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Resumo

A iteração de Banach-Picard é amplamente utilizada para encontrar pontos fixos de

mapas localmente ou globalmente contractivos. O trabalho apresentado nesta tese estende

a iteração de Banach-Picard a configurações distribúıdas; espećıficamente, assumimos que

o mapa cujo ponto fixo se pretende é uma média de mapas individuais (não necessaria-

mente localmente ou globalmente contractivos) que pertencem a um conjunto de agentes

ligados por uma rede de comunicações. Propomos um algoritmo distribúıdo, denominado

distributed Banach-Picard iteration (DBPI), e provamos a sua convergência, de facto

mostrando que se a média dos mapas individuais é um mapa localmente ou globalmente

contractivo, então o mapa subjacente ao DBPI herda a propriedade correspondente. O

desafio no caso de um mapa localmente contractivo (LC) é que não é assumido que este

mapa emirja de um problema de optimização subjacente, o que impede a exploração de

propriedades globais fortes como convexidade ou condições de Lipschitz.

A segunda parte desta tese parte do DBPI e das suas guarantias de convergência local

linear para fazer várias contribuições. Mostramos que o algoritmo de Sanger para análise

de components principais (ACP) corresponde à iteração de um mapa LC que pode ser

escrito como uma média de mapas locais, cada mapa sendo conhecido por um agente que

detém um subjconjunto dos dados. De forma semelhante, mostramos que uma variante

do algoritmo de expectativa-maximização (EM) para a estimação de um parâmetro, a

partir de medidas com rúıdo e/ou defeituosas obtidas por uma rede de sensores, pode

ser escrita como uma média de mapas locais, cada um dos quais pertencendo a um único

sensor. Consequentemente, partir do DBPI, obtemos dois algoritmos distribúıdos – EM

distribúıdo e ACP distribúıdo – cujas guarantias de convergência local linear seguem

das guarantias provadas para o DBPI. A verificação da condição LC para a variante

do algoritmo EM não é trivial, dado que o operador subjacente depende de amostras

aleatórias, implicando, portanto, que a condição LC seja de natureza probabiĺıstica.

Palavras-chave: iteração de Banach-Picard, consenso, computação

distribúıda, estimação distribúıda, ACP distribúıdo.
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Abstract

The Banach-Picard iteration is widely used to find fixed points of locally or globally

contractive maps. The work presented in this thesis extends the Banach-Picard itera-

tion to distributed settings; specifically, we assume the map of which the fixed point is

sought to be the average of individual (not necessarily locally or globally contractive)

maps held by a set of agents linked by a communication network. We propose a dis-

tributed algorithm, termed distributed Banach-Picard iteration (DBPI), and prove its

convergence, in fact showing that if the average map is locally or globally contractive,

then the map underlying DBPI inherits the corresponding property. The challenge in

the locally contractive (LC) case is that the map is not assumed to come from an under-

lying optimization problem, which prevents exploiting strong global properties such as

convexity or Lipschitzianity.

The second part of this thesis builds upon the DBPI and its local linear convergence

(LLC) guarantees to make several contributions. We show that Sanger’s algorithm for

principal component analysis (PCA) corresponds to the iteration of a LC map that can be

written as the average of local maps, each map known to an agent holding a subset of the

data. Similarly, we show that a variant of the expectation-maximization (EM) algorithm

for parameter estimation from noisy and faulty measurements in a sensor network can

be written as the iteration of a LC map that is the average of local maps, each available

at just one node. Consequently, via the DBPI, we derive two distributed algorithms –

distributed EM and distributed PCA – whose LLC guarantees follow from those that

we proved for the DBPI. The verification of the LC condition for the variant of the EM

algorithm is challenging, as the underlying map depends on random samples, thus the

LC condition is of probabilistic nature.

Keywords: Banach-Picard iteration, consensus, distributed computation,

distributed parameter estimation, distributed PCA.
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List of Notation

Rn
>0 set of real n-dimensional vectors with positive com-

ponents

A,B, . . . matrices are denoted by upper case letters

Mst given a matrix M , Mst denotes the element on the

sth line and tth column

MT transpose of a matrix M

L+ Moore-Penrose (pseudo-inverse) of a matrix L

Id d-dimensional identity matrix

0m,n m× n matrix of zeros

M � 0 (M ≺ 0) matrix M is positive (negative) definite

M > 0 (M ≥ 0) the entries of matrix M are positive (non-negative)

U(A) upper triangular matrix of the same dimension of the

matrix A and whose upper triangular part coincides

with that of A

a, b, . . . vectors are denoted by lower case letters

vs given a vector v, vs denotes its sth component

1d d-dimensional vector of ones

⊗ Kronnecker product

ρ(·) spectral radius

‖ · ‖F Frobenius norm

JH(x) Jacobian of a map H at the point x

∇wf gradient of a function f with respect to w

Fix(H) set of fixed points of a map H

i complex imaginary unit (i2 = −1)

B̄(x, δ) closed ball of center x and radius δ with respect to a

distance that is clear from context

fY (·) probability density (or mass) of a random variable Y

N (·|µ, σ2) probability density of a Gaussian with mean µ and

variance σ2

1



Similar to matrices, random variables or vectors are denoted by upper case letters

(the distinction should be clear from context). Whenever convenient, we will denote a

vector with two stacked blocks [vT , uT ]T simply as (u, v).
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Chapter 1

Introduction

1.1 Motivation

The last decades have seen a surge in interest in distributed algorithms due to the ever

increasing collection of data by spatially dispersed agents linked by a communication

network; these network technologies take many forms ranging from social mobile media to

the Internet of Things (IoT), passing through environment monitoring by sensors endowed

with wireless communication, the so-called wireless sensor networks. The characteristic

feature of distributed algorithms, distinguishing them from their centralized counterparts,

is their non-isolated nature where communication between agents armed with computing

power forms the backbone of the coordination towards a common goal.

Inferring a desired quantity x? from data can often be naturally expressed as a fixed

point equationH(x?) = x?, the mapH relating the data to the desired quantity. Although

in some rare cases this fixed point equation can be solved in closed-form, more often than

not, x? has to be numerically approximated using, e.g., the so-called Banach-Picard

iteration:

xk+1 = H(xk). (1.1)

For a recent comprehensive review of the fixed-point strategy to inference problems, see

[1].

If the entire data, thus the map H, is available to some agent, that agent can perform

the Banach-Picard iteration. In contrast, in the so-called distributed scenario, the data

is acquired by spatially dispersed agents who only have access to local data. In such

distributed setups, no single agent possesses the full data set, hence no single agent can

compute the map H. Instead, each agent holds a local portion of the data and can com-

municate only with a subset of the other agents (its neighbours). Nevertheless, the goal

3



remains that of finding a fixed point of H, under the constraints of this distributed config-

uration: each agent can only engage in private/local computation and in communication

with its neighbours.

1.2 Distributed Banach-Picard Iteration

The first goal of the work described in this thesis was to extend the Banach-Picard

iteration to distributed scenarios, under the assumption that H is an average of individual

maps held by a set of agents linked by a communication network. Formally, we consider a

network of N agents, where the interconnection structure is represented by an undirected

and connected graph: the nodes correspond to the agents and an edge between two agents

indicates that they can directly communicate (are neighbors). Each agent n ∈ {1, . . . , N}
holds a map Hn : Rd → Rd, and their common goal is to compute a fixed point of the

average map

H =
1

N

N∑
n=1

Hn. (1.2)

Crucially, the extension of (1.1) to distributed setups should not only yield the fixed

point, but also do so while preserving the convergence rate. Towards this end, we studied

a parametric family of maps Fη,β,α on RdN × RdN built from H1, . . . , HN , whose corre-

sponding Banach-Picard iteration, i.e.,

(zk+1, wk+1) = Fη,β,α(zk, wk), (1.3)

can be implemented in a distributed fashion and “lifts” the fixed points of H in the

following sense: if x? is a fixed point of H, then there exists w? such that (1N ⊗ x?, w?)1

is a fixed point of Fη,β,α. Moreover, the convergence properties, either local or global, of

(1.1) are preserved by Fη,β,α. Specifically, if (1.1) converges globally (locally) at a linear

rate to x?, then (1.3) converges globally (locally) at a linear rate to (1N ⊗ x?, w?).

The second goal of this work was to build upon the theoretical results mentioned

in the previous paragraph to obtain distributed algorithms for the two following prob-

lems: principal component analysis (PCA); coordinating N agents towards collectively

estimating a parameter of which each agent has a noisy and possibly faulty measurement.

1The notation 1N indicates the N dimensional vector with all components equal to 1.

4



1.3 Distributed PCA and Distributed Estimation

Dimensionality reduction aims at representing high-dimensional data in a lower dimen-

sional space, which can be crucial to reduce the computational complexity of manipulating

and processing this data, and is a core task in modern data analysis, machine learning,

and related areas. The standard linear dimensionality reduction tool is principal com-

ponent analysis (PCA), which allows expressing a high-dimensional dataset on the basis

formed by the top eigenvectors of its sample covariance matrix. PCA first appeared in

the statistics community in the beginning of the 20th century [2] and became one of

the workhorses of statistical data analysis, with dimensionality reduction being a notable

application. Nowadays, as data is collected in multiple locations, developing algorithms

for distributed PCA constitutes a relevant area of research; for a comprehensive review

on the subject see, e.g., [3].

Consider a collection of spatially distributed sensors monitoring the environment,

a common scenario for information processing or decision making tasks see, e.g., [4,

5, 6, 7, 8, 9, 10, 11]. Often, these sensors communicate wirelessly, maybe in a harsh

environment, which may result in faulty communications or sensor malfunctions [12]. A

decentralized algorithm, rather than one where each sensor sends its data to a central

node, is potentially more robust to faulty wireless communications that may render a

sensor useless. Moreover, a decentralized algorithm can yield considerable energy savings

[4], a very desirable feature.

In line with the theoretical results, to arrive at the distributed algorithms we formulate

both problems’ goals as a fixed point of a map H that can be implicitly written as an

average of local maps. Both distributed algorithms are then shown to enjoy local linear

convergence towards the desired solution, as a corollary of the theoretical results. In fact,

this comes “for free”, once the corresponding property is verified for (1.1). In summary,

these applications demonstrate the virtue of the theoretical results: we don’t need to

worry about proving the linear convergence of the distributed algorithm, since it follows

from verifying the linear convergence of its centralized counterpart, i.e., (1.1).

1.4 Contributions and Related Work

This work is mainly a presentation of our two articles [13] and [14] with minor general-

izations, the contributions of the first being on the theoretical level, whereas those of the

second have more of an applied flavor. In this section, both the theoretical and the ap-

plied contributions are separately discussed and, in both cases, the minor generalizations

are highlighted along the way.
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1.4.1 Theoretical Contributions

Our main contribution in [13] is to show the following. Let H be a map that is an average

of local maps such as in (1.2) and suppose that H has a fixed point x? satisfying2

ρ
(
JH(x?)

)
< 1. (1.4)

Consider the parametric family of maps Fη,β,α , whose correspondonding Banach-Picard

iteration, i.e., (1.3), has distributed implementation. Then, for particular choices of η

and β, and for α sufficiently small, the map Fη,β,α satisfies

ρ
(
JFη,β,α

(
1N ⊗ x?, w?

))
< 1. (1.5)

Although assuming a relatively weak set of conditions—essentially only local linear

convergence of the centralized Banach-Picard iteration—and no global structure (e.g.,

Lipschitzianity or coercivity), we propose a distributed algorithm, i.e., (1.3), and prove

that it inherits the local linear convergence of its centralized counterpart.

Even though the assumptions are rather weak, they nevertheless suffice to encapsulate

relevant algorithms, namely some instances of the expectation maximization (EM, [15, 12])

algorithm and the one proposed in [16] for principal component analysis (PCA). The

second work [14] is devoted to the application of the algorithmic framework proposed

in [13] to obtain distributed versions of those algorithms, with local linear convergence

guarantees.

As an additional contribution, we mention the proof technique, which, as far as

we know, departs from the standard proof techniques used in distributed optimization.

Specifically, we employ tools from perturbation theory of linear operators [17], which, to

the best of our knowledge, are scarcely exploited in the context of distributed computa-

tion. Arguably, there are proof techniques that resemble a “perturbative argument” on

the eigenvalues of a matrix (e.g., Proposition 2.8 in [18], and Theorem 2 in [19]). How-

ever, those techniques bypass the subtle issue of the differentiability of the eigenvalues,

simply using the formula for the derivative of the determinant. In contrast, the theorem

from perturbation theory (PT) of linear operators that we use simultaneously handles

the differentiability issue and simplifies the computation of the derivative.

2JH(x?) denotes the Jacobian of H at x? and ρ(·) represents the spectral radius.
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1.4.2 Remarks

The setup addressed in [13] departs from standard ones in two main aspects. First, it

encompasses problems that are not naturally expressed as optimization problems. This

last notion should be understood with a grain of salt, since a fixed point of H minimizes

‖H(x)− x‖2; however, in many cases, there is a more “natural” objective function than

this one. For example, if the Jacobian JH is symmetric in an open, convex set, then

there exists a function f such that H = ∇f [20, Theorem 1.3.1], and the Banach-Picard

iteration can be seen as method to find a stationary point of f(x)− 1
2
‖x‖2.

Second, condition (1.4) is purely local i.e., we consider only local guarantees. Many

optimization problems benefit from global properties, such as Lipschitzianity or strong

convexity. Such properties, however, are absent in many relevant algorithms, such as

EM, for which only local guarantees can be given.

1.4.3 Related Work

In this section, we review relevant related work in distributed computation, highlighting

how our contributions differ from that other work.

A setup that closely resembles ours is considered in [21] and [12]; in fact, the problems

therein addressed are, respectively, distributed PCA and distributed EM. As shown in

our second work [14], our setup encapsulates the problems addressed in [21] and [12].

However, the algorithm proposed in [12] uses a diminishing step-size, which, unlike our

algorithm, results in a sacrifice of the convergence rate of the centralized EM. The algo-

rithm in [21] is recovered by using our approach to build a distributed version of Sanger’s

algorithm [16]. Moreover, our approach in [14] has at least two advantages over that of

[21]: we provide a proof of local linear convergence (which [21] does not) and our setup

is not restricted to Sanger’s algorithm [16].

The works presented in [22], [23], and [24] share a similarity with ours by addressing

the distributed computation of fixed points. However, the setups therein considered have

much more structure than ours: Lipschitzianity and quasi-nonexpansivness [23], non-

expansiveness [24], and paracontractiveness [22]. Those are global properties that are

absent in algorithms such as EM or the PCA algorithm proposed in [16].

A large body of work on distributed optimization has been produced in the last decade;

see [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41], and [42] for convex

optimization, where the last reference considers a stochastic variant, and [43, 44, 45], as

examples of work on distributed non-convex optimization. All the algorithms described in

those publications can definitely be seen as distributed algorithms for finding fixed points.

However, as their setups stem from optimization, they further assume conditions such as
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coercivity, Lipschitzianity, or strong convexity. In our work, none of these properties are

assumed, and only a basic local assumption is made.

1.4.4 Generalizations

This thesis generalizes the results presented in [13] in two ways. First, we show that Fη,β,α

preserves a global property of H: instead of the local condition (1.4), which implicitly

assumes differentiability, we consider the case where H is a continuous (not necessarily

differentiable) global contraction with respect to a unique fixed point x?, and we show

that Fη,β,α is also a global contraction with respect to (1N ⊗x?, w?
)
. This generalization,

however, comes at the expense of assuming that each local map is globally Lipschitz.

An interesting application of this result is the case where H is a gradient descent map,

which, in the strongly convex and Lipschitz case, is, for a sufficiently small step-size, a

global contraction; consequently, Fη,β,α is a distributed gradient descent algorithm. In

fact, depending on the choices of η and β, (1.3) recovers the EXTRA algorithm (see

[28]) and the DIGing algorithm (see [31, 32]), and, thus, the global contraction case

proof can be seen as a “unifying proof ” for these two well-known algorithms. The proof

is loosely based on that presented in [31] for the strongly convex case, and we believe

that it improves on it by identifying its key blocks. The second way the present work

generalizes the results in [13] has to do with “unstable fixed points”, that is, we show

that Fη,β,α preserves a particular case of the inequality in (1.4) reversed. Specifically, we

show that if x? is a fixed point for which JH(x?) as an eigenvalue with real part larger

than one, then

ρ
(
JFη,β,α

(
1N ⊗ x?, w?

))
> 1, (1.6)

for particular choices of η and β, and for α sufficiently small. Under certain conditions,

(1.1) “almost surely” escapes a fixed point x? for which JH(x?) has an eigenvalue with

real part larger than one, that is, the set of initial conditions for which (1.1) converges to

such a point has Lebesgue measure zero. Ideally, a distributed extension of (1.1) should

preserve this feature: if the probability that (1.1) initialized at x0 converges to x? is zero,

then the probability that (1.3) initialized at z0 converges to (1N ⊗ x?, w?) should also be

zero. To see why this is desirable, suppose that the fixed points of H are the zeros of

the gradient of a certain function f with multiple maxima and minima; suppose as well

that we are interested in a minimum rather than a maximum; in that case, we would

like to have (1.4) at minima and the reverse inequality at maxima. The preservation

of instability, i.e., (1.6), guarantees that (1.3) will not have a non-zero probability of

converging to a maximum, an undesired outcome.
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Finally, in the interest of self-containedness, rather than appealing to perturbation

theory of linear operators to show that (1.4) implies (1.5), we establish the result via the

Geršhgorin circle theorem, thereby obtaining a more elementary proof. In this way, we

circumvent the background knowledge on complex analysis required to understand the

perturbation argument used in [13].

1.4.5 Contributions to Applications and Related Work

In [14], we addressed the distributed PCA problem and a distributed estimation problem

using two instantiations of the algorithmic framework proposed in [13]. More concretely,

we obtained:

1. A distributed algorithm for PCA, which results from considering a map that can

be implicitly written as an average of local maps and that has as a fixed point the

solution to the PCA problem.

2. An algorithm that stems from formulating the estimation of a parameter from noisy

and faulty measurements as a fixed point of a map induced by the stationary equa-

tions of the maximum likelihood estimation (MLE) criterion. This map corresponds

to the iterations of a slightly modified EM algorithm for a mixture of linear regres-

sions [46].

The guarantees of local linear convergence for these distributed algorithms involve

verifying condition (1.4) for the centralized maps inducing them, which allows invoking

the results from [13]. Consequently, a great portion of [14] is devoted to proving that

(1.4) holds for these maps, which is far from trivial.

The distributed PCA problem was addressed in [21], where an algorithm termed

accelerated distributed Sanger’s algorithm (ADSA) was proposed. The authors consider

a “mini-batch variant” of Sanger’s algorithm (SA, see [16]) and, inspired by [28], arrive

at ADSA. Although no proof of convergence was presented in [21], a very recent work

by the same authors proves convergence of their algorithm [47]. Our contributions in

this context are twofold: we show that ADSA is recovered by applying the distributed

algorithmic framework of [13] to SA, and that condition (1.4) holds for SA, thus, the

guarantees of local convergence follow directly as a consequence of the results in [13].

The parameter estimation under noisy and faulty measurements problem was ad-

dressed in [12], where it is modeled as finding the MLE of finite mixture model [48].

To arrive at the MLE, the authors proposed a distributed version of the EM algorithm,

termed diffusion-averaging distributed EM (DA-DEM). However, DA-DEM, very much
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in the spirit of [49, 25], uses a diminishing step-size to achieve convergence, leading to

a sublinear convergence rate. In [14] we proposed an algorithm for this problem that

extends a slightly modified version of the centralized EM algorithm to distributed set-

tings. The key challenge is to show that we can “expect” condition (1.4) to hold, and

we dedicate a considerable amount of effort to this endeavor. We use the term “expect”,

since the map underlying the centralized algorithm depends on the observed samples and,

therefore, the existence of a fixed point satisfying (1.4) is a probabilistic question.

There is considerable work on the “probabilistic linear convergence” of EM [50, 51, 52].

However, neither the results in [50], nor those in [51] encompass the mixture model in [12].

The mixture of regressions presented in [52] bears some similarity with it, but it is not the

same: with the mixture of regressions from [52], there would be no measurements with

just noise, i.e., there would be no faulty measurements. Furthermore, [52] is primarily

concerned with statistical guarantees for the error with respect to the ground truth, while

we address the goal of establishing (1.4).

As mentioned in [12], there are two other relevant works on distributed EM, namely,

[53] and [54]. However (see [12]), both these works address a different problem of Gaussian

mixture density estimation. Moreover, in the case of [53], the algorithm demands a cyclic

network topology, and, in [54], the algorithm requires higher computational load on each

node, since it is based on the alternating direction method of multipliers [55].

1.4.6 Generalizations

The present work improves upon [14] in two ways, both regarding the distributed PCA

problem. First, proofs are more self-contained, no longer requiring matrix differential

calculus, the tool used in [14] to prove that Sanger’s algorithm satisfies (1.4) at the

solution of PCA. Rules of matrix differential calculus are used in [14] to compute the

differential of H at x?, which is then used to analyze the eigenvalues of JH(x?), under the

identification between differentials and Jacobians. In contrast, in this thesis, the Jacobian

of H is studied by simply noting that it is the linear map satisfying

JH(x?)Z = lim
t→0

H(x? + tZ)−H(x?)

t
,

which, in the case of the Sanger’s map, is straightforward to analyze. Second, and more

importantly, we extend the results in [14] to the unstable fixed points of Sanger’s map.

Specifically, we show that its Jacobian has a real eigenvalue larger than one at the fixed

points other than the solution to PCA, and we observe that if all eigenvalues are distinct

(one dimensional eigenspaces), then Sanger’s map has finitely many fixed points, the

solutions to PCA corresponding to stable fixed points and the remaining being unstable.
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As a consequence of the generalization of the results in [14] previously described, the

distributed extension has a finite number of fixed points and their stability can be tuned

to be that of the corresponding fixed points of its centralized counterpart.

1.5 Organization of this Thesis

We conclude this introductory chapter with a brief overview of the structure of the thesis.

The next chapter (Chapter 2) introduces the basics of consensus matrices, i.e., N×N
symmetric matrices W with the topology of an adjacency matrix of a connected graph

on N nodes3 that satisfy

lim
k→∞

W kx0 =
1

N

N∑
n=1

x0
n;

these matrices are a building block to all distributed algorithms studied in this thesis.

Chapter 3 introduces the basics of fixed point theory and the problem addressed in this

thesis. Chapter 4 proposes a distributed algorithm for finding fixed points that amounts

to a generalization of both DA-DEM from [12] and the distributed gradient descent with

a shrinking step-size [25]; we show that the shrinking step-size results in a sacrifice in the

convergence rate. Chapter 5 is based on [13] and is the crucial theoretical chapter where

the preservation of the stability properties and the global contraction case are analyzed.

Chapters 6 and 7 are devoted to the two applications abovementioned and are based

on [14]. Each chapter begins with its own introduction, includes a final section with

comments, as well as references. Finally, Chapter 8 concludes this thesis and points at

ongoing and future work.

3A matrix having zeros corresponding to non-neighboring nodes.
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Chapter 2

Distributed Average Consensus

2.1 Introduction

This chapter is devoted to a well-known and studied problem which we term the dis-

tributed average consensus (DAC) problem, involving, as part of a possible solution, a

type of matrices, termed consensus matrices, that constitute a fundamental building

block to all that follows. The necessary mathematical concepts for this section lie at

the intersection of Matrix Analysis and Graph Theory, and are introduced/explained

upon demand. In an effort to keep the presentation elementary and self-contained, we

avoided the full generality of the DAC problem. In fact, we jumped over the analysis of

non-symmetric consensus matrices to circumvent a digression into the Perron-Frobenius

theory. This sacrifice in generality results, in any case, in the right degree of generality

deemed necessary to understand what follows and has the benefit, we hope, of improving

understanding and readability.

2.2 Problem Statement

2.2.1 Basic Notions in Graphs Theory

To introduce the problem, we start with the notion of an undirected connected graph, an

elementary concept in mathematics. For our purposes, we see no virtue in going through

a rigorous definition, but, nevertheless, point the interested reader to [56] for a formal

treatment on Graph Theory.

An undirected graph G is a diagram consisting of a set of points joined by line seg-

ments; the set of points is denominated the node set and the set of line segments the edge

set. A picture to have in mind looks like
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1

3

2

4

5

6

7

In this case, the nodes are the (numbered) circles and the edges are the segments; for

example, there is an edge joining node 4 to node 5.

Throughout this work, only undirected graphs are considered, i.e., those with no

oriented edges. By no orientation, what we mean is: suppose that, in the graph above,

nodes represent villages and edges represent pedestrian roads; pedestrian roads are, by

nature, not oriented in the sense that people can walk in both directions of the road,

e.g., one can walk from village 6 to village 4 and return to village 6 using the same road.

In contrast, if edges represent one-way highways there is an orientation in the sense that

cars are only allowed to drive in a determined direction.

With the villages example in mind, we mention that a graph is connected if one can

walk from a given village to any other; for example, someone can travel from village 6

to village 2 by first going to village 4, then to village 5 and finally to village 2. This

sequence of steps is called a path from node 6 to node 2 and will be denoted as

6→ 4→ 5→ 2.

Furthermore, being formed by three edges, it is denominated a path of length three. The

connected graph scenario contrasts with a two island scenario with no bridge connecting

them; in each island there are villages connected by roads, but it is impossible to walk

from a village of an island to a village of another.

Given an undirected and connected graph G with node set V and edge set E, the set

of neighbors of a node v ∈ V , denoted by Nv, are the nodes w ∈ V for which there exists

an edge joining v and w, denoted by v ∼ w. In the example above, the neighbors of node

4, N4, are the nodes 6, 5, and 3. Finally, the degree of a node v ∈ V , denoted by deg(v),

is the number of elements in Nv.

2.2.2 Problem Statement

Let G be an undirected connected graph with node set V and edge set E, and suppose

that V represents a collection of water tanks, with E representing a collection of water

pipes attached to the bottom of the water tanks. In addition, suppose that each water

tank is filled with a, possibly different, quantity of water, and that all the pipes have a
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valve that is initially closed preventing the water to pass from a tank to another. If, at

some point, all the valves are simultaneously open, intuition suggests that, after some

time, all tanks will reach the same amount of water. Moreover, this common quantity will

be roughly the average of the initial amounts, if each pipe is assumed to have a negligibly

small volume when compared to each tank’s initial volume. The problem addressed in

this chapter can be motivated as a discrete-time analog of the water tanks example.

DAC Problem: Let G be an undirected and connected graph with node set V and edge

set E. The distributed average consensus problem is that of defining |V | maps (Fv)v∈V ,

where Fv : Rdeg(v)+1 7→ R, such that, for all (x0
v)v∈V , the |V | sequences recursively given

by

x0
v ∈ R

xk+1
v = Fv

(
xkv , (x

k
w)w∈Nv

) (2.1)

satisfy

lim
k→∞

xkv =
1

|V |
∑
v∈V

x0
v,

for all v ∈ V .

In connection with the water tanks example, imagine that each node v starts with

an initial quantity x0
v, then combines its quantity with that of its neighbors (Fv is a

map whose arguments are the values of v and its neighbors), much in the same way that

water is only exchanged with neighboring water tanks, and obtains a quantity x1
v. The

process is repeated resulting in a quantity x2
v and so on. If the process was repeated

indefinitely, the quantity corresponding to each node should approach a common value

and that common value should be the average of the initial quantities. We conclude this

section with the following remarks.

Remark 2.2.1. The order of the implicit quantifiers in the problem above is relevant. In

fact, the maps (Fv)v∈V depend on the graph but do not depend on the quantities x0
v. Oth-

erwise, there would be a trivial solution with each Fv constantly equal to 1/|V |
∑

v∈V x
0
v.

Remark 2.2.2. The connectedness condition is crucial and can be motivated by the

water tanks example. Suppose that the graph is not connected; such a graph can be

decomposed into connected components – think of a collection of tanks grouped as islands.

In such scenario, when the valves are simultaneously open, the quantity of water in each

“island” of tanks will reach the same quantity but this quantity need not be the same

among “islands”. This behavior will resurface in disguise in the solution that is later

presented.
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Remark 2.2.3. The name distributed average consensus problem should now be clear.

The “average consensus” part refers to the fact that, in the limit, all nodes agree (are in

consensus) on (over) a value and that value is the average of the initial values. Finally,

the “distributed” part refers to the fact that the maps Fv depend on an underlying graph.

Remark 2.2.4. Even though in the formulation of the DAC problem, the sequences xkv are

sequences of real numbers, the generalization, both of the formulation and of the solution,

to sequences of vectors or matrices poses no serious challenge.

2.2.3 Applications

An undirected graph is the natural mathematical model to describe real world scenarios

where a set of objects are somehow related (connected) to each other. The list of such

situations is endless and, thus, the following examples are far from exhaustive.

Example 1: The graph is a representation of a tube map, where nodes are tube stations

and edges are tube lines between them.

Example 2: The nodes represent a collection of websites and the edges correspond to

hyperlinks between them.

Example 3: The graph represents a social network, where the nodes correspond to peo-

ple and the edges encode friendship.

Example 4: The graph represents a molecule, where the nodes are atoms and the edges

are chemical bonds between them.

In many situations there is further structure associated to the interconnections. For

instance, a number assigned to an edge might encode a property of the connection such as

time travel between stations in example 1 or the strength of a chemical bond in example

2.

Concerning the DAC problem, a picture to have in mind is a collection of N sensors

monitoring the temperature of the environment. Each sensor is endowed with wireless

communications and can communicate with other sensors within a certain wireless range;

suppose that all sensors have the same wireless range. This setup is naturally modeled

by a graph where the nodes are the sensors (|V | = N) and an edge between two nodes

indicates that they are within the wireless range of each other, i.e., can communicate.

Finally, suppose that sensor n has a noisy measurement θn of θ?, the true temperature.

Specifically, suppose that θn is a sample from a Gaussian with mean θ? and unit variance,

and that each sample is independent.
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The sensors seek to estimate θ? from θ1, . . . , θN and, to this end, their goal is for-

mulated as that of finding the maximum likelihood estimate (see Chapter 7 for further

details on maximum likelihood estimation), i.e., to compute

arg max
θ

N∏
n=1

N (θn|θ, 1). (2.2)

By taking the logarithm, we can reformulate (2.2) as

arg max
θ

1

2

N∑
n=1

(θ − θn)2. (2.3)

To conclude, observe that the solution of (2.3) is θ̄ := 1/N
∑N

n=1 θn, that is, the sensors

seek to compute θ̄, but, to arrive at θ̄, can only engage in communications with neighbors,

i.e., with other sensors within wireless range; this is exactly the DAC problem. As a

final observation, we mention that Chapter 7 considers a much more general estimation

problem in which the sensors might malfunction and obtain a faulty measurement.

2.3 A Solution to the DAC Problem

There are plenty solutions to the DAC problem and the one presented here relies on

a type of matrices that is instrumental to all that will unfold. Instead of immediately

presenting the solution we will gradually build towards it.

The naive approach is to take the functions (Fv)v∈V to be linear, i.e., for each v ∈
V define vectors cv ∈ Rdeg(v)+1 and take Fv(x) = cTv x. The functions (Fv)v∈V should

combine the values of a node with those of its neighbors in such a way that the recursion

(2.1) converges to the average of the initial values. Therefore, and with the water tanks in

mind, it is natural to let the functions (Fv)v∈V themselves correspond to a local weighted

average of the values of a node and those of its neighbors – by a weighted average of

the components of x ∈ Rn, we mean pTx, where p = (p1, . . . , pn) ∈ Rn is a probability

(weight) vector, i.e., pi ≥ 0 for all i = 1, . . . , n, and
∑n

i=1 pi = 1.

A rather natural naive way to proceed is to assign an equal weight to all neighbors,

that is, to let

cv =
1

deg(v) + 1
1.

However, as it will shortly be shown, this is only works for a specific class of graphs. In

fact, unless the graph is regular – a regular graph is one where all nodes have the same
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degree – this weight assignment only reaches average consensus for specific sets of initial

quantities.

To proceed, it is useful to have a more compact form of writing (2.1) in the linear

case, and, to this end, suppose that the graph is labeled, i.e., assume that each node

has been assigned a number1. The value of a node that is not a neighbor of v is not

among arguments of the function Fv associated to node v, which, from an abstract point

of view, is equivalent to setting a zero weight to the value of a non-neighboring node.

Formally, this corresponds to regard cv not as a vector in Rdeg(v)+1 but rather as a vector

in R|V | with zeros in positions corresponding to non-neighboring nodes. The result is the

following compact matrix representation of (2.1) in the linear case: let C be the |V |× |V |
matrix whose ij entry, denoted by Cij, corresponds to the weight that node i gives to

node j (from the previous discussion the ij entry is zero if node i is not a neighbor of

node j); the recursive process (2.1) can be compactly written as xk+1 = Cxk, which, after

unfolding, yields xk = Ckx0. Recall that the rows of C are weight vectors and, hence,

Cij ≥ 0 for all i and j, and
∑|V |

j=1Cij = 1.

At this point it pays to see an example that illustrates what has been said so far and

that additionally shows that assigning an equal weight to all nodes requires a specific set

of initial quantities.

2.3.1 Example

Consider the graph that follows.

1
2

3

Nodes 2 and 3 are not joined by an edge, i.e., are not neighbors, and, from the previous

discussion, the weight node 2 assigns to node 3 is equal to the weight node 3 assigns to

node 2 and is equal to zero, that is, C23 = C32 = 0. The remaining weights are, otherwise,

arbitrary, hence, the general form of the matrix C for this graph is given by

C =

C11 C12 C13

C21 C22 0

C31 0 C33

 .
1We have bypassed a rigorous discussion on graph isomorphism and labeling since we do not see any

value in doing so for the purpose of presentation.
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The equal weights assignment corresponds to the following specification of the matrix

C =

1/3 1/3 1/3

1/2 1/2 0

1/2 0 1/2

 =
1

6

2 2 2

3 3 0

3 0 3

 ,
and, to analyze the limiting behavior of the recursion (2.1), we look at the eigenvalues of

C or, for simplicity, of 6C, whose characteristic polynomial is given by

p(λ) = (3− λ)
(
(2− λ)(3− λ)− 6

)
− 6(3− λ)

= −λ3 + 8λ2 − 9λ− 18.

From C1 = 1 it follows that 1 is an eigenvalue of C and, hence, that 6 is an eigenvalue

of 6C, allowing the remaining roots of the characteristic polynomial to be found by

polynomial division. The resulting factorization is given by

p(λ) = −(λ− 6)(λ2 − 2λ− 3) = −(λ− 6)(λ+ 1)(λ− 3),

and, thus, the eigenvalues of C are 1, 1/2, and −1/6.

We are already a position to conclude that the recursion xk = Ckx0 converges to

consensus, i.e., converges to a vector with equal components: it is known ([57]) that

a matrix with distinct eigenvalues is diagonalizable, i.e., there are vectors v1 and v2

satisfying Cv1 = 1/2v1 and Cv2 = −1/6v2, such that {1, v1, v2} is a (not necessarily

orthogonal) basis of R3, and, thus, let x0 = α01 + α1v1 + α2v2 be an expansion of x0

in that basis. Observe that xk = α01 + α11/2kv1 + α2(−1)k1/6kv2, which shows that

limk→∞ x
k = α01.

To conclude, we show that α0 need not be the average of the components of x0, i.e.,

(2.1) converges to a consensus, but not necessarily to one over the average of the initial

values. Given that det(A) = det(AT ), the eigenvalues of CT coincide with those of C,

and, hence, let w1 6= 0 be an eigenvector of CT associated to the eigenvalue 1. Observe

that wT1 v1 =
(
CTw1

)T
v1 = wT1

(
Cv1) = 1/2wT1 v1, which implies that wT1 v1 = 0 (similarly,

wT1 v2 = 0). We conclude that wT1 x
0 = α0w

T
1 1. Moreover, wT1 1 6= 0 2 and, hence, dividing

by wT1 1 yields

lim
k→∞

xk =
wT1 x

0

wT1 1
1.

