ttu− u)(At)|

≤ 2Cd(x, xit)

≤ 2C diam(M) ≡ CM ,

(4.46)

with C independent of t. Then, for any i ∈ I, we know

Ttu(x, it)− ψ(x, it, i) ≤ Ttu(x, i) ≤ Ttu(x, it) + ψ(x, i, it).

Here, we again use that Ttu is a solution to (5.1), as stated in Theorem 88. Thus,

|Ttu(·, i)| ≤ ‖u(·, it)‖L∞(M) + CM + sup
x∈M,i 6=j

ψ(x, i, j),

whence,

sup
t≥0
‖Ttu(·, i)‖L∞(M) ≤ ‖u(·, it)‖L∞(M) + C.

Proposition 78. If u : M × I → R is a subsolution of (4.4), then Ttu converges

to a fixed point of the Lax–Oleinik semigroup Tt.

Proof. By assumption, u is a subsolution and so u ≤ Ttu. By the monotonicity of

the Lax–Oleinik semigroup, we have

Tsu ≤ Ts+tu.

Since it is also uniformly bounded in t, the pointwise limit

u∞(x, i) := lim
t→+∞

Ttu(x, i)
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is well defined, everywhere in M . Since Tt is continuous in t ≥ 0, we conclude

Tsu
∞(x, i) = lim

t→+∞
Ts+tu(x, i) = u∞(x, i).

As a corollary, taking Proposition 72 into account, we obtain Theorem 62,

which was the goal of this section.

4.3 The Aubry set

In this section, we start our analysis of the Aubry–Mather theory in our setting.

We define the Aubry set A in a fashion similar to [19]. We prove the following

theorem:

Definition 79. The projected Aubry set A is defined as the set of B ∈M ×I for

which

lim inf
t→+∞

ht(B,B) = 0. (4.47)

The set A is defined in Gomes-Serra [19] as the set of B ∈ M × I for which

(ii) of Proposition 80 below is satisfied. We prove that this definition is in fact

equivalent to the one we propose. The proof is standard and follows the same steps

of the proof of an equivalent statement in the classical theory. We recall that, by

Proposition 71, any critical subsolution satisfies

u
(
γ(t)

)
− u
(
γ(0)

)
≤ Jt[γ], ∀γ ∈ AC([0, t];M)× P([0, t]; I).

In particular, the action on loops is always nonnegative.

Proposition 80. The following are equivalent:

(i) B ∈ A;

(ii) inf
{
Jt[γ]

∣∣∣ t ≥ δ, γ(0) = γ(t) = B
}

= 0, for some δ > 0;

(iii) inf
{
Jt[γ]

∣∣∣ t ≥ δ, γ(0) = γ(t) = B
}

= 0, for every δ > 0.

74



Proof. (i) =⇒ (ii). Let ε > 0. If B ∈ A, then there exist a sequence tk → +∞
for which htk(B,B) → 0. Let γk : [0, tk] → M × I with γ(0) = γ(t) = B be such

that

htk(B,B) +
ε

2
≥ Jtk [γk].

Without loss of generality, we may assume tk ≥ 1, for all k. Since htk(B,B)→ 0,

if k is large enough

htk(B,B) ≤ ε

2

and

ε ≥ Jtk [γk]

for some tk ≥ 1. Then (ii) holds with δ = 1.

(ii) =⇒ (iii). Since (ii) holds, there exists δ0 > 0 such that (4.47) holds true.

Now fix any δ > 0. If δ < δ0,

inf
{
Jt[γ]

∣∣∣ t ≥ δ
}
≤ inf

{
Jt[γ]

∣∣∣ t ≥ δ0

}
= 0, (4.48)

and we are done, because the action on loops is nonnegative. Otherwise, δ > δ0

and we let m ∈ N be such that δ < mδ0. In this way, for any γ : [0, t]→M×I with

with period t ≥ δ0, we can define a curve γ̄ : [0,mt]→M ×I by concatenation of

γ with itself, m times, and we obtain

Jmt[γ̄] = mJt[γ].

We do not create any new switches, for γ is a loop. Since mt ≥ δ0, both infima

must coincide.

(iii) =⇒ (i). Take δ = k and define a sequence.

Next, we extend the definition of critical curves to our setting and prove its

existence for points of the projected Aubry set A (compare proof with Theorem

25).

Definition 81 (Critical curve). We say γ : R → M × I is a critical curve if, for
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any subsolution u : M × I → R of (4.4), and all t1 < t2,

u
(
γ(t2)

)
−u
(
γ(t1)

)
=

∫ t2

t1

L
(
γM(s), γ̇M(s), γI(s)

)
ds+

∑
k

ψ
(
γM(sk+1), γI(sk), γI(sk+1)

)
,

where the sum above is taken for all k such that t1 < sk+1 < t2.

Proposition 82 (Existence of critical curves). Given B = (y, j) ∈ A, there exists

a critical curve γ : R→M × I with γ(0) = B.

Proof. Let ηk : [0, tk]→M ×I, with ηk(0) = B = ηk(tk) and tk ≥ k, be such that

Jtk [ηk] =

∫ tk

0

L
(
ηkM(s), η̇kM(s), ηI(s)

)
ds+

Nk−1∑
j=1

ψ
(
ηkI(sj)η

k
I(sj+1)

)
→ 0.

If we set γk : [−tk/2, tk/2]→M × I as γk(s) := ηk(s+ tk/2), we have

∫ tk/2

−tk/2
L
(
γkM(s), γ̇kM(s), γkI(s)

)
ds+

Nk−1∑
j=1

ψ
(
γkM(sj), γ

k
I(sj)γ

k
I(sj+1)

)
→ 0.

