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Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.

Abstract

We associate a representation of the Thompson group V (and thus of F and

T by considering the restriction) to every representation of the Cuntz algebra

O2. The well-developed theory of representations of the Cuntz algebras leads

us to exhibit an uncountable family of unitary representations of V which are

pairwise non equivalent, and two others for F and T .
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1. Introduction

In this paper we investigate the unitary equivalence and he irreducibility of

representations of Thompson groups arising from representations of the Cuntz

algebra O2, paying a particular attention to the permutative representations of

O2.5

A representation of the Cuntz algebra On on a Hilbert space H is a family

of isometries S1, ..., Sn acting on H with orthogonal ranges such that the under-

lying space H is subdivided into the these ranges. Since the celebrated work of

Bratteli and Jorgensen in [5] on the permutative representations of On (where
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the isometries S1, ..., Sn permute the vectors of a fixed orthonormal basis of H)10

have a host of applications, for example to fractals, wavelets, dynamical systems

see e.g. [5, 11, 7], and quantum field theory in [1]. For example, it is known

that these representations serve as a computational tool for wavelets analysts,

see [11]. For this one uses the subdivision of H into orthogonal subspaces that

arises from the Cuntz algebra representations. Then the problem in wavelet15

theory is to build orthonormal bases in L2(R) from these data. Indeed this can

be done and these wavelet bases have advantages over the earlier known basis

constructions (one advantage is the efficiency of computation), see [11].

On the other hand, the Thompson groups F , T and V , introduced in

the 1960’s by Richard Thompson, are finitely generated and finitely presented20

groups such that F ⊆ T ⊆ V . These are countable and discrete groups and fairly

easy to define as certain piecewise linear maps from the interval [0, 1] onto itself

(see [6]). Almost every question related to these groups is a challenge, typically

harder for the smaller groups, as for example it is still an open problem whether

F is an amenable group whereas the other two contain copies of the free group25

and thus are non-amenable [9]. Several approximation properties for groups are

based on suitable asymptotic behaviour of matrix coefficients of unitary repre-

sentations. For this reason, it is of interest to determine as much as possible

about the representation theory of the Thompson groups (especially useful in

solving analytical problems where of course amenability springs to mind). For30

that we first need to construct families of representations of Thompson groups.

Recently, V.F.R. Jones has recently developed [10] a machinery to produce uni-

tary representations of F , which we may call Jones representations. Besides

this, the coefficients 〈τ(g)Ω,Ω〉 (of a specific “vacuum” vector Ω and g ∈ F ) of

a certain Jones representation τ of F together with the geometric description35

of F was used in [10, 2] to fabricate (unoriented and oriented) knot and link

invariants.

Then a relation between two these two subjects, representations of Cuntz

algebras and Thompson groups, was unveiled by Nekrashevych in [12], where a

canonical realization of the Thompson groups as subgroups of the unitary group40
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of the Cuntz algebras was discovered. It is therefore expected that tools from

the well developed representation theory of Cuntz algebras can be used in the

study of the representation theory of Thompson groups, and the interplay serves

to enrich both subjects.

The above mentioned interplay is what we plan to investigate in this pa-45

per. Given the wealthy source of Cuntz algebras representations, our results

indicate that it is important to study the related Thompson groups represen-

tations. Indeed, we clarify why every representation of the Cuntz algebra O2

gives rise to a representation of the Thompson group V , and when we consider

its restriction we get representations of the smaller groups T and F . Then we50

identify a class of representations of these groups using those representations

{πx}x∈[0,1] of the Cuntz algebra O2 fabricated in [7], and carry on with the

study of the corresponding questions of unitary equivalence and irreducibility

of these Thompson groups representations. As remarked in [10], it is typically

difficult to distinguish equivalence classes or irreducible representations for rep-55

resentations of Thompson groups. We however succeeded in characterizing the

inequivalent and irreducible unitary representations of V in our aforementioned

class, and two other inequivalent classes for T and F . For V , this is done by

borrowing the related study of the Cuntz algebra representations previously

done in [7] together with the use of the natural action of V on the interval [0, 1]60

and proving that range of every such representation of V generated the whole

Cuntz algebra. For T and F , we identify the new inequivalent representations

by a direct inspection, where we use the geometric description of F (and T ) and

use the fact that one of the generators has only two fixed points. We remark

that the image of the canonical realization of F in not the whole Cuntz algebra65

O2, see [9, Prop. 4.3], thus we cannot apply [7] as we did for V which is why we

have a different proof for F (and T ).

More precisely, we first show in Theorem 3.1 – using a more group theo-

retic approach, namely, working with generators and relations of the underlying

groups – that indeed every representation π of the Cuntz algebra O2 leads to a
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(unitary) representation ρπ of the Thompson group V ,

π ∈ Rep(O2, H) 7→ ρπ ∈ Rep(V,H)

thus producing unitary representations of the smaller groups T and F by con-

sidering the restriction of ρπ.

Then we consider a family of O2 representations {πx}x∈[0,1] from [7] that70

were built on the Hilbert spaces `2(orb(x)) (x ∈ [0, 1]) with orb(x) being the

orbit of x under the interval map defined by f(x) = 2x (mod 1). Each of these

representations πx thus leads to a representation ρx := ρπx
of V . In this setting,

the representation ρ 1
2

is in fact the canonical representation of V considered in

[12, 9]. We prove in Theorem 3.1 that the g · y = g(y) (with g ∈ V and75

y ∈ orb(x)) is a well-defined action of V on orb(x) and furthermore it coincides

with the representation ρx.

The main result of this paper is Theorem 4.3 where we show that the rep-

resentations ρx and ρy are unitarily equivalent if and only if x and y live in the

same orbit

ρx ∼ ρy if and only if x ∼ y.