2In fact, if wT1 1 = 0, then w1 would be orthogonal to all elements of a basis. This happens if only if
w1 = 0.
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Instead of computing w1, assume that

wT1 x
0

wT1 1
=

1

3
1Tx0,

i.e., xk converges to a consensus over the average of the components of x0, which, after

rearrangement, is equivalent to

(
x0
)T (wT1 1

3
1− w1

)
= 0. (2.4)

Now just observe 1 is not an eigenvector of CT , and, hence, (wT1 1/3)1 − w1 6= 0 (recall

that CTw1 = w1). To finish, note that any choice of x0 for which (2.4) does not hold

results in a limiting consensus over a value other than the average of the initial quantities.

2.3.2 Returning to the Solution

The example in the previous section shows that averaging with equal weights will generally

fail to be a solution to the DAC problem. However, there are some takeaways from the

derivation: the first is that the limiting behavior of (2.1) is intimately connected with

the eigenvalues of C, and the second is that the existence of an orthonormal basis of

eigenvectors likely results in a considerably simpler analysis – these two considerations

naturally suggest restricting C to be symmetric. Note, however, that allowing C to be

symmetric is only “legal” because G was assumed to be undirected. The restrictions on

C imposed so far are summarized below.

1) C is weakly compatible with the graph structure, i.e., Cij = 0 if i is not a neighbor of

j;

2) C ≥ 0;

3) C1 = 1;

4) C = CT .

Suppose that all four conditions hold and let’s inspect when limk→∞ x
k = x̄01, where

x̄0 = 1/|V |1Tx0. Let B = {1/
√
|V |1, w2, . . . , w|V |} be an orthonormal basis of R|V | such

that Cwi = λiwi, where λi ∈ R, for i = 2, . . . , |V | (the existence of such a basis follows

from the symmetry of C). The first thing we show is that |λi| ≤ 1, for all i = 2, . . . , |V |.
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To this end, consider the norm ‖ · ‖1 on R|V | and observe that

|λi|‖wi‖1 = ‖Cwi‖1 =
∥∥ |V |∑
j=1

Cjwij
∥∥ ≤ |V |∑

j=1

|wij |‖Cj‖1

where Cj, j = 1, . . . , |V |, denote the columns of C. From C1 = 1, C ≥ 0 and C = CT

follows that ‖Cj‖1 = 1 for all j = 1, . . . |V |, and, hence,

|λi|‖wi‖1 ≤
|V |∑
j=1

|wij | = ‖wi‖1.

Given that ‖wi‖1 6= 0, both sides can be divided by ‖wi‖1 resulting in |λi| ≤ 1. From

the symmetry of C, its eigenvalues are guaranteed to be real, and, hence, either λi = 1,

λi = −1, or λi ∈ (−1, 1). Let C,D, and E be the subsets of {2, . . . , |V |} corresponding,

respectively, to these three cases. The expansion of vector xk in the basis B is

xk = x̄01 +
∑
r∈C

(wTr x
0)wr +

∑
s∈D

(−1)k(wTr x0)wr +
∑
t∈E

λkt (w
T
t x0)wt,

and from limk→∞
∑

t∈E λ
k
t (w

T
t x0)wt = 0, it is clear that C and D must be empty if we

wish to ensure that limk→∞ xk = x̄01. In other words, 1 (in fact span{1}) needs to be

the only eigenvector associated to the eigenvalue 1, and the remaining eigenvectors must

be associated to eigenvalues with magnitude less than 1.

2.3.3 The Final Solution

The four conditions on C considered in Section 2.2 are too weak to ensure that: 1) 1

is the only eigenvector associated to the eigenvalue 1; 2) the remaining eigenvectors are

associated to eigenvalues with magnitude less than 1 (observe that the identity matrix

satisfies all four conditions). Nevertheless, there is room for improvement in condition

1), since the full power of the graph connectedness has not yet been used. The weak

compatibility can be strengthened by requiring Cij > 0 if i is a neighbor of j or if i = j,

leading to the following stronger version of condition 1)

1?) C is compatible with the graph structure, i.e., Cij = 0 if i is not a neighbor of j and

Cij > 0 if either i is a neighbor of j or i = j.

In this section we show that 1?), together with conditions 2), 3), and 4) from Section 2.2,

is enough to solve the DAC problem.

21



2.3.3.1 The Outline of the Proof

The proof works as follows. First we show that, under 1?), 2), 3), and 4), there is a

power of C with only positive entries. Second, we note that this power of C inherits from

C the property of having eigenvalues with magnitude less or equal than 1. Third, we

show that a positive, symmetric matrix, having 1 has an eigenvector associated to the

eigenvalue 1 satisfies: a) the eigenspace associated to the eigenvalue 1 is the span{1}; b)

the remaining eigenvalues have magnitude less than 1. We conclude by showing that this

property is inherited by C.

Remark 2.3.1. The connectedness of the graph encoded in C via 1?) is crucial to establish

the existence of a power of C with only positive entries. In fact, under the weaker version

of 1?), namely 1), this would not necessarily be the case, as it is evident by taking C to

be the identity.

2.3.3.2 The Formal Proof

Lemma 2.3.1. There exists m such that Cm > 0.

Proof. Note that the non-negativity of the entries of C, together with the positivity of its

diagonal entries, implies that if (Ck)ij > 0, then (Ct)ij > 0 for all t ≥ k. This observation

reduces the proof to showing that the existence of a path from i to j of length t implies

(Ct)ij 6= 0. The case t = 4 suffices to illustrate the idea and the general case is easily

established with a proof by induction: the ij entry of C4 satisfies

(C4)ij =

|V |∑
s=1

(C3)isCsj =

|V |∑
s=1

( |V |∑
r=1

(C2)irCrs

)
Csj =

|V |∑
s=1

( |V |∑
r=1

( |V |∑
m=1

CimCmr
)
Crs

)
Csj,

and, from C ≥ 0, it follows that

(C4)ij ≥ CimCmrCrsCsj, (2.5)

for all i, j,m, r and s in {1, . . . , |V |}.
The existence of a path of length 4 between the nodes i and j implies that there are

three nodes m, r, and s such that i→ m→ r → s→ j, and, from 1?), this implies that

Cim, Cmr, Crs, and Csj are all positive numbers. From (2.5), we conclude that (C4)ij > 0.

To finish the proof, observe that, since the graph is connected, there is a path from any

node to any other. Moreover, (Ct)ij > 0 implies that (Cs)ij > 0 for all s ≥ t, thus,

combining these two observations establishes the result.
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For the proof of the following result, it is crucial to note that ‖Mv‖ ≤ ‖v‖, for every

v, if M is a square and symmetric matrix with eigenvalues having magnitude less or equal

than 1 (this simple observation can be proven by expanding v in an orthonormal basis of

eigenvectors).

Lemma 2.3.2. Let M be a |V | × |V | matrix satisfying M > 0, M = MT and M1 = 1.

If Mz = z for some z, then z ∈ span{1}.

Proof. Suppose thatMz = z for a non-zero vector z, and let |z| denote the |V |-dimensional

vector satisfying |z|i = |zi|. From M > 0, it follows that |z| = |Mz| ≤M |z|, and if strict

inequality holds, namely if M |z| > |z|, then, the non-negativity of all the quantities im-

plies that
∥∥M |z|∥∥ > ∥∥|z|∥∥; this contradicts the observation preceding the lemma, i.e.,

that ‖Mv‖ ≤ ‖v‖ for all v. Because strict inequality does not hold, we conclude that

M |z| = |z|, and the symmetry of M further implies that |z| ∈ span{1} (in fact, if

|z| /∈ span{1}, then |z| would be a non-zero and non-negative vector orthogonal to 1; it

is clear that there are no such vectors).

We wish to conclude that z, not |z|, is in the linear space generated 1. If z = |z|,
there is nothing to show, and, hence, suppose that z 6= |z|. By multiplying by a suitable

constant, we can assume that zi = ±1 for all i, and that at least two distinct components

have opposite signs. Let N be the set of indices j such that zj = −1 and letM be the set

of indices j such that zj = 1, which, from the previous assumption, are both non-empty.

The eigenvector equation Mz = z, implies that, for all j ∈ N ,

−1 =
∑
t∈M

Mjt −
∑
s∈N

Mjs

Moreover, the corresponding eigenvector equation for 1, that is, M1 = 1, similarly implies

1 =
∑
t∈M

Mjt +
∑
s∈N

Mjs.

The addition of both equalities results in

0 =
∑
t∈M

Mjt,

contradicting the positiveness of the entries of M .

The final result can now be stated and the proof is an easy consequence of the two

preceding lemmas.

Theorem 2.3.1. Let C be a |V | × |V | matrix such that
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1?) C is compatible with the graph structure;

2) C ≥ 0;

3) C1 = 1;

4) C = CT .

Then, 1 is the only eigenvector associated to the eigenvalue 1, and all the remaining

eigenvalues have magnitude less than 1.

Proof. Let B = {1/|V |1, w2, . . . , w|V |} be an orthonormal basis of R|V | such that Cwi =

λi, where λi ∈ R for i = 2, . . . , |V |. From Lemma 2.1, there exists m such that Cm > 0

and, since the diagonal entries of C are all positive, we may assume that m is even.

Observe that B is an orthonormal basis of eigenvectors of Cm that satisfies Cmwi = λmi wi

and Cm1 = 1. Moreover, 0 ≤ λmi ≤ 1. From Lemma 2.2, we can further say that

0 ≤ λmi < 1, and, hence, |λi| < 1 as desired.

2.3.4 The Metropolis Weight Matrix and the Consensus Matri-

ces

Theorem 2.3.1 provides sufficient conditions under which the DAC problem is solved with

linear maps. However, it still remains to show that it is possible to construct a matrix

satisfying the aforementioned conditions. There are many possible constructions and we

mention one termed the Metropolis Weight Matrix : For neighboring nodes i and j, define

Cij =
1

1 + max
(
d(i), d(j)

)
and define

Cii = 1−
∑
j∼i

Cij.

The only condition that needs to be checked is Cii > 0, and this is equivalent to showing

that ∑
j∼i

Cij < 1.
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To see this, just observe that

∑
i∼j

Cij ≤
∑
i∼j

1

1 + d(i)
<
∑
i∼j

1

d(i)
= 1.

We conclude this section with the definition of a consensus matrix, for which we first

introduce the concept of spectral radius.

Definition 2.3.1. Given an n × n square (not necessarily symmetric) matrix M , the

spectral radius of M , denoted by ρ(M), is the maximum of the absolute values of the

eigenvalues of M , i.e.,

ρ(M) = max{|λ1|, . . . , |λn|},

where λ1, . . . , λn are the complex roots of the characteristic polynomial of M , i.e., the

polynomial p(λ) = det(M − λI).

Definition 2.3.2. Let G be an undirected and connected graph with node set |V | and edge

set E. A consensus matrix is an |V |× |V | square matrix C that is weekly compatible with

the graph structure and that satisfies

1) 1TC = 1T ;

2) C1 = 1,

3) ρ
(
C − 1/|V |11T

)
< 1.

Remark 2.3.2. It is elementary, and, hence, omitted, to show that any consensus matrix

solves the DAC problem. What was shown is that the Metropolis Weight Matrix is a

consensus matrix.

2.4 Comments and References

This section discusses some of the additional variations of the DAC problem together

with different solutions. For a comprehensive review work on the subject, we point the

reader to [58].

2.4.1 Directed graphs

A generalization of this problem consists in allowing the graph to be directed, which

corresponds to restricting the values transmitted between the nodes to respect the edge
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orientation. From a mathematical point of view, a solution with linear maps does not

give rise to a symmetric matrix, and hence, the analysis is more involved and the proofs

rely on the Perron Frobenius theory [57]. It can be seen that, in the non-symmetric case,

the notion of right eigenvectors is crucial and the nodes have to keep track of a second

variable to achieve consensus.

2.4.2 Time-Varying Topologies

In the time-varying topology scenario the graph G is not fixed but changes over time;

there is a sequence of graphs (Gk)k∈N that are not necessarily equal nor connected, and,

in the linear case, it corresponds to studying the properties of a recursion of the form

xk+1 = Ckx
k, where Ck is compatible with the graph topology of the graph at time k,

i.e., Gk.
The analysis is challenging for several reasons. In fact, to ensure that xk → x̄01, it is

necessary to have a notion of “connectedness in the long run”; this notion won’t be made

precise, but we illustrate what can go wrong. Suppose, for example, that Gk alternates

between two graphs A and B, where A is

1
2

3

and B is

1
2

3

There are various types of behaviors that can occur. If for k ≥ K, Gk = A, it is

intuitive that we can expect

lim
k→∞

xk1 = lim
k→∞

xk3 =
xK1 + xK3

2

xk2 = xK2 , for k ≥ K.

This example seems to indicate that, to achieve consensus between the three nodes,

both A and B should occur infinitely often. However, even in this case the behavior can
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be quite different depending on “how often” A and B occur. For instance, suppose that

Gk =

A if k is even

B otherwise
.

It seems plausible that the “rate” at which the nodes achieve consensus is considerably

faster in this case than in the case in which

Gk =

A if k is a power of two

B otherwise
.

To finish, observe as well that if the sequence Gk is not “deterministic” but “random”,

the analysis must be much more subtle. As an example, suppose that, instead of knowing

that the sequence is deterministic (for example Gk = A if k is even and Gk = B otherwise),

we only know that, at time k, Gk = A with probability p, and Gk = B with probability

1 − p. It is clear that any convergence results will be probabilistic, and hence, not as

straightforward to establish.

2.4.3 Finite-Time Consensus

Consider, for simplicity, the time-invariant topology case and an undirected and connected

graph G. In this section we describe two different ways in which the nodes can reach

consensus in finite-time, i.e., xk = x̄01, for k ≥ K.

2.4.3.1 Flooding

Each node has a unique identifier and maintains a table of pairs (av, x
0
v), where av is the

identifier of node v and x0
v is its initial value. At time 0 the table of node v is initialized

with only the pair (av, x
0
v), and at each step, the nodes exchange their table with their

neighbors. It is clear that at time k equal to the diameter (largest distance between any

two nodes) of the graph, all nodes will have obtained all initial values and can, therefore,

compute their average (in fact, any function of the initial values).

2.4.3.2 Linear Finite-Time Consensus

Suppose the graph G is a complete graph, i.e., one in which any two nodes are connected by

an edge. In this setting, finite consensus is achieved in one step by taking C = 1/|V |11T .

Now if the graph G is not complete, the matrix C above is not compatible with the graph

topology. However, a reasonable question is whether it can be factorized into a product
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of matrices compatible with the graph topology, i.e., are there matrices C1, . . . , CN such

that

1

|V |
11T = C1 · · ·CN ,

and where each Ci is compatible with the graph topology? The answer is yes and, given

its elegance, we cannot resist to explain the general idea: Let C be the Metropolis Weight

Matrix associated to an undirected and connected graph G, and let p(λ) be the minimal

polynomial of C, i.e., the smallest (in terms of degree) monic (leading coefficient equal

to 1) polynomial m(x) that satisfies m(C) = 0. From the Cayley-Hamilton theorem

(see [57]), it is known that p(λ) divides the characteristic polynomial of C, and, thus,

p(λ) = (λ − 1)q(λ) for some polynomial q(λ) (this follows from C1 = 1). We conclude

that 0 = p(C) = Cq(C)− q(C), which further implies that

Cq(C) = q(C). (2.6)

In the previous pages we showed that the eigenspace associated to the eigenvalue 1 is

span{1}, and, hence, (2.6) shows that the columns of q(C) are either 0 or eigenvectors

of C associated to the eigenvalue 1, i.e., q(C) is of the form q(C) =
[
α11 . . . α|V |1

]
.

The symmetry of C implies that q(C), being a polynomial in C, is also symmetric, and

this further implies that q(C) = α1/|V |11T . Now note that q(C)1 = q(1)1 and, hence,

α1 = q(1). Finally, observe that, from the minimality of p(λ), q(C) 6= 0, and, hence,

q(1) = α1 6= 0. We conclude that

1

|V |
11T =

1

q(1)
q(C) =

1

q(1)
(C − λ2) · · · (C − λ|V |), (2.7)

where λ2, . . . , λ|V | are the eigenvalues of C other than 1.

2.4.4 Solutions Optimizing the Convergence Rate

Let C be a symmetric consensus matrix and let B = {1/
√
|V |1, w2, . . . , w|V |} be an

orthonormal basis of eigenvectors of C. Suppose that Cwi = λiwi and that the eigenvalues

are in decreasing order, i.e., λ2 ≥ . . . ≥ λ|V |. Observe that the recursion xk+1 = Ckxk

yields, after unfolding,

xk = x̄01 +

|V |∑
i=2

αi(λi)
kwi,
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where x0 = x̄01 +
∑|V |

i=2 αiwi is the expansion of x0 in the basis B. The error ‖xk − x̄01‖
satisfies

‖xk − x̄01‖ =

√√√√ |V |∑
i=2

α2
iλ

2k
i ≤

√√√√λ2k
2

|V |∑
i=2

α2
i = |λk2|‖x0 − x̄01‖,

and this indicates that the velocity at which consensus is achieved is governed by λ2.

In fact, the lower the magnitude of λ2, the faster the values of xk approach average

consensus; this suggests designing C to have a low |λ2|. For symmetric consensus matrices

it is possible to formulate a convex optimization whose solution yields a consensus matrix

with the lowest possible value of |λ2| – see [59] for further details on the formulation of

the optimization problem and for heuristics for constructing consensus matrices other

than the Metropolis Weight Matrix.

2.4.5 The Virtues of the Metropolis Weight Matrix

After all the previous discussion, a natural question arises: why would one opt for a

Metropolis Weight Matrix solution and not for a solution that arrives at consensus in

finite time or a solution that is based on a consensus matrix with minimal |λ2|? In this

section we give some partial answers to this question.

2.4.5.1 Knowledge of the Graph Topology

Imagine a scenario where a set of robots endowed with wireless communications is dropped

from a plane. Upon landing, they stay in the same position and can only communicate

with the robots within a distance depending on the wireless range; this is naturally

modeled by a graph G where each node corresponds to a robot and an edge between

robot v and robot w indicates that they are within the wireless range of each other.

Suppose that the resulting graph is connected, that each robot measures some quantity

of the environment (e.g. the temperature), and that their goal is to compute the average

of all measured quantities (e.g. average temperature). Assume whoever is responsible

for programming the robots to preform this task prior to them being dropped from the

plane faces the issue of choosing between a Metropolis Weight Matrix solution and a

linear finite-time consensus solution. It seems tempting to say that a finite-time solution

is certainly superior, and, hence, that this is not a real debate. However, the subtlety

is that this implicitly assumes that the graph G modeling the scenario is known prior to

the robots being dropped. To see this, note that the factorization (2.7) depends on the

eigenvalues of a matrix that is compatible with the graph topology, and, hence, the graph
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topology would have to be known in advance if such a solution was to be implemented.

As the previous paragraph illustrates, the lack of perfect control over where the robots

will land implies that the G is cannot be known with absolute accuracy, and, hence,

the linear finite-time consensus solution is not a viable approach. On the other side,

the Metropolis Weight Matrix solution can still be implemented, since, to execute this

solution, the robots only need to communicate their degrees (how many robots are within

their wireless range) to their neighbors prior to the beginning of the computation.

The takeaway from this section is that the question of choosing between the Metropolis

Weight Matrix solution and the linear finite-time consensus solution is really a question of

feasibility of implementation. The Metropolis Weight Matrix implementation only relies

local knowledge, i.e., node degrees, whereas the linear finite-time consensus solution relies

on global knowledge, encoded in the spectral decomposition of matrices dependent on the

graph topology. To finish, observe as well that a solution based on optimizing |λ2| also

implicitly assumes global knowledge. The solution requires finding a matrix with minimal

|λ2| among the matrices compatible with the graph topology, and hence, global knowledge

is implicit in the constraint set of the optimization problem.

2.4.5.2 Amount of Information Transmitted

The sharp reader will quickly realize that the absence of global knowledge is not an

issue in a flooding solution. However, in this case another issue pops up: the amount

of information transmitted between any two neighboring nodes. In fact, in a flooding

solution, a node transmits a table at each iteration, whereas in the Metropolis Weight

Solution it transmits a number, and from the implementation point of view, this might

constitute an issue.

2.4.5.3 Building Block

The problem described in this section is certainly applicable in a variety of situations,

and, hence, it is interesting on its own. However, as the following chapters show, average

consensus is not the endgame. In fact, this work looks at the problem of arriving at a

consensus over a fixed point of a map, the computation of which requires an average at

each iteration, and, as it will be seen, the linear consensus matrices constitute a building

block of the suggested algorithms.
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Chapter 3

Basics of Fixed Point Theory and

Problem Statement

3.1 Introduction

The previous chapter introduced the problem of coordinating a group of agents linked by

a communication network towards the computation of the average of individual values

held by said agents. Although relevant in itself, the average problem is but a simple

operation and the coordination of a group of agents towards more complex inference

problems is desired and constitutes the goal of this work. Specifically, the later chapters

focus on inference problems that are naturally cast as fixed point equations, and, to this

end, this chapter begins with a review of the basics of fixed point theory and concludes

by introducing the general problem addressed in this work.

3.2 Basic Definitions and Results

3.2.1 Definition of a Fixed Point

A fixed point of a map H : D ⊆ Rd → Rd is a point x? ∈ Rd that is not “moved” by H,

i.e., that satisfies

H(x?) = x?.

Whenever H(D) ⊆ D, picturing H as “moving points” is quite natural: a point

x0 ∈ Rd is “moved” by H to x1 = H(x0), which is then moved to x2 = H(x1), and so on,
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producing a trajectory induced by x0, formally defined as the recursive sequence

x0 ∈ D,

xk+1 = H(xk),
(3.1)

which we will call the orbit of x0. A fixed point x? is, thus, a point whose orbit coincides

with itself.

In the following plot, the blue line represents a roller coaster track and the vertical axis

corresponds to the height relative to the ground (the horizontal axis). The green square

corresponds to a train that can be placed anywhere with a particular initial velocity,

the initial position/velocity pair being denoted by (x0, v0). Assume that the only forces

acting on the train are gravity and the force exerted by the track, with (xk, vk) denoting

the position/velocity pair after k seconds.

Figure 3.1: Roller Coaster Track.

Intuition suggests the existence of a map, the particular form of which is beyond of

the scope of this discussion, H : R2 × R2 → R2 × R2 that describes the motion of the

train, i.e., the sequence (xk, vk) satisfies

(xk+1, vk+1) = H(xk, vk),

for a map H modeling the physics of the roller coaster. As far as fixed points are

concerned, it is intuitive that, with zero initial velocity, a train placed on the bottom and

top points of the roller coaster (see the next figure) remains at rest. These points thus

correspond to fixed points of H.

Figure 3.2: Multiple Fixed Points of the Roller Coaster Track.
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3.2.2 Existence of a Fixed Point

Not all maps have fixed points and coming up with one that does not is elementary: Let

S1 denote the collection of points distancing one unit to the origin, and let H be the map

on S1 that rotates a point x by a non-trivial angle (i.e., an angle different from a multiple

of 2π). All points are moved, and, thus, H has no fixed points.

It should not come as a surprise that conditions on H and D have to be imposed if

the existence of fixed points is to be established. A celebrated result with rather minimal

conditions on both H and D is Brouwer’s fixed point theorem. Given its importance for

a later result, it is now stated without proof (see [60]).

Theorem 3.2.1 (Brouwer’s fixed point theorem). Let H : D → D be a continuous map,

where D is a closed, bounded and convex subset of Rd. Then H has a fixed point.

The proof of this result is non-trivial and, thus, as abovementioned, it is omitted.

Nevertheless, in the one dimensional case (d = 1 above), the proof is straightforward,

essentially reducing to the Intermediate Value Theorem: a closed, bounded, and convex

set of R is a closed and bounded interval, that is, an interval of the form [a, b]. Let

H : [a, b] → [a, b] be a continuous function. If H(a) = a or H(b) = b we are done, so

suppose that H(a) 6= a, that H(b) 6= b, and let g(x) = H(x)− x. The assumptions imply

that g(a) > 0 and g(b) < 0. From the continuity of H, and, consequently, that of g, it

follows that g has a zero, and such a zero is a fixed point of H.

3.2.3 Qualitative Character of Fixed Points

Let us take a closer look at the roller coaster example and consider the two fixed points

colored red and green in the figure below.

Figure 3.3: Qualitatively Different Fixed Points of the Roller Coaster Track: the green is
unstable and the red is stable.

Our physical intuition suggests that if the green train is slightly perturbed from its

position at rest, it will move away from the top position. On the other side, a small

perturbation of the red train’s position results in a different behavior, as it will eventually
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return to the bottom position. This indicates that the red and the green fixed points are

qualitatively different, one being “robust” to slight perturbations and the other not so.

Let x? be a fixed point of a map H; we say that x? is an attractor if there exists an

open neighborhood U of x? such that, for all x0 ∈ U , the orbit of x0 tends to x?, that is,

sequence (3.1) satisfies

lim
k→∞

xk = x?.

Moreover, if U can be taken to be the whole domain of H, then x? is a global attractor.

As an example of a roller coaster track with a global attractor1, imagine that its shape

is that of the function x→ x2.

3.2.4 Metric Conditions on H and Fundamental Global Results

Let ‖ · ‖ be a norm on Rd and µ a non-negative real number. A map H : D ⊆ Rd → Rd

satisfying, for all x and y,

‖H(x)−H(y)‖ ≤ µ‖x− y‖,

is called a µ-Lipschitz map. If µ < 1, we say that H is a µ-contraction or that H is a

contractive map. A few remarks are due:

Remark 3.2.1. Lipschitz maps are uniformly continuous.

Remark 3.2.2. Continuously differentiable maps are locally Lipschitz. This is an easy

consequence of the mean value theorem and maximum value attainment by continuous

maps on compact sets.

Remark 3.2.3. A consequence of norm equivalence is that Lipschitzianity is norm inde-

pendent. However, to distinct norms are usually associated distinct Lipschitz constants,

hence, contractiveness is a norm-dependent notion.2

Contractive maps play a relevant role in mathematics due to their fixed point proper-

ties, with distance decrease towards the fixed point being a simple example. More relevant

is that all orbits converge linearly to x?: let x0 be any point and observe that substituting

recursion (3.1) in the contractive condition yields a recursive inequality whose unfolding

1A map H as at most one global attractor.
2To see this, suppose that H is a µ-contraction with respect to ‖ ·‖ and define the map ‖x‖µ := 1

µ‖x‖;
an elementary argument shows that ‖ · ‖µ is a norm with respect to which H is not contractive.
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results in

‖xk − x?‖ ≤ µk‖x0 − x?‖

for all k (note the validity of this expression for k = 0).

Remark 3.2.4. The derivation above assumes the existence of a fixed point. However,

contractive maps “usually” have fixed points; this is the content of the celebrated Banach-

Picard fixed point Theorem: a contraction on a closed subset D ⊆ Rd has a unique

fixed point in D. When compared to Brouwer’s fixed point theorem, this theorem has

a less restrictive assumption on D (merely closed, not necessarily bounded) at the cost

of a much more restrictive condition on H (continuity is a much weaker condition than

contractiveness).

The following lemma regarding a slight generalization of the contractive property is

instrumental for a later result.

Lemma 3.2.1. Let ‖ · ‖ai be norms on Rni, for i = 1, . . . ,m, and let

H : Rn1 × . . .× Rnm → Rn1 × . . .× Rnm
x1

...

xm

→

H1(x1, . . . , xm)

...

Hm(x1, . . . , xm)


be a map satisfying, for all x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Rn1 × . . .× Rnm,

‖H1(x)−H1(y)‖a1
...

‖Hm(x)−Hm(y)‖am

 ≤ P


‖x1 − y1‖a1

...

‖xm − ym‖am

 , (3.2)

where P is a non-negative m ×m matrix with a spectral radius less than one. Then, if

x? ∈ Rn1 × . . .× Rnm is a fixed point of H, any orbit converges to x? at least linearly.

Proof. Let x0 ∈ Rn1× . . .×Rnm and consider the orbit of x0, i.e., the sequence recursively

defined as

x0 ∈ Rn1 × . . .× Rnm

xk+1 = H(xk).
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Inequality (3.2) applied to the orbit of x0 and to x? yields the recursive inequality
‖xk+1

1 − x?1‖a1
...

‖xk+1
m − x?m‖am

 ≤ P


‖xk1 − x?1‖a1

...

‖xkm − x?m‖am

 ,
whose unfolding, permitted by the non-negativity of the entries of P , results in

‖xk1 − x?1‖a1
...

‖xkm − x?m‖am

 ≤ P k


‖x0

1 − x?1‖a1
...

‖x0
m − x?m‖am

 .

Let ‖ · ‖ be a matrix norm satisfying ‖P‖ < 1, the existence of which follows from

ρ(P ) < 1 and Lemma 5.6.10 in [57]. Seen as a vector norm on Rm2
, ‖ · ‖ is equivalent to

the vector norm ‖ · ‖∞ on Rm2
defined as

‖x‖∞ := max
i=1,...,m

|xi|,

that is, there exists a constant β > 0 for which

‖P k‖∞ ≤ β‖P k‖ ≤ β‖P‖k,

where the last inequality is the multiplicative property of matrix norms (see [57]). The

entries of P k are, thus, upper bounded by β‖P‖k, and, therefore,

‖xki − x?i ‖ai ≤ β‖P‖k
m∑
j=1

‖x0
j − x?j‖aj .

From ‖P‖ < 1, the conclusion that xk converges to x? at least linearly follows.

Remark 3.2.5. The statement of this lemma is enough for our purposes. However,

similar to the Banach-Picard fixed point theorem, the conditions of this lemma suffice to

establish the existence of a fixed point (see [61]). Not surprisingly, for m = 1, it amounts

to the Banach-Picard fixed point theorem: matrix P is just a number, thus reducing the

spectral radius condition to a contractive one. For this reason, these maps are commonly

called P -contractions (see, for example, [62]).
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3.2.5 Local Conditions and Results

Let H : D ⊆ Rd → Rd be a map having at least two distinct fixed points x? and y?, and

observe that H cannot be contractive (if it was, H would move the two fixed points closer

to each other, contradicting their nature as fixed points). Nevertheless, it can happen

that H is a local contraction at x?, the contractive condition holding in a neighborhood

of x?. Such local behavior naturally suggests looking at differential properties and, thus,

in this section maps will be assumed to be differentiable at least in a neighborhood of a

fixed point.

Theorem 3.2.2 (Ostrowski’s theorem). Suppose H : D ⊆ Rd → Rd has a fixed point x?

in the interior of D. Suppose as well that it is differentiable at x? and that

ρ
(
JH(x?)

)
< 1. (3.3)

Then, there exists a norm ‖ · ‖, a ball B = {x ∈ Rd : ‖x − x?‖ < δ}, and a number

0 ≤ σ < 1 such that, for all x ∈ B,

‖H(x)− x?‖ ≤ σ‖x− x?‖.

Proof. The proof is a relatively straightforward consequence of the existence of a norm

satisfying ‖JH(x?)‖ < 1 (see [61]).

Remark 3.2.6. There is a subtlety regarding the conclusion of Theorem 3.2.2: H is

not necessarily a local contraction. The map contracts distances with respect to x?, but

not necessarily between any two points in a neighborhood of x?, a property, by definition,

satisfied by a local contraction. Yet, if H is assumed to be not just differentiable at x?, but

also continuously differentiable at x?, then H is a local contraction. An example explored

in [63] is that of the function

f : R→ R

x→

x2 sin( 1
x
), x 6= 0

0, x = 0
,

which satisfies: 1) it is differentiable everywhere; 2) f ′(0) = 0 (and, hence, ρ(f ′(0)) < 1);

3) f is not continuously differentiable at zero; 4) f is not a local contraction in any

neighborhood of zero.

Remark 3.2.7. In section 3.2.3, we looked at two distinct fixed points and highlighted

their qualitative difference regarding robustness to small perturbations. An attractor was
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then defined to be a fixed point x? to which orbits initialized nearby converged to. While it

is certainly true that the conclusion of Ostrowski’s theorem implies that x? is an attractor

of H, note that it is a stronger one: orbits initialized nearby not only tend to x?, but do

so with at least linear rate. However, as the following examples shows, a point x? can be

an attractor with orbits tending slower than linearly to x?.

Let g : R→ R be defined by g(x) = x−x3 and observe that g has no fixed points other

than zero. Moreover, g′(0) = 1, and, thus, the conditions of Ostrwoski’s theorem are not

met; still zero is an attractor, and, to see this, observe that

|g(x)| = |x||1− x2| < |x|

for 0 6= x ∈ (−1, 1). This shows that, for any 0 6= x0 ∈ (−1, 1), the sequence yk = |xk|,
with xk being the orbit generated by x0, is a positive and strictly decreasing sequence, thus

a convergent sequence with a non-negative limit. An elementary argument establishes that

this limit is zero, i.e., that zero is an attractor of g. However, nearby points are attracted

at a rate slower than linear (for an elementary proof see Appendix B).

Informally, the conclusion of Ostrowski’s theorem is that the behavior of orbits of H

initialized sufficiently close to a fixed point x? satisfying (3.3) mimics that of the linear

approximation of H at x?, i.e., the approximation

H(x) ≈ x? + JH(x?)(x− x?) := H̃(x).

In fact, it is known that (3.3) implies that JH(x?)k → 0, as k goes to infinity, and that all

orbits of H̃ tend to x? with at least linear rate. On the other side, the nearby behavior

of orbits of g(x) = x − x3 initialized close to zero does not mimic that of the identity

function (the linear approximation of g at x?).

A natural question is whether this mimicking behavior holds if (3.3) is replaced by

ρ
(
JH(x?)

)
> 1. (3.4)

Suppose that H : D ⊆ Rd → Rd has a fixed point x? in the interior of D, that H is

differentiable at x? and that (3.4) holds. Let v be an eigenvector of JH(x?) associated to

an eigenvalue λ satisfying |λ| > 1, and let xkε be the orbits of the linear approximation H̃

intitialized at x0
ε = x? + εv.

The sequence ykε = xkε − x? satisfies

yk+1
ε = xk+1

ε − x? = JH(x?)(xkε − x?) = JH(x?)ykε ,
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which, after unfolding, yields

ykε = JH(x?)ky0
ε = JH(x?)kεv = λkεv,

and, since |λ| > 1, the magnitude of ykε becomes arbitrarily large, that is, xkε becomes

arbitrarily far from x?. The key observation is that since ε > 0 is arbitrary, x0
ε is as close

to x? as we want, and, nevertheless, the orbit of H̃ initialized at x0
ε will “diverge” from

x?. Contrary to the attractor scenario, x? “repels” rather than attract – as an illustrative

example look at the green fixed point in Section 3.2.3.

Having only looked at the behavior of the linear approximation and not to the local

behavior of H, we still have the question unanswered. We are not aware of a result

ruling out x? to be an attractor when H is C1 in a neighborhood of x? and satisfies (3.4).

There is, nevertheless, a result showing that x? is unstable, a property satisfied as well by

the linear approximation. Stability, a stronger notion than continuity, informally means

that orbits initialized sufficiently close to a fixed point remain bounded to any desired

accuracy.

Formally, given a (not necessarily differentiable) continuous map H : D ⊆ Rd → Rd,

together with a fixed point x?, we say that x? is a stable fixed point if for every ε > 0,

there exists δ > 0 such that if ‖x0 − x?‖ < δ then, for all k ≥ 1,

‖Hk(x0)− x?‖ < ε.

Remark 3.2.8. It is trivial to prove that Ostrowski’s theorem implies that x? is a stable

fixed point.

Remark 3.2.9. Stability is a norm-independent notion.

As an illustrative example, observe that the green point and the red point in the figure

of section 3.2.3 are, respectively, unstable and stable fixed points.

The extent to which the behavior of local orbits of H is comparable to that of the

linear approximation is captured in the next result

Theorem 3.2.3. Suppose H : D ⊆ Rd → Rd has a fixed point x? in the interior of D.

Suppose as well that it is differentiable at x?, and let

H̃(x) = x? + JH(x?)(x− x?)

be the linear approximation of H near x?.
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1) If

ρ
(
JH(x?)

