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Abstract
Energy forecasting covers a wide range of prediction challenges in the utility industry, such
as forecasting demand, generation, price, and power load over diverse time horizons and at
different levels of the power grid. The short-term load forecasting in low voltage, other
than at the smart meters level, has not yet been carried out in-depth compared to na-
tional/regional/building load forecasting. It is then proposed a systematic approach from
the system level to the low voltage considering not only the performance of the models but
also their applicability, interpretability, and reproducibility. Considering an initial benchmark
model, this is compared to improved GAM (generalized additive models) enhanced by intro-
ducing new explanatory variables, reducing error by 42-47% and preserving interpretability.
Additionally, an ensemble method improves accuracy for specific periods in which modeling
is particularly demanding using standalone GAM models. The method is applied to the
national power load and, for the first time, to all 100 000 secondary substations that integrate
the Portugal power grid, rather than to tackle the few open datasets. Additionally, an appro-
priate data representation of power load time series, transforming them into discrete symbol
sequences, is proposed and used as the base to split similar load patterns within the year,
week, and special days, forming clusters. Cluster-based models are then trained with stratified
sampling from the respective cluster data using the same model structure. Individual models,
cluster-based models, and one-size-fits-all model are compared in terms of accuracy and
applicability. This approach is used to build a live daily forecasting system called PREDIS for
the Portuguese DSO (Distribution System Operator) whose results anticipate load peaks and
network constraints. It uses a distributed system architecture which copes with both capacity
and scalability challenges inherent to the storage and processing of hundreds of thousands of
time series and artifacts.

Keywords
Power load forecasting, secondary substations load, power load classification, cluster-based
forecasting, train and inference distributed computing
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Resumo
A previsão de energia abrange uma ampla gama de desafios de previsão no sector de energia,
como previsão de demanda, geração, preço e carga em diversos horizontes temporais e em
diferentes níveis da rede elétrica. A previsão de carga de curto prazo em baixa tensão, além
do nível do consumidor final, não tem sido tão explorada em comparação com previsão
a nível nacional/regional/edifício. Propõe-se então uma abordagem sistemática desde o
nível do sistema até à baixa tensão considerando o desempenho dos modelos, bem como
a sua aplicabilidade, interpretabilidade e reprodutibilidade. Considerando o modelo de
benchmark inicial, este é comparado com modelos GAM (modelos aditivos generalizados)
aprimorados pela introdução de novas variáveis explicativas reduzindo o erro em 42-47%
e preservando a interpretabilidade. Adicionalmente, a combinação de diferentes modelos
melhora a precisão em períodos específicos particularmente exigentes usando apenas mod-
elos GAM independentes. O modelo é aplicado à carga elétrica nacional e, pela primeira
vez, a todas as 100 000 subestações secundárias que integram a rede elétrica de Portugal,
em vez de abordar os poucos conjuntos de dados abertos. Adicionalmente, uma represen-
tação de dados apropriada para séries temporais de carga de energia, transformando-as
em sequências de símbolos, é proposta e serve de base para agrupar séries temporais com
padrões de carga similares. Modelos baseados nesses clusters são treinados com amostra
estratificada dos respetivos dados do cluster usando a mesma estrutura de modelo GAM, e
comparando-os com os modelos individuais e com um modelo único global. Esta abordagem
serve a construção de um sistema de previsão diária chamado PREDIS para o operador de
distribuição de eletricidade português cujos resultados antecipam picos de carga e restrições
de rede. Usa uma arquitetura de sistema distribuída que lida com os desafios de capacidade e
escalabilidade de armazenamento e computação inerentes ao processamento de centenas de
milhares de séries temporais e artefactos.

Palavras-chave
Previsão de carga de energia, carga em postos de transformação, classificação tipo de carga,
previsão baseada em clusters, computação distribuída para treino e inferência modelos
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Chapter 1

Introduction

Business and government organizations have succeeded due to effective planning, budget-
ing, and forecasting. They are generally considered crucial components of a company’s
performance management.

The utility sector is not an exception. Effective planning and forecasting are essential to a
sector that trades such an important product, energy, being heavily regulated when compared
to other sectors and its policies and decisions being under public scrutiny. Thus, energy
forecasting is an essential task for daily operations and strategic decisions.

Since the first days of electricity distribution, utilities forecast the electricity demand for the
next hours, days, and months. At that time, when electricity was essentially used for public
illumination, forecasting demand was as easy as counting the number of light bulbs and
multiplying by the power they consume. Today, energy forecasting is definitely no longer an
easy activity. Electricity is consumed promptly almost anywhere and at any time by pressing
a switch. Moreover, the energy transition, as the cornerstone of the upcoming developments
of the energy system, includes the complex interaction of multiple technologies, business
models innovation, and the decline of established business models and technologies [1].

As the system becomes increasingly complex and at the center of the energy transition, various
business needs of energy forecasting have been reinforced within utilities [2] to cope with the
upcoming increasing challenges of complexity, connectivity, scale, and scope. The following
sections discuss this subject and summarize the different types of energy forecasting and time
horizons depending on its goals.

1.1 Business Needs for Energy Forecasting
Nowadays, forecasting is an important task in all energy utilities, and its application extends
throughout the value chain: production, transmission, distribution, and retail. Indeed, it is
common to see trading in the high-level organizational structures of electric utilities alongside
other business platforms. And, operationally, the trading unit supports their decisions on the
available data and forecasting models. The business needs for energy forecasting could be
summarized as follows.

Non-dispatchable generation forecasting [3] Utilities need to make efforts to accommodate
more green energy towards a 100% renewable vision. As renewables grow, through the
deployment of more wind and solar power, its availability has become less dispatchable. Wind

1



2 CHAPTER 1. INTRODUCTION

and solar energy cannot be turned on and off at will, they are intermittent and come and go
depending on the weather and time of day, so they must be accommodated [4]. Moreover,
wind power also suffers from curtailment due to grid constraints or due to the abundance of
wind power for such a momentary low demand for electricity. So, forecasting wind and solar
energy for the next hours and days supports effective planning to accommodate that energy
and to bidding it in the gross energy market if applicable, while long-term forecasting to find
the best sites to deploy wind and solar farms.

Demand forecasting [5] Utilities, which operate in the retail segment of the value chain,
also need to forecast the demand of their client portfolio for trading purposes or to analyze
the power demand of individual clients to elaborate business term sheets, propose specific
tariffs, and offer energy optimization services with a satisfying business rationale.

Trading in the gross market [6] Whether a utility sells its own energy generation, purchases
energy for its consumers, or both, it must forecast the price of energy and plan when the
best time to buy or sell. When applicable, utilities can negotiate long-term bilateral contracts
and adjust in the daily wholesale market, besides providing grid services such as capacity
services, energy shifting, and fast-response ancillary services. Independently of the utility’s
own strategy, forecasting energy and grid services price is important for decision marking and
strategy execution.

Transmission and distribution (T&D) planning [7] As a Distribution or Transmission Sys-
tem Operator (DSO or TSO), the utility must maintain and upgrade the grid to meet the growth
of demand and improve reliability. Planning decisions also rely on forecasts that inform when,
where, and how much the load and the number of customers will grow. For example, the need
for a new power substation in the future could imply the need to secure the land to place it.

Operations and maintenance [8] Forecasting the power load for the following days sup-
ports several decisions in the operations department. For example, scheduling maintenance
without actual interruption to electricity consumers or to guide operators to make switching
and loading decisions.

Demand Side Management [9] Able to manage dispatchable demand as more assets and
models are introduced to increase flexibility on the demand side. When the power grid is
overloaded or when the generation mix is not so green, controlled demand could be reduced
instantly to lighten the system load. Demand-side management aggregators, virtual power
plants, and logical dispatch of decentralized energy resources (DER) are models to add
capacity and flexibility to the grid [4]. Predicting local power load for the next few minutes and
hours is part of systems that (will) orchestrate air conditioners, local batteries, electric vehicle
smart chargers, and other DER whose charges can be put out of step, desynchronized, or even
anticipate/shifted to another time. Predictive capabilities are used for further system-level
and local optimizations in accordance with a challenging dynamic of load fluctuations, grid
restrictions, and dispatchable capacity and flexibility.

Financial and general planning Long-term energy forecasting and energy scenario predic-
tions contribute to the management of company performance, helping executives project
revenues, plan acquisitions, approve budgets, plan human resources, develop new business
advantaged by technology and innovation, and other general business decisions. For example,
electric vehicles (EV) are considered an important factor in the decarbonization of a large part
of transport, and the power system must be able to meet their increasing charging needs with
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renewable energy. Smart charging technology would provide greater flexibility to the network
and prevent investments in new electrical infrastructure [10]. Furthermore, the battery on
wheels has been considered an asset in vehicle-to-grid (V2G), vehicle-to-home (V2H), and
other usage and business models. Another example is the technology to store heating and
electricity during low demand and high (renewable) energy availability, through centralized or
decentralized technologies such as capacitors, superconductors, flywheels, batteries, heating
storage, compressed air, pumped hydro, and (green) hydrogen (or other power-to-gas) [4, 11].
These are examples of technologies and innovations that have a high impact on electrification
and descarbonization in the following years, and their business rationale must be supported
by data analysis and predictions of energy scenarios.

As described, energy forecasting emerges as a fundamental enabler to tackle various per-
spectives. As an important tool, the accuracy of the forecast translates into the financial
performance of energy utilities. A conservative estimate is that a 1% reduction in forecast
error for a 10 GW utility can save up to $1.6 million annually [12]. Another estimate is that
a 0.1% improvement in forecasting in a midsize European utility can help reduce about $3
million in operating costs in imbalance markets [13] considering the ability to forecast not
only at the system level, but also at primary and secondary substations and at each energy
point of delivery or generation as well, enabling optimization models such as dynamic tariffs,
demand response, and DER management to peak shaving.

1.2 Types of Energy Forecasting
There is no single forecast that can meet all the utility needs. Different business purposes
introduce diverse specificities and approaches. Electricity forecasting can be classified by
three aspects:

• The object which is being estimated, such as (wind, solar, wave energy, hydroelectric,...)
generation, load, demand, and energy price, as described in Table 1.1.

• The time horizon [2], which defines how far in advance the model forecasts, classified
into four categories, as outlined in Table 1.2; although the definitions of the time horizon
differ by author, it determines both the update cycle and the relevance of the explanatory
variables.

• The aggregation level, such as the international integrated power grid (like the Eu-
ropean electrical network), the regional or national DSO power grid, the primary or
secondary substation loads, the energy point of delivery (highly dependent on con-
sumption type), and virtual power plant’s or energy retail portfolios.

Table 1.3 associates business needs with the type of forecast and the time frame.

From the classification framework of energy forecasting, the broadness of its application in
the field is evident. This thesis aims to focus on a particular type of forecasting, temporal hori-
zon, and aggregation level: short-term load forecasting at two levels, system and secondary
substations (the latter also known as the object of low voltage forecasting). The following
sections clarify the concept of load forecasting and the factors that influence its behavior.

1.3 Short-Term Electric Load Forecasting
Load forecasting is the technique used by power utilities to predict the energy required to
meet demand and supply equilibrium. In other words, it predicts the net power load at a
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Table 1.1. The object of forecasting.

Forecasting object

Generation forecasting whose object being estimated is the energy produced by a specific
power plant, for instance hydroelectric, thermal, wind, solar or marine. Besides, forecasting
intermittent energy sources as wind and solar come up as more complex and thoughtful.

Load forecasting is used to forecast the system load or energy flow in a specific bus, asset, or
node within the power grid. While the system load is the sum of all the individual demands
at all the nodes of the power system, the power load in a grid node can represent either a
single consumer (typically a high- or medium-voltage one), a set of low-voltage consumers
on a street or neighbor, an electric bus in a primary or secondary power substation that
groups several consumers and small producers, a city, or even a region. Spatial load
forecasting is a subtype that aims to estimate the future locations and magnitudes of power
load within a utility’s territory.

Demand forecasting aims to estimate the consumption of a single consumer or retailer’s
portfolio of consumers potentially dispersed along the area of influence of the utility.

Energy price forecasting focus on predicting price changes and futures in wholesale
electricity markets.

Table 1.2. The time horizon and the time pace at which estimations are updated.

Horizon Update Cycle

VST very short-termi 1 day ≤ 1 hour
ST short-term 2 weeks 1 day
MT medium-term 3 years 1 month
LT long-term 3 decades 1 year

i VSTLF stands for very short-term load forecasting. The same analogy applies to STLF, MTLF, and LTLF.

Table 1.3. Type of forecasting in accordance with business requirements and time horizon.

VST ST MT LT Object

Energy selling and purchasing
Non-dispatchable generation × × × Generation
Electricity consumption × × × Demand
Trading Energy × × × Price

T&D planning × × Load
Operation and maintenance × × Load
Demand side management × × Generation and Demand
Financial planning × × Generation, Demand and Price
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specific point or asset within the power grid. If at secondary substations, it is also known
by low-voltage load forecasting. Utility systems rely on load forecasting for maintenance,
scheduling, power generation planning (centralized and distributed), load switching, safety
evaluation, cost optimization, and general guarantee of continuous power supply [12, 14, 15].

The dynamics of power loads is intrinsically related to (i) human activity and behavior on
a daily basis, and (ii) its magnitude is due to the economy, land use, electrical efficiency,
and how much the economy and society are electrified. The former is more dynamic and
varies according to calendar, weather, and events in general, whereas the latter changes much
slower. In addition to changing the magnitude of the power load over the years, the patterns
and curve shapes can also change considerably with the introduction of new technologies
and energy business models, such as distributed solar generation, distributed energy storage,
demand side management, penetration of electrical vehicles, and energy communities that
mean local settlements and optimizations among prosumers in neighbor.

It turns out that predicting these aspects and how they evolve in the near future is important
when forecasting. However, some are available and accurate in the following days, but are
unreliable for further days. For example, weather forecasting is accurate for the next days but
is unskill for more than two weeks, whereas electrification does not change in the following
months, and its growth is predictable for the next years. Table 1.4 summarizes the available
features, how long they remain unchangeable, and how accurate its predictions are for load
forecasting purposes. Consequently, Table 1.5 shows the use of each feature in load forecasting
for different temporal horizons and, consequently, update cycles.

Table 1.4. Steadiness, accuracy, and availability of explanatory variables.

Steadiness Accurate Inaccurate Unskill

Weather 1 hour 1 day 2 weeks > 2 weeks
Economics 3 months 6 months 3 years > 3 years
Land Use 1 year 2 years 5 years > 5 years
Electrification 1 year 2 years 5 years > 5 years
Electrical Efficiency 1 year 2 years 5 years > 5 years
Calendar decadesii — — —

ii Calendar is quite stable, except for rare jurisdiction changes on public holidays or saving light summer time.

Table 1.5. The use of each explanatory variable depends upon horizon of load forecasting.

Horizon Update Cycle Calendar Weather Economics
Electrification, Land

Use and Efficiency

VSTLF 1 day ≤ 1 hour Required Optional Optional Optional
STLF 2 weeks 1 day Required Required Optional Optional
MTLF 3 years 1 month Optional Simulated Required Optional
LTLF 3 decades 1 year Optional Simulatediii Simulated Required

iii Load forecasting longer than 30 years may take into account climate projections instead of weather predictions.

In VSTLF, weather, economics, electrification, electrical efficiency, and land use are optional
variables because they are all relatively stable over a short time span. They remain un-
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changeable, and so the load for the next minutes and hours is estimated using autoregressive
techniques.

On the other hand, weather predictions and calendar features play a key role in STLF, because
the power load is driven not only by the time and day being forecasted, but also by the
atmospheric conditions.

For longer horizons, the weather forecast is unreliable, and therefore simulated climate projec-
tions based on historical weather data may be used in MTLF. In contrast, economic variables
change over the mid-term period, and, since they affect power load, they are important for
forecasting power load up to three years.

Finally, in LTLF the same rationale applies: for variables with unreliable prediction methods,
are changed by simulated probabilistic projections of the same variables. Additionally, vari-
ables once steady for shorter periods must be taken into consideration for longer periods
because of their effects on power load in the long term, such as electrification, land use,
electrical efficiency, and other technology enablers which drives the long-term electricity
usage.

The state of the art of models are methods used for short-term load forecasting are introduced
in Chapter 2 as a literature review.

1.4 Knowledge Gap and Main Contributions
Although a diverse set of load forecasting techniques and methodologies has been studied,
there are still knowledge gaps on the subject of secondary substations or low-voltage (LV)
load forecasting [16] as follows:

• Load forecasting has been extensively applied either at the system/region level or at
the building/point-of-delivery scope. Short-term load forecasting at the low-voltage
level, other than at the smart meter level1, such as secondary substations, has not been
as extensive [16]. However, this does not mean that efforts have not been made. This
research and references [17, 18] should be considered.

• Instead of evaluating the developed method only for performance (accuracy), practi-
tioners should consider the impact and applicability of the method, as well, toward a
live system implemented and adopted by the energy sector player.

• LV load forecasts can benefit from weather forecasts, particularly when these predictions
are derived from multiple weather stations or from numerical weather predictions
(NWP), whose significant advances have not yet been translated into improved LV load
forecasts.

• In the context of LV load forecasting, numerous articles did not use benchmarks to
compare their models beyond benchmark persistence forecast.

• Due to the scarcity of LV timeseries (Irish CER dataset and UK Low Carbon London
trial data), one line of study would be to compare models using multiple datasets from
different sources, rather than tackle only the few open datasets.

• There is a need for developing pragmatic methods to achieve the explainability of Artifi-
cial Intelligence (AI) and Machine Learning (ML) methods in the LV load forecasting

1Smart mert level means the low-voltage consumers as small buildings or houses.
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context, as well as make the models computationally cheap in order to tackle thousands
of low voltage assets and predict its load curve for the next few days in a useful time to
business needs.

This study seeks to contribute with an approach specifically tailored to STLF at the secondary
substation level, an area of research that has been sparse. With that goal in mind, the following
steps are considered in depth detail: (i) evaluation criteria considering the applicability, inter-
pretability, reproducibility and accuracy aspects, (ii) benchmark against a classical regression
model for system-level forecasting described by Tao Hong and his research group [2], and (iii)
modeling input variables associated with a consistent description of parameter tuning and
alternatives from both the statistical and the energy domain point of view.

Using this strategy, it will be possible to apply STLF to a large number of different time series
at secondary substation level — because the parameter tuning and method details chosen at
the system level might change when applied to the others, a consistent description will keep
the reproducibility —, keep a communication bridge between load forecasters, operators,
planning manager, and executives when considering aspects more than accuracy, such as
interpretability and applicability — note how the load forecaster developed needs to be
approved by managers, understandable by operators, and defensible before the regulator —,
and the analysis of the results when this systematic methodology is applied, for the first time,
to the all 100,000 secondary substations which integrates the Portugal power grid. Figure 1.1
diagrams the scope of the study across the voltage levels of the power grid. In particular, the
developed models are summarized in Table 1.6 and the methodology is detailed as follows:

• Using identical explanatory variables, we compare a Generalized Additive Model (GAM)
with a classical one. Accuracy is assessed using different metrics while keeping in mind
that a biased evaluation could result from choosing only one metric. This would serve
as a benchmark base for LV load forecasting (Section 3.2);

• Develop a method to improve the GAM-based regression model by introducing new
synthetic explanatory variables based on the same data. New variables are introduced
based on domain knowledge and a systematic approach. Numerical weather predictions
were used as explanatory variables in the low voltage context (Section 3.3);

• Compare the improved GAM-based regressor to a gradient boosting machine (GBM)
as the XGboost implementation with the same explanatory variables after necessary
adjustments and hyperparameter optimization but lacking interpretability (Section 3.4);

• Compare the improved GAM-based regressor to a simple new ensamble method, where
weaker forecasters (also GAM-based) improve accuracy while still maintaining desirable
interpretability (Section 3.5);

• Rather than tackle the few open datasets of secondary substations load, use of a new
dataset that encompasses all 100,000 secondary substations of the Portuguese electric-
ity grid, where energy is converted from medium voltage to low voltage using power
transformers; train and evaluate those individual disaggregated load forecaters (Sec-
tion 4.3);

• Develop an appropriate data representation of time series, such as the discretization
into symbol sequences with the aim of keeping and highlighting daily shapes and
regimes throughout the year, week, and public holidays (Section 6.4).
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• Take advantage of clustering techniques to split this new dataset, projected as symbol
sequences, into groups that contain load curves with similar daily shapes and patterns
(Section 6.5).

• Compare individual disaggregated forecasters with the new cluster-based regression
models which take advantage of clustering and daily discretization for the same dataset
(Section 6.6);

• The methods and algorithms were implemented and adopted by Portugal’s DSO as a
live system capable of handling thousands of load curve predictions in a useful time and
a facilitator of innovation (consider the impact of this research area); the architecture of
the distributed IT system is described in Chapter 7;

• Describe the underdeveloped aspects in the context of LV load forecasting.

In addition, Chapter 5 is dedicated to exploring the classification of power load time series
considering the daily shapes. Among several classification use cases, highlight the model
which identifies the type of power consumption (household, industry, services, utilities,
transportation) through the pattern of time series.

Figure 1.1. The scope of the study includes the system level and the secondary substations of Portugal

DSO grid including the private secondary substations of large electricity consumers at high and

medium voltage.

Part of this study has been published in two peer-reviewed journal papers. One paper focuses
on the systematic approach to short-term load forecasting from the system level down to
nearly 10,000 secondary substations [19], covering Chapters 2, 3, and 4. The other paper
discusses the classification of power load timeseries using a technique called shapelets and
presents the assessment of four different use cases [20], covering Chapter 5. Additionally, two
other papers, which explore the practical applications of this study in industry, were published
at the CIRED conference. These papers delve into the massive forecasting of timeseries in an
enterprise system known as PREDIS [21, 22].

The reader might ask, given the huge efforts of the scientific community on the subject over
several years, why their techniques have been mostly evaluated otherwise than against the
secondary substation’s time series. The point is that most Distributed System Operators (DSO)
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Table 1.6. The study of several different models were conducted and organized in 4 chapters.

Section Model Goal Dataset

3.2 GLMLF-B System level GLM benchmark model 3.1
3.3.1 GAMLF-SL-M1 System level GAM model based on benchmark model 3.1
3.3.2 GAMLF-SL-M2 System level GAM model with lagged load covariates 3.1
3.3.3 GAMLF-SL-M3 System level GAM model with calendar covariates 3.1
3.4 GBMLF-SL System level XGboost model 3.1
3.5 GAMLF-SLE System level GAM and WMC-R ensemble model 3.1
4.3 GAMLF-SSL Individual Secondary Substation Model 4.2

5.5.1 SHP-W Shapelets Classification - Weekends 3.1
5.5.2 SHP-EMM Shapelets Classification - Early Monday Morning 3.1
5.5.3 SHP-LDPS Shapelets Classification - Load Dynamics in Substations 5.3
5.5.4 SHP-TPC Shapelets Classification - Type of Power Consumption 4.2
6.4 CLULF-SSL-D Cluster-based Forecasting - Discretization 4.2
6.5 CLULF-SSL-SSC Cluster-based Forecasting - Symbol Sequences Clustering 4.2
6.6 CLULF-SSL Cluster-based Forecasting 4.2

have just rolled out smart meters in secondary substations in the last three to six years [23–25]
plus the time it takes to get a proper period of data. Furthermore, no or partial subsets of
these data have been made public. In contrast, this study addresses the entire dataset that
has been collected from secondary substations in Portugal’s power grid since 2015.





Chapter 2

Literature Review

Thousands of papers, reviews, and reports on electricity forecasting have been written over
the past 50 years. As a reference, there are nearly 7500 entries related to the topic of electricity
load forecasting in the Web of Science Database1 with a growing trend in the annual number
of publications. Considering its magnitude, this chapter focuses on the most important
literature based on either the reputation of the journal in which it was published or the
number of citations and attention it has garnered.

Short-term load forecasting is a problem of time series forecasting applied to the energy
domain. Surveys for time series forecasting have been published and usually grouped the
models into (i) statistical regression models with classical equations, (ii) machine learning
forecasting models, and (iii) hybrid forecasting models [15, 26, 27]. They also summarize the
general structure of the models using mathematical equations, which will not be repeated
here.

This chapter introduces representative reviews and surveys published in recent years, as
well as state-of-the-art references to energy forecasting, following this structure: statisti-
cal regression-based models in Section 2.1, machine learning-based models in Section 2.2,
and methodological approaches including hybrid models in Section 2.3, mostly for short-
term though some papers might focus one various horizon periods. Section 2.4 defines the
four aspects the resulting models would be evaluated, such as applicability, interpretability,
reproducibility, and the 9 accuracy metrics.

A considerable number of comprehensive reviews have established the evidence in STLF for
further research concerning the models and methods [28–38].

