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Resumo

As agências espaciais despertaram recentemente para a importância da exploração de mundos oceânicos.

Alguns destes corpos celestes, como Enceladus e Europa, orbitam dentro dos sistemas lunares de

planetas gigantes, como Jupiter e Saturno. A vontade de investigar estas luas em detalhe motivou a

concepção de uma nova classe de trajectórias — complexos “moon tours” que têm como objectivo uma

redução drástica do custo de inserção orbital naquelas luas. Este trabalho ataca o desafio especı́fico

de desenvolver uma trajectória preliminar que possibilite o envio de uma sonda, com a maior massa

possı́vel, para órbita de Enceladus. Para começar, a estrutura da missão é definida. De seguida,

o cálculo da trajectória começa com a optimização de diversas sequências interplanetárias, obtidas

através de um processo baseado em diagramas de Tisserand. Para permitir isto, um processo de

optimização global que envolve cooperação entre algoritmos estocásticos é delineado e implementado.

Para obter soluções para o “moon tour”, uma técnica moderna denomeada V∞-Leveraging é estudada

e usada, demonstrando ser essencial neste tipo de missões. Finalmente, num passo além da literatura

actual, o efeito da inclusão de transferências inter-lua na solução do “moon tour” é discutido e consid-

erado não negligenciável. O resultado deste trabalho é um exemplo de uma trajectória preliminar que

permite a colocação de um satélite com, no máximo, 2 toneladas, em órbita de Enceladus num prazo

de 13.9 anos.

Palavras-chave: Enceladus, circuito inter-luas, alavancamento de V∞, optimização de tra-

jectórias, mundos oceânicos, diagramas de Tisserand
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Abstract

Space agencies have recently awoken to the importance of exploring ocean worlds. Some of these

celestial bodies, such as Enceladus and Europa, exist within the dynamic moon systems of giant planets

like Jupiter and Saturn. The will to investigate these moons in detail motivated the study of a new

class of trajectories — complex moon tours with the objective of drastically cutting down on the cost

of orbital capture at these moons. This work tackles the specific challenge of designing a preliminary

spacecraft trajectory capable of delivering as much mass as possible to Enceladus’ orbit. To begin

with, a framework for the mission is established. Then, the trajectory design starts with the optimisation

of several interplanetary flight sequences, obtained through a process based on Tisserand plots. To

achieve this, a global optimisation procedure with a cooperative stochastic topology is outlined and

implemented. To obtain solutions for the moon tour, a modern V∞-Leveraging technique, demonstrated

to be essential for this class of missions, is studied and used. Finally, in a step beyond current literature,

the effect of the addition of inter-moon transfer orbits to the moon tour’s solution is discussed and found

to be non-negligible. The outcome of this work is an example preliminary trajectory that enables an

Enceladus orbiter spacecraft of up to two tonnes, within a mission time of 13.9 years.

Keywords: Enceladus,moon tour, V∞-Leveraging, trajectory optimisation, ocean worlds, Tis-

serand plot

ix



x



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

1 Introduction 1

1.1 Elements of Interplanetary Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Missions to Ocean Worlds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Spacecraft Trajectory Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 GTOC: Global Trajectory Optimisation Competition . . . . . . . . . . . . . . . . . . 6

1.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 A Mission to Enceladus 12

2.1 Mission Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Mission Design Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 The Solar System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The Saturn System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Mission Design Models 19

3.1 Rendezvous: Lambert’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Gravity Assists and Deep Space Manoeuvres . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 B-Plane Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Launcher Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Ephemerides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.1 Available Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.2 Interpolated Multi-thread SPICE Ephemerides System . . . . . . . . . . . . . . . . 26

3.6 Tisserand Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xi



3.6.1 Constructing the Tisserand Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6.2 Reading the Tisserand Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 V∞-Leveraging Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7.1 Anatomy of a VILT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7.2 Computing VILTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Trajectory Optimisation:

Problem Formulation and Methodology 37

4.1 Software: PyGMO and PyKEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 MGA-1DSM Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 General Form of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Simplified Form of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Optimisation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Interplanetary Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.2 Moon Tour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Trajectory Design: Interplanetary Phase 50

5.1 Finding Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Tisserand Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Global Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Saturn Orbit Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1 Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.2 Periapsis Raising Manoeuvre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Trajectory Design: Moon Tour 61

6.1 Building Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Finding Tours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.1 Preparing the Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.2 Branch and Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.3 Inter-moon Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Enceladus Orbit Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Results 69

7.1 Phase I — Earth to Saturn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1.1 Flight Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1.2 Interplanetary Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2 Phase II - Saturn Orbit Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 Phase III - Moon Tour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.3.1 Titan Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.3.2 Rhea Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.3.3 Dione Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xii



7.3.4 Tethys Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3.5 Enceladus Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.4 Enceladus Orbital Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.5 ∆V and Mass Budgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Conclusions 80

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

References 81

A Images A.1

A.1 Tisserand Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.1

A.2 Moon Tour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.9

A.3 Other images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.12

B Trajectory Information B.1

B.1 Interplanetary Option A (Trajectory 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.1

B.2 Saturn Orbit Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.2

B.3 Enceladus Orbit Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.3

xiii



xiv



List of Tables

1.1 Ocean Worlds—A summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Mission Phases and their high-level objectives . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Planetary body information. The radii used are mean volumetric radii. . . . . . . . . . . . 15

2.3 Interplanetary spacecraft data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Comparison of propulsion systems [22, 62, 63] . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Peak absolute errors of the cubic spline interpolation in the 2020 to 2050 period. . . . . . 27

3.2 Benchmark of Ephemerides System Runtimes. . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Main algorithms available in PyGMO. [82] . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Mutation variants of the Differential Evolution algorithm. Each variant is assigned an ID

that will be used for the remainder of the work, for the sake of shortness. . . . . . . . . . . 43

4.3 DE Test Parameters. Ng = 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 SAAN Test Parameters. Some parameters are based on suggestions by Izzo [37]. . . . . 47

4.5 Winners of the DE racing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Winners of the SA racing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Global Optimisation Topology for the Interplanetary Phase . . . . . . . . . . . . . . . . . . 48

5.1 Mission start and duration parameters for the mission to Enceladus and others. . . . . . . 50

5.2 Flight times. I: Inbound; O: Outbound. “Up” signifies a transfer from an inner to an outer

planet and “Down” is the opposite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1 Resonances allowed for the branch and bound search. . . . . . . . . . . . . . . . . . . . . 64

6.2 Enceladus science orbit. Subscripted quantities are initial values. . . . . . . . . . . . . . . 68

7.1 Sequences found in the literature and using the Tisserand sequencer. Note that the min-

imum launch V∞ may not be accurate due to the grid size used with the Tisserand Se-

quencer (V∞ can be smaller than stated). . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2 Interplanetary phase results. The best results for each sequence are shown. . . . . . . . 71

7.3 Saturn Orbit Insertion results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.4 Inclination change flyby (T0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xv



7.5 Titan Phase. Each row refers to an individual VILT transfer or resonant orbit modify the

spacecraft’s V∞ (with respect to the moon) between two V∞ “levels” (as seen in sec-

tion 3.7). The quantities on the right are the result of calculating that specific phase-fixed

VILT. The last row, which is marked as TRANSFER, refers to the inter-moon transfer orbit

and its associated cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.6 Rhea Phase. Description as in table 7.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.7 Dione Phase. Description as in table 7.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.8 Tethys Phase. Description as in table 7.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.9 Enceladus Phase. Each row refers to an individual VILT transfer or resonant orbit modify

the spacecraft’s V∞ (with respect to the moon) between two V∞ “levels” (as seen in sec-

tion 3.7). The quantities on the right are the result of calculating that specific phase-fixed

VILT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.10 Enceladus Orbit Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.11 ∆V and mass budgets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.12 Comparison of Solutions. ∆V results are shown without margins applied. . . . . . . . . . 78

B.1 Interplanetary Trajectory T2: Detailed Results . . . . . . . . . . . . . . . . . . . . . . . . . B.1

B.2 Saturn Orbit Insertion: Detailed Information . . . . . . . . . . . . . . . . . . . . . . . . . . B.2

B.3 Enceladus Orbit Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.3

xvi



List of Figures

2.1 Interconnections between the mission design’s various components. . . . . . . . . . . . . 14

2.2 Saturn System: Celestial body information . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Comparison of a low-thrust path (left) and an impulsive path (right). . . . . . . . . . . . . . 18

3.1 ∆V -EGA: an example of Flyby and DSM manoeuvres. To the left is a close-up of the

flyby plane, in the planet’s reference frame. To the right is the interplanetary trajectory

with three key points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 B-plane definition. Image taken from Hintz [69]. . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Left: Falcon 9 (Block 2) performance curve. Right: Atlas 551 performance curve. Both

images are from Biesbroek [68]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Example of a Tisserand Graph for Earth. V∞ curves range from 1 km/s (top) to 9 km/s

(bottom), with a step of 0.5 km/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Gravity-Assist V∞ Triangle. V∞ is the dimensional hyperbolic excess velocity. . . . . . . . 30

3.6 An example Tisserand plot showing several graphical elements. See text for the descrip-

tion of each element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Types of VILTs. In this case, departure is outbound for exterior and inbound for interior VILT. 34

4.1 MBH+DE topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 DE + SAAN topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Example branch and bound scheme. Green circles mark solutions found by the algorithm.

Red crosses mark branches that were pruned and whose children algorithm does not

explore any further. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Design approach for the interplanetary and Saturn orbit insertion phases . . . . . . . . . 50

6.1 Hohmann transfers between moons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Example of an exterior VILT overlaid on a ra-rp Tisserand plot. . . . . . . . . . . . . . . . 62

6.3 Example of a non-optimal VILT tour at Titan. V∞ curves range from 0.1 km/s (top) to 3.5

km/s (bottom) at 0.1 km/s steps. Red dashed lines represent ballistic resonant transfers.

Red lines are VILTs and green lines are flybys. The blue line represents the orbital radius

of the next moon in the sequence (Rhea). Orbits in, or below, the blue rectangle are

potential transfer orbits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xvii



6.4 Example tisserand graph portraying potential transfer orbits between moons. The blue

rectangle represents orbits with a periapsis lower than that of the next moon. The green

circle is the last flyby in moon A’s tour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1 Saturn orbit insertion results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 Enceladus Orbit Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.1 Logarithmic Tisserand Graph of the Solar System. Curves between V∞ = 1 km/s and

V∞ = 11 km/s at a step of 1 km/s. The circles are visual aids that help understand the

maximum movement that can be performed along a curve due to the minimum flyby radius

constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2

A.2 Logarithmic Tisserand Graph of Saturn’s moon system, from Enceladus to Titan. Curves

between V∞ = 100 m/s and V∞ = 3.5 km/s at a step of 100 m/s. Darker curves mark

V∞ = 1 km/s, 2 km/s and 3 km/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.3

A.3 Tisserand Graph for Titan. Curves start at the top with V∞ = 1000 m/s and end at V∞ =

3.5 km/s with a step of 50 m/s. Dotted lines specify resonant orbits. The blue line marks

the orbital radius of the next body in the sequence (Rhea). The solution to the moon tour

is overlaid on the Tisserand plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.4

A.4 Tisserand Graph for Rhea. Curves start at the top with V∞ = 1000 m/s and end at

V∞ = 2.5 km/s with a step of 50 m/s. Dotted lines specify resonant orbits. The blue line

marks the orbital radius of the next body in the sequence (Dione). The solution to the

moon tour is overlaid on the Tisserand plot. . . . . . . . . . . . . . . . . . . . . . . . . . . A.5

A.5 Tisserand Graph for Dione. Curves start at the top with V∞ = 100 m/s and end at V∞ = 2.5

km/s with a step of 50 m/s. Dotted lines specify resonant orbits. The blue line marks the

orbital radius of the next body in the sequence (Tethys). The solution to the moon tour is

overlaid on the Tisserand plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.6

A.6 Tisserand Graph for Tethys. Curves start at the top with V∞ = 100 m/s and end at V∞ = 2

km/s with a step of 50 m/s. Dotted lines specify resonant orbits. The blue line marks the

orbital radius of the next body in the sequence (Enceladus). The solution to the moon tour

is overlaid on the Tisserand plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.7

A.7 Tisserand Graph for Enceladus. Curves start at the top with V∞ = 100 m/s and end at

V∞ = 1 km/s with a step of 50 m/s. Dotted lines specify resonant orbits. The solution to

the moon tour is overlaid on the Tisserand plot. . . . . . . . . . . . . . . . . . . . . . . . . A.8

A.8 Complete moon tour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.9

A.9 Moon Tour: Titan Phase. The X’s mark the locations of the DSM of each VILT. . . . . . . A.9

A.10 Moon Tour: Rhea Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.10

A.11 Moon Tour: Dione Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.10

A.12 Moon Tour: Tethys Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.11

A.13 Moon Tour: Enceladus Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.11

xviii



A.14 Typical capture geometry at Saturn. The orbit comes from above and leaves below the

ring plane. Green: Arrival Hyperbola. Blue: Post-capture ellipse. Gaps are present

where rings change color. The blue x in the arrival hyperbola marks the spot where the

spacecraft crosses the ring plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.12

B.1 Projection of trajectory 2 in the ecliptic plane . . . . . . . . . . . . . . . . . . . . . . . . . B.2

B.2 SOI, looking down on the planet’s north pole. . . . . . . . . . . . . . . . . . . . . . . . . . B.3

xix



xx



Nomenclature

Physics Constants

AU Astronomical Unit. 149, 597, 870, 700m

G Universal Gravitational Constant. 6.67408× 10−11m3kg−1s−2

Greek Symbols

α Pump angle. [rad]

β Plane-changle angle during a 3D gravity-assist. [rad]

∆V Variation in velocity. [rad]

δ Gravity-assist turn angle. [rad]

δ∞ Declination of the arrival asymptote measured in the planet-centered reference frame. [rad]

δmax Maximum turn angle due to minimum flyby height constraint. [rad]

η Parameter that describes the position of the DSM along an arc. [nd]

µ Standard gravitational parameter. [m3/s2]

φ Objective function.

θ True anomaly (angle from periapsis). [rad]

θ∞ True anomaly of the hyperbolic asymptote. [rad]

θB B-Plane angle. [rad]

Roman Symbols

a Orbital semi-major axis. [m]

asc Non-dimensional spacecraft orbit semi-major axis. [nd]

b B-plane vector. [m]

b Impact parameter. [m]

C3 Launch energy. [m2/s2]

xxi



CTiss Tisserand’s Invariant. [nd]

CR Crossover parameter of the Differential Evolution algorithm. [nd]

D Optimisation problem dimension. [nd]

E Eccentric anomaly. [rad]

e Orbital eccentricity. [nd]

F Mutation parameter of the Differential Evolution algorithm. [nd]
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Chapter 1

Introduction

Ocean worlds — celestial bodies that may harbour liquid oceans and lakes — are top candidates to

satisfy one of humanity’s greatest quests: to find extraterrestrial life in the vast emptiness of space. Many

of these candidates exist in our own Solar System and several mission concepts are being designed to

acquire scientific data to answer questions about the formation of these worlds and their astrobiological

potential.

The objective of this work is to design an optimised trajectory with the final goal of inserting a satellite

in orbit around one of those potential candidates — Enceladus — carrying the largest possible payload.

This icy moon orbits Saturn, a harsh environment, where multiple-body gravitational effects dominate

and particle rings must be avoided to mitigate damage to spacecraft.

1.1 Elements of Interplanetary Trajectories

Before dwelling into the world of spacecraft trajectory design, let’s start by establishing a few key con-

cepts that will be frequently mentioned in this work.

Interplanetary trajectories can be defined as the orbital path that a spacecraft follows between an ini-

tial and a final celestial body, in a certain “time of flight”. The path may be divided into several segments,

referred to here as arcs or legs, depending on the necessity to include additional manoeuvres between

the start and end bodies. These celestial bodies are moving relative to each other and everything else,

unlike what happens when plotting paths between cities on Earth, adding complexity. The determination

of such trajectories is strongly dependent on the type of propulsion employed by the spacecraft:

• Chemical Propulsion — often referred to as “Impulsive”. An impulsive trajectory manoeuvre

is modelled as an instantaneous change in the spacecraft’s velocity vector. This can be done

because the burn time required to obtain the necessary ∆V (term that refers to the magnitude

of the velocity change) is considerably lower than the time of flight of the respective trajectory

leg [1]. Generally, the trajectory can be obtained through classical orbital mechanics methods

(e.g. Lambert solvers).

• Electric Propulsion — often referred to as “Finite Thrust” or “Low-Thrust”. The propulsion is

modelled as the application of a small and continuous thrust force on the spacecraft, usually pro-

1



vided by ion, plasma thrusters or solar sails which use the solar wind’s momentum to propel the

spacecraft. To obtain the trajectory, numerical integration of the forces acting on the spacecraft is

required, resulting in a procedure that is more complex to implement and compute than the impul-

sive case. Optimisation of this type of trajectories is more complex than in the impulsive case due

to the larger number of optimisation variables in the problem and lack of exact solutions.

Furthermore, the trajectory can be of the direct type, when the spacecraft goes from the start body

to the final body directly, or of the indirect type, when the spacecraft takes advantage of the angular

momentum of other celestial bodies in order to speed up or slow down on the way to the final body.

The latter manoeuvre is described as a Gravity Assist (GA) Manoeuvre or, more commonly, a flyby, and

provides a change in the direction and magnitude of the velocity vector [1]. A set of bodies on the way

to a final target will be referred to as a flight sequence or flight path. Additionally, due to the movement

of the celestial bodies, in order to align the spacecraft to pass by the next planet in the sequence,

another type of manoeuvre may be required — a Deep Space Manoeuvre (DSM). This manoeuvre is

characterised by an impulse somewhere along the leg that links two bodies in a sequence.

By combining several celestial bodies in sets of Gravity Assists (GAs) and Deep Space Manoeuvres

(DSMs), it may be possible to achieve savings in mission time or fuel mass — thus enabling higher

payload capability — as the GAs are effectively providing “free” ∆V . This introduces computational

complexity when determining the interplanetary trajectory, as using GAs vastly increases the number

of possible combinations of travel paths that lead from body A to body B. If this is added to the diverse

launch date possibilities, then exhaustively analysing all the paths becomes computationally demanding

and unfeasible, from a practical perspective, due to high computation times.

Spacecraft trajectory optimisation allows the designer to obtain a globally optimum, or near optimum,

solution for the problem in feasible time by using advanced optimisation algorithms to avoid analysing

the entire search space (the space of feasible trajectories) [2].

Finally, if the goal is to be captured by the body at the end of an interplanetary mission, an Orbit

Insertion Manoeuvre must be performed. This manoeuvre adjusts the velocity of the spacecraft so that

it can be captured in the gravitational well of the destination body. Orbit insertion greatly depends on the

spacecraft’s hyperbolic excess velocity (V∞), given by the velocity of the spacecraft relative to the target

body.

1.2 Missions to Ocean Worlds

Besides Earth, there are now other objects in our own cosmic backyard — the solar system — that

are thought to have oceans, some dynamic and others not, mostly located around the giant planets —

Jupiter, Saturn and Neptune. The known objects vary in location and range and harbour two of the main

ingredients for known life to thrive — liquid water and heat sources.

The two most promising ocean worlds, with strong evidences of dynamic water oceans and hy-

drothermal activity, are Jupiter’s moon Europa [3] and Saturn’s moon Enceladus [4]. These are the

primary candidates for current mission concepts, as seen in the upcoming sections where we review
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some past and foreseen missions to ocean worlds.

Ceres

Ceres is a dwarf planet and the largest object located in the asteroid belt, beyond Mars. While Ceres is

thought to have no geological activity, there is evidence of a sub-surface ocean [5].

