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Resumo

Em robótica, a ocorrência de singularidades está associada à perda de um grau de liberdade. No

contexto de satélites que utilizam sistemas de giroscópios de controlo de momento como atuadores de

direção, as singularidades podem surgir devido a alinhamentos dos rotores. Isto resulta na perda da

autoridade de controlo sobre o sistema, que tem consequências diretas no controlo da orientação do

satélite. Nesta tese propõe-se uma nova abordagem para evitar as singularidades, que consiste numa

estratégia de alocação complementar a um sistema de controlo convencional. Esta abordagem permite

antever as posições futuras dos rotores, com base num modelo matemático do sistema, e com essa

informação determinar as ações de controlo que conduzem a configurações não singulares do sistema.

A utilização de um atuador redundante permite evitar as singularidades enquanto o sistema obedece

às referências de torque impostas pelo controlador. Para além disso, é derivada uma nova métrica,

computacionalmente eficiente e numericamente robusta, para avaliar a proximidade das singularidades

ao sistema. Esta solução é relativamente simples em comparação com a maioria das soluções exis-

tentes, como é o caso do número de condição, podendo ser integrada como uma restrição linear num

problema de otimização convexo. Por fim, o potencial da abordagem proposta é demonstrado em ambi-

ente de simulação através do uso de um modelo bidimensional de giroscópios de controlo de momento.

Verifica-se que é possı́vel evitar todas as singularidades internas do sistema de uma forma eficiente do

ponto de vista computacional.

Palavras-chave: giroscópios de controlo de momento; singularidades; governador de ações

de controlo; controlo por modelo preditivo; convexidade.
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Abstract

In robotics, the occurrence of singularities typically results in a loss of a degree of freedom. For

spacecrafts employing control moment gyro clusters, singularities may occur due to the alignment of the

gimbals, which inhibits the creation of torque in at least one direction. This translates into a loss of control

authority that has a direct impact on the spacecraft’s attitude control system. In this work, an optimal

allocation framework for singularity avoidance is proposed. The presented solution aims to provide a

singularity-robust allocation scheme that can be used as an add-on to a conventional attitude controller.

This algorithm resorts to the model predictive control framework to predict the future states of the gimbals

and, subsequently, take control actions that lead to singularity-free configurations while minimizing the

control energy spent. The use of a redundant actuator makes it possible to avoid singularities while

the system meets the torque references defined by the controller. Moreover, a novel, computationally

efficient and numerically robust, singularity metric is derived to assess the proximity of a singularity. This

function overcomes the complexity of the standard literature solutions, such as the condition number,

and can be integrated as a linear constraint in a convex optimization problem. Finally, the proposed

approach is applied to a two-dimensional control moment gyro cluster in a simulation environment. It is

verified that the system is capable of avoiding all of the internal singularities of the cluster at a relatively

low computational expense.

Keywords: control moment gyros; singularities; action governor; model predictive control; con-

vexity.
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Notation and Nomenclature

Throughout this thesis, math symbols and letters are represented in italic. Scalar variables and

constants are represented in either small or capital letters, vectors are represented in small boldface

letters, and matrices are represented in capital boldface letters. In particular, In represents the n × n

identity matrix, and diag(a1, ..., aN ) represents the diagonal matrix whose diagonal entries are given by

a1, ..., aN . The i-th element of the vector v is denoted by vi, and the entry (i, j) of a matrix M is denoted

by Mij .

For a square symmetric matrix P , P ≻ 0 and P ⪰ 0 are used to indicate that P is positive-definite

and positive-semidefinite, respectively. The operator ∥·∥2 is used to indicate the 2-norm of a vector,

the operator ∥·∥∞ is used to indicate the ∞-norm of a vector, and the operator ∥·∥S is equivalent to

∥·∥S =
√
(·)TS(·), where S is a positive-definite matrix.

The time derivative of any quantity a is denoted by ȧ := da
dt . These two possibilities are used inter-

changeably depending on which is best for legibility.

Given a quaternion q̄, its real part is denoted by q0, and its vectorial part is denoted by q. The

Hamilton product operator between two quaternions is given by ⊗.

Finally, the nomenclature used to denote the physical quantities used in this thesis is provided below.

Actuator variables and parameters

γ gimbal angles

γ̇ gimbal rates

γ̈ gimbal accelerations

∥γ̇∥∞ largest gimbal rate

γ̇max maximum gimbal rate

γ̇0 energy-optimal gimbal rates

h angular momentum

h0 momentum magnitude

ḣ torque

J Jacobian

N number of CMGs

N normalized nullspace matrix
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Satellite variables and parameters

q̄ attitude quaternion

r̄ reference quaternion

ω angular velocity

ω̇ angular acceleration

ωmax maximum slew rate

hs spacecraft angular momentum

Is spacecraft inertia

τ external torques

Control variables and parameters

ḣc command torque

m manipulability index

c condition number

d distance to the closest singularity

ρ singularity term weight

e torque error

q̄e error quaternion

P q error quaternion gain

P ω angular velocity gain

H torque error optimization weight

U gimbal rates optimization weight

M gimbal accelerations optimization weight

Singularity variables and parameters

u singular direction

σ singular values

Σ Jacobian singular values matrix

U left singular vectors matrix

V right singular vectors matrix

γs singular gimbal configuration

γp singularity projection

As singularity line projection matrix

bs singularity line offset vector

κ distance threshold

Other symbols

ḣω reaction wheel torque

Jω reaction wheel inertia

ωω reaction wheel velocity

ω̇ω reaction wheel acceleration

I inertial axes

B body axes

T simulation time

Ts sampling time
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Chapter 1

Introduction

1.1 Motivation

This thesis tackles the singularity problem that occurs in spacecrafts using control moment gyros

as steering actuators. Singularities are critical for missions requiring high-pointing capabilities, as they

compromise the effectiveness of a spacecraft’s attitude controller. In this section, the state-of-the-art

framework for spacecraft control is revised. Herein, the hardware used for controlling a spacecraft,

including sensors and actuators, is presented. In addition, two of the most popular spacecraft attitude

actuators, i.e. reaction wheels and control moment gyros, are compared. It becomes evident that the

use of control moment gyros is advantageous for larger spacecrafts. The different variants of control

moment gyros are introduced in the following section. Later on, the singularity problem, as it is widely

known in robotics, is briefly discussed. Finally, some historical applications of control moment gyros are

addressed as well as the future prospects of their use.

1.1.1 Spacecraft Control Overview

Since the early days of space exploration that engineers had to find a way of steering a spacecraft in

its orbit. Even though some of the first spacecrafts launched into space did not employ any kind of on-

board control system, such as the very own Sputnik 1, it did not take long before the space community

realized the importance of stabilizing a satellite as well as controlling its orientation. Indeed, a spacecraft

that is not capable of steering itself to a desired orientation is not generally suited for space missions.

A satellite powered by solar arrays has to point to the Sun during most of its orbit, Earth-observation

satellites must precisely track certain regions of the surface of the Earth, deep-space communications

are only possible due to rigorous on-board antenna pointing mechanisms, and a space rendezvous

demands slow and controlled movements between two spacecrafts until contact. Therefore, spacecraft

control is paramount for the success of a space mission and is a widely studied field since the beginning

of space exploration.

Within spacecraft control, one can disjoin orbit control from attitude control. Orbit control relies on the

use of a propulsion system capable of provoking velocity increments for orbit corrections, orbit transfers

1



or even orbit injections. On the other hand, attitude control refers to angular motion control. It can be

interpreted as the process of steering a spacecraft from a given orientation to a different orientation

under performance requirements. To achieve this, satellites equipped with attitude and orbit control

systems (AOCS) encompass attitude and orbit sensors, estimation methods, control algorithms, and

physical actuators to realize the desired control commands. In short, a conventional attitude control

system (ACS) for a satellite can be explained by the diagram depicted in Fig. 1.1.

Fig. 1.1: Attitude control diagram overview.

To determine the orientation of a satellite, many different sensors can be employed. Sun sensors

can easily determine the attitude of a spacecraft relative to the Sun, however, these devices require an

active line-of-sight to the Sun. Magnetometers can be used to determine the heading of a spacecraft,

by comparing the sensed magnetic field strength and direction to the Earth’s magnetic field. Earth and

horizon sensors provide Earth-relative information for Earth-pointing spacecrafts. Finally, star trackers

estimate the orientation of a spacecraft by comparing to the position of known stars around it. These

attitude measurements can be further combined with a state observer and the refined attitude estimation

is given by a Kalman filter, for example. To control the spacecraft to a desired orientation, spacecraft

actuators are used. Since we are referring to rotational motion, these devices must be able to produce

control torques. The most frequently used actuators are those that rely on the application of forces on the

spacecraft, and those that exchange angular momentum with the spacecraft. The first includes magnetic

torque rods and thrusters, and the latter includes reaction/momentum wheels and control moment gyros.

1.1.2 Reaction Wheels vs. Control Moment Gyros

Both reaction wheels (RWs) and control moment gyros (CMGs) exploit the principle of conservation

of angular momentum to steer a spacecraft. While CMGs create reaction torque by gimbaling a rotating

mass, reaction wheels produce torque by varying the speed of the rotating mass. A common issue with

reaction wheels is that they do not work well with large spacecrafts. In fact, when the spacecraft mass

increases, the inertia of the reaction wheel has to increase proportionally, in order to be able to produce

the same angular motion. In the case of massive objects, the gyroscopic effects from the control mo-

ment gyros are usually preferred. Indeed, CMGs allow to produce higher amounts of torque for much

less power, making them far more power efficient. It should be noted, however, that CMGs are tradition-

ally heavier and more mechanically complex than RWs, which confined their use to larger spacecrafts.
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Recently, there have been efforts to miniaturize them for agile small-to-nano satellite platforms [1][2].

Fig. 1.2 illustrates the principle of operation of both reaction wheels and control moment gyros. Here, h

is the angular momentum vector of the flywheel, ḣ denotes the torque, and γ̇ represents the direction

of the gimbal axis. It can be observed that while the momentum and torque vectors are aligned with the

spinning axis for RWs, these vectors are orthogonal for CMGs.

(a) Reaction Wheel (b) Control Moment Gyro

Fig. 1.2: Actuators working principle (Adapted from [3]).

The plot in Fig. 1.3 compares masses and torques of many different RWs and CMGs, whose spec-

ifications are available online (see Appendix A). CMGs are predominantly heavier and likely to create

higher amounts of torque, whereas RWs are generally lighter and produce limited amounts of torque.

Besides this, the torque/mass ratio is higher for CMGs, confirming their superior power efficiency. Ta-
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Fig. 1.3: RWs and CMGs mass and torque comparison.

ble 1.1 summarizes the main differences between a reaction wheel and a control moment gyro.
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Table 1.1: Relative differences between a RW and a CMG.

Torque Mass Power
efficiency

Mechanical
complexity Reliability Cost

RW Lower Lower Lower Lower Higher Lower
CMG Higher Higher Higher Higher Lower Higher

1.1.3 Types of Control Moment Gyros

There are three common types of control moment gyros.

• The first type is the single gimbal CMG (SGCMG). This device uses a single gimbal motor that

produces torque on the satellite by altering the direction of the rotor’s angular momentum. In a

SGCMG, the spinning rotor is constrained to rotate on a circle located in a plane normal to the

gimbal axis.

• The second type is the double gimbal CMG (DGCMG). This CMG comprises two gimbal mo-

tors, allowing elevation and azimuth control of the rotor’s angular momentum vector. Indeed,

DGCMGs are more versatile than SGCMGs as the former can point the rotor’s angular momentum

in any direction. Yet, SGCMGs offer significant cost, power, weight and reliability advantages over

DGCMGs. Nonetheless, as each gimbal offers an extra degree of freedom, the gimbal steering

problem is much simpler for DGCMGs.

• Most CMGs hold rotor speed constant, for simplicity, by using small and low power motors. Nonethe-

less, novel research has focused on the possibility of changing the rotor speed while the CMG gim-

bals, introducing variable speed CMGs (VSCMGs). The advantages brought by changing the rotor

speed control are very few, when considering actuation capability, because the torque produced

by the rotor is almost negligible when compared to that caused by gimbal motion. However, these

devices offer an additional degree of freedom that can be explored for VSCMG cluster reorientation

and singularity avoidance [4].

1.1.4 Singularities

A spacecraft using SGCMGs as steering actuators requires at least three of these devices for attitude

control. Indeed, there are as many degrees of freedom as gimbals. While gimbaling a flywheel, there

is the chance of witnessing alignments in the system. When these situations happen, the spacecraft is

not able to produce net torque along certain directions. These configurations are known as singularities

and are related to the kinematics of a robotic arm that encounters motion limits on the end-effector

due to joint alignments [5]. Also denoted by gimbal-lock, these special configurations happen when

the spacecraft is holding the maximum amount of angular momentum in one direction - in this case

referred to as saturation singularities, or when the spacecraft loses controllability due to an anti-parallel

alignment in the system. In the first scenario, the ACS computes a command torque that exceeds the

physical limitations of the actuators, causing all the CMGs to stay aligned exerting angular momentum

in the same direction. In the second case, a geometrical alignment as a consequence of gimbal motion
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causes one CMG to be spinning in the opposite direction of a different one, thus not allowing the creation

of torque along the flywheel’s spinning direction.

1.1.5 Applications and Future of CMGs

Control moment gyros have been widely used for spacecraft attitude control since the early 70s,

when Skylab was launched. This spacecraft encompassed three DGCMGs arranged in a way such that

the rotors, when all the gimbals were at their zero positions, pointed in three mutually perpendicular

directions. From this date onwards, CMGs have been used in numerous space missions where large

spacecrafts are used and high pointing accuracy is required. The International Space Station is another

spacecraft that employs CMGs for orientation control. This spacecraft is controlled by a CMG system

composed by four parallel mounted DGCMGs. Two of these CMGs are mounted antiparallel with the

other two. The utmost goal of this system is to absorb the momentum created by external disturbances

acting on the space station. The soviet, and later russian, space station Mir also employed a system of

control moment gyros [4].

CMGs have revolutionized spacecraft control since their appearance. With these devices, larger

spacecrafts could achieve reasonable amounts of torque at a considerably low energy expense. Fu-

ture and even contemporary space missions, such as Earth-observation missions, demand high agility

requirements from the satellites. The current reaction wheel models are not able to cope with such

requirements and the existing CMGs are incompatible from a mass-wise perspective. For this reason,

new CMG models are being developed with the scope of minimizing their mass while guaranteeing the

torques needed for agile missions. This research is paving the way for agile missions that, until then,

were not possible due to the physical limitations of the actuators.

1.2 Objectives

Given the latest achievements in the field of control moment gyros with the scope of optimizing

their mass/size while ensuring high agility, it is foreseen that the use of CMGs in both large and small

satellites will be a big trend in the coming years. At the same time, research is being conducted with the

goal of avoiding the singular configurations provoked by gimbal motion. Indeed, singularities constitute

an issue of major concern as they can affect the spacecraft’s orientation during a manoeuvre, and

therefore be critical for missions requiring high-pointing capabilities. The major goal of this thesis is

to provide an attitude control framework for singularity avoidance. This can be accomplished by first

understanding the different types of singularities of a specific CMG array, concluding about their influence

on the spacecraft’s motion, and finding a way of minimizing their effect.

To validate and showcase the potential of the solutions proposed in this work, a mathematical model

of a satellite is ought to be implemented in a known environment, where many control strategies can be

tested.
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1.3 Literature Review

Modern spacecrafts equipped with CMGs require singularity avoidance algorithms for precise track-

ing of targets, proper payload functioning, and various types of attitude manoeuvres while in orbit. Thus,

control algorithms for CMG allocation are an important piece of a spacecraft’s AOCS system. The fol-

lowing paragraphs summarize the state-of-the-art of singularity avoidance for spacecrafts using control

moment gyroscopes.

Several allocation algorithms have been studied to determine the inputs to the gimbals, i.e., the

gimbal rates. The pseudoinverse steering law, known as the Moore-Penrose pseudoinverse, is one of

the simplest and most frequent steering laws. This minimal two-norm approach receives the torques

from the controller and computes the gimbal rates using the right pseudoinverse method. This approach

seeks to minimize

L(γ̇) = ∥γ̇∥22, (1.1)

subject to

Jγ̇ = ḣc. (1.2)

In this equation, ḣc ∈ R3 denotes the command torque, J ∈ R3×N designates the actuator Jacobian, and

γ̇ ∈ RN represents the gimbal rates. The number of CMGs, N , may vary depending on the configuration

of the CMG cluster. Generally, satellites employ either four or six CMGs for redundancy. Finally, the

solution to the optimization problem can be obtained using the Karush–Kuhn–Tucker (KKT) conditions

[6], and is given by

γ̇ = JT (JJT )−1ḣc. (1.3)

Obviously, both this method and the weighted pseudo-inverse method, that considers a different gain for

each CMG in the cluster, do not contemplate the proximity to a singularity. Among the existing solutions

that acknowledge the existence of singularities, one can distinguish singularity escape algorithms from

singularity avoidance algorithms. Some approaches have both capabilities, as depicted in Fig. 1.4.

Fig. 1.4: Types of CMG allocation algorithms.