The first few papers about STLF were reviewed by Matthewman and Nicholson, in 1968,
in which electricity demand was introduced as a time series with daily, weekly and yearly
seasonal patterns, and exogenous variables were used to explain electricity demand, such as
meteorological and calendar variables [28]. Two decades after, in 1987, Gross and Galiana
covered the importance of STLF role in on-line scheduling and security functions of an
energy management system [31]. They stated that the operating costs are reduced when
the forecasting error decreases: once the load is less unpredictable, the reserve capacities of
energy system may be reduced without affecting its reliability and security. They reviewed
several techniques to predict the load shape and the peak. They found that pure time-of-

1http:\\webofknowledge.com

11
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days models or similar day methods were being replaced by the dynamic models, which,
by contrast, take on consideration the recent past of load, as well as, weather factors that
influence load. Moghram and Rahman reviewed five widely applied techniques to STLF
(multiple linear regression, stochastic time series, exponential smoothing, state space method,
and knowledge-based approach) in terms of efficiency and difficulties of each one, rather
than seek and enhance the best model [32]. Hahn, Meyer-Nieberg, and Pickl published a
survey over a non-exhaustive set of 100 papers and reviews concerning load forecasting [34].
They have realised that there are various approaches applied to load forecasting ranging from
regression-based methods over time-series approaches towards artificial neural networks and
expert systems. In addition, they concluded that selecting the appropriate model depends
on the problem and the situation currently under consideration and, therefore, “no general
recommendations can be given”. Suganthi and Samuel made reference of more than 350
papers related to energy demand forecasting models with different goals, purposes and
forecasting horizons organized by the technique applied, although did not compare the
results of the diverse set of approaches [35]. Nti et al. reviewed 77 relevant papers from 2010
to 2020 with a concise summary of the useful characteristics of compared techniques as used
method, timeframe, train and test split, error, accuracy metrics [29].

Nevertheless, as [36] points out, most studies pursue the goal of finding the best technique
for load forecasting, resulting in rather worthless articles. Either because virtually most
papers focus on showing the superiority of the introduced technique on very specific data
sets hiding their weaknesses, or lack of detailed information on the setup experiments or
over-manipulating the data (for instance, excluding days whose electricity load are more
unpredictable) [30]. A universally best technique simply does not exist, it is the data and the
business needs that determine which technique is more useful.

2.1 Statistical Regression-based Models
The classic forecasting method of time series is based on mathematical and statistical model-
ing. Some of the most widely used methods are the autoregressive techniques introduced
by George Box and Gwilym Jenkins, such as the autoregressive moving average – ARMA. To
use the ARMA model, an essential condition is that the time series should be stationary,
which is achieved by differencing the non-stationary load time series in the first place. [39]
is an example of applying ARMA to predict the next day system load, which contributed a
multi-model partitioning filter (MMPF) to select the correct model order of ARMA in an STLF
method which evolves a online adaptive procedure. Usually, the appropriate ARMA (and
ARIMA) models are obtained by applying techniques to identify the order/parameters of the
model, such as the Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC).

A sequence that contains characteristics such as trend, seasonality, or periodicity is called
a non-stationary sequence. Auto-regressive integrated moving average – ARIMA – is a well-
known non-stationary time series model, which can reflect the changes of different data
patterns, and the model requires fewer parameters to estimate. It is also necessary to deter-
mine the order before constructing the ARIMA model. Autocorrelation function (ACF) and
partial autocorrelation function (PACF) are often used to determine the order of the ARIMA
model. [40] is an example of applying ARIMA to system load forecasting. Additionally, it uses
another non-statistical method to model the nonlinear component present in power load
time series, in this case in the resulting residuals from the first ARIMA model.
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To deal with seasonality, seasonal ARIMA – SARIMA was introduced. [41] is an example of
applying SARIMA to predict the half-hour power load of the system one day in advance. It also
contributes with robust models to detect half-hourly data points influenced by non-normal
days and consider them as outliers.

Overall, these forecasting models are adaptable, can deal with seasonality and with non-
stationary data, and only require the past value of a timeseries. However, it is unlikely to
perform well on long-term predictions and they are unable to include exogenous variables
that domain practitioners consider essential.

[42] used SARIMA to predict the hourly system load up to 4 weeks in advance, in which the
temperature effects are captured through heating and cooling degree days. Better accuracy
was achieved when temperature effects are captured through regression splines. In the same
manner, the non-linear temperature effect is modeled using regression splines by [43]. The
calendar, lagged temperature, and autoregressive electric load components are applied to a
periodic ARMA model – PARMA – to make hourly forecasts of the electrical load from one to
ten days ahead.

Statistical methods, such as generalized linear models – GLM – and generalized additive
models – GAM –, have been used to model the relationship between variables, including
exogenous explanatory variables. Thus, the outcome or dependent variable is defined by
other variables called explanatory or independent variables. Different methods allow for
diverse types of dependency/constraint modeling between the dependent and independent
variables.

GLM is used to model the interactions of calendar and temperature as exogenous explanatory
variables, and historical power load as auto-regressive explanatory variable to predict the
hourly system load one day ahead [2, 44].

GAM is also used to model the interactions of historical power load, calendar, and additional
meteorological variables [45, 46]. Splines, wavelets, and hybrid alternatives are compared as
smooth functions for the additive components of GAM [47].

Probabilistic forecasting has also been applied to short-term load forecasting. Partially linear
additive quantile regression – PLAQR – is used for short-term load forecasting in [48] combin-
ing it with the unit commitment problem during peak hours. Some researchers have been
moving from the traditional deterministic decision-making framework to its probabilistic
counterpart [36]. Incorporating the uncertainties of load forecasting as input to the goal
analysis, such as load flow analysis, unit commitment problem, reliability planning, and
energy price forecasting, has been recognized as a necessity for decision-making and risk
taking. Kernel density estimation has also been used for probabilistic forecasting [49] and
compared to the SVM and ANN versions [50].

Table 2.1 gives an overview of the references for statistical regression-based models consider-
ing the statistical technique(s) used, the object and forecasting horizon, the data sets in which
the object and exogenous variables were extracted, and the evaluation aspects and metrics
used to assess the resulting model. Although a diverse set of datasets and methods have been
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Table 2.1. Overview of references for statistical regression-based models.

Ref Models Object & Horizon Dataset Evaluation

[39] ARMA Daily system load 2Y Hellenic Power Accuracy: RMSE

[40] ARIMA Yearly system load 50Y China Accuracy: MAE, RMSE, MAPE

[41] SARIMA
Half-hourly system load, one-
day ahead forecast

70W+30Wiv

Accuracy: MAPE for normal
days with outlier robustness,
Applicability: fast execution
and online implementation

[42]
SARIMA

+
MARSv

Hourly system load, up to 4
weeks ahead forecast

10Y South African load, in-
cluding temperature data
from 36 meteorological
stations

Accuracy: MAE, RMSE, MAPE

[43]
PARMA
+ MARS

Hourly systme load, up to one
to ten days ahead

12Y+1Y Spanish load, includ-
ing temperature data

Accuracy: RMSE, MAPE

[44] GLM
Hourly system load, one-day
to one-week ahead forecast

3Y+1Y medium US Utility, in-
cluding temperature data

Accuracy: MAPE (hourly,
daily, daily peak, daily valley)

[2] GLM
Hourly system load, one-day
or one-week ahead forecast

3Y+1Y (different updating cy-
cles: hour, day, week, year), in-
cluding temperature data

Accuracy: MAPE (hourly,
daily, daily peak, daily valley,
...), Applicability, Simplicity,
Reproducibility

[45] GAM
Hourly system load, one-day
ahead forecast

5Y+1Y French, including tem-
perature and cloud cover (1
month updating cycle)

Accuracy: RMSE for normal
days

[46]
GAM +
CLRvi

Half-hourly system load, one-
day ahead forecast

13Y+1Y French, including
temperature and cloud cover

Accuracy: RMSE, MAPE

[47] GAM
Half-hourly demand load
(one model per aggrega-
tionvii)

1Y from CER dataset, includ-
ing meteorological data and
client classification

Accuracy: RMSE

[48] PLAQRviii Hourly system load focused
on peak hours,

3Y+6M South African includ-
ing calendar and meteorologi-
cal data

Accuracy: MAE, RMSE, MAPE,
CRPSix, LogSx, Pinball lossxi

[49] KDExii Hourly LV consumption
9M+3M active power from
103 LV spanish consumers

Accuracy: MASE, CRPS, Appli-
cability

iv The two numbers and symbols means respectively the size of training and testing dataset; “Y” for years and
“W” for weeks. v Multivariate Adaptive Regression Splines vi Curve Linear Regression vii Aggregation size is
parameterized, 10 to 500 consumers for a total of 4623 consumers (residential customers and small-to-medium
enterprises) in the dataset. viii Partially linear additive quantile regression combining GAM and quantile
regression (QR) ix Continuous rank probability score x Logarithmic score xi also known as quantile loss
function xii Kernel density estimation
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applied to STLF, the object of the forecast is mainly the national or regional electric load and
not the secondary substations load forecasting.

2.2 Machine Learning-based Models
Machine learning-based models have also been applied in STLF, such as artificial neural
networks (ANN) [2, 51–53], long short-term memory based (LSTM) [54, 55], temporal fusion
transformers-based (TFT) [56], support vector machines (SVM) [57, 58], fuzzy logic [59–61],
random forest [62], particle swarm optimization (PSO) [63, 64], genetic algorithms (GA) [55],
and others that might combine more than one technique.

Bogomolov et al. used general public dynamics derived data from cellular network and the
energy consumption dataset to predict the next 7 days of energy demand from a northern
region of Italy. The random forest regression technique was applied to predict the local
electricity demand. Beyond the exogenous calendar and weather features that other studies
pore over, this one demonstrates the most important features of more than 3000 synthetic
variables derived from aggregated incoming and outgoing calls, received and sent SMS, and
Internet connection events generated every 10 minutes within each square of the partitioning
grid [62].

Regarding artificial neural network-based forecasters (ANN), most articles used the multi-
layer perceptron, usually a feed-forwarded fully connected, or alternatively used a recurrent
network. The activation function (either logistic or hyperbolic tangent functions) and the
number of hidden layers (mostly one or two) are the two most common points. On the
contrary, there are differences in choosing the number of input, output, and hidden neurons.
The number of output neurons depends on the methodology used to forecast the 24-hour
load profile. In iterative forecasting, one ANN is used to forecast one hourly load at a time,
so that the forecasts for later hours will be based on the forecasts for the earlier ones in a
multi-step fashion. In multi-model forecasting, 24 different models, one for each hour of
the day, are used in parallel to forecast the 24-hour profile. This method is also common
for load forecasting with regression models and has the advantage that the individual ANN
are relatively small and not likely to be overfitted, one of the problems to be aware when
using ANN for load forecasting. In single-model multivariate forecasting, all the load 24
hour profile is forecasted at once, resulting in an ANN with 24 output neurons or more if a
half-hour profile is needed. Although this method was used by most of the articles reviewed,
MLPs must be very large to accommodate 24 output neurons, and depending on the number
of input neurons, the number of parameters will be very likely to run into the thousands.
On the other hand, treating each day as a vector means that one year of that will yield only
365 data points, which seems to be too few for the large MLPs required. The selection of
input neurons is rather dependent on the a priori knowledge of the behavior of the system
under study and the factors that influence the load. There is little theoretical basis for that
decision. The same occurs when selecting the number of hidden neurons. In most articles,
the authors have chosen this number by trial and error for better accuracy. The number of
hidden neurons must be balanced to be flexible and powerful enough to fit the data and not
too overly emphasized that it will overfit. Cross-validation or regularization techniques would
avoid overfitting [65]. Hong evaluated several ANN and GLM forecasting models in which
a new set of input features was added throughout the modeling approach. Using the same
dataset, the models were compared by their precision. The number of hidden neurons was
optimized as a hyperparameter through a range search [2].
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Kong et al. propose a framework based on long short-term memory (LSTM) recurrent neu-
ral networks for residential load forecasting [66]. The proposed framework was tested on
a 3-month half-hourly energy consumption of 69 residential consumers. As a result, the
proposed LSTM approach performs better compared to various alternative state-of-the-art
approaches. It turns out that many load forecasting approaches which are successful for
system or substation load forecasting struggle in the single-meter load forecasting problem
where high inconsistencies in daily consumption profiles generally affected the predictabil-
ity. Kong et al. concluded that the higher the inconsistency, the more LSTM can improve
forecasting compared to simple backpropagation neural networks. Furthermore, although
individual load forecasting is far from accurate, aggregating all individual forecasts yields a
better forecast for the aggregation level compared to the conventional strategy of directly
forecasting the aggregated load.

Fuzzy regression considers that the deviations between the observed values and the estimated
values are assumed to be dependent on the indefiniteness of the system structure, while in
multiple linear regression the deviations are supposed to be errors in the observed values.
There are examples that improve the precision of equivalent multiple linear regression [60].

Genetic Programming (GP) exploits the concept of evolution to tackle the search for possible
model structures (or any computer program) and perform symbolic regression. Can be
employed to search complex linear spaces. When selecting input variables, GP automatically
finds the variables that contribute the most to the model and then constructs an equation
[40].

Raza and Khosravi reviewed the characteristics, explanatory variables and importance of load
forecasting, but mainly, they discussed the application of artificial neural networks as a supe-
rior performance over statistical techniques mainly when abrupt changes in environmental
or sociological variables occur [67]. One interesting point of this reference, they explored the
hybrid techniques that were proposed by published research with the combination of superior
attributed of two or more algorithms. They concluded that the hybridisation of two or more
techniques shows better results for load forecast problem than one technique alone, either
conventional statistical techniques or ANN. They refer to: (i) ANN with fuzzy and genetic
algorithm, (ii) ANN with expert system and regression techniques, (iii) ANN with wavelet and
time series, (iv) ANN with support vector machine and artificial immune system, (v) ANN
with genetic algorithms, (vi) ANN with gradient based learning techniques. Besides those
hybrid optimisation techniques to be investigated in future directions, the authors pointed
out meteorological factors to be considered besides temperature, as well as, electricity price
as an important influential parameter on load demand in deregulated electricity markets ,
and solar distributed generation and demand side energy management that influence the net
energy demand from grid.

Machine learning-based techniques have been developed and applied in diverse applica-
tions, and some highlighted their superior capability to handle complex input and output
relationship, mainly the non-linear correlations. Table 2.2 gives an overview of the references
for machine learning-based and hybrid models.
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Table 2.2. Overview of the references for machine learning-based models and hybrid models.

Ref Models Object & Horizon Dataset Evaluation

[2] ANN
Hourly system load, one-day
ahead forecast

3Y+1Y (rolling 9Y of data)
Accuracy: MAPE, Inter-
pretability compared to GLM
alternative

[53]
ANN,
Bag-
ging

Hourly system load, one-day
ahead forecast

4Y+2Y New England Pool data,
including temperature and
calendar

Accuracy: MAPE, Applicabil-
ity: Computational time

[54]
LSTM,
ResNet

15min demand load (one
model to many), one-day
ahead forecast

473D+60D, 36 Korean HV con-
sumers

Accuracy: MAPE

[56] TFT
Hourly consumption, one-
day ahead forecast

7M+1M UCI dataset (369 con-
sumers)

Accuracy: P50 and P90 quan-
tile loss, Interpretability: vari-
able importance, persistent
temporal patterns, regimes
and significant events

[58] SVM
Hourly System Load, one-day
ahead forecast

27M+2M, Inner Mongolia
Power Grid dataset, including
calendar and weather

Accuracy: Relative Error, RM-
SRE

[59]
Fuzzy
Logic

Hourly system load, two-day
ahead forecast

3Y, including temperature Accuracy: RMSE, R2

[60]
Fuzzy

Regres-
sion

Hourly system load, one-day
ahead forecast

2Y+1Y ISO New England (1
day updating cycle), includ-
ing temperature

Accuracy: MAPE (hourly,
daily, daily peak)

[62]
Random
Forest

Average daily and peak daily
local consumption up to 7
next days

2M Italy region consumption
and people dynamics derived
from square partitioning cel-
lular network data

Accuracy: MAE, MSE, RMSE,
RSE, RAE, R2

[68] Hybrid
Hourly regional level and
Quarter-hourly small area
level, one-day ahead forecast

2Y Tianjin region
Accuracy: MAE, RMSE, MAPE,
Stability: Variance and Direc-
tion Accuracy (DA)
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2.3 Methodological Approaches and Hybrid Models
Apart from focusing on the best technique, many articles also demonstrate how a methodology
is used to solve the load forecasting problem or its subproblems. The general methodological
approaches were identified into four general categories [36] and comprehensively reviewed
after with the fundamental benefits and drawbacks [38]. Table 2.3 outlines the six general
categories and techniques.

Table 2.3. Short-term load forecasting methods based on [36, 38, 68].

Method Description

Similar Pattern
• Similar Day
• Pattern Sequence
• Sequence Learning

Determines the load curve as a sequence of
various similar load profiles.

Variable Selection
• Stepwise Method
• Correlation
• Mutual Information
• Filtering
• Optimization Algorithm
• Time-dependent

Presumes the load curve behaves like a se-
ries of variables either correlated or inde-
pendent from each other.

Hierarchical Forecasting
• Bottom-up
• Top-down
• Ensemble
• Weight Combination

Considers the data as an aggregated load,
which is highly varying by changes in the
load at lower levels of hierarchy.

Weather Station Selection
• Average Model
• Optimal-number-of-stations

Model

Determines the best-fitted weather data
into the load model.

Decomposition
• Wavelet Transform
• Empirical/Variational/Dynamic

Mode Decomposition
• Singular Spectrum Analysis
• Double-layer Decomposition

Decompose and extract the characteristics
of load time series before modeling them

Error Correction
• Error forecasting

Error correction techniques extract useful
information from the error values to correct
the predicted values

Classifying the consecutive daily load prior to time series forecasting results in a reduction
in forecast error and eliminates the need to explicitly decompose the curve prior to the
regression task [46].
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Kong et al. developed a forecasting method based on error correction using dynamic mode
decomposition (DMD) for STLF, including data selection, error forecasting, and error correc-
tion. In the data selection stage, three types of data are selected as input data of the model,
including previous day data, same day data in previous week, and similar day data obtained by
grey relational analysis (GRA). In the error forecasting stage, the data driving characteristics of
the DMD algorithm are used to capture the potential spatiotemporal dynamics of error series,
thereby realizing the error forecasting. In the error correction stage, on the basis of combining
the forecasting results of load and error, an extreme value constraint method (EVCM) is devel-
oped to further correct the load demand series. The article provides a stable and accurate
error correction method for the load forecasting model and demonstrated improvement for a
diverse set of forecasting techniques [68].

In order for a system to handle a huge volume of time series forecasting, various methods have
been followed, such as stream-based load forecasting [69] and big data analytics [70]. There
are open-source data science toolkits for energy, such as GridDS and Linux Foundation for
Energy projects. By providing an integrative software platform to train and validate machine
learning models, GridDS will help improve the efficiency of distributed energy resources, such
as smart meters, batteries, and solar photovoltaic units. Linux Foundation for Energy sets the
foundations for open source collaboration, which includes the OpenSTEF project for energy
forecasting.

2.4 Evaluation Criteria
In addition to the accuracy criteria to which most articles refer, the models are evaluated from
three other aspects. These are the four aspects:

• Applicability – The model uses data and information that the utility is able to obtain
with tangible resources (both human, data, and system resources). For example, if a util-
ity is unable to get an up-to-date calendar of special events, such as strikes, conferences,
sports, and cultural events, which have an impact on the power load at the secondary
substation that feeds the infrastructure or venue, then a model containing that variable
is not applicable, no matter how well that variable would improve the predictions.

• Interpretability – The degree to which a human can understand (mental model) and
consistently deduces the result of the model [71]. When the model is more interpretable,
humans can more easily understand why certain outcomes are realized and conse-
quently accept them easily. Note that the term explainability is used rather to refer to
the explanations of individual predictions.

• Reproducibility – The model and the method carried out to build the model are sys-
tematic and documented, and it is possible to replicate them in other time horizons,
geographies, or grid levels. If engineering heuristics are involved, the tweak and tuning
process should be well defined.

• Accuracy – The performance of the model in terms of how close the predictions are
to the real values. In particular, the mean absolute error (MAE), the mean absolute
percentage error (MAPE), the root mean square error (RMSE), the normalized RMSE
(NRMSE), the coefficient of determination R2, and the mean absolute scaled error
(MASE) [72]. Note that these accuracy measures focus on smoothness of the forecasts,
rewarding them. At the distribution level, it is the peak that matters for many use cases.
So, for secondary substation models, we used Haben’s adjusted error and a normalized
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version that prefer models that predict peaks even within a restricted displacement
that do not forecast at all [73]. Additionaly, the timeseries cross-validation procedure
is used to assess performance, that is, the corresponding training set consists only of
observations that occurred before the observation that forms the test set [74].

Let yt be the real value and ŷt the prediction at time t , define the error metrics for the period
[1,T ] as

eMAE = 1

T

∑
t

∣∣yt − ŷt
∣∣ , (2.1)
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T

∑
t
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)2 , (2.5)

eMASE =
∑

t

∣∣yt − ŷt
∣∣∑

t

∣∣yt − yt−m
∣∣ , (2.6)

where m is the seasonal period for executing the naive m-step seasonal forecast method,
ŷNAIVE

t = yt−m . If the timeseries presents more than one seasonality, it is compared to the
seasonality with the lowest period. This latter error metric is scaled-free and is well suited,
unlike the MAPE, to timeseries with zero or near zero values because it never gives infinite or
undefined values, except in the irrelevant case where ∀t yt =C .

Haben’s adjusted p-norm error (APN), the mean adjusted p-norm error (MAPN), and the
normalized mean adjusted p-norm error (NMAPN), are defined as

eAPN = min
P∈P (w)

∥Pŷ−y∥p , (2.7)

eMAPN = p

√
1

T
eAPN

p , (2.8)
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eNMAPN =
p
√

1
T eAPN

p

1
T

∑
t yt

, (2.9)

where P (w) is the complete set of restricted permutations such that Pi j = 0 for |i − j | > w ,
restricting the magnitude of the displacements of the forecast values. Haben suggests using
the absolute 4-norm error, p = 4, to penalize large errors (i.e., missed peaks) much more than
small errors. The choice of the adjustment limit w depends on the use case. Nevertheless, for
general purposes, this study uses w = 3, which means that forecasts can be displaced by up to
3 half hours on either side of their original forecast time.

2.5 Conclusions
The literature review demonstrates the evolution of the STLF subject with the application of
many statistical regression-based and ML-based techniques and other hybrid techniques to
solve the STLF challenge and its subproblems (similar pattern, variable selection, hierarchical
forecasting, selection of weather stations, time series decomposition, and forecast error
correction).

Additionally, the growth of data and computing power available make possible the use of more
explanatory variables, as well as more complex techniques to preprocessing data, modeling
the data, optimizing the hyperparameters or, even, optimizing or searching over the solution
space.

However, as the literature has been reviewed, it became increasingly evident that the knowl-
edge gaps described in Section 1.4 have not been adequately addressed. The articles and
surveys pointed to are mostly for the forecasting of system load, and in fact STLF at the low
voltage level, other than at the smart meter level, such as secondary substations, has not
been as extensively studied. In addition, most studies pursue the goal of finding the best
technique for load forecasting by comparing the accuracy, with less focus on interpretability,
applicability, and reproducibility, including setup. Even, some studies have challenges due to
the small dataset for testing purposes (less than one complete year for a problem with yearly
seasonality), or lack of detailed information on the setup experiments, which diminish their
reproducibility.





Chapter 3

National Load Forecasting

The national power load denotes all electricity demand by consumers and energy storage
systems, plus the part that is naturally lost during energy transmission and distribution. In
addition, it can be seen as the amount of energy produced in centralized power stations
(hydro, solar, wind, natural gas, coal, oil, nuclear, and others) added to the net electricity
imported from neighboring countries.

This Chapter covers a set of contributions in the short term load forecasting at the national
level. The subject of analysis is the total load of the system minus the power used in pumped
hydroelectric storage systems, and the data set is overviewed in Section 3.1. The benchmark
model is established and is based on the classical regression model purposed by Tao Hong
and his research group (Section 3.2). This is compared first with a GAM-based regression
model using identical explanatory variables and second with enhanced models using the
same technique (GAM) but introducing new synthetic explanatory variables extracted from
the same data (Section 3.3). Finally, gradient boosting (Section 3.4) and a purposed ensemble
method (Section 3.5) are compared.

3.1 Data Overview
In order to forecast the national power load, one follows a machine learning approach with a
real dataset publicly available and downloadable from the TSO Data Hub website1.

Let consider the dependent variable y as the national power load,

y = [
y1 y2 . . . yt . . . yT

]⊤
. (3.1)

Each entry yt denotes the national (mainland Portugal) power load in megawatt (MW) at time
t which comprises 30 minutes period. The resolution of original data is quarter-hourly, but
for modeling purposes, every two sequential data points were aggregated using the average to
downsample electrical power time series.