)
< 1,

then x? is a stable fixed point of both H and H̃. Moreover, x? is an attractor of H

and a global attractor of H̃. Finally, orbits of H initialized sufficiently close to x?,

converge to x? with at least linear rate, and orbits of H̃ initialized not necessarily

close to x? converge to x? with at least linear rate.

2) If

ρ
(
JH(x?)

)
> 1,

then x? is an unstable fixed point of both H and H̃. Moreover, x? is not an attractor

of H̃.

Proof. For the proof of the first assertion, just note that it corresponds to Ostrowski’s

theorem. For the second see [64].

Remark 3.2.10. The stability of the “frontier” case ρ
(
JH(x?)

)
= 1 cannot be inspected by

“only looking at first derivatives”. This case won’t be explored, but note that g1(x) = x−x3

and g2(x) = x + x3 are two maps belonging to the “frontier case” having zero as stable

and an unstable fixed point, respectively.

Although the question of whether x? can be an attractor of H when (3.4) holds was

left rather unanswered, this section finishes with a result ruling this out when H is a local

diffeomorphism.

Theorem 3.2.4. Let H : D → D be a C1 map on an open set D of Rd. Suppose that

det
(
JH(x)

)
6= 0

for all x ∈ D. Then, the set of points in D whose orbit tends to a fixed point x? satisfying

ρ
(
JH(x?)

)
> 1

has Lebesgue-measure zero.

Proof. See [65].

Remark 3.2.11. The determinant condition implies that H is a local diffeomorphism;

this is the content of the celebrated Inverse Function Theorem (see, for example [66]).
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As a final observation note that, according to this result, x? cannot be an attrac-

tor, since the open neighborhood “attracted” to x? has non-zero measure. Additional

comments on this result and its relevance are provided at the end of the chapter.

3.3 Problem Statement

We are now in a position to set the goals that guide the rest of this work. Consider a

network of N agents, where the interconnection structure is represented by an undirected

and connected graph G: the nodes correspond to the agents and an edge between two

agents indicates they can communicate (are neighbors). Each agent n ∈ {1, . . . , N} holds

a map Hn : Rd → Rd, and the goal is to compute a fixed point x? of the average map

H =
1

N

N∑
n=1

Hn.

Crucially, each agent n is restricted to performing computations involving Hn and com-

municating with its neighbors.

In essence, we will show how, given H1, . . . , HN , and G, to construct maps3

F : RdN × RdN → RdN × RdN

(z, w)→


(
F11(z, w), F12(z, w)

)
...(

FN1(z, w), FN2(z, w)
)


with the following properties:

1) The iteration (zk+1, wk+1) = F (zk, wk) can be implemented in a distributed manner

respecting G, that is,

∂Fi1
∂zj

=
∂Fi2
∂zj

=
∂Fi1
∂wj

=
∂Fi2
∂wj

= 0,

if, in G, nodes i and j are not neighbors. Note that zj and wj are vectors in Rd

and hence, we are overloading the notation of partial derivative; this should be

interpreted as all partial derivatives with respect to the components of zj and wj.

2) The map F “lifts” the fixed points of H from Rd to RdN ×RdN , that is, if x? is a fixed

point of H, then (1⊗x?, w?) is a fixed point of F for some w?. The converse should

3In reality, we should probably write FH1,...,HN ,G to be precise. However this would lead to an
extremely heavy notation, hence the omission of subscripts.
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also hold in the sense that F should not have new fixed points, i.e. if (z?, w?) is

a fixed point of F , then z? should be of the form z? = 1 ⊗ x?, where x? is a fixed

point of H.

3) The local properties of fixed points of H are also “lifted” by F . This will require some

further explanation later on, but the idea is that a fixed point x? of H that satisfies

the condition in Ostrowki’s theorem, i.e., (3.3), should be “lifted” to a fixed point

(1⊗ x?, w?) of F that is also stable and enjoys local linear convergence. The same

should hold for the reverse strict inequality (3.4), which informally means that,

once “lifted by F”, x? will remain unstable. In fact, this will be established not for

F , but for a map F̃ that is related to F by a quotient operation.

4) If H is a global contraction then F should also be. To be precise, similar to the point

above, not F , but the still undefined map F̃ will be shown to be a P -contraction,

whenever H is a contraction.

3.4 Comments and References

In the previous sections, we presented the basics of fixed points that are relevant for the

rest of this work. In doing so, we bypassed many interesting topics, and put together

notions/results that typically arise in apparently distinct areas.

Given a map H, the recursion (3.1) is typically called an iterative process in the

numerical analysis and optimization community, and an initial value problem of a first

order difference equation in the dynamical systems community, where it is regarded as a

discrete time analog of an ordinary differential equation. In the latter community, a fixed

point is most usually called an equilibrium point, and the notion of stability, a central

one in dynamical systems, is often termed Lyapunov stability. The overlap between the

two areas is discussed in [67].

As far as references are concerned, we mention: [60] for a theoretical approach on

fixed points results in which geometric conditions on D and/or H play a crucial role,

and where the Banach-Picard fixed point theorem and Brouwer’s fixed point theorem are

presented; [68] and [61] for a more applied approach; [64] and [69] for a dynamical systems

approach, the latter reference focusing essentially on differential equations.

3.4.1 The Notion of an Attractor

For a while, the concept of an attractor was the subject of debate (see [70]). The author

of [70] proposes a definition that does not coincide with ours and is based on the informal
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notion that an attractor is

“the set of points to which most points evolve under iterates . . . ”

We will not go over the formal definition, but we mention that it is a “probabilistic”

one. In fact, we can informally say that, according to [70], a fixed point x? of H is an

attractor if an orbit initialized at a “random” x0 has a non-zero probability of converging

to x?. For this definition, there are examples of maps that are C1 and that have an

attractor satisfying (3.4).

As far as the definition of this chapter is concerned, we point the reader to [67] for an

example of a continuous but not differentiable map with an unstable attractor.

3.4.2 Convergence Rate

Throughout this work, a sequence of non-negative real numbers {ak}k∈N is said to converge

at a linear rate to zero if there exists a non-negative constant L and a non-negative real

number µ < 1 such that

ak ≤ Lµk. (3.5)

This definition is framed only in terms of an upper bound, hence, a sequence converg-

ing “faster than linearly” to zero, e.g., ak = 0 for all k, is a sequence converging linearly

to zero. While, to be completely precise, “the best” that can be said about a sequence

satisfying (3.5) is that it converges with at least linear rate, the phrasing “converges

linearly” will sometimes be employed without the risk of confusion.

A sequence xk ∈ Rd converges (tends) linearly to x? whenever, for a given norm ‖ · ‖,
the non-negative real sequence ‖xk − x?‖ converges linearly to zero. This is a norm-

independent notion although the constant L in (3.5) changes when the norm changes.

A sequence xk satisfying the recursive inequality

‖xk+1 − x?‖ ≤ µ‖xk − x?‖

is, after unfolding, easily seen to converge to x? at a linear rate, the constant L being

‖x0 − x?‖. It has an additional property, that of monotonic convergence: the iterates

become successively closer to x?. Contrary to linear convergence, monotonic convergence

is a norm-dependent notion.4 We will not focus on particular norms, and, hence, norm-

4Let H be the map on R2 that first rotates the plane counterclockwise by a angle of π
2 and then

shrinks it by a factor of 1
2 . The orbit of H generated by (1, 0) is easily seen to converge linearly and

monotonically to (0, 0) with respect to the Euclidean distance. However, with respect to ‖ · ‖D, where
‖(x1, x2)‖D =

√
x21 + 16x22, it converges linearly but not monotonically.
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dependent notions are disregarded.

3.4.3 The Relevance of Theorem 3.2.4

The relevance of Theorem 3.2.4 is of practical nature. We are interested in “computing

stuff” and, to us, an orbit of H generated by x0 is just an algorithm initialized at x0.

With this in mind, note that if H has many fixed points, some of which are not of interest,

initialization is an issue that must be addressed. To see this, observe that if an algorithm

is initialized at an undesired fixed point, it will not move away from it, thus rendering

the computation useless.

To make things slightly more concrete, suppose that (3.1) is an algorithm for finding

a minimum of some wiggly function f with multiple minima and maxima, all of which

are fixed points of H. Depending on x0, the algorithm can converge to a minimum, to

a maximum, or not converge at all. However, if H satisfies the conditions of Theorem

3.2.4, there is margin to be careless regarding the choice of x0; in fact, Theorem 3.2.4

essentially guarantees that with a “blind” choice of x0, the algorithm will not converge

to a maximum. While it does not promise that the algorithm converges to a minimum,

it does, nevertheless, insure that it almost surely does so, provided it converges.

Such a margin of carelessness regarding initialization should not be destroyed once H

is “extended” to a distributed scenario, and, hence, this feature should be inherited by

the maps F mentioned in Section 3.3.

3.4.4 Distributed Optimization

In the last two decades, a large body of work has been produced in distributed computa-

tion, the largest portion of it in distributed optimization. A commonly studied problem

in distributed optimization is that of the coordination of a network of agents towards the

computation of the minimum and/or the minimizer of the average of the functions held

by said agents. Formally, each agent n ∈ {1, . . . , N} holds a function fn : Rd → R, and

the goal is to solve

minimize
x

f(x) :=
1

N

N∑
n=1

fn(x),

where, similarly to the scenario described in section 3.3, each agent n is restricted to

performing computations using only fn and communicating with its neighbors5. Com-

putations using only fn should be understood in rather general sense that include, for

5Similar to section 3.3, there is an underlying graph G representing the communication links.
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example, the evaluation at a chosen point of the gradient of fn or of the proximal operator6

associated to fn.

Research works on this problem usually begin with assumptions (such as convexity,

gradient Lipschitzianity, coercivity, etc) on the functions fn (sometimes on the whole

average function f) and then propose algorithms whose convergence properties rely on

said assumptions.

Despite the great affinity between the problem in Section 3.3 and distributed optimiza-

tion problems just mentioned, the former departs from the latter in two main aspects.

First, it encompasses problems that are not naturally expressed as optimization problems.

Second, many of the assumptions made in distributed optimization are absent in relevant

algorithms, e.g. the expectation maximization algorithm, whose extension to distributed

scenarios is sought.

It is safe to say that there is a distinction in the starting point of view. Whereas in

distributed optimization it is

“here is an average function, give me a method for computing its minimum

in a distributed fashion, leveraging on the underlying function properties,”

we believe that, in our case, it is more generally,

“here is a centralized algorithm, give me a general method to extend it to a

distributed one while preserving its relevant features.”

Nevertheless, given the similarities between the two, the parallel between the problem

in Section 3.3 and problems in distributed optimization will be recurrent throughout this

work.

6The proximal operator associated to fn is the map z → arg minx fn(x)+ ρ
2‖z−x‖

2 (see, for example,
[71]).
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Chapter 4

A Distributed Algorithm with a

Shrinking Step-Size

4.1 Introduction

Section 3.3 of Chapter 3 introduced the general problem studied in this work. This

Chapter loosely addresses that problem by presenting an algorithm for the distributed

computation of fixed points, though, unlike in Section 3.3, not by constructing a map F

satisfying the properties therein described.

The distributed algorithm in this section can be written as an iteration of the form

zk+1 = Fk(z
k), (4.1)

for a collection of maps Fk : RdN → RdN , k = 1, . . ., that respect the graph topology.

Contrary to the implementation of the distributed algorithms arising from the maps F ,

which requires agents to have in memory a 2d-dimensional vector, the implementation of

(4.1) merely requires each agent to have in memory a d-dimensional vector (the dimension

of the domain of the average map). This, however, comes with a double cost. First,

the maps Fk depend on k, hence, the agents need to know which iteration they are

executing. Second, and more importantly, whenever the average map is a global or

a local contraction, the rate of convergence of (4.1) is sub-linear, hence, qualitatively

slower than that of xk+1 = H(xk).

The contents of this Chapter are an original and unpublished contribution that builds

upon [12], a work that suggests an algorithm that extends to a distributed scenario

a particular application of the expectation-maximization (EM) algorithm. As a first

contribution, we mention that our setup is more general than that of [12], the distributed

EM of [12] being a particular instance of (4.1). Secondly, our proof of convergence is
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considerably simpler, and, contrary to that of [12], which relies heavily on the particular

form of a step-size sequence, our proof shows that their result holds provided the step-size

sequence is merely vanishing and non-summable; furthermore, we give a bound on the

convergence rate, a gap left by [12]. Finally, by focusing on a general setup, we address

the case in which the average map H is a global contraction, a property not enjoyed by

the particular map H underlying the “non-distributed” EM algorithm.

4.2 Preliminaries

Consider, as in Section 3.3 of Chapter 3, a network of N agents, where the interconnection

structure is represented by an undirected and connected graph. Recall that each agent

holds a map Hn : Rd → Rd, and the goal is to compute a fixed point of the average map

H =
1

N

N∑
n=1

Hn.

Moreover, each agent is restricted to performing computations using Hn and communi-

cating with its neighbors. Throughout this Chapter, each Hn is assumed to be bounded

and Lipschitz; without loss of generality, we may assume that all Hn are β-Lipschitz and

bounded by the same constant M .

In a non-distributed scenario where, for example, an agent holds all the maps Hn, a

common algorithm to approximate a fixed point of H is the Banach-Picard iteration of

H,

xk+1 = H(xk). (4.2)

Associated to a map H, there is a family of map Hα that correspond to averaging H with

the identity,

Hα = (1− α)I + αH,

where α ∈]0, 1]; note that H1 coincides with H and, that, for α 6= 0, the fixed point set of

Hα coincides with that of H. In addition to (4.2), a common method to approximate a

fixed point of H is the Banach-Picard iteration of Hα, typically called the Krasnoselskij

iteration (see [68]). More generally, allowing the averaging weight α to vary along the

iterations, that is,

xk+1 = (1− αk)xk + αkH(xk),
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leads to the so-called normal Mann iteration (see [68]).

Let H̃ : RdN → RdN be defined by

H̃(z1, . . . , zN) =
(
H1(z1), . . . , HN(zN)

)
. (4.3)

In a distributed setting with a network represented by a complete graph, a natural dis-

tributed algorithm is to let each agent execute the Mann iteration of H. Up to initial-

ization, this can essentially be written as

zk+1 =
1

N

(
11T ⊗ Id

)(
(1− αk)zk + αkH̃(zk)

)
, (4.4)

with zk ∈ RdN . Recursion (4.4) can be seen as a local computation, (1−αk)zk+αkH̃(zk),

followed by a communication (combination) step, represented by the multiplication by

1/N11T ⊗ Id. In contrast, if the communication network is not a complete graph, the

local computation step can be carried out, but the multiplication step cannot. In this

case, a näıve approach is to perform an “imperfect average”, i.e., to substitute the matrix

1/N11T ⊗ Id in (4.4) by a consensus matrix respecting the graph topology (see Chapter

2),

zk+1 = W
(
(1− αk)zk + αkH̃(zk)

)
, (4.5)

where W = W̃ ⊗ Id, for a consensus matrix W̃ . This chapter studies the properties of

(4.5). The following remarks are due:

Remark 4.2.1. The stepsizes αk in (4.5) will be non-constant. For this reason, (4.5) is

an iteration of the form

zk+1 = Fk(z
k),

where the maps Fk depend on k. As a result, the agents need to “know” which iteration

they are executing. Rather than resulting in an imperfect Krasnoselskij iteration, the

non-constant nature of the step-sizes renders (4.5) a “true” imperfect Mann iteration.

Remark 4.2.2. If each map Hn is of the form Hn = x−∇fn for a differentiable function

fn, the Krasnoselskij and Mann iterations correspond to gradient descent with constant

and non-constant stepsizes, respectively. Moreover, with vanishing setpsizes, (4.5) corre-

sponds to the distributed gradient descent with shrinking stepsize, a well known algorithm

in the distributed optimization community (see [25]).
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Remark 4.2.3. If the algorithm is, by miracle, initialized at a fixed point of interest,

i.e., z0 = 1 ⊗ x?, then, unless the maps Hn are very specific, the next iterate, z1 will be

different from 1⊗ x?. This, for obvious reasons, is undesirable.

4.3 The Step-Size

Recall that all agents seek to compute a fixed point of H, thus, the iteration (4.5) should

converge to 1 ⊗ x?, where x? ∈ Rd is a fixed point of H. Let us assume that it does so,

for a, possibly constant, convergent step-size sequence αk with limit α?; then,

1⊗ x? = W
(
(1− α?)1⊗ x? + α?H̃(1⊗ x?)

)
,

which implies that

0 = α?
(
1⊗ x? −WH̃(1⊗ x?)

)
,

and for a non-zero α?, the component corresponding to agent i satisfies

x? =
N∑
j=1

W̃ijHj(x
?).

The details are omitted, but this imposes a rather strong structure on the maps Hn: x?

ought to be, not only a fixed point of the average map H, but also of all weighted averages

arising from multiplication by W̃ .1 Avoiding this requires α? to be zero.

From now onward, αk is a non-negative sequence that converges to zero. Moreover,

we assume that α0 = 1, that αk ∈ (0, 1], and that αk is non-summable, i.e.,

∞∑
n=0

αk =∞,

which is a technical condition. Informally, it prevents αk from converging to zero “too

fast”. To motivate why this is instrumental, note that, if αk converged to zero “too fast”,

then the recursion (4.5) would “very quickly approach” the distributed average consensus

algorithm, thus preventing “enough contribution” of the maps Hn to the computation.

1A simple situation where this holds is Hn(x?) = x? for all n, a prohibitively restrictive condition.

50



4.4 The Consensus and Off-Consensus Recursions

A good practice to gain insight into the working of a distributed algorithm is to look

at the recursions satisfied by the consensus and the off-consensus sequences. Let z =

(z1, . . . , zN) ∈ (Rd)N ; the consensus component of z, denoted by z̄, is the vector in Rd

defined by

z̄ :=
1

N

N∑
n=1

zn.

The off-consensus component, denoted by ẑ is the vector in (Rd)N defined by

ẑ := z − 1⊗ z̄.

Given a sequence of vectors zk ∈ (Rd)N , the corresponding consensus and the off-

consensus sequences will be denoted by z̄k and ẑk.2

4.4.1 Consensus and Off-Consensus Recursions of (4.5)

From the properties of consensus matrices, it follows that

z̄k+1 = (1− αk)z̄k + αkH̄(ẑk + 1⊗ z̄k)

= (1− αk)z̄k + αkH(z̄k) + αk
(
H̄(ẑk + 1⊗ z̄k)− (H(z̄k)

)
,

where H̄(z1, . . . , zN) = 1
N

∑N
n=1Hn(zn), and where zk was written as ẑk+1⊗z̄k. Similarly,

the properties of W̃ (recall that W = W̃ ⊗ Id, where W̃ is a consensus matrix), imply

that

W̃ − 1

N
11T z = (W̃ − 1

N
11T )(z − 1

N
11T z),

hence, the off-consensus sequence satisfies the recursion

ẑk+1 = (W − 1

N
11T ⊗ Id)

(
(1− αk)ẑk + αkH̃(ẑk + 1⊗ z̄k)

)
.

Remark 4.4.1. The consensus recursion corresponds to an “imperfect” Mann iteration,

2The consensus component of z ∈ RdN is ambiguous (it is not clear whether it lives in Rd or RN );
however, the number of agents will always be N and H will always be a map in Rd, hence, the consensus
component of z ∈ RdN is that of z ∈ (Rd)N .
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the Mann iteration of H plus an error, αkεk, where

εk =
(
H̄(ẑk + 1⊗ z̄k)−H(z̄k)

)
.

From the β-Lipschitzianity of each Hn, it follows that

‖εk‖ ≤ β1‖ẑk‖,

for a constant β1 depending on β.

Remark 4.4.2. We can now motivate the need for the boundedness assumption on each

Hn. To have convergence of (4.5) to 1 ⊗ x? is to have convergence to x? of the con-

sensus sequence and a vanishing off-consensus sequence, i.e., z̄k → x? and ẑk → 0; the

boundedness of each Hn implies that the recursion satisfied by ẑk is of the form

ẑk+1 = B
(
(1− αk)ẑk + αkδk

)
,

where ρ(B) < 1 and δk is a bounded sequence. From this observation, a straightforward

argument establishes that ẑk converges to zero, and, thus, as a result of the previous

remark, the consensus component satisfies

z̄k+1 = (1− αk)z̄k + αkH(z̄k) + αkεk,

with εk ≤ β1‖ẑk‖ → 0. Consequently, the recursion of the consensus sequence is the

Mann iteration of H plus a vanishing error.

If, on the other side, at least one map Hn was unbounded, then δk could “escape”

to infinity “faster” than αk converges to zero, thus forcing the product αkδk to “escape”

to infinity as well, possibly preventing ẑk from vanishing. It seems tempting to choose a

sequence αk with a “very very fast” convergence to zero, in order to cancel the speed at

which δk “escapes to infinity”; however, as previously noted, this “very quickly” leads to

z̄k+1 ≈ z̄k and ẑk+1 ≈ Bẑk.

The observations made in the two previous remarks are made precise in Lemma 4.4.1,

the proof of which relies on the Stolz-Cesàro theorem [72].

Theorem 4.4.1 (Stolz-Cesaro). Let ck and bk be two real sequences and suppose that bk

is strictly monotone and divergent. If

lim
k

ck+1 − ck

bk+1 − bk
= l ∈ [−∞,∞],
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then

lim
k

ck

bk
= l.

Proof. See [72]

Lemma 4.4.1. Consider the iteration (4.5), where H̃ is as defined in (4.3). Suppose

that each Hn is a β-Lipschitz map bounded by M . Then,

1) The off-consensus sequence ẑk converges to zero;

2) The recursion satisfied by consensus sequence is of the form

z̄k+1 = (1− αk)z̄k + αkH(z̄k) + αkεk,

where εk satisfies ‖εk‖ ≤ β1‖ẑk‖, for a non-negative constant β1 depending on β.

Hence, from 1), εk converges to zero.

Moreover, if αk is of the form αk = 1
(k+1)s

, with 0 < s < 1, then

a) The off-consensus sequence satisfies ‖ẑk‖ ≤ T
ks
, for a non-negative constant T ;

b) The error εk satisfies ‖εk‖ ≤ β1T
ks
.

Proof. Part 2) is a straightforward consequence of Lipschitzianity and b) follows directly

from 2) and a).

To prove 1), recall that W is symmetric and that ρ(W − 1
N

11T ⊗ Id) < 1, hence, up

to a similarity transformation, the recursion satisfied by ẑk is of the form

ẑk+1 = D
(
(1− αk)ẑk + αkδk

)
,

for a bounded sequence δk and a diagonal matrix D whose entries are, in magnitude, less

than one.3 Let λ be the largest (in magnitude) diagonal entry of D and observe that

the magnitude of each entry of ẑk, that is, each |ẑki |, denoted as ak = |ẑki |, satisfies the

recursive inequality

ak+1 ≤ |λ|
(
(1− αk)ak + αkC

)
, (4.6)

3This is a standard argument: choose V satisfying V T (W − 1
N 11T ⊗ Id)V = D, and, instead of ẑk,

consider the change of coordinates given by ẑk → V ẑk.
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where |λ| < 1 and C is a non-negative constant. The fact that α0 = 1 implies that

a1 ≤ |λ|C < C; moreover, if ak ≤ C, then

ak+1 ≤ |λ|
(
(1− αk)ak + αkC

)
≤ |λ|

(
(1− αk)C + αkC

)
= |λ|C < C,

showing inductively that ak is a non-negative bounded sequence.

Let a? = lim sup ak; from the boundedness of ak, it follows that 0 ≤ a? < ∞. State-

ment 1) now follows from taking the limit suppremum on both sides of (4.6), leading

to

a? ≤ |λ|a?,

and, since |λ| < 1, we conclude that a? = 0, thus proving 1).

The proof of a) is based on unfolding the recursive inequality (4.6), yielding

ak+1 ≤ C
k∑

n=0

|λ|k−n+1αn = C
k∑

n=0

|λ|k−n+1

(n+ 1)s
= C|λ|k+2

k+1∑
n=1

µn

ns
, (4.7)

where µ = 1
|λ| > 1. We show that the right-hand side of (4.7) is upper bounded by T

ks
,

for a non-negative constant T . In fact, we show something stronger, namely that the

sequence

|λ|k+2
∑k+1

n=1
µn

ns

1
ks

=

∑k+1
n=1

µn

ns

µk+2

ks

converges: if this sequence converges, it must bounded, hence the right-hand side of (4.7)

is upper bounded by T
ks

for a non-negative constant T .

Define ck =
∑k+1

n=1
µn

ns
and bk = µk+2

ks
and the idea is to use the Stolz-Cesaro theorem

(see Theorem 4.4.1). From µ > 1, it follows that bk is divergent; however, it is not

necessarily strictly monotone: note that bk+1 > bk is equivalent to

µ >
(k + 1)s

ks
. (4.8)

Nevertheless, the sequence (k+1)s

ks
tends to one, hence, there exists k0 such that (4.8) holds

for k ≥ k0. Redefine ck and bk to be, respectively, ck+k0 and bk+k0 , and the conditions of

Theorem 4.4.1 hold; note as well that the convergence of shifted sequences implies that

of the non-shifted ones.
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A straightforward manipulation shows that

(ck+1 − ck

bk+1 − bk
)−1

= µ
((k + k0)(k + 2 + k0)

(k + 1 + k0)(k + k0)

)s
−
((k + 1 + k0)(k + 2 + k0)

(k + 1 + k0)(k + k0)

)s
.

Each of the terms inside the parentheses is a quotient of monic polynomials in k of the

same degree and the function x→ xs is continuous. Consequently, as k →∞,

(ck+1 − ck

bk+1 − bk
)−1

→ µ− 1 > 0,

thus, from Theorem 4.4.1, we conclude that ck

bk
converges to 1

µ−1
, proving the result.

While the results of this section establish that the off-consensus sequence vanishes, no

claim is made regarding the convergence of the consensus sequence. This should not be

surprising, since the conditions on H are rather weak (Lipschizianity and boundedness

of each Hn). In the next two sections we look at what more can be said, if H is further

assumed to be a global contraction (Section 4.5) and a local contraction (Section 4.6).

4.5 The Global Contraction Case

Let each Hn satisfy the assumptions of the previous section, that is, each Hn is β-Lipschitz

and bounded by M . Throughout this section we further assume that the average map H

is a (global) µ- contraction, that is, for all x and y,

‖H(x)−H(y)‖ ≤ µ‖x− y‖,

where 0 ≤ µ < 1.

From the triangle inequality, it follows that

‖z̄k+1 − x?‖ =
∥∥∥(1− αk)(z̄k − x?) + αk

(
H(z̄k)−H(x?)

)
+ αkεk

∥∥∥
≤
(
1− αk(1− µ)

)
‖z̄k − x?‖+ αk‖εk‖,

(4.9)

and, from Lemma 4.4.1, ‖εk‖ vanishes. The non-summability of αk has not yet played

a role, and it is here that it will do so. To motivate its relevance, suppose that εk is

identically zero and observe that, in this case, (4.9) implies that ‖z̄k+1−x?‖ < ‖z̄k−x?‖,
so let m? be the limit of ‖z̄k − x?‖. The recursive inequality (4.9) with εk = 0 can be

equivalently written as

‖z̄k − x?‖ − ‖z̄k+1 − x?‖ ≥ αk(1− µ)‖z̄k − x?‖,
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and summing both sides from 0 to K yields

‖z̄0 − x?‖ ≥ ‖z̄0 − x?‖ − ‖z̄K+1 − x?‖ ≥ (1− µ)
K∑
k=0

αk‖z̄k − x?‖ ≥ (1− µ)m?

K∑
k=0

αk.

We conclude that αk is summable if m? is non-zero. Since αk was assumed to be non-

summable, m? must be zero, i.e., z̄k must converge to x?.

Recursion (4.9) is a particular instance of the recursive inequality

bk+1 ≤ (1− δk)bk + δkεk, (4.10)

where bk is a non-negative real sequence. There is an extensive literature, particularly on

stochastic approximation algorithms, with results on under which conditions this recursive

inequality implies the vanishment of bk (for example, see [68] and the references therein;

[73]; [74]); the following Lemma summarizes two of these results that are enough for our

purposes.

Lemma 4.5.1. Let bk and εk be two non-negative sequences and suppose that εk converges

to zero. Let δk be a non-summable sequence in [0, 1], that is,∑
k

δk =∞.

If there exists k0 such that, for all k ≥ k0, inequality (4.10) is satisfied, then,

1) The sequence bk converges to zero;

2) If both δk and εk are of the form A
(k+1)s

, with 0 < s < 1 and A > 0 (with the constant

A associated to δk possibly different from that associated to εk), then

bk ≤ L

ks
,

for a non-negative constant L.

Proof. See [74] for 1). For 2), see Lemma 4 in [73] with t = 2s.

The proof of the following theorem follows directly from Lemmas 4.4.1 and 4.5.1.

Theorem 4.5.1. Suppose that: 1) each Hn is a β-Lipschitz map bounded by M ; 2) the

average map H is a global contraction. Let αk be a non-summable sequence in [0, 1] that

converges to zero. Then, the recursion (4.5) converges to 1 ⊗ x?. Moreover, if αk is of

the form A
(k+1)s

, with 0 < s < 1 and A > 0, then,
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a) The off-consensus sequence satisfies ‖ẑk‖ ≤ T1
ks
, for a non-negative constant T1;

b) The consensus sequence satisfies ‖z̄k − x?‖ ≤ T2
ks
, for a non-negative constant T2.

From both a) and b) and the fact that zk = 1⊗ z̄k + ẑk, it follows that

‖zk − 1⊗ x?‖ ≤ T

ks
,

for a non-negative constant T .

4.6 The Local Contraction Case

Similar to the global contraction case, in this section, each Hn is assumed to be a β-

Lipschitz map bounded by a constant M . Contrary to the previous Section, the average

map H is not assumed to be a global contraction, but merely a local contraction with

respect to x?, that is, there exist constants δ > 0 and 0 ≤ µ < 1 such that

‖H(x)− x?‖ ≤ µ‖x− x?‖,

for all x satisfying ‖x − x?‖ < δ. Recall that, if H is differentiable at x?, a sufficient

condition for H to be a local contraction with respect to x? is that ρ
(
JH(x?)

)
< 1 (see

Ostrowski’s theorem in Chapter 3).

Informally, in this section we establish that if z̄k gets sufficiently close to x? for a

sufficiently large k, then the sequence z̄k converges to x?. Additionally, if αk is of the

form

αk =
A

(k + 1)s
,

for a non-negative constant A and for 0 < s < 1, then, the convergence of the consensus

sequence satisfies

‖z̄k − x?‖ ≤ T

ks
,

for a non-negative constant T .

As in the global contraction case, the idea is to use Lemma 4.5.1 to prove the result.

However, contrary to the global contraction case, we cannot use this result immediately

since it is not necessarily true that the whole sequence satisfies (4.9). In fact, while

‖z̄k+1 − x?‖ ≤
(
1− αk(1− µ)

)
‖z̄k − x?‖+ αk‖εk‖,
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provided that ‖z̄k−x?‖ < δ, this does not necessarily imply that ‖z̄k+1−x?‖ < δ, hence,

z̄k+1 does not necessarily satisfy (4.9), that is, it does not necessarily follow that

‖z̄k+2 − x?‖ ≤
(
1− αk+1(1− µ)

)
‖z̄k+1 − x?‖+ αk+1‖εk+1‖.

To overcome this issue, let k0 be such that

‖εk‖ ≤ (1− µ)δ

for k ≥ k0, and observe that if z̄k satisfies ‖z̄k − x?‖ < δ, for k ≥ k0, then,

‖z̄k+1 − x?‖ ≤
(
1− αk+1(1− µ)

)
‖z̄k − x?‖+ αk‖εk+1‖

≤
(
1− αk(1− µ)

)
δ + αk(1− µ)δ = δ.

By induction, this shows that if ‖z̄k1 − x?‖ < δ, for k1 ≥ k0, then, for all k ≥ k1,

‖z̄k+1 − x?‖ ≤
(
1− αk(1− µ)

)
‖z̄k − x?‖+ αk‖εk‖.

This observation, together with Lemmas 4.4.1 and 4.5.1, yields the following theorem.

Theorem 4.6.1. Suppose that: 1) each Hn is a β-Lipschitz map bounded by M ; 2) the

average map H is a local contraction with respect to x?. Let αk be a non-summable

sequence in [0, 1] that converges to zero. Then, there exists k0 such that if, ‖z̄k1 − x?‖
is sufficiently small, for k1 ≥ k0, then recursion (4.5) converges to 1 ⊗ x?. Moreover, if

αk = A
(k+1)s

, with 0 < s < 1 and A > 0, then

a) The off-consensus sequence satisfies ‖ẑk‖ ≤ T1
ks
, for a non-negative constant T1;

b) The consensus sequence satisfies ‖z̄k − x?‖ ≤ T2
ks
, for a non-negative constant T2.

From both a) and b) and the fact that zk = 1⊗ z̄k + ẑk, it follows that

‖zk − 1⊗ x?‖ ≤ T

ks
,

for a non-negative constant T .

4.7 Comments and References

In this chapter, we presented a distributed algorithm for finding fixed points x? of an

average map H, and showed two things:
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1) If H is a global contraction, then the corresponding distributed algorithm converges

to 1⊗ x?;

2) If H is a local contraction, then, if, for a sufficiently large k, zk is sufficiently close to

1⊗ x?, then the distributed algorithm converges to 1⊗ x?.

While, similar to its centralized counterpart, xk+1 = H(xk), the distributed algorithm

(4.5) requires only the agents to store a d-dimensional vector at each iteration, it has at

least two big downsides, as a consequence of relying on a vanishing step-size. First, the

agents need to know which iteration they are executing. Secondly, the rate of convergence

of xk+1 = H(xk) is sacrificed. To be fair, we point out that we only provided an upper

bound on the convergence rate that seems to indicate its sub-linearity; however, as the

simulations in Chapter 7 demonstrate, the rate is in fact sub-linear.

4.7.1 Distributed Optimization

As noted in Remark 4.2.2, if each map Hn is of the form Hn = I−∇fn, for a differentiable

function fn, algorithm (4.5) is nothing but the distributed gradient descent with shrinking

step-size (see [25]). Historically speaking, this algorithm is of great importance, being one

of the first algorithms suggested to solve the distributed optimization problem described

in Chapter 3. A corollary of Theorem 4.5.1 is that the distributed gradient descent

with vanishing step-size converges, whenever each fn is a Lipschitz function and the

average function, 1
N

∑N
n=1 fn, is strongly convex. To prove this via Theorem 4.5.1, we

only need to appeal to the following standard result in convex optimization which shows

that “centralized” gradient descent is a global contraction.

Lemma 4.7.1. Let f : Rd → R be a differentiable strongly convex function with β-

Lipschitz gradient. Then, the gradient map, that is, the map on Rd defined by

x→ x− α∇f(x),

is a contraction for a sufficiently small non-negative constant α.

Proof. See any standard book on optimization; for example [75].

Suppose that: 1) each fn is a differentiable function on Rd with a Lipschitz gradient;

2) the gradient maps, ∇fn, are all bounded by the same constant M ; 3) the average map,

f =
1

N

N∑
n=1

fn
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is strongly convex. Consider the maps Hn on Rd given by

Hn(x) = x− α∇fn(x)

and, from the lemma above, let α be such that the average map H,

H(x) =
1

N

N∑
n=1

Hn(x) = x− α∇f(x),

is a µ-contraction. Recursion (4.5) with the maps Hn so-defined reduces to the dis-

tributed gradient descent with shrinking step-size, whose convergence guarantees follow

from Theorem 4.5.1, the contractiveness of H, the Lipschitzianity of each Hn, and the

boundedness of each ∇fn.

Remark 4.7.1. Regarding the boundedness condition there is a subtlety. Our results

require the maps Hn to be bounded and, in this case, even though the gradients are assumed

to be bounded, the maps Hn are not. However, a careful inspection of the convergence

proofs reveals that the only place where this condition is used is in the proof of Theorem

4.4.1, the modification of which presents no serious challenge. Observe that the distributed

gradient descent recursion is given by

zk+1 = W
(
zk − αk∇(zk)

)
, (4.11)

where ∇(zk) =
(
H1(zk1 ), . . . , HN(zkN)

)
. Hence, (4.6) in Theorem 4.4.1 should be replaced

by

ak+1 ≤ |λ|(ak + αkC), (4.12)

which, from Lemma 1.6 in [68], converges to zero. Unfolding (4.12) results in an in-

equality that can be analyzed in the same way as (4.7), that is, using the Stolz-Cesaro

theorem.

