TECNICO
LISBOA

Efficient FPGA Implementation of the SHA-3 Hash
Function

Magnus Vik Sundal

Thesis to obtain the Master of Science Degree in

Electronics Engineering

Supervisor: Prof. Ricardo Jorge Fernandes Chaves

Co-supervisor: Prof. Leonel Augusto Pires Seabra de Sousa

Examination Committee

Chairperson: Prof. Pedro Miguel Pinto Ramos
Supervisor: Prof. Ricardo Jorge Fernandes Chaves

Members of the Committee: Prof. Fernando Manuel Duarte Gongalves

October 2016

Acknowledgements

This thesis concludes my master degree course in Electronics Engineering at Instituto Superior
Técnico in Lisboa in Portugal. It also concludes my just over two-years stay in this great country
which is noticeably warmer and more humid than my own country, Norway. These two years
have given me invaluable experiences together with new friends, my partner and her family
who have open up their home and made me feel sincerely welcome. This course has met high
expectations and | now feel ready to embark upon a professional career as an Electronics
Engineer in a new location. During the course of this thesis | have had the pleasure of working
with a supervisor with great technical and pedagogical skills and a highly motivating nature. |
am therefore very grateful to Professor Ricardo Chaves for the valuable guidance along the way.
| would like to thank my partner Silvia Barros for her endless patience, comfort, and general
guidance and with whom | anticipate a multitude of adventures to come. Her family which | now
consider a part of my own has far exceeded any expectation concerning hospitality for which
| am forever grateful. Lastly | would like to thank my own family back home and especially my
mother, Margit Vik Sundal, who is the main explanation for where | am today. Without her, |
would most likely not have started an engineering degree in the first place. She remains a
personal motivation and role model.

Resumo

O presente trabalho cobre as implementagées em FPGA da nova fungédo hash criptografica
padrao, SHA-3, com especial foco na sua eficiéncia. As fungdes hash criptograficas sdo uma
parte essencial da criptografia moderna extensamente utilizadas em diversas aplicagdes, como
a autenticacdo de mensagens e usuarios. A SHA-3 representa a proxima geracao de funcoes
hash criptogréficas e eventualmente assumira o lugar da sua antecessora, SHA-2, que é uma
das fungdes padrdo mais usadas atualmente.

As funcoes hash estao preparadas para serem implementadas em hardware e sdo usadas
como co-processadores para a realizagdo de hashing de mensagens em larga escala, como
€ 0 caso dos pacotes Ethernet. A eficiéncia, definida como a taxa de transferéncia por area
requerida, € um objetivo chave de performance para implementacdes de hardware.

O objetivo deste projeto tem sido alcancar uma solucdo para melhorar o estado da arte
atual relativamente a eficiéncia, através da analise e exploragdo profundas da SHA-3 e da
literatura existente.

O estado da arte mostra-se inconsistente relativamente a aplicagbes da fun¢do hash e
objetivos de performance. Deste modo, neste trabalho sdo propostas solucbes baseadas em
consideragdes légicas e objetivos de performance que excedem a performance do estado
da arte. As fungdes estrutura funcionam como entidades independentes e a performance é
baseada numa avaliacao fiavel. Para além disto, através de modelos tedricos baseados em
fatores apropriados e realistas, a eficiéncia da SHA-3 mostra um claro limite superior que
ja foi alcangado. Um maior potencial de eficiéncia s6 existe sob pré-condigdes especificas,
dependendo do tamanho das mensagens.

Abstract

This thesis presents the proposal of improved structures, supported on FPGAs, for the new
cryptographic hash function standard, SHA-3, with a special focus on efficiency. Cryptographic
hash functions are an essential part of modern cryptography and are used extensively in ap-
plications requiring message and user authentication and digital signatures. SHA-3 represents
the next generation of cryptographic hash functions and is forecast to assume the position of
its predecessor, SHA-2, which is one of the most prevalent standards today. Hash functions are
well suited to be implemented in hardware as co-processors, performing large-scale hashing
of messages such as Ethernet packages.

The goal of this project has been to devise structures and implementation approaches which
are able to improve the existing state-of-the-art with respect to efficiency, where efficiency is
defined as the achievable throughput per required area.

While several structures and optimizations have already been proposed in the existing
state-of-the-art, these tend to be somewhat inconsistent and non-systematic regarding the
applications and expected messages for the hash function and the targeted metrics. Herein,
several solutions are proposed considering existing and novel optimization techniques, while
also proposing an evaluation model to better evaluate the possible structural options and to
define clear upper bounds to the achievable results.

Contents

1.1 Goalsl e
(1.2 Requirements|. L
1.3 _Main contributions| e

[2_Background|
2.1 Hashfunctions|
[2.2 Hardware CO-ProCesSOrIS|. v v i e e e
[2.3 Keccak algorithm|
[2.3.1 The sponge construction|
[2.3.2 The Keccak sponge functions|

2.5 Summary|l e e

6 Wrapper e e e e e e e e

[8.7 Overallanalysis|.
(8.8 Summary| e

{4 Proposed solution|

4 GINGJ| . . . e
[4.2 Dependencies|
[4.2.1 Rescheduling of the round-function|.
[4.2.2 Theta intra-round dependency| oo e

19
21
24
26
27
28
29
30
31

[4.2.3 Embedded memory|

[4.3 Pipelining|

4 4 U 0O

[Implementation|

5.5 Folaed structure|

[0.5.1 Wrappern. e

£.5.2 The state

[7__Conclusion|
[71 Futureworkl
[References|
[7.2 Dependencies|
[7.2.1 Rho dependencies for fold O of slice-wise folding-schemes|
[7.3 Memory mapping|. o
[7.3.1 Memory mapping of state for the folded structure with FF=4,
[7.4 Schedulingl e
/.4.1 Basic str re SHA3-512/.
(/4.2 Basic structure SHA3-2241. L.
[7.4.3 Pipelined structure SHA3-512|.,
[7.4.4 Unrolled pipelined structure SHA3-512).

7.4.5 Fol r

re SHA3-512

Vi

53
54
55
56
57
57
58
58
59
59
60
61
62
63
63

65
65
69

71
73

75

Abbreviations

ASIC Application-Specific Integrated Circuit
BRAM Block RAM

CLB Configurable Logic Block

CPU Central Processing Unit

CRC Cyclic Redundancy Check
DSP Digital Signal Processor

EDA Electronic Design Automation
FF Flip Flop

FFT Fast-Fourier-Transform

FIFO First-in-First-Out

FPGA Field Programmable Gate Array
FSL Fast Simplex Link

FSM Finite State Machine

HDL Hardware Description Language
IC Integrated Circuit

10 Input/Output

KAT Known-Answer-Test

LFSR Linear Feedback Shift Register
LSB Least Significant Bit

LUT Look Up Table

MAC Message Authentication Code
MBM Multi-Block-Message

MMH Multi-Message Hashing

MSB Most Significant Bit

MUX Multiplexer

NIST National Institute of Standards and Technology
OoTP One-Time-Programmable

PAR Place and Route

PCB Printed Circuit Board

PISO Parallel In Serial Out

PLL Phase Locked Loop

RAM Random Access Memory

RC Round Constant

ROM Read only Memory

RTL Real Time Logic

S-box Substitution Box

SCA Side-Channel Attack

SDP Simple Dual Port

SMH Single-Message Hashing

Vii

SRAM

Static RAM

SRL Shift Register Lookup Table

V-5 Virtex-5 FPGA family

VHDL Very High Speed Integrated Circuit Hardware Description Language

WCS Worst Case Scenario

WE Write Enable

Nomenclature

X Chi - A step-mapping of the Keccak round function providing non-linear transforma-
tion

L lota - A step-mapping of the Keccak round function providing round asymmetry

s Pi - A step-mapping of the Keccak round function providing permutation

p Rho - A step-mapping of the Keccak round function providing permutation

c Capacity - size in bits of the inner part of the state which is initially empty

f Frequency - MHz

r Block size - size in bits of the outer part of the state where the message is injected

0 Theta - A step-mapping of the Keccak round function providing diffusion

A Area - FPGA slices

E Efficiency - Gb/s*slice

FF Folding factor - the degree in which the state is folded (state /internal data path)

L Latency - the number of clock cycles required to process a message block of size r

PL Pipeline registers - the quantity of pipeline registers incorporated in a structure

R Rotation - Lane rotation cause by the rho step mapping

T Throughput - Gb/s

UF Unrolled factor - the quantity of round function instances in a structure

viii

List of Figures

[2.1 The basic concept of hash functions.| 5
[2.2 Simplified illustration of 1/4 of a slice of type SLICEL on a Virtex-5 FPGA| 8
[2.3 The sponge construction.|/ CC BY 3.0 @noekeon.org 10
[2.4 The Keccak state./ CC BY 3.0 @noekeon.org 11
[2.5 The structures withing the Keccak state. / CC BY 3.0 @noekeon.org 12
[2.6 Pseudo-code of the Keccak sponge function acting on the state containing one |
| padded message block.| 13
[2.7 State representation in 2-dimensions. SLICES represent the z-axis while LANES |
[the xandyaxes.| e 13
[2.8° The 6 step mapping illustrated. / CC BY 3.0 @noekeon.org 14
[2.9 The input dependencies for every output of the 6 step mapping. The output color |
[matches the corresponding input.|. o 14
[2.10 The p step mapping illustrated.| / CC BY 3.0 @noekeon.org] 15
[2.11 The 7 step mapping illustrated.|/ CC BY 3.0 @noekeon.org] 15
[2.12 The Keccak state.|/ CC BY 3.0 @noekeon.org] 16
[2.13 Input dependencies for the . step mapping.| L. 16
[2.14 Padding and bit-wise reordering of a little-endian input message.| 17

[3.1 Simple illustration of SHA-3 with the sponge construction in red at the top and |

L theround function Keccak-f and tne state in blue below. 20
[3.2 Simple schematic of a basic SHA-3 structure on the left and a folded structure |
| on the right. FF=folding factor,|. 22
[3.3 Simple illustration of the concept of pipelining. The round function RF is split into |
| RF1 and RF2 while maintaining its widtn.]o 24
[3.4 Simple illustration of the concept of unrolling. The round function is duplicated |
[within a combinational path and the number of rounds reduced proportionally.|. . 26
(3.5 llustration of manual LUT instantiation of the y and « step mapping acting on a |
[row of the state matrix. Three Virtex-5 LUTs are required perrow.| 27

[4.1 Efficiency model as a function of area for seven different folding factors for SHA3-512.| 35
[4.2 Dependency trace through the standard round function from start on the left side |
[to finish on the right. 1 output bit depends on 33 inputbits.|. 37

http://sponge.noekeon.org/Sponge-150.png
http://keccak.noekeon.org/Keccak-f-State.png
http://keccak.noekeon.org/Keccak-f-PiecesOfState.png
http://keccak.noekeon.org/Keccak-f-Theta.png
http://keccak.noekeon.org/Keccak-f-Rho.png
http://keccak.noekeon.org/Keccak-f-Pi.png
http://keccak.noekeon.org/Keccak-f-Chi.png

[4.3 Loading procedure for the slide-wise folding-scheme 1t incoming words are al-

ready properly re-ordered.| 38
[4.4 Listing of the two possible re-scheduled round functions compared with the de- |
fault schedule] 39
[4.5 Simplitied visualization of the combined Rho and Pl step mapping. The top matrix |
constitutes the input and the bottomthe output.| 39
|4.6 Dependency input on the left side, output on the right. 1 output bit depends on |
16 INpUt DItS.| o e 40
[4.7 Alternatives for the implementation of the re-scheduled round function. 41
[4.8 First approach to solving the intra-round dependency of : FOSO pre-processing.| 42

|4.9 Second approach to solving the intra-round dependency of : FOS0 post-processing.| 42

[4.10 lllustration of the challenge related with data access in memory blocks.| 43
[4.11 Solution A and B for memory mapping of the state for slice-wise structures.| . . . 44
[4.12 Solution C for memory mapping of the state for slice-wise structures with maxi- |
mum folding factor.| 45
[4.13 lllustration of a column-oriented approach to memory mapping using built-in par- |
ity calculation of Virtex-5 FPGA|Block RAM (BRAM)L This structure has a folding |
factor=8.. e 45
[4.14 Graphs with the efficiency as a function of frequency for various combinations |
of pipelines and folding factors. Figure A (left side) presents cases where the |
pipeline contains bubbles While Figure B (right side) Is without bubbles.| 47
[4.15 Visualization of slices with inter-round dependencies for pipelining of a slice-wise |
folding. Red highlights the slices which depend on the last cycle of the previous |
FOUNGL] . . . o . o e e 48
[4.16 Sequences of white slices dictating the maximum number of pipeline registers |
and minimum folding factor for inter-slice dependencies.| 48

[4.17 Efficiency as a function of the unrolling factor, UF, for four different pipelining-schemes |

for SHA3-512. Estimation is based Equation{d.7lf 50

5.1 Simplified top level schematic of the basic structure.| 55
5.2 Schematic of the wrapper component of the basic structure.|. 55
[5.3 Schematic of the statereg component of the basic structure containing the state |
register] e 56

[5.4 lllustration of Keccak-f acting on a column of the state on the left side and the |
same functionality realized with programmable logic.| 57

[5.5 Schematic of the wrapper component of the pipelined structure.|. 59
[5.6 Simplified top level schematic of the unrolled structure with unrolled factor (UF)=2 |
and pipeline stages (PL)=2.o o 60

[5.7 Simplified top level schematic of the folded structure with a re-scheduled round |
[function e 61

1 Introduction

Cryptographic hash functions are highly common in everyday life and provide integrity in au-
thentication applications of users and messages. Bank transactions are an example of an appli-
cation where it is crucial to know that the message transmitted is the same as the one which is
received. As technology advances, a constant arms-race exists between threats and protection
of matters concerning most aspects of our everyday life. There are many existing cryptographic
hash functions, however, few currently bear the status of general acceptance [1], meaning that
they are officially considered secure. We have already seen the dawning of the era of "Internet
of Things" and with the forecast explosion of Internet-connected devices, the responsibility of
engineers to provide implementations with an adequate level of security only increases.

In 2007, [National Institute of Standards and Technology (NIST)| concluded that there was
a likelihood of a near-future discovery of a flaw in the current hash function standard, SHA-2.
Already, papers had been published which proved a reduction in strength of the algorithm [2].
In practical terms SHA-2 is still considered secure to this day, but as a preventive measure, a
public competition for the next standard called SHA-3 was initiated in 2007. Through several
rounds of elimination, the contestants were narrowed down until Keccak was announced as the
new standard in 2012 with four approved sub-variants of the algorithm.

Besides the need for being cryptographically secure, a hash function must be efficient,
both in terms of area and throughput. For example, in digital signatures they must be able to
hash potentially large quantities of data as quickly as possible. SHA-3 has proven to perform
better than its predecessors in both software [3] and hardware [4]. Since the early stages of
the SHA-3 competition, authors have presented increasingly optimized implementations of the
hash function for a variety of objectives such as minimal area or high efficiency. The latter
is defined as the throughput per required area. The former is useful in environments where
resources are scarce, however, a larger design might be more efficient than multiple instances
of a smaller one if sufficient resources are available. While many cryptographic functions are
implemented in software, hash functions require minimal configuration and are therefore apt for
hardware implementations, which benefits from improved parallelism and higher throughputs
when compared with software implementations. Hardware implementations can be used as a
co-processor which aids processors in off-loading highly demanding tasks such as large scale
hashing of Ethernet packages.

The state-of-the-art regarding hardware implementation of SHA-3 has already matured
throughout several years of development. Despite this, it was the belief of the author and super-
visor that this relevant field was not fully explored and that room for improvement still existed.

While many advancements have been made, the existing literature is found to be seemingly
non-consistent in both the utilization of optimization techniques and considerations regarding
the applications of the hash function and the overall performance objective. The aim of this
thesis is to clearly map the state-of-the-art with respect to these aspects and to arrive at new
designs based on reasonable and logical considerations towards improving the efficiency and
potentially the existing SHA-3 hardware implementations. Hardware implementations on [Field
[Programmable Gate Arrays (FPGAs) have been the main focus of this project. While other
technologies for programmable logic exists, are convenient for prototyping as they are
re-programmable and have a short development cycle. It is also the most common choice of
technology among the state-of-the-art which ensues trivial assessment of the performance with

respect to the existing literature. The focus is on structural optimization techniques and while
the end result is presented as an FPGA implementation, the approaches and considerations
should be valid for hardware in general.

1.1 Goals

The main objective of this work is to improve the state-of-the-art of efficient hardware imple-
mentations of the SHA-3 hash function standard. A special focus is made on FPGA implemen-
tations and the goal is to arrive at a proposed solution which exceeds the existing literature in
efficiency. For the proposed solution to be efficient, it must achieve optimal throughput for rapid
processing of messages, while requiring minimal area for implementation. A secondary goal
is to define the upper bound efficiency of a SHA-3 FPGA implementation through theoretical
models based on considerations of realistic conditions.

1.2 Requirements

A requirement for the absolute success of this work is to arrive at a SHA-3 FPGA implementa-
tion which exceeds the existing state-of-the-art with respect to efficiency. The proposed solution
should be based on proper and realistic consideration with respect to hash function applications
and the messages which are used for hashing. Performance results must be based on a reliable
evaluation and the structure should be presented as a stand-alone-entity and not rely on other
programmable logic components for complete functionality. This means that an interface should
be incorporated in order to provide the necessary communication with the processor for hash-
ing of messages and provision of the corresponding message digest following the algorithm
specifications. While the targeted implementation technology is [FPGAs], for easy prototyping
and evaluation the proposed solution should be aimed at generic hardware implementations.
As the performance objective is a function of the required area, the resource utilization should
be adequately balanced, i.e. excessively utilizing one distinct type of FPGA resource compared
with other types should be avoided. However, for comparative reasons, slices should be the
main utilized FPGA resource and adoption of other resources should be done at a later stage
with actual implementation in a physical environment.

1.3 Main contributions

The main contributions resulting from this work are:

» Design and implementation of proposed SHA-3 computation structures which exceed the
existing state-of-the-art with respect to efficiency, by up to 28% on the same technology.

» Development of wrapping component, allowing for stand-alone components, allowing to
evaluate the performances based on a reliable assessment.

» Development of theoretical models for the evaluation of the relevant optimization tech-
niques, including the required preconditions related with their applicability.

» Demonstration of the theoretical upper bound efficiency for SHA-3 hardware implemen-
tations given reasonable considerations.

Additionally, a paper based on this work has been presented at the REC2016 conference
in Vila Real in Portugal and a paper has been submitted to the 2017 IEEE International Sym-
posium on Hardware Oriented Security and Trust (HOST) in Virginia, USA.

1.4 The document structure

Chapter 2 gives an introduction to the technologies which are involved in this project. This
includes hash functions in general, hardware implementations particularly on SHA-3
and the underlying Keccak algorithm. The existing state-of-the-art is introduced in Chapter 3,
where the relevant literature and existing implementations are analyzed based on their distinct
features and contributions. The proposed solutions are presented in Chapter 4, including the
description of the research and analysis beyond the existing state-of-the-art which shaped the
resulting structures. Chapter 5 contains the implementation details of the several proposed
SHA-3 structures and the specific factors which have been considered for each individual case.
These structures are based on both the existing literature and the analyses and developed
models proposed in the previous chapter. Chapter 6 presents an evaluation of the implemented
structures and a comparison with the proposed models and the existing literature. Finally, con-
cluding remarks are presented along with an outlook towards future work.

2 Background

Before covering the relevant aspects of the state-of-the-art and the developed work, it is impor-
tant to have an understanding of the basic concepts of the technologies involved. This chapter
starts by discussing the main concept of hash functions. Following this, an introduction of hard-
ware designs and programmable logic is presented. The benefits of implementing algorithms
in hardware are given along with some of the challenges involved in the design process. The
chapter is concluded with the general construction of SHA-3 and the four sub-versions which
are supported by the standard. The sub-versions are distinct by a set of parameters affecting
the throughput and security of the underlying algorithm called Keccak.

2.1 Hash functions

Hash functions are an essential part of modern cryptography. Given a message of random
length encoded as a binary string, a hash function will compute another binary string of fixed
length which is conventionally called a digest, as depicted in Figure[2.1] A common use of hash
functions is in message authentication where the digest works as a fingerprint for the original
message and is transmitted along with it. The receiver of the message can therefore validate
whether the message has been altered by hashing it and comparing this digest with the one
that was received. If there are differences, it means that an active adversary has altered the
message. Naturally, a set of preconditions are required for this to work. The hash function in
itself should contain no secrets so that it can be distributed freely. Additionally, the hash function
must be of sufficient quality so that the digest cannot be altered to correspond with a tampered
message. A set of these qualifications are presented below.

Varying length

7
b

{ Message |

v

Fixed length
Digest

Figure 2.1: The basic concept of hash functions.

As with most cryptographic functions, the initial binary string or message is usually defined
as an element or message m of a set M (m € M) and the digest similarly ¢ € C. There is a
set of properties which defines a good hash function, namely it must be infeasible to calculate
m given the digest. However, the inverse operation (from the message to the digest) should
be easy. This property is called preimage resistance [5] and is mathematically described as a
one-way function [6]. A one-way function from a set X to a set Y easily computes the image
y = h(x) for all z € X. It is however computationally infeasible to go the other way, i.e for
any arbitrary image y € Y to find = so that h(z) = y. The function is also defined as being
non-secret, meaning that the security claim is not dependent on any structural components
being confidential [7]. This does not correspond completely with the definition of a hash function
which can rely on a key for operation. Computationally infeasible is loosely defined, but refers
to the time required to map corresponding elements of the function sets with each other (all
x € X to all images y € Y of the function h) until one arrives at the specific = for a given
y. For the computation to be infeasible, the time required must be marginally higher than the
lifetime of the cryptographic function. If it fails to be so, then the hash function is not preimage
resistant. For most types of modern cryptographic hash functions the security claim is related
with the length of the digest, i.e. the number of steps required to break the one-way function by
brute-force-attack is in the order of 2¢/2.

Another property of a strong cryptographic hash function is its collision resistance. The
digest c has a fixed length and is usually smaller than the message m. This problem is explained
by the pigeon hole principle [8]: If you have more pigeons than holes, there will be one or more
holes with more than one pigeon. For a hash function, this inevitably means that there will be
one or more messages m corresponding to the same digest c. If a hash function is collision
resistant, it is computationally infeasible given two messages m; and my to find a hash-text ¢
so that h(m;) = h(ms) = c.

SHA-1 is a commonly used hash function still today, even though it is technically considered
broken. It was discovered in 2005 that the previously considered difficulty of finding a collision,
or the level of collision resistance, of the full 160-bit SHA-1 is in fact not 28° (half the digest
length) but instead 289, This new technique [9] is over 2000 times faster than the previous basic
brute-force attack and is therefore within grasp of current computing technology [10].

29_preimage resistance is the last main property rating of a hash function. It is similar to
the collision resistance, albeit much easier to obtain. Given a message my, it is computationally
infeasible to find a second message ms which corresponds to the same digest ¢, i.e. m1 # ms
and h(my) = h(ma).

The rating of the different probabilities are based on how probable a successful attack is.
The 2"9-preimage resistance will not define the lowest bound of collision resistance and a
hash function with this property is therefore inferior to a hash function being collision resistant.
Fulfilling the collision resistance property automatically implies 2"-preimage resistance, but
not preimage resistance.

2.2 Hardware co-processors

There are a couple of key differences between implementing cryptographic functions in soft-
ware or hardware. The obvious advantages of software is accessibility with a short time to
market and a low development and maintenance cost. This immediately reflects the downsides
in that they can more easily be accessed and reconfigured by an adversary. Further more,
programs are usually running in a shared memory space and on top of an operating system
which creates much room for vulnerabilities. Hardware is less accessible and development is in
general a costlier and longer process. The pay-off lies in factors such as speed - for specific ap-
plications, and security which in addition to lack of accessibility is also caused by improved ran-
dom functions. Co-processors in hardware are advantageous for non-general applications such
as cryptography and offer high parallel processing power compared to general purpose [Central|
[Processing Units (CPUs)| [11]. While many cryptographic functions such as key-exchange for
asymmetric encryption standards are conventionally implemented in software, cryptographic
hash functions require a much lower level of reconfigurability and are very apt for implemen-
tation in hardware. SHA-3 was specifically designed with hardware implementations in mind.
The algorithm does not utilize complex mathematical functions such as|Fast-Fourier-Transforms|
[[FFTS)| or [Substitution Boxes (S-boxs)]. Instead it relies on multiple simple sub-steps which al-
lows for a short critical path and high system frequency [12].

