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Resumo

Os aceleradores baseados em plasma podem agora criar feixes de electrões com uma
qualidade muito elevada e recentemente cientistas alcançaram o objetivo de gerar luz
muito brilhante em lasers de electrões-livres a partir destes feixes. Os lasers com perfil
espaço-temporal estão agora a começar a atingir a maturidade e, portanto, a comuni-
dade de física dos plasmas deve estudar as potenciais aplicações de tais feixes. O nosso
trabalho consiste em novas formas de gerar luz muito brilhante a partir de configu-
rações típicas de aceleração de plasma, tanto impulsionadas por laser como por feixe.
Demonstramos que, utilizando perfis de densidade específicos, qualquer configura-
ção de aceleração de plasma pode transformar-se num emissor de radiação coerente.
Os perfis de corrente muito curtos que surgem nos campos de ondas propagam-se
como uma única entidade, que denominamos quase-partícula. Demonstramos que
poderíamos obter radiação de banda larga até ao ultra-violeta extremo (EUV) com
uma luminosidade muito elevada. A criação de modulações periódicas do perfil de
densidade fez com que a quase-partícula emita radiação de banda estreita no EUV.
Também implementamos lasers espaço-temporais no código de partículas em célula
OSIRIS, um dos códigos mais utilizados na comunidade. Ao utilizar estes impulsos
em simulações, estudamos o impacto na geração de radiação e aceleração. Contro-
lar a força ponderomotiva dá-nos acesso a novos regimes de Thomson scattering que
brilham mais. A utilização destes lasers também pode gerar quase partículas sem a
necessidade de perfis de densidade específicos. Por último, mostramos como aco-
plar um feixe de electrões, plasma e um laser espaço-temporal para gerar oscilações
betatrão temporalmente coerentes. Este trabalho pode levar à emissão de raios-X de
ciclo-único utilizando configurações de plasma.

Palavras-chave: Simulações Numéricas; Aceleradores de Partículas a Plasma; Feixes
Espácio-temporais; Radiação Coerente; Superradiância





Title: Superradiant and coherent radiation emission in plasma accelerator light
sources

Abstract

Plasma-based accelerators can now create electron beams with very high quality and
have reached the goal of generating very bright light in free-electron lasers. Lasers
with spatiotemporal shaping are now beginning to reach maturity, and therefore the
plasma community must study the potential applications of such beams. Our work
consists of new ways of generating very bright light from regular plasma acceleration
setups, both laser-driven and beam-driven. We show that by using specific density
profiles, any plasma acceleration setup may turn into a coherent radiation emitter.
The very short current profiles that surge within the wakefields radiate as a single
entity, which we labeled quasiparticle. We proved we could get broadband radiation
up to the EUV at very high brightness. Creating periodical modulations of the den-
sity profile made the quasiparticle emit narrowband radiation at the EUV. We also
implemented spatiotemporal lasers into the particle-in-cell code OSIRIS, one of the
most used codes in the plasma community. By using these pulses in simulations, we
studied the impact on radiation generation and acceleration. Controlling the pondero-
motive force gives us access to new Thomson scattering regimes that shine brighter.
Using these lasers we can generate quasiparticles without the need for specific density
profiles. Lastly, we showed how to couple an electron beam, plasma, and a spatiotem-
poral laser to generate start temporally coherent betatron oscillations. This work may
lead to single-cycle X-ray emission using plasma setups.

Keywords: Numerical Simulations; Plasma-Based Accelerators; Spatiotemporal shaped
beams; Coherent radiation; Superradiance
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CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Bright radiation sources have led to advancements in a myriad of disciplines, such as
ultrafast biology [1], chemistry [2], material science [3], radiotherapy [4], and quantum
electrodynamics. The facilities around the world that produce the brightest radiation
pulses can agglomerate many scientists and serve as a multi-disciplinary endeavor,
such as DESY (stands for the Deutsches Synchroton, or the german synchrotron), or
ELI (Extreme Light Infrastructure). Plasma scientists have shown over the last decades
the possibility of decreasing the size of accelerators by several orders of magnitude.
Since radiation production always involves particle acceleration, it should also be pos-
sible to miniaturize radiation facilities using compact plasma accelerators. This thesis
concerns simple modifications to plasma acceleration setups and to lasers that can
help create superradiant, coherent light sources at a fraction of the length (and cost).

The introduction provides a brief description of the main concepts of this work,
from plasma accelerators to conventional radiation sources and numerical methods
used.

1.2 PLASMA ACCELERATORS

Radiofrequency (RF) cavities are the conventional accelerating accelerating mecha-
nism in accelerators worldwide. They can produce very energetic, low emittance
particle beams, and have a very high work capacity. The accelerating electric fields
are created by resonant waves inside the cavities, which are made out of metal or a
superconducting material. Because high electric fields damage the material, the max-
imum accelerating field is below 100 MeV/m, with the typical value 10 times smaller
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[5]. Hence, the ability to accelerate electrons to the GeV range using this technology
requires accelerating facilities with 0.1-1 km lengths.

To miniaturize accelerators, one requires a material to withstand very large
electric fields. Plasmas are a very promising alternative, as the typical electric fields
sustained by plasma are given by [6]:

E0[V/m] ⇡ 96
q

n0[cm�3], (1.1)

where n0 is the plasma density. Therefore, the accelerating fields can reach the GeV/m
in typical laboratory plasmas with density of the order of n0 = 1018cm�3, which rep-
resents a major improvement over the conventional accelerator techniques.

Plasma acceleration uses relativistic wakefields as the medium of acceleration.
The driver of these wakefields can both be ultra-intense lasers or ultra-relativistic par-
ticle bunches. For particle acceleration, we are mostly interested in cases where nonlin-
ear plasma waves surge, which is commonly known as the bubble regime [7], shown
in Fig. 2.6. Even though the laser-driven or beam-driven wakefields are similar in
many aspects, the physical processes behind them vary slightly.

FIGURE 1.1: Nonlinear wakefield driven by a laser pulse (in rainbow colors)

In an LWFA (laser wakefield acceleration) regime [6, 8], the laser exerts a pon-
deromotive force onto the plasma electrons, which pushes them out of the propaga-
tion axis and leaves a positive charge region behind the laser. This region of positive
charge works both as a focusing and accelerating medium for electrons, which makes
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it an extraordinary accelerating mechanism. In a PWFA (plasma wakefield accelera-
tion) regime [9, 10, 11], an ultra-relativistic particle beam exerts an electrostatic force
onto the plasma electrons, pushing them out and creating a plasma wakefield that is
similar to the LWFA case.

This nonlinear wakefield propagates at a phase velocity that corresponds to
the speed of the driver of the wakefield (laser or particle beam), which is very close
to the speed of light. Relativistic electrons in the bubble can become phase-locked
with the wakefield and therefore accelerate to very large energies. There are multiple
schemes to inject electrons into the bubble, such as external injection (where a conven-
tional electron beam travels behind the driver), self-injection (where electrons from the
sheath move into the wakefield), down-ramp injection (where a local dip in density
leads to many electrons entering the wakefield at the same time) [12], ionization injec-
tion (where two gases coexist and one high-frequency laser travels behind the driver
and ionize the secondary gas locally), some of which lead to accelerated bunches with
high quality.

1.3 RADIATION FROM PLASMA-BASED SETUPS

In the realm of electromagnetic theory, light emission is fundamentally tied to the ac-
celeration of charged particles. The nature of this emitted light — its frequency, inten-
sity, and other characteristics — varies with the trajectory of the accelerating charges.
To achieve high brightness, a common technique involves the use of particle beams,
which aggregate many charged particles. This approach inherently results in higher
radiation output compared to a single particle, due to the cumulative effect of multiple
radiative sources. Following the principle of charged particle acceleration, plasmas
serve as a powerful medium for generating high electromagnetic fields, facilitating
a wide array of particle trajectories. These intense fields can dramatically alter the
motion of charged particles, leading to a variety of light emissions across the electro-
magnetic spectrum. The manipulation of particle paths in high-field environments
allows for the engineering of specific light characteristics, from the infrared to X-rays,
depending on the particle energy and acceleration. This capacity to control particle
trajectories within plasmas paves the way for precise manipulation of light emissions,
opening up broad possibilities for both scientific exploration and technological inno-
vation [13]. This section will introduce four different light sources that use plasmas.

1.3.1 THOMSON SCATTERING

Thomson scattering is a laser-beam or laser-plasma interaction that can produce tun-
able, near-monochromatic, short x-ray pulses [14, 15]. In Thomson back-scattering, as
an electron counter-propagates a laser pulse, it oscillates in the electromagnetic field
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in a figure-8 motion, recently measured experimentally [16]. The emitted radiation
depends on the normalized vector potential a0, given by:

a0 =
eE

wmec
, (1.2)

where e, me, c, and E are the electron charge, electron mass, the speed of light and the
maximum electric field. For small laser intensities (a0 ⌧ 1), the electron oscillates at
the laser frequency in its frame, and therefore the emitted radiation frequency matches
the double Doppler-shifted laser frequency. However, as the normalized vector poten-
tial a0 increases (a0 > 1), the interaction becomes nonlinear, and the electron oscillates
at harmonics of the laser frequency and therefore the radiated photons on-axis are of
frequencies w = nM0w0, where

M0 =

(
g2

0(1 + b0)2/(1 + a2
0/2), e�beam

1, plasma
, (1.3)

where the g0, cb0, and a0 are the electron Lorentz factor, the speed of electrons, and
the laser normalized vector potential, respectively. The (1 + b0)2 factor is the double-
doppler shift that one observes in the lab frame.

When a2
0 ⌧ 1 only the fundamental frequency is emitted. When a2

0 � 1, the
harmonical content expands up to a critical harmonical number nc ⇠ a3

0. In the case
of laser-beam interaction, we exploit the relativistic factor g and use ultra-relativistic
beams to get a good monochromatic source (using a2

0 ⌧ 1). However, in the laser-
plasma interaction, one must use large a0 (since g = 1) and emit high frequencies.
This radiation is incoherent, as the electrons in the beam or the plasma start at random
phases in the laser fields.

If the laser photons are large enough to affect the motion of the electron, this is
considered Compton scattering.

1.3.2 BETATRON RADIATION

In laser wakefield or plasma wakefield setups, the ion bubble provides a focusing
region for electrons. Any particle beam travelling inside the ion bubble will then os-
cillate. For plasma wakefield setups, even the tail of the driver beam starts to oscillate
as it propagates through plasma [17, 18]. For both LWFA [19] and PWFA, if there are
electrons injected into the bubble they will also oscillate. These oscillations are called
betatron oscillations. The betatron oscillation frequency wb is given by

wb =
wp

p
2g

, (1.4)

where wp is the plasma frequency and g is the electron Lorentz factor. Even though
betatron radiation is temporally incoherent, it is spatially coherent. Spatial coherency
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is determined by how electrons in the same transverse slice of the particle beam are
coherent. Therefore, by using both a spatial filter (pinhole) and a spectral filter (beryl-
lium window), betatron radiation coming from laser-plasma acceleration can already
image a human bone [20]. Betatron radiation can also be used as a diagnostic for the
transverse emittance of the accelerated electron beam in plasma acceleration setups
[21].

1.3.3 COHERENT TRANSITION RADIATION

As an electron bunch moves through a metal-vacuum boundary, the different speeds
of electromagnetic waves in those materials make the electron accelerate near the
boundary. If these particles arrive in a short bunch, then the particles radiate co-
herently for wavelengths larger than the bunch length and incoherently for shorter
wavelengths [22]. This property can be readily seen on the emitted spectrum as a
sharp intensity cutoff at a frequency that is characteristic of the bunch duration.

For a cylindrical symmetric electron beam with N electrons, the energy E emit-
ted at frequency w along q is given by[23]:

d2E
dwdW

=

⌧
d2Ee

dwdW

� ⇥
N + N2

|F(w, q)|
⇤

, (1.5)

where w is the frequency, W is the solid angle, q is the emission angle,
D

d2Ee
dwdW

E
is the

average of the single electron emission. The function F(w, q) =
R

ne(x)e�ik·xdx is
the three-dimensional Fourier transform of the charge distribution ne(x), where k is
the wavevector and x are the spatial coordinates. The incoherent part of Eq. 1.5 is
proportional to N, whereas the coherent bit goes with N2. Even at a small charge of 1
pC, the coherent bit is about 6 ⇥ 106 larger than the incoherent one.

The coherent transition radiation diagnostic takes the spectral content from the
electron beam to reconstruct ne(x). Usually, if one captures frequencies of l = 1µm
at a much higher brightness than l = 0.1µm, the charge density must have some
modulation at 1µm. Because one can only get access to the magnitude of F (and not the
phase), assumptions on the spectrum have to be made to allow full reconstruction[13].

1.3.4 FREE ELECTRON LASER DRIVEN BY PLASMA ACCELERATORS

Free electron lasers are the brightest X-ray sources in the world. Recently, proof-of-
concept experiments demonstrated free electron lasers operating with plasma-accelerated
electron bunches. Both LWFA[24, 25] and PWFA [26] driven free-electron lasers could
operate in the gain regime. These were major breakthroughs for the field, as plasma
accelerators replaced conventional accelerators in one of the most desired applica-
tions.
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A free-electron laser consists of a particle beam that oscillates in a periodic
magnetic array (undulator) which wiggles the ultra-relativistic electron beam. If the
magnetic field is B0 and the undulator period is lu, the radiation is emitted at the
wavelength[13]:

l =
lu

2g2

✓
1 +

K2
0

2

◆
, (1.6)

where K0 = 0.934B0[T]lu[cm] is the undulator strength parameter. If K0 > 1 harmon-
ics of that fundamental frequency also are emitted. As the radiation is emitted by the
whole beam, the same radiation starts interacting with that beam. Depending on the
phase difference between the electrons and the wave, these electrons either gain or
lose energy, and an instability surges such that the beam becomes micro-bunched at
emitted wavelength l (the electron microbunches stay in the nodes of the amplified
wave). As it modulates into microbunches, the beam starts emitting coherently, which
results in an exponential amplification (gain regime) that only stops after saturation.

If the bunch is taken without previous modulation, the amplification starts
from noise in the electron beam production. To make the process faster, facilities
can seed the elect ron a priori [27], making coherence start earlier. The use of pre-
modulation ensures that the instability starts from a level which is larger than the
typical noise level, and therefore it reduces the length it takes for the saturation of the
FEL instabiities. This also ensures that the process is reproducible.

However, one can see that a very large energy spread leads to a spread in l and
therefore prevents the microbunching and coherent emission. The maximum allowed
energy spread for the beam in an FEL comes from the Pierce parameter

r =

"
1

16
I0

IA

K2
0[J J]2

g3s2
?

k2
u

#1/3

, (1.7)

where I0 is the beam current, IA = 17 kA is the non-relativistic Alfvén current, s? is
the beam transverse size, ku = 2p/lu, and [J J] = [J0(x) � J1(x)] with x = K2

0/(4 +
2K2

0). To successfully laser, the energy spread of the electron beam sE ⌧ r. Typically,
quadrupoles are added to make s? as small as possible, so that r increases. At typical
LWFA parameters [24], r ⇡ 5 ⇥ 10�3 = 0.5%. Electron beams from LWFA are often in
the 0.5%-1% range, which leads to several compressions and decompressions so that
the slice energy spread decreases and allows lasing.

As the electrons lase, the power grows exponentially as P µ P0 exp(z/Lg),
where z is the space travelled by the beam and Lg is the gain length, given by

Lg =
1

2
p

3kur
(1.8)

Table 1.1 calculates both the Pierce parameter r and gain length Lg for K = 2
and lu = 2.5 cm. Because the light always travels faster than the beam, there is a
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g l [nm] r
Gain length

Lg0 [m]
Energy

spread [%]
eN

[mm mrad]
s?

[mm]
100 3750 1,1E-01 1,0E-02 7,5E+00 1,2E+04 2,2E+04
500 150 2,2E-02 5,1E-02 1,5E+00 4,6E+02 1,9E+03
5000 1,50 2,2E-03 5,1E-01 1,5E-01 4,6E+00 6,1E+01
10000 0,38 1,1E-03 1,0E+00 7,5E-02 1,2E+00 2,2E+01
20000 0,09 5,6E-04 2,1E+00 3,7E-02 2,9E-01 7,6E+00
50000 0,02 2,2E-04 5,1E+00 1,5E-02 4,6E-02 1,9E+00

TABLE 1.1: FEL parameters at lu = 2.5 cm and K = 2.

slippage effect, where the microbunches are now dephased in relation to the emitted
light.

1.3.5 COHERENCE AND SUPERRADIANCE

In 1954, R. H. Dicke coined the term ’superradiance’ by saying: ’For want of a better
term, a gas which is radiating strongly because of coherence will be called "super-
radiant" ’[28]. That work explained how a quantum-mechanical system may amplify
radiation as the photons emitted by atoms could cause photon emission in nearby
atoms with the same phase and therefore amplify the radiation. The superradiant
light intensity grows with N2, where N is the number of light emitters. Coherence is a
more common term that applies to any two waves with a constant relative phase and
measures the possibility of interference between them. Temporal coherence measures
the possibility of interfering a wave with a copy of itself delayed by a time t. The delay
tC where we observe that the correlation between the original wave and the delayed
wave drops significantly is called the coherence time. The coherence time is strongly
associated to the bandwidth of the pulse dw, such that tCdw ' 1. This means that a
pulse with a lot of frequency content will have a short coherency time.

For a light source to be superradiant, it requires all the light emitters must
emit in phase, as that means that the emitted radiation constructively interferes for
the intensity to scale with N2. However, a coherent light emitter is not necessarily
superradiant. A very simple example comes from an FEL. Let us imagine that an
electron beam inside of an FEL is doubled in size and charge, such that the density
is kept constant. In the typical FEL configuration, the intensity at a detector will not
be changed. The energy is effectively doubled, as the pulse (with the same intensity)
is now twice as long. However, if the electron beam density goes up by a factor of
2, the intensity is increased by a factor of 4. Even though it is commonly said that in
a FEL the intensity goes up with N2, it goes with (N/n)2, where n is the number of
microbunches that are formed. One can notice that N/n just means the number of
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particles in each microbunch. Even though every particle in a FEL is coherent with
each other, only the ones that are in the same microbunch are superradiant.

There has been work done on how to make an FEL radiate superradiantly,
which requires the FEL to be operated at saturation [29, 30, 31, 32, 33]. In that case, as
the light overtakes the electron beam (because it is faster), it increases its energy while
keeping a self-similar shape. The scaling in that case is effectively I2, where I is the
electron current, which indicates superradiance.

1.4 NUMERICAL METHODS

1.4.1 PIC CODES

Particle-in-cell codes are electromagnetic codes that have charged particles interact
self-consistently with the electromagnetic fields that are defined on a grid. The PIC
loop usually takes 4 steps: particles are advanced in time according to the relativistic
Lorentz force, the currents are deposited on the grid, the fields are advanced at the grid
positions by using the time-dependent Maxwell’s equation, and fields are interpolated
back to the positions of particles.

The space derivatives required for Maxwell’s equations use finite-difference
algorithms. To get a 2nd order method in space and time, the grids of the several
components of the electromagnetic fields may be spaced by a half step, corresponding
to the Yee scheme[34].

Our simulations used Osiris [35, 36], a fully parallelized, fully relativistic particle-
in-cell (PIC) code. Osiris discretizes spatial dimensions in a grid. Electric and magnetic
fields are defined at each grid point and are advanced in time using a finite difference
solver for the time-dependent Maxwell’s equations. Macroparticles exist inside the
grid and represent an ensemble of real particles. The macroparticle momentum and
position advance in time is performed via the Lorentz force. All simulations are run
self-consistently in three spatial dimensions.

1.4.2 RADIATION DIAGNOSTIC

This work employs the Radiation Diagnostic for OSIRIS. Radiation coming from plasma
setups is present in particle-in-cell codes. However, the typical radiation emitted by
particles goes with g2. This often means that to resolve the typical (high-frequency)
emitted radiation in the grid, one faces tremendous computational costs. Until re-
cently, obtaining the radiation coming from PIC simulations required running the
simulation and obtaining the trajectories of particles. One can calculate the emitted ra-
diation by computing the Fourier transform of the Liénard-Wiechert potentials, both
completely outside the temporally PIC loop [37] or as the simulation progresses [38].
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The spatiotemporal profile of the emitted radiation is not retrievable from the
spectra. To overcome the limitation and get the correct spatiotemporal structure of
the emitted light, one can calculate the radiation emitted by every particle at every
timestep using the Liénard-Wiechert potentials[39]:

E(x, tdet) = e

"
n � b

g2
p(1 � b · n)3R2

#

ret

+
e
c

"
n ⇥ [(n � b) ⇥ ḃ]
(1 � b · n)3R

#

ret

, (1.9)

where n is the direction of emission, cb is the velocity of the particle, R is the distance
from the detector and the subscript ret refers to the retarded time. The first term of the
equation is negligible in the far-field. If a particle emits a photon at each timestep, the
time interval between the arrival of two photons emitted in consecutive timesteps is
dtrad = dt/(2g2

p), with dt being the PIC timestep. This is quite interesting, as now we
can capture frequencies 2g2

p times larger than the frequencies we can sample on the
grid.

To simulate a detector, we consider a region of space where radiation is tracked,
and we evaluate Eq.1.9 in all the cells of the detector. For each timestep and each
particle, we loop through each spatial cell of the detector and check in what time cell
the radiation arrives. Because we assume that the radiation travels at the speed of
light, it is easy to calculate the time cell, meaning that the time resolution can increase
without increasing the computational load. The computing time is proportional to
the number of spatial cells multiplied by the number of time steps in the simulation
multiplied by the number of particles.

This algorithm provides the spatiotemporal features of the light, not only the
spectral content. It can get much higher time resolution than the grid and can capture
coherent effects.

