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Abstract: This paper presents a modified Mazars damage model, based on a strain formulation, for the 
physically nonlinear analysis of concrete structures. The main objective is to propose a modified damage 
model, in which both tension and compression damage evolution laws are regularized using a classical 
fracture energy methodology. The original loading functions are maintained, including their 
thermodynamic consistencies. The most relevant modification of the model is introduced in the damage 
evolutions laws, which are updated in order to produce similar stress-strain relations to those presented 
in fib Model Code 2010. The softening branch under both compressive and tensile strains is regularized 
with fracture energy. The damage model is then benchmarked with classical experimental and numerical 
tests considering monotonic loadings. The new constitutive relation was implemented in the commercial 
software ABAQUS via user subroutine UMAT. Research needs towards a definition of a generalized 
damage model with energy regularization are discussed and presented. 
 
Keywords: Mesh Dependency, Fracture Energy, Mazars Damage Model, Finite Element Method, Concrete 
Softening Behaviour 
 
Nomenclature: 
 

𝐿𝑐 Characteristic length 

𝑑𝐶  Compressive damage 

𝛼𝐶  Compressive damage parameter 

𝑘 Compressive factor 

𝐺𝑓𝑐  Compressive fracture energy 

𝐴𝑐, 𝐵𝑐 Compressive softening parameters 

𝑓𝑐𝑚 Compressive strength 

𝑔𝑓𝑐  Compressive volume fracture energy 

𝑓𝑐𝑡𝑚 Cracking stress 

𝑘𝑟 Damage corrector 
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𝑑 Damage parameter 

𝛿𝑑 Damage variation 

𝐸𝑑 Damaged elastic stiffness matrix 

𝑌 Elastic energy release rate 

𝐸0 Elastic stiffness matrix 

𝜀̌ Equivalent strain 

𝜎̂ Equivalent Stress 

𝜀𝑐1 First compressive damage strain pointer 

𝑘1 First compressive factor 

𝜀𝑑0 Initial equivalent strain before damage 

𝜎𝑡0 Initial tensile damage stress 

𝜀𝑡0 Initial tensile strain 

𝑓 Loading function 

𝜎𝑐𝑚𝑎𝑥  Maximum compressive energy 

𝜎𝑡𝑚𝑎𝑥 Maximum tensile stress 

𝜈 Poisson coeficient 

𝜀𝐶𝑖 Positive compressive parameter 

𝜀𝑖 Positive principal strains 

𝜀𝑇𝑖 Positive tensile parameter 

𝐸𝑐𝑚  Secant elastic modulus 

𝜀𝑐2 Second compressive damage strain pointer 

𝑘2 Second compressive factor 

𝛹 Specific energy of Helmholtz 

𝜀 Strain 

𝜎 Stress 

𝑑𝑇 Tensile damage 

𝛼𝑇 Tensile damage parameter 

𝜀𝑡1 Tensile damage strain pointer 

𝐺𝑓𝑡 Tensile fracture energy 
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𝐴𝑡, 𝐵𝑡 Tensile softening parameters 

𝑔𝑓𝑡 Tensile volume fracture energy 

𝜀𝑐𝑢 Ultimate compressive strain pointer 

𝜀𝑡𝑢 Ultimate tensile strain pointer 

 
 

1 Introduction 
 

1.1 Constitutive Relations for Concrete 

 
Modelling concrete for general loading cases is still a challenging task. Numerous models have been 
proposed to simulate the mechanical behaviour of this material, but a consensus regarding the best 
strategy to adopt is still far from established. Before cracking, concrete is typically modelled as an isotropic 
continuum domain. This hypothesis usually leads to good results, notwithstanding concrete being a 
strongly heterogeneous composite material. After cracking, two approaches are commonly used to 
simulate the fracture-like phenomena that characterize its response [1-3]. The discrete cracking approach 
simulates the development of cracking through physical discontinuities introduced at the interfaces of 
elements, in which the amplitude and propagation of cracks are controlled by a given yield criteria [4-8]. 
Alternatively, the continuum approach treats materials as continuum domains and defines fracture as a 
damage accumulation process distributed in a finite zone on the continuum domain and physical 
discontinuities are not explicitly imposed [9-11]. This last approach is used in this work and is quite most 
common in commercial finite element software. 
Most of the concrete models use internal material iterative procedures (e.g. using Euler integration 
scheme at a given finite element integration point). This iterative process is computational very heavy, 
and its non-convergence for large strain increments, may provide different structural responses, that are 
not expected for common structural designers. With the proposed modified Mazars damage model 
presented in this work, the number of inputs are quite small, there is no iterative integration scheme in 
the FE integration point, and well-known concrete constitutive relations for structural designers are used. 
 

1.2 Objectives 

 
The main objective of this work is to propose a modified Mazars damage model in which the 
thermodynamic consistency and loading functions are maintained as originally formulated. The core 
change is a fracture energy-based adjustment on the damage evolution laws. This adjustment regularizes 
the softening behaviour response and prevents mesh dependency. In order to promote the use of the 
Mazars damage model developed in the manuscript, the tension and compression damage behaviours of 
concrete are assumed as those presented in the softening laws of fib Model Code 2010 [12], since these 
are consensual for structural designers. 
 

1.3 Research Significance 

 
According to the authors’ best knowledge, the Mazars damage model has been connected to the use of 
non-local damage regularization using Gauss weight functions and gradient models [13]. Even though 
these non-local regularizations are robust, they are not optimal when parallel processing is needed [14]. 
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Some authors have used fracture energy with the Mazars damage model [15], but the constitutive 
relations based on stress vs strain are assemble using maximum element size, to avoid strong mesh 
dependency. In any case, this last method is not truly mesh independent since it relies on coarse meshes. 
In addition, it presents strong mesh sensibility in the presence of strong strain gradient fields or very 
distorted elements [16]. 
Contrary to non-local regularizations, fracture energy regularizations (the case of the model proposed in 
this paper), do not present any known problem when parallel processing is used. Another advantaged of 
using energy regularization, is that it is possible to use constitutive relationships that estimate fracture 
energy based on the compressive strength (e.g. those recommended in fib Model Code 2010) - this type 
of relationship is widely adopted and useful for non-linear structural design purposes [17], 
notwithstanding the uncertainty introduced by using constitutive models rather than experimental data 
(Sections 5.1 and 5.2 discuss this issue). In addition, the use of Mazars damage model, with compressive 
fracture regularization was never been published or discussed in the scientific community. Even the use 
of compressive energy regularization is commonly not use in other concrete damage models, and even 
most of them admit a certain level of mesh dependency, when compressive damage occurs. For this 
reason, the regularization of the Mazars damage model using fracture energy is proposed in this paper, in 
order to fill this gap in knowledge. The constitutive relation was implemented in the commercial software 
ABAQUS via user subroutine UMAT, using standard Fortran code. 
 