This is a consequence of Theorem 4.2 where we establish that the C∗-algebra

generated by ρx(V ) equals πx(O). This latter result is also used when we prove

in Theorem 4.4 that ρx is irreducible. The unitary equivalence of the restrictions

τx and σx of πx to the smaller Thompson groups F and T (respectively) are

harder as usual. In Theorem 5.1 we show that if x does not belong to the orbit

of 1
2 , then τx and τ 1

2
are not unitarily equivalent (the same for σx and σ 1

2
):

τx ∼ τ 1
2

if and only if x ∼ 1

2
and σx ∼ σ 1

2
if and only if x ∼ 1

2
.

2. Representations of C∗-algebras and of discrete groups

In this section we provide some background on representation theory of C∗-

algebras and discrete groups. Besides this, we also review the definitions of the80

Thompson groups and Cuntz algebras.
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Let H be a (complex) Hilbert space and B(H) the C∗-algebra of all bounded

linear operators on H, and denote by 1 the identity operator. Let A be a

C∗-algebra. A representation of A on the Hilbert space H is a *-preserving

homomorphism π : A → B(H). Such map π is automatically continuous [13]85

with respect to the norm topologies of A and B(H).

Then π is said to be an irreducible representation of A if the only invariant

subspaces of π are the trivial ones, i.e., 0 and H. For S ⊆ B(H) consider its

commutant S′ = {t ∈ B(H) : ts = st,∀s ∈ S}. Then the representation π of A

is irreducible iff π(A)′ = C1, see [13].90

Another important aspect is the equivalence of two representations by a uni-

tary operator. Given two representations π1 : A→ B(H1) and π2 : A→ B(H2)

of a C∗-algebra A, we say π1 and π2 are unitarily equivalent representations

(and we write π1 ∼ π2) if there exists a unitary operator U : H1 → H2 such

that95

π2(a) = Uπ1(a)U∗

for all a ∈ A, where U∗ is the adjoint operator of U , so that 〈Uξ, η〉 = 〈ξ, U∗η〉

for all ξ, η ∈ H.

We now turn our attention to discrete group representations. Most of the

definitions we need are direct translations of the definitions given above by

replacing the algebra A by a discrete group G. We recall that a discrete group100

G is a group G equipped with the discrete topology. A group representation

of G on a Hilbert space H is a group homomorphism ρ : G → B(H). If

ρ(g−1) = ρ(g)∗, then we say that π is a unitary group representation of G

(thus ρ(g) is a unitary operator on H). Since G is assumed to be discrete, ρ is

automatically continuous.105

The notions of irreducible and unitary equivalent representations for repre-

sentations of groups are similar to those for algebras. We remark that a discrete

group representation ρ is irreducible iff ρ(G)′ = C1, see [3]. This will be useful

in the sequel
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2.1. The Thompson groups110

The Thompson groups are discrete groups, F, T and V , introduced by Richard

Thompson in 1965. A good reference for the Thompson groups is [6].

The smallest of these groups, the Thompson group F , is the set of piecewise

linear bijections of [0, 1] which:

• are homeomorphisms of [0, 1[;115

• have only a finite number of non-differentiability points in the set of dyadic

rationals in [0, 1[;

• at the points of differentiability, the derivative is a power of 2;

• map Z[1/2] ∩ [0, 1] bijectively onto itself

where Z[1/2] denotes the dyadic numbers. As an example of elements of F ,

consider the functions A and B, whose analytic expressions are given by

A(x) =


x
2 , if 0 ≤ x ≤ 1

2

x− 1
4 , if 1

2 ≤ x ≤
3
4

2x− 1, if 3
4 ≤ x ≤ 1

, B(x) =



x, if 0 ≤ x ≤ 1
2

x
2 + 1

4 , if 1
2 ≤ x ≤

3
4

x+ 1
8 , if 3

4 ≤ x ≤
7
8

2x− 1, if 7
8 ≤ x ≤ 1

, (1)

whose graphs are in Fig. 1.120

The Thompson group T is also a subset of the set of piecewise linear bijec-

tions of [0, 1], but in this case it contains the functions that:

• are homeomorphisms of [0, 1[ when given the circle topology (this is equiv-

alent to saying that it is a piecewise linear bijection of the unit interval

with one discontinuity, at most);125

• have only a finite number of non-differentiability points in the set of dyadic

rationals in [0, 1[;

• at the points of differentiability, the derivative is a power of 2;
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Figure 1: Graphs of the functions A and B

• map Z[1/2]\{1} bijectively onto itself.

Finally, the Thompson group V is the set of right continuous piecewise linear130

bijections of [0, 1[ that satisfy all of the properties of T except for the first one.

The Thompson group T is generated by A, B and C where C is defined as

C(x) =


x
2 + 3

4 , if 0 ≤ x ≤ 1
2

2x− 1, if 1
2 ≤ x ≤

3
4

x− 1
4 , if 3

4 ≤ x ≤ 1

π0(x) =


x
2 + 1

2 , if 0 ≤ x ≤ 1
2

2x− 1, if 1
2 ≤ x ≤

3
4

x, if 3
4 ≤ x ≤ 1

(2)
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whereas V is generated by A,B,C and π0, where π0 is defined above. Fig. 2

shows the graph of C and Fig. 3 shows the graph of π0.
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Figure 2: Graph of the function C

11 12 21 22

11

12

21

22

π0

0.25 0.5 0.75 1

0.25

0.5

0.75

1

Figure 3: Graph of the function π0

The axes of the graphs of the Figs. 1, 2 and 3 are all identified with the digits135

11, 12, 21 and 22. This identification of the axes is not relevant at the moment

but it will be important when we discuss how we can arrive at the image of the

elements of the Thompson groups through the representations we will consider.