The DAWN [6] mission, launched in 2007 by the National Aeronautics and Space Administration

(NASA), is currently in orbit of Ceres. The spacecraft is entirely propelled by a solar-powered electric

thruster and was the first spacecraft to orbit two different extraterrestrial bodies, Ceres and Vesta [6].

Jovian Moons

Three moons of Jupiter are thought to have liquid water bodies: Ganymede, Callisto and Europa [3, 7,

8, 9]. The largest of the moons, Ganymede, is theorised to have a salty water ocean with more water

than Earth and benefits from geothermal activity that is caused by tidal forces [8]. These forces are the

result of a slightly elliptical orbit in which gravity acts by stretching and compressing the moon, heating

it. Due to the small eccentricity of its orbit, Callisto is not noticeably affected by tidal forces but is also

thought to have some sort of sub-surface water ocean due to salt and water ice in its composition [7].

Europa is the most promising world of the set, with cryogeysers — jets made up of water vapour, ice

crystals, carbon dioxide and methane — having been spotted erupting from its surface by the Hubble

Space Telescope [10]. This leads to the theory that Europa might have a dynamic sub-surface ocean,

with a high potential for life.

Europa and Ganymede are main targets for space missions currently being designed. NASA’s Eu-

ropa Multi-Flyby Mission (commonly known as “Europa Clipper”) [11] is due to launch in the 2020’s and

ESA’s Jupiter Icy Moon Explorer (JUICE) [12] will be the first mission to orbit an extraterrestrial moon

(Ganymede) later that decade. Both spacecraft are chemically propelled platforms.

JUICE is a mission of special interest as it presents many similarities with the one being proposed

in this work: multiple planetary flybys, a Jupiter-centred moon tour and the final goal of inserting a

satellite into orbit of a moon within a giant planet’s sphere of influence. Several trajectory alternatives are

discussed in the JUICE’s Consolidated Report on Mission Analysis (CReMA) [12], all of which present

a combination of Gravity Assist Manoeuvres (GA) and Deep Space Manoeuvres (DSM) in the inner

solar system in order to reach Jupiter with the least possible fuel consumption. In the list of trajectory

alternatives proposed by the report, the most visited planets in the flight sequence are Earth and Venus,

with Mars being present only once.

JUICE’s CreMA [12] discusses the fact that a direct capture manoeuvre at Ganymede, with no flybys

of the other moons in Jupiter’s system (a so-called moon tour), would require a high ∆V : around 2.4

km/s for insertion into a 200 x 10000 km elliptic capture orbit, caused by a high V∞ with respect to the

moon. JUICE’s moon tour was designed with the objective of mininimising this V∞, which accomplished

a total reduction of 1.7 km/s in the orbit insertion manoeuvre’s ∆V but resulted in a complex trajectory

design problem.
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Cronian Moons

Saturn’s moons provide two interesting candidates with potential for life: Titan and Enceladus [9].

Titan is the second largest moon in the solar system and the only one that maintains a dense atmo-

sphere [13]. It is populated with lakes of liquid methane that may harbour extreme types of lifeforms [13].

It was explored in detail by the Cassini-Huygens mission [14, 15], which was launched in 1997 and is still

active. The Huygens lander made valuable in situ observations of the surface of Titan. Most of the infor-

mation available today about Saturn’s moon system comes from observations made by Cassini-Huygens

which has accomplished over 100 flybys of Titan since its arrival at the Saturn system in 2004 [14, 15].

Cassini is a chemically propelled spacecraft, electrically powered by a set of radioisotope thermoelectric

generators (RTGs).

Enceladus is one of the worlds in the solar system with the highest potential for life [4]. Its surface

is covered by water ice and there is evidence of thermal activity found by Cassini, when it observed

cryogeysers erupting out of the moon’s south pole. This leads to the theory that Enceladus may have

a dynamic sub-surface ocean, with a considerable astrobiological potential, making the moon a prime

candidate for astrobiology missions, with several concepts being designed [16].

Mission concepts to Saturn are abundant but haven’t seen important investments as Jupiter missions

have been given priority. The Journey to Enceladus and Titan (JET) mission (NASA) [17] (cancelled),

would have performed multiple flybys of Titan and Enceladus to study them closely. NASA’s Enceladus

Life Finder (ELF) [18] and Life Investigation for Enceladus (LiFE) [19] are both astrobiology missions

that ended up being scraped from the Discovery funding program. LiFE’s concept included an ambitious

return of samples from Enceladus’ cryogeysers back to Earth. The German Space Agency (DLR) is

also preparing for a mission to Enceladus. The Enceladus Explorer (EnEx) [20] concept includes a

subsurface, ice-drilling probe and an orbiter.

NASA has produced two other mission concepts that are important. The first was a study for an

Enceladus Orbiter, as a part of NASA’s 2010 Decadal Survey [21], which served as base for many

of the other concepts mentioned here. This study laid down important groundwork for a real mission,

such as the study of novel techniques for the design of moon tours. The second concept is the Titan

Saturn System Mission (TSSM) [22], an ambitious cooperation between NASA and European Space

Agency (ESA) that was born from a merging of two missions, TandEM [23] and Titan Explorer. TSSM

was initially planned to launch in the 2020’s, on NASA’s Space Launch System (SLS), but is currently

on standby. This mission would carry three robotic vehicles to Titan: an orbiter, an atmospheric probe

and a lander. In another innovative approach, TSSM would be propelled by two different systems—a

traditional chemical system for manoeuvring at Saturn and a solar-electric system for the inner solar

system. The use of solar-electric propulsion allows for a more flexible launch window, lower cruise time

to Saturn and for a higher payload capability at the expense of extra cost and system complexity [22].

Enceladus is considered a prime target for upcoming missions due to the valuable science to perform

in orbit of the icy moon [21], with interest growing within space agencies and scientists around the globe.

This is one of the main motivations behind the choice of that world as the destination of this work’s
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trajectory design.

Beyond Saturn

The outer regions of the solar system are not well explored. Main contributions to the knowledge of

Neptune, Uranus and the Kuiper Belt came from Pioneer 10 and 11, Voyagers 1 and 2 and the New

Horizons [24] spacecraft. Neptune’s moon Triton may have a sub-surface ocean of liquid nitrogen as

indicated by the presence of cryovolcanoes and geological activity spotted by the Voyager 2 probe on

its way out of the solar system, but not much more is known [9, 25].

New Horizons [24], a chemically propelled platform, flew by Pluto in 2015 and retrieved information

on the dwarf planet that is now being analysed. The probe observed that Pluto is covered in water ice

and the planet may be thermally active if it is suffering from tidal forces caused by its moon — Charon.

New Horizons will continue travelling into the Kuiper Belt until it runs out of power.

Summary

Table 1.1: Ocean Worlds—A summary

Type World Status Previous Missions

Planet Earth Only world known to harbour life. -

Dwarf Planet (Asteroid Belt) Ceres Evidence of a sub-surface ocean with
an unknown potential for life.

DAWN

[NASA]
-

Moon (Jupiter)

Ganymede May have trapped salty water ocean
with a low potential for life. Galileo [NASA]

Voyagers 1,2 [NASA]

Pioneers 10,11 [NASA]

Europa Clipper [NASA]

JUICE [ESA]Callisto May have a trapped water ocean with
a low potential for life.

Europa Strong evidence of a dynamic sub-
surface ocean that could support life.

Moon (Saturn)

Titan

May have a trapped ocean with a low
potential for known life. Has surface
lakes of hydrocarbon compounds that
could harbour novel forms of life.

Cassini - Huygens

[NASA/ESA]

Pioneer 11 [NASA]

Voyagers 1,2 [NASA]

JET [NASA]

TSSM [NASA/ESA]

LiFE [NASA]

ELF [NASA]

EnEx [DLR]

Enceladus Orbiter

[NASA]

Enceladus

Strong evidence of a dynamic sub-
surface water ocean, with cryogeysers
having been spotted erupting from the
surface of the moon, indicating the
presence of heat sources. Potential for
life: high.

Moon (Neptune) Triton
May have a liquid nitrogen ocean, as
suggested by cryovolcanic eruptions.
Unknown potential for life.

Voyager 2

[NASA]
-

Dwarf Planet Pluto May have a trapped ocean with an un-
known potential for life.

New Horizons

[NASA]
-

Missions to ocean worlds are being approached with great excitement by major space agencies

around the globe, due to their potential for ground-breaking science and innovative technological chal-

lenges.

Most missions to the outer solar system use a combination of flybys and DSMs to reach their desti-

nations, with Venus and Earth being the most used planets, in the inner system, to perform the gravity
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assist manoeuvres. If the final destination is a moon, complex sets of GAs, known as moon tours, are

common practice to reduce the spacecraft’s velocity with respect to the target object, lowering the mass

of fuel required to be captured by the moon.

1.3 Spacecraft Trajectory Optimisation

Spacecraft Trajectory Optimisation is defined by the determination of the trajectory of a spacecraft while

minimising, or maximising, a certain quantity of interest, within a set of constraints or boundaries [2]. Op-

timisation goals differ but, in the case of interplanetary travel, the most common objectives are to either

reduce mission time or maximise payload capability (by minimising fuel mass) [2]. Since these two objec-

tives are in opposition—trajectories that minimise flight time usually result in higher fuel consumptions—

the problem can also be defined as a trade-off, or pareto problem. This type of optimisation problems

are often subject to constraints, such as box ([minimum,maximum]) constraints on time of flight and

maximum allowed launch energy.

Exhaustive search through the phase space of possible travel paths is often unfeasible due to high

computational demands and long calculation times, prompting the need for global optimisation methods

that help find a globally optimal, or near-optimal, solution in the least time possible. Some of these

methods will be reviewed in Section 1.3.2.

Furthermore, these problems are characterised by a high degree of non-linearity and discontinuities

in the spacecraft’s state variables (as is the case with the instantaneous change in velocity in DSMs

and GAs) [2]. When more complex models are required to adequately describe the physical problem,

such as in the presence of time-dependent forces or orbital perturbations and multiple-body effects, the

optimisation problem increases in difficulty. Finite thrust missions also add the direction, magnitude and

thrust interval as additional optimisation variables [2].

1.3.1 GTOC: Global Trajectory Optimisation Competition

The Global Trajectory Optimisation Competition (GTOC) [26] is an important event where trajectory

designers from around the world attempt to tackle “nearly-impossible” trajectory optimisation problems,

with the goal of advancing the field with novel techniques and providing solutions for benchmarking

new algorithms. Every year the contest is organised by the winner of the previous edition, with the

first edition having been proposed by ESA’s Advanced Concepts Team. This competition is introduced

here because many of the methods discussed hereafter have been proposed in the framework of the

competition’s state-of-art problems. GTOC is currently in its 9th edition.

1.3.2 Methods

The spacecraft trajectory optimisation methods presented here will be divided in three main groups:

• Extensive Search;

• Deterministic Methods;
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• Stochastic Methods.

Extensive Search

Extensive search algorithms are “brute-force” methods to solve an optimisation problem. The algorithm

searches the entire space of possibilities, evaluating the objective function of each solution until it finds

the global minimum.

For the problem of global spacecraft trajectory optimisation, this is not feasible due to the very large

set of possible trajectories, resulting in prohibitive computational times.

Deterministic Methods

Deterministic methods are systematic procedures that take advantage of the mathematical description

of problems in order to find minima. The most common are direct and indirect methods.

Indirect methods are based on variational calculus and make use of Pontryagin’s Minimum Princi-

ple [27]. A two-point boundary value problem is formulated and solved, obtaining a solution of the control

variables with time. This method requires knowledge of the system’s dynamics equations and is very

sensitive to the quality of the initial guess [27], introducing a lack of flexibility in its use.

Direct methods involve the parametrisation of time-dependent control variables and search for local

minima by adjusting the state and control variables directly. Once the problem is formulated, it can

be solved using Non-Linear Programming [2]. Direct methods find approximate solutions of a problem

but are less sensitive to initial guesses and do not require an analytical differentiation of the constraint

equations making them easier to use and more robust [27]. Direct and indirect methods are suited

for local optimisation but can be applied to global optimisation problems, usually grouped with other

algorithms that narrow the search space.

Betts [27] provides an overview of some traditional methods employed in spacecraft trajectory opti-

misation, discussing the advantages and disadvantages of each, with special focus on gradient-based

methods. He argues that the most commonly used traditional methods are direct shooting, indirect mul-

tiple shooting and direct transcription. Direct shooting is widely employed and effective for launch vehicle

and orbit transfer applications, excelling at problems with small sets of parametrised variables [27]. Indi-

rect multiple shooting provides a boost in robustness from the simple shooting methods and allows for

computational parallellisation, result of the division of the problem into arcs [27]. Direct transcription is

robust, versatile and allows for parallellisation, making it preferable to be applied in global optimisation

problems [27].

While the traditional methods reviewed by Betts [27] are still somewhat employed today, research in

the field has provided engineers with novel algorithms and tools to perform trajectory optimisation.

A more recent review of global optimisation methods for trajectory design was performed by the

European Space Agency [28], presenting novel deterministic algorithms such as DIRECT, a determin-

istic global optimiser for bound constrained optimisation and Multilevel Coordinate Search (MCS), an

algorithm based on DIRECT that applies a flexible branching scheme to sub-partition the search space.
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MCS performed successfully in solving impulsive interplanetary transfers and Multi-Gravity Assist (MGA)

problems with a reduced number of gravity assists.

A direct transcription method for the optimisation of low-thrust trajectories with MGAs [29] has been

presented, in which the trajectory is divided into legs where the propulsion is modelled as a series of

small impulses. In comparison to other gradient-based methods, the “Sims-Flanagan” method was found

to be more robust and handle more gravity assists. This method was successfully improved on [30] to

include the full dynamics of low-thrust trajectories.

Casalino et al. [31] developed an indirect method for the optimisation of low-thrust trajectories, having

applied it to participate in the two first GTOCs (a multi-gravity assist asteroid impact and a multiple

asteroid rendezvous). The trajectory is divided into arcs that can be of three types — coast, thrust or

flyby — which are then joined to provide an initial trajectory guess for optimisation. The algorithm allows

for parallelisation but the downside is that sequencing has to be defined a priori. The indirect method is

not fit to solve the first GTOC problem due to the great number of flybys while being well suited for the

DAWN-type asteroid rendezvous mission, as it involves less ballistic and more thrust profiling, obtaining

by far the winning solution. This method offers a very high accuracy on the numerical solutions obtained.

Branch, Bound and Prune [32] methods have been employed to attack the 5th GTOC problem — a

low-thrust asteroid rendezvous mission. The algorithm first prunes the large search space by applying

constraints to the energy required to go from one asteroid to another, eliminating high energy transfers. It

then proceeds to use a traditional branch and bound method that systematically runs through the search

space of candidate trajectories. This method can be seen as a tree that starts with the initial celestial

object and each level is the next candidate in the flight sequence. The trajectory is locally optimised at

each level and the unfeasible branches of the tree are pruned, leading to a smaller search space. The

local optimisation is performed with an indirect method. This procedure achieved a third place in the 5th

edition of the competition.

Shape-based direct methods [33, 34] have been used to solve finite-thrust problems with gravity as-

sists by means of an exponential sinusoid shape approximation to obtain estimates for the trajectory,

performing a global search and then optimising candidates with the use of direct methods. The sinu-

soid approach appears to be robust and provides the user with trajectories that can be implemented in

practice.

Stochastic Methods

It is possible to distinguish Evolutionary Algorithms (EAs) from other optimisation methods for two distinc-

tive features [35] — they are population based and there is communication and exchange of information

between individuals in a population, through evolutionary operations such as mutation, crossover and

selection.

Additionally, there are other stochastic methods that rely on behavioural analysis [36], such as Par-

ticle Swarm Optimisation (PSO) and Ant Colony optimisation, which derive their strategies from the

behaviour of flocking birds and ant foraging by pheromone behaviour, respectively. Other, less used

methods, include Monte-Carlo search, Invasive Weed Optimisation (based on weed growth and repro-
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duction), Harmony Search, Gaussian adaptation (based on information theory), among several others.

EAs have various advantages over deterministic methods [36, 37]: they do not require an initial

guess, as the initial conditions are randomly generated, they are easy to implement and converge faster

to global optima, despite being computationally more demanding, and are overall better at avoiding local

minima. The downside to EAs lies with their random nature — these algorithms are stochastic and

therefore introduce a degree of non-systematic behaviour in the system with the addition of not having

a convergence criteria to ensure the optimality of the solutions obtained. Furthermore, these strategies

have difficulty in treating constraints [37], with penalty methods being applied to filter out unfeasible

trajectories [38].

The application of EAs is more efficient when the search space is smaller and the problems can

be represented by the least possible number of optimisation variables, therefore their application to

spacecraft trajectories leans more towards impulsive trajectories, with research in the finite-thrust field

expected to be stronger as electrical thrusters and solar sails become more advanced.

Betts [27] dismisses the usefulness of EAs due to their random, non-systematic, nature and main

applicability to problems with discrete variables. Nevertheless, significant subsequent research and

development has been put into evolutionary algorithms which are now being used to solve complicated

trajectory optimisation problems with great success such as the ones proposed by the GTOC.

ESA’s review [28] also investigates the usefulness of stochastic algorithms, specifically a Simple

Genetic Algorithm (SGA), Differential Evolution (DE), PSO and Multiple PSO. The report concludes

that DE performs better at solving MGA-DSM problems than every other deterministic and stochastic

algorithm investigated, with MPSO ranking second in MGA-DSM problems and first in MGA problems

without the inclusion of DSM’s. This work also concludes that even the best algorithms find difficulties in

optimising MGA-DSM trajectories efficiently and consistently. Therefore, the authors propose GASP [39]

— a Gravity Assist Search Space Pruning algorithm, with the objective of narrowing the search space

by removing unconvenient and unfeasible trajectories (such as those with a very high launch energy).

The implementation of GASP is determined to be a success in helping the algorithms in converging to

the global minimum.

Izzo and Yam [40] compare and apply three different evolutionary algorithms to obtain a final result

that improves significantly on the winning solution of GTOC’s 6th edition (which uses indirect meth-

ods [41] to solve a Jupiter moon tour). The procedures compared are: Differential Evolution with Self-

Adaptation (jDE), Adaptive Neighbourhood Simulated Annealing (SA-AN) and Covariance Matrix Adap-

tation Evolutionary Strategy (CMA-ES), in a new paradigm the authors codenamed asynchronous island

model. They conclude that jDE performs better for this problem because of its good interacting with the

island model and its low run time. A branch and prune scheme is then successfully implemented to

search for the best trajectory sequences in the moon tour.

Hemoglop [36, 42] is a cooperative evolutionary strategy that joins three EAs — DE, SGA and PSO

— to achieve a better efficiency and convergence than the algorithms would have when separated. The

cooperative algorithm was tested on MGA and rendezvous problems, with results showing improvement

over the independent algorithms. The benchmarks also pointed Differential Evolution as the strongest
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independent algorithm of the three tested. Following up, Hemoglop was merged with an indirect method

developed by Casalino et al. [31], with the cooperative strategy providing initial estimates for the local op-

timiser. The results indicate that the algorithm converges to the global minimum and the new procedure

diminishes the designer experience requirement of using indirect optimisers for complex problems.

Vasile and Pascale [43] introduced a hybrid evolutionary search algorithm. A Simple Genetic Al-

gorithm is used to explore the solution space and then a branching scheme partitions the domain into

subdomains, pruning sub-optimal branches. This approach worked well with Cassini and Rosetta-type

problems, avoiding local minima.