We observe that the number of switches grows at most linearly, otherwise Jtk [ηk]
would diverge. Since the action of a loop is nonnegative, it is easy to see that γk

can be assumed to be an action minimizer. Then

0 ≤ 1

tk

∫ tk/2

−tk/2
L
(
γkM(s), γ̇kM(s), γkI(s)

)
ds+

1

tk

N−1∑
j=1

ψ
(
γkM(sj), γ

k
I(sj)γ

k
I(sj+1)

)
→ 0

and there exists tk0 ∈ [−tk/2, tk/2] for which L
(
γkM(tk0), γ̇kM(tk0), γkI(t

k
0)
)
≤ C; then,

by assumption 3 in the Definition 7 of a Tonelli Lagrangian,

∥∥γ̇kM(tk0)
∥∥
γkM (tk0)

≤ L
(
γkM(tk0), γ̇kM(tk0), γkI(t

k
0)
)

+ C ≤ C.

Now, conservation of energy implies that the speed curve (γkM , γ̇
k
M) is contained in

a compact subset of TM . Thus, by a diagonal argument, we can construct a curve
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γM : R→M such that, for every fixed interval [−T, T ]

γkM → γM , uniformly in [−T, T ],

γ̇kM ⇀ γ̇M , weakly in L1
(
[−T, T ]

)
.

(4.49)

By following the proof of Theorem 48, we can also defined a limit γI of γkI , for

which lower semicontinuity of the action functional holds in [−T, T ] (see (3.9)).

Finally, we prove γ is a critical curve. Indeed, given u subsolution of (4.4), and

a ≤ b, we have

0 ≤ u(γk(a))−u(γk(b))+

∫ b

a

L(γkM , γ̇
k
M , γ

k
I) ds+

∑
[a,b]

ψ
(
γkM , γ

k−
I , γk+

I
)

=: Ik1 (4.50)

and, since γk is a loop,

0 ≤ u(γk(b))− u(γk(a)) +

∫ tk/2

b

L(γkM , γ̇
k
M , γ

k
I) +

∫ a

−tk/2
L(γkM , γ̇

k
M , γ

k
I)

+
∑

[−tk/2,tk/2]\[a,b]

ψ(γkM , γ
k−
I , γk+

I ) =: Ik2 .
(4.51)

By adding these, we obtain

0 ≤
∫ tk/2

−tk/2
L(γkM , γ̇

k
M , γ

k
I) +

∑
[−tk/2,tk/2]

ψ(γkM , γ
k−
I , γk+

I )→ 0.

In this way, Ik1 ≥ 0 and Ik2 ≥ 0 are such that Ik1 + Ik2 → 0. In particular, each of

them converges to zero and we have

lim
k

{
u(γk(a))− u(γk(b)) +

∫ b

a

L(γkM , γ̇
k
M , γ

k
I) ds+

∑
[a,b]

ψ
(
γkM , γ

k−
I , γk+

I
)}

= 0.
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Hence, lower semicontinuity implies

u(γ(b))− u(γ(a)) = lim inf
k

{∫ b

a

L(γkM , γ̇
k
M , γ

k
I) ds+

∑
[a,b]

ψ
(
γkM , γ

k−
I , γk+

I
)}

≥
∫ b

a

L(γM , γ̇M , γI) +
∑
[a,b]

ψ
(
γkM , γ

−
I , γ

+
I
)
.

The other inequality is clear, by Proposition 71.

Proposition 83. Every critical curve is contained in the projected Aubry set A.

Proof. Gomes and Serra proved that for every (x, i) ∈ A, and every subsolution u

of (4.4), u(·, i) cannot be a strict subsolution at x (see [19, remarks after Theorem

3.6]), that is, at least one of the following is satisfied:

(i) H
(
x, du(x, i), i

)
= 0, in the viscosity sense or;

(ii) for some j 6= i, v(x, i)− v(x, j) = ψ(x, i, j).

The proof then follows, since the next proposition ensures there exist subsolutions

that are strict outside the Aubry set A.

Gomes and Serra [19] proved the following:

Proposition 84. If the open subset U ⊂M ×I is such that U ⊆M ×I\A, then

there exists a subsolution v of (4.4) which is strict in U , meaning

• for all (y, j) 6∈ A, and p ∈ ∂+vj(y), we have H(y, p, j) < 0 and

• for all i 6= j, vj(y)− vi(y) < ψ(i, j).

Furthermore, v is smooth in (M × I)\A.

Proof. See [19, Lemma 4.2].

We now use this result to prove a comparison principle:

Corollary 85 (Comparison Principle). Suppose u is a subsolution, w is a super-

solution, and that u ≤ w on A. Then u ≤ w in M × I.
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Proof. Suppose to find a contradiction that

min
M×I

(w − u) < 0.

Then any minimizer must be outside A. Consider vn subsolutions that approxi-

mate u and are smooth outside A, and (xn, in) such that

w(xn, in)− vn(xn, in) = min
M×I

(w − vn). (4.52)

For n >> 1, this minimum is still negative, and we must have (xn, in) 6∈ A. But

(4.52) implies dxnvn ∈ ∂−w(xn, in). Since w is a supersolution, we must have either

• H(xn, dxnvn, in) ≥ 0 or;

• for some j 6= in, vn(xn, in)− vn(xn, j) = ψ(xn, in, j).

Since both contradict the previous proposition, our result is proved.

Next, we study properties of a special solution of (4.4), motivated by Davini-

Siconolfi [10]. These properties will be important, for instance, in the next chapter

when we describe the large time behavior of the Lax–Oleinik semigroup.

Given u0 ∈ C(M × I), we consider

v(A) := inf
B∈A

{
h(B,A) + inf

C∈M×I

{
u0(C) + h(C,B)

}}
, (4.53)

where h : M × I ×M × I → R denotes the (generalized) Peierls barrier

h(A,B) = lim inf
t→+∞

ht(A,B).