2 Damage Model Formulation 
 
Although the essential concept used damage mechanics was first introduced by Kachanov [18], the actual 
term “damage mechanics” was only quoted later in 1977 according to Krajcinovic [10]. Damage mechanics 
is an appealing formulation since it simulates fracture with relative simplicity, by simulating macro-cracks 
with stiffness degradation. The main difference from the concrete plasticity models, is that these do not 
include permanent strains in their original formulation. The loading functions that govern the expansion 
or contraction of damage depend mainly on the stress, strain and internal state variables. The concept of 
effective stresses is first presented in Rabotnov [19], and the damage variable physical meaning is 
developed, by affecting the initial material elastic stiffness with a proportional factor. The core concept of 
isotropic damage models is to accept a uniform degradation of the stiffness properties in all directions by 
assigning a stress-strain relation in terms of a damage scalar 
Another approach to set up the theoretical basis of a new damage model, is to use thermodynamic laws 
[20, 21] and is based on the research reported in [22]. This approach is valuable for the scientific 
community, since it contributes to promote the robustness of new models, and theoretically validates 
them. 
One of the most distinguished contributions to the improvement of concrete damage models was created 
by Lee and Fenves [23], and this formulation has been preferred by a several researchers [24]. This 
formulation has been implemented in the commercial software ABAQUS [25]. In the scientific community, 
successful non-linear analyses are executed using ABAQUS [26-28] and applied in particular structural 
design cases [29]. 
 

3 Regularization using Fracture Energy 
 
The numerical solution for materials with strong stress softening depends on the FE mesh, and several 
studies found that coarse meshes produced better results than refined meshes [22]. When damage is 
developed and softening occurs, the governing differential equations lose ellipticity and the boundary 
value problem describing the structural response becomes ill-posed [30], being the strain distribution 
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localized in a thin band, with the width depending on the element size. The total volume of dissipated 
energy vanishes, due to the length of thin band length trending to zero, as the mesh is refined. To preserve 
the objectivity of the mesh and to recover the well-posedness of the boundary value problem, several 
regularization methods are recommended in [31]. 
A simple and efficient regularization technique is based on the use of fracture energy, which is associated 
with the total energy released to propagate the crack. This regularization is implemented by correcting 
the post-peak slope of the stress vs strain diagram as a function of the element size. 
When using fracture energy regularization, higher/smaller elements will be associated with smaller/larger 
computational values of volume fracture energy, therefore, removing the consequence of energy 
dissipation volume. 
When this type of regularization is used, the energy dissipated in a band of cracking elements does not 
depend on their width [32], but material behaviour remains dependent on the adopted discretization, 
meaning damage localization still occurs. In any case, the force vs displacement structural response is 
regularized, and it isn’t mesh dependent. 
 

4 Mazars Concrete Damage Model 
 
In this section the constitutive relation for the concrete damage models proposed by Mazars [33] is 
discussed. Its hypothesis is founded on the base of an elastic damage isotropic behaviour. This model 
assumes the following premises: i) damage evolves/occurs only due to positive strains in the principal 
directions, which indirectly promotes “smeared crack grow”; ii) only one scalar damage variable 𝑑 is 
defined, this is due to the damage model being isotropic; iii) 𝑑 = 1 represents the material as totally 
damaged, and it is limited in the interval 0 ≤ 𝑑 ≤ 1; iv) no permanent strains are admitted, and the 
unloading path is linear, therefore, no hysteretic loops. 
Even though the premises adopted by the Mazars damage model may seem modest/simple, they are also 
used popular open FE software [34] for static and dynamic analysis. This is due to the cycle structural 
behaviour of RC structures being mainly governed by the plastic strains and hysteretic loops of the steel 
rebars. In any case for simple plain concrete structures, under monotonic static load, the Mazars damage 
model is adequate. 
 

4.1 Thermodynamic Framework 

 
The specific energy of Helmholtz, 𝛹, is given by equation (1), in the Mazars concrete damage model. The 
internal state variable is the damage parameter 𝑑, and the primary state variable is the strain tensor, 𝜀. 
The elastic energy release rate and the stress tensor, 𝑌 and 𝜎, are the associated variables defined by 
equation (2). Due to 𝑑𝑒𝑡(𝐸0) ≥ 0, the associated variable 𝑌 is always positive, therefore, the 2nd principal 
of thermodynamic is respected, as depicted in equation (3) as long as the Kuhn-Tucker condition [22] is 
fulfilled. To satisfy all these conditions in the Mazars model, it is only required that the increment of 
damage is always positive or null (damage state variables never decrease), as indicated by equation (4). 
 

 𝛹(𝜀, 𝑑) =
1

2
(1 − 𝑑){𝜀}𝑡[𝐸0]{𝜀} (1) 

 

 

{
 

 {𝜎} =
𝜕𝛹

𝜕{𝜀}
= (1 − 𝑑)[𝐸0]{𝜀}

𝑌 = −
𝜕𝛹

𝜕𝑑
=
1

2
{𝜀}𝑡[𝐸0]{𝜀}

 (2) 
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 −(
𝜕𝛹

𝜕𝑑
𝛿𝑑) ≥ 0 (3) 

 

 𝛿𝑑 ≥ 0 (4) 

 
To assemble a concrete damage model, it is required to describe a loading function that may be governed 
by the state variables, as expressed in (10). The goal of this function is to confirm if the damage evolution 
fulfils with the loading-unloading (Kuhn-Tucker) conditions depicted in equation (5). 
 

 𝑓 ≤ 0     𝑎𝑛𝑑     𝛿𝑑 ≥ 0     𝑎𝑛𝑑     𝛿𝑑. 𝑓 = 0 (5) 

 

4.2 Model Formulation 

 
Mazars defined [33], the constitutive relation for non-linear concrete behaviour using the classical 
equation (6), where 𝐸𝑑 is the local damaged stiffness matrix at a given time step. Matrix 𝐸𝑑 may be 
calculated using the description in equation (7), where 𝐸0 is the local stiffness matrix for the undamaged 
material. This matrix 𝐸0 has constant values since undamaged material behaviour is assumed as isotropic 
linear elastic. 
 

 {𝜎} = [𝐸𝑑]{𝜀} (6) 

 

 [𝐸𝑑] = (1 − 𝑑)[𝐸0] (7) 

 

 
Figure 1 – Damage behaviour in Mazars model, for tensile and compressive behaviour. 

 
The positive principal strains, 𝜀𝑖,  governs the damage evolution for both tensile or compressive behaviour, 
as illustrated in Figure 1. In this framework, Mazars defines the equivalent strain, 𝜀̌, calculated according 
to equation (8), 
 

 𝜀̌ = √〈𝜀1〉+
2 + 〈𝜀2〉+

2 + 〈𝜀3〉+
2  (8) 

with 

 〈𝑎〉± =
1

2
(𝑎 ± |𝑎|) (9) 
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The loading function, 𝑓, depends on the scalar variable equivalent strain, 𝜀̌, and on a scalar parameter, 
𝜀𝑑0(𝑑), which delimits the evolution of the elastic domain. Initially the value of 𝜀𝑑0 is a material constant, 
but after the initiation of damage the value of 𝜀𝑑0 is updated to 𝜀𝑑0(𝑑) = 𝜀̌. 
 