The power load follows a pattern with annual, weekly, and daily seasonality. Figure 3.1 shows
the half-hour demand for a week from Monday to Sunday, in winter and summer. Note the
weekly pattern: Working days are very similar, while Saturday and Sunday are different in
both level and form. On working days, the three peaks are different depending on the season.

1REN Data Hub website: https://datahub.ren.pt/

23
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Moreover, there are some important decreases in demand during the holidays of Christmas,
the summer holidays, and the bank holidays.
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Figure 3.1. Portuguese demand from Monday to Sunday, in February 2008 and July 2008.

Figure 3.2. Half-hour national demand scattered plot with temperature observations.

Additionally, weather observations from 12 selected weather stations in Portugal are included
in this dataset to study the effect of temperature on power load. Figure 3.2 exhibits the
nonlinear dependence of the power load on the temperature due to electrical heating and
cooling.

Weather data are publicly available and can be downloaded from the NOAA website2. The
time resolution is different from station to station: While some record the temperature

2NOOA Data Access website: http://www.ncdc.noaa.gov/data-access
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every 3 hours, other stations record every half-hour. The dataset includes meteorological
observations such as temperature, dew point temperature, sea-level pressure, observable
weather on a qualitative scale, and more. Data wrangling was performed to mitigate missing
values, cope with temporal resolution differences between weather stations, and summarize
the 12 weather station time series into one. Accordingly, the following steps are taken.

As a first step, the temperature values are removed when the temperature quality field, a
metadata presented along with the temperature field, indicates that specific values might be
incorrect or suspicious for a given timestamp.

Second, each weather station’s raw observations are grouped into half-hour intervals. It should
be noted that weather stations can simultaneously generate multiple reports of observations
for different purposes. Additionally, the reporting method has evolved over the period of
data collection (some reports have ceased to be issued or its periodicity has changed). To
simplify these details, the weather fields are derived from averaging the multi-value within
each half-hour period.

As a third step, a weighted average of the temperatures of the 12 weather stations is used
to calculate the “national temperature”. The weights reflect the 2013 annual electricity con-
sumption of each region. This information was obtained from PORDATA’s 2013 electricity
consumption data for Portugal3. Table 3.1 shows the 12 selected weather stations and the
weights applied to each region.

Finally, linear interpolation between two non-missing values reduces time series gaps. Due to
temperature dynamics (linear behavior over a short period of time), that linear interpolation
is only applied when two non-missing values did not distance more than 2.5 hours. If a three-
or more-hour gap occurs, the data are not interpolated there.

Table 3.1. The weighted average of “national temperature” is computed from measurements of

12 selected weather stations whose weights are according to the power demand of each region. In

regions with more than one weather station selected, a simple average is calculated between them.

Region Weight Weather stations

Algarve 6.8% Faro
Alentejo 7.8% Beja and Portalegre
Lisboa 26.8% Lisboa and Lisboa/Gago Coutinho
Centro 25.3% Coimbra, Viseu, Castelo Branco, and Monte Real
Porto 15.2% Porto
Norte 18.1% Vila Real and Bragança

3http://www.pordata.pt

http://www.pordata.pt
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3.2 Benckmark Model – GLMLF-B
The generalized linear model-based load forecasting – benchmark model, GLMLF-B, is a
classical regression model for system-level forecasting described by Tao Hong and his research
group[2]. The model uses generalized linear regression, which can be defined as

g (µt ) =β0 +β1x(1)
t +β2x(2)

t + . . . (3.2)

where µt ≡ E(Yt ), Yt is a response variable and Yt ∼ some exponential family distribution,
g is the link function which provides the relationship between the linear predictor (right
side of equation) and the mean of the distribution function, βi ’s are unknown parameters
or coefficients, and the variables x j can come from different sources (quantitative inputs;
transformations of quantitative inputs, such as log, square, and square-root; numeric or
“dummy” coding of the levels of qualitative inputs; or interactions between variables, for
example x(3)

t = x(1)
t · x(2)

t ).

3.2.1 Model
In addition to the national power load yt (Equation 3.1), available data xt , which can be used
to explain the dependent variable, include trend index, calendar, time, and meteorological
data as follows:

xt =
[

x(Trend)
t x(Month)

t x(DayOfWeek)
t x(TimeOfDay)

t x(Temperature)
t

]⊤
. (3.3)

Let explain these components in more detail:

• x(Trend)
t is a quantitative variable that represents the index for the entire range of avail-

able data. For example, 1 for the first half-hour of available data, 2 for the second
half-hour, etc. This variable is useful for capturing the trend of increasing or decreasing
power loads. The use of this variable might pose problems in model applicability due
to the long trend that might change in significant events, for example, merging two
utilities, recessions, economic booms, pandemics, and so on.

• x(Month)
t is the index of the current month within the year from 1 to 12.

• x(DayOfWeek)
t is a categorical variable representing the day of week – one category for each

day: 1 for Sunday, 2 for Monday, 3 for Tuesday, 4 for Wednesday, 5 for Thursday, 6 for
Friday, and 7 for Saturday. Some articles combine Tuesday, Wednesday, and Thursday
into the same category, but they do not scientifically explain why. Nevertheless, the
empirical reason may be the fact that days without a weekend immediately before or
after have a similar load pattern. Note that different cultures have different rest day
schemes.

• x(TimeOfDay)
t is the index of the current time of day. Since this index represents each

half-hour, its values range from 1 to 48 representing respectively the midnight and
11:30 p.m.

• x(Temperature)
t is the meteorological covariate that represents the half-hourly “national

temperature” – a weighted average computed from 12 weather stations in Portugal as
explained in Section 3.1.
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Therefore, the benchmark model can be written as follows:

ŷt =β0 +β1x(Trend)
t +

+ ∑
i∈{January,...,December}

1(
x(Month)

t =i
)β2i

+ ∑
j∈{Monday,...,Sunday}×{0,...,47}

1(
x

(DayOfWeek×TimeOfDay)
t = j

)β3 j

+ ∑
k∈{January,...,December}

1(
xMonth

t =k
) (β4k x (Temperature)

t +β5k x2
t

(Temperature) +β6k x3
t

(Temperature)
)

+ ∑
m∈[0,47]

1(
x

TimeOfDay
t =m

) (β7m x (Temperature)
t +β8m x2

t
(Temperature) +β9m x3

t
(Temperature)

)
+ϵt

.

(3.4)

Let explain the model structure in more detail:

• The intercept β0 models the base power load;

• β1x(Trend)
t take into account the long-term linear trend in the power load;

• β2i and β3 j take into account the seasonal blocks monthly, weekly, and intraday in
the load series. Each block is treated individually and non-continuously in this model
structure, that is, they are qualitative variables;

• The last two additive components model the effect of temperature on the load as exhib-
ited in Figure 3.2 using the 3rd order polynomials of the temperature whose parameters
β are independently computed for each month and for each time of day.

3.2.2 Results
The results for GLMLF-B are shown in Table 3.2 for different update cycles. The metrics are
computed through the following procedure: (i) over the time span from 2016 and 2019, take
the three consecutive years as training data and the next period of updating cycle (one day,
one week, two weeks, and one year) as testing data; (ii) roll the actual data of this testing
period to the training data and recalculate the model; (iii) recompute the metrics with this
new model, and so on, until all the periods in the year 2019 are forecasted. Table 3.7 has
the detailed metrics including minimum, maximum, second, and third quantiles, as well as
median and mean for time series cross-validation folds.

Table 3.2. GLMLF-B results calculated over the time span from 2016 and 2019 using times series

cross-validation with a fixed 3-year window for training and the next 1 year, 2 weeks, 1 week or 1 day of

testing data. The best results are in bold. The MASE is calculated with m steps equal to 52 weeks, 2

weeks, 1 week, and 1 day, respectively. All metrics are the mean calculated from cross-validation folds.

Update
Cycle

Folds MAE (MW) MAPE (%) RMSE (MW) NRMSE (%) R2 MASE

1 year 1 235.25 4.23 353.12 6.14 0.888 0.519
2 weeks 26 217.75 3.87 296.99 5.17 0.918 0.742
1 week 52 214.64 3.82 283.73 4.96 0.929 0.970
1 day 365 210.46 3.75 249.74 4.44 0.958 1.207
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The GLMLF-B model uses trend index, calendar, time, and temperature variables. All variables
are acceptable by domain experts because of their interpretability: a quantitative variable
(trend) to capture the increasing or decreasing trend of the power load over the interval,
calendar variables to capture different effects in months and days of the week, time to capture
intraday seasonality, and the effect of temperature on the power load. The result of the GLM
fitting returns the weights of each parameter β associated with each explanatory variable, as
defined by Equation 3.4. The model is highly interpretable because the weights manifest the
degree of importance or effect of each variable. For example, one of the weights shows the
effect of ith hour on the power load and how that compares to the same hour on the previous
day of the week.

From the applicability perspective, the use of a trend index obligates the refitting of the model
as periodically as the change of that trend. Otherwise, the performance of the model rapidly
degrades. Moreover, the use of temperature values observed at the exact time step for which
the power load is forecast forces the availability of the temperature forecast as input to the
model. Thus, temperature prediction errors could potentially decrease the performance of
the power load predictions traced in this study.

3.3 Enhanced Model – GAMLF-SL
The generalized additive model-based load forecasting, GAMLF-SL, is a regression model
for the system level. Generalized additive models (GAM) [75, 76] involve a sum of smooth
functions of covariates, thus capturing the non-linear effects of covariates on the dependent
variable. They have the form

g (µt ) =β0 + f1(x(1)
t )+ f2(x(2)

t )+ f3(x(3)
t , x(4)

t )+ . . . (3.5)

where µt ≡ E(Yt ), g is a smooth monotonic link function, Yt ∼ some exponential family
distribution, Yt is a response variable, and f j are smooth functions of covariates x(k)

t .

The model offers a flexible specification of the dependence on covariates by specifying the
model only in terms of “smooth functions”. It is able to capture complex non-linear rela-
tionships, and their estimation and prediction are straightforward. Additionally, GAMs have
an important feature for contexts where domain experts need interpretable models: The
simplicity of its additive structure makes it easy to use and understand.

There are several methods to estimate GAM, one of the most famous is the backfitting algo-
rithm from Hastie and Tibshirani [76], which is implemented in the gam R package. Another
method to estimate GAM is the Penalized Iterative Re-Weighted Least Square (P-IRLS) from
Wood [77], which is implemented in the mgcv R package. In this method, the basis for each
smooth function f j is specified using regression splines of one or more variables. Given such
a basis, a GAM can be estimated as a GLM, and, to avoid overfitting, the method controls the
smoothness for each term through a set of penalties applied to the likelihood of the GLM.



3.3. ENHANCED MODEL – GAMLF-SL 29

3.3.1 Model
In addition to the dependent variable y already defined by Equation 3.1, consider these
redefined data xt that include calendar, time, and meteorological components as:

xt =
[

x(Trend)
t x(DayOfWeek)

t x(PublicHoliday)
t x(DayOfYear)

t x(TimeOfDay)
t x(Temperature)

t

]⊤
. (3.6)

Note that these data exclude the month variables used in the previous section. Besides the
components explained above, let detail the new ones:

• x(PublicHoliday)
t is a categorical variable representing the national holidays, including

Carnival; a category for each public holiday. Some papers combine all public holidays
into a unique boolean variable. This option may be more prudent due to the minority
number of public holidays over one year. We have evaluated the two options, but the
final model takes into account the most descriptive categorical variable. Some public
holidays have temporarily ceased from the Portugal calendar and that information was
included. Regional holidays have an influence on national load patterns, but were not
included.

• x(DayOfYear)
t is a numerical variable representing the current day within the year. Its

values range from 0 for 1st January and 1 for 31th December.

Considering the data available, the modeling activity requires to define what is the best
combination of available input variables, following the additive structure which GAM follows.
Therefore, the methodology carried forward has four steps: (i) formulation and selection of
input variables, (ii) definition of model structure, (iii) model calibration and tuning, and (iv)
evaluation of model and residuals. After residual analysis, the process is repeated to find
a new set of input variables and model structure, focusing on the aspects or moments in
which the residuals are higher. The process ends when a good balance is achieved between
applicability, interpretability, reproducibility, and accuracy performance.

First, the definition and selection of the input variables was explained above, when the
available data xt were defined in Equations 3.3 and 3.6. Even though, Sections 3.3.2 and 3.3.3
detail the domain knowledge that reflects the definition and selection of additional input
variables.

Second, the initial structure of the model, M1, was based on the GLMLF-B (Equation 3.4 with
the necessary modifications due to the new characteristics of the GAM technique. Namely, the
qualitative variables month and time of day are changed to their quantitative versions, that is,
the quantitative day of year and time of day4 variables, and smooth functions are used when
appropriate. For instance, it is unnecessary to make explicit third-order polynomials for the
temperature effect, since the smooth functions take care of this. Therefore, the GAMLF-SL-M1
model is defined as

4Here, the name (time of day) refers to the quantitative version. The interpretation is implicit from the context.



30 CHAPTER 3. NATIONAL LOAD FORECASTING

ŷ (M1)
t =β0 +β1x(Trend)

t

+ f (TimeOfDay)
(
x(TimeOfDay)

t

)
+ ∑

i∈{Monday,...,Sunday}
1(

x
DayOfWeek
t =i

) (βi + f (TimeOfDay/DayOfWeek)
i

(
x(TimeOfDay)

t

))
+ f (DayOfYear)

(
x(DayOfYear)

t

)
+ f (Temperature)

(
x(Temperature)

t

)
+ f (Temperature/TimeOfDay)

(
x(Temperature)

t , x(TimeOfDay)
t

)
+ f (Temperature/DayOfYear)

(
x(Temperature)

t , x(DayOfYear)
t

)
+ϵt

. (3.7)

Note that f (TimeOfDay/DayOfWeek)
i , f (Temperature/TimeOfDay), and f (Temperature/DayOfYear) introduce

the co-interactions appropriately, excluding their main effects. For instance, ∀i∈{Monday,...,Sunday}

f (TimeOfDay/DayOfWeek)
i smooth functions consider the intra-day effects over the power load

differently for each i -day-of-week, but those have already excluded the main intra-day effect
regardless of the day of the week. This latter effect has already been captured in the f (TimeOfDay)

component. The same happens to f (Temperature/TimeOfDay) and f (Temperature/DayOfYear) compo-
nents: those components capture the intra-day and annual seasonality effect of temperature
considering that the main effect of temperature is already set up in the f (Temperature) compo-
nent5.

The rest of the modeling activity follows a stepwise process in which the remaining variable is
incorporated into the model at each iteration.

Third, to fit the model, package mgcv R was adopted using thin plate regression spline bases,
once they can smooth any number of covariates, avoid defining knots, and have some optimal
properties (view Section 4.1.5 and table 5.1 from [77] for more information). Although effective
degrees of freedom are controlled by the degree of penalization selected during fitting, by
Generalized Cross-Validation, the upper limit6 on degrees of freedom is explicitly defined
within each additive component [78].

Finally, the model metrics and residuals were analyzed. Consequently, if any insights emerge,
that might lead to the repetition of this methodology to increase the accuracy of the model.

The following subsections split the rest of modeling activity into two subjects, one per type of
explanatory variable, which improves the model accuracy.

3.3.2 Lagged Load
The power load time series, as many other signals, show the presence of repeating patterns
or periodic signals. To understand the autocorrelation of time series, Figures 3.3a and 3.3b
exhibit the autocorrelation function (ACF) and the partial autocorrelation function (PACF).

5For reproducibility in R’s mgcv package consider the formula y ∼ trend + s(timeOfDay, k=40)

+ ti(timeOfDay, by=dayOfWeek, k=20) + dayOfWeek + s(dayOfYear, k=40) + s(temperature,

k=30) + ti(temperature, timeOfDay, k=7) + ti(temperature, dayOfYear, k=7)
6Argument k which appears in the formula for the package mgcv.
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In both plots, high coefficients rise at immediately lag values and, more important, at 24
hours lag, 2 days lag, 3 days lag, etc. This represents a daily seasonality. The amplitude of
ACF of subsequently peaks decreases until 4 days lag but increases again until reaching a
new maximum amplitude precisely at 7 days lag. This “scalloped” shape is due to the weekly
seasonality.

(a) Power load ACF plot (b) Power load PACF plot

(c) GAMLF-SL-M1 residuals ACF plot (d) GAMLF-SL-M1 residuals PACF plot

Figure 3.3. ACF and PACF plots show the correlation of power load (3.3a and 3.3b) or GAMLF-SL-M1

residuals (3.3c and 3.3d) with a delayed copy of itself as a function of delay (8 days maximum). In both

plots, high coefficients rise at immediately lag values and, more important, at lags of 48 (24 hours),

96 (2 days), 144 (3 days), and so on. The amplitude of ACF of subsequently peaks decreases until 4

days lag (192 half hours) but increases again until reaching a new maximum amplitude precisely at 7

days lag (lag 336). Notice that the coefficients (columns) lie beyond the light blue region as they signify

strong statistical confidence.

The autocorrelation functions suggest which are the best lag periods as autoregressive terms
to be included in the model structure. However, the final selection of autoregressive terms
depends on the applicability of the model. The use of a lagged power load as an input into
the model leads to the necessity that the data should be available right on time to predict.
For example, considering the 24-hour lagged power load as input, the model would predict
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Table 3.3. Taking into account 24 hours, 2 days, and 1 week as possible lagged power loads, the

methodology is followed testing different combinations of candidate covariates added to the previous

model, GAMLF-SL-M1. The function EWMAα represents the exponential α-weighted moving average.

Model Candidate covariates added to GAMLF-SL-M1

M2a f (LagLoad1w)
(
yt−336

)
M2b f (LagLoad48h)

(
yt−96

)
M2c f (LagLoad48h)

(
yt−96

)+ f (LagLoad1w)
(
yt−336

)
M2d f (LagLoad24h)

(
yt−48

)+ f (LagLoad48h)
(
yt−96

)+ f (LagLoad1w)
(
yt−336

)
M2e f (LagLoad24h)

(
yt−48

)+ f (LagLoad48h)
(
yt−96

)
M2f f (LagLoad24h)

(
yt−48

)
M2g f (LagLoad24h)

(
yt−48

)+ f (LagLoad1w)
(
yt−336

)
M2h f (LagLoad24h)

(
yt−48

)+ f (LagLoad1w)
(
yt−336

)−β1x(Trend)
t

M2i f (EWMALagLoad24h)
(
EWMA0.7

(
yt−48, yt−49, yt−50, yt−51

))
M2j f (EWMALagLoad1w)

(
EWMA0.7

(
yt−336, yt−337, yt−338, yt−339

))
M2k M2i + M2j

a maximum horizon of 24 hours, considering that there is no delay in the availability of the
power load time series.

However, it is important to note that the covariates already included in the GAMLF-SL-M1
structure could capture these different seasonalities. To ensure that new autoregressive terms
will improve the accuracy of the model despite additional complexity, ACF and PACF are
applied to the residuals of GAMLF-SL-M1 instead of the power load signal. Figures 3.3c and
3.3d suggest that even residuals manifest autocorrelation patterns and peaks are comparable
with the ACF and PACF of the power load time series. Taking into account the structure of
the previous model, GAMLF-SL-M1 (equation 3.7), different combinations of possible lagged
power loads are added as candidate covariates. These models, M2a–M2k, as shown in Table
3.3, are evaluated with a one-year update cycle. The results are demonstrated in Table 3.5.

Finally, after evaluating, the final model, GAMLF-SL-M2, is based on the result of the M2g
model and is defined as

ŷ (M2)
t =β0 +β1x(Trend)

t

+ f (LagLoad24h) (yt−48
)+ f (LagLoad1w) (yt−336

)
+ f (TimeOfDay)

(
x(TimeOfDay)

t

)
+ ∑

i∈{Monday,...,Sunday}
1(

x
DayOfWeek
t =i

) (βi + f (TimeOfDay/DayOfWeek)
i

(
x(TimeOfDay)

t

))
+ f (DayOfYear)

(
x(DayOfYear)

t

)
+ f (Temperature)

(
x(Temperature)

t

)
+ f (Temperature/TimeOfDay)

(
x(Temperature)

t , x(TimeOfDay)
t

)
+ f (Temperature/DayOfYear)

(
x(Temperature)

t , x(DayOfYear)
t

)
+ϵt

. (3.8)
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3.3.3 Calendar
The power load is largely dependent on human behavior, which in turn is conditioned by the
calendar. The literature is full of various approaches to the calendar and time. For example:

• month (12 classes); months grouped by the four seasons (4 classes); months grouped
into 7 types to distinguish the transitions between two adjacent seasons (7 classes); hot
and cold days instead of months (2 classes);

• day of the week (7 classes); working and weekend days (2 classes); weekend, adjacent
days to the weekend and other working days (3 classes); and other combinations of the
7 days;

• intraday steps (48 steps if half-hourly or 24 steps if hourly); or other combinations, for
example: dawn, morning, lunch, afternoon, evening, and late night (6 classes);

• holidays treated separately; or treated as weekends; or even additionally modeling the
surrounding days of a holiday apart from others.

The GAMLF-SL-M2 model already includes the 7 days of the week to discriminate the intraday
power load into 7 typical curves, one per week. However, the residuals plotted over one year
show patterns in specific days and periods. Figure 3.4 shows the patterns in the summer
holidays, August, Christmas, New Year, and other surrounding public holidays. Figure 3.5
shows the challenging issue of modeling the surrounding days of a public day, in this case,
Christmas Eve and the day after Christmas, for a model that already perceives Christmas day
as a special day.

Taking into account the structure of the previous model, GAMLF-SL-M2 (equation 3.8), several
adjustments are studied to cope with the existence of a holiday on the day the model forecasts,
or the existence of a holiday on the day the autoregressive covariates uphold. These models,
M3a–M3f, as shown in Table 3.4, are evaluated with a one-year update cycle. The results are
demonstrated in Table 3.5. Let explain the adjustments:

• Model M3a takes into account a global value to increase or decrease prediction depend-
ing on whether the day being forecast is a public holiday;

• Model M3b adjusts the number of classes of set G from 7 to 9 of the component already
defined in GAMLF-SL-M2, adding the class HolidayOnWeekend for public holidays that
occur on the weekend and Holiday otherwise;

• Model M3c takes into account global values to increase or decrease prediction, specific
for each public holiday (non-boolean off-day variable);

• Model M3d adds the autoregressive component LagLoad48h to the model that might
be different depending on whether the previous day was a public holiday;

• Model M3e adjusts the autoregressive component LagLoad24h to the model perceive
differences when it comes from a public holiday (which took place the day before);

• Model M3f adjusts the autoregressive component LagLoad1w to the model perceive
differences when it comes from a public holiday (which happened one week ago);
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Figure 3.4. Residuals over a year are analyzed to check patterns and obtain insights. Note the residuals

in summer holidays – August –, Christmas and New Year holidays, and surrounding other public

holidays.
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Figure 3.5. Although the model already perceives the Christmas day as a special day, the surrounding

days – the Christmas Eve and the day after Christmas – continue to be a challenging issue. The figure

plots the real (red) and predicted (green) values, as well as the difference (blue) between them. Note

that 24th December is also adjacent to a weekend, that is, Christmas Eve is a Monday in this case.
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Table 3.4. Considering the holiday existence on the day autoregressive covariates uphold (adjustments

in M3c–e) or the holiday existence on the day model is forecasting for (adjustments in M3a–b and

M3f), the methodology followed testing the different candidates.

Model Candidate covariates added or adjusted to GAMLF-SL-M2

M3a
∑

i∈{Yes,No} 1(
x

isPublicHoliday
t =i

)βi

M3b

∑
i∈G 1(

x
DayType
t =i

) (βi + f (TimeOfDay/DayType)
i

(
x(TimeOfDay)

t

))
where G = {MondayNoHoliday, . . . ,SundayNoHoliday,Holiday,HolidayOnWeekend}

M3c M3b +
∑

i∈{NewYear,··· ,Christmas} 1(
x

PublicHoliday
t =i

)βi

M3d M3c +
∑

i∈{Yes,No} 1(
x

isPublicHoliday
t−48 =i

) (βi + f (LagLoad48h)
i

(
yt−96

))
M3e M3d +

∑
i∈{Yes,No} 1(

x
isPublicHoliday
t−48 =i

) (βi + f (LagLoad24h)
i

(
yt−48

))
M3f M3e +

∑
i∈{Yes,No} 1(

x
isPublicHoliday
t−336 =i

) (βi + f (LagLoad1w)
i

(
yt−336

))

Finally, after evaluating, the final model, GAMLF-SL-M3, is based on the results of the M3c
model and is defined as

ŷ (M3)
t =β0 +β1x(Trend)

t

+ f (LagLoad24h) (yt−48
)+ f (LagLoad1w) (yt−336

)
+ f (TimeOfDay)

(
x(TimeOfDay)

t

)
+ ∑

i∈G
1(

x
DayType
t =i

) (βi + f (TimeOfDay/DayType)
i

(
x(TimeOfDay)

t

))
+ ∑

j∈{NewYear,··· ,Christmas}

1(
x

PublicHoliday
t = j

)β j

+ f (DayOfYear)
(
x(DayOfYear)

t

)
+ f (Temperature)

(
x(Temperature)

t

)
+ f (Temperature/TimeOfDay)

(
x(Temperature)

t , x(TimeOfDay)
t

)
+ f (Temperature/DayOfYear)

(
x(Temperature)

t , x(DayOfYear)
t

)
+ϵt

(3.9)

where G = {MondayNoHoliday, . . . ,SundayNoHoliday,Holiday,HolidayOnWeekend}.