We prove v is a critical solution defined on M × I. Indeed, we have (compare to

[10, Theorem 3.1])

Theorem 86. Set

v0(B) := inf
C∈M×I

{
u0(C) + h(C,B)

}
,
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for B ∈M × I, so that

v(A) = inf
B∈A

{
v0(B) + h(B,A)

}
. (4.54)

Then, the following hold true:

1. v0 is the maximal subsolution with v0 ≤ u0 on M × I;

2. v is a solution and it equals v0 on A;

3. If u0(B)− u0(A) ≤ h(B,A), for all A,B ∈M × I, then

v(A) := inf
B∈A

{
u0(B) + h(B,A)

}
. (4.55)

in M × I, and v0 = u0 on A.

Proof. 1. By setting C = B, we get that v0 ≤ u0 on M × I. Also, by considering

C ∈M × I such that

v0(B) = u0(C) + h(C,B),

we obtain

v0(A)− v0(B) ≤ h(C,A)− h(C,B) ≤ h(B,A),

and we are done.

2. This is what says [19, Proposition 4.3].

3. If u0(B)− u0(A) ≤ h(B,A), for all A,B ∈M × I, then u0 is a subsolution

and we must have u0 = v0, which implies (4.55).
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Chapter 5

Time–dependent weakly coupled

Hamilton–Jacobi system

In this chapter we study the asymptotic behavior of solutions to the time–depen-

dent weakly coupled Hamilton–Jacobi system associated to the optimal switching

problem.

In Section 5.1 we prove that the Lax–Oleinik semigroup of Chapter 4 is a

viscosity solution to the time–dependent equations. In Section 5.2 we prove the

main result of this chapter: we prove that the Lax–Oleinik solution to the time–

dependent system goes asymptotically to a weak KAM solution, as t→ +∞.

5.1 Viscosity solutions

We now study the following time–dependent system of weakly coupled Hamilton–

Jacobi equations: ∀i ∈ I,

max

{
∂tu(t, x, i)+H

(
x, ∂xu(t, x, i), i

)
, max

j 6=i

{
u(t, x, i)−u(t, x, j)−ψ(x, i, j)

}}
= 0,

(5.1)

on [0,+∞)×M . The definition of viscosity solutions to this system is completely

analogous to the stationary case studied in Chapter 4.

Definition 87. 1. We say that the continuous function u : [0,+∞)×M×I →
I is a viscosity subsolution to the system (5.1) if, for each i, j ∈ I,
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(i) for any i ∈ I, the function u(·, ·, i) satisfies

∂tu(t, x, i) +H
(
x, ∂xu(t, x, i), i

)
≤ 0,

in the viscosity sense, and;

(ii) for any i, j ∈ I, the functions u(·, ·, i) and u(·, ·, j) satisfy

u(t, x, i) ≤ u(t, x, j) + ψ(x, i, j).

2. We say that u : [0,+∞) ×M × I → R is a viscosity supersolution to the

system (5.1) if, for every i ∈ I, at least one of the following is satisfied:

(i) the function u(·, ·, i) satisfies

∂tu(t, x, i) +H
(
x, ∂xu(t, x, i), i

)
≥ 0,

in the viscosity sense, or;

(ii) there exists j ∈ I, j 6= i, such that the functions u(·, ·, i) and u(·, ·, j)
satisfy

u(t, x, i) ≥ u(t, x, j) + ψ(x, i, j).

3. The function u is said to be a viscosity solution if it is both viscosity subso-

lution and a a viscosity supersolution.

In the following proposition we prove that indeed we obtain a solution of (5.1)

by the Lax–Oleinik formula.

Proposition 88. Let u0 ∈ C(M ×I). Then, u : [0,+∞)×M ×I → R defined by

u(t, A) = Ttu(A), t ≥ 0, A ∈M × I,

is a viscosity solution of (5.1).

Proof. Fix (t0, x0, i) ∈ R×M ×I. To prove that it is a subsolution, we first verify

the inequality of item (i), in the viscosity sense. Choose γI : [0, t0] → {1, . . . ,m}
to be arbitrary in [0, t), with γI ≡ i in the interval ending t, where it is constant,
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and γI ≡ i in [t, t0] as well. Choose any curve γM ∈ AC([0, t0];M) satisfying

γM(t) = x, γM(t0) = x0, and γ̇M(t0) = v ∈ Tx0M . Then,

u(t0, x0, i) ≤ u
(
0, γM(0), γI(0)

)
+

∫ t

0

L
(
γM(s), γ̇M(s), γI(s)

)
+
∑

ψ
(
γM , γ

−
I , γ

+
I
)

+

∫ t0

t

L
(
γM(s), γ̇M(s), i

)
ds.

(5.2)

Since γ = (γM , γI) is arbitrary in [0, t], we obtain

u(t0, x0, i) ≤ u
(
t, γM(t), i

)
+

∫ t0

t

L
(
γ(s), γ̇(s), i

)
ds. (5.3)

So, if φ is a test function such that u(·, ·, i)−φ has a maximum at (t0, x0), we have

φ(t0, x0)− φ(t, γM(t)) ≤ u(t0, x0, i)− u
(
t, γM(t), i

)
≤
∫ t0

t

L
(
γM(s), γ̇M(s), i

)
ds,

so that
φ(t0, x0)− φ(t, γM(t))

t0 − t
≤
∫
−
t0

t

L
(
γM(s), γ̇M(s), i

)
ds.

Let t→ t0 to get

∂tφ(t0, x0) + ∂xφ(t0, x0) · v ≤ L(t0, v, i).

Since v ∈ Tx0M is arbitrary, we have proven

∂tφ(t0, x0) +H
(
x0, ∂xφ(t0, x0), i

)
≤ 0.