4.7.2 The Memory-Convergence Rate Trade-Off

The distributed algorithm (4.5) is of the form

zk+1 = Fk(z
k),

where Fk is a map defined on RdN . As a result, the implementation of (4.5) only requires

each agent to store a d-dimensional vector, the dimension of the domain of H. Whenever
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H is a global contraction, (4.5) converges to 1 ⊗ x?, although it does so at a sub-linear

rate, a qualitatively slower rate than that exhibited by the convergence of xk+1 = H(xk)

towards x?; this “downgrade” in convergence rate is a consequence of the vanishing step-

size. With this in mind, a natural and important question is whether there exists a

distributed algorithm that can be written as

zk+1 = F (zk),

for a map F defined on RdN and that preserves the linear convergence rate of xk+1 =

H(xk), whenever H is a global contraction; or, by contrast, whether insisting that each

agent should merely store a d-dimensional vector at each iteration, necessarily comes with

the price of a sacrifice in convergence rate.

Two interesting works, [76] and [77], touch upon this issue. The first, [76], shows that

if αk is constant in (4.11), rather than vanishing, then, instead of convergence to 1⊗ x?,
convergence is only guaranteed to a neighborhood of 1⊗ x?; specifically, in the strongly

convex setup, the algorithm converges linearly to a O(α)-radius neighborhood of 1⊗ x?

(see [76] for further details and simulations). This, however, could be a specific feature of

(4.11), and there could be another algorithm that preserved the convergence guarantees

of the centralized gradient, requiring agents to only store a d-dimensional vector; this last

point leads us to the second work, [77]. In [77], the authors show that for a sufficiently

general class of distributed algorithms with constant step-sizes, no algorithm where the

agents merely store a d-dimensional vector can solve the distributed optimization problem,

for all graph topologies and functions f1, . . . , fN (see [77] for the formal treatment); as

the authors put it

“This provides an explanation as to why the distributed gradient descent

algorithm must use a diminishing stepsize...”

4.7.3 On The Convergence Proof

In the global contractive case, the high-level structure of the convergence proof is as

follows. First, the recursion

zk+1 = Fk(z
k)
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is “broken” into two recursions

z̄k+1 = F1,k(z̄
k, ẑk)

ẑk+1 = F2,k(z̄
k, ẑk),

and it is noted that the convergence of zk to 1 ⊗ x? is equivalent to the convergence of

z̄k to x? and the vanishment of ẑk. Secondly, it is shown that ẑk vanishes by ignoring the

contribution of z̄k and by “replacing this” by a bounded sequence. Finally, Lipschitzianity

is used to show that,

‖z̄k+1 − x?‖ ≤
(
1− αk(1− µ)

)
‖z̄k − x?‖+ αkβ1‖ẑk‖,

which, after having established that ẑk vanishes, leads to a relatively straightforward

proof via Lemma 4.5.1.

This is a rather sequential proof that can be broken into the following two logical

statements:

(A) The sequence ẑk vanishes.

(B) If the sequence ẑk vanishes, then the sequence z̄k converges to x?.

The proof of (A) is achieved by an “exogenous” argument (the boundedness of each

Hn), given that it ignores how z̄k “helps” ẑk to vanish. By contrast, the analysis of the

algorithms in the next chapter replaces this “hierarchical reasoning” by a more “circular”

one. In fact, logically speaking, it looks more like proving:

(A’) If the sequence ẑk vanishes, then z̄k converges to x?.

(B’) If the sequence z̄k converges to x?, then ẑk vanishes.

4.7.3.1 The Stolz-Cesàro Theorem

We finish this Chapter with some remarks on the Stolz-Cesàro theorem( Theorem 4.4.1).

While its proof is beyond the scope of this work (we refer the reader to [72]), we mention

that it can be seen as a discrete-time analog of the much more familiar L’Hôpital’s rule.

To see this, we introduce the extremely useful notation used in [64].

A sequence xk in R is essentially a function f : N0 → R, the identification being

xk = f(k). With this in mind we can define the “derivative” of f , denoted by f ′ as the

function f ′(k) = f(k + 1) − f(k), since this measures the change in f at time k. Under

this notation, an algorithm of the form xk+1 = H(xk) is the discrete-time analog of a
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differential equation, since it can be written as

f ′ = H̃(f), (4.13)

where H̃(x) = H(x)− x. To see this, note that

f(k + 1)− f(k) = f ′(k) = H̃ ◦ f(k) = H
(
f(k)

)
− f(k),

which is equivalent to f(k + 1) = H
(
f(k)

)
; the identification xk = f(k) leads to the

algorithm xk+1 = H(xk). Observe that, unlike in the theory of differential equations,

the existence and uniqueness of the solution of a discrete-time differential equation, i.e.

(4.13), is immediate, that solution being simply f(k) = Hk
(
f(0)

)
.

Another theorem, whose proof in the discrete-time version poses no serious challenge,

is the fundamental theorem of calculus. In fact, if f : N→ R is a function and we define

the “integral” of f from k = 0 to K by

∫ K

k=0

f :=
K∑
k=0

f(k),

we easily see that

∫ K

k=0

f ′ =
K∑
k=0

f ′(k) =
K∑
k=0

f(k + 1)− f(k) = f(K + 1)− f(0).

Concerning the Stolz-Cesàro theorem, note that if the sequences ck and bk in the

statement of Theorem 4.4.1 are identified, respectively, with f(k) and g(k), then, the

Stolz-Cesàro theorem can be reformulated as: if

lim
k→∞

f ′(k)

g′(k)
= l

then

lim
k→∞

f(k)

g(k)
= l;

this is the familiar L’Hôpital’s rule when f and g are functions in R rather than N.

This connection between “discrete-time calculus” and standard differential calculus

sheds some light on why it is “natural” to use the Stolz-Cesàro theorem when approaching
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the problem faced in the proof of Lemma 4.4.1. Recall that, in (4.7), we showed that

C|λ|k+2

k+1∑
n=1

µn

ns
≤ T

ks
,

for a non-negative constant T . We did this by observing that

|λ|k+2
∑k+1

n=1
µn

ns

1
ks

=

∑k+1
n=1

µn

ns

µk+2

ks

converged, due to the Stolz-Cesàro theorem. If we were not “aware” of the existence

of the Stolz-Cesàro, a natural way to approach this problem would be to see how its

continuous-time “twin” looks like; that amounts to the inspection of the limit

lim
k→∞

∫ k+1

1
µx

xs
dx

µk+2

ks

.

An elementary calculus approach is to note that the L’Hôpital’s rule, together with the

Fundamental Theorem of Calculus applied to the numerator, easily yields the limit. This

illustrates why it is natural to look for a discrete-time version of the L’Hôpital’s rule.

To conclude, we remark that, incidentally, this good practice of inspecting the “conti-

nuous-time twin” of a problem in discrete-time is behind the derivation in Appendix

B corresponding to Remark 3.2.7 of Chapter 3. There, the goal was to show that the

iteration xk+1 = xk− (xk)3 converges to zero at a sub-linear rate, if initialized sufficiently

close to zero. The continuous-time analog is the differential equation

f ′ = −f 3,

which is easily solved by integrating both sides of

− f
′

f 3
= 1.

The details are omitted but each step of the derivation can be motivated by a correspond-

ing continuous-time step.
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Chapter 5

Distributed Banach-Picard Iteration

5.1 Introduction

This chapter addresses the problem described in Section 3.3 of Chapter 3, that, is, it

shows how, given N maps H1, . . . , HN on Rd and an undirected connected graph G, to

construct maps F : RdN × RdN → RdN × RdN such that:

1) the Banach-Picard iteration of F has distributed implementation respecting G;

2) the fixed points of F are of the form (1 ⊗ x?, w?), where x? is a fixed point of H =

1/N
∑N

n=1 Hn;

3) the convergence properties of the Banach-Picard iteration of F with respect to a fixed

point (1⊗x?, w?) are those of the Banach-Picard iteration of H with respect to x?.

Chapter 4 introduced an algorithm for the distributed computation of fixed points that

essentially (for the precise meaning see the results therein) satisfies 1) and 2), although

it fails to meet 3); in fact, as a consequence of relying on a diminishing step-size, the

convergence properties are lost. As anticipated in Section 4.7.2 of Chapter 4, the price

paid for 3) is that the implementation of the Banach-Picard iteration of F requires twice

the memory of the algorithm described therein.

The contents of this chapter are an original contribution and build upon our work, [13],

published in the IEEE Transactions on Automatic Control. [13] addresses 3), showing

that ρ
(
JH(x?)

)
< 1 implies that ρ

(
JF
(
1⊗ x?, w?)

)
< 1, by relying on an result ([78, 17])

from perturbation theory (PT) of linear operators that establishes the differentiability

of semi-simple eigenvalues. The results of this chapter extend those of [13] in three

ways. First, the proof in [13] is shown to be robust enough to handle a particular case

of ρ
(
JH(x?)

)
> 1; specifically, we show that if JH(x?) has an eigenvalue with real part
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larger than one, then ρ
(
JF
(
1⊗x?, w?)

)
> 1. Second, if H is a continuous (not necessarily

differentiable) global contraction with respect to x?, then the same is true for F with

respect to (1⊗ x?, w?). Third, if H is a continuous local contraction with respect to x?,

then the same is true for F with respect to (1 ⊗ x?, w?). The local contraction result

appears to be a a considerable generalization of the result in [13], in the sense that, from

Ostrowski’s theorem (see Chapter 3), a map satisfying ρ
(
JH(x?)

)
< 1 is, in particular,

a local contraction. However, this is not the case, because, to arrive at the result, we

assume that each map Hn is Lipschitz, an assumption absent in [13].

The three extensions are relevant on their own. The first, is relevant in the light

of Theorem 3.2.4 of Chapter 3 if both H and F are local diffeomorphisms, then, with a

random initialization, the probability thatH and F converge, respectively, towards x? and

(1⊗x?, w?) is zero. The second contains, as a particular case, the EXTRA (see [28]) and

DIGing (see [32, 31]) algorithms for gradient descent, hence it is interesting as a “unifying

proof”; the proof is loosely based on that in [31] for the strongly convex case, and we

believe that improves on it by identifying its key blocks. Finally, the third, is relevant

as a step towards the generalization of the result in [13], that is, the continuous (not

necessarily differentiable) local contraction case without the Lipschitzianity assumption.

To finish, Appendix A presents an “elementary” proof of a simplified version (enough

for our needs) of the PT result. In fact, as far as we know, the known proofs of this

result (see [78] and [17]) rely on tools from Complex Analysis. Our proof, by contrast,

only relies on results from matrix analysis (e.g. Geršgorin’s Theorem) and is inspired on

the proof for simple eigenvalue case that is presented in [57], constituting, therefore, a

generalization of the latter.

5.2 The Family of Algorithms

Consider, as in Section 3.3 of Chapter 3, a network of N agents, where the interconnection

structure is represented by an undirected and connected graph. Recall that agent n holds

a map Hn : Rd → Rd, and the goal is to compute a fixed point of the average map,

H =
1

N

N∑
n=1

Hn.

Moreover, each agent is restricted to performing computations using Hn and communi-

cating with its neighbors.
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5.2.1 “Distributed Description” of the Fixed Points of H

Let C be the consensus space of RdN , that is, C := {(z1, . . . , zN) ∈ RdN : z1 = · · · = zN},
and let π : Rd → C be the map that lifts the points in Rd to the consensus space of

RdN , i.e., π(x) = 1 ⊗ x. This initial section provides a “distributed description” of the

fixed points of H through the construction of a map G : RdN × RdN → RdN × RdN for

which π
(
Fix(H)) is the set of z ∈ RdN such that G(z, w) = 0, for a w ∈ RdN . Crucially,

computing the map G has distributed implementation, hence the phrasing “distributed

description”.

The motivation for searching G should be quite evident: once G is found, a näıve

distributed algorithm to consider is

zk+1 = zk + αG1(zk, wk)

wk+1 = wk + αG2(zk, wk),
(5.1)

for a non-zero constant α. In fact, provided thatG is continuous, if zk and wk converge, re-

spectively, to z? and w?, then, G(z?, w?) = 0, which in turn implies that z? ∈ π
(
Fix(H)

)
.

Let L be a symmetric dN×dN matrix with ker(L) = C, the consensus space. A point

z ∈ RdN is the lift of a fixed point of H, i.e., z ∈ π
(
Fix(H)

)
, if and only ifH(z̄)− z̄ = 0

Lz = 0,

where recall that z̄ = 1/N
∑N

n=1 zn (see Chapter 4). Equivalently,
(

1
N

1T ⊗ Id
)(
H̃(1⊗ z̄)− 1⊗ z̄

)
= 0

Lz = 0,

where H̃(z1, . . . , zN) =
(
H1(z1), . . . , HN(zN)

)
(see Chapter 4). Now, if Lz = 0, then all

the components of z are equal, i.e., z = 1⊗ z̄. Therefore,
(

1
N

1T ⊗ Id
)(
H̃(z)− z

)
= 0

Lz = 0.

The first of these equations is equivalent to H̃(z)− z ∈ ker(L)⊥, since the rows of 1T ⊗ Id
form a basis of this space. From ker(L)⊥ = range(L), it follows that z ∈ π

(
Fix(H)

)
if
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and only if H̃(z)− z ∈ range(L)

z ∈ ker(L).
(5.2)

Let G(z, w) =
(
H̃(z)− z + Lw,−Lz

)
and, by further assuming L to be compatible with

the graph structure1, we obtain a “distributed description” of the fixed points of H, that

is, z ∈ π
(
Fix(H)

)
if and only if there exists w ∈ RdN such that G(z, w) = 0. Furthermore,

since products by L respect the network topology and computing H̃ can be carried out

locally, the computation of the map G has distributed implementation.

5.2.2 Parametric Family of Algorithms

A natural distributed algorithm to consider is (5.1): if (5.1) converges, then the agents

succeed in agreeing on a fixed point of H. However, we are concerned with ensuring

convergence, thus, to this end, we consider a parametric family of algorithms, of which

(5.1) is an instance (take α = −β and η = 0 below). The rest of this chapter is devoted

to studying the parametric family defined by

F : RdN × RdN → RdN × RdN

(z, w)→
(
z + αR(z) + βLsw − ηLz, w − βLsz

)
,

(5.3)

where R(z) = H̃(z)− z, and

1) α, β, and η are positive;

2) s is either 1 or 1/2;

3) L is a dN × dN matrix such that

a) L is symmetric and positive semidefinite;

b) ρ(L) < 2;

c) ker(L) = C = {(z1, . . . , zN) ∈ RdN : z1 = · · · = zN}; and

d) L = L̃⊗ Id, where L̃ is N ×N and has the property that L̃ij = 0 if and only if

agents i and j are not neighbors (thus establishing the compatibility with the

network structure).

The following remarks are due:

1The existence of L satisfying these conditions follows from the results in Chapter 2. For example,
take L = I −W , where W = W̃ ⊗ Id and W̃ is a consensus matrix.
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Remark 5.2.1. The existence of L with the abovementioned conditions is ensured by the

results in Chapter 2. For example, let W = W̃ ⊗ Id, for a consensus matrix W̃ , and

define L = I −W .

Remark 5.2.2. Because L is assumed to be positive semidefinite, the square root of L,

L
1
2 (corresponding to s = 1/2), is well defined.

Remark 5.2.3. For s = 1, the iteration (zk+1, wk+1) = F (zk, wk) has distributed imple-

mentation, and, in contrast, for s = 1/2, given the presence of L
1
2 , it does not (whereas

products by L only require each node to communicate with its neighbors, the same is not

true with L
1
2 , given that L

1
2 need not be compatible with the graph topology). Nevertheless,

as shown in Section 5.4, the elimination of the second variable yields an algorithm having

distributed implementation.

5.2.3 Fixed Points of F and the Map F̃

Consider the map G(z, w) =
(
H̃(z) − z − Lw,Lz

)
from Section 5.2.1. We saw that x?

is a fixed point of H if and only if there exists w? such that G(1⊗ x?, w?) = 0. To have

a “distributed description”, L must be compatible with the network structure. However,

to have a, not necessarily distributed, description of the form G(1 ⊗ x?, w?) = 0, it is

enough to have a symmetric L with kerL = C. Consequently, if L is replaced by α/βLs

in G, it still holds that x? is a fixed point of H if and only there exists w? such that

H̃(1⊗ x?)− 1⊗ x? +
β

α
Lsw? = 0.

This establishes the following simple lemma.

Lemma 5.2.1. If x? ∈ Rd is a fixed point of H, then there exists w? ∈ RdN such that

(1 ⊗ x?, w?) is a fixed point of F . Conversely, if (z?, w?) is a fixed point of F , then

z? = 1⊗ z̄? and z̄? is a fixed point of H.

The following caveat must be addressed before proceeding: w? is not unique. In fact,

if w? is such that (1⊗ x?, w?) is a fixed point of F , then any point in the set w? + ker(L)

is also a fixed point of F . Informally, to each fixed point x? of H, there is an associated

d-dimensional (the dimension of ker(L)) affine subspace of fixed points of F . As a result,

regardless of the properties of H (global contraction, local contraction, etc), no fixed

point of F is isolated.2 This is a crucial observation, because it shows to be pointless to

2A fixed point x? of a map is isolated if there exists a neighborhood of x? in which the map has no
fixed points other than x?.
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attempt to prove the local contractivness of F , since, otherwise, its fixed points would

be isolated.

To address this issue, we begin by singling out a natural w? to play the role of a

“reference” fixed point. In fact, every w ∈ RdN has a unique orthogonal decomposition in

ker(L) + ker(L)⊥, w = 1⊗ w̄+ ŵ, where w̄ and ŵ are, respectively, the consensus and the

off-consensus components (see Chapter 4). Given a fixed point x? of H, the set of w? such

that (1⊗ x?, w?) is a fixed point of F is the set of w? satisfying −α/βR(1⊗ x?) = Lsw?.

Therefore, a natural w? to take is the one (it is unique) with zero consensus component,

i.e., the unique w? such that −α
β
R(1⊗ x?) = Lsw?

w̄? = 0.

The unique w? is easily found using the Moore-Penrose inverse3 of Ls, denoted by (Ls)+,

i.e., let

w? = −α
β

(Ls)+R(1⊗ x?).

All of this leads to the following refined version of Lemma 5.2.1.

Lemma 5.2.2. Let ψ : Rd → RdN be the map defined by

ψ(x) =
(
1⊗ x,−α

β
(Ls)+R(1⊗ x)

)
.

If x? is a fixed point of H, then ψ(x) is a fixed point of F . Conversely, if (z?, w?) is a

fixed point of F , then z̄? is a fixed point of H, and

(z?, w?) = ψ(z̄?) + (0, w̄?).

5.2.3.1 The Map F̃

We are ultimately interested in proving statements such as: if x? is a fixed point of H

satisfying ρ
(
JH(x?)

)
< 1, then ψ(x?) is a fixed point of F satisfying ρ

(
JF (ψ(x?)

)
<

1. However, this quest is doomed to fail: ψ(x?) is not an isolated fixed point, thus

preventing F from being a local contraction with respect to ψ(x?). To overcome this

3The Moore-Penrose inverse of a symmetric matrix A can be defined in the following way: let V be
an orthogonal matrix such that V TDV = A for a diagonal matrix D, the Moore-Penrose inverse of A
is the matrix V T D̃V , where D̃ is a diagonal matrix with D̃ii = 0 if Dii = 0 and D̃ii = D−1ii otherwise.
It can be proved that this construction is independent of V , that is, we obtain the same matrix if we
replace V by any other Ṽ satisfying Ṽ T D̂V = A, where D̂ is diagonal.
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issue, this section introduces a map F̃ that does not distinguish between fixed points

points in ψ(x?) +
(
0, ker(L)

)
. The construction of F̃ (see below) stems from the simple

observation that, if (z1, w1) and (z2, w2) satisfy (z1, w1) − (z2, w2) ∈
(
0, ker(L)

)
, then

F (z1, w1) − F (z2, w2) ∈
(
0, ker(L)

)
. This shows that F “descends to a map” F̃ on the

quotient RdN×RdN/
(

ker(L)
)
, defined by (z, w)+

(
0, ker(L)

)
→ F (z, w)+

(
0, ker(L)

)
. The

notion of quotient, in the case of vectors spaces, can be easily expressed in coordinates, by

introducing a matrix Ũ with columns forming an orthonormal basis of range(L), because

RdN/
(

ker(L)
)

is isomorphic to range(L). To this end, let

F̃ : RdN × Rd(N−1) → RdN × Rd(N−1)

(z, w̃)→
(
z + αR(z) + βLsŨ w̃ − ηLz, w̃ − βŨTLsz

)
,

(5.4)

where Ũ is a matrix with columns forming an orthonormal basis of range(L), and, without

loss of generality, assume that the columns of Ũ are eigenvectors of L associated to non-

zero eigenvalues of L. Moreover, let

ψ̃ : Rd → RdN × Rd(N−1)

x→
(
1⊗ x,−α

β
ŨT (Ls)+R(1⊗ x)

)
.

Given that F̃ “ignores” the consensus component of w, a straightforward calculation

shows that, “under ψ̃”, the fixed points of H are in one-to-one correspondence with those

of F̃ ; this is the content of the next lemma.

Lemma 5.2.3. If x? is a fixed point of H, then ψ̃(x?) is a fixed point of F̃ . Conversely,

if (z?, w?) is a fixed point of F̃ , then (z?, w?) = ψ(z̄?).

This chapter establishes three types of results:

1) If ρ
(
JH(x?)

)
< 1 or JH(x?) has an eigenvalue with real part larger than one, then, for

particular choices of η and β depending on s, there exists α sufficiently small such

that

sign
(

1− ρ
(
JF̃ (ψ̃(x?))

))
= sign

(
1− ρ

(
JH(x?)

))
. (5.5)

2) If H is not necessarily differentiable, each Hn is a Lipschitz map, and H is a local

contraction with respect to a fixed point x?, then, for particular choices of η and β

depending on s, there exists α sufficiently small such that F̃ is a local contraction

with respect to the fixed point ψ(x?);
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3) If H is a global contraction with respect to a fixed point x? and each Hn is a Lips-

chitz map, then, for particular choices of η and β depending on s, there exists α

sufficiently small such that F̃ is a global contraction with respect to the fixed point

ψ(x?).

Before proceeding, note that the presence of Ũ prevents the Banach-Picard iteration

of F̃ , i.e., (zk+1, w̃k+1) = F̃ (zk, w̃k), from having distributed implementation. However,

as the next section shows, to understand the Banach-Picard iteration of F it is enough

to understand that of F̃ .

5.2.4 Connection Between F and F̃

Consider the trajectory induced by the Banach-Picard iteration of F with initialization

in (z0, w0), that is, the sequence recursively defined as

(z0, w0) ∈ RdN × RdN

(zk+1, wk+1) = F (zk, wk).
(5.6)

Consider as well the orthogonal decomposition of w0 in its consensus and off-consensus

components w0 = 1 ⊗ w̄0 + ŵ0 (see Chapter 4). Since Ũ is a matrix with columns

forming an orthonormal basis of range(L) = ker(L)⊥, and ker(L) is the consensus space,

the orthogonal decomposition can be rewritten as w0 = 1 ⊗ w̄0 + Ũ ŨTw0. From the

properties of F , it follows that (zk, wk) is easily recovered from (uk, vk), where

(u0, v0) = (z0, Ũ ŨTw0)

(uk+1, vk+1) = F (uk, vk).

In fact, note that zk = uk, and wk = 1 ⊗ w̄0 + vk, where vk ∈ range(L) for all k. To

make the connection with F̃ , express vk in the basis formed by the columns of Ũ , i.e.,

let w̃k = ŨTvk. The fact that, for all k, vk ∈ range(L) implies that Ũ w̃k = Ũ ŨTvk = vk.

Consequently, zk = uk and wk = 1⊗ w̄0 + Ũ w̃k, where (uk, w̃k) is the trajectory given by

(u0, w̃0) = (z0, ŨT Ũ ŨTw0) = (z0, ŨTw0)

(uk+1, w̃k+1) = F̃ (uk, w̃k).

We summarize this in the following lemma.
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Lemma 5.2.4. Consider the sequence (zk, wk) ∈ RdN × RdN recursively given by

(z0, w0) ∈ RdN × RdN

(zk+1, wk+1) = F (zk, wk),

and define the sequence (uk, w̃k) ∈ RdN × Rd(N−1) by

(u0, w̃0) = (z0, ŨTw0)

(uk+1, w̃k+1) = F̃ (uk, w̃k).

Then, (zk, wk) and (uk, w̃k) are related by zk = uk and wk = 1⊗ w̄0 + Ũ w̃k.

This result is shows that the properties of (zk+1, wk+1) = F (zk, wk) are completely

characterized by those of (zk+1, w̃k+1) = F̃ (zk, w̃k).

5.3 Convergence Analysis

5.3.1 The Linear Part of F̃

The map F̃ , defined in (5.4), is of the form “linear map + non-linear map”. In fact,

F̃ can be written as (z, w̃) → M(η, β)[zT , w̃T ]T + αT (z, w̃), for a matrix M(η, β) and

a non-linear map T (z, w). If, for sufficiently small α, there is any hope for F̃ to be a

local contraction, then it seems plausible to look for η and β such that ρ
(
M(η, β)

)
≤ 1.

To give an intuition on the plausibility of this statement, observe that if α is “very

very small”, then F̃ (z, w̃) ≈ M(η, β)[zT , w̃T ]T and the convergence of Mk(η, β)[zT0 , w̃
T
0 ]T

requires ρ
(
M(η, β)

)
≤ 1. Otherwise, there would be an “expansive” invariant direction

of M(η, β) and in that direction the iteration diverges.

The “linear part” of F̃ , denoted above by M(η, β), is given by I + Â(η, β), where

Â(η, β) =

[
−ηL βLsŨ

−βŨTLs 0

]
. (5.7)

The eigenvalues of I + Â(η, β) are of the form 1 + µ, where µ is an eigenvalue of Â(η, β),

hence, it is enough to focus on these. Recall that Ũ is a matrix with columns forming

an orthonormal basis of eigenvectors of L associated to non-zero eigenvalues, i.e., an

orthonormal basis of range(L). Consider the matrix U = [Ũ , Û ], where

Û =
1√
N

1N ⊗ Id,
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that is, Û is a matrix with columns forming an orthonormal basis of ker(L).

The matrix A(η, β) obtained by replacing Ũ by U in Â(η, β), i.e.,

A(η, β) =

[
−ηL βLsU

−βUTLs 0

]

corresponds to “appending” to Â(η, β) d rows and columns of zeros, i.e.,

A(η, β) =

[
Â(η, β) 0

0 0

]
,

because we are enlarging Ũ by vectors in ker(L); we, thus, focus on the eigenvalues of

A(η, β).

Since UTLU = Λ, where Λ is a diagonal matrix with the elements in the diagonal being

the eigenvalues of L, and eigenvalues are preserved by similarity, consider the similarity

transformation [
UT 0

0 I

]
A(η, β)

[
U 0

0 I

]
=

[
−ηΛ βΛs

−βΛs 0

]
,

which implies the following lemma.

Lemma 5.3.1. The non-zero eigenvalues of Â(η, β) are those of[
−ηΛ βΛs

−βΛs 0

]
. (5.8)

Let ξ be an eigenvalue of (5.8) and let (u, v) 6= (0, 0) be an associated eigenvector.

There must exist i such that (ui, vi) 6= 0 and, from the eigenvalue equation,[
−ηΛ βΛs

−βΛs 0

][
u

v

]
= ξ

[
u

v

]
,

we conclude that [
−ηλi βλsi

−βλsi 0

][
ui

vi

]
= ξ

[
ui

vi

]
.

Therefore, if ξ is an eigenvalue of (5.8), there exists i ∈ {1, . . . , dN} such that ξ is an
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eigenvalue of [
−ηλi βλsi

−βλsi 0

]
. (5.9)

Conversely, if ξ is an eigenvalue of (5.9) associated to (ui, vi) 6= 0, then taking (u, v) with

(uj, vj) = 0, for j 6= i, yields an eigenvector of (5.8) associated to ξ. We conclude that:

Lemma 5.3.2. Let λ1, . . . , λdN be the eigenvalues of L. The set of non-zero eigenvalues

of Â(η, β) is the set

dN⋃
i=1

{
x ∈ C− {0} : x2 + ηλix+ λ2s

i β
2 = 0

}
.

Moreover, since, by assumption, β 6= 0, the set of non-zero eigenvalues of Â(η, β) is the

set ⋃
i=1,...,dN :λi 6=0

{
x ∈ C : x2 + ηλix+ λ2s

i β
2 = 0

}
.

Recall that the goal is to choose η and β such that ρ
(
I + Â(η, β)

)
≤ 1, and, thus,

consider
(
I + Â(η, β)

)
v = v, or, equivalently, consider ker

(
Â(η, β)

)
. From the properties

of Ũ it follows that, for η, β 6= 0, ker
(
Â(η, β)

)
= ker(L)× {0}. Observe that

(
ker(L)× {0}

)⊥
= ker(L)⊥ × {0}⊥ = span(L)× Rd(N−1),

and note that both ker(L)×{0} and span(L)×Rd(N−1) are invariant under Â(η, β) (this

follows from span(L) = span(Ls)). Let

Û =

[
Û

0

]
=

[
1√
N

1N ⊗ Id
0

]
, (5.10)

i.e., Û is a matrix with columns forming an orthonormal basis of ker(L)× {0}, and, let

Ũ be a matrix with columns forming an orthonormal basis of span(L) × Rd(N−1). We

conclude that

Lemma 5.3.3. Let λ1, . . . λdN be the eigenvalues of L. The matrix I+Â(η, β) is unitarily

similar to [
ÛT

ŨT

](
I + Â(η, β)

) [
Û, Ũ

]
=

[
Id 0

0 I + Â(η, β)

]
, (5.11)
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where the eigenvalues of Â(η, β) are the non-zero eigenvalues of Â(η, β), i.e., the set⋃
i=1,...,dN :λi 6=0

{
x ∈ C : x2 + ηλix+ λ2s

i β
2 = 0

}
.

To finish this section, we show that for both cases, s ∈ {1/2, 1}, there are positive η

and β such that I+ Â(η, β) is unitarily similar to (5.11) with ρ
(
I+ Â(η, β)

)
< 1. At this

point, we make use of ρ(L) < 2 (see Section 5.2.2).

Remark 5.3.1. Choose η(s) = 2s and β2(s) = s. The polynomials in Lemma 5.3.3

reduce to x2 + λix+ λi
2

= 0, s = 1
2

(x+ λi)
2 = 0, s = 1

.

with roots given by x = −λi±i
√
λi
√

2−λi
2

, s = 1
2

x = −λi, s = 1
.

Now, since 0 < λi < 2, it follows that|1 + x|2 =
(

1− λi
2

)2

+
2λi−λ2i

4
= 1− λi

2
< 1, s = 1

2

|1 + x|2 = (1− λi)2 < 1, s = 1
.

5.3.2 The Differential Local Contraction Case

Throughout this section, the average map, H = 1/N
∑N

n=1Hn, is assumed to be differ-

entiable at x?. The main result is the following theorem.

Theorem 5.3.1. Let λ1, . . . , λdN be the eigenvalues of L. Choose η > 0 and β > 0 such

that |1 + y| < 1, for every

y ∈
⋃

i=1,...,dN :λi 6=0

{
x ∈ C : x2 + ηλix+ λ2s

i β
2 = 0

}
.

If ρ
(
JH(x?)

)
< 1 or there exists an eigenvalue µ of JH(x?) such that Re(µ) > 1, then,

there exists α? such that, for 0 < α < α?,

sign
(

1− ρ
(
JF̃ (ψ̃(x?))

))
= sign

(
1− ρ

(
JH(x?)

))
.
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Remark 5.3.2. An interesting consequence of this theorem is that if H has a finite

number of fixed points, we can choose α sufficiently small such that

sign
(

1− ρ
(
JF̃ (ψ̃(x?))

))
= sign

(
1− ρ

(
JH(x?)

))
,

for all x? ∈ Fix(H) such that either ρ
(
JH(x?)

)
< 1 or JH(x?) has an eigenvalue with real

part larger than one.

The proof of Theorem 5.3.1 reduces to understanding how the eigenvalues of a matrix

change under a linear perturbation. Observe that

JF̃
(
ψ̃(x?)

)
= I + Â(η, β) + α

[
JR
(
1N ⊗ x?

)
0

0 0

]
,

where Â(η, β) is the linear part of F̃ (see (5.7)). From Lemma 5.3.3, JF̃
(
ψ̃(x?)

)
is unitarily

similar to[
ÛT

ŨT

]
JF̃
(
ψ̃(x?)

) [
Û, Ũ

]
=

[
Id 0

0 I +A(η, β)

]
+ α

[
ÛT

ŨT

][
JR
(
1N ⊗ x?

)
0

0 0

] [
Û, Ũ

]
,

where Û is defined in (5.10). Moreover, if η and β are chosen according to the statement

of the theorem, then, ρ
(
I +A(η, β)

)
< 1. The matrix multiplied by α can be partitioned

according to the blocks of I +A(η, β) yielding[
ÛT

ŨT

][
JR
(
1N ⊗ x?

)
0

0 0

] [
Û, Ũ

]
=

[
ÛTJR

(
1N ⊗ x?

)
Û ∗

∗ ∗

]
,

where ÛTJR
(
1N ⊗ x?

)
Û is as d× d block, and the symbols ∗ correspond to other blocks

that do not concern us. Finally, note that

ÛTJR
(
1N ⊗ x?

)
Û =

( 1√
N

1TN ⊗ Id
)
JR(1N ⊗ x?)

( 1√
N

1N ⊗ Id
)
,

and, from R(z) = H̃(z)− z,

JR(1N ⊗ x?) =


JH1(x

?)− Id
. . .

JHN (x?)− Id

 .
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Consequently,

ÛTJR
(
1N ⊗ x?

)
Û = JH(x?)− Id.

We summarize these observations in the following lemma.

Lemma 5.3.4. Let λ1, . . . , λdN be the eigenvalues of L. Choose η > 0 and β > 0 such

that |1 + y| < 1, for every

y ∈
⋃

i=1,...,dN :λi 6=0

{
x ∈ C : x2 + ηλix+ λ2s

i β
2 = 0

}
.

Then, JF̃
(
ψ̃(x?)

)
is unitarily similar to[

Id 0

0 I +A(η, β)

]
+ α

[
JH(x?)− Id ∗

∗ ∗

]
,

where ρ
(
I +A(η, β)

)
< 1.

The proof of Theorem 5.3.1 follows immediately from the following non-trivial theorem

on linear perturbations, the proof of which can be found in Appendix A.

Theorem 5.3.2. Let A and B be two block matrices of the form

A =

[
Id 0d,k

0d,n A22,

]
, B =

[
B11 B12

B21 B22

]
,

where A22 is a k × k matrix satisfying ρ(A22) < 1, and where the block partition of B is

compatible with that of A. Let α be a real parameter and consider the curve of matrices

A(α) defined by A(α) = A+ αB. Then,

1) If all eigenvalues of B11 have negative real part, then, there exists α? such that, for

0 < α < α?, ρ
(
A(α)

)
< 1;

2) Conversely, if B11 has at least one eigenvalue with positive real part, then there exists

α? such that, for 0 < α < α?, ρ
(
A(α)

)
> 1.

5.3.3 The Continuous Local and Global Contraction Cases

Throughout this section the average map, H = 1/N
∑N

n=1Hn, is not assumed to be

differentiable at x?, but a global contraction relative to x?, that is, for 0 ≤ µ < 1,

‖H(x)− x?‖ ≤ µ‖x− x?‖, (5.12)
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for all x ∈ Rd. The local contraction case, where (5.12) holds with x ∈ Rd replaced by

x ∈ B̄(x?, δ) =
{
y ∈ Rd : ‖y − x?‖ ≤ δ

}
, (5.13)

is also analyzed. Furthermore, in both cases (local and global), each Hn is assumed to

be globally γ-Lipschitz. We begin with the global case.