The two main classes of hardware technologies exist, namely |Application-Specific Inte-|
lgrated Circuits (ASICs)| and [FPGAs]| [ASICs| are [One-Time-Programmable (OTP), [Integrated|
Circuits (ICs)|which provide exceptionally efficient and self-contained implementations for spe-
cialized applications and have cheap unit-cost at large quantities. Many of the drawbacks with
[ASICs|are avoided with as they are re-programmable, have lower unit-cost at low quan-
tities and with a shorter time to market. Hence, they are commonly used for prototyping designs
which are later implemented on an[ASIC]| The ability of FPGAs]to be re-programmed and to pro-
vide high parallel processing power makes them highly applicable as co-processors, aiding pro-
cessors by offloading intensive computations involving signal processing [13] and cryptography
[14]. Recent FPGA models also offer security providing concepts such as authenticated recon-
figuring. Vulnerabilities which are more difficult to avoid are the ones exploited by [Side-Channell
IAttacks (SCAs)| based on information such as timing, power dissipation and electromagnetic
emission. Restricted physical access to components dealing with sensitive data is necessary in
virtually all scenarios. Still, allow for easy adaptation of the cryptographic computation
to more reliably resist[SCAs|

The utilization of area on an FPGA can be assessed by the number of slices,
[Tables (LUTS)| or [Configurable Logic Blocks (CLBs)| required by the design, as they constitute
approximately the available logic on the[IC| at various granularities. The consensus is to count
slices, but the specific definition of a slice is dependent on the FPGA family and must be taken
into account. The relevancy of the solutions proposed in this work are intended to be inde-
pendent of the [FPGA| model and also possibly the programmable logic technology. Still, the
performance of a structure is dependent on the platform and to ease the task of comparing the
various existing implementations, a standard FPGA model is chosen. As the most prevalent

model among the relevant existing literature, the Virtex-5 FPGA by Xilinx is herein used as the
default platform for performance evaluation. Of the available [FPGA|vendors on the market, Xil-
inx has steadily kept the largest market share for many years [15,[16]. While Virtex has been the
vendor flagship, the |Virtex-5 FPGA family (V-5)|are presently affordable and future-rich devices
and are therefore considered as good representatives for the market. A typical modern [FPGA|
is made up of two variations of slices and the general functionality of a quarter of the main type,
SLICEL, is depicted in Figure Both types provide a 6-input [LUT] multiplexer, flip flop and
basic logic. A minority of the total number of slices are of type SLICEM where the can be
configured as a 64-bit distributed [Random Access Memory (RAM)|or 32-bit shift register [17].
Modern FPGAs also contain a rich supply of additional components such as [Digital Signal Pro-|
slices, BRAM| for storage of larger quantities of data, various clock sources and
[Input/Output (10)|drivers. Naturally, these should be proportionally used along with the general
slices, but the applicability depends on the added routing delay.

CQUT
Carry-chain

Output of /
above LUT y E_
from same I Y
slice fx AMUX
: i — A
6-input LUT
A6 [> or
A5 (>
M ROM
A3 > H
A2 [| D o—IT—AQ
Al > FF
|
AX =

CIN

Figure 2.2: Simplified illustration of 1/4 of a slice of type SLICEL on a Virtex-5 FPGA.

Unlike most other markets, do not have a similar [Electronic Design Automation|
[(EDA)| tool diversity since the main two vendors, Xilinx and Altera, have pushed out all other
competition of significance [18]. The design tools issued by these vendors are therefore usu-
ally involved in the design flow and the end result is highly dependent on the performance of
the tool. The design flow consists of four main steps: Synthesis, Translate, Mapping and
land Route (PAR)|[19]. Synthesis translates the design into hardware components, whether
the design is schematic or language based through a hardware description language such as
|Very High Speed Integrated Circuit Hardware Description Language (VHDL)L Synthesis of pro-
grammable logic is different from software compiling as there are more variables with respect
to which components the language-based design corresponds to. It is therefore a crucial step
of the design flow. Translate converts the generic hardware components into vendor specific
resources and Mapping allocates the design into actual slices on the [FPGA| which optionally

includes the physical placement. [PAR] mainly handles the routing of the implementation. The
steps of the design flow are more interconnected than it may seem. The process can be re-
peated in order to optimize certain aspects such as timing or area. Despite the importance of
design flow, much responsibility is left to the designer. Additionally, the FPGA design can be
carefully tweaked in order to be able to reach a performance close to the maximum throughput
potential. The designer must have a thorough understanding of how the design flow works and
how the description-language is translated into hardware. In order to avoid unnecessary and
inefficient utilization of resources, careful typesetting is required to precisely communicate with
the [EDAJtool which components should be used. For instance, knowing precisely the full poten-
tial of a slice is important in order to obtain better implementation results and usage.

2.3 Keccak algorithm

The name Keccak refers to a family of sponge functions [20] which are functions that can be
used as stream ciphers, hash functions, [Message Authentication Codes (MACs)| and pseudo-
-random number generators depending on the configuration. In general, these functions are
based on a fixed length transformation and a padding rule for the input which are capable
of mapping a variable-length input to a variable length output. A sub-set of the Keccak sponge
functions are currently included in the SHA-3 standard for cryptographic hash functions. Keccak
is based on the earlier RadioGatun hash function [21] which distinguished itself from other hash
functions by being based on a variable-length compression function rather than a fixed one,
thus behaving more like a stream cipher than a block cipher. From this, the sponge function
was developed. A sponge function simply means that a message is iteratively absorbed into
the state with a fixed size throughout multiple rounds of a simple round function before the
digest is squeezed out. The following presentation of Keccak is general, as it can have multiple
variations. Nevertheless, the configurations related with SHA-3 will be underlined.

2.3.1 The sponge construction

The chassis, or skeleton of a sponge function is the sponge construction. The initial idea was
for the sponge construction to be a reference to expressed security claims in hash functions,
instead of using the conventional random oracle model. A random oracle is close to a perfect
hash function, but returns a random infinite string instead of a truncated one which is not real-
istic. Originally, hash functions were assumed to be as strong as the length of the digest and
were therefore using the random oracle model as proof of security. Contrary to a random or-
acle, a hash function consists of finite memory and a fixed-length truncation and is therefore
prone to inevitable inner collisions and vulnerable to various attacks that exploit this [22]. A new
model, the random sponge function, was therefore developed specifically for hash functions
and stream ciphers, where the effects of finite memory is considered. The model takes into
account a set of parameters, such as whether the function consists of a permutation or a trans-
formation and most specifically the capacity ¢, which is the size of a partition of the state. Up
until this point ¢ has represented the message digest of general hash functions, but represents

the security parameter c in a sponge construction. It is proven in [23] that if the permutations
do not possess any structural distinguisher, the most successful attack on a random sponge
function will be the generic one, where the resistance of the function is upper bound by 2¢2.

The sponge construction with an underlying random permutation or transformation f com-
poses with this model a random sponge function, as illustrated in Figure [2.3]

]
-

c| |0 > > - - > >
L A N _/ | N —/

absorbhng:squeezﬂng

sponge

Figure 2.3: The sponge construction. / CC BY 3.0 @noekeon.org

The function f acts on a state, with width b = r + ¢ where r is the outer state and c is the
inner state. At initialization, r is where the message is injected and ¢ is empty, thus the size of
r effectually determines the bit rate of the construction. The multiple iterations of the function f
in the absorbing phase denotes the sponge nature of Keccak when the input message is larger
than r. The Squeezing phase is similarly iterated for digests larger than r. The digest is at least
half the size of ¢ in all the sub-versions of SHA-3 and it is extracted from the outer state r after
processing. The sponge construction works in three steps:

1. Initialization - The complete state is cleared and the message M is padded to multiples
of r-bit blocks.

2. Absorbing phase - The padded r-bit message blocks are one-by-one XORed bit-wise
into the r-part of the state and processed by the Keccak-f function. Keccak-f is therefore
called iteratively if the message M > r and each consecutive block is merged with the
product of the previous blocks. When all message blocks have been XORed into the state
and processed, the Squeezing phase begins.

3. Squeezing phase - The outer state is XORed to output blocks interleaved by the sponge
function f, similarly to the absorbing phase. The output blocks are truncated to its first
¢ bits and added to Z. If ¢ = |r|, which is always the case for SHA-3, there will be no
iteration of the sqeezing phase.

2.3.2 The Keccak sponge functions

The benefits of the sponge construction is the security claim and a very high flexibility re-
lated with configurations. This flexibility is consistently seen in the underlying Keccak function

10

http://sponge.noekeon.org/Sponge-150.png

Keccak-f[b]. The Keccak functions can be configured into seven different transformations which
are referred to as permutations. These permutations produce different digests from the same
message and differ in the size of the state, the ratio between the size of the inner and outer
state and the number of rounds the function is processed. The seven different permutations
of Keccak, b € {25, 50, 100, 200, 400, 800, 1600}, are named after the size of the state which is
organized as a 3-dimensional array. Figure [2.4]depicts the state which possible dimensions are
5xbxw e {l1,2,4,8,16,32,64} where w is along the z-axis and is proportional to the width b
of the permutation by b = 25 x w. Each of the seven permutations have a distinct security claim
where the largest types are the most secure. The number of rounds n, for each permutation
is given by n, = 12 + 2 x loga(w). Only the largest permutation with b = 1600 is supported
for SHA-3. This means that the relevant Keccak function for this work is the Keccak-f[1600]
which is made up of 24 rounds. In resource constrained environments, the smaller permuta-
tions can be used, though these have not been supported by [NIST| for use with cryptographic
hash functions because of the lower security claim.

Y z
+ / state
>

xr

Figure 2.4: The Keccak state. / CC BY 3.0 @noekeon.org
The Keccak state is divided into smaller parts, as illustrated in Figure 2.5, where each
square represents a bit. The inner and outer state » and ¢ of the sponge function, depicted on

the left side of Figure are distributed lane-wise in the 3-dimensional Keccak state where
the inner state c is located in the lower lanes.

11

http://keccak.noekeon.org/Keccak-f-State.png

slice

z
ol lane
[

Figure 2.5: The structures withing the Keccak state.| / CC BY 3.0 @noekeon.org

The input messages fill up the outer state by lanes. The relationship between the 3-dimensional
state coordinates and the lanes of the inner and outer state is: state(z)(y)(z) = r|lc((64 x 5 x
y) + (64 x z) + z), where the padded r-bit input message is concatenated with c. The state
is often referred to by the coordinates of each lane, as presented in Table The left side
coordinates are used in pseudo-codes explaining how the sub-steps of the Keccak function
acts on the state. In programmable logic, 2-dimensional arrays are used and so the numbering
of the right side is used in descriptions related with the implementation. The coordinates of the
left-side matrix dictate the start and end of the lanes of the inner and outer state, i.e. the first
lane of the outer state is located at [0,0], the second at [1,0] etc. and is concatenated by the
inner state. In accordance with the left-side coordinates, the first lane of the message block is
therefore number 12 and the following sequence continues the outer state: 13, 14, 10, 11, 17,
18 etc.

X=3 | X=4 | X=0 | X=1 | X=2
Y=2 | [3,2] | [4,2] | [0,2] | [1,2] | [2,2]
Y=1 | [3,1] | [4,1] | [0,1] | [1,1] | [2,1]
Y=0 | [3,0] | [4,0] | [0,0] | [1,0] | [2,0]
Y=4 | [3,4] | [4,4] | [0,4] | [1,4] | [2,4]
Y=3 | [3,3] | [4,3] | [0,3] | [1,3] | [2,3]

20 |21 |22 |23 | 24
15116 |17 | 18 | 19
10 [11 |12 | 13| 14

Table 2.1: Keccak lane coordinates.

The Keccak round function Keccak-f consists of 5 unique step mappings [23] which are
performed in sequence in each of the 24 rounds, as depicted in the pseudo-code of Figure
Theta (0) provides diffusion by XORing columns into bits. Rho (p) and Pi (7) are pure
permutations aimed at dispersion. Chi () is the non-linear step mapping with an AND, NOT and
XOR logic operator for each bit. The purpose of the last step mapping, lota (), is to diversify
each round by adding round dependent constants to the center lane [0,0]. RC denotes the
round constants of the . step-mapping.

12

http://keccak.noekeon.org/Keccak-f-PiecesOfState.png

for i in 0 to 23{
A’= roundfunction(A’, RC(i))
} return A’

roundfunction(A’, RC){
B=0(A)
C=p(B)
D=7 (C)
E=x (D)
A’=1,(E)
} return A’

Figure 2.6: Pseudo-code of the Keccak sponge function acting on the state containing one
padded message block.

For detailed explanations involving the implementation of Keccak in hardware, the state is pre-
sented in 2-dimensions instead of the 3-dimensional array, as depicted in The x- and
y-coordinates of the 3-dimensional array are mapped along the vertical LANE column and the
z-coordinates along the SLICES row.

SLICE

0l 1 2 3] 4] 5 6] 7] 8...|55]/56/57|58| 596061 62] 63

24/ [o] 1] 2] 3] 4] 5] 6] 7] 8|...[55]56]57]58]59]60]61]62]63
23/ [o] 1] 2| 3] 4] 5] 6 7| 8|...[5556|57|58|59|60]61]62]63
W | 22][of 1] 2[3] 4] 5] 6] 7| 8|...|55/56|57|58|5960]61]62]63
< | 3/[o 1] 2] 3] 4] 5] 6] 7] 8]...[55]56]57]58]59]60]61]62]63
= [2|| 0] 1] 2/ 3] 4] 5| 6 7| 8|...[55/56/57|58|59/60|61| 6263
1/ | o] 1] 2| 3] 4] 5| 6| 7| 8|...|55/56|57|58|59|60]61 62|63
o[of 1] 2] 3] 4] 5] 6 7| 8|...|5556|57|58|59| 60| 61| 62|63

Figure 2.7: State representation in 2-dimensions. SLICES represent the z-axis while LANES
the x and y axes.

Theta

The 0 step mapping provides diffusion by XORing the parities of two adjacent columns with
each bit of a third column, as depicted in Figure The sizes of the state in the x and y axes
are 5 bits and 64 bits in the z axis. The figure is simplified by shortening the lanes (z-axis). The
three sub-steps are respectively:

1. 6;1: The parity of each column is generated, producing a plane of 320 bits.

2. 05: A second plane is generated where each [x][z] bit is a product of XORing every [z—1][z]
and [z + 1][z — 1] bit of the first plane.

3. 65: Each bit of the second plane is XORed with each bit of the corresponding column of
the original state matrix.

13

Q‘+ /(2' y
« > U

xr

Figure 2.8: The 0 step mapping illustrated.|/ CC BY 3.0 @noekeon.org

0 is the first step mapping since it efficiently mixes the inner and outer state which are sepa-
rated across columns and rows. As depicted in Figure [2.9] each bit at the output depends on
two columns at adjacent X and Z coordinates as well as the equivalent input bit. The colors in-
dicate the corresponding input and output bits. In a straight forward hardware implementation,
0 requires 1280+320+1600 XOR logic operators.

SLICE SLICE |

o 1] 2] 3] 4] 5[6] 7] 8 o 1] 2] 3] 4] 5] 6] 7] 8|

24/ 0] 1] 2] 3] 4] 5 of 1] 2[3] 4] 5] 6] 7] §

23| ofa 2| 3] 4] 5 of'1l 2| 3] 4 5 6 7] 8

[22| of 2 2| 3] 4] 5 ol 1| 2| 3] 4/ 5/ 6] 7| 8

| 19| |70 1| 2| 3] 4] 5 o 1] 2| 3] 4/ 5/ 6 7] 8

W 17| oE 2/ 3 4 5 o 1 2[3 4 5 7 8

5?012345 o 1] 2| 3] 4/ 5/ 6] 7] 8

_j | 22[[of73 2] 3 4 5 o 1] 2[3[4 5/ 6 7] 8

ol [0 1| 2| 3] 4| 5 o 1] 2| 3] 4| 5] 6] 7| 8

| 7/[o3 2[3/ 45 o 1] 2[3[4 5/ 6/ 7] 8

4/ [0 1] 2] 3] 4] 5 o 1] 2| 3] 4| 5] 6] 7| g

| 2|| ofa 2| 3] 4] 5 o 1] 2| 3] 4/ 5/ 6 7] 8
INPUT OUTPUT

Figure 2.9: The input dependencies for every output of the 6 step mapping. The output color
matches the corresponding input.

Rho

The second step mapping provides inter-slice dispersion by rotating each individual lane by a
fixed offset given by Table as illustrated in Figure As this is a permutation there are
several potential solutions for implementing this in hardware.

X=3 | X=4 | X=0 | X=1 | X=2
Y=2 | 25 39 3 10 43
Y=1| 55 20 36 44 6
Y=0 | 28 27 0 1 62
Y=4 | 56 14 18 2 61
Y=3 | 21 8 41 45 15

Table 2.2: p rotational offsets for each lane.

14

http://keccak.noekeon.org/Keccak-f-Theta.png

Figure 2.10: The p step mapping illustrated. / CC BY 3.0 @noekeon.org.

Pi

m disturbs horizontal and vertical alignment by shuffling the position of the lanes, turning rows
into columns. The permutation is depicted in Equation[2.7]and in Figure[2.71] This step mapping
is usually combined with p as they both are the only permutation steps of the Keccak round
function and can be solved in hardware by wiring or addressing.

[0 1
2 3

X
Y

X
Y

(2.1)

NEY N ?'
L x o v |\
O) D) O

4 MR
T Y] o [¥

Figure 2.11: The = step mapping illustrated. / CC BY 3.0 @noekeon.org.

Chi

x is the non-linear transformation step of the round function. The step mapping operates in a
row-wise manner as illustrated in Figure One NOT, AND and XOR is required per bit of
the state and the dependencies are three input bits for each output bit.

lota

The . step-mapping XORs the center lane with round dependent constants in order to break
symmetry along the z-axis and diversity the rounds. The round constants (RCs) for the complete
center lane are listed in Only 7 of the 64 bits are actual round constants and are the
product of an 8-bit[Linear Feedback Shift Register (LFSR)|with polynomials of the form P(z) =
1+ 2% + 25 4+ 2% + 28. They can therefore be pre-generated and stored as a 7x24 bit[Read only|
[Memory (ROM)| or generated on-the-fly by a[LFSR]

15

http://keccak.noekeon.org/Keccak-f-Rho.png
http://keccak.noekeon.org/Keccak-f-Pi.png

R

Figure 2.12: The Keccak state.|/ CC BY 3.0 @noekeon.org.

0o N o O b W N

X"0000000000000001"
X"0000000000008082"
X"800000000000808A™"
X"8000000080008000"
X"000000000000808B"
X"0000000080000001"
X"8000000080008081"
X"8000000000008009"

9:
10:
11:
12:
13:
14:
15:
16:

X"000000000000008A"
X"0000000000000088"
X"0000000080008009"
X"000000008000000A™
X"000000008000808B"
X"800000000000008B"
X"8000000000008089"
X"8000000000008003"

17:
18:
19:
20:
21:
22:
23:
24 :

X"8000000000008002"
X"8000000000000080"
X"000000000000800A™
X"800000008000000A™"
X"8000000080008081"
X"8000000000008080"
X"0000000080000001"
X"8000000080008008"

Listing 2.1: The 7 bits round constants for the lota step-mapping distributed along

the complete center lane of 64 bits.

Seven XORs are required for this step-mapping at coordinates Z=0, 1, 3, 7, 15, 31 and 63 at
X=Y=0. This step can easily be combined with x because of its simplicity. Figure depicts

the simple dependencies for this step-mapping.

SLICE

L
=2

o 1.3 7353163
OR339 31 . [63

Figure 2.13: Input dependencies for the « step mapping.

2.4 The SHA-3 standard

Currently, four versions of the Keccak sponge function family have been approved for the SHA-3
hash function standard: SHA3-224, SHA3-256, SHA3-384 and SHA3-512 [24]. The numbers
indicate the length ¢ of the digest. All versions use the largest permutation of Keccak-f[b] where
b = 1600. The security claim depends on the size of the inner state ¢ and its relation to ¢ by

¢ > 1 x 2, making the ¢ — r relation different between the versions [25]:

16

http://keccak.noekeon.org/Keccak-f-Chi.png

=224 :r=1152,c =448, d=28

* 0 =256 :r=1088, c=512, d=32

{=384:r=2832, ¢=768, d=48

¢ =>512:r =576, ¢=1024,d =64

Any further reference to versions of SHA-3 and Keccak will concern these four specifications.
In addition to the parameters already introduced, there is a diversifier d which exists to meet a
INIST] requirement stating that the output of a given hash function should not be the prefix of a
larger version. d is simply the number of bytes to which the output is truncated to. Additionally, it
allows for domain separation in the use of a specific SHA-3 version. For custom use of Keccak
beyond the SHA-3 standard, users are free to set the diversifier for a given application as long
as d < (/8. The default size of r is then 1024.

Message padding

The keccak sponge functions adopted a multi-rate padding scheme which practically means
that the same padding rule works for all variations of the aforementioned parameters. The input
message is shaped in order to fit within a block or multiples of it. The functionality of the padding
rule meets another requirement related with the security claim which is that the last word (lane
filled with data) within a block is not empty. The padding, which is denoted as pad10*1, appends
a 1-bit after the last bit of the last byte containing data and a last 1-bit at the MSB of the last
byte of the block.

The internal Keccak convention for bit ordering is little-endian, so that the LSBs within a byte
are located at the lower address [26]. The [NIST|specified SHA-3 API [27] is different however,
and uses a big-endian convention so that the MSB of each byte is located at the lower address.
The consequence of this is that an incoming big-endian message, imposes a re-ordering of
each byte. Figure [2.14] depicts the re-ordering and the padding for a case where |M| = |r — 3|
and the padding starts and ends at the last byte. As can be seen, the bits of the last byte are
shifted towards the LSB of its big-endian order so that the zeros are contained towards the
MSB of the little-endian internal Keccak order.

INPUT M LITTLE ENDIAN PADDED M RE-ORDERED
[ADR BINARY ADR[HEXJADR BINARY ADR | HEX]
r32/0 1010011/ r25]53fr32/1 1001010 r25]53
r24/0 1011000 r17|58|r24/000 11010 r17] 58
601111011 r9|7Br16/11011110| r9 | 7B
r8 [1/1]/o]o[1]ojofo| 1 |C8]r8 [1|0|0|1[1]1]0[1] 1 | 9B

[[1[1]oJo[1]00]0 I

L —— —|1]1]0]0/1|[Step 1. shift towards LSB
1/0/0[1]1/0/0/0 Step 2. re-order
i |1]0/0|1]1]1/0]1 Step 3. apply padding

Figure 2.14: Padding and bit-wise reordering of a little-endian input message.

17

There are three possible scenarios related with the padding, where x is the absolute value of
the difference between the message length, | M|, and the block size, r (i.e. z = || M| — r|):

* |[M| = r + z: The message will fill two blocks and the padding appends to the second
block a 1-bit at the LSB followed by » — 2 — 2 0-bits before a 1-bit at the MSB.

» |[M| = r: The message will only fill one block and the padding appends a 1-bit to the MSB.

« |[M| = r — z: The message will only fill one block and the padding appends a 1-bit at
r —x + 1 followed by = — 2 before the last 1-bit at the MSB.

2.5 Summary

This chapter has presented the concept of cryptographic hash functions, the SHA-3 crypto-
graphic hash function standard, and has also given an introduction to hardware co-processors
and SHA-3 describes the next generation of hash functions and is expected to re-
place the now commonly used SHA-2 and SHA-1. The underlying algorithm is Keccak and four
sub-versions are currently included in the standard. The algorithm consists of a function of 5
unique step-mappings which acts on a state over 24 rounds. The sub-versions of SHA-3 have
no structural distinguishing features and differ by the ratio of the size between the inner and
outer part of the state which further determines the size of the message block and the digest.
The implementation technology of focus is the [FPGA| where the Xilinx Virtex-5 is selected as a
performance standard.[FPGAs| are chosen because of their advantageous prototyping capabil-
ities, good performance and prevalence among the state-of-the-art.

