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Resumo

Nos últimos anos, devido à rápida disseminação de dados e aos sensores com custo reduzido, os

dados foram criados a um ritmo muito rápido. Os dados são continuamente produzidos, examinados

e cada vez mais usados para tomar decisões importantes. Recomendações automáticas e tomadas

de decisão com base nesses dados podem levar a enormes benefı́cios para a sociedade. Por outro

lado, a existência de abundantes quantidades de dados aumenta a probabilidade de ocorrerem prob-

lemas de qualidade de dados com impacto negativo nas decisões baseadas em dados. Os problemas

de qualidade de dados podem ser erros, valores ausentes, valores com significado duvidoso, valores

duplicados e inconsistências. Um processo de limpeza de dados desempenha um papel importante na

correção desses problemas. Portanto, nesta tese, abordamos dois assuntos principais: (i) expansão

de acrónimos para atribuir uma expansão a acrónimos encontrados no texto de forma a melhorar a

legibilidade do texto e (ii) suporte para o envolvimento do utilizador durante um processo de limpeza de

dados, para reduzir o esforço de produzir efetivamente dados limpos.

A existência de acrónimos sem expansão no texto é considerado um problema de qualidade dos

dados, mas que tem não tem sido examinado pela comunidade de limpeza de dados. De facto, existe a

necessidade de um sistema de software de expansão de acrónimos disponı́vel que possa encontrar au-

tomaticamente as expansões dos acrónimos em documentos textuais e que seja devidamente avaliado.

Além disso, nos casos em que um acrónimo tem mais de uma expansão disponı́vel, o critério geralmente

aplicado para selecionar a expansão correta é a similaridade por cosseno (Cosine similarity ) entre uma

representação do documento contendo o acrónimo e uma representação de cada documento contendo

uma expansão. Afirmamos que o processo para selecionar a expansão certa pode ser melhorado com

outras representações de termos e documentos, assim como técnicas de aprendizagem de máquina

que substituem a similaridade por cosseno.

Um processo de limpeza de dados é geralmente um processo iterativo porque pode precisar ser

executado e refinado repetidamente até ser capaz de produzir a mais alta qualidade de dados possı́vel.

Além disso, devido à especificidade de alguns problemas de qualidade de dados e à limitação das

regras de qualidade de dados para cobrir todos os problemas de limpeza de dados, muitas vezes um

utilizador deve estar ativamente envolvido na execução de um programa de limpeza de dados reparando

os dados manualmente. No entanto, não existe uma estrutura que suporte o envolvimento do utilizador

no processo iterativo de limpeza de dados. Além disso, as ferramentas usadas para limpeza de dados

que de alguma forma envolvem o utilizador no processo não foram avaliadas com utilizadores reais

para avaliar o esforço do utilizador ao desenhar programas de limpeza de dados e ao reparar dados

manualmente.

Neste trabalho contribuı́mos com novas abordagens que proporcionam um processo de limpeza

de dados eficaz e sem esforço. Em particular, propusemos: (i) um sistema end-to-end para ex-

pandir acrónimos e extensı́vel com novas abordagens de extração de pares acrónimo-expansão, e

desambiguação de acrónimos, juntamente com três benchmarks para avaliar o desempenho de sis-

temas end-to-end, das abordagens para extrair pares acrónimo-expansão e das abordagens para de-
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sambiguar acrónimos no texto; e (ii) uma framework melhorada para a limpeza de dados com suporte

para o envolvimento do utilizador durante um processo iterativo de limpeza de dados e realizamos uma

comparação experimental de ferramentas usadas para a limpeza de dados com utilizadores reais e

simulados.

Finalmente, avaliamos as nossas contribuições. Especificamente, a melhor variante do nosso sis-

tema para expandir acrónimos obteve 54,97% da medida F1 para expandir acrónimos, enquanto o único

sistema presente no trabalho relacionado, MadDog, obteve 32,93%. Para a framework de limpeza de

dados, com base nas respostas aos questionários do utilizador e no esforço do utilizador medido veri-

ficamos que de facto ajuda a reduzir o esforço do utilizador, obtendo pontuações mais altas do que as

outras ferramentas de software utilizadas para a comparação (Pentaho Data Integration e OpenRefine).

Por exemplo, os utilizadores especializados, no questionário de satisfação do Modelo de Aceitação de

Tecnologia (Technology Acceptance Model - TAM) deram em média 30 em 42 pontos para facilidade

de uso e utilidade. Os mesmos utilizadores, efetuaram em média 95 cliques a menos ao usar a nossa

framework de limpeza de dados para limpar dados manualmente. Assim, concluı́mos que o sistema de

expansão de acrónimos e a framework de limpeza de dados fornecem novas formas eficazes de obter

expansões de acrónimos automaticamente e limpar os dados com menos esforço do utilizador.

Palavras-chave: Limpeza de dados; Aprendizagem de máquina; Expansão de acrónimos;

Desambiguação de acrónimos; Envolvimento do utilizador.
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Abstract

In recent years, due to fast data spreading and low cheap sensors, data has been created in a very

fast pace. Data is continuously produced, scrutinized and increasingly used to make important decisions.

Automated recommendations and decision-making based on these data can lead to enormous societal

benefits. Conversely, the existence of large amounts of data increases the probability of occurring

data quality problems with negative impact on data-based decisions. Data quality problems can be

errors, missing values, values with doubtful meaning, duplicates and inconsistencies. A data cleaning

process plays an important role in correcting these problems. Therefore, in this thesis, we address two

main subjects: (i) acronym expansion that expands acronyms found in text to improve readability and

(ii) support for the user involvement during a data cleaning process, to reduce the effort to effectively

produce clean data.

The existence of acronyms with no expansion in text is considered a data quality problem, and it

has been lacking attention from the data cleaning community. In fact, there is a lack of an acronym

expansion software system available that can automatically find the expansions for the acronyms found

in textual documents, and that is properly evaluated. Furthermore, in cases where an acronym has more

than one expansion available, the criterion usually applied to select the right expansion is the cosine

similarity between a representation of the document containing the acronym and a representation of

each document containing an expansion. We claim that selecting the right expansion can be improved

with other term and document representations and machine learning techniques that replace the cosine

similarity.

A data cleaning process is usually an iterative process because it may need to be repeatedly ex-

ecuted and refined in order to be able to produce the highest possible data quality. Moreover, due to

the specificity of some data quality problems and the limitation of data quality rules to cover all data

cleaning problems, often a user has to be actively involved in the execution of a data cleaning program

by manually repairing data. However, there is no framework that supports the user involvement in such

iterative data cleaning process. Moreover, tools used for data cleaning that somehow involve the user

in the process have not been evaluated with real users to access the user effort when designing data

cleaning programs and manually repairing data.

In this work, we contribute with new approaches that provide an effective and effortless data cleaning

process. In particular, we proposed: (i) an extensible end-to-end acronym expander system with novel

acronym and expansion extraction and acronym disambiguation approaches together with three bench-

marks to evaluate the performance of end-to-end systems and approaches for acronym and expansion

extraction, and acronym disambiguation; and (ii) an improved data cleaning framework with support for

user involvement during an iterative data cleaning process and conducted an experimental comparison

of tools used for data cleaning with real and simulated users.

Finally, we evaluated our contributions. Specifically, the acronym expander system best pipeline

scored 54.97% of F1-measure for expanding acronyms while the only related work system, MadDog,

scored 32.93%. For the data cleaning framework, based on the answers to user questionnaires and
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the user effort measured, it helps to reduce the user effort, scoring higher than the other software tools

used for comparison (Pentaho Data Integration and OpenRefine). For instance, expert users on the

Technology Acceptance Model (TAM) satisfaction questionnaire gave on average 30 in 42 points for

ease of use and usefulness and on average did 95 clicks less when using our data cleaning framework

to manually clean data. Thus, we conclude that the acronym expander system and the data cleaning

framework provide new effective ways to obtain acronym expansions automatically and to clean data

with less user effort.

Keywords: Data Cleaning; Machine Learning; Acronym Expansion; Acronym Disambiguation;

User Involvement.
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Chapter 1

Introduction

In this thesis, we propose new data cleaning solutions that are able to automatically improve quality

and reduce the user involvement in a data cleaning process. In particular, we identify open problems

in data cleaning regarding insufficient acronym expansion solutions and integration of user involvement

during a data cleaning process in data cleaning frameworks. This chapter is organized as follows: in

Section 1.1, we introduce data quality and its problems; in Section 1.2, we describe data cleaning and

different approaches to produce clean data; in Section 1.3, we present the contributions of this thesis;

and, finally, in Section 1.4 we present the outline of the rest of the document.

1.1 Data Quality

Nowadays, data is an essential asset of any business or public organization to support decision

through data analysis or automatic recommendations. Moreover, data is the basis of the main prod-

ucts of Information Technology companies like Google, Facebook, Spotify, and Amazon. In order to

guarantee successful decisions, data quality is essential, otherwise we end up with the known situation:

“garbage in garbage out”. In this context, garbage consists of data quality problems that results from a

variety of situations, from human error and sensor malfunctions to data integration scenarios.

Poor data quality greatly impacts data-based decisions. The world’s top companies have more than

25% of its critical data dirty [106]. The existence of dirty data may have disastrous consequences.

For instance, wrong Electronic Health Records can lead to bad assumptions about a certain treatment.

McKinsey estimates savings of 300 billion dollars every year in the US health care [67] by properly

analyzing and correcting health data. Globally, Gartner measures the average impact of data quality

in organizations as $9.7 million per year [105]. Moreover, heterogeneous data grows at an exponential

rate, a phenomenon known as Big Data [65], which increases the probability of occurring data errors

and data inconsistencies, thus, making data not reliable for analysis.

Data quality problems may be of different types [73]. Single value data quality problems enclose, for

instance, missing values, incorrect values (e.g., syntax violations, misspelled errors, domain constraint

violations), and ambiguous values (e.g., acronyms with no expansion). When considering a set of
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Figure 1.1: Example of data quality problems in a publications table.

records and/or attributes, we can find violations of domain constraints (e.g., a publication published in

year 3000), inconsistencies (e.g., two publications with the same journal name and volume number that

are not published in the same year), and approximate duplicates (e.g., two records referring to the same

person).

Example 1.1.1. Consider Figure 1.1 that represents a table containing data about publications. Some

quality problems can be observed: (i) the incorrect value “and others” in the list of authors for publication

record 3, (ii) the data inconsistency that involves records 1, 2 and 3 given that they do not satisfy

the condition that journal publications published in the same journal and volume must have the same

publication year, (iii) a missing value in the year field of publication 4, (iv) the occurrence of the acronym

PDF in the abstract field of publication 5, with no expansion and thus consisting on an ambiguous token,

and (v) approximate duplicate records 5 and 6 referring to the same publication.

1.2 Data Cleaning

Data cleaning is today acclaimed as a central feature of data analysis and management tools. Data

cleaning aims at converting source data into target data without errors, missing values, ambiguities,

duplicates and inconsistencies [89]. It is thus of paramount importance to execute a data cleaning

process to effectively eliminate data quality problems [95]. Customized data cleaning procedures can be

implemented using a general purpose programming language, such as Java or Python, or a specialized

software tool. Specialized commercial and research tools typically support different data operators that

can be composed and form a transformation workflow to clean data. For instance, ETL (Extraction,

2



Figure 1.2: Part of a graph from a data transformation cleaning program.

Transformation and Loading) tools such as Informatica PowerCenter1, IBM Data Integration2, Talend3,

and Pentaho Data Integration (PDI)4 provide a panoply of data operators that can implement several

data transformations. Data wrangling tools, such as Trifacta Wrangler5 based on the research tool Data

Wrangler [53], and OpenRefine6, provide an interactive process to implement data transformations and

to map data to a specific format through data operators. Finally, there are tools specifically designed for

data cleaning purposes such as the commercial tool Trillium Quality7 and the research tools Febrl [19],

LLUNATIC [39], NADEEF [26], and Ajax [36].

A data cleaning program is typically modeled by a program designer as: (a) a graph of data transfor-

mations [36] or (b) a set of data quality rules [34].

In the approach (a), a data cleaning program is modeled as a graph of data cleaning transformations

whose execution produces cleaned data. By providing distinct and configurable data operators that can

be composed to implement those data transformations, data cleaning programs based on graphs of

data transformations can clean data inconsistencies, domain/syntax constraints, approximate duplicate

records/attributes, missing values, and incorrect data if the correct values are available in a reliable data

source, which is integrated in the data cleaning process.

Example 1.2.1. In Figure 1.2, we present part of a short data cleaning program based on data trans-

formations. In this graph, ellipses represent high-level data transformations, rectangles represent data

tables, and arrows represent data flows. This data cleaning program aims at identifying and consoli-

dating approximate duplicate scientific publications similar to records 5 and 6 identified in Figure 1.1.
1https://www.informatica.com/products/data-integration/powercenter.html
2https://www.ibm.com/analytics/us/en/technology/data-integration/
3https://www.talend.com/
4http://community.pentaho.com/projects/data-integration/
5https://www.trifacta.com/
6http://openrefine.org/
7https://www.trilliumsoftware.com/products/tss/data-quality
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First, the data cleaning program executes an Approximate Duplicate Detection transformation that com-

putes the similarity among all possible publication title pairs and filters out the non-similar pairs of titles.

Second, it applies a Grouping transformation to similar pairs of titles which assigns a Group ID to each

publication title using a transitive closure algorithm, thus guaranteeing that similar publications share the

same Group ID. Third, it applies a Consolidation transformation to find the best representative publica-

tion title for each group of publications that share the same Group ID.

In the second type of data cleaning programs (b), data quality rules express conditions that data

must satisfy to be considered of good quality. If data does not satisfy a rule, then a violation occurs and

a data repair that corrects the data must be found. Data repairs are typically selected from the set of

possible data repairs using heuristics. In the literature, several formalisms were proposed to express

data quality rules. For example, the authors of [13] proposed Conditional Functional Dependencies

(CFDs), an extension to Functional Dependencies [31].

By exploring different types of formalisms to specify data quality rules, these rule-based data cleaning

programs can identify and possibly lead to the resolution of data inconsistencies, domain constraints,

approximate duplicate records, and missing values and incorrect data if the correct values are available

in a reliable data source.

Example 1.2.2. To detect the data inconsistency that involves records 1, 2 and 3 in Figure 1.1, we can

use a CFD that represents the rule: all publications whose Type value is “Journal” and have the same

Published In and Volume values, must have the same year value. Translating to CFD notation, this

would correspond to: Type[Journal], Published In, Volume ->Year. In this situation, data cleaning

consist in generating, selecting, and applying a data repair that modifies the publications records to

satisfy the CFD. Possible data repairs are: (i) change the Year of tuple 1 to 2014 or (ii) change the

Volume value of record 1 to a different value (e.g. 50).

It is worth noting that commercial data cleaning tools typically support data cleaning graphs [7] which

are useful for users to control the data flow [55]. Nevertheless, the majority of recent research contribu-

tions rely on complex data quality rules and on the expensive generation of data repairs [55].

The data quality problem of ambiguous values, in particular the use of acronyms with no expansion,

has not been considered by the data cleaning literature so far. In Section 1.2.1 we detail the acronym

expansion that is a particular data quality problem. In Section 1.2.2 we explain the advantages and

challenges for user intervention during a data cleaning process.

1.2.1 Acronym Expansion

Acronym expansion is the problem that finds an expansion for a given acronym in a textual document

(e.g., “PDF” in Figure 1.1). Acronyms are used in all kinds of textual documents and articles. They are

useful to shorten forms of a word or phrase; however, the lack of an acronym expansion in the text can

become a communication barrier with non-expert persons. This problem is arduous when the same

acronym is used across different areas thus leading to ambiguities due to many possible expansions,

4



e.g., “PDF” may mean “Portable Document Format”, “Probability Distribution Function”, or “Probability

Density Function”.

Intuitively, an approach to acronym expansion comprises the following two steps: (i) Extraction of

both acronym and (when present) its expansion within a text. For example, if a given text has “we derive

an analytic form for the probability distribution function (PDF)” then PDF would be the acronym and

probability distribution function would be the expansion. We call this in-expansion because this can be

done for a particular article on its own. (ii) In the case that an acronym is not expanded in a text, out-

expansion chooses an expansion from a previously large parsed corpus (training corpus) like Wikipedia

based on some notion of article domain similarity.

Acronym and in-expansion extraction obtains the acronyms and associated expansions from a given

text. These expansions can not only be used to expand acronyms within the document, but also to

expand acronyms in other documents where the expansion is not available in text. Often, this is achieved

by using rule-based techniques [97][96][110] that identify acronyms and in-expansions through patterns

e.g., an expansion followed by an acronym between parenthesis, for example probability distribution

function (PDF). Some recent works [117][41][63][50][99] explore the use of machine learning to extract

acronyms and expansions from text that are not bounded to particular patterns but still need training

data. These techniques were not evaluated against each other, specifically they often make use of

datasets from different domains or different annotated versions of the same dataset, making it hard to

identify the current state-of-the-art.

The bottleneck in acronym expansion is the selection of documents based on domain similarity.

Document selection is usually achieved by representing each document by a context that accurately

maps it into the most important domain concepts. Thus, context extraction plays an important role on

finding the right out-expansion. To extract context, existing works have used terms (e.g., acronyms

or expansions) or textual document representation techniques, such as Doc2Vec [58] used in [107],

and a combination of Word2Vec [68] outputs in [61], but they did not explore other term or document

representation techniques such as Term Frequency–Inverse Document Frequency (TF-IDF) or Latent

Dirichlet Allocation (LDA). Moreover, in [107], the authors did not use a global Doc2Vec model trained

on the whole corpus, instead they used a local model for each acronym trained on just the documents

that contains at least an expansion for the acronym. Although assigning an expansion to an acronym in

text can be seen as a Machine Learning (ML) classification problem, finding the most similar document

using context has been typically addressed with heuristics.

Recently, works in out-expansion make use of neural networks: Maddog [110] proposes a sequential

model to encode context in sentences followed by a feedforward network to classify the input sentence

with an expansion; and SciDr [99] formulates the problem as a span prediction task, where given a list of

expansions concatenated with a sentence as input, it uses the pre-trained language model SciBERT [9]

retrained in the dataset sentences to predict the span, i.e., start and end word indices corresponding to

the predicted expansion.

Maddog [110] also proposed a system for acronym expansion. However, the authors used fixed

approaches for acronym and expansion identification, and for acronym disambiguation. The documents
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used to build their dataset were also fixed, and only the resulting trained models were shared.

So far, there is no end-to-end off-the-shelf acronym expansion system that receives as input text

acronyms and outputs a list of acronyms with their expansions. Moreover, there is lack of: (i) a framework

where new approaches can easily be plugged in such system and (ii) complete benchmark studies that

include: evaluations for acronym and in-expansion extraction, and out-expansion tasks, that makes use

of distinct datasets from different domains (e.g., biomedical, computer science), and that also evaluates

the end-to-end systems using an end-to-end benchmark with a corresponding real annotated dataset.

As a final note, an acronym expander system can be introduced in the data cleaning pipeline as

a data transformation, i.e., replacing acronyms in text fields by the correct expansion like in the paper

abstracts example in Figure 1.1. Such approach can help for instance to find more accurately approxi-

mate duplicate records or even to impute values into missing/incorrect cells, e.g., by having expansions

instead of acronym in the abstract texts, it becomes clear to find the main subjects of such texts and

compare them by similarity.

1.2.2 Human Intervention in a Data Cleaning Process

Often, the execution of a data cleaning program is insufficient to clean all the data quality problems

present in real databases. This happens because: (i) the data quality rules or transformations available

cannot cover all the cleaning criteria required to generate clean data, (ii) generated data repairs or

transformations may not clean all the data, leaving some dirtiness, or (iii) in case of machine learning-

based data cleaning, the available clean data may not be sufficient to infer the correct values (e.g., infer

the name of a publication). For instance, missing and incorrect values (e.g., missing year) cannot be

cleaned by data transformations nor generated data repairs without using an external data source that

contains the correct values. Another example is when detecting approximate duplicates. In practice,

there is no approximate duplicate criteria (i.e., similarity function and threshold) that perfectly identifies

records that refer to the same entity in the real world. The incorrect identification of approximate duplicate

records results in false positives or false negatives thus leaving some data dirtiness.

In data cleaning processes, users with domain knowledge typically have to manually repair some

data items in order to guarantee the highest quality levels of the resulting data. In these cases, enabling

a user to manually clean a subset of data during the execution of a data cleaning process (i.e., including

the human in the process) is important. For instance, the authors of [37] proposed to enhance Ajax by

modeling a data cleaning process as a data flow graph that encloses manual data repairs to allow the

user to manually clean quality constraint violations. In LUNATIC, user feedback is incorporated into the

data cleaning processes, through the notion of lluns. LLUNATIC requires user feedback when a repair

conflict is found (i.e., when it cannot automatically select a preferred value). If the user modifies the

cleaning program (e.g., refines the quality constraints), the cleaning process starts from scratch creating

distinct repairs and lluns.

Currently, there is no data cleaning framework that supports, in a principled way, the user involvement

during an iterative execution of such a process. Furthermore, no evaluation of data cleaning tools (ETL
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and data wrangling) with real users to measure the user effort when designing data cleaning programs

and manually correcting data has been performed so far. In this thesis, we focus on providing a solution

for the above mentioned problems.

1.3 Main Contributions

Taking into consideration the current gaps in research regarding data cleaning, identified in Sec-

tion 1.2, in this work, the following main contributions were produced:

Acronym Expansion: a comprehensive end-to-end system, framework, and benchmark for acronym

expansion in text documents. For acronym and in-expansion extraction, this system uses efficient

approaches from related work [97][99][110]. For out-expansion, apart from the support for numer-

ous related work approaches [61][107][99][110], we proposed and evaluated new out-expansion

approaches: (i) term and document representation techniques from topic modeling and vector

representation to extract the document context, and (ii) machine learning techniques to use the

context and select an expansion. The different approaches were evaluated by benchmarks spe-

cially designed for acronym and in-expansion extraction and out-expansion. We also created the

first end-to-end benchmark for such systems that includes a new annotated dataset and the only

one to evaluate acronym expansion when expansions exist in text or not. This system also in-

cludes a user interface to allow the user to upload documents and to visualize the expansions of

acronyms in text.

Support for User Involvement: an extension of the data cleaning framework, called Cleenex8 that is

based on the graph-based data cleaning framework called Ajax. In Cleenex, a data cleaning graph

is equipped with data quality constraints and manual data repairs that provide support for user

involvement to manually clean data as in [37]. We extended Cleenex into a stable release that

supports the user involvement in the iterative execution of a data cleaning program. Furthermore,

we performed an exhaustively evaluation of the proposed framework using real users and to per-

form a comparison with existing tools used for data cleaning in what concerns the required user

effort.

1.4 Document Outline

The remaining of this document is organized as follows:

Chapter 2: presents the fundamental concepts of data cleaning, and term and document representation

to obtain context from documents.

Chapter 3: summarizes the most important related work about acronym and in-expansion extraction,

out-expansion, and user involvement in cleaning data.

8http://web.tecnico.ulisboa.pt/~ist164790/cleenex/
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Chapter 4: describes the details of the contributions of this thesis regarding acronym expansion.

Chapter 5: describes the details of the contributions of this thesis to efficiently support the user involve-

ment in data cleaning programs.

Chapter 6: summarizes the main conclusions of this thesis and describes ideas for future work.
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Chapter 2

Fundamental Concepts

In this chapter, we present the main concepts of data cleaning, and term and document repre-

sentation for context extraction used for acronym out-expansion. In Section 2.1, we explain the main

techniques used to produce document or term representations. Our acronym expander system can use

some of those representations (e.g., LDA, Doc2Vec) to out-expand the acronyms not found in text. Sec-

tion 2.2 explains the data cleaning process and the main approaches. Specifically, this section starts

with a general overview of the typical data cleaning process and then focus on the two main approaches

to model a data cleaning process: data transformations and data quality rules.

2.1 Term and Document Representations

In this section, we explain well established and recent representation techniques for terms (i.e.,

meaningful words/tokens) and documents. Representation techniques assign to an object (term or doc-

ument) a representation that is semantically more meaningful than byte representations like Unicode

and ASCII, and the one-hot encoding (i.e., a vector whose positions corresponds to the co-occurrence

of a distinct word with the object) used as features in Machine Learning approaches. Topics represent

text (e.g., a document) by a reduced set of the most representative terms (i.e., topics). Thus, documents

whose most representative terms are common are semantically related. Representation techniques

that outputs a set of terms for a document are referred as topic modeling. Other representations called

embeddings represent an object (term or document) by a continuous vector of real numbers in a di-

mensional space. Embedding techniques map an object encoded in an one-hot representation, a very

sparse and high dimensional vector of binary values, into a very dense and lower dimensional vector

of real values (i.e., embedding). These techniques try to capture semantic information into the embed-

dings, intuitively, the distance between vectors carry a semantic meaning (e.g., synonym words).

Representation techniques are useful for disambiguation problems (e.g., Word Sense Disambigua-

tion and out-expansion) where the goal is to select the right definition for an ambiguous term taking into

account semantic information.
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Documents containing the Portable Document Format term

Classic Context Vector for the Portable Document Format term

Positions the file format increases in popularity formats including
Values 2 2 1 1 1 1 1 1

Figure 2.1: Classic context vector example for portable document format term.

In the following subsections, we detail the main techniques to semantically represent terms or doc-

uments: in Section 2.1.1 the classic version of context vectors; in Section 2.1.2, we present Term Fre-

quency–Inverse Document Frequency (TF-IDF), a statistical technique that combines statistics about

the occurrence of terms in a document and across the corpus; in Section 2.1.3, Latent Semantic Anal-

ysis (LSA), a topic modeling technique, that assigns topics to documents; presented in Section 2.1.4,

Latent Dirichlet Allocation (LDA) a topic modeling technique like LSA that uses probabilistic models; in

Section 2.1.5 Word2Vec, a word embedding technique that assigns semantic vectors to words; in Sec-

tion 2.1.6, Doc2Vec, a document embedding technique based on Word2Vec that automatically assigns

vectors to documents; in Section 2.1.7, BERT, a transformer language model that can generate word

embeddings; and, finally, in Section 2.1.8, Sentence-BERT, a sentence embedding technique that uses

BERT to assign vectors to sentences.

2.1.1 Classic Context Vectors

The context vector technique is an unsupervised method used as a baseline in Word Sense Disam-

biguation problems [2] and also in out-expansion problems [85][61]. We denote it as classic to distinguish

it from variants or other techniques that also provide vectors to contexts.

A Context vector represents a term (e.g, an acronym or expansion) by a vector based on the words

that co-occur with the term in each document of the corpus. Thus, a context vector is a sparse vector

where each position corresponds to a word in the corpus (except the terms). In the classic approach,

the value at each vector position corresponds to the number of co-occurrences of the term and the co-

occurring words in all documents. However, other variants are possible where the value is just 1 or 0

to indicate, respectively, the existence of word co-occurrences (or the co-occurrence relative frequency)

or their absence regarding the term. Figure 2.1 presents an example of a context vector for portable
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document format term using two documents.

In disambiguation problems (either word sense disambiguation or out-expansion), the ambiguous

term (e.g., acronym) in a particular document leads to a context vector which contains only the number

of word occurrences in that document. Each possible definition (e.g., expansion) for the ambiguous

term will have a context vector as explained above. To select an expansion to an acronym, we usually

compare the context vectors using the cosine similarity to find the most similar context vectors.

2.1.2 TF-IDF

The Term Frequency–Inverse Document Frequency (tf-idf or TF-IDF) [102] is a statistical technique

that is used to obtain the most important terms in a particular document (e.g., topics). An important

term for a particular document can be defined by two factors: (i) its frequency (TF) within the document,

intuitively terms that appear more times in a document tend to be more important to define context and

(ii) its exclusivity regarding other documents (IDF), so if a term appears in a large set of documents it

might not be a good document representation topic. One example are conjunction words (e.g., so, and,

or) that appear often within a document but carry little topical value. TF-IDF takes into account both of

these factors by multiplying the term frequency (i) and the inverse document frequency (ii).

The term frequency tf(t, d) for a term in a vocabulary t ∈ T and for a document in a corpus

d ∈ D is basically the relative frequency of t in d, i.e., the number of term t occurrences in d di-

vided by the total number of terms in d. The inverse document frequency idf(t,D) for a term t in a

set of documents D is the logarithm of the inverted frequency of term t in documents D, idf(t,D) =

log( #D
# documents in D containing term t ). The final TF-IDF value tf -idf(t, d,D) for a term t in a document d ∈

D is obtained by multiplying the term frequency by the inverse document frequency, tf -idf(t, d) =

tf(t, d).idf(t,D)

TF-IDF values can be used to rank the terms in a particular document, i.e., by selecting the top N

terms we can obtain a document representation which is composed by the N terms (e.g., topics) for that

document [66].

2.1.3 LSA

Latent Semantic Analysis (LSA) [29] is a topic modeling technique and a statistical technique used to

obtain the main important terms (i.e., topics) that represent documents. The intuition behind LSA is that

terms with similar semantics (e.g., synonyms) will occur in similar texts. In information retrieval literature,

LSA is known as Latent Semantic Indexing [66].

LSA starts with a document-term matrix M , where each term t ∈ T is represented by a row and

each document d ∈ D is represented by a column. This matrix M usually contains at each position

i ∈ {1, ..., |D|}, j ∈ {1, ..., |T |} : mi,j the absolute frequency of a term t in a document d, i.e., number of

occurrences of t in d. However, other matrices can be constructed for instance using the TF-IDF values

for a term in a document as explained in Section 2.1.2.

Using a matrix MT xD, LSA applies the Singular Value Decomposition (SVD) [103], a technique from
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linear algebra used to factorize a matrix MT xD into three matrices MT xD = UT xTST xDV T
DxD where S is a

diagonal matrix of singular values, U contains the eigenvectors of MMT and V contains the eigenvec-

tors of MTM . Both U and V are orthogonal matrices. The resulting matrices U and V correspond to

term vectors and document vectors respectively. Note that, each vector position is a hidden term with no

representation in a vocabulary called latent term and there are as many latent terms as terms t ∈ T . We

can then reduce these vector dimensions by accepting only the k most important latent terms, i.e., the

latent terms with the highest variance regarding other terms. We can do this by keeping only the first k

columns in U and V (corresponding to the k highest singular values in S), i.e., dimensionality reduction.