1.3.1 Singularity Escape Algorithms

Singularity escape algorithms aim to overcome singularities through small torque deviations from the

command torque. The purpose of these algorithms is to keep the conditioning of the actuator’s Jacobian
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as small as possible. To achieve this, an inexact mapping, from the command torque to the gimbal rates,

through a pseudo-inverse method is employed [5].

One of the earliest and most common methods consists in the addition of a diagonal matrix, as given

by

γ̇ = JT (JJT + αI3)
−1ḣc, (1.4)

where I3 is the 3 × 3 identity matrix, and α ∈ R is a scaling parameter. This approach introduces a

torque error that depends on the parameter α. This parameter may be constant or dependent on the

manipulability index, m =
√

det(JJT ), as given by

α = α0e
−µm, (1.5)

where α0 and µ are real, positive constants [7]. By choosing a variable α, the torque error decreases as

the system gets further away from the singularity and increases as it gets closer. The objective of this

approach, called the singularity robust inverse method, is to regularize the singular values of the matrix

JJT , so that it is always invertible. The time needed to escape a singularity depends on the choice of

the tuning parameters. A system that accepts high torque errors can escape quicker than a system that

is not tolerant to significant torque deviations.

An approach called singular direction avoidance, proposed by Ford and Hall [8], relates the torque

error to the singular direction only. This method consists of regularizing the smallest singular value of

the Jacobian, thus, not promoting torque error in non-singular directions. This is obtained by adding a

3× 3 matrix, X, to the pseudo inverse calculation, as given by

γ̇ = JT (JJT +X)−1ḣc, (1.6)

where X = u diag(0, 0, α) uT , u ∈ R3 is the singular direction, and α is the same singularity parameter

as in the previous method. This method clearly reduces the overall torque error, although it requires an

online computation of the Jacobian singular values.

The most common singularity escape algorithm has been proposed by Wie et al. [9] and is a gener-

alized version of the singularity robust inverse method. This method mitigates the gimbal lock effect by

adding a time-varying matrix to the pseudo inverse, as given by

γ̇ = JT (JJT + αE)−1ḣc, (1.7)

with

E =


1 ϵ0 sin(ω3t+ ϕ3) ϵ0 sin(ω2t+ ϕ2)

ϵ0 sin(ω3t+ ϕ3) 1 ϵ0 sin(ω1t+ ϕ1)

ϵ0 sin(ω2t+ ϕ2) ϵ0 sin(ω1t+ ϕ1) 1

 ∈ R3×3, (1.8)

where t denotes the time, ϵ0 ∈ R denotes a positive amplitude, and ωi ∈ R and ϕi ∈ R are the frequen-

cies and phase shifts of the dither used to drive the array out the singularity. This approach introduces a

wiggling effect to the allocation problem, allowing to escape singularities. However, there is no guaran-
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tee on the time required for escape. The advantage of this method over the previous is that it does not

require an online computation of the singular values of the Jacobian. However, similarly to the singular-

ity robust inverse method, it introduces a torque error in all directions, which magnitude depends on the

tuning parameters.

Other singularity escape steering algorithms are the feedback steering law, published by Pechev [10],

which provides a gimbal rate solution without resorting to the inverse computation, and the singularity

penetration with unit delay, described in [11], that escapes singularities by using the previous gimbal

rate commands. This last method is not meant for attitude tracking manoeuvres due to the amount of

accumulated error. Moreover, the torque error introduced in the system, as well as the time required to

escape the singularity, cannot be explicitly quantified.

Although these techniques have been proven effective to escape from singularities, these methods

are likely impractical when attitude tracking accuracy is of primary importance. In these cases, where

torque matching is strictly necessary, other alternatives that do not explore the use of torque error are

often preferred.

1.3.2 Singularity Avoidance Algorithms

Some types of singularities, i.e., non-degenerate hyperbolic singularities, that will be described in

detail later, offer the possibility of avoidance without the introduction of any torque error. Singularity

avoidance algorithms make use of null motion to avoid such singularities. This is possible due to the

use of a redundant CMG, that allows for infinite different CMG configurations for every command torque.

These algorithms are mainly divided into local gradient methods and gimbal angle or angular momentum

constraint methods.

Local gradient methods use the gradient of a singularity index to push the gimbals away from the

singularities. The underlying formulation of these methods can be described by

γ̇ = JT (JJT )−1ḣc + β(In − J+J)d, (1.9)

where β ∈ R is a singularity parameter, In – J+J is the projection matrix of any vector d onto the

nullspace of J , and d ∈ Rn is the gradient-search direction, chosen to maximize the distance to the

singularity. As can be seen in (1.9), the gimbal rate vector is given by the sum of the minimum two-

norm solution, and a singularity avoidance term that lies within the nullspace of the Jacobian. The latter

term promotes distancing from the singularity, and does so, producing no net torque. Local gradient

methods are extensively studied by Cornick in [12] and by Kuhns and Rodriguez in [13]. In the first work,

the CMG cluster is commanded to follow a specific gimbal angle configuration via null space motion

while performing an attitude manoeuvre. In the second publication, the distance from the singularity is

maximized by computing the gradient of a singularity measure function with respect to the gimbal angles.

Kurokawa, in [14], has shown that the use of an appropriate gradient-search direction can be very

effective in avoiding non-degenerate hyperbolic singularities for SGCMGs and any kind of singularities

for DGCMGs.
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Restricting the gimbal angle/angular momentum space is another way of avoiding singularities.

With this approach, software or even hardware-based constraints can be defined to limit the motion

of the gimbals. These constraints can be either linear or nonlinear. If defined in software, linear con-

straints are usually preferred due to the low computational cost. However, linear methods may limit

the workspace beyond singularities, as these restrictions are usually obtained through convexification

methods that approximate the real, usually nonlinear, constraints. The resulting reduced workspace pro-

vides a singularity-free environment for gimbal motion. Small manoeuvres, that do not require a huge

exploitation of the gimbal space, do not suffer much penalty with this method. However, the performance

of agile spacecrafts is typically affected by these methods. In [15], a singularity-free steering law for a

roof array of CMGs is accomplished. This solution relies on a feasible angular momentum chart that

provides singularity-free bound. In addition, a new deterministic allocation algorithm, called half-leading

steering logic, is suggested instead of the common pseudoinverse technique. Other reduced workspace

approaches are thoroughly investigated by H. Kurokawa in [14] and [16].

1.3.3 Singularity Avoidance and Escape Algorithms

Some singularities, namely hyperbolic singularities, can be avoided with the use of null motion, while

others, particularly elliptic singularities, cannot be avoided. In these cases a torque error is acceptable

to escape the singularity effect. Many algorithms that comprise both singularity avoidance and escape

capabilities are described below.

The first one is a steering algorithm based on the pseudoinverse method, which aims to overcome

singularities by adding both singularity avoidance and singularity escape terms to the pseudoinverse.

This strategy is called hybrid steering logic and takes the form

γ̇ = JT (JJT +X)−1ḣc + βV diag(0, 0, 0, 1)V Td, (1.10)

being an hybrid of the singularity direction avoidance algorithm and the local gradient method. In (1.10),

V denotes the right-singular vectors of J organized in descending order. Singularity parameter metrics

to achieve the desired performance are provided in [17].

Optimal control approaches are commonly employed for singularity avoidance and escape. A re-

search done by H. Leeghim et al. [18] computes the optimal gimbal rates via a one-step ahead strategy.

This method uses a mathematical model of the system to predict the state of the gimbals one step fur-

ther in time. By including a singularity index in the cost function, it is possible to maximize the distance to

the singularities by penalizing the overall cost. Yet, this approach does not consider the gimbal dynamics

as well as the physical limitations of the actuators.

Receding horizon (RH) control was extensively studied by K. Takada and H. Kojima in [19]. This work

tackles the low manoeuvring time associated with trajectories that pass through or near singularities,

and are therefore critical for agile missions. To overcome this, RH control is used to obtain fast attitude

manoeuvre times. Nonetheless, this method prioritizes manoeuvring time over torque error, which is

unwanted sometimes. Other optimal control approaches apply RH control, such as [20]. This research

9



establishes a singular-surface cost function to determine the perturbation torques to be added to the

controller output in order to avoid singularities. This method, however, does not consider the null motion

for such purpose, hence introducing torque error. Besides this, the algorithm requires large memory

space to store all the information regarding the singular surfaces in the angular momentum envelope.

The work [21] describes a model predictive controller for a simple scissored-pair CMG cluster. Within

this work, various formulations for both fast manoeuvring and minimum control energy purposes were

developed. A hybrid strategy that combines both features was also synthesized. The model predictive

controller computes the gimbal rates in an integrated fashion, merging both the controller and control

allocation steps into a single optimization problem. The drawback of this approach is that tractability

is lost, and a highly complex formulation, that involves multiple constraints, ought to be used. In [22],

a nonlinear model predictive controller was developed for attitude tracking of constant references. The

determinant of the Jacobian is included in the objective function aiming to penalize the overall cost as

the system approaches a singularity. Subsequently, the control torque command given by the nonlinear

model predictive controller is translated into gimbal rates using the right pseudoinverse. This approach,

however, exhibits very high computational times.

In a recent work published by SENER Aerospace, sequential convex programming was investigated

for satellite steering in an agile context [23]. This work divides the attitude control algorithm into two

optimization problems. The first is responsible for attitude manoeuvring planning and the second handles

CMG allocation. These algorithms are solved in a sequential fashion and present reasonable results with

a fairly low computational effort. However, singularity avoidance is not assured but guarantees are given

that the slew profile is optimum in time and control required.

Variable speed control moment gyroscopes are also widely studied for singularity avoidance. Even

though these actuators are not commonly used in spacecrafts, they offer an additional degree of freedom

due to the variable speed rotors, that can be explored for singularity avoidance. Sufficient conditions for

non-singular VSCMG steering are achieved under some assumptions in [24]. The model predictive

control framework was also applied to these actuators by Y. Yang in [25].

Hardware changes to the actual CMG cluster configurations have also been thought to mitigate

singularities. In [26], the addition of an external motor to a pyramidal CMG array was considered. This

allowed the steering of the whole CMG cluster along the z direction, thus introducing an extra degree of

freedom used for singularity avoidance.

In [27] and [28] heurisitic search algorithms have been derived for gimbal path planning. In the first,

rapidly-exploring random trees are considered in tandem with a classical steering law to manoeuvre

the spacecraft along a path that minimizes the occurrence of singularities. In the second, a global

search algorithm, that determines the null motion added upon the singularity robust inverse steering

law, was derived. This algorithm considers global information of the whole manoeuvre, instead of just

local information, and relies on a ternary tree where each child denotes negative, zero, or positive null

motions.

Machine learning (ML) approaches are becoming popular in spacecraft attitude control. A work pub-

lished by W. MacKunis et al. [29] uses a neural network-based adaptive attitude controller to steer a
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spacecraft in the presence of parametric uncertainties, nonlinear actuator disturbances, unmodeled ex-

ternal disturbances, and uncertainties in the input torque caused by unknown static CMG gimbal friction.

ML techniques were also explored by C. Papakonstantinous et al. [30] with some promising results. In

his work, learning techniques were used to predict the required null motion for attitude trajectories that

were not included in the training dataset.

Different steering algorithms outlined in this section serve different purposes. Some algorithms es-

cape singularities by performing an inexact mapping from the command torque to the gimbal rates.

These methods are usually fast from a computational perspective but may be impractical for space mis-

sions requiring high-pointing accuracy. Other methods try to avoid singularities by adding null motion to

the gimbal rates inputs, as the system gets closer to a singularity. However, these methods disregard

elliptical singularities, where avoidance is impossible. Limiting the work environment of the gimbals is

also a common solution. However, the discontinuities introduced in the gimbal/angular momentum enve-

lope might promote significant torque error in the system if the gimbal trajectory is not carefully planned.

Finally, strategies resorting to the optimal control framework are studied. These strategies explore the

redundant space of solutions of the system, as well as the acceptance of torque error in situations where

avoiding singularities is infeasible.

1.4 Contributions

Leading-edge research has mostly focused on the development of steering laws for both singularity

avoidance and escape. Optimal control strategies are capable of both and allow for constraint handling,

which is paramount for achieving optimal performance while accounting for the physical limitations of

the actuators. Nonetheless, optimal control algorithms are usually computationally heavy and inefficient.

The formulations can sometimes be complex and highly nonlinear, leading to non-convex optimization

problems. Given this, the solution proposed in this thesis aims to fill the gap that separates high per-

formance and low computational effort. An end-to-end controller that directly computes gimbal rate

commands given the attitude error does not generally cope with these requirements. Therefore, there is

a strong commitment throughout this work to find a decoupled and complementary strategy to a known

standard controller. The proposed solution exhibits both high performance, through the synthesis of an

optimal CMG allocation algorithm, and low computational cost, as convexity is later achieved. Finally,

the outcome of this dissertation contributes to the state-of-the-art as follows:

• A closed-form description of the singularity envelope is accomplished. For some CMG clusters,

the singularities are organized in lines or planes in the gimbal space. This information is leveraged

for singularity avoidance by assessing the Euclidean distance between the gimbals and the closest

singularity in the envelope. According to the best of the author’s knowledge, this is the first time

that the distance to the singularities is exploited for singularity avoidance.

• A novel algorithm for CMG allocation is derived. It consists of an add-on allocation technique to a

literature controller, that receives the torques computed by the controller, and outputs a sequence
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of gimbal rates that lead to singularity-free gimbal configurations. This solution resorts to the model

predictive control framework and employs a singularity term that considers the Euclidean distance

to the closest singularity.

• A convex approximation to the singularity term is suggested. This overcomes the excessive com-

putational cost usually associated with an optimal control approach, resulting in a convex optimiza-

tion problem.

1.5 Thesis Outline

This thesis is organized as follows:

• Chapter 2: Background. In this chapter, some theoretical concepts used during this dissertation

are explained. Firstly, the principle of operation of different spacecraft actuators is presented. Fur-

ther, a comparison of different attitude representation methods is made. This section explains the

reason why unit quaternions are commonly preferred. Following this, a short introduction to the sin-

gular value decomposition of rectangular matrices is given. Then, concepts such as the nullspace

of a matrix and the solution space of an underdetermined system of equations are revised. Later,

some principles of optimal control theory, including convex optimization, are disclosed. Finally, the

action governor and the model predictive control frameworks are briefly described.

• Chapter 3: Model Definition. Here, the mathematical description of the satellite angular motion is

presented. To start, the actuator dynamics of two different control moment gyro arrays are derived.

Then, the satellite attitude dynamics based on the principle of conservation of angular momentum

is presented. At last, the kinematics are described via a quaternion-based formulation.

• Chapter 4: Singularity Analysis. Before presenting the controller and control allocation algo-

rithms, an analytical and visual analysis of the actuator singularities is performed. Indeed, in this

part of the document, the underlying foundations of a singularity are explained. In parallel, the

Jacobian of two different CMG clusters is analysed with particular focus on singularity situations.

• Chapter 5: Controller Design and Control Allocation. In this chapter, an optimal control strategy

is derived to overcome the singularity problem. To accomplish this, a literature controller is firstly

used to compute the required torques for a given manoeuvre, and then, an optimal convex control

allocation framework is proposed to calculate the actuator inputs.

• Chapter 6: Simulation Results. The results achieved are shown and compared with some liter-

ature solutions. Various simulations based on different formulations and optimization parameters

are reported and explained in detail.

• Chapter 7: Conclusions and Future Work. The conclusions accomplished during this disserta-

tion are presented, as well as some directions for future work on this research topic.
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Chapter 2

Background

In this part of the document, the fundamentals underlying the methodologies used in this dissertation

are covered. Firstly, some of the most common spacecraft actuators are introduced. After this, an

explanation follows on why quaternions are the preferred attitude representation method for spacecraft

control. Later, some algebra concepts, such as the solution to an underdetermined system of linear

equations and singular value decomposition, are briefly explained. These sections reveal the foundation

for singularity analysis, that is later performed in Chapter 4. Thereafter, optimization theory and convexity

are succinctly addressed. Finally, optimal control strategies, such as the action governor and the model

predictive control framework, are described. The principles disclosed in these last sections constitute

the foundations of the main achievements of this dissertation.

2.1 Spacecraft Actuators

2.1.1 Magnetic Torque Rods

Most low Earth orbit satellites make use of magnetic torque rods due to their proximity to the Earth’s

surface. Magnetic torque rods consist of planar coils of wire, rigidly placed along the spacecraft axes,

that tend to align their magnetic field according to the Earth’s magnetic field. The change in the rod’s

angular momentum, m, causes a magnetic torque, t, that is given by

t = m× rm, (2.1)

where rm denotes the geomagnetic field at that point of the orbit [31].

2.1.2 Thrusters

Thrusters constitute a different type of actuators. These devices operate propellants, such as cold

gas propellant, solid chemical propellant, liquid chemical propellant or even electrical propellant. In the

case of the first three, chemicals have to be kept in tanks, making the amount of stored fuel a major
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limitation of the use of these actuators. Moreover, thrusters are not generally a good fit for precision

manoeuvres as they are meant to produce large amounts of torque. Depending on the location where

these devices are mounted relative to the center of mass, the torque magnitude is proportional to the

normal component of the applied force, f . This last one is derived from the well known Reynolds

transport theorem, with magnitude

f = ve
dm

dt
+ ae(pe − pa), (2.2)

where ve is the exhaust velocity, dm
dt is the propellant consumption rate, ae is the nozzle exit area, pe is

the nozzle exit pressure, and pa is the ambient pressure [31].