 𝑓(𝜀̌, 𝜀𝑑0) = 𝜀̌ − 𝜀𝑑0(𝑑) = 0 (10) 

 
In materials terms, 𝜀𝑑0(𝑑) is a scalar measure of the largest equivalent strain level achieved in the load 
history of the concrete. If 𝑓 < 0, unloading occurs and no modification in the damage variable is detected. 
Else, a rise of the damage variable follows and the new value for 𝑑 is acquired as a linear combination of 
two scalar and independent variables 𝑑𝑇 and 𝑑𝐶  (11): 
 

 𝑑 = 𝛼𝑇𝑑𝑇 + 𝛼𝐶𝑑𝐶 (11) 

 

4.3 Original Damage Evolution 

 
In its original work, Mazars [33] suggested a simple expression to calculate 𝑑𝑇 and 𝑑𝐶, to remove any 
iterative process required at the material level (contrary to classical plasticity). To obtain this, the damage 
evolutions, is given separately for both tensile and compressive behaviour (12). 
 

 
𝑑𝑡 = 1 −

𝜀𝑑𝑜(1 − 𝐴𝑡)

𝜀̃
−

𝐴𝑡

𝑒𝐵𝑡(𝜀̃−𝜀𝑑𝑜)

𝑑𝑐 = 1 −
𝜀𝑑𝑜(1 − 𝐴𝑐)

𝜀̃
−

𝐴𝑐

𝑒𝐵𝑐(𝜀̃−𝜀𝑑𝑜)

 (12) 

 
The softening behavior of stress vs strain diagram, is controlled by the coefficients 𝐴𝑇, 𝐴𝐶, 𝐵𝑇, 𝐵𝐶, which 
are the concrete material parameters. Classical uniaxial experimental setups with controlled 
displacement, can be used to identified these parameters. For the triaxial case, the values of 𝛼𝑇 and 𝛼𝐶  
are acquired considering adjusted strain vectors for tension and compression, as depicted by: 
 

 
𝜀𝑇𝑖 =

1 + 𝜈

𝐸
〈𝜎̂𝑖〉+ −

𝜈

𝐸
∑ 〈𝜎̂𝑘〉+

𝑘

𝜀𝐶𝑖 =
1 + 𝜈

𝐸
〈𝜎̂𝑖〉− −

𝜈

𝐸
∑ 〈𝜎̂𝑘〉−

𝑘

 (13) 

 
These vectors are calculated using the principal positive effective stresses, calculated in accordance with 
(14) and (15). 
 

 {𝜎̂} = [𝐸0]{𝜀} (14) 

 

 〈{𝜎̂}〉± =
1

2
({𝜎̂} ± |{𝜎̂}|)  (15) 

 
The calculation of coefficients 𝑑𝑇 and 𝑑𝐶  may be performed using equation (16) with only positive 
components of the vectors 𝜀𝑇 and 𝜀𝐶. This is due to the first hypothesis of the Mazars model that only 
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positive strains produce damage. To promote stabilization during the convergence process, it is 
considered that these values remain constant during a given time step. 
 

 

𝜀𝑉
+ =∑ 〈𝜀𝑇𝑖〉+

𝑖
+∑ 〈𝜀𝐶𝑖〉+

𝑖

𝛼𝑇 =
∑ 〈𝜀𝑇𝑖〉+𝑖

𝜀𝑉
+     ;     𝛼𝐶 =

∑ 〈𝜀𝐶𝑖〉+𝑖

𝜀𝑉
+

 (16) 

For particular uniaxial case, the concrete is subjected to either tensile or compressive behaviour, so 
coefficients 𝛼𝑇 and 𝛼𝐶  can only adopt values 1 or 0. The expressions (8) and (16) are simplified resulting 
in the new coefficients given by (17) and the respective equivalent strains (18). 
 

 {
𝛼𝑇 = 1; 𝛼𝐶 = 0
𝛼𝑇 = 0; 𝛼𝐶 = 1

     
𝑖𝑓 𝜀 ≥ 0
𝑖𝑓 𝜀 < 0

 (17) 

 

 𝜀̌ = {
𝜀

−𝜈√2𝜀
     
𝑖𝑓 𝜀 ≥ 0
𝑖𝑓 𝜀 < 0

 (18) 

 

4.4 Proposed Modification 

 
In most of the academic implementations, the Mazars damage model is combined with the use of a 
regularization technique considering non-local integral [35] or gradient [13] models. These regularization 
techniques are very effective in ensuring objectivity of the numerical solutions, but they are not 
disseminated in the industry and are not common in commercial FE software. This is due to the known 
difficulties in performing efficient parallel computation with legacy solvers [36], whenever non-local 
regularization is implemented. Moreover, the use of integral non-local and gradient models may lead to 
quite heavy computational procedures. 
Fracture energy regularization provides a less robust method when compared with the other two 
regularization techniques referred before. Nonetheless this type of regularization is widely adopted by 
the industry, guides of the fib [17] and commercial FE software, without presenting any major drawbacks 
when parallel processing algorithms are to be adopted [37]. 
For this reason, this work recommends the use of fracture energy regularization for the Mazars damage 
model, by proposing new damage evolution laws for tension and compression behaviour. The original 
formulation of Mazars, including all thermodynamic consistencies referred previously are kept 
unchanged. To preserve the essence of the original Mazars loading function, all of the damage evolution 
laws are rewritten in terms of the equivalent strain parameter, as defined by equation (8). 
 