The Thompson groups F , T and V are not only finitely generated but also

finitely presented [6]. In the sequel we need to consider the Thompson groups
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in terms of generators and relations since we aim to produce representations of

these groups on Hilbert spaces by putting forward unitary operators and then

checking that indeed these operators do verify the required relations. We use the

standard presentations from [6]. The Thompson group F is the group generated

by A and B that satisfies the relations

[AB−1, X2] = 1, [AB−1, X3] = 1, (3)

where [g, h] = ghg−1h−1 denotes the commutator, X2 = A−1BA and X3 =

A−2BA2 (and 1 denotes the identity element of the group. The Thompson

group T is generated by A, B and C and satisfies 6 relations, those in Eq. (3)

together with

C = BC2, C2X2 = BC3, CA = C2
2 , C

3 = 1, (4)

where C2 = A−1CB and C3 = A−2CB2. Finally, the Thompson group V is

generated by A, B, C and π0 and it satisfies 14 relations, those from T together140

with

π2
1 = 1, [π1, π3] = 1, (π2π1)3 = 1, [X3, π1] = 1,

π1X2 = Bπ2π1, π2B = Bπ3, π1C3 = C3π2, (π1C3)3 = 1, (5)

where π1 = C−12 π0C2, π2 = A−1π0A and π3 = A−2π0A
2.

2.2. The Cuntz algebras

The Cuntz algebras were first introduced by Cuntz in [8]. They have been

used not only in the operator algebras context but also as a host of many ap-145

plications. Certain classes of Cuntz algebra representations play a fundamental

role, see the seminal work [5].

Definition 2.1. Let n ∈ N. The Cuntz algebra On is the universal C∗-algebra

generated by a set of isometries {si}ni=1 that satisfies the relations

n∑
i=1

sis
∗
i = 1, s∗jsj = 1

where 1 is the unit of On.
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If s1, s2 are the generators of O2, then ŝ1 = s21, ŝ2 = s1s2 and ŝ3 = s2 satisfy

the relations of O3. By induction we can conclude that

... ⊆ On ⊂ ... ⊆ O3 ⊆ O2

as in [8]. Our main focus here will be the Cuntz algebra O2. Note that the

non-trivial representations of the Cuntz algebra are always injective, since O2 is

a simple algebra, see [8]. Thus, any representation π of O2 on a Hilbert space H

is uniquely determined by two isometries S1, S2 ∈ B(H) satisfying the relations

S∗1S1 = 1, S∗2S2 = 1, S1S
∗
1 + S2S

∗
2 = 1, (6)

where π(s1) = S1 and π(s2) = S2 are the images of the generators s1 and s2.

We now yield a family of representations of O2 which we will be considered

in the sequel, see [7]. These representations are built from the orbits of points of

the 1-dimensional dynamical system given by the interval map f : [0, 1]→ [0, 1]

where

f(x) = 2x (mod 1), (7)

see the graph of f in Fig. 4.150

0.5 1

1

Figure 4: Graph of the function f in (7)

We can define an equivalence relation Rf on the interval [0, 1] as

x ∼ y if and only if fn(x) = fm(y) for some n,m ∈ N. (8)
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We are also interested in the orbit of a point x ∈ [0, 1] by the function f

orb(x) = {fm(x) : m ∈ Z}. (9)

Therefore, we have that x ∼ y if and only if orb(x) = orb(y). We will also

consider the Hilbert space Hx = `2(orb(x)) with the inner product defined as

〈δy, δz〉 =

 1, if y = z

0, if y 6= z.

where y, z ∈ orb(x) and δy is the Dirac function on y. Notice that {δy : y ∈

orb(x)} is an orthonormal basis for Hx. In order to construct our representation

of O2 on Hx, let S1 and S2 such that

S1δy = δ y
2

S2δy = δ y+1
2

(10)

for all y ∈ orb(x). Then we extend S1 and S2 by linearity and continuity to the

whole Hilbert space Hx (which are clearly isometries). We may check that the

adjoint operators of S1 and S2 are such that

S∗1δy = δ2y S∗2δz = δ2z−1 (11)

for all y ∈ orb(x)∩ [0, 12 [ and y ∈ orb(x)∩ [ 12 , 1[. Moreover, it is straightforward

to see that these operators satisfy the relations (6).

This observation gives us an obvious way of defining a representation of O2

on Hx, which we state more formally in the following (which a particular case

of [7, Thm. 6]).155

Lemma 2.2. The isometries S1 and S2 define in Eq. (10) define a representa-

tion πx : O2 → B(Hx) of O2 on Hx.

As in [5, 7], the representation πx is a permutative representation of O2

because S1 and S2 permute the vectors of an orthonormal of Hx. The unitary

equivalence of these representations were studied in [7] within a more general160

context. For completeness we provide here a self-contained adaptation of this

proof here to our current case of the family (πx)x∈[0,1] considered in Lemma 2.2.
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Theorem 2.3. For x, y ∈ [0, 1], we have πx ∼ πy ⇐⇒ x ∼ y.

Proof. If x ∼ y, then Hx = Hy. Hence, πx = πy and the unitary equivalence is

immediate. Suppose now that x � y and let us assume that πx ∼ πy. Then, by

definition of unitary equivalence, there is a unitary operator U : Hx → Hy such

that, for all a ∈ O2

Uπx(a) = πy(a)U.

Note that Uδx can be approximated by finite linear combinations of elements

δw ∈ Hy, i.e. there are complex numbers cw such that

Uδx =
∑

w∈orb(y)

cwδw.

Then ||
∑
w∈orb(y) cwδw||Hy

= ||Uδx||Hy
= ||δx||Hx

= 1 since U is unitary. Let

αk =

 1, if fk(x) ∈ [0, 12 [

2, if fk(x) ∈ [ 12 , 1].

So

πy(sαk
s∗αk

)Uδx =
∑

w∈orb(y)

cwπy(sαk
s∗αk

)δw.