1.5 CONTENTS

In Chapter 2 we develop the main theoretical treatment of radiation sources in plasma,
where we introduce the concept of quasiparticles and explain how to create very
bright light sources from nonlinear plasma wakefields and plasma density modula-
tions, both broadband and narrowband. In Chapter 3, we show how we programmed
spatiotemporal light pulses into particle-in-cell codes. In Chapter 4 we detail some
possible applications of these spatiotemporal pulses, both using idealized and more
realistic simulations. In chapter 5 we introduce a radiation light source, that couples
realistic spatiotemporal pulses, plasma, and ultrarelativistic electron beams to induce
temporally coherent betatron oscillations.





CHAPTER 2

COHERENT RADIATION FROM PLASMA

QUASIPARTICLES

2.1 INTRODUCTION

As mentioned in section 1.2, compact plasma accelerators [8, 9] could miniaturize par-
ticle acceleration, with accelerations up to hundreds of GeV in a centimeter. By mak-
ing particles in such setups radiate, they also function as a complementary, compact
radiation source. Betatron sources coming from plasma acceleration provide intrin-
sically ultra-short, spatially collimated and bright x-rays [42] for for applications in
biology [1], high energy density [44] and material [45] science, and nonlinear quan-
tum electrodynamics [3]. These sources are on the order of a few cm, but the emission
is temporally incoherent, leading to a linear growth of the radiation intensity with the
number of particles.

Superradiant coherent light sources (where the radiation intensity grows with
the squared number of particles), such as free electron lasers (FEL), provide extremely
bright (> 1028 photons/s/mm2/mrad2/0.1%BW) light pulses, and enable advanced
technological applications in multiple fields, such as chemistry and physics. The
brightness and size of these sources are typically correlated. The LCLS (Linac Coher-
ent Light Source, in Stanford), one of the brightest light source in the world), provides
x-rays with peak/average brightness of 1032/1022 photons/s/mm2/mrad2/0.1%BW,
being several km long. The cost of such facilities can be more than 1 billion (109) euros,
which prevents a wider adoption worldwide (there is currently no FEL in Portugal).
In such sources the radiation intensity scales with the number of light-emitting parti-
cles squared, which for a nC of charge (typical charge of an electron beam) would mean
radiation intensities 109 larger compared with an incoherent source. The superradi-
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ance that underlies these sources plays a key role in all the scientific and technological
applications enabled by free electron lasers [41].

The figure of merit of radiation sources is the peak brightness, measured in
photons per second per source area per solid angle per total bandwidth. Figure 2.1
shows the peak brightness for several plasma-based radiation sources. In this chapter,
we show that we can get down to 50 nm of emission up to 1030 ph/s/mm2/mrad2/0.1%BW,
which is much brighter than typical plasma sources.

FIGURE 2.1: Peak brightness of betatron, Compton and bremsstrahlung radiation from LWFA
compared to other types of sources in the same energy range. Sources included in this plot are:
The APS synchrotron U30 undulator for harmonics 1, 3 and 5 (Argonne National Laboratory,
USA), the ALS synchrotron (Lawrence Berkeley National Laboratory, USA), the Spring8 syn-
chrotron (RIKEN, Japan), x-ray tubes (Copper and Molybdenum aK ), the LCLS free electron
laser (SLAC, USA), and high harmonics generation from laser-produced plasmas. Taken from
[13].

To reach the brightness of FELs, plasma accelerator-based light sources need
to become superradiant and temporally coherent. Such an advance could bring re-
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search and technology that is only available in a handful of FELs worldwide directly
to the many university, hospital, and industrial scale laboratories. Hence, the onset
of temporal coherence and superradiance is an essential missing ingredient to create
compact, affordable, and competitive plasma accelerator-based light sources.

Conventional free electron lasers are composed of an acceleration portion, about
a couple kilometers, that accelerates electrons to several GeV. After they are acceler-
ated, they undergo undulating motion in a separated undulator module, which is
typically around 100 meters. In Fig. 2.2 we show the general layout of the European
XFEL facility, in Hamburg, the brightest X-ray source in Europe.

Linear Accelerator

Undulators

FIGURE 2.2: General layout of the European XFEL facility, with the DESY-Bahrenfeld site in
Hamburg to the right and the research campus in Schenefeld with the experiment hall on the
left. The overall length of the mostly underground facility is approximately 3.4 km, composed
of 5.8 km of tunnels. Credits: XFEL https://www.xfel.eu/news_and_events/flyers_and_
brochures/index_eng.html

Thanks to recent progress, plasma-based accelerators are now able to produce
the high-quality standards [47], sub-percent energy spread required for FEL lasing [24,
25, 26]. Even though the acceleration portion of the FEL (a couple km) is reduced
via the use of a plasma accelerator, the undulator portion (a couple hundred meters)
is fixed. Therefore, there is demand for a superradiant process that relies solely on
plasma to achieve this goal, allowing the miniaturization of the lasing portion of the
FELs. Known methods consist, for example, of using plasma-based accelerators to
create an ion-channel laser where bunches with an even higher quality oscillate [48],
or bunches with specific spatiotemporal features (or generalized superradiance) [49].
This chapter, however, introduces a radiation concept that explores the coordinated
motion of an ensemble of light-emitting particles, neglecting their singular trajectories

https://www.xfel.eu/news_and_events/flyers_and_brochures/index_eng.html
https://www.xfel.eu/news_and_events/flyers_and_brochures/index_eng.html
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to focus on the whole group. The apparent trajectory of the ensemble determines
key features of radiation, mimicking a single particle. The similarity between key
radiation properties emmited by this group of particles, collectively, and of a finite-
sized particleled led to denoting the former by quasiparticles. The definition of a
quasiparticle in this work is a sharp current peak that is not necessarily constituted
by the same group of particles, and where collective motion is independent from the
constituent single particle motions.. As we will show, the onset of superradiance and
temporal coherence by quasiparticles depends on a collective reorganization of a light-
emitting medium, and not on the usual criteria for superradiant emission based on
beam quality (which is a measure of uniformity of single particle trajectories).

The apparent trajectory of the quasiparticle controls the radiation features (such
as broadband or narrowband). The range of possible velocities is expanded in com-
parison to single particles and the acceleration can be as high or as low as desired,
even without the presence of strong electromagnetic fields. For example, as quasi-
particles are in general a collective response to a perturbation in the light-emitting
medium, they can travel at any velocity, even superluminal. This flexibility enables
new mechanisms to obtain superradiance and temporal coherence effects.

Particles travelling faster than the phase velocity of light in a medium emit
Cherenkov radiation, corresponding to broadband optical shocks travelling at an an-
gle f = arccos(v/cn), where v is the speed of the particle and cn the phase velocity of
the light in a medium [93]. Unlike never detected tachyonic particles, collective fea-
tures moving superluminally exist, and were detected in previous plasma-based ac-
celeration experiments [50, 51]. By optimizing such experiments, it is possible to create
a quasiparticle that emits the equivalent superradiant coherent Cherenkov radiation,
ideal for producing broadband radiation. Materializing in the laboratory such uncom-
mon, but on-demand, broadband superradiant emission would enable medical and
material processing applications not possible otherwise [52, 53]. By making a quasi-
particle undergo an undulating motion we can produce temporally coherent, superra-
diant undulator radiation. This regime enables the production of narrow bandwidth
emission, which is used by a myriad of applications, such as extreme ultraviolet nano-
lithography. There is also the possibility of combining both, creating a never-observed
superluminal quasiparticle undulator, with an unprecedented radiation signatures,
combining both Cherenkov and undulator features, depending on the angle. To get
replicable results we focus on concepts that can operate in current plasma-based ac-
celerator experiments and show comparable peak brightness to FELs operating in the
extreme ultraviolet region.

This chapter is organized as follows: In Section 2.2.1, the concept of a quasi-
particle is defined theoretically. In Section 4.3.1, both beam-driven and laser-driven
quasiparticle Cherenkov effects are showcased, and the estimated brightness is calcu-
lated. In Section 2.6, the undulating quasiparticle concept is shown for several differ-



2.2 Quasiparticle radiation 15

ent parameters.

2.2 QUASIPARTICLE RADIATION

2.2.1 THEORY

To properly study the quasiparticle radiation concept, it is important to know how
a current density spike radiates from the Liénard-Wiechert potentials. The intensity
radiated by a given current density j[r, t] per solid angle per unit frequency in the
far-field [54] is:

d2 I
dwdW
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4p2c3
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dr
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dt n ⇥ [n ⇥ j(r, t)] exp [iw(t � n · r/c)]
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2

, (2.1)

where t is the time of emission (retarded time), r is the position, w is the radiation
frequency, W the solid angle and n is a unit vector that sets the observation direction.
The observation direction is given, in spherical coordinates, by

n = [cos(q), sin(q) sin(j), sin(q) cos(j)], (2.2)

where q is the angle with respect to the x-axis and j is the angle with respect to the
z-axis in the y � z plane.

Equation (2.1) applies to arbitrary current density profiles, but to get insight
into how collective effects affect radiation, we choose j(r, t) = j[r � rc(t)]. This corre-
sponds to a spatially localized current density profile that maintains a constant shape
moving along the trajectory given by rc(t). As we will show, this trajectory will set
some key features of the radiation emitted by this current profile, as if it were a single
finite-sized particle undergoing a trajectory given by rc(t). Because of that property,
we denote such a current density profile as a quasiparticle.

The most suitable coordinates to describe this system are x = r � rc(t), t = t.
In co-moving frame variables (x, t), Eq. (2.1) can then be written as:
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(2.3)

In the co-moving frame, the spatial (x) and temporal (t) integrals are independent of
each other. In particular, it is important to note that the integration that contains the
quasiparticle trajectory depends only on t. The spatial integration over x is a multi-
dimensional Fourier transform of the current density profile in the co-moving frame.
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This integral will thus contain the spatial frequencies associated with the current pro-
file. We therefore denote this integration as the quasiparticle shape factor S(w, W).
With this definition, we recast Eq. (2.3) as:

d2 I
dwdW
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dt exp [iw(t � n · rc(t)/c)]
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2

, (2.4)

where we define the quasiparticle shape factor as

S(w, W) =
Z

dx n ⇥ [n ⇥ j(x)] exp[�iw n · x/c] (2.5)

2.2.2 QUASIPARTICLE SHAPE FACTOR

The shape factor S is a multi-dimensional Fourier transform over the spatial dimen-
sions of the quasiparticle. As a result, we can further, re-cast S as follows:

S(w, W) = n ⇥
⇥
n ⇥ j̃(kx)

⇤
, (2.6)

where j̃(kx) is the Fourier transform of the current and kx = wn/c is the correspond-
ing spatial frequency.

Equation (2.6) justifies our quasiparticle physical interpretation of the theory.
To show this, we first notice that j̃ can be generally separated into two functions, con-
taining the low and the high spatial-frequency components of j̃, and which we denote
as j̃0 (describing the low-frequency regions of the spectrum) and j̃1 ⌘ j̃ � j̃0 (carrying
the high spatial frequencies). Here, high and low spatial frequencies are in comparison
to the typical spatial frequency corresponding to the spatial features of the ensemble.
The inverse Fourier transform of j̃0 is then a (smooth) function that envelopes the cur-
rent profile. It provides a macroscopic description of the quasiparticle and therefore
ignores its microscopic structure. In addition, j̃0 gives the low-frequency contents cor-
responding to the macroscopic structure of the quasiparticle, whose shape function,
S0, is given by S0(w, W) =

��n ⇥
⇥
n ⇥ j̃0(kx)

⇤��. It is this part that is independent of
single particle motion.

The inverse Fourier transform of j̃1 contains information about the microscopic
structure of the quasiparticle, which is due to the point-like nature of electrons. It
is therefore a non-smooth function, which has spikes at the location of each quasi-
particle electron. Hence, j̃1 gives the high-frequency components of the quasiparti-
cle shape function S1, which is given by S1(w, W) =

��n ⇥
⇥
n ⇥ j̃1(kx)

⇤��. Naturally,
S = S0 + S1. In our formulation S0 is responsible for the superradiant/coherent
part of the radiation, while S1 gives the incoherent part. We now focus our analysis
on the radiation properties originating from S0.

The suggestive form of Eq. (2.4) is analogous to that of a finite-sized single
charged particle. To understand why, focus on the complex phase factor in Eq. (2.4),
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which is exactly the same for a single charge and for a quasiparticle. An intriguing
property then follows: within the bandwidth of S(w, W), a quasiparticle radiates as
if it were a single finite-sized charged particle moving along rc(t), regardless of the
microscopic single electron quasiparticle dynamics.

It is then clear that the macroscopic quasiparticle shape, such as that captured
by a particle-in-cell code, which usually ignores the point-like nature of electrons, and
therefore disregards the internal quasiparticle microscopic structure, fully defines the
quasiparticle shape function for wavelengths longer than the inter-particle distance.
For these wavelengths, the radiation produced by the quasiparticle does not depend
on the microscopic electron motion, but only on its shape and trajectory, as if it were a
finite-sized particle executing the same trajectory. Interestingly, it is already possible
to measure these structures in the laboratory, using femtosecond electron microscopy
[55, 56].

We note that it is also possible to recover the single, point-like particle radiation
spectrum from the current density description in Eq.(2.1). For point-like particles, the
current density j is given by j(r, t) = Âp cqpbpd[r � rp(t)], where d represents the Dirac
delta function, the subscript p refers to the p-th particle, qp the particle charge, rp the
particle position and bp the ratio of the particle speed to the speed of light. Plugging
the current density into Eq. (2.1) simplifies the space integral, leading to:
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which recovers the well-known expression for the radiation spectrum emitted by a
collection of point-like particles.

2.2.3 BENCHMARK SIMULATIONS: SINGLE PARTICLE VS. COLLECTIVE RA-
DIATION

To confirm this prediction of our theory, we conducted two-dimensional simulations
describing the radiation from two electron bunches with different energies, 1 GeV and
10 GeV, but whose centroid undergo identical trajectories in the presence of an exter-
nal magnetic field. The electron bunch size is bi-Gaussian with (sx, sy) = (5.32 µm, 5.32 µm),
which corresponds to a FWHM size of 12.5 µm. The peak bunch density is nb0 =
1016 cm�3. We used longitudinal temperatures of 19 MeV and 61 MeV to randomize
initial bunch particle positions for the 1 GeV and 10 GeV electron bunches at the start
of the curved part of the trajectory, respectively. Bunch currents in both simulations
are very similar, as bunch electrons travel at nearly the speed of light. An external
magnetic field of magnitude 0.3 MG and 3 MG was used to curve electron bunches
with 1 GeV and 10 GeV respectively, so the radius of curvature was kept the same.
Bunches start moving from an unmagnetized spatial region to ensure a zero initial
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force on bunch electrons at the start of the simulations. The radiation was collected
in the far field using RaDiO [39], which retrieves radiation from simulation particle
positions assuming they are point-like, and nowhere uses the current profile for cal-
culations. Both electron bunches have a charge of 2 nC.

Figure 2.3 compare the radiation spectrum for both electron beams. Radiated
intensity per frequency per solid angle is nearly the same in both cases for wave-
lengths longer than 12.5 µm. It is clear from the spectra shown in Fig. 2.3a-b that there
is no difference between the radiation of two beams where one is 1 GeV and the second
is 10 GeV. This is particularly clear in Fig. 2.3c, which shows the corresponding spectra
at q = 0.01 rad. At shorter wavelengths, the 10 GeV bunch produces more radiation
than the 1 GeV. Additional simulations with an electron beam with half the FWHM
dimensions (6.25 µm) show that the radiation spectra are identical for wavelengths
longer than 6.25 µm, shown in Fig. 2.3d.

Results in Fig. 2.3 are then in full agreement with our arguments above, in
which we predicted that the low-frequency components (with wavelengths longer or
of the order of the quasiparticle size) are independent of the microscopic nature and
single electron trajectories with the quasiparticle.

2.3 QUASIPARTICLES IN PLASMA

We have established that a quasiparticle is a quasi-stationary localized current profile
that travels along a certain trajectory. One simple example of a quasiparticle is a parti-
cle beam, in which the current profile of the whole beam travels with the beam speed,
which served as benchmark for our theory in Section 2.2.3. In fact, coherent transition
radiation is intimately connected with this concept, and we can look at Section 1.3.3
as a corollary of Eq.2.4. This quasiparticle trajectory is connected to the trajectory of
the electrons inside the beam, and therefore is limited by the physical laws that apply
to the electrons, such as the relativistic speed limit or the need for large fields to exert
bigger accelerations. This happens with all quasiparticles that are always composed
of the same constituent particles.

It is possible for a quasiparticle to have different constituent particles at differ-
ent propagation times. In this case, the quasiparticle can be freed from the physical
limitations that constrain the trajectory of single particles. For example, being a col-
lective effect, quasiparticles may travel faster than light and have large accelerations
without using fields. Because the constituent particles must be different at different
times, they should not copropagate with the quasiparticle. In this work all quasipar-
ticles come from transverse motion. At the same time, the shape of the quasiparticle
should be as small as the wavelength we want to emit at, which leads to higher plasma
densities, as the typical structures are of the order of c/wp.
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FIGURE 2.3: Radiated intensity per frequency per solid angle in two 2D simulations where the
electron beam follows a circular trajectory given by an external magnetic field. a. Radiation
from a beam where electrons have 1 GeV each. b. Radiation from a beam where electrons
have 10 GeV each. Vertical dashed lines in a. and b. locate the frequency where the radiation
wavelength equals the FWHM size of the electron beam (12.5 µm) c. Lineout of a. and b. at
q = 0.01 rad. d. Equivalent lineouts at q = 0.02 rad for a simulation where the electron beam
has half the size (6.25 µm).

One of the typical setups that generates quasiparticles are plasma-based accel-
erators, as the setup itself tends to generate very localized current profiles precisely
due to the transverse motion of the background electrons. Figure 2.4 illustrates the
shape function S(w, W) in the context of plasma-based accelerators. In Fig. 2.4a, an
ultra-relativistic electron bunch radially expels the plasma electrons from its path.
Most of the radially expelled electrons accumulate in a thin sheath which crosses the
axis periodically, leading to a strongly nonlinear wakefield in the so-called blowout
regime [57, 58]. When the sheath electrons cross the axis, they form sub-plasma-skin-
depth density spikes that produce most of the radiation in the wakefield in the absence
of trapping (see Fig. 2.4b). Such highly dense electron spike plays the role of a quasi-
particle. Figure 2.4c then depicts the corresponding w2S(w, W). Here, the coherent
part of the quasiparticle spectrum goes up to wmax ' 150 wp.
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FIGURE 2.4: Nonlinear plasma wakefields and their radiation. a. Three-dimensional particle-
in-cell simulation using Osiris where an electron beam drives a nonlinear plasma wakefield
in the blowout regime. The plasma density is in gray, and the density of the electron bunch
driver is in rainbow colors. In a frame that moves at the wake phase velocity, the electron
spike at the back of the plasma oscillation is a nearly propagation-invariant structure. b. Ra-
diated power from the nonlinear wakefield in a. A horizontal lineout is in orange. Colors are
saturated to improve visualization. c. Shows the shape function w2|S(w)|2 for the nonlinear
wakefield, determined using the post-processing radiation algorithm RaDiO (see methods).
This is equivalent to the radiation emitted by a thin electron slice in x as it crosses the electron
bunch driver and returns to the axis. The radiation was recorded in a virtual detector placed
in the far field. The yellow line shows a lineout of w2|S(w, W)|2 at q = 0.1 rad.

2.4 BROADBAND RADIATION FROM THE QUASIPARTICLE CHERENKOV

EFFECT

We are now in position of using the quasiparticle theory to explore quasiparticle radia-
tion production. We are looking for very high radiation intensities and high frequency
generation. One example of this is Cherenkov radiation.

We first recall that an electron moving faster than the speed of light in a medium
generates optical shocks, commonly known as Cherenkov radiation. Cherenkov radi-
ation constructively interferes at the Cherenkov angle, given by qC = arccos(v/cn).
Here v is the electron velocity, and cn is the speed of light in the medium. Because of
relativity, Cherenkov radiation is forbidden in vacuum, as v < c.

Unlike single electrons, however, quasiparticles can travel faster than the speed
of light in vacuum because they are a result of a collective effect. In order to describe
the radiation from a superluminal quasiparticle, we then consider that the centroid
trajectory rc of the quasiparticle is given by rc(t) = vct ex. Substitution in Eq.(2.4)
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yields:
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vc cos(q)
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◆�
,

(2.8)

Equation (2.8) shows that all frequencies in S(w, W) grow quadratically with prop-
agation time (distance) at the Cherenkov angle defined as cos(q) = c/vc, provided
that vc > c. Because of the constant inflow of electrons in the collective motion, the
intensity growth then also scales with the number of particles squared, which is a
key feature of superradiance. Figure 2.5d (inset frame) shows this quadratic growth.
However, the total radiation emission (accounting for all angles) grows linearly with
time, indicating that the quadratic growth at an angle must be simultaneous with de-
coherent emission at other angles, as shown in Eq. (2.8). As the time of propagation
increases, the range of angles for which one measures quadratic growth decreases.

The resonance function, and thus the radiated intensity, reach their maximum
value when a = 0, or equivalently when:

1 �
vc cos q

c
= 0 , cos q ⌘ cos qc =

c
vc

. (2.9)

Equation (2.9) coincides with the well known Cherenkov radiation condition in vac-
uum for a point-like particle, but it now applies to quasiparticles. Even though their
microscopic constituents (e.g., electrons) necessarily propagate with v < c, quasipar-
ticles can travel at any speed. It is this peculiar property that enables quasiparticle
Cherenkov emission, provided vc > c, whereas point-like particles can never satisfy
Eq. (2.9).