4.4.1 Tension Damage Behaviour 

 
For tension behaviour, a classical exponential law for softening is proposed. The initial non-linear 
behaviour follows the relationship presented in MC2010 [12] - see Figure 2. The initial stress-strain 
behaviour is linear (branch OA) and is followed by non-linear behaviour with damage (branch AB). 
Afterwards, an exponential softening law is used to model the progression of damage (branch BC). This 
model accurately reproduces the material behaviour typically observed in uniaxial tensile strength tests 
[35, 38]. The tension damage evolution law is defined by: 
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  𝑑𝑇 = 1 −
𝜀𝑑0
𝑘𝑟𝜀̌

exp (
𝜀𝑡1 − 𝜀̌

𝜀𝑡𝑢 − 𝜀𝑡1
) (19) 

 
All parameters and physical quantities present in equation (19) are defined by: 
 

  𝜎𝑡0 = 𝑘𝑟𝑓𝑐𝑡𝑚   ;   𝜎𝑡𝑚𝑎𝑥 = 𝑓𝑐𝑡𝑚  ;    𝜀𝑡0 = 𝜀𝑑0  ;   𝑘𝑟 = 0.9  (20) 

 

 𝜀𝑡1 = max{0.015%;1.1𝜀𝑑0}   ;   𝜀𝑡𝑢 =
𝐺𝑓𝑡

𝐿𝑐𝑓𝑐𝑡𝑚
+ 𝜀𝑡1   ;   𝑔𝑓𝑡 =

𝐺𝑓𝑡

𝐿𝑐
 (21) 

 
Some of the variables are described in MC2010, while others are redefined: 𝑓𝑐𝑡𝑚 is the mean uniaxial 
tensile stress of concrete; 𝜀𝑡𝑢 corresponds to the equivalent ultimate strain for bilinear softening and, 
as shown in Figure 2, may be computed using the tangent to the exponential softening law computed 
at point B; 𝜀𝑡1 is a fixed value provided by MC2010; 𝐿𝑐 is the characteristic length of the element; 𝐺𝑓𝑡 

and 𝑔𝑓𝑡 are the fracture energy and volume fracture energy of the material respectively . The area 

defined by triangle B-𝜀𝑡𝑢-𝜀𝑡1 corresponds to half of the volume fracture energy, while the other half 
corresponds to the area defined between the exponential softening curve and the tangent to the 
exponential softening curve computed at point B. 
MC2010 defines softening under uniaxial tension using a bilinear law. This may lead to convergence 
problems when damage approaches the value 1.0. This is not the case when the exponential softening 
law is used, ensuring a stable numerical behaviour for the constitutive model. 
It is important to point out that the consideration of branch AB is somehow irrelevant in terms of 
structural response, due to the fast cracking of concrete at the initial stages of the structural response. 
For all numerical examples presented in Section 7 of this paper, except for the last, a simplification is 
considered: the path OAB of Figure 3 is simplified to branch OB (that is, 𝜀𝑡1 = 𝜀𝑑0 is assumed). This option 
improves computational efficiency and has virtually no effect on the output of the numerical modelling. 

 
Figure 2 – Tension vs equivalent strain for the modified Mazars damage model. 

 
4.4.2 Compression Damage Behaviour 

 
The modelling of compression behaviour is an adaptation of the MC2010 stress-strain relation for uniaxial 
compression. The MC2010 relation is used until the onset of softening (path OAB of Figure 3). Even if no 
consensus exists when defining an adequate softening branch (path BCDE) [39], the simplification 
introduced in [17] is adopted here. To ensure simplification and to promote computational efficiency, a 
simple bilinear function is adopted: stress is constant in branch BC and decreases linearly in branch CD 
(Figure 3). 
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Figure 3 – Compression vs equivalent compression strain for the modified Mazars damage model. 

 
To minimize convergence problems, and as suggested in fib bulletin 45 [17], the model adopted here 
admits a residual compressive stress. Damage initiates at point A and may increase throughout all loading 
history. To measure the volume fracture energy (𝑔𝑓𝑐), the assumption introduced in [40] is adopted. 

Under this condition, and neglecting the residual stress, the equivalent ultimate compressive strain is 
extrapolated, as indicated in equation (22). 
 

  𝑔𝑓𝑐 =
𝐺𝑓𝑐

𝐿𝑐
= 𝜎𝑐𝑚𝑎𝑥 × (

𝜀𝑐𝑢 + (𝜀𝑐2 − 𝜀𝑐1)

2
)  (22) 

The compressive damage evolution law is defined by: 
 

  𝑑𝐶 =

{
  
 

  
 1 −

(𝑘 × 𝜀𝑐 − 𝜀𝑐
2
)𝑓𝑐𝑚

(1 + (𝑘 − 2) × 𝜀𝑐)𝐸𝑐𝑚𝜀̌𝑐
𝑖𝑓    𝜀̌𝑐 ≤ 𝜀𝑐1

1 −
𝑓𝑐𝑚
𝐸𝑐𝑚𝜀̌𝑐

𝑖𝑓   𝜀𝑐1 < 𝜀̌𝑐 ≤ 𝜀𝑐2

1 +
𝑘1
𝐸𝑐𝑚

−
𝑘2

𝐸𝑐𝑚𝜀̌𝑐
𝑖𝑓   𝜀𝑐2 < 𝜀̌𝑐 ≤ 𝜀𝑐𝑢

  (23) 

where  

𝜎𝑐𝑚𝑎𝑥 = 𝑓𝑐𝑚;      𝜀̌𝑐 =
𝜀̌

𝜈√2
;    𝜀𝑐 =

𝜀̌𝑐
𝜀𝑐1

;     𝑘 =
1.05𝐸𝑐𝑚𝜀𝑐1

𝑓𝑐𝑚
;     𝑘1 =

𝑓𝑐𝑚
(𝜀𝑐𝑢 − 𝜀𝑐2)

;     𝑘2 = 𝑓𝑐𝑚 + 𝑘1 × 𝜀𝑐2 (24) 

 
Even if some modifications required by the use of Mazars damage models combined with the fracture 
energy regularization were introduced, the compressive damage evolution law (23) and the adopted 
variables (24) agree with the stress-strain constitutive relation for uniaxial compression presented in 
MC2010. In these equations, 𝑓𝑐𝑚 is the mean compressive strength of concrete; 𝐸𝑐𝑚 is the secant Young’s 
modulus; 𝜀𝑐1 and 𝜀𝑐2 are strain parameters adopted from MC2010; 𝑘, 𝑘1 and 𝑘2 correspond to 
parameters that describe the constitutive curve; 𝜀𝑐 is a unidimensional strain ratio provided in MC2010; 
𝐺𝑓𝑐 and 𝑔𝑓𝑐 are the compressive fracture energy and the volume compressive fracture energy defined 

for the material, respectively. 
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5 Specimen Test 
 
In this section, the tensile and compressive curves of the proposed modified Mazars model are used to 
model the behaviour of representative volume specimens. The results obtained with the proposed model 
are then compared to previous stress vs strain curves presented by other authors, and to the MC2010 
curves. This is important since it is necessary to validate the new modified Mazars model for future design 
purposes. For both tests concrete of the C25/30 strength class is used. 
The definition of the “representative volume specimen” depends on the type of material being considered 
[22, 30, 41, 42]. For the case of concrete, cylindrical specimens are usually recommended, but their length 
is still an open issue when one wants to define both tension and compression fracture energies [43, 44]. 
To solve this problem, the authors used the relevant information obtained in previous experimental 
campaigns aiming to determine compressive fracture energy [45, 46], in which specimens with a height ≥ 
300mm led to constant stable energy fracture results. This value agrees with the minimum characteristic 
length provided by [47], which served as a guideline to Model Code 1990 [48]. Therefore, a specimen with 
a height equal to 300 mm is used and 𝐿𝑐 = 250𝑚𝑚 is assumed to take into account the Saint-Venant 
effect in the upper and lower load part of the cylinder caused by Poisson effects and friction between the 
specimen and the test plates. 
 