Note that the resulting matrices (k dimensional term and document vectors) from LSA can be compared

(e.g., through cosine similarity) to find similar documents, similar terms or similar documents to a set of

terms. Nevertheless, the vector positions (either terms or documents) are not interpretable by humans

as they do not map to a single document or term but to latent terms, i.e., abstract terms that do not

correspond to a word in a human language.

2.1.4 LDA

Latent Dirichlet Allocation (LDA) [12] is a popular topic modeling and an unsupervised learning tech-

nique based on a generative statistical approach that models the probability of a term occurring in a

document.

LDA is also known as a Bayesian approach to Probabilistic Latent Semantic Analysis (PLSA) [46]

(Probabilistic Latent Semantic Indexing (PLSI) in information retrieval literature) a technique based

on LSA whose intuition is to model the probabilities of a set of terms t belonging to a topic c and

the probability of a topic c describing a document d [40]. Thus, PLSA models the probability of a

term t occurring in a document d as a mixture of conditionally independent multinomial distributions,

P (t, d) = P (d)
∑

c∈C={c1,...,cK} P (c|d)P (t|c), where C are the topics with no representation in a vocabu-

lary called latent topics, K is a hyperparameter (parameter provided by the user, as opposed to a learned

parameter) representing the number of topics, p(d) is the probability of the occurrence of a document d,

P (c|d) is the conditional probability of the occurrence of a topic c given a document d, and P (t|c) is the

conditional probability of the occurrence of a term t given a topic c. A topic here is defined by a set of

terms. The parameters of the models are obtained using the Expected Maximization (EM) algorithm.

LDA is similar to PLSA but uses the Dirichlet distribution as a prior probability distribution (i.e., models

the uncertainty for unseen values) for two types of probabilities: (i) the probabilities of a topic describing

a document and (ii) the probabilities of a term being part of a topic. This leads to two hyperparameter

vectors α and β which are the parameters of the Dirichlet distribution priors, α for a topic describing a

document and β for a term belonging to a topic. Considering symmetric vectors, lower values of α pro-

mote fewer topics to represent a document, likewise, lower values of β promote fewer terms composing

a topic. Other hyperparameters are the number of topics, and the number of passes through the corpus.

LDA generalizes better than PLSA because it uses Dirichlet priors that model uncertainty and so

prevent overfitting [12]. Another advantage over PLSA is that the LDA model is interpretable by humans,
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Figure 2.2: Countries and Capitals vectors. Modified from [69].

i.e., topics are composed by non latent terms (e.g., words) and documents are characterized by a set of

topics, each with an associated percentage.

2.1.5 Word2Vec

Word2Vec [68] is an unsupervised learning technique that processes large collections of documents

and assigns a vector, called a word vector, of some dimension N (i.e., embeddings) to each word.

Vectors are assigned in such a way that words that appear in the same context have a high cosine

similarity.

For example, consider Figure 2.2 which maps word vectors corresponding to names of countries and

capitals into a 2-dimensional space [69]. We can observe that Spain and Portugal are close because

they are often mentioned together in text because they resemble one another in terms of geography and

culture. Lisbon and Madrid are close to each other because they are the capitals of Portugal and Spain.

Given these vector representations, another interesting Word2Vec analysis is possible. For example,

if we want to know the capital of Portugal, we can perform operations using the word vectors, such

as Portugal + Spain - Madrid which would result in a vector close to Lisbon. This is possible because

the countries and capitals relationship in text is modeled by Word2Vec using similar distances between

vectors from a country to vectors of its respective capital.

In order to generate the embeddings for each word, Word2Vec is trained using an example text di-

vided into sentences where words are considered related if they often occur in a substring of a sentence.

The training problem consists of finding the best set of embedding values for each word (i.e., Word2Vec

model parameters) that, given a word or a set of words, predict the word or set of words that occur in
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the same context [93].

As mentioned above, word vectors are usually compared using cosine similarity. Two word vectors

having high cosine similarity are supposed to correspond to words having high semantic similarity (e.g.,

Portugal and Spain in Figure 2.2). Word vectors can also be used to describe a context (e.g., document).

For that purpose, the common approach is that the vectors of the words in a particular context are

summed together and divided by the number of words, leading to a context vector based on Word2Vec.

For example, consider we have a document that just lists the countries names in Figure 2.2. Then, the

context vector is computed by summing all countries vectors and then divide by the number of countries.

The result would be a vector near Germany or France.

2.1.6 Doc2Vec

Doc2Vec [58] is a document embedding and an unsupervised learning technique that adds to Word2Vec

the capability of automatically learn document (or paragraph) vectors. Given a list of words (e.g., a text

document) as input, the output of Doc2Vec is a dense vector of real numbers (i.e., embedding).

Analogously to Word2Vec that assigns a vector to a word, Doc2Vec assigns a vector of N dimen-

sions called a document vector to a document. The training problem consists of finding the best set of

embedding values for each word and document (i.e., Doc2Vec model parameters) that, given a docu-

ment, predicts the set of words in that document. For example, consider a document consisting on a list

containing the countries in Figure 2.2. If the document is known to the Doc2Vec model (i.e., was in the

training data) then we have a document embedding available, otherwise, a document embedding d is

computed by finding the best values that maximize the prediction of the country names given d.

Instead of averaging word vectors to represent a particular document in Word2Vec, when using

Doc2Vec, one can have a trained vector for each document in the corpus [25]. By comparing those

document vectors through cosine similarity, we can infer semantic similar documents.

2.1.7 BERT

BERT [28], acronym for Bidirectional Encoder Representations from Transformers, is the most well

known language model based on the transformer architecture. It revolutionized several Natural Lan-

guage Processing (NLP) tasks by providing a language model trained in huge amounts of unlabeled text

data that could be later fine-tuned for specific NLP tasks like Question and Answering (Q&A). Other suc-

cessful models with similar architectures based on transformers followed like XLNet [116], RoBERTa [64]

and MPNet [101]. These transformer-based models are deep neural networks composed by dense and

attention layers. Most of the following BERT details are applicable to them.

The BERT language model is pre-trained on two tasks that can be performed in an unsupervised way

without training data; they are: (i) predict a hidden word in text known as Masked Language Model and

(ii) given two sentences, the probability of one following another in text called Next Sentence Prediction.

For training in the context of other tasks, BERT is usually leveraged with additional layers; for in-

stance, a classification layer based on softmax can be added to label an input sentence or even a pair
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of sentences.

The last layer output, before the additional classification layer, can also be seen as producing word

embeddings where each word has a different embedding depending on the sentence. Importantly,

homonym words will have a different embedding depending on context (like ”bank” where you store your

money and ”bank” where you sit on). Combinations of word embedding vectors, like in Word2Vec [68],

can be used to obtain a document embedding.

2.1.8 SBERT

Sentence BERT (SBERT) or sentence transformers is a Python library whose first model was in-

troduced in [91] and that leverages transform models (not just BERT) to generate accurate sentence

embeddings for sentence similarity tasks.

Given a pair of sentences {s1, s2}, SBERT models learn to encode each sentence s ∈ {s1, s2} in

such a way that the Cosine similarity of their embeddings reflects their true similarity. To do so, SBERT

uses a Siamese neural network architecture composed by transform models that trains the model to

predict if two sentences are similar or not.

On prediction time, the sentences’ embeddings can just be compared using Cosine similarity. This

is computationally more efficient as it runs the model per sentence and not per sentence pair.

Sentence embeddings can be used as document embeddings. They can also be merged if the

document text exceeds the SBERT model input token limits.

2.2 Overview of a Data Cleaning Process

A typical data cleaning process aims at correcting the data quality problems in a database and it is

part of a data quality process. Data quality problems can affect distinct data structures within the same

data table: (i) a single value in a data table cell (structure that contains an attribute value in a particular

record) such as missing and incorrect data; (ii) a set of values for a single attribute such as unique

violation (e.g., two records with the same identifier); (iii) a set of attributes for a single record such as

inconsistencies among attribute values, or (iv) a collections of multiple records and attributes such as

approximate duplicate records. Data quality problems can also exist in the context of multiple relational

tables, that may come from different databases, such as inconsistencies among attribute values, syntax

inconsistency, or integrity violations (e.g., a foreign key value that does not exist as a primary key value).

The typical data cleaning process only stops when the user is satisfied about the data quality achieved

(i.e., the database meets the desired data quality level).

Data quality problems may be of different types [73]. Single value data quality problems enclose, for

instance, missing values, incorrect values (e.g., syntax violations, misspelled errors, domain constraint

violations), and values with doubtful meaning (e.g., acronyms with no expansion). When considering a

set of records and/or attributes, we can find violations of domain constraints (e.g., a publication published

in year 3000), inconsistencies (e.g., two publications with the same journal name and volume number
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that are not published in the same year), and approximate duplicates (e.g., two records refer to the same

person).

A data quality process usually starts with a data quality analysis phase which is the act of discovering

data quality problems in a database such as data errors, data inconsistencies, and approximate duplicate

records. Data quality analysis and data cleaning are obviously complementary and so, they can be

offered by the same framework or commercial software. Moreover, in some tools, support for data

quality analysis and data cleaning is intermixed because the system discovers and cleans data errors

and inconsistencies using the same components.

Figure 2.3: Data Quality Process

In Figure 2.3, we present a typical data cleaning process. Usually, this process is preceded by a

Data Quality Analysis process that is intended to audit the data through data quality rules and statis-

tical techniques. These techniques provide information about the data quality and thus allow the user

to identify possible data quality problems. Then, the user should have sufficient information to proceed

with the Data Cleaning Program Design (with data transformations or data quality rules) that can clean

the data quality problems found so far. The next step is the Data Cleaning Program Execution followed

by a step where the user can provide User Feedback by manually correcting instances of data quality

problems not addressed by the automatic methods. Before declaring the data cleaned, in the Effective-

ness Evaluation phase, the effectiveness of the data cleaning process is checked by measuring the data

quality of a sample taken from the processed data. If the data is not sufficiently clean, the same process

is reapplied to this data with a refined data cleaning program until the desired data quality is achieved.

In the next sections, we will present the two main types of data cleaning approaches. First, we

analyze data transformations in Section 2.2.1 and then data quality rules in Section 2.2.2.
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2.2.1 Data Transformations

In this section, we describe the data cleaning process based on data transformations. This method

of cleaning data is the most used in companies. A data cleaning program constituted of data transfor-

mations is usually designed based on a drag-and-drop graphical user interface, identical to most user

interfaces supported by ETL software, where data transformations are represented by boxes and the

data flows by links between those boxes.

A data cleaning program based on data transformations is usually modeled as a graph of data trans-

formations. The effective combination of data transformations within a graph and the proper tuning of

each data transformation can transform dirty tables into clean tables.

Figure 2.4: Stage tables from transforming a table containing authors name by publication into a table
containing similar author names.

(a) Initial table.

PUBLICATIONAUTHORS

Pub ID Authors
1 Kanamori, Heiken
2 Kaanamori
3 Reeken, Kanamori
4 Knamoqri, Yothers

(b) List of author names.

AUTHORS

Author ID Name
1 Kanamori
2 Heiken
3 Kaanamori
4 Reeken
5 Kanamori
6 Knamoqri
7 Yothers

(c) Pairs of similar author names.

SIMILARAUTHORS

Author ID 1 Name 1 Author ID 2 Name 2 Distance
1 Kanamori 3 Kaanamori 1
1 Kanamori 5 Kanamori 0
1 Kanamori 6 Knamoqri 2
2 Heiken 4 Reeken 2
3 Kaanamori 5 Kanamori 1
5 Kanamori 6 Knamoqri 2

Example 2.2.1. Consider that, using an extraction software, we have placed publication references in a

database table, from which, we now want to obtain a list of approximate duplicate author name pairs. We

start from an instance of this database table named PublicationAuthors as in Figure 2.4a that contains

two attributes: (i) Pub ID, the publication identifier and (ii) Authors, containing the last names of each

publication author separated by commas. The final expected result is the SimilarAuthors table, shown

in Figure 2.4c, whose schema has 5 attributes: (i) Author ID 1, the identifier of the pair first author,

(ii) Name 1, containing the last name of the pair first author, (iii) Author ID 2, the identifier of the pair

second author, (iv) Name 2, containing the last name of the pair second author, and (v) a distance value

between the two author’s last names within the same pair. In order to obtain such table, we have to

execute an Approximate Duplicate Detection operation composed by the following two high level data

transformations:

Splitting: Splits each field value into a different row using a character or pattern as a separator. In
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the example, Splitting extracts the individual author names from the string field PublicationAu-

thors.Authors using a comma as a separator (Figure 2.4a to Figure 2.4b).

Approximate Duplicate Detection: Computes a distance value using a distance function (e.g., the

edit-distance [60] function) for all possible pairs of value for the input field Authors.Name (in Fig-

ure 2.4b). Then, it filters the rows using a given threshold value, e.g., distance values below 3

(Figure 2.4b to Figure 2.4c).

Finally, in this example, to emphasize the need for the user to manually correct instances of data

quality problems not addressed by the automatic methods. Note that in Figure 2.4c, the names Heiken

and Reeken (tuple in Italic) do not refer to the same real author and so that tuple needs to be removed.

Figure 2.5: Pentaho Data Integration Graphical User Interface and implementation of a data cleaning
program.

Usually, a program designer uses a specialized tool to implement those data transformations. Pos-

sibilities are ETL tools that support data cleaning transformations as Pentaho Data Integration (PDI),

Talend, or Informatica PowerCenter, or data quality tools such as Trillium. As an example, we will focus

on PDI which is the ETL tool of the Hitachi Vantara Company that provides an open-source version. PDI

offers more than 200 data operators, named steps, that allow the user to design and execute data clean-

ing processes, besides ETL processes. PDI can be used to design and perform data cleaning tasks,

since it provides data transformation steps typically used in data cleaning programs. A data cleaning

program in PDI that corresponds to the Splitting and Approximate Duplicate Detection transformations of

Example 2.2.1 is shown in Figure 2.5. These transformations are obtained through combinations of the

following steps: (i) a Table input step obtains the table PublicationAuthors from a database and injects

each tuple into the data flow; (ii) a Split field to rows step, following the Table Input Step, extracts, into the

data flow, the author names for each tuple of table PublicationAuthors; (iii) a Select values step is used

to duplicate the data flow output of the Split field to rows step and to rename the attributes because the

next step cannot receive as input two data flows with equal schema; (iv) a Join rows step computes a

cartesian product between two data flows: one produced by the Split field to rows step and the other pro-

duced by the Select values step, thus generating possible pairs of names; (v) a Calculator step accepts

as input the pairs of names produced by the Join rows step, and computes the edit-distance between

those names; (vi) a Filter rows step outputs only the pairs of names from the Calculator step whose

distance is below 3; and finally (vii) a Table output step is used to insert the data flow into a database
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table.

In this section, we described a data cleaning process through a set of data transformation. In the

next section, we will describe another type of approach to achieve clean data that consists on a set of

data modifications to resolve the disagreement between data quality rules and data.

2.2.2 Data Quality Rules

Data quality rules express conditions that data must satisfy to be considered of good quality. When

a rule is violated then a data quality problem occurs. Searching the data for such problems is not a

trivial task, even more when complex rules are introduced. In this section, we describe the type of rules

available in data quality research for data quality analysis and the data cleaning process based on such

rules.

Conceptually, the first rules implemented in data management software (e.g., RDBMS - Relational

Database Management Systems) were integrity constraints. Integrity constraints describe conditions

among data values, for instance, a normal employee cannot earn more than the director of a company.

Integrity rules were first used for other contexts of data management software, specially in ETL tools,

however users also used and use them to express data quality requirements. Two software tools that

provide rules for data cleaning purposes are IntelliClean [59] that uses business rules to identify data

inconsistencies and missing data, and TransScm [70] which explores rules for approximate duplicate

detection. Functional Dependencies (FDs) [31] are integrity rules that check if, for any set of tuples

whose values of a set of user specified attributes X are equal (e.g., same Zipcode), the values of those

tuples in another specified set of attributes Y (e.g., same City) are equal. An FD is represented as

X ->Y . As an example, consider a table Customers storing person records that contain location re-

lated attributes such as City, Zipcode, and Country. We may state that if two or more records share the

same zip code then they must have the same city value. The corresponding FD is: Zipcode -> City.

Conditional Functional Dependencies (CFDs) [13] are extensions to FDs that enable to use value con-

ditions for attributes. Consider that the FD previously defined was only valid in the United States of

America, then we can specify a CFD that expresses that condition as follows: Country[United States

of America], Zipcode -> City. Other formalisms are: Inclusion Dependencies (INDs), which ex-

press conditions that data records must satisfy across relations (e.g., a foreign key in a database);

Conditional Inclusion Dependencies (CIDs) [14], which enable to express conditions over INDs (like

the CFDs did with FDs); and Matching Dependencies (MDs) [35], which are dependencies designed

for approximate duplicate detection. Finally, equality generating dependencies (egds) [8] consists on

a formalism that standardize dependencies by proposing a syntax based on logic that encloses most

of the data dependencies from the literature (e.g., CFDs, CIDs). In egds format, the CFD example

presented before would correspond to: Customers(Name1, Address1, City1, Zipcode, Country),

Customers(Name2, Address2, City2, Zipcode, Country), Country=‘‘United States of America

’’ -> City1 = City2.

As stated above, data must satisfy the conditions described by a set of data quality rules, otherwise a
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violation occurs meaning that data quality problems are found. To resolve a violation, there are different

alternatives to modify the data called data repairs. For example, consider the records 1, 2 and 3 in

Figure 1.1 and the CFD Type[Journal], Published In, Volume -> Year, an obvious data repair is

to change the Year of tuple 1 to 2014. Another valid data repair would be to change the volume value

of record 1 to a different value such as 50. Choosing which data repair to apply is usually performed

through heuristics [23][18][39][26].

A data cleaning tool whose objective is to discover and select data repairs to solve violations to

specified data quality rules, such as LLUNATIC [39] and NADEEF [26], usually starts with a violation

detection phase. Violation detection is the act of discovering data tuples that violate data quality rules

designed by users. Violation detection finds data dirtiness, i.e., tuples that violate at least a rule called

violating tuples. The second phase, candidates generation phase, typically executes a chase procedure

to discover the possible data repairs to be applied to the database. Finally, a search phase occurs in

order to select the best set of data repairs that produce clean data. Finding the best set of data repairs

is not a trivial task because a data repair that modifies the data may also generate new violations to

other rules. Another important issue to take into consideration is the definition of the best data repair

set, which is usually defined heuristically as being the minimum number of modifications applied to the

original data that can produce a database with no violations.

In this section, we described the different types of rules for data quality analysis in the context of data

cleaning. Moreover, we described that, when a data quality rule is not satisfied, then a violation occurs

and a repair must be applied to correct the database.
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Chapter 3

Related Work

This chapter describes the most relevant work related to acronym expansion (in-expansion extraction,

and out-expansion) and user involvement in repairing data. In Section 3.1, we describe the work about

acronym and out-expansion extraction and in Section 3.2 the work about out-expansion. In Section 3.3,

we describe the few end-to-end systems for acronym expansions. Finally, in Section 3.4, we focus on

data cleaning literature that makes use of user feedback to repair data.

3.1 Acronym and In-expansion Extraction

In this section, we review work about acronym and in-expansion extraction that identify acronyms

and corresponding expansions in text. In Section 3.1.1, we present a simple but efficient rule-based

algorithm for acronym and in-expansion extraction. In Section 3.1.2, we report on work that proposes

improvements over this simple algorithm. In Sections 3.1.3, 3.1.4 and 3.1.5 we discuss work on candi-

date expansion extraction that use machine learning based approaches; In Section 3.1.6, we present

the rules used to build a dataset for acronym disambiguation; in Section 3.1.7 we present a work that

explores acronym and in-expansion extraction in text written in Hebrew; in Section 3.1.8 and in Sec-

tion 3.1.9 we describe the most recent works in acronym and in-expansion extraction. Finally, in Sec-

tion 3.1.10, we summarize and highlight the open problems of acronym and in-expansion extraction.

3.1.1 A Simple Algorithm for Identifying Abbreviation Definitions in Biomedical

Text

Schwartz and Heart [97] focuses on correctly extracting, sometimes called ”identifying”, acronyms

(or abbreviations) and their expansions (definitions). The authors discuss an algorithm for biomedical

text, but is generalizable. The idea is to use a simple pattern matching algorithm that does not require

any training data. Due to its simplicity and its applicability to other domains, this work has been highly

cited and is often used as a baseline.
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This work follows a three-step process as described in [75]:

1. Acronym extraction: find acronyms in a document;

2. Candidate expansion extraction: build candidate pairs of acronyms and possible expansions

<acronym, expansion> from information in the document alone;

3. Candidate refinement: evaluate each candidate pair using a variety of heuristics to obtain a final

expansion for each acronym that has at least one candidate expansion within the document.

The first step, acronym extraction, defines the conditions that an acronym has to obey in order to be

identified. The authors posit that an acronym (or abbreviation) has a length between 2 to 10 characters,

contains at least one letter, the first character must be alphanumeric and contains a maximum of two

words.

In the second step, <acronym, expansion> candidate pairs are built. Similar to the approach in [75],

this work identifies two forms of acronym-candidate pairs based on two parentheses patterns: either

the expansion immediately precedes the acronym between parenthesis, e.g., Heat shock transcription

factor (HSF); or the opposite, the acronym immediately precedes its expansion between parenthesis,

e.g., HSF (Heat shock transcription factor).

In addition to this parenthetic relationship, the candidate expansion must start with the acronym’s first

character and be in the same sentence. Further, relative to the number of characters in the acronym,

the number of words of the expansion cannot exceed 5 or be more than double that number. Finally, the

expansion cannot start and end with prepositions, be-verbs, modal verbs, conjunctions or pronouns.

The next step, candidate refinement, is to find the right subset of words for an expansion given

the <acronym, expansion> candidate pair. The authors propose to use a simple pattern matching

algorithm that does not require any training data and whose objective is to find the shortest expansion

that matches the acronym. The algorithm uses two indices, one for the acronym and another one for the

expansion, each index starts in the last character of the acronym or the expansion. It decrements both

indices if the character matches the first letter of the word of the candidate expansion, otherwise the

algorithm decrements only the expansion index. The algorithm stops when the expansion index reaches

the first word (position 0) or when the algorithm matches all characters in the acronym. Additionally,

the first character in the acronym has to match the first character of the first word in the expansion.

The last word in the candidate expansion has to be in the final expansion. Hyphens (or any other non

alphanumeric character) are considered a word boundary when matching the first acronym character,

however hyphenated words are extracted together, e.g., 3-N-maleimidyl-proponiony-biocytin (MPB).

3.1.2 An Improved Method for Extracting Acronym-definition Pairs from Biomed-

ical Literature

Mohammmed and Nazeer [96] proposes an improvement over Schwartz and Hearst [97] as pre-

sented above in Section 3.1.1. For simplicity, we only list and describe the changes proposed to each

step of the previous work.
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The first step, that finds acronyms in the text, is the same as in previous work. In the second

step, where <acronym, expansion> candidate pairs are built, this work allows acronym-candidates that

belong to different sentences in the text to form a candidate pair. Additionally, it identifies candidate pairs

not only by use of parenthesis patterns in [97] but also by patterns where acronyms and expansions are

separated by a hyphen or a colon.

Regarding the third and last steps, candidate refinement, where the algorithm finds the right subset

of words for an expansion given the candidate pair, this work proposes the following changes: acronyms

and expansions may start with a digit, and if an acronym starts with a digit (e.g., 1), it looks for a valid

representation of that digit (e.g., one) in the expansion, e.g., Fifth Generation Language (5GL).

3.1.3 High-recall Extraction of Acronym-definition Pairs with Relevance Feed-

back

Yarygina and Vassilieva [117] propose another acronym and in-expansion extraction approach. How-

ever, their objective is to increase recall, i.e., the number of correctly extracted acronym expansion

pairs divided by the number of existing acronym expansion pairs. For that purpose, they built a system

whose steps are similar to the other works such as Schwartz and Hearst’s [97] and Mohammmed and

Nazeer’s [96] presented in Sections 3.1.1 and 3.1.2. The main difference consists in candidate refine-

ment step, through the use of machine learning techniques (instead of handmade patterns/rules) and

user feedback to increase the training data.

The first step, acronym extraction, proposed additional modifications to the previous work in Sec-

tion 3.1.1 to increase the number of extracted acronyms. Acronyms are allowed to contain other sym-

bols in addition to parentheses e.g., ’.’, ’-’, ’=’, ’,’, and ’.’ and have groups of uppercase letters or digits

separated by other symbols e.g., PS Act (Packers and Stockyards Act of 1921) and (R/EOC) Regional/

Emergency Operations Center.

In the candidate expansion extraction step, the authors also proposed changes to previous work to

increase the number of candidate pairs (again with the purpose of increasing the recall). In contrast to

Schwartz and Hearst [97], which implements an algorithm that uses indices to match acronym characters

to expansion characters and where at least one letter in the acronym must be the first letter of a word in

the expansion, the authors allow up to 2 missing letters from the acronym in the expansion and require

that the Levenshtein distance between the extracted acronym and an acronym generated directly from

the expansion must be below 2.

Regarding the last step, the candidate refinement step, the authors consider the candidate selection

problem to be a machine learning classification problem, i.e., a pair is true or false. This is the main

contribution of this work. The classification is performed using decision trees (the C4.5 algorithm [87])

that receives as input 100 features in total. Those features are: (i) number of symbols, uppercases and

lowercases of acronym and expansions, (ii) number of words in the expansion, (iii) number of existing

different symbols between acronym and expansion, and (iv) statistics on part of speech in the acronym
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Figure 3.1: Example of identifying the expansion for NASA through a labeling sequence problem as
presented in [63]

and in the expansion obtained though OpenNLP1.

In order to increase performance, this work makes use of user feedback to identify the correct

acronym and expansion pairs in documents to retrain the machine learning model. Before presenting a

document to the user, the candidate acronym expansion pairs of the document are evaluated by the pre-

viously trained machine learning model, here called the global model. The user can give feedback over

a part of the document by assigning true or false to candidate pairs. Using the candidate pairs analyzed

by the user and the remaining candidate pairs classified by the global model for that document, another

machine learning model is trained called a local model. The local model is trained only on candidate

pairs from the document. The authors’ intention is that it specializes to analyze the correct candidate

pairs found in that particular document. Intuitively the patterns used by the writer to specify acronyms

and expansions in the document should be consistent. The local model is then used to reclassify the

unseen parts of the document. Until the user reaches the end of the document, the system enters in

a loop where the user provides feedback over the data, then the local model is retrained with new user

feedback and classifies unseen candidate pairs by the user. Finally, after the user finishes classifying

the candidate pairs in the document, the global model is retrained using the available training data which

includes the new user feedback. Then the user can move to another document and the same process

applies.

3.1.4 Multi-granularity Sequence Labeling Model for Acronym Expansion Iden-

tification

Liu et al. [63] addressed the expansion extraction (which they call ”identification”) problem though a

machine learning technique called Latent-state Neural Conditional Random Fields (LNCRF) [71]. The

authors used an annotated corpus based on Wikipedia2.

In this work, the problem of expansion extraction is modeled as a sequence labeling problem in order

to be able to apply LNCRFs. The sequence (i.e. the text possible containing an expansion) is composed

of tokens, and each token is labeled with: B for beginning of an expansion, I for inside of an expansion,

or O for other tokens, i.e, that are not part of the expansion. See Figure 3.1 for an example of labeling

tokens for finding the expansion of the NASA acronym.

LNCRFs are a variant of the Neural Conditional Random Fields (NCRFs) [71] which are Conditional

Random Fields (CRFs) with a neural network layer [57]. In Figure 3.2, we show the architectures of a

CRF in (a), a NCRF in (b), and LNCRF in (c), where the variables X identify a set of features for each

1https://opennlp.apache.org/
2https://www.wikipedia.org/
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Figure 3.2: CRF (a), NCRF (b) and LNCRF (c) architectures presented in [63]

token, and the variables Y the corresponding labels. As we can see, the set of labels Y in CRFs depend

on the neighbors in order to model the sequence dependencies, e.g., if the previous token has a high

probability of being labeled with a B then it may imply that the next token has a higher probability of

being labeled with an I.

Regarding the features, the authors used a mixture of three types of features: (i) orthographical

features to characterize token information (e.g., capitalized token), (ii) token-query features represent the

accordance of a token and the given acronym (e.g., if the first letter in the token exists in the acronym),

and (iii) context features that provide information from the neighbor tokens (e.g., if the first letter of the

next token appears next in the acronym).

3.1.5 Language Independent Acquisition of Abbreviations

Glass et al. [41] proposed a new machine learning based approach to efficiently extract acronyms/ab-

breviations and the corresponding expansions from text. With this approach, the authors aimed at build-

ing a 7 languages dictionary of acronym and expansions from Wikipedia.

The first part of this work explores the creation of a Wikipedia dataset of acronyms and expansions.

The authors obtained a ground truth set from Wikipedia redirection and disambiguation pages from

the most used 7 languages in Wikipedia including English, German and non Latin languages such as

Russian and Japanese.

Then, the authors propose a candidate generation step to obtain acronym and expansion candidate

pairs and then a score step where candidate pairs containing different scores are evaluated as true or

false pairs. The candidate generation step output is the union of the candidates from two distinct tech-

niques. The first one is the simple algorithm of Schwartz and Hearst [97] as presented in Section 3.1.1

augmented to provide a score based on the occurrence frequency of a pair. The second technique

is called Candidate System 2 and is an effort to obtain different candidate pairs from the simple algo-

rithm by, for instance. considering other patterns instead of acronym or expansion inside parentheses.

Candidate System 2, first scores a pair based on three factors: (i) co-occurrence frequency of pairs

in the whole corpus, (ii) minimum distance between occurrences, and (iii) approximate string similarity

between acronym and expansion. Then, a threshold is used to accept or reject a candidate pair based

on the score.
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The score step uses different types of scores: (i) scores from the candidate step, two semantic

similarities: (ii) the synonym similarity and (iii) topic similarity, and finally (iv) the surface similarity. Those

scores are combined by turning them as features to a simple logistic layer (i.e., logistic regression).