18

3 State of the art

From the early stages of the selection process for the new SHA-3 standard, several papers
were published comparing implementations of the different candidates. These works assisted
in demonstrating the varying performances between the potential winners as the competition
progressed, highlighting their strengths and weaknesses related with various factors. As the
competition ended and ensuing the announcement of the winner, increasingly improved works
emerged, focusing more on structural optimization techniques and less on plain comparisons.
These papers define the state of the art related with implementations of the four sub-versions of
the SHA-3 hash function. The various approaches and implementation techniques are herein
presented. There is much to learn from the mistakes and successes of these proposals.

There is a loose convention of classifying the implementations based on the internal data
path, as presented in the Keccak Implementation Overview [12]. The three different classes
are: compact, mid-range and high-speed designs. In this paper, the latter are simply referred
to as unfolded designs while the others are sub-classes of folded designs with constrained
data paths where only parts of the state are processed. The reasoning behind the classes is
that the performances are distinctively different. As further explored in Chapter 4, smaller area
footprints come with a greater cost in throughput. The choice of implementing a design within
a class should be motivated by a specific objective, e.g. a compact folded-structure should be
aimed at consuming an absolute minimum number of resources at the lowest loss in throughput.
An unfolded structure on the other hand, should aim for maximum throughput and decreasing
the area is a secondary objective.

A complete design conventionally involves a wrapper, the state, and the Keccak-f. The sep-
aration of these three components are naturally blurred among the existing literature and are
presented here first and foremost for the benefit of distinguishing the functionalities. They re-
main equally separated during analysis and development in this thesis. It is uncertain whether
other designs incorporate the same convention. The purpose of the wrapper is first of all to
provide a hardware interface for managing the interconnection between the FPGA and the
user/processor. For hardware implementations of SHA-3, this includes the reception and prepa-
ration of the message block so that it is compatible with Keccak-f as well as the transmission of
the final digest. Additionally, the wrapper incorporates the functionality of the sponge construc-
tion, specifically the iterated calling of the sponge function (Keccak-f) for message with multiple
blocks of length. A simplified schematic of a basic structured SHA-3 implementation is depicted
in Figure [3.1] The color blue covers the state and the round function, Keccak-f, while the wrap-
per part is marked in red. The figure does not include how the state is initially composed of

19

partly a message block and zeros at respective lanes, and that the output of the hash function
is similarly composed of only a sub-set of lanes.

The round function for SHA-3 is composed of multiple identical rounds of relatively simple
logic, and so every optimization which simplifies this component can easily have a solid impact
on the overall performance. On the other hand, the relatively large state of 1600 bits results in
a wide round function implying that routing is expected to be a big factor related with timing.

MESSAGE
BLOCK 1 | BLOCK 2 | BLOCK 3 :
r
I,
fk:
MULTI :;
BLOCK
MESSAGE 0 g
NEW =
BLOCK 10

COUNT
(0:23)

RF

1600 . 1600 .1
\4

v

Figure 3.1: Simple illustration of SHA-3 with the sponge construction in red at the top and the
round function Keccak-f and the state in blue below.

One of the main objectives of this thesis is to arrive at a design with improved efficiency
(i.e. close to the maximum throughput per area). Throughput is defined as the rate at which
messages are injected into the hash function and processed while area is the overall resource
occupation. The usual trade-off between these two metrics is reflected in the structural design
choices in the related state-of-the-art as herein discussed. It is apparent that economizing in
resources results in decreased performance for most types of constructions and the challenge
of a designer is to find the optimal trade-off. The concept of economizing in area is motivated
by the potential for either combining the hash function with other components on the FPGA or
simply cascading the structure for multiplied throughput. If the latter is relevant, it is crucial to
maintain throughput. While there are many approaches towards optimizing hardware designs,
low-level optimizations such as vendor-specific issues or manual component placement are
herein not considered as these are out of the scope of this thesis. These low-level optimizations
can improve the performance related with timing considerably. However, optimal
(PAR) is categorized as an NP-hard problem. Therefore, only high-level optimizations
have been considered in this thesis. These comprise structural aspects of a design and are
generally independent of the FPGA vendor and model, making the task of porting the design
as transparent as possible. Each output of the round function depends on a set of input bits
which dictates how many bits that can be processed in parallel.

The basis for the reported performance of individual designs is not equal. While area con-

20

sumption remains mostly the same, synthesis results of clock frequency are vastly different
from those which are obtained from It is therefore interesting to personally evaluate which
performances that can be reached by replicating the literature. It is also uncertain how much
effort has been put into the existing designs with respect to manually placing components on
the FPGA and tool optimizations. This is a time consuming task, but one that can yield good
results in frequency if done properly. San & At [28] mentions careful placing and routing of com-
ponents and reports close to optimal frequency of their design. Others have reportedly utilized
tools such as ATHENa [29] to iteratively search for the optimal synthesis and [PAR|options. It is
up for discussion whether it is a reasonable approach to rely on manual methods or specialized
tools instead of the standard vendor-provided software, when comparing proposed solutions.
However, all affordable measures should be considered for a final and physical implementation
of a hash function.

The main concepts of optimization techniques which are presented here have been con-
sidered and utilized by the existing literature. Other techniques exist which in general have
been considered as irrelevant for SHA-3 because of the construction of the sponge function.
Literature performing comparisons of the early SHA-3 candidates or covering hardware im-
plementations of other cryptographic functions have served as helpful resources related with
potential optimization techniques, such as Nachvatal et al. [30], Gaj et al. [4] and Lien [31].

3.1 Folding

To economize on the utilization of FPGA resources, the logic comprising the design can be
re-used. This is achieved by folding the state so that only a sub-set of the 1600 bits are pro-
cessed on each iteration. With respect to the standard structure of Keccak, this means that
partitions of the state are processed in the round function. The concept of folding is depicted
in Figure [3.2] where the folded structure, on the right, has an internal data path smaller by a
factor equal to the folding factor (FF), at a proportional increase in the clock cycles.

While the state can be fragmented into any of its smaller components, processing too few
bits in a combinational path is not beneficial. As explained in detail in Chapter 4, each output
bit of the round function is dependent on multiple input bits and extra clock cycles and logic is
required if these dependencies are not met. Thus, folds smaller than a slice or a lane are not
considered to be effective.

21

NEW

BLOCK __ 107 107/

COUNT COUNT
(0:23) (0:23xFF)

RF RF
l 1600 .t 1600 |

> 1600 > 1600
—

Figure 3.2: Simple schematic of a basic SHA-3 structure on the left and a folded structure on
the right. FF=folding factor.

M
l
\

The relevant existing implementations have either incorporated a lane-wise or slice-wise
folding-scheme. The first folded structure was suggested by Bertoni et al. [32] in the earliest ver-
sion of the Keccak Implementation Overview in 2011. This structure incorporated a lane-wise
folding-scheme so that the internal data-path is 64 bits wide. It relies on embedded memory for
storage of the state. Each round of Keccak-f takes 215 cycles and contain 55 bubbles, which
are clock cycles where no computation is performed. This results in a poor throughput and
overall efficiency which represent both the specific downside of the folding-scheme and folding
in general. E.g. the 6 step-mapping can not be completed before 9 lanes have been read from
memory. Intricate scheduling is also required in order to maintain a non-excessive latency and
acceptable throughput.

Kerckhof et al. [33] improves upon the official compact lane-wise design through more effi-
cient scheduling. The total latency is less than 50% of its predecessor with a total of 2154 clock
cycles and the area is similarly reduced. They do not use any additional FPGA resources other
than the slices, using distributed [RAM|to store both the state, round constants, and intermedi-
ate round function values The overall efficiency of this structure is 0.47 Mbps/slice on a Virtex-6
FPGA. San & At [28] improve upon the lane-wise architecture by introducing a fine-tuned in-
struction sequence which allows for high concurrency along a serialized round function. The
latency is further reduced by 50% and along with an optimal frequency close to the upper limit
of the Virtex-5 FPGA, this implementation yields a high throughput compared to the other com-
pact folded designs and an efficiency of 1.66 Mbps/slice. are utilized in this design to
store the state and other necessary data. The authors in this paper do not include the BRAMs|
in the estimation of the efficiency which gives an improper view of the resource utilization.

Jungk & Apfelbeck [34] presents the first slice-wise structure which requires the re-schedul-
ing of the round function to solve the dependencies of the p step-mapping. These dependen-
cies are further explained in Chapter 4. The round re-scheduling ensures that the p and =
step-mappings are the last steps in all but the first and last round. This results in 3 different
rounds, but the dependency problem of the permutation steps is avoided. One remaining de-

22

pendency issue is caused by 8 as the column-parity of a slice at a lower address is required
for each output. Slice number 0 is dependent on the processing of slice number 63. The paper
does not address how this dependency is solved. A problem with slice-wise folding-schemes
is related with how the message block is conventionally split into lanes and transmitted and
received per 64 bits. These must be split up in a slice-wise folding-scheme. As a message lane
is received, [FF|clock cycles are required to load 64 bits with the conventional interfacing. In this
paper, they solve this with a [Fast Simplex Link (FSL)| which is a hardware interface developed
by Xilinx [35]. The solution is to convert the standard interfacing to a slice-wise orientation by
buffering the incoming message 1600 bit{FF| per clock cycle. This interface is neglected from
the area and throughput assessment, nevertheless, they have included a padding functional-
ity which is presented and included in the assessment. Their structure has a folding factor of
8 and latency of 200 clock cycles. The state is stored in distributed RAM which can be read
asynchronously. This is the first paper with an implementation in the mid-range class of folded
structures, meaning that the throughput is improved compared with other compact designs at a
smaller cost in area [33, 28| (12, [36]. The overall efficiency is 1.17 Mbps/slice. A later paper by
Jungk et al. [37] perform a more elaborate exploration of various folding-factors of the slice-wise
folding-scheme, thus demonstrating the flexibility of this approach. The first compact structure
with a slice-wise folding-scheme is presented. This paper also addresses the intra-round de-
pendency caused by 6 which is solved by the addition of extra logic so that slice number 0 is
processed along with slice number 63 during the last sub-round.

B. Jungk [38] performs a thorough analysis of the possible ways in which the state can be
folded and the resulting challenges related with each case. Though most folded structures have
either incorporated a slice-wise or lane-wise folding scheme, the former is suggested to be the
optimal choice for efficiency and flexibility with respect to the folding factor.

Another compact slice-wise structure is proposed by Winderickx et al. [36] which utilizes
[Shift Register Lookup Tables (SRLs)| of the SLICEM type of slices to store the state. The SRL
is beneficial as it inherently solves the p dependency. This is similar to storing the state in dis-
tributed [RAM,] albeit more efficient for compact structures with a maximum [FF| The authors
mention that they do not solve the interfacing mismatch which is inherent for slice-wise folded
structures. The overall efficiency is 1.16 Mbps/slice. Jungk & Stéttinger [39] proposes a com-
pact slice-wise structure which stores the state in distributed incorporating an interface
similar to the one used by Jungk & Apfelbeck.

Other approaches to folding exists. Gaj et al. [4] presents vertical and horizontal folding
where the former is equal to what is herein considered. Horizontal folding can be described
as a form of unrolling which is only relevant for a symmetric round function, i.e. a function
consisting of two or more identical sub-functions. The complete function can then be reduced
to only one of the sub-functions with a multiplication of the number of cycles. Throughput is
therefore traded for area.

23

3.2 Pipelining

Pipelining is a common technique for adding parallelism to combinational logic by dividing the
data path with intermediate registers. The most critical path of a design dictates the minimum
clock period of the design. Incorporating pipeline registers along this data path will therefore
result in an increased frequency of the overall design. The penalty of using this technique is
a larger design because of the added registers, as depicted in Figure Still, the overall
throughput per area is generally improved with well-balanced employment of each pipeline.
Latency is increased proportionally with each introduced pipeline register, but this is equally
compensated by the added messages contained in each pipeline. A structure is herein consid-
ered to be pipelined if more than one iteration of the state register is incorporated in the design.
The degree of pipelining is denoted by [PL] and the default pipelining factor is therefore [PLi=1.

A precondition for the benefit of this technique is that all pipelines are full and that no bub-
bles are contained in-between rounds. The aptitude of pipeline registers for folded structures
relies on the data dependencies between the combinational logic, For unfolded designs,
pipelining is only relevant if the hash function is used to process multiple messages.

As described in larger messages invoke an iterated absorbing phase of the sponge
construction, i.e. each block constituting a part of a message is XORed into the state with the
previously processed blocks of the same message. Each block must undergo 24 rounds of the
round function before being merged with the subsequent block. Thus, two blocks of the same
message cannot consecutively fill a pipeline.

NEW
BLOCK
foiv \10/
(0:23xregs)
RF1
¥ 1600 .1

Figure 3.3: Simple illustration of the concept of pipelining. The round function RF is split into
RF1 and RF2 while maintaining its width.

Some of the existing literature considers scenarios where multiple small messages are
hashed, coining the term |Multi-Message Hashing (MMH)\ Akin et al. [40] performed an early
exploration of multiple pipelines within the round function. While they report an impressive op-

24

erating frequency of 509 MHz and manage to increase the overall efficiency, the area is almost
proportionally increased as they have incorporated five internal pipelines. What must also be
noted is that their design is implemented on a Virtex-4 which has less powerful slices and a
larger routing delay compared to Pereira et al. [41] made a thorough analysis of the to-
tal delay provided by each step mapping of the round function on a Based on this, they
propose a different pipeline-scheme than Akin et al. [40] by distributing the step mappings in a
different manner among three internal pipelines. The overall efficiency is increased as the re-
ported frequency of 452 MHz is not much lower than the related state-of-the-art. Similar results
were achieved by Ayusawa et al. [42]. The design by Athanasiou et al. [43] reports a frequency
of 389 MHz with only one internal pipeline register, thus achieving a high efficiency.

The literature differs in the expectation of the messages. A common application for hash
functions is the hashing of Ethernet packages and so messages should be expected to have
sizes larger than the block size, i.e. multi-block-messages (MBM). For this reason, as is also
pointed out by loannou et al. [44], pipelining the round function in unfolded structures should
be avoided if this scenario is to be considered.

In most variations of folded designs, pipelining is not efficient as inter-round dependencies
cause bubbles or cycles with empty pipeline registers at the transition of each round. The
processing of the first folds of a round x depends on the last folds of round x-1. A technique
which avoids the inter-round dependencies was suggested by B. Jungk [38] and explored by
Jungk & Stoéttinger [39]. This technique allows for up to 9 pipeline registers within the round
function by re-scheduling the sequence of step mappings and exploiting the permutation of the
p step. In the re-scheduled round, the p and 7 step mappings are located last and the structure
is folded slice-wise, processing 1 slice in each combinational path. If the round function contains
one internal pipeline register to process two slices concurrently, then slice 0 of round x+1 cannot
enter the round function before it has been updated by slice 63 of round x. p only updates
25 different slices from each slice processed, leaving only 64 — 25 = 39 slices that does not
depend on the last slice. These dependency-free slices can therefore be the first slices of the
next round. If they are consecutively located, then a larger quantity of pipeline registers can be
incorporated in the round function. This is further explained in Chapter 4

Pipelines can be useful in other points of the design. In particular cases, control signals can
impose the critical path. An example of this is if the round constants are stored in an embedded
memory with significant routing delay from the location of the memory to where it is used in the «
step mapping. While BRAM|in modern [FPGAs] contain built-in pipeline registers, it might not be
sufficient in designs with higher working frequencies. For a selection of different structures with
various folding-schemes, Ayuzawa et al. [42] have explored this optimization which they have
named Retiming of round constant preparation. In their paper they mainly compare the design
of Akin et al. [40] and their modifications of it with the unfolded Keccak reference design [12].
Their main conclusion is first off all that the five pipeline registers employed by in [40] within the
round function are excessive, but also that pipelining the path of the round constants improves
the overall performance for pipelined designs. They report a 52% improvement in efficiency
over the pipelined structure by Akin et al. [40Q].

25

3.3

Loop unrolling trades lower latency for higher area requirements as multiple round functions
are located in the combinational path and processed within a single clock cycle, as is depicted
in Figure For Keccak, the critical path in the basic structure is located through the round
function. Unrolling will therefore decrease the frequency and throughput. Thus, the existing
literature has mostly found this optimization technique to be relevant for other hash functions
and not for Keccak. Bertoni et al. [12] performed an early analysis of the effect of purely unrolling
the high-speed unfolded structure. The results from the simulations are presented in Table
with area measured in gates and a quantity of instances of the round function from one to six,
given by the UF. Each incrementation of the unrolling factor (UF) decreases the latency by 50%,
but it is not enough to compensate for the lower frequency and higher area requirements. As
can be seen, the efficiency which is given in the right-most column denoted by T/A decreases
as increases towards the lower rows.

Unrolling

BLOCK __ T 1o
(0:23/UF)
RF
§— 16001
RF

v
> 1600

i—

Figure 3.4: Simple illustration of the concept of unrolling. The round function is duplicated within
a combinational path and the number of rounds reduced proportionally.

Unrolling factor Area Frequency | Critical path | Throughput T/A
1 48 kgates 526 Mhz 1.9ns 22.44 Gb/s | 468 Kb/gs
2 67 kgates 333 Mhz 3.0ns 28.44 Gb/s | 425 Kb/gs
3 86 kgates 244 Mhz 41ns 31.22 Gb/s | 363 Kb/gs
4 105 kgates | 192 Mhz 5.2 ns 32.82 Gb/s | 313 Kb/gs
6 143 kgates | 135 Mhz 6.3 ns 34.59 Gb/s | 242 Kb/gs

Table 3.1: Unrolling results based on the reference architecture / The Keccak team [12].

loannou et al. [44] propose an unrolled architecture which is pipelined, however, only multi-
ple independent messages are considered for hashing as the structure incorporates an external
pipeline. Therefore, the round function remains in the critical path, but it is not increased as was

26

seen in the analysis by Bertoni et al. [12]. One message block is processed 12 times in the first
instance of the round function before proceeding to the second instance. The latency is reduced
by 50%, the area increased by less than 100% and the frequency remains the same. The re-
ported results are noticeably better than a basic structure, despite no internal pipelines. This is
the only known consideration of an unrolled structure apart from the official Keccak literature.

3.4 Manual component instantiation

This technique borders low-level optimizations as it improves the non-optimal utilization of com-
ponents on the [FPGAs| by the synthesis tool. Nevertheless, it is still herein included as it seems
to be a relatively simple and efficient improvement that is relevant for the implementations of
SHA-3. The downside of this optimization is that porting might not be straightforward between
significantly different FPGA families such as across vendors.

Only one case is known among the existing literature where manual instantiation has been
utilized to improve a SHA-3 implementation. It was suggested by Jungk et al. [37] that a manual
[LUT]instantiation of the x and . step mappings would reduce the required number of LUTs|and
additionally save multiplexers. This specific optimization is relevant for implementations on
[FPGAs|and newer families with 6-input[LUTs| Multiplexers are saved as there are enough inputs
for one of them to assert whether the step mappings should be bypassed, such as in round 0.
This technique has been implemented by Jungk & Stéttinger [39], however the actual impact
is not given and whether it is effective for other parts of the implementation is not clear. In
general, it is not easy to determine precisely in which situations this optimization is relevant. No
specific literature is found to be exploring the degree in which manual component instantiation
is effective, depending on the given logic and synthesis tool.

There are many situations where knowing what the synthesis tool will implement is impor-
tant in order to achieve the desired optimal performance. One example of this is when
Iplexers (MUXs)| are described which are not a power of two [45], as is the case for many parts
of a SHA-3 implementation. E.g. a 5-input [MUX| can be implemented by four 2-input [MUXs]| or
one with 5- or 6-inputs. As large are implemented with a combination of [LUTs| and 2:1
the difference between the possible solutions is seen when the implementations are
cascaded for large signals, as depicted in Figure (3.5

-

=D
=0 g
=oNg
=o\g
=0 \g,

oO|RIN|W|PH
ol |IN|W|>
oOlr|IN|W|A>
Ol IN|W|A>

=6 2
N

Figure 3.5: lllustration of manual LUT instantiation of the x and . step mapping acting on a row
of the state matrix. Three Virtex-5 LUTs are required per row.

MUX
IOI

27

3.5 Accessory FPGA resources

Designs implemented on[FPGAs|should take advantage of all the resources available. However,
the existing unfolded implementations rarely utilize more than slices. While the performance of
components such as the slices and have improved steadily throughout the years,
the path between these blocks and the general logic often result in high routing delays. The
challenge is to properly use these resources in order to either reduce the critical path and/or
the total area requirements. The downside of using additional resources is the awkward com-
parability with other existing designs.

Xilinx FPGAs provide dedicated[DSP|slices for mathematical calculations. While only simple
boolean operators are involved in Keccak-f, the DSP48E slice, provided by the supports
3-input 48-bit adders [46]. Without carry-in the adder works with GF(2), thus functioning as
a boolean XOR operator. Ayuzawa et a.l [42] have explored the utilization of slices for
pipelined SHA-3 designs, by implementing two of the three sub-steps of 0, 6, and 65 with the
DSP48E slices. They find that for certain pipeline schemes, slices improve the overall
performance of the design. No additional literature is found to be considering the usage of DSP]
slices in SHA-3, other than this paper.

6, involves the XORIing of each bit of a 320-bit plane, thus requiring seven DSP48E slices.
Five times more DSP48E slices are required for the 65 sub-step. The number of available DSP|
slices vary greatly between models and as the [V-5| provides between 32 and 1056 DSP slices,
the total number of available slices can quickly be consumed by incorporating any of the wide
step-mappings of Keccak-f. Additional usage of DSP slices can also be considered in the ab-
sorbing phase of the sponge function.

Embedded memory blocks which for correspond to [BRAM, can be used to store
larger quantities of data than distributed RAM. The usage of BRAM]to save slices emerges
in folded designs because all bits are not accessed in the same cycle. Two aspects should
be considered with the use of BRAM| as these are dimensioned for larger quantities of data
than the 1600 bits of the state and that read and write operations are synchronous. The former
means that in case the FPGA is implemented with other functions in addition to the SHA-3
structure so that resources must be shared, large amounts of embedded memory is already
consumed and unavailable for utilization by the other functions. This concept is herein referred
to as proportional resource utilization. The issue with synchronous read and write operations
can be bypassed by exploiting a collision-avoidance mechanism incorporated in these embed-
ded memories in modern FPGAs.

Distributed RAM are more sorted for smaller quantities of data with asynchronous read
operations. In each V-5 type SLICEM slice allow to implement 128 bits of distributed RAM. A
V-5] FPGA with 4800 slices contains 320 kbits of distributed RAM. The ratio of SLICEM slices
to the total number of slices is typically around 1:1.7.

San & At [28] have developed a coprocessor-based architecture for extremely resource
constrained environments. In their design, two dual-port 36 Kbit BRAM units of Virtex-5 are
used to store one instance of the state and additional temporary values. Each state is accessed
lane-wise which results in a high number of cycles per round. This implementation achieves an

28

optimal frequency of 520 MHz on the V-5 FPGA, but the high area constraint, results in a high
latency of 1062 cycles, and a low throughput and overall efficiency.

The BRAM| units in a[V-5| can be cascaded to one 64 Kb RAM or configured as either one
36 Kb or two 18 Kb RAMSs, both with [Simple Dual Port| (SDP) access [17]. They include built-in
pipeline registers which are advantageous to reduce the slice consumption at a minimum and
potentially to minimize the data path. With dual-port access the maximum data width for read-
ing data is 72 bits. The challenging part of using BRAMs is to maintain parallelism so that a
minimum of 5 SHA-3 lanes can be accessed simultaneously.

3.6 Wrapper

A wrapper is a common term for a component which handles the hardware interface of the
design. Herein the additional control logic for the complete functionality of a design is also
included in the wrapper. Since FPGAs contain a limited number of [[Ofports, several cycles are
involved in the reception and transmission of each message block and the digest. For compact
designs, these cycles can be added to the 24 rounds of the round function in a trade-off for
smaller area. The buffers are in that case removed and the message block is directly injected
in and extracted from the state. For unfolded high-efficiency structures, on the other hand, this
buffering is an important part of the functionality of the design.

A part of the existing literature have incorporated some sort of wrapping functionality which
contains the @]-buffers, however, in some this is neglected. A selection of the state-of-the-art
have also not included a wrapper at all and only the core functionality of Keccak is considered in
the evaluation of the performance. Such structures can therefore be considered as incomplete
and cannot function by themselves as a stand-alone entity.