In a similar approach [44], a hybrid SGA + Non-Linear Programming (NLP) algorithm is compared

with a Branch + SGA algorithm, finding that SGA+NLP wields the best results when solving a multi-

asteroid interception mission, due to the search benefitting from SGA’s capability to be attracted to the

basin of the global minimum, avoiding local minima in the process. In a second revision of this work, Wall

and Conway [45] attack the multi-asteroid interception problem with focus on genetic algorithms. It finds

that SGA+SGA schemes are more time efficient than the ones previously studied [44], yielding near-

optimal results.

Vasile, Minisci and Locatelli [46] tested some methods for Evolutionary Algorithms in Spacecraft

Trajectory Design, setting a baseline strategy for testing different algorithms and proceeding to compare

several of them — specifically the Simple Genetic Algorithm (SGA), Monotonic Basin Hopping (MBH),

Differential Evolution (DE), Particle Swarm optimisation (PSO) and Multi-Start (MS) — in various types

of global optimisation problems. It is found that the method that works better for MGA problems is MBH.

MBH is a meta-algorithm that samples the search space at random and then optimises each sub-domain

locally by using a local optimiser such as Sequential Least Squares Programming (SLSQP).

IDEA [47] (an Inflationary Differential Evolution Algorithm) develops on the results from the bench-

mark of EAs [46], coupling DE with MBH and introducing a smart restart procedure that improves per-

formance by reducing the probability of stagnation in a local basin. This procedure was tested against

Cassini and Rosetta-type problems (MGA with DSMs and without), improving on the robustness and

overall performance of the standard DE algorithm by converging repeatedly to objective function values

close to the best known solutions.

Building on the same benchmark [46], a two-phase Multi-Start / MBH algorithm was designed [48].

This strategy inserts a MBH middle phase between Multi-Start (global search) and the local optimiser

(local search) to refine the search space before proceeding with local optimisation, improving the al-

gorithm’s efficiency. The local optimiser used is SNOPT, a SLSQP implementation. The results of this

strategy improved on the Cassini, Rosetta and Messenger solutions present in ESA’s Global Trajectory

Optimisation Problem (GTOP) database, a repository of the best known solutions for trajectory optimi-

sation problems.

EAs are also capable of defining the sequence of bodies to visit as optimisation variables. An ex-

ample of this is the variable chromosome length evolutionary algorithm [49], which is an adaptation of

a Simple GA that allows for the simultaneous existence of trajectories with different sequences in the

same population. To ease the computational demands, a first optimal set of trajectories is calculated
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in a wide search space with no DSMs allowed, which are then added in a second run of the algorithm

when the sequence of events is already fixed. This strategy revealed good results when tested with

MGA problems from GTOC competitions.

Evolutionary Algorithms have also found some applications in low-thrust trajectory optimisation. Ge-

netic algorithms can be coupled with indirect methods [50], evolutionary neuro-control methods [51] have

been applied to optimise simple trajectories in solar sail spacecraft (without gravity assists) and, more

recently, genetic algorithms with shape-based approaches [52] have been successfully implemented to

solve finite-thrust MGA problems.

General Considerations

Stochastic methods and variants are being primarily used for solving complex impulsive trajectory prob-

lems, involving multiple flybys and deep space manoeuvres, due to their ability to avoid local minima and

their ease of use and implementation. Differential Evolution displays the highest robustness of all the

standard algorithms with variants, such as IDEA [47] and cooperative algorithms [42], improving on its

performance. Strategies based on Monotonic Basin Hopping are also showing very promising results.

Additional techniques, such as search space pruning also contribute to a better quality of the optimi-

sation of MGA-DSM problems.

Deterministic methods are very capable of handling impulsive problems despite being less apt than

EAs at avoiding local minima. Furthermore, deterministic methods have found a strong niche in low-

thrust spacecraft trajectory optimisation, due to the high amount of optimisation variables involved and

systematic nature of the methods, currently being preferred over evolutionary alternatives in this field.

Indirect methods are very robust, as seen from the winning solutions of various GTOC editions, but

require significant trajectory design experience and suffer from a lack of flexibility on implementation,

making them harder to use for general purpose optimisation tools, with direct methods such as Direct

Transcription with Shape Based methods, which allow for parallelisation, being preferred.
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Chapter 2

A Mission to Enceladus

The objective of this mission’s trajectory design is to deliver a space probe to Enceladus’ orbit with the

highest possible payload capability, in useful time, thus maximising the potential for collecting scientific

data. Maximisation of the payload capability of the probe can be achieved through the minimisation of

the spacecraft’s fuel consumption, as this allows for an increase of the dry mass for the same allowable

launch mass (equation 2.1), effectively improving the maximum mass of scientific instruments that the

probe can carry to its destination,

Launch Mass = Dry Mass + Fuel Mass. (2.1)

Furthermore, the launch mass is constrained by the performance of each specific launcher, that is fixed

by the departure geometry, and must also be taken into account when maximising dry mass. Launcher

performance will be approached in greater detail later in Section 3.4.

Fuel consumption can be directly related to the mission’s ∆V budget (the sum of all the ∆V s),

through the application of Tsiolkovsky’s Rocket Equation (2.2) [1] to each manoeuvre,

∆V = Ispg0 ln
mi

mf
, (2.2)

where Isp is the specific impulse of the propulsion system, g0 is the standard gravity parameter, mi is the

spacecraft’s mass before the manoeuvre and mf is the mass after the manoeuvre has been completed.

If there are no changes to the structural mass or payload of the spacecraft, then the difference between

the initial and final mass is the spacecraft’s fuel consumption for a given orbital manoeuvre. This indi-

cates that minimising fuel consumption for a given spacecraft and trajectory is equivalent to minimising

∆V .

Provided that the mission can be divided into n phases, then the objective can be translated as

finding a trajectory, or set of trajectories, that departs from Earth and reaches Enceladus within a certain

useful time frame, while minimising the sum of the ∆V of all phases.

This chapter will provide an overview of the systems, procedures and other considerations involved

in the design of the mission to Enceladus.
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2.1 Mission Overview

The mission to Enceladus is divided in three main phases, each describing a different problem to be

solved, as seen in Table 2.1.

Table 2.1: Mission Phases and their high-level objectives

i Phase Objective

1 Interplanetary Transfer to Saturn Define Launch Geometry and trajectory that minimises interplanetary ∆V and
optimises Saturn Orbit Insertion.

2 Saturn Orbit Insertion Define and optimise capture geometry (orbit insertion and periapsis raising
manoeuvres).

3 Saturn Moon Tour Minimise Saturn-centred and Enceladus Orbit Insertion ∆V ’s.

The need for a moon tour arises from the necessity of lowering the cost of orbit insertion at Ence-

ladus. A direct Hohmann transfer between Titan and the icy moon would result in an Enceladus Orbit

Insertion ∆V of approximately 3.53 km/s (for a 200 km circular orbit), a prohibitive cost. For compari-

son purposes, TSSM’s interplanetary cruise trajectory has a cost of around 2.75 km/s [22]. The moon

tour works by gradually decreasing the periapsis of the spacecraft’s orbit after insertion to the orbit of

Enceladus. This is accomplished by stringing together transfers of the intermediate moons (Titan to

Rhea, Rhea to Dione, Dione to Tethys and Tethys to Enceladus) [53]. The orbital insertion manoeuvre is

proportional to the spacecraft’s velocity with respect to Enceladus at the time of encounter. The variation

in periapsis of the spacecraft’s orbit is accompanied by a reduction of this relative velocity.

The overall design starts with fixing a suitable time frame for the mission to take place by setting

bounds on the cruise duration and finding a realistic launch window (for specifics, see Chapter 5).

As the spacecraft launches from Earth, the mission starts. The first phase is defined by an interplan-

etary cruise with multiple gravity assists, in which the objective is to reach Saturn with the lowest ∆V

possible, within the allotted time frame for the cruise’s duration. At the end of this phase, the probe will

perform the Saturn Orbit Insertion (SOI) manoeuvre so that it can be captured into a highly elliptic orbit

around Saturn. Following the SOI, a Periapsis Raising Manoeuvre (PRM) is performed to move from

the post-capture elliptic orbit into an orbit where an encounter with Titan will occur — then, the Moon

Tour begins. Titan is chosen to begin the moon tour because it is the largest moon in Saturn’s system

(see Section 2.3) and, consequently, allows a higher degree of design options when performing gravity

assists.

2.1.1 Mission Design Approach

The mission to Enceladus will be divided into several components that will be approached in greater

detail throughout this work.

From a global optimisation perspective, it would be best to optimise the entire mission at once but

that is computationally demanding and complicated to implement. As a consequence, each phase of

the mission will be treated independently, with results from the previous phase being fed into the next, as

described in figure 2.1, which specifies how the different components of the design are related to each
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other and how the information is exchanged between them.

Figure 2.1: Interconnections between the mission design’s various components.

As stated in Section 2.1, the design starts with the user constraining the problem by defining a

suitable time frame for the mission to take place. Additionally, the user also provides a maximum launch

energy (associated with the launch hyperbolic excess velocity) and the sequence of planets that the

spacecraft will visit during its path to Saturn. This is then placed into a global optimiser, described in

detail in Section 5.2, that will return optimal trajectories within the constraints that were set by the user.

As a result of the global optimiser, the interplanetary trajectory is totally defined, including the ∆V ,

the launch conditions at Earth and the arrival conditions at Saturn. From here, it is possible to compute

the geometry of the spacecraft’s capture in an orbit around Saturn by using a B-Plane approach (see

Section 5.3). At the apoapsis of the newly determined post-capture orbit, a Periapsis Raising Manoeuvre

(PRM) is required to have the spacecraft meet Titan, starting the Moon Tour phase. This manoeuvre

is locally optimised (see Section 5.3.2) with the objective of reducing the cost associated with it while

maintaining a resulting trajectory that is suitable to begin the moon tour with.

The relevant information and user input is then transferred to the block that computes the moon tour

(see Chapter 6). Here, a moon tour based on Tisserand graphics and a V∞-leveraging technique (VILT),

is computed, obtaining an approximate moon tour trajectory and an estimate of the ∆V required to

perform it.

The mission ends with a capture manoeuvre around Enceladus that mirrors the procedure performed

in the Saturn orbit insertion. The final orbit is described in Section 6.3.

This procedure is, ideally, iterative because a change in the interplanetary phase, such as arrival

date, could have a significant impact on the quality of the solution found for the following phases.

2.2 The Solar System

The Solar System is the theatre for the mission’s first phase. Table 2.2 displays the relevant planetary

body information [54] that is used in this work.
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Table 2.2: Planetary body information. The radii used are mean volumetric radii.

Body Orbital Radius (AU) µ (km3/s2) Period (Years) Orbital Inclination (o) Radius (km) Safe Flyby Radius

Sun — 1.33E+11 — — — —
Venus 0.723 324860 0.615 3.39 6051.8 1.05 RV enus

Earth 1 398600 1 0 6371 1.03 REarth

Mars 1.524 42828 1.881 1.85 3389.5 1.05 RMars

Jupiter 5.204 1.27E+08 11.8 1.3 69911 5 RJupiter

Saturn 9.58 3.79E+07 29.4 2.49 58232 2.5 RSaturn

Note that Jupiter has a higher safe flyby radius due to the presence of hazardous radiation (Jupiter’s

Van-Allen belts) and Saturn presents a higher safe flyby radius due to the presence of the rings. Fur-

thermore, the planets are all approximately in the same orbital plane, meaning that a 2D approach could

be applied to the problem, although this will not be the case in this work.

Also noteworthy is the fact that Mars’ low gravity doesn’t make it a very suitable planet to perform

gravity-assist manoeuvres in the solar system. Venus, Earth and Jupiter will be preferred for flybys.

While this would exclude an opportunistic Mars flyby, it also reduces the complexity of the problem.

2.3 The Saturn System

The Cronian system is comparable to the Solar System in the way that it has a central body (Saturn) and

multiple smaller bodies (moons) orbiting around it. Saturn has 62 known satellites [54] of which 5 are

of direct interest to the mission: Enceladus, Tethys, Dione, Rhea and Titan. In addition, the gas giant is

populated with a dynamic ring system that poses a danger to spacecraft that cross it so collisions must

be avoided whenever possible. Figure 2.2 displays a scaled image with important information about the

celestial bodies of interest in Saturn’s Moon System.

From Figure 2.2 it’s visible that the rings exhibit gaps through which the spacecraft can travel with

relative safety. Enceladus is located within the E ring, a diffuse structure mainly composed of faint

dust [55, 56] that doesn’t present a considerable risk to the safety of the probe — the Cassini spacecraft

has performed multiple safe flybys of Enceladus and other moons in the E ring. Rings A, B, C and F

are the densest of Saturn’s rings [55, 56] and should be avoided for navigation. Cassini crossed the ring

plane between the F and G rings, during its Saturn orbit insertion manoeuvre [15, 22].

The Cassini Division is a 4800 km-wide structure within the rings that is less dense than the rest and

is riddled with small gaps, the greater of which is the Huygens gap, about 400 km wide [55, 56].

As is the case with the Solar system, all the moons in Saturn’s system are approximately in the same

orbital plane, making it possible to use a 2D approach to design preliminary trajectories in this system.

The estimate of the safe flyby height is based on literature [22, 53, 57] and accounts for navigation

error margins, uncertainties in Titan’s atmospheric model and in the gravity models of the moons. As

other missions and studies improve on the existing knowledge of each body, these safety heights can

be adjusted — Cassini has safely performed flybys of Enceladus at 25 km [15] of altitude.
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Figure 2.2: Saturn System: Celestial body information

2.4 Spacecraft

The spacecraft’s function is to safely carry all the scientific instruments to Enceladus and then relay

the data back to Earth. This section will give the reader an overview of the common structure of an

interplanetary spacecraft, including typical mass, power systems, propulsion and others.

A typical spacecraft can be divided into the following components [58]:

• Structure: the structure where all the subsystems and instruments are positioned. Protects the

probe during launch and against space environment.

• Power: Subsystem responsible for storing and distributing energy in the spacecraft.

• Thermal: Subsystem responsible for keeping the spacecraft within operational temperature range.

• Attitude and Orbit Control: Subsystem responsible for pointing and stabilizing the spacecraft.

• Propulsion: Spacecraft engines and fuel storage.

• Electronics and Communications: On-board computers, data transmission and sensors.

• Payload: Scientific instruments or other type of payload.
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Table 2.3 shows data on some missions (or mission concepts) to the outer planets.

Table 2.3: Interplanetary spacecraft data.

Mission Mission Duration Dry Mass (kg) Wet Mass (kg) Fuel to Mass Ratio (%) Power Propulsion

Cassini-Huygens [15] 20 years 2445 5712 57.2 Nuclear Chemical
TSSM [22] 14 years 3127 6203 49.6 Solar Electric +

Nuclear
Ion + Chemical

Decadal Survey [21] 12.5 years 1150.4 3560.2 67.7 Nuclear Chemical
JUICE [12] 11 years 1800 4362 58.7 Solar Electric Chemical

Europa Clipper [11] 9 years 1349 2354 42.7 Solar Electric Chemical
Juno [59] 9 years 1593 3625 56.1 Solar Electric Chemical

New Horizons [60] 9.5 years 401 478 16.1 Nuclear Chemical
Galileo [61] 22 years 2719 5712 52.4 Nuclear Chemical

From Table 2.3 it is possible to verify that, while typical spacecraft masses vary according to mission

specifications, the fuel to wet mass ratio is frequently around 40% to 60%, hence the importance of

minimising fuel consumption: payload and spacecraft can then occupy a larger fraction of the launch

mass. TSSM, for example, has a higher dry mass than Cassini and a lower fuel to launch mass ratio due

to its use of low-thrust propulsion for the interplanetary trajectory, resulting in a lower fuel consumption

thanks to the higher efficiency of this propulsive method [62].

Spacecraft that are designed to reach the outer solar system (beyond Jupiter) are electrically pow-

ered by nuclear devices such as Radioisotope Thermoelectric Generators (RTGs) (Cassini and New

Horizons) [15, 60] or modern Advanced Stirling Radioisotope Generators (ASRGs) (TSSM) [22]. AS-

RGs have a higher recommended use time (17 years) than RTGs and provide the same power at a

fraction of the plutonium required. Beyond Jupiter, the flux of solar energy is so low that employing solar

electric power at that distance, with current technology, would result in large, heavy and hard to pack

solar panels. The Juno spacecraft, which arrived recently at Jupiter, is at the limit of current technology

and employs two 9m x 2.65m solar arrays [59]. Each array had to be folded four times to fit into the

launcher, increasing the risk for malfunctions during deployment. All of this indicates that the use of

solar electric power at Saturn would be highly inconvenient, with nuclear power being preferred for a

mission to Enceladus, despite the obvious caveats associated with handling nuclear material.

2.4.1 Propulsion

The choice of the propulsion system is a critical step of the mission’s design as it will affect the entire

structure of the spacecraft and of the subsystems. More importantly, as far as this work is concerned, it

affects the trajectory characteristics and thus the choice of the trajectory design methodology.

Rocket propulsion (chemical) can be modelled as an instantaneous change in velocity (∆V ). The

trajectory before and after the “impulsive” manoeuvre is known and can be determined, in a relatively

simple manner, by using Kepler’s equations for conics (elliptic, parabolic and hyperbolic orbits). As for

low-thrust propulsion, it is modelled as the application of a finite force acting on the spacecraft, during a

certain period of time. This requires the trajectory to be numerically integrated to find the position of the

spacecraft along its path, resulting in a more complex procedure. Additionally, low-thrust trajectories are

inherently multi-revolution (more than one revolution around the central body) whereas impulsive trajec-

tories are usually single revolution, further complicating the design methodology. Figure 2.3 displays a
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Table 2.4: Comparison of propulsion systems [22, 62, 63]

System Low-Thrust Impulsive

Advantages
Greater launch window flexibility Lower system cost and complexity

Shorter time of flight Lower trajectory design complexity
Very high fuel efficiency Lower Energetic Consumption

typical low-thrust trajectory and a typical impulsive trajectory (with deep space manoeuvres).

Figure 2.3: Comparison of a low-thrust path (left) and an impulsive path (right).

Each propulsion system has its own advantages, as shown in Table 2.4 [22, 63]. Thanks to their

multi-revolution nature, low-thrust trajectories allow a greater launch window flexibility as it is easier to

adjust the trajectory to account for launch delays. On the contrary, impulsive trajectories require mid-

trajectory correction manoeuvres to correct these errors, which may result in a higher cost. Finite thrust

trajectories also boast a generally shorter time of flight due to their ability to continuously and efficiently

accelerate the spacecraft to higher velocities than their impulsive counterparts [22, 62].

Additionally, electric and plasma thrusters have a very high specific impulse (e.g. 4190 seconds for

TSSM’s NexT thruster [22]) when compared to traditional chemical engines (e.g. 312 s for Juno’s [59]

Leros-1b hydrazine thruster). Remembering equation 2.2, this means that the required fuel consump-

tion, in terms of mass, is lower for the same requested ∆V .

Electric propulsion, however, has a critical downside. Because ion and plasma thrusters are mainly

based on the principle of accelerating particles to high speeds, this means that the energetic consump-

tion of these thrusters is somewhat higher than that of conventional chemical engines [62]. As seen in

Section 2.4, a spacecraft on a mission to the outer planets, with the current technology level, will most

likely employ nuclear power rather than solar electric power. Current RTGs and ASRGs have a lower

power output that is not capable of powering both the spacecraft’s subsystems and its thrusters [62],

unless multiple are used which would drive the launch mass and risk factors up.

Due to the electrical considerations, chemical propulsion will be used for the entirety of this mission

but the alternative of using a hybrid system — low thrust for the interplanetary cruise and impulsive for

Saturn — remains open to be studied in a future work.