According to Eq. (2.9), superluminal quasiparticles generate an optical shock
directed at the Cherenkov cone-angle qc. The optical shock forms because the phases
of multiple light rays, emitted at different times (or, equivalently, by different parti-
cles), constructively interfere at qc. The radiated peak at the Cherenkov angle then
exhibits a favourable scaling with T2. In turn, T2 scales with the square of the number
of radiating particles, N2. This is a key property of superradiance. To clarify why,
note that T relates to the number of emitters as N µ n0vcT , T µ N/(n0vc) µ N,
with n0 being the number density of light-emitting particles. Hence, the spectral
density of the emitted radiation exhibits the typical superradiant scaling given by
d2 I/(dwdW) µ T2 µ N2.
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FIGURE 2.5: Onset of quasiparticle Cherenkov emission. a. Three-dimensional simulation
result (see methods) showing plasma wakefields driven by an ultra-relativistic electron bunch
in a plasma density upramp. Plasma electron density is in gray, and electron bunch density
appears in rainbow colours. Top/bottom frames show the nonlinear wakefield structure ear-
lier/later in the propagation. The quasiparticle trajectory is superluminal because the plasma
wavelength decreases for higher plasma density. b. Waterfall plot showing the quasiparticle
trajectories in a frame moving at c. The waterfall plot consists of on-axis lineouts of plasma
electron density stacked as a function of propagation distance. c. Quasiparticle Cherenkov
radiation optical shocks emitted by three electron spike quasiparticles in a virtual detector
placed in the far-field. Colours show radiated intensity, determined numerically using a post-
processing radiation tool (see methods). The inset is a zoom of the horizontal lineout shown
in yellow, showing the the Cherenkov optical shock is a single cycle pulse. d. Corresponding
spectral intensity. The inset demonstrates the favourable scaling (yellow) of the peak radiation
intensity (red) with propagation distance.

2.4.1 PLASMA PROFILE

Superluminal electron spike quasiparticles can be created in the laboratory using plasma-
based accelerator setups, where we can control the velocity via an appropriate plasma
density profile. In Chapter 3 we will mention another way to generate these super-
luminal spikes, the flying focus, where the group speed of a laser focus can move at
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arbitrary speeds.

Figure 2.5 illustrates the onset of superradiant quasiparticle Cherenkov emis-
sion in nonlinear wakefields driven by electron bunch drivers. Figures 2.5a-b demon-
strate that a spatially varying plasma density profile can accurately control the tra-
jectory (and velocity) of the dense electron spike at the back of the nonlinear plasma
wave, which here play the role of the quasiparticle trajectory rc(t) (and quasiparticle
velocity vc). This control is possible because the local plasma density sets the local
plasma wavelength and, as a result, the distance from the driver to the first electron
spike. Similar mechanisms, based on the so-called accordion effect.

To determine the electron spike trajectory as a function of the plasma den-
sity we based our derivation on Ref. [65]. Let us assume that the time-dependent
longitudinal position of the electron spike xc(t) is given by the equation xc(t) =
vdt � lp[xc(t)], where vd is the speed of the driver, and lp[xc(t)] is the propagation-
distance-dependent plasma wavelength. Taking the time derivative yields the follow-
ing expression for the electron spike velocity vct = dxc(t)/dt, given by:

vc(t) = vd �
dlp[xc(t)]

dt
⇡ vd

✓
1 �

dlp(x)
dx

◆
, (2.10)

where we took xc ' x (x is the propagation distance), a valid approximation for a
sufficiently smooth plasma density profile. According to Eq. (2.10), the first electron
spike after the driver travels with a constant velocity vc = vc1 provided that:

lp(x) =
✓

1 �
vc1

vd

◆
x + lp0 (2.11)

We recall that lp ' 2pc/wp (e.g. lp = 106 µm for an electron density of ne =
1017cm�3) and n/n0 = w2

p/w2
p0, where n0 = n(x = 0) is the initial plasma density,

and wp0 = wp(x = 0) is the corresponding electron plasma frequency. Substituting
in Eq. (2.11) leads to the following expression for the propagation-distance-dependent
plasma density profile along x:

n(x) = n0
l2

p0

[(1 � vc1/vd)x + lp0]2
' n0


1 +

2(vc/c � 1)
lp0

x
�

, if (1 � vc/c)(x/lp0) ⌧ 1

(2.12)

For a speed of 1.001c at a density of n0 = (1017 � 1018) cm�3 the initial ramp
would be (18.86 � 60.6)%/cm. Equation (2.12) applies to the first electron spike. It is
straightforward to calculate the speed of the nth electron spike, which is at a distance
nlp away from the driver.

vcn � vd = �n
dlp(x)

dt
= n(vc1 � vd), (2.13)
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where vcn is the speed of the nth electron spike. This implies that the Cherenkov-like
cone angle of every spike is different (for vc1 6= vd) and therefore the radiation is an-
gularly separated. This is seen in Fig. 2.5b, where vcn � c ⇡ nc(2 ⇥ 10�3) [in the
simulations vd ' c] and in Fig. 2.5c, where we observe a clear temporal and angular
separation of the shocks created by the multiple spikes/quasiparticles. In wakefield
acceleration, the more superluminal the quasiparticle, the larger the longitudinal di-
mensions of the quasiparticle [67]. It is interesting to note that because of it the shape
function of the n-th quasiparticle always contains more frequencies than the (n+ 1)-th
quasiparticle. This is immediately clear from Fig. 2.5d, where we immediately observe
a decrease in bandwidth as the emission angle increases.

It is relevant to state that subluminal speeds are also possible to obtain using
the plasma density given by Eq. (2.12). However, electron self-injection can occur
when vcn < c. As the injected electrons accelerate to speeds close to c, we will have
two radiation sources in the setup: the quasiparticle moving subluminally and the
injected electron beam inside the ion bubble. Not only the radiation patterns created
by these sources may be indistinguishable in a detector in the far-field, but the in-
jected electrons also contribute to a growth in the bubble size, meaning it is harder to
maintain a constant quasiparticle speed.

According to the discussion above, plasma density ramps can enable exper-
imental demonstrations of coherent emission from quasiparticles in plasma acceler-
ators. Plasma density ramps have long been experimentally demonstrated (e.g., in
downramp injection in LWFA) by tilting the gas jet with respect to the propagation
axis.

Figure 2.5c shows the far-field radiation intensity profile produced by super-
luminal quasiparticles. The spatiotemporal intensity profile indicates the presence
of three optical shocks, which appear as bright radiation bursts that are both angu-
larly and temporally separated. The optical shocks form at the Cherenkov angle set
by the velocity of each quasiparticle, exactly as predicted by Eq. (2.9). The inset in
Fig. 2.5c is a magnification of the temporal profile of the first optical shock, which
clearly shows that it is a single-cycle optical pulse. The corresponding frequency spec-
tra, shown in Fig. 2.5d, extend all the way up to w & 200 wp. The inset of Fig. 2.5d,
which shows the peak radiation intensity with propagation distance, illustrates the
favourable quadratic scaling typical of superradiance. Hence, this mechanism can
produce a train of superradiant, single-cycle, angularly and temporally isolated opti-
cal shocks.

2.4.2 LWFA SIMULATIONS

We can also produce a superradiant optical shock with laser pulses as drivers. Fig-
ure 2.6 shows that the superradiant quasiparticle Cherenkov effect can also be realized
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in a LWFA. Figure 2.6a, which depicts the laser-driven wakefield structure, shows the
characteristic electron spikes that play the role of quasiparticles. As a result, an optical
shock appears at the Cherenkov angle in Fig. 2.6c, exactly where predicted. Because
of the direct laser interaction with the plasma, we mix the quasiparticle effect with
Thomson scattering, corresponding to radiation at laser harmonics. The radiated en-
ergy produced by the quasiparticle in Fig. 2.6 is three times higher than the energy
radiated into the third harmonic of the laser frequency, demonstrating that the pro-
cess produces clear, experimentally detectable signatures. To have a better physica
understanding of the process, we plotted the 3D version of Fig. 2.6a in Fig. 2.18 (at the
end of this chapter).
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FIGURE 2.6: Quasiparticle Cherenkov radiation in a laser wakefield accelerator. a. Laser
driven plasma wakefields. Plasma density appears in gray, and the square of the laser electric
field in rainbow colours. b. Waterfall plot showing the quasiparticle trajectories in a frame
moving at c. The waterfall plot consists of on-axis lineouts of plasma electron density stacked
as a function of propagation distance. c. Corresponding spectral intensity in a virtual detector
in the far field. The white dashed lines are placed at the Cherenkov angles corresponding to
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2.5 OPTIMIZING BRIGHTNESS FROM PWFA SIMULATIONS

2.5.1 CURRENT DENSITY SHAPE

To further understand the structure of S(w, W), we conducted additional full 3D and
cylindrically symmetric simulations in order to relate the nonlinear wakefield blowout
radius with the typical thickness of the electron spike at the bubble back, which gives
a figure for the (macroscopic) quasiparticle spectral bandwidth.

Figure 2.7 summarises the results. It shows that as the blowout radius in-
creases, the longitudinal size of the rear of the wakefield decreases. Simulations show
electron spike thicknesses that can be lower than 1% of the plasma skin depth, down
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FIGURE 2.7: Longitudinal size (FWHM) of the current density profile at the rear of the wake-
field as a function of the blowout radius.

to 0.003 c/wp for large enough blowout radii. This means that the macroscopic quasi-
particle structure can emit coherently at similarly small wavelengths. For plasma den-
sities of n0 = 1018 cm�3 this gives 16 nm or 77 eV. These simulations were first con-
ducted with a cold plasma background, but we also investigated the role of plasma
temperature and collisions. Simulations showed that plasma temperature and colli-
sions increase the thickness of the spike by a few tens of percent. For the simulation
with the smallest electron spike thickness (0.003 c/wp), both a background electron
temperature and collisions increased the thickness by a factor of 1.5, which would
give us about 25 nm or 49 eV.

By using cylindrically symmetric simulations, we performed high resolution
simulations with increasingly higher blowout radii. Since the thickness of the elec-
tron spike at the rear of the wakefield decreases as the blowout radius increases (cf.
Fig. 2.7), these simulations would not have been possible in 3D as the computational
requirements were too high. This subsection then shows simulation results of a cylin-
drically symmetric PIC simulation using a SLAC-like electron bunch, predicting high
peak brightness at photon energies close to 40 eV. The simulation was conducted in
Osiris.

To simulate an electron beam in quasi-3D, we considered a Gaussian profile
given by

n(x, y, z) = nb0 exp
✓

�
z2

2sz

◆
exp

✓
�

x2

2sx

◆
exp

✓
�

y2

2sy

◆
, (2.14)

where nb0 is the peak electron beam density, z is the longitudinal direction, x and y are
the transverse directions and sa relates to the size across the a direction. To determine
the total charge Q one must integrate over the three dimensions, yielding

Q[nC] = nb0[cm�3]sx[µm]sy[µm]sz[µm]
2
p

2p3/2

6.24 ⇥ 1021 (2.15)

We considered an over-dense beam with peak density nb0 = 24n0 propagat-
ing in the x direction with relativistic factor g = 19569.5, with corresponding energy
E ' 10GeV. The momentum spread in the x, y, and z directions is (Dpx, Dpy, Dpz) =
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(195.6, 18.6143, 18.6143) mec. The driver density profile is Gaussian, with dimensions
(sx, sr) = (0.38, 0.94)c/wp. These parameters correspond to an electron plasma den-
sity n0 = 1.0 ⇥ 1018 cm�3 for a beam with 3 nC. The corresponding electron bunch
dimensions along x is 2 µm and along r is 5 µm. The numerical PIC grid contains
16000 ⇥ 2000 cells, with 3 ⇥ 3 electrons per cell and a total simulation volume of
(Dx ⇥ Dr) = 14 ⇥ 14 (c/wp)2. The electron background temperature is 10 eV. The
plasma profile was given by Eq. (2.12) with vc1 = 1.002c and lp0 = 6 c/wp.

We modelled 2.5 mm of propagation after the bubble was fully formed. Due
to nonlinearities, the rear of the wakefield does not move at a fixed speed. Thus, to
retrieve the brightness, we fitted the quasiparticle trajectory by a second order poly-
nomial function of the propagation distance, shown in Fig. 2.8a (blue). The full width
half maximum (FWHM) of the dense electron spike thickness (quasiparticle) formed at
the back of the nonlinear wakefield, close to the axis, is 25 nm. This would correspond
to coherent photon emission at around 50 eV.

We determined S(w, q) using the current density at a given propagation dis-
tance, and performed a numerical integration of the radiation energy by using the sec-
ond order polynomial fit to the quasiparticle trajectory. By following this procedure,
we estimated the brightness evolution as a function of propagation distance. The peak
brightness after 2.5 mm is 1028ph/s/cm2/mrad2/0.1%BW at a photon energy of 40 eV
and at an angle q = 0.075 rad.

Similarly shaped dense electron spikes could also be produced in the LWFA, at
a normalized laser vector potential a0 = 6, l = 800 nm, electron density of n0 = 1.95 ⇥

1018, duration of 70 fs and spotsize of W0 = 18 µm. However, quasiparticle velocity
variations were greater and therefore led to smaller brightnesses in the accumulated
propagation distance. In principle, the quasiparticle velocity becomes more stable at
lower densities (where computational requirements are higher than at higher plasma
density), where the laser evolution is less evident.

2.5.2 NON-IDEALITIES

QUASIPARTICLE ACCELERATION

Equation (2.8) assumes constant vc. As stated above, when vc > c, this ensures that
the radiation intensity grows quadratically with propagation distance (time) for all
frequencies at the Cherenkov angle. In practice, and for example as result of the self-
consistent propagation of an electron beam or laser pulse driver in the plasma, vc can
fluctuate. It is therefore important to quantify the influence of these fluctuations on
the superradiant scaling.

We assume that the quasiparticle velocity is vc = vc0 + Dv, where Dv ⌧ vc is
a perturbation to the average centroid velocity. These velocity variations can change
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the Cherenkov emission angle. If they are sufficiently large, velocity fluctuations can
stop the quadratic superradiant scaling above a certain propagation distance and fre-
quency. This occurs when the sinc function in Eq. (2.8) changes from 1 to 0 as a result of
the velocity fluctuations, or equivalently, when the argument of the sinc changes from
0 to p or �p at a given angle. Constructive interference above a certain frequency w

then stops after a propagation time Tm, given by:

Tm ⇠
2pc

w|Dv|
, (2.16)

where we assumed that the Cherenkov emission angle is q ⌧ 1. The condition ob-
tained in Eq. (2.16) shows that a certain variation Dv of the quasiparticle velocity limits
the maximum period of time (propagation distance) under which constructive inter-
ference occurs. It also shows that this time (distance) decreases for higher frequencies.

According to Eq. (2.8), the typical angular width of the Cherenkov radiation
cone, qmax = |q+ � q�|, decreases with propagation distance. Here q+ and q� are the
angles for which the sinc function in Eq. (2.8) is 1 and �1, respectively. Constructive
interference stops when the variation of the Cherenkov angle, due to Dv, is greater
than this typical angular thickness qmax.

Figure 2.9 uses this criterium to complement the calculation above with a more
precise estimate of the maximum propagation distance for which there is constructive
interference, applied to the PWFA and LWFA simulation results. To produce the plots
in Fig. 2.9, we first fitted a polynomial function to the simulation data to determine
the quasiparticle propagation velocity as a function of propagation distance. We set
vc0 as the electron spike velocity corresponding to the prediction given by Eq. (2.10).
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In addition, Dv(x) = vc(x) � vc0, where vc(x) is the propagation dependent velocity
of the electron spike at the back of the nonlinear wakefield. We determine q+ and q�

by setting the argument of the sinc function to p and �p. Figure 2.9 compares Dq(x)
with qmax = |q+ � q�|. Superradiant growth stops when Dq & qmax.
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FIGURE 2.9: Deviation Dq from Cherenkov angle (black) determined by fitting the position of
the dense electron spike at the back of the nonlinear wakefield to a polynomial function of the
propagation distance. The maximum allowed deviation qmax are in light-blue and/or in red.
Superradiance stops at the locations defined by the dashed lines. Note that the x axis does not
start at x = 0. a. Shows qmax for two radiation frequencies w = 10wp (in red) and w = 250wp
(in blue) as a function of propagation distance for the PWFA run shown in Fig. 2.5. The fit is a
second order degree polynomial function of the propagation distance. b. Maximum allowed
deviation qmax for frequencies of 300wp (in blue) as a function of propagation distance. The fit
is a forth order degree polynomial function of the propagation distance.

Figure 2.9a shows that, in the PWFA run, the superradiant scaling holds up to
a propagation distances . 700c/wp at w = 250 wp, whereas quadratic growth can
be sustained up to . 3500 c/wp for w = 10wp. Due to the driver evolution, the
electron spike velocity is less stable in the LWFA run than in the PWFA. Figure 2.9b
then shows that the intensity at w = 300 wp can grow quadratically up to . 220 c/wp.
For a plasma density n0 = 1018 cm�3, this corresponds to photon energies of roughly
12 eV.

To visualize the impact of a changing quasiparticle velocity, we calculated the
time integral seen in Eq. (2.4) for both an ideal trajectory and the fitted trajectory in Fig.
2.8. Figure 2.10 shows these results. When the quasiparticle velocity is constant, the
radiation energy is fully located around the Cherenkov angle, particularly at higher
photon energies. Quasiparticle velocity variations lead to an angular radiation emis-
sion spread, over the angular range that goes from q ' 0.063 rad to q ' 0.076 rad. The
radiation energy has a noticeable decrease at higher photon energies, as particles stop
radiating coherently, as previously discussed in Eq. (2.16).
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FIGURE 2.10: Influence of a variable quasiparticle velocity in the time integral in Eq. 2.4
a. Time integral for a constant speed of v = 1.001684c until a propagation distance of
x = 1914 µm. b-c. Time integral considering a propagation distance dependent quasiparti-
cle velocity, retrieved from simulations, until x = 240 � 2474 µm of propagation. The scales
are the same in all three plots. Note that q only varies between 0 � 0.1 rad, unlike in the
previous Fig. 2.8, where q varies in the range 0 � 0.2 rad.

2.5.3 GRID RESOLVED RADIATION

Even though RaDiO lets us look at frequencies larger than those allowed by the grid
size, the Cherenkov-like emission is broadband and therefore the PIC code is able to
capture part of the emitted beam. To observe the emission of Cherenkov radiation in
the PIC simulation directly, we conducted two simulations, one with the specific linear
profile given by the approximation of Eq.2.12 and another with a constant profile. We
then multiplied the electric field by the distance to the axis (as these are axisymmetric
simulations) and compared both cases, shown in Fig.2.11. While in the upramp case
we immediately find the electromagnetic shock, in the constant profile the radiation is
mostly produced by the self-injected electron beam.

2.5.4 RADIATION DIAGNOSTICS

The radiated power in Fig. 2.4b was obtained using the relativistic Larmor formula,
given by [54]:

P µ g6 ⇥ḃ2
� (b ⇥ ḃ)

⇤
, (2.17)

where macroparticle position and speed are taken from simulations, and the corre-
sponding PIC simulation particle acceleration is calculated using the E and B fields at
the particle position.

All other remaining radiation calculations are done at PIC simulation run time
using the Radiation Diagnostic for Osiris (RaDiO) [39]. The calculations use the posi-
tion, velocity, and acceleration of each PIC macroparticle, which is known at each time
step. RaDiO determines the spatio-temporal profile of radiated electric fields by accu-
mulating these fields in each temporal and angular cell, allowing for the evaluation of
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temporal and spatial coherence effects using the following expression [54]:

Erad =
e
c

"
n ⇥ (n � b) ⇥ ḃ

(1 � b · n)3 R

#

ret

, (2.18)

where R is the distance to the detector, the subscript ret means that all quantities are
determined at the retarded time tret, and where the detector time, tdet, is tdet = tret +
|R|/c. In addition, b is the particle velocity normalized to c, ḃ its corresponding time
derivative. All radiation detectors used in these simulations are spherical. For the case
of the laser driver simulations, the detector temporal cell size is Dt = 0.0049c/wp and
the angular cell size is Df = 1.1 mrad. The detector contains 256 ⇥ 6144 cells in the f

and temporal dimensions, respectively. For the case of the electron bunch driver, the
temporal cell size is Dt = 0.0036c/wp and the spatial cell size is Df = 0.073 mrad. The
detector contains 2048 ⇥ 6144 cells in the f and temporal dimensions, respectively.

For both cases, Dq is not defined as fields are calculated only for a slice at q =
p/2 (radiation emitted to the front of the driver at y = 0).
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2.6 NARROWBAND EMISSION FROM QUASIPARTICLE UNDU-
LATOR RADIATION

Quasiparticle Cherenkov emission leads to superradiance over the entire quasiparti-
cle (broad) bandwidth. The quasiparticle concept can also be used to generate nar-
row bandwidth, temporally coherent radiation. To investigate this radiation in a con-
figuration directly accessible to experiments, we consider a longitudinally undulat-
ing quasiparticle trajectory. The longitudinal quasiparticle undulator exploits the so-
called accordion effect, which could be experimentally realized with ionization in-
duced plasma density gratings [68] and corrugated plasma channels [69, 70], com-
bined with a density ramp to adjust the mean quasiparticle velocity.

In contrast with quasiparticle Cherenkov radiation, which is intrinsically broad-
band, undulator radiation is useful to produce coherent light with narrow linewidths.
The undulation amplitude can be controlled in a nonlinear wakefield by adjusting the
a parameter in Eq. (2.22). The average longitudinal plasma density profile controls the
average quasiparticle velocity.

To determine the corresponding radiation spectrum, we assume that the quasi-
particle trajectory is given by rc(t) = vct + Dxc sin(wct) ex, where vc is the average
quasiparticle velocity, Dxc is the amplitude of the oscillation, and wc is the oscillation
frequency. This expression accurately captures simulation result. Substituting rc in
Eq. (2.4) yields:

d2 I
dwdW

=
w2

4p2c3 |S(w, W)|2
����
Z T/2

T/2
dt exp [iw(t � n · rc(t)/c]

����
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We can simplify the expression above using the Jacobi-Anger expansion:

exp(ib sin s) =
•

Â
�•

Jn(b) exp(ins), (2.19)
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which then leads to:
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(2.20)

Equation (2.20) shows that the radiation intensity is maximum when the argu-
ment of the sinc function vanishes. This condition is fulfilled at the resonant harmonic
frequencies, which are given by:

wm(q) =
mwc

1 �
vc cos q

c
. (2.21)

Equation (2.21) recovers the well-known expression for the resonant harmonic fre-
quencies of standard undulator radiation. Close to the axis, where cos q ⇡ 1, resonant
frequencies correspond to the double Doppler shifted quasiparticle oscillation fre-
quency, being given by wm ' m2g2wc, where g = 1/|

p
1 � b2|, and where b = vc/c is

the average quasiparticle velocity normalized to c. Note that this result holds for both
subluminal and superluminal quasiparticles. When vc > 2c, the resonant frequen-
cies are lower than the oscillation frequency wc. This is a manifestation of an inverse
Doppler effect, which has never been observed under these conditions. We note that,
just as if it were a point-like particle, the radiation intensity grows quadratically with
propagation distance at the resonant harmonics defined by Eq. (2.21), as shown in
Fig .2.15c (inset plot). The narrowband spectrum contrasts with the broadband emis-
sion from quasiparticle Cherenkov radiation.