2.1.3 Reaction and Momentum Wheels

Reaction wheels and momentum wheels are very similar in the way that both employ flywheels driven

by electric motors. A reaction wheel is spun up or down to create the torque and force the vehicle to

rotate. A momentum wheel is constantly spinning at a very high speed which induces the stabilization

of the spacecraft, making it resistant to attitude changes caused by external disturbances. The torques

generated by these devices are achieved by accelerating or decelerating the flywheel and are given by

t =
dhω

dt
= Jωω̇ω, (2.3)

where hω is the angular momentum vector of the flywheel, Jω is the inertia of the flywheel, and ω̇ω

is its angular acceleration [31]. A spacecraft requires at least three reaction/momentum wheels for full

controllability, i.e., pitch, roll, and yaw control.

2.1.4 Control Moment Gyros

A control moment gyro is another type of ACS. A CMG generates gyroscopic torque by spinning

a flywheel, similarly to reaction wheels, but comprises a motorized gimbal capable of tilting the rotor’s

angular momentum. Accordingly, the output torque of a CMG is given by

t =
dh

dt
= h× γ̇, (2.4)

where h denotes the CMG angular mometum and γ̇ represents the gimbal spinning rate [31].

2.2 Attitude Representations

There are several methods to describe the rotational kinematics of a rigid body in three dimensions.

Among the existing methods, Euler angles, axis-angle vectors, rotation matrices, and unit quaternions

are the most popular.

Euler angles are one of the most frequently used methods for representing an object’s orientation.

Three different angles designated by roll, pitch, and yaw (ϕ,θ,ψ) are used for representing rotations about
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the cartesian x,y and z axes. The order of these rotations is important as a roll-pitch-yaw rotation can

result in a different final orientation than that of applying the same angles in a yaw-pitch-roll sequence.

One of the major drawbacks of this representation is the existence of a singularity at θ = π
2 . In this

configuration, both roll and yaw perform the same operation. There is also a discontinuity in the angles

at ±π. The axis-angle vector representation, also known by Euler’s principal rotation theorem, parame-

terize any arbitrary orientation shift, θ, by a single rotation about a principal axis ê, with rotation angle

θ. Even though this representation is minimal, similarly to the Euler Angles, the rotations are described

by nonlinear trigonometric equations, which can be computationally expensive. Besides this, it exhibits

ambiguity as a rotation of 2π rad yields the exact same orientation. Rotation matrices are the most

general form of representing the attitude of a rigid body. This method requires nine parameters to fulfill

a 3×3 matrix. Rotation matrices satisfy six constraints as each column of the matrix is a unit vector, and

the columns and rows are orthogonal to each other. This makes this representation significantly larger

than the others, and consequently, computationally expensive. Yet, this representation is often adopted

as it presents no singularities or ambiguities. Finally, unit quaternions are the method that holds the

most benefits, as they do not present any singularity, just like the rotation matrices, but they also do not

require many parameters. Besides this, the kinematics equations along with the rotation operations are

not complex, making them more efficient than the Euler angles. The major drawback of this representa-

tion is that a physical understanding of a rotation by a unit quaternion is generally hard to grasp. Besides

this, the quaternions −q and q encode the exact same rotation. There is also the problem of unwinding

and the chattering that may occur when the scalar part is zero, causing a positive and a negative angle

to represent the same attitude.

Finally, weighing the pros and cons of all these methods, it is clear that unit quaternions are the most

advantageous attitude representation method. Table 2.1 summarizes the differences between each of

these methods [4].

Table 2.1: Comparison of attitude representation methods.

Number of
parameters Kinematics Rotation

form Singularity Ambiguity Discontinuity

Euler
angles 3 Nonlinear Trigonometric At θ = π

2

ϕ and ψ equivalent
at θ = π

2

At ±π

Axis-angle
vector 3 Linear Trigonometric None At θ = ±2kπ

k ∈ Z None

Rotation
matrices 9 Bilinear Linear None None None

Unit
quaternions 4 Bilinear Quadratic None Double couver

of SO(3) None

2.3 Singular Value Decomposition

Singular value decompostion (SVD) can be interpreted as a factorization of a real or complex matrix.

SVD generalizes the eigen-decompostion of a square m × m matrix to any rectangular matrix m × n.

From a practical standpoint, SVD can be seen as a method for identifying the principal components of
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a dataset. These are the directions along which datapoints display the most variation. SVD can also

be used for data reduction by using the directions of most variation, and therefore, approximate the

original data with fewer datapoints. This is widely used for image compression, for example. SVD is

also an important tool for finding the coefficients of a reduced rank regression or ridge regression. In

the robotics domain, SVD can be applied to analyse the conditioning of a dynamic matrix and conclude

about the presence of a singular direction. This last application is considered later in this document.

The singular value decomposition of a matrix consists in breaking it down into the product of three

matrices - an orthogonal matrix U , a diagonal matrix Σ, and the transpose of an orthogonal matrix V .

The SVD of a m× n matrix M can be written as

M = UΣV T , (2.5)

where U is a m×m complex unitary matrix, Σ is a m× n rectangular diagonal matrix, and V is a n× n

complex unitary matrix. A geometric interpretation of (2.5) is provided in Fig. 2.1.

Fig. 2.1: Geometric interpretation of SVD (Image credits: [32]).

The matrices U ,Σ, and V are given as follows.

• U : Consists of the normalized left singular vectors of M . In other words, this matrix contains the

eigenvectors of MMT organized by columns and arranged in descending order. This depends on

the magnitude of the corresponding eigenvalues.

• Σ: Contains the singular values of M displayed in descending order along the diagonal. These

are computed by taking the square root of the eigenvalues of MMT (or MTM ). The maximum

number of singular values is equal to the minimum number of rows or columns of the matrix.

• V : Consists of the normalized right singular vectors of M . In other words, this matrix contains the

eigenvectors of MTM organized by columns and arranged in descending order.
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Finally, expanding (2.5) results in

M =

(
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0
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k

. . .

vT
1


, (2.6)

where k represents the index of the smallest non-zero singular value. If k = min{m,n}, the matrix M is

full rank. If k < min{m,n}, the matrix M is not full rank [33].

2.4 Underdetermined Systems

In linear algebra, a system of linear equations is considered undertermined if there are less equations

than unknown variables. On the other hand, it is considered overdetermined if there are more equations

than unknowns. Consider the following linear system:

Ax = b, (2.7)

where A ∈ Rm×n, x ∈ Rn, and b ∈ Rm. Note that x is the vector of unknowns. If m < n, (2.7) is an

underdetermined system that typically has an infinite number of solutions.

The solution of the homogeneous system

Ax = 0, (2.8)

is a subset of Rn called the nullspace of the matrix A [34]. Designated by N (A), its dimension depends

on both the number of unknowns and the rank of the matrix A, being given by

dim(N (A)) = n− rank(A). (2.9)

Among the existing solutions of (2.7), some may be more relevant from a physical standpoint. For

example, there is interest in finding the solution that minimizes the 2-norm of the vector x. By doing this,

the system meets a certain requirement using the least energy possible. This translates into finding the

solution of the cost function

L = ∥x∥22, (2.10)

subject to

Ax = b. (2.11)
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The solution to this optimization problem can be obtained using the KKT conditions [6] and is given by

x0 = AT (AAT )−1b. (2.12)

Finally, the solution space of (2.7) can be described by the sum of the minimum two-norm solution with

a nullspace component, as given by

x = x0 +Nλ, (2.13)

where N ∈ Rn×(n−rank(A)) is the normalized nullspace and λ ∈ Rn−rank(A) is a scaling vector.

These results will be particularly useful when exploring the null motion of the CMG array, provided

by the use of a redundant CMG.

2.5 Optimization Problems and Convexity

An optimization problem consists of finding the best solution to a problem from all the possible solu-

tions. The standard form of an optimization problem is

minimize
x

f(x)

subject to hi(x) = 0, i = 1, ...,m,

gj(x) ≤ 0, j = 1, ..., p

(2.14)

where

• x ∈ Rn is the optimization variable,

• f : Rn → R is the cost function to be minimized,

• hi(x) = 0 are the equality constraints, and

• gj(x) ≤ 0 are the inequality constraints.

The solution to an optimization problem can also result from a maximization problem. This is equiv-

alent to minimizing the symmetric of its cost function. However, the most standard way consists of a

minimization problem. If there are no constraints, i.e. m = p = 0, the optimization problem is called

unconstrained.

Depending on the nature of the cost and constraint functions, one can distinguish between two

different types of optimization problems. The first concerns convex optimization. In a convex optimization

problem, optimality is guaranteed, i.e., if there exists a local minimum, that local minimum is also a global

minimum. A convex optimization problem can be solved efficiently up to a very large size. To guarantee

the convexity of an optimization problem, the following conditions have to be met [6]:

• the cost function f(x) has to be convex (see Fig. 2.2),

• the equality constraints have to be affine maps, and
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• the inequality constraints have to be convex.

Gathered all these conditions, there is the presence of a convex cost function and a convex feasible

region. If any of these conditions cannot be verified, convexity is not be guaranteed, meaning that

the optimization problem is likely non-convex. Such problem may have multiple feasible regions and

various optimal points within each region. In this domain, reaching a local minimum does not mean

global optimality, as non-convex problems generally have multiple local minima. This type of optimization

problems are typically hard to solve and can be computationally expensive. An example of a non-convex

function is provided in Fig. 2.3.

Fig. 2.2: Convex function (Image credits: [35]). Fig. 2.3: Non-convex function (Image credits: [35]).

2.6 Action Governor

Consider a system represented by the discrete-time model

x(k + 1) = fd(x(k),u(k)), (2.15)

where x(k) ∈ Rm represents the system state at the discrete time instant k, with k ∈ R+
0 , and u(k) ∈ Rn

represents the control input. It is assumed that the nominal control policy

uϕ(k) = ϕ(x(k), r(k), k) (2.16)

has been defined for the system (2.15), where r ∈ Rp represents the reference signal. The control policy

ϕ may be linear, nonlinear, time-invariant, or time-variant. Furthermore, consider that the system state

x(k) is subject to an exclusion zone requirement of the form

x(k) /∈ X0, , ∀k ∈ Z+
0 , (2.17)

where the set of all feasible x is denoted by X . The nominal control policy does not necessarily contem-

plate the exclusion zone requirement (2.17). Therefore, there may be situations where the system state

lies in X0, which may lead to undesired consequences. The goal of the algorithm proposed in [36] aims

to enforce (2.17) by monitoring and minimally modifying the nominal input uϕ when necessary. This is

realized through an add-on supervisory scheme, referred to as Action Governor (AG), as depicted in

19



Fig. 2.4.

Fig. 2.4: Action governor scheme.

The AG consists of an online constrained optimization problem of the form

minimize
u(k) ∈ U

∥u(k)− uϕ(k)∥2S (2.18a)

subject to fd(x(k),u(k)) ∈ X\X0, (2.18b)

where U represents the range of control inputs, and the function ∥·∥s =
√

(·)TS(·), with S ∈ Rn×n being

a positive-definite matrix, is used to penalize the difference between the nominal control command uϕ

and the modified control command u that satisfies (2.18b) [36][37].

2.7 Model Predictive Control

Model predictive control (MPC) is an advanced control method typically used to control a system

while satisfying a set of constraints. MPC uses a mathematical model to predict the future behaviour of

the system and take control actions accordingly. The model used is often obtained theoretically, given

prior knowledge of the physics of the system. It can also be determined empirically through experiments

and system identification methods. A graphical overview of the MPC structure is provided in Fig. 2.5. A

Fig. 2.5: MPC structure overview.

model is derived to predict the system outputs based on the current state of the system and the com-

puted inputs. These control actions, that drive the system to the setpoints, generally result from solving

a constrained optimization problem. The inputs to the MPC are a sequence of setpoints over a finite

duration time-window. Finally, the integration of an MPC is similar to conventional controllers, as it also

requires state feedback for the computation of the control actions (see Fig. 2.6). Notwithstanding, the
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combination of prediction and optimization is the main difference from conventional control approaches,

which use precomputed control laws [38].

Fig. 2.6: MPC-based control diagram.

The operating principle of an MPC is visually explained in Fig. 2.7 and can be described as follows:

• The future outputs for a given prediction horizon Np, are predicted sequentially using a dynamic

model of the system. The predicted outputs, y(t+k|t), k = 0, ..., Np−1, depend on the state of the

system and the computed control signals up to the time instant t− 1.

• The sequence of future control actions is determined by optimizing a cost function under specific

constraints. The cost function usually comprises a term that penalizes deviations from the setpoint

over the prediction horizon and a term to regularize the control effort. The constraints of the

optimization problem include the model equations that dictate the next state of the system given

its current state and the input. These may also include saturation functions, input rate limiters, or

even state restrictions. Usually, state constraints can be relaxed by being penalized in the cost

function instead.

• The first control action in the control sequence u is applied to the system while the remaining

control signals are discarded. On the next sampling instant, the control sequence is re-computed

for a different state x. The control horizon, Nc, dictates the number of optimized control actions. If

the control horizon is smaller than the prediction horizon, the last computed input is kept constant

for the remaining length of the horizon [38] [39].

Lastly, Table 2.2 summarizes the advantages and disadvantages of MPC over conventional con-

trollers.
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Fig. 2.7: MPC operating principle (Image credits: [38]).

Table 2.2: Advantages and disadvantages of MPC over conventional controllers.

Advantages Disadvantages

Optimality. Uses an optimal solution that is
tailored to the choice of the operational con-
straints and the cost function.

Multivariable controller. Extension to the
multivariable case is straighforward. Easily
handles multiple inputs and outputs.

Constraint handling. An MPC can handle nu-
merous constraints. This is an important fea-
ture as violating constraints may lead to unde-
sirable consequences.

Customizable. Easily shaped to the specifics
of the current problem and is fairly simple to
implement.

Complex derivation. An MPC accounts for
complex model dynamics, interactions among
the various system variables, and delay be-
tween the execution of a control action and its
effect on the state variables.

High number of control parameters. An
MPC can be difficult to tune depending on
the number of optimization weights in the cost
function.

High computational cost. Requires large
amounts of calculations, especially when the
number of constraints is high, or when using
long horizons.
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Chapter 3

Model Definition

In this chapter, the satellite’s angular motion dynamics are derived using a state-space description.

The satellite model comprises different steps as suggested in Fig. 3.1. Firstly, the CMG receives the

gimbal commands, γ̇, from the ACS. Consequently, this triggers gimbal motion in the CMG array that

translates into a reaction torque, ḣ, applied to the spacecraft. The satellite dynamics laws convert the

incoming torques into angular accelerations and angular velocities, ω. Finally, the satellite kinematics

are propagated using attitude quaternions, q.

Fig. 3.1: Satellite model breakdown.

3.1 Actuator Dynamics

Two different CMG arrays will be considered throughout this document. The first consists of three

different control moment gyros arranged in a way such that every CMG sits on a vertex of an equilateral

triangle (Fig. 3.2). This is a simple model, not commonly used in real spacecrafts as it only provides

roll and pitch control. However, this model will be frequently mentioned in this report for singularity

visualization purposes. Moreover, it contains a convenient singular space that will be further explored to

demonstrate the potential of the proposed control strategies. To compensate for yaw control and achieve

full 3-dimensional controllability, a reaction wheel is later added to the z direction. The second model is

a roof array frequently utilized for spacecraft control. This version, employed by [15], considers two pairs

of CMGs that are orthogonally equipped. Each pair of CMGs can produce torque along two different

axis. As can be observed in Fig. 3.3, the pair composed by CMG #1 and CMG #2 can generate torque

in the xz plane, while the pair composed by CMG #3 and CMG #4 only creates torque in the yz plane.

As each pair of CMGs is capable of acting in the z direction, the capacity of angular momentum and

torque along the z axis is twice as large as in the other directions.
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ḣ1

ḣ2
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Fig. 3.3: Roof array of CMGs.

Designating the momentum of the i-th CMG as hi, the angular momentum of the entire system is

given by the sum of the angular momentum produced by each individual CMG, i.e.,

h =

N∑
i=1

hi, (3.1)

where N denotes the number of CMGs in the system. Taking this into consideration, the total angular

momentum of the triangular array is

h = h0


sin (α+ γ1)

cos (α+ γ1)
+ h0


− cos γ2

sin γ2

+ h0


sin (α− γ3)

− cos (α− γ3)
 ∈ R2, (3.2)

where h0 ∈ R is the initial momentum given by the rotation speed of the flywheels, α equals 30◦ for

equilateral triangle configurations, and γ ∈ RN is the gimbal angle vector, with N = 3.