5.1 Tensile Behaviour 

 
Figure 4 shows the tensile stress vs tensile strain diagram obtained with the proposed modified Mazars 
damage model. The original Hillerborg [49] and the MC2010 [12] with tension stiffening relationships are 
also plotted. In order to directly compare the curves of the two models, it is admitted that 𝜀𝑡0 = 𝜀𝑡1. The 
tensile fracture energy was estimated using the relationship proposed in MC2010 [12] and defined by 
equation (25). In general, this value is approximately double the one provided by Hilsdforf for normal 
concrete, which is the basis of MC1990 [47] and is defined by equation (26). 
 

  𝐺𝑓𝑡 = 73 × (𝑓𝑐𝑚)
0.18  (25) 

 

  𝐺𝑓𝑡 = 6 × (𝑓𝑐𝑚)
0.7  (26) 

 
Figure 4 shows that pre-peak relationship obtained with the three models is similar, but when tension 
softening starts, the Hillerborg model leads to an abrupt decrease of stress. On the other hand, the 
softening branch of the modified Mazars model tends to approximate the one obtained with MC2010 
at late stages of post-cracking (strains larger than 0.4‰). Therefore, it is possible to state that the 
proposed model presents a valid similarity with the one provided in MC2010. The main advantage of 
this model, is that it does not present any derivative discontinuity, which can enable added numerical 
stability during the iterative process required by the solution of the non-linear governing systems. 
It is expected that models with tension stiffening present a less pronounced transition from phase I, 
uncracked, to phase II cracked. This will be observed in the reinforced beam example presented in 
section 6.5.  
Eqs. (25) and (26) were used to estimate the tensile fracture energy since these expressions are 
consensual and used without reservations by designers and researchers for the numerical modelling of 
the mechanical behaviour of common concrete compositions. However, since both expressions are 
empirical and depend only on the compressive strength, relevant differences between the estimates of 
Eq. (25) and (26) and the actual value of fracture energy may occur. 
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Fracture energy is mostly dependent on the strength of the coarse aggregates, on their content, on the 
maximum aggregate diameter, and on the water / binder ratio [50]. Since the water / binder ratio will 
affect both compressive strength and fracture energy, the accuracy of Eqs. (25) and (26) will not be 
relevantly affected whenever this parameter deviates from usual mix design. However, since Eqs. (25) and 
(26) are empiric, whenever any of the aforementioned parameters related to coarse aggregates are 
largely different from common concrete compositions, Eqs. (25) and (26) may not be applicable. 

 
Figure 4 – Tensile Stress vs Tensile Strain. 

 
Therefore, the authors recommend specific testing whenever: 1st the maximum aggregate diameter is 
either larger than 25 mm or smaller than 16 mm (the case of the benchmark presented in Section 6.1); 
2nd the content of aggregates differs from common; 3rd weak aggregates are used, such as recycled 
aggregates or lightweight aggregates [51]. Weaker aggregates will be associated with clean and planar 
fracture surfaces, with relevant amount of trans-aggregate fractures [52], decreasing fracture energy. 

 

5.2 Compressive Behaviour 

 
Typically, commercial finite element software does not use fracture energy regularization for the stress-
strain relationship defining concrete behaviour under compression. To the authors best knowledge, this 
is due to the lack of consensus on how to determine the compressive fracture energy. In this section, the 
compressive stress vs strain diagram obtained with the proposed modified Mazars damage model is 
directly compared with the corresponding curve defined in MC2010 [12]. This comparison is presented in 
Figure 5 and four different estimates for the compressive fracture energy are considered in the definition 
of the modified Mazars damage model [33]. These estimates were chosen after appraising the state-of-
the-art regarding this subject. The following constitutive models for the compressive strength vs. 
compressive fracture energy relationship were compared [40, 45, 53, 54]: 
 

  

{
 
 

 
 𝐺𝑓𝑐_𝐴 = 8.8√𝑓𝑐𝑚
𝐺𝑓𝑐_𝐵 = 250 × 𝐺𝑓𝑡

𝐺𝑓𝑐_𝐶 = 8.6 × 𝑓𝑐𝑚
0.25

𝐺𝑓𝑐_𝐷 = (
𝑓𝑐𝑚
𝑓𝑐𝑡𝑚

)
2

× 𝐺𝑓𝑡

  (27) 

 
The compressive constitutive law proposed in MC2010 is well-approximated when the estimate given by 
𝐺𝑓𝑐_𝐶 is used. Therefore, in the following examples 𝐺𝑓𝑐_𝐶 is always assumed, unless stated otherwise. 
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Figure 5 – Compressive Stress vs Compressive Strain. 

 
As in the case of the tensile fracture energy, two of the expressions presented in Eq. (27) depend on the 
compressive strength only; therefore, the recommendations made in the last section for specific testing 
are also applicable here. Concrete compositions that differ from usual may not be as erroneously 
estimated when either of expressions 𝐺𝑓𝑓𝑐_𝐵 or 𝐺𝑓𝑐_𝐷 are used (provided 𝐺𝑓𝑡 and 𝑓𝑐𝑡𝑚 are tested). 

However, hypothesis cannot be confirmed, because the compressive fracture energy is very rarely tested 
and is strongly dependent on test setup (e.g. on differences regarding specimen shape and boundary 
restraints [55]). 
 

6 Numerical Examples 
 
In this section, five well known and widely used benchmark tests are considered. The modified Mazars 
damage model was implemented via user subroutine UMAT using Standard Fortran in the commercial 
software ABAQUS Standard. The results obtained with the model being proposed are compared with 
previous experiments in terms of global structural response and, when possible, in terms of crack 
distribution. In all examples the fracture energy regularization is considered, and according to the theory 

presented in [56], viscous regularization with 𝜂 = 10−5 is used to prevent convergence issues [57]. All 
finite element meshes consider 4-node bilinear elements with reduced integration and hourglass control. 
All structures are analysed considering 2D models and with symmetry simplifications whenever possible 
to reduce computational cost. For the solution of the non-linear governing system, the predictor-corrector 
based on the use of a secant stiffness matrix is used.  
When the secant stiffness matrix is used in a classical predictor-corrector algorithm, the iterative process 
is more severe, and some convergence controls used in classical Newton-Rapshon with tangent matrix 
must be eased. Therefore, the default general solution controls of ABAQUS must be modified. To prevent 
severe cut backs in the iterative incremental process, a minimum of 100 iterations are needed for each 
time load. To promote iterative numerical stability, the maximum displacement increment in every node 
is limited to 10%, and ABAQUS “discontinuous analysis” is used. This will increase the total need of 
iterative steps, but provides an accurate final converged solution. To allow for the simulation of softening 
behaviour, displacement control is considered in all test cases. 
 