2.6.1 PLASMA DENSITY PROFILE FOR UNDULATING QUASIPARTICLES

Equations (2.20-2.21) generalize undulator radiation to quasiparticles traveling with
an arbitrary velocity. Except for the shape factor S(w, W), Eqs. (2.20-2.21) coincide
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exactly with the spectral intensity emitted by a point-like particle propagating along
the quasiparticle trajectory rc(t) = [vct + Dxc sin(wct)]ex.

It is possible to wiggle the quasiparticle by manipulating the plasma density,
with a very similar approach to the one of the superluminal quasiparticle. Including a
longitudinal sinusoidal modulation in Eq. (2.12), such that,

n(x) = n0[1 + a sin(wcx)]
l2

p0

[(1 � vc1/vd)x + lp0]2
, (2.22)

creates a longitudinally undulating quasiparticle. Starting from the density profile
n(x), one is able to get the speed of the quasiparticle along the propagation

vc(x) = vd

✓
1 �

dlp0(x)
dx

◆

= vd � (vd � vc1)(1 + a sin(wcx)) +
1
2
[(vd � vc1)x + lp0vd]

wca cos(wcx)
(1 + a sin(wcx))3/2

(2.23)

Assuming a ⌧ 1 one can see that the amplitude of the oscillation is Dx ⇡
1
2 [(vd �

vc1)x + lp0vd]a. This means that for a superluminal quasiparticle the oscillations get
smaller as the propagation distance x increases, whereas for a subluminal quasipar-
ticle speed the amplitude of oscillation increases with the propagation distance. The
minimum speed of the quasiparticle depends on vc1, a and wc via

vc,min = vc1(1 �
1
2

lp0awc) (2.24)

If the minimum quasiparticle speed is too small, electrons will get self-injected and en-
large the bubble, deviating the quasiparticle from the desired trajectory. It is necessary
then to have a and wc small enough that the speeds of the electrons are not sufficient
to enter inside the bubble and alter the quasiparticle speed temporarily. We found
that self-injection can occur, even for a superluminal quasiparticle, provided that a is
sufficiently large. We therefore found that a = 0.05 or smaller worked well for a wide
range of quasiparticle velocities.

Ionization induced plasma density gratings [68] were demonstrated in the lab-
oratory thanks to the beating pattern created by two ionizing laser pulses, and can
be combined with a density ramp to adjust the mean quasiparticle velocity. Further-
more, other techniques to produce corrugated plasmas have also been experimentally
demonstrated using additional two methods [69, 70]. The first uses an axicon to map
radial intensity modulations of an incident pulse to a line focus with longitudinal
intensity modulations. The line-focused pulse preferentially ionizes and heats a clus-
tered gas where its intensity is high, which after, hydrodynamic expansion results in
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a corrugated plasma channel. The second method uses periodically placed wires dis-
tributed along a slot gas jet to obstruct the flow of the clustered gas. The gas density
is higher where it is unobstructed, resulting in density modulations upon ionization
and heating by a laser pulse. Using these methods, modulations with 35 � 300 µm
periods with contrast ratios (modulation depths) in excess of 0.9 have been generated
in densities relevant to our work (i.e. n ' 1018 cm�3).

2.6.2 SUBLUMINAL QUASIPARTICLE UNDULATOR RADIATION

We compared Eq. (2.21) with additional simulations featuring longitudinally oscillat-
ing quasiparticles. In the sub-luminal regime with vc = 0.999c, and according to Fig.
2.12a, the quasiparticle oscillates at the predicted frequency, set by the spatial period-
icity of the plasma density profile. The agreement between theory and simulations is
excellent.

Figure 2.12b shows the theoretical radiation spectrum associated with the quasi-
particle trajectory alone, as given by Eq. 2.20. We therefore retrieved the theoretical
quasiparticle trajectory using Fig. 2.12a, and used this trajectory in Eq. (2.20) suit-
ably normalised to w2|S|2/(4p2c3). The different harmonics correspond exactly to
the resonant frequencies given by Eq. (2.21). The radiation intensity at the resonant
frequency harmonic m vanishes at the zeros of the corresponding Bessel Jm function.
In Fig. 2.12c, we multiplied the radiation spectrum in Fig. 2.12b by w2|S|2/(4p2c3).
We numerically determined S using the currents from the PIC simulation. This is a
semi-theoretical radiation spectrum for the undulating quasiparticle. This result com-
pares very well with the spectrum measured by the RaDiO simulation, shown in Fig.
2.12d. To provide further evidence, we show (yellow dashed line) the theoretically
predicted Bessel function zeros in Figs. 2.12b-d.

2.6.3 SUPERLUMINAL QUASIPARTICLE UNDULATOR RADIATION

When vc > c, the quasiparticle undulator spectrum contains features from quasipar-
ticle Cherenkov radiation and undulator radiation. It is interesting to further explore
the radiation intensity as a function of the radiation intensity at the Cherenkov an-
gle corresponding to the average quasiparticle velocity. According to Eq. (2.20), the
radiation intensity at the Cherenkov angle is given by:

d2 I
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FIGURE 2.12: a. Waterfall plot showing the quasiparticle trajectory in frame moving at c.
Each horizontal line corresponds to an on-axis lineout of the plasma density as a function of
propagation distance. b. Theoretical spectral intensity in a virtual detector in the far field
according to Eq. (2.20) with S(w, W) = 1. c. Theoretical spectral intensity in a virtual detector
according to Eq. (2.20) with S(w, W) taken from the simulation. d. Spectral intensity in a
virtual detector as measured by RaDiO. The yellow dashed lines correspond to the position
of zeros in Eq. (2.20). The yellow line in plots b-d represents the position of the zeros in Eq.
(2.20). The Dxc was measured at 0.15625 [c/wp], vc was measured at 0.999c and wc = 0.1wp.

where we assumed that for sufficiently long propagation times T, all but the m = 0
component in the sum vanishes. This is an excellent approximation since

sinc(�Tmwc/2) ! 0 (2.26)

as T ! •. Equation (2.25) is in excellent agreement with the simulation results, pro-
vided that we use the oscillation amplitude A provided by the simulations. Specifi-
cally, we observed that the zero emission frequencies in the radiation emission spectra
matched the zeros of the J0 function. This is clear in Fig. 2.13c-d.

Figure 2.13 depicts superluminal quasiparticle undulator radiation for vc =
1.0003c. Figure 2.13a shows the quasiparticle trajectory, which propagates forward
in the (x � ct, x) frame. Theoretical undulator harmonics from the quasiparticle tra-
jectory, shown in Fig. 2.13b, demonstrate the existence of a distinct radiation signal
at the Cherenkov angle which is absent from standard sub-luminal undulator radia-
tion. As discussed above in Eq. (2.25), this comes from the Bessel J0 function. The
semi-theoretical spectrum (Fig. 2.13c) and the spectrum from the RaDiO simulation
(Fig. 2.13d) also agree very well. The agreement is further evidenced by the location
of the zeros of the intensity spectrum which are set by the Bessel functions. This is
particularly clear at the Cherenkov angle (white dashed line).

Figure 2.14 illustrates a superluminal undulating quasiparticle regime where
vc = 1.003c. We can identify, in Fig. 2.14a, two differences from earlier cases. First,
the simulation captures oscillations from three quasiparticles. Second, the amplitude
of the oscillation changes with time. Let us start by exploring the latter. Figure 2.14b
shows the theoretical resonant harmonic spectrum predicted from the quasiparticle
trajectory, found through Eq. (2.20) normalized to w2|S |2/(4p2c3) and for fixed quasi-
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FIGURE 2.13: a. Waterfall plot showing the quasiparticle trajectory in frame moving at c.
Each horizontal line corresponds to an on-axis lineout of the plasma density as a function of
propagation distance. b. Theoretical spectral intensity in a virtual detector in the far field
according to Eq. (2.20) with S(w, W) = 1. c. Theoretical spectral intensity in a virtual detector
according to Eq. (2.20) with S(w, W) taken from simulation. d. Spectral intensity in a virtual
detector as measured by RaDiO The yellow dashed lines correspond to the position of zeros
in Eq. (2.20). The yellow line in plots b-d represents the position of the zeros in Eq. (2.20).
The Dxn was measured at 0.125 [c/wp] and vc was measured at 1.003c. The Cherenkov angle
corresponding to vc is represented with a white dashed line.

particle oscillation amplitude. Because vc is constant but the oscillation amplitude A
changes, resonant frequencies [given by Eq. (2.21)] will not vary, but the zeros of the
Bessel functions in Eq. (2.20) will move along the the resonant harmonic frequencies
lines [Eq. (2.20)]. Therefore, the radiation is continuously emitted along the resonant
harmonic frequencies defined by Eq. (2.21). This explains the difference between the
theoretical lines in the semi-theoretical plot in Fig. 2.14c and RaDiO collected radiation
in Fig. 2.14d.

Figure 2.14c contains additional new features, which we attribute to the quasi-
particles that correspond to subsequent electron spikes after the first. Unlike in quasi-
particle Cherenkov radiation, which features a clear angular separation of the radia-
tion emitted by different quasiparticles, in the undulating case, this separation is not
as clear since there is strong emission over a wider angular region than in Cherenkov
radiation.

2.6.4 NOTABLE FEATURES OF QUASIPARTICLE UNDULATOR RADIATION

Figure 2.15 demonstrates the corresponding quasiparticle undulator radiation in the
PWFA. The simulations in Fig. 2.15 use a longitudinally corrugated plasma channel
combined with a density ramp. The density modulation depth and spatial period con-
trol the quasiparticle oscillation amplitude and frequency, respectively. Figure 2.15a
shows undulator radiation from a subluminal quasiparticle. Just as if it were pro-
duced by a single charge, the quasiparticle undulator spectrum is more pronounced
in the vicinity of the resonant frequencies, which are accurately predicted by Eq. (2.21).
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FIGURE 2.14: a. Waterfall plot showing three quasiparticle trajectories in frame moving at
c. Each horizontal line corresponds to an on-axis lineout of the plasma density as a function
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constant throughout the simulation but a value of 0.125 c/wp was assumed and vc of the first
quasiparticle was measured at 1.002c. The Cherenkov angle corresponding to vc is represented
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We now investigate a new superluminal undulator radiation regime, which
brings unique spectral signatures that are not accessible to conventional undulators.
For example, Eq. (2.21) captures an unusual infinite Doppler shift effect at the Cherenkov
angle, where I µ |S(w, W)|2T2 J2

0(wDxc/vc) µ T2. Figures 2.15b-c show an example of
superluminal quasiparticle undulator radiation. The inset in Fig. 2.15c (orange curve)
reproduces the superradiant scaling with T2 at the Cherenkov angle. The spectral
intensity at the resonant frequencies outside the Cherenkov angle also grows with
I µ T2 µ N2 (inset in Fig. 2.15c, yellow). Moreover, resonant frequencies asymptoti-
cally converge to the Cherenkov angle, as predicted by Eq. (2.21). Because the ampli-
tude of the quasiparticle oscillation is large, multiple resonant frequency harmonics
result in a broadband (single-cycle) pulse train, seen in the inset of Fig. 2.15b. The
circled region in Fig. 2.15c show an interesting enhancement effect occurring when
resonant harmonics from multiple quasiparticles cross.

2.6.5 GENERAL

PARTICLE-IN-CELL SIMULATIONS

It is important to establish what are the parameters used in the computer simulations
already shown. Osiris simulations consider an intense laser pulse or particle beam as
drivers to excite a plasma wave. These numerical experiments operate in the so-called
nonlinear blowout or bubble regime, standard in plasma acceleration experiments. To
enter in the nonlinear blowout regime, particle driver simulations (Fig. 2.4, Fig. 2.5
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FIGURE 2.15: Quasiparticle undulator radiation for an oscillating quasiparticle with wc =
0.1 wp and Dxc = 0.25c/wp. a. Spectral intensity of undulator radiation from a subluminal
quasiparticle with vc/c = 0.999. Theoretically calculated resonant frequencies are in yellow.
b. Spatiotemporal profile of the radiated intensity in a virtual detector in the far field from
superluminal oscillating quasiparticle with vc/c = 1.0003. The white dashed lines mark the
Cherenkov angle corresponding to the first and second quasiparticle. The inset shows a lineout
taken at the interval defined by the yellow dashed line. c. Corresponding spectral radiation
intensity. The yellow dashed lines are the theoretically calculated resonant frequencies. The
inset shows the evolution of the peak intensity with propagation distance at the positions
marked by the squares (Cherenkov angle in orange, first resonant harmonic in blue). The
circles show crossing positions between resonant frequency harmonics produced by different
quasiparticles.

and Fig. 2.15) use an over-dense electron bunch. The bunch density profile in the (3D)
simulations is given by:

n(x, y, z) = nb0 exp
✓

�
z2

2sz

◆
exp

✓
�

x2

2sx

◆
exp

✓
�

y2

2sy

◆
, (2.27)

where nb0 is the peak electron beam density, x is the longitudinal direction, y and z
are the transverse directions and sx/y/z is the bunch size in the direction x, y or z.
Corresponding total bunch charge Q is:

Q[nC] = nb0[cm�3]sx[µm]sy[µm]sz[µm]
2
p

2p3/2

6.24 ⇥ 1021 (2.28)

Simulations use peak bunch density nb0 = 120n0, relativistic factor g = 19569.5
and energy E ' 10 GeV. The electron bunch momentum spread in the x, y, and
z directions is (Dpx, Dpy, Dpz) ' (195.6, 18.6, 18.6) mec. The bunch sizes in all three
dimensions is (sx, sy, sz) ' (0.19, 0.19, 0.19) c/wp. For a plasma density n0 = 8.35 ⇥

1016 cm�3 and for an electron bunch with 1 nC, as available in state-of-the-art facilities,
this corresponds to (sx, sy, sz) = (3.4, 3.4, 3.4) µm.

Simulations with a laser pulse (Fig. 2.6) consider a diffraction limited, Gaussian
laser pulse with peak normalised vector potential a0 = 4 (corresponding to peak inten-
sity I = 3.3 ⇥ 1019 W/cm2). Initially, the laser duration at full-width-half-maximum
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is t = 2.76 c/wp = 35 fs. Transversely, the laser pulse is Gaussian with spot-size
w0 = 4.89 c/wp = 18.6 µm. The ratio between the central laser frequency, w0, and
plasma frequency, wp = [e2n0/(mee0)]1/2, is w0/wp = 30. This is equivalent to a
background plasma density n0 = 1.95 ⇥ 1018 cm�3 for a central laser wavelength
l0 = 2pc/w0 = 800 nm. Other values of the ratio w0/wp, (or, equivalently, differ-
ent plasma densities) yield identical conclusions.

Simulations use a window that moves at c with dimensions 14 ⇥ 13.2 ⇥ 13.2
[20 ⇥ 65 ⇥ 65] (c/wp)3 for the particle driver [laser driver] configuration with a timestep
of 0.0048 [0.00665] (1/wp). The simulation window contains 2800 ⇥ 330 ⇥ 330 [3000 ⇥

324 ⇥ 324] cells, each with 2 ⇥ 1 ⇥ 1 [2 ⇥ 1 ⇥ 1] particles.

The plasma density profile is composed of an initial linear upramp followed
by an engineered profile to support constant wakefield phase speeds. The profile is
given by

n(x) =

8
>><

>>:

0 if x 2 [0, x1[
x�x1
x2�x1

if x 2 [x1, x2]

{1 + a sin[wc(x � x2)]}
l2

p0
[(1�vc)(x�x2)+lp0]2

if x 2]x2, x2 +
lp0

vc�1 [

(2.29)

where x1, x2 are the start and end of the linear ramp (x2 � x1 = 100c/wp for Fig. 2.4
and Fig. 2.5 and 60c/wp for Fig. 2.17), a controls the undulation amplitude (for Fig. 2.5
and Fig. 2.6 a is set to 0, in Fig.2.15 a was set to 0.05), wc is the undulator frequency
(was set to 0.1wp for simulations in Fig. 2), lp0 is the plasma wavelength.

2.7 BRIGHTNESS

To estimate the brightness of the source, we start with the expression for the radiation
energy per frequency per solid angle in the far-field (in cgs units) [54]:

d2 I
dwdW

=
w2

4p2c3

����
Z Z

drdt n ⇥ [n ⇥ j(r, t)] exp[iw(t � n · r/c)]
����
2

(2.30)

For relativistic electrons, |n ⇥ [n ⇥ j]| ⇠ nqpec sin q, where nqp is the average
quasiparticle density. To perform the spatial integration we then approximate the
quasiparticle by a uniform current cube with transverse and longitudinal sizes given
by s?c/wp and skc/wp respectively. To perform the time integration we multiply the
resulting integrand by the propagation time T/wp, and assume that we are close to
the Cherenkov angle for which the complex exponential in Eq. (2.30) is close to unity.
The resulting photon number emitted by the quasiparticle during T/wp is the ratio be-
tween the radiation energy at a given frequency and the corresponding photon energy
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h̄w, being given by:

d2Nph

dwdW
=

w

4p2h̄c3 n2
qp sin2(q)

✓
T

wp

◆2 ✓s?c
wp

◆4 ✓skc
wp

◆2
. (2.31)

The brightness corresponds to the number of photons emitted within a small
bandwidth Dw/w ' 10�3 = 0.1%, and within a small angular spread Dq2 = 1 mrad2.
If we assume that the photon number is constant within the bandwidth and angular
spread (which is an excellent approximation for our conditions), the brightness B,
which is the number of photons emitted per unit time, per bandwidth, per solid angle,
is (dNph/dW)Dq2(Dw/w)(wp/T)(wp/s?c)2. This yields:

B[ph/s/mm2/BW/rad2] '

'
ac

4p2

✓
w

wp

◆2 ✓Dw

w

◆
Dq2

✓
c

wp

◆3
n2

qp sin2 q (T[w�1
p ])2(s?[c/wp])

2(sk[c/wp])

(2.32)

in which a is the fine structure constant, c is the speed of light, w the emitted wave-
length, wp the plasma frequency, nqp the quasiparticle density, (Dw/w) the band-
width, T is the coherent emission time normalized to w�1

p , and Dq2 is the angular
apperture. This equation holds for wavelengths larger than sk.

An example, consistent with standard PWFA or LWFA setups, is for n0 =
1017 cm�3, nqp = 100n0, sk = 300nm = 0.02 c/wp, s? = 1.6µm = 0.1c/wp, T =
5ps ' 100w�1

p , Dq = 1 mrad, and a bandwidth of 0.1% leads to

B = 5 ⇥ 1028ph/s/mm2/0.1%BW/mrad2

for photons of 4 eV at the Cherenkov angle. Using, instead, n0 = 1018 cm�3 and keep-
ing the quasiparticle size and propagation time constant in units of c/wp and 1/wp,
respectively, the brightness is B = 2 ⇥ 1029ph/s/mm2/0.1%BW/mrad2 for photons of
12 eV at the Cherenkov angle. It is, nevertheless possible to obtain even smaller quasi-
particle sizes. We show an example with similar brightnesses at about 40 eV below in
section 2.5. A comparison with other light sources is shown in Fig. 2.16.

2.8 NUMERICAL CALCULATION OF THE BRIGHTNESS FROM

PIC SIMULATIONS

To calculate brightness coming from cylindrically symmetric simulations, we first re-
call the definition of S(w, W):

S(w, W) =
Z

dx n ⇥ [n ⇥ j(x)] exp[�iw n · x/c]. (2.33)
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FIGURE 2.16: Comparison between several plasma light sources. Our example is shown with
a red star.

To perform the integration in Eq. (2.33), we assume cylindrical geometry and
symmetry. In cylindrical coordinates, j(x) = (jx, jr, jf = 0), where jx is the current
along the longitudinal x direction, jr is the radial current, and jf = 0 is the azimuthal
current, which we can neglect in a cylindrically symmetric geometry. The correspond-
ing 3D cartesian geometry current components is then given by:

j(x, y, z) = (jx, jr sin f, jr cos f), (2.34)

where f is the polar angle. By substituting Eq. (2.34) in Eq. (2.33) and performing the
angular integration along f leads to:

S(w, W) =

{ � 2p
Z

e�ixw cos qr sin q (i J1(rw sin q)jr(x, r) cos q + J0(rw sin q)jx(x, r) sin q)drdx,

p
Z

e�ixw cos qr
�
2i J1(rw sin q)jr(x, r) cos2 q + J0(rw sin q)jx(x, r) sin q

�
sin 2qdrdx,

0},
(2.35)
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Equation (2.35) can be directly calculated from the diagnostics from cylindrically sym-
metric simulations, or from 3D simulation results assuming cylindrical symmetry. To
determine the brightness, we follow the procedure outlined above.

The following formula provides an estimate for the peak brightness:

B [ph/s/mm2/0.1%BW/mrad2] '

'
a(c[cm/s)]
4p2 ⇥ 1011

✓
w

wp

◆2 ✓ c
wp

◆3
(nqp[cm�3])2

⇣
T[wp

�1]
⌘2 �

s?[c/wp]
�2 �

sk[c/wp]
�

sin2 q,

(2.36)

where a ' 1/137 is the fine structure constant, nqp is the quasiparticle density, s? and
sk are the transverse and longitudinal quasiparticle sizes. Equation (2.36) holds for
radiation wavelengths l that are longer than the quasiparticle size (i.e., for l & sk).