The two semantic similarities (i.e., the synonym and topic similarities) are based on word embed-

dings. The difference between them resides in the source of the word embeddings: the synonym sim-

ilarity uses the embeddings obtained using Word2Vec, while the topic similarity uses the embeddings

obtained using Latent Semantic Analysis (LSA). For both similarities, the score (similarity) is given by

the cosine similarity between the acronym embedding and the average of the token embeddings in the

expansion.

The surface similarity is the maximum score over all possible alignments between an acronym and

an expansion. A possible alignment is a mapping of acronym characters to expansion characters. The

authors obtained for each possible alignment, the following features: (i) number and percentage of

acronym characters that match the first token expansion character, (ii) percentages of expansions and

acronym tokens with no matched characters, and (iii) number of swaps from the matches between

acronym and expansion characters. Using those features, a linear model predicts the similarity score for

each possible alignment. The final surface similarity score is the highest score predicted.

3.1.6 Acronym Disambiguation: A Domain Independent Approach

In order to test their out-expansion (acronym disambiguation) approach, the authors of [107] pro-

posed an approach to extract expansions from Wikipedia articles. The acronyms are obtained from the

Wikipedia disambiguation pages.

To extract an expansion for an acronym, the authors used the following rules: (i) the characters in the

acronym have to match in sequence the first characters of the expansion words; (ii) word boundaries

are spaces, underscore or dash; and (iii) a word in the expansion whose first character does not match

must be a stop word.

3.1.7 Acronyms: Identification, Expansion and Disambiguation

The work present at [50] focused on techniques for acronym and in-expansion extraction (which they

call ”identification”) for texts written in Hebrew. The novelty of this work is on building a dictionary of

acronyms and expansion namely a database containing the result of the extraction of valid acronyms

and corresponding expansions in text. Most of the techniques proposed in this work are designed from

scratch and so take advantage of the Hebrew language structure. For instance, in Hebrew the language

grammar is very clear regarding the use and generation of acronyms (i.e, have a particular format) but

not so straightforward in the opposite way where given an acronym we want to find the corresponding

expansion because the expansion may include word prefixes and suffixes (which is how the language

defines connection works such as of, for, or and). Still, the authors were able to define formation rules

from expansions to acronyms.

To build the acronym expansion dictionary, first, the system finds the acronyms (easy due to the
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language structure) and then, in a kind of reverse engineering, it uses the formation rules to obtain

candidate expansions from the whole corpus texts. These candidate expansions are then filtered out by

a previously trained binary Support Vector Machine (SVM) over a human annotated corpus (also used

as a gold standard). The SVM uses a set of features from acronyms and expansions lengths, word

and documents frequencies, and also Latent Dirichlet Allocation comparison between the candidate

expansion and the acronym. The authors also limited their system to just expansions and acronyms that

occur at least 5 times in the corpus.

3.1.8 SciDr at SDU-2020: IDEAS - Identifying and Disambiguating Everyday

Acronyms for Scientific Domain

In SciDr, Singh and Kumar [99] interpret acronym and in-expansion extraction as a sequence labeling

problem for their SciDr in-expander (SciDr-in). Liu et al. [63], presented in Section 3.1.4 have previously

address the in-expansion extraction as a sequence labeling problem, but not the acronym extraction.

Singh and Kumar [99] sequence labeling consisting of three tags identifying: (i) a word in an acronym,

(ii) a word in an expansion and (iii) other word.

Due to their participation in the SDU@AAAI competition [111] for in-expansion extraction, the authors

tested different models based on pre-trained language model (e.g., BERT [28] or SciBERT [9]) together

with Conditional Random Fields (CRFs) [57] to classify each word with one of the three tokens.

The best solution using a single model was obtained with SciBERT [9] which is a language model

based on Transformers and pre-trained on research papers from Semantic Scholar 3. The SciBERT

used was fine-tuned with training data for the sequence labeling task.

To obtain even better performance, Singh and Kumar [99] implemented in SciDr-in a blending pro-

cess [98]. It splits the training data into train and validation sets. Five different SciBERT models (e.g.,

number of epochs and learning rate values) are constructed based on the training set. Predictions on the

validation set are then stored. The models, the predictions, and additional syntactic features extracted

from the word-to-tag mapping are used to train 5 Conditional Random Fields (CRFs) [57] in a 5-way

cross-validation setting. The resulting CRF models are ensembled using hard voting.

3.1.9 MadDog: A Web-based System for Acronym Identification and Disam-

biguation

Veyseh et al. [110] created for MadDog system an in-expander that introduces minimal variations

of the Schwartz and Hearst technique [97] (described in Section 3.1.1). This in-expander follows the

same exact three steps followed by Schwartz and Hearst [97]. For simplicity, we only list the differences

proposed to each step.

For the first step, the Acronym extraction that finds acronyms in text, MadDog [110] adds the restric-

tion that 60% of the acronym’s characters must be upper-case letters.

3https://www.semanticscholar.org/
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The second step, the builds the candidate pairs of acronym and expansions was not modified. How-

ever, Veyseh et al. [110] added priority rules on Schwartz and Hearst [97] technique third step, the

candidate refinement, in order to improve precision. If a rule is fulfiled then it returns the expansion,

otherwise continues until an expansion is found or discarded. The rules are the following:

1. The upper case first letter of each word in the candidate definition match the acronym characters

2. The first letter (perhaps lower case) of each word in the candidate definition match the acronym

characters

3. Schwartz and Hearst [97] technique modified to discard the last words of the candidate expansion

if no character matches an acronym character

3.1.10 Discussion

In this section, we covered the related work concerning acronym and in-expansion extraction. Ta-

ble 3.1 presents a summarized comparison between those works. The various works present a similar

three-step process: (i) Acronym Extraction where are acronyms are extracted, (ii) Candidate Expansion

Extraction where expansion candidate pairs are generated, and (iii) Candidate Refinement where the

final pairs are selected. The exceptions are Liu et al. [63] and Thakker et al. [107] that perform expan-

sion extraction and refinement (second and third steps) in a single step; Glass et al. [41] and Singh and

Kumar [99] that performs those steps using the same techniques. Additionally, we list the datasets used

in the experimental evaluations of related work.

First and second steps are essentially rule/pattern based approaches. Some were more specific

using only parenthesis patterns as in Schwartz and Hearst [97] (Section 3.1.1). Regarding the third

step, Schwartz and Hearst [97], Mohammmed and Nazeer [96], Thakker et al. [107], and Veyseh et al.

[110] (Sections 3.1.1, 3.1.2, 3.1.6, and 3.1.9) proposed hand-made algorithms, whether in more recent

works Yarygina and Vassilieva [117], Glass et al. [41], and Jacobs et al. [50] (Sections 3.1.3, 3.1.5,

and 3.1.7), the authors consider the candidate selection problem to be a classification problem, i.e.,

a pair is true or false. The exception is Liu et al. [63] and Singh and Kumar [99] (Section 3.1.4 and

3.1.8) which do not follow the three-step approach, instead they model the expansion extraction as a

sequence problem where machine learning is used to classify tokens as if they belong to the expansion

of a particular acronym or not. Additionally, Singh and Kumar [99] also extracts acronym using the same

token classification approach.

Most of these works have used Schwartz and Hearst [97] as a baseline, Mohammmed and Nazeer

[96] and Veyseh et al. [110] proposed some improvements to the Schwartz and Hearst’s approach. Mo-

hammmed and Nazeer [96] compares their proposal against it using the same dataset about biomedical

abstracts.Veyseh et al. [110] compares Schwartz and Hearst [97] and Liu et al. [63] in the SciAI dataset

from [84]. In Yarygina and Vassilieva [117] changes were also proposed in the two first steps in order to

improve recall and machine learning on the third step that takes advantage of user feedback tested in
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Table 3.1: Summary of related work in acronym and in-expansion extraction.

Related
Work

Acronym Extraction Candidate Expan-
sion Extraction

Candidate Refine-
ment

Datasets

Schwartz
and Hearst
[97]

- Length between 2 to
10 characters
- Contains at least a
letter
- The first character
must be alphanumeric
- Contains a maximum
of two words

- Parenthesis patterns
- Acronym and expan-
sions in the same sen-
tence

- Shortest expansion
that matches the
acronym
- Expansion must start
with the acronym’s first
character

MEDLINE

Mohammmed
and Nazeer
[96]

- Schwartz and Hearst
[97]

- Parenthesis, hyphen,
and a colon patterns
- Acronym and expan-
sions may be in differ-
ent sentences

- Schwartz and Hearst
[97]
+ can start with a digit
+ digit matches with
any digit representa-
tion (e.g, III)

MEDLINE

Yarygina
and Vas-
silieva [117]

- Schwartz and Hearst
[97]
+ can contain other
symbols instead of ’()’

- Schwartz and Hearst
[97]
+ match can have to 2
missing letter
+ Levenshtein dis-
tance must be below
2

- Decision trees clas-
sifier with string meta-
data and statistics on
part of speech as fea-
tures
- user feedback

Medstract,
military
and disa

Liu et al. [63] N/A - LNCRF sequence labeling with orthograph-
ical, token-query, and context features

Wikipedia
based
dataset

Glass et al.
[41]

- Union of:
- Schwartz and Hearst [97]
- Candidate system 2 which is based on tokens

co-occurrence

- Logisitc regression
classifier with candi-
date step, synonym,
topics and surface
scores as features

Wikipedia
articles
in 7 lan-
guages

Thakker et
al. [107]

N/A - The first characters in each expansion token
must match the acronym characters
- Except if the expansion token is a stop word
- Word boundaries are spaces, underscore or
dash

N/A

Jacobs et al.
[50]

- Hebrew grammar - Reverse engineered
acronym formation
rules

- SVM classifier with
acronym and expan-
sion lenghts, frequen-
cies, and LDA as fea-
tures

Hebrew
dataset

Singh and
Kumar [99]
(SciDr-in)

- Blending of SciBERT models followed by CRFs for a sequence
labeling of both acronyms and expansions

SciAI
version
of [111]

Veyseh
et al. [110]
(MadDog-in)

- Schwartz and Hearst
[97]
+ 60% of the
acronym’s characters
must be upper-case

- Schwartz and Hearst
[97]

- priority rules that fa-
vor expansion words
whose first character
matches the acronym
- Then Schwartz and
Hearst [97]

SciAI
version
of [84]
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biomedical and defense report datasets. Glass et al. [41] proposes a new dataset based on Wikipedia

and achieves better performance than Schwartz and Hearst [97] using a scoring system. Glass et al. [41]

tried to replicate the features used in Liu et al. [63] but with no success. This last work report exper-

iments over an annotated and publicly unavailable corpus based on Wikipedia against other machine

learning techniques such as Support Vector Machines (SVMs) and their previous work on Conditional

Random Fields. Thakker et al. [107] did not perform extraction experiments and they used the proposed

expansion extraction rules to build an out-expansion dataset. Jacobs et al. [50] focused on Hebrew

language and so did not compare with related work used for English. Singh and Kumar [99] was only

evaluated in the context of the SDU@AAAI competition [111].

It is clear by now that there is no best approach for acronym and in-expansion extraction. When

evaluated together, the experiments only included a limited number of datasets from specific domains.

Even the works of Singh and Kumar [99] and Veyseh et al. [110] that used the SciAI dataset, their exper-

iments are in different versions of the mention dataset. Moreover, in practice there is no evidence that

the overhead of using training data and the execution time spent in machine learning based techniques

overcomes rule-based approaches in this task.

3.2 Out-expansion

In this section, we review work related to out-expansion. This work uses the subject matter of a

document to identify expansions for ambiguous acronyms, i.e., acronyms that are not defined in the

document and for which we know several expansions. In Sections 3.2.1 and 3.2.2, we present two

works that explore word or document embeddings for out-expansion; in Section 3.2.3 we present a work

that explores out-expansion in text written in Hebrew; and in Section 3.2.4 we detail a work that uses

word embeddings to out-expand acronyms in captions.In Section 3.2.5 and in Section 3.2.6, we describe

the most recent works in acronym and in-expansion extraction that use neural network models. Finally,

in Section 3.4.7, we summarize and highlight the open problems of out-expansion.

3.2.1 Acronym Disambiguation Using Word Embeddings

Li et al. [61] proposed two approaches based on word embeddings from Word2Vec to address the

out-expansion (acronym disambiguation) problem. These approaches combine word embeddings (i.e.,

word vectors) from the acronym or expansion context to generate an acronym or expansion embedding.

Intuitively, suppose that the same acronym can be expanded in different ways depending on the context,

i.e., an ambiguous acronym. Suppose further that the expansion extraction also keeps track of the

context of each expansion by generating an expansion embedding. Then, the out-expander will compare

the context of the acronym with all the contexts of the expansions and choose the expansion having the

closest context. In this work, contexts are compared by computing the cosine similarity between an

acronym embedding and an expansion embedding.
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The first approach to compute the embeddings for a term (an acronym or an expansion) called TF-IDF

Based Embedding (TBE) is based on TF-IDF top words (Section 2.1.2). For each top n TF-IDF word of

each document containing a term t (acronym or expansion), its embedding (word vector from Word2Vec)

is multiplied by the corresponding TF-IDF weight. All these weighted embeddings are summed together

to obtain the final term t embedding.

Regarding the second approach, called Surrounding Based Embedding (SBE) instead of using TF-

IDF, it combines the embeddings of the words surrounding the term. To do so, it first obtains the embed-

dings of all the words found inside of a window w around any expansion occurrence in all documents

or the words around any occurrence of an acronym within the same document. Then, it sums the

embeddings together to obtain the final expansion or acronym embedding.

3.2.2 Acronym Disambiguation: A Domain Independent Approach

Thakker et al. [107] proposed another approach for out-expansion (acronym disambiguation) based

on embeddings. In concrete, they explore Doc2Vec to create embeddings for each document, i.e.,

document vectors. They also proposed an approach to extract acronyms and expansions from Wikipedia

articles described in Section 3.1.6.

Their out-expansion approach obtains, for each occurrence of a term (acronym or expansion), a

window of characters around them (the authors used 2000 to 5000 characters) here called a context

embedding. For each acronym and corresponding set of candidate expansions, the system trains a

Doc2Vec model using that acronym’s context. Then, when disambiguating an acronym, the system

compares the context embedding of the acronym against the context embedding of its candidate ex-

pansions using cosine similarity. It then selects the expansion whose context embedding is the most

similar to the acronym context embedding. Note that this work uses a Doc2Vec model per acronym and

not a single general model for the whole corpus in contrast to Word2Vec models used in SBE [61] and

Charbonnier et al. [17] (Sections 3.2.1 and 3.2.4).

3.2.3 Acronyms: Identification, Expansion and Disambiguation

Apart from the techniques for acronym and in-expansion extraction described in Section 3.1.7, Ja-

cobs et al. [50] also focused on out-expansion (acronym disambiguation) techniques for texts written in

Hebrew.

Regarding the out-expansion of ambiguous acronyms in Hebrew (a not so common case in this

language because most acronyms found have just one expansion), the authors ranked the expressions

by their source: first, if they are of type gematria (a type of acronyms for numeric expressions such as

calendar years), second, if they come from the annotated corpus (gold standard), and then finally if they

were identified by the Support Vector Machine (SVM) model as described in Section 3.1.7. Expansions

coming from the same source are ordered by an LDA-based score. This score is obtained using the

cosine similarity to compare the combination of LDA topics in each word of the expansion against the

document topic vector containing the ambiguous acronym.
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3.2.4 Using Word Embeddings for Unsupervised Acronym Disambiguation

Charbonnier et al. [17] proposed an out-expansion (acronym disambiguation) approach based on

word embeddings weighted by TF-IDF scores to disambiguate acronyms in scientific article captions.

Expanding acronyms in captions is important for these authors because this work was part of project

NOA (Reuse of Open Access Images)4 that provides a web page to search for images based on terms.

In the context of project NOA, assigning an expansion to an acronym is important to obtain more mean-

ingful information from the available terms from captions.

Regarding the out-expansion approach, the authors consider the word embeddings from Word2Vec

and TF-IDF for the whole corpus. Alternatively, they also tried word embeddings from pre-trained

Word2Vec model but found that the pre-trained models did not provide better results. To obtain an

embedding for an acronym in a caption, the remaining tokens in the same caption are combined.

The computation is the sum of all token embeddings multiplied by the inverse document frequency

value (IDF part of TF-IDF). The expansion whose embedding is the most similar with the acronym

embedding in terms of cosine similarity is selected.

3.2.5 Identifying and Disambiguating Everyday Acronyms for Scientific Domain

SciDr purposed by Singh and Kumar [99] also provides an approach for the out-expansion task of

the SDU@AAAI competiton [111]. The authors use SciBERT models fine-tuned with different hyperpa-

rameters assembled together for the competition.

The authors, formulate the out-expansion problem as a substring prediction task where the objective

is to find the substring that matches the best expansion for a given sentence. The input is a list of

expansions concatenated with a Separating Token, [SEP ], followed by a sentence as input, for example

for acronym PDF an input would be portable document format probability density function [SEP ] formats

including the PDF. Then, it uses a language model (e.g., BERT [28] or SciBERT [9]) whose output is an

encoding that is passed to a dense linear neural network layer that provides two outputs: the start and

end indexes corresponding to the substring from the original input. It may be the case that the substring

doesn’t perfectly match an expansion (e.g., document format probability), in this situation, it computes

the Jaccard similarity of each expansion against the substring, and the most similar expansion to the

substring is chosen.

The authors tried different models: (i) BERT, (ii) SciBERT, and (iii) SciBERT with external data con-

stituted by Wikipedia pages that contain an expansion found in the SDU@AAAI training data. They

also explored an ensemble approach of models (ii) and (iii), the ensembling was performed by 5-cross

validation for each (ii) and (iii) resulting in 10 models. Then, to obtain the final output, the average of the

probabilities for the substring indexes predicted by each model is taken before computing the Jaccard

similarity.

Finally, the authors used a post-processing step for the competition which search in the input sen-

tence if an expansion for an acronym is present, if found selects that expansion as the output. Otherwise,

4https://noa.wp.hs-hannover.de/
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runs the ensemble process mentioned above.

3.2.6 MadDog: A Web-based System for Acronym Identification and Disam-

biguation

In this section, we describe the out-expander technique included in the MadDog system [110] that

also processes a sentence as input. The authors processed a large number of texts from English

Wikipedia5, Arxiv6, Reddit7 and two sources of textual documents from biomedical data (Medline ab-

stracts8 and the PMC open-access subset9). To extract the acronyms and expansions and build a train-

ing dataset for out-expansion, the authors used their in-expansion technique described in Section 3.1.9.

Several neural network models are used to classify a sentence with an expansion. Each model

is trained with 100k of sentences (samples). A sentence is tokenized and the expansion occurrences

replaced by the acronym. First, each token is replaced by its GloVe embedding [78] and then they are

placed into a sequential model (a Bi-directional Long Short Term Memory network) that produces the

embeddings for the sentence and the acronym. Finally, those embeddings are used as features for a

feedforward network to classify the input sentence with an expansion.

3.2.7 Discussion

In this section, we covered the related work concerning out-expansion. Table 3.2 presents a sum-

marized comparison between the out-expansions approaches proposed by those works and lists the

datasets used on their experimental evaluations.

Li et al. [61] (Section 3.2.1) compared their out-expansion approaches against the Classic Context

Vectors and previous related work using two annotated datasets based on articles abstracts: MSH con-

tains biomedical articles, and ScienceWISE physics article abstracts. They report that their Surrounding

5https://en.wikipedia.org/
6https://arxiv.org/
7https://www.reddit.com/
8https://www.nlm.nih.gov/medline/medline_overview.html
9https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/

Related Work Out-expansion Approach Datasets
Li et al. [61] (SBE) Cosine similarity of combinations of

Word2Vec embeddings
MSH and ScienceWISE

Thakker et al. [107] Cosine similarity of local Doc2Vec embed-
dings

Computer Science
acronyms from Wikipedia

Jacobs et al. [50] Source priority and then LDA-based score Hebrew dataset
Charbonnier et al. [17] Cosine similarity of combinations of

Word2Vec and TF-IDF embeddings
NOA (acronyms in cap-
tions)

Singh and Kumar [99] (SciDr) Ensembler of SciBERT models that output a
substring with the expansion

SciAD version of [111]

Veyseh et al. [110] (MadDog) Sequence model with a feedforward network
classifier

SciAD version of [84]

Table 3.2: Summary of related work in out-expansion.
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Based Embedding (SBE) approach outperforms related work but does not obtain better results than the

Classic Context Vectors on the MSH dataset.

Thakker et al. [107] (Section 3.2.2) uses a dataset composed of acronyms used in the computer

science field, but also expansions from other fields. This dataset was built based on the authors’ extrac-

tion rules (Section 3.1.6) applied to Wikipedia articles. It uses a Doc2Vec model per acronym and not

a single general model for the whole corpus as is common to produce accurate semantic embeddings

(e.g., Word2Vec models used in SBE [61] and Charbonnier et al. [17]). Further, it may allow different

expansions within a single document for the same acronym, which is contrary to the intuition that each

acronym will normally have only one expansion within a document.

Jacobs et al. [50] and Charbonnier et al. [17] (Sections 3.2.3 and 3.2.4) present two recent works

with interesting and novel approaches, however they are applied to very specific domains and problems:

Jacobs et al. [50] explore acronyms in Hebrew texts and Charbonnier et al. [17] expands acronyms in

captions.

Recently, Singh and Kumar [99] and Veyseh et al. [111] (Sections 3.2.5 and 3.2.6) proposed two out-

expansion approaches based on neural networks. They were both tested for different versions of the

SciAD dataset. Moreover, the approach of Veyseh et al. [110] used only their large dataset as training

data, instead of the SciAD training set.

The above work on out-expansion has many clever ideas, but there is no study that compared the

works with one another on plain English text documents. Comparison among document representation

techniques should also take into account a common preprocessing which is not done in Li et al. [61].

Out-expansion works did not explore the direct (or standalone) use of the document representation

techniques TF-IDF and LDA for English. Li et al. [61] and Charbonnier et al. [17] tried combinations

of Word2Vec with TF-IDF. Jacobs et al. [50] included LDA as part of their disambiguation solution for

Hebrew texts. Thakker et al. [107] used local Doc2Vec models as a context. However, no global

Doc2Vec model was tested nor was the use of the whole document as a context.

Further, regarding the comparison of embeddings, the only similarity approach used was cosine

similarity. None of these works tried a machine learning approach for this purpose, despite the fact

that selecting an expansion could be seen as a classification problem, i.e., labeling acronyms with an

expansion.

3.3 End-to-end Acronym Expanders

To our knowledge, systems that expand abbreviations and/or acronyms use a pre-defined dictionary

of acronym-expansions [1, 42] as opposed to trying to discover the proper expansion based on context.

Only two end-to-end systems use context for out-expansion. First, Ciosici and Assent [20] propose

an end-to-end abbreviation/acronym expansion system architecture that performs out-expansion. Un-

fortunately, their demo paper does not provide enough technical details and their code is proprietary.

Most recently, Veyseh et al. [110] proposes an end-to-end acronym expansion system, called Mad-

Dog, which contains a rule-based in-expander technique that improves on [97] and an out-expander
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based on neural networks: a sequential model to encode context followed by a feedforward network to

classify the input with an expansion. They also trained their models on a large corpus of sentences.

None of the these two systems provides a framework with easy plug-in for different in and out-

expansions techniques nor uses other data sources. Moreover, none of them were evaluated on an

end-to-end acronym expander benchmark.

3.4 User Involvement in Data Cleaning

In this section, we focus on the related work that involves the user in a data cleaning process in such a

way that she/he can provide feedback to repair the data. In Section 3.4.1, we present a framework based

on data quality rules, named LLUNATIC, that takes into account the user feedback to resolve conflicts

in data repairs. Furthermore, we also detail two frameworks that use Machine Learning (ML) models

trained with user feedback to improve the data cleaning process: Guided Data Repair presented in

Section 3.4.2 that relies on the user to choose which data repair to apply; and Continuous Data Cleaning

presented in Section 3.4.3 where the user can decide which type of repair to search. In Section 3.4.4,

we present the DANCE framework that resolves data inconsistencies using only user feedback. In

Section 3.4.5 and in Section 3.4.6, we describe FALCON and ICARUS respectively, which are two data

cleaning frameworks that search for a small set of Structured Query Language (SQL) update statements

that can clean the data by modifying cell values. Finally, in Section 3.4.7, we summarize and highlight

the open problems of these works.

3.4.1 LLUNATIC

LLUNATIC [39] is a data cleaning and mapping framework that models a data cleaning (and/or map-

ping) program using data rules. This framework generalizes the data cleaning process based on data

rules and provides extendable components for: (i) identifying rule violations, (ii) searching for the avail-

able data repairs that can resolve the violations, and (iii) selecting data repairs based on some criteria

(usually the minimum number of changes applicable to the whole dataset that satisfy the rules).

LLUNATIC introduces a language based on equality generating dependencies (egds) [8] whose se-

mantic incorporates most of the data quality rules from the literature. Moreover, because Llunatic is also

a mapping framework, this language also enables the user to specify tuple generating dependencies [32]

that support data mappings which is out of the scope of this thesis. Egds generalize the data quality

rules into a common and unified syntax structure (see more details and an example in Section 2.2.2).

This unification enables the LLUNATIC framework to explore performance improvements by providing

optimizations over this common language structure. The authors concern was also to add support so

that cleaning specifications could accommodate user preferences for data repairs to define the best set

of data repairs in alternative terms (instead of just minimum number of repairs), e.g., give preference
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Figure 3.3: GDR framework as presented in [114].

to maintain values from a particular column over another. Therefore, it introduces the notion of partial

order that allows the user to prioritize the repairs by specifying, among attributes, which ones contain the

preferred values over others. LLUNATIC contains a component called Cost Manager that implements

an optimization procedure to prune the search for data repairs, thus enables the chase (search for data

repairs) to scale with more data. It also allows the user to tune this optimization procedure (based on

different heuristics).

The LLUNATIC framework aggregates cells into cell groups which are sets of cells that must have

the same value. Cells are grouped according to the data repair that is used to solve the violations of

data quality rules, e.g., two publication records with the same journal name and volume number that are

not published in the same year are grouped together in order to get both the same value in year. Values

can be nulls, constants or lluns. Lluns are a special type of values that represents a set of possible

values for a cell or cell groups which could not be selected by the cost manager and the partial order

(user preferences), so they require user feedback. After LLUNATIC finishes to run, the user can inspect

the chase as a tree and provide a value for each llun. This value is then replaced in all cells of the group

in the database.

3.4.2 Guided Data Repair

Guided Data Repair (GDR) [114] is a framework that takes advantage of user feedback to improve

the selection of data repairs. Data repairs in GDR are generated using the algorithm to find data repairs

developed at [23] that generates data repairs for cleaning violations of Conditional Functional Depen-

dencies (CFDs). Instead of using heuristics to decide which data repairs to apply, GDR resorts to the

user feedback to find the optimal subset of data repairs to apply to the data. Moreover, while requesting

for user feedback, GDR uses this feedback to train Machine Learning (ML) models capable of replacing

the user.

Figure 3.3 shows the different components of the GDR framework grouped into three super compo-

nents: Input, Updates Generation, and Ranking Updates. The objective of GDR is to modify a database

D in order to satisfy a set of CFDs Σ stored in a CFDs Repository. The set of tuples that are involved
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in the violation of at least one CFD are considered dirty. The Dirty Tuples Identification and Updates

Discovery component uses the techniques presented at [23] to discover the set of tuples considered

dirty, and then, to generate data repairs in the form of tuple updates to D identified as the Possible

Updates. When an update from the Possible Updates set is chosen, either through user feedback or

through a ML model prediction, the Updates Consistency Manager component updates the database D

and generates a new set of dirty tuples and, consequently, new Possible Updates. Note that, although

modifications to D are intended to resolve violations, they can indeed cause the occurrence of further

violations of other CFDs. Given the Possible Updates, GDR groups together the candidate data repair

updates that provide the same attribute value, independently of the target tuple and original values.

These groups will allow the user to visualize similar updates together and will also help ML algorithms

in finding data patterns.

The novelty of GDR regarding other data cleaning works resides in the set of components grouped in-

side of the Ranking Updates super component in Figure 3.3. The Ranking component ranks the groups

generated by the Grouping component (inside of the Updates Generation super component) into Ranked

Groups based on the values of the Valuable Of Information measure [94] that quantifies the overall ben-

efit of selecting the true data repairs. For the updates in a group, the Learning Component uses active

learning to guess the user actions and to provide an uncertainty score. The Learning Component uses

random forest trees, a ML technique that trains a set of ML tree models then, the most frequent output is

used as the predicted value. Random forests are further used by the query by committee strategy in the

Learning Component to compute an uncertainty score. The Display ordered by Uncertainty component

uses the uncertainty score to sort the updates and then displays them to the user. Afterwards, the user

selects one of the top ranked groups to inspect and then provides feedback. The user feedback is given

through the following actions on tuple updates: (i) accept the update, (ii) reject the update or (iii) retain

the tuple’s original values. The user will give feedback on the most uncertain update action guessed by

the ML models. When the user feedback is produced, GDR generates Training Examples that are used

to re-train the ML model in the Learning Component. This model is then used for new predictions and

new uncertainty scores. Finally, when the user is satisfied with the ML model performance, she finishes

the group inspection by setting the ML model to guess the user actions for the remaining updates and

then she moves to the next ranked group of possible tuple updates. The data cleaning process finishes

when there are no more groups to be visited by the user.

3.4.3 Continuous Data Cleaning

Continuous Data Cleaning [112] is a data cleaning framework which handles stream data and adapts

itself to new data by adjusting data quality constraints. Continuous Data Cleaning can apply two type of

repairs: (i) data repairs which modify the data to agree with the data quality constraints and (ii) constraint

repairs which modify the constraints to agree with the data. This framework generates a set of repairs

and then asks the user to select which repairs to apply. The repairs selected by the user are used to train
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Figure 3.4: Employees example presented in [112]

a Machine Learning (ML) model that, for new violations, predicts the type of repairs (i.e., data and/or

constraint repair) to be applied. The framework takes into account the ML model output (i.e., type of

repair predicted: data repair, constraint repair or both) to search only for repairs whose type is given

by the ML output. In the case that the ML model output is just one type of repair, then the framework

searches only for repairs of that type instead of performing an extensive search by generating data and

constraint repairs. Note that the Continuous Data Cleaning framework improves the work presented

in [18] that always generates data and constraint repairs. By adding data repairs selected by the user

and ML models that predict the repair type, the Continuous Data Cleaning framework improves the data

quality of a database and enables a faster execution.