We now verify our second condition in order to be a viscosity subsolution. Fix

i, j ∈ I, and we want to show that for all (t, x),

u(t, x, i) ≤ u(t, x, j) + ψ(x, i, j).
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For given ε > 0, let γ = (γM , γI) be such that γ(t) = (x, j) and

u(t, x, j) + ε ≥ u(0, γ(0)) +
N∑
k=0

∫ tk+1

tk

L
(
γM(s), γ̇M(s), γI(tk)

)
ds

+
N−1∑
k=0

ψ(γM(tk+1), γI(tk), γI(tk+1)).

(5.4)

Thus, if we stay at the point x for a time δ > 0 longer, by using the Lagrangian i,

we obtain

u(t+ δ, x, i) ≤ u(0, γ(0)) +
N∑
k=0

∫ tk+1

tk

L
(
γM(s), γ̇M(s), γI(tk)

)
ds

+ δL(x, 0, i) +
N−1∑
k=0

ψ
(
γM(tk+1), γI(tk), γI(tk+1)

)
+ ψ

(
x, i, j

)
≤ u(t, x, j) + ε+ δL(x, 0, i) + ψ(x, i, j)

(5.5)

But then, by letting δ → 0 and using the continuity of u(·, ·, i), we obtain

u(t, x, i) ≤ u(t, x, j) + ψ(x, i, j) + ε;

therefore, since this is true for an arbitrary ε > 0, u is a viscosity subsolution of

(5.1).

In order to prove that it is also a supersolution, we first observe that if v : R×
M×I → R, with the same initial condition as u (meaning v(0, x, i) = u(0, x, i), ∀i)
is a subsolution, then necessarily v(·, ·, i) ≤ u(·, ·, i), for all i. Indeed, for given
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γ = (γM , γI) with γ(t) = (x, i), we compute

v(t, x, i)− v
(
0, γM(0), γI(0)

)
=

N∑
k=0

[
v
(
tk+1, γM(tk+1), γI(tk+1)

)
− v
(
tk, γM(tk), γI(tk)

)]
=

N∑
k=0

[
v
(
tk+1, γM(tk+1), γI(tk)

)
− v
(
tk, γM(tk), γI(tk)

)]
+

N∑
k=0

[
v
(
tk+1, γM(tk+1), γI(tk+1)

)
− v
(
tk+1, γM(tk+1), γI(tk)

)]
≤

N∑
k=0

∫ tk+1

tk

L
(
γM(s), γ̇M(s), γI(tk)

)
ds

+
N−1∑
k=0

ψ
(
γM(tk+1), γI(tk), γI(tk+1)

)
.

(5.6)

(note we use γI(tN) = γI(t) = i) Since the initial conditions are the same, and

the previous inequality holds for any γ, we conclude v(t, x, i) ≤ u(t, x, i). Now we

proceed to prove that u is in fact a supersolution. For fixed x0, and t0, assume, in

order to find a contradiction, that both conditions in the definition of supersolution

fail to be true, that is, that there exist i ∈ I and φ such that u(·, ·, i) − φ has a

minimum at (t0, x0), with

∂tφ(t0, x0) +H
(
x0, ∂xφ(t0, x0), i

)
< 0,

and that

u(t0, x0, i) < u(t0, x0, j) + ψ(x0, i, j), ∀j ∈ I.

By continuity, these inequalities hold true at least in a small neighborhoodBδ(t0, x0)

of (t0, x0). Then, if we set ε > 0 any positive number satisfying

ε < max
∂Bδ(t0,x0)

{u(t, x, i)− φ(t, x)},

ε < max
Bδ(t0,x0)

{u(t, x, j) + ψ(x, i, j)− u(t, x, i)},
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and consider the function v defined as

v(t, x) :=

{
max

{
φ(t, x) + ε, u(t, x, i)

}
, for (t, x) ∈ Bδ(t0, x0);

u(t, x, i), elsewhere,
(5.7)

one verifies that ũ defined as

ũ(t, x, j) :=

{
v(t, x, i), for j = i;

u(t, x, j), for j 6= i,
(5.8)

is also a subsolution. But v(t0, x0, i) > u(t0, x0, i), a contradiction.

5.2 Large time behavior of the generalized Lax–

Oleinik semigroup

By combining our Theorem 62 of Chapter 4 with Proposition 88 above, we see

that, when u0 : M×I → R is a critical subsolution, then the Lax–Oleinik solution

u = Ttu0 converges, as t → +∞, to a solution of the critical Hamilton–Jacobi

system (4.4).

Naturally, we are interested in the following question: Does the Lax–Oleinik

semigroup converge for any given “initial” function u0 : M × I → R? The main

theorem of this section answers affirmatively this question:

Theorem 89. Let u0 : M × I → R be a continuous function. Then, the Lax–

Oleinik semigroup Ttu0 : M ×I → R converges, as t→ +∞, to a critical solution

v of (4.4), given by (4.53).

We observe that the long time behavior for different but related systems has

been studied recently by Filippo Cagnetti, Diogo Gomes, Hiroyoshi Mitake, and

Hung V. Tran [5].

Our method for proving Theorem 89 follows Davini-Siconolfi strategy [10] in

the classical case that we presented in Subsection 2.8.1. More precisely, we set

ω(u0) :=
{
ψ : M × I → R ; ψ = Ttnu, for some tn → +∞

}
(5.9)
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and define the ‘semilimits’:

u(A) = sup
{
ψ(A)

∣∣ ψ ∈ ω(u0)
}

(5.10)

and

u(A) = inf
{
ψ(A)

∣∣ ψ ∈ ω(u0)
}

; (5.11)

these are well defined since the family {Ttu}t>0 is uniformly bounded and uniformly

Lipschitz.

Proposition 90. As defined above, u is a subsolution of (4.4) and u is a super-

solution of (4.4).

Proof. By using Propositions 71 and 72, the proof follows exactly as in the proof

of Proposition 38.