On the other hand, we also have

πy(sαk
s∗αk

)Uδx = Uπx(sαk
s∗αk

)δx = Uδx.

Since we are assuming that x � y, then for every δw ∈ Hy there is a k ∈ N such

that πy(sαk
s∗αk

)δw = 0. Then

lim
k→+∞

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈orb(y)

cwπy(sαk
s∗αk

)δw

∣∣∣∣∣
∣∣∣∣∣ = 0

which is a contradiction. Hence, πx � πy.

3. From Cuntz algebras to Thompson groups representations165

This section shows the richness of the representations of the Thompson

groups that arise from representations of Cuntz algebras.
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Let π : O2 → B(H) be a representation of the Cuntz algebra O2 on a Hilbert

space H and put S1 := π(s1) and S2 := π(s2) as the images of the generators

s1, s2 of O2. Consider the 4 operators of B(H) as follows:170

Aπ := S1S1S
∗
1 + S1S2S

∗
1S
∗
2 + S2S

∗
2S
∗
2 , (12)

Bπ := S1S
∗
1 + S2S1S1S

∗
1S
∗
2 + S2S1S2S

∗
1S
∗
2S
∗
2 + S2S2S

∗
2S
∗
2S
∗
2 , (13)

Cπ := S1S
∗
1S
∗
2 + S2S1S

∗
2S
∗
2 + S2S2S

∗
1 , (14)

π0,π := S1S
∗
1S
∗
2 + S2S1S

∗
1 + S2S2S

∗
2S
∗
2 . (15)

These operators were first defined in [12] (and then used in [9]) in order to

define the so-called canonical representation of the Thompson group V , which

is in our current notation π 1
2

(with π 1
2

as in the above Lemma 2.2) and H 1
2

=

`2([0, 1] ∩ Z[ 12 ]) where Z[ 12 ] denotes the dyadic numbers.

We now define the map ρπ : {A,B,C, π0} → B(H) such that ρπ(u) = uπ,175

where u ∈ {A, B, C, π0}. We would like to see that ρπ extends to a group

representation of V (still denoted by ρπ), for which we need to check that the

image of the generators of V are unitary and satisfy the relations of V . If π = πx

as in Lemma 2.2, then we denote uπ simply by ux, for u ∈ {A,B,C, π0} and ρπ

by ρx.180

The groups F, T and V act by their definitions on the set I = [0, 1] whose

actions is

g · y = g(y) with g ∈ V and x ∈ [0, 1]. (16)

It is however not clear that the action leaves the orbit orb(x) invariant, see Eq.

9. If we prove this then clearly g · y = g(y) defines an action of V on orb(x) for

every x ∈ [0, 1]. We address these issues in the following result.

Theorem 3.1. 1. Let H be a Hilbert space and π : O2 → B(H) be a rep-

resentation of O2 on H and define ρπ as above. Then ρπ is a unitary185

representation of V on H.

2. If y ∈ orb(x) and g ∈ V ,

g · δy = δg(y) (17)

is an (well-defined) action of V on Hx.
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3. The representation ρx of V on Hx satisfies

ρx(g)δy = δg(y) (18)

for all g ∈ V and y ∈ orb(x).

Proof. (1) We have to check that the images of the generators of V satisfy

ρπ(g−1) = ρ(g)∗ and the relations of V (see Eqs. (3), (4) and (5)). Due to190

amount of computational work needed to check these statements, we did a

program in Mathematica that does this for us.

We start by checking that Aπ, Bπ, Cπ and π0π are all unitary operators in

B(H). For example AπA
∗
π = A∗πAπ = 1 is done by implementing the rela-

tions (6) into a Mathematica program where AπA
∗
π is reduced to the identity195

and the same for A∗πAπ. In order to prove the relation [AπB
−1
π , X2,π] = 1,

we use A−1π = A∗π (and the same for B−1π and X−12,π) and compute AπB
∗
π

X2,π(AπB
∗
π)X∗2,π. Then the Mathematica code simplifies [AπB

∗
π, X2,π] into

an expression in S1 and S2 and their adjoints which, using the relations (6),

can be further simplified to the identity as required. Each word of the form200

Sα1,...,αnS
∗
β1,...,βm

, where the αi’s and βj ’s are in {1, 2}, is represented in the

code by {{α1, ..., αn}, {βm, βm−1, ..., β1}}. For example, S2S1S1S
∗
1S
∗
2 corre-

sponds to {{2, 1, 1}, {1, 2}}. The other 13 relations of V are checked in a similar

manner.

(2) The only non trivial thing to prove is to show that g(y) ∈ orb(x) for all205

y ∈ orb(x). It is enough to check this for the generators of V and, for these

functions, that any of its linear sections can be written as a composition of the

maps z 7→ 2z, z 7→ z
2 , z 7→ 2z − 1 and z 7→ z+1

2 .

For A, the only section that is not obvious is for y ∈ [ 12 ,
3
4 ], but it is clear

that

y − 1

4
=

4y − 1

4
=

1

2
· 1

2
· (2(2y)− 1).

For B, for the section y ∈ [ 12 ,
3
4 ] we have

y

2
+

1

4
=

1

2
· 2y + 1

2
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and for y ∈ [ 34 ,
7
8 ] we have

y − 1

8
=

1

2
· 1

2
· 1

2
· (2(2(2y))− 1).

For C, the section y ∈ [0, 12 ] we have

y

2
+

3

4
=

1

2
·

2(2(y+1
2 )) + 1

2
.

Finally for π0, the section y ∈ [0, 12 ] we have

y

2
+

1

2
=
y + 1

2
.