Recall that z̄ = 1/N
∑N

n=1 zn and that each z ∈ RdN can be written as z = 1⊗ z̄+
(
z−

1⊗ z̄
)
. Moreover, recall that Ũ is a matrix with columns forming an orthonormal basis of

eigenvectors of L associated to non-zero eigenvalues, i.e., a basis of range(L), and, thus,

z = 1⊗ z̄+Ũ ŨT z. Consider iteration (zk+1, wk+1) = F̃ (zk, wk) and let z̄k = 1/N
∑N

n=1 z
k
n,

yk = ŨT zk. By construction, zk = 1⊗ z̄k + Ũyk. A straightforward manipulation shows

that

z̄k+1 = (1− α)z̄k + αH̄
(
Ũyk + 1⊗ z̄k

)
yk+1 =

(
I − ηŨTLŨ

)
yk + βŨTLsŨwk + αŨTR

(
Ũyk + 1⊗ z̄k

)
wk+1 = wk − βŨTLsŨyk,

where H̄(z1, . . . , zN) = 1
N

∑N
n=1 Hn(zn). Consider the linear part of the recursions fol-

lowed by yk and wk: note that ŨTLŨ = Λ̃, where Λ̃ is a diagonal matrix with the

elements in the diagonal being the non-zero eigenvalues of L, and, thus, the linear part

of the recursions satisfied by yk and wk is given by

B(η, β) := I +

[
−ηΛ̃ βΛ̃s

βΛ̃s 0

]
.

Compare B(η, β) with (5.8) from Lemma 5.3.1 and it is straightforward to see that B(η, β)

is unitarily similar to the matrix I+A(η, β) from Lemma 5.3.3. This leads to the following

lemma.

Lemma 5.3.5. Let λ1, . . . , λdN be the eigenvalues of L. Choose η > 0 and β > 0 such

that |1 + y| < 1, for every

y ∈
⋃

i=1,...,dN :λi 6=0

{
x ∈ C : x2 + ηλix+ λ2s

i β
2 = 0

}
.

Given the sequence (zk, wk) recursively defined as (zk+1, wk+1) = F̃ (zk, wk), define the

sequences z̄k = 1/N
∑N

n=1 z
k
n and yk = ŨT zk. Then, the sequence (z̄k, yk, wk) satisfies the
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recursions
z̄k+1 = (1− α)z̄k + αH̄

(
Ũyk + 1⊗ z̄k

)[
yk+1

wk+1

]
= B(η, β)

[
yk

wk

]
+ α

[
ŨTR

(
Ũyk + 1⊗ z̄k

)
0

]
,

(5.14)

where ρ
(
B(η, β)

)
< 1.

The recursions given by (5.14) are rather ugly and, to analyze them, it makes more

sense to abstract their general features. Let

G1,α(a, b) = (1− α)a+ αT1(a, b)

G2,α(a, b) = Mb+ αT2(a, b),
(5.15)

where ρ(M) < 1, and, instead of (5.14), consider (ak+1, bk+1) =
(
G1,α(ak, bk), G2,α(ak, bk)

)
.

The proof that (5.14) converges at least linearly will follow easily from the following theo-

rem. In what follows, given the equivalence between all norms, we “move freely” between

norms, whenever Lipschitzianity is concerned.

Theorem 5.3.3. Consider a map Gα(a, b) =
(
G1,α(a, b), G2,α(a, b)

)
, where G1,α and

G2,α are given by (5.15). Suppose that, for each α 6= 0, Gα has a unique fixed point(
a?(α), b?(α)

)
. Additionally, suppose that

1) T1

(
·, b?(α)

)
is a µ−contraction with respect to a?(α) and a norm ‖ · ‖1;

2) ‖M‖2 < 1 for some matrix norm ‖ · ‖2 induced by a vector norm ‖ · ‖2;

3) Both T1 and T2 are γ̃-Lipschitz, and, without loss of generality, assume that

‖Ti(a, b)− Ti(ã, b̃)‖i ≤ γ̃
(
‖a− ã‖1 + ‖b− b̃‖2

)
, i = 1, 2.

Then, there exists α? such that, for 0 < α < α?, there exists a matrix P (α), satisfying

ρ
(
P (α)

)
< 1, such that[

‖G1,α(a, b)− a?(α)‖1

‖G2,α(a, b)− b?(α)‖2

]
≤ P (α)

[
‖a− a?(α)‖1

‖b− b?(α)‖2

]
,

that is, Gα is a P (α)-contraction with respect to
(
a?(α), b?(α)

)
.
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Proof. The triangle inequality implies that

‖G1,α(a, b)− a?(α)‖1 =
∥∥∥G1,α(a, b)−G1,α

(
a?(α), b?(α)

)∥∥∥
1

≤
∥∥∥G1,α(a, b)−G1,α

(
a, b?(α)

)∥∥∥
1

+
∥∥∥G1,α

(
a, b?(α)

)
−G1,α

(
a?(α), b?(α)

)∥∥∥
1

≤α
∥∥∥T1(a, b)− T1

(
a, b?(α)

)∥∥∥
1

+
(
1− α(1− µ)

)
‖a− a?(α)‖1

≤αγ̃
∥∥b− b?(α)

∥∥
2

+
(
1− α(1− µ)

)
‖a− a?(α)‖1.

Similarly,

‖G2,α(a, b)− b?(α)‖2 ≤
∥∥∥G2,α(a, b)−G2,α

(
a?(α), b

)∥∥∥
2

+
∥∥∥G2,α

(
a?(α), b

)
− b?(α)

∥∥∥
2

≤α
∥∥∥T2(a, b)− T2

(
a?(α), b

)∥∥∥
2

+ ‖M‖2‖b− b?(α)‖2 + α
∥∥∥T2

(
a?(α), b?(α)

)
− T2

(
a?(α), b

)∥∥∥
2
,

where we used the fact that b?(α) = Mb?(α) + αT2

(
a?(α), b?(α)

)
. The Lipschitzianity of

T2 implies that

‖G2,α(a, b)− b?(α)‖2 ≤ αγ̃
∥∥a− a?(α)

∥∥
1

+ ‖M‖2‖b− b?(α)‖2 + αγ̃
∥∥b− b?(α)

∥∥
2
.

Therefore, we conclude that[
‖G1,α(a, b)− a?(α)‖1

‖G2,α(a, b)− b?(α)‖2

]
≤

[
1− α(1− µ) αγ̃

αγ̃ ‖M‖2 + αγ̃

][
‖a− a?(α)‖1

‖b− b?(α)‖2

]
.

Define

P (α) =

[
1 0

0 ‖M‖2

]
+ α

[
µ− 1 γ̃

γ̃ γ̃

]
.

All that is left to prove is that there exists α? such that, for 0 < α < α?, ρ
(
P (α)

)
< 1.

P (α) is symmetric 2 × 2 matrix, hence its roots are easy to study. However, to avoid a

messy computation, just note that P (0) is a diagonal matrix with two distinct elements

in the diagonal, namely, 1 and ‖M‖2 < 1. Since P (α) is symmetric, there exist two

continuous real valued functions x1(α) and x2(α) such that correspond to the eigenvalues

of P (α). Assume that x1(0) = 1 and that x2(0) = ‖M‖2. It is known that both of these

functions are differentiable at zero with x′1(0) = µ − 1 and x′2(0) = γ̃ (see [57]). From

0 ≤ µ < 1, we conclude that x′1(0) < 0. Moreover, since ‖M‖2 < 1, we can define α?.
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Observe that with the identifications ak → z̄k, bk → (yk, wk), and defining

T1(z̄, y, w) = H̄(Ũ + 1⊗ z̄)

T2(z̄, y, w) =

[
ŨTR(Ũy + 1⊗ z̄)

0

]
,

the linear convergence (5.14) follows from Theorem 5.3.3 and the linear convergence of

P -contractions (see Lemma 3.2.1 of Chapter 3). However, conditions of Theorem 5.3.3

still need to be checked. The map F̃ has a unique fixed point given by ψ̃(x?), and, hence,

for α 6= 0, (5.14) has a unique fixed point given by

(
x?, 0,−α

β
ŨT (Ls)+R(1⊗ x?)

)
.

Therefore x? and
(
0,−α

β
ŨT (Ls)+R(1⊗x?)

)
play, the role of a?(α) and b?(α), respectively.

Note as well that

T1

(
x, 0,−α

β
ŨT (Ls)+R(1⊗ x?)

)
= H̄(1⊗ x) = H(x),

and, thus, T1

(
·, b?(α)

)
is µ-contractive where ‖ · ‖1 is the norm ‖ · ‖ with respect to which

H is contractive. To finish, note that, although tedious to verify, the Lipschitzianity

of T1 and T2 follows from that of each H1, . . . , HN . In fact, T1 and T2 only involve

operations (e.g. linear combinations, compositions with linear maps, etc) that preserve

Lipschitzianty.

We conclude that:

Theorem 5.3.4. Suppose that H is a global µ-contraction with respect to a fixed point

x? and that each H1, . . . , HN is globally Lipschitz. Let λ1, . . . , λdN be the eigenvalues of

L. Choose η > 0 and β > 0 such that |1 + y| < 1, for every

y ∈
⋃

i=1,...,dN :λi 6=0

{
x ∈ C : x2 + ηλix+ λ2s

i β
2 = 0

}
.

Then, there exists α? such that, for 0 < α < α?, the iteration (zk+1, w̃k+1) = F̃ (zk, w̃k)

converges (globally) at least linearly to ψ̃(x?).

5.3.3.1 The Local Contraction Case

Although it might sound surprising, the local contraction case, that is if (5.12) only holds

in the ball defined in (5.13), is not considerably more challenging than the global case.
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In fact, observe that the global contraction proof amounted to showing that: 1) ‖z̄k+1 − x?‖∥∥∥yk+1, w̃k+1 + α
β
ŨT (Ls)+R(1⊗ x?)

)∥∥∥
2

 ≤ P (α)

 ‖z̄k − x?‖∥∥∥yk, w̃k + α
β
ŨT (Ls)+R(1⊗ x?)

)∥∥∥
2

 ,
(5.16)

where

P (α) =

[
1− α(1− µ) αγ̃

αγ̃ ‖M‖2 + αγ̃

]
,

with ‖M‖2 < 1; 2) there exists α? such that, for 0 < α < α?, ρ
(
P (α)

)
< 1.

If H is a global contraction, then (5.16) holds for every z̄k ∈ Rd. In contrast, if

H is merely a local, rather than a global, contraction, (5.16) only holds provided that

z̄k ∈ B̄(x?, δ). However, it is not necessarily true that z̄k ∈ B̄(x?, δ) implies that z̄k+1 ∈
B̄(x?, δ), a condition that should hold if (5.16) is to be “unfolded” to establish the linear

convergence (see the proof of Theorem 3.2.1 of Chapter 3). To fix this, let α? be such

that ρ
(
P (α)

)
< 1, for 0 < α < α?, and, by reducing α?, if necessary, we may assume that

the entries of P (α) are all positive for 0 < α < α?. From Perron’s Theorem (see [57])

and P (α) > 0 , there exists v(α) =
(
v1(α), v2(α)

)
with only positive entries such that

P (α)v(α) = ρ
(
P (α)

)
v(α).

By multiplying by a suitable positive constant, we may assume that v1(α) = δ. Let

b?(α) =
(
0,−α/βŨT (Ls)+R(1⊗x?)

)
and define an open neighborhood Y(α) of (x?, b?(α)

)
by

Y(α) = B̄(x?, δ)× B̄‖·‖2
(
b?(α), v2(α)

)
.

Note that if (z̄k, yk, w̃k) ∈ Y(α), then, in particular z̄k ∈ B̄(x?, δ) and, hence, (5.16)

holds. Moreover, since P (α) has only positive entries, if (z̄k, yk, w̃k) ∈ Y(α), then, by

construction,
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 ‖z̄k+1 − x?‖∥∥∥yk+1, w̃k+1 + α
β
ŨT (Ls)+R(1⊗ x?)

)∥∥∥
2

 ≤ P (α)

 ‖z̄k − x?‖∥∥∥yk, w̃k + α
β
ŨT (Ls)+R(1⊗ x?)

)∥∥∥
2


≤ P (α)

[
δ

v2(α)

]

= ρ
(
P (α)

) [ δ

v2(α)

]

<

[
δ

v2(α)

]
,

which implies that (z̄k+1, yk+1, w̃k+1) ∈ Y(α). We conclude that

1) If (z̄k, yk, w̃k) ∈ Y(α), then (z̄k+1, yk+1, w̃k+1) ∈ Y(α);

2) If (z̄k, yk, w̃k) ∈ Y(α), then (5.16) holds.

Therefore, if (z̄k0 , yk0 , w̃k0) ∈ Y(α) for some k0, then (z̄k, yk, w̃k) ∈ Y(α) converges to(
x?, b?(α)

)
at least linearly. We summarize this result in the following theorem.

Theorem 5.3.5. Suppose that H is a local µ-contraction with respect to a fixed point

x?, that is (5.12) holds for x ∈ B̄(x?, δ). Furthermore, assume that each H1, . . . , HN is

globally Lipschitz. Let λ1, . . . , λdN be the eigenvalues of L. Choose η > 0 and β > 0 such

that |1 + y| < 1, for every

y ∈
⋃

i=1,...,dN :λi 6=0

{
x ∈ C : x2 + ηλix+ λ2s

i β
2 = 0

}
.

Then, there exists α? such that, for 0 < α < α?, there exists a neighborhood Y(α) of

ψ(x?) such that if (zk0 , w̃k0) ∈ Y(α), then (zk+1, w̃k+1) = F̃ (zk, w̃k) converges at least

linearly to ψ̃(x?).

5.4 Distributed Implementations

As it was observed, the iteration (zk+1, w̃k+1) = F̃ (zk, w̃k) does not have distributed

implementation, because of the presence of the matrix Ũ . In contrast, for s = 1, the

iteration (zk+1, wk+1) = F (zk, wk) has and its convergence guarantees follow from those

of (zk+1, w̃k+1) = F̃ (zk, w̃k) and Lemma 5.2.4. If Hn(x) = x− t∇fn, then (zk+1, wk+1) =

F (zk, wk) amounts to a distributed gradient descent algorithm; this section shows that
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the choices η(s) = 2s and β2(s) = s from Remark 5.3.1 lead to the well-known distributed

gradient descent algorithms termed EXTRA and DIGing (see [28, 32]).

5.4.1 The EXTRA-Distributed Banach-Picard Iteration

If s = 1/2, the Banach-Picard iteration of F does not have distributed implementation.

However, the elimination of the second variable leads to an algorithm having distributed

implementation: consider two consecutive z-updates

zk+2 = zk+1 + αR(zk+1) + βL
1
2wk+1 − ηLzk+1

zk+1 = zk + αR(zk) + βL
1
2wk − ηLzk

and consider their difference

zk+2 = 2zk+1 − zk + βL
1
2 (wk+1 − wk)− ηL(zk+1 − zk) + α

(
R(zk+1 −R(zk)

)
.

Observe that wk+1 − wk = −βL 1
2 zk, and, hence, the variable wk can be eliminated,

yielding

zk+2 = (2I − ηL)zk+1 − (I + β2L− ηL)zk + α
(
R(zk+1)−R(zk)

)
. (5.17)

The elimination of the second variable results in a “second order” recursion, i.e., a re-

cursion of the form qk+2 = J(qk, qk+1), essentially a discrete-time version of a second

order differential equation. Naturally, initialization must be specified at two points and,

to have the trajectory produced by (5.17) to be exactly the one produced prior to the

elimination of wk, z1 must be initialized according to

z1 = z0 + αR(z0) + βL
1
2w0 − ηLz0.

Consequently, if zk is initialized at
(
z0, z0 + αR(z0) + βL

1
2w0 − ηLz0

)
, the trajectory

followed by zk is the that of uk, for uk recursively defined by

(u0, v0) = (z0, w0)

(uk+1, vk+1) = F (uk, vk).
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However, we have once again the problem that z1 requires a product by L
1
2 . Clearly, the

only feasible “distributed initialization” corresponds to setting w0 = 0, i.e.,

z0 ∈ RdN

z1 = z0 + αR(z0)− ηLz0

zk+2 = (2I − ηL)zk+1 − (I + β2L− ηL)zk + α
(
R(zk+1)−R(zk)

)
.

(5.18)

From Lemma 5.2.4, we obtain that zk recursively defined by (5.18) satisfies zk = uk,

where uk is recursively defined by

u0 = z0 ∈ RdN

ṽ0 = 0 ∈ Rd(N−1)

uk+1 = uk + αR(uk) + βL
1
2 Ũ ṽk − ηLuk

ṽk+1 = ṽk − βŨTL
1
2uk.

Moreover, the convergence guarantees for (uk, ṽk), hence for zk, are given in Theorems

5.3.1, 5.3.4, and 5.3.5, for the three conditions on H that were analyzed.

Finally, recall that Remark 5.3.1 shows that the choices η(s) = 2s and β2(s) = s satisfy

the conditions of Theorems 5.3.1, 5.3.4, and 5.3.5. If we additionally let L = I−W , where

W = W̃ ⊗ Id and W̃ is a consensus matrix, (5.18) reduces to

z0 ∈ RdN

z1 = Wz0 + αR(z0)

zk+2 = (I +W )zk+1 − 1

2
(I +W )zk + α

(
R(zk+1)−R(zk)

)
.

(5.19)

If Hn(x) = x− t∇fn(x), that is, if

R(z) = −t


∇f1(z1)

...

∇fN(zN)

 ,
then (5.19) reduces to the EXTRA algorithm (see [28]) for distributed gradient descent.

Moreover, a sufficient condition for the existence of t > 0 such that

H(x) =
1

N

N∑
n=1

x− t∇fn(x) = x− t 1

N

N∑
n=1

∇fn(x)

is globally contractive with respect to the unique minimum of f = 1/N
∑N

n=1 fn is that f
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is Lipschitz and strongly convex (see [75]). Therefore, we obtain the following corollary

of Theorem 5.3.4.

Corollary 5.4.1. Let f1, . . . , fN be real valued differentiable functions such that ∇fn are

Lipschitz maps. Suppose that

f :=
1

N

N∑
n=1

fn,

is a strongly convex function. (The Lipschitzianity of each ∇fn implies the Lipschitzian-

ity of ∇f , hence f is a Lipschitz and strongly convex function.) Let x? be the unique

minimum of f .

Then, there exists α? such that for 0 < α < α?, (5.19) converges to 1 ⊗ x? at least

linearly.

5.4.2 The DIGing-Distributed Banach-Picard Iteration

This section considers the case s = 1 and we observe that the elimination of the second

variable recovers the form of DIGing (see [31, 32]). The procedure is very similar to

the previous section, and, hence, the details are omitted. Choose η and β according to

Remark 5.3.1 and let L = I −W , where W = W̃ ⊗ Id and W̃ is a consensus matrix. The

elimination of the second variable leads to

z0 ∈ RdN

z1 = (2W − I)z0 + αR(z0) + (I −W )w0

zk+2 = 2Wzk+1 −W 2zk + α
(
R(zk+1)−R(zk)

)
.

If we initialize at w0 = z0, we obtain

z0 ∈ RdN

z1 = Wz0 + αR(z0)

zk+2 = 2Wzk+1 −W 2zk + α
(
R(zk+1)−R(zk)

)
,
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which, if Hn(x) = x−t∇fn, reduces to the algorithm we obtain if we eliminate the second

variable in DIGing and assume that the second variable is initialized at
∇f1(z0

1)
...

∇fN(z0
N)

 ,
the initialization suggested both in [31, 32].

Finally, similar to Corollary 5.4.1, the convergence guarantees for DIGing in the

strongly convex and Lipschitz case follow from Theorem 5.3.4.

5.5 Comments and References

5.5.1 Intuition and Connection with Optimization

The parametric family of maps F defined in (5.3) stems from (5.2) and these are a

generalization of the KKT conditions (see e.g. [79]) that typically arise in the study

of constrained optimization. A common approach (see e.g. [34, 35, 36, 38, 39]) to the

distributed optimization problem described in Section3.4.4 of Chapter 3 is to reformulate

minimize
x

f(x) :=
1

N

N∑
n=1

fn(x) (5.20)

as a constrained optimization problem that “forces” the network structure into the prob-

lem. Afterwards, (5.20) is numerically approximated by a primal-dual method having

distributed implementation. Typically, to “force” the network structure into (5.20) is

reformulated as

minimize
z=(z1,...,zN )

N∑
n=1

fn(zn)

subject to Lz = 0

, (5.21)

where L = L̃⊗ I and L̃ is compatible with the network structure. Moreover,

ker
(
L⊗ I

)
= {(z1, . . . , zN) ∈ RdN : z1 = · · · = zN}.
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Assuming L to be symmetric and positive semi-definite, (5.21) can be reformulated by

introducing two positive parameters β′ and η′ and writing

minimize
z=(z1,...,zN )

N∑
n=1

fn(zn) +
η′

2
‖L

1
2 z‖2

subject to β′L
1
2 z = 0

, (5.22)

with the Lagrangian (see [80]) defined by

L(z, w) =
N∑
n=1

fn(zn) + β′wTL
1
2 z +

η′

2
‖L

1
2 z‖2.

Suppose that each f1, . . . , fN is assumed to be differentiable and consider the KKT con-

ditions, that is, the set of equations characterizing stationary points of the Lagrangian,

i.e., ∇L(z, w) = 0. Specifically,
0 = ∇zL =


∇f1(z1)

...

∇fN(zN)

+ β′L
1
2w + η′Lz

0 = −∇wL = −β′L 1
2 z

,

where, in the last equation, the negative sign is introduced for convenience. Let α < 0,

β := αβ′ and η := −αη′, and the KKT conditions can be rewritten as a fixed point

equation 
z = z + α


∇f1(z1)

...

∇fN(zN)

+ βL
1
2w − ηLz

w = w − βL 1
2 z

.

Replacing the gradient vector by R(z) leads to the fixed point equation of the parametric

family of maps F (s = 1/2) defined in Section 5.2.2.

Finally, if
∑N

n=1 fn is a convex function, then (5.22) is a constrained convex optimiza-

tion problem. A primal dual algorithm that can be used to solve (5.22) is the Arrow-

Hurwitz-Uzawa method (see [39]) which performs a gradient descent in the z-component
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and a gradient ascent in the w-component, that is, for α < 0, let

zk+1 = zk + α∇zL(zk, wk)

wk+1 = wk − α∇wL(zk, wk).

Renaming β := αβ′ and η := −αη′ recovers the Banach-Picard iteration of F , once the

gradient vector is substituted by R(z).

5.5.2 The Local Contraction Case

If H is differentiable at x? and ρ
(
JH(x?)

)
< 1, then, by Ostrowski’s theorem, H is

a local contraction with respect to x?. Conversely, if H is a local contraction with

respect to x? and H is differentiable at x?, then ρ
(
JH(x?)

)
< 1. This suggests that local

contractiveness with respect to x? is the continuous analog to ρ
(
JH(x?)

)
< 1. Theorem

5.3.1 shows that if H is differentiable at x? and ρ
(
JH(x?)

)
< 1, then there exists α? such

that, for 0 < α < α?,

ρ
(
JF̃
(
ψ̃(x?)

))
< 1.

In contrast, Theorem 5.3.5 shows that if H is a local contraction with respect to x? and

H1, . . . , HN are globally Lipschitz, then there exists α? such that, for 0 < α < α?, F̃ is a

local contraction with respect to ψ̃(x?).

The fact that Theorem 5.3.1 does not require global Lipschitzianity, neither differen-

tiability at points other than x?, suggests that it should be possible to prove a stronger

version of Theorem 5.3.5. In fact, it seems plausible that the global Lipschitzianity is

superfluous and that only local contractivenes of H with respect to x? should be enough

to conclude the same property for F̃ with respect to ψ̃(x?). We were not yet able to prove

this stronger version. Nevertheless, this is work in progress.

5.5.3 Distributed Implementation

Section 4.7.2 of Chapter 4 commented on the memory-convergence rate trade-off, observ-

ing that the insistence that, at each iteration, each agent merely stores a d-dimensional

vector, leads to a sacrifice in convergence rate. The proofs therein suggest that the di-

minishing step-size has a role in ensuring that the agents are successively in agreement

(the iteration is “increasingly” closer to a distributed average consensus iteration). This,

however, comes with a price: the iteration inherits the convergence rate of the step-size

sequence. The Banach-Picard iteration of F also has a “force” driving the agents towards
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consensus, the variable wk, which, for reasons explained in Section 5.5.1, we term the dual

variable. To see this, consider the iterations of z̄k, yk, and wk defined as in Section 5.3.3;

there are maps T̃1 and T̃2 such that

z̄k+1 = T̃1(z̄k, yk)[
yk

wk

]
= B(η, β)

[
yk

wk

]
+ T̃2(z̄k, yk),

where ρ
(
B(η, β)

)
< 1. Clearly, wk “influences” z̄k (indirectly “via” yk) and the way wk

“interacts” with the iteration is via the matrix product

B(η, β)

[
yk

wk

]
.

Since ρ
(
B(η, β)

)
< 1, any multiplication by B(η, β) contracts a vector towards zero, and,

thus, the role of wk seems to be that of driving yk to zero. Now, recall that yk = ŨT zk,

i.e., yk is the off-consensus component of zk expressed in the basis formed by the columns

of Ũ . Therefore, the role of wk is to drive the off-consensus component to zero, that is,

to drive the agents towards consensus.

As it was pointed out several times, the price paid for using wk, instead of a dimin-

ishing step-size, as the “driving force” is to have each agent maintaining two variables

(zkn, w
k
n) in memory. We stress out that this price is still paid even if the variable wk

is eliminated, leading to algorithms such as the EXTRA-distributed Banach-Picard it-

eration or the DIGing-distributed Banach-Picard iteration. In fact, in both those cases

the algorithm is of the form zk+2 = J(zk, zk+1) and, hence, the agents need to have in

memory zkn and zk+1
n to update.

5.5.3.1 Communications Per Iteration

Up until now, the issue of the number of communications required by an update of a

distributed algorithm was disregarded. The reason to avoid this topic is that its formal-

ization is beyond the scope of this work. To hint at its non-trivial nature, consider the

meaning of an “update” of F , that is,

zk+1 = zk+1 + αR(zk) + βLwk − ηLzk

wk+1 = wk − βLzk.
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From the implementation point of view, this update could be carried out as two updates,

with the time between instant k and instant k + 1 being broken into two smaller time

intervals. It is as if there was a time instant k+ 1/2 between k and k+ 1, and the update

was performed by first updating

zk+ 1
2 = zk + αR(zk) + L(βwk − ηzk)

wk+ 1
2 = wk

and then

zk+1 = zk+ 1
2

wk+1 = wk+ 1
2 − βLzk.

This corresponds to regarding (z0, w0) → (z1, w1) → . . . (zk, wk) → · · · as has having

intermediate steps

(z0, w0)→ (z
1
2 , w

1
2 )→ (z1, w1) · · · (zk, wk)→ (zk+ 1

2 , wk+ 1
2 ) · · ·

Counting the number of communications by the “number of products by L”, it seems

that, at each iteration, only one round of communications is required: from time k to

time k + 1/2 agent n only needs to communicate βwkn − ηzkn to its neighbors, and from

time k + 1/2 to time k it only zkn. Consequently, it seems tempting to say that, at each

iteration, agent n only communicates a d-dimensional vector. However, suddenly agent

n has to keep in memory more than a 2d-dimensional vector: at time k it needs to have

zkn and wkn, but, once it updates to obtain z
k+1/2
n , it cannot erase zkn, since this will be

required at time k + 1/2 to update wkn. This is as much as we will say about what an

update means from the implementation point of view.

For the sake of the discussion, let’s leave aside issues such as the time it takes zkn to

arrive at neighbors of agent n, and assume that once agent n “broadcasts” its value at

time k, all of its neighbors receive it immediately and at the same time. Even though

we are appealing to intuition when we speak of “an update”, it is seems reasonable to

say that the algorithm zk+1 = Fk(z
k) from Chapter 4 can be implemented in such a way

that agent n only keeps in memory a d-dimensional vector that communicates at each

iteration. Similarly, the EXTRA-distributed Banach-Picard iteration, that is, (5.19), has

the rearrangement

zk+2 = (I +W )(zk+1 − 1

2
zk) + α

(
R(zk+1)−R(zk)

)
,
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and, hence, agent n only needs to communicate a d-dimensional vector to its neighbors,

i.e., zk+1
n − 1/2zkn. Moreover, it has to maintain a 2d-dimensional variable (zk+1

n , zkn) in

memory. We conclude that, when compared with the algorithms from Chapter 4, the

EXTRA-distributed Banach-Picard iteration has the same “communication per iteration

cost”, at the expense of more memory. In contrast, the DIGing-distributed Banach-Picard

iteration does not have a similar a rearrangement, because of the presence of W 2, i.e., it

is not obvious how to rearrange

zk+2 = 2Wzk+1 −W 2zk + α
(
R(zk+1)−R(zk)

)
in the form

zk+2 =Wg(zk+1, zk) + α
(
R(zk+1)−R(zk)

)
,

where W is a matrix compatible with the graph structure and where g is a map of the

form

g(zk+1, zk) =
(
g1(zk+1

1 , zk1 ), . . . , gN(zk+1
N , zkN)

)
.

Consequently, a tempting conclusion is: EXTRA is clearly superior to DIGing, because

the latter has more communication per iteration cost for the same memory require-

ments. Not surprisingly, this comes with a price, although subtle: before the particular

choice made for the initialization of wk, i.e., w0, the elimination of the dual variable in

(zk+1, wk+1) = F (zk, wk) leads to

z0 ∈ RdN

z1 = z0 + αR(z0) + βL
1
2w0 − ηLz0

zk+2 = (I +W )(zk+1 − 1

2
zk) + α

(
R(zk+1)−R(zk)

)
for EXTRA, and

z0 ∈ RdN

z1 = w0 − z0 +W (2z0 − w0) + αR(z0)

zk+2 = 2Wzk+1 −W 2zk + α
(
R(zk+1)−R(zk)

) (5.23)

for DIGing. Now note, that the only feasible “distributed initialization” of z1 in EXTRA

is w0 = 0, because of the presence of L
1
2 . However, even though, to coincide exactly with

the elimination of the second variable of DIGing, we consider an initialization of z1 with
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w0 = z0, any choice of w0 leads to a “distributed initialization” of z1 in (5.23).

To conclude, at the expense of being less flexible, EXTRA is superior, as far as the

communication per iteration cost is considered. To imagine why this rigidity is not

necessarily irrelevant, suppose that H has multiple fixed points, one of which sought by

the agents. It could happen that the agents had some “insight” that allowed them to

“wisely” choose w0 in order to ensure the convergence of DIGing to the desired fixed

point. In contrast, by being flexible only in the choice of z0, EXTRA could be bound to

“escape” the desired fixed point.

5.5.4 Why EXTRA is “Natural”

Arriving at EXTRA from

zk+2 = (2I − ηL)zk+1 − (I + β2L− ηL)zk + α
(
R(zk+1)−R(zk)

)
(5.24)

is rather natural if one is “aware” of EXTRA: let L = I −W to obtain

zk+2 =
(
I(2− η) + ηW

)
zk+1 −

(
I(1− η + β2) + (η − β2)W )zk + α

(
R(zk+1)−R(zk)

)
,

and “knowing” EXTRA leads toI(2− η) + ηW = I +W

I(1− η + β2) + (η − β2)W =
(
I +W

)
1
2

.

The first equation leads to η = 1 which leads to β2 = 1/2 in the second equation.

Afterwards, we argue, as we did in Remark 5.10, that this choice of η and β satisfies the

hypothesis of Theorems 5.3.1, 5.3.4, and 5.3.5.

In contrast, an interesting question is whether EXTRA emerges rather naturally from

(5.24), for someone inspecting (5.24) without “knowledge” of EXTRA. This section ad-

dresses this problem. Suppose that {λ1, . . . , λdN} are the eigenvalues of L and recall that

0 ≤ λi < 2. We wish to find η > 0 and β > 0 such that |y + 1| < 1 for every

y ∈
⋃

i=1,...,dN,λi 6=0

{
x ∈ C : x2 + ηλix+ λiβ

2 = 0
}
. (5.25)

Redefine 2a = η and b = β2, and consider the equation

y2 + 2aλiy + λib = 0
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which can be equivalently written as

(y + aλi)
2 + λi(b− λia2) = 0.

Since λi > 0, the roots of this equation are real if b ≤ λia
2 and have non-negative

imaginary parts if b > λia
2. Assume that L = I − (W ⊗ Id), where W is the Metropolis

Weight Matrix (see Chapter 2). From Chapter 2, the only information that agent n

needs to “learn” are the values of row n of W , the degrees of its neighbors; no other

topological information about W is available at agent n. For this reason, to choose a

and b (equivalently, η and β), agent n should only rely on upper and lower bounds of the

non-zero eigenvalues of I −W , one such bound being 0 < λi < 2. However, a natural

question is whether this bound can be improved by leveraging only on the topological

information required for building the Metropolis Weight Matrix; we show that there is

no “universal” lower bound better than 0 < λi.

Lemma 5.5.1. For every ε > 0 there exists a Metropolis Weight Matrix W such that

I −W has a positive eigenvalue smaller than ε.

Proof. Let N be a natural number and define the vector x ∈ RN by xm = 0 if m 6= 2, N

and x2 = xN = 1. Consider the matrix AN with the first row equal to x and row i

obtained by a cyclic shift to the right of i− 1 positions of x (e.g. the second row of AN

is [1, 0, 1, 0, . . . , 0]). Clearly, AN is the adjacency matrix4 of a graph G that can be drawn

with N nodes lying in a circle with every node having degree 2. Moreover, the Metropolis

Weight Matrix of G is

WN =
1

3
(I + AN),

since each node has degree 2. Consequently,

I −WN =
1

3

(
2I − AN

)
.

We will now show that, by choosing N sufficiently large, I −WN has an arbitrarily small

positive eigenvalue. It can be proved (see [81]) that AN has an eigenvalue of the form

2 cos(2π/N), and, hence I −WN has an eigenvalue of the form

1

3

(
2− 2 cos(2π/N)

)
.

By choosing N sufficiently large, we can have 0 < 1
3

(
2− 2 cos(2π/N)

)
< ε.

4Recall that the adjacency matrix of a graph is of the form Aij = 1, if i and j are neighbors, and
Aij = 0 otherwise.
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The relevance of this result is that if an agent has degree two and, to build his row of

the Metropolis Weight Matrix, “learns” that his two neighbors have degree two as well,

then, from his perspective, he might as well be in a complete graph with three nodes. The

takeaway is that, without any further topological information, no node can distinguish

whether he is part of a complete graph with three nodes or a two-regular circular graph

on N nodes. As a consequence, no lower bound better than 0 < λi can be used.

Suppose, for the sake of argument, that there was (we now know that there isn’t) a

better lower bound than 0 < λi, i.e., suppose that λi > ε, then we could look at b ≤ εa2,

which would imply b ≤ λia
2, workout the real roots of (y + aλi)

2 + λi(b− λia2) = 0, and

proceed to choose a and b to ensure that (y + 1)2 < 1. In the absence of such a lower

bound, we work with the upper bound and restrict b ≥ 2a2, which implies that b > λia
2

for all λi. The roots are, in this case, given by

−aλi ± i
√
λib− λ2

i a
2,

and, hence,

|1 + y|2 = (1− aλi)2 + λib− λ2
i a

2 = 1− λi(2a− b).

Consequently, we should have 2a > b, in order to ensure that |1 + y|2 < 1.