Next, we give a second proof of our weak KAM theorem for the weakly coupled

equations, Theorem 62. The proof is an easy variation of [10, Theorem 3.4].

Proposition 91. Let u be either a subsolution or a supersolution, and let v be the

function defined by (4.53). Then

Ttu→ v.

Proof. Assume u0 is a subsolution, so that u0 ≤ Ttu0. Since v is the maximal

subsolution with v = u0 on A, we have u0 ≤ v on M × I. Then, by noticing

v = Ttv, for any t > 0, we have

u0 ≤ Ttu0 ≤ v on M × I.

Now, v = u0 on A implies

Ttu0 = v on A, ∀ t > 0.

This means

u = u = v on A,

and the comparison principle implies the same equality on the whole M × I.
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Next, assume u0 is a supersolution, so that u0 ≥ Ttu0. Consider

v0(B) := inf
C∈M×I

{
u0(C) + h(C,B)

}
,

the maximal subsolution with v0 ≤ u0 on M × I. Since v0 is a subsolution, we

have v0 ≤ Ttv0. Then

v0 ≤ Ttv0 ≤ Ttu0 ≤ u0 on M × I,

and the maximality of v0 implies that these are all equalities. In particular, v0 =

Ttv0, that is, v0 is a solution, which implies v = v0 on M × I. By monotonicity,

we get

v ≤ Ttu0 ≤ u0 on M × I, ∀ t > 0,

which implies v ≤ u ≤ u ≤ u0 on M × I. Since u is a subsolution, we must have

u ≤ v and the proof is finished.

Proposition 92. Let u, u be given by (5.10) and (5.11), respectively, and v be the

solution of (4.4) given by (4.53). We have

v ≤ u ≤ u on M × I. (5.12)

Proof. As in the second part of the previous proof, v0 satisfies v0 ≤ u0 on M × I.

Then Ttv0 ≤ Ttu0 on M ×I. Since v0 is a subsolution, we have Ttv0 → v and both

v ≤ u and v ≤ u are valid. The other inequality is trivial.

Remark 93. In order to obtain the convergence result, all we need is v = u on

A. This is what we prove in the next section.

Lemma 94. There exists a modulus of continuity ρ for which, if γ is a critical

curve and λ is a constant sufficiently close to 1, then∫ t2

t1

L
(
γM(λs), λγ̇M(λs), γI(λs)

)
ds+

∑
ψ ≤

h
(
γ(λt1), γ(λt2)

)
λ

+|λ−1|ρ(|λ−1|)(t2−t1).

(5.13)

Proof. The speed curve of a critical curve is bounded, say (γ, γ̇) ⊂ K, K ⊂ TM

compact.
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By the mean value theorem, we have

L
(
γM(λs), λγ̇M(λs), γI(λs)

)
− L

(
γM(λs), γ̇M(λs), γI(λs)

)
= (λ− 1)

∂L

∂v

(
γM(λs), µγ̇M(λs), γI(λs)

)
· γ̇M(λs).

(5.14)

Then, if we take ρ a modulus of continuity for ∂L/∂v in K := {(x, λv); (x, v) ∈
K, |λ− 1| ≤ δ}, we have

L
(
γM(λs), λγ̇M(λs), γI(λs)

)
≤ L

(
γM(λs), γ̇M(λs), γI(λs)

)
+ |λ− 1|ρ(|λ− 1|).

(5.15)

Thus,∫ t2

t1

L
(
γM(λs), λγ̇M(λs), γI(λs)

)
+
∑

ψ ≤
∫ t2

t1

L
(
γM(λs), γ̇M(λs), γI(λs)

)
+
∑

ψ + C|λ− 1|ρ(C|λ− 1|)(t2 − t1)

=
1

λ
h
(
γ(λt1), γ(λt2)

)
+ C|λ− 1|ρ(C|λ− 1|)(t2 − t1),

(5.16)

as desired.

Proposition 95. Let u be given by (5.10), and v be the solution of (4.4) given by

(4.53). Then, u ≤ v on A.

Proof. Let φ : M × I → R be in the ω-limit set of u0, so that φ is the limit of

Ttu0 for a particular divergent (to +∞) sequence of t’s. It is not difficult to obtain

from there a sequence sn → +∞ such that

φ = lim
n→+∞

Tsnφ.

Observe Tsnφ is the classical Lax–Oleinik semigroup of the function φ. Let A =

(x, i) ∈ ω(γ), so that A = limtn→+∞ γ(tn), for some sequence tn → +∞. Up to

extracting subsequences, we can assume τn = tn − sn → +∞. Since γ is a critical
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curve and v is a subsolution (it is in fact a solution), we have, by Lemma 94,

Tsnφ(γ(tn))− φ(γ(t+ τn)) ≤
∫ tn

t+τn

L(γM , γ̇M , γI) +
∑

ψ(γ−I , γ
+
I ) + |t|ρ(t/sn)

= v(γ(tn))− v(γ(t+ τn)) + |t|ρ(t/sn).

If we set

η = lim
n
γ(·+ τn),

then, η is also a critical curve and, by letting n→ +∞, we obtain

φ(A)− φ(η(t)) ≤ v(A)− v(η(t)).

It only remains to show that

lim inf
t

{
φ
(
η(t)

)
− v
(
η(t)

)}
≤ 0.

To this order, observe

v(η(t))− v(η(0)) =

∫ t

0

L(γM , γ̇M , γI) +
∑

ψ(γ−I , γ
+
I ) ≥ Ttu0(η(t))− u0(η(0)).

Thus, since η(R) ⊂ A and v = u0 on A,

φ
(
η(t)

)
− v
(
η(t)

)
≤ φ

(
η(t)

)
− Ttu0(η(t)) + u0(η(0))− v

(
η(0)

)
≤ max

B∈A

∣∣φ− Ttu0

∣∣. (5.17)

Since along a particular subsequence σn → +∞, we know Tσnu0 → φ, our claim is

proved.
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Chapter 6

Further developments

In this chapter we discuss further aspects of our optimal switching problem that

can be developed in a future work.