The derivative of the angular momentum can be computed by applying the chain rule to (3.2), yielding

ḣ(γ) =
∂h

∂γ

∂γ

∂t
= J(γ)γ̇, (3.3)

where J represents the Jacobian matrix, given by

J(γ) = h0


cos (α+ γ1)

− sin (α+ γ1)

sin γ2

cos γ2

− cos (α− γ3)

− sin (α− γ3)
 ∈ R2×3. (3.4)

The same reasoning applies for the roof array. The angular momentum and the Jacobian for this config-

uration are given by, respectively,
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h(γ) = h0


− cos γ1

0

sin γ1

+ h0


sin γ2

0

cos γ2

+ h0


sin γ3

− cos γ3

0
+ h0


cos γ4

sin γ4

0
 ∈ R3, (3.5)

and

J(γ) = h0


sin γ1

0

cos γ1

cos γ2

0

− sin γ2

cos γ3

sin γ3

0

− sin γ4

cos γ4

0
 ∈ R3×4. (3.6)

The angular momentum envelopes for both models are presented in Fig. 3.4. It can be seen that

the triangle layout is able to produce uniform amounts of momentum in every direction in the xy plane.

On the other hand, the roof array has the capability of producing twice as much as momentum in the z

direction, comparing to the x and y directions. Note that the results shown are dimensionless. In fact,

the real angular momentum envelope is only achieved after scaling these results by h0.

(a) Triangular array (b) Roof array

Fig. 3.4: Angular momentum envelopes.

Finally, to simulate the behaviour of a real actuator, dynamics and saturation must be considered. A

rather simple actuator model that considers the dynamics and the physical limitations of a real CMG is

provided in Fig. 3.5. This model introduces a first-order system used to replicate the actuator dynamics

Fig. 3.5: Actuator modelling.

as given by

γ̈ = K(−γ̇ + γ̇d), (3.7)

with a real pole at −K rad/s and unitary gain. Additionally, the output of the integrator is constrained to

a known interval to account for saturation effects.
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3.2 Satellite Dynamics

Control moment gyros exploit the principle of conservation of angular momentum to steer the space-

craft. The rate of change of angular momentum equals the sum of the external torques applied on the

spacecraft. In vector form, this translates into

dhs

dt

∣∣∣∣
I
= RI←B(τ ), (3.8)

where hs ∈ R3 denotes the total angular momentum of the spacecraft and τ ∈ R3 represents the

external torques. Furthermore, the derivative is evaluated in an inertial frame, represented by the index

I, and the external torques have to be rotated from the body axes, B, to the inertial axes, I, through the

rotation operation RI←B. To express these quantities in the body frame, which is non-inertial, one has

to include the gyroscopic term in the equation, as given by

RB←I

(
dhs

dt

∣∣∣∣
I

)
=
dhs

dt

∣∣∣∣
B
+ ω × hs, (3.9)

where ω ∈ R3 is the angular velocity of the body axes with respect to the inertial axes, expressed in the

body frame [40]. For the sake of simplicity, it is assumed that the actuator frame coincides with the body

frame.

The total angular momentum of the spacecraft can be written as

hs = Isω + h, (3.10)

where the first term denotes the angular momentum respective to the satellite motion and the second

term represents the angular momentum produced by the CMG system. In this equation, Is ∈ R3×3

designates the matrix of inertia of the spacecraft. Since spacecrafts can be regarded as rigid bodies,

the time derivative of hs with respect to the body axis simplifies to

dhs

dt

∣∣∣∣
B
= İsω︸︷︷︸

=0

+Isω̇ + ḣ = Isω̇ + ḣ. (3.11)

Substituting (3.11) and (3.10) in (3.9), and using (3.8), yields

Isω̇ + ḣ+ ω × (Isω + h) = τ . (3.12)

Isolating the internal torque produced by the CMGs, it follows that

 Isω̇ + ω × Isω = ν + τ ,

ν = −(ḣ+ ω × h),

(3.13)

where ν ∈ R3 denotes the reaction torque expressed in the inertial frame. If no external torques are

applied to the spacecraft, i.e., τ = 0, the total angular momentum of the system is conserved, and so,
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any momentum change provoked by the actuator triggers a reaction torque on the spacecraft with the

same magnitude but opposite direction, i.e.

Isω̇ + ω × Isω = −(ḣ+ ω × h). (3.14)

Finally, solving (3.12) with respect to the satellite’s angular acceleration, one obtains

ω̇ = I−1s (−ω̇ × Isω̇ − ḣ− ω × h+ τ ). (3.15)

3.3 Satellite Kinematics

In this section, the kinematics of the satellite are described using unit quaternions. A unit quaternion

is defined as the sum of a scalar and a vector, as given by

q = q0 + q1i+ q2j + q3k, (3.16)

where q0 is also denoted the real part of the quaternion, and

q = q1i+ q2j + q3k (3.17)

contains the imaginary components of the quaternion. In aerospace applications, it is common to use a

special quaternion for attitude representation, where the real part is

q0 = cos

(
θ

2

)
, (3.18)

and the vectorial part is

q = ê sin

(
θ

2

)
, (3.19)

where ê designates the normalized axis of rotation and θ represents the angle of rotation. To derive the

equation that relates the attitude quaternion with the satellite’s angular velocity, one has to determine

the derivative of q.

Let q(t) be the quaternion relative to a reference frame at time t, and q(t + δt) be the quaternion

relative to the same reference frame at time t + δt. The quaternion that brings q(t) to q(t + δt) is given

by

p(t) = cos

(
δθ

2

)
+ ê sin

(
δθ

2

)
. (3.20)

For a small time shift (δt→ 0), the simplifications

• cos

(
δθ

2

)
→ 1 and

• sin

(
δθ

2

)
→ δθ

2
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are valid, which yields

p(t) ≈ 1 + ê
δθ

2
. (3.21)

The quaternion q(t+ δt) is finally otained by multiplying q(t) with p(t), as given by

q(t+ δt) = q(t)⊗ p(t)

= q(t)⊗

(
1 + ê

δθ

2

)
.

(3.22)

Dividing both sides by δt and letting δt→ 0, one gets

q(t+ δt)− q(t)

δt
= q(t)⊗

(
1

2
ê
δθ

δt

)
⇔

⇔ dq

dt
= q(t)⊗

(
1

2
ω(t)

)
,

(3.23)

where ω(t) = ê ζ(t) and ζ(t) = limδt→0
δθ

δt
. Knowing that the product of two generic quaternions u and

v is given by

u⊗ v = u0v0 − uv + u0v + v0u+ u× v, (3.24)

one can expand (3.23) [25] and obtain

d
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 , (3.25)

which may be written in matrix notation as

q̇ =
1

2
Ω(ω)q. (3.26)

Finally, the kinematics equation can be split into the dynamics of its real and vectorial part, as given by

d

dt


q3

q2

q1

q0

 =
1

2


0

0

q0

0

0

q0

0

0

q0

0

0

0


ω3

ω2

ω1

− 1

2


−ω2

ω3

0

ω1

ω1

0

−ω3

ω2

0

−ω1

ω2

ω3



q3

q2

q1

 , (3.27)

or in the compact format

d

dt


q

q0

 =
1

2
q0


I3

0
ω − 1

2


S(ω)

ωT
 q, (3.28)
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where

S(ω) =


−ω2

ω3

0

ω1

0

−ω3

0

−ω1

ω2

 . (3.29)

3.4 State-Space Representation

The combined dynamics and kinematic equations derived above result in the nonlinear state-space

model

d

dt


γ̇

γ

h

ω

q

q0


=


K(−γ̇ + γ̇d)

γ̇

J(γ)γ̇

I−1s (−ω̇ × Isω̇ − ḣ− ω × h+ τ )

1
2q0I3ω − 1

2S(ω)q

− 1
2ω

Tq

, (3.30)

where

• the state is x = (q0, q,ω,h,γ, γ̇)
T ,

• the input is u = γ̇d, and

• the disturbance is d = τ .

3.5 Model Discretization

Given the continuous-time system

ẋ(t) = f(x(t),u(t),d(t)), (3.31)

one can find a discretized state-space representation. The forward Euler method offers a simple and effi-

cient solution. This method relies on a first-order numerical approximation for solving ordinary differential

equations. By employing this approach, the discrete-time system takes the form

x(k + 1) = fd(x(k),u(k),d(k), Ts), (3.32)

where

fd(x(k),u(k),d(k), Ts) = x(k) + Ts f(x(k),u(k),d(k)), (3.33)

k ∈ N+
0 , and Ts denotes the sampling time.
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Chapter 4

Singularity Analysis

In robotics, a singularity is defined as a configuration where at least one degree of freedom is lost.

Since the output of the CMG system represents torques, it becomes impossible to produce torque in a

given direction under the presence of a singularity. Mathematically, this is evaluated by the rank of the

Jacobian. Therefore, there is a singularity whenever

rank(J(γ)) < min(m,n), (4.1)

giving that J(γ) ∈ Rm×n. For non-square matrices where m < n, this is equivalent to verifying when the

determinant of JJT equals zero, i.e.,

det(JJT ) = 0. (4.2)

The rank of the Jacobian, for the triangular CMG system, is equal to two in non-singular circum-

stances. This is the maximum rank it can take, as this matrix has two rows and three columns. When

the system meets a singularity, the Jacobian becomes rank deficient. In this scenario, the rank of the

Jacobian drops to one, making it impossible to create torque in 2-dimensions. For the roof CMG system,

a non-singular Jacobian has rank 3. When the system meets a singularity, the rank of the Jacobian

becomes either two, a so-called rank-2 singularity, or one, a so-called rank-1 singularity. In a rank-2

singularity, torques can only be created in 2-dimensions, whereas in a rank-1 singularity, torques can

only be produced in 1-dimension. As SGCMGs comprise flywheels that are permanently spinning at a

fixed rotation speed, it is impossible to witness rank-0 singularities in SGCMG systems.

4.1 Analysis of the 2D System

There are two different types of singularities in the triangular system, as shown in Fig. 4.1. When

all CMGs are aligned and spinning in the same direction, there is a so-called 3h singularity. This type

of singularity, also called saturation singularity, restrains the creation of torque in the wheel’s direction.

Indeed, when all the flywheels are spinning in the same direction, the system can no longer provoke

momentum increments since it reaches the limit of the momentum envelope. In fact, the whole bound-
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ary of the momentum envelope in Fig. 3.4(a) corresponds to a 3h singularity. In these situations, the

available torque is maximum in the direction orthogonal to the axes of the flywheels. An example of a 3h

singularity, given by the gimbal configuration γs = (0, 2π/3,−2π/3)T , is provided in Fig. 4.2(a). When all

CMGs are aligned, but one is spinning in the opposite direction of the other two, the system undergoes

a so-called 1h singularity. This singularity, caused by an anti-parallel alignment, inhibits the creation

of torque in the wheel’s direction. In this configuration, the system can only produce torque along the

orthogonal direction to the axes of the flywheels. An example of this type of singularities is provided in

Fig. 4.2(b). The example depicts the singularity γs = (0, 2π/3, π/3)T .

Fig. 4.1: Types of singularities in the triangular array of CMGs.
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Fig. 4.2: Examples of singularities in the triangular array of CMGs.

As discussed in the beginning of this section, the rank of the Jacobian decreases whenever the

system crosses a singularity. The Jacobian is analysed next for both the non-singular and singular

states.

For the non-singular gimbal configuration γ = (0, 0, 0)T the Jacobian takes the form

J(γ) = h0


0.8660

−0.5000

0

1.000

−0.8660

−0.5000
 (4.3)

and is full rank, i.e., rank(J(γ)) = 2. The singular value decomposition for this configuration is given by
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the product of the matrices

U =


0

1

−1

0
 , Σ = h0


0

1.225

1.225

0

0

0
 , and V T =


0.5774

−0.7071

−0.4082

0.5774

0

0.8165

0.5774

0.7071

−0.4082
 , (4.4)

where both singular values are non-zero and share the same value. The principal directions of the

Jacobian are given by the left-singular vectors of J , i.e., the columns of U . With this information, an

ellipse can be drawn to visualize the conditioning of the Jacobian matrix, as shown in Fig. 4.3(a). The

direction of the semiaxes of the ellipse is given by the columns of U , and the corresponding magnitude

coincides with the respective singular values. It is clear that the Jacobian is well conditioned for this

gimbal configuration.
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(a) Non-singular gimbal configuration
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(b) Singular configuration

Fig. 4.3: Jacobian’s principal components for the different gimbal configurations in the triangular array of
CMGs.

For the singular gimbal configuration shown in Fig. 4.2(a), where γs = (0, 2π/3,−2π/3)T , the Jaco-

bian is given by

J(γs) = h0


0.8660

−0.5000

0.8660

−0.5000

0.8660

−0.5000
 , (4.5)

which has two linearly dependent rows. The Jacobian has rank 1 and its SVD contains a zero singular

value. The SVD matrices, in this case, are given by

U =


−0.8660

0.5000

−0.5000

−0.8660
 , Σ = h0


0

1.732

0

0

0

0
 , and V T =


0

0.8165

−0.5774

−0.7071

−0.4082

−0.5774

0.7071

−0.4082

−0.5774
 .

(4.6)

The ellipse for this gimbal configuration is reduced to a line segment as one of its semiaxes has size

zero (Fig. 4.3(b)). Regardless of the magnitude of the gimbal inputs, the torque produced by the system

will be zero along the singular direction u = (−0.8660,−0.5000)T . Indeed, if one defines a gimbal input
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envelope in R3, where

γ̇i ∈ [−1.5, 1.5] rad/s, ∀i ∈ {1, 2, 3}, (4.7)

and map it to torques via (3.3), it becomes possible to visualize the torque envelopes for both the non-

singular and singular gimbal configurations. These plots are presented in Fig. 4.4 and suggest that

torques are possible in every 2D direction for the non-singular gimbal configuration, whereas torques

are only feasible along one dimension, i.e. along the non-singular direction, for the singular situation.

(a) Non-singular gimbal configuration (b) Singular configuration

Fig. 4.4: Torque envelope for the different gimbal configurations in the triangular array of CMGs.

To determine the whole singularity envelope for the triangular system, one has to solve (4.2). Since

the expression for the determinant may become quite complex to solve analytically, it is easier to break

down the determinant of JJT into the sum of the determinants of its submatrices. Recalling the Cauchy-

Binet theorem [41], the determinant of the product between two generic matrices A and B is given by

det(AB) =
∑

S∈([n]
m)

det(A[m],S) det(BS,[m]). (4.8)

Since A = J and B = JT , the determinant of JJT simplifies to

det(JJT ) =

n∑
i=1

d2i , (4.9)

where di = det(Ji) are the Jacobian minors of order m and Ji = J with the i-th column removed.

Expanding (4.9) for the triangular system, one gets

det(JJT ) = d21 + d22 + d23, (4.10)

where the computation of each determinant is straightforward, yielding

d21 =
h40
2

cos (2γ2 − 2γ3 + 2α) +
h40
2
, (4.11a)
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d22 =
h40
2

cos (2γ3 − 2γ1 + 2α) +
h40
2
, (4.11b)

and

d23 =
h40
2

cos (2γ1 − 2γ2 + 2α) +
h40
2
. (4.11c)

To verify (4.2), every determinant di has to be zero. This requires finding the solution of the system of

linear equations

det(JJT ) = 0 ⇔


2γ1 − 2γ2 +

π

3
= π + 2kaπ, kα ∈ Z, (4.12a)

2γ3 − 2γ1 +
π

3
= π + 2kbπ, kβ ∈ Z, (4.12b)

2γ2 − 2γ3 +
π

3
= π + 2kcπ, kγ ∈ Z. (4.12c)

Since there is an extra equation in (4.12) due to the use of a redundant CMG, one only has to solve two

of the three equations. Solving (4.12b) and (4.12c) with respect to γ1 and γ2, respectively, it is possible

to achieve the singularity envelope for the triangular system, that is given by

γ1 = γ3 −
π

3
+ kβπ, kβ ∈ Z, (4.13a)

and

γ2 = γ3 +
π

3
+ kγπ, kγ ∈ Z. (4.13b)

Some of these singularity lines represent 1h singularities, while others represent 3h singularities. The

plot shown in Fig. 4.5(a) depicts the singularities for the gimbal space where

γi ∈ [−π, π] rad, ∀i ∈ {1, 2, 3}. (4.14)

The singularities in Fig. 4.5(a) were mapped into angular momentum points via (3.2). By doing so, it

(a) Singularity lines

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Triangular array

(b) Singular momentum space

Fig. 4.5: Singularities envelope for the triangular array of CMGs.
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was possible to find the singular space in the angular momentum envelope. As shown in Fig. 4.5(b),

3h singularities compose the boundary of the envelope, while 1h singularities are located in a circum-

ference, with magnitude h0, inside the envelope. It should be noted, however, that non-singular gimbal

configurations can also be mapped into momentum points of magnitude h0 due to the redundancy of the

system.