(3) Expression (18) is well-defined, according to part 2 of this theorem. We

now prove that (18) holds for every the generator of V and thus for every g ∈ V .210

First, ρx(A) = S1S1S
∗
1 + S1S2S

∗
1S
∗
2 + S2S

∗
2S
∗
2 . So for 0 ≤ y ≤ 1

2 :

ρx(A)δy = (S1S1S
∗
1 )δy + (S1S2S

∗
1S
∗
2 )δy + (S2S

∗
2S
∗
2 )δy

= (S1S1)δ2y = S1δy = δ y
2

= δA(y).

For 1
2 ≤ y ≤

3
4 :

ρx(A)δy = (S1S1S
∗
1 )δy + (S1S2S

∗
1S
∗
2 )δy + (S2S

∗
2S
∗
2 )δy

= (S1S2S
∗
1 )δ2y−1 + (S2S

∗
2 )δ2y−1

= (S1S2)δ4y−2 = S1δ2y− 1
2

= δy− 1
4

= δA(y)

since 0 ≤ 2y − 1 ≤ 1
2 . For 3

4 ≤ y ≤ 1:

ρx(A)δy = (S1S1S
∗
1 )δy + (S1S2S

∗
1S
∗
2 )δy + (S2S

∗
2S
∗
2 )δy

= (S1S2S
∗
1 )δ2y−1 + (S2S

∗
2 )δ2y−1 = S2δ4y−3 = δ2y−1 = δA(y)

since 1
2 ≤ 2y − 1 ≤ 1.

Second, ρx(B) = S1S
∗
1 + S2S1S1S

∗
1S
∗
2 + S2S1S2S

∗
1S
∗
2S
∗
2 + S2S2S

∗
2S
∗
2S
∗
2 . So

for 0 ≤ y ≤ 1
2 :

ρx(B)δy = (S1S
∗
1 )δy + (S2S1S1S

∗
1S
∗
2 )δy + (S2S1S2S

∗
1S
∗
2S
∗
2 )δy + (S2S2S

∗
2S
∗
2S
∗
2 )δy

= S1δ2y = δy = δB(y).
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For 1
2 ≤ y ≤

3
4 :

ρx(B)δy = (S1S
∗
1 )δy + (S2S1S1S

∗
1S
∗
2 )δy + (S2S1S2S

∗
1S
∗
2S
∗
2 )δy + (S2S2S

∗
2S
∗
2S
∗
2 )δy

= (S2S1S1S
∗
1 )δ2y−1 + (S2S1S2S

∗
1S
∗
2 )δ2y−1 + (S2S2S

∗
2S
∗
2 )δ2y−1

= (S2S1S1)δ4y−2 = (S2S1)δ2y−1

= S2δy− 1
2

= δ y
2+

1
4

= δB(y)

since 0 ≤ 2y − 1 ≤ 1
2 . For 3

4 ≤ y ≤
7
8 :

ρx(B)δy = (S1S
∗
1 )δy + (S2S1S1S

∗
1S
∗
2 )δy + (S2S1S2S

∗
1S
∗
2S
∗
2 )δy + (S2S2S

∗
2S
∗
2S
∗
2 )δy

= (S2S1S1S
∗
1 )δ2y−1 + (S2S1S2S

∗
1S
∗
2 )δ2y−1 + (S2S2S

∗
2S
∗
2 )δ2y−1

= (S2S1S2S
∗
1 )δ4y−3 + (S2S2S

∗
2 )δ4y−3

= (S2S1S2)δ8y−6 = (S2S1)δ4y− 5
2

= S2δ2y− 5
4

= δy− 1
8

= δB(y)

since 1
2 ≤ 2y − 1 ≤ 3

4 and 0 ≤ 4y − 3 ≤ 1
2 . For 7

8 ≤ y ≤ 1:

ρx(B)δy = (S1S
∗
1 )δy + (S2S1S1S

∗
1S
∗
2 )δy + (S2S1S2S

∗
1S
∗
2S
∗
2 )δy + (S2S2S

∗
2S
∗
2S
∗
2 )δy

= (S2S1S1S
∗
1 )δ2y−1 + (S2S1S2S

∗
1S
∗
2 )δ2y−1 + (S2S2S

∗
2S
∗
2 )δ2y−1

= (S2S1S2S
∗
1 )δ4y−3 + (S2S2S

∗
2 )δ4y−3 = (S2S2)δ8y−7

= S2δ4y−3 = δ2y−1 = δB(y)

since 3
4 ≤ 2y − 1 ≤ 1 and 1

2 ≤ 4y − 3 ≤ 1.

Third, ρx(C) = S2S2S
∗
1 + S1S

∗
1S
∗
2 + S2S1S

∗
2S
∗
2 . Thus for 0 ≤ y ≤ 1

2 :

ρ 1
p
(C)δy = (S2S2S

∗
1 )δy + (S1S

∗
1S
∗
2 )δy + (S2S1S

∗
2S
∗
2 )δy

= (S2S2)δ2y = S2δy+ 1
2

= δ y
2+

3
4

= δC(y).

For 1
2 ≤ y ≤

3
4 :

ρx(C)δy = (S2S2S
∗
1 )δy + (S1S

∗
1S
∗
2 )δy + (S2S1S

∗
2S
∗
2 )δy

= (S1S
∗
1 )δ2y−1 + (S2S1S

∗
2 )δ2y−1 = S1δ4y−2 = δ2y−1 = δC(y)
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since 0 ≤ 2y − 1 ≤ 1
2 . For 3

4 ≤ y ≤ 1:

ρx(C)δy = (S2S2S
∗
1 )δy + (S1S

∗
1S
∗
2 )δy + (S2S1S

∗
2S
∗
2 )δy

= (S1S
∗
1 )δ2y−1 + (S2S1S

∗
2 )δ2y−1

= (S2S1)δ4y−3 = S2δ2y− 3
2

= δy− 1
4

= δC(y)

since 1
2 ≤ 2y − 1 ≤ 1.215

Finally, ρx(π0) = S2S1S
∗
1 + S1S

∗
1S
∗
2 + S2S2S

∗
2S
∗
2 .