6.1 Existence of C1,1 subsolutions

Motivated by Bernard’s results, we present the following conjecture.

Conjecture 96 (Existence of C1,1 subsolutions). Given a subsolution u of (1.9),

there exists a subsolution v such that, for every mode i ∈ I, v(·, i) is in C1,1(M),

at least when I = {1, 2}.

In this chapter we present a few results that could be proven in case this

conjecture is to be proven.

Remark 97. By approximation, we see that there exists a C1,1 subsolution that

is strict in U .

We improve Proposition 84 by showing that the set of C1,1 subsolutions that

are strict outside A is dense in the set of subsolutions.

Proposition 98. Given a subsolution u : M → R, there exists a C1,1 subsolution

that coincides with u on A.

Proof. Let u be any subsolution. We claim that, for any B = (y, j) ∈ A, and for

any t ≥ 0,

u(B) = Ttu(B) = Ťtu(B).
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Indeed, take a critical curve η associated to B and consider γ(s) = γ(s + t), also

critical. Then

u(B) = u(γ(0)) +

∫ t

0

L(γM , γ̇M , γI) +
∑

ψ(γM , γ
−
I , γ

+
I ) ≥ Ttu(B).

Since, u is a subsolution, that u(B) ≤ Ttu(B) is immediate. This proves the

first equality; the other one is analogous. So, if we are able to construct a C1,1

subsolution by an analogous of Bernard’s method, namely v = T̆ε(Tt)u, for ε

sufficiently small, we have u = v on A.

6.2 Mather set and minimizing measures

Let γ : [0,+∞] → M × I be any trajectory on M × I. Define a measure µtγ ∈
P(TM × I) by setting, for any F : TM × I → R continuous,∫

TM×I
F dµtγ =

1

t

∫ t

0

F (γM(s), γ̇M(s), γI(s)) ds.

If the velocities are bounded, then there exists µγ ∈ P (TM × I) for which

µtγ
∗
⇀ µγ.

Also, for any θ : M × I → R continuous, define a measure νtγ on M × I × I by

∫
M×I×I

θ dνtγ =
1

t

Nt−1∑
k=1

θ
(
γM(tk+1), γI(tk), γI(tk+1)

)
.

We observe that the number of switches grows at most linearly (when γ is mini-

mizing), and then |νtγ|(M × I × I) ≤ C. Hence, there exists νγ such that

νtγ
∗
⇀ νγ.

If, in particular, we choose

F (x, v, i) = dxϕ(·, i) · v, and θ(x, i, j) = ϕ(x, j)− ϕ(x, i),
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for any ϕ ∈ C1(M × I), we have

∫
TM×I

F dµγ+

∫
M×I×I

θ dνγ = lim
t→+∞

[∫
TM×I

F dµtγ +

∫
M×I×I

θ dνtγ

]

= lim
t

[
1

t

∫ t

0

dxϕ
(
γM(s), γI(s)

)
· γ̇M(s) ds

+
1

t

Nt−1∑
k=0

(
ϕ
(
γM(tk+1), γI(tk)

)
− ϕ

(
γM(tk+1), γI(tk+1)

))]

= lim
t

[
1

t

Nt∑
k=0

(
ϕ
(
γM(tk+1), γI(tk)

)
− ϕ

(
γM(tk), γI(tk)

))

+
1

t

Nt−1∑
k=0

(
ϕ
(
γM(tk+1), γI(tk+1)

)
− ϕ

(
γM(tk+1), γI(tk)

))]

= lim
t

[
ϕ
(
γM(t), γI(tN)

)
− ϕ

(
γM(0), γI(0)

)
t

]
= 0.

(6.1)

As in the classical case, motivated by this, we define:

Definition 99 (Holonomic measures). The pair of measures (µ, ν), with µ ∈
P (TM × I) and ν measure in M × I × I, is said to be holonomic, if it satisfies,

for every ϕ ∈ C1(M × I),∫
TM×I

(
dxϕ(x, v, i)·v

)
dµ(x, v, i)+

∫
M×I×I

(
ϕ(x, j)−ϕ(x, i)

)
dν(x, i, j) = 0. (6.2)

We then write (µ, ν) ∈ H.

We are then interested in minimizing a relaxed version of the optimal switching

problem:∫
TM×I

(
L(x, v, i) + c0

)
dµ(x, v, i) +

∫
M×I×I

ψ(x, i, j) dν(x, i, j), (6.3)

among all holonomic pairs (µ, ν) ∈ H. A minimizer (µ, ν) ∈ H of this problem is

called a minimizing measure. We write (µ, ν) ∈ Hmin.
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Definition 100. We define the Mather set as

M̃ =
⋃

(µ,ν)∈Hmin

(
suppµ⊗ supp ν

)
⊂ TM × I ×M × I × I.

Theorem 101. The Mather set M̃ is nonempty, and its projection onto M is a

compact subset of the projected Aubry set A.

Proof. First we prove the Mather set is nonempty. Let γk : [0, tk] → M × I be a

sequence of loops, with tk → +∞, such that

Jtk [γk]→ 0.

Such a sequence of minimizing trajectories does exist, because the Aubry set is

nonempty. Assume too that γk is minimizing, which can be made, since the action

of loops is nonnegative. Define a measure µ on TM × I × I by setting∫
TM×I

F (x, v, i) dµk(x, v, i) =
1

tk

∫ tk

0

F (γkM(s), γ̇kM(s), γkI(s)) ds

and define a measure ν on M × I × I by∫
M×I×I

ϕ(x, i, j) dνk(x, i, j) =
1

tk

∑
ϕ
(
γkM(tk), γ

k
I(tk), γ

k
I(tk+1)

)
.