4.2 Analysis of the 3D System

Since there is one extra equation for the 3D system, as well as an additional CMG, the singularities

are different. Solving (4.2) for the roof array yields

det(JJT ) = d21 + d22 + d23 + d24, (4.15)

where the determinants of the submatrices are given by

d21 = h60 sin (γ2)
2
cos (γ3 − γ4)

2
, (4.16a)

d22 = h60 cos (γ1)
2
cos (γ3 − γ4)

2
, (4.16b)

d23 = h60 cos (γ4)
2
cos (γ1 − γ2)

2
, (4.16c)

and

d24 = h60 sin (γ3)
2
cos (γ1 − γ2)

2
. (4.16d)

The set of singularities, that results from solving (4.16), is given by the planes

γ1 =
π

2
+ kαπ ∧ γ2 = kβπ, kα, kβ ∈ Z, (4.17a)

and

γ3 = kγπ ∧ γ4 =
π

2
+ kδπ, kγ , kδ ∈ Z, (4.17b)

and the points

γ1 = kαπ ∧ γ2 =
π

2
+ kβπ ∧ γ3 =

π

2
+ kγπ ∧ γ4 = kδπ, kα, kβ , kγ , kδ ∈ Z. (4.17c)

The roof array contains both rank-1 and rank-2 singularities. Rank-2 singularities happen when the

system loses one degree of freedom. In these situations, the CMG array is only capable of creating

torque in two dimensions. Rank-1 singularities happen when the system loses two degrees of freedom.

These cases are more rare than rank-2 singularities, although when they happen, the actuation loss is

higher, as the system is only able to produce torque along one direction. Examples of rank-1 singularities

are provided in Fig. 4.6. In these examples, no torque is available in the xy plane due to the alignment

of the CMGs. Rank-2 singularities are illustrated in Fig. 4.7. In Fig. 4.7(a), no torque can be generated
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along the x direction, while in Fig. 4.7(b), no torque can be generated along the y direction. Finally,

Fig. 4.7(c) illustrates a singular gimbal configuration where no torque can be created in the z direction.
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(a) γs = (π/2, 0, 0,−π/2)
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Fig. 4.6: Examples of rank-1 singularities in the roof array of CMGs.
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Fig. 4.7: Examples of rank-2 singularities in the roof array of CMGs.
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Figs. 4.8-4.10 display both the principal components and the torque envelopes for a non-singular

gimbal configuration, a rank-2, and a rank-1 singularity, respectively. To accomplish the torque envelopes

for each gimbal configuration, an hypercube was defined in R4, where

γ̇i ∈ [−1.5, 1.5] rad/s, ∀i ∈ {1, 2, 3, 4}. (4.18)

Finally, since the Jacobian’s singular values are all non-zero for the non-singular state, the principal

components of the Jacobian exhibit an ellipsoid whose volume is given by

Vellipsoid =
4

3
πσ1σ2σ3, (4.19)

where σi represents its singular values. For the rank-2 singularity in Fig. 4.9, no torque can be produced

along the x direction. In this situation the ellipsoid is reduced to an ellipse in 2-dimensions, whose

volume equals zero due to the existence of a null singular value. For rank-1 singularities, only one

direction displays non-zero magnitude. Consequently, the torque plot displays a line segment in R3, as

torque can only be created along the non-singular direction.

(a) Principal components (b) Torque envelope

Fig. 4.8: Non-singular gimbal configuration: γs = (0, 0, 0, 0).

4.3 Singularity Classification

The singularities of a SGCMG array are organized into classes and sub-classes, as shown in Fig. 4.11.

Singularities that can be avoided through the use of null motion are classified as hyperbolic, while sin-

gularities that cannot be avoided with the use of null motion are classified as elliptical. Saturation sin-

gularities at the limit of the array capability exist in every CMG system. These singularities compose

the outer surface of the angular momentum envelope and cannot be avoided through null motion, thus

being classified as elliptical. Often referred as external singularities, due to their peripheral positioning in

the momentum envelope, escaping these singularities leads to unwanted changes in the spacecraft at-
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(a) Principal components (b) Torque envelope

Fig. 4.9: Rank-2 singularity: γs = (π/2, 0, 0, 0).
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(a) Principal components (b) Torque envelope

Fig. 4.10: Rank-1 singularity: γs = (π/2, 0, 0,−π/2).

titude. Singularities that lie inside the momentum envelope are often designated as internal and usually

allow for avoidance through the use of null motion. Nonetheless, there are CMG systems that comprise

internal singularities inescapable with null motion. Depending on the space for null motion, hyperbolic

singularities are subcategorized into degenerate or non-degenerate. Degenerate motion that lies in a

space where the rank of the Jacobian is not maximum does not drive the system to a non-singular

state. These solutions must be discarded and should be treated similarly to elliptic singularities. Hy-

perbolic singularities where null motion effectively brings the system to a non-singular state are called

non-degenerate [5]. These singularities are passable, as the system can overcome their effect without

introducing a torque error in the system. Singularities that are classified differently are called impass-

able, as for these cases, the introduction of a torque error is necessary to escape the singularity effect.

A description of each class of singularities is given in Table 4.1.

The first step to classify a singularity of a SGCMG system is to seek the existence of null motion.
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Fig. 4.11: Classification of SGCMG singularities.

Table 4.1: Description of the different singularity classes [5].

Degenerate hyperbolic Non-degenerate hyperbolic Elliptic

◦ Existence of null motion.

◦ Do not affect the rank of the
Jacobian.

◦ Nullspace displacements
cause a transition to a differ-
ent singular state.

◦ Null motion solutions lie on
a local curve along which the
rank of the Jacobian is un-
changed.

◦ Also called impassable.

◦ Ability to exploit null motion
to escape from the singular-
ity.

◦ Null motion effectively
brings the system to a non-
singular state.

◦ Does not require a change
in the array angular momen-
tum, thus not influencing the
spacecraft orientation.

◦ Also called passable.

◦ Null motion does not exist
for the specific array configu-
ration.

◦ To escape, it requires a per-
turbation in the angular mo-
mentum, thus changing the
spacecraft attitude;

◦ Also called impassable.

Mathematically, one starts by performing a Taylor expansion of the angular momentum about the singu-

larity γs. This translates into

h(γ) = h(γs) +

N∑
i=1

(
∂hi

∂γi

∣∣∣∣
γis

δγi +
1

2!

∂2hi

∂γ2i

∣∣∣∣
γis

δγ2i +O(δγ3i )

)
, (4.20)

where

• h(γ) is the angular momentum of the system at a non-singular state in close proximity with the

singularity,

• h(γs) is the angular momentum of the SGCMG array at the singularity,

• hi is the angular momentum of the i-th CMG at the singular configuration,

• δγi = γi − γis are the null motion gimbal angle displacements,

• N is the number of CMGs, and

• O(δγ3i ) denotes the higher-order terms of the Taylor series.
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To facilitate the derivation, define a set of orthonormal axis {ŝi, ôi, ĝi}, where

• ŝi represents the spin axis of the flywheel,

• ôi represents the torque direction,

• ĝi represents the gimbal axis direction,

and

ôi = ŝi × ĝi. (4.21)

The first order derivative of hi in (4.20) denotes the torque direction of the i-th CMG as given by

ôi =
∂hi

∂γi

∣∣∣∣
γis

. (4.22)

The remaining terms are further simplified to

∂2hi

∂γ2i

∣∣∣∣
γis

=
∂ôi

∂γi

∣∣∣∣
γis

= −hi, (4.23)

∂3hi

∂γ3i

∣∣∣∣
γis

= − ∂hi

∂γi

∣∣∣∣
γis

= −ôi, (4.24)

∂4hi

∂γ4i

∣∣∣∣
γis

= − ∂ôi

∂γi

∣∣∣∣
γis

= hi, (4.25)

and can be generalized by
∂αhi

∂γαi

∣∣∣∣
γis

= ôi, α = 4k + 1, k ∈ Z+
0 , (4.26a)

∂αhi

∂γαi

∣∣∣∣
γis

= −hi, α = 4k + 2, k ∈ Z+
0 , (4.26b)

∂αhi

∂γαi

∣∣∣∣
γis

= −ôi, α = 4k + 3, k ∈ Z+
0 , (4.26c)

and
∂αhi

∂γαi

∣∣∣∣
γis

= hi, α = 4k + 4, k ∈ Z+
0 . (4.26d)

Substituting these results in (4.20), follows that

h(γ)− h(γs) =

n∑
i=1

(
ôiδγi −

1

2!
hiδγ

2
i − 1

3!
ôiδγ

3
i +

1

4!
hiδγ

4
i + ...

)
. (4.27)

Left multiplying both sides of (4.27) by the singular direction uT , yields

uT [h(γ)− h(γs)] =

n∑
i=1

(
1

2!
uThiδγ

2
i − 1

4!
uThiδγ

4
i + ...

)
, (4.28)

where the odd order terms vanish because there is no torque along the singular direction. Using the
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Taylor expansion of a cosine

cos(x) =

∞∑
k=0

(−1)k
x2k

(2k)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ ..., (4.29)

it is possible to simplify (4.27) to

uT [h(γ)− h(γs)] =

n∑
i=1

uThi(1− cos(δγi)). (4.30)

Since the null motion does not affect the total angular momentum of the system, i.e.,

h(γ) = h(γs), (4.31)

the left-hand side of (4.30) equals zero. Consequently, the right-hand side of the equation is also null,

yielding
n∑

i=1

uThi(1− cos(δγi)) = 0. (4.32)

Therefore, null motion solutions result from finding the gimbal angles γi that satisfy (4.32). For simplicity,

this equation can be approximated to its 2nd order equivalent, as given by

n∑
i=1

uThiδγ
2
i = 0. (4.33)

Designating P = diag(uThi) as the singularity projection matrix, (4.33) can be written as

(δγT )P (δγ) = 0, (4.34)

where the difference configuration δγ = γ − γs can be described in terms of the nullspace of the

Jacobian, i.e.,

δγ =

n∑
i=1

civi = Nc, (4.35)

where c denotes the scaling components of the nullspace vectors. Substituting (4.35) in (4.34) one

finally achieves the simplified 2nd order condition for the existence of null motion, that is given by

cT NTPN︸ ︷︷ ︸
S

c = 0, (4.36)

where S is the singularity-definition matrix defined as

S = NTPN . (4.37)

The eigenvalues of S determine whether the singularity is hyperbolic or elliptical. If all the eigenvalues

have the same sign (all positive or all negative), only the trivial solution c = 0 satisfies (4.36). In this

situation, where S is either positive definite or negative definite, null motion does not exist to avoid the
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singularity, and therefore the singularity is elliptical. For the scenarios where S is indefinite or semi-

definite, there are non-trivial solutions to (4.36) in which c ̸= 0. These are the so-called hyperbolic

singularities.

With all the non-trivial null solutions c determined in (4.36), one has to perform the degeneracy test

to identify the non-degenerate solutions. If any solution meets the constraint

d =
√
det(JJT ) > 0, (4.38)

then it passes the degeneracy test. The analysis begins with a Taylor expansion of d about the singular

configuration γs, as given by

d(γ) = d(γs) +

n∑
i=1

(
∂d

∂γi

∣∣∣∣
γis

δγi +
1

2

n∑
j=1

n∑
i=1

∂2d

∂γj∂γi

∣∣∣∣
γis

δγjδγi +O(δγ3i )

)
. (4.39)

By the definition of a singularity, it is known that

• d(γs) = 0, and

•
∂d

∂γi

∣∣∣∣
γis

= 0 because d ≥ 0 ∀γi (JJT ≥ 0).

Similarly to (4.20), the high-order terms can be neglected for simplicity, reducing (4.39) to its 2nd order

equivalent

d(γ) =
1

2
δγTHδγ, (4.40)

where H =
∂2d

∂γ∂γT

∣∣∣∣
γs

is the Hessian matrix evaluated at the singularity. Expressing γ in terms of the

nullspace components, one gets

d(γ) =
1

2
cT NTHN︸ ︷︷ ︸

W

c. (4.41)

Finally, non-degeneracy is guaranteed if any of the following conditions is met:

• if H ≻ 0 ⇒ W ≻ 0 ⇒ d(γ) > 0;

• if W ≻ 0 ⇒ d(γ) > 0, regardless of the definiteness of H;

• if cTWc > 0 ⇒ d(γ) > 0, regardless of the definiteness of W ;

If W is singular, solutions exist to keep the quadratic approximation of the determinant equal to zero.

If these solutions are also solutions of (4.36), the test for degeneracy is inconclusive. In this situation,

high-order terms should be considered in both tests through a numerical analysis [5].

The singularity γs = (0, 2π/3,−2π/3) in Fig. 4.2(a) is elliptic as its singularity-definition matrix

S = h0


0

−1

−1

0
 (4.42)

is positive definite. On the other hand, the internal singularity γs = (0, 2π/3, π/3) in Fig. 4.2(b), with
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singularity-definition matrix given by

S = h0


0.5773

−0.6667

0

0.5773
 , (4.43)

whose eigenvalues are λ1 = −h0 and λ1 = 0.3333h0, is hyperbolic. In this case, S is indefinite as its

eigenvalues have different signs. The degeneracy test yields to

W = h0


−2.3094

4.6667

2

−2.3094
 , (4.44)

where λ1 = 0.6667h0 and λ2 = 6h0. Therefore, d(γ) > 0 since W is positive definite, and so, this is the

case of a non-degenerate hyperbolic singularity.

4.4 Vicinity of a Singularity

The effect of a singularity on the actuation capability of a satellite was both analytically and graphically

analyzed in the previous sections. It became clear that when the system crosses a singularity, torque

is lost in at least one direction regardless the input given to the gimbals. For real actuators, this is even

more problematic as gimbal rates are physically limited. In fact, as the system approaches a singularity,

the inputs to the gimbals become larger in order to cope with the torque required by the controller.

The system can only match the commanded torque until the point where it is not further possible to

create torque by increasing the speed of the gimbals. This situation typically happens in the vicinity

of a singularity and should be avoided as torque matching can no longer be verified. Therefore, the

problem of avoiding singularities becomes more complex, since now there is the need to avoid not only

the singularity, but also to prevent the system from entering its neighborhood. An application of what

was described to the triangular system follows next.

Define a line segment r as

r =

(
− π

3
,
π

3
, 0

)T

+ kr

(
π

3
,−2

π

3
,
π

3

)
, (4.45)

where kr ∈ [−0.5, 1.5], that crosses the singularities

γsA =

(
− π

3
,
π

3
, 0

)T

, and γsB =

(
0,−π

3
,
π

3

)T

, (4.46)

as observed in Fig. 4.12(a). The distance to the singularities A and B as a function of kr is plotted in

Fig. 4.12(b). The system crosses the singularity A for kr = 0 and the singularity B for kr = 1. Fig. 4.12(c)

illustrates the largest gimbal input, computed with the Moore-Penrose pseudoinverse, as a function of kr.

These results were achieved for a control torque of ḣc = (3, 3)T and an angular momentum h0 of 4Nms.

It is possible to conclude that the largest gimbal rate tends to infinity as the system gets closer to the

singularities. There is a point in the gimbal space where the largest gimbal rate, ∥γ̇∥∞, surpasses the
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physical limits of the gimbals, denoted by γ̇max, and the system no longer meets the torques demanded

by the controller.

(a) Line segment r
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(c) Largest gimbal input

Fig. 4.12: Vicinity of a singularity - a practical example for the triangular system.
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Chapter 5

Controller Design and Control

Allocation

Algorithms for singularity avoidance with application to spacecraft attitude control are proposed

throughout this chapter. All of the described approaches resort to the optimal control framework and

are included in the ACS as add-on techniques to a well-known literature controller. This way, it is pos-

sible to test different CMG allocation algorithms on top of a reliable and conventional controller, and

extend their applicability to several control systems. In addition, tractability is preserved as the problem

of allocating the actuator inputs is independent from the attitude controller.

Before describing the proposed algorithms, different singularity metrics to evaluate the proximity to

a singularity are thoroughly studied in Section 5.1. Herein, a novel singularity function, that uses the

Euclidean distance between the system’s gimbal configuration and the closest singularity, is derived

to overcome the high computational cost associated with standard literature solutions. Then, in Sec-

tion 5.2, an action governor is synthesized to monitor and adjust the gimbal rates computed with the

Moore-Penrose pseudoinverse. If the system enters the vicinity of a singularity, the action governor

corrects the inputs fed to the actuator in order to drive the system away from the singularity. When the

system is distant from the singularities, the governor directly applies the energy-optimal gimbal rates to

the system. An integrated way of computing the optimal gimbal rates is derived in Section 5.3. This

method reduces the allocation step into a single optimization problem and displays quite promising re-

sults. Finally, in Section 5.4, a MPC-based algorithm is introduced to extend the previous approach over

a fixed prediction horizon.

5.1 Singularity Metrics

To design a controller for singularity avoidance, the system has to be able to sense the proximity

to a singularity. This information is paramount as it allows the system to take control actions that lead

to singularity-free gimbal states. As mentioned in Section 4.4, when the system enters the vicinity of a

singularity, the gimbal inputs become larger in an effort to meet the desired torque. Indeed, the 2-norm
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and the ∞-norm of the gimbal rate vector can be useful metrics to analyse the closeness of a singular

state, as their value increases whenever the system approaches a singularity. However, singularities

can be hard to discern in situations where the gimbal inputs are large due to the nature of the control

torques. Indeed, if the torques are not properly regulated, they might convert into large gimbal rates

that can be mistaken for singularities. Yet, limiting the control torques beyond the physical limitations of

the actuators is not usually desired, as by doing so, the actuation capability of the satellite decreases.

For these reasons, different metrics to evaluate the proximity to a singularity, in an explicit form, are

introduced next.

The most standard singularity metric consists on the evaluation of the determinant of the Jacobian.