Continuous Data Cleaning focus on Functional Dependencies (FDs) and constraint repairs that turn

FDs into more specific FDs, i.e., adds left hand side attributes. As an example, consider the table in

Figure 3.4 that contains the salaries of employees belonging to a company with multiple branches and

the FD [First name, Surname] ->[Salary]. This FD is violated by the following set of tuples {t1, t3,

t5}, {t2, t7}, and {t4, t6}. A constraint repair must be applied by modifying the original FD into [First

name, Surname, BranchID] ->[Salary]. This new FD is satisfied by all tuples of the table.

The input of the ML model is a set of 22 features that describe a violation based on statistics re-

garding: (i) the FD (e.g., [First name, Surname, BranchID] ->[Salary]), (ii) the tuples that violate

the FD, and (iii) the tuples that share the same values in the attributes involved (either right or left side)

in the FD (e.g., in Figure 3.4 tuples that refer to James Brown: t1, t3, and t5). Those features belong

to one of five groups: (i) statistics over the violated FD, (ii) statistics over the tuples that violate the FD,

(iii) statistics over the tuples that violate other FDs, (iv) statistics over possible constraint repairs, and (v)

statistics over possible data repairs. Most of these statistics are computed using accumulator variables,

i.e., do not need to compute every time over the whole dataset, thus avoiding to degrade performance.

The ML model output is one of seven available classes that indicates if a violation: (i) cannot be

repaired, (ii) is repaired completely by FD repairs, (iii) is repaired completely by data repairs, (iv) is

repaired completely by data and FD repairs, (v) is repaired partially by FD repairs, (vi) is repaired partially

by data repairs, or (vii) is repaired partially by data and FD repairs. For ML training purposes, the class

of a violation (i.e., ML model output) is obtained by the framework by finding the class whose description

(e.g., is repaired completely by FD repairs, is repaired partially by data and FD repairs) is closer to

describe the set of repairs (composed of constraint and data repairs) selected by the user to fix a

violation. The ML model is iteratively trained using the logistic regression technique.

Figure 3.5 shows the Continuous Data Cleaning framework pipeline. The process starts with the user
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Figure 3.5: Continuous Data Cleaning presented in [112]

selecting the repairs to apply to the data and/or constraints. In step (a), the Classifier Training component

uses these repairs to train a classification ML model. Then, in step (b), for a given violating pattern, the

Repair Type Classifier component uses the classification ML model to predict the type of repairs using

statistics. Step (c) consists on the Repair Search component that searches only for the predicted type

of repairs from step (b), i.e., data repairs, constraint repairs, or both. The search is performed by using

the method proposed at [18] that uses a cost model to identify the best repairs. Finally, in step (d) the

set of repairs generated from the repair search module are shown to the user who selects the subset to

apply.

3.4.4 DANCE

DANCE [5] is a data cleaning framework that enables the user to clean data inconsistencies that

violate data quality constraints. By guiding the user, this tool minimizes the number of tuples verified by

the user to resolve data quality constraints that specify data inconsistencies. In order to reduce the user

intervention, DANCE identifies the most probable tuples, whose repair resolves the data inconsistencies,

to present to the user. Moreover, DANCE can also clean data in a Query Oriented Data Cleaning System

[10] scenario, where an expert identifies incorrect data that resulted from the execution of a query over a

database in some context. DANCE converts the identified incorrect data to data quality constraints and

executes a data cleaning process where the user is guided to resolve those constraints (i.e., incorrect

data).

In Figure 3.6 we present a sample of the UEFA Champions League database that contains football

teams in table Teams and matches played for the UEFA Champions League in table Games. This

database has two constraints represented by the following rules:

Rule #1: teams from the same country cannot play with each other in Group Stage;

Rule #2: if a country is listed in the Countries table then it must have at least a team from this country

in the Teams table.
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Figure 3.6: Example UEFA Champions League presented in [4]

Figure 3.7: Suspicious tuples graph example for UEFA Champions League example presented in [4]

In the Games table, notice that Celtic played with Manchester City in a Group Stage but in the

Teams table Celtic and Manchester city are teams from the same country, UK. These data tuples clearly

violate Rule #1. DANCE extends the notion of violating tuples (see Section 2.2.2) into suspicious tuples

which are the tuples that, indirectly, due to a constraint, force a violating tuple to have a specific value,

otherwise this constraint is violated. Examples of suspicious tuples are the tuples identified with a

darker background color in Figure 3.6. Note that tuple UK in table Countries is not directly involved in

the violation of Rule #1 but due to Rule #2 it forces the existence of teams from UK in the Teams table.

In order to decide which suspicious tuples to present first to the user, DANCE creates a graph where

nodes are tuples and edges represent the likelihood of a modification (update or delete) of a tuple that

leads to the resolution of a violation involving another tuple. Edges are also weighted by the tuple

source table reliability β, e.g., in the UEFA Champions League example we are confident that data in

Games table is more accurate (i.e., cleaner) than the remaining tables. Then, DANCE runs a PageRank

like algorithm [16] that ranks nodes by assigning weights to the nodes based on the edge values. In

Figure 3.7, we present a graph for the suspicious tuples in the UEFA Champions League example after

running the PageRank like algorithm, the tuples (i.e., graph nodes) and violations are detailed on the

right. The first node in the rank, i.e., the node with the highest weight corresponds to the tuple whose

modification can fix the most number of violations (e.g., node C = Countries(UK,5) in the graph example).

In Figure 3.7, the first tuple to be verified by the user is the tuple from the Countries table with value

UK (i.e., node C) that is in fact a tuple that must be removed because the Celtic and Manchester City

teams in the context of this UEFA competition belong to distinct federations/Countries (i.e., Scotland and

England).

In Figure 3.8, we present the DANCE framework architecture. The main flow of this system (contin-

uous lines) initializes with a database DB to clean and a set of integrity Constraints. First, the Violations
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Figure 3.8: DANCE framework architecture presented in [4]

Detector component detects Violations of constraints and Proofs which are the suspicious tuples. Then,

based on the Violations and Proofs found, the Graph Builder component builds a graph with suspi-

cious and edge weights. After this stage, the Graph Builder runs the PageRank like algorithm to assign

weights to the nodes (i.e., suspicious tuples) based on the edges. The user, an Expert, is then required

to provide feedback by repairing the most weighted tuple. After each new Data Update (i.e., repair)

provided by the Expert, the system updates and recomputes the node weights in order to get the next

most weighted tuple to present to the user.

The alternative flow of this system (dashed lines in Figure 3.8) provide the support to clean the

incorrect data identified by the user in a Query Oriented Cleaning scenario. For each tuple in the result

of a given query posed to the database, that contains incorrect data, the Query-based Constraints

Generator module converts it into a constraint that is added to the Constraints set. Then, the main flow

of this system (continuous lines in Figure 3.8) is re-executed by computing the violations, generating the

graph and asking the user for feedback on the most weighted tuple in order to resolve the violations to

those constraints i.e., clean the incorrect data found by the user.

3.4.5 FALCON

FALCON [44] proposes a new data cleaning system based on SQL update statements (i.e., SQL

update queries in the author’s terminology) over a relational database table. The main challenge is

to find the minimum set of SQL update statements that repair the largest number of data errors. For

that purpose, first the user is requested to repair a cell of his/her choice (e.g, change value N.Y. in the

Laboratory column of table to New York) and then FALCON tries to find the most general SQL update

statement based on the user modification (e.g., UPDATE Tdrug SET Laboratory = “New York” WHERE

Laboratory = “N.Y.”)

In Figure 3.9, we present the FALCON workflow. First FALCON requests the user to provide a

repair ∆ over a cell in a data table T using the Falcon Table UI which presents a cell editable table

to the user. Based on ∆, the FALCON Rule Engine component generates a set of Structured Query
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Figure 3.9: FALCON workflow presented in [44]

Language Update (SQLU) statements. It then asks the user to verify one of the statements Q taken

from the SQLU set. If the user accepts the statement Q (i.e., declare the statement True or False),

the Rule Engine applies it to the table T and continues asking the user to validate SQLU statements

until there are no more generated statements to be verified or until the user has exceeded its budget

for statement verification. When the Rule Engine stops asking to validate SQLU statements, then the

process repeats by presenting to the user the Falcon Table UI containing the new instance of the data

table T that resulted from applying the SQLU statements verified by the user. Then, if T still contains

data quality problems, the user performs a new manual repair ∆ over T .

In order to find SQLU statements, FALCON uses a lattice graph to search for SQLU statements

that contain a repair ∆ over T . The lattice graph is constructed based on the intuition that one SQLU

statement Q is contained in another statement Q′, i.e., Q′ (Q < Q′), if the result of applying Q is a subset

of applying Q′ for any instance of the database table T . Having a lattice graph, the main problem for the

authors was to decide which queries to present to the user and in which order. The authors proposed

two algorithms for lattice search: One-Hop Search algorithm and Multi-Hop Search algorithm. One-Hop

Search navigates from a node to its neighbors, searching can be Breadth First Search (BFS) or Depth

First Search (DFS) based. The Multi-Hop Search algorithm is based on binary search and attribute

correlations that prefer nodes that repair a large number of tuples.

3.4.6 ICARUS

ICARUS [90] is a framework that helps the user to infer new values for a database with missing

values. This framework presents to the user a data matrix that may contain data from multiple relations

so that she can fill empty cells with a value. After the user assigns a value, ICARUS generates all

possible update rules that generalize on that value (similar to SQLU statements in FALCON) and then

asks her to select the most general and valid rule from those. By presenting missing and complete data

in the data matrix and by generating those rules selected by the user, ICARUS aims at minimizing the

user effort while achieving high levels of data quality (that are not possible to be achieved using only

automatic data cleaning approaches).

The ICARUS workflow is composed of two main components: (i) the Generate Informative Subset

that generates subsets of data from a database in matrix format, and (ii) the Generalize update to rules

that generates update rules based on a user inferred value in the data matrix. In Figure 3.10, the
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Figure 3.10: ICARUS workflow, modified from the presented in [90]

workflow is presented: for a database, the Generate Informative Subset generates a data matrix that is

presented to the user in a Graphical User Interface (GUI). The user applies an Update to the data, which

means she infers a value into an empty data matrix cell. Then, based on the Update, the Generalize

update to rules generates update rules that are verified by the user. When the user selects an update

rule, it is applied to the database.

The subsets of data from a database are generated in matrix format because it is more suitable

for the user to inspect and complete data. The authors describe what is the best subset in terms of

an optimization problem that minimizes the number of iterations i.e., the number of subsets that have

to be generated for the user to infer missing values. This problem is a NP-complete problem called

the maximal weighted set cover problem [38]. Due to this complexity, the authors use sampling-based

techniques to generate the subsets. For that, they take into account the similarity between columns

(user defined or using CORDS [47] that automatically finds correlations among columns) and the impact

(i.e., number of values in the database affected by a user rule). The information entropy [62] for each row

and column is also used to promote diversity (i.e., statistic independence) between rows and columns

which is more important in later iterations where the user will create rules with more conditions (i.e.,

specialized rules). As an example consider Figure 3.11 presenting a microbiology culture database that

contains: the culture antibiotic table that reports if an organism growing in a culture is resistant (R) or

sensitive (S) to particular antibiotics, the culture table that provides information of which organisms were

in a particular culture, the tables organism, organism family and gram stain that describe the organisms

in a hierarchy of organism name, family and stain, and table antibiotic that describes an antibiotic with

name and class. In Figure 3.12, we present the data matrix returned by Generate Informative Subset

for the microbiology culture database.

To generate update rules based on a user inferred value (Update), the authors implemented two

types of rules that can generalize across multiple relations: the independent rules and the dependent

rules. Independent rules are based on joins between relations. Intuitively, when we join the table where

the value is inferred by the user (e.g., culture antibiotic table in Figure 3.11) with other tables (e.g.,

organism family table and gram strain table in Figure 3.11) we can access higher levels in an existing
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Figure 3.11: Example of a microbiology culture database presented in [90]

Figure 3.12: Example of a data matrix for the microbiology culture database presented in [90]
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data hierarchy (e.g., culture organism name > organism family > gram stain from the microbiology

culture database) which can be used to produce even more general update rules based on conditions

that include higher hierarchy levels. An independent rule example for the microbiology culture database

would be: all organisms belonging to family EnteroBacteriaceae are sensitive to Cefeprime. Dependent

rules generalize the inferred value to other tuple values in the matrix by considering those values that

belong to similar columns (similarity used in the generation of subsets). A generated dependent rule

example based on column similarity for the microbiology culture database would be: organisms sensitive

to Cefazolin are also sensitive to Cefeprime.

3.4.7 Discussion

In LLUNATIC, the user aims at resolving conflicts left by automatic generated repairs for violations of

data quality constraints. The user provides a value for cells marked with lluns.

In another line of work, Guided Data Repairs take advantage of the user to replace heuristics for

selecting data repairs to solve CFDs violations while in Continuous Data Cleaning the user has to train

a model that to solve a given violation decides whether to repair the data or to specialize the violated

Functional Dependency (FD). DANCE, FALCON, and ICARUS aim at achieving high data quality by

refusing the automatic selection of data repairs. Thus, they delegate data repairing exclusively to the

user. DANCE tries to clean data by relying only on the user to produce data repairs. It minimizes the

user effort by guiding her through the tuples that are the most likely to need data repairs. FALCON and

ICARUS allow the user to first edit a cell and then generate general update statements based on the

user modification. FALCON supports the edition of existing missing or incorrect values and focus on

minimizing the user effort in generating updated statements, whereas ICARUS supports only the edition

of missing values but obtains better performance and also focus on selecting the initial data to present

to the user.

Related
Work

User Involvement Automatic
selection of
data repairs

Data
Quality
Rules

Datasets

LLUNATIC Resolve conflicting data
repairs

Yes EGDs Hospital and Customers

Guided Data
Repairs

Select data repairs Yes CFDs Hospital and UCI adult

Continuous
Data Clean-
ing

Select repair types Yes FDs Finance, Vehicles, Veter-
ans and Linked Clinical
Trials

DANCE Provide data repairs No Integrity
Constraints

World Cup and Flights

FALCON Provide data repairs and
select update statements

No No Soccer, Hospital, BUS,
and DBLP

ICARUS Provide data repairs and
select update statements

No No Microbiology, IMDB, and
Hospital

Table 3.3: Summary of related work in user involvement in data cleaning.

In Table 3.3, we present the summary of related work that explores the user involvement in data
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cleaning and the datasets used in each work. Note, that even if some datasets are common, their errors

are not since most of these works address different data quality problems.

So far, in the context of the user involvement in a data cleaning process, the user has been proposed

to help resolving data quality constraint violations or to generate update statements (which can also be

constraints) based on edited cells. The importance of user feedback to achieve high levels of quality

is shared across all these works for specific tasks, e.g., repairing missing values. Nevertheless, the

user has not been involved in a data cleaning process where data cleaning programs are based on data

transformations, which is the most common approach in companies but not in research. Moreover, user

involvement was not explored when continuous program refinements are applied through an iterative

process. Note that Continuous Data Cleaning addresses only stream data by proposing to specialize

FDs.
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Chapter 4

Acronym Expansion

In this chapter, we report the work concluded in the context of this thesis for acronym expansion. The

work related to acronym expansion was in collaboration with João Casanova, that was a MsC student at

Instituto Superior Técnico 1.

This chapter describes the following contributions:

• The end-to-end Acronym eXpander (AcX) system accepts a text document as input and out-

puts a list of acronym-expansion pairs for the acronyms found in the document, whether or not

the expansions are in the document. As far as we know, AcX is the first open source and exten-

sible system for acronym expansion that allows both the mixing and the combination of different

inference modules.

AcX is easily extendible to other languages. We already have versions in English, French and

Portuguese. Students with no previous background in natural language processing or machine

learning have already done so for French and Portuguese.

• A benchmark of in-expansion techniques (in-expansion benchmark). We make use of four

biomedical datasets previously proposed in the literature (i.e., Medstract [48], Schwartz and Hearst

[48], BIOADI [48], and Ab3p [48]) and one of the biggest sentence based datasets from the scien-

tific domain (i.e., SciAI [84]). Additionally, we have created a new dataset composed of Wikipedia

documents from the Computing category. We calculate the precision, recall, and F1-measure for

the extraction of both acronyms and acronym-expansion pairs. In addition, we measure training

and execution times. Additionally, we have implemented, integrated and evaluated two rule-based

(Schwartz and Hearst [97], MadDog [110]) and two machine-learning (based on SciBERT [9] used

in [99], and SciDr [99]) acronym-expansion extraction techniques. Our experimental results show

that there is not a single best technique for every dataset. Moreover, rule-based techniques overall

achieve better precision while machine-learning techniques achieve better recall.
1João Casanova successfully finished his MsC thesis in acronym and in-expansion extraction co-supervised by the candidate.

Specifically, the candidate did the first version of the in-expansion benchmark and of the user generated dataset described in
the following sections. João Casanova extended the mentioned benchmark with new metrics (Cohen Kappa, and glossary level
precision, recall and F1-measure), implementations of SciDr and MadDog in-expanders and Schwartz and Hearst implementation
in python (before we had the original one in Java). He also extended the user generated dataset with additional articles (around
100), and parsed a recent dataset, SciAI. He also ran the experiments for the in-expansion benchmark.
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• A benchmark of out-expansion techniques (out-expansion benchmark). We evaluate out-

expansion techniques on three datasets from different domains previously used in related work that

contain documents (i.e., MSH [85], SciWISE [85], and CS Wiki [107]) and one that is constructed

from independent sentences from the scientific domain (i.e., SciAD [111] revised by Egan and

Bohannon [30]).

Some of the out-expansion techniques we consider have already been proposed in related work:

Classic Context Vector [2, 61, 85], Surrounding Based Embedding [61], Thakker et al. [107], and

Unsupervised Abbreviation Disambiguation [21]. Most recently, competitors of the SDU@AAAI

competition [111] mainly used pre-trained language models based on Transformer neural net-

works like BERT [28] and SciBERT [9]. For purposes of out-expansion, we have adapted and

evaluated: (i) the out-expander of the MadDog system [110]; (ii) SciDr [99] (which was originally

hard coded to apply to the sentences of the SDU@AAAI competition, but we have extended it

to multiple datasets of documents); (iii) LUKE (Language Understanding with Knowledge-based

Embeddings) [115] originally for Entity Disambiguation, but we extended it to use acronyms and

expansions; and (iv) techniques from Natural Language Processing (i.e., Term Frequency–Inverse

Document Frequency [102], Latent Dirichlet Allocation [12], Doc2Vec [58], and Sentence Bidirec-

tional Encoder Representations from Transformers (SBERT) [91]).

We have also embedded the outputs of a variety of out-expansion techniques as features for

machine learning classifiers. The net result is that AcX is an extensible system able to create a

new set of out-expansion pipelines out of combinations of user-chosen techniques.

We evaluate the techniques using out-expansion accuracy (most common for these kind of dis-

ambiguation problems) and the macro F1-measure (used in the SDU@AAAI competition). We

also measure execution times for both technique training and document processing. Our results

show that ensembler techniques give the best accuracies and macro F1-measure. Cossim with

SBERT and SciDr out-expander are the indivudal techniques that score best. At a slight loss in

accuracy, Classic Context Vectors, or even Cossim or SVMs with Doc2Vec are almost 10 times

fast on average.

• A benchmark of end-to-end acronym expander systems (end-to-end benchmark). We cre-

ate the first end-to-end dataset of human-annotated documents that includes both in- and out-

expansions. We have built a human-generated end-to-end benchmark because previous anno-

tated datasets used automatic mechanisms to identify acronyms and those automatic techniques

are neither accurate nor complete. Thus, human annotation offers a kind of gold standard. We use

this dataset to test AcX as well as the state-of-the-art acronym expansion systems. We use all

English Wikipedia documents to train it. We compare the MadDog system [110] against different

pipelines of AcX. We also compare AcX’s performance to that of human annotators. Those sys-

tems are evaluated using the precision, recall, and F1-measure for the acronym-expansion pairs

returned by a system for each document. We also measure execution times. Our best system

pipeline correctly expands most acronyms (54.97% of F1-Measure, only about 27% worse than
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Figure 4.1: Acronym eXpander (AcX) system. The top stream denotes the creation of the Expansion
Database that associates each <acronym, in-expansion> pair with some representation of the docu-
ment(s) where that pair was found. The bottom stream shows the processing of an input document d by
combining acronym in-expansion when possible and a representation of d. For an acronym A with no
expansion in d, the representation of d is compared with the representations in the Expansion Database
of documents containing A to find the context-appropriate expansion.

humans) taking on average less than 2s per document.

• A link follower component within AcX system that infers expansions based on the links of un-

expanded acronyms in input documents. Link following improves the F1-measure of the best AcX

pipeline identified by our end-to-end benchmark. Our results show that our best system pipeline

slight improves, +0.37 of F1-measure, when this component is used.

The work concluded in this thesis for acronym expansion led to: (i) a full paper published to the pro-

ceedings of the Very Large Data Bases (VLDB) Endowment about our end-to-end system [81], Acronym

eXpander (AcX), and the three benchmarks; (ii) a full paper presented in the AAAI-21 Workshop on

Scientific Document Understanding (SDU@AAAI) reporting our participation in the competition for out-

expansion [80]; (iii) one poster presented in three events: the IST PhD Open Days 20192, in the IST

Taguspark Thesis Showcase – Spring Edition 20193, and in the 9th Lisbon Machine Learning School4

and (iv) two demonstrations: one at IST Taguspark Thesis Showcase – Spring Edition 2019, and another

at the 9th Lisbon Machine Learning School.

This chapter is organized as follows: Section 4.1 describes our proposed Acronym eXpander (AcX)

system and its components. The next three sections (Sections 4.2, 4.3 and 4.4) describe the proposed

benchmarks and the corresponding analyses of the results obtained from the experiments performed in

the context of each benchmark.

4.1 AcX: an End-to-end Acronym eXpander System

The AcX system (see Figure 4.1) consists of:

2http://phdopendays.tecnico.ulisboa.pt/
3https://tecnico.ulisboa.pt/pt/eventos/mostra-de-teses-2019-edicao-primavera/
4http://lxmls.it.pt/2019/
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(i) A Database Creation process which generates an Expansion Database5 that contains documents,

acronyms and their corresponding in-expansions. The Expansion Database also associates each <acro-

nym, in-expansion> pair with a representation of the document where that acronym and in-expansion

were found. The representation characterizes the content of the document in some summary form. To

support other domains and languages, we pass documents in the desired domains/languages to the

Database Creation process. In Section A.2 of Annex A, we present additional detail about data struc-

tures used in AcX database.

(ii) The Acronym Expander Server that accepts one document at a time from a user and outputs a list of

acronyms found in the input document and the corresponding expansions found by the system (whether

as in-expansions or as out-expansions).

For each document with in-expansions, the Database Creation process runs the following pipeline:

1. an Acronym and In-Expansion Extractor obtains the <acronym, expansion> pairs from the docu-

ment using only within-document evidence.

2. a Representator (there are many possible representators e.g., Latent Dirichlet Allocation that out-

put topics) maps the document to a document representation that holds document contextual

information.

3. the Expansion Database stores the in-expansions, acronyms, and document representations on

disk, currently SQLite [45].

Given a new input document d supplied by a user, the Acronym Expander Server executes the

following pipeline:

1. applies the Acronym and In-Expansion Extractor used to build the Expansion Database to extract

all the acronyms having expansions in the input document d.

2. when d contains links to web pages then those page texts are extracted and inspected to find the

expansion for acronyms whose expansions are not found in d (Link Follower ).

3. utilizes the same Representator (say, topics from Latent Dirichlet Allocation) used to characterize

each document in the Expansion Database to map d to a document representation.

4. for each acronym A having no in-expansion in d, the server runs the Out-Expansion Predictor to

choose a context-appropriate out-expansion. Formally, an expansion E is selected for an acronym

A in d if the representations of the documents doc(A,E) with expansion E share more charac-

teristics with the representation of d by some criteria (e.g., closest cosine similarities or labeled

by some machine learning classifier for A) than the documents in doc(A,E′) for every alternative

expansion E′. Thus, for example, if the context of d is publishing, then ”PDF” should likely expand

to ”Portable Document Format” but if the context of d is probability or statistics, then ”PDF” should

expand to ”probability distribution function”.

5When benchmarking, the expansion database will provide us with both a training set and a test set.
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For a language other than English, the in- and out-expansion techniques should be tuned to the new

language. They may benefit from changing preprocessing steps such as tokenization for the new lan-

guage or from adopting a language model trained on the new language or even adopting a multilanguage

model.

4.1.1 Acronym and In-Expansion Extraction

Acronym and in-expansion extraction can use rule-based or machine learning technique. Currently,

we have integrated the in-expander implementations of Schwartz and Hearst [97], MadDog in-expander

[110], SciBERT [99] and SciDr in-expander [99]. In our rule-based implementations (i.e. Schwartz and

Hearst [97] and MadDog [110]), we used roughly the following three-step process as described in [75]:

1. Acronym extraction: identifies acronyms in a document, e.g., PDF in Figure 4.1. We modified

Schwartz and Hearst [97] to find candidate acronyms even when there is no expansion found in a

given document. The technique excludes tokens in which all alphabetic characters except the first

character are lower case. We also reject acronyms of two characters where the first is a letter and

the second is a dot ”.” to avoid person names.

2. Candidate expansion extraction: builds candidate pairs of acronyms and possible in-expansions

<acronym, expansion> from information in the document, e.g., <PDF, formats including the portable

document format> from Document 1 in Figure 4.1.

3. Candidate refinement: evaluates each candidate pair using a variety of heuristics (e.g., find the

shortest expansion that matches the acronym) to obtain a final in-expansion for each acronym that

has at least one candidate in-expansion within the document, e.g., portable document format from

<PDF, formats including the portable document format>.

For the in-expanders of SciBERT and SciDr, the extraction of acronyms and expansions is formalized

as a sequence tagging problem where each token can have one of three tags: (i) a token in an acronym

(e.g., CD in CD-ROM), (ii) a tokenword in an expansion, or (iii) other token. For example, from Document

1 in Figure 4.1, PDF would be tagged as an acronym token, each token portable, document, and format

would be tagged as a token in an expansion. The remaining tokens in Document 1 would have the ”other

token” tag. AcX appropriately tags the acronym-expansion pairs and other tokens in the training data,

then builds a machine learning model on the tagged data. The output of such machine learning models

is then converted to acronym-expansion pairs by matching the acronym characters against expansions.

Our system supports ensemble in-expansion through SciDr. That ensemble technique can be easily

extended to include additional in-expansion techniques.

4.1.1.1 Link Follower

For an input document d containing hyperlinks, the Link Follower component follows those links to

try to find the expansions from documents pointed to by d. This module is used after executing the

acronym and in-expansion extraction algorithm for the acronyms with no expansion found in text. For
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each A acronym having no in-expansion, the Link Follower is constituted by the following steps, until an

expansion is found:

1. searches in the title attribute of the hyperlink a HyperText Markup Language (HTML) tag for the

expansion. For example, given the following tag <a href=”/wiki/ Leadership_ in_ Energy_ and_

Environmental_ Design ” title=”Leadership in Energy and Environmental Design”>LEED</a> the

expansion ”Leadership in Energy and Environmental Design” would be extracted for acronym

LEED.

2. resolves relative HTML Uniform Resource Locator (URL) links to global ones. For example, if

no expansion were found in the example above with a local URL, the resolved URL would be

https://en.wikipedia.org/wiki/Leadership_in_Energy_and_Environmental_Design.

3. executes the same in-expander technique used by the acronym and in-expansion extractor.

Given a title, the acronym is placed inside parenthesis and appended to the end. Then, the in-expander

technique is executed on the title in order to extract a possible expansion.

4.1.2 Representator

Representors in the AcX system summarize documents in order to capture knowledge about their

semantics. Although AcX supports sentence-level out-expansion techniques, using the whole document

is more effective than using just parts of the text because the whole document captures the overall

context better.

Some representators assign a set of topic termsdescription to a document. If two documents have

many topicrepresentative terms in common, then they are considered to be semantically related.

Other representators use embeddings [58] to characterize a document. An embedding is a vector

of real numbers in a high dimensional space. Embedding techniques map an object encoded in a one-

hot representation, a very sparse and high dimensional vector of binary values, into a very dense and

lower dimensional vector of real values (i.e., embedding). A small distance between embedding vectors

suggests document similarity.

AcX encloses several techniques that can semantically represent an entire set of documents that

contain the same expansion for a given acronym. Specifically, let docs(A,E) denote the set of full

document texts in which a given acronym A is defined by a single expansion E (e.g., all documents in

which acronym PDF is explicitly expanded as portable document format):

Here are some representations of such a collection of documents:

• Classic Context Vector (CCV) [2], represents an expansion E by the set of words in docs(A,E)

along with their counts.

• Document Context Vector (DCV) (our variation of context vector), builds on context vector, however

it represents each document d ∈ docs(A,E) individually by the set of word occurrences in d. For

example, the word occurrences corresponding to Document 2 in Figure 4.1 would contain among

others the values {of: 3}, {the: 2}, {derive: 1}, {analytic: 1}, {form: 1}.
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• Term Frequency–Inverse Document Frequency (TF-IDF) [102], weights each term t in each doc-

ument d ∈ docs(A,E) highly if it is found frequently in d and infrequently in the entire document

corpus, thus permitting the characterization of each document by its highly weighted terms. For

example, the TF-IDF score for the word the in Document 2 in Figure 4.1 is 2
27 · log(

2
2 ) = 0 because

this word appears in both documents.

• Latent Dirichlet Allocation (LDA) [12] assigns topics to documents using a Dirichlet probabilistic

model. For example, Document 2 in Figure 4.1 could be represented by the following topics:

topic1={{analytics: 0.7}, {series: 0.3}} and topic2={{functional: 0.8}, {form: 0.2}}.

• Doc2Vec [58] is a document embedding technique based on Word2Vec [68] which assigns vectors

to words in such a way that words that appear in the same context have a high cosine similarity.