So for 0 ≤ y ≤ 1
2 :

ρx(π0)δy = (S2S1S
∗
1 )δy + (S1S

∗
1S
∗
2 )δy + (S2S2S

∗
2S
∗
2 )δy

= (S2S1)δ2y = S2δy

= δ y
2+

1
2

= δπ0(y).

For 1
2 ≤ y ≤

3
4 :

ρx(π0)δy = (S2S1S
∗
1 )δy + (S1S

∗
1S
∗
2 )δy + (S2S2S

∗
2S
∗
2 )δy

= (S1S
∗
1 )δ2y−1 + (S2S2S

∗
2 )δ2y−1

= S1δ4y−2

= δ2y−1 = δπ0(y)

since 0 ≤ 2y − 1 ≤ 1
2 . For 3

4 ≤ y ≤ 1:

ρx(π0)δy = (S2S1S
∗
1 )δy + (S1S

∗
1S
∗
2 )δy + (S2S2S

∗
2S
∗
2 )δy

= (S1S
∗
1 )δ2y−1 + (S2S2S

∗
2 )δ2y − 1

= (S2S2)δ4y−3 = S2δ2y−1 = δy = δπ0(y)

since 1
2 ≤ 2y − 1 ≤ 1.

Another proof of part (1) of the above theorem is to use the fact that ρ 1
2

is

a unitary representation of V as in [12, 9] and then by universality of the Cuntz

algebras [8] and definitions of Aπ, Bπ, Cπ and π0,π. These implies that indeed220

ρπ is an unitary representation of V on H.
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Before ending this section, we give a brief explanation of how we obtained

the formulas for the images of the generators; in particular, we explain the

expression for Ax. Let us consider Fig. 1 of the graph of A in the previous

section, where we labelled the axes. We can interpret each summand in Aπ as225

each one of the linear sections of A. For instance, S1S1S
∗
1 corresponds to the

section for 0 ≤ x ≤ 1
2 , in the following way: the part S∗1 identifies the part of

the x-axis where the graph is (in this case, it is 11 and 12, which is the same as

only 1). The part S1S1 corresponds to where we are in the y-axis (in this case,

the graph is in the section 11). The other linear sections are done in a similar230

fashion. Notice that the indices for the adjoint part are written in reverse order

to the order of corresponding part in the x-axis. This a consequence of the

identity S∗βS
∗
α = (SαSβ)∗.

Generally speaking, each summand SαS
∗
β , where α and β are words in {1, 2},

β identifies the linear section we are considering in the x-axis and α identifies235

the y-axis.

4. Unitary equivalent representations of Thompson group V

We are now prepared to consider the question of unitary equivalence of the

representations of the Thompson groups we obtained. We will first consider the

case of the representations ρx of V , for which we can obtain a full characteriza-240

tion of the unitary equivalence.

Firstly, we will need some extra results on the Thompson groups. We recall

that an action of a discrete group on a set X is said to be amenable if there

exists a finitely additive probability measure on X which is invariant under the

action.245

Theorem 4.1 (see [9]). 1. The action g · y = g(y) of V on [0, 1] in non-

amenable.

2. Suppose G is a group acting on a set X and let α denote the representation

of G on `2(X). Then, α is non-amenable if and only if there are elements

g1, ...gn ∈ G such that250
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∣∣∣∣∣∣∣∣ 1n
n∑
k=1

π(gk)

∣∣∣∣∣∣∣∣< 1.

We are now ready to study the unitary equivalence of the representations ρx.

Firstly, we prove a auxiliary result (which is interesting on its own), adapting a

proof in [9].

Theorem 4.2. We have C∗ρx(V ) = πx(O2) for all x ∈ [0, 1], where C∗ρx(V )

denotes the C*-algebra generated by ρx(V ) in πx(O2), i.e.,

C∗ρx(V ) = span{πx(g) : g ∈ V }
||·||B(Hx)

.

Proof. We start by defining the subgroup of V , V2, of all elements g such that

g(y) = y for y ∈
[
1
2 , 1
[
. We can define an action of V2 on the interval [0, 12 [ as

g.y = g(y)

for y ∈
[
0, 12
[
. If we define the function f :

[
0, 12
[
→ [0, 1[ as f(y) = 2y, the map255

g 7→ fgf−1 from V2 to V is a group isomorphism. Since by Theorem 4.1 the

action of V on [0, 1[ is non-amenable, the action of V2 is also non-amenable, by

isomorphism.

We begin by noticing that, since A,B,C and π0 generate V , then

ρx(V ) ⊆ πx(O2),

thus C∗ρx(V ) ⊆ πx(O2).

We will prove the reverse inclusion by proving that S1S
∗
1 and S2S

∗
2 are in260

C∗ρx(V ), for which we will use the non-amenability of action of V2, mentioned

in the first paragraph. We start by defining the sets

X1 =
[
0, 12
[
∩ orb

(
x
)

and

X2 =
[
1
2 , 1
[
∩ orb(x).265
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Since the intervals
[
0, 12
[

and
[
1
2 , 1
[

are left invariant by the elements of V2,

the spaces `2(X1) and `2(X2) are invariant subspaces for ρx(g) for any g ∈ V2.

Recall that ρx(g)δy = δg(y), by Theorem 3.1. In particular, this gives us that

the map

g 7→ ρx(g)|`2(X2)

for g ∈ V2 is the one associated to the action of V2 on [0, 12 [, so, by the270

discussion in the first paragraph, this action is non-amenable. Thus, by Theorem

4.1, we know that the existence of a non-amenable action is equivalent to the

existence of a natural number n such that there are elements g1, g2, ..., gn in V2

such that

∣∣∣∣∣∣∣∣ 1n
n∑
k=1

ρx(gk)

∣∣∣∣∣∣∣∣< 1.