The low improvement of M3d, M3e, and M3f models accuracy compared to M3c’s does not
justify their adoption due to complexity increase.

3.3.4 Results
In this section, the generalized additive model-based load forecasting – system-level model,
GAMLF-SL, is evaluated. The same dataset and the procedures to compute the results are
followed as in Section 3.2.2.

The results for GAMLF-SL are shown in Tables 3.6 and 3.7 for the same update cycles. As a first
result, it is obvious that GAMLF-SL-M1 achieves a better accuracy compared to the results
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Table 3.5. Analysis of candidates for variables testing different adjustments of previous models evalu-

ated with one year update cycle.

Model MAE (MW) MAPE (%) RMSE (MW) NRMSE (%) R2 MASE

M2a 190.25 3.43 286.96 4.98 0.923 0.419
M2b 183.32 3.32 280.56 4.88 0.926 0.404
M2c 168.06 3.03 263.77 4.59 0.932 0.371
M2d 140.80 2.53 229.49 3.99 0.948 0.311
M2e 148.64 2.68 237.79 4.14 0.945 0.328
M2f 149.59 2.70 238.01 4.14 0.946 0.330
M2g 140.77 2.53 229.16 3.99 0.948 0.311
M2h 143.82 2.54 229.44 3.99 0.949 0.317
M2i 151.36 2.73 239.91 4.17 0.945 0.334
M2j 191.48 3.45 287.30 5.00 0.923 0.422
M2k 142.32 2.55 230.85 4.02 0.948 0.314

M3a 137.31 2.47 210.89 3.67 0.956 0.303
M3b 130.31 2.32 197.56 3.44 0.962 0.287
M3c 126.97 2.26 191.08 3.32 0.965 0.280
M3d 125.84 2.24 192.26 3.35 0.964 0.278
M3e 125.34 2.23 190.68 3.32 0.964 0.276
M3f 124.12 2.21 189.56 3.30 0.965 0.274

of the benchmark model, GLMLF-B. Taking into account the same or similar variables, the
GAM technique achieves better accuracy with simplified interpretability (discussed later).
Moreover, the systematic approach iteratively enhances the GAM-based regression models by
introducing new synthetic explanatory variables based on domain knowledge. GAMLF-SL-M2
adds autoregressive components to the previous model, and GAMLF-SL-M3 in turn adjusts
and adds calendar features. When comparing the benchmark model, GLMLF-B, and the
enhanced GAMLF-SL-M3 model, MAPE, MAE, RMSE and NRMSE were reduced by 42% to
47% in all update cycle scenarios. Furthermore, as the median and average accuracy improves,
the days with higher errors also improve in terms of error amplitude. This is demonstrated by
the decrease in spread of the box plots exhibited in Figure 3.6. The MAPE and MAE maximums,
meaning the days with higher errors, decrease across the four models cross-validated with 365
folds, each fold representing one day of testing. Figure 3.7 shows the improvement on special
days, such as warmer summer days in June, July, and August, as well as on weekends and
holidays. However, the model GAMLF-SL-M3 introduced a higher error on public holidays
that occur on weekends compared to other models.

With respect to interpretability, the internals of the model are easy to interpret. Besides the
parameters β, the spline functions f , which are also estimated during the fitting step, are easy
to understand and familiar. The fact that experts see their domain knowledge “recognized”
by the model reinforces acceptance and adoption. Figure 3.8 shows the main effect of the
intra-day pattern (3.8a), as well as the interaction of the same effect for each day of the week
after the main effect being appropriately excluded (3.8b-3.8i). Note that the model adds a
lower load baseline for weekends compared to working days (Figure 3.8b). Consequently, to
maintain the same levels of power load during the very early morning (0 a.m. to 6 a.m.), as
on any other ordinary day, fSaturday (3.8h) and fSunday (3.8i) display, for that period, higher
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Table 3.6. GAMLF-SL results calculated over the time span from 2016 to 2019 using time series cross-

validation with a fixed 3-year window for training and the next 1 year (1-fold), 2 weeks (26-fold), 1 week

(52-fold) or 1 day (365-fold) of testing data. The best results are in bold. MASE was calculated with

m-steps equal to 52 weeks, 2 weeks, 1 week, and 1 day, respectively. All metrics are the mean calculated

from cross-validation folds.

Model MAE (MW) MAPE (%) RMSE (MW) NRMSE (%) R2 MASE

1
ye

ar M1 227 4.09 323 5.61 0.909 0.501
M2 141 2.53 229 3.99 0.948 0.311
M3 127 2.26 191 3.32 0.965 0.280

2
w

ee
ks M1 202 3.59 276 4.81 0.927 0.699

M2 138 2.47 198 3.48 0.944 0.468
M3 124 2.20 172 3.01 0.963 0.433

1
w

ee
k M1 200 3.56 265 4.64 0.933 0.907

M2 138 2.46 190 3.35 0.946 0.603
M3 124 2.19 166 2.91 0.964 0.568

1
d

ay

M1 194 3.46 234 4.16 0.957 1.142
M2 137 2.44 166 2.97 0.967 0.686
M3 123 2.18 148 2.64 0.977 0.653

M
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Figure 3.6. Quantile box plots of MAPE and MAE for the four models cross-validated with 365 folds (1

day update cycle). Not only do the median and average accuracy improve, but days with higher errors

are also predicted more accurately.
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(b) Accuracy metrics by month

Figure 3.7. MAE, MAPE, and RMSE by month or day type calculated for the four models cross-validated

with 365 folds (1 day update cycle). The day type "Hol" means holiday and "HolW" means holiday on a

weekend. The day types are disjointed subgroups.

responses compared to other spline functions (3.8c-3.8g). Thus, this compensates for the low
load baseline added by βSaturday and βSunday (3.8b). On the other hand, the peaks and valleys
of those two weekend spline functions are different from those of the working days. Even the
number of effective degrees of freedom is higher for those two days due to the more complex
structure required to reshape the baseline f (TimeOfDay). Note that the baseline multiplied by
βi , which is always added, gives a more approximate shape to the load curve of the working
day.

Furthermore, β1, which results from the linear component of the time series, and f (DayOfYear),
which emerges from the annual pattern, are shown in Figure 3.9. Note the pronounced valley
shape at the beginning and end of the year, as well as in the summer leave (August): they
suggest a trend as lower electricity consumption. The effect of temperature on the power load
is highlighted in the graphs in Figure 3.10. The main effect of temperature (3.10a) is aligned
with the scattered plot in Figure 3.2. It can be seen from 3.10b that low temperatures during
the early morning (0 am to 6 am) have the opposite effect to the same low temperature during
the evening. During the evening, low temperatures reinforce the general pattern (3.2), that is,
increase the power load. On the contrary, during the early morning, low temperatures shrink
the effect of that same general pattern. Another insight is that warm winters have the effect of
shrinking load predictions due to a reduction in heat demand (3.10c).

More insights could be derived from the internals of the fitted model, the point is: the model
proposes a highly interpretable internal structure.
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Figure 3.8. The effects of intra-daily and weekly patterns on the power load are recognized by the

parameters β and spline functions f which were estimated during the fitting step of the GAMLF-SL-M1

model. The figure (a) exhibits the main effect of intra-day pattern independently of the day of week,

while figures (c-i) exhibit the effect of intra-day pattern for each day of the week after the main effect

being appropriately excluded.
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Figure 3.9. The linear component and the annual pattern recognized by the β1 parameter and the

f (DayOfYear) spline function, which are estimated during the fitting step of the GAMLF-SL-M1 model.
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Figure 3.10. The effects of temperature over the power load recognised by the spline functions f

which were estimated during the fitting step of model GAMLF-SL-M1. Figure (b) and (c) represent the

bivariate effect of the temperature and the time of the day (b) or the day of the year (c).
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3.4 Gradient Boosting Model – GBMLF-SL
In the space of ensemble methods, gradient boosting machines (GBM) have been a prominent
technique used in a diverse number of machine learning and data mining challenges with
considerable success [79]. The main idea of boosting is to add new learners to the ensemble
formation sequentially. At each step, a new weak base-learner model is trained with respect
to the error of the whole ensemble. Thus, the new base-learner formation is correlated with
the negative gradient of the loss function associated with the whole ensemble [80, 81].

The flexibility makes GBM highly customizable to diverse machine-learning tasks. It has been
considered to energy domain data-driven tasks, including electricity load forecasting [82–84].
Hence, GBM’s success in disparate domain encourages its assessment and comparison with
the models of previous sections.

The gradient boosting machine load forecasting — GBMLF-SL — is also a regression model
for system level, as previous models already evaluated. The assessment is conducted using
the same performance metrics and the same features which model GAMLF-SL-M3c used,
though an adequate pre-processing is needed to apply GMB. Three different base learners
and explored: (i) tree-based model, (ii) linear functions with L1 and L2 regularization, and (iii)
component-wise smoothing splines.

3.4.1 Model
In addition to the dependent variable y already defined, consider the vector feature xt that
includes the same set of variables/information that the previous models used:

xt =

[
x(Trend)

t x(DayType)
t x(PublicHoliday)

t x(DayOfYear)
t x(TimeOfDay)

t

x(LagLoad24h)
t x(LagLoad1w)

t x (Temperature)
t x2

t
(Temperature)

x3
t

(Temperature)
]⊤

.

(3.10)

Here, the temperature data are explicitly unfold to three exponential versions (the temperature
raised to the power of 1, 2 and 3), considering equal rationale when the same three compo-
nents were used in the benchmark model (Section 3.2). The 1-day and 1-week lagged loaded

are also explicitly included in the vector feature. Note that x(LagLoad24h)
t ≡ yt−48 , x(LagLoad1w)

t ≡
yt−336 , and x(DayType)

t ∈ {MondayNoHoliday, . . . ,SundayNoHoliday,Holiday,HolidayOnWeekend}.
Remark that the base learners set a predefined internal structure unlike GAM in which the
components interaction are explicitly modeled and constrained into the additive structure.

Additionally, categorical features are encoded into binary variables once the main GBM im-

plementations are unable to operate on label data directly. The categorical features, x(DayType)
t

and x(PublicHoliday)
t , which do not establish a natural ordering between categories, are one-hot

encoded, that is, a new binary variable is added for each unique category level.

Particularly, for the linear base learner with L1 and L2 regularization more sensible to different
scales between features, the numerical variables are also pre-processed through normaliza-
tion. Each numerical variable is individually scaled and centered in order to have a standard
deviation of one and a mean of zero.

The Extreme Gradient Boosting algorithm (XGboost) was used with a hyperparameter exhaus-
tive grid search in accordance with Table 3.8.
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Table 3.8. Hyperparameter space search.

Model Hyperparameter Grid Search Optimized Value

Tree-based

eval_metric RMSE RMSE
n_rounds 50, 150, 200, · · · , 10 000 1400
eta 0.005, 0.01, 0.02, 0.05 0.02
max_depth 1, 2, 3, · · · , 10 6
gamma 0, 5, 10, 15 0
colsample_bytree 0.5, 0.6, 0.7 0.6
min_child_weight 1, 3, 5, 7 1
subsample 0.3, 0.4, 0.5, 0.6, 0.7 0.6

Linear-based

eval_metric RMSE RMSE
n_rounds 50, 150, · · · , 1000 250
eta 0.005, 0.01, 0.02, 0.1, 0.2 0.005
alpha (for L1) 0.001, 0.01, 0.1, 1, 10, 100, 1000 1
lambda (for L2) 0.001, 0.01, 0.1, 1, 10, 100, 1000 0.001

3.4.2 Results
The results for GBMLF-SL indicate no improvements in accuracy when comparing the RMSE
with the previous model, GAMLF-SL. The 199MW RMSE achieved compares to the 191MW
RMSE of GAMLF-SL-M3, the latter better. Figure 3.11 shows the RMSE on the testing dataset
throughout the boosting iterations of the algorithm. Each line progression and differences
among plots suggest the sensibility to the hyperparameters during its optimization search.
From the plots, it is possible to figure that the GBM outfits for some hyperparameters, those
lines whose RMSE start to rise after a specific number of iterations.

Given the same data modeling, even with some tweaks to accommodate the characteris-
tics of the gradient boosting machine (GBM), it achieves the same accuracy, but with two
disadvantages to be noted.

GBM has many hyperparameters and they need to be optimized by an outside optimiza-
tion algorithm that figures the hyperparameters based on minimization of loss. That takes
computing time and effort to choose the optimization algorithm and define the grid search,
though it is easily parallelizable.

Furthermore, GBM ensemble structure are notably less interpretable compared to GAM,
and the purposed evaluation of the models ensures the qualitative balance between their
accuracy and interpretability. Although weak base learners are known as highly interpretable
as linear functions or small-sized trees, to achieve the same levels of accuracy, GBM holds
thousands of linear functions or trees weightily combined to formulate the ensemble, losing
the interpretability from the domain perspective. Nevertheless, model-agnostic interpretation
techniques for machine learning models such as partial dependence plots (PDP), permutation
feature importance (PFI) and Shapley values provide insightful model interpretations [85–87]
if well used [88].
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Figure 3.11. RMSE on the testing dataset throughout the boosting iterations of GBM. Each plot

considers a different value for the eta hyperparameter (step size shrinkage used in the update to

prevent overfitting). Each line considers the maximum depth of tree-based learner (increasing this

value will make the model more complex). The minimum loss, 199MW of RMSE, is found with the

optimized hyperparameters figured in Table 3.8.
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3.5 Ensemble Model – GAMLF-SLE
The GAM based load forecasting, GAMLF-SLE, is a system-level regression model that results
from the ensemble of a set of learners based on the previous sections. Ensemble methods
can be applied to national load forecasting to improve accuracy. There are periods like the
summer break in August and days around public holidays that are particularly challenging in
forecasting tasks.

Ensemble methods get a collection of learners and combine their outcomes to make an overall
decision. The rationale behind this is due to the fact that different learners, often referred to as
experts, might be more accurate on specific subproblem, period time, or category. Therefore,
a mechanism to build different learners that can capture specific information or patterns in
the data must be defined.

3.5.1 Weighted Majority Algorithm
The Weighted Majority Algorithm (WM) is a simple and effective method, based on weighted
voting, to build up a compound algorithm from the outputs of some pool of known algorithms
where at least one of them will perform well [89].

WM learning proceeds in a sequence of trials. At each trial, the algorithm receives the out-
comes of the predictors and uses them to process its own outcome considering the accuracy
that the WM algorithm knows about each predictor at that moment. This accuracy knowledge
is translated as weights, one for each predictor, and updated at the end of the trial according to
the difference between each predictor outcome and the actual value, the label, which the WM
algorithm receives delayed. WM evaluates such algorithms according to how many mistakes
they make along the sequence.

3.5.2 Weighted Majority Algorithm Reviewed
The original Weighted Majority Algorithm is reviewed to cope with specific requirements of
our scenario. Some modifications were also taken into account and implemented in other
studies, but, to our best knowledge, there are some changes that are not found in the research
area. The WM’s specific requirements for our scenario are:

• be able to support numerical and unbounded outcomes from predictors;

• be able to cope with non-available outcomes of a subset of predictors and update the
weights in accordance;

• be able to receive the label with a constant time delay and hold back the learning
process;

• be able to learn in independent and predefined spans, called regimes, where each one
is a discontinuous and disjoint temporal period.

The original paper discusses the case in which the predictions and labels range between
0 and 1. The algorithm variant is known as the Weighted Majority – Continuous version
(WMC). Since our predictors’ outcomes – power load forecasts – are numerical and un-
bounded, an unreachable maximum demand value should be defined to set an interval that
is convertible to the working range of the algorithm. Data analysis indicates that a power of
10000 MW appears to be unreachable; therefore, a linear mapping f from

[
0,10000

]
to

[
0,1

]
is applied to predictors’ outcomes before entering the WMC algorithm, and whose output, in
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turn, is mapped back through f −1, such that:

f :
[
0,10000

] ∈R→ [
0,1

] ∈R, y 7→ y

10000
. (3.11)

In our scenario, the predictors may not forecast in specific trials due to their own model
design process. Indeed, some predictors will be designed and calibrated exclusively for
specific periods such as summer, Christmas, New Year, weekends, public holidays, and off-
days. So those models are not able to predict outside the period for which they are built up
and consequently the WMC algorithm receives occasionally a non-available outcome from
them. Consequently, the WMC algorithm needs to adopt a strategy to update the weight
of each predictor when receiving a mix set of non-available and actual predictions. Several
strategies are available, such as: (i) do not update the weights of predictors whose outcome is
not available, (ii) update through a decreasing constant, or (iii) update in accordance with the
worst, (iv) the best, or (v) the average of available predictions.

In the original WMC, for each forecaster i , the weightωi is updated in step t +1 by multiplying
itself by the calculated value αi , such that 0 <αi ≤ 1, i.e.,

ω(t+1)
i =ω(t )

i αi . (3.12)

Since all weights are initialized as positive values, each update step results in lower weights.
αi is calculated for each prediction ŷi ∈ [0,1] as

αi = exp−η·|ŷi−y| (3.13)

where η> 0 is a learning parameter and y ∈ [0,1] is the label, the real value.

In this proposed algorithm, the adopted strategy updates the weights whose predictors do not
forecast, according to the incur loss ℓabs =

∣∣ŷ − y
∣∣ of the WMC algorithm outcome ŷ . Thus,

these predictors do not benefit because the lack of outcome is negatively reflected in their
weights, nor are they jeopardized since their weights are updated approximately at the same
rate as the average, allowing them to contribute to the following trials without being more
relevant just because there is no outcome.

Furthermore, the algorithm receives the label y (t ) within a constant time delay δ. As the
predictors are forecasting the load, for instance, 24 hours ahead (48 half-hours), the algorithm
only gets the related label 48 trials later. Therefore, in the 49th trial, the WMC gets the first
label and consequently can update the weights based on the forecasts calculated 48 trials ago.
So, Equations 3.12 and 3.13 become

ω(t+1)
i =ω(t )

i exp
−η·

∣∣∣ŷ (t−δ)
i −y (t−δ)

∣∣∣ . (3.14)

Finally, different weights should be learned for different days. Due to the fact that predictors
are designed and calibrated with different goals, some are more accurate to specific temporal
intervals than the general predictor. For example, a predictor that models the power load
exclusively during the summer break is empirically more accurate in that specific period than
a model that models the whole year. To allow WMC to have different preferences depending
on the actual time t , the concept of regime is introduced. Regime r is a discontinuous and
disjoint temporal period in which the WMC algorithm learns and predicts. It uses distinct
weights wi ,r to maintain internal information for different periods, as well as distinct learning
parameters ηr .

Algorithm 1 is the variant of the original WMC algorithm that was changed to meet the
identified requirements.
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Algorithm 1 Weighted Majority Algorithm – Continuous Reviewed Version
Let N be the number of forecasters, and R the number of regimes.
Choose the learning parameters ηr > 0 that would be used in the weight update rule.
Choose the time delay parameter δ> 0.

1: Initiate weights ω(1)
i ,r ← 1 ∀i∈1...N ∀r∈1...R

2: for t ← 1. . .T do
3: Receive instance x ∈X of regime r ∈ 1. . .R
4: Receive forecasts y1 . . . yN ∈ [0,1]N

5: Predict ŷ ←
∑

i∈1...N∧yi exists ωi ,r yi∑
i∈1...N∧yi existsωi ,r

∈ [0,1]

6: if t > δ then
7: Let r ′ be the regime at time t −δ that is r ′ ≡ r (t−δ)

8: Let ŷ ′ be the prediction at time t −δ that is ŷ ′ ≡ ŷ (t−δ)

9: Receive true label y ′ ≡ y (t−δ) ∈ [0,1]
10: Incur loss ℓabs ←

∣∣ŷ ′− y ′∣∣
11: Update weights ω(t+1)

i ,r ′ ←ω(t )
i ,r ′ exp−ηr ′ ·

∣∣ŷ ′
i−y ′∣∣ ∀i={i∈1...N : ŷ ′

i exists}

12: Update weights ω(t+1)
i ,r ′ ←ω(t )

i ,r ′ exp−ηr ′ ·ℓabs ∀i={i∈1...N : ŷ ′
i not exists}

3.5.3 Results
Several learners, also known as experts, are combined into a master model using the WMC
variant described in Algorithm 1. It must be parameterized by the delay constant δ and the
learning constant ηr , which is optionally dependent on the actual regime. Once the goal is
to forecast 24 hours ahead, the real label is collected 24 hours after the prediction occurs.
Therefore, the delay constant δ has a value of 48 half-hours. The learning constant ηr is set
as one for every regime r . Additionally, regimes are defined annually as discontinuous and
disjoint temporal intervals. When experts are combined, the weights learned are independent
of the regimes. Table 3.9 summarizes the regimes used throughout the year. The algorithm
starts learning (update the weights) from the (6 years long) training dataset and continues
over the (2 years long) testing dataset. The accuracy of the algorithm is only based on the
results of the last two years.

Table 3.9. Years are partitioned into several discontinuous and disjoint intervals called regimes. Each

forecasting model might have better accuracy in a specific regime.

Regime Description

R1 Christmas and New Year period (23 December to 2 January)
R2 Carnival period (Sunday to Wednesday including Tuesday Carnival)
R3 Easter period (Thursday to Monday including Easter Sunday)
R4 Other public holidays
R5 Weekends (except previous regimes)
R6 August (Summer holidays except weekends and public holidays)
R7 Other common days during Spring and Summer (except August)
R8 Other common days during Autumn and Winter

The experts are GAM-based models fitted with minor changes either by modifying the features
of regression model or by fitting it against picked temporal periods, which comprise different
training data. Equation 3.8 (GAMLF-SL-M2) is used as the first expert model A, and model
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B is achieved by adding the 1 week lagged load. Finally, different training datasets are used
to fit the same model structure, resulting in different GAM-based experts: models C-J. The
training dataset is chosen according to the defined regimes and its temporal intervals. As
shown in Table 3.10, it resulted in a set of predictors that perform well under specific periods
or conditions. To evaluate the master model, the global RMSE and the global MAPE are also
calculated in each iteration cycle after combining the newest predictor with the master model.
The ensemble model I achieves better performance than the initial model A. The ensemble
model’s accuracy for one-day ahead forecast is about 154 MW for the global RMSE and 2.0%
for the global MAPE.

Table 3.10. Both general-purpose and period-specific models were combined into a master model to

minimize error (RMSE and MAPE). Units of RMSE are MW.

Model RMSE (MW) MAPE (%) Model introduced

A 203.26 2.580 general-purpose model (Equation 3.8)
B 179.54 2.313 general-purpose model reviewed (including covariate

that takes into account the demand 1 week ago)
C 169.74 2.182 weekends’ model
D 163.91 2.094 August’s model
E 165.03 2.083 public holidays’ model
F 162.06 2.046 Spring and Summer’s model
G 159.53 2.025 Easter’s model
H 159.90 2.027 Carnival’s model
I 154.04 2.004 Christmas and New Year’s model
J 158.88 2.073 Autumn and Winter’s model

The modified weighted majority algorithm (continuous version) proved to be an effective
method to achieve better accuracy compared to a general-purpose predictor for STLF when
GAM was used as a base technique. Although the predictors, which were combined, use the
same regression technique – which is not required –, they have different specificity goals.
Some predictors were specifically calibrated for special days or yearly/weekly repeatable
periods and, therefore, they are more accurate on those specific days compared to general-
purpose ones. Note that not only the regression technique was the same for all predictors, but
also no new explanatory variables were added. Therefore, we conclude that the combination
of the WMA while ensemble technique and the GAM while base modeling technique for
predictors improves the overall accuracy. However, the WMC learning process includes no
regulation, and thus overfitted predictors can adulterate the weights of the ensembling.

From the applicability perspective, though this method uses more data to train predictors,
plus the initial ensemble training process, this is online learning. So, the method would
decrease the importance of a specific predictor if its accuracy decays over time and vice versa.
It is also important to remark that the ensemble layer provides an interpretable configuration:
the weights impose the importance of each model within a regime, and the regimes are highly
understandable by knowledge domain and acceptable by operators and managers. Therefore,
this ensemble method does not decrease the degree of interpretability obtained from the
basis predictors.
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3.6 Conclusions
This chapter presents a methodology for the short-term load forecasting problem in the
energy domain at the system level. The methodology consists of four stages: (i) formulation
and selection of input variables as data preparation, (ii) definition of model structure, (iii)
model calibration and tuning, and (iv) evaluation of model and residuals.