For rectangular matrices whose number of rows is less than the number of columns, this is accomplished

with the manipulability index, that is given by

m =
√

det (JJT ). (5.1)

When the system is approaching a singularity, m tends to zero. On the other hand, when the system

gets further away from singularities, m increases. This is one of the most intuitive ways of evaluating

the proximity of a singularity. However, this approach is computationally expensive since it requires an

online computation of the determinant of JJT .

The SVD of the Jacobian, introduced in Chapter 4, is also a useful tool for singularity avoidance. The

singularity index, c, given by

c =
σmax

σmin
, (5.2)

can be used to minimize the ratio between the maximum and minimum singular values of J . Also known

by condition number, the use of this function promotes the good conditioning of the Jacobian. In singular

situations, c tends to infinity as σmin tends to zero. Ideally, for a cluster with the same control authority

over all axes, the condition number should tend to one.

A different singularity index was proposed by H. Leeghim et al. [18]. In his work, the singularity index

v =
1

2

N∑
i=j=1,i̸=j

⟨f i,f j⟩2 (5.3)

was employed to minimize the inner product between the different columns of the Jacobian. In (5.3),

the i-th column of the Jacobian is denoted by f i. In fact, when the system meets a singularity, at least

two of these columns become collinear, thus maximizing their inner product. Consequently, the system

promotes the orthogonality of the columns of J by minimizing v, thus repelling the system from singu-

larities. When v is zero, or close to, one may conclude that the rank of the Jacobian is maximum, having

no linearly dependent rows. The author also proposed simplifications to approximate this singularity

index to the 2nd order. In fact, v, in its complete form, is nonlinear as it is the result of the product of

trigonometric functions.

In this thesis, a novel approach that considers the Euclidean distance to a singularity is proposed.

Start by examining the singularities in a 2-dimensional space. Designating the minimum required dis-

48



tance to a given singularity by κ, one can define a circular exclusion zone centered at the singularity

γs with radius κ, as depicted in Fig. 5.1. The exclusion requirement is verified whenever the gimbals γ

Fig. 5.1: Exclusion requirement for the 2D case.

satisfy

(γ − γp)
T︸ ︷︷ ︸

vT
1

(γs − γp)︸ ︷︷ ︸
v2

≤ 0, (5.4)

where γp denotes the projection of the gimbal vector on the exclusion zone boundary, and is calculated

by

γp = γs + κ
γ − γs

∥γ − γs∥2
. (5.5)

These results are applicable to n-dimensions and can be used for singularity avoidance in many different

systems. Before applying (5.4) and (5.5), one has to know, at any given time, the closest singularity in

the system. As the singularities are arranged in 3D lines for the triangular system, the closest point on a

singularity line consists of the orthogonal projection of γ on the line. This is realized by

γs =
vvT

vTv
(γ − γl) + γl =

vvT

vTv
γ +

(
I3 −

vvT

vTv

)
γl = Avγ + bv (5.6)

where

• v is a vector director of the singularity line,

• γl is an arbitrary point on the singularity line,

• Av is the projection matrix, and

• bv is the offset vector.

Knowing the projection in every singularity line, the closest singularity is the one whose distance to the

gimbals is the minimum. Substituting γp and γs in (5.4) by (5.5) and (5.6), respectively, results in

(
− (I3 −Av)γ + bv + κ

(I3 −Av)γ − bv
∥(I3 −Av)γ − bv∥2

)T(
κ

(I3 −Av)γ − bv
∥(I3 −Av)γ − bv∥2

)
≤ 0. (5.7)

As for the 3D system, the closest singularity in the singular planes given by (4.17a) and (4.17b) can be
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easily obtained by

γs =

(
π

2
+ kαπ kβπ γ3 γ4

)T

, kα, kβ ∈ Z, (5.8)

and

γs =

(
γ1 γ2 kγπ

π

2
+ kδπ

)T

, kγ , kδ ∈ Z, (5.9)

respectively. This is a rather simple metric to assess the proximity of the system to the singularities. In

fact, the closest singularity to the system, at any given point, can be obtained by finding the minimum

distance between the gimbals and all of the lines/planes contained in the singularity envelope. Therefore,

instead of storing the information about all of the singularities in the system, one only has to store

the equations that describe the singularity lines/planes. Besides this, the number of equations can

be minimized by wrapping the gimbal angles to the interval [−π, π]. In this way, only the information

regarding the singularity lines/planes contained in the interval [−π, π] has to be stored. This makes this

metric a lightweight and efficient solution that will be later exploited for singularity avoidance.

5.2 Action Governor

An AG-based approach is firstly considered to avoid singularities, as shown in Fig. 5.2.

Fig. 5.2: AG-based control diagram for singularity avoidance.

In short:

• A nonlinear proportional square P 2 control algorithm is implemented in the quaternion space. This

controller uses the quaternion error and the satellite’s angular velocity to compute the required

torque, ḣc, for a given attitude manoeuvre.

• The nominal set of gimbal rates, γ̇0, is computed via an energy-driven optimization problem.

• The nominal gimbal rates are subject to an action governor algorithm, that checks and corrects

their values for singularity avoidance, γ̇.

The utmost goal of this approach is to promote the matching between the command torque, ḣc, and the

actual torque produced by the CMG system, ḣ. It is expected that without the use of an algorithm for

singularity avoidance, torque matching is not verified in singular situations.

The nonlinear P 2-controller in its standard form is given by [42]

ν = −P qqe − P ωω, (5.10)
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where qe denotes the vectorial component of the error quaternion, ω represents the angular velocity of

the satellite, and P q and P ω are gain matrices selected, respectively, as [4]

P q = kqIs, (5.11a)

and

P ω = kωIs, (5.11b)

where Is is the inertia matrix of the spacecraft, and kq ∈ R and kω ∈ R are tuning parameters. Note that

this controller uses a reference angular velocity of (0, 0, 0)T rad/s, thus only being suitable for constant

reference tracking. The error quaternion is calculated with the Hamilton product between the conjugate

of the reference quaternion, r̄, and the estimated quaternion, q̄, as given by [31]

q̄e = r̄∗ ⊗ q̄ = (r0 − r)⊗ (q0 + q), (5.12)

which unfolds into

q̄e =


−r3

−r2

−r1

r0

r2

−r3

r0

r1

−r1

r0

r3

r2

r0

r1

−r2

r3




q3

q2

q1

q0

 . (5.13)

Only the vectorial part of the error is used in (5.10). If the commanded rotation is more than π radians,

the closest rotation is in the opposite direction. This is determined by the sign of q0. If q0 < 0, the closest

rotation is given by the conjugate of q̄e [42]. To account for the physical limitations of a real CMG system,

saturation functions are introduced to bound the quaternion error as well as the output torque. Thus,

(5.10) becomes

ν = sat
U
(−Pqsat

Li

(qe)− Pωω), (5.14)

where Li is the error quaternion saturation function given by

Li(qe) =
kω
kq

min{
√

4ai|qei |, wimax
}, ∀i ∈ {1, 2, 3}, (5.15)

• with ai being the maximum acceleration along the i-axis computed as ḣmax/Isii ,

• |qei | the modulus of the error quaternion along the i-axis, and

• wimax
the maximum angular velocity along the i-axis.

Moreover, U is the output torque saturation function, given by

U(ν) =


ν , if ∥ν∥∞ < ḣmax,

ḣmax
ν

∥ν∥∞
, , if ∥ν∥∞ ≥ ḣmax.

(5.16)
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Recalling (3.13), the torque expressed in the inertial frame

ν = −ḣ− ω × h, (5.17)

is equivalent to

ḣc = −ν − ω × h, (5.18)

where ḣc is the command torque expressed in the body frame. Finally, replacing ν in (5.18) by (5.14), it

follows that

ḣc = −sat
U

(
− Pqsat

Li

(qe)− Pωω
)
− ω × h. (5.19)

The optimal energy solution for a given control torque is obtained using the Moore-Penrose pseu-

doinverse, as demonstrated in (1.3). Furthermore, since gimbal rates are physically limited, the energy-

optimal gimbal rates, γ̇0, undergo a saturation function S, given by

S(γ̇0) =


γ̇0 , if ∥γ̇0∥∞ < γ̇max,

γ̇max
γ̇0

∥γ̇0∥∞
, if ∥γ̇0∥∞ ≥ γ̇max.

(5.20)

Since the system comprises at least one redundant actuator, it is possible, in general, to meet a

control torque with infinite different gimbal inputs. The nominal gimbal input, that corresponds to the

minimum control energy, is slightly modified to guarantee that the system does not fall in an unsafe

state, or in this case, it is convenient to assure that the system stays far from the singularities. Denoting

the set of all d ∈ R+
0 by X , a singularity influence region, X0, that the system ought to avoid, can be

defined as

X0 = {d ∈ R+
0 : d < κ}, (5.21)

where d represents the distance to the closest singularity, and κ ∈ R+
0 represents the distance threshold.

Knowing this, the action governor in Fig. 5.2 can be formulated as an online constrained optimization

problem of the form

minimize
γ̇(k) ∈ U

∥γ̇(k)− γ̇0(k)∥2S (5.22a)

subject to γ(k + 1) = γ(k) + Tsγ̇(k), (5.22b)

γ(k + 1) ∈ X\X0, (5.22c)

where U is the set of redundant solutions, Ts is the sampling time, and the function ∥·∥S =
√
(·)TS(·),

where S ∈ Rn×n is a positive-definite matrix, is employed to penalize the difference between the nominal

gimbal rate command γ̇0(k) and the modified gimbal rates γ̇(k) to satisfy (5.22c). The inputs to (5.22) are

the pre-calculated energy-optimal gimbal rates γ̇0(k) and the gimbal state γ(k). For feasibility reasons,

(5.22c) can be relaxed by being handled as a soft constraint in the cost function rather than a hard
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constraint. By doing so, the action governor takes the form

minimize
γ̇(k) ∈ U

∥γ̇(k)− γ̇0(k)∥2S + ρPX0(γ(k + 1)) (5.23a)

subject to γ(k + 1) = γ(k) + Tsγ̇(k), (5.23b)

where PX0 is a penalty function for the set X0, and ρ ∈ R+ is a penalty parameter. PX0 is continuous and

PX0(γ) =

 0 , if γ ∈ X\X0,

> 0 , if γ ∈ X0.

(5.24)

Due to the redundancy of the system, the solution to

ḣc = Jγ̇ (5.25)

is the set

S = {γ̇ ∈ Rn : γ̇ = γ̇0 +Nλ}, (5.26)

where N ∈ Rn×(m−rank(J)) is the normalized nullspace, and λ ∈ Rm−rank(J) is the scaling vector. As-

suming that the gimbal rates are physically constrained to the interval

D = {γ̇i ∈ R : |γ̇i| ≤ γ̇max, ∀i = 1, ..., N}, (5.27)

the set of feasible solutions to (5.23) is given by

U = S ∩ D. (5.28)

For the triangular CMG system, the equality constraint

∥γ̇(k)−Anγ̇(k)− bn∥2 = 0 (5.29)

guarantees that γ̇ lies inside S. In (5.29), the nullspace projection matrix is given by

An =
nnT

nTn
, (5.30)

where n ∈ Rn is the nullspace of the Jacobian, and the nullspace offset vector is given by

bn = (I3 −An)γ̇0(k). (5.31)

This ensures that the gimbal vector, after modification, belongs to the set of redundant solutions. There-

fore, a change in the gimbal rates, given by the action governor, produces no net torque in the system.
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Additionally, the inequality constraint

|γ̇i(k)| ≤ γ̇max ,∀i = 1, ..., N (5.32)

is added to the optimization problem to limit the gimbal rates to the interval specified in (5.27). Singularity

avoidance is sought by keeping the gimbal angles prediction, given by (5.23b), outside of the plane p

(see Fig. 5.1). Consequently, the exclusion requirement is verified if

(γ(k + 1)− γp(k))
T (γs(k)− γp(k)) ≤ 0, (5.33)

meaning that the boundary plane p, computed at the time instant k, is used for singularity avoidance

at the time instant k + 1. This allows for a reduction in the number of operations used for singularity

avoidance. In fact, the gimbal projection γp is obtained through a nonlinear expression. Therefore, to

achieve linearity, this one cannot be updated inside the optimization problem. Using the penalty function

PX0
(η) = max(η(k + 1), 0)2, where

η(k + 1) = (γ(k + 1)− γp(k))
T (γs(k)− γp(k)), (5.34)

it become possible to penalize any gimbal motion towards the inner side of the plane p. If the gimbals

lie outside of the plane, no penalty is given. Finally, the action governor can be written as

minimize
γ̇(k)

∥γ̇(k)− γ̇0(k)∥2S + ρmax(η(k + 1), 0)2 (5.35a)

subject to γ(k + 1) = γ(k) + Tsγ̇(k), (5.35b)

|γ̇i(k)| ≤ γ̇max ,∀i = 1, ..., N, (5.35c)

∥γ̇(k)−An(k)γ̇(k)− bn(k)∥2 = 0, (5.35d)

η(k + 1) = (γ(k + 1)− γp(k))
T (γs(k)− γp(k)). (5.35e)

5.3 Integrated Allocation

The singularity avoidance strategy described in Section 5.2 relies on an add-on algorithm to modify

the gimbal inputs computed with the Moore-Penrose pseudoinverse. If the prediction indicates that the

gimbals will fall close to a singular state, the gimbal rates are modified in an effort to drive the system

away from the singularity region. This is a convenient method, as the on-board computer only needs to

solve an optimization problem whenever it senses the proximity of a singularity. However, since linearity

is achieved with the use of the Euclidean distance singularity metric, the problem of allocating the gimbal

inputs can be reduced into a single optimization problem with fairly low computational burden.
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Therefore, the allocation problem may be written as an optimization problem of the form

minimize
γ̇(k)

1

2
∥ḣ(k)− ḣc(k)∥2H +

1

2
∥γ̇(k)∥2U +

1

2
∥γ̇(k)− γ̇(k − 1)∥2M +

1

2
ρmax(η(k + 1), 0)2 (5.36a)

subject to ḣ(k) = J(k)γ̇(k), (5.36b)

γ(k + 1) = γ(k) + Tsγ̇(k), (5.36c)

|γ̇i(k)| ≤ γ̇max ,∀i = 1, ..., N, (5.36d)

|γ̇i(k)− γ̇i(k − 1)| ≤ ∆γ̇max ,∀i = 1, ..., N, (5.36e)

η(k + 1) = (γ(k + 1)− γp(k))
T (γs(k)− γp(k)), (5.36f)

where the optimization weights are the positive-definite matrices H ∈ Rm×m, U ∈ Rn×n, M ∈ Rn×n,

and the parameter ρ ∈ R+. Note that the maximum gimbal rate variation, ∆γ̇max, is obtained by multi-

plying the maximum gimbal acceleration, γ̈max, with the sampling time, Ts. The inputs to (5.36) are the

control torques ḣc, the gimbal angles estimation γ, the Jacobian J , the closest singularity γs, and the

singularity projection γp, computed at the time instant k.

Note that:

• The term 1
2∥ḣ(k) − ḣc(k)∥2H is used to penalize the mismatch between the control torque com-

mands and the torques produced by the CMG system.

• The term 1
2∥γ̇(k)∥

2
U is used to minimize the control energy spent.

• The term 1
2∥γ̇(k)− γ̇(k − 1)∥2M is another control energy metric. Yet, this term is used to penalize

significant variations between consecutive gimbal inputs.

• Finally, the term 1
2ρmax(η(k + 1), 0)2 is used for singularity avoidance.

When the system is outside of the singularity region, (5.36) fosters torque matching through minimal

actuation effort. When the system enters the singularity region, the term 1
2ρmax(η(k + 1), 0)2 becomes

non-null, and the system compensates by using a non-minimal energy solution contained in the set of

redundant solutions that satisfy (5.36b). In this way, the system repels the singularities without promoting

torque violations. To achieve optimal performance, the optimization weights have to be carefully chosen.

As a criterion for parameter tuning, which was verified empirically, the torque mismatch matrix H should

be at least 10 times larger than the control energy weight matrices U and M , and at least 10 times

smaller than the singularity parameter ρ.

Lastly, (5.36) is a convex optimization problem. This means that any solution is globally optimal

and can be achieved at a very low computational expense. Indeed, (5.36a) is the sum of four convex

functions, where the first three are quadratic whose Hessian matrices are positive-definite, and the

last results from the composition of the affine map (5.36f) with the squared ReLU function (f(x) =

max(x, 0)2), that is known to be convex. Besides this, the equality constraints (5.36b) and (5.36c) are

affine functions of γ̇(k), and the inequality constraints (5.36d) and (5.36e) result from the composition of

an affine map with the modulus function, that is also known to be convex.
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5.4 MPC-based Allocation

The previous approaches rely on the numerical integration of the gimbal rates to obtain a one-step

ahead prediction of the gimbal angles. With this information, the system takes control actions that aim

to match the command torques while keeping the gimbals away from any singularity. These methods,

however, are not effective in situations where it is impossible to avoid a singularity by computing the

gimbal rates one-step ahead in time. Besides this, the solutions provided by these approaches are

commonly jerky, as the system is required to act immediately. Indeed, in some situations the system

has to be able to sense the proximity of the singularity far-ahead in time in order to avoid it. This also

allows for a reduction in the control energy used for dodging the singularity. A new approach based on

the model predictive control framework is derived to overcome these limitations. This approach tackles

the allocation problem by extending the prediction of the gimbal angles over a fixed prediction window.