We now proceed to prove that S2S
∗
2 ∈ C∗ρx(V ). Let x = 1

n

∑n
k=1 ρx(gk) and275

begin by noticing that the element S2S
∗
2 commutes with S1S

∗
1 and S2S

∗
2 . Hence,

we have that

xk = (xS1S
∗
1 )k + (xS2S

∗
2 )k. (19)

for any natural number k. Notice also that, since each element of V2 is the

identity on the interval
[
1
2 , 1
[
, we have ρx(g)S2S

∗
2 = S2S

∗
2 , for any g ∈ V2, by

definition of S2S
∗
2 . In particular, it is the case that xS2S

∗
2 = S2S

∗
2 , which allows280

us to rewrite (19) as

xk = (xS1S
∗
1 )k + S2S

∗
2 (20)

Since xS1S
∗
1 = x|`2(χ2), we conclude, recalling that ||x|| < 1 by definition,

that

||xS1S
∗
1 || = ||x|`2(X2)|| < 1.
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By doing so, we have shown that (xS1S
∗
1 )k → 0 when n→∞. This, in turn,

shows that xk converges to S2S
∗
2 , letting us conclude that S2S

∗
2 ∈ C∗ρx(V ). The285

proof of the same result for S1S
∗
1 follows a similar line of reasoning, but using

the subgroup V1 of V of the elements that fix the interval
[
0, 12
[
.

We now turn to proving that S1 and S2 are also in C∗ρx(V ). We begin by

recalling that

ρx(A) = S1S1S
∗
1 + S1S2S

∗
1S
∗
2 + S2S

∗
2S
∗
2 ,

(ρx(A))∗ = S1S
∗
1S
∗
1 + S2S2S

∗
2 + S2S1S

∗
2S
∗
1

and290

ρx(D) = S2S2S
∗
1S
∗
1 + S1S1S

∗
2S
∗
1 + S1S2S

∗
1S
∗
2 + S2S1S

∗
2S
∗
2 ,

ρx(D2) = S2S1S
∗
1S
∗
1 + S1S1S

∗
1S
∗
2 + S2S2S

∗
2S
∗
1 + S1S2S

∗
2S
∗
2 .

Then, we see that:

1. We have ρx(A)(S1S
∗
1 ) = S1(S1S

∗
1 ) because

ρx(A)(S1S
∗
1 ) = (S1S1S

∗
1 + S1S2S

∗
1S
∗
2 + S2S

∗
2S
∗
2 )(S1S

∗
1 )

= S1S1S
∗
1S1S

∗
1 + S1S2S

∗
1S
∗
2S1S

∗
1 + S2S

∗
2S
∗
2S1S

∗
1

= S1S1S
∗
1 = S1(S1S

∗
1 ).

2. We have ρx(A−1)(S2S
∗
2 ) = S2(S2S

∗
2 ) as

ρx(A−1)(S2S
∗
2 ) = (S1S

∗
1S
∗
1 + S2S2S

∗
2 + S2S1S

∗
2S
∗
1 )(S2S

∗
2 )

= S1S
∗
1S
∗
1S2S

∗
2 + S2S2S

∗
2S2S

∗
2 + S2S1S

∗
2S
∗
1S2S

∗
2

= S2S2S
∗
2 = S2(S2S

∗
2 ).

3. We also have ρx(D2)(S1) = S2 because

ρx(D2)(S1) = (S2S1S
∗
1S
∗
1 + S1S1S

∗
1S
∗
2 + S2S2S

∗
2S
∗
1 + S1S2S

∗
2S
∗
2 )(S1)

= S2S1S
∗
1S
∗
1S1 + S1S1S

∗
1S
∗
2S1 + S2S2S

∗
2S
∗
1S1 + S1S2S

∗
2S
∗
2S1

= S2S1S
∗
1 + S2S2S

∗
2 = S2(S1S

∗
1 + S2S

∗
2 ) = S2.
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Using these relations, we can rewrite S1 as

S1 = S1(S1S
∗
1 + S2S

∗
2 ) = S1(S1S

∗
1 ) + S1(S2S

∗
2 )

= ρx(A)(S1S
∗
1 ) + ρx(D2)(S2(S2S

∗
2 ))

= ρx(A)(S1S
∗
1 ) + ρx(D2)ρx(A−1)(S2S

∗
2 ).

Since all these elements are in C∗ρx(V ), we conclude that S1 ∈ C∗ρx(V ). Finally,

S2 is also in C∗ρx(V ) as S2 = ρx(D2)S1. Thus, we have proven that C∗ρx(V ) =

πx(O2).

We are now ready to characterize the unitary equivalence classes of the family295

of representations {ρx}x∈[0,1] of the Thompson group V .

Theorem 4.3. For x, y ∈ [0, 1] we have

ρx ∼ ρy ⇐⇒ x ∼ y.

Proof. If x ∼ y, then orb(x) = orb(y), which means that the representation ρx

and ρy are equal. In particular, ρx ∼ ρy.

Assume now that ρx ∼ ρy. Then, there exists a unitary operator U :

B(Hy)→ B(Hx) such that

ρx(g) = Uρy(g)U∗ (21)

for all g ∈ V . Since ρz = πz|V for all z ∈ [0, 1], we can rewrite Eq. (21) as

πx(g) = Uπy(g)U∗ (22)

for g ∈ V (where we identify V with its image under the canonical realization300

ρ 1
2
). Let also AV be the vector space generated by V . We will prove the desired

result by first proving that Eq. (22) is true for elements of AV and then, using

the previous Theorem to prove that Eq. (22) indeed holds when we replace

g ∈ V by a ∈ O2.
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Let a ∈ AV . Then, we can write a as

a =

n∑
i=1

civi

where ci ∈ C, vi ∈ V for i ∈ {1, ..., n}. We have

Uπx(a)U∗ = U
( n∑
i=1

ciπx(vi)
)
U∗ =

n∑
i=1

ciUπx(vi)U
∗

=

n∑
i=1

ciπy(vi) =

n∑
i=1

ciπy(vi) = πy(a)

where we used that Eq. (22) is true in V and that πx and πy are algebra305

homomorphisms. Thus πx(a) = Uπy(a)U∗ for any a ∈ AV .