2.8.1 AVOIDING SLIPPAGE EFFECT

Equation (2.36) predicts a favourable scaling of peak brightness with propagation dis-
tance as B µ T2. This scaling is a result of an interesting and important aspect, accord-
ing to which for the coherent part of the quasiparticle spectrum, the radiated intensity
may grow without bound, and even surpass the theoretical limit of an FEL. In an FEL
there is slippage between the radiation and electron microbunch. This slippage effect
fundamentally limits constructive interference of radiation emitted at separate times
during propagation. Superluminal quasiparticles, travelling with a constant velocity,
provide a mechanism to completely avoid this slippage effect. This unusual scaling
cannot be realised with single electrons (or electron bunches) that travel slower than c.
In practice quasiparticles may accelerate, as a result of non-ideal plasma density pro-
files and driver self-evolution. These effects lead to a time-dependent Cherenkov an-
gle spread, which limits the peak brightness. A rule of thumb for the maximum propa-
gation time T over which constructive interference occurs is given by T ' 2pc/(wDv),
where Dv is the quasiparticle velocity variation. Thus, and while an absolutely con-
stant vc � c may be complicated to achieve in practice, this never ending constructive
interference regime is still an exciting possibility.

Equation (2.36) can accurately predict peak brightness considering an appro-
priate limit for T. According to Eq. (2.36), peak brightness of

B ' 2 ⇥ 1029 ph/s/mm2/0.1%BW/mrad2 (2.37)

can be achieved for a quasiparticle with density nqp = 1020 cm�3 (corresponding to
100n0, where n0 = 1018 cm�3 is a typical background plasma density), with s? =
0.1 c/wp = 0.5 µm, sk = 0.02 c/wp = 0.1 ¯m ' c/w (corresponding to 10 eV photons),
q = 0.1 rad and T = 100 w�1

p = 0.5mm/c, closely corresponding to the simulation
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results in Fig. 2.5. Figure 2.17 shows an estimate for the peak brightness according to
Eq. (2.36) as a function of photon energy. It demonstrates high peak brightness over
a photon energy range spanning nearly ten octaves, and encompassing regions where
light sources are scarce (e.g., THz gap and extreme ultra-violet). Peak brightness for
extreme ultra-violet photons is hence comparable to free-electrons lasers operating
in the same frequency range [41]. In comparison with other sources, our quasiparticle
radiation is much brighter than betatron, Compton or bremsstrahlung radiation, albeit
only good in the XUV range.
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FIGURE 2.17: Peak brightness estimated as a function of photon energy for nonlinear wake-
field quasiparticle radiation, spanning frequencies ranging from THz to extreme ultra-violet.
The figure shows peak brightness calculated using Eq. (2.36) for three different plasma densi-
ties, considering s? = 0.1 c/wp = 0.5 µm, sk = 0.02 c/wp = 0.1 µm ' c/w, and nqp = 100 n0.
The bottom of each shaded region uses T = 10/wp, and the top considers T = 1000/wp.
The photon energy range at each density corresponds to frequencies ranging from w � wp
(only frequencies above wp can propagate out of the plasma) and w  250 wp (typical upper
frequency boundary radiated by nonlinear wakefield quasiparticles)

2.9 CONCLUSIONS

Critical to the realization of the concept is the ability to control the quasiparticle ve-
locity and acceleration. Thus, while the concept paves the way to an exciting range
of new possibilities, the quasiparticle velocity can only be controlled up to a given



2.10 Outputs 45

precision in experiments, which provides practical limits for obtaining constructive
interference in the quasiparticle radiation concept, and limit its peak brightness.

In general, quasiparticle trajectories in nonlinear wakefields can be controlled
using tailored plasma density profiles, but also structured laser pulses with tuneable
group velocities [72, 71, 73, 74, 75]. Because there is much freedom to control the quasi-
particle velocity, the quasiparticle radiation concept can enable a new class of tem-
porally coherent, superradiant light sources in previously unconsidered conditions
and configurations. Examples include superradiant versions of quasiparticle Thom-
son scattering, photon acceleration, and synchrotron radiation. Moreover, the concept
can be used, for example, to explore new effects such as the reversed Doppler-shift
predicted for superluminal particles [76] or to provide a surrogate for studying radia-
tion from the extreme accelerations experienced in the vicinity of exotic astrophysical
objects, such as black holes. A generalization of our concept for nonlinear optics is
possible by replacing the current density j by the time derivative of the polarisation
density of a nonlinear optical system, i.e., by making the substitution j ! ∂tP, where
P = e0cE and c is the susceptibility tensor, which can depend nonlinearly on the elec-
tric field E. Similarly, ordered arrangements of spin can be interpreted as quasiparti-
cles and analyzed using Eqs. (2.4) and (2.5) by substituting j ! r ⇥ M, where M is the
magnetization. In the near term, quasiparticle radiation can be realized using widely
available experimental resources, making it suitable for experimental demonstration
at existing laser and plasma accelerator laboratories, including hybrid LWFA-PWFA
regimes.
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FIGURE 2.18: 3D Rendering of the quasiparticle emitting two cones of Cherenkov emission in
a laser wakefield accelerator. In blue we observe the plasma wave. In yellow we observe the
light emitted off-axis and in purple dots we see the electrons.





CHAPTER 3

IMPLEMENTATION OF SPACE-TIME

WAVEPACKETS IN OSIRIS

3.1 INTRODUCTION

In Chapter 2, we developed the theory on radiation emitted by quasiparticles. One of
the main examples was the superluminal quasiparticle, as it could travel faster than
the speed of light even though the constituents were all subluminal electrons. One can
ask if a group of photons in a laser could replicate the same concept, by forming a focus
(region where electromagnetic fields are higher) that would travel with an arbitrary
speed. Interestingly, experimental work was done to demonstrate such pulses [78, 79].

These pulses are interesting on their own, and one can envision several applica-
tions if they could be reliably produced in a lab. One of such applications has precisely
to do with the quasiparticle concept. In Chapter 2 we used both particle beams and
laser pulses travelling at c to generate plasma waves. By changing the plasma density
along the propagation direction, we showed how some single-particle effects could be
replicated by these plasma waves, such as the emission of Cherenkov-like radiation if
the quasiparticle was superluminal, or the generation of quasiparticle undulator radi-
ation.

A superluminal focus could replace the Gaussian laser driver in the setup and
therefore eliminate the need to shape the plasma density profile to control the quasi-
particle trajectory. In combination with tailored plasma density profiles, these new
drivers could expand the controlability on the quasiparticle trajectories accessible in
experiments. The goal of this Chapter is to show how we implemented this kind of
pulses into our particle-in-cell code OSIRIS [35].
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Space-time wavepackets are optical wave packets with spatio-temporal cor-
relations. Essentially, this means that a certain frequency w that is present in the
packet is associated with a wavevector k, such that one can write w as a function
of k. By increasing the bandwidth of these wavepackets, more available wavevectors
become available, enabling the apparent group speed of the wavepacket focus to be
both smaller or larger than the speed of light c [78].

One of the first implementations of pulses with a moving focus was thought by
Froula et al [71, 72]. This was based on a chirped pulse (where the central frequency
changes along the beam) that was focused with a diffractive lens. This lens focus
different frequencies at different positions and therefore the work proved you could
have speeds from �8c up to 39c. Because of the chirp effect, the exact profile at focus
varies.

Here we focus on nonspreading wave packets, meaning that the profile at
focus does not change with time [89] because these pulses promise to excite shape
preserving plasma waves, of interest for high quality plasma acceleration and light
sources. Recently, scientists have found ways to create such pulses using special op-
tics [71, 78, 73, 80]. These pulses are a focus of much attention because they provide
an additional degree of freedom in something as fundamental as the speed of a laser
pulse, which is a limitation for plasma acceleration: if electrons are accelerated to the
group speed of the laser in plasma (which is smaller than c) they start overtaking
the accelerating structure (called dephasing) which limits the plasma density in ex-
perimental setups. These wave packets could also add new capabilities to existing
plasma-based acceleration. For example, wave packets with orbital angular momen-
tum (OAM) can transmit it to accelerated particles in plasma [77]. These pulses could
provide new properties for plasma acceleration and radiation as well. The first step to
study these properties is to have these wave packets available on PIC codes, which is
what we aim to do in the remainder of the chapter.

This chapter is organized as follows: In section 3.2 we revisit the theoretical
work first proposed by Abouraddy et al [78, 79]. In section 3.3 we show how to imple-
ment these pulses in OSIRIS. In section 3.6 we show how the predicted pulses behave
in vacuum and in plasma. In section 3.7 we showcase our 3D implementation of these
pulses.

3.2 THEORY

We based this theoretical treatment of these pulses in the work of Kondakci and Abouraddy
[78]. In that work they were able not only to introduce the space-time wave packet
concept but also to create space-time wave packets experimentally in 2D light-sheets.
It is important to refer that in that work z is the longitudinal direction and x is the
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transverse direction, while for continuity reasons we take x as longitudinal direction
and y as transverse.

3.2.1 PLANE WAVES

The simplest case is a two-dimensional space-time wave packet. Let us take x to be the
longitudinal direction and y to be the transverse direction. By taking the Fourier trans-
form of the electromagnetic fields, it is possible to write any wave packet in terms of
plane waves, where both the electric and magnetic fields are written as Âkx ,ky Akx ,ky ei(kyxy+kxx�wt),
where Akx ,ky is the amplitude of the plane wave, w is the frequency, t is time, and kx
and ky are the wavevectors in the x and y directions, respectively. Our goal is to deter-
mine how to choose the triplet (kx, ky, w) to obatin a space-time wave packet. Using
the dispersion relation in a vacuum, k2 = w2/c2, we can write

k2
x + k2

y = (w/c)2, (3.1)

which is the equation for a cone in the (kx, ky, w) space. All plane waves have to abide
by this rule, which restricts the whole three-dimensional space to a two-dimensional
surface (the cone). As said in section 3.1, we are interested in pulses where the fo-
cus travels with a certain group velocity ṽ 6= c. To accomplish this, one can write a
relationship between w and kx, as

w/c = k0 + (kx � k0)ṽ/c, (3.2)

where k0 = w0/c, w0 are the wavevector and frequency of the solution of the equation
for a plane wave pointing longitudinally (ky = 0) [78], and ṽ the speed of the focus.
To get the group speed in the longitudinal direction, we need to take ∂w/∂kx which
gives ṽ (for any value of k0). Equation (3.2) can also be seen as the equation for a plane
that makes an angle q = arctan(ṽ) with the (kx, ky) plane.

Let us explore the relation between ky, kx, and w. By using both Eq. (3.1) and
Eq. (3.2), one can write

w = c
q

k2
y + k2

x = w0 + (kx � w0/c)ṽ (3.3)

Equation (3.3) gives the intersection beween the code given by Eq. (3.1) and the tilted
plane given by Eq. (3.2). By taking the square on each side of the equation and solving
for w0 we get
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Solving Eq. (3.4) for ky gives:

ky = ±

q
([1 � ṽ/c]w0 + kxṽ/c)2 � k2

x (3.5)

Let us discuss the significance of Eq. (3.5): every plane wave that satisfies Eq.
(3.5) abides by the vacuum dispersion relation, and so it is a solution of Maxwell’s
equations. It must also satisfy Eq. (3.2), designed to imprint an arbitrary longitudinal
group velocity to our system. This does not mean that each plane wave has a longitu-
dinal group velocity ṽ, as the group velocity comes from the superposition of multiple
waves. However, when multiple different plane waves satisfy 3.5, we will observe that
the intensity peak of the envelope resulting from plane-wave superposition travels at
ṽ, even though each wave travels at the speed of light c.

Equation (3.5) determines the possible wavevectors and frequencies in these
space-time wave packets. To get the range of possible kx, one can immediately see
that what is inside the square root must be positive or zero. Hence,

[(1 � ṽ/c)w0 + kxṽ/c]2 � k2
x (3.6)

Because of the inequality between two squares of the type a2 > b2, the solution is
|a| > |b|. The resulting relation between w, kx and ṽ depends on the sign of both a
and b. Let us consider that the pulse is moving forward (kx > 0). This just means that
there are only forward-travelling plane waves. This does not imply that the speed of
the focus ṽ is positive, as both features are not correlated anymore. Assuming both
squared quantities to have the same sign, we obtain

(1 � ṽ/c)w0 � (1 � ṽ/c)kx. (3.7)

The solution depends on the sign of (1 � ṽ/c). If this is positive (meaning that the
peak of the envelope travels subluminally), then kx  w0/c. For superluminal motion,
however, we obtain kx � w0/c. From Eq. (3.2) , we get that for subluminal pulses
w < w0 and for superluminal pulses w > w0. This suggests that not all wavevectors
(or frequencies) may be present in our space-time wave packets.

3.2.2 ELECTROMAGNETIC WAVE PACKETS

Now that we have proper understanding of the plane waves that may go into space-
time wave packets, one can now establish how to create pulses from the superposition
of plane waves. From here on, we are no longer reviewing Refs. [78, 79] but rather
presenting a more detailed and in-depth analysis about the properties of these wave
packet solutions.



3.2 Theory 53

WAVE PACKET WITH PRECRIBED TRANSVERSE ENVELOPE PROFILE

Let us consider that we are looking for a electric field with a transverse envelope pro-
file at focus (we will clarify what the focus is afterwards) given by Y(y). The magnetic
field can be retrieved from the electric field by using Maxwell’s equations, and that
calculation will be done afterwards.

Our electric field could be written as

E(x, y, t) =
Z

dkyỸ(ky)ei(kyy+kx(ky)x�w(ky)tep (3.8)

where E is the electric field in the polarization direction, Ỹ is the Fourier transform of
Y(y), and we explicitly included the dependency of kx and w on ky. Because all the
plane waves must satisfy Eq. (3.5), one can substitute w by the right hand side of Eq.
(3.2) and by proper manipulation we obtain

E(x, y, t) = ei(k0x�w0t)
Z

dkyỸ(ky)ei(kyy+[kx(ky)�k0][x�tṽ]) (3.9)

It is clear that taking x � tṽ = 0, we get

E(x, y, t) = ei(k0x�w0t)Y(y) (3.10)

which coincides with the definition of an envelope profile at focus (considering that
the focus exists at x(t) = tṽ). For values of x � tṽ equal to a constant c1 6= 0 we get

E(x, y, t) = ei(k0[x�c1]�w0t)
Z

dkyỸ(ky)ei(kyy+c1kx(ky)) (3.11)

which is still the oscillating profile from Eq. (3.10) (apart from a phase factor) times
a function that does not depend on t or x. This means that the resulting eletric field
is envelope-invariant along the coordinate x � ṽt. However, the precise envelope can
only be calculated with knowledge of kx(ky), which is set by w0

1 and ṽ. Because of
this invariance, Eq. (3.9) is normally presented as

E(x, y, t) = ei(k0x�w0t)F(y, x � ṽt) (3.12)

where F contains all the properties described above. However, using this formulation
F is itself dependent on w0 and ṽ, and has no immediate connection with Y, except
at x � ṽt, where F(y, 0) = Y(y). The function Y will now be considered arbitrary but
some restrictions will apply, as one can find later in subsection 3.3.3.

1which right now appears to be the oscillating part of the electric field, even though this will be
discussed further in section 3.3.3
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WAVE PACKET WITH PRESCRIBED LONGITUDINAL PROFILE

In Eq. (3.9) the profile was imposed in the transverse direction, by Y(y). It is also
possible to impose a profile in the parallel direction by setting Y to be a function of x.
Let us now state that for y = 0 the electric field envelope shall be Y(x � ṽt). Inverting
Eq. 3.5 our electric field can be written as:

E(x, y, t) = ei(k0x�w0t)
Z

dkxỸ(kx � k0)ei[ky(kx)y+(kx�k0)(x�tṽ)] (3.13)

where it is now ky which is dependent on kx. For y = 0 Eq. (3.13) returns the exact
profile given by Y(x � ṽt). For y = c2 (where c2 is a constant), the profile still depends
only on x � ṽt, and therefore we can write

E(x, y, t) = ei(k0x�w0t)F(y, x � ṽt), (3.14)

where F is itself dependent on w0 and ṽ and Y(x) = F(0, x).

3.3 IMPLEMENTATION IN 2D PIC

Our goal is to study the interaction between these pulses and matter in regimes where
kinetic effects are important, such as plasma-based acceleration and light source, to
name a few. This physics can only be properly simulated by fully kinetic codes, from
which particle-in-cell codes are a efficient implementation. We start with a descrip-
tion of the implementation of these pulses into the two-dimensional PIC code OSIRIS.
In this geometry (2D), only two spatial dimensions are simulated, but momenta and
fields are still calculated in all three dimensions.

We defined the plane waves that could be part of the pulse and we can use Eq.
(3.9) to build the electromagnetic field along the polarization direction. One still needs
to calculate the remaining electric and magnetic field components, using Maxwell’s
equations in vacuum.

Let us start with a polarization outside of the plane (in z), which means that
the electric field in Eq. (3.9) is Ez. We will assume that Ez is composed only of a single
plane waves, since we know that we have to combine multiple plane waves to get a
certain shape. We assume that Ey = 0 and Bz = 0 (to satisfy Maxell’s Equations).

By using r · E = k · E = 0 we get that Ex = 0, meaning there are no other
electric field components. From r · B = k · B = 0 we find:

kyBy + kxBx = 0 (3.15)

and from r ⇥ E = �∂B/∂t (using normalized units where c = 1) we can derive
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both components of the magnetic field.

By = +
kx

w
Ez

Bx = �
ky

w
Ez (3.16)

This assures that both electric and magnetic fields respect Maxwell’s equations in vac-
uum at t = 0, while the PIC algorithm assures they will respect Maxwell’s equations
at later times.

If the polarization is inside the plane (in y), we now assume Ez = 0 and By = 0.
By using k · E = 0 we get

Ex = �
ky

kx
Ey (3.17)

We note that when the electric field is polarized inside the plane there is a longitudinal
contribution Ex 6= 0, which comes solely from transverse wavevector components
that are not along x, and therefore should not be confused with an electrostatic mode
(which is not). Using k ⇥ E = wB we obtain

�kyEx + kxEy = wBz ,

, Bz =
Ey

w
(kx + k2

y/kx) (3.18)

From k ⇥ B = 0 one takes that Bx = 0.

3.3.1 ENERGY FLOW

We described how to design a pulse where the focus travels at any speed, but at the
same time the flow of energy cannot go faster than light, according to relativity. In
Fig. 3.1a) we can see a spatiotemporal pulse where a longitudinal profile at y = 0 was
imposed (meaning that the function Y depended on kx). In Fig. 3.1b we show a spa-
tiotemporal pulse where a transverse profile was imposed at y = 0. We observe that
these pulses are composed of the focus, which has the largest intensities, and off-axis
wings, which are the non-focused part of the pulse. In the pulses that are faster than
the speed of light, the wings in front of the focus are focusing, ensuring that the group
speed of the envelope is faster than the speed of light. On the contrary, in the sublumi-
nal foci, the wings on the back of the focus are focusing. To prove this statement, we
plot the Poynting vector (S = E ⇥ B) for one superluminal (Fig.3.2a) and one sublumi-
nal (Fig.3.2b) pulse. The Poynting vector indicates the flow of electromagnetic energy:
in the superluminal case, the energy at the front of the focus is traveling towards the
axis (focusing) whereas the back of the focus is traveling away from the axis (defocus-
ing). The contrary is seen for the subluminal pulse. The flux of energy still travels at
the speed of light, but this focusing/defocusing effect gives the illusion that the focus
is itself a real entity that travels at a speed different from c.
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3.3.2 OFF-AXIS WINGS

On both Figures 3.1 a-b we observe that a lot of electromagnetic energy is away from
the propagation axis. One can show that these off-axis wings of the pulse are an
intrinsic property of these pulses. Let us suppose that a focus is superluminal and
at a certain time t0 the focus is at x0. At some other time t1 > t0 the focus is at
x1 = x0 + (t1 � t0)ṽ. The photons that composed the focus at t = t0 cannot be the
same photons that are part of the focus at t = t1, because photons travel at c. Thus,
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the photons have to be travelling with transverse momentum. The higher the |ṽ � c|,
the larger is the transverse momentum required.

The shape invariance of these pulses cannot hold for all times. In that case the
amount of electromagnetic energy in the pulse is infinite. One of the properties that
is of interest is the time (or length) along which we can assure the shape is invariant.
Since the most the photons could have traveled in the x direction is if they were trav-
eling along x (with no transverse component), identifying xph,1(t) as the position of
the photon that is part of the focus at t1 at time t, we can write:

x1 < xph,1(t0) + (t1 � t0)c ,

, xph,1(t0) > x0 + (t1 � t0)(ṽ � c) (3.19)

In these pulses, it is important to distinguish the duration of the focus from
the total pulse duration. In a gaussian pulse, the duration of the focus is the duration
of the pulse, since there are no off-axis wings. However, in space-time wave packets,
the duration of the pulse is completely disconnected from the duration of the focus.
Hence, to have a pulse that travels at a certain speed ṽ over a certain propagation
range Dx, it is necessary for the total duration of the pulse Dt to obey:

Dt > |Dx(ṽ � c)| (3.20)

This result allows us to associate a time duration of the pulse itself to the focal range
that it might have. With this result we can stray away from infinite pulses with infinite
energy that the theory assumes and get correct scalings. Equation (3.20) also means
that the energy in the pulse grows linearly with duration. We observe that to maintain
the envelope shape, every temporal slice of the beam must carry the same amount of
energy. Therefore, both duration and energy increase linearly with the propagation
range. By the same logic, energy increases with (ṽ � c). What Eq. (3.20) tells us is that
the duration must be larger than the distance in the x � ct reference.