Besides lower power consumption, chemical propulsion systems are simpler and less complex and

are backed by many years of development and proven use in space missions, lowering the risk associ-

ated with their use. The use of this propulsion type is also accompanied by an easier trajectory design

methodology.
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Chapter 3

Mission Design Models

The mission models are the building blocks that were implemented throughout this work, such as orbital

mechanics, ephemerides, B-Plane geometry for orbit capture around Saturn and Enceladus, Tisserand

Plots and a in-depth description of the implemented V∞-Leveraging Technique.

It is important to state beforehand that all the models that were used in this work are valid under a

patched conics approximation [1], meaning that the spacecraft is only under the influence of the gravi-

tational pull of one dominant body at each instant and celestial bodies are modelled as point-masses,

with no sphere of influence. As a consequence of this, any change in the path of the spacecraft (such

as a flyby or deep space manoeuvre) is instantaneous and occurs at one point in space. This technique

has been traditionally used with success in real-life preliminary spacecraft trajectory design (such as

the previously mentioned GTOC) due to the, typically, large distances between bodies [1, 37]. All other

perturbations such as solar pressure, oblateness effects and n-body perturbations were not considered.

The trajectories obtained via the patched conics method can then be inserted, as initial guesses, into

full physics simulators, that account for all those external effects, to be numerically corrected to find the

real trajectory of the spacecraft.

3.1 Rendezvous: Lambert’s Problem

Lambert’s problem, named after the physicist who established the theory, is defined as a boundary-

value problem: given a start position, an end position and a time of flight, how can two points in space

be connected? [63]

Lambert’s theorem, in its original form, states that the time of flight (t2 − t1) that the spacecraft takes

to travel an orbit from P1 to P2 is a function of the orbit’s semi-major axis (a), of the sum r1 + r2 and of

the length c which completes a triangle with r1 and r2 as sides [63]. The solution of this boundary-value

problem is a set of velocities, fully defining the transfer orbit that connects the two points. All the relevant

equations and procedures are very well described in literature [63, 64] and will not be presented here as

they are not relevant to this work.

These solvers are especially useful to define transfers between planets and satellite orbits, within a

two-body approach, and allow the designer to build useful preliminary design tools such as the “pork-

chop” diagrams [63], that can be used to quickly analyse the space of direct orbits that connect two
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points in space. Due to the elevated interest in this type of situations, many computational formulations

have been created to solve the rendezvous problem [65, 66, 67]. Izzo’s formulation [65], an adaptation

of Gooding’s [66], is the one that corresponds to the algorithm that is already implemented and validated

in the toolbox being used, PyKEP (see Section 4.1).

Izzo’s implementation accepts hyperbolic, parabolic and elliptic orbits as solutions to Lambert’s prob-

lem and also allows multi-revolution lambert problems to be solved (obtaining solutions with more than

one complete revolution around the central body). Another advantage is that it is shown to be com-

putationally less demanding than previous procedures [65], an important feature since Lambert solver

routines are frequently called for to calculate orbits.

The Lambert solver implemented in PyKEP receives r1, r2, time of flight and maximum number of

revolutions as input and then outputs the velocity vector of the calculated transfer orbit at the initial and

final points, for each multi-revolution solution found.

3.2 Gravity Assists and Deep Space Manoeuvres

Gravity assist manoeuvres (GAs), commonly known as flybys, and Deep Space Manoeuvres (DSMs) are

two of the most commonly used techniques in spacecraft trajectory design [1, 63]. Both concepts have

already been briefly explained in section 1.1 and are well documented in astrodynamics literature [1,

63, 64, 68]. A combination of these two manoeuvres can be seen in figure 3.1, which shows a typical

procedure in interplanetary missions: the ∆V - Earth Gravity Assist (∆V -EGA).

Figure 3.1: ∆V -EGA: an example of Flyby and DSM manoeuvres. To the left is a close-up of the flyby
plane, in the planet’s reference frame. To the right is the interplanetary trajectory with three key points.
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In the ∆V -EGA example, the spacecraft is launched from Earth and the objective is to have it visit

Earth again for a gravity-assist manoeuvre that will set the probe on a course to another planet. In

this simple situation, a DSM is employed somewhere along the orbit with the purpose of correcting the

trajectory so that the spacecraft will encounter Earth for a flyby at point 3. The DSM’s usefulness here

is that of a targeting manoeuvre and its magnitude and direction are obtained through the solution of a

Lambert problem. The position of the DSM along the arc is an optimisable parameter.

At point 3, the spacecraft reaches Earth and performs a flyby. A gravity-assist operates through a

transfer of momentum between the planet and the spacecraft, meaning that the trajectory of the space-

craft can be changed without using fuel, making it one of the most useful procedures in interplanetary

mission design. This manoeuvre can be used for [64]:

• Orbit Pumping: Changing the orbit’s energy relatively to the central body by changing the orbit’s

characteristics within the orbital plane (semi-major axis and eccentricity).

• Orbit Cranking: Changing the plane of the orbit (“free” inclination changes and other plane rota-

tions). Only present if a 3D geometry is considered.

In the planet’s reference frame, the gravity-assist orbit is hyperbolic. The characteristics of this orbit

can be set by the user through the flyby periapsis radius, rfb, which is an user-given parameter [63],

e = 1− rfb
a

= 1 +
rfbV

2
∞

µPlanet
, (3.1)

where |V∞1| = |V∞2| = V∞ is the hyperbolic excess velocity of the spacecraft with respect to the

gravity-assist body at the time of encounter. This quantity remains constant during an unpowered flyby.

Note that, within safety considerations, any periapsis radius can be targeted through very small

changes in the trajectory when the spacecraft is far from the gravity-assist body. These small changes

are referred to as Trajectory Correction Manoeuvres (TCMs). Furthermore, using the TCMs, it is possible

to target a flyby to occur behind or in front of the planet, respectively increasing or reducing the energy

of the orbit with respect to the central body [1].

The closest point of approach between the undeflected incoming hyperbola and the planet is defined

as the impact parameter, b [63],

b = rfb

√
1 +

2µplanet

rfbV 2
∞

. (3.2)

The rotation of the velocity vector during a flyby is given by the turn angle,

δ = 2 sin−1
(

µPlanet

µPlanet + rfbV 2
∞

)
. (3.3)

Once the outgoing velocity is found, the resulting orbit around the primary body is fully defined as

the orbital elements can be determined through the position and velocity vectors [64] or, alternatively,

through the flight path angles [63].
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3.3 B-Plane Geometry

The B-plane can be thought of as a target attached to a celestial body. Targeting different positions

in this plane, through the small TCMs mentioned before, will yield different outgoing trajectories as the

flyby’s orbital plane is changed. The study of B-plane physics is of particular interest for orbit capture

operations and 3D gravity assist manoeuvres.

The B-plane is defined, in a planet-centred reference frame, by its R̂, T̂ and Ŝ axes, as pictured in

figure 3.2 [69].

Figure 3.2: B-plane definition. Image taken from Hintz [69].

• Ŝ: a unit vector that is centred on the planet and is parallel to the incoming hyperbolic excess

velocity.

• T̂ : a unit vector that is parallel to a reference plane and perpendicular to Ŝ. For the purposes of

this work, the reference plane considered was the equatorial plane of the target planet, defined in

the J2000 reference frame [70].

• R̂: a unit vector that is the result of the Ŝ × T̂ cross-product, completing the orthogonal reference

frame.

Given the B-plane angle, θB , the B-plane vector, B, can be decomposed into two components,

B = BT T̂ +BRR̂ = b cos θBT̂ + b sin θBR̂, (3.4)

where b is the impact parameter defined in equation 3.2. Note that the rfb in equation 3.2 is user-

defined. The B-plane angle can be determined from the orbital inclination of the hyperbola, i, and the

declination of the incoming asymptote, δ∞, through [63]

θB = cos−1
(

cos i

cos δ∞

)
. (3.5)
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While a 360-degree range of θB angles is allowed, the achievable inclination is limited by the arrival

declination [63],

| sin i| ≥ | sin δ∞|. (3.6)

The arrival asymptote’s declination, δ∞ and right ascension, RA∞ are defined in the planet-centred

rotating reference frame, designated by the International Astronomical Union (IAU) [70].

To compute δ∞ and RA∞, the arrival asymptote needs to be determined first. This asymptote is

defined by the hyperbolic excess velocity vector, which is a result obtained from the interplanetary phase

of the mission. After the arrival asymptote vector is transformed from the J2000 reference frame to the

IAU reference frame, the declination and right ascension can be calculated as

δ∞ = sin−1
(
z∞,IAU

||V∞||

)
(3.7a)

and

RA∞ = cos−1
(

x∞,IAU

||V∞|| cos δ∞

)
, (3.7b)

where x∞,IAU , y∞,IAU and z∞,IAU are the IAU components of the arrival asymptote. Note: quadrant

fixing for right ascension is needed. If y∞,IAU ≤ 0 then RA′∞ = 2π −RA∞.

Having determined the B-Plane components required for the desired hyperbolic trajectory, it is possi-

ble to differentially correct the interplanetary trajectory, making use of the trajectory correction manoeu-

vres, until the spacecraft’s path passes through the desired point in the B-plane within a certain degree

of confidence. While the required B-Plane components will be calculated as a result of this work, the

trajectory correction manoeuvres are out of the scope of the preliminary design.

3.4 Launcher Performance

Launcher performance needs to be taken into account in the design of any space mission. The space-

craft mass that a launcher can deploy to an interplanetary departure orbit is dependent on the launch

energy (C3 = V 2
∞), on the departure orbit declination and on the capabilities of the launcher itself [63].

In this work, launcher performance is not directly considered when optimising the trajectory. Instead,

the launch V∞ is minimised by the optimiser because a lower V∞ at launch leads to an increase in the

launcher’s deployable mass. Once the trajectory design is complete and the required propellant mass is

known, it will be possible to select a launcher vehicle.

The performance of specific launchers is usually given to clients in the form of curves, such as those

displayed in figure 3.3 for the Falcon 9 (Block 2) and the Atlas 551.

More performance curves are shown in Biesbroek [68] and in the specific launcher manuals but the

Falcon and Atlas were selected because they represent the lowest and highest payload capability of

the available curves, respectively. The maximum declination for the use of the Falcon 9 is ±28.5o and

the maximum declination for the use of the Atlas 551 is ±28.6o.This limits the shape of the outgoing

asymptote, as only certain inclinations will be available. Note that the performance of the launcher
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Figure 3.3: Left: Falcon 9 (Block 2) performance curve. Right: Atlas 551 performance curve. Both
images are from Biesbroek [68].

is maximum when the departure inclination is equal to the departure declination [68]. The departure

geometry is obtained by doing the reverse procedure of the arrival geometry, explained in section 3.3.

As an example, for an outgoing V∞ of 4 km/s, or a C3 of 16 km2/s2, the maximum payload the Falcon

9 can carry to an escape orbit is around 1400 kg, when the Atlas 551 can carry around 5000 kg for the

same launch energy. Using the Atlas 551 will come at a higher price, however. Obviously, payload

capability should not be the only metric used when choosing a launcher for a space mission. There is

cost, risk, politics and so on to consider.

3.5 Ephemerides

The ephemerides define the state of celestial bodies (position and velocity) at a certain instant in time

and are essential for the navigation of spacecraft through the Solar System. Modern day ephemerides

are obtained through the compilation of astronomical observations of interest bodies, which are then

fitted to a high-fidelity simulation of the solar system [71]. The result is an estimate of the position of the

planets and moons that is valid only within a certain interval of time. Naturally, the farther the epoch of

observations is from the epoch of the mission, the greater the error in using the ephemeris will be. An

updated ephemerides system is critical if the goal is to design realistic space missions.

Besides accuracy, there is another factor to consider: as calls to ephemerides systems are frequent

in modern trajectory design tools, the designer must also consider computation speed as an important

metric to pay attention to.

3.5.1 Available Types

There are several ways to obtain the ephemerides of a celestial body, with varying degrees of precision

and computation speed.

JPL Development Ephemerides (DE)

The need for high-precision ephemerides is satisfied by NASA Jet Propulsion Laboratory (JPL)’s De-

velopment Ephemerides (DE, for short) [71]. The data is provided in the form of an “SPK Kernel” built
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by JPL or on-line, via the HORIZONS system [72]. The positions of the planets are obtained through

Chebyshev interpolation over a numerical integration of a dynamic model of the solar system [71]. This

model is very precise as it takes into account multi-body effects, solar radiation pressure, oblateness ef-

fects and even the inner structure of some objects, amongst others [71]. The development ephemerides

have become one of the standard general-purpose ephemerides systems in mission design.

The DE kernel files used for this work are:

• DE432: A minor upgrade to the general-purpose DE430 [71] to aid New-Horizons in its mission

to Pluto. Contains planetary and lunar ephemerides in the range 21-Dec-1549 to 25-Jan-2650.

Referred to the ICRF (International Celestial Reference Frame) 2.0;

• SAT375: Contains the ephemerides for the primary satellites of Saturn (integer IDs from 601 to

614), relative to the Saturn System. Ranges from 07-Jan-1800 to 16-Jan-2200.

Each celestial body is uniquely identified by its integer ID code. These can be viewed at http://naif.

jpl.nasa.gov/pub/naif/toolkit_docs/FORTRAN/req/naif_ids.html.

The DE’s are implemented off-line through the SPICE [73] toolkit, provided by NASA’s Navigation and

Ancillary Information Facility (NAIF), to assist mission designers and scientists with orienting spacecraft

and instruments in the solar system. The toolkit provides API’s for relative positions of solar system

bodies, spacecraft and instruments, as well as information about planet’s sizes and shapes. It also

provides useful reference frame conversions and is pre-loaded with information about the previously

mentioned IAU planet-centred frames. Unfortunately, the toolkit is not thread-safe and therefore can not

be used in multi-core environments, causing errors and inconsistent results.

This project is being coded in Python and SPICE does not offer a toolbox for this programming

language, creating a need for the use of a wrapper to be able to access the toolkit’s functionality.

While PyKEP offers some SPICE functions, it is largely untested and undocumented, therefore the

choice fell on a new SPICE wrapper that has seen frequent expansion updates and is well documented:

SpiceyPy [74] by Andrew Annex.

JPL’s Approximate Ephemerides (Low-precision)

Low precision ephemerides are useful to fulfill applications where speed is more important than ac-

curacy, like fast trajectory searches and instrument pointing [75]. With this in mind, JPL created an

approximation of the position of the major planets [75]. These ephemerides are the result of a best-fit

adjustment to the accurate models (DE), over a certain period of time. The outcome is a set of orbital

elements and their associated rates, allowing for the analytical determination of the state vector of the

planet at any instant, within the period of validity of the adjustment.

This system has the fastest computation time but also displays a low-precision and is not suit-

able for the design of realistic space missions. All the steps and data necessary to implement these

ephemerides, as well as information on the precision of this method, are well explained in JPL’s own

technical report [75].
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3.5.2 Interpolated Multi-thread SPICE Ephemerides System

The lack of multi-threading support from the SPICE [73] library created the need to obtain a work-

ing ephemerides system that functions with the multi-core asynchronous island model of the PyGMO

optimisation library, which greatly speeds up the global optimisation procedure and allows different in-

stances to communicate information between themselves. It is also important to be able to run several

simulations in parallel, with different parameters.

While approximate trajectories could be found for the Solar System through low-precision ephemerides

or keplerian equations, with some loss in precision, the same does not apply to the Saturn System. In

this environment, the moons influence each other in a complicated multi-body environment, in which

SPICE-level precision is preferred to keplerian motion. Tests were performed to compare both ap-

proaches and the less precise ephemerides displayed errors that would make the trajectory design

unrealistic (e.g. about 18o of angular difference for Enceladus, after only one year).

To be able to use SPICE’s data in a multi-thread environment, two options were considered:

1. Load the entire DE kernel into local variables and access it safely, passing it around the program.

2. Interpolate over the SPICE data with cubic spline interpolation and store only the interpolation

coefficients in memory.

Option one has the obvious constraint of being memory heavy and would be harder to implement,

but would allow very rapid access to ephemeris data. However, this option requires knowledge of the

structure of SPICE kernel files, leading to a more complicated implementation.

Option two is accompanied by a reduction in the precision of the ephemerides, as it is an interpolation

of an interpolation, but allows for a lighter program and fast access, as proved by the implementation of

cubic spline interpolation in FIRE [76] — a “Fast, Accurate and Smooth” planetary ephemerides retrieval

system. It is also easier to implement as it does not require intimate knowledge of the internal file

structure of SPICE’s kernels. Due to this ease of use, option two is chosen for the purposes work.

To accomplish this in an elegant way, without the need to interpolate every time the program is

executed, it was decided that the interpolation data would be stored in a binary file format for later

access. These formats are lighter and easier for the machine to process than plain-text formats.

A side program to build these files, codenamed Ephemerides Generator, was built. The pseudo-code

can be seen in algorithm 1.

The cubic spline interpolation is performed by Scipy’s interpolate package. Scipy [77] is a scientific

library for Python. Each body’s interpolation coefficients are stored in a file through the user-defined

keywords and can be accessed through them.

For the purpose of this work, two ephemerides files were generated:

• SolarSystem 2020 to 2050 J2000.eph: Solar system ephemerides containing Venus, Earth, Mars,

Jupiter and Saturn. The interpolation was performed at steps of 1 day. The time ranges from 01-

Jan-2020 to 01-Jan-2050. The reference frame is the inertial Earth mean equator and equinox of
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Algorithm 1 Ephemerides Generator
1: kernel← furnsh(DE432, SAT375) . Load the Kernel through SPICE
2: planets, time range, keywords← Input
3: Initialize: Coefficients List
4: for planet in planets do
5: Initialize: position list, velocity list
6: for epoch in time range do
7: position,velocity← spkezr(epoch) . Get planet ephemerides from SPICE
8: knots, coefficients[0:2]← interpolate(time range, position) . Interpolate position
9: knots, coefficients[3:5]← interpolate(time range, velocity) . Interpolate velocity

10: Coefficients List← coefficients
11: file← (knots, CoefficientsList, keywords) . Store in user-defined file

J2000. This file occupies 3MB in disk compared to JPL’s 130MB DE432 file, as it has less bodies

and a smaller time period.

• SaturnSystem 2020 to 2050 J2000.eph: Saturn’s satellites of interest (Enceladus, Tethys, Dione,

Rhea, Titan). The interpolation was performed at a constant time-step that yields a minimum res-

olution of 50 points per orbit at Enceladus (higher for the other moons). The time ranges from

01-Jan-2020 to 01-Jan-2050. The reference frame is the inertial, Saturn-centred, J2000. This file

occupies 53MB in disk and can be improved by using variable time-step for each object, at the cost

of harder implementation.

The interpolation coefficients can now be loaded from the file, stored in memory and the cubic spline

reconstructed with Scipy so that the state vector of the body can be acquired for any epoch, for multiple

instances of code running simultaneously.

Finally, the quality of the interpolation in terms of accuracy and speed is assessed. A simple program

was devised to obtain the value of the absolute error (position, velocity and central angle) for each object

in the generated ephemerides files. The error is defined as shown in equation 3.8, where x is the quantity

of interest.

εabs = |xspice − xinterpolated| (3.8)

The state of the celestial bodies obtained with the multi-thread ephemerides is compared with the results

from the SPICE toolbox over the entire period of the new ephemerides.

Two tests were conducted: one for the solar system and another for the Saturn system, with both

showing that the interpolation is a good fit. Peak error magnitudes are shown in table 3.1. Only the

worlds closest to their central body are shown because the faster the orbit, the lower the interpolation

resolution and the higher the absolute error.

Table 3.1: Peak absolute errors of the cubic spline interpolation in the 2020 to 2050 period.