6.1 The Hassanzadeh Test 

 
The first example is a known benchmark test, used to assess concrete damage models. It is known as the 
“Hassanzadeh Test” [58], in which a plain concrete specimen with four edge notched is tested under 
monotonic static tension, using displacement control until a maximum displacement of 0.04 mm in the 
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top of the specimen (Figure 6). Similarly to other published works [59], the numerical model is simplified 
adopting a 2D analysis, by idealizing a plane strain hypothesis. It was reported in [58] that concrete 
presents a cubic compressive strength of 𝑓𝑐𝑚 = 50𝑀𝑃𝑎, and using the constitutive models of MC2010, 
the tensile strength is estimated as  𝑓𝑐𝑡𝑚 = 3𝑀𝑃𝑎 and the secant Young modulus as 𝐸𝑐𝑚 = 35𝐺𝑃𝑎. 
Although the original author did not provide the exact value of the tensile fracture energy of their 
experiment, several authors have proposed values ranging from 50N/m to 73.35N/m [60, 61]. In this paper 
an average value of 62N/m is used, since the values of MC2010 are not adequate for concrete with small 
aggregate dimensions (smaller than 9 mm) - see Sections 5.1 and 5.2. 
As suggested by other authors [59], the forces associated with the prescribed displacements at the top 
surface obtained with this 2D analysis have to be corrected to take into consideration the 3D effect of the 
problem. 

 
Figure 6 – Hassanzadeh test geometry [61]. 

 
To evaluate mesh dependency when using fracture energy regularization, a regular mesh was refined 
three times using a meshing algorithm with maximum element size ranging from 1.5mm to 0.5mm. To 
correct mesh non-conformity, a kinematic constraint is applied at the interface between the coarse mesh 
(general regions of the specimen) and the refined mesh (near the notches of the specimen). Although a 
non-conforming interface may exist, no C0 violation occurs, and the problem is displacement-compatible. 
In every case the mesh is refined homothetically throughout the whole domain. To reduce computational 
cost, symmetry conditions have been considered Table 1. 
Figure 8 displays the final tension damage distribution obtained for the three meshes shown in Figure 7. 
It is possible to observe that crack damage region is similar in all three discretization meshes tested, and 
localized in a band with finite length, as expected when fracture energy regularization is used. Figure 9 
shows the tension damage evolution for several load steps. In all cases a distributed damage near the 
notched edges may be observed. 
 

Table 1 – Mesh Refinement for the Hassanzadeh test. 
Mesh Name A B C 

Number of FE in the notched edge 3 4 8 

DOF 104 360 1334 
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Mesh A Mesh B Mesh C 

Figure 7 – Adopted meshes for the Hassanzadeh Test. 
 

   

 

Mesh A Mesh B Mesh C 
Figure 8 – Final tension damage distribution for each discretization (deformed shape). 

 

 

     
0.004mm 0.008mm 0.016mm 0.028mm 0.04mm 

Figure 9 – Tension damage evolution for mesh C. 
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Figure 10 shows the reaction vs vertical displacement structural response obtained with all tested 
discretizations. The experimental curve is also plotted and it is verified that the global structural response 
is quite similar in all cases. Therefore, it can be concluded that no mesh dependency occurs and objective 
solutions are always achieved. Figure 10 also shows that mesh C leads to a very similar structural 
behaviour when compared to the experimental data provided by [58]. The bump experimentally observed 
in the softening branch is due to rotational instability occurring when the test apparatus has a low 
rotational stiffness [49, 58]. Therefore, this is not present in the numerical simulations, since equal 
displacements are imposed to all points on the top surface of the specimen. Also as expected, due to 
impose displacements, the stiffness of the coarse mesh is smaller. 

 
Figure 10 – Reaction vs vertical displacement diagrams obtained in the analysis of the Hassanzadeh test. 
 

6.2 The L-shaped Panel Static Test 

 
The L-shaped panel has become a popular benchmark test for the validation of computational models 
used in the numerical simulation of plain concrete cracking. In order to provide experimental data, tests 
on L-shaped structural members were performed at the University of Innsbruck [62]. The test setup, 
geometric properties, and boundary conditions are shown in Figure 11. An upward maximum vertical 
displacement of 1.0mm is prescribed at the lowest right corner of the structure. Young’s modulus, 
Poisson’s ratio, the cylindrical compressive strength, the uniaxial tensile strength and fracture energy are 
given by 𝐸 = 26 𝐺𝑃𝑎, 𝜈 = 0.18, 𝑓𝑐 = 31 𝑀𝑃𝑎 , 𝑓𝑡 = 2.5 𝑀𝑃𝑎 and 𝐺𝑓 = 90 𝑁/𝑚. As in the previous 

example, the adopted fracture energy value is clearly smaller than the one provided by MC2010. This 
value is adopted since it was measured by the original author for the case of concrete with small 
aggregates. 
 

 

  

Experimental Setup [mm] Experimental Crack Distribution Adopted Loading and Boundary Conditions 

Figure 11 – Force vs vertical displacement from L-shaped panel static test [62]. 
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The three regular structured meshes shown in Figure 12 are considered in the analysis Table 2. To prevent 
any localized effects associated to the application of the prescribed displacement, a linear elastic 
behaviour is adopted for the material localized near the right boundary of the L-shaped plate. 
 

Table 2 – Mesh Refinement for the L-shaped Panel Static test. 
Mesh Name A B C 

FE square size 25 12 5 

DOF 682 2562 15402 

 

   
Mesh A Mesh B Mesh C 

Figure 12 – Adopted meshes for the L-shape panel. 

   

 

Mesh A Mesh B Mesh C 
Figure 13 – Final tensile damage distribution (deformed shape). 

 

 

     

0.1mm 0.2mm 0.4mm 0.6mm 0.8mm 

Figure 14 – Tensile damage evolution when Mesh C is used. 
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Figure 13 shows the final tension damage distribution obtained with all discretizations being considered. 
As it can be observed, the localized damage band is stable and does not depend on the size of the elements 
considered in the mesh. The evolution of the tensile damage distribution for several load step increments 
is plotted in Figure 14. As expected, damage first appears near the re-entrant corner and then evolves 
almost horizontally, correctly simulating the development of a macro-crack. 
The force vs vertical displacement structural response obtained with the discretization being used are 
plotted in Figure 15. Two experimental curves are also included in the same plot. It can be seen that 
objectivity is ensured, as global structural responses are quite similar and are not mesh dependent. It is 
important to note that in all numerical solutions that have been obtained, the stiffness and maximum 
load, although identical, are not equal to the experimental results. This has been pointed out by other 
authors, and it is due to some uncertainty related to the support conditions of the experimental test. Also, 
a minor crushing in the concrete near the load metal plate was observed, which promotes a more flexible 
and structural response with less load-bearing capacity. Due to the non-linearity started at the first steps, 
in this particular case, it is expected that the coarser mesh is stiffer. 