3.3.3 THE FUNCTION Y

In Eq. (3.8) we said that the function Y could be arbitrary. In general, we can build
any profile in one direction if we have every wavevector in that same direction, as we
can Fourier expand any arbitrary profile Y(x) such that

Y(x) =
Z •

kx=�•
Ỹ(kx)e�izkx dkx (3.21)

However, the range of wavevectors for spatiotemporal pulses is sometimes fi-
nite. The case of ṽ = c exemplifies this. Immediately one sees that ky = 0, for all kx.
Therefore, the pulse envelope function cannot depend on y (the conjugate of ky) and
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thus it is impossible to set the transverse envelope profile and one cannot impose any
transverse profile. Generally speaking, the effects are not that extreme when ṽ 6= c,
but they still affect how the pulses might look when setting a longitudinal profile.
Ultimately these constraints on Y arise because any electromagnetic plane wave fre-
quency and wave vector need to be on top of the cone defined by Eq. (3.1), i.e. k and
w are related to each other through the dispersion relation.

For example, we can only set kx > k0 for superluminal pulses. However, if we
take the Fourier Transform of a Gaussian function times an oscillation at k0 you also
get wavevectors kx < k0. This means that you cannot exactly reconstruct that profile,
only the part that is larger than k0. This is shown in Fig. 3.3.
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From Eq. (3.8) we observe that the Fourier transform was taken in the lon-
gitudinal direction, meaning that we had control over the shape of the pulse in the
longitudinal axis [from which we get Y(kx)]. It is clear from the previous analysis that
if both the group velocity ṽ and the temporal profile on-axis are chosen, the transverse
profile is immediately set. However, it is possible to perform the same analysis by con-
trolling the transverse shape [thus using Y(ky)] and thus letting the temporal profile
be set externally.

The simplest case for the profile is a Gaussian profile. By setting a temporal
Gaussian profile the transverse profile at focus is shown in Fig. 3.4a) for several tem-
poral FWHM of the pulse. As we plot the lineout of the pulse in Fig. 3.4, one can see
that they compare very well to the orange plots in Fig. 3.3 (both look like Gaussians
but have much larger tails), as we lack part of the wave vectors necessary to build a
full Gaussian profile. We observe that the pulse is transversely localized (Fig. 3.4,c)
with a sinc-like shape. When setting the transverse profile to a Gaussian, however, the
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limited range of kx means it is more complicated to contain, as seen in Fig. 3.5.
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3.3.4 DESIGNING EXACTLY LONGITUDINALLY GAUSSIAN PROFILES

Let us assume that we want to create a true longitudinal Gaussian pulse with a certain
wave vector kosc. Until now, we assumed that k0 is the oscillation frequency in the
longitudinal direction, which leads us to assume kosc = k0. However, we saw that
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kx > k0 always holds for superluminal pulses, which prevents a Gaussian pulse with
an oscillation frequency kosc = k0, because gaussian pulses require both kx � kosc > 0
and kx � kosc < 0 (shown in Fig. 3.3). However, if we want the oscillation frequency to
be kosc > k0, we can define our envelope function to be an oscillation at k � k0. If we
now take the Fourier Transform of the envelope profile Ỹ(kx � k0) in Eq. (3.13) and
multiply by eix(kosc�k0), now there are available kx such that kx > kosc and kx < kosc,
allowing for the generation of true Gaussian profiles, as seen in Fig. 3.6. This being
true, the transverse profile will be changed as we increase the value of kosc. This result
suggests that k0 is somewhat arbitrary, with some influence in the transverse profile.

The arbitrariness of k0 is readily observed in Eq. 3.2, where this plane can be
translated along the w axis while still maintaining the group speed. We can use this
freedom to construct an exactly longitudinally Gaussian envelope profile. In Fig. 3.6
we show how by separating k0 from the oscillating frequency we are able to create
longitudinal Gaussian profiles. In Fig. 3.6a we show the theoretical envelope and the
real profile (which is just the envelope times a cosine of 10x. In Fig. 3.6b-c we show
the transverse profile of such a pulse. While we observe that for an oscillation at k0

the pulse is elongated in the longitudinal direction, whereas now with an oscillation at
k 6= k0 we observe an elongation in the transverse direction. While in Fig. 3.4c almost
all the pulse energy is concentrated around y = 0 [c/wp], in Fig. 3.6c we see that the
pulse has more subpeaks.
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3.3.5 COMBINING SEVERAL SPACE-TIME WAVE PACKETS

Since the selection of k0 seems arbitrary, one could think about combining several
pulses with the same vg but different k0 (while keeping ṽ), which allows to determine
both the transverse and the longitudinal envelope. However, selecting a single k0

forces ∂w/∂kx to be constant, according to Eq. (3.2). When using different k0, ∂w/∂kx
cannot be evaluated to a single value. When several pulses are imposed, the final re-
sult is that the whole structure does not travel at the predetermined speed, but it partly
emerges from a background, as shown in Fig. 3.7. We observe that space time wave
packets are constantly balancing three properties: transverse dimension, longitudinal
dimension and contrast against the background. We saw that using a single k0 can
give a good contrast (meaning there is no background from which the focus emerge)
but at the expense of large pulse dimensions. Adding more pulses helps constraining
the dimensions but the focus is not well defined.
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3.4 PHYSICAL PICTURE

As we have seen, the work from Kondakci develops the concept of space-time wave
packets with an integration over all possible modes (kx, ky, w). To properly get the
physical understanding of these pulses, one can look at the beat-wave that results from
the superposition of only 4 modes with different frequencies/wavenumbers allowed
by the pulse bandwidth.
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Let us consider the following mode superposition

E(z, t) µ cos [kyxy + (k0 + W/ṽ)xx) � (w0 + W)t] +
cos [kyxy + (k0 � W/ṽ)xx) � (w0 � W)t] +
cos [�kyxy + (k0 + W/ṽ)xx) � (w0 + W)t] +
cos [�kyxy + (k0 � W/ṽ)xx) � (w0 � W)t], (3.22)

where xy refers to the transverse coordinate, xx to the longitudinal coordinate, and
(w0,k0) to the central frequency/wavenumber pair of the electric field. The variable
W is introduced as a change to the central frequency (hence the increased bandwidth)
and ṽ is the pulse group velocity. In the work of Abouraddy, ky depends on W, but we
keep that dependence hidden for simplicity. The result above can be seen as a crude
approximation of the integral presented in the same work:

E(z, t) =
Z

dWỸ(W) exp {i[kyxy � W(t � z/ṽ)] + ik0xx � iw0t}

=
Z

dWỸ(W) exp {i[kyxy + xx(k0 + W/ṽ) � t(w0 + W)}, (3.23)

where Ỹ(W) is the Fourier transform of the pulse temporal envelope at t = 0,
and where

ky = ±
1
c

q
2w0W(1 � c/ṽ). (3.24)

Using standard trigonometric identities, it follows from Eq. (3.22) that:

E(z, t) µ cos[kyxy] cos[(k0 + W/ṽ)xx) � (w0 + W)t] +
+ cos[kyxy] cos[(k0 � W/ṽ)xx) � (w0 � W)t] =

= cos[kyxy]

⇢
cos

✓
k0 +

W
ṽ

◆
xx � (w0 + W)t

�
+ cos

✓
k0 �

W
ṽ

◆
xx � (w0 � W)t

��

= cos[kyxy] cos[k0xx � w0t] cos


W
ṽ

xx � Wt
�

(3.25)

In Eq. (3.25), it is possible to see the different roles of the three cosines:

1. cos[kyxy] plays the role of the transverse laser profile

2. cos[k0z � w0t] is the fast varying phase

3. cos
⇥W

ṽ � Wt
⇤

plays the role of the longitudinal pulse profile envelope
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One finds that the group velocity of the pulse must come from the phase velocity of
the envelope, which is simply given by

ṽ =
W

W/ṽ
= ṽ (3.26)

From the transverse profile, we see that the pulse must be centered at x = 0, as de-
termined by cos[kyxy] is maximum at xy = 0. To displace the pulse in a transverse
direction by a certain offset xo f f , one can immediately add a phase xo f f /ky. The free-
dom to adjust the transverse direction enables the centroid of the pulse to, for instance,
execute a sinusoidal trajectory if the phase is dependent on z:

cos[ky(xy + f(z))], f(xx) = a sin(kmxx), (3.27)

where a is an amplitude and km is the modulation wavenumber in the laser frame. In
principle, any trajectory is obtainable from the additional phase f. Note that the pulse
profile is periodic in the transverse x direction, which is not the case for the original
Abouraddy’s work. This is a consequence of approximating the integral of Eq. (3.23)
to only 4 points.

3.5 IMPLEMENTATION IN OSIRIS

For the implementation in OSIRIS, we did the numerical integral of Eq. (3.8). As we
noted before, the intersections between a cone and a plane can be multiple. When the
intersection between the cone and the plane is an ellipsis or a circle, the bandwidth
(possible frequencies w) is finite, and therefore the user may only provide the number
of points that they wish to use for the numerical integration. However, if the inter-
section is a parabola or a hyperbola, the bandwidth becomes infinite (in experiments
the bandwidth is set by the initial pulse before being shaped into a space-time wave
packet), and it is up to the user to select the maximum and minimum k for the inte-
gration. Therefore, the user should supply the number of integration points nk, the
group speed of the pulse ṽ (which may or may not set the total bandwidth), and the
bandwidth that the user will integrate on.

The initialization of the pulse is done inside the box. The pulse will be a com-
bination of several plane waves. Therefore, we start by taking the smallest available
w. From Eq. (3.2), one can get the kx of the plane wave and from Eq. (3.5) one gets
ky. The code populates the grid with the plane wave and does this nk times. As we
showed in Eq. (3.16), it is necessary to calculate other electric and magnetic fields to
ensure that the pulse obeys Maxwell’s equations in vacuum.

The most important feature of these spatiotemporal pulses is the focal speed,
which can be controlled, unlike regular pulses. In Fig.3.8a we see the initial laser pulse
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FIGURE 3.8: Evolution of a spatiotemporal pulse in vacuum. a) Spatiotemporal pulse with
Dt = 1 [w�1

p ] and ṽ = 1.05c. The lineout is taken at y = 0 [c/wp]. b) Waterfall plot of the pulse,
taking a lineout of the pulse for every timestep and plotting it in every horizontal line. The
white dashed line shows a regular propagation at ṽ = 1.05c.

envelope that travels at 1.05c. For each time, one takes the lineout along y = 0, shown
in the dashed blue line.

To validate our implementation, one of the most important things is to ensure
that Maxwell’s equations are respected at t0. Both the divergence of the electric field
and the divergence of the magnetic field for a 2D pulse are shown in Fig. 3.9. As we
have seen before, if the polarization is out-of-plane the divergence of the electric field
is automatically 0, as in two dimensions ∂/∂z = 0 and both Ex and Ey are zero. The
same argument holds for the divergence of the magnetic field in the polarization along
y.

3.6 PROPAGATION PROPERTIES OF SPACE-TIME WAVE PACK-
ETS

3.6.1 NON-DIFFRACTING

One of the clear properties of these pulses is that the envelope stays roughly constant
within a certain propagation range that typically exceeds the Rayleigh length of an
equivalent Gaussian pulse. It is important to remember that the total energy of the
pulse scales linearly with the propagation distance, as seen with Eq. (3.20).

In Figure 3.10 it is clear that even though the focus has moved with a speed
that is larger than the speed of light, the shape on-axis is still the same.
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FIGURE 3.9: Validation of the OSIRIS implementation: a) Divergence of the magnetic field
for an out-of-plane polarization (on z) and b) divergence of the electric field for a polarization
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for b) are automatically satisfied.

3.6.2 SELF-HEALING

One of the interesting properties of the spatiotemporal pulses has to do with how the
photons that are part of the focus at a certain propagation distance are not the photons
that compose the focus at later times. Therefore, if we make the pulse interact with
an overdense plasma, thereby stopping the propagation of the photons that compose
the focus at some particular time, the focus will still reappear at a later time, which
can be seen from Fig. 3.11. On panel a), we observe the spatiotemporal pulse and
the position of a plasma sphere with a peak density of 2nc, where nc is the critical
frequency, meaning the laser cannot propagate through the plasma. After some time,
on panel b) we see that the focus of the pulse is interacting directly with the plasma
and one notices how the focus was destroyed, as the flux of energy was disrupted. We
note that the plasma is still. However, in the z � ct axis this means that it is traveling
backward at the speed of light. On panel c), a long time after the interaction, we
observe that the pulse focus has now recovered. There are however some differences.
The first one concerns the fact that at the left of the focus, we see an interruption of the
normal structure. This is because the electromagnetic fields that would be there (at the
left of the focus) were reflected by the plasma at t = 15 c/wp. The part of the pulse
that was the focus at t = 15c/wp gained transverse momentum as it deviated from
the plasma. However, part of the pulse (with transverse k) may have lost transverse
momentum as it collided on the side of the plasma, rather than upfront. This resulted
in some light traveling longitudinally around z � ct = 2 c/wp.
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FIGURE 3.10: Spatiotemporal pulse traveling with ṽ = 1.5c while maintaining its shape. The
pulse is shown in orange colors. a) Simulation at t = 0 [c/wp] b) Simulation at t = 15 [c/wp]]
c) Simulation at t = 30 [c/wp]

3.6.3 INJECTION AT AN ANGLE

To make the pulse travel inside the box at a particular angle it is only necessary to
rotate the wavevector k by an angle q. We note that the the cell dimensions Dx, Dy
should be adjusted in the PIC simulation for proper propagation. Propagation of a
pulse injected at 45 degrees can be seen in Fig. 3.12.
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FIGURE 3.11: Spatiotemporal pulse traveling with ṽ = 1.2c self-healing after interaction with
an overdense plasma. Plasma is shown in orange colors and plasma is shown in black and
white. OSIRIS simulation a) at t = 0 [c/wp] b) at t = 15 [c/wp]] (during interaction between
laser and plasma) and c) at t = 100 [c/wp] (after interaction)

3.6.4 TRANSVERSE OSCILLATION TRAJECTORY

To have a pulse oscillate transversely, one may use Eq. (3.27). However, indeed the
pulse is no longer described by Eq. (3.23), as the phase modulation requires an extra
integration variable that is related to the phase of every single plane wave that is in
the system. This oscillation can be seen in Fig. 3.13.
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3.7 MOVING TO 3D

Up to now, all pulses were considered two-dimensional. There are multiple ways
[87, 91, 92] of designing these pulses in a three-dimensional space. Here we considered
pulses that are axisymmetric (both transverse components are the same). In 2D, we di-
vided k into the parallel and transverse components kx and ky, respectively. Equation
(3.1) now reads

k2
x + k2

y + k2
z = (w/c)2. (3.28)

This is now the equation of a four-dimensional cone. However, we must recall Eq.
(3.5) and notice that Eq. (3.2) does not depend on ky. Therefore, we can easily return
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to the two-dimensional case by stating
q

k2
y + k2

z = k(2D)
y , (3.29)

where k(2D)
y is the transverse component in the 2D case, from which we already know

the solution for via Eq. (3.5). To build the 3D pulse we must integrate in the three
dimensions, but the transverse components are integrable using polar coordinates
(k(2D)

y , q) = (k2
y + k2

z, arctan(ky/kz)), and therefore we can rewrite Eq. (3.9) in 3D as:

E(x, z, t) = ei(k0x�w0t)
Z

dk(2D)
y

Z
sin qdqỸ(k(2D)

y )ei(ky[sin(q)y+cos(q)z]+[kx�k0][z�ctṽ])

E(x, z, t) = ei(k0x�w0t)Y(
q

y2 + z2, x � ṽt), (3.30)

where it is clear that the pulse must be axisymmetric as the Y function may only
depend on the distance to the longitudinal axis. To calculate the numerical integral
we split the integral on the angle q which is equivalent to injecting several 2D-like
pulses at different ky. We show how this integral gives rise to a full 3D pulse in Fig.
3.14, where we start by showing a single 2D-like pulse in the 3D box and show how
injecting more of those eventually creates an axisymmetric 3D pulse with the same
characteristics of the 2D pulses. We find that injecting 32 pulses is already enough to
create a 3D structure that behaves as a whole unit.

The idea behind this construction is the fact that if the 2D pulses work as in-
tended, they can also exist in the 3D space by infinitely extending in the other dimen-
sion (which is the same as ky,2 being 0). These 2D pulses will also travel with a certain
velocity and be diffraction-free, so a sum of a lot of 2D pulses will have the same char-
acteristics. We validated the approach by confirming they were non-diffracting and
had the correct velocity, as we see in Fig. 3.15b-c.

3.8 CONCLUSIONS AND FUTURE WORK

To understand the effects of spatiotemporal pulses in plasma, we implemented these
pulses in OSIRIS. The main feature of the class of pulses we implemented is the possi-
bility of selecting the group velocity along the longitudinal direction, enabling faster-
than-light focus propagation. We were able to validate the implementation for both
subluminal and superluminal foci, showing that these pulses are diffraction-free, can
self-heal when disrupted, and follow certain trajectories. We also showed our original
implementation of a 3D variation of the injection, which allows for the study of the
interaction between these pulses and plasma, which will be done in the next chapter.

There have been several works surrounding these ideas so future work would
always involve starting from a 3D implementation from first principles. It is also pos-
sible to have a combination of different w0 in the same pulse, which is equivalent
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a) 1 Pulse b) 3 Pulses

c) 32 Pulses

FIGURE 3.14: Creating 3D pulses from a superposition of 2D pulses around an axis. Red and
blue show the most intense fields and yellow and green show less intense fields for a) 1 pulse
b) 3 Pulses and c) 32 Pulses. It is clear that at 3 pulses we do not get a perfect symmetry, but
for 32 the beam is symmetric and behaves as expected.

to having several planes intersecting the cone equation. This allows for setting both
transverse and longitudinal profiles but at the cost of an increase in local bandwidth
everywhere in the pulse.

These pulses may be extremely large, and since the computational time scales
with the box size, it is imperative to use different injection techniques that enable
using smaller boxes via injection from the walls (instead of just injecting in the whole
simulation box).
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CHAPTER 4

APPLICATIONS OF SPACE-TIME WAVE PACK-
ETS

4.1 INTRODUCTION

The impact of space-time wave packets on science is still in the early stages, but has
already led to an explosion of research activities devoted to understand how these
pulses could be used for a multitude of concepts, such as plasma wave shaping, accel-
eration of heavier particles, and others. Chapter 2 showed that controlling the shape
and trajectory of plasma waves may be useful for radiation production. Even though
there has been put considerable effort in creating such pulses, they have not been gen-
erated at high power. To guide future experiments, simulations must indicate what
are the possible paths forward for future high-power space-time wave packets. Un-
til technology is able to generate high-power pulses, low-power applications of these
pulses are an open field that needs to be explored, and it could fund the extra devel-
opment needed for high-power applications. We will investigate this path in Chapter
5.

The goal of this chapter is to illustrate some applications of these space-time
wave packets, including plasma acceleration and radiation production. Even though
it is possible to simulate these pulses (as in Chapter 3), it is often very computationally
expensive to simulate them in 3D and for propagation distances that could be inter-
esting for experiments. Simulations of these pulses sometimes need to use simplified
models that can capture the most relevant effects of these pulses on plasma. This
chapter mainly consists of simulations results using reduced dimensionalities (1D or
2D).

The chapter is organized as follows: In subsection 4.2 we inspect the plasma
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waves generated by these pulses and how they can be used for acceleration. In sub-
section 4.3 we research how these pulses can be used for radiation production, both
with direct laser-particle interaction and via quasiparticle generation.

4.2 SPACE-TIME WAVE PACKETS AS DRIVERS OF PLASMA WAVES

In Chapter 2 we defined a quasiparticle as a localized current profile that travels in
space and time. In section 1.2, we reminded that in typical laser wakefield accelera-
tion the laser generates a blowout. This blowout is characterized by a very localized
current profile quasiparticles that travel with the group speed of a laser in plasma,

which in the linear regime is given by vg =

r
1 �

w2
p

w2
0
. In Chapter 2, to have the quasi-

particle move at superluminal speeds and emit coherent radiation, a special density
profile had to be designed such that the quasiparticle created by the laser could travel
superluminally.

Space-time wave packets, on the other hand, can travel at predetermined ve-
locities, which may excite plasma waves moving at those speeds, and therefore avoid
using special density profiles altogether.

To understand the plasma response to these pulses, we first designed 1D sim-
ulations to see the properties of the plasma waves excited by a laser, using a very sim-
ilar setup to any LWFA experiment. Spatiotemporal lasers, as we showed in Chapter
3, have transverse wavevectors, which cannot be adequately simulated in 1D simula-
tions. Therefore, to simulate such a pulse, we created a transverse electric field given
by

E(z, t) = w0a0 f (z � bpt) sin(kz � w0t), (4.1)

where w0 is the laser frequency, a0 is the laser normalized vector potential, bp is the
laser group velocity, z ⌘ xk and t is propagation time.

We prepared two simulations, using bp = 1.01 (superluminal( and bp = 0.99
(subluminal), at a0 = 15, meaning the wave the laser generates is extremely nonlinear.
The results are shown in Fig. 4.1. On both top panels a) and b) we show the pulse
envelope in black and the electric field of the plasma wave in green. It is clear that
the plasma wave stems from the laser pulse in both cases, even though the maximum
amplitude is larger for the superluminal case. This fact is enough to prove that the
plasma response travels at the same speed as the laser envelope, meaning that one
can excite superluminal plasma waves.

Even though one-dimensional simulations and simplified models help us un-
derstand the phenomenon, it is only when full 3D models are used that we can be
sure that these plasma waves can be excited. We designed very similar simulations to
the 1D ones but in three dimensions. A plot of the spatiotemporal pulse flowing into
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FIGURE 4.1: A comparison of the electric field of the wake and electron phase space for a
superluminal, (a) and (c), and subluminal, (b) and (d), wake with bp = 1.01 and bp = 0.9),
respectively. The phase velocities were chosen to make clear the distinction between the two
cases. The driver intensity, shown in black for reference, has a0 = 15 and a square pulse
shape with duration t = p for both cases. The superluminal wake maintains its structure
and maximum electric field. Wave breaking of the subluminal wake leads to the injection and
trapping of a large population of electrons, which load the wake, diminish its maximum field,
and result in large energy spreads of any accelerated electron beam. Taken from [67]

plasma is found in Fig. 4.2. As we see from Fig.4.2a-c, the spatiotemporal focus travels
superluminally, originating a plasma wave moving superluminally as well. There are
however differences in the plasma wave originating from a spatiotemporal pulse with
respect to a regular pulse driver, shown in Fig. 4.3. The most obvious difference is that
in the conventional case some electrons entered the ion bubble and are accelerating,
whereas no electron entered the ion bubble in the superluminal case. The differences
that arise from both cases form enough ground to seek better understanding of the
acceleration properties of these superluminal plasma waves.