A padding functionality can also be incorporated, but this is separated from the hardware
design in most existing implementations and provided by assisting software. This is partly be-
cause of the earlier literature’s focus on fair comparisons between the candidates where it was
desired to avoid extra differentiating factors such as the individual padding rules. An exception
to this is the paper by Baldwin et al. [47] which reports no decline in frequency while including
a wrapper in the assessment of Keccak and only the area is distinctively larger. Ambarish Vyas
[48] have studied hardware padders for several of the early SHA-3 candidates and reports that
a relatively efficient padder component can be implemented for Keccak, based on priority en-
coders. His design is implemented on a [V-5| and achieves a maximum frequency of 314 MHz
with a footprint of 32 slices for the padder.

Athanasiou et al. [43] presents the first general SHA-3 implementation. Which SHA-3 ver-
sion is supported is entirely dependent on the wrapper as it controls the block size and digest.
Five XOR modules are used for version selection in this design. The round function is pipelined
so that the achieved frequency is decent for scenarios where multiple small messages are
hashed. No [[Ofbuffer is included in the wrapper and the structure requires wide [Ofports. An-
other hardware interface titted GMU was developed by Gaj et al. [49] which is based on two

Finite State Machines (FSMs)| and passive [First-In-First-Outs (FIFOs)| for message input and

digest output. This interface was developed during the early stages of the SHA-3 competition

29

and is designed as a generic interface for hash functions. More recent implementations [33, 139
have considered this interface, some with slight modifications. In their approach, they assume
that padding is performed externally by the user and only one of the SHA-3 sub-version is sup-
ported. Jungk & Apfelbeck [34] use the [Fast Simplex Link| (FSL) which is a 32 bit unidirectional
link used between IP cores and microcontrollers [35].

3.7 Overall analysis

The relevant existing implementations are listed in Table sorted by efficiency normalized
for the SHA3-512 version. Because of the differences in the block size, the throughput and effi-
ciency of a SHA3-256 structure is approximately 50% of an identical SHA3-512 structure. The
presented structures in the state-of-the-art are implemented on Virtex-5 except those noted oth-
erwise. UF(1-9) indicates the unrolling factor, FF(1-9) the folding factor, and PL(1-9)X/PL(1-9)
indicates the number of pipeline stages and whether these are internal or e(x)ternal. A structure
noted with PL2 incorporates one internal pipeline register in addition to the main state register.
B (buffer) and NB (no buffer) implies whether an[[O}buffer has been included in the assessment.

The existing structures report vastly different results and the comparison between them is
not straight forward given the many factors involved. Moreover, some authors are presenting re-
sults obtained from synthesis only, which is highly erroneous with respect to timing. Frequency
results which are based on synthesis are denoted by a T and frequencies where the authors
fail to mention the source are denoted by t. Akin et al. [40], Pereira et al. [41], Gaj et al. [4]
and Jararweh et al. [50] seem to have based their performance on synthesis only. It is not clear
which of the four sub-versions have been implemented by the work of Pereira [41]. Ayazuwa et
al. [42] fail to present numbers and the paper only contains figures indicating their performance.

The structure presented by Akin et al. [40] is implemented on a Virtex-4 FPGA. The perfor-
mance is expected to be better on a[V-5 with smaller footprint and better timing. Kerckhof et al.
[33] presents a Virtex-6 implementation and the performance should therefore be considered
lower than what is presented when comparing with the other structures.

[[Ctbuffers are usually not included. These buffers consume resources and the performance
can be affected by whether these are included. For unfolded designs, minimal latency is key
and so the round function should be able to run without interruption. An [ICbuffer is therefore
necessary to deliver the data in parallel to the round function and transmit the digest. Athana-
siou et al.. presents a general wrapper, but without a buffer. This can explain the larger area
compared with loannou et al. and other basic structures.

A general source of the deviation in the performance for all the structures is the frequency.
As mentioned earlier, The NP-hard problem of optimal timing can be improved if sufficiently
prioritized and many of the listed structures could potentially achieve better performances. For
example, the basic structure of loannou et al. [44] achieves a comparable frequency to the inter-
nally pipelined structure by Athanasiou et al.. It is, on the other hand, clear that the performance
of the latter is based on [PAR while the basis of the former is unknown.

The added latencies of pipelined structures does not have an impact on the efficiency as
these approaches are considering applications for the hash function where multiple small mes-

30

T/A
Lat. | f A T

Paper (clke) | (MH2) | (slices) | (Gbps) (2'::1‘5/ Ver. Note

loannou [44] 1235277 | 2652 | 1690 | 637 | 512 | UF2.PL2X.NB
loannou [44] 54 38277 | 1581 947 579 512 NB
Athanasiou [43] | 48 | 389 | 1702 | 18.70 | 10.98 | 224 PLO.NB
Gaj [4] 54| 2837 1272 | 12.82 | 10.08 | 256 B
Baldwin [47] 55| 189 | 1117 | 850 432 512 NB
Jungk B7] 54| 195 1305 | 849 | 3.87 | 256 NB
Pereira [41] 100 4527 3117 | 770 247 2 PL4B
Akin® [40] 121 | 5097 | 4356 | 2233 | 5.13 | 224 P58
Baldwin [47] 55| 189 | 1971 | 850 | 432 512 B
Jararweh [50] 54 | 2717 2828 | 1228 | 434 | 224 B
Akin® [40] 55 | 1437 2024 | 607 | 3.00 | 224 B
San & AL[28] | 1062 | 5207 151 025] 1.66 | 512 | FF25.BRAM.B
Jungk B7] 50| 144 | 914 | 313 2.04 | 256 FF2.NB
Jungk B3] 100 150 | 489 | 1.63| 1.9 | 256 FF4.NB
Jungk [37] 500 | 166 | 301 | 090 1.79 | 256 FFB.NB
Jungk & Ap[B4] | 200 | 159 | 393 | 046 | 117 | 256 FF.NB
Jungk & St [39] | 1665 | 257 90| 0.7 | 1.85 | 256 FF64.B
Winderickx [36] | 1730 | 248 1T 134 025 1.16 | 256 FF64.B
Jungk B7] 1600 | 206 | 164 | 0.14| 051 | 256 FF64.NB
Kerckhor [33] | 2154 | 250 71 144 007 047512 FF25.8
Bertoni [12] 5160 | 265 | 448 | 005 012512 FF25.8

Table 3.2: Relevant existing unfolded (top) and folded (bottom) implementations sorted
by efficiency adjusted for SHA3-512. FF(1-9)=folding factor, UF(1-9)=unrolling factor,
PL(1-9)X/PL(1-9)= external/internal pipeline registers, NB/B=no buffer/buffer. *Virtex-4 imple-
mentation. **Virtex-6 implementation. f Results obtained from synthesis. T Unknown source of
results.

sages are processed and thus, no bubbles exist along the pipeline. Both 24 and 25 clock cycles
are reported as the latency for unfolded structures and the latter is potentially caused by the
extraction of the digest from the state register and not from the round function.

3.8 Summary

The relevant existing literature have been presented here and consists of SHA-3 structures with
variable considerations and performance objectives. There are, however, a few clear tendencies
with respect to the adoption of optimization techniques. Compact structures use folding and
the most efficient cases among the state-of-the-art regarding compact implementations are
folded slice-wise. Folded structures use[RAM|to implement both the state register and additional
data such as the round constants. The most efficient structures are unfolded and use pipeline
registers internally in the round function. The highest reported efficiency is seen in a structure
which is both unfolded, pipelined, and unrolled so that the implementation includes multiple
instances of the round function.

31

The solutions presented in the existing literature are seemingly lacking in the potential for
working as stand-alone entities as many are missing a fully functioning wrapping component.
The basis for the reported results are also not the same with many obtaining results from
synthesis and only a few from |PAR|which are more reliable.

32

4 Proposed solution

This chapter presents the analyses and considerations which have been carried out in rela-
tion with this thesis. The existing state-of-the-art is already mature with multiple papers having
advanced this scientific field with a variety of approaches. Still, some considerations and ap-
proaches are left unexplored. While not all of the concepts discussed here are completely
unique or original, they are found worthwhile of presenting as they contribute to give a clear
overview of this broad technical field. An exploration of the successful aspects found in the
state-of-the-art and the analyses herein performed shaped the results achieved and presented
in this chapter.

Folding is an optimization which improves the area consumption at a cost of higher la-
tency and therefore usually a lower throughput. This is the main technique used to reduce the
area which is related to the structure. Many considerations must be made when implementing
a folded structure in order to meet input dependencies for step-mappings of the round func-
tion. These are explored subsequently along with the general efficiency cost of utilizing this
technique. Other ways in which area can be reduced are by removing non-critical registers
and to use asynchronous multiplexers for signal assignment. For stable timing performance, it
is generally advised to maintain registers and use [FSMs|instead of asynchronous signal as-
signments. The removal of registers must therefore be done jointly with attentive analysis of
the timing. Non-structural optimizations such as these are considered simply as rational and
proper use of the syntax of the [Hardware Description Language (HDL)| and are therefore not
discussed further. This is similar to how timing is affected by low-level optimizations such as
bypassing the [PAR|and placing the [Real Time Logic (RTL)|components manually. Pipelining is
the main optimization towards maximizing the timing and therefore throughput. A set of precon-
ditions dictate the relevancy of its utilization, however. The final optimization considered in the
proposed solution is focused on unrolling which enters the optimization domain of both area
and throughput.

While some techniques are thoroughly covered by the existing literature, certain aspects
of the implementations have not been discussed in depth. It is therefore an unavoidable risk
that certain aspects of the analysis and the proposed solutions are subjects of re-inventing the
wheel. This is mostly related with the memory mapping of the state, i.e. how the 1600 bit state is
stored in[RAM] Elaborately presenting the necessary steps in order to implement the proposed
techniques are therefore a novel addition to the state-of-the-art and can be seen as another
contribution of this thesis.

33

4.1 Folding

As seen in Chapter [3| most folded designs incorporate either a lane-wise or a slice-wise folding
scheme. At first glance there seem to be several possibilities of partitioning the state. However,
additional logic and clock cycles are required if each fold fails to contain all the necessary bits
required to produce the output of a step mapping. These bits are referred to as dependencies
and they are a bi-product of critical security features of a cryptographic hash function. The
dependencies of each step mapping are rather simple, but many structural constraints arise
when they are considered combined. They are discussed further subsequently (4.2). Ultimately,
as also concluded in previous literature [38], the optimal folding scheme with respect to the
combined dependencies of the round function is a slice-wise architecture. Therefore, other
folded configurations are not considered in the further analyses.

There is a clear difference between the performances of the compact folded designs and the
straight-forward unfolded designs. It is therefore trivial to observe that while there is a trade-off
between the utilization of resources and the latency, the relationship between them is not sym-
metrical. There is a certainty that the latency will increase by at least a factor equal to the
folding-factor, e.g. a minimum latency of 48 an 96 is achieved with a folding-factor of 2 and 4.
The resource utilization, however, is more complicated to determine and while round function
logic is reduced, additional components such as multiplexers and larger counters are introduced
when a folding-scheme is employed.

The formula for calculating the throughput, 7, is given in Equation [4.1], where r is the
block-size, which is the size of the message block. The frequency, f, is the number of clock
cycles the design can perform in a second and is determined by the critical path between reg-
isters. The latency, L, is the amount of clock cycles required for the processing of one message
block. The efficiency, E, is obtained by dividing the throughput by the area, A, which is the
number of slices consumed by the design, as depicted in Equation

r-f

T = 7 (4.1)
r-f

E=— (4.2)

When plotting the efficiency as a function of area for various folding schemes, the cost of
the increased latency becomes apparent. This plot is illustrated in Figure where 6 different
folding approaches are plotted in addition to the unfolded scenario with 24 cycles latency. The
frequency is fixed between 200 and 300 MHz with proportionally higher value as the folding
factor increases. This is based on intermediate implementation results as well as the reported
performances from the existing state-of-the-art [37]. The block size is set to 576 bits as this
corresponds to the most secure and prevalent SHA-3 sub-version. The dotted horizontal line
denotes roughly the maximum efficiency achieved so far in the existing state-of-the-art, by
loannou et al. [44]. The dotted vertical line at 90 slices denotes the absolute smallest area
requirements obtained in the existing state-of-the-art, by Jungk & Stéttinger [39]. Evidently,

34

high folding factors impose great constraints in terms of slice utilization. It also suggests that
an efficiency comparable to unfolded structures (with FF=1) seem to be unattainable with a
solution with a high folding factor.

This is a simplified model which does not take into account possible optimizations such as
pipelining and the actual achievable frequencies, which are not easily modeled. Nevertheless,
this model helps to roughly illustrate the maximum footprint of a given folding scheme in order to
achieve a given efficiency. For example, the obtained results suggests that an unfolded structure
should be kept below 1000 slices for an efficiency metric (of about 5 Mbps/slice).

10 — FF= 1,L= 24, =200
— FF= 2,L= 48, =250
91 FF= 4, L= 96, =275

— FF= 8, L= 192, {=288
FF=16, L= 384, =294
FF=32, L= 768, =297
FF=64, L=1536, =298

Efficiency (Mbps/slice)
[9)]
1

T R

T T T T T T T T T T T T T T T T T T 1
0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
Area (slices)

Figure 4.1: Efficiency model as a function of area for seven different folding factors for
SHA3-512.

Three folded structures classified as compact and mid-range designs are found to be in-
teresting and worth implementing. These correspond respectively to a folding factor of 64 , 8
and 4 for slice-wise structures and represent the best compromise of each class. A mid-range
design should not be folded excessively if a throughput above 1 Gb/s is targeted with a rela-
tively low area occupation. Both [FF=8 and 4 minimize the area requirements, with acceptable
throughputs. [FF=8 is an interesting trade-off, given the possibility of pipelining which is further
explored in section The objective for a compact design is to maintain a highly conserva-
tive area consumption while minimizing the decrease in throughput. The compact designs have
been thoroughly covered and recently optimized in [39].

Depending on the folding-scheme, there are various ways in which one can implement a
wrapping component. A solution which trades larger area for lower latency involves detaching
the wrapper so that it runs in parallel with the round function. This imposes a minimum limit
to the size of the IO} ports, especially for designs with a low folding factor, so that transceiving
the message and the digest occurs within the clock cycles needed for the round function. The
minimum [[O}port sizes depends on the SHA-3 sub-version and the folding factor, as illustrated
in Table [4.1] When rounding up to the nearest factor-of-two number, for unfolded designs the
port size should be kept above 64 bits, but there is no need for large ports in designs with a

35

high folding factor. The alternative solution is to inject the message block directly into the state
as the round function is halted. With a port size of 64 bits, the additional latencies introduced
for version SHA3-224 to -512 are respectively 22, 21, 19, and 17 clock cycles including the
extraction of the digest. This poses a significant decrease in throughput for unfolded structures,
but can be a valuable trade-off for structures with high folding factors.

Minimum I/O port size (bits)
Folding | Latency (cycles) | SHA3-224 | SHA3-256 | SHA3-384 | SHA3-512
1 24 58 56 51 46
2 48 29 28 26 24
4 96 15 14 13 12
8 192 8 7 7 6
16 384 4 4 4 3

Table 4.1: 1/O port size restriction for minimal latency.

4.2 Dependencies

The separate dependencies of each step-mapping are detailed in Section[2.3.2] For an exhaus-
tive exploration of the dependencies for all possible folding-schemes, readers are referred to
[38]. The slice-wise folding-scheme fails to meet the dependency of the p and 6 step-mappings.
Each output of 6 depends on the inputs bits of both the slice at the same location and at the
lower z-coordinate and p provides a permutation across all folds of the state.

While the dependencies are quite simple individually, it is the combination of the step-
-mappings that result in the challenges from the implementation point-of-view. An example is
given in Figure [4.2] where the combined dependencies for one output bit of the round function
is depicted. To produce the bit at lane 12 slice 0 for the next round, a total of 33 input bits
(depicted in blue) are required from several different slices and lanes. The combined depen-
dencies of the standard round function therefore prohibit most types of folding-schemes without
requiring additional logic and clock cycles.

36

SLICE NUMBER
...[45]46] ...[60]61]...[63] -..|48]...[61]

[9]

0]...|45]46]...|60]61]... |63 ...|46]... |61
[0|... [45]46| ... [60]61| ... [63] 46 ... [61]
[0]... [45]46|... [60[6L]|... [63]
[07] ... [45]48]| ... [60[61| ... |63]
[0]...[45]46| ... [60]61]... [63]
[0]... [45]46|...[60]61]... [63]
[0]... [45]46|... [6061]... [63]
[0|...[45[46]... [60[61]... [63]
[0]...[45(48] ... |[60[61] ... |63]
[0]...[45]46|...[60]61]... [63]
[0 |
[0 |
[0 |
[0 |
[0 |
0|
[0 |
[0 |
[0 |
[0 |
[0 |
[0 |
[0 |
[0 |
[0 |

...|45]48] ... [60]61]... |63]
...|a5]46| ... [60]61] ... [63]
...|45[46] ... |60[61]... |63]
...|45]a8] ... [60[6T] ... 63|
_..|a5]a6] ... [60]61]... 63]

...[45]46]...|60]61]... |63]
...[45]46| ... [60]61 | ... [63]
...|45]@8] ... [60[61]... [63]

LANE NUMBER
[l o] ol of s o] o]] 5]]]]l] e]]
O RPNWAENIINROO(PNWBERONONN®OORNWSS

IOTA OUTPUT
BEEEEEEEEEEEEEEEEEEEEEEEE |:

THETA INPUT

Pl OUTPUTICHI INPUT
BEEEEEEEEEEEEEEEEEEEEEEER I;

S
a1
8
>
o
(=]
=1
=)
2]

THETA OUTPUT/RHO INPUT
SEEREEEREREREEEREEEEREREE |

HHE
(1)

...[45|46]...|60/61]... |63
...|45|46]...|60|61]... |63
...|45|46]...|60]61| ... |63
... |45|46]...|60|61]... |63]

Figure 4.2: Dependency trace through the standard round function from start on the left side to
finish on the right. 1 output bit depends on 33 input bits.

The slice-wise folding-scheme seems to be the most flexible solution with respect to a vari-
able It is clear from Figure that bits are separated over more lanes than slices and
handling the state per lane will therefore require a higher degree of parallel memory access
or additional clock cycles. Implementing a slice-wise handling, on the other hand, allows for
the processing of the complete round function with a maximum [FF| with little additional logic.
A downside with slice-wise folding is related with the wrapper and the interface with the user.
Consistently with the specification of SHA-3 by [NIST], an input message is split into the lanes
of the state, which are then referred to as words. For a slice-wise folding-scheme, it is there-
fore necessary to re-order the incoming words for compatibility with the internal data-path.
Only then can the message be successfully XORed with the outer part of the state and fur-
ther introduced in the Keccak round function. There are two possible solutions for solving this
orientation-mismatch. The most common solution in the existing literature is to simply require
that the incoming words are re-ordered. The loading and unloading from the [Ofbuffer is de-
picted in Figure [4.3] The alternative is to add more clock cycles to the latency so that only parts
of the incoming word equal to the width of the fold are loaded in each clock cycle and vice
versa.

37

MESSAGE INPUT DIGEST OUTPUT
\ CLK CYCLE | CLK CYCLE |

15t [ond [3rd |4m 5th ‘G'“ 7th |3m gth 15t [2nd[grd [gth [5th [gth [7th [gth
ECI o 1] |2 ECI © 1 2 3
EE 2 18
117, [0 117 [9 2 [3

LANE

LANE
[=]K=]
"
m
m

1-9 Address/fold
0 to 15 of word_i/digest_o
16 to 31 of word_i/digest_o

32 to 47 of word_i/digest_o
48 to 64 of word_i/digest_o

Figure 4.3: Loading procedure for the slide-wise folding-scheme if incoming words are already
properly re-ordered.

In folded structures, the [[Ofbuffer of the wrapper can be stored in [RAM] in an identical
manner as the state and will therefore shrink proportionally with the folding factor. The logic of
the wrapper will increase, however, the logic of the wrapper will increase as the counters are
increased and as the intra-round dependencies must be resolved.

Pipelining requires another degree of dependency-free cycles, as briefly mentioned in the
previous chapter discussing pipelines in Section[3.2] With the introduction of an internal pipeline
registers, two folds are concurrently processed by the round function at two different stages. To
avoid bubbles, a new fold must be able to enter the first stage of the round function before a
previous fold is done processing in the last stage. In most cases this is hindered by inter-round
dependencies as all folds are updated from the processing of each fold. Bits which correspond
to a fold at the input are spread across all folds at the output because of the permutation
step-mappings of the round function.

4.2.1 Rescheduling of the round-function

The dependencies of the p and 7 step mappings are collectively restricting any form of folding
as the permutations act in all three dimensions of the state, providing a high level of mixing. A
visualization of this mixing is depicted in Figure where the top matrix illustrates the input
and the bottom matrix the output. The main issue is caused by the order of the step mappings,
with the permutations being located at the center of the round. Seemingly, no matter what kind
of folding-scheme is used, the data at the output of the round function will belong to completely
different fold(s) than the input. Even though the order of the step mappings within a round
are critical for the correct functionality of the Keccak function, the sequence can be altered by
rescheduling the round function. This concept was first presented by Jungk & Apfelbeck [34].
Grouping the 0, x and . step mappings together greatly simplifies the task of implementing
a folded round-function as the permutation step-mappings of p and = are off-loaded from the
round function itself. Two possible rescheduled round functions are shown in Figure This
adds one more round to the function as R1, composing round 0, R:3 round 1 to 23 and Rp2
round 24. Additional multiplexers are also required to bypass Rs2 in round 0 and Ryl in round

38

Standard round:
Rf=1o0xomopol x 24

Re-scheduled round solution 1:
Ri3=0octoxomop=RsloR;2 x 23
Ri2=10xomop x 1

Re-scheduled round solution 2:
Ril=mopof x 1
R3=mopoforoyxy=RploRs2 x 23
R2=10x x 1

Figure 4.4: Listing of the two possible re-scheduled round functions compared with the default
schedule.

24.

Z-DIMENSION
of 1] 2 3[a[5[e[7] 8] 9[10[11[12[13[14]15]16]17[18[19]20[21] 22[23] 24] 25] 26] 27| 28] 29] 30| 31] 32[33] 34[35] 36] 37] 38] 39] 40| 41] 42[43] 44| a5] 46] 47] 48[49] 50] 51] 52[53] 54] 55] 56| 57| 58] 53] 60] 61[62] 63|
24

3

LANE NUMBER

5
o|r|nfula ool ool 55 S B 5 5 58| B[R] R B8

LANE NUMBER

ol i e i il | ol | o | o ol | | ol ol kol iof 1| o f il | mof s | o] ol
o v vl & ol o ~| ol o] 5| B K| & 5| & 5f S| & 5] S| B R E B ol kv w] s vl ol oo S[R K& 5] & 5] 5| =] 6] S| B R &) ¥

Figure 4.5: Simplified visualization of the combined Rho and Pl step mapping. The top matrix
constitutes the input and the bottom the output.

A dependency for solution 1 of the re-scheduled round function is depicted in Figure
For each output bit of this function, 16 bits are required at the input, which is less than half
of the dependencies of the standard round function. The originally scheduled round function
caused intra-round dependencies because of the centered permutation step-mappings. In the
re-scheduled round function, the bits are spread across more slices, however, the bit dependen-
cies are more predictable, i.e. the location of each bit is more consistent for the step-mappings
with multi-input dependencies. A fold of consecutive bits at the input will correspond to a similar

39

fold at the output, consistently as the folding factor increases. The intra-round dependencies
are thus, traded for inter-round dependencies. The total cost is that an extra instantiation of the
state is required in addition to a more complex addressing solution.