In the data preparation stage, exploratory data analysis and domain knowledge are used to
explore the dataset and its characteristics, and formulate the input variables.

In the modeling stage, several models are presented, including GLMLF-B, GAMLF-SL, GBMLF-
SL, and GAMLF-SLE. GLMLF-B is a benchmark model based on a generalized linear model.
GAMLF-SL is an enhanced model built upon a generalized additive model, which incorporates
additional lagged load and calendar components, in addition to the temperature components.
GBMLF-SL is a gradient boosting machine load forecasting model. Lastly, GAMLF-SLE is an
ensemble model that combines different learners based on the Weighted Majority Algorithm
(WMA) and the GAM.

In the calibration and evaluation stage, error metrics and evaluation criteria are used to
compare all models. The results indicate that GAMLF-SL outperforms the benchmark model,
GLMLF-B, in terms of accuracy. Additionally, GAMLF-SL is an interpretable model that
provides insights into the load forecasting problem. GBMLF-SL achieves the same accuracy
as GAMLF-SL, but with two disadvantages: lower interpretability and a larger number of
hyperparameters to optimize. GAMLF-SLE improves the overall accuracy of national load
forecasting. The ensemble method presented in this chapter uses a collection of learners
to enhance the accuracy of national load forecasting. The method combines the Weighted
Majority Algorithm (WMA) as an ensemble technique and the Generalized Additive Model
(GAM) as a base modeling technique for predictors. The modified weighted majority algorithm
(continuous version) proves to be an effective method for achieving better accuracy compared
to a general-purpose predictor for STLF when GAM is used as the base technique. Therefore,
it can be concluded that the combination of the WMA as the ensemble technique and GAM as
the base modeling technique improves the overall accuracy. From an applicability perspective,
although this method uses more data to train predictors and involves an initial ensemble
training process, it operates as online learning. Thus, the method reduces the importance
of a specific predictor if its accuracy deteriorates over time and vice versa. It is important to
note that the ensemble layer provides an interpretable configuration: the weights determine
the importance of each model within a regime, and the regimes are highly understandable by
domain experts and acceptable to operators and managers. Therefore, this ensemble method
does not compromise the interpretability achieved by the base predictors. However, the WMC
learning process does not include regularization, which means that overfitted predictors can
affect the weights of the ensemble.





Chapter 4

Disaggregated Load Forecasting

This chapter describes the approach to individually predict the power load on thousands of
assets following a disaggregated methodology. The object of the study is the power load in
the secondary substations in Portugal. Approximately 30% are secondary substations that
belong to a single consumer at high and medium voltage and 70% are secondary substations
that feed dozens or hundreds of low-voltage consumers on a street or neighbor. The more
disaggregated the forecasting is, the more complex and difficult it will be to predict. There
is literature related to how to build forecasting models to a national or regional electricity
consumption, but much less literature is available to low voltage load forecasting, other than
smarter meters (LV consumers).

In particular, each secondary substation would have a trained model, although the structure
of the model and the methodology are the same or very similar. Consequently, power time
series for each asset are individually used to train the specific model.

4.1 Introduction
The disaggregated load denotes the power load in secondary substations, which is the inter-
face between the medium-voltage (MV) and low-voltage (LV) power system. Smart meters
that track this local power load are usually installed close to power transformers that have
the function of stepping down a higher voltage to a lower voltage. This conceptually divides
the grid into different voltage levels, and this chapter focuses on the forecasting problem of
the “last mile” of the distribution network. Unlike primary substations that feed mainly a ring
network scheme, in which more than one network path is possible through grid maneuvers
to prevent outages when a primary feeder fails, secondary substations feed mainly a radial
network scheme, which distributes the energy to the final consumers as a ”leaf“ section of
the grid. It is also important to note that the secondary substation can be owned by a unique
client, so the electricity measurements are from a specific customer’s site (point of energy
delivery), usually a large building or an industrial customer. These secondary substations will
be called PTC (client’s power transformer). Contrariwise, the secondary substations operated
by the distribution system operator (DSO) are named PTD (distributor’s power transformer).
For those, the electricity demand measurements refer to an aggregated set of consumers
nearby, usually a neighborhood of a few dozens or even hundreds of low-voltage clients.

51



52 CHAPTER 4. DISAGGREGATED LOAD FORECASTING

4.2 Data Overview
The data come from 96 989 secondary substations of Portugal mainland’s distribution grid,
the entire system. It consists of 26,479 client’s (PTC) plus 70,510 DSO’s (PTD) secondary
substations. The latter feeds 99.6% of electricity consumers (points of energy delivery) in
Portugal, which, however, represents 47.4% of the energy consumed on the mainland of
Portugal.

Each secondary substation might have the whole or a subset of the six time series depicted in
Table 4.1. The time series are 15 minutes resolution – that means 96 datapoints each day –
and most is collected daily and made available centrally a few hours late. However, as with
any distributed system in production, it may not be able to collect a few datapoints due to
communications, maintenance, and other temporary issues.

Table 4.1. The time series collected by meters in secondary substations.

Field Symbol Description Unit

1 A+ positive active power kW
2 R+

i positive inductive reactive power kvar
3 R+

c positive capacitive reactive power kvar
4 A− negative active power kW
5 R−

i negative inductive reactive power kvar
6 R−

c negative capacitive reactive power kvar

Despite the fact that the DSO embraces several types of forecasting, including A−, which
represents energy generation from different generation technologies, for our purposes, this
dataset focuses on positive active power A+; although the other time series forecasts are
equally important for grid planning and operation.

Numerical weather prediction (NWP) data is gathered with a 3 hour time step over a spatial
grid box, updated twice a day (00 and 12 UTC) for the next 72 hours. However, the predictions
are centrally available some hours late (between 7 and 8 hours after the base time to which
the prediction refers). The geographical discrete points are arranged in a two dimensional
regular grid located every 0.125 degrees over longitude and latitude, in which it covers whole
Portugal mainland1. In this scenario, the challenge of assigning the most related weather
station information to each secondary substation is minimized because there is a spatial
grid box: Each secondary substation is associated with the closest euclidean-distant NWP,
as shown in Figure 4.1. Table 4.2 shows the numerical weather variables collected that are
available for forecast purposes.

0.125°

Figure 4.1. Taking into account the NWP over the spatial grid box, each of the three substations (circles)

is associated with the closest Euclidean-distant NWP location.
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Table 4.2. The numerical weather prediction collected for modeling and inferring purposes.

Field Symbol Description Unit

151 msl mean sea level pressure Pa
167 2t 2 meter temperature K
169 ssrd surface solar radiation downwards (accumulated)xiii Jm−2

228 tp total precipitation (accumulated)xiv m
228246 100u 100 meter U wind component (towards east) ms−1

228247 100v 100 meter V wind component (towards north) ms−1

xiii SSRD is accumulated over a particular period since the initial time step. xiv Total precipitation is accumulated
over a particular period since the initial time step. Units are the depth the water would have if it were spread
evenly over the grid box.

Furthermore, due to the different time resolution between the original load observations (15
minutes) and the meteorological predictions (3 hours), the load observations are downscaled
to 30 minutes using the average of its quarter-hour values, and the temperature is upscaled to
30 minutes using linear interpolation when the gap between two consecutive datapoints is
not greater than 3 hours. Missing values are removed from the dataset.

4.3 Individual Secondary Substation Model – GAMLF-SSL
The GAM based load forecasting, GAMLF-SSL, is a regression model for secondary substations
level. The approach aims to individually predict the power load on thousands of assets at a
disaggregated level. The more disaggregated the forecasting, the more complex and difficult
it is to predict. There is literature related to how to build forecasting models to national or
regional electricity consumption, but much less literature is available for medium- and low-
voltage forecasting (except for individual low-voltage clients). However, the same principles
are applicable to the disaggregated STLF with the appropriate changes and further extensions.

4.3.1 Model
Given the dependent variable yn , the active power load (A+) of the asset n in kilowatt (kW),

yn = [
y1,n y2,n . . . yt ,n . . . yT,n

]⊤
, (4.1)

and the matrix Xn the calendar and meteorological variables that would be used as explanatory
variables, where each entry xt ,n has a structure similar to that of Equation 3.6,

xt ,n =
[

x(DayOfWeek)
t x(PublicHoliday)

t x(DayOfYear)
t x(TimeOfDay)

t x(Temperature)
t ,n

]⊤
. (4.2)

Besides the components already introduced in the previous Section, x(Temperature)
t ,n is the last

predicted temperature value for time t and the geographically closest point to asset n. Note
that, although the actual temperature observation could be used during the fitting, that
dataset was not available. On the other hand, during forecasting, the prediction of tempera-
ture is an input requirement.

1Latitude limits:
[
36.5◦,44.0◦

]
; Longitude limits:

[−10.0◦,−5.5◦
]



54 CHAPTER 4. DISAGGREGATED LOAD FORECASTING

The initial time t may differ for each asset n due to recent asset installations, but for most
assets, the time t runs from January 2015 to December 2019. Individual datasets are parti-
tioned into training and testing datasets so that the last year is used to calculate the accuracy
metrics.

The structure of the model is based on Equation 3.9. The forecast of the power load at time t
for the asset n is

ŷt ,n =


β |Sn | = 1

ŷ∗
t ,n |Sn | > 10

ŷ∗
t ,n − f (LagLoad24h) (yt−48,n

)− f (LagLoad1w) (yt−336,n
)︸ ︷︷ ︸

covariates removed

otherwise2
(4.3)

where ŷ∗
t ,n is the same equation 3.9 without the trend covariate,

ŷ∗
t ,n

def= ŷ (M3)
t −β1x(Trend)

t

=β0 + f (LagLoad24h) (yt−48
)+ f (LagLoad1w) (yt−336

)
+ f (TimeOfDay)

(
x(TimeOfDay)

t

)
+ ∑

i∈G
1(

x
(DayType)
t =i

) (βi + f (TimeOfDay/DayType)
i

(
x(TimeOfDay)

t

))
+ ∑

j∈{NewYear,··· ,Christmas}

1(
x

PublicHoliday
t = j

)β j

+ f (DayOfYear)
(
x(DayOfYear)

t

)
+ f (Temperature)

(
x(Temperature)

t

)
+ f (Temperature/TimeOfDay)

(
x(Temperature)

t , x(TimeOfDay)
t

)
+ f (Temperature/DayOfYear)

(
x(Temperature)

t , x(DayOfYear)
t

)
+ϵt

(4.4)

where G = {MondayNoHoliday, . . . ,SundayNoHoliday,Holiday,HolidayOnWeekend}.

Due to the capabilities of the energy meters, the measurements are actually non-negative
integers, yn ∈ NT

0 . However, this fact was not considered during the regressor modeling
and during its accuracy assessment. There are assets that present a constant measurement

yn ∈ {c}T , or a small set of unique values, a small |Sn | =
∣∣∣{yt ,n

}
t∈{1,··· ,T }

∣∣∣. For those time series, a

simpler regressor structure was used since the number of free parameters to estimate cannot
be larger than the number of unique observations. Therefore, the third element of Equation
4.3 removes the covariates related to the lagged power load.

2Actually, for implementation purposes, this model is used when the original model “ŷ∗
t ,n” returns an error

due a small (undefined) |Sn |.
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4.3.2 Results
To assess the performance of ŷt ,n , the generalized linear model-based load forecasting at
the secondary substation level, the entire year 2019 was used as a test (see Figure 4.9 for an
example of an asset). Note that one year is the minimum acceptable to test a forecasting
model whose target value shows annual seasonality. There are several assets whose data was
not available before 2019 for training and testing purposes. So, the following results consider
the forecasting models for 22,974 PTC assets and 61,689 PTD assets.

Another relevant issue is the prediction horizon, which was set at 24 hours (48 half-hours).
This means that for any time t +48 the model forecasts, the available explanatory variables
refer to a time at or before t , except for the temperature predictions.

To accurately assess the performance of the forecasting models, several error metrics (MAE,
MAPE, RMSE, NRMSE, R2, MASE, APN, MAPN, NMAPN) were used for each asset forecast ŷn .
Only the scaled errors, MAPE, MASE, NRMSE, and NMAPN, were passably analyzed together
and presented as histograms.

MAPE
The Figure 4.2 exhibits the MAPE histograms. Half of the models, which forecast the power
load of the PTD, have a MAPE below 0.126, while only 16.35% of the PTC models present a
MAPE below the same value. Both distributions are right-skewed, but the PTC error distribu-
tion tail is flatter than the PTD’s. Therefore, the model structure is better designed to cope
with the forecast of the PTD power load.

(a) PTD - MAPE (b) PTC - MAPE

Figure 4.2. Mean Absolute Percentage Error for PTD and PTC models. Both distributions are right-

skewed but with different flatness. The brown line indicates the cumulative count. The graph was cut

in eMAPE = 1.2, which means that 1366 PTD models (2.21%) and 4692 PTC models (20.42%) are out.

MASE
Figure 4.3 shows the MASE histograms. Note that MASE compares the model with a naive
forecast method. Taking into account daily seasonality, the naive forecast method returns the
power load observed 24 hours before, ŷNAIVE

t = yt−48. The error metric is scale-free and suited
to time series with zero or near zero values because it never gives infinite or undefined values
except for the irrelevant case where ∀t yt =C . Both graphs also show a vertical line eMASE = 1.
Models are better than the naive model when eMASE < 1. 82.8% PTD models and 66.0% PTC
models are better than the naive model.
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(a) PTD - MASE (b) PTC - MASE

Figure 4.3. Mean Absolute Scaled Error for PTD and PTD models compared with naive forecast, which

returns the power load observed 24 hours earlier. 53,391 PTD models (86.5%) and 16,083 PTC models

(70.0%) are better than the naive model, eMASE < 1. The brown line indicates the cumulative count.

The graph was cut in eMASE = 2, which means that 1,308 PTD models (2.21%) and 1,128 PTC models

(4.91%) are out.

NRMSE and NMAPN
Figure 4.4 shows the NRMSE histograms and Figure 4.5 the NMAPN histograms. Half of the
models that predict the PTD power load have a NRMSE below 0.162, while only 16.79% of the
PTC models have an NRMSE below the same value. While, half of the models that forecast
the PTD power load have a NMAPN below 0.222, while only 14.32% of the PTC models have
an NMAPN below the same value. Both distributions show a long tail due to a percentage
of assets that does not follow the general structure or the quality of time series is low (for
instance, non-decimal values with a low amplitude).

(a) PTD - NRMSE (b) PTC - NRMSE

Figure 4.4. Normalized Root Mean Square Error for the PTD and PTC models. Both distributions

present a long tail. The brown line indicates the cumulative count. The graph was cut in eNRMSE = 1.2,

which means that 2,214 PTD models (3.59%) and 3,533 PTC models (15.38%) are out.
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(a) PTD - NMAPN (b) PTC - NMAPN

Figure 4.5. Normalized Mean Adjusted p-norm Error with p = 4 and w = 3 for the PTD and PTC

models. Both distributions present a long tail. The brown line indicates the cumulative count. The

graph was cut in eNMAPN = 2.0736, which means that 2,257 PTD models (3.66%) and 3,580 PTC models

(15.58%) are out.

In general, the model is capable of forecasting such diverse amounts of time series (active
power load) for all 84,663 secondary substations of the Portuguese mainland grid, in which
data was available to train and test. It was concluded that this model is better than the naive
model in 82.1% assets.

From an applicability perspective, fitting almost 100 000 models and daily forecasting takes a
huge amount of computational resources. Chapter 7 introduces the distributed architecture
of the daily forecasting system called PREDIS – PREvisão DIStribuída, capable of fitting the
models in parallel computing and forecasting in a few two or three hours whose results arrived
in useful time for the posterior operating processes. Furthermore, the fitting process of each
asset results in a page with metrics and information: properties and accuracy metrics, load
curves, residuals over time, residuals assumptions checking, accuracy across calendar, and
best and worst week forecasting, as shown throughout Figures 4.6 to 4.10.

4.4 Conclusions
This chapter tackles a new data set that encompasses the 84 663 secondary substations of the
Portugal mainland grid, where energy is converted from medium voltage to low voltage using
power transformers. This dataset is already filtered by assets that do not have available data
for the training and testing period. A GAM-based model is individually trained and evaluated
considering accuracy, applicability, interpretability, and reproducibility.

The MASE metric recognizes the skill the model offers compared to the persistence model.
Without removal of any asset or special days from testing dataset, 86.5% of PTD and 70.0% of
PTC models are better than the persistence model. The PTC metrics reveal worse accuracy
when compared with PTD’s due to the fact that the latter feed dozens or hundreds of low-
voltage consumers in a street or neighborhood whose aggregated consumption is more
predictable than the single consumer of each PTC. The interpretability and reproducibility
properties are inherited from the model and approach as described in the previous Chapter.
The applicability is guaranteed by the distributed architecture of the daily forecasting system
called PREDIS, which is capable in useful time to predict all individual time series.
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Figure 4.6. Each fitted model (artifact) has associated properties (primary and foreign keys, computing

time, training and testing dataset intervals) and accuracy metrics to assess individually the artifact and

its calibration process.
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(a) Weekly Pattern

(b) Yearly Pattern

Figure 4.7. Hairball graphs allow you to get a perception in the daily, weekly, and yearly patterns and

draw conclusions about why some patterns might not be captured by the model.
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(a) Forecasting (b) Residuals

Figure 4.8. The load amplitude maintains across the year. At (a), the actual values yn are in red and

split into two datasets (training and testing). The green and the blue are the predicted values ŷn in

those two datasets. The residuals yn − ŷn are exhibited at (b) in which you can see peaks in a few spots.

Figure 4.9. The performance calendar plot displays residuals throughout the year. Public holidays are

displayed on the calendar with the respective symbols, as well as the time t that divides the training

and testing datasets, marked by a horizontal line on 3 May 2017. Christmas and New Year, as well

as the following day, show a higher error depending on the day of the week (weekend or not), which

suggests that it is necessary to review the structure of the model in these combinatorial cases.

(a) Best forecasting week (b) Worst forecasting week

Figure 4.10. The best and worst forecasted weeks suggest patterns that the model did not capture.
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(a) Normal Quantile-Quantile Plot (b) Residuals vs. Linear Predictor

(c) Histogram of Residuals (d) Response vs. Fitted Values

Figure 4.11. Graphs to check the plausibility of the assumptions. At (a), the residuals yn − ŷn are

sorted and the plotted against the quantiles of a standard normal distribution. Here, there are some

specific residuals not following a theoretical normal distribution. The residuals yn − ŷn , at (b), and

the predicted values ŷn , at (d), are plotted against the actual values yn . Though a constant variance

in residuals is noticeable from the plots, there are residuals going outside the evenly scattered cloud

around zero (b) or around the horizontal straight line (d).





Chapter 5

Power Load Classifying using Shapelets

The advent of smart grids has increased power grid sensorization and so, too, the data avail-
ability at lower hierarchical power load levels. However, the more disaggregated the power
load time series is, more complex and difficult is to forecast. It is important to consider shapes
(patterns) presented in power load time series to cope with consumption diversity. This
chapter considers the shapelet technique to create interpretable classifiers for four use cases
at different hierarchical power levels (national, primary power substations, and secondary
power substations). The use cases do not focus on the forecasting challenge, but on the ability
to extract interpretable patterns and knowledge and embracing the interpretability of load
classifiers.

5.1 Introduction
The electric power industry has been subject to constant changes. Utility companies have
been aware of the threats and opportunities that arise as a result of this change. Climate
action calls for the electric power industry to participate in the energy transition, once it is an
important player in integrating more variable renewable energy sources and guaranteeing
energy distribution for new needs, such as charging electrical vehicles, green hydrogen
production, industrial heating electrification, and other opportunities for electrification
all supported by renewable energy. The growing popularity of “behind the meter” on-site
generation and storage, the new digital retail competitors that serve customers with bundle
solutions towards energy-as-a-service business models, increased search for grid flexibility,
and intense public and regulatory scrutiny are just some strengths that reinforce the need for
more digitalization in the energy sector [90–93].

Data are an important asset that utilities have available today to support management deci-
sions, excel in operational efficiency, and be more competitive. Moreover, data and technology
to extract value from these data, generally addressed by artificial intelligence and machine
learning, are no longer just a technological enabler, but rather an integrated part of the accel-
eration of the energy transition. The complex number of data sources along the value chain,
led by higher levels of grid sensorization, has resulted in data streams whose value has not
been fully explored.

Data-driven services within the energy sector pose challenges across regulatory, socioeco-
nomic, and organizational (RSEO) aspects. Psara et al.’s review states that the value of data
from various sources must be clearly understood in order to overcome identified organi-
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zational barriers related to the lack of data compatibility between different sources, the
complexity of the data, and the inability to recognize the value of the data in addition to the
siloed application in which data are collected [94].

Smarts grid deployment has led the industry sector to recognize the inherent value of data
besides the billing and settlement functions: asset monitoring, behavior profiling, customer
classification, load curve classification, and many other uses to be considered using the same
dataset. The study of pattern and knowledge extraction might therefore help to understand
human activities as energy consumers, raising the general understanding about energy de-
mand, and thus helping not only today’s power grid operations and decisions, but also define
policies for tomorrow’s operations [16]. By virtue of their function, smart grids gather data
mostly in the form of time series, that is, observations of the same signal over time.

In the last decade, new series-based algorithms have been developed and new studies have
analyzed the contribution of these algorithms to extract value and insights from series across
various sectors. This includes sequential data such as sequences of numeric values, text,
audio, and even image. If the sequence is time-stamped, the sequence is generally named
a time series. Time series forecasting is an major area with extensive literature that infers
or estimates further steps in the series [95]. The clustering of time series seeks to discover
temporal patterns with an unsupervised approach [96]. On the other hand, with a supervised
approach, time series classification considers discriminatory features dependent on the
ordering to organize time series into predefined labels or classes [97]. A set of data mining
techniques for time series has also been developed: symbolic representation [98], motifs [99],
discords [99], shapelets [99], time series chains [100], snippets [101], semantic segmentation
[102] and so on.

When considering the energy-specific domain in the application of those techniques, shapelets
is one that was not extensively applied. From the literature review, shapelets were used for
non-intrusive load monitoring (NILM) [103], discovering customer weekend load patterns
[104], classification of district heating substations [105], evaluation of voltage stability [106–
108], and clustering power curves [109] with a modified version of shapelets to work as an
unsupervised technique. Although with a few applications, it is evident that shapelets have
not yet extensively assessed time series with a power load at the national level, as well as
at primary and secondary substations. This chapter aims to fill the gap in the literature on
the energy domain, exploring the shapelet technique with four different goals with the same
dataset. The dataset is related to the power load measured quarter-hourly at three levels:
national, primary, and secondary substations. The data and the method are fully described
in Section 5.3. Section 5.5 provides four use cases: (i) which pattern identifies weekend load
curves from business days, (ii) which load pattern identifies Mondays from the rest of the
business days, (iii) a classifier capable of identifying the load dynamics due to maneuvers
across the grid, and (iv) a classifier capable of identifying the type of energy consumption from
just the daily load curve. The study assesses whether shapelets are a technique capable of
responding to the four challenges, and thus reinforces the value of smart grid data in addition
to the siloed application in which data are gathered.

The most important added benefit provided by this study is the demonstration of the value and
information that can be extracted as interpretable patterns from one of the most meaningful
types of data collected in the energy sector, the load time series. Using appropriate machine
learning techniques—in this case, shapelets—it is possible to extract value, which reinforces
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the importance of multi-source data-driven services within the energy sector and across its
value chain. Section 5.6 draws conclusions and discusses the results.

5.2 Related Work
Time series do not have explicit features. For instance, each data point is a value, but the
pattern or trend depends on the data points close to it. Whereas most classifiers consider
discriminatory features non-dependent on the ordering values, which can be poisoned by
even low levels of noise and distortions, the shapelets are local features, and thus they capture
patterns as subsequences inside a time series able to discern different classes.

Shapelets were introduced by [110] as a new primitive representation of a time series that
is highly representative of a class. At that time, they introduced shapelets as interpretable,
more accurate, and significantly faster than state-of-the-art classifiers. Instead of looking
for the global shape of time series and calculating the distance between them and a class
representative, the shapelets technique only compares a local subsection of the shape that
is particularly class discriminating. Shapelets have been continuously improved. The enor-
mous quantity of shapelet candidates makes brute-force (exhaustive) shapelet discovery
very slow for large datasets. Early abandon of Euclidean distance calculation combined with
early entropy pruning were ideas introduced in the original paper [110]. Additional articles
emphasize the reuse of computations and the pruning of the search space [111], while the
projection of time series to the SAX representation was also elaborated by [112]. Furthermore,
[113] proposed a novel fast method that avoids measuring the prediction accuracy of similar
candidates through an online clustering/pruning technique. Although the shapelets con-
cept was originally considered a supervised technique, it was exploited and extended that
shapelets can be learned from unlabeled time series and used for unsupervised clustering
[109]. A recent study proposes dynamic shapelets in which the differing representative of
a long time series is considered in different time slices, as well as the evolution pattern of
shapelets [114]. The evolution of shapelets is modeled as a graph, which represents how a
time series evolves in terms of shape and interpretable patterns throughout time. To validate,
the authors conducted experiments based on five time series datasets from different domains.