For example, the words functional and conditional would be assigned similar vectors. Thus, using the

principles of Word2Vec, Doc2Vec assigns vectors to entire documents. For example, documents

1 and 2 in Figure 4.1 would be assigned mutually distant vectors.

• Sentence Bidirectional Encoder Representations from Transformers (SBERT) [91] constructs sen-

tence embeddings that can be compared to determine sentence similarity. AcX splits the input

document text to fit into the SBERT input limit (e.g., 384 tokens), and then we average the result-

ing embedding vectors to get a document representation.

4.1.3 Out-Expansion Predictor

To choose an out-expansion for an acronym A in an input document d having no expansion for A, the

Out-Expansion Predictor component considers each candidate out-expansion E for A and compares d

to some representation of d′ ∈ docs(A,E).

In the case of Classic Context Vector (CCV), we compare d with the vector representation of docs(A,

E). For the remaining techniques, we compare d with each document representation of d ∈ docs(A,E).

Using cosine similarity, the Out-Expansion Predictor will choose an out-expansion E over a different

expansion E′ if any document d ∈ docs(A,E) is more similar to d than all d′′′ ∈ docs(A,E′).

A classical similarity technique is cosine similarity, but the AcX system also supports classification-

based approaches that work as follows. Consider all the documents, denoted alldocs(A) containing

in-expansions of acronym A. Some documents in alldocs (A) have an in-expansion of E1 for A, some

have E2 for A and so on. Given the representations of documents in alldocs(A) as features and the

expansions (E1, E2, etc) as labels, the out-expansion problem becomes a machine learning classifica-

tion problem. When a new document d is given to AcX, the representation of d is passed as input (i.e.,

features) to the classifier which labels d with an expansion.

The classifiers we support so far are:

• Support Vector Machines (SVMs) [24] fit a hyper-plane that optimally separates binary labeled

data in the feature space. Non-binary classification is performed by a ”one-vs-all” technique where
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a binary SVM classifier predicts with a certain probability if an input document belongs to a par-

ticular class (where each class corresponds to a particular expansion). The class (and therefore

expansion) with the highest probability is selected. We used the LibLinear [33] implementation

included in sckit-learn toolkit [77].

• Logistic Regression (LR) [51] fits a logistic function to classify binary classes (again a class corre-

sponds to an expansion). Non binary classification is again performed by a ”one-vs-all” technique.

We used the LibLinear [33] implementation included in scikit-learn toolkit [77].

• Random Forests (RF) [15] fit a particular number of decision trees (default 100) trained on ran-

domly selected samples. There will be one random forest per acronym A. The representation of a

document having no in-expansion for A will be input to the random forest. Each tree will predict one

expansion with some probability. The random forest selects the class whose average probability is

the highest. We used the scikit-learn [77] implementation.

In addition to these classifiers, for evaluation purposes or for anyone who wants to try other tech-

niques, AcX supports the following additional techniques from related work: Surrounding Based Em-

bedding (SBE) [61], Thakker et al. [107], Unsupervised Abbreviation Disambiguation (UAD) [21], the

SciDr out-expander (SciDr-out) [99], the MadDog out-expander (MadDog-out) [110], and LUKE [115],

a state-of-the-art technique for Entity Disambiguation. For UAD, SciDr-out and MadDog-out, AcX per-

forms sentence segmentation and, given the results from each sentence, decides which expansion to

assign to the text. For UAD, we select the most frequent predicted expansion among the sentences in

the document.

We have extended SciDr-out to consider all the sentences containing the acronym A instead of

just one sentence as in SciDr-out’s original implementation. SciDr-out associates an acronym with its

possible expansions concatenated together. The system then finds the substring of that concatenated

string with the highest probability and outputs that as the expansion. For example, the concatenated

expansion of ”PDF” might be ”probability density function portable document format”. Depending on

the contents of some input document d containing ”PDF”, SciDr-out will choose some substring of that

concatenated expansion.

We have extended MadDog-out to enable it to train in new documents, instead of using only their

original machine learning models. MadDog-out processes the last sentence of any document containing

acronym A to determine the most likely expansion.

For LUKE, we had to modify the internals to work with acronyms and expansions. We use their pre-

trained model and perform fine-tuning in our training data using the procedure described by the authors

in [115], except that we allow the entity embeddings (now expansion embeddings) to be updated during

training. This modification allows the generation of embeddings for expansions out of the original model

vocabulary.
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4.2 In-expansion Benchmark, Evaluation and Results

We describe our benchmark of in-expansion techniques in Section 4.2.1 and evaluate state-of-the-art

techniques on this benchmark in Section 4.2.2.

4.2.1 A Benchmark of In-expansion Techniques

This section describes the benchmark we developed to evaluate in-expansion techniques. Section

4.2.1.1 details the datasets used in this benchmark. Section 4.2.1.2 lists the in-expansion techniques

that we implemented for this benchmark. Section 4.2.1.3 defines the metrics that we used to evaluate

the in-expansion extraction techniques.

4.2.1.1 Datasets

The datasets included in this in-expansion benchmark are:

Medstract: This dataset is composed of 199 randomly selected MEDLINE6 abstracts from the results

of a query on the term ”gene”. The abstracts were manually annotated and then the annotations

were corrected and improved by Schwartz and Hearst [97], Ao and Takagi [3], Pustejovsky et al.

[86], Yarygina and Vassilieva [117] and Doğan et al. [48]. We use the last revised version of Doğan

et al. [48] that contains 159 acronym-expansion pairs.

Schwartz and Hearst: This dataset consists of 1,000 randomly selected MEDLINE abstracts from the

results of a query on the term ”yeast”. The abstracts were manually annotated by Schwartz and

Hearst [97] and revised by Doğan et al. [48]. The revised version that we use contains 979

acronym-expansion pairs.

BIOADI: This dataset contains 1,201 abstracts from the BioCreative II gene normalization dataset. The

dataset was original annotated by Kuo et al. [56] and revised by Doğan et al. [48]. It contains

1,720 acronym-expansion pairs.

Ab3P: This dataset results from the random selection of MEDLINE 1,250 abstracts. The dataset was

manually annotated by Sohn et al. [100]. We use the revised version of Doğan et al. [48] that

contains 1 223 acronym-expansion pairs.

SciAI: This dataset results from processing 6,786 English arXiv7 papers. Those papers were split into

sentences and sent to Amazon Mechanical Turk (MTurk) to be annotated by humans, resulting

in 9,775 acronym-expansion pairs. This dataset was annotated for both acronyms and acronym-

expansion pairs. The final dataset has 17,506 sentences, where 1% do not contain acronyms

and 24% do not contain expansions. We use the SDU@AAAI competition [111] version8 that was

initially proposed by Veyseh et al. [84].

6https://www.nlm.nih.gov/bsd/medline.html
7https://arxiv.org/
8https://github.com/amirveyseh/AAAI-21-SDU-shared-task-1-AI
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End-to-end: We developed a dataset that consists of 163 English Wikipedia documents randomly se-

lected from the Computing category9 in Wikipedia. It contains 1,139 acronym-expansion pairs.

Although intended to evaluate an end-to-end acronym-expander system, for this in-expansion

benchmark in particular, we consider only the acronym-expansion pairs with expansion in text.

(Later, in Section 4.4.1, we use the whole set of acronym-expansions pairs to evaluate end-to-end

systems.) Each document was annotated by two computer science students who volunteered for

the task. Each student annotated at least two documents. During the annotation process, each

student identified each acronym in the document and mapped it to an expansion. Each acronym-

expansion pair was labeled by the annotators, indicating whether the expansion was present in

text. Any conflict between annotators was manually resolved by the authors. The Inter-Annotator

Agreement (IAA) among each annotators (excluding the third annotator, the reviewer) using Krip-

pendorff’s alpha [54] with the Measuring agreement on set-valued items (MASI) distance metric

[76] is 0.68 for in-expansion pairs and 0.33 for out-expansion pairs. In a hypothetical scenario,

if both annotators had given the same acronym-expansions, then the score would be 1. In this

case, the human annotators disagree on out-expansions more often than on in-expansions. This

is unsurprising because out-expansion requires consulting additional text sources other than the

document at hand, while for in-expansion the text provided is enough. In Section A.1 of Annex A,

we present additional detail about the process used to create this dataset.

4.2.1.2 In-expansion techniques

This benchmark includes the following in-expansion techniques (that are supported by our AcX sys-

tem described in Section 4.1):

Rule-based: Schwartz and Hearst (SH) [97] technique and the MadDog [110] in-expansion (MadDog-

in) technique which builds on the Schwartz and Hearst algorithm.

Machine Learning: SciBERT based technique used in [99] and the SciDr [99] in-expansion (SciDr-

in) technique which ensembles SciBERT models and a rule-based technique based on SH with

Conditional Random Fields. Moreover, we consider models used by these machine learning tech-

niques that are trained with external data besides the individual training sets of each dataset. The

external data is composed of Medstract, Schwartz and Hearst, BIOADI, and Ab3P train sets if the

test set is biomedical. For SciAI and End-to-end test sets, the external data consists of all train

sets (i.e., biomedical datasets, SciAI, and End-to-end).

4.2.1.3 Performance metrics

Our benchmark uses the following metrics. The metrics apply to acronyms alone as well as to

acronym-expansion pairs. The acronyms can be either in singular or plural form to be considered

equal, and the expansions are equal if their lower case versions without dashes have an edit distance

9https://en.wikipedia.org/wiki/Category:Computing
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less than 3 or if the first 4 characters of each word are equal. If the same acronym or pair appears

several times in the same document, it is counted only once:

Acronym Pair Precision: the number of correctly extracted acronym pairs divided by the number of

acronym pairs extracted by that technique over all documents. It will be calculated as:

# of correctly extracted acronyms pairs
# of extracted acronyms pairs .

Acronym Pair Recall: the number of correctly extracted acronym pairs divided by the number of distinct

acronym pairs present over all documents. It will be calculated as:

# of correctly extracted acronym pairs
# acronym pairs in text .

Acronym Pair F1-measure: the harmonic mean of the precision and recall of the system. It will be

calculated as:

2 ∗ Precision ∗ Recall
Precision + Recall .

Acronym Pair Cohen’s Kappa: measures the agreement between the acronym pairs extracted by a

technique and the actual acronym pairs present in text for a given number of documents in a

dataset. The value of kappa [22] is calculated as po − pe

1 − pe
, where po is the probability of agreement

between an acronym-expansion extraction technique and the actual dataset and pe is the probabil-

ity of random agreement. This measure is particularly useful for unbalanced test sets, because it

gives greater weight to infrequent acronym-expansions (for which the denominator will be smaller).

To avoid treating acronyms and expansions with small differences as entirely different labels (i.e,

full disagreement), we calculate kappa with respect to the Jaccard [49] distance.

Training time: Central Processing Unit (CPU) or Graphics Processing Unit (GPU) time in seconds to

train the machine-learning models that are used by the in-expansion technique.

Execution time: CPU or GPU time in seconds that the in-expansion technique takes to extract acronym-

expansion pairs from a document in the dataset.

By default (i.e., when not mentioned otherwise), acronym pair Precision, Recall, and F1-Measure are

calculate on the Document-Level where every unique acronym-expansion pair (or acronym) extracted

from each document is counted. Thus, an acronym-expansion pair that appears many times across

documents in the corpus will be weighted more than one that appears less often. This is in line with

the most recent efforts in in-expansion which aim to efficiently extract acronym-expansions from each

individual document independently.

Additionally, we calculate the Precision, Recall, and F1-Measure alternative level, glossary. In the

Glossary-level, an acronym-expansion pair (or just acronym) that appears in the text or is expanded mul-

tiple times in different documents in the corpus is counted only once. This follows the first measurements

performed in-expansion techniques which aimed to create only a global glossary (dictionary) based on

a set of documents.

To better explain the Document and Glossary levels, let us consider a dataset D that is composed

of documents A and B. In document A there are five instances of the acronym-expansion pair x and
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Acronym and
In-expansion
Technique

Acronym
Medstract SH BIOADI Ab3P Averages

P R F1 K P R F1 K P R F1 K P R F1 K P R F1 K
SH 100.00% 89.13% 94.25% 0.97 99.56% 81.13% 89.50% 0.91 99.06% 79.58% 88.25% 0.88 98.62% 77.66% 86.89% 0.89 99.31% 81.88% 89.72% 0.91
MadDog 100.00% 63.30% 77.33% 0.77 96.64% 51.80% 67.45% 0.77 97.99% 55.19% 70.61% 0.74 99.16% 64.31% 78.02% 0.85 98.45% 58.65% 73.35% 0.78
SciBERT 81.25% 56.52% 66.67% 0.68 85.56% 70.50% 77.47% 0.77 88.06% 73.91% 80.37% 0.76 85.99% 71.93% 78.34% 0.78 85.22% 68.22% 75.71% 0.75
SciBERT with
External Data 86.84% 71.74% 78.57% 0.76 88.16% 77.70% 82.60% 0.82 90.61% 78.45% 84.09% 0.82 87.46% 76.02% 81.34% 0.81 88.27% 75.98% 81.65% 0.80

SciDr 93.33% 60.87% 73.68% 0.73 87.56% 60.79% 71.76% 0.74 92.11% 64.08% 75.58% 0.75 89.25% 67.85% 77.09% 0.79 90.56% 63.40% 74.53% 0.75
SciDr-in with
External Data 92.11% 76.09% 83.33% 0.83 93.13% 78.05% 84.93% 0.86 93.31% 79.21% 85.69% 0.84 89.08% 71.11% 79.09% 0.81 91.91% 76.12% 83.26% 0.84

Table 4.1: In-expansion techniques Precision, Recall, F1-measures and Cohen’s kappas (K) for acronym
for each biomedical dataset (Medstract, SH, BIOADI, and Ab3p) and the averages.

Acronym and
In-expansion
Technique

Pair
Medstract SH BIOADI Ab3P Average

P R F1 K P R F1 K P R F1 K P R F1 K P R F1 K
SH 100.00% 89.13% 94.25% 0.97 96.03% 78.42% 86.34% 0.89 94.11% 75.61% 83.86% 0.83 95.16% 74.93% 83.84% 0.86 96.33% 79.52% 87.07% 0.89
MadDog 93.10% 58.69% 72.00% 0.35 93.29% 50.00% 65.11% 0.47 87.58% 49.33% 63.12% 0.48 95.37% 61.85% 75.04% 0.64 92.34% 54.97% 68.82% 0.49
SciBERT 65.62% 45.65% 53.84% 0.27 72.37% 59.35% 65.21% 0.41 67.79% 56.90% 61.87% 0.36 74.27% 62.13% 67.66% 0.53 70.01% 56.01% 62.15% 0.39
SciBERT with
External Data 76.32% 63.04% 69.05% 0.33 76.32% 67.26% 71.51% 0.42 74.45% 64.46% 69.10% 0.44 76.80% 66.76% 71.43% 0.54 75.97% 65.38% 70.27% 0.43

SciDr 80.00% 52.17% 63.16% 0.38 74.61% 51.79% 61.14% 0.4 76.90% 53.50% 63.10% 0.41 81.00% 61.58% 69.97% 0.54 78.13% 54.76% 64.34% 0.43
SciDr-in with
External Data 92.11% 76.09% 83.33% 0.39 83.69% 70.14% 76.32% 0.49 86.19% 73.16% 79.14% 0.5 80.20% 64.03% 71.21% 0.52 85.55% 70.86% 77.50% 0.48

Table 4.2: In-expansion techniques Precision, Recall, F1-measures and Cohen’s kappas (K) for pair for
each biomedical dataset (Medstract, SH, BIOADI, and Ab3p) and the averages.

in document B two, with D having seven instances of x. Furthermore, a system for acronym-expansion

extraction is run on dataset D and only extracts the five instances of x in document A. On the Glossary

level, the number of correctly extracted pairs and the total number of extracted pairs are equal to one.

Furthermore, the number of total acronym-expansion pairs present in D is only counted as one, because

only unique pairs are considered. This results in a pair precision of 1
1 = 1 and a pair recall of 1

1 = 1. On

the document level, the number of correctly extracted pairs and total number of extracted pairs is five.

However, the number of total acronym-expansion pairs present in D is counted as seven, due to the five

instances of x in document A and two instances in document B. This results in a pair precision of 5
5 = 1

and a pair recall of 5
7 = 0.7.

4.2.2 In-expansion Experimental Evaluation

In this section, we evaluate the in-expansion techniques using the benchmark presented in Section

4.2.1.

Setup. The in-expansion experiments were performed on a machine with an Intel® Core™ i5-4690K

CPU with 4 cores, and 16 GB (GigaBytes) of RAM (Random Access Memory) and an NVIDIA GeForce

GTX 1070. Only SciBERT and SciDr-in used the GPU.

Acronym and
In-expansion
Technique

SciAI
Acronym Pair

P R F1 K P R F1 K
SH 96.02% 82.36% 88.67% 0.97 92.85% 79.64% 85.74% 0.88
MadDog-in 98.63% 86.72% 92.30% 0.98 96.91% 85.21% 90.68% 0.96
SciBERT 95.69% 94.05% 94.86% 0.97 92.21% 90.64% 91.42% 0.94
SciBERT with
External data 96.18% 94.05% 94.90% 0.97 92.50% 90.45% 91.46% 0.93

SciDr-in 97.47% 92.47% 95.11% 0.98 94.47% 89.63% 91.98% 0.95
SciDr-in with
External data 97.58% 91.78% 94.59% 0.98 93.81% 88.24% 90.94% 0.94

Table 4.3: In-expansion techniques Precision, Recall, and F1-measures and Cohen’s kappas (K) for
acronym and pair extraction and for the SciAI dataset.

Results.

We report Precision, Recall, F1-measure, and Cohen’s kappa (K) values for the biomedical datasets
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Acronym and
In-expansion
Technique

User Generated
Acronym Pair

P R F1 K P R F1 K
SH 91.00% 70.54% 79.47% 0.72 86.00% 66.67% 75.10% 0.14
MadDog-in 92.78% 69.76% 79.64% 0.71 88.65% 66.67% 76.10% 0.11
SciBERT 65.62% 48.83% 55.99% 0.62 58.34% 43.41% 49.77% 0.08
SciBERT with
External data 49.67% 58.91% 53.90% 0.62 45.09% 53.48% 48.93% 0.08

SciDr-in 77.08% 57.36% 65.77% 0.66 68.75% 51.16% 58.66% 0.09
SciDr-in with
External data 86.36% 58.91% 70.04% 0.69 81.81% 55.81% 66.35% 0.11

Table 4.4: In-expansion techniques Precision, Recall, F1-measures and Cohen’s kappas (K) for acronym
and pair extraction and for the User Generated dataset.

Acronym and
In-expansion
Technique

Train models execution times (s)
Train Dataset with External Data

Medstract SH BIOADI Ab3P SciAI User-Generated All Biomedical All
SciBERT 108 745 806 831 1 701 421 2 691 5 122
SciDR-in 1 226 7 255 8 060 8 738 52 257 2 752 28 612 99 025

Table 4.5: In-expansion train models execution times for each dataset and when trained with External
Data.

Average execution times per document (s)
Acronym and In-expansion
Technique Medstract SH BIOADI Ab3P SciAI User

Generated Average

SH 0.00 0.02 0.01 0.01 0.05 0.00 0.02
MadDog-in 0.60 4.33 7.23 5.04 15.75 4.53 6.25
SciBERT 10.35 70.29 115.23 80.81 686.44 35.97 166.52
SciBERT with External Data 16.80 73.45 122.73 76.80 645.70 42.84 163.05
SciDr-in 165.69 1 039.45 1 831.67 1 225.03 11 105.72 470.88 2 639.74
SciDr-in with External Data 172.81 1 073.44 1 836.02 1 198.92 11 234.76 486.81 2 667.13

Table 4.6: In-expansion average execution times per document for each dataset.

(i.e., Medstract, Schwartz and Hearst, BIOADI and Ab3P) for acronym extraction in Table 4.1 and for

acronym-expansion pair extraction in Table 4.2. We report Precision, Recall, F1-measure, and Cohen’s

kappa (K) values for both acronym and pair for SciAI dataset in Table 4.3 and for End-to-end dataset in

Table 4.4. The additional external data used to train SciBERT and SciDr-in for the biomedical application

includes the data of all biomedical datasets excluding the test set (30%). For SciAI and End-to-end

datasets, the external data used to train SciBERT and SciDr-in includes all documents in the other

datasets (i.e., Medstract, Schwartz and Hearst, BIOADI, Ab3p, SciAI, and End-to-end).

For the biomedical domain, for all acronym and pair extraction measures (precision, recall, and F1-

measure), the best acronym and in-expander technique, on average, is SH.

On SciAI, the machine-learning techniques SciDr-in and SciBERT outperform the rule-based tech-

niques, SH and MadDog-in, in terms of recall (91.78%-94.05% for acronym and 88.24%-90.64% for pair)

and F1-measure (94.59%-94.05% for acronym and 90.94%-91.98% for pair) for both acronym and pair

extraction. Furthermore, MadDog-in achieves the best precisions (98.63% for acronym and 96.91% for

pair) followed by SciDr-in (97.47%-97.58% for acronym and 93.81%-94.47% for pair).

On the End-to-end dataset, MadDog-in achieves the best overall precision (92.78% and 88.65%)

and F1-measure (79.64% and 76.10%) for acronym and pair extraction, while SH surpasses MadDog-

in in terms of acronym recall (70.54%) and matches for pair recall (66.67%). Furthermore, among

the machine-learning techniques on the End-to-end dataset, SciDr-in surpasses SciBERT on precision

(77.08% and 68.75%), recall (57.36% and 51.16%), and F1-measure (57.36% and 58.66%) for both

acronym and pair extraction. Increasing the training dataset with External Data for SciBERT yielded
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an increase in recalls (58.91% and 53.48%) but decreased precisions (49.67% and 45.09%) and F1-

measures (53.90% and 48.93%) for both acronym and pair extraction, while for SciDr-in, we observe a

general increase in performance.

Cohen’s Kappa analyzes. In general, the Cohen’s Kappa (K) best technique for each dataset is

consistent with the F1-measure in the biomedical datasets, i.e., SH technique is clearly the best. On the

SciAI dataset, MadDog-in scores the best K for acronyms and pairs with 0.98 and 0.96, respectively.

On the End-to-end dataset, all techniques achieve values of Cohen’s Kappa higher or equal to 0.62

for acronym extraction and lower or equal to 0.14 for pair extraction. The reason is that the end-to-end

data contains many distinct expansions with different frequencies, leading to lower scores.

Glossary-level differences. In Annex B, we report the results obtained using the Glossary-level

metrics for each dataset. Regarding the glossary-level results, they are globally very similar to the

document-level ones in terms of the differences among in-expansion techniques. The exceptions in the

best methods for each metric are small differences: On the BIOADI dataset, the best score for acronym

extraction recall is obtained with SciDr-in trained in all biomedical datasets with 79.71%, SH (which

was the best on document-level) scores 78.26%. On the SciAI dataset, acronym recall is better for

SciBERT trained on SciAI training set with 93.58%, SciBERT trained on all datasets (which was the best

on document-level) scored 93.49%. On the User Generated dataset, the best technique for acronym

and the pair extraction F1-measure is SH with 79.49% and 66.67% respectively, while Maddog-in (the

best on document-level for acronym F1 and one of the best for pair F1) scored 79.04% for acronym F1,

and 65.83% for pair F1.

Interpretation: In this in-expansion benchmark, rule-based techniques SH and MadDog-in gener-

ally perform best for all datasets. The one exception is on the SciAI dataset where machine learning

techniques from SciDr-in and SciBERT work better.

Rule-based systems work well for in-expansion, because acronyms follow human-understood rules,

viz. roughly, acronyms should be in upper-case, each letter should represent a word, and the expansion

should either precede or follow the first use. So it is natural that a rule-based system would do well.

Machine learning work better when given more examples (SciAI dataset), however even ensembled

with a rule-based technique (SciDr) the results were generally inferior to using the rule-based technique

by itself.

While the expansions found by the rule-based techniques are not a superset of those found by the

machine learning techniques, SciDr often fails because it adds extra words to the expansion string. On

the other hand, SciDr can find unusual cases where not all acronym chars belong in the expansion, e.g.,

expansion PIN-FORMED of pin1.

Execution time analysis. We report in Table 4.6 the in-expansion execution times per document.

We observed from our experiments that the rule-based techniques are much faster than the machine

learning techniques. SH is the fastest technique on every single dataset taking less than 0.06 seconds

on average to extract acronym-expansion pairs from a document. MadDog-in is the second fastest

technique taking up to 16 seconds to process each document. The machine-learning techniques SciDr-

in and SciBERT take much more time to extract pairs from the datasets than the rule-based techniques.
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For instance, on the SciAI dataset, SciBERT takes 687 seconds. Comparing SciDr-in and SciBERT, the

execution times per document of SciDr-in are much higher than SciBERT taking 11 106 seconds on the

SciAI dataset because it is an ensemble based technique. We report in Table 4.5 the train execution

times for machine-learning based techniques (SciBERT and SciDr-in) for each dataset and with External

Data. Regarding training times, SciBERT takes 1 700 seconds on SciAI training data, 2 691 seconds on

the biomedical datasets, and 5 121 seconds to train with all datasets. SciDr-in takes longer for training:

52 257 seconds on SciAI training data, 28 612 seconds on the biomedical datasets, and 99 024 seconds

to train with all datasets.

In summary:

• If document processing needs to be fast and there are hardware limitations, the rule-based tech-

niques SH and MadDog-in are the best.

• If there are no time constraints and a large volume of data from the same domain is available, the

machine learning techniques SciBert and SciDr-in are marginally better.

• If the dataset is sentence-based and a large amount of data from the same domain is available,

use SciDr-in, though, in the medical domain, SH would likely be a strong contender.

4.3 Out-expansion Benchmark, Evaluation and Results

We describe our benchmark of out-expansion techniques in Section 4.3.1 and evaluate state-of-the-

art techniques on this benchmark in Section 4.3.2.

4.3.1 A Benchmark of Out-expansion Techniques

This section presents our benchmark of out-expansion techniques. Section 4.3.1.1 describes the

datasets used in this benchmark. Section 4.3.1.2 explains the steps used to prepare those datasets.

Section 4.3.1.3 lists the out-expansion techniques included in the benchmark, grouped by type. Finally,

Section 4.3.1.4 describes the metrics to evaluate those out-expansion techniques.

4.3.1.1 Datasets

The datasets included in our out-expansion benchmark are:

MSH dataset [52] contains biomedical document abstracts from the MEDLINE (Medical Literature Anal-

ysis and Retrieval System Online) corpus used in Li et al. [61], Prokofyev et al. [85]. This dataset

was automatically annotated using citations from MEDLINE and the ambiguous terms with Medi-

cal Subject Headings (MSH) identified in the Metathesaurus10. We use the original texts and the

revised labels from Li et al. [61];

10https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus
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Statistics SciWISE MSH CS Wiki SciAD
# of articles 4 677 12 053 10 220 39 815
Average # of chars per article 1 193 1 552 9 246 187
# of sentences 40 300 112 456 702 387 51 340
# of distinct acronyms 129 67 630 732
# of distinct ambiguous acronyms 100 64 566 682
Average # of distinct expansions
per article 1.09 0.99 1.02 1

# of distinct acronym/expansions 272 139 8 617 2173
Average # of expansions per
ambiguous acronym 2.43 2.13 15.11 3.11

Table 4.7: Statistics of the out-expansion datasets. SciAD is the dataset with the largest number of
articles, 39k. However, if we compare the number of sentences found in each dataset, CS Wiki has
the largest total with 70K, 11k for MSH, 5k for SciAD and 4k for ScienceWISE. The reason is that
SciAD contains the smallest articles in terms of characters (mostly just sentences having fewer than 200
characters), while others have 1k or more. CS Wiki has the biggest set of distinct acronym-expansions
pairs (8k). In terms of distinct expansions per ambiguous acronym, CS Wiki has around 15, while the
remaining dataset have maximum around 3.

SciWISE dataset consists on the Physics dataset used in Li et al. [61] and Prokofyev et al. [85] that

consists of document abstracts. This dataset was annotated by human experts, and it includes

expansions either containing at least 2 words or a single word with at least 14 characters.

CS Wiki (Computer Science Wikipedia) dataset created in Thakker et al. [107] contains documents

from different fields that contain acronyms used in computer science. Expansions were extracted

by parsing the content of English Wikipedia disambiguation pages of acronyms used in computer

science (e.g., https://en.wikipedia.org/wiki/PDF_(disambiguation)).

SciAD This dataset was prepared for the out-expansion SDU@ AAAI-21 competition [111]. It is based

on the SciAI in-expansion dataset, described in Section 4.2.1.1. We use the revised version11

created by Egan and Bohannon [30] who removed duplicate sentences from the original trainning

and validation sets.

Table 4.7 presents relevant statistics about each dataset. An ambiguous acronym is an acronym

having more than one expansion available in the dataset.

4.3.1.2 Data Preparation

The data preparation steps are roughly the same for each out-expansion technique:

1. Dataset Splitting: We split each dataset into train and test sets (respectively 70% and 30% of the

documents of the original dataset). We then apply 5-fold cross validation on the train dataset in

order to tune the hyperparameters of each out-expansion technique. The hyperparameter-tuned

technique is then tested on the yet unseen 30% of the data.

2. Expansion Consolidation: For the expansions of acronym A in each dataset, we apply an ap-

proximate duplicate detection process that groups expansion strings that correspond to the same

expansion meaning. For example, portable document format and Portable-Document-Formats are

two distinct strings that refer to the same real expansion. As criteria, we consider two expansions
11https://github.com/PrimerAI/sdu-data
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to be equal if their lower case versions without dashes have an edit-distance less than 3 or if the

first 4 characters of each word are equal. Equal expansions are consolidated by replacing in text

all expansion strings with the same meaning by the most frequent expansion.

3. Expansion Removal: When testing the accuracy of out-expansion techniques on some document

d, we associate any acronym A in the document with its in-expansion In(A), if present. Then, we

replace all occurrences of the in-expansion In(A) in text by A alone.

4. Tokenization: We apply the word tokenization from the Natural Language Toolkit (NLTK) [11] to

obtain only alphanumeric tokens. Additionally, we remove stop words using NLTK and numeric

tokens;

5. Token Normalization: We transform each token into its stem, e.g., probable, probability, and prob-

abilities all map to probabl. We use the Porter Stemmer algorithm from NLTK.