Let now a ∈ O2. By Theorem 4.2 we know that there is a sequence (an) in

AV that converges to a. Since each an satisfies (22) (as just proved) then by

continuity of U , πx and πy we get

πx(a) = Uπy(a)U∗ (23)

i.e., πx ∼ πy. By Theorem 2.3, x ∼ y, which concludes the proof.

4.1. Irreducibility of ρx

In this section, we prove that the group V representations ρx (with x ∈

[0, 1])) are irreducible. This proof follows a very similar approach to that of the310

proof of unitary equivalence for the representations ρx, in the sense that we will

use another result from [7] to transfer results from πx to ρx.

We will also need the following easily-checked property of the commutator:

if A ⊆ B then B′ ⊆ A′ (indeed, if something commutes with every element of

B, then it also commutes with every element of A).315

Theorem 4.4. Let x ∈ [0, 1]. Then ρx is irreducible.

Proof. Using [3], ρx is irreducible if and only if ρx(V )′ = C1. Standard manip-

ulations with the commutant (see [13]) leads to

(ρx(V ))′ = (span(ρx(V )))′ = (span(ρx(V )))′ = (πx(O2))′ (24)
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wherein the last equality holds by Theorem 4.2.

Thanks to [7, Thm. 6], πx is irreducible, thus πx(O2)′ = C1. So Eq. (24)

implies (ρx(V ))′ = C1. Therefore ρx is irreducible by [3].

Since ρx is irreducible by Theorem 4.4, every nonzero vector ξ ∈ Hx is cyclic,

so that span{ρx(g)ξ : g ∈ V } = Hx. Thanks to Theorem 3.1, ρx(g) permutes

the vectors of the orthonormal basis {δz : z ∈ orb(x)} of Hx, where g ∈ V . In

fact,

〈ρx(g)δz, δz′〉 = 〈δg(z), δz′〉 = δg(z),z′ , where z, z′ ∈ orb(x), g ∈ V.

Consequently the coefficient 〈ρx(g)δz, δz〉 of the vector δz equals 1 if and only

if z is a fixed point for function g ∈ V (and zero otherwise). Recall that the

coefficients of ρx are the functions

g 7→ 〈ρx(g)ξ, η〉

as ξ =
∑
z∈orb(x) czδz and η =

∑
z∈orb(x) kzδz vary in Hx with cz and kz scalers.320

We can now get these coefficients as follows 〈ρx(g)ξ, η〉 =
∑
czkg(z).

5. Unitary equivalence of representations of Thompson groups T and

F

In the previous section, we saw that the situation of unitary equivalence for

the representations ρx is the same as for the case of the representations πx. The325

case of unitary equivalence of the remaining representations, σx and τx, doesn’t

seem to be as simple. However, we have this result for τx (which is also true for

σx) which allows us to understand unitary equivalent to τ 1
2
.

Theorem 5.1. If x ∈ [0, 1], then

τx ∼ τ 1
2
⇐⇒ x ∼ 1

2
and σx ∼ σ 1

2
⇐⇒ x ∼ 1

2
.
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Proof. Since F ⊆ T , it is enough to prove the result for τx. If x ∼ 1
2 , then we330

clearly have τx = τ 1
2
.

Conversely, let us now assume that τx ∼ τ 1
2

and x � 1
2 . Then, there is a

unitary operator U : H 1
2
7→ Hx such that

τx(g)U = Uτ 1
2
(g)

for all g ∈ F . Then

τx(g)Uδ0 = Uδg(0)

since τ 1
2
(g)δ0 = δg(0). In particular, let g = A (the first generator of F ). Since

A(0) = 0, the previous equality simplifies to

τx(A)Uδ0 = Uδ0. (25)

Since Uδ0 ∈ Hx, it is of the form

Uδ0 =
∑

z∈orb(x)

czδz.

We can then rewrite (25) as∑
z∈orb(x)

cz(τx(A)δz) =
∑

z∈orb(x)

czδz =⇒
∑

z∈orb(x)

czδA(z) =
∑

z∈orb(x)

czδz

which gives us the relation cz = cA(z) for any z ∈ orb(x). From the definition

of A we conclude that the set {z,A(z), A2(z), ...} is infinite (because 0 and 1

are the only fixed points of A and 0 and 1 do not belong to orb(x) as we are335

assuming that x � 1
2 ).

Suppose there is w ∈ orb(x) such that cw 6= 0. Since {w,A(w), A2(w), ...}

is an infinite set, there are infinite coefficients that are equal to cw, since cw =

cA(w). But Uδ0 ∈ Hx = `2(orb(x)), which implies that
∑
z∈orb(x) |cz|2 < +∞.

Hence, we have that cw = 0, which is a contradiction.340

Thus, we have that Uδ0 = 0. But, since U is a unitary operator, this

would imply that ||δ0|| = 0, which is absurd. Therefore, τx � τ 1
2

if x � 1
2 , as

desired.
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Remark 5.2. In the same way as it happens for unitary equivalence, the proof

of Theorem 4.3 is not directly adaptable to the cases of σx and τx since it relies345

on Theorem 4.2. We note that Cδ0 is an F -invariant subspace of τ 1
2
.
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