Shapelets were used in a few use cases in the energy domain with relative success. Recogniz-
ing the potential of shapelets as an interpretable technique for studying power load curves,
the literature is not as extensive as one would like. Non-intrusive load monitoring discerns
the individual electrical appliances of a residential or commercial building by disaggregating
the accumulated energy consumption data without improving the individual sensorization
of each appliance. The introduction of shapelets to this problem was proposed by [103],
which starts with shapelets discovering from the current signatures of the recorded device
instances present in a labeled database. The 60 Hz recorded samples consider the first few
seconds of a device operation to search the shapelet instead of the entire time frame. Classifi-
cation of district heating substations using shapelets as feature extraction was introduced
by [105]. In this study, the classifier models are improved after the use of augment features
extraction from the shapelet transformation. The transformation is not described in detail,
but generally consists of the difference between the original time series and the shapelets
previously discovered from them. Another author has applied the shapelets technique in
the assessment of voltage stability [106–108]. With the development of smart grids, phasor
measurement units are massively available, and so are the data, making it possible to use data
mining techniques such as shapelets. In this case, the author has to deal with classes that are
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imbalanced and incrementally updated, and with the online application of the model. An-
other study, which approximates to ours, analyzes the effectiveness of the shapelet algorithm
in classifying various weekend consumption patterns extracted from real-life data [104]. The
author suggests the potential of shapelets to determine which customers use more electricity
at weekends, a period in which consumption usually reduces, which saves during peak hours,
or who responds to demand response events. However, the assessment considered only the
weekend pattern discovery using 15 minutes of the consumption data of 33 buildings with
different noise levels. None of the studies applied the technique to power load time series at
different levels of aggregation (national, primary, and secondary substations) considering a
systematic method and evaluation.

5.3 Data Overview
Three datasets of power load were used to perform the study of time series classification using
shapelets. Dataset I and Dataset II are the same as described in Sections 3.1 and 4.2, though
with a higher resolution (15 minutes). Unlike Dataset II, Dataset III contains measurements
from assets in a higher hierarchical level of power system; it denotes the primary substations
power load over 3 years.

Due to the dynamics of the distribution grid and the possibility of shifting the power load
from a primary substation to another according to the management of the grid operator, there
exist, particularly in dataset III, high load peaks and periods where the substation is shut
down and the measure values are zero, as shown in Figure 5.1.
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Figure 5.1. The substation load from Monday to Sunday with a maintenance shut-down on day 8 and

a high load peak due to a load shift maneuver on day 9.

At the secondary substation level, annual, weekly, and daily seasonalities are generally kept, as
at national level. However, as the secondary substations feed a high-demand building, venue
or industry, or even a residential neighborhood, the load curve is more unpredictable when
compared with higher levels (primary power substations and national levels) and patterns
might be found in accordance with the specific usage of electricity at that point of energy
delivery. Generally, unpredictability and noise increases as we move down the level hierarchy
(national, primary and secondary substations).
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Additionally, a calendar dataset was available with the following information: (i) day of the
week, (ii) public holidays of Portugal, (iii) local statutory holidays for Portugal’s municipalities,
(iv) strike days, and its local disrupted services when applicable.

5.4 Method
Four use cases are set following a systematic method. First, a scenario is set that includes the
question to be answered. The question is usually related to whether an interpretable pattern
is discoverable by shapelets, which explains how two or more classes are discriminated.
Second, the appropriate dataset is chosen with the respective data wrangling to set up the
time series and its labels. Usually, the time series are transformed into daily load curves and
chosen to balance the classes. For example, for the weekends use case, the daily national load
curves are randomly selected within each class (weekend and business day). Daily curves
that present outliers or missing data are kept out of the training and testing datasets. Third,
the method applies the steps of the shapelet algorithm: (i) a pool of candidates is created
from the time series inputs and minimum and maximum shapelet-length parameters, (ii) the
best performing candidates are ranked using the information gain criterion over the target (or
other prediction quality metrics like the Kruskal–Wallis or Mood’s median [115], or F-Stats
[116]), (iii) the chosen best performing candidate is used as a tree node to create a tree-based
model interactively, (iv) the time series input are split using the model built so far and a new
iteration starts on each of the new leaves, (v) the algorithm stops when pruning parameters
are met or a whole leaf time series corresponds to a class. Finally, it is checked if the shapelets
were able to answer the initial question, and the performance of the resulting decision tree
classifier is evaluated against the testing dataset through the accuracy metric,

∑
k T Pk

N , where
T Pk are the objects correctly classified by the true label k, and N is the number of objects.

Definitions
A simple symbol sequence is an ordered list of symbols of a given alphabet. The dataset used
in the use cases is a sequence of real values. So, we are actually interested in classifying time
series. Time series can be univariate or multivariate. We considered only the simplest.

Definition 1. A time series T is a sequence of real values typically ordered in ascending
order by timestamp. For example, T = 〈(t1, v1), (t2, v2), . . . , (tl , vl )〉 is a simple
time series of length l that records data points from time t1 to tl . A subsequence
S of time series T is a sampling length m ≤ l of contiguous positions from T , that
is, S = 〈(tp , vp ), . . . , (tp+m−1, vp+m−1)〉 for 1 ≤ p ≤ p +m −1 ≤ l .

Definition 2. The distance from a subsequence to a time series, D(S,T ), returns a non-
negative value which is the Euclidean distance (or other distance function)
between S and its best matching location somewhere in T , that is, where the
distance is minimum.

Definition 3. A dataset D of length n is a set of time series Ti and its class label ci . Formally,
D = 〈T1,c1〉, . . . ,〈Tn ,cn〉 and c1, . . . ,cn ∈ C , the set of possible labels. #Ci is the
number of time series in class Ci .

Definition 4. The entropy E of the dataset D is defined as E (D) =−∑#C
i=1 pi log2(pi ) where

pi = #Ci
n is the probability of the class.
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Definition 5. A split is a tuple 〈S,θ〉 of a subsequence S and a distance threshold θ (or
separation gap) that separates the dataset into two smaller datasets, DL and
DR . When a split separates the dataset with the maximum information gain, the
subsequence S is denominated as a shapelet.

Definition 6. The information gain G of a split strategy that divides D into two subsets DL

and DR of length nL and nR is given by G = E (D)− nL
n E (DL)− nR

n E (DR ).

Classifying with a shapelet S and its corresponding separation gap θ produces a binary
decision node on whether a time series belongs to a certain class or not. The shapelets are
embodied on the nodes of a decision tree to create a universal classifier. At each step of
decision tree induction, the shapelet and the corresponding split gap are computed on the
training subset considered in that step [110].

5.5 Results
This section will describe four use cases based on energy load time series of different power
levels. Four particular classification problems were studied in order to assess decision trees
using shapelets applied to energy data.

5.5.1 Weekends
The first classification problem is related to the lower consumption that occurs on weekends.
In this problem, the goal is to discover whether a 24 h time series corresponds to a weekend
or a business day. As described above, the national load follows a very distinctive trend over
the weekend, but even these are different over the year.

The input data are a set of time series of 96 points each (24 h with a quarter-hour resolution),
extracted from the 8 year national load. Each time series has a binary classification that
identifies whether it is from a business day (label A) or a weekend (label B)—Table 5.1. Public
holidays were separated.

Table 5.1. The number of time series in the datasets for a business day (label A) and a weekend (label B).

Dataset Label A Label B Total

Train 40 40 80
Test 2014 772 2786

Figure 5.2 shows us the training dataset. Note that demand throughout the daylight period
is smaller on weekends, and the morning ascending occurs later and demand peaks appear
at different times in the day. On the other hand, on business days, there is a demand break
around lunch. We ask whether the discovery algorithm will find the best shapelet(s) to
distinguish those time series.

For this scenario, the shapelet discovery algorithm is parameterized with a minimum and
maximum shapelet length of 20 and 35 positions. This corresponds to shapelets between 5
and 8.75 h long, a length that we have assumed to be enough to find the shape of weekend
consumption.

Figure 5.3 shows the decision tree obtained after the training phase. One shapelet proved
to be enough to decide whether a time series T is from a weekend or not. This results in an
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Figure 5.2. The complete training dataset with 40 time series of each class.

information gain of value 1.0 in the root node. Thus, during classification, all normalized
subsequences of an arbitrary time series T are compared with the shapelet I. If just one
normalized subsequence exists whose distance to the shapelet is less than 1.1617, then the
time series is classified as label A, a business day.

D(I, T ) < 1.1617
infogain: 1.0

label A
business day

label B
weekend day

80

4040

yes no

(a) decision tree
0 25 50 75

(b) shapelet I

Figure 5.3. The decision tree classifier for the weekend problem. During the classification of an

arbitrary time series T , its normalized subsequences are compared to the shapelet I (the black line). It

is classified as label A if one of its normalized subsequences is similar to the shapelet. Note that the

shapelet I was positioned according to where it was found, just to match the similarities. The shapelet

might have a different scale and does not correspond to the coordinate axis.

The resulting shapelet is 27 points long, and it is positioned in the middle of the time series,
i.e., in the middle of the day. As one can see, the shapelet has grasped the demand break
towards lunch—a trend which does not exist in the weekend time series. Note also that
amplitude differences among the consumption time series, due to the effect of temperature
or other human behavior, have not affected the accuracy of the decision tree.

Finally, the decision tree was evaluated with the testing dataset and it was found to perform
with an accuracy of 96.77%.
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5.5.2 Early Monday Morning
The aim of the second classification problem is to determine whether the following result
can be found using the shapelets technique. There are several publications about short-term
energy forecasting that use the day of the week as an explanatory variable following this
idea: Mondays are different from the rest of the business days. They detach Monday into
an individual category followed by the weekend category and the rest of the days of week as
another category. The rationale behind this approach is the existence of differences between
the consumption during Monday’s first hours when compared with the other days, because
Monday dawn comes from the end of the weekend which presents a different curve pattern as
seen in the previous section. Is the shapelet algorithm able to discern the pattern presented
in the Monday load curve from other business days and weekends?

The input data are similar to the previous scenario—time series of national demand and
24 hours long—but, this time, the target variable has three labels: Monday (label A), weekend
(label B), and other business days (label C)—Table 5.2. Public holidays were separated from
the dataset.

Table 5.2. The number of time series on the datasets from the category Monday (label A), weekends

(label B), and other business days (label C).

Dataset Label A Label B Label C Total

Train 100 100 100 300
Test 309 712 1545 2566

From the training dataset—Figure 5.4b—the weekend consumption pattern is distinguishable
from the other days, as we saw in the previous section. However, the Monday pattern is very
similar, except during the early morning. Monday’s mean demand follows a different pattern
when compared with the other business days: the very first hour follows the same pattern,
but the time series dives further until the first daylight hours.

The resulting non-pruned decision tree—Figure 5.4a—has two important nodes that roughly
split the training dataset into the three labels: the ones that use shapelets I and III. Actually,
these are the nodes with the highest information gain multiplied by the number of time series
to split (the number that appears above the node). In Figure 5.4c, the weight of the shapelet’s
line reflects its importance. Therefore, shapelet I splits the weekend time series from the
dataset (the left most branch of the decision tree). Shapelets III and V, which occur in the early
morning, capture a pattern that favors class C (the opposite side of the most right branch of
the decision tree). Meanwhile, the shapelet II, which also occurs in the early morning, makes
a final split between the weekend time series and the Monday time series.

The non-pruned decision tree uses other similar shapelets (from VI to X), but they are not
easily interpretable. However, even if those shapelets were ignored, i.e., the decision tree was
pruned, the model would get right 278 times of 300 items (94%) from the training dataset.

Finally, the testing dataset was used to assess the accuracy of this decision tree. Despite its
unpruned nodes and potential overfitting, the decision tree has a high accuracy of 88.74%.
Evidently, there is a rationale to split Monday from the rest of business days when forecasting
energy time series: the Monday demand is different from the other days and the shapelets
discovery algorithm was able to find the pattern.
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Figure 5.4. The decision tree classifier for the early morning pattern on Monday morning. (a) repre-

sents the non-pruned decision tree to classify time series as Monday (label A), weekend (label B) or

other business day (label C) using the shapelets exhibited in (c). The line weight of the shapelets is

proportional to its importance, i.e., the information gain times the number of time series splits in each

node. (b) shows the mean and standard deviation of the training dataset with 100 time series of each

class.
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Furthermore, there are publications that break the business day, not into two categories but
into three categories: (i) Monday, (ii) Friday, and (iii) Tuesday, Wednesday, and Thursday.
We have tested this scenario, but the algorithm was not able to find a good shapelet that
could accurately split time series. Indeed, the Friday time series shape is similar to Tuesday’s,
Wednesday’s, and Thursday’s. In that scenario, the same method resulted in a low accuracy of
58%.

5.5.3 Load Dynamics in Substations
Power substations have the function of transforming energy from very high voltage (VHV)
to high voltage (HV), or from high voltage to medium voltage (MV) and each usually feeds
thousands of clients. As a redundant system, the power grid can manage the shutdown of
a particular substation, whether due to scheduled maintenance or failure. In this situation,
the load of a substation is shifted to another and thus holds out the energy flow without
any significant outage. Obviously, the load time series reflects these maneuvers. While one
substation reflects a very high load peak, the observations of the other reveal a stationary
no-load state, see Figure 5.1.

Rebuilding the historical state of this dynamic grid at a particular moment in the past can
be a large computational problem due to the enormous amount of assets that change states.
However, this information is important to energy forecasting tasks because of the high impact
on loads due to load shifts.

In this third classification problem, we have the goal of classifying whether a substation is in
one of four states looking only for the load series. Input data are a set of time series extracted
from three years of historical data through a 96-point sliding window (24 h). Each time series
has a label that identifies the state of the substation at the 96th point—Table 5.3.

Table 5.3. The number of time series in the datasets for the states OFF, LOW, NORMAL, and HIGH. The

first dataset has an approximate distribution along the labels when comparing the training and testing

dataset. The second includes all available time series.

Dataset Label OFF Label LOW
Label

NORMAL
Label HIGH Total

1
Train 100 50 100 100 350
Test 400 37 400 400 1237

2
Train 150 50 150 150 500
Test 7893 37 121 139 787 129 856

Figure 5.5 shows the decision tree obtained after the training phase using the first dataset.
Shapelets II and IV discovered the load shifts that occurred when the grid system maneuvers
the substation.

The decision tree used on the testing dataset was the non-pruned. In conclusion, the decision
tree calculated with the first dataset has a high accuracy of 90%, and 83% for the decision tree
using the second dataset. Furthermore, we have made experiments using sliding windows of
9 points long, SAX preprocessing of time series, fixing a state switch three points before the
end of the series, or modifying the minimum and maximum lengths of candidate shapelets.
However, the accuracy of the decision trees was lower, between 48% and 77%.
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5.5.4 Type of Power Consumption
The curve of power consumption over a day depends on the purpose for which the energy is
consumed. In this fourth classification problem, our objective is to classify whether power
consumption serves one of these five purposes: (a) household, (b) industry, (c) services, (d)
utilities, and (e) transportation. The demand curves are collected by meters of secondary
substations owned by a distribution company or a high-demand client. Is the shapelets
algorithm able to build a classifier capable of identifying the type of energy consumption
from just the daily load curves?

The consumption data therefore refers to several sets of households or individual high-
demand clients, for example: hospitals, retails, banks, post offices, government services,
train and subway systems, waste water treatment plants, water pumping, gas utilities, and
glass, furniture, rubber, plastics, porcelain, textiles, coating, and other types of industry.
Table 5.4 shows us the number of meters available by class and the number of time series
extracted from them. Note that the training data were obtained from meters other than
the ones used for testing. Therefore, the problem is challenging and difficult to classify, but
this may be due to the low number of meters available. Additionally, the selected days were
randomly chosen with the proviso that they were business days.

Table 5.4. The data available from 28 smart meters were separated into two subsets. From each of the

15 training meters, nine daily time series were randomly extracted to build up the training dataset.

From each of the 13 testing meters, 19 daily time series were selected to make the testing dataset.

Household Industry Services Utilities TransportationTotal

Meters
Train 5 3 4 2 1 15
Test 4 3 3 2 1 13

Dataset
Train 45 27 36 18 9 135
Test 37 57 57 38 18 207

The resulting decision tree—Figure 5.6—is fairly simple. Four shapelets are almost enough to
classify the training dataset using five labels.

The shapelet I splits the dataset into two groups: one for household and transportation con-
sumption, and the other for services, utilities, and industry. As can be seen in Figure 5.7, this
shapelet captures a peak in the evening as a pattern that favors “household” and “transporta-
tion” classes. Furthermore, the shapelet II splits these two labels—Figure 5.8a. Since rush
hour occurs twice a day, just before and after traditional work hours, it is natural that electric
transportation consumes more energy during peak commuting hours.

On the other hand, shapelet III separates “industry” from the “services” demand series. In
addition to the rise in the demand of both areas during the morning, and the decrease in the
afternoon/evening, there is a break around lunch, which occurs only for industrial demand.
Note that the descent phase of the demand for “services” extends into the evening.

Finally, the energy demand by industry and utilities presents different patterns. Utilities
demand has a smoother fall in demand during the night compared to industry, and it does
not get a break in demand towards lunch.

In conclusion, shapelets were able to identify the main patterns for each type of consumption,
and they are quite interpretable from a domain knowledge point of view. However, the
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decision tree was evaluated against the training dataset and achieves only 60% accuracy. The
low number of meters available may have biased the performance of shapelets in this scenario.
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Figure 5.6. The decision tree classifies the type of power consumption.

5.6 Conclusions
Shapelets technique was applied to power load time series collected from three different
hierarchical levels of the grid (national, primary power substations, and secondary power
substations). Four use cases were defined considering the potential application of shapelets
to answer a specific goal. This study is the first to analyze the impact of this technique in
more than one use case in the energy domain, following the same methodology and at more
than one grid level, while others focus on a single aspect and at a specific grid level. That was
made possible by the access to real private data collected in the Portuguese smart grid and
the real analytics challenges that were posed, establishing the hypothesis that power load
curves alone might have inherent information capable of solving the challenges.

Shapelets have been shown to be useful for the study of pattern extraction and knowledge
to understand human activities as energy consumers. This reinforces the importance of
data-driven services in the energy sector that can monetize (extract additional value from)
data collected within smart grids. The inability to recognize the value of the data in addition to
the siloed application in which the data are collected have been one of the barriers identified,
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Figure 5.8. Normalized demand of classes detached by shapelets. The shapelet II detaches “transporta-

tion” from “household” through the demand patterns in the morning and evening. The shapelet III

separates “industry” from “services” by a demand break around lunch time. The shapelet IV and V

splits the time series into two groups: “industry” and “utility”.
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as outlined in Section 5.1. Electrification (heating and mobility as examples) and integration
of more variable renewable energy (VRE), towards the ambition of 100% renewable electricity,
also depend on knowing the purpose of energy consumption and whether there is flexibility
on the demand side and capacity of the grid to support those two goals. The fourth use case
demonstrates the possibility to classify the purpose of energy consumption and which repeat-
able patterns the load follows beyond the general patterns highlighted in many studies at the
system level. The use case in this chapter is more meticulous in the study of consumption at
the primary and secondary substation level.

In particular, shapelets have shown adequate accuracy in all four use cases:

• Weekends—A shapelet was enough to distinguish the daily load time series of weekends
from the business days with an accuracy of 97% (Section 5.5.1). The interpretable
shapelet is placed in the middle of the day, and grasps the demand break during lunch,
a trend that exists on business days but not on weekends.

• Early Monday Morning—The resulting decision tree has a high accuracy of 89% (Section
5.5.2) capable of classifying the daily load time series as weekends, Mondays, and other
working days. The two most important shapelets are: (i) a similar shapelet as the
previous case with the same goal, the weekend group time series, and (ii) a shapelet that
occurs in the early morning on Monday morning, with lower demand—a deeper valley
in the curve—when compared with other business day time series. Compared with [104],
we used data from the system level (instead of 33 buildings at the low-voltage level) with
the same number of quarter-hourly training time series (namely 300 compared to 272)
and a higher number of testing time series (namely, 2566 compared to 636). Although
they have slightly different goals, both studies reach the same degree of accuracy (89%).

• Load Dynamics in Substations—The resulting decision tree has a high accuracy between
83% and 90% for the two testing datasets (Section 5.5.3), capable of identifying the
substation load state, due to scheduled maintenance, failures or maneuvers, even that
the load curve presents a high amplitude change by a recent maneuver.

• Type of Power Consumption—The resulting decision tree has an accuracy of 60% (Sec-
tion 5.5.4), capable of classifying daily consumption according to the type of consump-
tion without any other data beyond the own load curve. The amount of data available
for testing may have biased the performance of shapelets in this use case. Once again,
the shapelets are interpretable and reinforce the tacit and empirical knowledge prac-
titioners might have about the consumption patterns present in different types of
consumption. Compared with [105], we used data from 28 substations (instead of 10),
with load curves detailed by 96 datapoints—quarter-hourly (instead of 24 datapoints—
hourly) to classify them into one of the five classes (instead of two classes). Our accuracy
results reflect the classification ability of the features extracted only by shapelets, while
the other study combines the shapelet features with other features to build the classifier,
preventing one from pondering shapelets alone).

Thus, this study extends the literature on shapelets applied to the energy domain. At the
same time, the study has some limitations, including relying solely on the shapelet technique.
However, such a decision was made because of the desire to study the potential of this
technique and to reinforce that the power load time series has value beyond the primary
functions for which those data are collected. The second limitation is that one relies solely
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on a database of Portugal power load time series. This is due to the lack of real public data
collected within smart grids.

Moreover, the resulting shapelets, and the decision trees that utilize shapelets while node
splitting, are interpretable. Interpretability is one of the crucial characteristics in the context
of electricity companies in a high-regulated business in Europe, which seeks to regulate AI
across several applications, particularly models that act on or support decisions over critical
infrastructure. Interpretability eases the application of data-driven services once it must be
approved by managers, understandable by grid operators, and defensible before the regulator.
Additionally, the interpretability of shapelets increases the knowledge of domain practitioners
and, cyclically, the fact that their domain knowledge is “recognized” by the model reinforces
its acceptance and adoption. Shapelets fall into the category of techniques that deliver
interpretable results.

As final remark to reinforce the imperative to grid operators to boost their progress toward
being more data-centric and to provide load curves in higher detail. This promotes research
and development on innovative technologies, and accelerates the adoption of new impactful
energy models, such as the integration of more VRE, development of generation and demand
side flexibility, integration of more decentralized energy resources (DER), electric vehicle
charging and other electric vehicle models like vehicle-to-grid (V2G) and vehicle-to-anything
(V2X), microgrids, energy communities, and peer-to-peer energy (P2P energy). There are
questions as to how these various energy models work together toward the energy transi-
tion and how they would be integrated into an existing grid that wants to be resilient and
sustainable, both economically and environmentally.



Chapter 6

Cluster-based Load Forecasting

6.1 Introduction
Cluster-based methods are suitable for improving time series forecasting. It is possible to
further improve the accuracy of the forecast by training the models with subsets of the time
series that behave similarly.

Taking into account the results of Chapter 5 and Section 3.5, load time series can be clustered
into groups according to the patterns presented in its own datapoint sequence. Instead of
training individual models, one model is trained per cluster with time series from different
assets but with a “level of similarity”. This methodology has the following advantages:

• Fewer models to train and store compared to Section 4.1 might be relevant if those
predictors must be retrained periodically;

• More data available to train and test within each cluster, and thus higher complex
models, meaning more free parameters to fit, might be considered;

• More data means more viability to consider ensemble techniques;

• Cross-fertilization learning between assets is possible, and that might benefit overall
load prediction, when compared with Section 4.1 in which models were fitted individu-
ally;

• When a new asset is deployed or no existing historical data are available to train indi-
vidual models, manual or automatic selection of the cluster to which the asset would
belong might be an alternative approach instead waiting the availability of data enough
to train the individual model.

6.2 Related Work
In fact, time series clustering is a subject that has been applied in forecasting using different
approaches [96, 117].

Geva utilizes subsequences clustering which aims to group regimes (stationary subsequences
of time series) [118]. The method follows four steps:

1. The time series are rearranged into a set of sequences extracted by a continuously
sliding window and optionally applying feature extraction on each window;

79
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2. Hierarchical unsupervised fuzzy clustering is applied on the extracted subsequences
set, resulting in temporal patterns grouped together and called regimes;

3. Models are fitted with the subset data of each regime/cluster; and

4. Forecasting is performed by a combination of all model outcomes weighted by the
degree of membership of the last temporal subsequence in each of the cluster, meaning
how it fuzzily matches with each regime/cluster.