Object Peak Position Error (m) Peak Velocity Error (m/s) Peak Angular Error (rad)

Venus 140 10−5 10−7

Enceladus 10−3 10−7 10−7

While this approach does show good results in terms of accuracy, in a single-thread benchmark
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on an Intel core i7 processor @ 3.5 GHz, the cubic spline interpolation is slower than its alternatives,

probably due to being scripted in a non-compiled language, which hinders its runtime performance.

This test made 10000 calls to obtain the state vector of planet Earth, for each system, at random epochs

between 2020 and 2050. Additionally, the cubic spline method was also tested for one of Saturn’s moons

and it showed that the run time was adversely affected by file size. Results are shown in table 3.2. It

is important to keep in mind that, while the computational speed of the new system is lower, the new

approach allows several instances of the same program to run at the same time. This opens up the

possibility to use optimisation topologies and other useful functionalities of PyGMO that improve the

quality of the optimisation (See Chapter 4).

Table 3.2: Benchmark of Ephemerides System Runtimes.

System Mean run time [µs]

Low-Precision JPL 5
Keplerian 5

SPICE 26
Cubic Spline (Earth) 84
Cubic Spline (Titan) 227

3.6 Tisserand Plots

The Tisserand graph is based on a criterion derived by François Félix Tisserand, a 19th century French

astronomer. Tisserand’s observation of comets led him to the interesting question of knowing whether

he was observing a comet he had already seen before or a new one. Through observations of these

bodies as they flew by Jupiter, he was able to develop a method, based on an invariant constant, to

determine if a comet he was observing in a different part of the sky was indeed the same one he had

spotted, before a suspected perturbation suffered by the gravity of a planet [63]. Tisserand had laid

the foundation for an astrodynamics tool that is still used today in preliminary mission design — the

Tisserand graph. Unknowingly, he had also observed something which would only be theorized in detail

almost a century later: the gravity-assist manoeuvre.

Note: the analysis in this section will use non-dimensionalised equations, unless stated otherwise.

The Tisserand Graph assumes that the orbits of the bodies are circular, a reasonable assumption for

both systems being studied in this work (recall Chapter 2). Because of this, all distances are divided by

Rcirc, the distance between the planet and the central body. Velocities are divided by Vcirc, the orbital

velocity for that circular orbit. Time is non-dimensionalised by Tcirc, the associated period.

Tisserand graphs come in many shapes, depending on their purpose, but the one that is most useful

to us is the apoapsis vs periapsis (Ra vs Rp) formulation (see figure 3.4). It allows for a clearer vision

of the spacecraft orbit, despite not being suitable for representing hyperbolic trajectories but these won’t

be studied in this work.
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Figure 3.4: Example of a Tisserand Graph for Earth. V∞ curves range from 1 km/s (top) to 9 km/s
(bottom), with a step of 0.5 km/s.

Each point in the Tisserand plot is an orbit around the central body (e.g. Saturn) and every con-

tour is a curve where the points have the same Tisserand Constant, which is intimately related to the

hyperbolic excess velocity (refer to Strange et al. [53] for the procedure to obtain this expression),

CTiss = 3− v2∞, (3.9)

where v∞ is the non-dimensional hyperbolic excess velocity of the spacecraft’s orbit with respect to

the gravity-assist body (e.g. a moon). Moving along a contour is then equivalent to performing a non-

impulsive flyby around a planet or moon: the spacecraft’s orbit around the central body changes but the

magnitude of V∞, with respect to the gravity-assist body, remains approximately constant.

Tisserand graphs are powerful tools to help us understand how flybys let us access different orbits

around the central body. Additionally, if the graphs are plotted for several gravity-assist bodies, they

also become helpful in solving the sequencing problem: if I want to go from Earth to Saturn, what are

possible sequences of flybys that could lead me there faster and with the least cost possible? With these

purposes in mind, the plots have been used as part of the winning solution of the GTOC 6 [41], with the

objective of designing a Jupiter moon tour. Last but not least, Tisserand graphs will also be used when

attempting to visualise the V∞-Leveraging manoeuvres, explained in detail in Section 3.7.

3.6.1 Constructing the Tisserand Graphs

The construction of a Tisserand plot is fairly simple. The idea is to find all possible orbits that can be

obtained after a gravity-assist in a certain body, for a certain range of v∞ levels. The procedure explained

here follows the logic presented by Strange et al. [53].

First, let’s introduce the concept of pump angle, α, through vector analysis of a planar gravity-assist

(figure 3.5).

A very important remark is that the variation in α during a flyby, |α1 − α2|, equals the turn-angle, δ.
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Figure 3.5: Gravity-Assist V∞ Triangle. V∞ is the dimensional hyperbolic excess velocity.

This can be used to calculate the flyby height from the definition of turn angle (see equation 3.3).

Applying the law of cosines to the outgoing velocity triangle (referent to v2) we obtain

v22 = 1 + v2∞2
+ 2v∞2

cos (α2). (3.10)

Note that, with the non-dimensionalisation, vplanet = 1. Also, from the characteristics of an unpowered

flyby, v∞1
= v∞2

= v∞. Equation 3.11 relates the spacecraft’s velocity with its semi-major axis through

the vis-viva equation, in its non-dimensional form,

v22 = 2− 1

asc
, (3.11)

where asc is the post-flyby orbit non-dimensional semi-major axis. Substituting the spacecraft’s post-flyby

velocity in equation 3.10 by the vis-viva equation it’s possible to find asc,

asc =
1

1− v2∞ − 2v∞ cos (α)
. (3.12)

Immediately, equation 3.12 indicates that, for each fixed v∞, there is a different post-flyby orbit for every

α, with 0 ≤ α ≤ π.

The eccentricity of the outgoing orbit can be obtained from the Tisserand Constant [53] and is given

by

e2sc = 1− 1

asc

3− 1

asc
− v2∞

2 cos (isc)


2

, (3.13)

where isc is the spacecraft orbit’s inclination with respect to the orbital plane of the gravity-assist body.

Having found the semi-major axis and the eccentricity, the periapsis and apoapsis of the post-flyby orbit

can be calculated through traditional orbital mechanics [1] as

ra = asc(1 + esc) and rp = asc(1− esc). (3.14)

To construct the plot for a given gravity-assist body, a program steps through a user-defined [v∞min
, v∞max

]

range and, for each v∞ “level”, finds the dimensional values of ra and rp for 0 ≤ α ≤ π. These points

are stored and then plotted on a ra vs rp graphic.
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3.6.2 Reading the Tisserand Graphs

Now that we have the ability to construct Tisserand plots for any body in a near-circular orbit, it is time

to learn how to interpret them. Figure 3.6 displays several graphical elements showing what kind of

information a basic Tisserand graph is capable of transmitting.
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Figure 3.6: An example Tisserand plot showing several graphical elements. See text for the description
of each element.

Remember that each point in a Tisserand plot is an orbit around the central body (Saturn or the Sun),

defined by its periapsis and apoapsis. In this space, it is possible to find orbits that have the same v∞

with respect to a given moon or planet. These are called the v∞ curves, or levels. Orbits with increasing

v∞ yield curves that are translated downwards and rightwards in the ra vs rp Tisserand plot.

One of the most frequent uses of the Tisserand graph is to know what post-flyby orbits can be

achieved, given a pre-flyby orbit. Performing a gravity assist manoeuvre is the Tisserand equivalent of

moving along a fixed v∞ curve, as the magnitude of the hyperbolic excess velocity, with respect to the

gravity assist body, remains constant during a flyby (remember section 3.2).

If the spacecraft reaches body A at a certain αA, with a certain v∞1, it will be at point A in figure 3.6.

If a flyby is performed, it is possible to move from point A to any point in the v∞1 curve with only one

restriction: the minimum flyby radius (also referred to as safe radius). This radius is user-defined and

varies according to the navigational constraints of performing a gravity-assist on a specific celestial

body. For example, Earth has an atmosphere but the environment is well known so a usual minimum

flyby height (for preliminary design) would be around 200 km [22, 78]. The safe flyby radii used in this

work are defined in sections 2.2 and 2.3.

The minimum flyby height restricts the maximum turn angle, δmax, that the velocity vector can suffer
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when performing a gravity assist, as determined by equation 3.3. Since moving along a v∞ curve

is equivalent to a change in the pump angle, α, then the maximum movement within a curve that is

achievable with a single flyby is given by δmax because ∆α = δ. In figure 3.6, which is merely an

illustrative example, a flyby from A to B would be allowed because it satisfies the minimum flyby radius

constraint but a flyby from D to E does not (due to the difference between pump angles being greater

than the maximum turn angle).

Another useful element shown is that the intersection between the v∞ curves of two bodies, as

indicated by point C, is a potential transfer orbit from body A to body B (or vice-versa), because the

post-flyby orbit, coming from body A, crosses the orbit of body B. Tisserand graphs are not attached to

an epoch and, as such, don’t consider the phasing between bodies. If there was a perfect alignment

between bodies A and B, the orbit indicated by C would be a ballistic transfer orbit, meaning that a

consecutive flyby of these two bodies would be free, in terms of ∆V . Intersections between curves allow

us to find potential sequences of interplanetary trajectories that are cheap and depart, or arrive, at a

target body with a certain V∞.

Additionally, the dashed line indicated by n:m identifies post-flyby orbits at body B that show a n:m

resonance, meaning the spacecraft will return to the gravity assist body after performing m revolutions

for n revolutions performed by the planet or moon. A resonant orbit is characterised by having an

orbital period that is an integer multiple of the body’s period [53]. Orbits of this type are identified in the

Tisserand Ra vs Rp graph by constant energy lines with a -45o slope [53] (constant energy is equivalent

to a constant semi-major axis).

Finally, the last element shown are two grey lines, one horizontal and another vertical, that show

the effect that different ∆V ’s have on an orbit, according to the Tisserand graph. A ∆V tangent to the

velocity vector, at apoapsis, will result in a change of the periapsis and vice-versa. This will be useful for

the analysis of V∞-Leveraging Manoeuvres, explained in section 3.7, for which we now possess all the

tools to understand.

3.7 V∞-Leveraging Technique

The V∞-Leveraging Transfer (VILT) was introduced by Jon Sims and James Longuski, in 1997 [79]. This

technique couples the use of a small deep-space manoeuvre to modify V∞ with respect to a body (e.g.

a moon) with the use of gravity-assist manoeuvres to target resonant, or near-resonant, orbits that allow

for a cheap return to that body. This idea has laid somewhat dormant since 1997 but, with the upcoming

missions to icy moons, it was revived as a way to design complex moon tours with the goal of lowering

the final capture ∆V [53, 57, 80].

This analysis will maintain the approximations that have been made in section 3.6. The trajectories

will be computed in a patched-conics, zero sphere-of-influence gravity assist model. The bodies’ orbits

are considered to be circular, a reasonable approximation for this work (see Section 2.3 to confirm that

the moons of interest have a low orbital eccentricity). Furthermore, the VILTs will be assumed to be in

the orbital plane of the gravity assist body (a 2D approach), as the inclusion of the crank angle to modify
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inclination during flybys would result in an overly complicated analysis. All these approximations are in

line with those made in the available literature [53, 79, 57, 80]. Finally, this model allows the trajectories

to have a multi-revolution behaviour (more than one revolution around the central body), which can be

useful when targeting moons with low periods (such as in the Saturn System).

3.7.1 Anatomy of a VILT

The notation used in this work to represent VILTs is defined in the literature [53]:

[interior/exterior]-[OO/OI/II/IO] N:M(L)

• Interior / Exterior: If the DSM is performed at the apoapsis of the transfer orbit, the VILT is said

to be exterior. On the other hand, an interior VILT has a DSM at the periapsis of the transfer orbit.

• OO/OI/II/IO: Related to the location of the flybys on either end of a VILT (whether they are inbound

or outbound relatively to the periapsis of the transfer).

• N: Integer number of moon revolutions.

• M: Integer number of spacecraft revolutions.

• L: Revolution number where the DSM occurs.

Between interior and exterior leveraging and each type of encounter (II,OO,OI,IO) there are 8 types

of possible VILTs for a given N:M (L) combination.

VILTs can be of the tangent or non-tangent kind. Tangent VILTs restrict the geometry of the ma-

noeuvre so that the V∞ vector is tangent to the velocity of the gravity assist body at one end of the VILT.

While tangent VILTs have been shown to provide efficient V∞ change for large moons, they have also

been found to limit, or decrease, the efficiency of gravity-assist manoeuvres in small moons, such as

Enceladus, Tethys or Dione [53, 57]. The method implemented in this work will include both tangent and

non-tangent transfers.

The DSM is tangent to the orbital velocity and is placed at apoapsis or periapsis because it simplifies

the model and was deemed to be an efficient location by Sims et al. [79].

Figure 3.7 displays a visual example of an interior and an exterior VILT. Notice the similarities with

figure 3.1. In fact, the commonly used ∆V -EGA manoeuvre is an exterior V∞-Leveraging Transfer with

the purpose of increasing, or decreasing, V∞ with respect to Earth in order to access new orbits going

to other planets in the solar system.

3.7.2 Computing VILTs

The process, described here, to determine a VILT that brings the spacecraft’s orbit from a specified

V∞1 to another specified V∞2, with respect to a gravity-assist moon, is based on the analysis performed

in Strange et al. [53].
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Figure 3.7: Types of VILTs. In this case, departure is outbound for exterior and inbound for interior VILT.

Quantities in this section will be non-dimensionalised. As in section 3.6, distances will be divided by

Rcirc, the distance between the planet/moon and the central body. Velocities are divided by Vcirc, the

orbital velocity for that circular orbit. Time is non-dimensionalised by Tcirc, the associated period.

The point at which the DSM occurs is the leveraging apse and its distance from the central body (in

our case, Saturn) can be written as

rla = asc(1 + keiesc), (3.15)

where kei is an integer parameter that distinguishes whether the VILT is exterior (+1) or interior(-1).

Solving for the eccentricity and replacing into equation 3.13, we get a quadratic equation,

4ascr
2
la − 8a2scrla + a2sc(3− v2∞)2 − 2asc(3− v2∞) + 1 = 0. (3.16)

Solving equation 3.16 for rla,

rla = asc + kei

√
a2sc −

1

4
(3− v2∞)2 +

1

2
(3− v2∞)− 1

4asc
. (3.17)

From a given v∞1 and α1, which is used to obtain asc1 through equation 3.12, it is possible to calculate

rla for the first arc of the VILT by solving equation 3.17. Then, from equation 3.16 we can compute

asc2 since rla2 = rla1 and v∞2 is a user input. Attention is required to choose the root of the quadratic

equation that is correct: asc2 > rla (rla at periapsis) for interior leveraging and vice-versa for exterior.

Once asc2, asc1 and rla have been determined, it is possible to calculate the eccentricities of the

post and pre-DSM orbits through equation 3.15 and every other orbital characteristic from traditional

orbital mechanics. The non-dimensional ∆V is given by the difference in velocities of both arcs at the

leveraging apse,

∆V =

∣∣∣∣√ 2

rla
− 1

asc1
−
√

2

rla
− 1

asc2

∣∣∣∣ . (3.18)

The next step is to constrain the VILT so that it returns to the same gravity-assist body, in order to

continue the tour. This is done by matching the spacecraft’s flight time with the gravity assist body’s flight
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time. This is called the phasing constraint.

tofsc = tofga. (3.19)

Determining Spacecraft Flight Time

The determination of the spacecraft’s flight time is done through Kepler’s equation,

τsc =
Tsc
2π

(Esc − esc sin (Esc)), (3.20)

where Esc is the eccentric anomaly of the encounter, given by [53],

Esc = kio cos−1
(
asc − 1

escasc

)
. (3.21)

The integer parameter kio describes the direction of the encounter: +1 for an outbound encounter, -1 for

an inbound encounter. Finally, tofsc can be obtained through equation 3.22 [53],

tofsc = τsc2 − τsc1 + Tsc1

(
L+

1 + kei
4

)
+ Tsc2

(
Ma − L−

1 + kei
4

)
. (3.22)

Equation 3.22 unifies the flight times of the 8 different types of VILTs. Ma is an integer parameter that is

equal to the number of spacecraft revolutions counted by apoapsis crossings and is necessary to correct

the time of flight for the Outbound-Inbound (OI) VILTs,

Ma = M if type is IO,II or OO;

Ma = M + 1 if type is OI.
(3.23)

Determining Gravity Assist Body Flight Time

The gravity assist body’s time of flight is also obtained through equation 3.20 (replacing with the gravity

assist body’s information). The eccentric anomaly is given by

Ega = 2 tan−1

(
tan

(
θi
2

)√
1− ega
1 + ega

)
, (3.24)

where θi is the true anomaly of each encounter and is given by the orbit equation in non-dimensional

form,

θi = kio cos−1
(

1

esc
(asc(1− e2sc)− 1)

)
. (3.25)

If we apply the assumption that the gravity assist body has a near-circular orbit, then ega = 0, Ega = θi

and the time of flight of the gravity-assist body, in non-dimensional form, is

tofga = Na +
1

2π
(θ2 − θ1), (3.26)
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where Na, in similarity with Ma, is meant to correct for the OI case,

Na = N if type is IO,II or OO;

Na = N + 1 if type is OI.
(3.27)

Algorithm to determine phase-fixed VILTs

To find the phase-fixed VILT, an iterative method is required that will vary a parameter until the phasing

constraint is met. Algorithm 2 displays the pseudo-code for the procedure implemented in this work.

Algorithm 2 VILT Calculator
1: planet, VILT Type, N, M, L← User Input
2: for 0 ≤ Pump Angle (α1) ≤ π do
3: Find: asc1, rla, esc1 . Equations 3.12,3.17 and then 3.15
4: Find: asc2 . Solve Equation 3.16 and select correct root
5: Find: esc2 . Equation 3.15
6: Find: Esc1, Esc2 . Equation 3.21
7: Find: tofsc . Equation 3.20
8: Find: θ1, θ2 . Equation 3.25
9: Find: tofga . Equation 3.26

10: if |tofsc − tofga| ≤ ε then
11: Store: asc1, asc2, esc1, esc2, rla, tofsc, θ1, θ2, α1 . dimensionalise and store VILT information

The iterative method implemented is provided by Scipy [77], a scientific library for Python, through

its optimize toolbox. The tolerance used is ε = 10−5.

When sequencing VILTs, or resonant flybys, the bounds on the pump angle need to be adjusted to

meet the minimum flyby radius constraint. These bounds become

αprevious − δmax ≤ α1 ≤ αprevious + δmax, (3.28)

where αprevious is the pump angle before the first encounter of the VILT.

Finally, when required, it is possible to obtain the velocity vectors at each encounter by calculating

them in the orbital plane of the gravity assist body first (using the true anomalies of the encounters) and

then converting the vectors to the J2000 inertial reference frame.

The procedure outlined in this section was successfully validated by comparing individual phase-fixed

VILT solutions with those obtained in Strange et al. [53].
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Chapter 4

Trajectory Optimisation:

Problem Formulation and Methodology

4.1 Software: PyGMO and PyKEP

PyGMO and PyKEP [81, 82, 83] are open-source programming libraries coded in C++, and exposed to

Python, by the Advanced Concepts Team at the European Space Agency. Both libraries are meant to

be used together to solve astrodynamics problems and are coded in a generalised form that allows the

user to easily add new optimisation problems and algorithms, taking advantage of Python’s ease of use

and C++’s higher computational speed.

PyKEP [81] provides simple astrodynamics tools with a focus on computational efficiency [83]. At

the core of this toolbox is a powerful multi-revolution Lambert solver (mentioned in Section 3.1) but

also other useful tools such as a keplerian propagator, a 3D flyby propagator, taylor integrators for

low-thrust trajectories, orbit plotting utilities, ephemerides implementations and more (see the online

documentation [81] for a full description of PyKEP’s features).