Since the velocities are bounded, there exists µ ∈ P(TM × I) such that

µk
∗
⇀ µ.

Analogously, since ϕ is continuous, also νk are bounded and there exists ν such

that

νk
∗
⇀ ν.

We have that∫
TM×I

(
L(x, v, i) + c0

)
dµ(x, v, i) +

∫
M×I×I

ψ(x, i, j) dν(x, i, j) = 0,
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and so (µ, ν) ∈ Hmin. This shows M̃ 6= ∅. Now, given (µ, ν) ∈ Hmin, if u is a

C1 subsolution, then by the Legendre–Fenchel inequality and the definition of a

subsolution, we obtain∫
TM×I

(
dxu(x, i) · v

)
dµ(x, v, i) +

∫
M×I×I

(
u(x, j)− u(x, i)

)
dν(x, i, j)

≤
∫
TM×I

(
L(x, v, i) + c0

)
dµ(x, v, i) +

∫
M×I×I

ψ(x, i, j) dν(x, i, j) = 0,

(6.4)

so that (µ, ν) is minimizing. Moreover, by holonomy, we conclude

dxu(x, i) · v = L(x, v, i) + c0, µ–a.e. (x, v, i).

u(x, j)− u(x, i) = ψ(x, i, j), ν–a.e. (x, i, j).

This, in particular, shows that the projected Mather set is contained in the pro-

jected Aubry set. Indeed, if it were not, we would be able to construct a strict

smooth subsolution at (x, i).
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Appendix A

Lowersemicontinuity and

compactness

For convenience of the reader, we present in this first appendix, the fundamental

results for the direct method of the calculus of variations. The idea is simple and

it goes as follows: Suppose we want to minimize the action functional

J [γ] =

∫ t

0

L(γ(s), γ̇(s)) ds,

over all absolutely continuous curves γ ∈ AC([0, t];M) with γ(0) = x, γ(t) = y.

1. Consider a minimizing sequence: γk ∈ AC([0, t];M) with γk(0) = x, γk(t) =

y, and

J [γk]→ inf J ;

2. Assume we obtain a compactness result: Up to a subsequence, there exists

γ ∈ AC([0, t];M) with γ(0) = x, γ(t) = y such that γk → γ;

3. Prove that our functional J is lower semicontinuous with respect to the

convergence in 2:

J [γ] ≤ lim inf
k
J [γk].
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If we are able to make this work, then 1, 2, and 3 imply

J [γ] = lim
k
J [γk] = inf J .

In what follows, we make this argument rigorous. The material of this appendix

is certainly not new, and can be found in many textbooks. See, for instance, [15,

Proposition 3.1.4].

Proposition 102 (Compactness). Suppose γk ∈ AC([0, t];Rd) satisfies∫ t

0

S
( ∥∥γ̇k∥∥ ) ≤ C,

for some superlinear function S : R+ → R+. Assume also that, for some t0 ∈ [0, t],

‖γ(t0)‖ ≤ C. Then, there exists a subsequence γkj satisfying:

1. γkj → γ, for some γ ∈ AC([0, t];Rd);

2. γ̇kj ⇀ γ̇, weakly in L1, that is, for any φ ∈ L∞([0, t]), we have∫ t

0

φγ̇kj →
∫ t

0

φγ̇.

Proof. Step 1: {γk} is equicontinuous. Since S is superlinear, for any k ≥ 1,

there exists C(k) ∈ R such that

S(τ) ≥ k|τ | − C(k).

Then, for any t1, t2 ∈ [0, t], we have

|γk(t2)− γk(t1)| ≤
∫ t2

t1

|γ̇k|

≤ 1

k

∫ t2

t1

S(|γ̇k|) +
C(k)

k
|t2 − t1|

≤ C

k
+
C(k)

k
|t2 − t1|

(A.1)

So, given ε > 0, if we first choose k such that C/k ≤ ε/2, and then choose δ > 0
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such that C(k)δ/k ≤ ε/2, we have that

|t2 − t1| < δ =⇒ |γk(t2)− γk(t1)| < ε,

as desired. In particular, since it is bounded in a point, by Arzelà–Ascoli Theorem,

there exists γ continuous for which γk → γ, uniformly.

Step 2: γ is absolutely continuous. Indeed, given a disjoint family of subin-

tervals [si, ti] ⊆ [0, t], we know

∑
i

|γk(ti)− γk(si)| ≤
∑
i

∫ ti

si

∥∥γ̇k∥∥
≤ 1

k

∑
i

∫ ti

si

S(
∥∥γ̇k∥∥) +

C(k)

k

∑
i

|ti − si|

≤ C

k
+
C(k)

k

∑
i

|ti − si|

(A.2)

Let k → +∞ to obtain

∑
i

|γ(ti)− γ(si)| ≤
C

k
+
C(k)

k

∑
i

|ti − si|

Now, given ε > 0, by choosing δ > 0 as in step 1, we prove∑
i

|ti − si| < δ =⇒
∑
i

|γ(ti)− γk(si)| < ε;

therefore, γ is absolutely continuous.

Step 3: γ̇k ⇀ γ̇ weakly in L1.

It is enough to prove it for characteristic functions of Borel sets. Indeed, these

are dense in L∞. If E is a finite union of disjoint intervals (ai, bi)

E =
N⋃
i=1

(ai, bi),
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then ∫
E

γ̇k =
N∑
i=1

[
γk(bi)− γk(ai)

]
→

N∑
i=1

[
γ(bi)− γ(ai)

]
=

∫
E

γ̇.

Next, let E be an infinite union of disjoint intervals (ai, bi)

E =
∞⋃
i=1

(ai, bi),

and let ε > 0. Since γ is absolutely continuous, there exists δ > 0 for which

∞∑
i=i0

|bi − ai| < δ =⇒
∑
‖γ(bi)− γ(ai)‖ < ε/2.