 
Figure 15 – Force vs vertical displacement from L-shaped plate. 

 

6.3 Four-Point Bending Test 

 
This example reproduces a recent benchmark, in which a four-point bending test is performed to estimate 
the fracture energy in a concrete beam (Figure 16). This test was reported for the first time in [63], in 
which the authors concluded that in this type of experimental setup there is almost no size effect in the 
measurement of fracture energy. This example is important because it evaluates fracture energy in a pure 
bending region, thus removing any shear effect that may cause a portion of the size effect. The crack-
depth is 40 mm and has a thickness of 3 mm, and a prescribed displacement is applied in the top steel 
plates. The properties are provided by the original authors: Young modulus 𝐸𝑐𝑚 = 32.46 𝐺𝑃𝑎; cylindrical 
compressive mean strength 𝑓𝑐𝑚 = 32.4 𝑀𝑃𝑎; the tensile strength 𝑓𝑐𝑡𝑚 = 2.5 𝑀𝑃𝑎 was estimated using 
MC2010; and the tensile fracture energy 𝐺𝑓𝑡 = 190 𝑁/𝑚 (similar to the one in MC2010). 

To reduce the computational cost, symmetry considerations and a localized refined mesh are 
adopted. As shown in Figure 17 a), the refined mesh is located near the notched edge and a kinematic 
constraint is considered at the transition zone in order to promote C0 continuity at the interface. A 
sweep mesh was defined in the refined area using an advancing front algorithm, promoting a total 
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1554 DOF. This ensured that at least three elements exist in the notched edge, as it can be verified in 
Figure 17 b). The length of this localized refined mesh is based on an initial iterative approach using a 
simple elastic numerical model. 
 

 
 

Figure 16 – Four-point bending test setup [mm]. 
 

 

 

a) Full scale mesh b) Zoom mesh at the notch 

Figure 17 – Adopted mesh for the four-point bending test. 
 
Figure 18 shows the tensile damage evolution near the notch for different load steps. To ensure a better 
visualization of the results, the mesh grid is removed. As expected, damage first appears near the 
notched edge and evolves along the height of the crack.  
Figure 19 shows the evolution of the maximum principal positive stress. The maximum principal 
positive stress value does not progress towards the top of the specimen at the final stages of the 
loading process. 
Figure 20 plots the reaction vs displacement structural response obtained with the constitutive model 
being presented. This figure shows also two curves obtained with experimental tests. It can be 
observed that the numerical response with the material parameters provided by the original authors [63] 
is consistent with the upper and lower experimental data in turns of force reaction. For the stiffness, 
although the original authors state no crushing in the supports, it is possible that some experimental 
results may be more flexible due to this problem. 
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5% 10% 30% 50% 100% 

Figure 18 – Tensile damage evolution for a % of 1.0mm of displacement at the top of ½ span. 
 

 

     
5% 10% 20% 40% 100% 

Figure 19 – Maximum positive stress for a % of 1.0mm of displacement at the top ½ span. 
 

 
Figure 20 – Force vs displacement in the four-point bending test. 
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6.4 Skew Crack in a Compression Field 

 
The main purpose of this benchmark is to validate the compressive fracture energy regularization 
formulas presented in (27), and also verify if the damage model works correctly during compressive 
damage. This experiment was first reported in [64], and the only material parameter directly provided by 
the authors is the mean compressive strength, 𝑓𝑐𝑚 = 25𝑀𝑃𝑎. The authors of the publication inferred the 
compressive fracture energy indirectly and observed that their estimates were too wide and unreliable, 
therefore these data were not used. The remaining necessary material parameters are estimated using 
MC2010: secant Young Modulus 𝐸𝑐𝑚 = 27 𝐺𝑃𝑎; cracking stress 𝑓𝑐𝑡𝑚 = 2.0 𝑀𝑃𝑎; and tensile fracture 
energy 𝐺𝑓𝑡 = 130 𝑁/𝑚. In this example the four alternative expressions defined in equation (27) for the 

computation of the compressive fracture energy are tested and the results obtained with those 
alternative values are compared. 
It is important to point out that the length of the notched edge and the complete information regarding 
the structural response of the concrete prism are not presented in the original publication [64]. Therefore, 
assumptions were required in order to have all necessary geometric information. Based on the 
information provided by the drawings in the original paper [64], the length of the notch was estimated to 
be 38 mm. 
The load is applied at the top of the specimen and correspond to a uniform prescribed vertical 
displacement, using an irregular mesh with a total of 20836 DOF. 
Figure 21 shows the experimental crack paths that have been reported in [64]. That paper presents the 
crack patterns obtained when an inclination of 45° is considered for the notch, but then presents the 
global structural response only for the case in which that inclination corresponds to 30°. 
In the numerical simulation presented in this section, an inclination of 30° is considered to enhance the 
comparison of the global structural behaviour. The maximum positive principal strain distribution 
obtained with the numerical model is presented in Figure 21 for different stages of the loading process. A 
very good agreement between both numerical and experimental results is observed. 
 

  
Observed crack path Mesh 

    
 

0.21mm 0.27mm 0.3mm 0.32mm 

Figure 21 – Experimental crack path in specimens and numerical maximum positive principal strain, for a 
given vertical prescribed displacement. 
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Figure 22 a) shows the vertical top reaction vs displacement structural response that are obtained when 
the four alternative expressions presented in equation (27) for the definition of the compressive fracture 
energy are taken into account. The experimental curve is also plotted in the same figure, in which the 
original author stopped the load at 0.24mm in order to photograph the crack patterns. It is possible to 
observe that all four numerical curves present the same peak load and that both numerical and 
experimental results are quite similar. As expected, if one takes into consideration the comments 
presented in section 5.2, the numerical simulation with 𝐺𝑓𝑐_𝐴 presents higher ductility. By observing the 

experimental curve and the numerical structural response obtained with 𝐺𝑓𝑐_𝐶, it can be concluded that 

non-linearity is similar, although the finite element model was only able to reach a maximum vertical force 
of 382 kN at 0.32 mm. Figure 22 b) presents the final damage distribution obtained with a compressive 
fracture energy value given by expression 𝐺𝑓𝑐_𝐶 in equation (27), and it can be observed an onset of 

collapse, on both lateral sides, that promote the softening at 0.32mm. 
 

  

 

a) Structural Response b) Final damage distribution  

Figure 22 – Force vs displacement in the skew-crack test, and final damage distribution (deformed 
shape). 