4.2.1 LASER WAKEFIELD ACCELERATION WITH SUPERLUMINAL FOCI

The main difference that we observed from the conventional to the superluminal case
- presence (or not) of self-accelerated electrons - is explained through wavebreaking.
Wavebreaking occurs when accelerated electrons are able to overtake the phase speed
of the driver and therefore are injected into the acceleration bubble. This takes place at
large driver intensities. One of the limitations of laser wakefield accelerators is that the
accelerated electrons start travelling faster than the laser field and will dephase with
relation to the plasma wave, stopping the acceleration (the acceleration fields decrease
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FIGURE 4.2: Spatiotemporal pulse interacting with plasma in 3D at a) t = 0 [w�1
p ] b) t =

91.8 [w�1
p ] and c) t = 183.6 [w�1

p ]. Speed of the pulse vg = 1.05c, normalized vector potential
a0 = 2.0

as the electron beam travels through the ion bubble). As a large number of electrons
are injected, they also tend to contaminate the original electron beam and reduce the
accelerating fields.

On both Fig. 4.4c-d we can look at the plasma electrons phase-space, show-
ing that the waves are very much alike, except for wave breaking occurring in the
subluminal case.

It is clear that this acceleration cannot take forever, as the accelerated electrons
will in this case be overtaken by the superluminal driver and be subject to both de-
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FIGURE 4.3: Conventional pulse interacting with plasma in 3D at a) t = 0 [w�1
p ] b) t =

91.8 [w�1
p ] and c) t = 183.6 [w�1

p ]. Speed of the pulse vg = 1.05c, normalized vector potential
a0 = 2.0

celerating and defocusing forces. It is possible to have a laser going at velocities that
are just barely superluminal, increasing the overall acceleration distance. The main
benefit, however, is the greater accelerating field that the plasma can sustain at su-
perluminal speeds, suggesting that the total acceleration length may decrease for the
same electron energy.
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FIGURE 4.4: The design space for superluminal (bp > 1) and subluminal (bp < 1) LWFA.
Wave breaking limits the design space for subluminal LWFA when the amplitude of the driv-
ing laser pulse exceeds a threshold value (a0 > awb ). A superluminal LWFA can take advan-
tage of an arbitrarily large a0, preserving the structure of the wakefield and its peak accelerat-
ing field while avoiding the deleterious effects of trapping. The top and bottom insets contrast
in the dynamics of an electron that achieves the maximum energy gain injected at rest into the
potential of a super and subluminal wake, respectively. The solid(yellow) arrows mark the
path over which the electron gains energy. Taken from [67]

4.3 RADIATION PRODUCTION

4.3.1 QUASIPARTICLE RADIATION

As we discussed in Chapter 2, by creating current structures with a certain size we
are able to coherently radiate for wavelengths equal to or larger than that size. In the
same chapter, we used a plasma density ramp and a regular laser driver to show that
the back of the bubble travels superluminally and therefore radiates at the Cherenkov
angle of the perturbation. By using spatiotemporal pulses, and by looking at Fig.
4.2, we observe a very similar effect. To know the typical wavelengths of the emitted
radiation, we must know the dimensions of the current profiles at the back of the
bubble.

There are analytical models that predict the bubble size and overall shape when
in contact with very intense (gaussian) lasers, but they tend to give erroneous results
or even diverge at the back of the bubble. Due to the lack of three-dimensional ana-
lytical results for those current profiles at the back of the bubble, the one-dimensional
theory can give insight into how the current spike dimensions.

In the 1D regime, the maximum density of a superluminal wake approaches
(bp � 1)�1bp as the electrons approach the speed of speed of light. In the superlumi-
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nal driver regime, a higher velocity caused a longitudinal broadening of the current
spike, meaning that to radiate very small wavelengths the driver should go as close
as possible to the speed of light, but always slightly faster. Even though we did not
conduct studies on the radiation, we estimate that the brightness and wavelength of
the radiation emitted could be on par to the scheme in Chapter 2, section .

Even though the pulses can be employed indirectly to produce radiation, they
can also directly interact with electron bunches to radiate, such as in Thomson scatter-
ing.

4.3.2 THOMSON SCATTERING

In Nonlinear Thomson scattering (NLTS), an electron beam interacts with a counter-
propagating laser pulse, causing the electron beam to oscillate and reemit the photons
of the laser pulse at a shifted frequency. Nonlinear Thomson Scattering is able to
convert optical light to x-rays and beyond, meaning it can produce collimated, high
energy radiation [82, 83, 84].

When an electron beam interacts with a laser pulse with normalized vector
potential a > 1, the typically emitted frequencies are given by

wn ⇡ 8ng2
0w0/a2, (4.2)

where wn are the emitted harmonics and g0 is the electron Lorentz factor. Interestingly,
the higher a, the smaller harmonic the emitted frequency is (even though this is true,
the cutoff frequency also increases with a). This is due to the interaction between the
electron and the laser pulse: as the electron enters the laser field, the ponderomotive
force decelerates the electron and therefore the emitted frequencies decrease. This has
the undesirable side effect of making the amplitude of the electron oscillations grow
and therefore widen the emission angle. Spatiotemporal pulse shaping offers addi-
tional control of the ponderomotive force [85], which can 1) compensate the pondero-
motive force deceleration of NLTS, which we called the drift-free regime or 2) accelerate
the electrons even further to the laser focal speed, which we called matched NLTS. To
stay in the same radiating regime, the phase velocity must still counter-propagate with
relation to the electron, but the focal speed should now propagate with the electron.
This possibility is forbidden to standard gaussian pulses where ṽ and vf always point
to the same direction. The electron oscillations and the laser profile for both the con-
ventional regime and the new regime with ponderomotive control are shown in Fig.
4.5.

The drift-free regime, where the ponderomotive deceleration was fully com-
pensated, means that the longitudinal electron speed does not change throughout the
interaction. To accomplish this, the focal speed of the laser should be set to bp = b�1

0 ,
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FIGURE 4.5: A conventional NLTS configuration in which the intensity peak and phase fronts
of a laser pulse travel in the opposite direction as the electron. At the rising edge of the inten-
sity peak, the ponderomotive force decelerates the electron, redshifting the emitted frequencies
and widening their emission angle (purple cone). (b) NLTS with ponderomotive control aligns
the velocities of the intensity peak and the electron. Here the ponderomotive force increases or
maintains the electron velocity, allowing for higher-frequency emission into a smaller angle.
The electron trajectory in its average rest frame (figure eight) is depicted to the left of each
case. Taken from [85].

where cb0 is the electron speed, meaning we are strictly dealing with superluminal
foci. It is possible to show that the harmonics generated are given now by [85]:

wn = nw0(1 + b0)
2g2

0, (4.3)

which is different from Eq. (4.2) as it does not depend on the laser intensity. Other
important properties of radiation emission are the cycle-averaged power, the emission
angle, and bandwidth. In comparison to the conventional regime, both the cycle-
averaged power and bandwidth are increased by a factor of a, which means that we
see most differences when using high-intensity lasers. The emission angle is decreased
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from the conventional case by the same factor, which means that we would have a
more collimated emission.

Matched NLTS uses a subluminal intensity peak to ponderomotively accelerate
the electron. Here the intensity peak intercepts the electron from behind and gradually
accelerates it to an asymptotic velocity bd = b I . This allows the electron to experience
a near-constant vector potential for an extended distance (Fig. 4.6, inset). Setting the
ponderomotive velocity vI/c = b I to satisfy

(b I � b0)gIg0 = a0/
p

2 (4.4)

ensures that the electron travels with the intensity peak near the maximum vector po-
tential a0. It is noteworthy to understand that while in the drift-free case, the pondero-
motive velocity does not depend on the laser a0, it is necessary to coordinate between
three variables (b I , b0, and b0) to be able to enter the matched regime, which poses a
more difficult experimental problem.

FIGURE 4.6: Cycle-averaged radiated power as a function of the ponderomotive velocity b I
and the vector potential a normalized to power radiated in conventional NLTS < PC >. Here
g0 = 5, and for the purpose of calculating < PC >, b I = �1. The dashed lines indicate the
matched and drift-free conditions. Within the gray region, the ponderomotive force accelerates
the electron to a velocity greater than b I , and the electron outruns the intensity peak. The
insets depict the cycle-averaged electron trajectories (black lines) relative to the motion of the
intensity peak (contours). Taken from [85].

This new matched regime can enhance the NTLS properties. The harmonics
generated are given by

wn = nw0(1 + b I)
2g2

I , (4.5)

which is almost identical to Eq. (4.3) except that the variables related to the elec-
tron speed cb0 are now related to the laser focal speed cb I . The physical argument
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to explain both phenomena goes as follows: in reality, the important features are the
electron energy when in contact with the peak laser intensity, and the laser frequency
w0. In the drift-free case the electron stays at energy meg0, whereas in the matched case
the electron accelerates toward the laser group speed and then stay at that speed for a
long time, meaning the energy is megI .

It is necessary to emphasize that slow electrons will not lead to a large harmonic
content in the drift-free case, as the initial electron energy stays the same. However, at
any (small) electron speed cb0 it is possible to select an (large) gI (which corresponds
to a focal speed very close to the speed of light) and laser intensity a0 such that Eq.
(4.4) is satisfied, meaning that very high harmonic content can be generated by an
initially slow electron beam.

The ponderomotive force also acts transversally on the electrons, pushing the
electrons away from the regions of highest intensities, diminishing the emitted power.
To make the electrons stay at the laser focus, the laser must have a transverse profile
with a bowl shape, as seen in Fig. 4.7.

FIGURE 4.7: Example of a practical flying focus design for drift-free NLTS. (a) - (c) Evolution
of the propagation invariant intensity profile across the interaction region L. The flying focus
pulse travels from right to left, while its intensity peak travels from left to right. The intensity
peak counter-propagates with respect to the phase fronts and maintains a stationary profile
in the frame x = z � vIt. (d) The bowl-shaped transverse intensity profile formed by the
orthogonally polarized Laguerre-Gaussian modes. (e) The on-axis (r = 0) temporal profile of
the intensity peak. (f) On-axis intensity as a function of z and h. The dashed line illustrates the
slope of the expected trajectory. Note that the abscissa is h/c = t + z/c and that a laboratory
frame trajectory z = vIt is equivalent to z = vgvIh/c(vg � vI). Taken from [85].

To complement the theoretical results, we did 2D particle-in-cell simulations,
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which confirmed the theoretical results for the harmonic content in the emitted radia-
tion. The simulations had an electron beam (g0 = 5) interacting with a non-evolving
(not self-consistent) laser profile (a0 = 3), which made the electron beam oscillate and
radiate. For the drift-free case, the focal speed was given by bp = b�1

0 ⇡ 1.02. For the
matched case, gI ⇡ 22.12. The radiation was captured using RaDiO [39]. The results
are shown in Fig. 4.8. As observed in the second row, for on-axis emission (q = 0)
the harmonics are given by multiples of 4g2

0w0, which coincides with the theoreti-
cal predictions. For the matched case (third row), the harmonics follow multiples of
4g2

I w0, which are approximately (22/5)2 = 19.36 times larger. The simulations were
conducted both with a cold beam (right) or with 5% energy spread in the longitudi-
nal direction. With the larger energy spread, we find an almost continuous spectrum
both in the matched case and the conventional case, albeit for different reasons. In the
conventional regime, the harmonics are so close together that the energy spread im-
mediately blurs out the space between the spectrum lines. In the matched case (Fig. 4.8,
bottom row), while the spacing is larger, some of the electrons do not get accelerated
to (and stay at) gI . In fact, any energy change in the electron initial speed means that
either the electron overtakes the laser or cannot accelerate to the laser speed, which
results in radically different trajectories along time.

In the drift regime (Fig. 4.8, middle row), the spectrum lines are still separated
at spreads of 5%, which indicates that this regime is less sensitive to variation in the
electron speed. In this regime, because the laser is superluminal, it will overtake any
electron regardless of their initial energy, which results in similar trajectories for elec-
trons along the interaction.

At the same total laser pulse energy, the amount of energy radiated by the two
new schemes is larger than for the conventional scheme.

4.4 CONCLUSIONS AND FUTURE WORK

The new class of lasers described in Chapter 3 was used in two usual setups: electron
acceleration (LWFA) and radiation production. We were able to show that in both
cases there are situations where the spatiotemporal pulses provide actual benefits over
regular laser pulses.

Using pulses with a superluminal focal speed, we are able to create superlu-
minal plasma wakefields, which prevent dark current and enable the acceleration of
electrons over larger distances, due to the mitigation of dephasing. Further scientific
study is needed to understand how the electromagnetic energy escapes the bubble, as
that can increase the emittance of the accelerated beam.

Applying the same pulses to radiation production has two main results. When
applying the same theoretical knowledge developed in Chapter 2, Cherenkov-like ra-
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FIGURE 4.8: Spectrum of emitted radiation from a collection of electrons with g0 = 5 and
a0 = 3. Left: No energy spread; right: g/g0 = 5 % all in the longitudinal momentum.
The quantity Ur has units of energy, and each plot is normalized to its maximum value. For
matched NLTS, the horizontal axis is scaled to 4g2

I w0, not 4g2
0w0, and therefore extends to

much higher frequencies. Taken from [85].

diation can be emitted from these superluminal current profiles at the back of the
bubble. Further study on the three-dimensional bubble profile created by these su-
perluminal pulses may give more insight into the current profile dimensions, which
will in turn predict the bandwidth of the radiation emitted. We showed the possibil-
ity of using these pulses to enhance Thomson scattering, by studying the interaction
of an electron beam and pulses where the focal speed and phase speed are counter-
propagating. These pulses were able to overcome one important shortcoming of the
conventional Thomson scattering: the loss of energy by the electron beam as it is de-
celerated by the laser ponderomotive force. Two regimes were found where the decel-
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eration is avoided, such as one where the electron keeps the same longitudinal speed
throughout the interaction with the laser pulse and another where the electron is ac-
celerated up to the laser pulse focal speed. The two regimes yielded more energy than
the conventional case at the same total laser energy. Full three-dimensional simula-
tions are needed to confirm the feasibility at the laboratory, and new ways of inject-
ing pulses into PIC simulations are being developed to avoid issues with the large
transverse dimensions of the spatiotemporal beams[86], which will allow for full 3D
simulations of realistic laser pulse profiles.
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CHAPTER 5

COHERENT BETATRON EMISSION FROM

FLYING FOCI SETUPS

5.1 INTRODUCTION

Betatron emission refers to radiation from electron beams oscillating transversally in
the ion bubble of wakefield accelerators. Typical electron beams in this configuration
can emit X-rays [1], albeit incoherently. By taking into account the number of electrons
in such beams, being able to get coherent radiation out of these oscillations would
allow the intensities to get closer to the free electron lasers.

The theoretical background established in Chapter 2 allows us to generate quasi-
particles with exotic properties with different experimental setups, many of which use
flying focus pulses. We have already shown in Chapter 4 how the interaction with spa-
tiotemporal pulses and plasmas may generate Cherenkov-like radiation, but the small
energy of the particles in the bubble sheath (e.g. below 10 MeV) prevents hard x-ray
emission.

In a free electron laser, the longitudinal bunching that stems from the FEL in-
stability allows to emit temporally coherent light. To make betatron oscillations emit
temporally coherent light, one must get some longitudinal bunching of particles.

Betatron oscillations refer to the electrons path while subject a transverse force
(or more precisely, a force F µ Er � Bq , where Er is the transverse electric field and Bq

is the azimuthal magnetic field in a cylindrically symmetric setup). Betatron radiation
refers to the radiation emitted by electrons undergoing betatron oscillations.

In the experiments that aim to produce betatron radiation using plasma accel-
eration, we observe that electrons have random phases and the energy spread is high
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(tens of percent). Any of these two properties will prevent longitudinal bunching.

However, even if electrons have the same phase and travel with the same speed
along the propagation axis they will still not bunch up, as seen in Fig. 5.1a). We could
imagine a transverse force that acts on the back of the beam first and on the front of
the beam later.

F/e =

(
Er � Bq = ar , x < vmt � L/2
Er � Bq = 0 , x � vmt � L/2

(5.1)

A transverse force that travels at a superluminal speed vm > vb (where vb is
the speed of the beam) immediately starts introducing a longitudinal bunching, as
illustrated by Fig.5.1b)-c). As the speed of the front increases, the longitudinal size
of the bunching also increases, which suggests that for X-ray emission one must have
small |vm � vb| (meaning the size of the current profiles goes to 0 as vm approaches vb.
We show this in Fig. 5.1 b1-3) and c1-3), where in b) the speed of the magnetic field
front vm is 1.02c and in c) vm = 1.01c compared with the beam speed vb = c.

5.2 THEORY

It is now important to define how to create such a transverse force travelling at vm. We
know that an electron beam travelling through a plasma generates a non-linear wake-
field and creates an ion bubble, which attracts electrons. However, if an electron beam
travels in plasma, the whole bunch is subject to these focusing forces almost immedi-
ately (the head of the pulse will feel the force before the tail, think vm = 0 , vm � vb =
�c), creating current structures that radiate at the beam length sx (see Fig.5.1 a1-3).
Typically, used beams have sx > 1 µm. Therefore, only using an electron beam and
plasma will not result in short-wavelength coherent radiation, with wavelength below
sx To accomplish such an effect, our scheme uses ionization coming from a laser with
a superluminal focus.

When an electron beam travels through a gas, it is not affected by focusing
forces (except the defocusing self-forces that expand the beam), as the gas is not elec-
trically charged and therefore interacts very little with the electron beam. Let us imag-
ine then an electron beam traveling through a unionized gas. Moving coaxially, an
ionizing laser pulse travels superluminally, meaning that it creates a superluminal
ionization front, moving from the back of the pulse to the head of the pulse. As the
laser travels through the electron beam, the front electrons are still traveling through
gas (and therefore do not interact with the medium) whereas the back electrons start
moving through plasma. The fraction of the electron beam that travels through plasma
(in the back) excites a nonlinear plasma wave, which in turn focuses those electrons at
the back. As the laser travels through the pulse, the fraction of the beam that travels
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FIGURE 5.1: Formation of longitudinal structures using betatron motion. The electron beam is
represented as slices, yellow slices oscillate at the betatron frequency while blue slices do not
oscillate. Left column: Three snapshots of the electron beam all oscillating at the same phase.
Middle column: A front marked with a dashed line traveling with vm = 1.02c turns static
slices into oscillating slices, forming longitudinal structures. Right column: A front marked
with a dashed line traveling with vm = 1.01c turns static slices into oscillating slices, and the
formation of smaller longitudinal structures is observed.

through the plasma increases, but the initial time at which any beam electron starts to
oscillate corresponds to the instant the gas around it is ionized. Because the ionization
front moves with v = vm, the betatron phase depends on the longitudinal position
inside the beam. This is exactly what we show in Fig. 5.1, where vm is the speed of the
ionization front.

This process modulates the electron bunch, as schematized in Fig. 5.1b-c. We
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now want to determine what is the typical length associated to the betatron motion
as a function of the Lorentz factor of the beam and the vm. Firstly, we will separate
the beam into slices (at very high g, slices do not interact much with each other) and
observe the evolution of each slice along space (we define a slice as the portion of
beam electrons between a given xk � ct and (xk + d) � ct).

5.2.1 SINGLE SLICE EVOLUTION

The behavior of a beam slice in a focusing field is determined by its normalized emit-
tance and the strength of the focusing fields. The normalized emittance in y is a mea-
sure of the total phase space the beam takes in that coordinate and it is given by

ex,n =
1

mc

h⌦
x2↵ ⌦p2

x
↵
� hxpxi

2
i1/2

, (5.2)

where h·i is the average f in the beam, x is the position and px is the momentum in
the x direction.

The behavior of the electron beam with normalized emittance eN in a focusing
field is described by the beam-envelope equation [90]:

d2sr(z)
dz2 +


K2

�
e2

N
g2s4

r (z)

�
sr(z) = 0 (5.3)

,

where z is the longitudinal coordinate, K = wp/(2g)1/2 is the field strength
in an ion channel, g is the Lorentz factor, sr is the beam width and we disregarded
all longitudinal forces. This equation describes two effects: the term dependent on
K focuses the beam (if we ignore the other term Eq.(5.3) simply yields a harmonic
oscillator), and the other term accounts for the beam divergence (as distance z grows
the beam grows wider).

The analytical solution for Eq. (5.3) is given by

sr(z) = s0

"
1 +

 
2e2

Nc2

gs4
0 w2

p
� 1

!
sin2

✓
wpz

(2g)1/2c

◆#1/2

(5.4)

The minimum value for sr(z) is obtained when the sin function yields 1

smin = s0

 
2e2

Nc2

gs4
0 w2

p

!1/2

=

p
2eNc

p
gs0wp

(5.5)

The solution of Eq.(5.4) is shown in Fig.5.2. It is possible to get the maximum
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FIGURE 5.2: Evolution of the beam radius of a single slice along the propagation direction.
For this plot, ne = 1017cm�3, eN = 10 µm · rad, and vm = 1.001c.

beam density by assuming cylindrical symmetry. First, we assume that density grows
with s2

r :
max(nb)

nb0
=

s2
0

s2
min

(5.6)

This leads us to the expression for the maximum density

nb,max = nb0
g2s4

0 w2
p

e2
Nc2 (5.7)

A slice reaches a maximum density periodically, with a period Dt = p(2g)1/2 1/wp.
The first oscillation takes half as much, as the beam slice must only undergo half the
oscillation, as seen from Fig. 5.2. Since the beam is traveling near the speed of light,
the distance between those maxima is Dz = p(2g)1/2 c/wp, which corresponds to half
of the betatron wavelength.