PyGMO [82], a scientific library that is part of ESA’s Pagmo project, is a generalised optimisation

toolbox with focus on parallelisation through the implementation of a novel paradigm, the asynchronous

island model [83]. This new model allows for easy parallelisation and exchange of information between

different algorithm instances.

In PyGMO, each solution candidate is codenamed an individual. A set, or population, of individuals is

named an island, over which an optimisation algorithm is executed. It is also possible to cluster islands

together into an archipelago, allowing each island to be optimised in parallel and information (such as

the best individual) to be exchanged between them, following a user-defined topology. Each island in

an archipelago may have a different optimisation algorithm associated with it. This is the so-called the

Asynchronous Island Model.

The optimisation problem to be solved by each island is user-defined and easy to implement. In

Python, the user defines a Problem class that implements the desired objective function and, optionally,

a constraint evaluation function. These problems may be single or multi-objective, depending on the

algorithm that is used to solve them.
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PyGMO has several pre-implemented optimisation algorithms, shown in table 4.1. The toolbox also

allows for the use of powerful third-party libraries (NLOPT, IPOPT, SNOPT) and the implementation of

user-defined algorithms, through a procedure similar to the implementation of problems. More informa-

tion on this can be found in PyGMO’s online documentation [82].

Algorithms in PyGMO can be divided according to the following criteria [82]:

• Decision Vector: Continuous (C) / Integer (I) / Mixed (MI)

• Constraints: Constrained (C) / Unconstrained (U)

• Number of Objectives: Single-objective (S) / Multi-objective (M)

Table 4.1: Main algorithms available in PyGMO. [82]

Algorithm Type

Heuristic Optimisation

Differential Evolution (DE) C-U-S

Self-Adaptive DE (jDE) C-U-S

Particle Swarm optimisation (PSO) C-U-S

Simple Genetic Algorithm C-U-S and MI-U-S

Vector Evaluated Genetic Algorithm (VEGA) MI-U-M

Non-Dominated Sorting GA (NSGA-II) C-U-M

Corana’s Simulated Annealing (SA) C-U-S

Parallel Decomposition (PADE) C-U-M

Strength Pareto Evolutionary Algorithm (SPEA2) C-U-M

Artificial Bee Colony (ABC) C-U-S

Improved Harmony Search (IHS) MI-U-M

Covariance Matrix Adaptation C-U-S

Monte Carlo Search MI-C-S

Meta - Algorithms

Monotonic Basin Hopping (MBH) Adaptive

Multistart (MS) Adaptive

Augmented Lagrangian (AL) C-C-S

Local Optimisers

Compass Search (CS) C-U-S

Nelder-Mead simplex C-U-S

BFGS 2 C-U-S

Sequential Least Squares Programming (SLSQP) C-C-S

Truncated Newton Method C-U-S

Method of Moving Asymptotes C-C-S

Note: adaptive meta-algorithms take on the characteristics of the secondary algorithm that they use.
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Both PyGMO and PyKEP have been extensively validated by the Advanced Concept Team’s use of

these toolboxes in the GTOC [83].

4.2 MGA-1DSM Formulation

The MGA-1DSM is a typical problem formulation for optimising Multi Gravity Assist trajectories, allowing

one Deep Space Manoeuvre in each leg [37]. The MGA-1DSM formulation presented here was defined

by Vinkó et al. [84] and is implemented in both PyGMO and PyKEP. It will be used to optimise the

interplanetary phase of the mission to Enceladus.

4.2.1 General Form of the Problem

The most general form that a spacecraft trajectory optimisation problem can take is the following [37]:

Optimise: φ(ts, tf ,xs,xf ) +

∫ tf

ts

L(x(t),u(t), t)dt, (4.1a)

Subject to: ẋ = a(x, t) + u(t), dynamic constraints (4.1b)

G(ts, tf ,xs,xf ) ≤ 0, boundary constraints (4.1c)

u ∈ U(x, t), propulsion constraints (4.1d)

where x(t) = (r,v,m) is the spacecraft state vector, a(x, t) are the external forces acting on the space-

craft (such as gravity, solar pressure, drag, and so on), and u(t) represents the control variables such

as thrust. The objective function may be only dependent on the initial and final conditions, indicated by

φ, or may also depend on events during a specific path of the spacecraft, indicated by L.

However general this formulation may be, in its current form it is very hard to handle, due to the

complicated nature of the dynamic constraints. As a result, there aren’t many suitable methods that are

capable of solving the general problem in useful time [37]. This motivates the introduction of a series

of simplifications in order to obtain a formulation that is easier to handle computationally. This is often

done in spacecraft trajectory optimisation and is called problem transcription [37].

The following simplifications were made to obtain the simplified form of the problem [37]:

1. The only external force acting on the spacecraft is the point-mass gravitational attraction force from

the central body, resulting in a two-body problem.

2. The sequence of gravity-assist bodies is imposed a priori by the user and is not left for the optimi-

sation algorithm to find.

3. The intermediate gravity assist manoeuvres assume the bodies have no sphere of influence. This

means that the change in the spacecraft state is instantaneous, therefore not continuous, and

happens at one point in space. Furthermore, the GAs are constrained by the minimum flyby

radius, which is a user-defined value.
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4. The propulsion is considered to be high-trust (impulsive) and thrust can only happen during depar-

ture, arrival and once for every trajectory leg. There are no powered flybys.

All these assumptions are in line with those made when describing the physical models (Chapter 3).

4.2.2 Simplified Form of the Problem

The simplified and final form of the MGA-1DSM problem is:

Optimise: φ(p), (4.2a)

Subject to: G(p) ≤ 0, boundary constraints (4.2b)

where φ is the objective function and p is the decision vector. No phase constraints are left as they have

all been explicitly determined from the information in the decision vector. The boundary constraints, G,

are optional and can be defined by the user to account for specific mission requirements (e.g. maximum

distance to the Sun). Without these, the result is a continuous, box-bound, optimisation problem.

Objective Function

The objective of the MGA-1DSM formulation is to maximise the ratio between payload mass and space-

craft total mass. As discussed in Chapter 2, because the propulsion is impulsive and no payload is

dropped in intermediate phases of the mission, minimising fuel consumption is equivalent to minimising

∆V . Therefore, the objective function of this optimisation problem is the ∆V budget,

φ(p) = ∆Vdeparture +

N−1∑
i=1

∆Vi + ∆Varrival, (4.3)

where N is the number of planets in the sequence. There are N-1 legs. If the departure and arrival

geometries are not yet known, the ∆V ’s can be replaced by the corresponding V∞.

Decision Vector

The decision vector, also referred to as chromosome, is the vector that contains all of the problem’s

optimisation variables that define an individual [37]. This vector contains all the parameters that describe

the departure geometry, the epoch at which the spacecraft passes by planets, and more. For the MGA-

1DSM problem it is defined as [37]

p = [ts, V∞0, u0, v0] + [η1, T1] + [rp2, β2, η2, T2] + . . . (4.4)

The first term is referent to departure: ts is the launch epoch, V∞0 is the launch hyperbolic excess velocity

and u0, v0 are non-dimensional variables that define the departure geometry (explained later). The

remaining terms are referent to each trajectory leg. ηi is a non-dimensional parameter that establishes

the location of the DSM along the ith arc, Ti is the duration of the ith trajectory leg, rpi is the flyby radius
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at the ith planet of the sequence and βi is the plane change angle of the 3D gravity assist at the ith body

of the sequence. The problem is box-bound which means the user must insert reasonable lower and

upper bounds for every parameter in the decision vector. The dimension of an optimisation problem is

given by the length of its decision vector. In this case, the problem has a dimension of 6 + 4(N − 2).

Modelling Departure Geometry

In order to allow for a DSM in the first leg, it is necessary to have the initial velocity and position vectors

of the spacecraft [84]. The initial position is simply given by the position of the planet at departure, due

to the patched conics assumption. The velocity vector at launch can be defined as [84]

V∞0 = V∞0[cos (θ) cos (ψ)i + sin (θ) cos (ψ)j + sin (ψ)k], (4.5)

where the reference frame unit vectors i, j, k are

i =
vplanet(ts)

|vplanet(ts)|
, (4.6a)

k =
rplanet(ts)× vplanet(ts)

||rplanet(ts)× vplanet(ts)||
, (4.6b)

j = k× i, (4.6c)

Using spherical coordinates to define the geometric domain of V∞0 and defining two constants, u, v ∈

[0, 1] then [84]

θ = 2πu and ψ = cos−1(2v − 1)− π

2
. (4.7)

Modelling DSMs and GAs

As far as optimisation is concerned, GA manoeuvres and DSMs are modelled in the exact same way as

explained in Section 3.2. For the GAs, the decision vector inputs the required information to propagate

the manoeuvre: the flyby radius, rp, and the plane-change angle (or B-Plane angle), β.

The DSMs are also modelled as described before. To account for the position of the DSM, the

decision vector introduces a new parameter, η ∈ [0, 1]. For a DSM occurring between planet A and

planet B,

tDSM = tA + ηTAB , (4.8)

where TAB is the transfer time between A and B and tA is the epoch of passage at planet A.

4.3 Optimisation Algorithms

Different optimisation algorithms were used in the various phases of the mission to Enceladus. This sec-

tion describes the logic behind the choice of each algorithm and provides insight into their functionality.
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4.3.1 Interplanetary Phase

As mentioned in Section 4.2, the widely used MGA-1DSM problem formulation will be employed for

the optimisation of the interplanetary phase of our mission. Many methods exist to globally optimise a

trajectory, as seen in Chapter 1.

As discussed in Section 1.3.2, evolutionary algorithms are better at avoiding local minima, despite

being slower and lacking an optimality criterion, meaning it is not possible to be sure that a certain

solution is indeed the global minimum or not. On the other hand, calculus-based deterministic methods

rely on the mathematical formulation of the MGA-1DSM problem, which is quite complex, and the quality

of their convergence is dependent on initial guesses that may be hard to provide.

The MGA-1DSM problem is not easy to solve as it features areas where many local minima are

clustered together (valleys) and where there may be a global optimum or not [2]. Because EAs have the

upper hand in this type of problems, they will be used to perform global optimisation in the first phase.

Nevertheless, there is a possibility to use local optimisation to further refine the trajectory obtained

through the global optimiser, ensuring a better result quality. Local optimisers are deterministic methods

that use initial guesses to find an optimum solution within a given subset of the larger search space,

which may or may not contain the global optimum.

From the literature review performed in Section 1.3.2, three optimisation methods are selected as

potential candidates to perform the global optimisation: Differential Evolution (DE), Monotonic Basin

Hopping (MBH) and Simulated Annealing with Adaptive Neighbourhood (SAAN). These three methods

have already been shown to perform well in solving MGA-1DSM problems [37, 36, 40, 42, 46, 47]. In

fact, MBH and DE have some of the best known results for several MGA-1DSM problems present in the

Global Trajectory Optimisation Problems database (GTOP) [85]. This is a service provided by ESA that

stores the best known solutions for spacecraft trajectory optimisation problems with the intent of allowing

benchmark of new optimisation methods. DE, MBH and SAAN are already implemented in PyGMO (see

table 4.1).

Differential Evolution (DE)

Differential Evolution (DE) was designed by Storn and Price [86] as a general optimisation method with

ease of use, robustness and speed in mind. This optimisation method has few control parameters, is

capable of handling continuous nonlinear optimisation problems and is easily implemented in a multi-

core environment, such as PyGMO.

DE is an evolutionary algorithm and is, therefore, based in the principles of evolution. The procedure

starts with the generation of a population of Ni individuals from random sampling across the search-

space defined by the user. Then, for Ng generations, the algorithm performs the following operations on

the population [86]:

• Mutation: Generation of a mutated chromosome by performing a certain operation on two ran-

domly selected individuals and adding this change to a third individual. Mutation is controlled by

the mutation parameter, F ∈ [0, 1].
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• Crossover: Mixes the mutated chromosome with a pre-determined individual to create a new trial

chromosome. Each of the individual’s chromosome entries is exchanged with the corresponding

entry on the mutated chromosome based on a user-defined crossover probability, CR ∈ [0, 1].

• Selection: If the generated trial chromosome is better than the pre-determined individual that

originated it, then the last is replaced by the first in the next generation. The new chromosome’s

entries must be within the bounds set by the user for the optimisation problem.

The mutation operation has several possible variants. The variants in table 4.2 are already imple-

mented in PyGMO [82]. The parameter best/rand/rand-to-best describes how the chromosome that will

be the recipient of the mutation operation is chosen: randomly, population champion or a mix of the two.

Secondly, 1/2 define the number of chromosomes that will take part in the mutation operation. Using

2 chromosomes improves the diversity of the population but requires more individuals to be effective.

Lastly, exp/bin is related to the crossover scheme (exponential vs binomial) [86]. The mathematical de-

scription of each variant and of the Differential Evolution algorithm is very well covered in Brest et al.

[87] and will not be presented here as it is out of the scope of this work.

Table 4.2: Mutation variants of the Differential Evolution algorithm. Each variant is assigned an ID that
will be used for the remainder of the work, for the sake of shortness.

IDs Variants

1,6 DE/best/1/exp and DE/best/1/bin
2,7 DE/rand/1/exp and DE/rand/1/bin
3,8 DE/rand-to-best/1/exp and DE/rand-to-best/1/bin
4,9 DE/best/2/exp and DE/best/2/bin

5,10 DE/rand/2/exp and DE/rand/2/bin

DE requires only five control parameters: F (mutation parameter), CR (crossover probability), Ng

(number of generations), Np (population size) and the variant to be used, making it a very easy algorithm

to configure. Storn and Price [86] suggest reasonable parameters for DE. Np should be between 5D and

10D, where D is the problem’s dimension, F should be higher than 0.5 as lower values slow convergence

and are not more effective. CR has an effect on convergence speed and should be tested with different

values.

Simulated Annealing with Adaptive Neighbourhood (SAAN)

Simulated Annealing with Adaptive Neighbourhood [88] is an optimisation method to solve continuous,

non-linear optimisation problems with large numbers of local minima. The advantage of this method is

that, unlike DE, it has a self-adaptive nature: its original parameters change to suit the variations that

the optimiser feels in the search space. In other words, it is less likely to get stuck in local minima as it

possesses strategies that allow the optimiser to avoid those situations.

Given an initial chromosome, the optimiser starts by performing a broad search in the search space

to identify areas where the global minima could be. Then, by adjusting a temperature parameter, the

optimiser starts iteratively producing finer searches until it finds a minimum. Progress is made by accept-

ing or rejecting solutions based on the Metropolis Criterion [88] which states that the solution candidate
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is automatically accepted if its objective function value is better than the best known objective function

value. If this is not verified, then the solution can still be accepted with an acceptance probability of

p = exp
fi − f ′

Tk
, (4.9)

where Tk is the variable temperature parameter, fi is the current cost and f ’ is the best cost. As in DE,

the new chromosome is only accepted if it is within the bounds of the problem, otherwise another one is

generated until that happens.

The algorithm evaluates the progress it makes at each step. If too many new solutions are being

rejected or accepted, the step is adjusted to maintain a healthy progression. If the algorithm gets stuck

in a local minimum, uphill moves are allowed under control of the temperature parameter. If there is no

progress in the objective function value or if the maximum number of iterations has been achieved, the

algorithm returns the current best solution.

Higher temperatures influence the optimiser to only consider the gross fluctuations of the objective

function as relevant. This aids the optimiser in searching zones where local minima may be clustered

(valleys). On the contrary, lower temperatures are very sensitive to the fluctuation of the objective

function and are better to help the optimiser distinguish between local minima.

The SAAN algorithm implemented in PyGMO has 6 important control parameters:

• Start Temperature (Ts): Should be high enough to let the algorithm detect broad variations of the

search space in the beginning of the optimisation.

• Final Temperature (Tf ): Should be low enough that the optimiser can distinguish between local

minima but not too low as that will reduce performance.

• Number of Step Adjustments: Number of step adjustments that can occur within one iteration.

• Bin Size: Size of the pool of solutions used to evaluate algorithm progression.

• Range: Initial size of the neighbourhood that the algorithm can access to test new solutions.

• Maximum Number of Iterations: Should allow enough runs for the temperature to decrease

to the final temperature before the optimisation ends. A good starting value would be Iter =

D×N ×Nr. of steps×Bin Size [82], where D is the dimension of the problem and N is the number

of desired temperature adjustments to take place between Ts and Tf .

A detailed mathematical and computational description of the algorithm and all its intricacies is very

well detailed in Corana et al. [88].

Monotonic Basin Hopping (MBH)

Monotonic Basin Hopping started as a global optimiser for molecular chemistry problems but was later

generalised so that it could be applied to other types of problems [46].

MBH is based on a very simple concept [46]. The optimiser starts by picking an individual at random

from the initial population. Then, a secondary optimisation algorithm acts on the individual to produce
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another solution. If this new solution is better than the current best, its stored. The best solution’s

chromosome is then perturbed within a user-defined neighbourhood parameter (∆) and then the sec-

ondary algorithm acts again. This procedure is repeated until the best solution hasn’t changed for a

user-defined number of iterations, Nstop. After Nstop is reached, MBH either returns the best candidate

or global resampling happens and the search space is sampled again until a set number of maximum

re-samplings is achieved.

The selection of neighbourhood parameter is important to keep MBH from missing other local optima

in the same basin of attraction (low perturbation) or to prevent MBH from jumping all over the search

space without criteria (high perturbation).

MBH is implemented in PyGMO as a generalised algorithm, meaning it will accept any kind of sec-

ondary optimiser and will take on its characteristics (whether it is constrained, unconstrained, . . . ). When

coupled with another global optimiser such as DE, MBH acts as a smart restart method that doesn’t allow

the secondary algorithm to get stuck in local minima, improving its consistency. MBH can also run with

a local optimiser, such as Compass Search (CS) or Sequential Least Squares Programming (SLSQP).

In this case, it will perform deterministic optimisation while helping the local optimiser to come out of

valleys.

PyGMO’s implementation of MBH requires only two control parameters: ∆ and Nstop.

Sequential Least Squares Programming (SLSQP)

Sequential Least Squares Programming, introduced by Dieter Kraft in 1988 [89], is based on the con-

cept of Sequential Quadratic Programming, a set of algorithms design to tackle non-linear problems.

Sequential Quadratic Programming is a powerful optimisation method as it allows non-linearity to be

present in the objective function or in the constraints of the optimisation problem [90].

This algorithm is a derivative-based method and works by breaking the parent non-linear problem

into simpler quadratic sub-problems. The objective function is evaluated by varying optimisation param-

eters while making sure constraints are observed [90]. This procedure is iterated until convergence is

obtained and a feasible solution is produced, or a maximum number of iterations is reached. Usually,

Newton’s method is used to estimate the variation in the optimisation parameters through analysis of

the behaviour of the objective function. If the optimiser senses that the objective function is increasing

consistently (going “uphill”), then the direction of variation of the optimisation variables is changed so

that the objective function decreases instead.

Because of this gradient-based characteristic, the algorithm’s performance suffers for large numbers

of optimisation variables, as numerical differentiation (e.g. finite differencing) applied to a problem with

a higher number of variables becomes computationally heavier [90].

SLSQP is implemented as a part of the PyGMO and Scipy toolboxes [77, 82] and will be used in this

work to solve constrained optimisation problems, such as the Periapsis Raising Manoeuvre.