This provides the ability of anticipating the proximity of a singularity region a few steps ahead in time,

and consequently take control actions that lead to singularity-free configurations. To achieve this, a

predictor is firstly derived to estimate the sequence of control torques, Ḣc, over the prediction window.

The predictor uses the reduced system model

d

dt


h

ω

q

q0

 =


ḣc

I−1s (−ω̇ × Isω̇ − ḣ− ω × h+ τ )

1
2q0I3ω − 1

2S(ω)q

− 1
2ω

Tq
 , (5.37)

where

• the state is x = (q0, q,ω,h)
T ,

• the input is u = ḣc, and

• the disturbance is d = τ .

The control diagram in Fig. 5.3 illustrates the integration of the predictor on the system. The predictor

receives a sequence of attitude references R(k) =
(
r(k), ..., r(k+Np)

)
, whereNp denotes the prediction

horizon, and combines the system model (5.37) with the controller to calculate the sequence of control

torques, represented by Ḣc(k) =
(
ḣc(k), ..., ḣc(k + Np)

)
, that are fed to the allocation MPC. Note that

the predictor disregards the gimbals, thus assuming that the control torques are effectively applied to

the system. This is a reasonable assumption since torque matching is verified whilst the system is

navigating through non-singular states.
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Fig. 5.3: MPC-based control diagram for singularity avoidance.

The MPC-based allocation approach aims to find the optimal sequence of gimbal rates Γ̇(k) =(
γ̇(k), ..., γ̇(k +Np)

)
by solving

minimize
Γ̇(k)

k+Np∑
τ=k

(
1

2
∥ḣ(τ)− ḣc(τ)∥2H +

1

2
∥γ̇(τ)∥2U +

1

2
∥γ̇(τ)− γ̇(τ − 1)∥2M +

1

2
ρmax(η(τ + 1), 0)2

)
(5.38a)

subject to ḣ(τ) = J(τ)γ̇(τ) ,∀τ = k, ..., k +Np, (5.38b)

γ(τ + 1) = γ(τ) + Tsγ̇(τ) ,∀τ = k, ..., k +Np, (5.38c)

|γ̇i(τ)| ≤ γ̇max ,∀i = 1, ..., N ,∀τ = k, ..., k +Np, (5.38d)

|γ̇i(τ)− γ̇i(τ − 1)| ≤ ∆γ̇max ,∀i = 1, ..., N ,∀τ = k, ..., k +Np, (5.38e)

γs = γs(γ(τ)), (5.38f)

γp(τ) = γs + κ
γ(τ)− γs

∥γ(τ)− γs∥2
, (5.38g)

η(τ + 1) = (γ(τ + 1)− γp(τ))
T (γs − γp(τ)) ,∀τ = k, ..., k +Np. (5.38h)

This optimization problem is a nonlinear programming problem (NLP). In fact, the Jacobian in (5.38b)

has to be dynamically updated with the gimbal angles prediction. Besides this, the problem of finding

the closest singularity, given by (5.38f), is a complex nonlinear function of γ. Consequently, (5.38g)

and (5.38h) are also nonlinear. However, these constraints can be relaxed through convexification tech-

niques.

To begin with, the linearization of (5.38b) about an equilibrium (γϕ, γ̇ϕ) can be written as

ḣ(γ, γ̇) = ḣ(γϕ, γ̇ϕ) +
∂ḣ

∂γ

∣∣∣∣∣
(γϕ,γ̇ϕ)

(γ − γϕ) +
∂ḣ

∂γ̇

∣∣∣∣∣
(γϕ,γ̇ϕ)

(γ̇ − γ̇ϕ), (5.39)

which expands to

ḣ(γ, γ̇) = J(γϕ)γ̇ϕ +A(γϕ, γ̇ϕ)(γ − γϕ) + J(γϕ)(γ̇ − γ̇ϕ)

⇔ ḣ(γ, γ̇) = J(γϕ)γ̇ +A(γϕ, γ̇ϕ)(γ − γϕ),
(5.40)
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where A is given by

A(γϕ, γ̇ϕ) = h0


−γ̇1 sin(α+ γ1)

−γ̇1 cos(α+ γ1)

γ̇2 cos(γ2)

−γ̇2 sin(γ2)

−γ̇3 sin(α− γ3)

γ̇3 cos(α− γ3)
 . (5.41)

The linearization matrices J and A may be constant or variable along the horizon. In the first case, a

single equilibrium is employed to find the linearization matrices, whereas multiple equilibria are used for

the second case. Since the MPC computes the optimal states and inputs along the horizon at any time

instant, this information can be exploited to find the linearized trajectory in the next time instant. There-

fore, the equilibria used for the torque linearization at the time instant k, are defined by the sequence of

gimbal states, Γ, and the sequence of gimbal rates, Γ̇, computed at the time instant k−1. In addition, the

equilibrium corresponding to the last prediction in the horizon, i.e. (γϕ(k+Np), γ̇ϕ(k+Np)), is obtained

by duplicating the last set of gimbal angles and gimbal rates in Γ(k − 1) and Γ̇(k − 1), respectively. The

robustness and the impact of the linearization are thoroughly analyzed in Section 6.2.3.

Furthermore, the computation of the closest singularity line is only performed once, given the state

of the gimbals at the time instant k. Consequently, the exclusion plane p is defined at the time instant

k and kept constant along the horizon. Finally, the convex representation of the MPC-based allocation

algorithm is given by

minimize
Γ̇(k)

k+Np∑
τ=k

(
1

2
∥ḣ(τ)− ḣc(τ)∥2H +

1

2
∥γ̇(τ)∥2U +

1

2
∥γ̇(τ)− γ̇(τ − 1)∥2M +

1

2
ρmax(η(τ + 1), 0)2

)
(5.42a)

subject to ḣ(τ) = J(γϕ(τ))γ̇(τ) +A(γϕ(τ), γ̇ϕ(τ))(γ(τ)− γϕ(τ)) ,∀τ = k, ..., k +Np, (5.42b)

γ(τ + 1) = γ(τ) + Tsγ̇(τ) ,∀τ = k, ..., k +Np, (5.42c)

|γ̇i(τ)| ≤ γ̇max ,∀i = 1, ..., N ,∀τ = k, ..., k +Np, (5.42d)

|γ̇i(τ)− γ̇i(τ − 1)| ≤ ∆γ̇max ,∀i = 1, ..., N ,∀τ = k, ..., k +Np, (5.42e)

γs = γs(γ(k)), (5.42f)

γp = γp(γ(k)), (5.42g)

η(τ + 1) = (γ(τ + 1)− γp)
T (γs − γp) ,∀τ = k, ..., k +Np. (5.42h)

The operations that led to the linearization of the torque and the use of a constant exclusion zone

along the horizon, allowed for the synthesis of a convex optimization problem. Therefore, the global

optimal gimbal rates can be achieved at a low computational expense. The linearization of the torque

was verified empirically, and displays reasonable results for small prediction horizons. Furthermore, the

use of a constant exclusion plane constrains the gimbal motion towards the closest singularity at the time

instant k. This is a valid assumption as the closest singularity to the system, at a given time step, does

not typically vary significantly from the previous time step. This is due to the geometry of a CMG cluster,

whose singularities are spatially close to each other. Therefore, by preventing the gimbal motion towards

one singularity, the system is also preventing the gimbal motion towards its neighbouring singularities.
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Chapter 6

Simulation Results

In this chapter, the controller and control allocation algorithms proposed in Chapter 5 are validated

in the MATLAB® environment. For visualization purposes, the algorithms are tested on a satellite model

that comprises a triangular CMG system for steering in the xy plane, and a reaction wheel for steering

in the z direction.

Firstly, in Section 6.1 the action governor is tested for different parameters and compared to the

benchmark solution provided by the Moore-Penrose pseudoinverse. Then, in Section 6.2 the MPC-

based allocation algorithm is analysed for different horizons and optimization weights. The effectiveness

of the singularity term on the MPC formulation is also confirmed. In addition, the execution times, for the

different horizons and formulations, are presented and compared.

The satellite model is depicted in Fig. 3.11 and its parameters are given in Table 6.1. The gains for

the quaternion error and angular velocity feedback were defined as kq = 0.5 and kω = 0.8, respectively.

Table 6.1: Model parameters used in simulation.

Platform Actuators

m = 180 kg
Ixx = 38.07 kg m2

Iyy = 38.07 kg m2

Izz = 32.94 kg m2

Ixy = -7.730 kg m2

ωmax = 10 ◦ /s

3 × CMG 4-6S Airbus:
• h0 = 4 Nms
• ḣmax = 6 Nm
• γ̇max = 1.5 rad/s
• γ̈max = 1.5 rad/s2

1 × OCE-RW1000:
• hωmax

= 11Nm

• ḣωmax
= 1 Nm

• Iω = 0.05678 kg m2

• ωωmax
= 1200 rpm

The NLP solver fmincon was used for solving the allocation problems. This function relies on an iter-

ative method, referred to as sequential quadratic programming, that solves a sequence of optimization

subproblems, where each optimizes a quadratic model of the cost function subject to a linearization of

the constraints.

The simulations were carried out for 90 s with a sampling time of 0.1 s. For the simulations using the

1Image taken from https://www.satcatalog.com/component/s-200-scaled-microsatellite-platform/.
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Fig. 6.1: Satellite model.

triangular CMG system, an attitude trajectory consisting of constant references was defined as

(ϕ, θ, ψ) =


(0, 0, 0) [rad] , 0 ≤ t ≤ 30,

(−25, 20, 0) π
180 [rad] , 30 < t ≤ 60,

(0, 0, 0) [rad] , 60 < t ≤ 90.

(6.1)

The attitude references were converted to a quaternion representation as follows [43]:

q̄r =


q3

q2

q1

q0

 =


cos (ϕ/2) cos (θ/2) sin (ψ/2)− sin (ϕ/2) sin (θ/2) cos (ψ/2)

cos (ϕ/2) sin (θ/2) cos (ψ/2) + sin (ϕ/2) cos (θ/2) sin (ψ/2)

sin (ϕ/2) cos (θ/2) cos (ψ/2)− cos (ϕ/2) sin (θ/2) sin (ψ/2)

cos (ϕ/2) cos (θ/2) cos (ψ/2) + sin (ϕ/2) sin (θ/2) sin (ψ/2)
 . (6.2)

6.1 Action Governor Results

The action governor described by (5.35) was tested for different singularity parameters. In the fol-

lowing simulations, the optimization weights S = diag(1, 1, 1) and ρ = 103, were used. The perfor-

mance of the AG was then evaluated for several κ. The initial orientation of the satellite was set to

(ϕ, θ, ψ) = (10◦ ,−20◦ , 0) and the gimbals were initialized at γ = (π/4, π/3, 0)T . Fig. 6.2 shows the

difference between the control torques and the torques produced by the CMG system. Without the use

of the AG (Fig. 6.2(a)), it seems clear that the system approaches a singularity at t ≈ 61 s and t ≈ 68 s.

When the minimum required distance to the singularity increases up until κ = 0.75 rad the torque error

decreases. In fact, when κ increases, the system is further away from the singularity, thus being less

affected. Fig. 6.3 depicts the evolution of the gimbal rates. One may notice that the instant the system

is not able to match the control torque, the gimbal rates saturate. This is related to what was reported in

Section 4.4. When the system crosses the singularity, the gimbal rates become larger in an effort to meet

the control torques. However, since the gimbal rates are limited by γ̇max, the system is not able to cope

with the control torques due to saturation of the gimbals. Indeed, when the system meets the singularity,

the gimbal rates compensate the lack of conditioning of the Jacobian due to the existence of a singular
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(d) With AG : κ = 0.75 rad

Fig. 6.2: Action governor - torque error for different threshold values.

direction, by becoming larger. On the other hand, when κ increases, the system requires smaller inputs

to achieve the same torque. Note that even though the solutions computed with the Moore-Penrose are

theoretically optimal in terms of control energy, the gimbal rates after modification display a much lower

control energy. This is due to the existence of singularities, that are not accounted in the Moore-Penrose

pseudoinverse.

Figs. 6.4-6.6, illustrate the distance to the singularity, the manipulability index, and the condition

number, respectively. Without the use of the AG, the distance to the closest singularity approaches zero

at t ≈ 61 s and t ≈ 68 s. With the addition of the AG, the system is bounded to d > 0.75 rad, hence

never approaching the singularity. The manipulability index plot in Fig. 6.5 has the same behaviour as

the distance plot. In fact, they are both related, as when the determinant of JJT decreases, the distance

to the singularity decreases accordingly. The effect of the singularity is also obvious in Fig. 6.6. When

the system crosses the singularity, the condition number diverges. This happens because σmin tends to

zero due to the proximity of the singular direction. For κ = 0.75 rad, the conditioning of the Jacobian is

kept within a reasonable range.
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0 10 20 30 40 50 60 70 80 90
-100

-80

-60

-40

-20

0

20

40

60

80

100

(d) With AG : κ = 0.75 rad

Fig. 6.3: Action governor - gimbal rates for different threshold values.
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(b) With AG : κ = 0.75 rad

Fig. 6.4: Distance to the closest singularity: with AG vs. without AG.
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Fig. 6.5: Manipulability index: with AG vs. without AG.
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Fig. 6.6: Condition number: with AG vs. without AG.

The nullspace scaling component is represented in Fig. 6.7. When λ is null, the action governor

applies the optimal-energy gimbal rates γ̇0 to the system. When λ is different from zero, the action

governor modifies γ̇0 in order to drive the system away from the singularity exclusion zone. This shows

that the system is capable of avoiding singularities by using the set of redundant solutions provided by

the use of an extra CMG.

Note that the tringular CMG system is only meant for steering in the xy plane. Therefore, the z

direction is not affected by singularities, which is why there is no torque error along the z direction in

Fig. 6.2. This one is being controlled by a RW, which speed is shown in Fig. 6.8.

Finally, Fig. 6.9 shows the gimbal trajectory for the simulation without the AG. It is clear that the

system enters the neighbourhood of two different 1h singularity lines. These are the instants where

torque matching is not verified and the gimbal rates saturate. On the other hand, Fig. 6.10 shows that

the AG prevents the system from entering the neighbourhood of the singularities.
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Fig. 6.7: Nullspace scaling component.
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Fig. 6.8: Reaction wheel speed.

(a) 3D View (b) Plane of view: (1, 1, 1)T

Fig. 6.9: Gimbal trajectory without AG.

Whilst the AG displays promising results by varying the singularity distance κ, singularity avoidance

is not always accomplished. The actuation capability of the system may not be enough to avoid a

singularity using a one-step ahead prediction strategy. Sometimes, the system dives so deep into a

singularity region, that it becomes impossible to recover without having a torque error. This can obviously

be handled by increasing κ, however, the motion of the gimbals cannot be arbitrarily constrained.
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Fig. 6.10: Gimbal trajectory with AG : κ = 0.75 rad.

6.2 MPC-based Allocation Results

6.2.1 Main Results

The MPC-based allocation strategy was tested for different horizons and both with and without the

presence of the singularity term. The optimization weights were tuned to H = diag(1, 1, 1), U =

diag(0.02, 0.02, 0.02), M = diag(0.05, 0.05, 0.05), and ρ = 400. The distance threshold parameter, κ,

was set to 0.5 rad. The initial orientation of the satellite was set to (ϕ, θ, ψ) = (10◦ ,−20◦ , 0), and the

gimbals were initialized at γ = (0, π/6,−π/6)T . In the following simulations, the prediction and the

control horizons were set equal. Lastly, the attitude reference in (6.1) was used.

The control torques and the actual torques produced by the system are provided in Fig. 6.11. More-

over, Fig. 6.12 illustrates the reference tracking results. For a horizon of one-time step, and without the

use of the singularity term, it is obvious that the system meets a singularity at t ≈ 30 s. This translates

into a significant torque mismatch that has a direct influence on the attitude tracking, as depicted in

Fig. 6.12(a). For the same horizon, but using the singularity term, the torque mismatch is not as large as

without the singularity term. Hence, the effectiveness of the singularity term is confirmed. For a horizon

of five-time steps, i.e. 0.5 s, torque matching is verified for both scenarios, leading to a singularity-free

reference tracking as observed in Fig. 6.12(b). In fact, the results are the same for both formulations for

a horizon of five-time steps.
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(d) Horizon = 5 + singularity term

Fig. 6.11: MPC-based allocation: control torques vs. actual torques.
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Fig. 6.12: Reference tracking using the MPC-based allocation algorithm.
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Note that the quaternion estimate q̄ was converted to the Euler angles representation for visualization

purposes, as given by [43]


ψ

θ

ϕ
 =


atan2(2(q0q3 + q1q2), 1− 2(q22 + q23))

arcsin(2(q0q2 − q3q1)))

atan2(2(q0q1 + q2q3), 1− 2(q21 + q22))
 . (6.3)

The gimbal rates are shown in Fig. 6.13. For a horizon of one-time step, and without using the

singularity term, the system requires a huge control effort to overcome the singularity effect. Even

though the gimbal rates do not saturate, the gimbals accelerations do, which reflects in a large control

energy. When the singularity term is added to the cost function, an overall reduction of the control energy

is witnessed. Finally, the gimbal rates for a horizon of five-time steps are minimal.
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Fig. 6.13: Gimbal rates using the MPC-based allocation algorithm.