The preparation of the MSH and SciWISE datasets follows the preprocessing reported in Li et al. [61],

so we apply all the preparation steps above except token normalization. The five steps are consistent

with the pre-processing steps used in Thakker et al. [107] for the CS Wiki dataset. For SciDr-out and

MadDog-out, we apply only the first three steps, because these techniques replace the last two steps

with steps that depend on the language models of the neural networks they use.

4.3.1.3 Out-expansion Techniques

This benchmark includes the following groups of out-expansion techniques:

Classical Techniques: We use two baselines: Random which randomly assigns a possible expan-

sion to an acronym; and Most Frequent which always selects the most frequent expansion found

in our training data as measured by the number of occurrences in distinct documents. We use the

Cosine similarity (Cossim) with the Classic Context Vector (CCV) [61], Document Context Vector

(DCV) - variant of Classic for each document, Surrounding Based Embedding (SBE) [61], and

Thakker et al. [107].

Sentence-oriented Techniques: We include related work techniques that expect a sentence as in-

put (instead of a document) and adapt them as described in the AcX overview (Section 4.1.3).

These include Unsupervised Abbreviation Disambiguation (UAD) [21], MadDog [110] out-expander

(MadDog-out), and SciDr [99] out-expander (SciDr-out). We also use SciDr-out with External

Data consisting of the Wikipedia pages that contain an expansion found in the training data.

Representator Techniques: We include Cossim with the document representation techniques de-

scribed in Section 4.1.2, that we have adapted from natural language processing: Term Frequency-

Inverse Document Frequency (TF-IDF), Latent Dirichlet Allocation (LDA), Doc2Vec, and Sentence

Bidirectional Encoder Representations from Transformers (SBERT). We used SBERT model all-

mpnet-base-v2, the top performing model in Sentence Similarity tasks (14 datasets)12. all-pnet-
12https://www.sbert.net/docs/pretrained_models.html#model-overview
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base-v213 is based on MPNet model [101] that outperforms BERT and RoBERTA in both quality

and speed. all-mpnet-base-v2 was trained on one billion sentences pairs from a diverse set of

data sources.

Classification Techniques: We created a complete new class of out-expansion techniques that use

the outputs of a representator as features for a Machine Learning classifier, specifically, Random

Forests (RF), Logistic Regression (LR), and Support Vector Machines (SVM). Each acronym has

its own classifier trained with the features of the documents that contain an expansion for the

acronym (e.g., acronym PDF will have a random forest RandFor(PDF) based on documents that

contain an in-expansion for PDF). Based on the features of a target document d, the classifier will

choose the appropriate expansion as explained in Section 4.1.3.

Combination of Representator Techniques: The final type of out-expansion techniques that we as-

sembled consists of combining two representators’ outputs, namely the Doc2Vec with a Context

Vector (either Classic or Document), as input to predictors: CCV + Doc2Vec and DCV + Doc2Vec.

Combinations are constructed by concatenating the outputs together into a single feature vector.

Ensembler Techniques: We support two ensembler techniques: Hard voting where each technique

votes for its preferred expansion regardless of its confidence; and Soft voting that takes the aver-

ages of confidences per expansion. The confidences are normalized at the individual technique

level in such a way that their sum is 1. For the experiments, we assembled the following 7 out-

expansion techniques: Cossim with CCV, Cossim with TF-IDF, Cossim with Do2Vec, SVM with

Doc2Vec, Cossim with SBERT, SVM with SBERT, and SciDr-out.

4.3.1.4 Performance Metrics

Our benchmark uses the following metrics:

Out-expansion accuracy: is the accuracy of predicting the right expansion for a given acronym in a

textual document. Intuitively, this is the fraction of acronym-expansions that are correctly predicted.

This corresponds to a micro-average of Precision and Recall, but, since we always predict an

expansion for some acronym in the out-expansion task, those two metrics are equal. Accuracy

is also used in previous out-expansion works [21, 61, 107] and analogous benchmarks, e.g., for

Word-Sense-Disambiguation [88]. Note that an acronym may appear many times in the same

document and many times across documents. In our measure, if A is in k documents, it is counted

k times, but if A is present j times in the same document, it is counted only once in that document.

Thus, for a test set of documents D, the out-expansion accuracy is:
∑

d∈D |correct distinct expansions for d|∑
d∈D |distinct acronyms inside d| .

Out-Expansion macro averages: Recently, Veyseh et al. [110][84] started using a different set of

metrics that we have implemented and measured for completeness. Those metrics are macro-

averages of Precision, Recall and F1-measures for acronym-expansions pairs. So, we calculate

13https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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precision, recall, and F1-measure independently for each acronym-expansion in the training data.

Then, averages of those measures are performed in order to obtain the final macro averages. Note

that, when using these measures, very rare acronyms and expansions in the dataset will have the

same impact as more frequent expansions and acronyms.

Representator execution time: is the execution time to create representations of training documents.

Average execution time per document: is the average execution time to predict expansions for acro-

nyms in a document.

4.3.2 Out-expansion Experimental Results

Setup. For out-expansion on the benchmark presented in Section 4.3.1, we ran the experiments on

a GoogleCloud platform14 machine with the following specifications: Intel Broadwell CPU platform with

8 cores, 30GB to 80GB of RAM (Random Access Memory). For SBERT, MadDog-out, SciDr-out, and

LUKE half of a Tesla K80 GPU board was used. The code ran in Python 3.7.

To reduce the duration of experiments, we first find the representator’s hyperparameters with the

cosine similarity because it involves no learning nor hyperparameters of its own, then save the best

representator model on disk. Next, given the best representator hyperparmeters, we find the best out-

expansion predictor model hyperparameters.

Results. For each dataset, in Table 4.8, we report the out-expansion accuracy and macro F1-measure

to predict the expansions of acronyms in a document. In Table 4.9, we present the average execution

times that out-expansion techniques that to process a document for each dataset. The Technique Group

column identifies the out-expansion group that the technique belongs to, as organized in Section 4.3.1.3

(e.g., Classical). The Predictors column identifies the out-expansion predictor technique (e.g., Cossim

or an ML classifier) that takes a given document representation to predict an expansion (e.g., Cossim).

The Representators column indicates the technique used to generate a document representation (e.g.,

Doc2Vec). We did not run SciDr-out with External Data on CSWiki dataset because the external data

(i.e., Wikipedia data) would overlap with CSWiki itself. The execution time of each ensemble technique

is just the additional time required to decide on an expansion given the input predictions and confidence

measures.

In these out-expansion experiments, we measure the accuracy and macro F1 only on the acronym-

expansions pairs whose acronym is ambiguous (i.e., have at least two expansions in the training data)

and whose in-expansions are in the training data.

The best individual techniques (average above 89% of accuracy) in descending order are: Cossim

with SBERT, SVM with SBERT, SciDr-out, Cossim with CCV, Cossim with TF-IDF, Cossim with DCV,

Cossim with Doc2Vec alone or with DCV, and SVM with Doc2Vec. Regarding statistical significance,

Cossim with SBERT is the best for SciWISE. For MSH, SVM with Doc2vec combined with either CCV or

DCV score higher accuracy. However, they are not statistically significantly better than: SVM with either

Doc2Vec or SBERT, Cossim with SBERT, and LR with Doc2Vec. SciDr-out achieves higher accuracy for

14https://cloud.google.com/
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Out-expansion Technique ScienceWISE MSH CSWiki SciAD Average
Technique

Group Predictors Repre-
sentators Acc MaF1 Acc MaF1 Acc MaF1 Acc MaF1 Acc MaF1

Classical

Random 47.72% 46.10% 47.04% 45.49% 14.54% 14.21% 33.06% 32.22% 35.59% 34.51%
Most Frequent 70.52% 49.31% 50.30% 32.32% 47.76% 20.37% 69.08% 37.64% 59.41% 34.91%

Cossim
CCV 91.34% 80.72% 97.62% 97.65% 77.96% 65.01% 92.28% 89.03% 89.80% 83.10%
DCV 89.51% 78.69% 96.18% 96.07% 78.59% 65.86% 93.67% 87.08% 89.49% 81.92%
SBE 88.07% 75.89% 95.84% 95.24% 74.60% 63.30% 86.50% 80.76% 86.25% 78.80%

Thakker 87.77% 77.38% 92.53% 91.68% 73.16% 63.86% 84.36% 73.21% 84.46% 76.53%
Entity Disam. LUKE 83.42% 57.33% 67.47% 58.95% 52.65% 46.60% 50.68% 42.53% 63.55% 51.35%

Sentence-
-Oriented

UAD 43.69% 46.73% 93.92% 92.55% 12.94% 11.60% 34.98% 45.75% 46.38% 49.16%
MadDog-out 89.13% 68.84% 94.09% 93.16% 57.03% 47.71% 87.38% 73.23% 81.91% 70.73%
SciDr-out 88.22% 77.45% 97.23% 96.76% 84.19% 72.67% 94.48% 88.94% 91.03% 83.96%
SciDr-out with
External Data 89.89% 77.86% 97.58% 97.22% N/A N/A 94.71% 89.42% N/A N/A

Repre-
sentator Cossim

TF-IDF 91.26% 81.82% 97.62% 97.57% 77.80% 65.36% 91.79% 83.48% 89.62% 82.06%
LDA 85.56% 73.94% 93.81% 93.28% 71.89% 60.49% 84.56% 73.39% 83.95% 75.28%
Doc2Vec 92.86% 83.14% 98.33% 98.07% 77.16% 65.25% 92.05% 82.96% 90.10% 82.35%
SBERT 94.83% 85.32% 98.78% 98.80% 81.47% 67.67% 94.19% 89.76% 92.32% 85.39%

Classi-
fication

RF
TFIDF 70.82% 52.03% 84.53% 76.78% 32.11% 23.14% 87.64% 68.90% 68.77% 55.21%
LDA 70.75% 54.13% 95.64% 92.84% 67.57% 50.78% 82.32% 61.33% 79.07% 64.77%
Doc2Vec 79.18% 61.34% 96.58% 95.37% 66.29% 41.55% 84.39% 62.43% 81.61% 65.17%

LR
TFIDF 71.05% 54.47% 93.41% 88.29% 71.89% 45.59% 80.63% 55.06% 79.24% 60.85%
LDA 71.13% 51.49% 88.66% 80.02% 71.73% 48.77% 80.08% 55.16% 77.90% 58.86%
Doc2Vec 88.83% 78.35% 98.87% 98.72% 76.68% 57.97% 90.75% 77.95% 88.78% 78.25%

SVM

TFIDF 81.84% 62.13% 94.71% 91.27% 77.16% 53.54% 91.01% 78.24% 86.18% 71.29%
LDA 78.88% 59.80% 93.64% 91.16% 71.89% 51.11% 85.59% 70.63% 82.50% 68.18%
Doc2Vec 89.67% 79.31% 98.93% 98.79% 77.00% 58.70% 91.56% 80.88% 89.29% 79.42%
SBERT 93.01% 83.91% 98.87% 98.84% 82.43% 64.44% 92.34% 86.53% 91.66% 83.43%

Combi-
nation

of
Repre-

sentators

Cossim
CCV +
Doc2Vec 90.27% 79.04% 98.19% 97.95% 77.16% 65.25% 86.92% 82.82% 88.14% 81.27%

DCV +
Doc2Vec 90.27% 79.01% 98.33% 98.10% 77.16% 65.19% 92.05% 82.96% 89.45% 81.32%

SVM
CCV +
Doc2Vec 89.97% 80.44% 98.95% 98.84% 77.00% 58.70% 80.73% 76.06% 86.66% 78.51%

DCV +
Doc2Vec 89.67% 79.35% 98.95% 98.83% 77.00% 58.70% 90.20% 75.90% 88.95% 78.20%

Ensemblers Hard 94.15% 86.95% 99.60% 99.58% 84.19% 78.32% 96.59% 91.88% 93.63% 89.18%
Soft 93.62% 85.00% 99.38% 99.41% 86.26% 79.33% 95.94% 91.04% 93.80% 88.70%

Table 4.8: Out-expansion accuracy (Acc) and macro F1-measure (MaF1). Values marked as bold indi-
cate the best Acc obtained by an individual technique and by an ensembler, respectively in that dataset.
A technique T1 is considered better than T2 if a non-parametric significance test (based on shuffling[43])
indicates that the difference in their means has a p-value ¡ 0.05. Thus, even though each column has
a highest mean value for some technique H which will be bolded, the value of a technique T will also
be bolded if H is no better than T based on the p-value criterion. We apply the same p-value criteria
to bold ensemblers on all datasets, except on ScienceWISE where we apply the statistical test to each
ensembler against Cossim SBERT (the best technique on ScienceWISE).
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Out-expansion Technique Execution Times per Document (s)
Technique Group Predictors Representators SciWISE MSH CSWiki SciAD Average

Classical

Random 0.00 0.00 0.00 0.00 0.00
Most Frequent 0.00 0.00 0.00 0.00 0.00

Cossim
CCV 0.01 0.06 0.07 0.12 0.07
DCV 0.02 0.18 0.08 0.34 0.15
SBE 0.02 0.07 0.06 0.06 0.05

Thakker 2.19 7.56 2.62 2.78 3.79
Entity Disam. LUKE 0.88 3.38 63.74 0.31 17.07

Sentence-Oriented

UAD 0.00 0.01 0.01 0.00 0.01
MadDog-out 0.07 0.22 1.15 0.04 0.37
SciDr-out 0.72 1.19 2.51 0.70 1.28
SciDr-out with External Data 2.15 3.37 N/A 1.28 N/A

Representator Cossim

TF-IDF 0.06 5.02 4.20 0.87 2.53
LDA 0.01 0.02 0.03 0.02 0.02
Doc2Vec 0.01 0.01 0.36 0.02 0.10
SBERT 0.19 0.39 0.50 0.13 0.30

Classification

RF
TFIDF 1.03 17.77 72.85 3.52 23.79
LDA 1.01 1.45 1.02 1.32 1.20
Doc2Vec 0.12 1.44 2.14 1.75 1.36

LR
TFIDF 0.06 5.03 41.36 0.92 11.84
LDA 0.01 0.02 0.03 0.02 0.02
Doc2Vec 0.01 0.02 0.36 0.04 0.11

SVM

TFIDF 0.04 4.77 7.05 1.05 3.23
LDA 0.01 0.03 0.03 0.02 0.02
Doc2Vec 0.01 0.01 0.37 0.02 0.10
SBERT 0.14 0.26 0.59 0.17 0.29

Combination of
Representators

Cossim CCV + Doc2Vec 0.03 0.23 0.65 0.41 0.33
DCV + Doc2Vec 0.44 2.32 1.29 2.54 1.65

SVM CCV + Doc2Vec 0.04 0.29 0.78 0.46 0.39
DCV + Doc2Vec 0.47 2.36 1.37 2.51 1.68

Ensemblers Hard 0.00 0.00 0.00 0.00 0.00
Soft 0.00 0.00 0.00 0.00 0.00

Table 4.9: Overall out-expansion techniques average execution times per document.

CSWiki, but is not statistically better than SVM with SBERT. Finally, for SciAD, SciDr-out with external

data scores higher accuracy but not statistically significantly better than: SciDr-out and Cossim with

SBERT.

Interpretation: An important question in interpreting these numerical results is to understand why

some techniques are better than others.

For out-expansion, the best approaches SciDr-out and Cossim/ SVM with SBERT are based on

language models trained on large data collections, but that does not tell the whole story. SciDr-out

uses the particularly effective strategy of predicting the expansion span from the list of possible expan-

sions passed as input. Further, SciDr-out is an ensemble of models trained in a 5-fold cross-validation

setting. SBERT augments transformer language models to sentence similarity tasks using a siamese

Representators SciWISE MSH CSWiki SciAD Average
CCV 0 1 5 1 2
DCV 0 1 5 1 2
SBE 6 23 115 9 38
LUKE 1 917 9 448 29 319 9 435 12 529
UAD 43 93 331 54 130
TF-IDF 2 10 58 1 18
LDA 155 7 766 8 830 4 247 5 250
Doc2Vec 13 32 212 108 91
SBERT 111 437 1 860 280 672
SciDr-in 11 227 42 716 147 454 50 282 62 920
SciDr-in
External Data 14 299 46 651 N/A 66 441 42 464

MadDog-out 566 728 10 008 1 198 3 125

Table 4.10: Representator execution times in seconds for each dataset.
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Out-expansion Technique
Predictors Representators SciWISE MSH CSWiki SciAD Average

CCV 0.35 0.25 0.38 0.34 0.33
TF-IDF 0.37 0.33 0.48 0.30 0.37
Doc2Vec 0.27 0.14 0.32 0.19 0.23Cossim

SBERT 0.24 0.15 0.32 0.24 0.24
Doc2Vec 0.10 0.03 0.36 0.19 0.17SVM SBERT 0.07 0.06 0.34 0.23 0.18

Table 4.11: Pearson correlation coefficient values of confidence with correct acronym expansion for each
dataset and each technique. Accuracy is correlated with confidence, but only modestly.

architecture that generates embeddings for each sentence and is trained to maximize similarity. Those

embeddings turn out to be very informative regarding the context for documents: both Cossim or SVM

combined with SBERT obtained on average the highest accuracy among individual techniques.

While LUKE’s transformer language model enables the creation of entity embeddings (in LUKE’s

case, fine-tuned for expansion embeddings), the results are not the best for acronyms, even with fine-

tuning. One reason is that each entity is referenced frequently (over 600 times on the average [115]).

Acronym/expansion pairs are referenced less than twice on the average. For example, Wikipedia has 11

million entity occurrences and 18 thousand distinct entities [115], an average of 611 mentions per entity.

By contrast, examples of sentences whose acronyms are expanded by links are limited, because some

acronyms may be defined in a single document. On CSWiki, for example, we have 10,400 acronym ex-

pansion occurrences (without counting repeated occurrences in the same document) and 8,600 distinct

acronym/expansion pairs, an average of only 1.2 occurrences per acronym expansion.

Independently of which technique is best, we should note that each of the top techniques, except

SciDr-out, gives a confidence score. For some of the best techniques SBERT, Doc2Vec, TFIDF, and

CCV, the confidence score has a positive correlation with accuracy, though the correlation is modest

(under 0.5). as indicated in Table 4.11. This low positive correlation is reflected in our results for ensem-

ble techniques. The soft ensemble technique (in which each underlying technique’s weight is monotonic

with its confidence) does well thanks to the positive correlation. On the other hand, hard voting en-

semble techniques (in which each underlying technique votes for its preferred expansion regardless of

confidence) perform even better, suggesting that the ”wisdom of crowds” effect is stronger than using

confidences. A deeper look at ensemble techniques for acronym expansion is a subject for future work.

Analysis of Classical techniques. The baselines Random and Most frequent out-expanders have

better accuracies on SciWISE (48% and 71%) followed by SciAD (33% and 69%) and MSH (47% and

50%). The worst scores are obtained on CSWiki (15% and 48%), because that dataset has far more

ambiguity.

MadDog-out achieves near the best performance on SciWISE and MSH, is also good on SciAD,

and is worst on CSWiki. MadDog-out’s input is a sentence at a time like SBE and UAD, so context is

also limited to a few words. In contrast, the best techniques, except SciDr-out, process all words in a

document.

Analysis of remaining Representators and Classification techniques. LDA works well in many Nat-

ural Language Processing tasks, but less well for our out-expansion task, probably because measuring

document similarity by comparing topics is not the best use of LDA.
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Techniques with TF-IDF as a representator are surprisingly competitive in SciWISE and MSH, but

they achieve inferior accuracy in CSWiki. Pre-processing steps (Section 4.3.1.2) play an important role

in CCV performance, for instance, in the Tokenization step, we remove stop-words which TF-IDF takes

into account thus automatically giving them less relevance due to the IDF score.

Predictors using RF are slower and slightly less accurate than Cossim and SVMs. RFs struggle with

the fact that, in this acronym expansion, there are many features but only a small number of samples,

e.g., 300 dimensions from Doc2Vec and a few documents per acronym. By contrast, Cossim and SVM

are usually the best predictors closely followed by LR. The representator hyperparameter search was

performed for TF-IDF, LDA, and Doc2Vec using Cossim as a predictor, hence they are fitted for this

predictor. SVMs and LRs are similar classifiers, the first fits a separating hyper-plane, the other a logistic

function.

Execution times of representators. The training execution times depend only on the representators

and are reported in Table 4.10. The Doc2Vec models used by Thakker et al. are created during the input

document processing hence are not reported in Table 4.10.

The CCV and DCV representators take the least time (average 2s) closely followed by TF-IDF

(average 18s) (Table 4.10). By contrast, Word2Vec (SBE and UAD) and Doc2Vec models take more time

depending on the hyperparameters and dataset size (6-331s). LDA takes on average 5ks. The most

expensive models are SciDr-out (14ks-66ks) followed by LUKE (1Ks-13ks) and MadDog-out (566s-

10ks) which use either language models or neural networks. Thakker et al. [107] does not report

execution time to produce the representator model, because the system builds a Doc2Vec per acronym

during the input document processing time.

Document processing execution times. As observed in Table4.9, among these best techniques,

Cossim with CCV is the fastest for all datasets, able to process input documents in less than 0.07

seconds on dataset average. However, SVM with Doc2Vec is the fastest for MSH and SciWISE. The

slowest among the best is Cossim with TF-IDF (average 2.5s), followed by SciDr-out (1.3s for base and

2.3s with external data). These differences are statistically significant.

External data analysis. SciDr-out with External Data improves over the SciDr-out base (Table 4.8),

indicating that adding additional models trained on external data usually helps at roughly double the time

cost. The downside is that training time more than doubles (we have to sum the SciDr-out External data

in Table 4.10). Average execution times (Table 4.8) to process a document almost doubles as well (from

1.3s to 2.3s).

In summary:

• If neither training time nor document processing time is of major concern and especially if GPU

processing is available, then use either a Hard ensembler (best but slowest), SciDr-out (best with

more domain data) or Cossim/SVM with SBERT (fastest and close to best).

• A pipeline that balances time and accuracy is to use Doc2vec as feature inputs for either Cossim

or SVMs.

• If training and test time is limited, use Cossim with CCV, which requires almost no training time
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(less than 5s) and is the fastest in testing time among the best set of techniques.

4.4 End-to-end Benchmark and Evaluation

The end-to-end benchmark described in Section 4.4.1 uses input documents containing acronyms,

where some of those acronyms contain expansions and others do not. The evaluation in Section 4.4.2

will measure the recall and precision of acronym expansion for both student annotators and AcX pipelines.

4.4.1 A Benchmark of End-to-End Acronym Expansion

Section 4.4.1.1 describes the train and test datasets used in this benchmark. Section 4.4.1.2 lists

the end-to-end acronym expander systems included in the benchmark. Finally, Section 4.4.1.3 presents

the metrics that our benchmark uses to evaluate the systems.

4.4.1.1 Datasets

The end-to-end benchmark uses two different datasets: (i) for testing, the end-to-end dataset of

Section 4.2.1.1. (ii) The train dataset consists of documents from Wikipedia that do not belong to the

annotated test set. Those documents came from the Wikipedia dump of March 1, 202015. These were

converted to pure text using WikiExtractor [6].

We preprocessed all the documents using all the steps described in Section 4.3.1.2 for all out-

expansion techniques except MadDog-out which uses its own preprocessing techniques.

4.4.1.2 End-to-end systems

We use: (i) the end-to-end MadDog System (MadDog-sys) and (ii) various pipelines of AcX con-

sisting of an in-expansion technique along with possibly the Link Follower (LF) technique followed by

an out-expansion technique possibly with machine learning (see Figure 4.1). An example of a pipeline

would be the SH in-expander, followed by the LF component, Doc2Vec, and SVMs. The pipelines we

test consist of combinations of the most practical (accurate and fastest) techniques for in-expansion and

out-expansion as determined by the benchmarks in Sections 4.2.2 and 4.3.2. Specifically, AcX pipelines

use either the MadDog-in or the SH technique as in-expanders to identify acronyms and expansions

in input documents. For out-expansion, AcX pipelines include one of the following combinations of out-

expansion techniques, i.e., a predictor (Section 4.1.3) with a representator (Section 4.1.2): (i) Cossim

with SBERT; (ii) SVM with SBERT; (iii) Cossim with CCV; (iv) Cossim with Doc2vec; and (v) SVM with

Doc2vec.

Finally, we compare the accuracies of MadDog-sys, the various pipelines of AcX, and the student

annotators (before the reviewer, the third annotator, resolved conflicts to decide on the final annota-

tions).

15https://dumps.wikimedia.org/enwiki
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AcX (pipelines) Out-expansion End-to-end Execution
Time per
Document (s)In-expander Out-expander

Predictor Representator LF P R F1 P R F1

SH

Cossim
CCV No 44.00% 37.40% 40.44% 51.43% 45.62% 48.35% 21.31

Yes 34.66% 22.68% 27.42% 52.16% 46.30% 49.05% 18.51

SBERT No 46.03% 39.12% 42.30% 53.10% 47.10% 49.92% 0.15
Yes 36.70% 23.99% 29.01% 53.34% 47.35% 50.16% 1.16

SVM
Doc2Vec Yes 40.86% 26.74% 32.33% 56.05% 49.75% 52.71% 3.26

SBERT No 51.10% 43.43% 46.95% 57.27% 50.80% 53.84% 2.37
Yes 42.02% 27.46% 33.22% 56.68% 50.31% 53.30% 2.91

MadDog-in

Cossim

CCV No 44.77% 34.62% 39.05% 53.12% 43.15% 47.62% 17.45
Yes 37.36% 21.85% 27.57% 54.46% 44.44% 48.95% 19.51

Doc2Vec Yes 40.20% 23.50% 29.66% 56.20% 45.86% 50.51% 7.73

SBERT No 57.27% 36.55% 41.23% 55.17% 44.81% 49.46% 0.33
Yes 40.02% 23.29% 29.44% 56.28% 45.93% 50.58% 7.76

SVM
Doc2Vec No 52.08% 40.27% 45.42% 59.12% 48.02% 53.00% 1.12

Yes 45.38% 26.53% 33.49% 59.38% 48.46% 53.37% 7.63

SBERT No 54.76% 42.35% 47.76% 61.32% 49.81% 54.97% 2.29
Yes 47.09% 27.40% 34.64% 60.59% 49.44% 54.45% 9.12

MadDog-sys 25.40% 18.38% 21.33% 37.85% 29.14% 32.93% 1084.92
Student annotators N/A N/A N/A 88.36% 76.41% 81.95% N/A

Table 4.12: Out-expansion and end-to-end system quality metrics and average execution times to pro-
cess a document in seconds. The in-expander technique and the Link Follower (LF) component provide
the input for out-expansion techniques, so when those two components are not fixed, we cannot compare
out-expansion techniques directly using the out-expansion quality metrics. End-to-end values marked
as bold indicate the best obtained in that metric. A method M1 is considered better than M2 if a non-
parametric significance test (based on shuffling[43]) indicates that the difference in their means has a
p-value ¡ 0.05. Thus, even though each column has a highest mean value for some method H, the value
of a method M will be bolded if H is no better than M based on the p-value criterion.

In-expander
Technique

In-expansion LF
P R F1 P

SH 86.17% 57.37% 68.88% 77.66%
MadDog-in 91.49% 56.58% 69.92% 73.19%

Table 4.13: In-expansion prediction, recall, and F1-measure and Link Follower (LF) prediction when
each in-expander technique is used.

4.4.1.3 Performance Metrics

Similarly to Section 4.2.1.3, we evaluate MadDog-sys, different pipelines of AcX, and human anno-

tators listed in Section 4.4.1.2 in terms of Precision (P), Recall (R) and F1-Measure (F1). Precision is

the number of correct system-found acronym-expansion pairs divided by the total number of system-

identified pairs. Recall is the number of correct system-found acronym-expansion pairs divided by the

total number of human-found pairs. F1-measure is the harmonic mean of Precision and Recall. We also

measure training and per test document execution times.

4.4.2 Results on End-to-end Experiments

Setup. For these experiments, we used a virtual machine with the following specifications: AMD

EPYC Processor with 16 cores and 256GB of RAM (Random Access Memory). For SBERT, the virtual

machine specifications were: five cores of an Intel Xeon Gold 6126 Processor, 40GB of RAM and a

NVIDIA GeForce RTX 2080 Ti. The code ran in Python 3.7.

Results. Table 4.12 presents the results for the AcX system running each one of the different pipelines

mentioned in Section 4.4.1.2, the MadDog-sys16, and the results for the student annotators. More-

16https://archive.org/details/MadDog-models
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Out-Expansion
Representator

In-expansion Technique
SH MadDog-in Average

CCV 389 332 361
Doc2Vec 15,985 13,341 14,663
SBERT 42,769 33,724 38,247

Table 4.14: Representator execution times in seconds for each in-expander technique used to process
the train dataset.

over, apart from the end-to-end quality metrics in Table 4.12, we also report the quality metrics for

out-expansion (i.e., acronyms left to expand after in-expansion and LF component).

The AcX pipeline composed by MadDog-in, SVM with SBERT without Link Following (LF) obtains

the best results with precision (61.32%) and F1-measure (54.97%). However, based on the F1-measure,

this is not statistically significantly better (i.e., P-value above 0.05) than the following system pipelines:

(i) with the same out-expander but with LF, or (ii) with SH and SVM with SBERT, without LF. The best

system pipeline takes 2s on average to process a document. Our best AcX pipeline obtains better

results for all measures than the MadDog-sys (+20% of F1) and is faster (2s to 1084s).

Best AcX pipeline analysis. The reason why the precision is low is that our best AcX pipeline

considers certain strings to be acronyms even though they are not (245 in total). Some are small

words like ”and” and ”not”. Others are codes like ZAB and ZAU that refer to airports. Conversely, the

acronym and in-expansion extraction component fails to identify lower case acronyms as acronyms,

common measurement units (e.g., m for meter, g for gram, kbit for kilobit) and some common language

abbreviations (e.g., Micro, ”etc”, email) which usually everyone knows. By contrast, AcX provides the

correct expansion for the acronyms that newcomers to a field may not know, e.g., CAS - Computer

Algebra System; SLS - SoftLanding Linux system; and ILM - Industrial Light & Magic.