The control parameters available in PyGMO are:

• Maximum Number of Iterations
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• Accuracy

• ε: Step size for finite-difference derivative estimates

Compass Search (CS)

Compass Search [91] is a local optimiser that falls under the category of direct search method. This

means that it does not use derivatives to find the minimum of the function, which is desired for highly

non-linear problems where derivatives may not be well defined. It is presented here because it will be

used for the optimisation of the interplanetary trajectory.

The principle behind CS is very simple. The algorithm begins by receiving a starting individual, xi,

and an initial step size, δ. Then, for each entry of the xi’s chromosome, the optimiser adds or subtracts

δ. If the new perturbed chromosome has a better objective function value than xi, it becomes the new xi.

Otherwise, δ =
δ

2
and the process is repeated. The optimisation is stopped when δ reaches a minimum

value. The simplicity of this algorithm means that it is very fast but not very robust and will be easily

attracted to a local minimum [91].

The control parameters available in PyGMO are [82]:

• Maximum number of evaluations: Maximum number of overall repetitions.

• Start Range: Initial δ.

• Stop Range: Minimum δ, after which optimisation stops.

• Reduction Coefficient: Allows for a reduction in δ that is different from 1
2 .

Because the intention will be to refine a known solution, start and stop range should be small.

Optimisation Topology

PyGMO allows us to combine different algorithms and run them in parallel, while letting them exchange

information, thanks to its asynchronous island model. The literature review in Chapter 1 suggests that

employing optimisation algorithms in cooperation with each other will have a positive effect, as the

optimisation will benefit from the stronger characteristics of each method. Successful examples of this

are IDEA [47], an MBH+DE method, and Hemoglop [42], an evolutionary strategy that joins DE, Genetic

Algorithm and Particle Swarm Optimisation.

Based on this tendency, two candidate topologies were designed for testing. The first topology,

shown in figure 4.1, couples MBH with DE. The second one, in figure 4.2, builds on another idea [92]

that joins SAAN and DE together to take advantage of SAAN’s ability to avoid local minima and DE’s fast

convergence to the global optimum. Note that it doesn’t make sense to pair MBH with SA because SA

already possesses a strategy that encompasses sampling the search space to avoid local minima.

As each island corresponds to a computer core and there are only 8 available in the Intel Core-i7

being used, the topology is built with 7 islands so that one core remains available for daily PC operations.
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Both alternatives exhibit a rim topology because this allows us to place a local optimiser in the center.

This local optimiser will receive the solutions found by the global optimisers, refine them, and transmit

the information back to the global level, improving the quality of the optimisation [92].

In both topologies, the local optimiser used is Compass Search. This algorithm is faster and simpler

than Sequential Least Squares Programming and is already implemented in PyGMO.
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Algorithm Racing and Topology Selection

In order to choose the parameters of the algorithms that will be used in each topology, the quality of

each parameter set needs to be tested. This can be done via a procedure named Algorithm Racing,

available through PyGMO [82]. Racing statistically compares several different algorithm configurations,

by evolving populations and then comparing the best solutions, also referred to as champions, of each.

When the racing algorithm arrives at the conclusion that a certain optimisation method is statistically

inferior than the others, it is dropped from the race. This is an iterative procedure that continues until the

best methods are found or until the maximum number of iterations has been exceeded.

The global optimisation problem that the methods were asked to solve, Cassini2, is available in the

GTOP database [85] and is of the MGA-1DSM type. This problem mirrors the flight sequence of the

Cassini probe through the solar system.

Tables 4.3 and 4.4 show the combinations of parameters tested for each method. For all algorithms

Np = 100. The winners are described in tables 4.5 and 4.6.

Table 4.3: DE Test Parameters. Ng = 500.

Parameter F CR Variants

Values 0.1,0.3,0.5,0.75,0.8,0.95 0.1,0.5,0.8,0.9,0.95 1,2,3,4,5,6,7,8,9,10

Table 4.4: SAAN Test Parameters. Some parameters are based on suggestions by Izzo [37].

Parameter Iterations Ts Tf Nr. of Steps Bin Size Range

Values 104, 105, 106 10,105 0.036,0.073,1,138 1,10 10,20,40 1

From table 4.5 it is possible to conclude that, for MGA1DSM problems, the crossover probability

has a higher effect on the convergence of the algorithm to the best known solution, with high crossover
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Table 4.5: Winners of the DE racing.

Position F CR Variant

1st 0.75 0.95 1
2nd 0.8 0.95 6
3rd 0.8 0.95 1
4th 0.5 0.95 9
5th 0.8 0.9 6

Table 4.6: Winners of the SA racing.

Position Iterations Ts Tf Nr. of Steps Bin Size

1st 106 10 0.073 1 20
2nd 105 10 0.036 1 20
3rd 106 10 0.036 1 20
4th 106 10 0.036 1 10
5th 105 10 0.073 1 20

probabilities being preferred. Variants 1 and 6 also show better results than their competition. As for the

SA trials, naturally a higher number of maximum iterations will converge better, in average, than test runs

with a lower value. Also, all the winners found have the same start temperature and number of steps,

with Tf spread between 0.036 and 0.073. Note that the test run that came in second place is similar to

the one in third, but has a lower number of iterations. This is a reminder of the stochastic nature of these

algorithms that, sometimes, return results that may induce the designer in error.

Finally, the candidate topologies are pitted against each other to find the best solutions for the

Cassini2 problem [85]. Different configurations were ran for 50 trials and, in the end, both methods

showed similar test results in terms of convergence. MBH+DE consistently achieved better mean fit-

ness results than DE+SAAN but failed to obtain the global minimum, unlike the latter. MBH+DE, how-

ever, showed a faster runtime in general. The selected configuration is displayed in table 4.7.

Table 4.7: Global Optimisation Topology for the Interplanetary Phase

Algorithm Islands Configuration

Compass Search 1

Max. Evaluations = 1000
Start Range = 10−2

Stop Range = 10−5

Reduction Coeff = 1
2

MBH+DE 2,6 DE-5 and MBH with Nstop = 5, ∆ = 0.25
3,5 DE-1 and MBH with Nstop = 5, ∆ = 0.25
4,7 DE-2 and MBH with Nstop = 5, ∆ = 0.25

4.3.2 Moon Tour

The procedure implemented to determine the moon tour, detailed later in Chapter 6, requires testing

a vast number of possible combinations of VILT manoeuvres. This results in a difficult combinatorial

optimisation problem. According to the literature, Branch and Bound (BB) [32, 40, 43, 44], a deterministic

global optimisation scheme, has been the most frequently used algorithm to solve this type of problems

in spacecraft trajectory optimisation.

Let us think of the entire search space as a rooted tree, where every branch is a possible solution

for the problem. Branch and Bound starts at the root and explores the branches of the tree whilst

applying pruning criteria that progressively trim sub-optimal branches, cutting down on the complexity

of exhaustively searching through the entire search space. Branches are pruned by comparing their

current fitness value to the best solution found by the algorithm at that point. A symbolic example of the
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branch and bound strategy is shown in figure 4.3.
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Figure 4.3: Example branch and bound scheme. Green circles mark solutions found by the algorithm.
Red crosses mark branches that were pruned and whose children algorithm does not explore any further.

Common pruning criteria in spacecraft trajectory optimisation are the cost (∆V ) of the path and the

time of flight associated with it [32, 40]. A Depth-First strategy is recommended for use with Branch and

Bound because it produces full solutions faster, enabling the pruning criteria to be refined early on.
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Chapter 5

Trajectory Design: Interplanetary Phase

Figure 5.1: Design approach for the interplanetary and Saturn orbit insertion phases

The design process, pictured in figure 5.1, starts with fixing a suitable time frame for the mission

to Enceladus to take place. By taking into account the scope of other missions already built, or being

designed, it was considered that the parameters established in Table 5.1 are realistic. The Cassini-

Huygens [15], TSSM [22] and Decadal Survey [21] missions are also displayed for comparison, with

particular interest in the two latter which are foreseen to perform moon tours. Note that, unlike the

mission to Enceladus, the TSSM mission is propelled by electric thrusters during the interplanetary

phase. Cassini has a faster cruise time because it took advantage of a Jupiter gravity assist on the way

to Saturn. Total mission time is usually constrained by the nominal lifetime of current nuclear power

cores, around 14 years for typical RTGs [93] or 17 years for more recent ASRGs [21, 94].

Table 5.1: Mission start and duration parameters for the mission to Enceladus and others.

Parameter Mission to Enceladus Cassini-Huygens [14, 15] TSSM [22] Decadal Survey [21]

Mission Start Jan 1, 2022 to Jan 1, 2030 Launched 15 Oct 1997 10 Sep 2020 to 30 Sep 2020 January 28 2023
Interplanetary Flight Time (6 to 10) years 7 years 9 years 8.5 years
Moon Tour Duration (0 to 4) years 12+ years performing science 2 years 3.5 years
Total Mission Duration ≤ 17 years 20 years (extended mission) 14 years (extendable) 13.5 years

The next step is to define a set of possible sequences that the spacecraft can use to get to Saturn.

Once this is done, all the information necessary to globally optimise the interplanetary trajectory is

ready. The trajectory is optimised using the topology defined in the previous chapter to obtain sets of

possible options. Finally, the spacecraft is inserted in Saturn’s orbit and a periapsis raising manoeuvre

is performed to reach Titan, starting the moon tour.

5.1 Finding Sequences

To find a multi gravity-assist trajectory between two planets one must first define the sequence of gravity

assist bodies in the spacecraft’s path. At a first glance, there would be an infinite number of paths that a
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spacecraft could follow to go from Earth to Saturn but, in practice, some combinations lead to a higher

mission cost or unfeasible times of flight. Naturally, choosing an adequate sequence will have positive

effects on fuel consumption, flight time and launch energy required.

To determine these flight paths, two methods were employed. The first method consists in finding

trajectories to Saturn in literature and retrieve their flight paths. The second, more exhaustive, method

makes use of the Tisserand graph to find potential flight sequences within an allotted time frame. This

will be referred to as Tisserand sequencing from now on.

Alternatively, automatic sequencing [49] could have been performed. This method consists in allow-

ing the optimiser to automatically define the sequence of planets from a pool of candidates. The upside

to this approach is that it is fully automatic and requires no user knowledge or input. This method,

however, is very inefficient as the combinations of planets generated may be far from optimal, vastly

increasing the search space and the problem’s complexity.

5.1.1 Tisserand Sequencing

The main idea behind Tisserand sequencing is to create an automated traversal algorithm that will find

transfer sequences from Tisserand graphs. Unlike automatic sequencing, this method does not increase

the complexity of the optimiser as it only needs to be executed once to find possible sequences. The

downside to Tisserand sequencing is that, while it tells us if a trajectory is possible from an energy

point of view, it may provide unfeasible solutions due to not taking planetary phasing into account (as

discussed in Section 3.6) [78].

Flight sequences are found by linking the intersections of V∞ curves from different planets, which

correspond to potential transfer orbits between the intersecting planets. Ballistic resonant orbits (Tsc =

NTplanet, where N is integer) are also added to the graph to allow potential resonant flybys.

The Tisserand Sequencer presented here will be divided into three parts:

1. Construct the plot: compute the Tisserand Graph for all the planets of interest. This was already

explained in section 3.6. An example plot for the Solar System can be consulted in Appendix A

(figure A.1).

2. Build the search graph: compute the intersection nodes, the resonant nodes and link them to-

gether in an adjacency matrix.

3. Find paths: run a path-finding algorithm on the search graph to find flight sequences.

Building the Search Graph

Building the search graph is a crucial part of the program. The structure implemented here has a multi-

directional graph topology, where nodes are connected to each other in a bi-directional way. The basic

data structure of the graph is the node. In this instance, a node is either a transfer orbit - given by

the intersection of two V∞ curves - or a resonant orbit. Nodes are connected by edges that will be

represented computationally by using an adjacency dictionary – a fast-access structure that tells each

node its neighbours.
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The intersection nodes are found from the discrete V∞ curve data by approximating each curve with

a radial-basis function (RBF) and then using a root-finding bisection method to solve equation 5.1 for

each set of intersecting curves,

rbfcurve1(x)− rbfcurve2(x) = 0. (5.1)

The radial-basis function was chosen because it is fast and readily available through the Scipy scientific

library for Python but other methods may be used. Because of the monotonic nature of the V∞ curves,

if two curves intersect they do so at one point only.

Resonant nodes are computed by using the radial-basis approximation of each V∞ curve to find

points in which the period of the spacecraft’s orbit is an integer multiple of the period of the gravity-assist

body. For the purposes of the Solar System, we are not interested in high resonances as these would

have impractical times of flight. The resonances considered, for each planet in the inner solar system,

were 1:1, 2:1 and 3:1.

Finally, to determine the edges of the graph, nodes must be linked together. Due to the bi-directional

nature of the search graph, if node A is in range of node B, then it is possible to travel between node A

and node B in two directions. A node will be in range of another if it matches two conditions:

1. It lies within the same V∞ curve.

2. A flyby from A to B obeys the minimum flyby radius constraint.

Condition two is verified if

|αA − αB | ≤ δmax, (5.2)

where δmax is given by equation 3.3, substituting rfb with the planet’s safe flyby radius. The pump angle

for each node can be determined via equation 3.12. The edges are built by adding each node to the

other’s entry in the adjacency dictionary.

Finding Paths

The objective of the path-searching algorithm is to string together sequences of intersection and reso-

nant nodes within the constraints provided by the user. These are:

• Start Planet and End Planet

• Launch V∞

• Maximum Number of Flybys

• Maximum Time of Flight

• Maximum Number of Sequences

The program starts by finding a list of start and destination nodes. The start vertexes must be in the

launch V∞ curve and be intersection nodes. The destination vertexes must belong to the destination

planet and must also be intersection nodes. This means that a path is determined when a transfer orbit

to the final planet is found.
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Next, the path-finding algorithm is executed with each start node as the root of the search tree.

Branches of the search tree are pruned if their current fastest possible time-of-flight, or length (flyby

count), are above the user-defined constraints. The path-finding stops when all paths from the selected

start node to the destination planet are found or when the maximum number of sequences is reached.

Two alternatives for the path-finding algorithm were considered:

• Depth-First Search (DFS) - A node is selected as root and the algorithm proceeds to completely

explore along a branch of the tree (“vertically”) before proceeding to the next branch. Returns all

paths between two nodes in no specific order.

• Breadth-First Search (BFS) - The algorithm explores the search tree level by level (“horizontally”).

Returns all paths between two nodes with the path with shortest length being found first.

The first comment about these algorithms is that their complexity scales with the number of nodes

and edges in a graph. Moreover, because the graph is multi-directional, if the maximum flyby number

constraint is not implemented, then cyclic infinite paths may exist between two nodes. For the purpose of

the Tisserand Sequencer, BFS was chosen. When compared to DFS it has the advantage of returning

the paths by order of length, which allows for a better feel of how the algorithm is progressing. It also lets

us implement a maximum number of sequences with certainty that the shorter ones, in terms of flyby

number, will be found.

The fastest flight time can be found by testing all possible combinations of flight times for a trajectory,

as detailed in table 5.2 where ti is the solution of Kepler’s equation at each encounter and Tsc is the

period of the transfer orbit. When joining path nodes together to calculate the fastest time of flight, one

must be careful because when the spacecraft arrives at a planet inbound or outbound, it must also leave

inbound or outbound, respectively.

Table 5.2: Flight times. I: Inbound; O: Outbound. “Up” signifies a transfer from an inner to an outer
planet and “Down” is the opposite.

”Up” ”Down” Flight Time

I-I O-O Tsc + t1 − t2
O-I O-I Tsc − t1 − t2
I-O I-O t1 + t2
O-O I-I t2 − t1
Resonant Orbit Tsc

5.2 Global Optimisation

Now that the time frame for the mission and the list of possible sequences is formulated, it is possible to

start the global optimisation procedure.

The global optimiser implements the MGA-1DSM formulation as a PyGMO optimisation problem,

receives the required inputs from the user and then optimises the problem by using the topology defined

in Section 4.3.1.
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The computational implementation of MGA-1DSM is already present in PyGMO and PyKEP because

it is so frequently used as a baseline model for the study of preliminary spacecraft trajectories in the

GTOC competition. This formulation is implemented in Python as a PyGMO.problem class. For box-

bound problems, PyGMO requires the specification of two methods: init and objfun impl [82]:

• init is the method that initialises the problem, stores all relevant information for the optimisation

and computes the chromosome’s bounds from the user’s inputs. The bounds set the minimum and

maximum value that each entry of the chromosome can take during the optimisation procedure,

to make sure that resulting trajectories are not outside the user’s specifications. For this purpose,

it requires the following information: the flight sequence, the launch window, the minimum and

maximum allowed time of flight and the maximum allowed launch V∞ magnitude.

• objfun impl, is the PyGMO problem’s method that computes the objective function value of a given

candidate chromosome. It does so by closely following the formulation described in Section 4.2.2

and the procedure described in Section 3.2. Algorithm 3 describes this implementation.

Algorithm 3 MGA-1DSM Objective Function Calculator
Input: Candidate chromosome

1: Decode the chromosome to obtain each leg’s TOF and launch V∞ components
2: for planet in sequence do
3: Store: Launch / Arrival / Flyby Epoch
4: Store: Position and Velocity at Epoch← Ephemeris
5: Calculate spacecraft’s initial heliocentric velocity from V∞ and VEarth

6: Propagate spacecraft’s trajectory until first DSM
7: Solve a Lambert problem from location of first DSM to the next planet in sequence
8: Compute the First DSM’s ∆V
9: for remaining planets in sequence do

10: Propagate flyby
11: Propagate outgoing spacecraft trajectory until DSM
12: Solve a Lambert problem from DSM to the next planet in the sequence
13: Compute DSM ∆V

14: Compute Arrival V∞ vector
15: Return:

∑
∆VDSM + ||V∞Arrival

||

Note: the two-body propagator used in this work is already implemented in PyKEP through the

propagate lagrangian function. More documentation is available online [81].

Everything is ready to start the global optimisation procedure. The implementation is described

in algorithm 4. To begin with, the ephemeris data is loaded into special PyKEP classes that define

planets. These hold information such as planetary data (radius, µ, . . . ) and the eph method which

calls the ephemerides system and returns the position and velocity of the planet at a given epoch.

Then, the optimiser receives the inputs required by the MGA-1DSM problem to initialise it and does

so. Subsequently, each algorithm is initialised and configured through PyGMO, according to what was

established in Section 4.3.1. Finally, the PyGMO archipelago can now be built, with each island, or

separate algorithm, connected via a rim topology.

Each run of the optimiser yields a trajectory that may be the optimal trajectory for the defined user

54



Algorithm 4 Global Optimisation Procedure
1: Load interpolated ephemerides data
2: Initialise planets . PyKEP.planet data structures
3: Flight Sequence, Launch Window, Time of Flight range, Launch V∞ range← User Input
4: Initialise MGA-1DSM optimisation problem . PyGMO.problem data structure
5: Configure optimisation algorithms
6: Build optimisation archipelago . Topology defined in Section 4.3.1
7: Optimise
8: Retrieve champions from each optimisation island
9: Store: best trajectory data and plot, best solution’s chromosome

parameters. In practice, because of the stochastic nature of the algorithms, the optimisation is ran

several times for the same user configuration, to increase the probability of finding the global minimum.

The outputs are stored in a plain-text file with the following information:

1. User Inputs: Launch window, flight sequence, launch V∞ range and time-of-flight range.

2. Algorithm Configuration: The configuration of the algorithms used to produce the result.

3. Main Results: A summary of the main results. Objective function value, optimisation chromosome,

time of flight for each leg, total time of flight, interplanetary ∆V and arrival V∞.

4. Launch data: Launch V∞ and epoch.

5. Leg data: Information about each leg of the trajectory. Duration, flyby epoch and radius, DSM

epoch and magnitude.