It is easy to see that such i0 does exist. Set E0 =
⋃∞
i=i0

(ai, bi). Then∥∥∥∥∫
E

(γ̇k − γ̇)

∥∥∥∥ ≤ ∥∥∥∥∫
E0

(γ̇k − γ̇)

∥∥∥∥+

∥∥∥∥∫
E\E0

(γ̇k − γ̇)

∥∥∥∥ (A.3)

The first term goes to zero by the previous case, and the second by absolute

continuity. Finally, if E is any Borel set, we approximate E by a decreasing

sequence of open setsO ⊇ E, and use Lebesgue Convergence Theorem to conclude.

Proposition 103 (Lower semicontinuity). Suppose L : TM → R is a Lagrangian

that is C1, bounded below, and convex in v. Assume γk, γ ∈ AC([0, t];M) satisfy

γk → γ uniformly in [0, t]

and

γ̇k ⇀ γ̇ weakly in L1.

Then ∫ t

0

L(γ, γ̇) ≤ lim inf
k

∫ t

0

L(γk, γ̇k).

Proof. Assume, without loss of generality, L ≥ 0. For ε > 0, set

Fε :=
{
s ∈ [0, t] ∈M ; γ̇(s) exists, |γ̇(s)| ≤ 1/ε

}
.
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It is easy to see that |[0, t]\Fε| → 0 as ε→ 0, because γ̇ ∈ L1. By convexity in v,

we have

L(x, v) ≥ L(x,w) +
∂L

∂v
(x,w) · (v − w),

and then ∫ t

0

L(γk, γ̇k) ≥
∫
Fε

L(γk, γ̇) +

∫
Fε

∂L

∂v
(γk, γ̇) · (γ̇k − γ̇).

Now the second term in the right hand side above goes to zero, when k → +∞,

for
∂L

∂v
(γk, γ̇)→ ∂L

∂v
(γ, γ̇) uniformly

and γ̇k ⇀ 0 weakly in L1. Since L is locally Lipschitz, we have

|L(γk, γ̇)− L(γ, γ̇)| ≤ Cε|γk − γ|, on Fε.

Hence, by letting k → +∞, we have

lim inf
k

∫ t

0

L(γk, γ̇k) ≥
∫
Fε

L(γ, γ̇).

Since ε > 0 is arbitrary, the proof is finished.

As a corollary, we obtain Tonelli’s Theorem on the existence of minimizers to

the action.

Theorem 104 (Tonelli). Suppose L : TM → R is a Lagrangian that is C1(TM),

bounded below, and convex in v. Assume further that

L(x, v) ≥ S
(
‖v‖

)
,

for some superlinear function S. Then, there exists an absolutely continuous min-

imizer γ for the action:

J [γ] = inf
α
J [α].

Proof. Consider a minimizing sequence: γk ∈ AC([0, t];M) with γk(0) = x,

γk(t) = y, and

J [γk]→ inf J .
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Then, ∫ t

0

S
( ∥∥γ̇k∥∥ ) ≤ J [γk] ≤ C,

so that, by compactness, there exists γ ∈ AC([0, t];M) with γ(0) = x, γ(t) = y

such that

γk → γ uniformly in [0,t]

and

γ̇kj ⇀ γ̇, weakly in L1.

Finally, by lower semicontinuity,

J [γ] ≤ lim inf
k
J [γk],

which in turn implies J [γ] = infα J [α].
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Appendix B

Semiconvexity and semiconcavity

Here, we recall how a semiconvex function is defined and some of its properties.

[3, 15, 16]

Definition 105. Let O ⊆ Rn be a convex set. We say that a function f : O → R
is semiconvex if there exists C ∈ R such that, for each x ∈ O, there exists a linear

functional lx : Rn → R with

f(y)− f(x) ≥ 〈lx, y − x〉 − C|y − x|2, (B.1)

for any y ∈ U .

Proposition 106. The following are equivalent:

(i) f is semiconvex;

(ii) There exists ϕ ∈ C2(O), with ‖D2ϕ(x)‖ ≤M , such that f + ϕ is convex;

(iii) There exists ϕ ∈ C∞(O), with ‖D2ϕ(x)‖ ≤M , such that f + ϕ is convex;

We denote by C2
b (O,R) the set of ϕ ∈ C2(O) with ‖D2ϕ(x)‖ ≤ M , for some

M > 0.

Proposition 107. Let f : O → R be a semiconvex function. Then, there exists

F ⊆ C2
b (O,R) so that

f = max
h∈F

h. (B.2)
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Moreover, for every l ∈ ∂−f(x), there exists h ∈ F such that f(x) = h(x) and

l = df(x).

Proposition 108. The function f : O → R is in C1,1(O) if, and only if, it is a

locally semiconvex and a locally semiconcave function.

Proposition 109. Let f : O → R be a locally semiconvex function. Then, for any

C2 function ϕ : U → O, also f ◦ ϕ : U → R is locally semiconvex.

Thanks to Proposition 109, the notion of semiconvexity (and semiconcavity)

is successfully adapted to a Riemannian manifold setting. Its properties remain

true.
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Applications. Birkhäuser Boston Inc., Boston, MA, 1997. With appendices

by Maurizio Falcone and Pierpaolo Soravia.

[2] S.A. Belbas. Optimal switching control of diffusion processes: The associated

implicit variational problems. In Decision and Control including the Sym-

posium on Adaptive Processes, 1981 20th IEEE Conference on, volume 20,

pages 1380–1383, 1981.

[3] P. Bernard. Existence of C1,1 critical subsolutions of the Hamilton–Jacobi

equation on compact manifolds. Annales Scientifiques de l’École Normale
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