Although the author demonstrated the approach to overcome the general non-stationary
nature of time series, it is important to point out that clustering subsequences extracted
from sliding windows (streaming subsequences) are considered meaningless in the clustering
exercise, as defended by Keogh, Lin, and Truppel [119].

As power load curves show a daily, weekly, and annually seasonality, several authors who
applied similar approaches have chosen the 24 hours non-sliding window to split time series
into (daily) subsequences with the aim of improving the accuracy of time series forecasting
[120–122] or improving hierarchical aggregated forecasting [123–125]), with K-Means [126],
hierarchical clustering [120], KNN [121], Fuzzy C-Means (FCM) [125], K-Shapes [123] or
Functional High Dimensional Data Clustering (funHDDC) [122]. The raw subsequences are
usually normalized and reduced using Min-Max or Max-Abs scalers accompanied by PCA
reduction.

Another work by Martínez-Álvarez et al. makes use of clustering as a means of improving time
series forecasting [122]. It follows a strategy based on pattern sequence similarity, which was
originally developed for discrete time series. The approach assumes that repeating patterns
can be discoverable and evaluated in their immediate future. Hence, the strategy applies a
discretization of time series using the symbols founded by clustering subsequences. Later, it
retrieves the sequence of labels that occur just after the sample is forecasted. This sequence is
searched within the historical data, and every time it is found, the sample immediately after is
stored. Once the search process is completed, the output is generated by weighting all stored
data.

Alternatively, model-based clustering has also been applied as hybrid clustering scheme and
pattern recognition [127, 128], subsequence clustering based on Hidden Markov Models [129],
and dynamic clustering over time [130].

6.3 Method
Consider the power load as a real-valued discrete time stochastic process

Y = {
Y (t ) : t ∈N}

. (6.1)

One is interested in the evolution of this process in the future. If the process Y was observed
over the interval

[
1,T

]
, one would like to predict the behaviour of Y on the entire interval[

T +1,T +δ]
, where δ> 1.

Given the existence of n independent stochastic processes, one for each asset in which the
power load is measured. Let the matrix Y represent the measured power load,
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Y =


y11 · · · y1n · · · y1N

...
. . .

...
. . .

...
yt1 · · · ytn · · · yt N

...
. . .

...
. . .

...
yT 1 · · · yT n · · · yT N

 . (6.2)

Each entry ytn denotes the power load of asset n ∈ [
1, N

]
at time t ∈ [

1,T
]

and the vector yn

all the entries of asset n (the n-th column of matrix Y).

From matrix Y, divide all time series yn , ∀n into K clusters, say C1,C2, · · · ,CK , containing
load curves with similar patterns. The goal is to cluster time series that share temporal
patterns. Due a considerable amount (roughly N ≈ 100000) of 6 years long time series (roughly
T ≈ 210000 datapoints each), one will consider feature-based approach capable to convert
raw time series into a feature vector of lower dimension. Note that the alternatives — model-
based approaches — usually have scalability issues [131] or — shaped-based approaches —
imply the use of raw time series and distance measures, as DTW, along the whole long time
series.

Choosing an appropriate data representation method is considered as the key component
which affects the efficiency and accuracy of the solution, as the same time promoting com-
puting performance. Consider the function Φ : T → U that extracts features from a time
series yn . A purposed cluster-based discretization function transforms a numerical time
series belonging to set T into a sequence of symbols belonging to set U . Not only does this
discretize power load time series, but it also reduces data assuming that the features designed
to distinguish time series are held. Section 6.4 describes in detail the purposed cluster-based
discretization.

With the feature extraction function and the adequate distance function d : U ×U →R, it is
viable to use simple clustering techniques such as partitional or hierarchical clustering to
rearrange time series into groups.

Let consider Y(1), · · · ,Y(K ) as the resulting matrices of grouping time series into K clusters.
Each column y(k)

n , which belongs to cluster Ck , denotes the dependent variable and has asso-
ciated explainable variables Xn (see Equation 4.2). This dataset is used to fit non-individual
regression models f (1), · · · , f (K ), one per cluster k instead of one per asset n, as done in Chap-
ter 4. Generically, the individual disaggregated load model is the particular case with K = N ,
the number of assets, and the one-size-fits-all disaggregated load model, f (G), the particular
case with K = 1. Figure 6.1 outlines the method. Section 6.5 covers the decisions and results
of the clustering process, whereas Section 6.6 the forecasting results of cluster-based models.

In the end, all models are evaluated considering the same error metrics. Using the same
regression structure, it is empirically expected that the error of individual models is better
than cluster-based one or the one-size-fits-all model in the vast majority of cases. However,
maintaining a few K regression models is easier than maintaining thousands of models, as
other advantages mentioned in the previous section. If the error metrics are satisfactory for
cluster-based models, it is reasonable to consider improving with further complex regressors
with augmented forecasting effectiveness, something viable due to the existence of more
datapoints to train with and fewer models to compute and maintain.
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Figure 6.1. Features are extracted from load time series before applying clustering. The datapoints

of each cluster are together used to fit a regressor which, in turn, is used to forecast cluster’s assets

consumption.

6.4 Cluster-based Discretization
In this case, the discretization function aims to keep and emphasize the characteristics that
the clustering process would use to distinguish and group time series, and also to remove
unnecessary information, as the function is also a data reduction process.

To design the function, it is important to highlight the characteristics discussed in previous
sections which set the reasons of defining a new feature extraction:

• The power load time series features daily, weekly, and yearly seasonalities, as exhibited
in Figure 3.1, and patterns are held by these seasonalities;

• The GAM models, as defined by Equation 4.4, exploit the lagged load of the last day or
week as explanatory variables, part of autoregression. This is regulated by the existence
of a high degree of stationarity in the short term or within the called regimes;

• Notably, stationary regimes change throughout the year cycle. For example, summer
holidays in August may exhibit a regime that differs from other periods, as well as
specific public holidays and season changes, as shown inn Figure 3.1;

• The same regimes and patterns do not feature in all time series. For example, daily
patterns differ in different types of power demand, as shown in Figures 5.7 and 5.8.

The purposed cluster-based discretization functionΦ :Rα→ S is designed to transform a real-
valued time series into a symbol sequence, extracting the daily pattern in the time domain.
Note that in contrast, the well-known symbolic aggregate approximation (SAX) technique is
performed only on the basis of mean value in time domain. To transform a long time series,
the functionΦ is applied through a fixed tumbling window aligned with the day. In practice,
a sequence of 48 half-hours (α = 48) is discretized into a symbol s ∈ S. The dictionary of
symbols, S, also known as the set of standardized daily patterns, is achieved by a previous
step, which involves extracting snippets.

6.4.1 Snippets
In the context of the time series summarization problem, time series snippets is a technique
to extract the “representative” subsequences of a long time series [101]. It is a better technique
than the other obvious definitions: motifs, shapelets, cluster centers, or random samples.
While motifs reward the fidelity of conservation, snippets also reward coverage. Informally,
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coverage is some measure of how much of the data is explained or represented by a given
snippet. Shapelets are defined as subsequences that are maximally representative of a class,
as used in the classification problem in Chapter 5. Shapelets are supervised, snippets are
unsupervised. Shapelets are generally biased to be as short as possible. In contrast, one wants
the snippets to be longer, to intuitively capture the “flavor” of the time series.

The snippets technique is applied for each time series yn in parallel with a fixed length and
a constant number of snippets to extract. In order to obtain daily patterns, a length of 48
datapoints is fixed, and the time series was wrangled to start and end exactly at midnight, and
the exceptional days, in which daylight saving time events occur, were removed. After testing
the technique with different values for the number of snippets parameter, four snippets would
be enough for the majority of cases. Figure 6.2 shows the four snippets resulting from a power
load time series example.

Figure 6.2. The resulting snippets for a power load time series (from the PTC set). The plot above

shows the original power load. The four plots below are the snippets, z-score normalized. Snippets

3 and 4 are mostly for working days. Snippets 1 and 2 are mostly for weekends and August, though

very similar. Note that the amplitude is not considered to match the snippets with the daily power

load time series. Although all weekends and August working days match with snippet 1 from a shape

perspective, they have very different amplitudes.

6.4.2 Dictionary of Symbols
The composition of the dictionary of symbols, that is, the codomain S of functionΦ, aims to
collect all the daily shapes that stand out from the time series of power loads. The snippets,
as the “representative” shapes of each time series, are just a first step that led to a set of
4N ≈ 400000 shapes. To obtain the final set of symbols, a partitional clustering algorithm
is applied. As the snippets are already scaled and the time domain is aligned among the
snippets, meaning the i -th element of all snippets refers to the very same half-hour of the day,
the choice simply falls on k-means with the Euclidean distance. Two assessments contribute
to determining the optimal value of k shapes: for each k, (i) the evaluation of silhouette score
[132] and (ii) the domain interpretation of resulting shapes.

The resulting dictionary of symbols S = {a,b,c,d ,e, f , g ,h, i , j ,k, l ,m,n,o, p, q} is shown in
Figure 6.4 in which examples of snippets are grouped in the respective symbol cluster, and
the average shape f (s) is colored. The silhouette score is calculated for each k and the higher
the value, the better the consistency of the cluster. The k with the best silhouette score was
not chosen because few symbols would be defined, unsatisfactory to discretize time series. It
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was decided to have more symbols that balance between the silhouette score and the domain
interpretation. A k = 17 was decided that results in |S| = 17 symbols and the silhouettes of the
resulting cluster are shown in Figure 6.3. To exemplify the domain interpretation of resulting
symbols to access the best k, consider the following statements:

• The symbol d has a peak in the evening, as the pattern of household class considered in
Figure 5.8a.

• The symbol e follows the same pattern as the transport class considered in Figure 5.8a.

• The symbols { f , g ,h} have a consistent demand throughout daylight, though with small
differences in the location of the peaks. They follow the same patterns as the services
class considered in Figure 5.8b.

• The symbol h follows the same pattern as the industry class considered in Figure 5.8c.

• The symbol f follows the same pattern as the utility class considered in Figure 5.8c.

• The symbols {o, p} follow the duck curve due to local photovoltaic generation [133]
or due to use mainly for nocturnal illumination depending on the actual amplitude.
{l ,m,n} follows similar pattern with more prominent peaks.

Figure 6.3. The silhouette widths for each cluster. Note that the silhouette of symbol a ∈ S was expected

to have a low silhouette because it also assimilates the noise subsequences that become scattered

within the cluster frontiers. The higher the silhouette value, the better the consistency of the cluster,

and the lower the suspicion of mismatching the point between neighbor clusters in the Euclidean

space.
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Figure 6.4. The dictionary of symbols S that stand out from the time series of power load, after

clustering snippets.
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6.4.3 Discretization
Given the dictionary of symbols S, the cluster-based discretization function Φ is finally de-
fined, explaining how the match is performed between a daily sequence of real values and
the respective symbol s. The function looks for the minimization of the Euclidean distance
between the z-score-normalized input and each possible symbol,

Φ(y) = argmins∈S dEUCLIDEAN

(
z(y), f (s)

)
(6.3)

where d and z are, respectively, the Euclidean distance and z-score scalar functions, and f (s)
the numerical average shape of the respective symbol.

As an example, the same time series used for Figure 6.2 is discretized into symbol sequence
and plotted as a calendar in Figure 6.4. The time series obeys a specific pattern during the
working days, except on weekends, the last two weeks of August, public holidays, and the days
around them. In this scenario, the long weekend, meaning the days off occurring between
the public holiday and the weekend, affects the shape of power load as on the Monday and
Tuesday Carnival week or the Thursday’s Corpus Christi holiday and the respective Friday off.
Furthermore, the effect of the holiday electricity demand on Thursday extends to Saturday, as
can be seen in the plot. Christmas and the summer holiday season are other special periods
that impact the demand curve.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

00 01 02 03 04 04 05 06 07 08 08 09 10 11 12 13 14 15 16 17 17 18 19 20 21 21 22 23 24 25 26 27 28 29 30 30 31 32 33 34 343536373839 39 40 41 42 43 43 44 45 46 47 474849505152

Mon

Tue

Wed

Thu

Fri

Sat

Sun

Week

Symbol

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

Figure 6.5. The resulting cluster-based discretization of the same time series used for Figure 6.2 plotted

as a calendar, temporal portion of 2019. The time series obeys a specific pattern during working days,

except on weekends, the last two weeks of August, public holidays, and the days around them.

6.5 Symbol Sequences Clustering
The clustering divides all time series into groups that contain load curves with similar daily
patterns and similar regimes throughout the year. The method exploits the representation
of the power load in discrete series to later distinguish and group them. That representation
computation is parallelizable and results in the matrix

Φ(Y) = [
Φ(y1) · · · Φ(yn) · · · Φ(yN)

]
. (6.4)

Indeed, the method proceeds with a manual separation between PTD and PTC time series,
naturally having different behaviors considering the role each has in the power grid.
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6.5.1 k-Medoids
The k-medoids clustering is selected after some testing with other alternatives, such as
hierarchical clustering, k-means, and alternative distance functions. The results were as
good as or worse than the final choice for k-medoids and Gower’s distance. The sequence is
considered in nominal scale and all elements equally weight to Gower’s distance1.

The Partioning Around Medoids (PAM) algorithm carry the greedy search for medoids and
three assessments contribute to determining the optimal value of k clusters: for each k, (i)
the evaluation of silhouette score, (ii) the evaluation of the objective score2 of k-medoids
using the elbow method, as shown in Figure 6.6, and (iii) the domain interpretation of time
series distributed across clusters. 11 PTC clusters and 14 PTD clusters were decided whose
silhouette widths per cluster are shown in Figure 6.7.
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Figure 6.6. The silhouette and objective scores for each k contributes to determining the optimal value

of k. As heuristics, the higher the silhouette value, the better the consistency of the cluster. The lower

the objective score, the higher the similarity of the observations to their closest medoid.

Two additional notes: Due to the high number of sequences, in the case of PTD time series,
a 30% random sample was used to find the k-medoids and later the remaining points were
grouped by finding the closest representative medoid. Further tests with other random
samples of PTD time series have shown the stability of the results regardless of the sample.
Another note is about finding the closest representative medoid: when comparing sequences,
it is highly relevant that they are aligned to the same year because daily patterns and local
regimes throughout the year are partially consequence of holidays and the day of the week on
which they fall, which move from year to year. Nevertheless, alternative distance functions
could ensure the natural movement of holidays from year to year.

6.5.2 Results
The power load time series are grouped into 25 clusters, CPTC 1, · · · ,CPTC 11,CPTD 1, · · · ,CPTD 14,
11 for PTC and 14 for PTD time series. Figures 6.8 and 6.10 introduce the medoids of each

1For the particular characteristics of the elements and the Gower’s parameters, the distance is liken to
Hamming distance after pre-processed inputs with one-hot encoding and before scaling output to the range
[0,1].

2Minimize the sum of the dissimilarities of the observations to their closest representative object.
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(a) PTC, k = 11 (b) PTD, k = 14

Figure 6.7. The silhouette widths for each cluster. While the height indicates the size of each cluster,

the width shows how each observation contributes to silhouette of its cluster.
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cluster. They are the representative center of the cluster and are used to determine which
sequences belong to which cluster by finding the closest medoid. Naturally, they are inter-
pretable through the figures plotted on a calendar considering months, days of the week,
and public holidays and using the same color scheme as in Figure 6.4. Since the time series
grouped into the same cluster are not entirely the same, it is important to understand the
symbol distribution considering the calendar features. Figures 6.9 and 6.11 exhibit symbol
distribution percentage (vertical axis) on each day throughout the year (horizontal axis) by
cluster (row) and day type (column). To exemplify the domain interpretation of the resulting
PTC medoids, consider the following assertions:

• Clusters CPTC 1 and CPTC 3 do not show an interesting daily pattern, as they follow, re-
spectively, the symbols q and a throughout the year. However, looking at the symbol
distribution of CPTC 1 (first row of Figure 6.9), the pattern changes on Sunday for part of
the time series belonging to that cluster. This is observable by the symbol distribution
that is distinct on that specific day compared to the others.

• All other PTC clusters follow more interesting daily patterns. There are three main
dynamics to remark: (i) some clusters reveal stability in the distribution of their symbols
throughout the whole year, while others change their daily symbol through a yearly
seasonality, (ii) some clusters reveal differences between the daily patterns of working
days and weekends, others follow the same daily pattern regardless of the day of the
week, (iii) some clusters uncover changes in symbol distribution during August.

• Clusters CPTC 4, CPTC 5, CPTC 9, and CPTC 11 follow the typical curve represented by the
symbol h with changes in August for a large part of the time series belonging to these
clusters. The difference between them is what happens on weekends and public holi-
days. The regime of cluster CPTC 5 is stable regardless of weekends and public holidays;
CPTC 11 changes its daily pattern for a morning peak curve (symbol j ) on Saturdays and
public holidays, and during Sundays it goes to a noisy or constant signal (symbol a);
the same symbol a occurs on weekends and public holidays for CPTC 9; CPTC 4 shows a
load curve mainly for nocturnal illumination (symbol p) during weekends and public
holidays.

• Clusters CPTC 6 and CPTC 10 follow a load curve similar to the latter, but the high load ex-
tends into the evening (symbol f ). CPTC 10 changes their daily patterns during weekends
and public holidays to symbols p or q , while CPTC 6 do not.

• Cluster CPTC 2 follows the daily symbol g with yearly seasonal changes in the symbol
distribution.

• Cluster CPTC 8 follows the symbol e with two maximums during midday and evening.
However, a large part of the time series related to this cluster changes its daily pattern
during the warm season to the symbol d , which gives a sharper peak in the evening
compared to midday.

Moreover, the resulting PTD medoids are also elucidated from the domain perspective:

• Cluster CPTD 14 follows the symbol a throughout the year.

• Clusters CPTD 1, CPTD 9, and CPTD 10 follow, respectively, the symbols f , e, and g throughout
the year, as the previously described clusters CPTC 6, CPTC 8, and CPTC 2. However, looking
at the symbol distribution of cluster CPTD 10, it is perceptible that a significant part of
time series of that cluster has an annual seasonality.
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Figure 6.8. The 11 PTC medoids plotted on calendar.
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PTC cluster (rows) and day type (column).
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Figure 6.10. The 14 PTD medoids plotted on calendar.
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Figure 6.11. Distribution of symbols (vertical axis) on each day throughout the year (horizontal axis)

by PTD cluster (rows) and day type (column).
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• Cluster CPTD 11 follows the same symbol f as CPTD 1, but unlike this, the predominant
symbol in the cluster CPTD 11 on weekends is e. As the reader might verify, these two
symbols are similar except for a slightly general decrease in power load in the after-
noon. Thus, the two symbols are significantly different because they get the differences
between working days and weekends for a significant number of time series.

• Cluster CPTD 13 follows the symbol h and changes its daily pattern for a morning peak
curve (symbol j ) on Saturdays approximating to CPTC 11 behavior.

• Cluster CPTD 2 follows the symbols o and p.

• The remaining clusters are interpreted with the support of Figure 6.12 in which the
four main symbols are ordered in a way that visually unfolds the extents of the regions
of cold and warm seasons of each cluster. Despite the evident differences among the
clusters, the boundaries between them can start to be considered fuzzy from this k on.
In fact, the lower silhouettes shown in Figure 6.7b are from these clusters. Nevertheless,
the individual time series are much more complex, and for the sake of simplicity, this is
just one aspect regarding the cold and wind seasons.

4 Cold Season Cold Weekends                    Warm Season

Cold Season Cold Weekends                                   Warm Season

Cold Season Warm Season
Hot 

Weekends

Cold Season Warm Season

Cold and Warm Seasons
Warm

Weekends

Cold and Warm Seasons Weekends 
and Summer

Cold Season Warm Season

Cold and Warm Seasons

12

6

8
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9

n d

c

e

Figure 6.12. The symbols n, d , c, and e are ordered in a way that visually unfolds the regions of cold

and warm seasons. The symbol c , which has a smoother upward slope in the morning power demand,

unfolds the warm region of the three clusters above, and the symbol e the following.

6.6 Cluster-based Load Forecasting
The cluster-based regression models, f (PTC 1), · · · , f (PTC 11), f (PTD 1), · · · , f (PTC 14), are fitted with a
stratified sample of each cluster dataset. The structure of the model is the same as used in
Chapter 4 (Equation 4.3). In addition, disaggregated load forecasting models of one-size-fits-
all, f (PTC) and f (PTD), are also fitted using a stratified sample of all PTC and PTD data regardless
of their cluster. These two models are the baseline for comparison with the cluster-based and
individual models.
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The respective fitted model is then used to individually predict the power load of each asset,
involving the same dataset, methodology, and error metrics to get comparable results.

The results reported in Figure 6.13 provide further evidence that, for most assets, the individual
model is more accurate than the one-size-fits-all alternative. The cloud of points represents
the MASE error of the two models for each asset. All the points above the red line mean that
the individual model is better qualified and, therefore, justifies the computational effort to
individually train each GAM model. Nevertheless, the one-size-fits-all model is better for a
small set of assets.

(a) PTC (b) PTD

Figure 6.13. Scatter plot of MASE error for each individual model and the one-size-fits-all model. Each

point is the forecasting error of a specific time series. The points above the red line means that the

individual model is better than the latter. The cross mark is the median center of the cloud of points

that might be cut.

To pursue the goal of reducing the number of models to train and maintain, or when a new
asset is deployed or no existing historical data are available to train the individual model but
enough knowledge of what is or would be the general pattern, cluster-based models are a
better solution than the one-size-fits-all GAM model.

In general, most cluster-based models achieve better accuracy than the one-size-fits-all
model. In Figure 6.14, the cluster-based models f (PTC 2), f (PTC 3), f (PTC 5), f (PTC 6), f (PTC 8), f (PTC 9),
and f (PTC 11) are better in terms of the distribution median of MAPE, NRMSE, and MASE when
analyzing the pair error metrics of both models.

However, there are exceptions in which the cluster-based model is not better, and in that
case, the option is to keep the one-size-fits-all model for the load forecasting of that cluster’s
assets or apply the same clustering technique to further split the cluster’s assets to a new set of
groups. Cluster-based models f (PTC 1), f (PTC 4), and f (PTC 10) do not follow that improvement as
the other models. Nevertheless, CPTC 10 already presented a worse silhouette width compared
to others (Figure 6.7a), and CPTC 1 presented a distribution of symbols in which the symbol q
stands out, but is not as dominant as other symbols in the respective clusters (Figure 6.9).
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Figure 6.14. PTC scatter plot of MAPE, NRMSE, and MASE errors for each cluster-based model and

the one-size-fits-all model. Each point is the forecasting error of a specific PTC time series colored by

distance to the respective medoid. The points above the red line means that the cluster-based model is

better than the other latter. The cross mark is the median center of cloud of points.
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Regarding PTD models, Figure 6.15 shows that cluster-based models f (PTD 2), f (PTD 3), f (PTD 4),
f (PTD 6), f (PTD 8), f (PTD 10), f (PTD 12), f (PTD 13), and f (PTC 14) are better in terms of the distribution
median of MAPE, NRMSE, and MASE when analyzing the pair error metrics of both models.

The other cluster-based models, f (PTD 1), f (PTD 5), f (PTD 7), f (PTD 9), and f (PTD 11) have the same
median accuracy compared to one-size-fits-all models. Analyzing what those clusters share,
there are evidences that CPTC 5, CPTC 7, and CPTC 9 share an important symbol e in the distribu-
tion of symbols throughout the year, and CPTC 1 and CPTC 11 share the symbol f as predominant
(Figure 6.11). For those cases, cluster-based models do not reveal an incremental forecasting
skill, and the possible solution is to keep the simpler option, the one-size-fits-all model or a
new cluster that aggregates those.

6.7 Conclusions
This chapter explores a method to achieve cluster-based load forecasting. Having fewer
models to train and maintain, more data available to train and test within each cluster, and
not needing to have a long set of historical data to train an individual model are relevant
aspects of applicability of the model. However, individual models are expected to achieve
better accuracy except when a large event changes the shape of the power load curve on
specific assets.

As a first step, the method addresses the challenge of creating a dictionary of symbols that
reflects the daily shapes and patterns of the power load curves. Snippet extraction and
posterior clustering implement this first step, followed by an interpretation of the results.
Then, the daily load curves are discretized into symbol sequences representing a summary of
time series in a more reduced dimension. Thus, clustering techniques, such as k-medoids,
are used to cluster the symbol sequences into groups, followed by an interpretation of each
cluster. Those clusters are, therefore, the basis for training the model specifically for each
cluster data sample.

When comparing results of one-size-fits-all model and cluster-based model, generally the
cluster-based models are more accurate than one global model for PTD and/or PTC assets.
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Figure 6.15. PTD scatter plot of MAPE, NRMSE, and MASE errors for each cluster-based model and

the one-size-fits-all model. Each point is the forecasting error of a specific PTD time series colored by

distance to the respective medoid. The points above the red line means that the cluster-based model is

better than the other latter. The cross mark is the median center of cloud of points.