In and out expansion analysis. We report independently the performance of in-expansion in Ta-

ble 4.13 and out-expansion in Table 4.12. When evaluating just the acronym and in-expander extrac-

tion component of AcX pipelines, using SH scored an in-expansion F1-measure of 68.88% and using

MadDog-in scored 69.92%. If we evaluate out-expansion (acronyms left to expand after in-expansion

and LF component), our best AcX pipeline (SVM as predictor with SBERT as representator) obtains an

F1-measure of 47.76%.

LF analysis. Overall, the Link Following component improves the quality metrics marginally if at all for

these link-poor datasets. Unsurprisingly, the better the out-expander, the less LF helps.

We report Precision for only the LF predictions in Table 4.13: 77.66% when running with SH and

73.19% when running with MadDog-in. When combined with the best out-expander techniques (i.e.,

SVM as predictor with SBERT as representator), following links reduces the score by -0.52%, however

when we consider the second-best set of out-expander techniques (i.e., SVM as predictor with Doc2Vec

as representator), LF improves the F1-score by +0.37% (Table 4.12). Thus, the better the out-expander,

the less link following helps.

For the link follower, execution times were not measured for the time to download a linked document.

When we predict an acronym with LF then it is an acronym less to out-expand. For SVM with SBERT or

Doc2Vec we have increments of 6-7s by following links with MadDog-in, however for Cossim with CCV
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with MadDog-in0 and follow links with SH we observe a small difference. If the out-expansion technique

is slow, then following links may also improve execution times.

Execution times of representators. We report in Table 4.14, the execution times to create the out-

expansion representators for each system pipeline. We observe that CCV executes in less time (389s

with SH and 332s with MadDog-in) than Doc2Vec (15,985s with SH and ,13 341s with MadDog-in).

SBERT representator takes the longest time (42,769 with SH and 33,724s with MadDog-in)

Comparison with human performance. Compared with human annotators, our best AcX pipeline

(MadDog-in and SVMs with SBERT) is around 27% lower in Precision, Recall, and F1-Measure. So,

there is a lot of room for improvement. On the other hand, automatic Acronym Expansion is rapid (2s

per document) and can give at least a good first guess.

An example application of AcX. Consider one of the documents out of the 163 at random whose orig-

inal page is here https://en.wikipedia.org/wiki/CC_(complexity). Our best AcX pipeline identified

the following acronym-expansion pairs: CC - comparator circuits; CCVP - comparator circuit value prob-

lem; AC - alternating current; NC - nick’s class; and NL - national league. However, it failed to identify

CC-complete, and P. We can see that CC, CCVP, NC, and AL are correct and NL is incorrect. With a

different Pipeline consisting of Doc2Vec instead of SBERT, AL is incorrect, but NL is correct.

In summary:

• The best AcX pipeline consists of MadDog-in, with SVM and SBERT.

• The Link Following component has high precision but does not improve AcX performance com-

pared with the best pipeline, though that could change depending on the density of acronym-

related links.
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Chapter 5

Support for User Involvement

In this chapter, we report the work performed to improve the support for user involvement when

executing a data cleaning process. This work was a collaboration with Professors Antónia Lopes and

Manuel J. Fonseca, both affiliated to LaSIGE, Faculdade de Ciências, Universidade de Lisboa.

User involvement is required during the execution of a data cleaning process because: (i) data trans-

formations used in a data cleaning process need to be tuned, and (ii) data records that are generated by

the transformations that compose a data cleaning process may need to be manually repaired through

user feedback during the execution of an automatic data cleaning process.

Similarly to software development, a data cleaning process needs to be iteratively refined and ex-

ecuted to obtain the highest quality of data. These refinements can be due to: (i) new data batches

that are continuously provided as input and contain new data quality problems, and (ii) modifications

to data transformations that may introduce new data quality problems. Unlike software development,

a data cleaning process often benefits from manually data repairs where the user feedback resolves

data quality problems, e.g., using expert knowledge to impute missing values. These repairs allow to

fix specific data quality problems, that cannot be repaired automatically because they need user expert

knowledge. Moreover, if these repairs are introduced in early phases of the data cleaning process, they

can avoid the propagation of data quality problems to further stages of the process.

In the literature, [92] describes a design vision for an end-to-end data cleaning framework that in-

cludes several types of user involvements during a data cleaning process, such as, refining a data

cleaning program and user feedback to manually clean data. The authors of [83] purpose a framework

to guide the user for data wrangling tasks including data cleaning, then such tasks are modeled as

optimization problems. This framework would perform Human-in-the-loop interaction to select the best

data transformations to produce the desired outcome (e.g., clean data). Other research works in data

cleaning explore the user involvement in specific data cleaning tasks like: guiding the user to provide

manual data repairs that train machine learning models [114], request the user to impute missing values

and to validate general rules based on the imputations [44, 90], approximate duplicate detection and

elimination [104], or the user involvement in crowdsourcing settings [72, 113]. Other complementary

tasks in data quality like data profiling and exploration have benefited from user involvement to detect
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data quality problems and efficiently explore data [82, 108].

However, user involvement in ETL (Extract, Transform and Load) tools like Pentaho Data Integration

(PDI) 1 is only supported to tune and combine data transformations.

Data wrangling tools like OpenRefine2 support manual data repairs and automatic data transforma-

tion. However, they are limited. In fact, they do not allow modifications to applied manual data repairs

and data transformations. The only possibility is to remove manual data repairs or data transformations,

but that is also limited by order of newest to oldest in a similar manner to the Undo function present in

word processing softwares. So far, commercial data cleaning tools (i.e., ETL and data wrangling tools)

do not support the incorporation of user feedback to manually repair data during the iterative refinement

and execution of a data cleaning process. Moreover, there is no evaluation of data cleaning tools that

compares their efficiency and effectiveness in terms of user involvement.

This chapter describes the following contributions:

• Cleenex, a data cleaning framework that is based on the Ajax data cleaning framework [36].

It extends Ajax with the manual data repair component whose main principles were proposed

in [37]. This component allows the designer to specify where and how data can be manually

repaired during the execution of a data cleaning process. Additionally, Cleenex offers a debugging

mechanism [109] for data cleaning processes that provides the provenance of the data. To support

the user involvement in an iterative execution of a data cleaning process, we developed the manual

data repairs persistence component and the manual data repairs recovery component that prevent

the integral re-execution of data cleaning processes and the loss of previous manual data repairs.

Moreover, we formulated and implemented an algorithm for the detection and automatic recovery

of manual data repairs, that given a new execution of a data cleaning process, identifies which

manual data repairs can be automatically re-applied. Even when manual data repairs cannot be

automatically re-applied, Cleenex tries to recover those manual data repairs by requesting the user

for additional feedback, which is less demanding than manually repairing the data from scratch.

• An extensive user involvement evaluation of Cleenex that includes two evaluation studies:

(i) the evaluation of the three individual Cleenex components that support the user involvement

(i.e., manual data repairs, persistence, and recovery); and (ii) the evaluation of Cleenex against

two other data cleaning tools, OpenRefine and Pentaho Data Integration (PDI), in terms of their

efficiency and effectiveness to support the user involvement. To evaluate the Cleenex components,

we programmed a simulated and ideal user to execute a data cleaning process, to manually repair

the data, and to provide feedback during an iterative data cleaning process. We measured the

required amount of data that the simulated user has to visualize and the number of actions that

the simulated user has to perform to clean the data.

To evaluate Cleenex against OpenRefine and PDI, we performed an experimental evaluation with

users that include: (i) two datasets with data quality problems that simulate real scenarios, (ii) two

tasks in the context of data cleaning that need to be executed by users using each tool, and (iii)
1http://community.pentaho.com/projects/data-integration/
2https://openrefine.org/
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a satisfaction questionnaire that assessed the user perception about each tool. The execution

of data cleaning tasks was evaluated by its correct or incorrect completion, execution time and

number of user actions (e.g., clicks and keys pressed).

In Section 5.1, we describe Cleenex and the work involved to support the user involvement in an

iterative execution of a data cleaning process. In Section 5.2, we describe the experimental evaluation

process to evaluate the support for the user involvement in a data cleaning process and the correspond-

ing results.

5.1 Cleenex

In this section, we describe Cleenex3, a new data cleaning framework that is based on the data

cleaning framework called Ajax [36] which separates the logical specification of a data cleaning process

from its physical implementation (SQL or Java algorithm implementations). The development of a data

cleaning process in Cleenex involves the design of a data cleaning graph where the nodes are data oper-

ators or relational tables and the edges connect relational tables to data operators, as input or output. It

supports five customizable data operators: (i) Map that supports one-to-many operations that transform

a tuple into one or more tuples, usually a split operation; (ii) Match that computes an approximate join

between two tables; (iii) Cluster that groups the tuples of a table into partitions, (iv) Merge that receives

a table and defines a tuple and its attributes for each partition resulted from some grouping criteria, and

(v) View that supports the operations already present in the SQL language. Cleenex also supports a

debugging mechanism developed in [109] that enables the user to select tuples from any table in the

graph and navigate backwards or forwards through the data cleaning graph displaying the provenance

of these tuples.

Figure 5.1: Cleenex GUI with a data cleaning graph to detect approximate duplicate authors.

Example 5.1.1. Figure 5.1 presents the Cleenex Graphical User Interface (GUI) together with a data

cleaning graph that performs the same data transformations of Example 2.2.1 (Section 2.2.1) to detect

approximate duplicate authors from a list of publications (Table PublicationAuthors). The Splitting high

level data transformation is implemented in Cleenex with two Map operators, the first applies a splitting

function for each publication, the second generates Ids for each author name. The Approximate Dupli-

3The candidate was part of the developing team of the Cleenex data cleaning framework and responsible for code stability,
code reviewing, architectural design, and documentation.
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cate Detection is implemented with the Match operator that computes the edit-distance for each author

name pair and returns the pairs whose distance value is less than 3.

In order to effectively support the user involvement, the designer may also specify Quality Constraints

and/or Manual Data Repairs over any table of a data cleaning graph as proposed in [37]. Quality Con-

straints (QCs) are integrity rules used to assess the data quality in a specific table of the graph. The

tuples of a table that violate a quality constraint are named blamed tuples. Those blamed tuples bring

the attention of the user to data tuples that do not satisfy QCs. Manual Data Repairs (MDRs) allow the

user to manually modify data records that belong to tables in a data cleaning graph. In particular, MDRs

can be used to manually correct blamed tuples. A MDR is defined by the set of allowed actions that

can be taken over a table and a view. The actions can be: (i) updating a specific set of attribute values,

(ii) deleting tuples and/or (iii) adding tuples. The view mimics an SQL view and is used to specify the

tuples and attributes of a relational table in the graph or the set of blamed tuples that are shown to the

user. When the user manually repairs a data tuple, a MDR instance is created. An MDR instance stores

the MDR name and the specific manual data modification performed by the user. MDR instances are

then used to apply the user manual data repair to the relational table when the data cleaning process

re-executes.

Example 5.1.2. User feedback in a data cleaning process. Consider a table PublicationAuthors that

stores publication ids and its author names as shown in Figure 5.2. A User executes the data cleaning

process explained in Example 5.1.1. To simplify, we focus on the first data transformation, where we

apply a Splitting transformation (using two Map operators in Cleenex) that splits the strings containing

several author names stored in the Authors column of the PublicationAuthors table into several records,

and assigns an identifier to each name (Author ID). A QC to detect tuples whose author name contains

either “Others” or “and” was previously specified. A MDR is defined with a view over the blamed tuples

generated by violations of this QC, and allows the user to delete or update the author name column

value.

In Figure 5.2, we show the different iterations required to completely clean the data where a User

executes this data cleaning process and manually repairs the incorrect author names that are either

named “Others” or “and”. The mentioned iterative data cleaning process runs as follows:

• At iteration t, a User executes a data cleaning graph that, given the PublicationAuthors table as

input, creates an Authors table where Author ID is the identifier of an author and Name is its name

The tuples 1, 2, and 5 of the Authors table are blamed tuples. .

• At iteration t + 1, using the MDR, the user manually repairs the tuples 1, 2, and 5 in table Au-

thors. MDR Instance ID= 0 corresponds to deleting the tuple with the “and” value (tuple 1), MDRs

Instance ID= 1 and 2 correspond to replace the “Others” by values “Reiiken” and “Heiken”, re-

spectively. The MDR instances are then applied to the Authors table resulting in a clean table with

no “Others” and “and” values.

• At iteration t + 2, the User re-executes the data cleaning graph because the original Publicatio-

nAuthors table was modified (e.g., new data was added, Pub ID= 0). This time, the identifier of
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Figure 5.2: Example of user feedback in Cleenex during a data cleaning process.

the publication with original Pub ID= 0 is modified to Pub ID= 2. The result is once again a dirty

Authors table containing “Others” and “and” values in the name column.

• At iteration t+ 3, the User once again manually repairs the table Authors as she/he did in iteration

t+ 1, leading to a clean Authors table.

In Section 5.1.1, we detail the Cleenex software architecture; and in Section 5.1.2, we focus on the

Cleenex components that support the iterative execution of a data cleaning process.

5.1.1 Cleenex architecture

The Cleenex architecture is presented in Figure 5.3, that shows the different core components of

Cleenex and their interactions during an execution of a data cleaning process:

• Processing a program specification: Colored with green in Figure 5.3, the Program Parser
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Figure 5.3: Cleenex architecture. Each color represents a different set of components and steps: green
for program parsing and creation of internal representations; yellow for the data cleaning program (re-
execution; red for the manual data repairs produced by a Domain Expert; blue for the use of debugger
to discover the provenance of data tuples; gray for the low level components and interactions with a
relational database.

converts the input specification of a data cleaning program (modeled as a data cleaning graph),

QCs and MDRs using a SQL like language, into an internal representation consisting of Java

objects. Then, the Program Parser sends the data cleaning graph to the Catalog Manager, the QCs

to the QC Manager, and the MDRs to the MDR Manager. The Catalog Manager is responsible

for keeping the data cleaning graph internal representation, and also interacting with the Optimizer

to obtain in the annotated cleaning graph, the execution order of the data transformations in the

graph and the implementations of those data transformations, either SQL or Java algorithms. The

Scheduler receives, from the Catalog Manager, the annotated data cleaning graph.

• Executing a data cleaning program: Colored with yellow in Figure 5.3, the Scheduler follows the

execution order specified in the annotated cleaning graph and executes the data transformations.

Each data transformation is either executed as SQL or Java algorithm implementations. If it is a

SQL implementation then it is executed through the Database Manager that calls the Relational

DataBase Management System (RDBMS); otherwise it requests the transformation input data

by providing a Table x alias through the Database Manager, executes the corresponding Java

algorithm code internally, and sends the resulting data, Table x + 1, to the Database Manager

to be stored. The Database Manager in gray is the Cleenex interface to communicate with the

Relational Database Manager (RDBMS). Additionally, for each table in the graph, Table x + 1,

Cleenex applies (if exists) the MDR instances and check for blamed tuples using QCs. First, the

MDRs Manager receives the tuples from Table x + 1 to apply the MDR instances to and sends

the Delete/Insert/Update Tuples to the Database Manager to update Table x + 1. After, the QCs
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Manager analyzes the data tuples in Table x + 1 and creates the blamed tuples which are store

by the Database Manager. Only when this process finishes, the Scheduler moves to the next data

transformation in the graph.

• Applying manual data repairs: Colored with red in Figure 5.3, a Domain Expert requests the

MDR view for a Table x + 1 using the MDR alias which is executed by the MDRs Manager. The

MDRs Manager obtains the tuples corresponding to the view from the Database Manager and

returns those tuples back to the Domain Expert. The Domain Expert inspects the tuples and

perform a set of actions, allowed by the MDR, that can be either delete a tuple, insert a new tuple

or update the values of an existing one. Those actions are received by the MDRs Manager which

creates MDR instances and requests the Database Manager to update the Table x+ 1 with those

actions. Finally, the QCs Manager receives the updated Table x+1 and applies the specified QCs

which potentially produce more blamed tuples.

• Debugging data tuples: Colored with blue in Figure 5.3, the user requests to the Debugger the

visualization of tuples that originated a specific tuple (backward) or tuples that were produced

by executing a data transformation over a given tuple (forward). The Debugger obtains the data

cleaning graph from the Scheduler and creates a query that, based on the primary keys of the

tuples in a Table y, finds the tuples that originated those (backward) in table y−1 or were produced

(forward) by those in table y + 1. The Database Manager executes the query against the RDBMS

and returns the expected tuples to the user.

5.1.2 Supporting the Iterative Execution of a Data Cleaning Process

The execution of data cleaning process is typically iterative mainly due to the following two cases:

(i) the design of a data cleaning process is an iterative process where the designer refines the data

cleaning graph, executes it, and then evaluates the quality of data produced; and (ii) the initial input

data may change, e.g., when the amount of data is very large, it is more efficient to use a data sample

(i.e., a small set of data) to design the data cleaning process. After the process is refined, the designer

executes the data cleaning process to the whole data set. Due to those two cases, Cleenex may produce

new data in different points of the graph, e.g., the new PublicationAuthors table in Figure 5.2 iteration

t+ 2.

Every time a data cleaning process reruns, Cleenex automatically reapply the actions contained in

MDR instances produced in a previous run to the relational data tables in the graph; otherwise, the user

has to perform those actions again as in Figure 5.2 iteration t+ 3.

There are two problems with the automatic reapplication of MDR instances. First, the MDR instances

have to persist in disk, so that they are not lost when a program re-executes and the MDR instances

can be immediately applied if there are no changes to the data. Second, the reapplication of MDR

instances to modified and/or additional data as explained above is a challenge because the data tuples

may not hold all their original attribute values. For example, in Figure 5.2 iteration t + 2, the incorrect

author names, i.e., ”and“ and ”Others“ values, have now different Author ID values, so Cleenex is not
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able to reapply the data modification to the right tuple. We define that a MDR instance conflict arises

when Cleenex cannot automatically apply a MDR instance due to considerable data changes that do not

guarantee that the modifications still hold. For example, Cleenex is not able to find which MDR instance

needs to be applied to each ”Others“ value in Figure 5.2 iteration t+ 2.

To support the iterative execution of a data cleaning process with the above constraints, we first

added to Cleenex the MDR Persistence component that prevents the loss of previous MDR instances

when the data cleaning process is re-executed with the same data. Then, we created the MDR Recovery

component that tries to reapply MDR instances in case of conflict or asks the user in a concise way for

additional feedback. To develop such component, in [74], the author introduced the notion of determinis-

tic attributes in a Cleenex data cleaning graph specification. Deterministic attributes are attributes whose

values do not change during the iterative execution of a data cleaning process (e.g., column Name of

table Authors in Figure 5.2). So, only the values of deterministic attributes are taken into account to

reapply MDR instances, while the remaining values are ignored because they may have changed. In the

context of this component, we formulated and implemented an algorithm (detailed in Section 5.1.2.1)

for the detection and automatic recovery of MDR instances4, that tries as much as possible with 100%

guarantees to recover the MDR instances from a conflict. If it is not possible to recover, the algorithm

calls the user to help selecting the right data tuples to which the MDR instance should be reapplied.

Example 5.1.3. Iterative data cleaning process. To exemplify the usefulness of the MDR Persistence

and the MDR Recovery components, we revisit the example of Figure 5.2 - recreating iterations t + 2

and t+ 3 in Figure 5.4 using these two components:

• At iteration t + 2, the generated dirty Authors table is passed as input to the MDR Recovery

component. The MDR Recovery component obtains the MDR instances created in iteration t + 1

through the MDR Persistence component, that retrieves them from the database. For Instance

ID= 0, it can recover the tuple because there is only one “and” and it is placed in a deterministic

column, so it removes the tuple. Since there are two tuples with “Others”, the component is not

able to identify which MDR instance to apply to each, so it creates a conflict for MDR instances 1

and 2 saving the candidate tuples Primary Keys (PK) values (in this example, the Primary Key is

the Author ID column).

• At iteration t+ 3, the User selects one conflict to resolve. She/he selects the MDR Instance ID= 1

and selects the tuple with Author ID= 7 to which this MDR instance should apply to. The MDR

instance is updated with the new tuple and it is applied to the Authors table, leaving only one tuple

with the value “Others”. The MDR recovery component is called with the new MDR instances and

the new Author table. Now, because only one tuple contains the “Others” value, it is able to assign

it to MDR Instance ID= 2, then updates the MDR instance and applies it to the Authors table

resulting in a cleaned table. Note that, although the number of iterations is the same, the User only

had to select the tuple to which an MDR instance should be applied while before, as illustrated in

Figure 5.2, the User had to produce the MDR instances from scratch.
4The thesis [74] proposed the first version of the algorithm and developed the support for conflict resolution in the graphical

user interface of Cleenex.
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Figure 5.4: Example of user feedback in Cleenex using the MDR Persistence and the MDR recovery
components during an iterative data cleaning process.

5.1.2.1 Conflict Detection and Automatic Recovery Algorithm

We present the algorithm for the conflict detection and automatic recovery of MDR instances in

Algorithm 1. This algorithm receives a list of MDR instances that belong to the same MDR, applies the

MDR instances that have no conflicts, and outputs a list of MDR instance conflicts to be resolved by the
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user.

Algorithm 1: MDR instance recovery and conflict resolution algorithm
Input:

view = view specified in the MDR, includes the tuples in the view;

mdr instances = list of MDR instances that belong to the same MDR;

pk atts = list of attributes that constitute the primary key of the base relation of the view vr;

det atts = list of attributes of the base relation of the view vr that have been declared as
deterministic;

Output: conflicts = list of MDR instance conflicts

1 conflicts← ∅;
2 foreach inst ∈ mdr instances do
3 if inst.action = insert then

/* There are no MDR Conflicts */

4 view← view ∪ inst.new tuple;
5 else if pk atts ⊆ det atts then

/* There are no MDR Conflicts */

6 applyMDRInstance (inst, pk atts, view);
7 else
8 candidate tuples← {tuple ∈ view such that tuple.att = inst.old tuple.att for all

att ∈ det atts};
9 if |candidate tuples| = 1 then

/* There are no MDR Conflicts */

10 applyMDRInstance (inst, det atts, view);
11 else
12 new conflict← conflict (inst, candidate tuples);
13 conflicts← conflicts ∪ new conflict;
14 end
15 end
16 end
17 return conflicts;

/* Applies an MDR instance to all tuples that for all attributes passed as

argument, the values are equal to the instance old tuple values */

18 Procedure applyMDRInstance ( inst, atts, view):
19 foreach tuple ∈ view do
20 if tuple.att = inst.old tuple.att for all att ∈ atts then
21 if inst.action = delete then
22 view← view \tuple;
23 else

/* Update MDR */

24 new tuple← tuple;
25 foreach att ∈ inst.action.update do
26 new tuple.att← inst.new tuple.att ;
27 end
28 view← view \tuple ∪ new tuple;
29 end
30 end
31 end

At each new execution of the data cleaning graph, first the algorithm detects existing MDR instance

conflicts by evaluating each MDR instance (Algorithm 1 line 2). If a MDR instance contains an insert

action, then there is no conflict possible, and it is immediately applied (lines 3-4). If all attributes involved
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in the MDR instance are deterministic then there is also no conflict, and the MDR instance can be applied

(lines 5-6). For each remaining MDR instances, the algorithm checks the tuples whose deterministic

attribute values are equal to the MDR instance Old Tuple values (line 8). If there is only one tuple (line

9), then the algorithm can apply the MDR instance (line 10), e.g., deleting “and” in Figure 5.4 iteration

t + 2 and updating the remaining “Others” value in Figure 5.4 iteration t + 3; otherwise a new conflict

has to be created (lines 12-13), e.g., the two “Others” values in Figure 5.4 iteration t + 2. A conflict

contains the original MDR instance and the tuples found whose deterministic values are equal to the

MDR instance Old Tuple values. When the algorithm finishes, the user can inspect the conflicts returned

by the algorithm and decide how to resolve them.

5.2 User Involvement Evaluation

We conducted an extensive experimental validation to evaluate the support for the user involvement

in Cleenex with two studies: (i) with a simulated user, we evaluated the Cleenex components regarding

their support for the user feedback during a data cleaning process; and (ii) with real users, we conducted

an experimental evaluation of user involvement during a data cleaning process with Cleenex against

two tools typically used for data cleaning: OpenRefine and PDI. In [79], we conducted a preliminary

experimental study to compare Cleenex against OpenRefine and PDI in the context of Approximate

Duplicate Detection and Consolidation.

We report the research questions, experimental setup and obtained results to evaluate Cleenex

support for the user feedback in Section 5.2.1. We detail our experiments with real users on Cleenex,

PDI, and OpenRefine in Section 5.2.2.

5.2.1 User Feedback Support in Cleenex

The goal of this study was to evaluate the effectiveness of the different components incorporated in

Cleenex (namely QCs/MDRs Managers, MDRs persistence, and MDRs recovery) in terms of their effect

for reducing the user effort when manually cleaning data during a data cleaning process. Specifically,

we investigate the following research questions:

RQ1.1: What is the impact of having QCs and MDRs in the context of a data cleaning process?

RQ1.2: What is the impact of having persistent MDR instances in the context of an iterative data cleaning

process?

RQ1.3: What is the impact of having MDR conflict resolution in the context of an iterative data cleaning

process?

For that purpose, we programmed an ideal user to execute a data cleaning program, refined by a

designer, and to manually clean the required data during a data cleaning process to obtain 100% clean

data. We used the following two datasets:
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Without Qcs/MDRs With Qcs/MDRs

Visualization # tuples visualized 1413 365 (74%)
# chars visualized 51259 7308 (86%)

Insertion # tuples inserted 214 0 (100%)
# chars inserted 2589 0 (100%)

Update # tuples updated 0 100 (N/A)
# chars updated 0 939 (N/A)

Deletion # tuples deleted 1 165 (-16400%)

Total # tuples inserted/updated/deleted 215 265 (-23%)
# chars inserted/updated 2589 939 (64%)

Table 5.1: Simulated user results for executing the first iteration of the data cleaning process for the BPA
dataset. Gain percentage in relation to the left column components is reported in parentheses.

Without MDRs
Persistence and
MDRs Recovery

With MDRs Per-
sistence and
without MDRs
Recovery

With MDRs Per-
sistence and
MDRs Recovery

Visualization # tuples visualized 365 265 (27%) 106 (60%)
# chars visualized 7308 6426 (12%) 2481 (61%)

Insertion # tuples inserted 0 0 (N/A) 0 (N/A)
# chars inserted 0 0 (N/A) 0 (N/A)

Update # tuples updated 100 0 (100%) 0 (N/A)
# chars updated 939 0 (100%) 0 (N/A)

Deletion # tuples deleted 165 165 (0%) 26 (84%)

Total # tuples inserted/updated/deleted 265 165 (38%) 26 (84%)
# chars inserted/updated 939 0 (100%) 0 (N/A)

Table 5.2: Simulated user results per iteration of the iterative data cleaning process excluding the first
one for the BPA dataset. Gain percentage in relation to the left column components is reported in
parentheses.

1. Big Publication Authors (BPA) which consists in a table that lists publications and corresponding

authors where some author names are written in distinct ways (approximate duplicates);

2. Customers (C) which contains three tables: one for customers with inconsistent phone number

formats, incorrect/missing values in customer name, phone number, street and city, another table

for treatments where an insurance names are written differently (approximate duplicates) and a

master data table that contains a cleaned subset of customer records.

For each dataset, we evaluated the user effort needed to clean the remaining data quality problems

given a data cleaning program design by an expert. For that purpose, we measured the number of

tuples and characters (chars) visualized, inserted, updated and deleted that the user had to perform to

obtain 100% clean data. Table 5.1 reports the results of executing the data cleaning program for the

Big Publication Authors (BPA) dataset for a first iteration of the iterative data cleaning process using

Cleenex with and without QCs and MDRs. In Table 5.2, we report further iterations over the same data

cleaning process for BPA with QCs and MDRs. We measured the user effort when cleaning again the

same data quality problems with and without the MDRs Persistence component and with and without

the MDRs Recovery component. Table 5.3 reports the results of executing the data cleaning program

for the Customers (C) dataset with and without QCs and MDRs.

RQ1.1. Based on the results in Tables 5.1 and 5.3, we observe that performing a data cleaning process

with QCs/MDRs reduces the user effort because the user needs to visualize less data (74%-99% less

tuples and 86%-99% less chars) and perform effortless manual data repairs comparatively to the same
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Without Qcs/MDRs With Qcs/MDRs

Visualization # tuples visualized 176200 1739 (99%)
# chars visualized 9902194 145017 (99%)

Insertion # tuples inserted 0 0 (N/A)
# chars inserted 0 0 (N/A)

Update # tuples updated 268 69 (74%)
# chars updated 5851 333 (94%)

Deletion # tuples deleted 0 200 (N/A)

Total # tuples inserted/updated/deleted 268 269 (0%)
# chars inserted/updated 5851 333 (94%)

Table 5.3: Simulated user results for the C dataset. Gain percentage in relation to the left column
components is reported in parentheses.

process without QCs/MDRs.

RQ1.2. The MDRs Persistence component reduced the user effort when manually data cleaning in an

iterative data cleaning process. As observable in Table 5.2, the tuples updates were reduced to zero

and the tuples visualized dropped by 27%.

RQ1.3. Regarding an iterative data cleaning process with the MDRs Recovery component, we observe

also in Table 5.2 that this component reduces the user effort. The MDRs Recovery component was able

to recover most of the manual data repair instances created by the user in previous iterations of the

data cleaning process. For the cases where recovery was not possible, the MDRs Recovery component

guided the user into recovering conflicting MDR instances from previous iterations with less effort (84&

less deleted tuples) than creating those MDR instances again.

5.2.2 User Involvement Support in a Data Cleaning Process

In this study, we aimed at evaluating whether Cleenex effectively helps program designers and do-

main expert users to perform data cleaning tasks in a realistic scenario. We investigated different as-

pects of usability of Cleenex, OpenRefine, and PDI. Specifically, we try to answer the following research

questions:

RQ2.1: Are Cleenex data cleaning programs easier to understand than programs specified using the other

two tools used for data cleaning?

RQ2.2: Given a specification of a data cleaning program written and refined by an expert, using Cleenex

requires less time/user effort to obtain cleaned data than using the other two tools used for data

cleaning?

RQ2.3: Given a specification of a data cleaning program written and refined by an expert, does the data

obtained with Cleenex have higher quality than the data obtained with the other two tools used for

data cleaning?