SLICE NUMBER |

[o].-T2[3]..[8] 9]..[20[21]..[28] ... [36]37] .. [44] ... [46] . [0..[63 [o. [9
01121311810 20022 .125] .. 136]37] .. [44]... |46] . 0 ... |63 0 0
[0 (23] [8]9].-[20[zx]-..zs] . [3e]a7] . [s] . [] - o . [e3 0. o
[0]..[2]3].-[8] [21]...|28] . [36]37] ... [44] ... [26] . [0]... |63 [0].. 0]
0|.[2[3]..[8 21|...[28] ... [36[37|... [44] .. 25| .. 0|..[63 0. 0
[0]...[2]3]...[8] 20[21]...[28] ... [36[37]... ... |48].. [0]...[63 = Jo]- 0]
[0 (23] [8]9 .- [20[zx]...[2s| . 3e]a7| . [s] . [] - o). |2 [or o
[0]..[2]3].-[8] 21]...|28] .. [36]37] ... [44] ... [26] . = LI %l- 0]
[0]..[2]3]..[8] [21]...[28] ... [36]37]... [44] .. [36] .. El---E < |o]. = o
[0]..[2]3]..[8] 21]...[28] .. [36]37]... 4] ... [36] .. Z |9 &8 | « o =y
= [ol.-[2[3].-[3]®1. [20[21]... [28] .. [36]a7] .. [44]... 46 . =g (2P W GO & |9
2 Jo|..[2]3].-[8] 20[21|...[28] ... 36[37|... [44] ... [46] .. T |2 [e3] ':-':Jg.. =N [
%i--ii---l 20[21] ... 28] ... [36]37] .. [44] ... [46] .. ool & | = [0 2 |o]
< 9. 23] 5] [21]...[28] ... [36[37]... [44] ... [36] .. = -5 | = e O |o]
o lol-213]..[3] [21]...[28] ... [36]87] .. [42] .. [36] .. Slo .- | 5o <« o]
Tl [2[3].[8 21|...[28] ... [B6]37] ... [44] ... |46 .. ool | a0l F o
& Jol..[2][3]. 8] [21]...[28] ... [36[37] ... [44] ... [46] .. = T%' = [o]. w o]
[0]...[2]3]..[8] [21]...[28] ... [36[37] ... [44] ... [46] .. 2 [o].. &3 2 Jol. ':_: B
[0]...[2]3]...[8] [21]...|28] ...[36]37]... [44]... 48] .. O [o].. o3} O Jol. 0]
[0 [2[3] [8]9 .- 20[zx]-..zs] . [36]a7] . [s] . [5] . z fol k] |« o o
0|.[2[3]|..[8 21|...[28] ... [36]37] ... [44] ... [46] .. o 3| | & o] 0
[0]...[2]3]..[8] [21]...[28] ... [36[37] ... [44] ... [46] .. [0]...[63 O sl B
[0]...[2]3]...[8] 20[21]...[28]...[36]37]... [44]... [46] .. [0]... [63 [0]. 0]
0]..[2]3]...[8] 20[21] ... |28] .. [36[37] ... |44] ... |46 .. 0] ... |63 0. 0]
[o]..[2]3]..[8] [21]...[28| .. [36]37] ... [44] .. [46] . [0] ... [63] [0 0]
ol [2(3. [8 21 28] [36[37|. [44]. [a6]. o 63 0. 0

Figure 4.6: Dependency input on the left side, output on the right. 1 output bit depends on 16
input bits.

Two options are considered with respect to the re-scheduled round function. The standard
solution is to inject the message block and state into the state register from the [[Ofbuffer of the
wrapper. This solution is depicted on the left side of Figure Rf2 must then be bypassed
during round 0 which can be solved by multiplexers at the input of Rs. Round 24 involves
the extracting of the state from the output of Rs2. This solution results in a latency of 25xFF
clock cycles. A downside to this solution is the p step-mapping which is embedded in the state
register so that any data which is written and read will go through this permutation. For round
0, this would result in an erroneous round function and any signaling and addressing which
is not a straight forward mapping of signals must be compensated. The alternative solution is
depicted on the right side of Figure[4.7] As this solution is bypassing the state register, or rather
including the Ryl block while being injected into the state register, the latency is reduced by FF
clock cycles. The downside of this solution is that the combinational path may increase where
the absorbing phase is iterated during hashing of large messages. The new message block can
then not enter Ryl without being XORed with the output of Rf2. This solution seems to be the
standard approach in the existing state-of-the-art, with a latency of 25xFF.

40

WRAPPER vy WRAPPER v
STATEREG STATEREG

RF2

A 4

RF1

Figure 4.7: Alternatives for the implementation of the re-scheduled round function.

4.2.2 Theta intra-round dependency

With the established rescheduling of the round function and the resolved inter-fold p depen-
dencies, the remaining issue concerning data dependencies is found in 8 where the processing
of every output slice depends on the same input slice and additionally the slice at the lower
z-coordinate. For further analysis, a slice-wise folding-scheme with folding factor 4 is considered
so that the state is partitioned into 4 folds of 16 slices. The consequence of the 6 intra-round
dependency when considering a slice-wise folding scheme, is that each fold requires the slice
with the highest z-coordinate of the previous fold for processing of its first slice, i.e. 6 generates
FOSO’ from FOSO and F3S15, F1S0’ from F1S0 and FOS15, etc. A straight forward method of
solving this issue is to add another cycle for each round to complete the FOSO slice processing.
However with the cost of additional logic, 24 clock cycles can be saved. This is desired in a
structure with a low folding factor as maintaining a minimal latency should be of priority. A small
addition to the required area has a small impact of the overall efficiency.

The first approach, titled FOSO pre-processing, involves providing the F3S15 slice for the
FOSO0 processing during sub-round 0. This is done by collecting the relevant future F3S15 bits
from each sub-round of the previous round This solution is illustrated in Figure The cost
of this specific solution is that F3S15 is generated and stored twice. As the future F3S15 bits
are collected, they must be processed by the x and . step-mappings in a "miniature round
function" before the column parities are calculated. F3S15 for round 0 should be collected from
the [[Cbuffer during the absorbing phase and from the output of the round function during the
succeeding rounds. Latches fill the F3S15 during the four sub-rounds and it is constantly fed
through the miniature round function. The column parities of the processed F3S15’ is then
provided to the 6 step-mapping during the next sub-round 0 and XORed with the FOSO’ slice.
No other state-of-the-art work seem to have considered this solution.

41

State (1600 bits/4)
Fold O Fold 1 Fold 2 Fold 3

v

1

Iﬁ; 400
=

F3515' m T O

parity

Figure 4.8: First approach to solving the intra-round dependency of #: FOSO pre-processing.

The second approach, called FOSO post-processing, delays the computation of the FOSO
slice at the 0 step-mapping of sub-round 0 and continues processing during sub-round 3 when
F3S15 is processed. This solution is depicted in Figure[4.9] An identical solution is discussed in
Jungk’s thesis [38] and Jungk & Stéttinger [39]. This requires an additional register for storing
the intermediate values for the FOSO slice, its column parities and the eventual FOSO’ end
slice. The original location of the FOSO slice in the [RAM]is only accessible during one of the
sub-rounds because of the depth of the memory structure.

State (1600 bits/4)

Fold O Fold 1 Fold 2 Fold 3
Sub-round
1 2 3 4
|
.
400 ¥
RE2 FOSO+ince

parity

v

RF1
¥ v K\ v v

—/

Figure 4.9: Second approach to solving the intra-round dependency of 8: FOS0 post-processing.

The down-side of the pre-processing solution herein proposed is that the F3S15 is pro-

42

cessed twice. Nevertheless, the benefit is that the FOSO slice is processed along with the rest
of the slices of fold 0 and can therefore be stored in along with the rest of the fold. The
post-processing requires two versions of FOS0 along with the computation of its column pari-
ties. Regardless of how the processing of the FOSO slice is processed, the bottom slices of each
subsequent fold must still be provided with the column parity of the last slice of the previous
fold. The colum parity of slice number 15 of each sub-round apart from sub-round 3 must be
stored stored in a register for the 6 step-mapping.

4.2.3 Embedded memory

The immediate benefit of folding is that less data needs to be accessible concurrently, allowing
for the utilization of memory blocks as storage solutions. As the folding factor increases, the
depth of memory blocks can be exploited further. Distributed is often preferred to
as the number of bits which are necessary to be stored are too few for a reasonable utilization
of the blocks which are in the order of 10* bits. Additionally, distributed [RAM]still occupies slices
and it is therefore more convenient to compare the area consumption of different structures.
Consequentially with deep memory solutions, challenges arise with the limited availability of
the state. Data can only be read and written into locations of the memory which are multiples of
the width of the block. As illustrated in Figure [4.10] if the necessary bits are not aligned with the
width, additional read cycles are necessary to obtain the data. With the suggested re-scheduled

\ WIDTH WIDTH

01234567|01234567‘
13
E
1
&
ADDR 0x00 ADDR 0x01

Figure 4.10: lllustration of the challenge related with data access in memory blocks.

BLOCK

round function, the p and = step-mappings are either solved by wiring or integrating it with
the memory addressing of the state. However, the intricate dependencies are still present.
The p step-mapping is the main cause of the challenges related with the memory mapping
as the rotations are not aligned with any factor-of-two number. The addressing challenges are
illustrated in Figure Independent of the folding-factor, the output of the round function
in one sub-round are processed in different sub-rounds during the next round. The optimal
method of storing the state in [RAM]is where the width of each block is utilized best and the
smallest number of additional flip flops are required. This is a topic which has not been clearly
mentioned in the existing literature. The solutions which are presented here are conceived in
relation with this work unless otherwise noted and are therefore possibly novel additions to the
state-of-the-art.

lane-oriented memory mapping

For slice-wise structures, it is beneficial to treat the = step mapping as wiring between mem-
ory blocks while p is solved by addressing. The round-function is re-scheduled for this folding

43

scheme and with both of the variations of the re-scheduled round, as listed in Figure the
permutation step-mappings are either addressed during reading or writing of the fold in the
memory. In further analyses involving the re-scheduled round, the p step is solved during writ-
ing to memory, however there is no inherent difference between alternatives.

SLICE SLICE
of 1] 2] 3] [i2[13]14]15] |47]4s[as58] [60[61]62]63 | 0 1] 2 3] 4] 5| 6] 7] 8] |55]56]57| 58] 5[60]61[62[63
24|[Block 22 Aoor 0 |- [Brock 2z Aok rri] [Eock 13 Abor o] [Brock 13 ADDR Pl
23|[Block 23 ADDR 0 |..| BLOCK 23 ADDR FF-1
w [22| BLock 22 APDR 0 |..| BLOCK 22 ADDR Fri1| |BLOCK 12 ADDR 0] JBLOCK 12 ADDR FF1
< | 3[Block 3 ADDR 0 |..[BLOCK 3 ADOR FF1
I [Z|Block 2z APDR © BLOCK 2 ADDR FEi| |BLOCK ! APDR 0 JBLOCK 1 ADDR FF1
1|elock 1 abor o BLOCK 1 ADDR FF-1
o|| Btock o __AbbR 0 BLOCK 0__ADDR Fei] |BLOCK 0 ADDR 0 | 7JBLOCK 0 ADDR FF1
A B

Figure 4.11: Solution A and B for memory mapping of the state for slice-wise structures.

One solution is to assign a memory block to each lane, as depicted in Figure 4.1TA. De-
pending on the folding factor and the specifications of the memory block, each fold is located
at different depths/addresses and writing to memory is done by assigning an offset to the ad-
dress for certain memory blocks. The addressing can be determined by Equation where R
denotes the rotation by p and f(R) rounded down is the memory address of the [RAM|for the
respective lane.

R+FF . 64 64
o1 +1, ifRmod (55) 2 7r3

f(R) = (4.3)

R’E{ZF, otherwise

As the inter-round dependencies produced by the permutations result in the mixing of bits
from different folds, an additional state is required. This way, each sub-round will access the
same state with no bits being overwritten. Comparing Figure [4.11] with the p and = step map-
pings illustrated in Figure [4.5, it becomes apparent that the misalignment of the p rotation with
the width of the memory block causes some bits to be missed by the addressing. A larger fig-
ure is found in the Appendix which depicts the full dependencies of a fold for slide-wise
folding-schemes with various [FF| incorporating this memory mapping solution. This issue can
be greatly reduced by packing together the bits from a fold into the memory blocks assigned to
that fold/z-position.

As[FF|is increasing, the memory blocks and the addressing can remain the same so that the
width of each block covers multiple folds. An alternative solution is to further exploit the depth
and contain multiple lanes in a block, as depicted in Figure [4.11B. The number of memory
blocks are then reduced, however, the number should remain equal or higher than the folding
factor.

In order to better exploit the full depth of the embedded memory in structures with close
to maximum folding factors, mapping solution C can be adapted, as depicted in Figure [4.12]
Since only a small number of bits are accessed in parallel, the lane-oriented memory mapping
can be replaced by a narrow bit-oriented approach. Large embedded memory blocks can then
be changed for smaller memory solutions such as distributed RAM in [FPGAS| or [Static RAM|
[([SRAM)|in [ASICs| This solution is used by Jungk & Stéttinger [39].

44

SLICE

0 ... 63

24 [BLOCK 24 ADDR 0 BLOCK 24 ADDR FF.1]
| 23/ BLOCK 23 ADDR 0 BLOCK 23 ADDR FF-1
w | 22l BLock 22 ADDR 0 BLOCK 22 ADDR FF-1
< | 3|BLOCK 3 ADDR © BLOCK 3 ADDR FF-1
=l [2] BLOCK 2 ADDR 0 BLOCK 2 ADDR FF-1
| 1/ BLOCK 1 ADDR 0 BLOCK 1 ADDR FF-1
| o/ BLOCK 0 ADDR 0 BLOCK 0 ADDR FF-1

Figure 4.12: Solution C for memory mapping of the state for slice-wise structures with maximum
folding factor.

Column-oriented memory mapping

The BRAM of modern[FPGAs|contain built-in parity calculation which can be used to substitute
the 6; sub-step which involves the parity calculation of each column of the state. The round
function will then contain one less level of logic as the first 5-input of a standard round
function is reduced. This is a solution which trades-off smaller critical path of the round function
with higher occupied embedded memory resources. Figure [4.13] depicts how bits are mapped
into memory blocks. The port width is reduced as output bits are used for the parity bits. Addi-
tionally, the parities are generated for each output byte and only the five bits of a column are
able to occupy this space. This is a very in-efficient mapping solution for low folding factors, but
compact designs would occupy a low number of the available BRAM|on an [FPGA| E.g. [FF=8
and 16 requires 10 and 5 RAMB36 blocks respectively. The default round function scheduling
must be used so that the 6 step-mapping is the first step of the round.

SLICE

o/ 1] 2[3] 4] 5] 6] 7] 8[60]/61]62[63

24/] BLOCK 2 BLOCK 7 |...| BLOCK?7
23|] BLOCK1 BLOCK6 pWM BLOCK 6
22|] BLOCKO BLOCKS5 [...| BLOCK5

21/| BLock4 | BLOoCcK9 |...| BLOCK 9
| 20| BLOCK S8 |...| BLOCK S8
' 19]|] BLOCK2 | BLOCK7 |...| BLOCK 7
| 18| BLocK1 JEITTN . -

LANE NUMBER

4| BLock2 | BLOCK7 |...| BLOCK 7

Bl BTG $ BLOCK6 WM BLOCK 6

2 | BLOCKO | BLOCK5 |...| BLOCK5

1| BLOCK4 | BLOCK9 |...| BLOCK9

0 BLOCK 8 |...| BLOCK 8
Figure 4.13: lllustration of a column-oriented approach to memory mapping using built-in parity
calculation of Virtex-5 FPGA[BRAM, This structure has a folding factor=8.

4.3 Pipelining

For pipelining to be an efficient technique, all the registers of the pipeline should be kept as
full as possible, minimizing bubbles. At start-up and conclusion, bubbles are inevitable as the

45

pipeline is filled and cleared. Because of the combination of the step-mappings, most SHA-3
structures will have inter-round dependencies so that each round will contain cycles where the
pipeline is emptied. Each fold must wait to be processed until all previous folds have updated
the state. This causes the efficiency of pipelining to be drastically reduced as it sets a high
requirement for the increase in frequency to compensate the increased latency and area. In
order to approximate the cost of pipelining, the relationship between the number of pipeline
registers and the throughput and are requirements must be approximated. Equation [4.4] gives
the total area requirement of an optimized structure as a function of the folding factor and the
number of internal pipelines. An approximation regarding the area consumption is made so
that the total area is divided equally between the three main components: the wrapper, the
state and the round function. It is also considered that 10% of the basic structure occupies the
same area, independently of the folding and number of pipeline registers (PL). The default for
[PLis one, as the state register is included in the factor.

1 9 9

A=(— A P
(ot) 0Ot 10 FF.3

o0t 10 Ap-(PL-1) (4.4)

Similarly, the latency is increased as a function of [FF|and [PL] and the relationship for structures
with and without inter-round dependencies is given by Equation [4.5/and 4.6

L=FF Lo+ ((PL—1)- L) (4.5)
L=FF- Lo+ (PL—-1)

The Efficiency Equation [4.2] shows how the frequency must compensate for the increased
latency and area. With the approximation of the area consumption ratio, it is possible to plot the
necessary compensating frequency for the various cases of [FF|and [PLl The cost of pipelining
is approximated so that each increase in[PLjadds 3/10 of the area for FF=1, but this is naturally
decreasing as[FF|is increasing. These cost approximations are based on intermediate results
obtained in this work and numbers reported by the existing state-of-the-art. Figure [4.14]depicts
the relationship between the efficiency and the frequency for structures with various combina-
tions of pipelining and folding factors. The left side presents situations where the inter-round
dependencies have not been solved and the pipeline must be emptied before each new round.
It is observable that even optimal frequencies do not result in a decent efficiency. However,
pipelining can improve the efficiency of folded structures with bubbles to a larger degree than
unfolded structures. This can be seen when comparing the red and black dotted lines, which
denotes folded structures, with the solid lines of the same colors, which denotes unfolded struc-
tures. The angle difference is noticeably lower between the two folded structures compared with
the unfolded.

The right side shows the more efficient structures with no bubbles in the pipeline. Latency is
then given by Equation The horizontal green line illustrates the top performance achieved
by the state-of-the-art while the vertical green line the maximum frequency which is achievable

46

with a[V-5|[FPGA| The right-side graph suggests that despite inter-round dependencies being
met, the quantity of pipeline registers should be kept at a minimum. These theoretical models
can possibly fail in accuracy where slices are initially utilized inefficiently. Pipelines can be
purely or partly fitted into the already occupied slices if they contain unused [Flip Flops (FFs)|
A more efficient slice utilization is then achieved and the implementation of the first pipeline
registers will improve the efficiency significantly.

With inter-round bubbles Without inter-round bubbles
| PL=LFF=1 / w]|— PL=1FF=1
J|=—— PL=1,FF=14 4| === PL=1,FF=4
1| — PL=2,FF=1 - J|— PL=2,FF=1
127| ——— PL=2,FF=4 e 1231 ——— PL=2,FF=4
1| =—— PL=3,FF=1 el 1| — PL=3,FF=1
04| === PL=3,FF=4 i 10| === PL=3,FF=4
J|— PL=4,FF=1 -~ 1| — PL=4,FF=1
8] FF=4 et g]| ——— PL=4,FF=4

Efficiency (Mbps/slice)
Efficiency (Mbps/slice)

T T T T T T T T T T T T T [T T
4] 50 100 150 200 250 300 350 400 450 500 550 600 650 700 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
Frequency (MHz) Frequency (MHz)

Figure 4.14: Graphs with the efficiency as a function of frequency for various combinations of
pipelines and folding factors. Figure A (left side) presents cases where the pipeline contains
bubbles While Figure B (right side) is without bubbles.

The general issue with pipelining for unfolded structures is the sponge construction char-
acteristic stating that multi-block-messages must be processed by the sponge function before
the next block of the message is merged with the result. For Keccak, the function involves 24
rounds of Keccak-f. Gaj et al. [4] presents a statistic of the cumulative distribution of packet size
for a typical Ethernet node which is a common application for hash functions. The numbers they
present show that roughly 50% of the packages processed are below the block size of SHA-3
versions. Furthermore, multiple packages are usually available in a queue for processing. From
this it can be concluded that both [Multi-Block-Messages (MBMs)| and [MMHs| are realistic sce-
narios and should be considered, i.e. a SHA-3 design should support multiple small messages
as well as larger ones causing an iterated absorbing phase.

Of the considered optimization techniques, pipelining and the [PL] is the largest factor im-
pacting the frequency of a structure and therefore the throughput. Pipeline registers should be
introduced into the round function if only small messages are considered for hashing, as this
will greatly decrease the critical path, and thus determine the upper bound of the system fre-
quency. A pipeline-scheme similar to the designs by Athanasiou et al. [43] could be adapted
where only one or two registers are used. It is possible to design a wrapper which can sup-
port both multi-block-messages and small messages with internal pipelines, however this in-
creases the complexity substantially. Consecutive blocks of a message must be absorbed with
the correct state after 24XPL] cycles and the protocol between the user and the wrapper must
be modified. The existing literature with more elaborate analysis of various pipelining schemes
[41],140, 42] have implemented structures with a high number of pipelines. Athanasiou et al. [43]

47

have only implemented one pipeline and achieves the best performance off the structures with
internal pipelines. This and the results depicted in Figure [4.14] suggest that one or two pipeline
stages should be sufficient and optimal for an increase in efficiency within the boundaries of
the potential system frequency.

Implementing pipelined folded structures involve the same issues as unfolded structures
and additionally the inter- and intra-round dependencies. As was suggested by B. Jungk [38]
and explored by Jungk & Stéttinger [39], the inter-round dependencies can be solved by exploit-
ing the lane-rotations of the p step-mapping in slice-wise structures with high folding-factors.
Figure [4.15] depicts the SHA-3 slices which contain the slice number 63 from the previous
round in red. If the round function contains 1 pipeline register so that two slices are processed
concurrently, no red slice can enter the round before slice 63 is done processing. However,
all inter-round dependencies are met if the subsequent round is initiated at a white slice. The
sequences of white slices dictate the maximum number of pipelines which can be incorporated
in the round function as well as the required minimum folding factor. The relationship between
these two is depicted in Figure [4.76] Multiple pipeline registers can be incorporated by exploit-
ing a sequence of white slices such as between slice 45 and 53. Up to nine internal pipeline
registers can be incorporated, however, this number seems excessive and the upper bound
frequency is likely to be reached at a lower number of pipeline stages. A more efficient option
would then be to decrease the folding factor and therefore increase the efficiency.

[SLICE NUMBER
o[3] 2[3[4] 5[e[7] 8] °[10]11[12[13[14[15]16[17]18]19]20] 21[22] 23] 24 25] 26] 27| 28] 29[30[31| 32[33] 34[35[36] 37| 38[39] 40[41| 42[43[44] 45] 46] 47] 48[49] 50[51] 52] 53] 54] 55[56[57| 58] 59 60] 61] 62 63|

B
g

LANE NUMBER
[elululelalaliolo]s]e sl 6] 5]s s sl sl
Llululalulal lalalslelslelelalzls e sl s [l

2lalalolol lele alole Ll sl Rl e L
EREEENEEREENREEEEENAEE
BLlalslelelele Ll lelele e el el lals i o s
ENEEEEEARE AR ERE AR RRER

Figure 4.15: Visualization of slices with inter-round dependencies for pipelining of a slice-wise
folding. Red highlights the slices which depend on the last cycle of the previous round.

Folding factor

8 16 32 64 White slice sequences
" 171 3 6 810 15 18 21 25 28 36 39 41 45 56 62
e 1 2 4 11 16 22 29 37 46 57
% 273 12 23 30 47 58
=1 4 31 48[EE]
£ a5l 32 49
g 2 6 33 50
i 51
s 8 52
o 53]

Figure 4.16: Sequences of white slices dictating the maximum number of pipeline registers and
minimum folding factor for inter-slice dependencies.

48

4.4 Unrolling

Unrolling a structure can in certain cases increase the efficiency, but is dependent on whether
or not pipelining is utilized and how it potentially is implemented. As was concluded by Bertoni
et al. [12], unrolling without any added pipelines results in a decrease in efficiency. The latency
is reduced proportionally with the unrolling factor, however, the area and the critical path is
increased. Hence, unrolling is equally irrelevant as pipelining if multi-block-messages are con-
sidered and the wrapper is kept a relatively simple component. As loannou et al. [44] reports,
if small messages are considered, then unrolling with external pipelines should attain good re-
sults. The area increases less than proportionally with the unrolling factor (UF) as the wrapper
is kept in the design while the rest of the logic is multiplied. The structure presented by loan-
nou et al. is unnecessarily in-efficient. Since each state is processed in the first instance of the
round function for the first twelve rounds and the last instance for the rest, the scheduling en-
sues a start-up and end phase where only half of the round functions are utilized. This structure
also requires additional multiplexers between the two round function instances. A conventional
unrolled structure where each state is automatically processed in each round function during
ever other clock cycle should be more efficient.