Now comes the final “trick”: we want |1 + y|2 < 1, for all y in the set (5.25), because

this, from Lemma 5.3.3, will ensure that ρ
(
I+A(η, β)

)
< 1 . This last matrix is unitarily

similar to B(η, β) (see Section 5.5.3) and this matrix appears to have the role of driving

the system towards consensus. Therefore, the lower its spectral radius, the faster we

should expect consensus to be achieved. Consequently, to choose a and b, a natural

heuristic is the choice
maximize
a>0,b>0

2a− b

subject to b ≥ 2a2
. (5.26)

To find the solution, observe that it must live in the compact region 2a ≥ b, b, a ≥ 0

and b ≥ 2a2 (by drawing a picture, this region is between a parabola and a line). It is

clear that the solution cannot be attained at a point (a, b) outside the parabola, since,

otherwise, we could slightly decrease b and obtain a larger value. Consequently, we should

solve

maximize
0≤a≤1

2a− 2a2
, (5.27)

and we easily see the solution to be a = 1/2, which implies b = 1/2. Since η = 2a and

b = β2, we obtain η = 1 and β2 = 1/2, the choices leading to EXTRA.
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Chapter 6

Distributed PCA

6.1 Introduction

In this Chapter, we show how the results from Chapter 5 lead to an algorithm for dis-

tributed principal component analysis (PCA). To this end, we consider a map H that can

be implicitly written as an average of local maps and having as a fixed point the solution

to the PCA problem. The Banach-Picard iteration of H was proposed in [21] and ap-

pears to have been inspired by [16], hence, in [21], xk+1 = H(xk) is termed a “mini-batch

variant” of Sanger’s algorithm (SA). From SA, the authors of [21] arrive at a distributed

algorithm they term accelerated distributed Sanger’s algorithm (ADSA), which is nothing

but the EXTRA-distributed Banach-Picard iteration (5.19) for the maps H1, . . . , HN for

which H = 1/N
∑N

n=1 Hn. In [21], there is no proof of convergence for ADSA; we fill this

gap by appealing to the results of Chapter 5. This Chapter is mainly based on our work

[14], which is currently under review in the IEEE Transactions on Signal Processing.

6.2 Problem Statement: Distributed PCA

Consider a network of N agents, where the interconnection structure is represented by an

undirected and connected graph. Each agent n holds a finite set Yn ⊆ Rd and the agents

seek to collectively find the m top eigenvectors (i.e., the m eigenvectors associated to the

largest m eigenvalues) of the matrix

C =
1

M

N∑
n=1

Cn,

97



where M =
∑N

n=1 |Yn|, i.e., the sum of the cardinalities of each Yn, and

Cn =
∑
y∈Yn

yyT .

Observe that each Cn is positive semi-definite and, hence, the same holds for C.

We assume that C is positive definite, i.e., C � 0, and that the eigenvalues of C are

λ1 > λ2 > . . . > λm > λm+1 ≥ . . . ≥ λd > 0. By a solution to the PCA problem we

mean a d×m matrix X? such that (X?)TX? = Im and CX? = X?diag(λ1, . . . , λm). Note

that, given such a solution X?, we can multiply any of its columns by minus one and we

obtain another solution. Since λ1 > λ2 > . . . > λm, i.e., the top m eigenvectors are all

distinct (one-dimensional eigenspaces), all the solutions are of this form and there are 2m

of them. In many situations we will use the slightly imprecise term “the solution”.

6.3 Sanger’s Algorithm

Let X? ∈ Rd×m be the solution to the PCA problem described in the previous section,

that is, X? is a d×m matrix with unit-norm, orthogonal columns such that Cx?i = λix
?
i ,

where x?i denotes the ith column of X? and λi is the ith largest eigenvalue of C. To arrive

at a distributed algorithm for PCA from the results of Chapter 5, we need to find a map

H that can be written as H(X) = 1/N
∑N

n=1Hn(Cn, X) and such that H(X?) = X?.

Moreover, to have at least local linear convergence towards X?, we need to have as well

ρ
(
JH(X?)

)
< 1. The maps Hn were written as Hn(Cn, ·), rather than Hn(·), to stress out

the dependence on agent n’s local data; however, to simplify the notation the dependence

on Cn will now be dropped.

Consider the map H : Rd×m → Rd×m defined, for γ > 0, by

H(X) = X + γ
(
CX −XU

(
XTCX

))
, (6.1)

where U(·) maps a square matrix M to an upper triangular matrix with the same dimen-

sion and upper triangular part of M . The Banach-Picard iteration of H will be called

Sanger’s Algorithm (see [21] and [16]). We will show that H(X?) = X? and that we can

choose γ > 0 such that ρ
(
JH(X?)

)
< 1. By observing that H = 1/N

∑N
n=1 Hn, with Hn

defined by

Hn(X) = X + γ
(N
M
CnX −XU

(
XT N

M
CnX

))
, (6.2)

we see that we have all the necessary ingredients to appeal to the results developed in
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Chapter 5. As a consequence, we conclude that the EXTRA-distributed Banach-Picard

iteration (5.19) with the maps Hn enjoys at least local linear convergence with respect to

X?. The EXTRA-distributed Banach-Picard iteration (5.19) in this case is nothing but

the accelerated distributed Sanger’s algorithm (ADSA) proposed in [21], thus, it will be

referred as ADSA from now on.

6.3.1 The Case m = 1

In this initial Section we focus on the case m = 1, i.e., the problem of estimating only

the top eigenvector x? of C. This is already an interesting case in its own and it serves as

a motivation for the general case. Its analysis is more straightforward because the map

U reduces to the identity. Given that X is, in this case, a vector, we will denote it by x.

Let V be an orthogonal matrix that satisfies V TCV = D, where D = diag(λ1, . . . , λd),

with λ1, . . . , λd being the eigenvalues of C in decreasing order. Instead of H, consider

the map G that corresponds to H up to a change in coordinates x 7→ V x, that is,

G(x) = V TH(V x). Observe that to understand H it is enough to understand G. In fact,

x is a fixed point of H if and only if V Tx is a fixed point of G. Moreover, from the chain

rule we have that JG(x) = V TJH(V x)V , and, hence, the eigenvalues of JH(x) are those

of JG(V Tx). For these reasons, we will focus on G rather than H.

The first relevant observation is that, although G appears to be a gradient step, it

really is not. To see this consider the ith component function of G, i.e.,

(
G(x)

)
i

= xi + γ
(
λixi − xi

d∑
l=1

λlx
2
l

)
.

and, hence,

∂
(
G(x)

)
i

∂xj
=

1 + γ
(
λi − 2λix

2
i −

∑d
l=1 λlx

2
l

)
, i = j

−2γλjxixj, i 6= j
. (6.3)

Therefore, for i 6= j and γ 6= 0, we obtain

∂
(
G(x)

)
i

∂xj
=
∂
(
G(x)

)
j

∂xi

if and only if λjxixj = λixixj, showing that if C has at least two distinct eigenvalues λi

and λj, then the Jacobian of G at a point x with xi 6= 0 and xj 6= 0 is not symmetric. As a

consequence of Theorem 1.3.1 in [82], even though G(x) = x+γ(Dx−xxTDx) looks like
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a gradient step, it is not, i.e., we cannot define a function f such that G(x) = x+γ∇f(x).

To identify the fixed points of G, consider the equation G(x) = x and, since γ 6= 0,

we obtain Dx = (xTDx)x. If x 6= 0, this equation shows that x is an eigenvalue of D

associated to the eigenvector xTDx. Multiplying both sides of Dx = (xTDx)x by xT , we

obtain xTDx(1− ‖x‖2) = 0, and, since we are assuming that D � 0 (which follows from

C � 0), we obtain that ‖x‖ = 1. We conclude that the fixed points of G are either zero

or unit norm eigenvectors of D. Now assume that the eigenvalues of D (those of C) are

all distinct, that is, all elements in the diagonal of D appear only once. In this case, G

has a 2d+ 1 fixed points, the set of fixed points being {0,±e1, . . . ,±ed}, where ei is the

ith canonical vector of Rd, i.e., (ei)j = 0, if i 6= j and (ei)i = 1.

Consider now the local behavior of G near a fixed point x?, that is, consider JG(x?).

From (6.3), we see that JG(0) is a diagonal matrix, with the diagonal entries being 1+γλi

and, hence, for any γ > 0, we obtain that ρ
(
JG(0)

)
= 1 + γλ1 > 1. If x? = ±ei, then

JG(±ei) is a diagonal matrix with elements being

(
JG(±ei)

)
jj

=

1− 2γλj, j = i

1 + γ(λj − λi
)
, i 6= j.

Recall that we assumed that the eigenvalues are distinct and in decreasing order: λ1 >

λ2 > . . . > λd > 0. From this, we obtain that, for γ > 0 sufficiently small, ρ
(
JG(±e1)

)
< 1

and, for i ≥ 2, ρ
(
JG(±ei)

)
> 1, with JG(±ei) having a real eigenvalue larger than 1.

Informally, ±e1 are stable fixed points and the others (a finite number of them) are

unstable. This is already a nice result, because we know that the map F̃ (see Chapter 5)

from where the distributed algorithm emerges preserves this feature.

To finish this section, we show that we can further reduce γ in such a way that the

conditions of Theorem 3.2.4 of Chapter 3 hold. Consequently, we obtain that the set of

initial conditions x0 that satisfy limkH
k(x0) ∈ {0,±e2, . . . ,±ed} has Lebesgue measure

zero. Informally, if Hk(x0) converges, then it “almost surely converges” to ±e1 at least

linearly. We show this in two steps: first, we show that we can trap the iteration in a

compact set, that is, H(B̄) ⊆ B̄ for a compact set B̄; second, we use the compactness of

B̄ to ensure that det(JH(x)
)
6= 0 for all x, thus establishing the conditions of Theorem

3.2.4 of Chapter 3.

Let B̄ be the Euclidean ball of radius
√

2 centered at the origin, that is, the set of x

such that ‖x‖2 = xTx ≤ 2. Observe that

∥∥G(x)
∥∥2

= ‖x‖2 + 2γxTDx(1− ‖x‖2) + γ2
(
xTD2x− (2− ‖x‖2)(xTDx)2

)
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and, since we are assuming ‖x‖2 ≤ 2, we obtain

‖G(x)‖2 ≤ ‖x‖2 + 2γxTDx(1− ‖x‖2) + γ2xTD2x

≤ ‖x‖2 + 2γxTDx(1− ‖x‖2) + 2γ2λ2
1.

If 3/2 ≤ ‖x‖2 ≤ 2, then

‖G(x)‖2 ≤ 2− γxTDx+ 2γ2λ2
1

≤ 2− γλd‖x‖2 + 2γ2λ2
1

≤ 2− 3

2
γλd + 2γ2λ2

1.

If ‖x‖2 ≤ 3
2
, then

‖G(x)‖2 ≤ 3

2
+ 2γxTDx+ 2γ2λ2

1

≤ 3

2
+ 3γλ1 + 2γ2λ2

1.

These inequalities are enough to define γ? such that, for 0 ≤ γ ≤ γ?, ‖G(x)‖2 ≤ 2,

whenever ‖x‖2 ≤ 2 We conclude that G(B̄) ⊆ B̄.

To finish, consider det(JG(x)). Given that the entries of JG(x) only involve products

and sums, there are polynomials in x, denoted by p0(x), . . . , pd(x), such that

det(JG(x)) =
d∑
j=0

γjpj(x).

For γ = 0, JG(x) reduces to the identity for all x, i.e, p0(x) = det(I) = 1. Let m1, . . . ,md

be the minima of p1(x), . . . , pd(x) in B̄; since γ ≥ 0, we obtain, for all x ∈ B̄,

1 +
d∑
j=1

γjmj ≤ det(JG(x)).

This inequality is enough to choose γ? such that, for 0 ≤ γ ≤ γ?, det(JG(x)) 6= 0, for all

x ∈ B̄.

We summarize the results of this section in the following lemma.

Lemma 6.3.1. Consider C � 0, with distinct eigenvalues λ1 > λ2 > . . . > λd > 0, and

let

H(x) = x+ γ(Cx− xxTCx),
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and B̄ = {x ∈ Rd : ‖x‖2 ≤ 2}. Then, for γ 6= 0, the set of fixed points of H, Fix(H), is

the set {0,±v1, . . . ,±vd}, where ‖vi‖2 = 1 and Cvi = λi, for all i. Moreover, there exists

γ? such that, for 0 < γ ≤ γ?,

1) ρ
(
JH(±v1)

)
< 1 and, for x? ∈ Fix(H) \ {±v1}, JH(x?) has a real eigenvalue strictly

larger than 1 (consequently, ρ
(
JH(x?)

)
> 1).

2) The set of x0 ∈ B̄ such that limkH
k(x0) ∈ Fix(H)\{±v1} has Lebesgue measure zero.

6.3.2 The General Case m ≥ 1

In the general case H maps matrices to matrices, and, hence, it is slightly more compli-

cated to analyze. The contents of this section are essentially those of the first part of our

work [14].

6.3.2.1 Fixed Points of H

The following lemma characterizes the fixed points of H.

Lemma 6.3.2. Let C � 0. If X? ∈ Rd×m satisfies

CX? = X?U((X?)TCX?), (6.4)

then, each column of X? is either 0 or a unit-norm eigenvector of C. Moreover, the

columns are orthogonal, i.e., (X?)TX? is diagonal with the diagonal elements being either

one or zero.

Proof. Suppose X? satisfies (6.4). Throughout this proof, x?i denotes the ith column of

X?. Consider the equation imposed by the first column, x?1, i.e.,

Cx?1 =
(
(x?1)TCx?1

)
x?1,

and multiply both sides by (x?1)T , which yields

(
(x?1)TCx?1

)(
1− ‖x?1‖2

)
= 0.

From the two equalities

(
(x?1)TCx?1

)
x?1 = Cx?1,(

(x?1)TCx?1
)(

1− ‖x?1‖2
)

= 0,
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we conclude that either x?1 = 0 or x?1 is a unit-norm eigenvector of C.

Considering the second column, we prove that x?2 is either zero or a unit-norm eigen-

vector of C that is orthogonal to x?1. Observe that

Cx?2 =
(
(x?1)TCx?2

)
x?1 +

(
(x?2)TCx?2

)
x?2. (6.5)

Now recall that x?1 = 0 or x?1 is a unit-norm eigenvector of C. If x?1 = 0, then (6.5) reduces

to

Cx?2 =
(
(x?2)TCx?2

)
x?2

and the result follows as in the case of x?1. If x?1 6= 0, then it is a unit-norm eigenvector

of C and, hence, there exists β such that (x?1)TC = β(x?1)T and (6.5) reduces to

Cx?2 = β
(
(x?1)Tx?2

)
x?1 +

(
(x?2)TCx?2

)
x?2. (6.6)

Multiply on the left by (x?1)T and use ‖x?1‖2 = 1 to obtain

(
(x?2)TCx?2

)
(x?1)Tx?2 = 0.

If x?2 = 0, we are done. If not, then 0 = (x?1)Tx?2 and, returning to (6.6), it holds that

Cx?2 =
(
(x?2)TCx?2

)
x?2.

This establishes the claim for x?1 and x?2. Proceeding as we did for the second column,

it is possible to construct a proof by induction establishing the result.

6.3.2.2 Stability Properties of the Fixed Points of H

We start by looking at the stability properties of the fixed points of H that have a zero

column.

Lemma 6.3.3. Let X? be a fixed point of H and suppose that x?j = 0, where x?j denotes

the jth column of X?. Then, for γ > 0, JH(X?) as a real eigenvalue larger than one.

Proof. Let X? be a fixed point of H such that x?j = 0 and consider the matrix curve

X?(t), where x?i (t) = x?i for i 6= j and x?j(t) = tx?, where x? is the (unique up to

sign change) unit norm eigenvector associated to λ1, that is, Cx? = λ1x
?. Observe

that, at zero this curve coincides with X?, and that CX?(t) = X?(t)D, where D =

diag(a1, . . . , aj−1, λ1, aj+1, . . . , am), where each ai is an eigenvalue of C if x?i 6= 0 and can be
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assumed to be one if x?i = 0. Moreover
(
X?(t)

)T
X?(t) = diag(b1, . . . , bj−1, t

2, bj, . . . , bm) :=

B(t), where each bi is either zero or one. Consider now the curve H(X?(t)),

H
(
X?(t)

)
= X?(t) + γ

(
X?(t)D −X?(t)U

(
B(t)D

))
= X?(t) + γ

(
X?(t)D −X?(t)B(t)D

)
= X?(t)

(
I + γ

(
D −B(t)D

))
and, thus, the jth column of H(X?(t)), denoted by hx?j(t), is given by hx?j(t) = tx?

(
1 +

γλ1(1− t2)
)
. Considering the derivative at zero, we see that

dhx?j(t)

dt

∣∣∣
t=0

= x?(1 + γλ1). (6.7)

For readers familiar with smooth manifolds, this is already enough to see that, for γ > 0,

JH(X?) has a real eigenvalue larger than one. In fact, JH(X?) can be seen as a linear

map from derivatives of curves at X? to derivative of curves at H(X?) and, the previous

calculation shows that this map has an expanding direction. However, we do not assume

any knowledge of smooth manifold theory, hence, we spell out the details: let Z be

the d × m matrix whose jth column is x? and the remaining columns are zero, thus,

X?(t) = X? + tZ. The linear map JH(X?) must, by definition, satisfy

lim
t→0

∥∥H(X? + tZ)−H(X?)− tJH(X?)Z
∥∥

|t|‖Z‖
= 0. (6.8)

What we have shown in (6.7) is that

lim
t→0

H(X? + tZ)−H(X?)

t
= (1 + γλ1)Z

and, from (6.8), we conclude straightforwardly that JH(X?)Z = (1 + γλ1)Z.

From now on we only focus on fixed points X? of H that have non-zero columns, i.e.,

the columns of X? are unit norm eigenvectors of C. In the previous lemma we essentially

appealed to the fact that JH(X?) is the linear map that maps a matrix Z to the matrix

dH(X? + tZ)

dt

∣∣∣
t=0
.

We now identify, skipping straightforward details, the form of this map. Consider a curve
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of the form X?(t) = X? + tZ, and observe that

X?(t)TCX?(t) = D + tD(X?)TZ + tZTX?D + t2ZTCZ,

where D is a diagonal matrix with eigenvalues of C, i.e., the diagonal matrix that satisfies

CX? = X?D. A straightforward calculation reveals that

dH(X?(t))

dt

∣∣∣
t=0

= Z + γ
(
CZ −X?U

(
D(X?)TZ + ZTX?D

)
− ZD

)
and, hence, JH(X?) is the linear map given by

Z → Z + γ
(
CZ −X?U

(
D(X?)TZ + ZTX?D

)
− ZD

)
.

Consider now the matrix X̂? that extends X? to an orthonormal basis of eigenvectors of

C, that, is (X̂?)T X̂? = Id and CX̂? = X̂?D̂, where

D̂ = diag(λP (1), . . . , λP (m), λP (m+1), . . . , λP (d)),

P is a permutation of the set {1, . . . , d}, and D = diag(λP (1), . . . , λP (m)). Finally, consider

the unitary transformation (X̂?)TJH(X?)X̂?, which corresponds to the linear map

W → W + γ
(
D̂W − (X̂?)TX?U

(
D(X?)T X̂?W +W T (X̂?)TX?D

)
−WD

)
.

Now observe that (X̂?)TX? is a d×m matrix that, since X̂? is an extension of X? to an

orthonormal basis, has the form

A := (X̂?)TX? =

[
Im

0d−m,m

]
.

Let W have a block partition compatible with that of A, i.e.,

W =

[
W̃

W̄

]
,

where W̃ and W̄ are, respectively, m × m and (d − m) × m matrices. The linear map

(X̂?)TJH(X?)X̂? can thus be written in block form as[
W̃

W̄

]
→

[
W̃ + γ

(
DW̃ − W̃D − U

(
DW̃ + W̃ TD

))
D̄W̄ − W̄D

]
,
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where D̄ = diag(λP (m+1), . . . , λP (d)). We summarize these results in the following Lemma.

Lemma 6.3.4. Let X? be a fixed point of H with no zero columns. From Lemma 6.3.3,

there exists a permutation P on the set {1, . . . , d} such that CX? = X?D with D =

diag(λP (1), . . . , λP (m)). Given P , let D̄ = diag(λP (m+1), . . . , λP (d)). Then, JH(X?) is

unitarily similar to[
W̃

W̄

]
→

[
W̃ + γ

(
DW̃ − W̃D − U

(
DW̃ + W̃ TD

))
W̄ + γ

(
D̄W̄ − W̄D

) ]
.

This lemma is enough to characterize the eigenvalues of JH(X?), since eigenvalues are

preserved by similarity. Let β be an eigenvalue of JH(X?); then, there exist matrices W̃ ,

and W̄ not both equal to zero, such that

W̃ + γ
(
DW̃ − W̃D − U

(
DW̃ + W̃ TD

))
= βW̃

W̄ + γ
(
D̄W̄ − W̄D

)
= βW̄ .

(6.9)

Conversely, given a non-zero matrix that satisfies W̄ + γ
(
D̄W̄ − W̄D

)
= βW̄ , then β is

an eigenvalue of JH(X?) (take W̃ = 0). Similarly, given a non-zero matrix that satisfies

W + γ
(
D̄W̄ − W̄D

)
= βW̄ , then β is an eigenvalue of JH(X?) (take W̄ = 0).

Lemma 6.3.5. Let X? be a fixed point of C other than the solution to the PCA problem.

Then, for γ > 0, there exists an eigenvalue of JH(X?) that is real and larger than one.

Proof. From Lemma 6.3.3, we can just focus on X? with non-zero columns. First, suppose

that there exists i < j such that λi < λj, where Cx?i = λix
?
i and Cx?j = λjx

?
j . Let W̃ be

the m×m matrix such that W̃ji = 1 and W̃st = 0 if (s, t) 6= (i, j). Then,

DW̃ − W̃D − U
(
DW̃ + W̃ TD

)
= (λj − λi)W̃ − λjW̃ T

DW̃ T − W̃ TD − U
(
DW̃ T + W̃D

)
= −2λjW̃

T .

Let (a, b) 6= (0, 0) be such that[
λj − λi 0

−λj −2λj

][
a

b

]
= (λj − λi)

[
a

b

]
,

which must exist since the matrix is lower triangular. Taking Ŵ = aW̃ + bW̃ T , we must
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have that

DŴ − Ŵ − U
(
DŴ + Ŵ TD

)
= a(λj − λi)W̃ − aλjW̃ T − 2λjbW̃

T

= (λj − λi)Ŵ .

We conclude that, for γ > 0, the vector (it is in fact a matrix)[
Ŵ

0

]

is an eigenvector of (6.9) associated to the eigenvalue 1 + γ(λj − λi) > 1. Moreover, by

Lemma 6.3.4, 1 + γ(λi − λj) > 1 is an eigenvalue of JH(X?).

To finish the result, suppose now that, for 1 ≤ t ≤ m− d, Cx?i = λm+tx
?
i and, for this

case, we look at the second equation in (6.9). This case is easier than the previous one

since it implies that one of the top m eigenvalues, let’s say λs with 1 ≤ s ≤ m, appears

in the diagonal of D̄, let’s say in position 1 ≤ j ≤ d−m. Moreover λs > λm+t, and thus,

let W̄ be the (d−m)×m matrix such that W̄ji = 1 and all other entries equal to zero.

Then

W̄ + γ
(
D̄W̄ − W̄D

)
=
(
1 + γ(λs − λm+t)

)
W̄ .

Again, by Lemma 6.3.4, 1 + γ(λs − λm+t) > 1 is an eigenvalue of JH(X?).

We now complete the characterization by looking at the eigenvalues of JH(X?), when

X? is the solution to PCA. In this case, by Lemma 6.3.4, JH(X?) is unitarily similar to[
W̃

W̄

]
→

[
W̃ + γ

(
DW̃ − W̃D − U

(
DW̃ + W̃ TD

))
W̄ + γ

(
D̄W̄ − W̄D

) ]
,

with D = diag(λ1, . . . , λd) and D̄ can be taken to be D̄ = diag(λm+1, . . . , λm−d).

Lemma 6.3.6. Let X? be the solution to the PCA problem (there is exactly one solution

up to a sign switch in each column). Then, there exists γ? such that, for 0 < γ ≤ γ?,

ρ
(
JH(X?)

)
< 1.

Proof. Let Z be an eigenvector of (6.9) associated to an eigenvalue β. Consider a block

partition of Z of the form

Z =

[
Z̃

Z̄

]
,
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where Z̃ and Z̄ are, respectively, m ×m and (d −m)×m matrices. There are two non-

mutually-exclusive cases to consider: Z̃ 6= 0 or Z̄ 6= 0 (Z 6= 0, by virtue of being an

eigenvector).

Case 1 Suppose that Z̄st 6= 0. Then, the second eigenvalue equation in (6.9) implies

that

Z̄st + γ
(
λm+sZ̄st − λtZ̄st

)
= βZ̄st,

and, hence, β < 1, for sufficiently small γ.

Case 2 Suppose that Z̃st 6= 0. This case splits in two: either s > t or s ≤ t. If s > t,

then the first eigenvalue equation in (6.9) and the “upper triangularization” operation

yields

Z̃st + γ(λsZ̃st − λtZ̃st) = βZ̃st, (6.10)

which, after dividing by Z̃st, yields, for γ sufficiently small, β < 1. If s ≤ t, then,

βZ̃st = Z̃st + γ
(
λsZ̃st − λtZ̃st − U(DZ̃ + Z̃TD)st

)
= Z̃st + γ

(
λsZ̃st − λtZ̃st − λsZ̃st − λtZ̃ts

)
= Z̃st + γ

(
− λt(Z̃st + Z̃ts)

)
.

Next, notice that if s < t, then Z̃ts can be assumed to be 0, since, otherwise, we could

deal with it as in (6.10) with the roles of s and t reversed to conclude β < 1. Hence,

assuming Z̃ts = 0, we obtain, after division by Z̃st, that, for γ sufficiently small, β < 1.

Finally, if s = t, then, again for γ sufficiently small, β < 1.

To finish, suppose that the eigenvalues of C are all distinct, that is, λ1 > . . . > λm >

λm+1 > λm+2 > . . . > λd > 0, then, the eigenspace of each eigenvalue is one-dimensional

and, thus, there are only two unit-norm eigenvectors that span it. Consequently, H has

only a finite number of fixed points; in fact, the columns of a fixed point X? are either

one, or unit-norm eigenvectors of C and, hence, there are only finitely many choices for

X?. There are 2m stable fixed points and if X? is one of the remaining fixed points, then

JH(X?) as a real eigenvalue larger than one. According to Remark 5.3.2 of Chapter 5,

the map F̃ preserves this feature for α sufficiently small, that is, for all α sufficiently

small, F̃ has 2m stable fixed points corresponding to the stable fixed points of H and the

remaining (a finite number of them) fixed points of F̃ are unstable.
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6.4 Comments and References

The distributed PCA problem constitutes a relevant area of research – see, e.g., [83, 84,

85, 86, 87, 88, 89, 90, 91] (master-slave communication architecture), and [92, 93, 94, 95,

96, 97, 98, 99] (arbitrarily meshed network communication architecture). For a recent

and comprehensive review on these works, see, e.g., [3]; for a very recent work see [100].

6.4.1 Simulations

We have not performed computer simulations of the distributed PCA algorithm that

emerges from Sanger’s algorithm, since, as previously noted, the EXTRA-distributed

Banach-Picard iteration (5.19) with the maps Hn defined as in (6.2) reduces to the al-

gorithm termed ADSA proposed in [21]. In [21], the authors show the results of the

computer simulations of ADSA, hence we refer to that work for the comparison with

other algorithms for distributed PCA.

6.4.2 Extensions of Our Previous Work

This chapter differs from our work [14] in two main aspects. First, in [14], we only

addressed the stable case, that is, we only showed that X?, where X? is the solution to

the PCA problem, satisfies JH(X?) < 1 for sufficiently small γ. In this chapter, however,

we have also addressed the unstable case and this constitutes a relevant extension of the

results in [14]. Finally, in [14] the proofs relied on matrix differential calculus (see [101])

and in this chapter we avoided that route. In fact, given that the Sanger map defined

in (6.1) is so “well-behaved”, we didn’t find a good enough reason not to treat JH(X?)

simply as the linear map that satisfies

JH(X?)Z = lim
t→0

H(X? + tZ)−H(X?)

t
.

Of course, one could argue that this is “how the rules of matrix differential calculus are

derived”. However, we believe that avoiding these rules, allows for a more self-contained

approach.

6.4.3 ADSA Almost Surely Escapes the Unstable Fixed Points

There is a piece missing in this picture. In the case m = 1, we proved that if Sanger’s

algorithm converges, then it “almost surely” converges, at least linearly, to a solution

to the PCA problem. Even if the map F̃ from Chapter 5 preserves the stable and the

unstable fixed points, the local diffeomorphism condition of Theorem 3.2.4 from Chapter
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3 should be verified, if one is to conclude that the Banach-Picard iteration of F̃ “almost

surely” escapes the unstable fixed points. The road to prove this, should, in principal,

pass through an argument similar to that used for the case m = 1, i.e., to prove that

there exists a compact set K such that F̃ (K) ⊆ K. Observe that

JF̃ (z, w̃) = A(η, β)

[
z

w̃

]
+ α

[
JR(z)

0

]

is a polynomial in z, w̃, and α (we assume that η and β are chosen to lead to the EXTRA-

distributed Banach-Picard iteration (5.19)). It is easy to show that A(η, β) is invertible

and, hence, its determinant is non-zero. Therefore, if F̃ (K) ⊆ K we have, in K, a uniform

lower bound

det
(
JF̃ (z, w̃)

)
≥ det

(
A(η, β)

)
+ p(α),

where p is a polynomial that satisfies p(0) = 0. This would lead to det
(
JF̃ (z, w̃)

)
6= 0,

for sufficiently small α, thus verifying, for F̃ seen as a map from K to K, the conditions

of Theorem 3.2.4 in Chapter 3.

110



Chapter 7

Distributed Parameter Estimation

with Noisy and Faulty

Measurements

7.1 Introduction

In this chapter, as in the previous one, we consider an application of the results from

Chapter 5, this time to distributed estimation. Informally, throughout this chapter, we

consider a collection of spatially distributed sensors monitoring a possibly harsh environ-

ment. The sensors communicate wirelessly and the environment harsh conditions may

result in faulty communications or sensor malfunctions. Ultimately, the goal is that of

estimating a fixed and unknown parameter µ? of which each agent has, with probability

p, a noisy linear measurement, and a faulty measurement with probability 1− p.

A natural way to model this scenario is to describe it with a parametric mixture

model depending on µ and to let the estimate of µ? be the “best” µ that “explains” the

measurements, or, more formally, to be the maximum likelihood estimate (MLE). The

standard approach for finding the MLE of a mixture model, assuming the measurements

are at a single location, is the expectation maximization (EM) algorithm, from now onward

referred to as centralized EM. In [12], the authors propose an algorithm (DA-DEM) for

the distributed estimation of µ? that corresponds to an extension to distributed settings of

the centralized EM algorithm; in the light of Chapter 4, the general idea behind DA-DEM

can be described as follows: 1) the centralized EM algorithm for the underlying mixture

model has the form zk+1 = G(1/N
∑

nHn(zk)), where the map G does not depend on

the measurements and each map Hn depends on what agent n measured; 2) even though

the centralized EM map, z → G(1/N
∑

nHn(z)), is not an average of local maps, the
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map w →
∑

nHn(G(w)) is; 3) to obtain the MLE in a distributed fashion, consider the

distributed algorithm from Chapter 4 with local maps Hn ◦G, and, at iteration k, agent

n’s estimate of the MLE is given by G(wkn).

As observed several times, the downside of opting for a distributed algorithm such as

the one suggested in Chapter 4 is the sacrifice in convergence rate. However, by accepting

the memory-convergence rate trade-off, we can have an algorithm that converges at least

at a linear rate, provided the sensors pay the cost of having to store at each iteration a 2d-

dimensional, rather than a d-dimensional vector. Crucially, to use the results of Chapter

5 to obtain guarantees of local linear convergence for the distributed algorithm, the

corresponding property for the centralized counterpart has to be verified; this constitutes

the goal of this chapter. In fact, we show the local linear convergence property, not for

the centralized EM map, but for a slightly modified map that emerges from the fixed

points equations satisfied by the MLE. The key challenge is that, like the EM map, the

“modified” EM map depends on the agent’s measurements which are, in turn, samples

from a probability distribution and, hence, any statement regarding the map (e.g., that

it has a fixed point) is of probabilistic nature.

This chapter, mainly based on our work [14], is organized as follows: Section 2 reviews

the basics of maximum likelihood estimation, mixture models, and the EM algorithm;

Section 3 presents the mathematical description of the problem statement; Section 4

gives a high-level view of the rest of the chapter; Section 5 presents explicit expressions

for the MLE and the modified EM map from where the distributed algorithm emerges;

Section 6 provides the convergence analysis of the modified EM algorithm modulo some

technicalities that can be found in [14]; Section 7, the final one, shows the result of Monte

Carlo simulations comparing DA-DEM with our algorithm, which confirm the sub-linear

convergence of DA-DEM and the linear convergence of our algorithm.

7.2 Preliminaries

7.2.1 MLE

Consider N real numbers y1, . . . , yN known to have been independently sampled from a

probability density function fY (·|θ?), where θ? ∈ R is termed the ground truth parame-

ter. The goal is to estimate θ? and an estimator is a function θ(y1, . . . , yN) that provides,

desirably, a “good estimate” thereof. The several formal ways that the phrasing “good

estimate” can take are beyond scope the of this work; as an example, we mention con-

sistency. The probability distribution over y1, . . . , yN and the estimator θ(·) induce a
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natural probability distribution on R: let A = θ−1((−∞, a]) and define

P(−∞ < x ≤ a) =

∫
(y1,...,yN )∈A

N∏
n=1

fY (yn|θ?)dy;

that is, the probability that θ(y1, . . . , yN) is less than a is that of sampling y1, . . . , yN from

the set A that satisfies θ(A) ≤ a. Consistency corresponds to the requirement of having

increasingly more mass on small intervals centered at θ?, as the number of samples goes to

infinity; formally, for every ε > 0, the sequence of real numbers P(θ?−ε ≤ θ(y1, . . . , yN) ≤
θ? + ε) should tend to one, as N tends to infinity. Equivalently, for every ε > 0 and

δ > 0, there should exist N0 for which the probability that N ≥ N0 independent samples

y1, . . . , yN map, via the estimator function θ(·), to the interval [−ε+ θ?, θ? + ε] is at least

1− δ.

An estimator that has, for “sufficiently well behaved probability densities”, many

(e.g., consistency) desired properties is the maximum likelihood estimator (see e.g. [102]),

formally defined as

θ(y1, . . . , yN) = arg max
η

N∑
n=1

log
(
fY (yn, η)

)
. (7.1)

To finish, we mention that everything said so far is easily generalizable to d-dimensional

spaces, i.e., with y1, . . . , yN ∈ Rd.

7.2.2 Mixture Models

Mixture models are essentially probability density functions that can be written as a

convex combination of (usually simpler) probability density functions. A common way

to think of a mixture model is in terms of “missing class labels”. Imagine that there are

two probability density functions fY (·, θ?) and f̂Y (·, θ?) and that there is an “entity”, call

it E, that acts as follows: 1) flips a biased coin (probability p? of heads and probability

1−p? of tails); 2) if the result is heads, it samples y from fY (·, θ?), otherwise, it samples y

from f̂Y (·, θ?); 3) hands us y, omitting whether it was sampled from fY (·, θ?) or f̂Y (·, θ?);
4) repeats the process N times. The idea is that E obtains (y1, a1), . . . , (yN , aN), where

ai ∈ {heads, tails}, but only reveals y1, . . . , yN , hiding the class (heads or tails) from which

yn was sampled. Moreover, to add difficulty, we are also ignorant of p?, the probability

of obtaining heads. Nevertheless, the goal is to estimate θ?.

The formal way to describe the process above is as follows. E tosses the coin before
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sampling y and, thus, this can be modeled by letting let z ∈ {0, 1} and defining

P(a = z) = (1− p?)z(p?)1−z,

where heads an tails are identified, respectively, with a = 0 and a = 1. What happens

after the coin flip is naturally modeled via condition probability: define the density

fY |a(·|θ?, a) = f 1−a
Y (·, θ?)f̂aY (·, θ?) and note that E samples according to the probability

density function

fY,a(·, a = z|θ?) = fY |a(·|θ?, z)P(a = z) = f 1−z
Y (·, θ?)f̂ zY (·, θ?)(1− p?)z(p?)1−z.