5.2.2 ADDING IONIZATION

Now we can introduce the effects of a time-dependent ionization front. As we ex-
plained before, this ionization front will come from a spatiotemporally shaped laser
pulse. It is hard to model the interaction between a laser, a beam and a gas analytically,
and therefore we will assume in this toy model that the ionization front is transver-
sally uniform. We assume that the ionization front is traveling with v f and starts at
the back of the beam, which travels with vb. The back of the beam starts at z = 0,
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along with the ionization front. The propagation distance of a slice starting at position
z0 before it gets ionized is given by

zion(z0) =
z0c

v f � vb
(5.8)

From Eq. (5.8) one observes that zion(0) = 0, confirming that the ionization starts
at the back of the beam. We can now write how s varies with both the propagation
distance z and the initial slice position z0:

s(z, z0) = s0

(
1 +

 
2e2

Nc2

gs4
0 w2

p
� 1

!
sin2


wp

(2g)1/2c
(z � zion(z0))

�):w1/2

(5.9)

which gives us

s(z, z0) = s0
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(5.10)

Even though the slices are just focusing and defocusing as before, the phase of
the oscillation is now dependent of the longitudinal position of the slice in the beam.
A waterfall plot showing the variation of s is shown in Fig. 5.4.

For a s(z, z0) = smin, there is a value Dz0 such that s(z, z0 + Dz0) =
p

2smin,
which correspond to a length over which the density halves. This Dz0 will serve as the
typical length of each bunch in the current profile, which determines the wavelength
down to which there is coherent emission. Of course, Dz0 would be the HWHM, so
the FWHM shall be 2Dz0.

The equation for Dz0 is then given by changing the argument of Eq. (5.10):

s(z, z0 +Dz0) = s0
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(5.11)

Now, it should be clear that if Dz0 = 0 we are at the minimum s and therefore
the sin function yields 1. Let us admit the z and z0 dependent factors inside the sin
function yield p/2 (so the sin yields 1). We now have a simplified expression:
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Identifying 2e2
Nc2/(gs4

0 w2
p) as s2

min/s2
0 , we can further simplify to
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FIGURE 5.3: Waterfall plot showing the formation of longitudinal structures using betatron
motion coupled with an z varying ionization. At every propagation distance, the beam radius
is plotted along the x-axis. In the beginning, the whole beam stays at s = 5 µm. The back
of the beam starts to oscillate first, which originates the longitudinal modulation of the beam.
For this plot, ne = 1017cm�3, eN = 10 µm · rad, and vm = 1.001c.

By using the arcsin function it is possible to solve for Dz0

Dz0 = (v f � vb)
(2g)1/2c
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By taking the Taylor series we can further simplify

Dz0 = (v f � vb)
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which finally gives us the FWHM

FWHM = 2Dz0 = 2(v f � vb)
(2g)1/2
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A typical beam modulation is shown in Fig.5.4.

Since we now know the typical dimensions of the current profiles, we can now
predict the typical wavelength emitted by such a setup. However, we must note that
the electron beam must not ionize the gas by itself, as that would incur in oscillations
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FIGURE 5.4: Snapshot of the on-axis beam density of the electron beam traveling through the
plasma. The electron beam had sz = 5 µm. For this plot, ne = 1017cm�3, eN = 10 µm · rad,
and vm = 1.001c. The two maximum values of the beam density are shown in orange and the
FWHM is shown in green.

more alike the first column of Fig. 5.1, assuming the velocity distribution is contant
along the beam (with the typical current profile of the order of the beam length). At
the same time, to go into the nonlinear regime, the beam density must be larger than
the plasma density. Since the FWHM scales with w�2

p µ ne, we want to use as large
of an electron plasma density (and electron beam density) as possible. The hardest
gases to ionize are Hydrogen and Helium, which were used in our simulations. We
found that a setup with a plasma density of ne = 1017 cm�3 and a beam density
nb = 4 ⇥ 1017 cm�3 did not ionize the gas prematurely and was able to generate a
nonlinear plasma wave both for Hydrogen and Helium. Increasing both densities
by a factor of 10 resulted in premature ionization of the plasma, which led us to the
former values. Equation (5.16) does depend on vb (beam speed) but assuming an ultra-
relativistic electron beam (E > 1GeV) we realize that there is a very small dependency
on the Lorentz factor g, which allows going for smaller electron beam energies. As an
example, an electron beam of 1 GeV and one of 10 GeV have the same speed up to the
fourth decimal. Of course, if b f is of the order of 1/bb the effect starts to matter.

To get an estimate for eN , we assume that initially the beam is cold and there-
fore the emittance growth is due to the direct interaction between the laser pulse and
the beam. This means that we can estimate eN ⇡ a0s0, where a0 is the normalized
vector potential of the laser pulse. Our tests showed that a0 = 0.08, corresponding to
a laser intensity of about I0 = 1016 W/cm2, was enough to properly create a superlu-
minal ionization front, and we could test this theory on laser pulses that were about
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20 mJ. This is not a high-intensity laser, like the ones used in the previous chapter
(I0 ⇡ 1018 W/cm2). This small required laser energy is what enables this application
to exist soon, as space-time wave packets have already been created at this energy
level [78, 91].

As we know that these pulses can be produced, it makes sense to look at the
real size of the current profiles in SI units. An engineering formula for the FWHM is
given by

FWHM ⇡ 17
b f � bb

0.001
a0

0.08
5

s0[µm]
1017

ne[cm�3]
[nm] (5.17)

Equation (5.17) shows we may reach coherent X-rays (below 10 nm) if b f � bb =
0.0005. Of course, there are several ways in which real experiments would differ from
this idealized setup. For one, the assumption that the focusing force does not depend
on the transverse direction is not true, as near the beginning of the plasma wave only
the part of the beam that is closest to the axis is focused (most of the bunch is outside
the focusing region). This effect can be attenuated by placing the ionising laser closer
to the middle of the bunch at t = 0, as the bunch current in plasma is able to drive a
plasma wave that resembles more a circle, encircling most of the beam. It is also true
that longitudinal forces are acting on the beam, which can change the bunch shape
we predicted, as wb(g) = wb[g(z)] depends on propagation distance. This effect be-
comes less evident for bunches with higher energies. We therefore see this toy model
above as the best-case scenario for radiation production. As in all nonlinear plasma
dynamics, realistic results can only be predicted from particle-in-cell simulations.

5.3 IDEALIZED SIMULATIONS

To get an estimate for the radiation production, we used an external force that travels
superluminally and focuses electrons. This is the ideal scenario that we described
beforehand.

To simulate the longitudinal bunching effects on the electron beam, one must
resolve the FWHM of the predicted bunching length. At the same time, one must also
resolve the predicted minimum s. To accomplish this, we use quasi-3D simulations,
which use the cylindrical symmetry of the problem to reduce the computation load
of the problem. Quasi-3D simulations decompose the problem in azimuthal modes,
meaning we expand the fields, charge, and current densities into a Fourier series in f

[88],

F(r, z, f) = R

(

Â
m=0

Fm(r, z)eimf

)
, (5.18)

where F is any quantity and Fm is the m-th Fourier harmonic. The harmonics are com-
plex quantities, but the quantity F is always a real number. The quasi-3D simulation
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can be done at a much lower computational cost than a full 3D simulation, which is
especially relevant for the transverse resolution needed for this problem.
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FIGURE 5.5: Snapshots of an OSIRIS simulation of the modulation of an electron beam via
a superluminal external field at a) t = 20.18 ps, b) t = 40.36 ps, and c) t = 60.44 ps. The
initial electron beam is shown in the inset of plot a). An ideal focusing force is applied to the
electrons on the left of the dashed line.

In Fig. 5.5 the electron beam gets focused by an ideal focusing force travelling
at a predetermined speed. The electron starts with no modulation (Fig. 5.5a, inset) but
with the onset of the betatron oscillations it rapidly creates the first quasiparticle (Fig.
5.5b) (remember that each micro-bunch is a quasiparticle). The other quasiparticles
start from further oscillations, which completely modulate the beam, as seen in Fig.
5.5c-d. We found that the predictions for the FWHM were matched by the simulation
results.
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5.4 REALISTIC SIMULATIONS

To use a more realistic laser profile, we used an injected laser based on the work of
Ref. [73], which has recently been implemented in the particle-in-cell code OSIRIS
[87]. This laser is created by reflecting a Gaussian laser out of an echelon optic [73],
which separates the laser into several rings. After that, it interacts with an axiparabola,
an optic whose focal spot depends on the radial reflection point [92]. This means that
the several rings are focused at different places, which allows for the formation of a
superluminal focus. The initial positions of the laser pulse and the particle beam can
be seen in Fig. 5.6. A three-dimensional view of this laser can be found in Fig. 5.7.

To save computational time, the laser pulse was started already on top of the
electron beam. It is possible to do simulations where the laser is behind every electron,
but this requires the simulation box to increase both longitudinally and perpendicu-
larly.

5.4.1 HELIUM

From Eq. (5.16) we should aim for the highest possible electron density to reach a
small FWHM and hence smaller wavelengths. However, having a very dense ultra-
relativistic electron beam (remember that nb must be larger than the plasma density
to enter the blowout regime) may ionize the gas. This suggests using gases with the
largest ionization energies, reducing spurious ionization from the electron beam. The
gas with the highest first ionization energy is Helium, which we used in our first sets
of simulations.

The simulation results are available in Fig.5.8. In the first picture, we see that
there are two ionization levels, which correspond to the two helium electrons. In Fig.
5.8a), the ionization front is still behind the electron beam, and the density lineout on-
axis is still a Gaussian, as it started. In Fig. 5.8b), the ionization front is now in contact
with the electron beam, and we already observe that the plasma density on-axis is
smaller than off-axis, due to the plasma wave that is forming. The plasma is not in
the bubble regime yet, as the current of the electron beam in contact with the plasma
is still not enough to drive a nonlinear plasma wave. In Fig. 5.8c), we are fully in the
nonlinear regime. Fig. 5.8 showcases major differences between the toy model and the
real setup: the beam is not focused by the same force along the propagation distance
and there is is a gap between the first and second ionization (in the case of Hydrogen
that does not apply).

According to the equations developed in Chapter 2, the emitted intensity will
grow with the number of participating particles squared. To have all the particles in
the beam participating, the quasiparticle must travel through the whole beam, which
requires increasing the window size both transversal and longitudinally while main-
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FIGURE 5.6: a. Initial configuration of simulations using realistic laser profile. Laser pulse in
orange, electron beam in green. b. Zoomin of previous picture.

taining the resolution. To alleviate this issue, we used a smaller laser focal range and
put a fully ionized plasma at a certain position. This means that after some time, the
whole beam creates the nonlinear plasma wave and keeps the betatron motion going.
A 3D picture of the interaction with the fully ionized plasma is shown in Fig. 5.9.

To verify the speed of the current spike, we took the lineout at every timestep
and drew a waterfall plot. The plot is shown in Fig. 5.10. We observe that in these
realistic conditions, even though some of the same features of the toy model are repli-
cated, some of the assumptions are not valid. As we see from Fig. 5.8, the electron
beam is never totally inside the ion bubble and therefore only the central part of the
beam gets focused with the predicted K immediately after the ionization front moves
through. As we can see from the lineouts from the same figure, there are still sub-100
nm current spikes, which we had anticipated, but the first betatron oscillation seems
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FIGURE 5.7: Three-dimensional view of the quasi-3D simulation showcasing the three dif-
ferent elements of the radiating setup, where the beam starts being modulated. In blue: Spa-
tiotemporal laser pulse described in [73]. In gray: the plasma nonlinear wakefield. In yellow:
Electron beam, larger opacity means larger beam density.

to be composed of several current spikes (at around z � ct = 23µm in Fig. 5.8c), where
we only had anticipated one. This is very different from the same lineout taken from
the toy model and shown in Fig. 5.4.

By using RaDiO [39], we were able to capture the radiation coming from this
interaction. As shown in Chapter 2, we expect off-axis emission at the Cherenkov
angle of the ionization front. The spatiotemporal structure of light is shown in Fig.5.11.
Even though the majority of the radiation is for very small angles (typical of betatron
radiation), we see a distinct off-axis peak very close to the Cherenkov angle. This peak
is single-cycle, contrary to what we see on-axis (whose length is the beam length). The
inset on Fig. 5.11a) shows that the duration of this single cycle pulse is sub fs. When
taking the spectrum, shown in Fig.5.11b), we observe a distinct peak at the same angle,
which already shows captured radiation up to 12 eV.
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FIGURE 5.8: Snapshots of an OSIRIS simulation of the modulation of an electron beam via a
superluminal pulse using Helium gas at a) t = 4.35 ps, b) t = 15.24 ps, and c) t = 30.48 ps.
Lineouts of the density on-axis are shown in every plot [Peak Density in a) 4 ⇥ 1017 cm�3, b)
20 ⇥ 1017 cm�3 and c) 2000 ⇥ 1017 cm�3]. The ionizing laser pulse is not shown.

5.4.2 HYDROGEN

From subsection 5.4.1 it becomes evident that the two ionization levels of helium play
a role in the beam modulation. We found out that even though the modulation occurs,
it deviates from the theoretical expectation due to the two ionization fronts, separated
by a micrometer-scale length. Using hydrogen instead of Helium eliminates one of the
ionization fronts and therefore gets closer to the toy model we developed.

The simulation results are available in Fig.5.12. In Fig. 5.12a), the ionization
front started in the middle of the electron bunch and had just formed. The density
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FIGURE 5.9: Three-dimensional view of the quasi-3D simulation showcasing the modulation
of the beam after the beam started propagating through a fully ionized plasma after the focal
range of the laser ended. In gray: the plasma nonlinear wakefield. In yellow: Electron beam,
larger opacity means larger beam density.
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FIGURE 5.10: Waterfall plot of the electron beam density on-axis. Marked in a dashed line
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FIGURE 5.11: Spatiotemporal structure and spectrum of the emitted light (simulation using
an external field). a) Detected light in a detector in the far field. At angle f = 0 rad we observe
the typical betatron radiation, with the length equal to the beam length. At the Cherenkov
angle of the ionization front, we observe sub-fs single-cycle light pulse. b) Spectrum of the
emitted light. On-axis we see the appearance of regular betatron radiation while a broadband
signal appears off-axis.

lineout on-axis is still a Gaussian, as it started. In Fig. 5.8b), the ionization front is now
in contact with the electron beam, and we already observe that the plasma density
on-axis is smaller than off-axis, due to the plasma wave that is forming. The plasma
is not in the bubble regime yet, as the current of the electron beam in contact with the
plasma is still not enough to drive a nonlinear plasma wave. In Fig. 5.8c), we are fully
in the nonlinear regime.

An equivalent waterfall plot was taken for the Hydrogen case, and it is shown
in Fig. 5.13. We observe a current profile at focus with a constant speed. Even though
the pulse is not fully inside the bubble, the result is more similar to the toy model
result (Fig. 5.2). The radiation emitted is shown in Fig. 5.14, which shows a temporal
peak with about 100 as duration, as opposed to 300 as duration for Helium (shown in
Fig. 5.11).

5.5 CONCLUSIONS AND FUTURE WORK

Flying foci pulses with low energy can already be produced in the laboratory. This
chapter depicts one of the first possible applications of these pulses towards single-
cycle radiation production. With the co-axial propagation of both an electron beam
and a superluminal flying focus pulse, a superluminal ionization front is produced.
As this front travels from the back to the head of the electron beam, the nonlinear
wave that forms can focus the part of the electron beam that is behind the ionization
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FIGURE 5.12: Snapshots of an OSIRIS simulation of the modulation of an electron beam via a
superluminal pulse using Hydrogen gas at a) t = 4.35 ps, b) t = 15.24 ps, and c) t = 30.48 ps.
Lineouts of the density on-axis are shown in every plot [Peak Density in a) 4 ⇥ 1017 cm�3,
b) 500 ⇥ 1017 cm�3 and c) 1600 ⇥ 1017 cm�3. Vertical dashed lines at the peak density]. The
ionizing laser pulse is not shown.

front. Because of the length-dependent start of the oscillation, a beam modulation
appears.

We developed a theoretical model to get the correct modulation of the beam.
Idealized simulations using external magnetic fields that provide the focusing force
confirmed the theoretical results. As we moved to more realistic laser pulses, even
though there were major differences from the ideal case, we still could measure 25 nm
structures, which are already very close to X-ray wavelength.

We took the radiation emitted by the beam, which can be readily separated
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FIGURE 5.14: Spatiotemporal structure and spectrum of the emitted light using Hydrogen
(simulation using an external field). a) Detected light in a detector in the far field. At angle
f = 0 rad we observe the typical betatron radiation, with the length equal to the beam length.
At the Cherenkov angle of the ionization front, we observe sub-fs single-cycle light pulse. b)
Spectrum of the emitted light. On-axis we see the appearance of regular betatron radiation
while a broadband signal appears off-axis.

into two parts. The first one propagates on-axis and it is related to the usual betatron
radiation, which is incoherent and has the duration of the whole electron beam. The
second one moves off-axis at the Cherenkov angle of the ionization front and is single-
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cycle, superradiant, and broadband. We showed that this emission goes up to 20 eV.

As we proved in this chapter, by selecting smaller (b f � bb), it is possible to
increase the emitted frequencies. However, this makes simulations much harder to
run in three different ways. Firstly, the resolution must increase to capture the current
spike FWHM. Secondly, the time interval we need to simulate also increases, as the
ionization front takes more time to overtake the beam. Thirdly, the transverse box size
needs to increase as a property of a spatiotemporal pulse with the former characteris-
tics. New injection methods are necessary to be able to shrink the transverse box size
and simulate true X-ray production.

5.6 PAPERS IN REFEREED JOURNALS

B. Malaca, K. Miller, J.P. Palastro and J. Vieira, Coherent Betatron Emission from Flying
Foci setups, to be submitted (2024)





CHAPTER 6

CONCLUSIONS

6.1 SUMMARY

This thesis work started right before the first ever plasma-accelerated electrons were
used in free-electron lasers. The amount of technological advances in the last few
years points towards a future where radiation sources are powered by plasma sources,
which translates into more funding for plasma physics and real impact in other fields,
such as biology or material science. Our work tries to capitalize on all the advances
from previous years and build a new set of possible coherent radiation sources with
different properties than the ones already in existence.

In the first chapter, we developed a method that explores plasma density mod-
ulations to create superluminal current profiles. These current profiles can radiate as
single entities, which led us to call them quasiparticles. If one can make the quasipar-
ticle travel at precise speeds, the peak brightness from that quasiparticle can be as high
as in an FEL. However, the scope of the work is even higher, as we could demonstrate
also that an oscillating quasiparticle would radiate along the same spectrum lines as
an FEL.

To realize the concept it is necessary to have very good control on the quasi-
particle velocity and acceleration, as deviations stop the coherent process sooner. To
do this, one must be able to precisely control the density profile in experiments. This
automatically provides limits for 1) the time interaction during which the radiation
is coherent, and 2) the total brightness. The quasiparticle radiation concept can en-
able a new class of temporally coherent, superradiant light sources. In the near term,
quasiparticle radiation can be realized using existing experimental resources, and it is
suitable for both LWFA and PWFA regimes. We showed coherent, single-cycle radia-
tion up to 50 eV.
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In the second chapter, we introduced spatiotemporal pulses in OSIRIS. One of
the main properties of these pulses is the tunability of the group speed, which enables
faster-than-light laser foci. We validated the implementation for both subluminal and
superluminal pulses, showing that the pulses propagate diffraction-free and can self-
heal when disturbed by an obstacle on-axis. We were also able to make them undergo
selected trajectories, such as a sinusoid. We created an implementation of a 3D varia-
tion of the pulses, which allowed for further study of their interaction with plasma.

In the third chapter, the new class of lasers was used for two different appli-
cations, electron acceleration and radiation production. For acceleration, the use of
superluminal plasma wakefields prevents dephasing and dark current, allowing ac-
celeration of particles for larger distances. In these superluminal plasma wakefield
setups, we observed good conditions for quasiparticle radiation. We showed how
these pulses can enhance typical Thomson scattering configurations, increasing yield
and brightness. This was mainly due to the possibility of accelerating the particle in
the direction of the highest electric fields, instead of the usual deceleration in conven-
tional cases.

In the last chapter, we studied one different class of radiation emission, which
may allow coherent betatron radiation. We focused on flying foci pulses with low
energy, as these can already be produced in the laboratory. With an electric field that
is strong enough for ionization, the laser produces a superluminal ionization front
as it travels through the gas. If we propagate an electron beam with the laser, the
ionization front goes from the back to the head of the beam. The beam that travels on
the plasma part of the configuration drives a nonlinear plasma wave that focuses the
electron beam. This means that the betatron oscillations are started at a determined
time and therefore they become coherent. The beam is conveniently modulated and
quasiparticle radiation is also measured off-axis. We show that this emission can reach
70 eV, close to the X-ray limit. The coherent radiation is also off-axis, which means it
is completely separated from the incoherent bit.

6.2 FUTURE DIRECTIONS

This work is purely theoretical and computational. Even though particle-in-cell sim-
ulations closely follow experimental results, only real experiments can show the real
impact of these ideas. As for the quasiparticle radiation scheme, one can think of fur-
ther implementations of the same method, without necessarily using the same parts
that we used.

We proved that plasma setups can create single-cycle pulses very close to soft
X-rays. It would be very important to get into the soft X-ray range, as that would
mean a much different kind of pulse from the FEL. Since realistic flying foci are now
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available in OSIRIS, it would be interesting to retackle some of the problems where
we used idealized versions of these pulses.

In this work, we also developed a mini-diagnostic for radiation, as we used
the current outputs from the simulations to estimate the total brightness. If this tool
could be ported onto a particle-in-cell code, it would allow for quick estimates of the
brightness and coherency at different timesteps. This would be more important for
frequencies close to the Nyquist frequency, which may not be correctly propagated in
the PIC simulation.
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