The efficiency as a function of the unrolling factor with and without pipelining can be illus-
trated graphically by a few approximations. The area is in a simplified manner divided equally
between the three components of a SHA-3 structure: the wrapper, the state and the round
function. Without pipelining, each increase in [UF| further increases the area by 1/3. The Equa-
tion is thus modified into Equation For unrolled structures with an external pipeline,
the area increases by 2/3 instead of 1/3, but the frequency should then remain constant. With
internal pipelines, the area increases by a similar rate so that one and two internal pipelines
increases the area by 3/4 and 4/5 respectively. These four different structures are plotted in
Figure The first unrolling-scheme is where the state register remains and only the round
function is multiplied. The frequency is set by an exponential approximation similar to the num-
bers reported by Bertoni et al., but with more realistic numbers for a structure with an undivided
round function, i.e. 235 MHz for [UF=1 down to 50 MHz for [UF=6. The initial area is increased
for the various structures so that the basic structure is set to 1000 slices and each additional
component adds 1/3 of the area. The green line represents roughly the maximum efficiency
reached by the state-of-the-art.

r-f
E = (4.7)
%.(A+W

Naturally, only the internally pipelined structures differ at the initial[UF[=1, but they converge
as the factor increases. The external pipeline structure achieves a good performance, but for
a small [UF] internal pipelining is better by over one Mbps/slice. According to the Equation [4.7
modified for pipelined throughput throughput, the throughput of the structure with two internal
pipelines is 11.9 Gbps, which is more than twice that of the structure with an external pipeline.
The uncertainties of this plot can be pointed to the un-proportional increase of slices during the

49

— NO PL f=235*x"~(-0.77) MHz
111 —EXTPL f=200 MHz
10 EXT + INT PL f=280 MHz
9| |— EXT + 2xINT PL f=350 MHz

L

—

Efficiency (Mbps/slice)
T

0 T T T T T T T T T T T T T]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Unrolling factor

Figure 4.17: Efficiency as a function of the unrolling factor, UF, for four different
pipelining-schemes for SHA3-512. Estimation is based Equation 4.7}

first[UFs], the ratio between the area consumption of the three components and the frequencies.
Only optimally efficient structures should be unrolled. A folded structure can be unrolled, but
will achieve a lower efficiency than unfolded structures with lower [UF|

A potential issue with unrolling of SHA-3 sub-versions other than SHA3-512 is related with
the cycles required to load the words of a message block within the latency of the round
function. If a SHA3-224 structure is unrolled with [UF=2, 2x1152 bits must be loaded into the
[[Obuffer in the course of 24 clock cycles, thus requiring a minimum port width of 96 bits. With
[UFE10, SHA3-512 and -224 requires a minimum port width of 240 and 480 bits respectively
with the latter being the upper limit of available [Ofports for many mid-range [FPGA models.

4.5 Summary

Folding is the main technique for reducing area, but an increasing folding factor seemingly
comes with a cost in throughput and potentially in efficiency. It is important to note the inherent
trade-off with folding so that the utilization of this technique is motivated by a goal of minimal
footprint at a cost in efficiency. Pipeline registers can be incorporated in the round function if
the folding is done slice-wise and with a folding factor larger than 8, but analysis suggests that
this is not enough to compensate for the increased latency which is caused by the folding.
Regarding unfolded structures, pipelining is the main technique for improving the timing and
therefore the throughput. The efficiency can be distinctively improved if the number of pipelines,
[PLis kept reasonably low and the pipelining is implemented properly. The inherent issue with
pipelining is that the relevancy of the adoption of this technique either depends on the size
of the messages and therefore the specific application of the hash function, or a new type of
complex wrapper design which is capable of handling both Multi-Block-Messages (MBMs) and

50

small messages.

The ability to exceed the state-of-the-art with respect to efficiency seem to be dependent on
the unrolling factor, [UF| With a proportional amount of pipelines, the graph suggests that an in-
creasing[UF|attains a good efficiency, though the plot is an asymptote with a clear upper bound.
The analysis herein therefore points to the limitation of the efficiency of a SHA-3 implementation
if all realistic applications for the hash function are considered. Hashing of[MBMs|constrains the
adoption of the explored optimization techniques, or the complexity of the structure including
the interface. The throughput is in this case upper bound by the critical path through the round
function and the efficiency is upper bound by the minimum required resources for an unfolded
structure.

The models which have been used in these analyses have their limitations and it remains
to be seen how accurate they are by comparison with the actual performance of the implemen-
tations. Timing results and the achievable frequency is a metric which is especially uncertain.

51

52

5 Implementation

The existing state-if-the-art is by now plentiful and with varying degrees of novelty and factors
considered. One negative aspect of the existing papers is that the performances are diverging
heavily when compared to how similar many of the structures seem. On the other hand, re-
ported results are based on different estimations. This makes comparing the existing literature
a challenging task and drawing solid conclusions from these results are impractical. All the de-
signs found in the more recent literature also propose some sort of optimization technique such
as pipeline registers. Only the earlier literature has presented designs and results based on
basic, straight forward structure. Also, many of the existing designs do not included a wrapper
in their assessment. Therefore, the initial task of this thesis has been to arrive at a basic design
which performance and structure can serve as a standard. Further modified structures and
their performance can therefore be normalized to this basic structure for a clear and coherent
analysis. Additionally, it is also desirable to examine the feasibility of matching or surpassing the
claimed performance of the existing solutions. As already discussed in Chapter 3, the basis for
the results vary among the literature as well as the extent at which NP-hard problems such as
[PAR have been prioritized. While area consumption is less challenging to estimate, the critical
path is not.

The basic structure is therefore first presented as it serves as the foundation for further op-
timizations. This is the structure with the highest achievable efficiency when hashing of MBMs|
are considered. Thus, representing what is suggested as the structural limit of a SHA-3 FPGA
implementation. Using the basic structure as a foundation, various implementations are derived
where different trade-offs are considered and hence, various optimization techniques are pro-
posed and adopted. A generic SHA-3 structure is developed in order to explore the feasibility
of this functionality. Only one previous paper by Athanasiou et al. [43] has presented a generic
SHA-3 implementation which makes this an interesting structure to explore. All other structures
presented support SHA3-512, however configurations are easily done so that one of the other
four sub-versions are supported.

A pipelined structure with and without unrolling has also been developed herein for hashing
of multiple small messages. This is done both in order to further assess the existing structures
which are relevant for this limited scenario and to improve the state-of-the-art. Especially the
unrolled structure which has only been seriously explored by loannou et al. [44], albeit with
an inefficient architecture and without internal pipelining. Only these two structures have been
proposed, which disregard multi-block-messages.

A folded structure has been developed which belongs to the mid-range class of SHA-3

53

implementations with a folding factor of 4. This structure is noteworthy more complex than
the ones previously introduced. This is mainly caused by the dependencies of the p and 6
step-mappings and the re-scheduling of the round function. The two earlier papers by Jungk et
al. and Jungk & Apfelbeck [34] 37] have presented a mid-range structure with a similar folding
factor. Nonetheless, these structures have not included a complete wrapper in the assessment
of the performance and the interface that is used is the Xilinx IP core. Only one solution
for the intra-round dependency of 6 is presented in one of the papers and no clear solution is
given with regard to how the p dependency is solved. The folded structure herein presented
incorporates a new solution for the 6 intra-round dependency and is assessed as a stand-alone
entity. The wrapper is compatible with the standard interfacing where lanes are transmitted
sequentially.

All the structures are named after their distinct feature, so that while some of the structures
have incorporated multiple optimization techniques, these are not hinted to in the naming-sche-
me. All wrappers are optimized for latency and not for area, so that a detached [[Otbuffer
off-loads loading and unloading of each message block and digest in parallel with the pro-
cessing of the state by the round function.

The following section presents the developed basic structure which supports SHA3-512.
Section presents the generic structure which supports all four sub-versions of SHA-3. Then
follows the pipelined structure in Secion[5.3]and the unrolled structure in Section[5.4] The folded
structure is presented last in Section

5.1 Basic structure

A straight-forward design was conceived with the main purpose of studying the achievable criti-
cal path of the round function for hashing of message of all sizes. Additionally, it was desired to
set a performance reference for a vanilla structure to compare with various future approaches
and implemented techniques. A basic structure here is informally defined as having one round
of Keccak-f implemented in combinatorial logic, registers are made up of flip-flops and stan-
dard syntax for a hardware description language such as[VHDL]is used to infer all components.
The basic structure supports one of the sub-versions of SHA-3 and is configured for SHA3-512
as this is the most prevalent version with the highest security claim. For comparison with other
existing implementations, results are adjusted to the SHA3-512 version with the smallest block
size if other versions are presented. As depicted in Figure the top level of the design con-
tains three RTL blocks: statereg, roundfunc and wrapper. In this form, the three components
correspond respectively to their theoretical modules: the state, Keccak-f and the sponge con-
struction. The roundfunc is passive and the input is always connected to the state in statereg.
The complex logic is therefore kept in the wrapper so that any structural modifications to the ba-
sic design involve alterations of the wrapper while the two other components remain mostly the
same. Both the state, partitions of it such as a plane which is used during the 6 step-mapping
and the [[Ctbuffer are realized as two-dimensional arrays of x x 64 bits. The [Ofports have been
set to 64 bits for this structure, however, as have been pointed out regarding unrolling in Section
a larger port size is required if[UF|and the block message size is sufficiently large.

54

TOP_LEVEL

rst_i > —i»done_o
Ik_i 5> —»read
sarti. |WRAPPER R roundo
mbm_i > — digest_o
word_i - A +
STATEREG
i ROUNDFUNC
«— 64 1
41600

Figure 5.1: Simplified top level schematic of the basic structure.

5.1.1 Wrapper

The wrapper contains the [[Otbuffer for message block injection and digest extraction from the
state, as depicted in Figure 5.2 The SHA3-512 sub-version which is supported is specified
with the message block constituting 9 lanes and the digest 8 lanes. The wrapper is detached
from the round function to keep the latency within the minimum 24 clock cycles. There is no
padding functionality incorporated in the wrapper so the structure is dependent on the message
being padded by the user in addition to signaling the start of a message and whether it is
a [Multi-Block-Message| (MBM). In case of the latter, there is an iterated absorbing phase of
the sponge construction so that the input message is XORed with the previous outer state.
The inner state remains unchanged and is simply passed through to the state register. In this
manner, no version specific logic is found in the other two components.

rst_i > »— done_o
clk_i — > »— ready_o
start_i — > FSM »— round_o
mbm_i > digest_o
word_i— mp-state_o
state_i =ppt=— >
33— 10-buffer
fe— 1 5 —
‘+— 64 2
: 4—1600 :

Figure 5.2: Schematic of the wrapper component of the basic structure.

The logic of the wrapper is kept as simple as possible with one Moore-type[FSM, main_fsm,
handling the round counter data in and out of the [Ofbuffer. The round counter decrements from
23 down to 0 and is reset if the buffer contains a new message. The schedule of the wrapper is
depicted in the Appendix[7.4.1] Multiple wrapper designs were considered during the course of
the project. Two[FSMs|could work in parallel where one handles the round counter and another
the [[Ctbuffer. A counter can be implemented in multiple ways and achieve a better working

55

frequency by utilizing the fast carrier logic of a slice. For the basic structure, the counter is
incorporated into each state of the main_fsm and controls the transitioning between states.

The buffer is realized as a [FIFO] which is accessed in parallel during the exchange with
the round function and the state. The dimension of the buffer is a lane/word in depth and the
length is determined by the largest block size and digest, » and ¢. Since the message block
of SHA-3 is 576 bits large and the digest is 512 bits, the former dictates the buffer size. The
wrapper works in two main [FSM] states: user_com and state_com. In the former, the array is
rotated downwards while words of the next message block are injected at the top address and
the digest is extracted at the bottom. In the latter [FSM| state, the buffer is read in parallel and
the complete message block is sent to the statereg while the outer part of the processed state
is received from the roundfunc and written to the [Obuffer.

The [Otbuffer can be decreased by one lane as the last word is fed directly from the input
vector to the state. This should be done if the objective is to optimize an unfolded structure
which is not unrolled or pipelined. However, since the main objective of this basic structure
is to serve as a base for further development, this have been disregarded. Another solution
for the [Ctbuffer and also the state register is to store them in distributed The slices
of and more modern models support distributed [RAM| solutions which are more
efficient than storing with regular |FFs| even without using the depth. However, for the same
reason as above and additionally for compatibility with other FPGA|types, other solutions than
the standard [FFs}based registers have been disregarded for the basic structure.

The manner in which the wrapper is implemented allows for easy adaptation into more
complex versions where the counter is multiplied and more multiplexers are required for output
signal assignment.

5.1.2 The state

The main registers are in addition to the [[Ofbuffer in the wrapper, the state of 1600 bits and
the round constants. For the basic structure, nothing in particular is worth mentioning about
these registers. Each slice contains four S0 both registers occupy the of 442 slices.
Depending on the wrapper’s start-off-round-flag, i.e. whether it is round 0 or 1-23, the state is
either filled with data from the wrapper or the output of the round function. This is depicted in

Figure

STATEREG

rst_i —
clk_i —f

round_i —
buf_state_i = state
round_state_i = regi ster

N\

P round_state_o

A 4

Figure 5.3: Schematic of the statereg component of the basic structure containing the state
register.

56

5.1.3 Round function

The maximum possible resources are required for the implementation of the round function
block in the basic structure, however the synthesis tool will automatically optimize the logic into
the necessary number of [LUTs| Figure depicts Keccak-f acting on a column of the state
and the corresponding logic for realizing the same functions, albeit on a fewer number of output
bits.

STATEREG

A—— —» —I
—» 1 COLUMN OF

THE STATE LUT5-6

i

LI

PARITY OF
1‘7 vvyy [X1.2]

g =———_ COLUMN
YYYVYY LUT5-6

THETA

« PARITY OF
e [X+1,2-1]
COLUMN
RHO+PI [P-BOX |- LUT5.6

CHI

;
D
IOTAl f [Ire LUT3-6

00

Figure 5.4: lllustration of Keccak-f acting on a column of the state on the left side and the same
functionality realized with programmable logic.

The choice for the implementation of the « step-mapping and the round constants have been
based on the conventional approach from the existing literature. Athanasiou et al. [43] have
considered both the options of pre-generating the[Round Constants (RCs)|and storing themin a
distributed[ROM|and a circular buffer, or generating them on-the-fly with a[LFSR] They conclude
that the latter is the best alternative with respect to efficiency. Still, most other implementations
have simply stored the pre-generated in distributed ROM| For the basic structure, this
have been the prioritized solution. The synthesis is efficient with the default settings as the

round functions which are stored here are automatically optimized into the minimum required
number of [LUTs| The round constants are simply indexed by a round counter signal from the
wrapper.

5.2 Generic structure

Implementing a generic wrapper which supports all four sub-versions of SHA-3 is uncompli-
cated for structures which are neither pipelined nor folded. The state and the round function
are independent of the SHA-3 sub-version and the wrapper contains all components which
must be modified in order to support them all. The [Ofbuffer is adapted from the basic structure
so that it rotates and is simultaneously accessed in parallel. The size of the[[Obuffer is dictated
by the largest block size which is 1152 bits, or 18 lanes of 64 bits, for the SHA3-224 version

57

(Appendix[7.4.2). The[[Ofbuffer stops rotating depending on the SHA-3 version selected. Unlike
the approach by Athanasiou et al. [43] where multiple XOR modules make up the version con-
trol, only one XOR module is implemented here and for multi-block-messages, the complete
[[Ofbuffer is XORed with the outer part of the state. It is therefore important that the unused
parts of the [[Ctbuffer are empty when the other sub-versions are selected. A combination of
the version selection input and the round counter selects whether the [[Ofbuffer should work in
[FTFQ| or parallel mode. One of the four sub-versions are selected through a 2-bit input vector
for the wrapper.

5.3 Pipelined structure

Using the basic structure as a foundation, one can proceed with implementing the explored
optimization techniques. For the unfolded design, this means optimizing for efficiency. If the
folding factor and small latency is to be maintained, then the number of relevant techniques
are limited. As discussed in Chapter the potential for increasing the efficiency relies on
the possibility of utilizing pipelines. This again depends on the consideration of messages and
support of the wrapper. Therefore, multi-block-messages are not considered here and only
small messages are supported for hashing. This is simply a restriction caused by the sponge
nature of Keccak and this consideration is valid for all implementations of SHA-3.

A structure with one internal pipeline has been considered which corresponds to[PL=2. The
manner in which it is incorporated and how the round function is partitioned is loosely based on
the analysis performed by Pereira et al. [41]. While the number of pipelines incorporated in their
proposed solution is found to be excessive, the study of propagation time of each step-mapping
is still relevant and applicable. The top level of the pipelined structure is identical to the basic
structure and the main modifications distinguishing these two are found in the implementation
of the state register and the [[Ofbuffer in distributed RAM| and increased round counter of the
wrapper. In the basic structure and in most designs in general, a portion of the occupied slices
have unused This means that for the incorporation of the first pipeline registers, the area
does not necessarily increase proportionally. The round function can therefore be split into
multiple combinational paths and a more efficient slice utilization ensues. A precondition for
this is that the slices are not saturated with control signals as this inhibits further utilization.

5.3.1 Wrapper

It is trivial to implement a pipelined structure which only supports small messages and is based
on the basic structure. The XORs and multiplexers which are required for the multi-block-
-message support are removed and the additional latencies are compensated for by multi-
plying the round counter range of the basic structure with [PLl The wrapper must also be able
to handle the extra message blocks and digests. A new schedule (Appendix[7.4.3) is therefore
constructed within the constraints of the 24 rounds and the width of the [O] ports. With con-
tinuous use of the hash function without interrupted processing, the pipeline remains free of
bubbles. As multiple blocks are contained by the [[Ofbuffer, it becomes advantageous to utilize

58

[RAM] No previous example of[RAM|use for a separate [Ofbuffer have been found in the existing
literature. Each state must still be accessed in parallel so the number of occupied slices for the
[Cfbuffer remains the same. For injection and extraction of words of the message and digest,
the [Ctbuffer of the basic structure functioned as a rotating buffer. In distributed [RAM| this is
solved by multiplexers and demultiplexers which are implemented in

rst_i > »I— done_o
clk_i— > »— ready_o
start_i —| > FSM »— round_o
> digest_o
digest_i — . — PP state_o
state_i =)
10-buffer
fe— 1:
ie— 64! =
: 4—=1600

Figure 5.5: Schematic of the wrapper component of the pipelined structure.

5.3.2 Round function

With the incorporation of pipeline registers, the « step-mapping must be modified as both mes-
sages need be processed by the same round constants. Since the round counter is doubled in
range, the round constants are indexed by the counter divided by two. The structure with [PL}=2
is divided at the p and 7 step-mappings so that the p input is synchronized.

5.4 Unrolled structure

The unrolled structure is adapted from the pipelined structure, but with a further modification
of the schedule (Appendix with [UF| and [PLk=2, as depicted in Figure [5.6] A second state
register is implemented between instance one and two of the round function and the internal
pipelining scheme is identical to the pipelined structure with [PL=2. According to the SHA3-512
sub-version specifications, four message blocks of 9-64 bits are injected into the [Ofbuffer within
the clock cycles of the 24 rounds.

59

TOP_LEVEL

..

rlslz_! —-—» J vV - don:_o
it (wrapperil oo b5 | e

mbm_i 4> - digest_o

word_ —» [PR p— ¢

Figure 5.6: Simplified top level schematic of the unrolled structure with unrolled factor (UF)=2
and pipeline stages (PL)=2.

The step-mapping is more complicated here than in the pipelined structure as four mes-
sages must be processed by the same round constants during different clock cycles. This is
solved by storing the precomputed round constants as two 7x47 with each 7-bit word
replicated four times and divided between the roundfunc components. Each value of the round
counter corresponds to a given round constant.

5.5 Folded structure

The folding factor affects all of the components of the design and the resulting complexity is
noticeably higher than in the previously presented structures. With [FF4, the round function is
reduced by 75% of its width and the [[Ofbuffer and the state registers are reduced equally with
the utilization of the depth of the RAM] With a latency of 96 clock cycles, the minimum [[Ofport
size is limited to 12 bits and is rounded up to the next power of 2, thus corresponding to the
number of bits of a lane fitting into each fold. In addition to solving the inter-round dependencies
of p and the intra-round dependencies of 6, the implementation must consider the re-scheduled
round function, the interfacing between the slice-wise structure and the standard of SHA-3, and
the dependency of « with the provision of the round constants. The intra-round dependencies
caused by 6 is solved either with extra logic or an extra clock cycle. Additionally, the memory
mapping of the state must be done as efficiently as possible so that the least amount of slices
are occupied. Each fold of a round = depends on processed bits from each of the sub-rounds
of round = — 1.

Both solutions for the implementation of the re-scheduled round function have been con-
sidered. The standard solution on the left side of Figure seems to be the most common
alternative among the existing literature. It is not considered here as the best option because of
a series of challenges related with its implementation. While both solutions need multiplexers
to bypass Rf2, the embedded p step as well as the packing of bits into the memory blocks must
be bypassed, thus requiring additional multiplexers. The alternative solution is therefore con-
sidered here and a simplified top level schematic of the folded structure with this re-scheduling

60

solution is depicted in Figure[5.7] The latency is 24xFF as round 0 and 24 are processed during
one clock cycle. This presents a trade-off between the size of the combinational path and the
latency.

TOP_LEVEL
a1~ |WRAPPER | S
start_i <> —»digest o
mbm_i <+ - STATEREG
word_i < —
\ 4
RF2
— 1
< o RF1
41600 | I—

Figure 5.7: Simplified top level schematic of the folded structure with a re-scheduled round
function.

No pipelining is utilized for this folded structure. The inter-round dependencies caused by
p would further result in a bubble in the pipeline at the end of each round. The fold of the
first sub-round must be updated with bits from the fold of the last sub-round. As Figure
suggests, this reduces the overall increase in efficiency because of the significant increase in
latency. It is left for further exploration whether it is possible to attain a better efficiency despite
the inter-round dependency.

5.5.1 Wrapper

The wrapper is adapted from the basic structure and sub-rounds are added by a sub-clock,
counter_fold, which acts as an offset for the round counter. The modified schedule for the folded
structure is given in The performance objective of the wrapper is maximum efficiency so
that the latency is kept at the minimum FFx24 at a cost in area requirements for the [[Ofbuffer.
This is distinctively different from the objective of the similar structure proposed by Jungk et al.
[34] 137], which seem to be excessively focused on minimal area requirements. This objective
is not optimal for the relevant folding-factor which should have a symmetric focus on both high
throughput and area footprint.

Both the counter_fold and counter_round are used to control signals. The addressing of
the [Ctbuffer is rotated for every sub-round while write enable and the other memory signals
depend on the round counter. The MBM}support remains in the wrapper so that the input state
is potentially XORed with the [[Ofbuffer.

The round constants for the « step-mapping are managed by the wrapper in the folded
structure and modifications must be made so that the correct bits of the center lane of each
fold is processed. « depends on the center bits at z-coordinates 0, 1, 3, 7, 15, 31 and 63. This
means that the processing of fold 0 requires the provision of bit 0 to 4 of each round constant,
and fold 1 and 3 needs bit number 4 and 5 respectively. Therefore, the [RCs|are added to the «
step-mapping through a 5-bit word.

61

5.5.2 The state

The memory mapping is done with the lane-oriented solution (Section as it is believed
to be the best alternative for a slice-wise structure with a low folding-factor. The state is stored
in distributed [RAM| and the slice utilization is therefore directly related with the folding-scheme.
The utilized depth of the memory is equal to the and the width is equal to the total size
of the state divided by [FFl The lane-oriented memory mapping requires two instances of the
state which are switched so that state A and B are read and written to, every other round.
This solution is easily applied to both distributed [RAM| and BRAM| Despite distributed [RAM|
being technically made up of fine-grained entities, they are treated as smaller memory blocks
with two bytes width. The designation of memory blocks for each fold and the packing of lanes
into each block is depicted in the Appendix A large extra register is necessary if the
bits are not packed together. This works in a roll-around manner so that for subsequent folds,
the addressing of each memory block is simply incremented, as depicted in Table [5.1] Four
different write addresses and one read address are used for the 24 [RAM]|blocks depending on
the sub-round and the state instance.

Cycle 0 1 2 3 4 5 6 7
4 5 6 7 0 1 2 3
|56 7 412 30
Write | = 2 4 5 2 3 0 1
7 456 3012
Read |0 1 2 3 4 5 6 7

Table 5.1: Addressing of the state memory.