We, however, only observe y, thus, to us, the samples come from a probability density

function fY (·, θ?) obtained by marginalizing a, i.e.,

fY (y, θ?) =
1∑
z=0

fY,a(y, a = z|θ?) = p?fY (y|θ?) + (1− p?)f̂Y (y|θ?);

as anticipated, this is a convex combination of fY and f̂Y . Because we are also ignorant

about p?, this can be treated as a parametric model in θ and p, which leads to the MLE:

arg max
θ,p

N∑
n=1

log
(
pfY (yn|θ) + (1− p)f̂Y (yn|θ)

)
. (7.2)

7.2.3 The EM Algorithm

The EM algorithm is most useful when the MLE is easy to find given the class labels,

that is, when E is “kind enough” to hand us (y1, a1), . . . , (yN , aN) instead of hiding the

ai’s. In that scenario we face the problem

arg max
θ,p

N∑
n=1

log
(
f 1−an
Y (yn, θ)f̂

an
Y (yn, θ)(1− p)anp1−an

)
= arg max

θ,p

( ∑
n:an=1

log(1− p) + log
(
f̂Y (yn, θ)

))
+
( ∑
n:an=0

log(p) + log
(
fY (yn, θ)

))
.

(7.3)

This has a nice feature: the estimation of θ? can be carried out independently of p?. In

fact, this optimization problem does not “couple” p and θ, and, thus, it is separable, a

property absent in (7.2). A mixture of Gaussian densities is an example of when (7.3) is

“easy” to solve.

As previously mentioned, the EM algorithm is most useful when (7.2) is hard to

solve, but (7.3) is easy to solve. The idea is: 1) start with a guess (θ0, p0); 2) from
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θ0, p0, y1, . . . , yN , estimate P(an = 1|θ0, p0, y1, . . . , yN); 3) let (θ1, p1) be the solution

of (7.3) with the objective function replaced by its “average” with respect to P(a0
1 =

1), . . . ,P(a0
N = 1); 4) repeat the process with (θ0, p0) replaced by (θ1, p1). The probabili-

ties P(an = 1|θ0, p0, y1, . . . , yN) are easily obtained by noting that, by Bayes law,

P(an = 1|θ0, p0, y1, . . . , yN) = fY,a(yn, an = 1|θ0, p0)
(
fY (yn|θ0, p0)

)−1

=
(1− p0)f̂Y (yn|θ0)

p0fY (yn|θ0) + (1− p0)f̂Y (yn|θ0)
.

The EM algorithm is summarized as: given (θt, pt)

1) Compute the probabilities for the class labels for n = 1, . . . , N according to

P(an = 1|θt, pt, yn) =
(1− pt)f̂Y (yn|θt)

ptfY (yn|θt) + (1− pt)f̂Y (yn|θt)
:= wtn; (7.4)

2) Compute (θt+1, pt+1) by solving (7.3) with the objective function replaced by its av-

erage with respect to the class label’s probabilities, i.e.,

(θt+1, pt+1) = arg max
θ,p

N∑
n=1

1∑
z=0

P(an = z|θt, pt, yn) log
(
f 1−z
Y (yn, θ)f̂

z
Y (yn, θ)(1− p)zp1−z

)
= arg max

θ,p

[ N∑
n=1

((
1− wtn

)(
log(p)

+ log(fY (yn|θ)
)

+ wtn
(

log(1− p) + log(f̂Y (yn|θ)
))]

.

Observe that the optimization problem of step 2) is separable in p and θ.

7.3 Problem Statement

Consider a network of N agents, where the interconnection structure is represented by an

undirected and connected graph. Each agent n holds an observation yn sampled according

to

yn =

hTnµ? + wn, with probability p?,

wn, with probability 1− p?,

where: µ? ∈ Rd is a fixed and unknown parameter; each hn ∈ Rd is assumed to be

known only at agent n; {wn}Nn=1 are samples of independent and identically distributed
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(i.i.d.) zero-mean Gaussian random variables with variance (σ?)2. The agents seek to

collectively estimate µ?, treating p? and (σ?)2, which are also fixed and unknown, as

nuisance parameters.

7.3.1 Mixture Model Formulation

Agent n observes yn, with yn sampled according to the mixture density

fYn
(
y|p?, µ?, (σ?)2

)
= p?N

(
y|hTnµ?, (σ?)2

)
+ (1− p?)N

(
y|0, (σ?)2

)
(7.5)

and, thus, the random variables Yn and Ym associated, respectively, to distinct agents n

and m, are not identically distributed. For reasons that will be clear later, it is important

to have identically distributed samples, and, to this end, we assume that the value hn

that agent n holds is also a sample of a random variable. Let Z ∈ {0, 1}, H ∈ Rd, and

Y ∈ R be, respectively a binary random variable, a random vector, and a real random

variable. Assuming Z and H are independent, the joint density on (Y,H,Z) factors as

fY,H,Z(y, h, z|θ?) = fH(h)fZ(z|p?)fY |H,Z
(
y|h, z, µ?, (σ?)2

)
, (7.6)

where θ? = (µ?, p?, (σ?)2) ∈ Ω = Rd × (0, 1) × (0,+∞) is a fixed and unknown vector,

which we term the ground truth. Finally, let

fH(h) = N (h|0, Id)

fZ(z|p?) = (p?)z(1− p?)1−z

fY |H,Z
(
y|h, z, µ?, (σ?)2

)
= N

(
y|hTµ?, (σ?)2

)zN (y|0, (σ?)2
)1−z

.

Instead of assuming that agent n has a measurement yn, we assume that it has a mea-

surement (yn, hn), where (yn, hn, zn) was sampled according to (7.6), but agent n does

not observe zn (compare this with the “entity” that hides the result of the coin flip, or,

in this case, hides the knowledge about the measurement being faulty or not). Since zn is

not observed, we consider the joint density of (Y,H), which can be computed from (7.6)

by marginalization,

fY,H(y, h|θ?) = fH(h)
(
p?N

(
y|hTnµ?, (σ?)2

)
+ (1− p?)N

(
y|0, (σ?)2

))
.

Note that fY,H is itself a mixture model, equal to the density in (7.5) multiplied by fH(h).

Moreover, fH(·) does not depend on θ?.
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7.3.2 Problem Statement in Terms of the MLE

The agents’ goal is formulated as that of finding a stationary point of the log-likelihood

of (Y,H), i.e., to estimate µ?, the agents seek θ ∈ Ω such that

1

N

∑
n

∇θ log
(
fY,H(yn, hn|θ)

)
= 0.

Since fH(h) does not depend on θ, the agents seek θ such that

1

N

N∑
n=1

∇θ log
(
fY |H(yn|hn, θ)

)
= 0. (7.7)

Let fYn be defined as in (7.5) and observe that (7.7) is nothing but

1

N

N∑
n=1

∇θ log(fYn(yn|θ?)) = 0,

indicating that the introduction of fH(h) does not affect our considerations. The conve-

nience of introducing fH(h), as it will shortly be seen, is that many instrumental results

assume i.i.d. observations. To finish, note as well that the MLE defined in (7.1) satisfies

(7.7) but the converse does not necessarily hold, i.e, a point θ ∈ Ω that satisfies (7.7) is

not necessarily a MLE, since it may correspond to a minimum or a saddle point.

7.4 Roadmap

This is a rather long chapter, hence the need for a road map, itself rather long. To apply

the results of Chapter 5, we first need to rewrite the solution of (7.7) as a fixed point of

a map H that can be written as an average of local maps. A first naive attempt is to let

γ 6= 0 and observe that θ satisfies (7.7) if and only if

θ = θ + γ
( 1

N

N∑
n=1

∇θ log
(
fY,H(yn, hn|θ)

)
.

We could then define

Hn = θ + γ∇θ log
(
fY,H(yn, hn|θ)

)
,

which is a map known at agent n, and check whether there exists γ? such that, for 0 < γ ≤
γ?, ρ

(
JH(θ)

)
< 1, with H = 1/N

∑
nHn. This approach presents some difficulties: the

map G(θ) = 1/N
∑N

n=1∇θ log
(
fY,H(yn, hn|θ)

)
is an average of gradients which implies
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that JG(θ) is an Hessian and, as a result, it is a symmetric matrix. Consequently, there

exists γ? such that, for 0 < γ ≤ γ?, ρ
(
JH(θ)

)
< 1 if and only if JG(θ) is negative definite.

Now, the map G(θ) depends on observations coming from a probability distribution;

thus, the statement “JG(θ) is negative definite” is a probabilistic one. Even if we proved

that, for N sufficiently large, the probability that JG(θ) is negative definite approaches

one, we would still need to prove that its smallest eigenvalue is lower bounded by some

β < 0 with probability tending to 1. In fact, this would be instrumental to define

γ?. Summarizing, we would need to prove a statement stronger than “JG(θ) is negative

definite, with probability tending to 1”.

The approach we follow is to write (7.7) explicitly and to try to “put” all the terms that

can be written as an average of local maps on one side and on the other side “put a map

in θ”, i.e., to rearrange (7.7) in a form like g(θ, y1, h1, . . . , yN , hN) = 1/N
∑

n f(θ, yn, hn),

for maps g and f . Crucially, this should not include a tunable parameter γ. Of course,

for this to work, g cannot be just any map and what we will show is that it has the form

1/N
∑N

n=1 A(yn, hn, θ)θ, where each A(yn, hn, θ) is a matrix.

Suppose for a moment that 1/N
∑N

n=1A(yn, hn, θ) is invertible with probability tend-

ing to one as N goes to infinity. In this case we obtain (7.7) as a fixed point equation

θ =
( 1

N

N∑
n=1

A(yn, hn, θ)
)−1( 1

N

N∑
n=1

f(θ, yn, hn)
)
. (7.8)

Given that the matrix inversion destroys the property of being an average of local maps,

(7.8) is not in the form required for the distributed extension described in Chapter 5.

Nevertheless, (7.8) can be broken into two steps,

θ 7→
( 1

N

N∑
n=1

A(yn, hn, θ),
1

N

N∑
n=1

f(θ, yn, hn)
)

7→
( 1

N

N∑
n=1

A(yn, hn, θ)
)−1( 1

N

N∑
n=1

f(θ, yn, hn)
)
,

where the second map, (Γ, v) 7→ Γ−1v, does not depend on the observations. More

importantly, the first map,

θ 7→
( 1

N

N∑
n=1

A(yn, hn, θ),
1

N

N∑
n=1

f(θ, yn, hn)
)

is an average of local maps.
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To proceed, let

θk+1 =
( 1

N

∑
n

A(yn, hn, θ
k)
)−1( 1

N

N∑
n=1

f(θk, yn, hn
)

and, with a slight abuse of notation, let

ψk+1/2 =
( 1

N

∑
n

A(yn, hn, θ
k),

1

N

N∑
n=1

f(θk, yn, hn
)
.

Note that θ0 → θ1 → θ2 . . . → θk → θk+1 → . . . can be seen as θ0 → ψ1/2 → θ1 →
ψ1+1/2 → θ2 → . . . θk → ψk+1/2 → θk+1 → . . . , where ψk+1/2 is obtained from θk+1 by

applying the map (Γ, v) 7→ Γ−1v, which, as previously observed, does not depend on the

observations. In essence, we can focus on the sequence ψk+1/2 with initialization

ψ1/2 =
( 1

N

∑
n

A(yn, hn, θ
0),

1

N

N∑
n=1

f(θ0, yn, hn
)
.

What is relevant is that the sequence ψk+1/2 is produced by the Banach-Picard iteration

of a map that can be written as an average of local maps.

To summarize: θ satisfies (7.7) if and only if θ is a fixed point of a map

H̃(θ) = Q
( 1

N

∑
n

Tn(yn, hn, θ)
)
,

where Q does not depend on the observations (Q is the map (Γ, v) 7→ Γ−1v)). To arrive

at a distributed algorithm, instead of the Banach-Picard iteration of H̃, consider the

Banach-Picard iteration of H(ψ) = 1/N
∑

n Tn(yn, hn, Q(ψ)), because H is an average of

local maps.

7.4.1 Why this Makes Sense

This section explains why switching the roles of two maps, i.e., why considering H rather

than H̃, is not a “big deal”. Let g1 : Rd → Rq, g2 : Rq → Rd be two maps and suppose

that x? ∈ Rq is a fixed point of g1 ◦ g2. Clearly, g2(x?) is a fixed point of g2 ◦ g1, and

conversely. Suppose further that x? is a fixed point of g1 ◦ g2 such that

ρ
(
Jg1◦g2(x

?)
)
< 1. (7.9)
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The chain rule of differentiation implies that

Jg1◦g2(x
?) = Jg1

(
g2(x?)

)
Jg2(x

?). (7.10)

We want to conclude that if x? is a fixed point satisfying (7.9), then g2(x?) is a fixed point

of g2 ◦ g1 such that ρ
(
Jg2◦g1

(
g2(x?)

))
< 1; this reduces to proving that ρ(AB) = ρ(BA).

In fact, again by the chain rule and the fact that x? is assumed to be a fixed point of

g1 ◦ g2, we obtain

Jg2◦g1
(
g2(x?)

)
= Jg2

(
g1(g2(x?))

)
Jg1
(
g2(x?)

)
= Jg2(x

?)Jg1
(
g2(x?)

)
,

which is (7.10) with the matrix product reversed.

To see that ρ(AB) = ρ(BA), let A be an n × m matrix, B be an m × n matrix

and suppose that 0 6= v ∈ Rn satisfies ABv = λv with λ 6= 0. Then, Rm 3 Bv 6= 0,

since, otherwise, we could not have ABv = λv with both λ and v non-zero. Moreover,

BA(Bv) = B(ABv) = B(λv) = λBv. From Bv 6= 0, we conclude that Bv is an eigenvec-

tor of BA associated to the eigenvalue λ. The converse follows from reversing the roles of

A and B. We conclude that the non-zero eigenvalues of AB are the non-zero eigenvalues

of BA and this is enough to conclude that ρ(AB) = ρ(BA).

7.4.2 Probability of Having a Fixed Point

From the previous section, we can focus on the stable fixed points of

H̃N(θ) =
( 1

N

N∑
n=1

A(yn, hn, θ)
)−1( 1

N

N∑
n=1

f(θ, yn, hn)
)
,

rather than those of H(ψ), the map from which the distributed algorithm emerges. The

inclusion of a subscript in H̃N is to indicate that it depends on samples (not to be

confused with the local map belonging to agent N). Given that H̃N is “built” after

observing y1, h1, . . . , yN , hN , it is clear that the statement “the map H̃N has a fixed point”

is a probabilistic one. In fact, let AN =
{

(y1, h1, . . . , yN , hN)|∃θ s.t. HN(θ) = θ
}

and,

provided we can integrate over AN , the map H̃N has a fixed point with probability

∫
AN

N∏
n=1

fH(hn)
(
p?N

(
yn|hTnµ?, (σ?)2

)
+ (1− p?)N

(
yn|0, (σ?)2

)
dy1dh1 . . . dyNdhN .

(7.11)
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The set AN , being defined by an existence condition, is not easy to characterize, and we

are ultimately interested in proving that, as N →∞, (7.11) tends to one. To circumvent

this issue, we use Brouwer’s fixed point theorem (see Chapter 3): consider the set

BN =
{

(y1, h1, . . . , yN , hN) ∈ RN |H̃N

(
B̄(θ?, δ)

)
⊆ B̄(θ?, δ)

}
,

where B̄(θ?, δ) is the closed ball with respect to a certain norm, centered at the ground

truth θ?, and with radius δ. Brouwer’s fixed point theorem can be restated as BN ⊆ AN ,

because B̄(θ?, δ) is a closed, bounded, and convex set; what we will show is that

lim
n→∞

P
(
(y1, h1 . . . , yN , hN) ∈ BN

)
= 1.

7.4.3 The Missing Piece

So far, all of this may look very complicated and, in this section, we reveal the miss-

ing piece. Let θ be fixed for now and observe that, if the probability density over

y1, h1, . . . , yN , hN is “sufficiently well behaved”, then, by the weak law of large num-

bers, the random vector ZN = H̃N(θ) converges, in probability, to the expected value,

i.e., to (∫
A(y, h, θ)fY,H(y, h|θ?)dydh

)−1
∫
f(θ, y, h)fY,H(y, h|θ?)dydh.

This suggests that it is natural to look at the map

H̃(θ) :=
(∫

A(y, h, θ)fY,H(y, h|θ?)dydh
)−1

∫
f(θ, y, h)fY,H(y, h|θ?)dydh, (7.12)

which has the following relevant properties: H̃(θ?) = θ? and, under mild conditions,

ρ
(
JH̃(θ?)

)
< 1. Given that H̃ is a type of “infinite sample” version of H̃N and that, for

each θ, H̃N(θ) converges in probability to H̃(θ), it is tempting to infer the probabilistic

properties of H̃N from the non-probabilistic properties of H̃; this is the path we take.

It turns out that “pointwise convergence in probability” is not enough, and, hence, a

stronger version of the weak law of large numbers will be required, something like H̃N

“converges uniformly in probability” to H̃.

7.4.4 Summary

The key points are summarized as:

1) θ satisfies (7.7) if and only if θ satisfies (7.8), which can be written as a fixed point
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of H̃N(θ) = Q
(
1/N

∑
n Tn(yn, hn, θ)

)
;

2) To arrive at a distributed algorithm, switch the roles of Q and the average map,

that is, consider HN(ψ) = 1/N
∑

n Tn(yn, hn, Q(ψ));

3) The existence of a stable fixed point of HN follows from the existence of a stable

fixed point of H̃N ;

4) θ? is, under mild conditions, a stable fixed point of the infinite sample version of

H̃N , i.e., (7.12);

5) The probabilistic properties of H̃N follow from “uniform convergence in probability”

of H̃N to H̃. For example, for N sufficiently large, the probability that a closed ball

centered at θ? is invariant under H̃N is close to one. Consequently, via Brouwer’s

fixed point theorem, the probability that H̃N has a fixed point is close to one, for

N sufficiently large.

7.5 Gradient of the Log-Likelihood

The stability equations (7.7) can be explicitly written by differentiating with respect to

µ, p, and σ2. Let φ(y, h, θ) = log
(
fY |H(y|h, θ)

)
= log

(
pN (y|hTµ, σ2)+(1−p)N (y|0, σ2)

)
;

then,

∇µφ(y, h, θ) =
1

σ2

pN (y|hTµ, σ2)

pN (y|hTµ, σ2) + (1− p)N (y|0, σ2)
(y − hTµ)h,

∇pφ(y, h, θ) =
N (y|hTµ, σ2)

pN (y|hTµ, σ2) + (1− p)N (y|0, σ2)
− N (y|0, σ2)

pN (y|hTµ, σ2) + (1− p)N (y|0, σ2)
,

∇σ2φ(y, h, θ) = − 1

2σ2
+

1

2(σ2)2

( pN (y|hTµ, σ2)

pN (y|hTµ, σ2) + (1− p)N (y|0, σ2)
(y − hTµ)2

+
(1− p)N (y|0, σ2)

pN (y|hTµ, σ2) + (1− p)N (y|0, σ2)
y2
)
.

Observe that the function

r(y, h, θ) =
pN (y|hTµ, σ2)

pN (y|hTµ, σ2) + (1− p)N (y|0, σ2)
(7.13)

is a “building block” that appears in all partial derivatives. Furthermore, note the sim-

ilarity between r(y, h, θ) and the probabilities for the missing class labels computed in

the first step of the EM algorithm, i.e., (7.4) (r(y, h, θ) is the probability that the mea-

surement was not faulty, conditioned on y, h, θ); in the EM literature (see [103]), these
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functions are often called the responsibility functions. Writing the partial derivatives in

terms of the responsibility functions yields

∇µφ(y, h, θ) =
1

σ2
r(y, h, θ)(y − hTµ)h, (7.14)

∇pφ(y, h, θ) =
1

p
r(y, h, θ)− 1

1− p
(1− r(y, h, θ)), (7.15)

∇σ2φ(y, h, θ) = − 1

σ2
+

1

2(σ2)2

(
r(y, h, θ)(y − hTµ)2 + (1− r(y, h, θ)y2

)
. (7.16)

7.5.1 Modified EM

This section presents the centralized Banach-Picard iteration that will be used to coordi-

nate the agents towards µ?. The reason to call it a “modified EM” is explained in Section

7.7.1.

Since we are ultimately interested in obtaining a fixed point equation, it is natural to

try to isolate µ, p, and σ2. To this end, note that θ satisfies ∇φ = 0 if an only if

r(y, h, θ)hhTµ = r(y, h, θ)yh

(1− p)r(y, h, θ)− p(1− r(y, h, θ)) = 0

σ2 = r(y, h, θ)(y − hTµ)2 + (1− r(y, h, θ))y2.

The second equation simplifies to r(y, h, θ) = p, and, hence, (7.7) can be rewritten as

( 1

N

N∑
n=1

r(yn, hn, θ)hnh
T
n

)
µ =

1

N

N∑
n=1

r(yn, hn, θ)ynhn

p =
1

N

N∑
n=1

r(yn, hn, θ)

σ2 =
1

N

N∑
n=1

r(yn, hn, θ)(yn − hTnµ)2 + (1− r(yn, hn, θ))y2
n.

This is “almost” a fixed point equation; in fact, this leads to a fixed point equation,

provided the matrix 1/N
∑

n r(yn, hn, θ)hnh
T
n can be inverted. Since each hn is inde-

pendently sampled from a Gaussian with zero mean and variance I, the invertibility

holds with probability one for N sufficiently large (at least larger than d) [104]. As a
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consequence, we consider

µk+1 =
( 1

N

N∑
n=1

Γ(yn, hn, θ
k)
)−1 1

N

N∑
n=1

ψ(yn, hn, θ
k) (7.17)

pk+1 =
1

N

N∑
n=1

r(yn, hn, θ
k) (7.18)

(σ2)k+1 =
1

N

N∑
n=1

γ(yn, hn, θ
k), (7.19)

where

Γ(y, h, θ) = r(y, h, θ)hhT

ψ(y, h, θ) = r(y, h, θ)yh

γ(y, h, θ) = r(y, h, θ)(y − hTµ)2 + (1− r(y, h, θ))y2.

Comparing this with (7.8) and, from the observations made therein, the map underlying

(7.17)-(7.19) is of the form H̃(θ) = Q(1/N
∑

n Tn(yn, hn, θ)). Consequently, by inter-

changing the roles of Q and 1/N
∑

n Tn, we obtain a map that is an average of local

maps. Moreover, it is enough to focus on the properties of (7.17)-(7.19).

7.6 Convergence Analysis

This section provides the convergence analysis, that is, it addresses the existence of a

stable fixed point of (7.17)-(7.19), specifically, the probability that the map TN underlying

(7.17)-(7.19) has a fixed point θN satisfying ρ
(
JTN (θN)

)
< 1. The convergence proof is

merely a skeleton proof with several unenlightening technicalities (which can be found in

[14]) omitted.

7.6.1 Infinite Sample Map

Let TN denote1 the map underlying the Banach-Picard iteration (7.17)-(7.19). Straight-

forward manipulation, using (7.14)-(7.16), shows that

TN(θ) = θ +
(
AN(θ)

)−1 1

N

N∑
n=1

∇θφ(yn, hn, θ), (7.20)

1The subscript N emphasizes that TN depends on N observations, not that TN is the map of agent
N .
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where

AN(θ) =


1
N

∑N
n=1

1
σ2 Γ(yn, hn, θ) 0 0

0 1
p(1−p) 0

0 0 1
2(σ2)2

 .
As mentioned in Section 7.4.3, from the weak law of large numbers, it is natural to look

at the “infinite sample” version of (7.20), i.e., to consider the map T that corresponds

to replacing the finite averages by expected values. This infinite sample map is given by

T (θ) = θ +
(
A(θ)

)−1L(θ), (7.21)

where

A(θ) =


Eθ?
[

1
σ2 Γ(y, h, θ)

]
0 0

0 1
p(1−p) 0

0 0 1
2(σ2)2

 ,
and

L(θ) = Eθ?
[
∇θφ(y, h, θ)

]
.

A straightforward verification reveals that L(θ?) = 0 and, hence, T (θ?) = θ?. It is, thus,

natural to search for a condition that guarantees that ρ
(
JT (θ?)

)
< 1; this is the goal of

the next section.

7.6.2 Assumption on the Model

In order to consider ρ
(
JT (θ?)

)
< 1, we first need to check whether T is differentiable at

θ?. Suppose for a moment that both A(θ) and L(θ) are differentiable at θ?. Then, T is

also differentiable at θ? and, since L(θ?) = 0,

JT (θ?) = I + A(θ?)−1JL(θ?).

A sufficient condition to have differentiablity of A(θ) and L(θ) is to be able to differentiate

under the integral sign. Conditions that ensure this are addressed in detail in our article

[14] and we will refer to them as regularity conditions. Such regularity conditions are also

enough to guarantee that

−JL(θ?) = −Eθ?
[
∇2φ(y, h, θ?)

]
= −Eθ?

[(
∇θφ(y, h, θ?)

)(
∇θφ(y, h, θ?)

)T]
=: I(θ?),
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where ∇2φ(y, h, θ?) = J∇θφ(y, h, θ?). The matrix I(θ?) is called, in the literature (see e.g.

[105]), the Fisher Information. Suppose that I(θ?) is singular and let v be a non-zero

vector such that I(θ?)v = 0; then,

JT (θ?)v = v,

that is, v is an eigenvector associated to the unit eigenvalue. This shows that a necessary

condition to have ρ
(
JT (θ?)

)
< 1 is non-singularity of I(θ?).

Assumption S: The ground truth θ? satisfies det
(
I(θ?)

)
6= 0.

It turns out that Assumption S is not only a necessary condition for ρ
(
JT (θ?)

)
< 1,

but it is also sufficient. To see this, consider the Fisher information of the complete data

model, that is,

Ic(θ
?) = Eθ?

[(
∇θφc(y, h, z, θ

?)
)(
∇θφc(y, h, z, θ

?)
)T]

,

where φc(y, h, z, θ) = log
(
fY,H,Z(y, h, z|θ)

)
; this is called the complete data model be-

cause it is the Fisher information for the density with no missing class labels. A simple

calculation reveals that Ic(θ
?) = A(θ?), which leads to

JT (θ?) = I −
(
Ic(θ

?)
)−1

I(θ?).

The following result, which implicitly uses Assumption S, is well known and its proof can

be found in [15].

Lemma 7.6.1 (Principle of Missing Information). The matrices I(θ?) and Ic(θ
?) satisfy

0 ≺ I(θ?) � Ic(θ
?).

The principle of missing information (Lemma 7.6.1) together with Theorem 7.7.3 of

[57] imply that

ρ
(
JT (θ?)

)
< 1. (7.22)

7.6.3 Probability of Having a Fixed Point

Recall that for a given θ, the weak law of large numbers implies that the random vector

TN(θ) converges, in probability, to the non-random vector T (θ). As noted in the roadmap

presented in Section 7.4, “pointwise convergence” in probability, i.e., convergence for
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each θ, is not enough to infer probabilistic properties of TN from the non-probabilistic

properties of T . A stronger version of the weak law of large numbers is required; the

next result can be seen as a “uniform law of large numbers”. It is stated in terms of

the Frobenius norm, denoted by ‖ · ‖F , but, from the equivalence between all norms, it

applies to any other norm.

Theorem 7.6.1 ([106]). Let a(z, θ) be a matrix of functions of an observation z and the

parameter θ ∈ Ω. If z1, . . . , zN are i.i.d., Ω is compact, a(z, θ) is continuous at each θ,

and there is d(z) with ‖a(z, θ)‖F ≤ d(z) for all θ ∈ Ω, where E[d(z)] exists and is finite,

then E[a(z, θ)] is continuous and

sup
θ∈Ω

∥∥∥ 1

N

N∑
j=1

a(zj, θ)− E[a(z, θ)]
∥∥∥
F
→ 0,

in probability.

Remark 7.6.1. The conditions on a(z, θ) appearing in the statement of Theorem 7.6.1

are again regularity conditions that are similar to the ones required for differentiation

under the integral sign. We again refer the reader to our article [14] where these are

addressed in detail.

We will now give a sketch of the proof that establishes that, for sufficiently large N ,

the probability that TN has a fixed point is very close to one. From Ostrowski’s theorem

(see Chapter 3) and ρ
(
JT (θ?)

)
< 1, there exists a norm ‖ · ‖ and λ < 1 such that

‖T (θ)− θ?‖ ≤ λ‖θ − θ?‖,

for all θ ∈ B̄(θ?, δ), where B̄(θ?, δ) denotes the closed ball of center θ? and radius δ with

respect to ‖ · ‖. For any θ ∈ B̄(θ?, δ), the triangular inequality implies that

‖TN(θ)− θ?‖ ≤ ‖TN(θ)− T (θ)‖+ ‖T (θ)− θ?‖ ≤ ‖TN(θ)− T (θ)‖+ λδ.

As a consequence, we obtain that

sup
θ∈B̄(θ?,δ)

‖TN(θ)− θ?‖ ≤ sup
θ∈B̄(θ?,δ)

‖TN(θ)− T (θ)‖+ λδ. (7.23)

Without going into details (see [14]), one can show that Theorem 7.6.1 implies that

sup
θ∈B̄(θ?,δ)

‖TN(θ)− T (θ)‖ → 0,
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in probability. Consequently, the non-random sequence

Pθ?
(

sup
θ∈B̄(θ?,δ)

‖TN(θ)− T (θ)‖ ≤ (1− λ)δ
)

converges to one. From (7.23), we obtain that

Pθ?
(

sup
θ∈B̄(θ?,δ)

‖TN(θ)− T (θ)‖ ≤ (1− λ)δ
)
≤ Pθ?

(
sup

θ∈B̄(θ?,δ)

‖TN(θ)− θ?‖ ≤ δ
)
,

and, thus, the non-random sequence

Pθ?
(

sup
θ∈B̄(θ?,δ)

‖TN(θ)− θ?‖ ≤ δ
)

converges to one as well. We conclude that

Pθ?
(
TN
(
B̄(θ?, δ)

)
⊆ B̄(θ?, δ)

)
converges to one. By Brouwer’s fixed point theorem (see Chapter 3), the probability that

TN has a fixed point is, for N sufficiently large, as close to one as desired.

7.6.4 Probability of Having a Stable Fixed Point

Many technicalities need to be checked to prove that the probability of having a stable

fixed point approaches one as N goes to infinity. Similarly to the previous section, we

only sketch the proof and refer the reader to [14] for the technical details. Start by noting

that, if θN is a fixed point of TN , then

T ′N(θN) := JTN (θN) = I +
(
AN(θN)

)−1 1

N

N∑
n=1

∇2
θφ(yn, hn, θN). (7.24)

The idea is to consider an infinite sample version of JTN (θN), in the same spirit as when

we considered the infinite sample version of TN , i.e., T . Let

T ′(θ) = I + A(θ)−1Eθ?
[
∇2
θφ(y, h, θ)

]
. (7.25)

Observe that T ′(θ) only coincides with JT (θ) if θ is a fixed point of T . Because θ? is a

fixed point of T , at θ?,

T ′(θ?) = JT (θ?) = I − Ic(θ?)−1I(θ?).
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If necessary, by reducing δ (the radius of the ball B̄(θ?, δ) from the previous section), we

may, from (7.22) and the continuity of T ′, assume that

‖T ′(θ)‖ < 1,

for all θ ∈ B̄(θ?, δ). Omitting the details (see [14]) as in the previous section, one can

appeal to Theorem 7.6.1 to show that

sup
θ∈B̄(θ?,δ)

‖T ′N(θ)− T ′(θ)‖ → 0,

in probability. This is is enough to conclude, from ‖T ′(θ)‖ < 1, that

Pθ?
(

sup
θ∈B̄(θ?,δ)

‖T ′N(θ)‖ < 1
)
→ 1.

7.6.5 Putting Everything Together

Modulo some technicalities that the reader can find in [14], the summary of the proof

skeleton is as follows. Let: 1) TN be the map underlying (7.17)-(7.19), i.e., (7.20); 2)

T be the infinite sample version of TN , i.e., (7.21); 3) T ′N be the form of the Jacobian

of TN at fixed points of TN , i.e., (7.24); 4) T ′ be the infinite sample version of T ′N , i.e.,

(7.25). Suppose that Assumption S holds. From the principle of missing information

(Lemma 7.6.1) and the “uniform law of large numbers” theorem (Theorem 7.6.1), the

next theorem follows.

Theorem 7.6.2. There exists δ > 0 and a norm ‖ · ‖ such that

Pθ?
(

sup
θ∈B̄(θ?,δ)

∥∥TN(θ)− θ?‖ ≤ δ
)
→ 1,

Pθ?
(

sup
θ∈B̄(θ?,δ)

∥∥T ′N(θ)‖ < 1
)
→ 1,

where ‖T ′N(θ)‖ is the induced matrix norm.2

We now show why Theorem 7.6.2 encapsulates the notion that, with probability ap-

proaching 1, the map TN has a fixed point θN satisfying ρ
(
JTN (θN)

)
< 1. Let

AN =
{

(y,h) ∈ RN × RdN : sup
θ∈B̄(θ?,δ)

∥∥TN(θ)− θ?‖ ≤ δ
}
,

BN =
{

(y,h) ∈ RN × RdN : sup
θ∈B̄(θ?,δ)

∥∥T ′N(θ)‖ < 1
}
.

2The measurability of the maps in this theorem are a consequence of Proposition 7.32 in [107].
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Remark 7.6.2. Informally, observe that the set AN is the set of “samples” where the

ball B̄(θ?, δ) is invariant under TN , i.e,

TN
(
B̄(θ?, δ)

)
⊆ B̄(θ?, δ),

and that the set BN is the set of “samples” where the Jacobian of TN satisfies ‖JTN (θN)‖ <
1 at a fixed point θN . By noting that a continuous map from a convex compact space into

itself has a fixed point (Brouwer’s fixed point theorem), it follows that if (y,h) is in AN ,

then TN has a fixed point. Moreover, if (y,h) is in AN ∩ BN then TN has a fixed point

θN satisfying ‖JTN (θN)‖ < 1. All of this is made precise below.

The statement of Theorem 7.6.2 is that the (non-random) sequences Pθ?(AN) and

Pθ?(BN) both tend to 1, as N →∞. The inequalities

Pθ?(AN) + Pθ?(BN)− 1 ≤ Pθ?(AN ∩ BN) ≤ Pθ?(AN)

imply that

Pθ?(AN ∩ BN)→ 1.

If both inequalities hold, namely

sup
θ∈B̄(θ?,δ)

∥∥TN(θ)− θ?‖ ≤ δ, (7.26)

sup
θ∈B̄(θ?,δ)

∥∥T ′N(θ)‖ < 1, (7.27)

then (7.26), together with Brouwer’s fixed point theorem (see Chapter 3) implies that

TN has a fixed point θN in B̄(θ?, δ) (this idea is loosely inspired by [108]). Moreover, at

a fixed point θN , it holds that T ′N(θN) = JTN (θN), so, (7.27) implies that

ρ
(
JTN (θN)

)
≤
∥∥JTN (θN)‖ ≤ sup

θ∈B̄(θ?,δ)

∥∥T ′N(θ)‖ < 1.

This explains why Theorem 7.6.2 expresses the notion that we can “expect” TN to have

a stable fixed point. In fact, from the above, the event

CN =
{

(y,h) : TN has a fixed point θN satisfying ρ
(
JTN (θN)

)
< 1
}

contains the event AN ∩ BN , and the probability of this last event approaches 1.
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7.7 Simulations

7.7.1 EM Algorithm for (7.7)

Consider the updates of Modified EM, that is, (7.17)-(7.19). The σ2-update is given by

(σ2)k+1 =
1

N

N∑
n=1

r(yn, hn, θ
k)(yn − hTnµk)2 +

(
1− r(yn, hn, θk)

)
y2
n

=
1

N

N∑
n=1

y2
n − 2r(yn, hn, θ

k)ynh
T
nµ

k + r(yn, hn, θ
k)(hTnµ

k)2.