RQ2.4: Does the debugging functionality help to obtain more correct data than the other two tools used for

data cleaning?

The preparation of this study included: (i) a video tutorial for each tool, (ii) an experimental plan, (iii)

an experimental guide, and (iv) a satisfaction questionnaire. We asked the users to perform two tasks
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Group ID Question Type/Scale Research
Question

User Perception
(after
completing Task
1)

UP1 How easy was it to understand the data cleaning program? 1- very difficult, 7- very easy RQ2.1
UP2 How difficult was it to answer the questions about the data

cleaning program?
1- very difficult, 7- very easy RQ2.1

UP3 How much effort was required to answer the questions
about the data cleaning program?

1- almost no effort, 7 – extreme effort RQ2.1

Program
Specification

PS1 It was easy to understand this tool operators 1 - strongly disagree, 7 – strongly agree RQ2.1
PS2 It was easy to understand the source of specific records

using this tool
1 - strongly disagree, 7 – strongly agree RQ2.3

Manually
correcting data

MCD1 It was easy to find the records that I wanted to modify using
[this tool].

1 - strongly disagree, 7 – strongly agree RQ2.2

MCD2 It was easy to manually repair records using [this tool]. 1 - strongly disagree, 7 – strongly agree RQ2.2

User Preference

UPF1 What would you use to specify a data cleaning program? 1 – PDI/OpenRefine, 7 – Cleenex Overall
UPF2 Please describe the main reasons for your answer above. Open answer Overall
UPF3 Consider that you have the same data cleaning program

implemented in both tools, which tool would you use to un-
derstand the source of specific records in a data cleaning
program?

1 – PDI/OpenRefine, 7 – Cleenex Overall

UPF4 Please describe the main reasons for your answer above. Open answer Overall
UPF5 Consider that you have the same data cleaning program

implemented in both tools, what would you use to manually
modify data?

1 – PDI/OpenRefine, 7 – Cleenex Overall

UPF6 Please describe the main reasons for your answer above. Open answer Overall
UPF7 Based on your experience with Cleenex, please describe

which additional feature(s) would you like to see imple-
mented and why (you can compare with other tools)?

Open answer Overall

Table 5.4: Perception questions asked to the user.

Group Question Scale

Usefulness

Using this tool to perform data cleaning tasks would enable me to accomplish tasks
more quickly.

1 - strongly disagree, 7 – strongly agree

Using this tool to perform data cleaning tasks would improve my performance (quality
of output).

1 - strongly disagree, 7 – strongly agree

Using this tool to perform data cleaning tasks would increase my productivity (effi-
ciency of production, Output/Input).

1 - strongly disagree, 7 – strongly agree

Using this tool would enhance my effectiveness (accomplish to do the right tasks) to
perform data cleaning tasks.

1 - strongly disagree, 7 – strongly agree

Using this tool would make it easier to perform data cleaning tasks. 1 - strongly disagree, 7 – strongly agree
I would find this tool useful to perform data cleaning tasks. 1 - strongly disagree, 7 – strongly agree

Ease of use

Learning to operate with this tool would be easy for me. 1 - strongly disagree, 7 – strongly agree
I would find it easy to get this tool to do what I want it to do. 1 - strongly disagree, 7 – strongly agree
My interaction with this tool would be clear and understandable. 1 - strongly disagree, 7 – strongly agree
I would find this tool to be flexible to interact with. 1 - strongly disagree, 7 – strongly agree
It would be easy for me to become skillful at using this tool. 1 - strongly disagree, 7 – strongly agree
I would find this tool easy to use. 1 - strongly disagree, 7 – strongly agree

Table 5.5: TAM satisfaction questionnaire questions asked for the user.

and answer a set of questions before, between, and after performing these tasks in order to access

their perception. The satisfaction questionnaire included: (i) questions about the user perception, as

listed in Table 5.4 distinguished by the Research Question identifier they are intend to help answer or

classified as Overall if a general question about user preference, and (ii) the questions from the standard

Technology Acceptance Model (TAM) questionnaire [27] as in Table 5.5. TAM questions are grouped into

usefulness and ease of use. The evaluation of these TAM questions is usually performed by analyzing

the sum of the scores obtained for each group.

The first task, Task 1, contains several questions that evaluate the user’s understandability regarding

one of the data cleaning programs designed by an expert. We evaluated the score obtained for each

understandability question to measure how easier is to understand a program. The second task, Task

2, uses the same data cleaning program and requires the user to manually clean data in order to obtain

100% clean data. We measured the final output data quality in terms of Precision, Recall and F1-

Measure. During the execution of Task 1 and Task 2, we measured the number of clicks and keys

pressed by the user, as well as the time to complete each task and the number of times the Cleenex
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Cleenex Vs OpenRefine Cleenex Vs PDI Experts – PDI Vs Cleenex
Measure Type Tools Measures AVG MEDIAN P-value AVG MEDIAN P-value AVG MEDIAN P-value

Task1 -
Understandability

Cleenex Task 1 # Correct
Answers

7.67 8.00 1.25E-04 6.92 7.00 1.21E-06 6.88 7.00 1.05E-06

Other Tool Task 1 # Correct
Answers

5.92 6.00 5.75E-01 5.00 5.00 5.98E-01 6.50 7.00 6.32E-05

Tools Difference Task 1 # Correct
Answers

1.75 2.00 3.91E-03 1.92 2.00 9.77E-04 0.38 0.00 1.97E-01

User Effort

Cleenex Task1 # Clicks 57.92 38.00 5.76E-03 39.58 36.50 7.11E-01 58.88 53.00 1.83E-01
Other Tool Task1 # Clicks 117.08 78.00 3.78E-04 171.00 154.00 7.15E-01 116.38 85.00 4.61E-03
Tools Difference Task1 # Clicks -59.17 -29.00 3.27E-02 -131.42 -120.50 4.88E-04 -34.38 -37.00 1.48E-01
Cleenex Task1 # Keys 0.00 0.00 1.00E-05 0.00 0.00 1.00E-05 0.38 0.00 4.79E-04
Other Tool Task1 # Keys 5.92 0.00 2.78E-05 3.83 1.00 1.06E-04 2.38 0.00 1.52E-05
Tools Difference Task1 # Keys -5.92 0.00 1.54E-01 -3.83 -1.00 9.76E-02 0.25 0.00 3.57E-01

User Perception
(after completing
the task)

Cleenex Answers to UP1 5.67 6.00 2.28E-02 5.83 6.00 2.90E-03 5.38 5.00 3.24E-01
Other Tool Answers to UP1 4.08 4.00 2.11E-01 5.58 6.00 5.88E-02 5.00 5.00 1.20E-01
Tools Difference Answers to UP1 1.58 1.50 3.91E-03 0.25 0.00 5.63E-01 0.38 0.50 5.31E-01
Cleenex Answers to UP2 5.58 5.50 1.18E-01 5.42 6.00 2.81E-02 5.88 6.00 3.70E-02
Other Tool Answers to UP2 3.42 3.00 1.52E-02 4.00 4.00 2.59E-01 5.13 5.00 1.95E-01
Tools Difference Answers to UP2 2.17 2.00 4.88E-04 1.42 1.50 6.54E-02 0.75 1.00 2.19E-01
Cleenex Answers to UP3 3.00 2.50 6.57E-02 2.92 2.50 1.95E-02 2.63 2.50 2.45E-01
Other Tool Answers to UP3 4.50 5.00 1.73E-02 4.33 5.00 5.89E-01 3.25 3.00 4.08E-01
Tools Difference Answers to UP3 -1.50 -1.50 3.81E-02 -1.42 -1.50 3.13E-02 -0.63 -0.50 3.13E-01

Easiness User
Perception

Cleenex Answers to PS1 5.25 6.00 2.72E-02 6.08 6.00 1.52E-02 5.25 5.50 1.85E-02
Other Tool Answers to PS1 3.42 3.50 1.89E-01 4.92 5.50 9.98E-02 5.13 5.50 3.56E-02
Tools Difference Answers to PS1 1.83 1.50 4.10E-02 1.17 0.50 9.38E-02 0.13 0.00 7.85E-01
Cleenex Answers to PS2 5.67 6.00 2.28E-02 6.33 6.50 5.21E-03 6.63 7.00 4.79E-04
Other Tool Answers to PS2 3.25 3.00 4.95E-01 4.58 5.50 5.88E-02 5.25 6.00 7.45E-02
Tools Difference Answers to PS2 2.42 2.00 9.77E-04 1.75 1.50 4.69E-02 1.38 1.00 6.25E-02

Table 5.6: Research metrics and answers related to RQ2.1.

debugger was used. Users had to perform both tasks using Cleenex and using another tool. So, we used

two datasets with the corresponding data cleaning program: (i) Childhood Locations (CL) based on a

real dataset that lists Chicago early childhood locations that contains approximate duplicated records;

and (ii) Publication Authors (PA) consists in a table that lists publications and corresponding authors

where some author names are written in distinct ways (approximate duplicates).

There were 3 groups of users: (i) users who performed experiments on Cleenex and OpenRefine,

(ii) users who performed experiments on Cleenex and PDI, and (iii) users who typically use PDI in their

work, and performed the experiments using Cleenex and PDI. The regular participants (i.e., user groups

(i) and (ii)) in this study were 24 (12 in each group) and the PDI experts (i.e., user group (iii)) were eight

in total.

We organized the different results per research question. We report the results for RQ2.1, RQ2.2,

RQ2.3, and RQ2.4 respectively in Tables 5.6, 5.7, 5.8, and 5.9. In addition, we report overall results

regarding the TAM scores and user preferences in Table 5.10. For each tool and for each question

score and measure, we report the average, the median of the values and the P-value. The P-value

corresponds to a normality test, namely Shapiro Test. We consider that the variable (i.e., the results

for a given tool) follow a normal distribution if P-value <= 0.05. For each question score and measure,

when possible we also report the difference between the values obtained for Cleenex and for another

tool in a column identified as Tools Difference. For the difference, we report the average, the median

and the P-value that corresponds to a pair test over the values obtained on both tools. If both testing

variables (measure values obtained with Cleenex and another tool) are normally distributed, we applied

the Paired t-test, otherwise we applied the Wilcoxon Test. We statistically accept that Cleenex is better

in a particular measure or question if the test passes with P-value <= 0.05.

RQ2.1. For the RQ2.1, Cleenex did not pass the statistical test against OpenRefine in Task 1 execution

time and number of keys pressed, still, the participants took less time and used less clicks. Both user

perception and score passed the test. Regarding Cleenex against PDI, we observe that the score, UP3,
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Cleenex Vs OpenRefine Cleenex Vs PDI Experts – PDI Vs Cleenex
Measure Type Tools Measures AVG MEDIAN P-value AVG MEDIAN P-value AVG MEDIAN P-value

User Effort

Cleenex Task2 Execution
Time (s)

636.50 576.50 9.44E-01 248.83 199.50 1.70E-03 234.00 208.50 2.61E-02

Other Tool Task2 Execution
Time (s)

850.42 834.00 9.28E-01 508.75 423.50 9.42E-03 586.88 526.00 4.38E-02

Tools Difference Task2 Execution
Time (s)

-180.50 -142.00 4.88E-04 -259.92 -296.00 1.72E-02 -352.88 -336.00 1.99E-02

Cleenex Task2 # Clicks 52.08 44.00 3.37E-02 14.67 11.50 4.99E-02 21.38 21.50 3.56E-01
Other Tool Task2 # Clicks 113.50 101.00 1.06E-01 72.42 71.50 2.68E-01 116.38 85.00 4.61E-03
Tools Difference Task2 # Clicks -56.58 -47.00 1.46E-03 -57.75 -58.50 1.95E-03 -95.00 -63.50 7.81E-03
Cleenex Task2 # Keys 0.17 0.00 1.21E-06 0.00 0.00 1.00E-05 0.00 0.00 1.00E-05
Other Tool Task2 # Keys 14.67 6.00 9.62E-04 28.17 1.00 1.52E-04 2.38 0.00 1.52E-05
Tools Difference Task2 # Keys -14.17 -6.00 3.25E-02 -28.17 -1.00 9.67E-02 -2.38 0.00 2.70E-01

User Effort
Perception

Cleenex Answers to MCD1 5.58 6.00 2.80E-02 6.33 7.00 1.05E-03 6.25 6.50 1.85E-02
Other Tool Answers to MCD1 3.17 3.50 6.05E-02 3.92 4.00 5.50E-01 3.63 3.50 1.62E-01
Tools Difference Answers to MCD1 2.42 2.50 9.77E-03 2.42 2.50 5.86E-03 2.63 3.00 1.56E-02
Cleenex Answers to MCD2 5.25 6.00 8.92E-03 6.50 7.00 1.69E-04 7.00 7.00 1.00E-05
Other Tool Answers to MCD2 3.17 3.00 8.69E-02 3.75 3.50 8.93E-01 5.25 5.50 3.34E-01
Tools Difference Answers to MCD2 2.08 2.00 2.88E-02 2.75 3.00 3.91E-03 1.75 1.50 3.13E-02

Table 5.7: Research metrics and answers related to RQ2.2.

Cleenex Vs OpenRefine Cleenex Vs PDI Experts – PDI Vs Cleenex
Measure Type Tools Measures AVG MEDIAN P-value AVG MEDIAN P-value AVG MEDIAN P-value

Task 2 – Output
Quality

Cleenex Precision 0.83 1.00 9.81E-06 1.00 1.00 1.00E-05 1.00 1.00 1.00E-05
Other Tool Precision 0.51 0.50 3.52E-02 0.94 1.00 4.40E-05 1.00 1.00 1.00E-05
Tools Difference Precision 0.32 0.25 1.06E-02 0.06 0.00 8.19E-02 0.00 0.00 1.00E+00
Cleenex Recall 0.79 1.00 6.71E-05 1.00 1.00 1.00E-05 1.00 1.00 1.00E-05
Other Tool Recall 0.71 1.00 2.34E-04 0.94 1.00 1.21E-06 0.96 1.00 1.05E-06
Tools Difference Recall 0.08 0.00 1.66E-01 0.06 0.00 3.39E-01 0.04 0.00 3.51E-01
Cleenex F1-Measure 0.81 1.00 4.55E-05 1.00 1.00 1.00E-05 1.00 1.00 1.00E-05
Other Tool F1-Measure 0.58 0.67 2.80E-02 0.92 1.00 9.77E-05 0.98 1.00 1.05E-06
Tools Difference F1-Measure 0.23 0.17 1.18E-02 0.08 0.00 9.65E-02 0.03 0.00 3.51E-01

Table 5.8: Research metrics and answers related to RQ2.3.

Cleenex Vs OpenRefine Cleenex Vs PDI Experts – PDI Vs Cleenex
Measure Type Tools Measures AVG MEDIAN P-value AVG MEDIAN P-value AVG MEDIAN P-value

Debugger Usage Cleenex # Debugger uses in
Task1

1.58 1.50 6.93E-02 1.67 1.50 5.21E-03 2.75 2.00 1.77E-05

Cleenex # Debugger uses in
Task2

0.00 0.00 1.00E-05 0.00 0.00 1.00E-05 0.00 0.00 1.00E-05

User Perception

Cleenex Answers to PS2 5.67 6.00 2.28E-02 6.33 6.50 5.21E-03 6.63 7.00 4.79E-04
Other Tool Answers to PS2 3.25 3.00 4.95E-01 4.58 5.50 5.88E-02 5.25 6.00 7.45E-02
Tools Difference Answers to PS2 2.42 2.00 9.77E-04 1.75 1.50 4.69E-02 1.38 1.00 6.25E-02
Overall Answers to UPF3 6.08 6.00 2.75E-02 6.58 7.00 4.82E-04 1.38 1.00 4.45E-04

Table 5.9: Research metrics and answers related to research RQ2.4.

Cleenex Vs OpenRefine Cleenex Vs PDI Experts – PDI Vs Cleenex
Measure Type Tools Measures AVG MEDIAN P-value AVG MEDIAN P-value AVG MEDIAN P-value

TAM

Cleenex Sum TAM Useful-
ness Answers

34.67 36.00 6.02E-01 39.67 40.00 1.37E-02 33.00 32.00 N/A

Other Tool Sum TAM Useful-
ness Answers

23.00 23.00 5.19E-01 29.67 32.00 3.00E-01 N/A N/A N/A

Tools Difference Sum TAM Useful-
ness Answers

11.67 11.00 3.91E-03 10.00 8.00 5.86E-03 N/A N/A N/A

Cleenex Sum TAM Ease of
Use Answers

35.08 36.00 2.06E-01 37.08 38.00 6.14E-01 31.50 33.50 N/A

Other Tool Sum TAM Ease of
Use Answers

23.33 23.00 8.84E-02 28.75 26.00 3.35E-01 N/A N/A N/A

Tools Difference Sum TAM Ease of
Use

11.75 10.50 9.77E-04 8.33 6.00 3.91E-03 N/A N/A N/A

User Preference Overall
Answers to UPF1 6.17 6.00 1.53E-02 5.75 6.00 3.80E-02 4.13 4.00 4.37E-02
Answers to UPF2 6.08 6.00 2.75E-02 6.58 7.00 4.82E-04 6.00 6.50 4.45E-04
Answers to UPF5 5.75 6.00 1.72E-02 6.42 7.00 1.64E-03 5.25 6.50 1.07E-02

Table 5.10: Research metrics and answers related to overall analysis and user preferences.

PS2 and the number of clicks pass the test, the other metrics indicate that Cleenex was better than

PDI, but the difference was not statistically significant. In the experiments with PDI experts, we could

not statistically prove any metric because the P-values of the Tools Differences are higher than 0.05.

Nevertheless, experts performed similar or better on Cleenex, and answer the questions positively to

Clennex against PDI.

RQ2.2. Regarding RQ2.2, almost all metrics in all types of experiments (Cleenex vs OpenRefine,

Cleenex vs PDI, and PDI experts) are statistically proved. The exception is the number of keys pressed
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for Cleenex vs PDI and PDI experts that did not pass the test. Still, participants on Cleenex pressed less

keys than in other tool.

RQ2.3. RQ2.3 depends on the output data quality resulting from Task 2. Only when we compare

Cleenex against OpenRefine we can statistically prove the results of Precision and F1-Measure. How-

ever, we can observe that participants using Cleenex got better quality than using another tool even

among the PDI experts.

RQ2.4. For RQ2.4, we observe that the debugger was used on Task 1 but was never used on Task 2.

Regarding PS2, we verify with statistically significant that users consider easier to find the source of a

record using Cleenex instead of OpenRefine and PDI. Among PDI experts, we also got a better PS2 but

without statistically proof. Overall, UPF3, participants (including PDI experts) preferred Cleenex to other

tool.

Based on the obtained results:

• We concluded that:

– Cleenex data cleaning programs are easier to understand than programs specified using the

other considered tools;

– Given a specification of a data cleaning program written and refined by an expert, Cleenex

requires less time/user effort to obtain cleaned data than another tool;

– The debugging functionality helps to obtain more correct data than using the other tools.

• Still, with no statistical proof but with positive results, we observed that:

– Given a specification of a data cleaning program written and refined by an expert, the data

obtained with Cleenex has higher quality than using any of the other two tools.

• The user answer values to the TAM [27] questionnaire and to the quantitative Overall questions on

User Preference (UPF1, UPF3, and UPF5) about user tool preference are greater for Cleenex than

for OpenRefine and PDI, and when applicable are statistically significant. Those answers indicate

that users prefer to perform data cleaning tasks with Cleenex than with any of the other two tools.

• For the open answers UPF2, UPF4, UPF6, and UPF7, the users highlight Cleenex components

that help in designing the data cleaning program and manual cleaning data, such as the graph and

code editors, the debugger, and the Manual Data Repairs (MDRs) that do not exist in OpenRefine

and PDI.

In summary, from both experimental studies, we conclude that the new developed Cleenex success-

fully helps reducing the user effort to effectively clean data during a data cleaning process.
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Chapter 6

Conclusions

In this Chapter, we summarize this thesis work and the resulting main contribution in Section 6.1,

and we describe and discuss possible directions for future research works in Section 6.2.

6.1 Summary and Main Contributions

In this thesis, we contributed to two important subjects for data cleaning: (i) acronym expansion to

expand acronyms found in text documents and (ii) support the user involvement during the execution of

a data cleaning program.

Specifically, we described our main contributions in acronym expansion: (i) the end-to-end Acronym

eXpander (AcX) system that expands acronyms found in text; (ii) three benchmarks to compare in-

and out- expansion techniques and end-to-end systems; (iii) a new dataset constituted by in and out

expansions used to evaluate the end-to-end systems. The AcX system synthesizes and extends the

best of previous work on acronym expansion.

In the process, our major technical findings are:

• In-expansion rule-based techniques (SH and MadDog-in) usually work best and require little exe-

cution time.

• For out-expansion, SciDr-out and Cosine similarity (Cossim) or Support Vector Machines (SVMs)

with SBERT usually work best , followed by Cosine similarity (Cossim) and Support Vector Ma-

chines (SVMs) with either Classic Context Vector (CCV) or Doc2Vec.

• There is still a significant gap between the best AcX pipelines and human-level performance.

There are five data and software products of our work that future researchers can either extend or

use as a basis of comparison.

1. The first human-annotated dataset for end-to-end acronym expander systems.

2. Three benchmarks to evaluate: (i) in-expansion techniques, (ii) out-expansion techniques, (iii) the

combination in an end-to-end setting.
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3. The end-to-end AcX system is available publicly and can be applied to arbitrary languages, follows

hyperlinks, and can incorporate new in- and out-expansion techniques.

In order to support the user involvement during the execution of a data cleaning program, we per-

formed the following main contributions:

1. Cleenex, a data cleaning framework, developed into a stable version.

2. A conflict detection and automatic recovery of MDR instances algorithm, and components that

enable the iterative execution of data cleaning programs with automatic re-application of manual

data repair.

3. An extensive user involvement evaluation that includes two studies:

(a) The evaluation of the Cleenex components that support user feedback in a data cleaning

process with a simulated user.

(b) The evaluation of the user involvement support in a data cleaning process of Cleenex, Open-

Refine, and Pentaho Data Integration (PDI) with real users.

When evaluating individually the Cleenex components that support the incorporation of user feed-

back using a simulated user, we verified that performing a data cleaning process with the full set of

Cleenex components (i.e., Quality Constraints, Manual Data Repairs (MDRs), MDRs persistence, and

MDRs recovery), it reduces the user effort when cleaning data.

When evaluating Cleenex against the other two tools (OpenRefine and PDI) regarding user involve-

ment, we made the following main conclusions:

1. Understand data cleaning programs is easier if specified in Cleenex.

2. The use of Cleenex lead to less time and effort to obtain clean data.

3. Users have a higher preference to use Cleenex to perform a data cleaning task.

4. Users highlight the main innovations of Cleenex such as the Manual Data Repairs (MDRs), and

the Debugger that the other tools used in the study do not support.

6.2 Future Work

For acronym expansion, because the automated techniques in the state-of-the-art fall well below

human-level accuracy levels, there is a large margin for improvement. We see the need for improve-

ments in both in-expansion (especially acronym identification) and out-expansion. Some promising av-

enues for improvements include: (i) more accurate in-expansion (e.g., additional acronym-expansion

extraction patterns), (ii) new context representation techniques, and (iii) an extensive study of ensemble

techniques.

Since AcX easily extends to other languages (e.g., our Portuguese extension was done by a high

school student), we think it would be interesting to create AcX pipelines for a variety of natural languages.
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To further improve the support of user feedback in Cleenex, the next big research task would be

to introduce Machine Learning techniques that identify and automate cleaning patters that the user

can provide during the execution of the data cleaning process. Such techniques, would replace the

user feedback given on large quantities of data and conduct a still effective data cleaning process.

Furthermore, we consider important to research the efficient support of concurrent user feedback, when

multiple experts clean data during the same data cleaning process.

In this thesis, we strived to provide new tools for researchers and general public to improve their

readability of text documents and efficiently improve data quality. The code and data produced during

this work can be extended and further developed for new research works in data cleaning.
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Appendix A

Acronym eXpansion (AcX) Dataset

Creation and Structures Details

A.1 User-Generated Dataset Creation Process

To further the annotation process, we created two forms: (i) that promoted the annotation task and

allowed for students to register1 in this task and (ii) used for the annotation process itself2. The first form

explained the overall annotation task and stated the prize each student annotator could win. Immediately

after submitting form (i), an e-mail was sent to each student containing the English Wikipedia documents

to annotate with a link to form (ii). Furthermore, in form (ii) additional details, instructions, and examples

of the annotation process were given to each student explaining the annotation process.

A.2 Data Structures Used in AcX

Each dataset referenced in Section 4.2.1.1 and Section 4.3.1.1 were in different formats and used

a different annotation notation for the acronym-expansion pairs in the dataset documents. To facilitate

access to each dataset by the benchmark, we used the following dictionaries to implement the AcX

database:

• A dictionary that maps each document id to the corresponding raw text and for out-expansion an

additional dictionary is provided with the preprocessed text.

• A dictionary that maps each document id to the acronym-expansion pairs whose acronyms are

present in text.

• A dictionary that maps each acronym in the corpus to the corresponding in- and/or out- expansions

with the document ids where they appear.

1https://forms.gle/hWJR2K64XzjpYrYY9
2https://forms.gle/VH1SCf2nr1PBAZK18
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Appendix B

In-expansion Glossary-level Results

We report Glossary-level Precision, Recall, and F1-measure values for the biomedical datasets

(i.e., Medstract, Schwartz and Hearst, BIOADI and Ab3P) for acronym extraction in Table B.1 and

for acronym-expansion pair extraction in Table B.2. We report Glossary-level Precision, Recall, and

F1-measure values for botch acronym and pair for SciAI dataset in Table B.3 and for User-Generated

dataset in Table B.4.

Acronym and
In-expansion
Technique

Acronym
Medstract SH BIOADI Ab3P Average

P R F1 P R F1 P R F1 P R F1 P R F1
SH 100.00% 88.63% 93.97% 99.48% 79.83% 88.58% 98.69% 78.26% 87.29% 98.20% 77.84% 86.84% 99.09% 81.14% 89.17%
MadDog 100.00% 63.63% 77.78% 95.96% 48.97% 64.85% 97.76% 54.24% 69.77% 99.13% 64.77% 78.35% 98.21% 57.90% 72.69%
SciBERT 80.64% 56.81% 66.67% 81.46% 68.72% 74.55% 85.51% 74.53% 79.64% 85.18% 71.87% 77.96% 83.20% 67.98% 74.71%
SciBERT with
External Data 86.48% 72.72% 79.01% 84.47% 76.13% 80.08% 88.78% 78.67% 83.42% 87.01% 76.13% 81.21% 86.69% 75.91% 80.93%

SciDr 93.10% 61.36% 73.97% 84.30% 59.67% 69.87% 90.40% 64.38% 75.21% 88.56% 68.18% 77.04% 89.09% 63.40% 74.02%
SciDr-in with
External Data 91.89% 77.27% 83.95% 91.74% 77.77% 84.18% 92.10% 79.71% 85.46% 88.11% 71.59% 78.99% 90.96% 76.59% 83.15%

Table B.1: In-expansion techniques Glossary-level Precision, Recall and F1-measures for acronym for
each biomedical dataset (Medstract, SH, BIOADI, and Ab3p) and the averages.

Acronym and
In-expansion
Technique

Pair
Medstract SH BIOADI Ab3P Average

P R F1 P R F1 P R F1 P R F1 P R F1
SH 100.00% 88.63% 93.97% 95.38% 76.54% 84.93% 93.99% 74.53% 83.14% 94.98% 75.28% 83.99% 96.09% 78.75% 86.51%
MadDog 92.85% 59.09% 72.22% 91.93% 46.91% 62.12% 87.31% 48.44% 62.31% 95.21% 62.21% 75.25% 91.83% 54.16% 67.98%
SciBERT 64.51% 45.45% 53.33% 69.26% 58.43% 63.39% 66.27% 57.76% 61.72% 74.41% 62.78% 68.10% 68.61% 56.11% 61.64%
SciBERT with
External Data 75.67% 63.63% 69.13% 74.42% 67.07% 70.56% 72.89% 64.59% 68.49% 76.29% 66.76% 71.21% 74.82% 65.51% 69.85%

SciDr 79.31% 52.27% 63.01% 71.51% 50.61% 59.27% 75.29% 53.62% 62.63% 80.81% 62.21% 70.30% 76.73% 54.68% 63.80%
SciDr-in with
External Data 91.89% 77.27% 83.95% 81.55% 69.13% 74.83% 85.16% 73.70% 79.02% 79.72% 64.77% 71.47% 84.58% 71.22% 77.32%

Table B.2: In-expansion techniques Glossary-level Precision, Recall and F1-measures for pair for each
biomedical dataset (Medstract, SH, BIOADI, and Ab3p) and the averages.

Acronym and
In-expansion
Technique

SciAI
Acronym Pair

P R F1 P R F1
SH 94.79% 82.63% 88.29% 91.06% 79.38% 84.82%
MadDog-in 98.43% 85.97% 91.78% 96.37% 84.17% 89.86%
SciBERT 94.63% 93.58% 94.10% 90.57% 89.56% 90.06%
SciBERT with
External data 95.29% 93.49% 94.38% 91.10% 89.39% 90.24%

SciDr-in 96.75% 91.78% 94.20% 93.41% 88.62% 90.95%
SciDr-in with
External data 96.91% 91.36% 94.05% 92.46% 87.16% 89.74%

Table B.3: In-expansion techniques Glossary-level Precision, Recall and F1-measures for acronym and
pair extraction and for the SciAI dataset.
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Acronym and
In-expansion
Technique

User-Generated
Acronym Pair

P R F1 P R F1
SH 90.42% 70.83% 79.43% 85.10% 66.67% 74.76%
MadDog-in 92.22% 69.17% 79.04% 87.78% 65.83% 75.23%
SciBERT 64.13% 49.16% 55.66% 56.52% 43.33% 49.05%
SciBERT with
External data 48.63% 59.17% 53.38% 44.52% 54.17% 48.87%

SciDr-in 76.67% 57.50% 65.71% 67.78% 50.83% 58.09%
SciDr-in with
External data 85.54% 59.17% 69.95% 80.72% 55.83% 66.01%

Table B.4: In-expansion techniques Glossary-level Precision, Recall and F1-measures for acronym and
pair extraction for the User Generated dataset.
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