Chapter 7

Distributed System Architecture

7.1 Introduction
The disaggregated forecast problem challenges the capacity of storage and computing to
deal with hundreds of thousands of time series and artifacts, such as fitted models, feature
data tables, images, metrics, and logs. The system architecture was designed considering
important requirements for a feasible system that would be integrated into existing DSO
business processes and promote the continuous innovation process in energy management.

• Big Data Storage – There are three types of time series: (i) measurements from assets, (ii)
meteorological observations and/or predictions, and (iii) predictions from the forecast
procedure. In this scenario, each of 100 000 assets takes six different measurements1

in each quarter hour. Six variables of numerical weather prediction (NWP) are stored,
for 2257 Portugal locations with a resolution of 3 hours. Plus 100 000 time series with a
resolution of 30 minutes as a result of the forecast. Without considering data structures,
indexes, or overlap of time series predictions (that exists due to continuous window
scrolling), these raw time series take up 170 GB2 per year. Storage also needs to cope
daily with new data appended to existing time series. Additionally, there are artifacts
resulting from a session of model calibration that are also saved, such as the fitted
model itself, images, metrics, and other data results.

• Computing Scalability – Individual model fitting for each asset implies computing and
memory resources available to run the calibration, testing, and other artifact production
in parallel. The same happens for the prediction, in this case with a higher priority to
take the predictions in a useful time (a few hours to complete the forecast once the new
data have been appended to time series). In addition, there are applied algorithms that,
even parallelizable, involve the exchange of messages or other forms of synchronization
among partial data executors.

• Responsibility Segregation – In a complex machine learning problem, different roles
may be segregated, and each may use different tools and programming languages. Three
roles were considered: (i) data pipeline engineering to continuously ensure that time se-
ries and metadata are extracted, transformed, and loaded from meteorological services
and DSO systems into the big data storage; (ii) data science to address data discovery,
data modeling, and model structure design to achieve a good performant methodology;

1Yet, a significant amount of assets only have 3 different measurements
2Time series elements as numerical values encoded by 8-bytes double.

99
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(iii) machine learning engineering to ensure that the methodology designed by the
data science role can work in a parallel computing scenario and be independent of
the choices for data storage design. Considering that part of the disaggregated load
forecasting was achieved by individual models, the data science role actually does not
need to address whether the modeling code would run in parallel for 100 000 time
series in a computing cluster or launch locally for a small set of time series. Indeed, the
responsibility of the machine learning engineer is to prepare the environment including
resources and input data, monitor and call the modeling code prepared by the data
science role, and save the output results as designed in the big data storage.

• Traceability – Model lineage is required to judge the models created and audit its
output. It is important to track the input arguments including raw data or the data
feature, metrics and images that may be created during the code run, the versioned code
itself, and the resulting fitted model. Additionally, inference outcomes to be auditable
should be accompanied by the versioned fitted model.

• Reproducibility – The principle that the methodology applied is easily reproducible
taking into account that in machine learning the pipeline code, input arguments, input
data, and sometimes the seed used for algorithm random initializations are needed to
get the same results in a later execution. In such an online system with a large number
of time series continuously updated, it is relevant to make a decision on what data and
how data are historically tracked for reproducibility purposes.

The following sections explain how these requirements were considered during system design
and implementation. In fact, this resulted in an enterprise forecasting system called PREDIS –
PREvisão DIStribuída whose outcomes have been used to anticipate load peaks and network
constraints [21].

7.2 Software overview
The system is mainly developed using Java for data pipeline and machine learning (ML)
engineering, R for data modeling and model calibration and inference (data science part) and
also Scala for some additional tasks. The data pipeline and ML engineering part resulted in a
set of modules:

• PREDIS-API module implements the data access object pattern according to the schema
design for storage (see Section 7.3);

• PREDIS-API-SPARK module implements the interface between the DAO implementation
and Spark nuances for ad-hoc queries or clustering tasks (see Section 7.4.2);

• PREDIS-SERVER and PREDIS-CLIENT modules implement a thrift-based server and client
which offers services for application integration and launch forecasting and calibration
procedures from orchestration software or manually;

• PREDIS-DATA-INTEGRATION module implements the data pipelines to extract, transform
and load meteorological (FTP access) and power load (database access) time series and
other metadata;

• PREDIS-FORECAST module has two parts: (i) the first part implements the R algorithms
for calibration, testing and inference from a data science perspective, that is, the data
modeling and the model structure, (ii) the second part implements the Java ML en-
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gineering to run the models in a parallel environment preparing the resources and
input data, monitor and call the data science code, and finally save the output results as
designed in the big data storage (see Sections 7.3.4 and 7.4.1);

• PREDIS-WEBAPP module implements (i) a web application with a map user interface to
visualize geographically assets and its time series and metadata and (ii) a dashboard
interface to visualize fitted models including metrics, images, and other resources
resulting from fitting step, as exhibited in Figures 4.6 to 4.10.

Daily forecasting is activated by orchestrating PREDIS-DATA-INTEGRATION during the
early morning to load meteorological predictions and the last power load measurements
of each asset, followed by the running of forecasting through PREDIS-CLIENT methods.

7.3 Storage
The big data storage used in the implementation is the HBase database deployed in a Hadoop
ecosystem cluster with 15 region servers that serve data for read and write purposes, 2 master
nodes that handle the region assignment and DDL operations, and 3 zookeeper nodes that
offer a distributed coordination service for region assignments and recovery. The HBase is
a random read/write access database capable of hosting very large tables atop clusters of
commodity hardware. It is a distributed and scalable database whose design decisions chosen
consistency and partition tolerance over availability from the CAP theorem perspective.

As a column-oriented database, the HBase data model conceptually follows a multidimen-
sional map in which a value is stored considering the fully path: namespace, table, column
family, column qualifier, cell, timestamp. A column in an HBase table consists of a column
family and a column qualifier, which are generally delimited by a colon character. A cell is the
intersection between this conceptual column and a row defined by a row key. Even a cell may
have different values’ versions, actually unequivocally identified by the timestamp written
alongside each value. The actual physical view of how the tables are serialized to the disk
dictated the best practices in schema design. To illustrate the point, let us give some examples:
(i) the rows are primary indexed and sorted lexicographically by row key and major and minor
compactions keep that while insert and delete operations are occurring, (ii) the tables are
split over regions considering the row key as the value to set the interval of each region, (iii)
it is the column family members (and not on the table level) that are stored together on the
filesystem.

The data schema for the forecasting system consists of 6 main tables: ASSET, ASSET-GEOINDEX,
MODEL-CONF, MEASUREMENT, FORECAST, and SESSION. The first three tables do not exhibit
characteristics for the need of a big data storage; HBase was used to simplify the architecture
and keep with a unique database instance. Indeed, the other three tables store a large amount
of data volume.

7.3.1 Asset
The table ASSET maintains metadata related to the identification, localization, and charac-
teristics of PTC and PTD power grid assets, where the row key is defined by the type plus the
identification code of the asset, for example PTD+1107D1016900. The table ASSET-GEOINDEX

is a projection of the same data but indexed, that is, the design of the row key, by localization
using the geohash pattern.
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7.3.2 Model configuration
The table MODEL-CONF consists of the configuration of the machine learning models that are
being implemented. Alongside its identification by name and version, the configuration sets
that Java classes are called during the calibration and inference phases, as shown in Figure 7.1,
or as generically called the fitting and transform steps (see Figure 7.3).

Figure 7.1. An example row for table MODEL-CONF whose row key consists on type, name, and version

of the model. These fields are also kept on respective columns besides the Java classes which are called

during calibration and inference phases.

7.3.3 Time series
The tables MEASUREMENT and FORECAST use the same data scheme and are used to store time
series data with small differences between them.

Both tables use the same column families (details, tags, loadcurve, and timeseries_30D),
though differences might apply on the column qualifiers. The details and tags families
store metadata related to the time series. The loadcurve and timeseries_30D families store
the numeric data points, and the date and time to which the data point refers is modeled as
the column qualifier (see Figure 7.2).

Note that the HBase allows for new column qualifiers at insert time. The same is not true for
column families, which define the physical structure of the table. Physically, all column family
members are stored together on the filesystem, and it is recommended that data be placed in
the same column family if they have the same general access pattern. In this way, querying
on a specific column family does not imply physically going over the data on other ones.

Considering that, the loadcurve family keeps the entire time series, which is needed during
the calibration phase, for example. On the other hand, the timeseries_30D family keeps
the exact same time series but trimmed to the last 30 days. This is faster when querying or
scanning only the last few days, which is the most accessed part of time series, for example,
during the inference phase or when serving predictions to another system. This trim is
automatically achieved by the HBase feature that allows us to set a time-to-live (TTL) length
that will automatically delete the cells, by internal minor compaction, once the expiration
time is reached.

Note that there are also differences between these two tables.

In table MEASUREMENT, new data are mostly appended to existing time series. If updates occur
on already stored values, this is due to data quality improvement and correction purposes,
and the old versions of the value are not retained.

In table FORECAST, the range of predicted time series overlays part of time series already
predicted in the previous inference run. For example, when the system predicts every day
for the seven days, there is an overlay of the first six days as a sliding-window pattern. For
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traceability and audit purposes, it is important, in this case, to maintain the previous version
of prediction values once the model outcomes may have been served to another system or
business process. The timestamp concept is used here, and the table is configured to keep
more than one version of the value. Therefore, even if a new value is stored in the exact same
cell, the update operation keeps the previous value tagged by the timestamp.

7.3.4 Session Artifacts
The table SESSION maintains the artifacts resulting from the generic fitting step. Those
artifacts such as the fitted model, metrics, images, logs, and other results related to the fitting
process must be stored for traceability and evaluation purposes, and even to use the fitted
model during the next step, which is generically called the transformation step. As shown in
Figure 7.3 the fitting step can be the process of calibrating the forecasting model (as defined
in Chapters 3 and 4), calibrating the ensemble model (as defined in Section 3.5), and finding
the centroids during a clustering process (as defined in Chapter 6).

Input data Artifacts Outcome dataFitting step Transform step

Meteorological and
Load Curve data

Fitted models,
Meteorological, and

Load Curve data

Snippets from
Load Curves

Calibration step

Ensemble 
Calibration step

Clustering step

Fitted Model
Feature Table

Images
Metrics

Logs

Centroids
Clusters

Forecasting step Predictions

Forecasting
Model

Ensemble
Model

Clustering

Figure 7.3. The fitting and transform step as generic steps. The fitting step outputs artifacts that must

be stored for traceability and evaluation purposes and even to be used during the next step.

In the implementation, it is the data science code in the PREDIS-FORECAST module that is
responsible for defining what should be traced (fitted models, feature tables, images, and
metrics)3. Indeed, the main result of calling that data science code is essentially that trace
declaration. The ML engineering code in the same module has the responsibility of storing all
artifacts in a new row in the table SESSION. Note that HBase can technically handle binary
objects within cells up to a default of 10MB, as the serialization of the fitted models and
feature tables are considered medium size objects.

The row key is designed as the concatenation of measurement row key, model row key, and the
date4 that the step has been performed, for example PTD+1107D1016900_TP1+1+CONSUMPTIO
N+ConsumptionModel+2.0+20220805 1600. So, it is possible to trace different versions of
the model fitted with the same time series to compare them, or even trace the same model
version calibrated in different dates if it is decided to refit the models when performance
degrades or the time series drifts.

3In this implementation, logs are collected by the YARN log collector and are not stored in HBase.
4A UUID may be used to assure the uniqueness of row key, instead of the date/time the step has been

performed.
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7.4 Computing Engine
7.4.1 Individual Model Calibration and Forecasting
Such an important achievement of implementation is the handling of the calibration and
forecasting of individual models, which means that each time series is individually used to fit
the model and afterward to forecast. To address the challenge, the PREDIS-FORECAST module
implements that ML engineering process to run in parallel in a scalable cluster.

As part of Hadoop ecosystem, YARN is the second generation of Hadoop’s compute platform,
whose new architecture decoupled the programming model from the resource management
infrastructure [134]. The YARN architecture is based on two managers, which form the data-
computation framework: resource manager (RM) and node manager (NM). The node manager
is the per-machine daemon that is responsible for containers, monitoring their resource usage
(CPU, memory, disk, and network) and reporting it to the resource manager/scheduler. The
resource manager is the ultimate authority that arbitrates resources among all applications
running in the system. It is composed of (i) the scheduler responsible for allocating resources
to the various running applications subject to capacity constraints, resource availability, and
user-allocation queues with diverse priorities, and (ii) the application manager (AMService)
responsible for accepting job-submission, negotiating the first container for executing the
application master and providing the services for restarting it in the case of failure. The
Figure 7.4 shows this architecture and two applications running.

Figure 7.4. YARN architecture with the systems components in blue, and two applications running in

yellow and pink. Figure based on [134].

In the implementation, the request to launch a calibration (or forecasting) job follows the
sequence, as exhibited in Figures 7.5 and 7.6:

1. The CalibrationService, as a thrift server, receives calibration requests appointing
the measurement and model keys and keeps these requests in a queue.

2. At a specific trigger time after the last calibration request received, CalibrationService
starts the procedure to launch a new YARN application through the object YARNClient.

3. YARNClient is responsible for the preparation of a submissionContext object that
contains all the information required by ApplicationManager to start the job. This
includes

• command for running the operating system process (in this case a JAVA applica-
tion) and its initial arguments;
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• local resources to be sent as the code (in this case the JAR file) and the list of
commands sent through a file;

• shared resources to be sent to a distributed cache accessible by subsequent con-
tainers created by ApplicationManager (in this case a assembly file with JAVA
and R code);

• security credentials and token renewer method if applicable (in this case, the ac-
cess to HBase and the distributed cache must be guaranteed by these credentials);

• resource requirements for the ApplicationManager container as CPU and virtual
cores;

• other application metadata as job name, type, priority queue request, and log
aggregation configurations.

4. YARNClient submits the new job submission to ApplicationManager and waits until
the job reaches the FINISH state (or FAIL or KILLED).

5. ApplicationManager and Scheduler, as components of ResourceManager, handle
the negotiation of the first container, allocating the resources required according to the
capacity constraints and the availability of the resources at the moment.

6. ApplicationMaster coordinates the logical plan of the calibration job by requesting
resources from ResourceManager, generating a physical plan from the resources it re-
ceives, and coordinating the execution of the plan around faults. The ResourceManager
remains ignorant of the semantics of each allocation.

7. ApplicationMaster implements a AMRMClientAsync that handles communication
with the resource manager, with periodic heartbeats and status, and provides asyn-
chronous updates on events to the ApplicationMaster logic, as onContainersAllocated,
onContainersCompleted, onNodesUpdated,onShutdownRequest, and onError.

8. As requested containers are allocated, ApplicationMaster is notified and prepares
the context for each container that provides command, security credentials, and local
resources. This context is sent directly to each NodeManagerwho assigned the container
to start the operating system process according to the context provided.

9. The container executes the command in parallel with other containers. In this case, they
do not need to communicate between them, neither with ApplicationMaster until
the end. The container receives a pair of keys that identify the measurement and the
version of the model to be used. As the ML engineering part, the process communicates
with HBase to obtain the meteorological and load curve time series and prepare the
environment to call the data science code. Although the JAVA packages and the R code
are obtained through the distributed cache, the R environment and the R packages are
already installed5 on each node running a NodeManager.

10. ApplicationMaster knows that the container is finished by communicating status
messages with ResourceManager. The former has the responsibility to release the
assigned container that has finished and retry if the container did not complete the task
successfully.

5R environment and packages are prepared in advanced and distributed as a parcel using the feature of
Cloudera’s Distribution for Hadoop Management System. Native acceleration libraries such as OpenBLAS are
available as system libraries previously installed on the operating system of each node.
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Figure 7.5. The sequence of calls to launch the ApplicationMaster in a NodeManager node

with available resources. ApplicationManager and Scheduler are responsible for accepting

the job-submission asked by a YARNClient and negotiating the first container for executing the

ApplicationMaster. It is the responsibility of the ApplicationMaster to negotiate more containers

if needed and orchestrate the task.

7.4.2 Distributed Clustering
Clustering is a fundamental problem in data management and has a rich and notable history
of publication of hundreds of different algorithms related to it. Nevertheless, a single method
remains the most popular among the clustering methods, the k-means [135].

k-Means++ is a proposed version with a focus on obtaining a good initial set of centroids that is
provably close to the optimum solution. k-Means|| explores how to scalable this initialization
algorithm, obtaining a nearly optimal solution after a logarithmic number of passes. This
initialization algorithm lends itself to a parallel implementation [136].

The Spark MLlib includes an implementation of the k-means|| algorithm. In Section 6.4.2, this
library is used to address the clustering of snippets. Spark runs on the same YARN cluster as
other applications as the application described in the previous Section 7.4.1.

7.5 Conclusions
The system is deployed in a Hadoop cluster with 22 servers. HBase, YARN, HDFS, and services
related to Hadoop ecosystem are deployed in the same cluster, tweaking the CPU and memory
shared by the services in accordance with Hadoop best practices.

The approaches described in previous sections are implemented resulting in a live daily
forecasting system called PREDIS (Portuguese acronym for DIStributed PREdiction) whose
results are used to anticipate load peaks and network constraints in the context of the Portugal
distribution system. The system is recognized as an application prescribed and maintained by
the DSO. This is possible by a distributed system architecture which copes with the challenge
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Figure 7.6. The sequence of calls to launch containers according to the logic plan coordinated

by ApplicationMaster. As requested containers are allocated by the coordination between

ResourceManager and NodeManagers, the coordinator of the application, the ApplicationMaster,

sends the individual commands to fulfill its logic plan. The coordinator knows through asynchronous

events when the containers are allocated, or completed without communicating directly to the con-

tainers.

of capacity and scalability for the storage and computing of hundreds of thousands of time
series and artifacts.

One of the challenges is the applicability of individual forecasting models, which must be
run daily to infer the next 24 hours. Specifically, the head end system for advanced metering
infrastructure collects the updated power load time series throughout the day from all sec-
ondary substations and ends in the first hours of dawn. After updating the modeled data in
Hbase, the system has a few hours to individually infer all 100 000 time series. Indeed, for
the forecasting process of 100 000 individual models and considering 100 vcores available in
the Hadoop system, the process takes 5h42’, which corresponds to 23d18h16’ vcores time,
that is, the accumulated time the process would take sequentially. Note that the Hadoop
cluster with 22 servers is configured up to approximately 550 vcores available to YARN in
which the process runs. As the process scales linearly at least in the range of 100-550 vcores,
the inference computing time is parallelizable enough to have the outputs in useful time to
decision-marking and operations.



Chapter 8

Conclusions

The overall goal of this thesis is to improve the short-term load forecasting exercise. National
load forecasting using statistical inference techniques was the first step in studying the
structure of the model and the general explanatory variables that correlate with the power
load. This step preceded the approach of the disaggregated power load curves at the secondary
substation level, as a subject of forecasting. Individual models, cluster-based models, and one-
size-fits-all models were explored as forecasting approaches within a spectrum of different
accuracy and applicable effort to train and infer all secondary substations power load in
useful time.

Short-term load forecasting at the low-voltage level, other than at the smart meter level, such
as secondary substations, has not been as extensive. This thesis aims to contribute at that
LV level with the introduced methodology and the data secured and collected by the DSO in
the mainland of Portugal. Rather than tackle the few open datasets, a large dataset of power
curves from all secondary substations in Portugal contributed to the study in a systematic
way that incorporated different types and shapes of power consumption.

Each chapter had explored the steps and approach that contributed to the overall goal in ways
which are analyzed in the following section.

8.1 Contributions
National Load Forecasting A classical regression model for system-level forecasting de-
scribed by Tao Hong and his research group is used as a benchmark model. Following an
additive approach to explanatory variables, the GAM technique provides a good balance
between interpretability, ease of applicability, and accuracy with a diverse set of metrics to
achieve an unbiased evaluation. A systematic approach improves the GAM-based model
by introducing new synthetic explanatory variables based on the calendar, weather, and
historical load. The resulting model is also compared to a gradient booster machine with the
same explanatory variables after fair adjustments and hyperparameter optimization, which
concludes that there are no improvements in terms of accuracy and a much poor level of
interpretability. This chapter results in a foundational model structure and technique that
will be explored at secondary substations.

Ensemble National Load Forecasting This section investigated the performance to ensem-
ble different predictors to find a better major model. The ensemble learning technique used
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timely partitioned stacking, in which predictor weights were online found in different periods,
such as seasons, weekends, August month, and public holidays periods like Christmas, New
Year, Carnival, and Easter. This new ensemble method improves the final accuracy while still
maintaining desirable interpretability.

Disaggregated Load Forecasting This chapter uses a new private dataset that encompasses
all 100 000 secondary substations of the Portuguese power grid. In summary, this dataset
contains 5 years of historical power load and numerical weather prediction in a spatial
grid box. The same structure model with the nearest NWP of each asset is applied and
fitted individually with each secondary substation time series. The error distribution of all
forecasters are evaluated. All secondary substations are considered, even though the ones
with very low and irrelevant power consumption, and thus with a higher error. This chapter
results in the individual forecasters for each asset.

Power Load Classyfing using Shapelets This chapter explores the shapelets technique
to capture time series patterns and curve shapes in order to cope with the consumption
diversity. Among four use cases, a classifier is built to classify different types of power load of
secondary substation (households, industries, services, utilities as water pumps or electrified
transportation as electrified railroads). Shapelet technique creates interpretable classifiers
and demonstrates the ability to extract interpretable patterns and knowledge from power
load time series.

Power Load Clustering This chapter develops an appropriate data representation of power
load time series, transforming them into discrete symbol sequences. A dictionary of symbols
is kept that highlights and captures the daily shapes that occur in the power load curves within
the year, week, and public holidays. Thus, the projection of one-year time series into a symbol
sequence for all secondary substations are used to split the dataset into groups that contain
the assets’ load curve, which have similar daily shapes and patterns throughout the whole
year.

Cluster-based Load Forecasting Cluster-based models are trained with a stratified sample
of data from the respective cluster. The model structure and technique are similar. In addition,
disaggregated load forecasting models of one-size-fits-all, are also fitted using a stratified
sample of all PTC and PTD data regardless of their cluster. These two models are the baseline
for comparison with the cluster-based and individual models. To pursue the goal of reducing
the number of models to train and maintain, or when a new asset is deployed or no existing
historical data are available to train the individual model but enough knowledge of what is
or would be the general pattern, cluster-based models are a better solution than the one-
size-fits-all GAM model. In general, cluster-based models achieve better accuracy than the
one-size-fits-all model.

Distributed System Architecture The disaggregated forecast problem challenges the capac-
ity of storage and computing to deal with hundreds of thousands of time series and artifacts,
such as fitted models, feature data tables, images, metrics, and logs. The system architec-
ture was designed considering important requirements, such as big data storage, computing
scalability, responsibility segregation, traceability, and reproducibility, for a feasible system
that would be integrated into existing DSO business processes and promote the continuous
innovation process in energy management.
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8.2 Further Work
The techniques explored in Chapter 6 can be combined using a different method to achieve
STLF. The discretization of time series in Section 6.4 can be used to detect different regimes,
which in Section 3.5 was based merely on strict calendar intervals. Once the regimes are no
longer 100% calendar predictable, giving a power time series, a new classifier detects what the
regime of the next day is. Although that classifier is not perfect, the method is applied when
the classifier accuracy is superior enough (a threshold) to those assets with predictable next-
day regime. Once again, the classifier could be trained globally, cluster-based, or individually
per asset, and with different strategies, for example by historical subsequence search [122].

By splitting the power time series into regimes, different forecasters can be trained specifically
for those regimes and joined into an ensemble model. In this case, each forecaster is trained
for each symbol in the dictionary of Section 6.4.2, among others. Moreover, if using the fuzzy
method to the classifier that detects the regime of the next, the ensemble model can consider,
as ensemble weights, the degree of regime membership of the next day.

The other alternative is to explore the feature extraction applied to the residuals of the individ-
ual models instead of the raw time series. The residuals are usually scattered, not exhibiting
any pattern, which indicates a potential good fit, but there are residuals showing no white
noise, which indicates that the model structure or the fitting process was not good enough to
capture the behavior of that stochastic process. Taking this into account, the goal of clustering
residuals is to split assets whose stochastic process is not explained or captured entirely by the
original model structure, with the prospect of designing new model structures or the fitting
process among resulting clusters. In this case, a new dictionary of symbols must be computed
following the same method for residuals as data.

In the domain of secondary substation load forecasting, boosting ensemble models can be
effectively utilized in a sequential manner to achieve model individualization. The process
begins with a one-size-fits-all model, and the resulting residuals from this model serve as
inputs for cluster-based models. Subsequently, the individual model is employed. In this
scenario, the complete chain, consisting of these three models, is employed for a subset
of assets. However, for the remaining assets, which are comparatively easier to forecast,
only a partial chain is required. An alternative approach is to initiate this chain of boosting
ensembling with interpretable models, and then incorporate a second layer of models with
lower interpretability but higher accuracy, depending on the specific needs.
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