Now suppose that all instances of µk above are replaced by µk+1, i.e.,

(σ2)k+1 =
1

N

N∑
n=1

y2
n − 2r(yn, hn, θ

k)ynh
T
nµ

k+1 + r(yn, hn, θ
k)(hTnµ

k+1)2.

A simple calculation using (7.17) shows that, in this case,

(σ2)k+1 =
1

N

N∑
n=1

y2
n − r(yn, hn, θk)ynhTnµk+1. (7.28)

The EM algorithm for (7.7) is derived in [12] and it is given by (7.17)-(7.18) and (7.28),

instead of (7.19). This is why we called (7.17)-(7.19) a modified EM algorithm.

Remark 7.7.1. The EM algorithm has the virtue of never decreasing the log-likelihood,

that is, if θk is the sequence produced by the EM algorithm, then φ(θk+1) ≥ φ(θk) (see

[15]). This property may not hold for the Modified EM algorithm.

7.7.2 Two Distributed Algorithms

Let

g2(θ) =
1

N

( N∑
n=1

Γ(yn, hn, θ),
N∑
n=1

ψ(yn, hn, θ),
N∑
n=1

r(yn, hn, θ),
N∑
n=1

γ(yn, hn, θ)
)

g1(Γ, ψ, p, σ2) =
(
Γ−1ψ, p, σ2

)
ĝ2(θ) =

1

N

( N∑
n=1

Γ(yn, hn, θ),
N∑
n=1

ψ(yn, hn, θ),
N∑
n=1

r(yn, hn, θ),
N∑
n=1

y2
n

)
ĝ1(Γ, ψ, p, a) =

(
Γ−1ψ, p, a− ψTΓ−1ψ

)
.
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The modified EM algorithm and the standard EM algorithm can be, respectively, written

as θk+1 = g1◦g2(θk) and θk+1 = ĝ1◦ĝ2(θk). Neither algorithm can be written as an average

of local maps, but switching the roles of the composition leads to algorithms that can.

Throughout the rest of the section, when we say “our algorithm” we are referring to the

EXTRA-distributed Banach-Picard iteration (5.19) stemming from the Banach-Picard

iteration of g1 ◦ g1. When we refer to DA-DEM, we mean the algorithm proposed in [12],

which coincides with the distributed algorithm from Chapter 4 for the Banach-Picard

iteration of ĝ2 ◦ ĝ1.

7.7.3 Simulation Results

In this section, we compare our algorithm with DA-DEM through Monte Carlo simula-

tions. The parameters generated once and fixed throughout all Monte Carlo runs were:

d = 3, N = 100, a unit-norm vector µ? ∈ Rd, p? = 0.7, and an undirected connected

graph on N nodes with connectivity radius3 rc = 0.18. In what follows zkn(α) denotes

the k-th iterate of agent n of our algorithm with parameter α, and zkn(ρ) denotes the

k-th iterate of agent n of DA-DEM with parameter ρ. In the language of Chapter 4,

parameter ρ corresponds to the shrinking step-size sequence given, for k = 0, . . . , by

αk =
ρ

k + ρ
.

Each Monte Carlo run consisted in

1) Generating a data set: each hn was independently sampled from a Gaussian with zero

mean and covariance I3; the variance of the noise (σ?)2 was set to

(σ?)2 =
‖H‖2

F

N × SNR
,

with HT = [h1 . . . hN ] and where SNR is the desired signal to noise ratio (we

experimented with SNR ∈ {10dB, 20dB}). Finally, each yn was sampled according

to fY |H (see (7.5)), with hn, µ?, p?, and (σ?)2.

2) Computing 10000 iterations of DA-DEM, with ρ ∈ {2, 3, 4}, and of our algorithm,

with α ∈ {0.001, 0.005, 0.01}. Both algorithms were initialized according to the

initialization suggested in [12] for DA-DEM.

The performance metrics consisted in finding a fixed point using the centralized maps as

3N points were randomly deployed on the unit square; two points were then connected by an edge if
their distance was less than rc.
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follows. We first compute

θ0(α) =
1

N

N∑
n=1

g1

(
z10000
n (α)

)
(7.29)

θ0(ρ) =
1

N

N∑
n=1

ĝ1

(
z10000
n (ρ)

)
, (7.30)

where: α ∈ {0.001, 0.005, 0.01}; ρ ∈ {2, 3, 4}.

We ran the centralized modified EM and the standard EM algorithms, with initial-

ization as in (7.29) and (7.30), that is, we computed

θk+1(α) = g1 ◦ g2

(
θk(α)

)
θk+1(ρ) = ĝ1 ◦ ĝ2

(
θk(ρ)

)
,

until we found θ?(α) and θ?(ρ) satisfying∥∥∥θ?(α)− g1 ◦ g2

(
θ?(α)

)∥∥∥ ≤ 10−10∥∥∥θ?(ρ)− ĝ1 ◦ ĝ2

(
θ?(ρ)

)∥∥∥ ≤ 10−10.

The error at iteration k of the distributed algorithms was then computed as

1

N

N∑
n=1

∥∥∥π1 ◦ g1

(
(zkn(α)

)
− θ?(α)

∥∥∥
1

N

N∑
n=1

∥∥∥π1 ◦ ĝ1

(
(zkn(ρ)

)
− θ?(ρ)

∥∥∥,
where π1 is the projection onto the average, i.e., π1(µ, p, σ2) = µ (as mentioned before, p

and σ2 were treated as nuisance parameters).

The number of Monte Carlo tests was 100 and the errors at iteration k are averages

for each α and ρ. The results for two different SNR values are shown in logarithmic scale

in Figures 1 and 2.

The simulations show, as expected from the theory, that our algorithm converges

linearly and clearly outperforms the algorithm from [12], which, given its diminishing

step-size, is bound to converge only sub-linearly. Moreover, both algorithms require just

one round of communications per iteration.
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Figure 7.1: Result of the Monte Carlo simulation of the error with respect to each optimum
for an SNR = 10dB and a connectivity radius of 0.18. The dashed curves correspond to DA-
DEM with parameter ρ ∈ {2, 3, 4}; the solid curves correspond to our algorithm with parameter
α ∈ {0.001, 0.005, 0.01}.

Figure 7.2: Result of the Monte Carlo simulation of the error with respect to each optimum
for an SNR = 20dB and a connectivity radius of 0.18. The dashed curves correspond to DA-
DEM with parameter ρ ∈ {2, 3, 4}; the solid curves correspond to our algorithm with parameter
α ∈ {0.001, 0.005, 0.01}.

7.8 Comments and References

There is considerable work on the “probabilistic linear convergence” of EM [50], [51],

[52]. However, neither the results in [50], nor those in [51] encompass the mixture model

underlying (7.5). The mixture of regressions presented in [52] bears some similarity
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with the model underlying (7.5), but it is not the same: in [52], p is fixed at 1/2 and

Zn ∈ {−1, 1} (rather than {0, 1}), thus there are no measurements that are just noise.

Furthermore, [52] is primarily concerned with statistical guarantees for the error with

respect to the ground truth, while we address the goal of establishing the existence of a

stable fixed point.

As mentioned in [12], there are two other relevant works on distributed EM, namely,

[53] and [54]. However (see [12]), both those works address a different problem of Gaussian

mixture density estimation. Moreover, in the case of [53], the algorithm demands a

cyclic network topology, and, in [54] the algorithm requires higher computational load on

each node, since it is based on alternating direction method of multipliers (see [55] for a

reference on ADMM).

7.8.1 Convergence Towards the Ground Truth

It was shown that with probability tending to one, the map TN underlying (7.17)-(7.19)

and defined in (7.24) has a fixed point θN in B̄(θ?, δ). This was established by proving

that

Pθ?
(

sup
θ∈B̄(θ?,δ)

‖TN(θ)− θ?‖ ≤ δ
)
→ 1

and appealing to Brouwer’s fixed point theorem. However, the agents’ goal is to estimate

θ? (µ? in reality, since p? and (σ?)2 are treated as nuisance parameters). Therefore, it

seems that we cheated since θN is just a point in B̄(θ?, δ) and no connection with θ? was

made. We didn’t even quantify δ, hence, without any further investigation, the “best”

we can say is that we have local linear convergence towards a point at a distance of at

most δ from θ?; to make things worse, that distance arises from a norm that we didn’t

even bother to identify. In this section, we “fill” this gap by appealing to an argument

in the non-random version of the problem. To this end, suppose that the maps TN are

non-random (just think that, for each θ, TN(θ) is a just a vector, i.e., not a random

vector) and suppose that the sequence converges uniformly to T in B̄(θ?, δ), i.e.,

lim
N→∞

sup
θ∈B̄(θ?,δ)

‖TN(θ)− T (θ)‖ = 0.

In this case, the existence of a fixed point θN of TN is easy to establish by noting that

‖TN(θ)− θ?‖ ≤ ‖TN(θ)− T (θ)‖+ ‖T (θ)− θ?‖ ≤ ‖TN(θ)− T (θ)‖+ λδ ≤ δ
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for N sufficiently large. Similar to the random case, by Brouwer’s fixed point theorem,

there exists θN such that TN(θN) = θN . What we now show is that θN → θ?. Without

loss of generality, assume that, for N ≥ 1, TN has a fixed point in B̄(θ?, δ) (if it does not,

consider the sequence TN as starting in the first N0 for which TN has such a fixed point

for N ≥ N0). For every ε′ > 0, there must exist N0(ε′) such that

‖θN − θ?‖ = ‖TN(θN)− θ?‖ ≤ ‖TN(θN)− T (θN)‖+ λ‖θN − θ?‖ ≤ ε′ + λ‖θN − θ?‖,

for N ≥ N0(ε′). Choose ε′ = ε(1− λ) and, for N ≥ N0(ε(1− λ)), it holds that

‖θN − θ?‖ ≤ ε(1− λ) + λ‖θN − θ?‖;

this implies that ‖θN − θ?‖ ≤ ε, for N ≥ N0(ε(1− λ)). We conclude that θN → θ?.

By the reasoning above, for N sufficiently large, the fixed points of TN are at a distance

of at most ε from the “ground truth”. However, without characterizing the “rate” at

which TN converges to T , we cannot characterize the rate at which θN converges to θ?.

To “complete” the picture of this chapter, we should obtain a probabilistic version of the

argument above; this route, however, was not pursued and is left as a direction for future

research.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

The thesis proposed an algorithmic framework that extends to distributed settings the

iteration of a map H that is an average of local maps, i.e., maps held by agents in a

communication network. Specifically, given a map H defined on Rd that can be written

as

H =
1

N

N∑
n=1

Hn, (8.1)

where each Hn is known at an agent (e.g. a sensor) in a communication network (e.g., a

wireless network); we showed how to build a parametric1 family of maps FH defined on

R2dN with the following properties:

1) The Banach-Picard iteration of FH , termed distributed Banach-Picard iteration (DBPI),

i.e., the iteration

(zk+1, wk+1) = FH(zk, wk), (8.2)

has distributed implementation respecting the links of the communication network,

that is, by letting agent n maintain the variables (zkn, w
k
n), the nth component of

(8.2) is of the form

(zk+1
n , wk+1

n ) = F̃Hn

(
(zkn, w

k
n),
{

(zkm, w
k
m)
}
m∈Nn

)
,

where F̃Hn is a map depending only on the variables of agent n, the variables of its

1The parameters are omitted for ease of notation.

137



neighbors and its private map Hn;

2) The DBPI lifts the fixed points of H, that is, if H(x?) = x?, then, for some w? ∈ RdN ,

FH
(
(x?, . . . , x?), w?

)
=
(
(x?, . . . , x?), w?

)
;

3) The contractive properties, either local or global of H, are inherited by FH . Conse-

quently, if the Banach-Picard iteration of H, i.e., the iteration

xk+1 = H(xk) (8.3)

has local (global) linear convergence, then the DBPI, i.e., (8.2), has local (global)

linear convergence.

The reason to view the DBPI as an algorithmic framework, rather than simply an

algorithm, is its dependence on H. In fact, the DBPI can be seen as a recipe for dis-

tributed inference for which the convergence properties follow from those of centralized

inference, i.e, the iteration (8.3). The skeleton of the recipe is as follows: suppose x?

is to be inferred from θ1, . . . , θN , where θn is known at an agent n in a communication

network, then, inferring x? can be carried out in a distributed fashion by

1) Finding a map H for which x? = H(x?);

2) Showing that H can be written as an average of the form (8.1), where Hn is a map

that can be computed by agent n, i.e., a map possibly depending on θn but not on

θm, for m 6= n;

3) Proving that H is either locally or globally contractive towards x?.

The end result is that distributed inference will be carried out with the same “qualitative

speed” as centralized inference, that is, all agents will be increasingly in agreement over

x?, at a rate of the same order as if the inference was performed at an agent knowing the

full data set. Crucially, this certificate follows only from the properties of H.

To demonstrate the virtues of the DBPI, the second part of the thesis obtained, by

following the recipe abovementioned, extensions to distributed scenarios of two inference

problems – principal component analysis (PCA) and estimation from noisy and faulty

measurements. As dictated by the recipe, to arrive at a map for distributed inference,

two centralized inference maps HP (PCA map) and HE (estimation map) were studied

and their fixed points analyzed. Specifically, for desired fixed points x?P (PCA solution)
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and x?E (an estimate), it was shown that

ρ
(
JHQ(x?Q)

)
< 1, (8.4)

where Q ∈ {P,E}, thus completing step 3) of the recipe. Condition (8.4), a sufficient

condition for local contractiveness towards x?Q if HQ is differentiable, is inherited by FHQ
as a consequence of the theoretical results established in Chapter 5. The iteration of HP

corresponds to a well known algorithm termed Sanger’s algorithm (SA) and the iteration

of HE to a slightly modified expectation-maximization (EM) algorithm. Both the SA

and the EM algorithm are relevant algorithms that do not benefit from global properties

such as strong convexity, therefore contrasting with several algorithms stemming from

optimization problems. Consequently, the DBPI encapsulates relevant algorithms for

which only rather weak guarantees (local linear convergence) can be provided. On the

other side, the extension, via DBPI, to a distributed scenario of a globally contractive

map (e.g. a gradient map of a strongly convex and Lipschitz function) also inherits the

globally contractive property. In fact, if H is a gradient map, the DBPI reduces to a

distributed gradient descent algorithm and, upon elimination of the second variable and

a wise choice of parameters, it recovers well-known distributed descent algorithms such

as EXTRA and DIGing.

8.2 Remarks on the Drawbacks of the DBPI

In addition to preserving a differential local contraction condition such as (8.4), this thesis

also shows that a type of unstable (a particular case of the inequality in (8.4) reversed)

fixed points of H are lifted to unstable fixed points of FH . Formally, if x? is a fixed point

for which JH(x?) has an eigenvalue with real part larger than one, then,

ρ
(
JF
(
(x?, . . . , x?), w?

)
> 1.

As a consequence, we argued in Chapter 5 that if H has only a finite number of fixed

points, some of which satisfying a condition such as (8.4) and the remaining being unstable

fixed points of the type described above, then the parameters of FH (recall that FH is has

tunable parameters) can be tuned to preserve the qualitative character of each fixed point.

Under technical conditions on H, the iteration (8.3) escapes unstable fixed points and,

hence, if it converges, it almost surely converges to a fixed point satisfying a condition such

as (8.4). The relevance of preserving instability can thus be seen as an almost certainty

that (8.2) will not converge to an unstable fixed point, and, consequently, the agents will
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not agree on an unstable fixed point (think, for example, of reaching a maximum when

they are seeking a minimum).

Suppose that H has only two fixed points x?S and x?U , with x?S satisfying

JH(x?S) < 1,

and JH(x?U) having an eigenvalue equal to −2, while the remaining eigenvalues have

magnitude less than one. A careful inspection of the proofs in Appendix A reveals that,

in this case, for a sufficiently small step-size (one of the parameters of FH), both x?U and

x?S are lifted to fixed points satisfying

ρ
(
JF
(
(x?Q, . . . , x

?
Q), w?

)
< 1,

where Q ∈ {U, S}. If we additionally assume that H satisfies the technical conditions that

ensure that H almost surely escapes unstable fixed points, we see that the distributed

extension of H via the DBPI destroys this property, that is, with a random initialization,

the DBPI has a non-zero probability of coordinating the agents towards x?U . This, from

our point of view, constitutes a drawback of the DBPI and suggests that the DBPI might

not be the “right” general extension of an arbitrary map H to a distributed configuration.

8.3 Future Work

We conclude with four questions that were highlighted along the thesis and that were left

unanswered.

8.3.1 Asymptotically Stable but not Exponentially Stable

A fixed point x? may be a stable atractor2 (asymptotically stable fixed point), while

satisfying

JH(x?) = 1, (8.5)

the frontier case between (8.4) and the reverse strict inequality. In this scenario, there

might be a neighborhood U of x? whose points are attracted (by iterating H) to x? at

a rate slower than linear; as an example, see Chapter 3, where we consider the fixed

point 0 of the map g(x) = x − x3. In the dynamical systems literature this is termed a

2For the purposes of this discussion think of a fixed point x? for which there exists a neighborhood
U such that H(U) ⊆ U and, if x0 ∈ U , then limkH

k(x0) = x?.
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locally asymptotically stable but not locally exponentially stable fixed point. Whereas

local exponential stability, i.e., (8.3), is “detected” by looking at first derivatives (the

Jacobian), the same is not true for (8.5). Consequently, the analysis in Chapter 5 is not

enough to determine whether the lift of an asymptotically stable but not exponentially

stable fixed point preserves its qualitative character. A positive answer to this question

could take the form: Let x? be a fixed point of H for which there exists a Lyapunov

function VH certifying its asymptotic stability (the validity of this formulation follows

from the converse of Lyapunov Theorem) with respect to H, then, for a sufficiently small

step-size, there exists a Lyapunov function VFH (possibly depending on the step-size)

certifying the asymptotic stability of
(
(x?, . . . , x?, w?

)
with respect to FH . The challenge

is, thus, to construct VFH from VH .

8.3.2 Non-Differential Local Contraction

The continuous analog of

ρ
(
JH(x?)

)
< 1 (8.6)

is, via Ostrowski’s theorem, the existence of a norm ‖ · ‖, a number 0 ≤ µ < 1, and a

positive number δ > 0 such that, for all x satisfying ‖x− x?‖ ≤ δ,

‖H(x)− x?‖ ≤ µ‖x− x?‖;

in this scenario, H is said to be a local contraction towards x?. Chapter 5 proves that if H

is a continuous and not-necessarily differential local contraction with respect to x?, then

FH preserves this feature with respect to
(
(x?, . . . , x?), w?

)
. This, however, was proved

by assuming that each Hn is globally Lipschitz, an absent condition in the proof of the

differential case. An interesting question is whether this can be proved without assuming

global Lipschitzianity.

8.3.3 The Local Diffeomorphism Condition for Distributed PCA

A sufficient condition that ensures that a map H almost surely escapes unstable fixed

points is being a local diffeomorphism. Chapter 6 proves that the Sanger’s map inducing

the Sanger’s algorithm has, under mild conditions a finite number of fixed points, the so-

lutions to PCA satisfying (8.6) and the remaining fixed points being unstable. Moreover,

we showed that the Sanger’s Map is a local diffeomorphism. Consequently, the Sanger’s

algorithm almost surely escapes the non-desired fixed points. Even though, the results of
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Chapter 6 imply that the distributed extension preserves both the number of fixed points

and their qualitative character, we left unanswered whether FH can be tuned to be a local

diffeomorphism and, as a consequence, almost surely escape the undesired fixed points

as well.

8.3.4 Ground Truth of Variant of EM

Chapter 7 looks at a variant of the EM algorithm for the estimation of a parameter µ?

which corresponds to the Banach-Picard iteration of a map HE. Being dependent on

samples from a probability distributed, the results therein are of probabilistic nature.

Specifically, we show that, as the number of agents N tends to infinity, the probability

that HE has a fixed point µ̃?N satisfying

ρ
(
JHE(µ̃?N)

)
< 1

tends to one. The agents are ultimately, interested in estimating µ? and not some unre-

lated value µ̃?. Therefore, a question that should be answered is whether µ̃?N converges

in probability to µ?, as N tends to infinity. In the comments section of Chapter 7, it

is argued that this should be the case, by appealing to the non-random version of this

problem; nevertheless, this argument should be “turned into” a probabilistic one.
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Appendix A

Proof of Theorem 5.3.2

Theorem A.0.1 (Theorem 2.4.7.2, [57]). Let M be a square matrix. For every ε > 0,

there exists a non-singular matrix Sε such that

1) Tε := S−1
ε MSε is upper triangular;

2) The magnitude of the elements above the diagonal does not exceed ε, i.e., for i < j,

|(Tε)ij| ≤ ε.

Theorem A.0.2 (Geršgorin Theorem). Let A be an n× n square matrix, let

R′i(A) =
∑
i 6=j

|Aij|, i = 1, . . . , n

denote the deleted absolute row sums of A, and consider the Geršgorin discs

{
z ∈ C : |z − Aii| ≤ R′i(A)

}
, i = 1, . . . , n.

The eigenvalues of A are in the union of Geršgorin discs

G(A) =
n⋃
i=1

{
z ∈ C : |z − Aii| ≤ R′i(A)

}
.

Furthermore, if the union of k of the n discs that comprise G(A) forms a set Gk(A) that

is disjoint from the remaining n− k discs, then Gk(A) contains exactly k eigenvalues of

A, counted according to their multiplicities.

To prove Theorem 5.3.2, we begin with the following lemma. In the statement, B̄(x, δ)

denotes the closed ball in C of center x and radius δ.
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Lemma A.0.1. For every ε > 0, there exists α(ε) such that, for |α| ≤ α(ε), the matrix

A(α) from Theorem 5.3.2 is similar to a matrix with Geršgorin discs given by

B̄(1 + µα, |α|ε)

B̄(µ̃+ α(Aε)ii, ε),

with µ ∈ U := {eigenvalues of B11}, µ̃ ∈ Ũ := {eigenvalues of A22}, and where the

numbers (Aε)ii depend on ε but not on α.

Proof. Let ε > 0 and, from Theorem A.0.1, let Sε be a d × d non-singular matrix such

that Tε = S−1
ε B11Sε is upper triangular and with absolute deleted row sums not exceeding

ε/2. Similarly, let Ŝε be a non-singular k × k matrix such that T̂ε = Ŝ−1
ε A22Ŝε is upper

triangular and with absolute deleted row sums not exceeding ε/3. For any α we have

that A(α) is similar to[
S−1
ε 0

0 Ŝ−1
ε

][
I + αB11 αB12

αB21 A22 + αB22

][
Sε 0

0 Ŝε

]
=

[
I + αTε αS−1

ε B12Ŝε

αŜ−1
ε B21Sε T̂ε + αŜ−1

ε B22Ŝε

]
.

For simplicity of notation let Bε = S−1
ε B12Ŝε, Cε = Ŝ−1

ε B21Sε, and Aε = Ŝ−1
ε B22Ŝε. Let

r > 0 and consider the further similarity[
I 0

0 r−1I

][
S−1
ε 0

0 Ŝ−1
ε

]
A(α)

[
Sε 0

0 Ŝε

][
I 0

0 rI

]
=

[
I + αTε αrBε
αr−1Cε T̂ε + αAε

]
=: Ã(α).

The following remarks are due:

a) The matrix I + αTε is an upper triangular matrix with elements in the diagonal of

the form 1 + αµ, where µ is an eigenvalue of B11. Moreover, the absolute deleted

row sums of I + αTε do not exceed |α|ε/2.

b) The ith diagonal entry of T̂ε+αAε is of the form µ̃+α(Aε)ii, where µ̃ is an eigenvalue

of A22, and (Aε)ii is the ith diagonal entry of Aε.

Choose r(ε) > 0 such that r(ε)Bε has absolute row sums not exceeding ε/2, and, with

this choice, the absolute deleted row sums of the upper part of Ã(t), i.e., [I+αTε αrBε],
do not exceed ε|α|. Finally, choose α

(
r(ε), ε

)
such that, for |α| < α

(
r(ε), ε

)
, the absolute

row sums of both αr−1Cε and αAε do not exceed ε/3. As a consequence, the absolute

deleted row sums of the lower part of Ã(t), that is, [αr−1Cε T̂ε + αAε], do not exceed ε.

This completes the proof with Ã(α) being the matrix similar to A(α).
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A.1 Proof of Part 1) of Theorem 5.3.2

Throughout the rest of the appendix, the weak Geršgorin Theorem is the first part of

Theorem A.0.2, i.e., the statement that the eigenvalues of A are in G(A); the strong

Geršgorin Theorem is the second part of Theorem A.0.2, i.e, the part that begins with

“Furthermore,. . . ”.1

Lemma A.0.1 and the weak Geršgorin Theorem are already enough to prove 1) of

Theorem 5.3.2. In fact, the proof follows from the following simple lemmas.

Lemma A.1.1. Let µ ∈ C such that Re(µ) < 0. Then, there exists εµ and αµ such that,

for 0 < ε < εµ and 0 < α ≤ αµ,

B̄(1 + µα, αε) ⊆ B(0, 1).

Proof. The proof is easily understood by making a drawing. Nevertheless, we spell out the

details. Let S(0, 1) := {z ∈ C : |z| = 1} and d(z, w) := |z−w| be the distance in C. The

first thing we need to observe is that if x ∈ B(0, 1) and δ < d(x, S(0, 1)), then B̄(x, δ) ⊆
B(0, 1) (draw a picture). Consider |1 + αµ| = 1, or equivalently, 2αRe(µ) + α2|µ|2 = 0.

From Re(µ) < 0, we conclude that, for 0 < α < −2Re(µ)/|µ|2, 1 + µα ∈ B(0, 1).

Let g(α) = |1 + αµ| and observe that, for 0 ≤ α ≤ −2Re(µ)/|µ|2,

d(1 + αµ, S(0, 1)) = g(0)− g(α).

The idea is to use the Mean Value Theorem which gives d(1 +αµ, S(0, 1)) = −αg′(ξ), for

some ξ ∈ (0, α). Note that

−g′(α) = −α|µ|
2 + Re(µ)

|1 + αµ|
,

the sign of which coincides with that of −α|µ|2 − Re(µ). Observe that, for 0 ≤ α ≤
−Re(µ)/(2|µ|2), −g′(α) > 0 and, so, restrict α to this interval which contains the interval

0 ≤ α ≤ −2Re(µ)/|µ|2. In this interval we have that |1 + αµ| ≤ 1, and, hence, for

0 ≤ α ≤ −Re(µ)/(2|µ|2),

−g′(α) ≥ −α|µ|2 − Re(µ) ≥ −Re(µ)

2
.

1The reason for these names is that the proof of the weak Geršgorin Theorem is a straightforward
and elementary one, whereas the proof of the strong Geršgorin Theorem is not exactly trivial.
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We conclude, via the Mean Value Theorem, that, for 0 ≤ α ≤ −Re(µ)/(2|µ|2),

d(1 + αµ, S(0, 1)) ≥ −Re(µ)

2
α.

This finishes the proof: let εµ = −Re(µ)/2 and restrict 0 < α ≤ −Re(µ)/(2|µ|2), then

B̄(1 + µα, εα) ⊆ B(0, 1),

provided 0 < ε < εµ.

proof of part 1) of Theorem 5.3.2. Given U = {eigenvalues of B11} let ε?1 = minµ∈U{εµ}
and let α?1 = minµ∈U{αµ}, where εµ and αµ are defined in Lemma A.1.1. Given Ũ =

{eigenvalues of A22}, let

ε?2 = min
µ̃∈Ũ

{d(µ̃, S(0, 1))

2

}
and let

ε? = min{ε?1, ε?2}.

Let (Aε?)ii be the numbers from Lemma A.0.1 and let α?2 be sufficiently small such that,

for 0 < α < α?2, α(Aε?)ii < ε?, for all i. Since ε? ≤ ε?2 ≤ d(µ̃, S(0, 1))/2, we obtain that,

for 0 < α < α?2,

B̄(µ̃+ α(Aε?)ii, ε
?) ⊆ B(0, 1).

Finally, let

α? = min
{
α?1, α

?
2, α(ε?)

}
,

where α(ε?) is defined in Lemma A.0.1 and the result is proved for 0 < α < α?.

A.2 Proof of Part 2) of Theorem 5.3.2

For the second part we really need the strong Geršgorin Theorem. The idea is that if B11

has at least one eigenvalue µ? with Re(µ?) > 0 then, for sufficiently small and positive

α, the ball B̄(1 + αµ?, αε) can be forced to be outside B̄(0, 1) and to be disjoint from

all other balls of the form B̄(1 + αµ, αε), where µ is an eigenvalue of B11 other than

µ?. Finally, we argue, as in the proof of part 1), that the balls B̄(µ̃ + α(Aε)ii, ε) can

be trapped inside B(0, 1) and are, consequently, also disjoint from B̄(1 + αµ?, αε). The
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strong Geršgorin Theorem then implies that there are eigenvalues outside B̄(0, 1), the

number of them being at least the multiplicity of µ? (the number could be larger than

the multiplicity of µ? because B11 can have eigenvalues other than µ? with positive real

part). We begin with an analog of Lemma A.1.1.

Lemma A.2.1. Let µ ∈ C such that Re(µ) > 0. Then, there exist εµ and αµ such that,

for 0 < ε < εµ and 0 < α < αµ,

B̄(1 + µα, αε) ⊆ C \ B̄(0, 1).

Proof. The proof is very similar to that of Lemma A.1.1. The first observation is that if

x ∈ C \ B̄(0, 1) and δ < d(x, S(0, 1)), then B̄(x, δ) ⊆ C \ B̄(0, 1) (draw a picture). Define

g(α) = |1 + αµ| and observe that for α ≥ 0,

d(1 + αµ, S(0, 1)) = g(α)− g(0).

Similar to Lemma A.1.1,

g′(α) =
α|µ|2 + Re(µ)

|1 + αµ|

and the Mean Value Theorem implies that

d(1 + αµ, S(0, 1)) = g′(ξ)α,

where ξ ∈ (0, α). Restrict α ∈ [0, 1] and we obtain

g′(α) ≥ Re(µ)

|1 + µ|
.

The proof is now finished as in Lemma A.1.1, i.e., let εµ = Re(µ)/(2|1 + µ|) and αµ =

1.

proof of part 2) of Theorem 5.3.2. Let µ? ∈ U := {eigenvalues of B11} be such that

Re(µ?) > 0, and let εµ? and αµ? be defined as in Lemma A.2.1. Observe that a suf-

ficient condition for B̄(x, δ) ∩ B̄(y, δ) = ∅, where x 6= y, is that

δ <
|x− y|

2
.
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Let

ε?1 = min
µ∈U :µ 6=µ?

{ |µ− µ?|
2

}
.

For α 6= 0 and µ 6= µ?, 1 + αµ 6= 1 + αµ?. Consequently, for 0 < ε < ε?1, α 6= 0, and

µ 6= µ?, we have that

B̄(1 + αµ, αε) ∩ B̄(1 + αµ?, αε) = ∅.

Similar to Lemma A.1.1, let

ε?2 = min
µ̃∈Ũ

{d(µ̃, S(0, 1))

2

}
.

Define

ε? = min{εµ? , ε?1, ε?2}.

Let (Aε?)ii be the numbers from Lemma A.0.1 and let α?2 be sufficiently small such that,

for 0 < α < α?2, α(Aε?)ii < ε?, for all i. Since ε? ≤ ε?2 ≤ d(µ̃, S(0, 1))/2, we obtain that,

for 0 < α < α?2,

B̄(µ̃+ α(Aε?)ii, ε
?) ⊆ B(0, 1).

Finally, let

α? = min
{
α?1, αµ? , α(ε?)

}
,

where α(ε?) is defined in Lemma A.0.1. Observe that this choice ensures that for 0 <

α < α?,

1) B̄(1 + αµ, αε?) ∩ B̄(1 + αµ?, αε?) = ∅, for µ ∈ U with µ 6= µ?;

2) B̄(1 + µ?α, αε?) ⊆ C \ B̄(0, 1);

3) B̄(µ̃+ α(Aε?)ii, ε
?) ⊆ B(0, 1), for all µ̃ ∈ Ũ .

Consequently, the ball B̄(1 + µ?α, αε?) ⊆ C \ B̄(0, 1) is disjoint from all the others which

implies the result from the strong Geršgorin Theorem and Lemma A.0.1.
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Appendix B

Proof of Remark 3.2.7 (Sublinear

Convergence)

For any x ∈ (0, 1√
2
), a straightforward manipulation shows that g(x) > 1

2
x and that

g(x) ∈ (0, 1√
2
), implying that, for any x0 ∈ (0, 1√

2
), the orbit generated by x0 satisfies

xk+1 = g(xk) > 1
2
xk. To conclude, note that

K + 1 =
K∑
k=0

xk − xk + (xk)3

(xk)3
=

K∑
k=0

xk − xk+1

(xk)3
=

K∑
k=0

xk − xk+1

(xk)3 − (xk+1)3

(xk)3 − (xk+1)3

(xk)3

=
K∑
k=0

1

(xk)2 + xkxk+1 + (xk+1)2

(
1− (xk+1)3

(xk)3

)
≥

K∑
k=0

1
1
4
(xk+1)2 + 1

2
(xk+1)2 + (xk+1)2

(
1− (xk+1)3

(xk)3

)
=

4

7

K∑
k=0

1

(xk+1)2

(
1− (xk+1)3

(xk)3

)
=

4

7

( K∑
k=0

1

(xk+1)2
− xk+1

(xk)3

)
=

4

7

( K∑
k=0

1

(xk+1)2
− xk − (xk)3

(xk)3

)
=

4

7

( K∑
k=0

1

(xk+1)2
− 1

(xk)2
+ 1
)

=
4

7

( 1

(xK+1)2
− 1

(x0)2
+K + 1

)
,

where the fourth equality is found by polynomial division, i.e., dividing y3−x3 by y−x,

and the inequality follows from xk+1 > 1
2
xk. After rearrangement, we obtain

(xk+1)2 ≥ 1
3
4
(k + 1) + 1

(x0)2

,

showing that the orbit generated by x0 ∈ (0, 1√
2
) converges slower than linearly to zero.
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[39] Dušan Jakovetić, Dragana Bajović, Joao Xavier, and Jose Moura. Primal–dual

methods for large-scale and distributed convex optimization and data analytics.

Proceedings of the IEEE, 108(11):1923–1938, 2020.

[40] Puya Latafat, Nikolaos M Freris, and Panagiotis Patrinos. A new randomized block-

coordinate primal-dual proximal algorithm for distributed optimization. IEEE

Transactions on Automatic Control, 64(10):4050–4065, 2019.

[41] Puya Latafat, Lorenzo Stella, and Panagiotis Patrinos. New primal-dual proximal

algorithm for distributed optimization. In 2016 IEEE 55th Conference on Decision

and Control (CDC), pages 1959–1964. IEEE, 2016.

[42] Alireza Fallah, Mert Gurbuzbalaban, Asuman Ozdaglar, Umut Simsekli, and

Lingjiong Zhu. Robust distributed accelerated stochastic gradient methods for

multi-agent networks. arXiv:1910.08701, 2019.

[43] Paolo Di Lorenzo and Gesualdo Scutari. Next: In-network nonconvex optimization.

IEEE Transactions on Signal and Information Processing over Networks, 2(2):120–

136, 2016.

154



[44] Tatiana Tatarenko and Behrouz Touri. Non-convex distributed optimization. IEEE

Transactions on Automatic Control, 62(8):3744–3757, 2017.

[45] Stefan Vlaski and Ali H Sayed. Distributed learning in non-convex environ-

ments—part I: Agreement at a linear rate. IEEE Transactions on Signal Processing,

69:1242–1256, 2021.

[46] Susana Faria and Gilda Soromenho. Fitting mixtures of linear regressions. Journal

of Statistical Computation and Simulation, 80(2):201–225, 2010.

[47] A. Gang and W. Bajwa. A linearly convergent algorithm for distributed principal

component analysis. available at arXiv:2101.01300, 2021.

[48] G. McLachlan and D. Peel. Finite Mixture Models. John Wiley & Sons, 2004.
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