 

6.5 Reinforced Concrete Beam 

 
This last example tests the accuracy of the proposed modified Mazars damage model in the simulation of 
the behaviour of a reinforced concrete beam in which the collapse is due to concrete compression. 
Therefore, this is an important numerical benchmark to test the regularization technique associated to 
compressive fracture energy. Most of the material parameters are provided in [65, 66]: Young modulus 
for concrete 𝐸𝑐𝑚 = 31 𝐺𝑃𝑎; cylindrical compressive strength 𝑓𝑐𝑚 = 37 𝑀𝑃𝑎; Young modulus for steel 
and hardening stiffness, 𝐸𝑠 = 193 𝐺𝑃𝑎 ;   𝐸𝑠𝑦 = 10% 𝐸𝑠, respectively; yield and ultimate steel stress 

𝑓𝑦 = 546 𝑀𝑃𝑎  ; 𝑓𝑦𝑢 = 691 𝑀𝑃𝑎. For the steel reinforcement an elastoplastic model with constant 

stress after hardening value is used. Since the damage model in this work is based on the constitutive 
relations of MC2010, the concrete cracking stress was considered to be 𝑓𝑐𝑡𝑚 = 2.8 𝑀𝑃𝑎 and the fracture 
energy 𝐺𝑓𝑡 = 140 𝑁/𝑚.  

Although the original authors have used a full 3D finite element analysis, for the simulation presented in 
this work a simple 2D analysis is performed to reduce the computational costs, since it was observed 
during the experimental campaign that out of plane effects were irrelevant. The reinforced concrete 
section and load layout are presented in Figure 23, but more information on the structural setup can be 
found in [67], in which a maximum prescribed displacement 30 mm is applied in the top steel plates.  
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a) Cross Section b) Geometry and load layout 

Figure 23 – Load layout of the reinforced concrete beam [65, 67]. 
 
The finite element size is limited to 5 mm for plane and rebar elements, in which more detailed 
information is presented in [65], with a total of 7500 DOF. For the rebar elements, truss 2 node finite 
elements are used and perfect bond to the concrete is assumed. 
Three different numerical models involving the use of the finite element mesh presented in Figure 24 are 
considered in the analysis of the reinforced beam. The first, designated as Numerical Model A, considers 
the values above mentioned for all parameters characterizing the material behaviour. A second model, 
designated here as Numerical Model B, uses the value for the tensile fracture energy defined by Hillerborg 
[49]. Finally, Numerical Model C takes into account the branch AB defined in Figure 2 (𝜀𝑡1 ≠ 𝜀𝑑0). 
Figure 24 shows the force vs displacement (at mid span) structural response obtained with all three 
numerical models defined above. The same figure shows the experimental results and the analytical 
solution that can be obtained using the standard MC2010 design equations. 
The analysis of Figure 24 shows a difference between numerical and experimental results in the transition 
from phase I to phase II after cracking initiation. As the numerical solutions are quite similar to the 
analytical one, this difference may be related to some defects of the specimen, originated during 
production or transportation, that caused premature cracking.  
When comparing the experimental and numerical values obtained for the cracking bending moment and 
corresponding load, close agreement is found. The bending cracking moment is approximately 𝑀𝑐𝑟 =
1.5 𝑘𝑁𝑚 and the load is about 𝑃𝑐𝑟 = 7.14 𝑘𝑁. 
Figure 24 shows that the stiffness associated to phase II computed using the MC2010 procedure is well 
recovered by all numerical models. However, phase II maximum load obtained with Numerical Model A 
and Numerical Model C overestimate the analytical value. When Numerical Model B is considered that 
difference tends to decrease. 

 
Figure 24 – Force vs displacement at mid span of the reinforced concrete beam. 
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This damage model allows the user to identify if the material is closer to a tension or compression state 
by plotting both 𝛼𝑇 , 𝛼𝐶variables (defined in equation (16)). Figure 25 shows, as expected, that the tensile 
behaviour is mostly located in the middle and bottom of the specimen, while compressive behaviour is 
located at the top.  
Figure 26 presents the damage distribution obtained for different stages of the loading process. For each 
diagram the value of the displacement being prescribed is indicated. The maximum value considered for 
the prescribed displacement is 30 mm and all diagrams are presented considering the beam deformed 
shape. 
 

.   
 𝛼𝑇 𝛼𝐶  

Figure 25 – Tensile and compressive factors for tensile and compressive damage combination. 
 
In Figure 26, the displacement of 0.6 mm (2% of 30 mm) represents the transition from elastic behaviour 
to the cracking phase (which is finished at 5% of 30 mm). Then, the beginning of the yielding of the rebars 
and crushing of the concrete occurs at 17% and 55% of the maximum displacement, respectively. As in 
the experimental outputs described in [65, 67], the beam presented a huge crack near the load support 
due to steel rebar yielding (Figure 27) and a clear concrete crushing near the top of the beam at half span.  
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5.1mm (17% of 30mm) 

 
16.5mm (55% of 30mm) 

 
30.0mm (100% of 30mm) 

Figure 26 – Damage distribution for different phases of the loading process. 
 

  

Figure 27 – Final plastic strain in the steel rebars. 
 

7 Conclusions 
 
In this work a new modified Mazars damage model has been presented and tested. This new model 
defines the damage evolution laws according to Model Code 2010. A comprehensive set of numerical 
tests were performed considering well-known benchmark examples currently used to assess damage 
models. In the examples discussed in this paper, the results obtained with the model being proposed are 
compared with experimental results in terms of global structural response and crack pattern distribution. 
The main conclusions of this work are: 
 

1) The proposed damage model was able to simulate previous experimental campaigns in terms of 
force vs displacement curves both in tension and compression. Accurate results in terms of non-
linear stiffness and maximum load capacities have also been reported; 

2) The model is able to correctly simulate the crack patterns observed in experiments; 
3) Due to the energy regularization of both tensile and compressive damage, the proposed model 

did not present any mesh dependency or sensitivity. This was the main goal to achieve with the 
development of this new model; 

4) Although simple in terms of formulation and damage evolution laws, the model leads to robust 
and accurate results. Moreover, the model is computationally efficient. 
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Another important secondary conclusion is that, the tensile damage evolution was compared and 
validated with previous authors and good agreement was observed, when using fracture energy 
regularization. For the compressive damage evolution four formulas that estimate the compressive 
fracture energy were tested, and all of them were directly compared with stress vs strain curves of 
MC2010. The relationship labelled in the paper as 𝐺𝑓𝑐_𝐶 [45] resulted in the best fit of the model to the 

benchmark data. In any case, it was possible to concluded that the four compressive fracture energy 
analytical formulas, although different, produce similar numerical results. 
 

8 Future Developments 
 
In the near future the modified Mazars model will be upscaled in order to allow for the correct and 
accurate simulation of both static and dynamic cyclic analysis. To perform this, permanent strains and 
hysteretic loops must be added to the formulation by means of gradient functions. The proposed damage 
model will also be generalized to enable statistical variation of material properties, which is an important 
issue when considering of the variability of secondary raw materials for concrete, an increasingly relevant 
trend of the concrete industry. 
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