The [FF4 so that 400 bits of the state are accessed in parallel. Each SLICEM of a
[FPGA| supports one 32x6bit [Simple Dual Port (SDP)|[RAM| The [LUTS| of 67 slices should then
be required to store both instances of the state. [SDP|[RAM] has one synchronous input port
and one optionally synchronous output port. Both ports have individual addressing so that the
concept of read and write collisions is admissible. If both ports have the same addressing, three
options exist for the behavior of the read port: WRITE_FIRST, READ_FIRST and NO_CHANGE
[17]. WRITE_FIRST means that whatever is written at a specific address will be available at the
output as soon as possible. READ_FIRST means that the previous content at that address is
shown at the output after data is written to memory. NO_CHANGE contains further latching
behavior as the output remains the same as long as writing is enabled.

|Write Enable (WE)|is initialized to high as data is constantly written to the memory and the
addressing is set by a multiplexer controlled by the fold counter from the wrapper. There are
four folds and four sub-rounds of each round, but the two state instances requires a counter
which distinguishes between two rounds and thus eight sub-rounds. A binary signal is therefore
added to distinguish between which state to read and write from.

The state register is either filled with the output of the round function or from the wrapper, in
a similar manner as the other structures. However, the folded structure is different as the state
is packed together in order to fit into the correct fold dictated by the p permutation. The packing
must be compensated for during the first round there must be a demultiplexer at the output in

62

order to bypass the un-packing of the state.

5.5.3 Round function

The round function is narrowed down to 25% of its size in the basic structure and re-scheduled.
Because of the re-scheduling, the round function is divided into RF1 and RF2, as presented in
[4.2.1]and the two inputs of RF1, the buffer and RF2, are controlled by multiplexers.

The solution for the intra-round dependency of 6 is contained in the round function. For
the sake of novelty, the pre-processing solution is implemented first, where the F3S15 slice
is obtained during the previous round and made available for the processing of FOSO dur-
ing sub-round 0. Round 0 is a special case where the parity of F3S15 is collected from the
[[Ctbuffer. For all subsequent rounds, the bits which belong to the future F3S15 are latched
into a F3S15 register from the output of the round function. The separated F3S15 is therefore
processed by a mini round function before the column parities are obtained and provided to
the 65 sub-step-mapping. The . step-mapping depends on the MSB of the round constants for
processing of F3S15 which is separately provided by round constant function of the wrapper.

5.6 Implementation summary

Five distinct structures are presented here where one is folded and belongs to the mid-range
class of SHA-3 implementations while the other four are unfolded. The folded structure is the im-
plementation with the highest complexity, but achieves reduced area requirements. This struc-
ture is similar to one solution proposed by Jungk et a. [34, 137], but is unique in that it functions
as a stand-alone entity with a wrapper component which includes an [Otbuffer. The wrapper
additionally converts the standard SHA-3 interfacing so that incoming message blocks and
output digests are compatible with the internal slice-wise folding-scheme. The structure also
incorporates a new solution for solving the intra-round dependency of 6.

The presented unfolded structures will have a higher throughput, but also a larger area re-
quirement. Two of the unfolded structures are considered for hashing of messages of arbitrary
size: a basic implementation which serves as a foundation for all of the presented structures and
a generic implementation which supports all of the four sub-versions of SHA-3. The through-
put of these structures are upper bound by the critical path through the un-partitioned round
function. Based on the analysis of Chapter 4, these structures represent the theoretical limit
for the achievable efficiency concerning the structural factors of a SHA-3 implementation. For
applications where the hash function is limited to small messages with size equal or below the
block size, two pipelined structures are presented with and without unrolling.

All structures incorporate a wrapper which handles the interface and control logic of the
structure. This component is easily adaptable for modifications of the structure and is optimized
for minimal latency and overall high efficiency. Combinations of optimization techniques beyond
what is presented here are expected to increase the complexity of the wrapper as a multitude
of circumstances and conditions must be considered. This is especially true with respect to the
generic structure.

63

The theoretical models of Chapter 4 suggests that the folded structure obtains a lower
throughput and overall efficiency than the unfolded structures. Furthermore, of the latter, high-
est efficiency should be achieved by the structures which have adopted pipelines. The unrolled
structure is expected to obtain the best efficiency. While only a version with an internal pipeline
is implemented, the analysis suggests that this can be disregarded without much reduction in
efficiency.

64

6 Experimental evaluation

This chapter presents the experimental evaluation of the solutions proposed herein. Solutions
are compared with both the relevant existing state-of-the-art and the theoretical models pre-
sented in CHapter 4. The proposed structures have been implemented on a xc5vIx50t Virtex-5
FPGA model and performances are based on these specifications. Each of the implemented
structures have been validated by both behavioral and post{PAR]simulation and the generated
digests have been compared with [Known-Answer-Tests (KATs)| provided by the Keccak team
[51]. The achieved performances herein presented are assessed with respect to both the the-
oretical models from Chapter 4 and the existing state-of-the-art. The presented results for the
proposed structures were obtained using Xilinx ISE 14.7 considering the default parameters
for the full implementation flow. Timing constraints have been used to arrive at the maximum
obtainable frequency.

6.1 Resulis

The performances achieved for the structures in the related state-of-the-art and the ones herein
proposed and highlighted in bold are listed in Table [6.1] The normal throughput and efficiency
is presented as reported in the existing literature while the adjusted efficiency is obtained by
the efficiency formula of Equation for the SHA3-512 version. These two values can there-
fore differ for certain structures. Structures are sorted by the SHA3-512-adjusted efficiency and
the structures at the top are all unfolded while the bottom structures have adopted some sort
of folding. This table uses an identical notation as the one used in Table in Chapter 3. All
structures have been implemented on except where noted with asterisks. UF(1-9) indi-
cates the unrolling factor, FF(1-9) the folding factor, and PL(1-9)X/PL(1-9) indicates the number
of pipeline stages and whether these are internal or e(x)ternal. A structure noted with PL2 in-
corporates one internal pipeline register in addition to the main state register. B (buffer) and
NB (no buffer) implies whether an IO} buffer has been included in the assessment. and ' de-
note whether the results are based on synthesis or the source is unknown. Other results are
confirmed to be based on[PARL

When comparing the existing state-of-the-art concerning basic unfolded structures [44, 147,
50,140, 4] with the one herein proposed, named Basic, it is possible to note that different results
are obtained. The basic structure achieves balanced area results compared with the similar ex-
isting structures which also includes a wrapper with an [[Ofbuffer. Gaj et al. [4] is the structure

65

with most structural similarities. While they present a similar area occupation, the frequency re-
sults are reasonably higher. Results are reportedly based on implementation and it is not certain
whether this means [PAR] What is certain is that the results have been obtained by ATHENa
[29], which is an open source benchmarking environment which automatically determines the
optimal options for implementation of a hardware design. This can explain the better timing
results. The Basic structure herein presented can be used as a good basis of comparison for
future implementations considering hashing of both small and large messages. The presented
results are based on realistic assessment and the structure functions as a stand-alone entity.

The Generic structure differs from the Basic structure in that the wrapper supports all four
sub-versions of the SHA-3 hash function. It can be seen that this structure requires slightly
more area while the frequency is slightly lower compared with the Basic structure. However,
the critical path is located through the round function in both structures and goes through the
same levels of logic. The difference in frequency is therefore considered to be insignificant.
The larger area is caused by the larger [[Ofbuffer and additional XORs located in the wrapper
for support of the SHA-3 sub-version with the largest block size. The Generic structure pre-
sented herein requires much less area than the structure by Athanasiou [43]. They seem to
incorporate multiple XOR modules in their version control component which is excessive. Also,
no [[Ofbuffer seem to be included in their proposal. They have chosen to incorporate an internal
pipeline stage in the round function but does not mention any consideration regarding the size
of messages. The pipeline stage explains the higher frequency and the higher overall efficiency
compared with the Generic structure presented herein.

The Pipelined structure is achieving a noticeably better frequency than the Basic structure,
as expected. The expected additional cost in area is effectively none as the occupied slices of
the Basic structure, which function as the foundation of the Pipelined structure, are utilized
inefficiently with many unused flip flops. With this pipeline, a high throughput is achieved with
no cost in area, resulting in a higher efficiency (of 6 Mbps/slice). It is worth noting that if the area
had increased similarly to the model from |4.3, it would occupy 1550 slices and the efficiency
would be inferior to the Basic structure. The frequency would have to exceed 390 MHz for
a similar increase in efficiency with one internal pipeline. However, the practical results are
expected to catch-up with the model as [PL] increases. While Gaj et al. [4] have explored both
a pipelined and basic structure, they have failed to incorporate the pipeline registers internally.
Akin et al. [40] presents both an internally pipelined and basic structure but these results are
based on synthesis. The results presented here clearly demonstrate the cost and benefit of
pipelining within realistic circumstances and the lower accuracy of the proposed model when
dealing with an increase in registers.

The best results in efficiency and performance are achieved when unrolling the structure.
The frequency obtained for the developed Unrolled structure are inferior to both structures by
by loannou et al. [44] and comparable to Gaj et al. [4] and Jararweh et al. [50] which are struc-
tures without any internal pipelines. In one way, this emphasizes the highly deviating timing
performances of each structure, despite the utilization of solid optimization techniques such
as pipelining. The frequency of the Unrolled and the Pipelined structures are similar which is
expected as the critical path should be identical. The performance and area results of the Un-

66

rolled structure reasonably matches the estimation by the proposed model (in Section[4.4). The
cyan line of the graph of Figure [4.17]represents the specification of the implemented Unrolled
structure and the efficiencies values satisfactory match the actual obtained values.

In regard to the proposed Folded structure, the obtained area results are lower than those
presented by Jungk et al. [34, |37], the most efficient slice-wise folded structure in the related
state-of-the-art. This is despite one of their structures having a lower folding-factor. More-
over, they do not include [[Ofbuffers. The higher area occupation is likely caused by excessive
amount of registers incorporated in their proposed solution. Delay-wise, the design herein pro-
posed is also able to achieve higher frequencies, resulting in an overall efficiency gain of 28%
(2.61/2.04). This improvement is partially due to the adopted solution for the intra-fold depen-
dencies of # and the careful scheduling adopted. The folded structure with the second best
performance is the one proposed by San & At [28]. This structure presents a record low latency
for a lane-wise folded structure. However, it is not clear what the timing results are based on
and the frequency is very high for a Virtex-5 implementation. The performance of the Folded
structure is lower than the estimation by the theoretical model for folding (Section [4.1). This is
caused by a miss-approximation of the frequency. However, the frequency seem to match quite
well for an unfolded structure when comparing with the performance of the Basic structure. As
discussed, approximations of the frequency are challenging because of the many factors in-
volved. The area consumption of the folded structure is quite comparable to the results attained
by with their similarly folded structure. They do not include an[[Otbuffer and the deviation in the
required area The timing performance is also comparable. A source of deviation is the different
solutions adopted for solving the intra-fold dependencies of 6.

Two aspects separate the solutions proposed herein from a majority of the existing state-of--
the-art. First of all, only a few of the existing papers report performances which are assured to
be based on a reliable assessment such as Place and Route results. The proposed solutions
presented here are evaluated by both behavioral and post-Place and Route simulation and the
computed digest compared with Known-Answer-Tests provided by the Keccak team [51]. The
timing performance and occupied area are also obtained from Place and Route. The last aspect
is related with the complete nature of each implementation. Most of the relevant existing liter-
ature present solutions which does not function as stand-alone entities as many are missing a
wrapping component which handles the interfacing with a user or processor. This further high-
lights the incomplete status of the performance reported by selections of the state-of-the-art.
All solutions proposed herein include a wrapper component which handles the necessary in-
terfacing and is easily modified in order to support various optimization techniques.

67

"S}INS8. JO ©2IN0S UMOUNU(1, "SISBYIUAS WO} PBUIB)QO S)Nsay | “uoiejuswa|duwl 9-XoUIA,, UoIe)
-uswa|dw H-x8IA, “Joyng/Ieyng ou=g/gN ‘sieisibas suljadid [eussiul/jeulsixe =(6-1)1d/X(6-1)1d 10108} Buljjoiun=(6-1)4N ‘J010e} Buip|o}=(6-1)44
"MOJ9(Q S84N}JoNJiS Pap|o} pue dol UO SaINjoNJIS Pap|ojun "Z21G-EVHS 404 palsnipe Aousioiye Aq panios suonejuswoldwi g-yHS Bunsix3 :1°9 ajgeL

g'gedd 2Lo 2ls 2Lo S0°0 8t¥ g9z 091G [2F] luoyieg
g'Gedd ¥'0 2Ls ¥'0 200 144} 11062 | ¥S1e [€€] ..JoyxoloN
aN'+944 S¥'0 952 1G°0 v1°0 ¥9l 902 009} [Z€l e jo 1bunp
g'v944 990 952 9L’ G20 12! 11 8¥2 | 0ELI [9€] xoLBpUIM
g'v944 660 952 G8'I L0 06 LS2 G99} [6€] 1S ® bunpe
gN'8dd LL'L 952 LL'L 970 £6€ 65t 002 [¥€] dv 3 16unp
S INEEE 65| 952 6L 06°0 L0E 991 002 [Z€l ‘e 3@ Mbunp
aN'v44 9L’ 952 66| €9} 68Y oSt 00} [Z€] e jo ¥Bunp
daN‘gd4 18} 952 02 eLe v16 144! 0S [Z€] e jo 1Bunp
g'\Nvdg'sedd | 99} 2Ls 991 G20 IS) 11025 | 290} [g2] v B ueg
d'v44 192 21s 19'C 0zt 09t 002 96 paplod
g €91 ¥22 00°¢ 1209 | ¥202 LEVL | G2 [0%] Uy
g 622 ¥2e 14504 18221 | 8282 L1122 | ¥e [0g] yomueer
g 8¢ee 2ls 4% 05’8 1261 681 G2 [Z7] umpleg
g¢1d 692 ¥2e €L's 1 €€°22 | 9S¢eY 1605 | 21 [07] unv
av1d ve'e ¢ ¥'e 1042 | LLLE 12G% | 001 (1] eiesed
an 65 952 /8¢ 678 GOS G611 ¥2 [Z€l ‘e jo 1bunp
g 08¢ 21Ls 08¢ €8V 8921 102 ¥2 IEEDED)
an 90’y 2ls 4% 05’8 LELL 6381 G2 [Z¥] umpleg
g 67 ¥ 21s 67 ¥ Ge'S§ 2611 £22 ¥2 Jiseg
g ¥e'g 962 8001 12821 | 2lel 11 €82 | ve 7l len
an‘egid 8¥'S ¥2e 860} 0.8} 20Lt 68¢ 8P [€7] noiseueyly
an 6.°S 2ls 6.°S 12’6 | 18Gl1 11 28€ | ¥2 [#¥] nouueoy
g21d 909 2Ls 909 08’2 €9l €/2 8Y pauljadid
aN'Xeldgdn | g9 21Ls .89 11069} | 2992 11 2S¢ | 21 [#%] nouueoy
ggidz4dn 002 21s 00°2 8L°€l 196} 182 4! pajjoiun
(@211s/sdqy) | uoisian | (aduns/sdq) | (sdgv) | (s8dus) | (zHIN) | (81942 319)
910N Jaded
(paisnipe) v/1 | €-VHS V/L 1 v J Kouajeq

68

6.2 Further evaluation

The choice of FPGA family clearly impacts the performance, both in frequency and slice utiliza-
tion. Smaller transistor size improves routing delay and the content of a slice differs depending
on how many inputs each LUT contains. Much of the literature [44], 14, 50| 143] has compared the
varying performances between both older and more modern FPGA families. For the Virtex fam-
ilies, when migrating from V-4 to V-5 the frequency tend to increase between 20-40% and the
area decreases between 30-50%. From V-5 to V-6, the frequency increases between 10-20%
and the area decreases between 3-30%. The tendencies are similar for V-7 and pipelined struc-
tures with many registers improve greatly with the newer technologies.

69

70

7 Conclusion

The main goal of this work has been to improve the existing state-of-the-art with respect to
efficient hardware implementations of the SHA-3 hash function. While a special focus has been
made on FPGAs, as the prototyping technology, the aim has been to keep the presented so-
lutions as general as possible with respect to the supporting technology. Several solutions are
herein proposed in the form of SHA-3 hardware structures with distinct performance objectives
and considerations which are found to exceed the performance of the state-of-the-art.

The contributions of this work consists of a selection of proposed solutions evaluated for
high-performance and theoretical models which through approximations demonstrate the up-
per bound efficiency of SHA-3 hardware implementations with respect to relevant optimization
techniques. Additionally, the necessary preconditions and considerations for the utilization of
the relevant optimization techniques are demonstrated.

Five structures were proposed in this thesis. A basic structure, representing the most straight
forward implementation of the SHA-3 algorithm, is used as a basis of comparison for the exist-
ing state-of-the-art and the structures herein proposed; a generic structure, supporting all four
sub-versions of SHA-3 which is a functionality that has been scarcely covered by the existing
literature; an unrolled structure which contains two instances of the round function; a purely
pipelined structure with an extra state register implemented in the round function; a folded
structure which reduces the area requirements by processing parts of the state per clock cycle.

The generic and the basic structure are largely identical and differ only by way of the wrap-
per component which handles the loading of messages and digest to and from the core struc-
ture. The pipelined structure obtains a higher frequency than the basic structure and the area
requirements is effectively the same. Despite containing one extra state register, it is merely
implemented into already occupied slices of the basic structure. The unrolled structure is larger
than the basic structure, but provides an effective decrease in latency by 50%. It also contains
a pipeline stage in the round function similarly to the pipelined structure. The folded structure
belongs to the mid-range class of structures as the internal path is reduced while a certain level
of throughput is maintained. From these, two structures should be highlighted as they provide
an improvement to the existing state-of-the-art and achieve the best efficiency metrics for the
class of structures they represent. These are the unrolled structure with an internal pipeline
stage and the folded structure with a folding factor of 4.

The unrolled structure allows for achieving a throughput of 13.8 Gbps with a cost of 1967
slices, on a Virtex-5 FPGA. This yields an efficiency of 7 Mbps/slice, which is 9% better than the
best state-of-the-art to date [44]. This is achieved by multiplying all components of the structure

71

apart from the wrapper containing the control logic. This results in the latency being reduced
by 50% while the area is increased by less than 100% as the control logic is not multiplied. It is
important to increase the number of state registers proportionally so that the frequency is not
decreased. A combination with internal pipelining is proven to be effective.

Both the unrolled and the purely pipelined structure have internal pipeline stages in the
round function. This is a key factor for the reduction of the critical path and increase of the ef-
ficiency. As such, pipelining and the combination of pipelining and unrolling are effective tech-
niques for improving the efficiency. However, as is argued here, the relevancy of the adoption of
these techniques is limited by the messages which are considered for hashing. A precondition
for the success of pipelining is that bubbles are prevented so that all pipeline stages are full
during each clock cycle. This will not be the case for messages which are larger than the block
size. The sponge function nature of SHA-3 specifies that each block is processed by the round
function for 24 rounds before being merged with the subsequent block of the same message.
Therefore, only blocks of unrelated messages are able to fill consecutive pipeline stages. As
unrolling is inherently inefficient without pipelining, these considerations are relevant for both
optimization techniques. Distinctly higher efficiencies than the basic structure are only found
to be achieved by structures which implement pipelining. Where hashing of arbitrarily sized
messages is considered, the basic structure represents roughly the upper bound efficiency of
SHA-3 hardware implementations.

The other proposed structure that significantly improves the state-of-the-art is the folded
structure. This structure considers a folding factor of 4, meaning that 25% of the state is pro-
cessed in each clock cycle. This is the only structure presented which economizes in area re-
quirements. As herein explored, the ensuing trade-off between area requirements and through-
put is distinctively asymmetric. This means that a compact structure will inevitably obtain a
much lower throughput and efficiency than a fully unfolded one. This folded structure achieves
a hashing throughput of 1.2 Gbps at a cost of 460 slices, on a Virtex-5 FPGA. This yields an
efficiency of 2.6 Mbps/slice. Clearly, this achieved efficiency is significantly lower than the un-
rolled structure herein proposed. Nevertheless, it is the folded structure which presents better
efficiency metrics when compared with the related folded state-of-the-art, being 28 % more
efficient than the best slice-wise folded structure of the state-of-the-art [37]. This improved effi-
ciency is achieved by an efficient structure which only contains the absolute necessary registers
for a proper functionality. A memory mapping solution herein suggested, is adopted, which lim-
its the required [RAM| units to the bare minimum of what is required with a small extra register.
The intra-round dependencies caused by 6 are solved by a novel solution which allows for slice
0 to be stored in[RAM]in contrast with the existing solution.

From this, it can be concluded that the use of the folding technique should be motivated by
the particular objective of reducing area resources. However, the higher the folding factor, the
lower the overall efficiency that can be reached.

72

7.1 Future work

Interesting future research directions involve the further exploration of combinations of the dis-
cussed optimization techniques for unfolded structures. Also, a highly unrolled structure with a
generic SHA-3 sub-version support can be very useful. For optimal stand-alone functionality, a
padder component could be incorporated in the wrapper.

The developed wrapper component also has room for improvement. The control logic can
be implemented more efficiently with a faster counter and the [Otbuffer can be reduced by one
lane as this can be fed directly from the input port to the state register.

Compact structures have been thoroughly covered and no other specific techniques has
been discovered which are worth implementing beyond what already exists in the state-of-the-art,
regarding this class of designs. An exception would be to evaluate the use of DSP|slices when
considering the used multiple pipelines. This is not a very critical addition to the state-of-the-art,
however, it could allow for a more balanced use of the resources available in modern FPGAs.

Structures with other folding factors are also worth evaluating. Specifically, a structure with
[FFE8 which could allow for an internal pipeline to be implemented in the round function. This
may allow for improved performances.

73

74

References

[1] Valerie Aurora. "Life-cycle of cryptographic hash functions ", 2012. http://

valerieaurora.org/hash.htmll

[2] H. Gilbert and H. Handschuh. "Security Analysis of SHA-256 and Sisters", 2004. http:
//1link.springer.com/chapter/10.1007/978-3-540-24654-1_13.

[3] D. J. Bernstein and T. Lange. "eBACS: ECRYPT Benchmarking of Cryptographic Systems
", 2012. http://bench.cr.yp.to/results-sha3.htmll

[4] M. Rogawski E. Homsirikamol and K. Gaj. Comparing Hardware Performance of Round
3 SHA-3 Candidates using Multiple Hardware Architectures in Xilinx and Altera FPGAs.
Researchgate, 2011.

[5] Erhan Kartaltepe. Properties of Secure Hash Functions - DenimGroup. http://www.

denimgroup.com/know_artic_secure_hash_functions.htmll

[6] A.J. Menezes, P. C. V. Oorschot and S. A. Vanstone. "Handbook of Applied Cryptography",
1996.

[7] Wolfram Mathworld. One-Way Function. http://mathworld.wolfram.com/
One-WayFunction.html.

[8] Kristian Edlund. The pigeon hole principle. http://www.mathblog.dk/
pigeon-hole-principle/

[9] X. Wang, Y. L. Yin and H. Yu. Finding collisions in the full SHA-1, 2005. http://www.
impic.org/papers/wang_shal_v2.pdf.

[10] Bruce Schneier. Cryptoanalysis of SHA-1, 2005. http://www.schneier.com/blog/
archives/2005/02/cryptanalysis_o.htmll

[11] L. Shannon and V. Cojocaru. "Technology Schaling in FPGAs - Trends in Applications and
Architectures”, 2015. http://fccm.org/2015/pdfs/M1_P1.pdf.

[12] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche and R. V. Keer. "Keccak implementation
overview Version 3.3", 2012. http://keccak.noekeon.org/Keccak-implementation-3.
2. pdf.