The plot in Fig. 6.14 confirms that the system crosses a singularity for t ≈ 30 s, when using an

horizon of one-time step without the singularity term. On the other hand, when using an horizon of

five-time steps, the system stays at least 0.5 rad away from the closest singularity, as defined by the
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parameter κ. Thereby, the system does not display a jerky behaviour at t ≈ 30 s, hence minimizing both

the torque error and the control effort.
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(a) Horizon = 1 (no singularity term)
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(b) Horizon = 5

Fig. 6.14: Distance to the closest singularity using the MPC-based allocation algorithm.

The gimbal trajectory shown in Fig. 6.15 validates the aforementioned conclusions. By increasing the

MPC horizon, the system is able to predict the system’s state a few steps ahead in time, and therefore

anticipate the presence of a singularity. The closeness of a singularity is explicitly expressed in the cost

function through the singularity term. However, the torque error term and the control energy terms also

account for the existence of singularities implicitly. Since torque error is expected under the presence

of a singularity, it is likely that by penalizing the torque error in the cost function, the system already

performs some kind of singularity avoidance. The same reasoning applies to the control energy terms.

Moreover, the hard constraints imposed on the gimbal rates and accelerations implicitly constrain the

motion of the gimbals towards the singularities. Nevertheless, the system benefits from the singularity

term, as seen before. Finally, Fig. 6.16 shows the torque error energy, E , Fig. 6.17 shows the control

magnitude energy, C, and Fig. 6.18 shows the control variation energy, V, obtained for the different

horizons. E , C and V were calculated, respectively, by

E =

∫ T

t0

∥e∥2 dt, (6.4)

C =

∫ T

t0

∥u∥2 dt, (6.5)

and

V =

∫ T

t0

∥u̇∥2 dt, (6.6)

where e = ḣ − ḣc, u = γ̇, u̇ = γ̈, t0 = 0s, and T = 90s. The results were obtained by numerical

integration using the rectangle method.
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(a) Horizon = 1 (no singularity term) (b) Horizon = 5

Fig. 6.15: Gimbal trajectory using the MPC-based allocation algorithm.

Fig. 6.16: Torque error vs. horizon.

Fig. 6.16 clearly shows a reduction of the torque error as the horizon increases. Besides this, the

impact of the singularity term reflects largely for small horizons, and becomes smaller as the horizon

increases. In fact, the effect of the singularity term decreases until the point where it has no longer

influence. In this case, the torque error is the same for both formulations whenever the horizon exceeds

three-time steps, i.e. 0.3 s. This happens because the system slowly realizes that it has to stay distant

from the singularities in order to accomplish torque matching. The control magnitude and control varia-

tion plots in Figs. 6.17 and 6.18, respectively, display a decreasing tendency as the horizon increases.

Similarly to the torque error, the control energy converges for both formulations when the horizon ex-

ceeds three-time steps. The control energy, for the formulation that considers the singularity term, is

slightly larger when the horizon equals two-time steps. This happens because the system is exploiting
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Fig. 6.17: Control energy magnitude vs. horizon. Fig. 6.18: Control energy variation vs. horizon.

the set of redundant solutions, that are not energy-minimal, to escape the singularity effect as fast as

possible. Consequently, the torque error is smaller when comparing to the formulation that does not

encompass the singularity term.

6.2.2 Execution Times

The execution times of the allocation MPC were measured for the different horizons as shown in

Fig. 6.19. The impact of the Euclidean distance term was also analysed and compared to formulations

that do not encompass a singularity term, and formulations that consider the condition number instead of

the Euclidean distance. Note that the execution times are only relative to the execution of the allocation

MPC, thus not considering the remaining software in the ACS. The mean execution times were obtained

by averaging the entire simulation. To have an idea of the total time required to run a simulation, one

has to multiply the mean execution times by the simulation time, T , and the sampling frequency, 1/Ts.

For reference, an 11th Gen Intel(R) Core(TM) i7-1165G7 CPU unit, with base frequency 2.8 GHz, was

used for this analysis. Besides this, the simulation was carried out with the least number of processes

running in parallel in the operating system. Note, however, that the execution times could be significantly

faster if the code was optimized and implemented in a real-time systems programming language, such as

C/C++. Besides this, high speed solvers, such as Embotech’s FORCESPRO 2, can boost the execution

up to 100 times. Fig. 6.19 provides, however, a fair comparison in terms of relative execution times.

The execution times generally increase as the horizon increases. This is expected as when the hori-

zon grows, more terms and constraints are considered in the optimization. Additionally, the Euclidean

distance term introduces a slight increase in the execution times. This impact, however, is much more

significant when using the condition number. This shows that the Euclidean distance metric does not

influence the computational cost significantly. In fact, a convex optimization problem can be achieved

with the use of the Euclidean distance, whereas the use of the condition number typically leads to a

non-convex optimization problem.

2https://www.embotech.com/products/forcespro/overview/.
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Fig. 6.19: Execution times for the different formulations.

6.2.3 Linearization Analysis

To validate the robustness of the linearization of the torque in (5.39), an analysis that compares the

torques computed using the nonlinear model and the linear model was carried out. These results were

obtained for the parameters presented in Table 6.1 and the attitude reference trajectory in (6.1). Only the

part of the simulation where 30 s ≤ t ≤ 35 s was used for analysis (where the torque magnitude is large

enough along the entire window). The horizon was set to ten time-steps to conclude about the impact

of the linearization over a larger prediction window. Table 6.2 shows the results obtained for the worst-

case error, between the nonlinear and linear model, witnessed in the aforementioned time-window. This

was achieved by finding the MPC prediction whose average torque error (between the nonlinear and

linear models) was maximum. Model I represents the nonlinear model (ḣ(t) = J(γ(t))γ̇(t)), model II

represents the linear model found for a single equilibrium (γϕ, γ̇ϕ), and model III represents the linear

model where the trajectory was linearized along the horizon, using multiple equilibria (γϕ(t), γ̇ϕ(t)). In

model II, the equilibrium used corresponds to the gimbals estimate at the time instant k, whereas the

equilibria used in model III corresponds to the sequence of gimbal angles and gimbal rates computed

by the MPC at the time instant k − 1, i.e. Γ(k − 1) and Γ̇(k − 1). It can be verified that the torque error

el = ∥(ḣx, ḣy)I − (ḣx, ḣy)II,III∥2 increases along the horizon for both models. However, the error is

larger for model II than for model III, which confirms the benefits of linearizing the trajectory along

the horizon. Furthermore, the torque computed for a horizon of ten time-steps with model III is only

0.694% off the torque computed with the nonlinear model. This translates into a small error whose

impact on the MPC solution is negligible.

Finally, the error obtained for every time-step along the prediction horizon was further analyzed by

averaging the entire time-window. Table 6.3 suggests that the overall error is larger in model II than in

model III. Besides this, the error witnessed in the last time-step in the horizon for model III is insignif-

icant when comparing to the actual torques produced by the system, hence proving the effectiveness

of model III for prediction horizons of up to ten time-steps. Note that the analysis could have been

performed for an even larger horizon, nonetheless, this analysis appears to be enough since small hori-
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Table 6.2: Worst-case error analysis (values in [Nm]).

Horizon 1 2 3 4 5 6 7 8 9 10

I
ḣx 2.9713 3.9389 3.6058 3.2971 3.0524 2.8317 2.5831 2.3450 2.1186 2.0687
ḣy -1.7886 -2.9590 -3.0098 -2.9024 -2.6441 -2.4189 -2.2463 -2.0794 -1.9190 -1.9454

II

ḣx 2.9713 4.0104 3.7675 3.5134 3.2711 3.0314 2.7465 2.4382 2.1453 2.1057
ḣy -1.7886 -2.8718 -2.9301 -2.9589 -2.9544 -3.1199 -3.4489 -3.8457 -4.1433 -4.4224
el 0 0.1127 0.1803 0.2235 0.3797 0.7289 1.2137 1.7688 2.2244 2.4773

el(%) 0% 2.29% 3.84% 5.09% 9.40% 19.6% 35.5% 56.4% 77.8% 87.2%

III

ḣx 2.9713 3.9389 3.6058 3.2972 3.0524 2.8317 2.5831 2.3449 2.1199 2.0571
ḣy -1.7886 -2.9590 -3.0098 -2.9024 -2.6440 -2.4189 -2.2463 -2.0793 -1.9179 -1.9613
el 0 0 0 0 0 0 0 0.0001 0.0018 0.0197

el(%) 0% 0% 0% 0% 0% 0% 0% 0.003% 0.063% 0.694%

zons, of only up to five time-steps, were used in the previous sections. In fact, it was verified empirically

that the allocation MPC does not require a long horizon for singularity avoidance.

Table 6.3: Average error analysis (values in [Nm]).

Horizon 1 2 3 4 5 6 7 8 9 10
II 0 0.0095 0.0304 0.0597 0.0967 0.1395 0.1835 0.2250 0.2610 0.2832
III 0 0 0 0 0.0001 0.0001 0.0001 0.0001 0.0003 0.0010
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The long-standing singularity problem, that occurs in spacecrafts employing control moment gyros

clusters, was addressed in this thesis. As a means to understand the impact of singularities in a space-

craft’s ACS, a rigorous analysis was carried out in Chapter 4. Herein, the singularity envelope of two

different CMG clusters was characterized and analyzed in detail. An SVD analysis of the Jacobian was

performed to address the effect of a singularity on the actuation capability of a spacecraft. For non-

singular gimbal configurations, a good conditioning of the Jacobian allows the creation of torque in all

possible directions. On the other hand, for singular gimbal configurations, the Jacobian contains at least

one singular direction that translates into a loss of controllability. In these cases, the spacecraft cannot

create torque along the singular direction, resulting in an attitude tracking error.

To tackle this problem, several control allocation algorithms were proposed and tested in a simulation

environment. Besides this, a new singularity metric was derived to perceive the proximity of a singularity.

Contrary to common literature solutions, which typically require an online computation of the Jacobian’s

singular values, this solution uses a rather simple function that estimates the Euclidean distance between

the gimbals and the closest singularity. The major advantage of this function is that it can be integrated

as a linear constraint in a convex optimization problem, resulting in a much lower computational cost.

Moreover, the convergence to an optimal solution is guaranteed as convexity is achieved.

The AG consists of a supervisory scheme that promotes singularity avoidance by adding null motion

to the solution provided by the Moore-Penrose pseudoinverse. It was noticed that as the minimum

required distance to the singularity increased, the earlier the system anticipated its proximity. However,

some singularities cannot be avoided by predicting the gimbal state one single step ahead in time.

Moreover, the gimbal motion becomes limited by increasing the distance. There is a point where this

limitation translates into a generalized increase of the control energy spent to achieve the command

torque.

To overcome these limitations, an allocation algorithm that computes the gimbal rates in an inte-

grated way was derived. However, similarly to the previous approach, this algorithm lacks effectiveness
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by predicting the state of the gimbals a single step ahead in time. Thereupon, an MPC-based approach

was derived to extend the prediction of the gimbals over a fixed horizon. In this way, the system can pre-

dict the presence of a singularity a few steps ahead and take control actions that lead to singularity-free

gimbal states. Just like the AG, this solution seeks to avoid singularities by exploiting the null motion

of the system. One could notice that the behaviour of the system improved as the prediction horizon

increased. Besides this, the effectiveness of the novel singularity index was confirmed for small predic-

tion horizons. Furthermore, an analysis has shown that the singularity index based on the Euclidean

distance leads to a much lower execution time than that obtained with the condition number. In fact,

convexity was achieved for this approach, making it relatively fast compared to some literature solutions

that resort to non-convex techniques for singularity avoidance.

Finally, the objectives outlined in Section 1.2 were successfully accomplished. The impact of singu-

larities on spacecraft attitude control was studied in detail. Then, an optimal allocation framework for

singularity avoidance was derived. This solution allowed the system to avoid all of the internal singulari-

ties of a CMG cluster. Lastly, convexity was achieved considering reasonable assumptions.

7.2 Future Work

The allocation algorithms should be validated in the presence of perturbations. These should include

internal unmodelled perturbations, such as sensor noise and flexible vibration modes, and external

perturbations, such as the gravity gradient, solar radiation pressure, atmospheric drag, and third-body

perturbations.

The proposed singularity index does not apply to every CMG system. In some cases, the singularity

envelope cannot be described by lines or planes, hence yielding to nonlinear representations that might

be costly to store in an on-board computer. Therefore, convexification techniques to approximate the

singularity envelope of a CMG array by a convex set should also be investigated.

Since the prediction of the control torques relies on a model of the system, there is a chance of wit-

nessing a mismatch between the model and the real system. Therefore, the robustness of the proposed

methods must be evaluated in a real satellite.

Finally, the proposed algorithms should be implemented in a real-time systems programming lan-

guage to better understand the overhead caused by their integration into the satellite’s ACS.
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Appendix A

CMGs and RWs Specifications

Table A.1: Control moment gyros specifications.

Control Moment Gyros
Name Mass Torque Source

[Kg] [Nm]
M50 Honeywell 28 75 https://www.satcatalog.com/component/m50-cmg/

MicroCMG Veoware 2.75 1.1 https://satsearch.co/products/veoware-space-micro-
cmg

MiniCMG Veoware 3.25 4.4 https://satsearch.co/products/veoware-space-mini-cmg

MicroCMG Astrofein 8 14 https://www.astrofein.com/microcmg/

Microsat CMG Honeybee 0.6 0.112 https://www.honeybeerobotics.com/wp-
content/uploads/2019/12/Honeybee-Micro-Sat-CMG-
Spec-Sheet.pdf

CMG 15-45S Airbus 18.4 45 https://www.airbus.com/sites/g/files/jlcbta136/files/2022-
02/AVIONICS-CMG15-45-v5-2022.pdf

CMG 40-60S Airbus 38 60 https://mediaassets.airbus.com/pm 38 552 552268-
1acx8572rs.pdf

CMG 4-6S Airbus 13 6 https://www.satcatalog.com/component/cmg-4-6s/

CMG 75-75S Airbus 69 75 https://www.airbus.com/sites/g/files/jlcbta136/files/2022-
02/AVIONICS-CMG75-75S-v6 2022.pdf

CMG-12 Blue Canyon 18 12 https://satsearch.co/products/bluecanyontech-cmg-12

CMG-8 Blue Canyon 10 8 https://satsearch.co/products/bluecanyontech-cmg-8
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Table A.2: Reaction wheels specifications.

Reaction wheels
Name Mass Torque Source

[Kg] [Nm]
RW-1.0 Rocket Lab 1.380 0.1 https://www.rocketlabusa.com/assets/Uploads/RL-RW-

1.0-Data-Sheet.pdf

RW-0.06 Rocket Lab 0.226 0.02 https://www.rocketlabusa.com/assets/Uploads/RL-RW-
0.06-Data-Sheet.pdf

RW-0.03 Rocket Lab 0.185 0.002 https://www.rocketlabusa.com/assets/Uploads/RL-RW-
0.03-Data-Sheet.pdf

RW-0.003 Rocket Lab 0.050 0.001 https://www.rocketlabusa.com/assets/Uploads/RL-RW-
0.003-Data-Sheet.pdf

VRW-B-02 1 0.02 https://www.vectronic-aerospace.com/reaction-
wheels/#rwsection

VRW-C-1 2.3 0.02 https://www.vectronic-aerospace.com/reaction-
wheels/#rwsection

VRW-D-2 2 0.05 https://www.vectronic-aerospace.com/reaction-
wheels/#rwsection

VRW-D-4 2.5 0.05 https://www.vectronic-aerospace.com/reaction-
wheels/#rwsection

VRW-D-6 3 0.09 https://www.vectronic-aerospace.com/reaction-
wheels/#rwsection

VRW-A-1 1.9 0.09 https://www.vectronic-aerospace.com/reaction-
wheels/#rwsection

OCE-RW150 7 0.15 https://satsearch.co/products/oce-technology-rw150-
reaction-wheel-15nms

OCE-RW250 10 0.2 https://satsearch.co/products/oce-technology-rw250-
reaction-wheel-25nms

OCE-RW1000 11.5 1 https://www.satcatalog.com/component/rw1000/

RW400 AAC Clyde Space 0.155 0.012 https://satsearch.co/products/aac-clyde-rw400-
cubesat-reaction-wheels#specs

RW-10NMs Spaceteq 5 0.190 https://satsearch.co/products/spaceteq-reaction-wheel-
rw-10nms#specs

RWP500 Blue Canyon 0.75 0.025 https://satsearch.co/products/bluecanyontech-rwp500

CubeWheel S+ 0.09 0.0023 https://satsearch.co/products/cubespace-cube-wheel-
small-plus

CubeWheel M 0.15 0.001 https://satsearch.co/products/cubespace-cube-wheel-
medium

CubeWheel L 0.225 0.0023 https://satsearch.co/products/cubespace-cube-wheel-
large
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