75

http://valerieaurora.org/hash.html
http://valerieaurora.org/hash.html
http://link.springer.com/chapter/10.1007/978-3-540-24654-1_13
http://link.springer.com/chapter/10.1007/978-3-540-24654-1_13
http://bench.cr.yp.to/results-sha3.html
http://www.denimgroup.com/know_artic_secure_hash_functions.html
http://www.denimgroup.com/know_artic_secure_hash_functions.html
http://mathworld.wolfram.com/One-WayFunction.html
http://mathworld.wolfram.com/One-WayFunction.html
http://www.mathblog.dk/pigeon-hole-principle/
http://www.mathblog.dk/pigeon-hole-principle/
http://www.impic.org/papers/wang_sha1_v2.pdf
http://www.impic.org/papers/wang_sha1_v2.pdf
http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html
http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html
http://fccm.org/2015/pdfs/M1_P1.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf

[13] Altera Robert Cottrell. "FPGA Coprocessors: Hardware [P for Soft-
ware Engineers". http://www.design-reuse.com/articles/6733/

fpga-coprocessors-hardware-ip-for-software-engineers.html.

[14] G. Steiner, K. Shenoy, D. Isaacs (Xilinx), and D. Pellerin (ImpulseC). "How to accelerate al-
gorithms by automatically generating FPGA coprocessors”. 2006. http://www.embedded.
com/print/4014843,

[15] J. Edwards. No room for second place. EDN, 2006. http://www.edn.com/Home/
PrintView?contentItemId=4320763.

[16] P. Tanner. Inside Xilinx's Lead over Altera in the 20- and 16-Nanometer
Markets. Market Realist, 2016. http://marketrealist.com/2016/05/

inside-xilinxs-lead-altera-20-nm-16-nm-market/.

[17] Xilinx. "Virtex-5 FPGA User Guide - UG190", 2012. http://www.xilinx.com/support/
documentation/user_guides/ugl90.pdf.

[18] Kevin Morris. "FPGA Synthesis Showdown The Big Game that Never Ends". 2016. http:
//www.fpgajournal.com/archives/articles/20160119-synthesis/.

[19] Xilinx. "Implementation Overview for FPGAs". http://www.xilinx.com/support/

documentation/sw_manuals/xilinx11/ise_c_implement_fpga_design.htm.

[20] G. Bertoni, J. Daemen, M. Peeters and G. V. Assche. "Cryptographic sponge functions".
2011. http://sponge.noekeon.org/.

[21] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. "The RadioGatun Hash Function
Family". . http://radiogatun.noekeon.org/.

[22] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche and R. V. Keer. "Keccak sponge function
family main document ", 2008. http://keccak.noekeon.org/Keccak-main-1.0.pdf.

[23] M. Peeters G. Bertoni, J. Daemen and G. V. Assche. "the keccak reference version 3.0",
2011. http://keccak.noekeon.org/.

[24] National Institute of Standards and Technology - US Department of Commerce. "Ap-
proved hashing algorithms ", 2015. http://csrc.nist.gov/groups/ST/toolkit/secure_
hashing.html.

[25] The Keccak team. "Note on Keccak parameters and usage ", 2015. http://keccak.

noekeon.org/NoteOnKeccakParametersAndUsage . pdf.

[26] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche and R. V. Keer. "Keccak SHA-3
Submission, 6.1 Bit and byte numbering ", 1011. http://keccak.noekeon.org/

Keccak-submission-3.pdf.

[27] National Institute of Standards and Technology. FIPS PUB 202 - SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions , 2015. http://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdfl

76

http://www.design-reuse.com/articles/6733/fpga-coprocessors-hardware-ip-for-software-engineers.html
http://www.design-reuse.com/articles/6733/fpga-coprocessors-hardware-ip-for-software-engineers.html
http://www.embedded.com/print/4014843
http://www.embedded.com/print/4014843
http://www.edn.com/Home/PrintView?contentItemId=4320763
http://www.edn.com/Home/PrintView?contentItemId=4320763
http://marketrealist.com/2016/05/inside-xilinxs-lead-altera-20-nm-16-nm-market/
http://marketrealist.com/2016/05/inside-xilinxs-lead-altera-20-nm-16-nm-market/
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.fpgajournal.com/archives/articles/20160119-synthesis/
http://www.fpgajournal.com/archives/articles/20160119-synthesis/
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_implement_fpga_design.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_implement_fpga_design.htm
http://sponge.noekeon.org/
http://radiogatun.noekeon.org/
http://keccak.noekeon.org/Keccak-main-1.0.pdf
http://keccak.noekeon.org/
http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html
http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html
http://keccak.noekeon.org/NoteOnKeccakParametersAndUsage.pdf
http://keccak.noekeon.org/NoteOnKeccakParametersAndUsage.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

[28] I. San and N. At. Compact Keccak Hardware Architecture for Data Integrity and Authenti-
caion on FPGAs. Information Security Journal: A Global Perspective, 21, pages 231-242,
August 2012.

[29] "ATHENa - Automated Tool for Hardware EvaluatioN". https://cryptography.gmu.edu/
athena/index.php?id=about.

[30] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, and E. Roback. "Report
on the Development of the Advanced Encryption Standard (AES)". 2000. http://csrc.

nist.gov/archive/aes/round2/r2report.pdf.

[31] Roar Lien. "FPGA Implementations of SHA-1 Secure Hash Standard". 2003.

[32] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche and R. V. Keer. "Keccak implementation
overview Version 3.0", 2011. http://keccak.noekeon.org/Keccak-implementation-3.
0. pdf.

[33] S. Kerckhof, F. Durvaux, N. Veyrat-Charvillon, F. Regazzoni, G. M. de Dormale, and F. X.
Standaert. Compact FPGA Implementations of the Five SHA-3 Finalists. Researchgate,
January 2011.

[34] B. Jungk and J. Apfelbeck. Area-efficient FPGA Implementations of the SHA-3 Finalists.
IEEE, 2011.

[35] Xilinx. "LogiCORE IP Fast Simplex Link (FSL) V20 Bus (v2.11c)". 2010. http://wwu.

xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf.

[36] J. Winderickx, J. Daemen, and N. Mentens. "Exploring the Use of Shift Register Lookup
Tables for Keccak Implementations on Xilinx FPGAs". 26th International Conference on
Field-Programmable Logic and Applications, Lausanne, 2016.

[37] B. Jungk, M. Stéttinger, and M. Harter. Among Slow Dwarfs and Fast Giants: A Systematic
Design Space Exploration of KECCAK. 2013. jungkshrink.

[38] B. Jungk. "FPGA-based Evaluation of Cryptographic Algorithms - PhD Dissertation”, 2016.

[39] Bernhard Jungk and Marc Stéttinger. Hobbit - Smaller But Faster Than A Dwarf: Revisiting
Lightweight SHA-3 FPGA Implementations. ReConFig 2016, 2016.

[40] O. C. Ulusel A. Akin, A. Aysu and E. Savas. Efficient Hardware Implementations of
High Throughput SHA-3 Candidates Keccak, Luffa, Blue Midnight Wish for Single- and
Multi-Message Hashing. SINCONF, Taganrog, Russia, pages 168—177, September 2010.

[41] F. Pereira, E. Ordonez, |. Sakai and A. Souza. "Exploiting Parallelism on Keccak: FPGA
and GPU Comparison”, 2013.

[42] Y. Ayuzawa, N. Fujieda, and S. Ichikawa. "Design Trade-offs in SHA-3 Multi-Message
Hashing on FPGAs", 2014.

77

https://cryptography.gmu.edu/athena/index.php?id=about
https://cryptography.gmu.edu/athena/index.php?id=about
http://csrc.nist.gov/archive/aes/round2/r2report.pdf
http://csrc.nist.gov/archive/aes/round2/r2report.pdf
http://keccak.noekeon.org/Keccak-implementation-3.0.pdf
http://keccak.noekeon.org/Keccak-implementation-3.0.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf
jungkshrink

[43] G. P. Makkas G. S. Athanasiou and G. Theodoridis. High Throughput Pipelined FPGA
Implementation of the New SHA-3 Cryptographic Hash Algorithm. IEEE, 2014.

[44] H. E. Michail L. loannou and A. G. Voyiatzis. High Performance Pipelined FPGA Imple-
mentation of the SHA-3 Hash Algorithm. MECO, pages 1—4, 2015.

[45] Ken Chapman. "Xilinx WP274 Multiplexer Selection, white paper". 2006. http://www.
xilinx.com/support/documentation/white_papers/wp274.pdfl

[46] Xilinx. "XtremeDSP 48 Slice. http://www.xilinx.com/technology/dsp/xtremedsp.htm.

[47] B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. O’Neill and W. P. Marnane. "FPGA
Implementations of the Round Two SHA-3 Candidates". 2010. http://csrc.nist.gov/
groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/BALDWIN_FPGA_SHA3.pdf.

[48] Ambarish Vyas. "Implementation and Benchmarking of Padding Units and HMAC for
SHA-3 Candidates in FPGAs and ASICs", 2011. http://digilib.gmu.edu/jspui/
bitstream/handle/1920/7512/Vyas_thesis_2011.pdf?sequence=1.

[49] M. Rogawski E. Homsirikamol and K. Gaj. "GMU hardware interface for cryptographic
modules". 2010. https://cryptography.gmu.edu/athena/index.php?id=interfaces.

[50] H. Tawalbeh Y. Jararweh, L. Tawalbeh and A. Moh’d. Hardware Performance Evaluation of
SHA-3 Candidate Algorithms. Journal of Information Security, pages 6976, April 2012.

[51] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. "Known-Answer-Tests and Monte
Carlo test results". . http://keccak.noekeon.org/KeccakKAT-3.zip.

78

http://www.xilinx.com/support/documentation/white_papers/wp274.pdf
http://www.xilinx.com/support/documentation/white_papers/wp274.pdf
http://www.xilinx.com/technology/dsp/xtremedsp.htm
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/BALDWIN_FPGA_SHA3.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/BALDWIN_FPGA_SHA3.pdf
http://digilib.gmu.edu/jspui/bitstream/handle/1920/7512/Vyas_thesis_2011.pdf?sequence=1
http://digilib.gmu.edu/jspui/bitstream/handle/1920/7512/Vyas_thesis_2011.pdf?sequence=1
https://cryptography.gmu.edu/athena/index.php?id=interfaces
http://keccak.noekeon.org/KeccakKAT-3.zip

Appendix

7.2 Dependencies

79

7.2.1 Rho dependencies for fold 0 of slice-wise folding-schemes

SLICE NUMBER

o 1] 2[3] 4] 5[e[7] 8] o[10[11[12[13[14[15[16[17] 18] 19[20] 21] 22] 23] 24] 25] 26] 27] 28] 29] 30] 31] 32] 33] 34| 35] 36] 37| 38[39] 40] 41] 42[43] 44] 45] 46] 47] 48[49] 50] 51 52 53] 54] 55| 56] 57] 58] 59] 60] 61]62] 63
A hhﬁhhHiiiiiiﬁiiiiﬂiﬁiﬁi&ﬁ*ﬁhhhu

LANE NUMBER
olnlwlulslalelluloslt]s]a]]n]n]x]s]a]n]xn8r

24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24

23 2.
22 22
21 21 21 21 21 21 21, 212
20 20 20 20 20 20 2020 20
19 19§19 19 19 19 19 19
18 18
17171717 171717171717 17 1717 17 1717 17 17 17 17 17 17 17 17 17 17 17 1
16 16 16 16 16 16 16 16 16 16 16 16J16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
15 W
14 4
13 1313
121212 12

11 11 11 11 1111 11
10 10 10 10§10 10

SLICE NUMBER
o 1] 2[3] 4] 5[6] 7] 8] 9[10[11[12[13]14[15]16]17] 18] 19]20[21] 22] 23[24] 25] 26] 27| 28] 29] 30| 31] 32[33[34| 35] 36[37| 38] 39] 40] 41] 42[43[44] 45[46] 47] 48[49] 50] 51] 52] 53] 54] 55] 56] 57] 58] 59| 60] 61[62[63|

LANE NUMBER
olulnlulalulal<lulo|sle]s]a]]z]5]x]s]a]sxNxx

10 10 10 10 10 10 10 10 10§10 10 10 10 10 10 10
10 10 10 10 10 10 10410 10 10 10 10 10 10 10 10

9 99 99 9 9 9

9 9 9999999 99999 9 9
9 9 9 9 9 9 9
8 88 88 88888388888 8

8 88888888388 g8 8 8 8

SLICE NUMBER
o 1] 2[3] 4] 5[6] 7] 8] 9[10[11[12[13]14[15]16]17] 18] 19]20[21] 22] 23 24] 25] 26] 27] 28] 29] 30] 31] 32[33[34| 35] 36[37] 38 39] 40] 41] 42[43[44] 45[46] 47] 48[49] 50] 51] 52] 53] 54] 55| 56] 57] 58] 59] 60] 61[62[63|

LANE NUMBER
olelnlulalalal<JaloslElk]a]zs]]s]]]N N

E:nn!&
“HE - a

R e

1111111
1111111

0000O0OOO

00 OQoOOOG@ OO
000000 oo
) 00000000

LANE NUMBER

ol nle]alolollo o 525l alelals sl]r ss]]

| SLICE NUMBER
o[2] 2[3[4 5[e 7[8] 9[10[11[12[13][14]15]16]17] 18] 19]20] 21] 22 23] 24] 25] 26] 27| 28] 29] 30] 31| 32[33[34| 35] 36[37[38 39] 40] 41[42| 43] 44] 45] 46] 47] 48] 49] 50] 51] 52] 53 54] 55| 56] 57| 58] 59] 60| 61] 62[63|

7.3 Memory mapping

81

7.3.1 Memory mapping of state for the folded structure with FF=4

| FOLD 0 RHO + PI step-mapping dependencies

,,,,,,,,,,,,, |23[23/ 23| 23 23| 23] 23) 23/ 23/ 23]
[20 | 20 20] 20| 20/ 20| 20| 20|
EQ (1] 15/ 15/ 15 13 15| 18] 13/ 13|15/ 15 1]
17
[16] | 16 16/ 16] 16| 6
= | 1515/ 15/ 15/ 15/ 15 15|
QI
(=l
@ [
O [19
a
8
L7
| 8
|5
|4
3
|2
L1
0
[FOLD 1 1T FOLD 1 1T FOLD 2 1T FOLD 3]
151413121110 9 8 7 6 5 4 3 2 1 0 151413121110 O 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 0
SR 22| 22] 22 22[22 22[22 22[22] 22] [23] 23] 23] 23] 23] 23] 23] 23] 23] 23] 20] 20] 20[20] 20[20 21] 21 21] 21 21] 21] 21] 21] 21 [N [24] 24[24] 24] 2] 24] 24] 24] 24 24] 24] 21[21] 21[21[21]
22[22]22[19 19] 19 19 19 19] 19[19] 19] 19 SIS 17]17[17]17[17) [edy 21[21[18] 18] 18] 18] 18] 18] 18] 18] 18] 18] 18] 13 |
x
g SIS 14| 14 14[14]14] 14] 14 14[14] 14] 14] 14) 1) 16] 16] 16| HEN 8] 8] 7] 7] 7] 7] 7| 7) g 17[17[17[17]17] 17] 17 BN 11| 11] 11] 11 11) AN 15] 15] 15] 15] 15 15 15] 15] 15 ARG
2 [24[14[13]13[13[13[13[13]13[13[13[13[13[13[13[13| kN 7[7] 7] 7] 7| 7] 7 7] 6] 6 6 6 6] 6] 6| 6] Jekd 11[11[11[12]11]11[10[10[10[10[10]10]10[10[10[10]
>
5] [13[12[12[12[12[12[12]12[12[12[12[12]12]12[12[12] §¥PA 6] 6] 6 6 6] 6] 4] 4 4] 4] 4] 4] 4] 4] 4 4] k] 10]10] pe] 3 3[3[3[3 2/ 2/ 2/ 2[2[2] 2] 2] 2
£
g [22[o of o of of of 9 o of of 9o 9] of 8 8] kY 4 4] 4] 4] 4] of o of of of of of of of of g

EEEEEFEEEEEE _EE| -

Lane number
1-23 Memory block number
Extra register

I:l Standard dependency bits fitting in memory blocks designated for each fold
_ Dependency bits for Fold 0 which does not fit in straight forward memory mapping (only when packed)

Non-dependency bits for Fold 0

82

7.4 Scheduling

83

7.41

Basic structure SHA3-512

0

SHA3-512 (msg block r=9*64 bits, digest /=8*64 bits)
6

14]13]12/11/10/9[8[716[514[3[2[1]0

£

1|1 £ £ £ £ £
1|1 2 2 2 2 2

TO
STATE

INIT

FROM
RF

IOBUF

e —

14]13]12/11/10[/9[8[716[574[3[2[1]0

IN)|
NN|N

N
NNN|,_.

NN|N ~|g

=)
NN|N|N N|,a

TO
STATE

=)
NNPPFNQ

NNNPPFNQ
N@N@@@Nng

N@@N@@@NNG

FROM
RF

IOBUF

BLOCK 1

1
L
(74

23

[22

15

14]13]12/11/10[/9[8[716[5[4[3[2[1]0

BLOCK 2

TO
STATE

FROM
RF

IOBUF

1
L
(74

23

[22]21]20[19[18[17[16

15

14[13[12[11[10[/9[8[7[6[5[4[3[2[1]0

TO
STATE

----------------------E

FROM
RF

IOBUF

1-9 Indication of block number

I Vessage+digest exchange with RF and statereq

I Digest output
Message input

IFEZE Processina of numbered block

84

7.4.2 Basic structure SHA3-224

SHA3-224 (msg block r=18*64 bits, digest /=3.5*64 bits)
20(19(18(17(16/15(14 81716

23122/21/20/19 5 13(12/11]/10 574[3[2]1

TO STATE

IOBUF

INIT

FROM RF

e T

22322 0/19118/17[16/15/14 0 7 5[413[21

TO STATE

IOBUF

Nl
N
N
N
N
N
N

BLOCK 1

FROM RF

T
'8
[

23|22/21/20(19(18(17/16|15/14(13[12/11/10/9[8[7 |6

o1

473[2[1

TO STATE

IOBUF

FROM RF

BLOCK 2

RF

23/22/21/20(19(18(17/16/15[14(13[12/11/10/9[8[7 |6

(3]

473[2J1]0

TO STATE

IOBUF

LAST

FROM RF

' ' '/ [/ [[[[[| [[|
| Tt
1-9 Indication of block number
I Viessaae+digest exchanae with RF and staterea
I Dicest output
Messaae input
IFECE Processing of numbered block

85

7.4.3 Pipelined structure SHA3-512

SHA3-512 (msg block r=9*64 bits, digest /=8*64 bits)

474645 44|43 42/41 40 39 38 37/36/35/34 33|32 31 29] -+

L 1

L 1 1

1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 2

2
2
N A N Y I
N N N Y B

INIT

| PSESSESSSNC

| EESSSSES
| PEESSISES

i~
il ~~
| JESESS
| JESSSES

IOBUF

4746(45/44(43(42(41 /40 38(37(36/35(34(33[32

W
=
(=

WIWWW

W

AADDLBAAAR®

WWWWWWWWWSH

DD

3 4
33 414

I DD
H

Z
Z
Z
Z
z

2 1]2

2 B -

Z
Z

Z Z
Z Z
Z Z
z z

-- -

R
o [
Y oo

IOBUF

|

BLOCK 3+4 BLOCK 1+2

IOBUF

.

1-9 Indication of block number

I Viessage+digest exchange with RF and statereq
I Digest output

Messaae input
IFEZE Processing of numbered block

86

IOBUF

7.4.4 Unrolled pipelined structure SHA3-512

SHA3-512 (msg block r=9*64 bits, digest /=8*64 blts)

INIT

47/46(45/44(43(42(41 /40 39 38(37(36/35/34

BLOCK 3+4 BLOCK 1+2

3 T %
1[1]1(1]" 2 @
1101 22 o
1111 2[2(2] =
1(1(1 11 /1(1(1| [2[2[2 2]
1 1 E E E E E E E 2 2 2 2 2
NN N N O -
[I I I T T .
NN N N A A AN - ~
47146|45]44143]42(41]40]39]3837]36(35/34]33[32[31[30/29] -
LL
o]
[21]
o
i
N
LL
2
[a1]
o
| | |
[8 [5|6 [7[8|5|6[7[8|5[6[7|8[5[6|7|8[5]|6 e -
[6|78 5|6 /7[8[5]/6[7[8|5/6[7[8]5[6]7|3s g8 ~
LL
2
[a1]
o
-

1-9 Indication of block number

I Viessage+digest exchange with RF and statereq
I Digest output

Messaae input
IFECEProcessing of numbered block

87

7.4.5 Folded structure SHA3-512

Folded SHA3-512 (mgs block r=9*64 bits, digest /=8*64 bits)

23 22 21 20 19 18 17 16 15 14 [1] o
3]2[1]0[3]2]1]0[3[2[1]0]|3[2]1]0[3]2]1[0[3][2]1[0[3][2[1]0]|3]2]1][0[3]2[1]0[3]2]1]0] [3[2]1]0[3]2]1]0
1[1[1]2 w
1[1]2]aa[a[2]2 £
1[1]a]aa[a[2]2|a[a[2]2 5
1[1]a]a[a[a[2]a[a[a]2]2]a]a[2]2 olw
1[1]a]a[a[a[2]a[a[a]2]2[a[a]2]2]|a]a]2]2 Fl3
|: 1[1]a[a[a[a[2]a[a[a]2]a[a[a[2]2]a[a]2]2]a]a[2]2 §9
Z BRNARARANANARANNANAAANANANAREAER 3
a[a[afa]a[a[a]a]a[a[2[2]a[a[a]2]a[a[a[2]2[a[a[2]2]a]a[2]2]2]a[2]2]2]2]2 [
)
oW
i
23 22 21 20 19 18 17 16 15 14 [12] o
3[2[1]0[3]2]1]0|3[2[1]0[3]2]1]0|3][2[1]0[3]2]1]0]|3][2][1]0[3]2[1]03][2]1]0[3]2[1]0] [3[2]1]0[3]2]1]0
2[2[2]2 w
2[2]2[2[2[2[2]2 =
2[2[2[2|2[2[2[2]2]2[2]2 5
2[2[2[2|2[2[2[2|2]2[2[2]|2]2[2[2 o|u
2[2[2|2|2|2[2|2|2|2[2|2|2]2|2[2|2]2|2|2 Fl3
|: 2[2|2|2|2|2[2|2|2|2|2|2|2|2|2[2|2]2]2[2|2]2|2|2 I&LQ
Z dlala22lz 2 2 2 5 2 2 0(sl0l02 2 21212 2 2 5 5 2l210(sl2l2 3
2[2[2|2|2|2|2|2|2|2[2|2|2|2[2|2|2|2[2]2|2|2[2[2|2]2]2]2|2]2]2]2|2]2]2|2 [
2[22/2[2]]a[1]als]1]ala]a[ala]a]1]als|1[ala]a[2l]a]1]a]s|1[ala]a[2]a]a]]a]s E 2 Fk
PR AR ARARARRAARARARAERRGRE - AEARREA -
15 14 | 0o |
2[1]0[3[2[1]0] Mdﬂ03210
=
B
els
= &8
= 3
- £

RF

~ RF2RF1

0

INIT

14 |
32[1]o]

1
[3[2]1]0[3]2]1]0

1-9 Indication of block number

-Message+digest exchange with RF and statereg

- Digest output

Message input

Processing of numbered block

88

FROM RF| TO STATE

IOBUF

RF2RF1

RF

	Abbreviations
	Nomenclature
	Introduction
	Goals
	Requirements
	Main contributions
	The document structure

	Background
	Hash functions
	Hardware co-processors
	Keccak algorithm
	The sponge construction
	The Keccak sponge functions

	The SHA-3 standard
	Summary

	State of the art
	Folding
	Pipelining
	Unrolling
	Manual component instantiation
	Accessory FPGA resources
	Wrapper
	Overall analysis
	Summary

	Proposed solution
	Folding
	Dependencies
	Rescheduling of the round-function
	Theta intra-round dependency
	Embedded memory

	Pipelining
	Unrolling
	Summary

	Implementation
	Basic structure
	Wrapper
	The state
	Round function

	Generic structure
	Pipelined structure
	Wrapper
	Round function

	Unrolled structure
	Folded structure
	Wrapper
	The state
	Round function

	Implementation summary

	Experimental evaluation
	Results
	Further evaluation

	Conclusion
	Future work

	References
	Appendix
	Dependencies
	Rho dependencies for fold 0 of slice-wise folding-schemes

	Memory mapping
	Memory mapping of state for the folded structure with FF=4

	Scheduling
	Basic structure SHA3-512
	Basic structure SHA3-224
	Pipelined structure SHA3-512
	Unrolled pipelined structure SHA3-512
	Folded structure SHA3-512