6. Arrival data: Arrival epoch and V∞. This information will be transmitted to the Saturn orbit inser-

tion phase.

Different trajectory candidates can now be easily evaluated and categorised in order to choose sev-

eral options for the interplanetary phase. The choice of interplanetary trajectory options is intimately

related to the nature of the mission and its operational constraints (e.g. engineer and ground station

availability). Because this work lacks most of this information, the choice will be based on four main pa-

rameters: launch V∞, interplanetary ∆V , launch date and arrival V∞. The results of the interplanetary

phase are detailed in Chapter 7.

5.3 Saturn Orbit Insertion

At the end of the interplanetary trajectory, it is necessary to perform a Saturn Orbit Insertion (SOI)

manoeuvre to have the spacecraft enter into an orbit around Saturn and be captured by the planet’s

gravity — phase two of the mission to Enceladus begins.

Orbital operations during phase two are to be divided into two parts: orbital capture, which deals with

the determination of the arrival and capture geometries and produces the capture ∆V as a main result,

and a Periapsis Raising Manoeuvre (PRM), with the objective of targeting a flyby at Titan, resulting in
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the determination of the PRM’s ∆V and Titan arrival geometry. Titan was chosen to start the moon tour

because it is the largest moon in the Saturn system and, therefore, it allows a higher design flexibility as it

is easier to change orbital characteristics, such as inclination, with Titan than other lower gravity moons.

With Titan, it is possible to reduce the apoapsis of the spacecraft’s orbit down from the long-period PRM

orbit faster than with a smaller moon.

The models implemented in this phase continue to assume a two-body approach and do not take

into account the effect of Saturn’s oblateness (J2 effects). Additionally, in order to link the interplanetary

phase with the capture phase, it is assumed that the epoch of arrival at Saturn, given by the optimiser,

is coincident with the epoch at which the orbit insertion manoeuvre is performed.

The most challenging and unique aspect of entering Saturn’s orbit are its massive rings that pose a

considerable threat to the spacecraft’s structural integrity. Two gaps in the rings exhibit the best chance

for the spacecraft to cross the ring plane safely with the least cost associated: the Huygens Gap, in the

Cassini Division, and the F-G gap. Additionally, TSSM’s mission designers also put forth the possibility

of having a spacecraft cross the ring plane between the planet and the D ring, but this region is not

well mapped and crossing so close to the planet involves considerable navigation challenges, such as

dealing with possible atmospheric drag [22].

The Huygens gap is a 400 km-wide strip at the inner edge of the Cassini Division [56]. While 400 km

seems rather large at an earthly scale, it is a narrow distance that poses considerable navigation chal-

lenges to a spacecraft that is almost 10 astronomical units away and must be completely autonomous.

The F-G gap has two regions where the spacecraft can cross: an 8500 km strip between the outer edge

of the F ring and the inner edge of the Janus / Epimetheus ringlet and another, larger, 12000 km strip

between the outer edge of the Janus ringlet and the inner edge of the G ring, where the Cassini-Huygens

probe crossed when it arrived at Saturn in 2004 [22, 55].

Because it is safer to cross in the F-G gap, that will be option A for the mission to Enceladus but the

possibility to cross in the Cassini Division remains an alternative that is more fuel efficient because rp

will be lower (as will be explained in Section 5.3.1).

5.3.1 Capture

The design of the arrival geometry is based on B-Plane geometry (remember Section 3.3) and starts

with the user specifying the arrival B-plane components, obtained from the desired orbital inclination and

periapsis radius. Then, taking advantage of the definition of the B-plane, the arrival hyperbolic orbit is

determined. Finally, the SOI manoeuvre is performed at the periapsis of the arrival hyperbola, where

it has a lower cost, and the probe is inserted into a highly elliptical, co-planar orbit around Saturn. For

the duration of the capture procedure, the designer can not be oblivious of Saturn’s most obvious orbital

constraint, the massive rings.

To understand the orbit capture procedure in more detail let’s start by studying its high-level compu-

tational implementation, shown in algorithm 5, breaking it down in small steps.

To begin with, the SPICE [73] kernel containing useful reference frame conversions is loaded. This

allows easy conversion between the J2000 inertial reference frame and the IAU SATURN planet-centred,
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Algorithm 5 Saturn Orbit Capture
Input: V∞, Arrival Epoch, rperiapsis, ecapture

1: Load: SPICE Kernel
2: Reference Frame conversions← SPICE . J2000 to IAU SATURN
3: Convert arrival asymptote from J2000 to IAU SATURN and get δ∞
4: Compute Saturn’s rings in the IAU reference frame . Will be needed to test collisions
5: Calculate B-Plane axes and B-Plane components
6: Compute the arrival hyperbolic orbit
7: Propagate backwards from periapsis and detect ring crossings / impacts
8: Compute insertion ∆V
9: Propagate forward from periapsis to apoapsis and detect ring crossings / impacts

Output: rapoapsis,vapoapsis and epoch at apoapsis.

rotating, reference frame at a given epoch. IAU SATURN, hereafter referred to as IAU only, is important

because it defines Saturn’s equatorial plane, which is approximately coincident with that of the rings and

moons. For the duration of the design of this phase, orbital inclination will be measured with reference

to Saturn’s equatorial plane and not to J2000’s reference frame. The IAU body-fixed reference frame is

defined as follows:

• x̂IAU: Unit vector in the direction of the prime meridian of the planet, as defined by IAU conven-

tion [70].

• ẑIAU: Unit vector normal to the equator, pointing towards the planet’s north pole.

• ŷIAU: Unit vector that completes the right-handed reference frame.

Then, the arrival asymptote, which is the symmetric of the arrival V∞ (because it points towards

Saturn and not from Saturn), is converted from the J2000 frame, used in the interplanetary phase, to

the IAU reference frame so that declination can be calculated from equation 3.7. Note that, because

the planet rotates, the IAU frame will not be in the same positions when the spacecraft is at periapsis

or when it is at “infinity”, crossing Saturn’s sphere of influence. This, however, does not change the

declination because it is measured relatively to the Z-axis, which is the axis of rotation of the reference

frame and is approximately fixed (if the precession and nutation of the axis are not taken into account).

B-Plane

B-plane components, θB and b, are derived from the user-defined inclination and periapsis radius,

through equations 3.5 and 3.2, respectively. Because it is desirable to enter Saturn with the lowest

possible inclination, as the moon tour phase will require orbits to be in the orbital plane of the moons,

the inclination is set to match the arrival declination, the lowest value it can take due to the constraint set

by equation 3.6. This is equivalent to θB = 0.

The B-plane is defined in the J2000 inertial frame and axes are as described in Section 3.3:

• Ŝ = − V∞
||V∞||

— A unit vector parallel to the incoming asymptote.

• T̂ = Ŝ× [0, 0, 1]IAU→J2000 — A unit vector parallel to the reference plane (in this case the equator)

and perpendicular to the incoming asymptote.
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• R̂ = Ŝ × T̂ — A unit vector completing the right-handed reference frame.

Arrival Hyperbolic Orbit

Once the B-Plane and the B-plane vector B (see equation 3.4) are defined, the point of entry of the

spacecraft in Saturn’s sphere of influence can be determined. The sphere of influence is the region of

space where Saturn’s gravity attraction is dominant over that of the Sun and is approximately given by

rsphere ≈ asaturn
(
mSaturn

mSun

)2/5

≈ 54.6× 109m, (5.3)

where asaturn is the semi-major axis of Saturn’s orbit around the Sun and m is mass. The point of entry

in the sphere of influence is found by drawing a line, starting at the edge of the b-plane vector, that is

perpendicular to the B-plane, until it intersects the sphere of influence,

rs/c,∞ ≈ B + rsphere.(−Ŝ). (5.4)

From here on, the arrival hyperbola is fully defined and the periapsis vector and periapsis velocity vector

can be found by propagating the hyperbola forward from the initial conditions and detecting where the

distance to Saturn is minimum.

Orbit Insertion

Orbit insertion is performed at the common periapsis of the arrival hyperbola and the post-insertion

ellipse as it is the point where the manoeuvre has the lowest ∆V cost. The burn is performed anti-

parallel to the periapsis velocity vector because no changes are desired in the line of apsides or orbital

inclination, at this point.

The insertion ∆V is given by the subtraction of the hyperbola’s velocity at periapsis, Vh|p, and the

desired ellipse’s velocity at periapsis, Ve|p,

∆VSOI = Vh|p − Ve|p = Vh|p −

√
2µSaturn

(
1

rp
− 1

2acapture

)
, (5.5)

where Vh|p is given by the forward propagation of the arrival hyperbola until periapsis, rp is the magnitude

of the periapsis vector and acapture is the semi-major axis of the user-defined post-capture ellipse,

acapture =
rp

1− ecapture
. (5.6)

Since rp and ecapture are user-defined values, it is important to understand how their choice affects the

outcome of the problem. From inspection of equation 5.5 it is clear that a high eccentricity and low rp

lead to a lower ∆VSOI . However, it is not as simple as choosing the values for these quantities that

minimise ∆V : varying rp and ecapture greatly affects the point of passage of the spacecraft through the

ring plane and, consequently, whether the spacecraft collides with the rings or makes it through safely!
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Ring Crossing Detection

Ring collision detection is performed by propagating the trajectory of the spacecraft backward and for-

ward from periapsis, at a fine step. At each instant, the position vector of the spacecraft is converted to

the IAU frame. When the sign of rz changes it means the spacecraft crossed the equator plane, which

is also the ring plane. Then, the magnitude of the position vector at crossing is cross-checked with the

position of the rings. If impact is detected, rp and ecapture need to be adjusted by the user until the

spacecraft clears the rings.

Usual values for ecapture are very close to 1, such as 0.99 or 0.985 (TSSM’s and Cassini’s, respec-

tively) [15, 22] and this tends to stay fixed, while rp, which has a smaller effect on the variation of ∆VSOI ,

is adjusted to ensure passage through the rings.

5.3.2 Periapsis Raising Manoeuvre

After the orbital capture manoeuvre, it is necessary to perform a Periapsis Raising Manoeuvre (PRM) to

have the spacecraft’s orbit clear the rings and, more importantly, to target the first flyby of Titan, starting

the moon tour. The PRM burn changes periapsis more efficiently when placed at apoapsis of the post-

insertion ellipse, although this may not be an optimal location if the goal is to reach Titan. The ∆V

associated with the PRM manoeuvre will vary with the period of the post-capture orbit. Typically, longer

orbits with a high period and eccentricity produce cheaper PRM manoeuvres.

The method that was chosen to design the PRM is rather straightforward: solve Lambert problems

that start in the vicinity of the apoapsis of the post-capture orbit and end at Titan, with variable time of

flight. This is complicated by the need to impose two constraints:

1. Inclination: The models implemented for the moon tour assume a planar geometry, which means

the inclination of the post-PRM orbit should be as low as possible to permit a first flyby of Titan that

will perform an orbital plane change to a near-equatorial orbit, reducing errors associated with the

use of a 2D approach.

2. V∞,Titan: It is desirable, for the moon tour, that the arrival V∞ with respect to Titan is as low as

possible. This reduces the cost of V∞-leveraging manoeuvres required to perform the Titan phase

of the moon tour. More details in Chapter 6.

This results in a constrained optimisation problem with the following specific definition:

Minimise: ∆VPRM (p), (5.7a)

Subject to: i(p) ≤ imax, boundary constraints (5.7b)

V∞,T itan(p) ≤ V∞max
, (5.7c)

where p is the decision vector, or chromosome, given by

p = [∆tapo, tofPRM ], (5.8)
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with tofPRM being the post-PRM orbit time of flight and ∆tapo is the time from apoapsis of the post-

insertion orbit at which the Lambert problem is launched.

In PyGMO, constrained problems require an additional method, compute constraints impl. This

method computes the violation of each constraint for a given chromosome and defines if a trajectory is

feasible or infeasible. The objective function, defined by method objfun impl is calculated as shown in

algorithm 6. rapo and vapo indicate the state of the spacecraft at the apoapsis of the post-insertion orbit

(instant tapo). These quantities are all transmitted from the capture phase.

Algorithm 6 PRM Objective Function
Input: ∆tapo, tofPRM , rapo, vapo, tapo

1: ri, vi ←Propagate spacecraft’s trajectory for ∆tapo seconds
2: rtitan, vtitan ← Ephemeris at tapo + ∆tapo + tofPRM

3: Solve Lambert problem . From ri to rtitan within tofPRM

4: Compute ∆VPRM . From vi and vlambert,i

Output: ∆VPRM

The determination of the inclination and V∞,T itan for the compute constraints impl method follows

the same strategy. Inclination is computed by transforming the spacecraft state vector, evaluated at any

point of the post-PRM orbit, to the IAU frame and then obtaining the orbital elements from the new state

vector [64].

The post-PRM maximum inclination, imax, and Titan V∞max
are problem specific and need to be

tested to see what yields feasible trajectories. This V∞max
is an important parameter with direct effect

in the quality of the moon tour solution. It should be as low as possible so that the cost and number of

VILTs for the Titan and Rhea phase of the moon tour are reduced, as it will be seen in Chapter 7.

The constrained optimisation problem is solved by means of a local optimiser. There is no need

for a global optimiser due to the narrow search space and small number of optimisation variables. For

the purposes of this work, Sequential Least Squares Programming (SLSQP) was chosen because it is

already implemented in PyGMO and solves constrained optimisation problems. In PyGMO’s implemen-

tation of SLSQP [82], the initial guesses are generated at random from user-defined bounds for each

entry of the chromosome. Due to this stochastic component, optimisation is ran several times to build a

set of feasible trajectories from which the best is chosen and returned to the user.

The results of the Saturn orbit insertion and PRM are stored in a plain-text file that sums up all

relevant information from arrival at Saturn to arrival at Titan.

60



Chapter 6

Trajectory Design: Moon Tour

The moon tour is one of the key aspects of the mission to Enceladus. If, after Saturn insertion and PRM,

a direct Hohmann transfer from Titan’s orbit to Enceladus were to be performed, the cost of Enceladus

Orbit Insertion (EOI) would be around 3.6 km/s [57] for a 100 km circular orbit, an unacceptably high

value for a deep space mission. The moon tour’s main purpose is to drastically reduce this value by

stringing together sets of transfers that progressively lower the periapsis of the spacecraft’s orbit to the

orbit of Enceladus (a procedure known as pump down).

Pump down can be achieved by linking together resonant orbits, at each moon, that will rotate the

V∞ vector by the 180o required to perform, ideally, Hohmann transfers from one moon to another, as the

spacecraft orbit’s periapsis becomes its new apoapsis [53]. Figure 6.1 illustrates this. Resonant orbits

are useful because they allow a “free” return to the moon. A purely ballistic resonant moon tour would

require no ∆V .

Figure 6.1: Hohmann transfers between moons.

However, because the moons involved have low mass, the amount of bending they can provide to the

velocity vector is limited (remember Tisserand graphs). Therefore, a ballistic resonant tour as described

would include a lot of resonant transfers and, where low-period resonances are not available, lengthy

resonances would need to be used, resulting in a very long moon tour.

But what if a manoeuvre could help by providing additional bending? This is where the V∞-Leveraging

technique is useful. Through the use of a small ∆V , a VILT changes the spacecraft orbit’s V∞ with re-

spect to the gravity-assist body by modifying the point of encounter between the spacecraft and the
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moon. Having lower V∞ serves two purposes: the amount of bending that is available from the moon

is increased (see equation 3.3) and orbit insertion is cheaper. The use of this technique is rather novel

and opens up the possibility to visit exciting low mass moons such as Enceladus. It was first introduced

for this purpose by NASA, in 2010’s Decadal Survey [21] and has since seen further study [53, 57].

The strategy implemented in this work will make use of a deterministic Branch and Bound method

to string together a tour of VILTs and resonant orbits. It will be assumed here that all manoeuvres are

performed in the orbital plane of the moons and the moons’ orbits will initially be considered circular,

agreeing with the approximations laid down in sections 3.6 and 3.7. This is a reasonable assumption

since the orbital eccentricity of the moons of interest is indeed small (see section 2.3).

The Periapsis Raising Manoeuvre results in the first encounter of the spacecraft with Titan. At this

point, the incoming orbit has a certain inclination and V∞ with respect to Titan, given by the outputs of

the PRM optimiser. Before starting the VILT tour, it is necessary to change the plane of the spacecraft’s

orbit from whatever inclination it had before to the orbital plane of Titan. To save ∆V , this is performed

through a first gravity assist at Titan that changes the plane of the spacecraft’s orbit. In addition to being

able to accomplish the plane change, the post-flyby orbit needs to be resonant so that the spacecraft

returns to Titan to start the VILT tour.

6.1 Building Block

The building block of the moon tour is the V∞-leveraging transfer (see Section 3.7.2). The Tisserand plot

is useful to understand the idea behind linking these manoeuvres, as pictured in Figure 6.2.
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D’
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Figure 6.2: Example of an exterior VILT overlaid on a ra-rp Tisserand plot.

The blue line in Figure 6.2 is the result of computing several phase-fixed exterior N:M VILTs starting at

V∞1, where each point in the line is associated with a different post-VILT V∞. Changing VILT parameters,

such as L, kei or the geometry, yields different curves (like the blue dashed lines). For a fixed set of

(EXT/INT) N:M VILTs starting at V∞1 there are 4M curves like the blue one — one for each combination

of geometry and L.

Point B, where ∆VV ILT = 0 and V∞ is the same as in point A, is either a resonant ballistic transfer

orbit (II and OO geometries) or a non-resonant ballistic transfer orbit (OI and IO geometries). Non-
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resonant ballistic transfers are orbits that, despite not having a period that is an integer multiple of

TMoon, still encounter the moon at one of the intersection points of the two orbits.

If the incoming orbit is at point A, there are three alternatives to move across the Tisserand plot. If

point C is within the maximum possible rotation, then it is possible do a gravity-assist to move along the

V∞1 curve to reach that point and then perform an exterior VILT (constant ra) to move to D. At point D,

the spacecraft re-encounters the moon and can now repeat this process in curve V∞2. Alternatively, the

spacecraft can perform a flyby to move to point B and enter a resonant orbit that will end back at the

gravity-assist body, with no change in V∞ and no ∆V cost.

If neither B nor C are reachable due to the minimum flyby constraint, it is still possible to perform a

gravity assist to point C’ and hop to a higher V∞ curve, allowing the spacecraft to possibly reach new

resonances to continue the VILT tour. While this is non-intuitive and goes against the objective to lower

V∞, if this particular VILT has a low resonance, associated with an attractively low flight time, it may

justify the increase.

This procedure is iteratively repeated for each combination of VILT parameters, at each resonance,

to form tours like the one shown in figure 6.3 which is, in no way, optimal. The procedure outlined here

is compatible with a search tree algorithm such as Branch and Bound.

X

Flyby

VILT

Figure 6.3: Example of a non-optimal VILT tour at Titan. V∞ curves range from 0.1 km/s (top) to 3.5
km/s (bottom) at 0.1 km/s steps. Red dashed lines represent ballistic resonant transfers. Red lines are
VILTs and green lines are flybys. The blue line represents the orbital radius of the next moon in the
sequence (Rhea). Orbits in, or below, the blue rectangle are potential transfer orbits.

Figure 6.3 shows three types of possible manoeuvres: an exterior VILT (ending in a 3:1 resonance),

a ballistic resonant transfer (2:1) and an interior VILT (ending in a 1:1 resonance). Orbits in the blue

rectangle are Saturn-centred orbits with an apoapsis at, or above, Titan’s orbit and a periapsis at, or

below, Rhea’s orbit, meaning that these are orbits that intercept Rhea’s orbit. Assuming there is a

perfect phasing between moons at the time of the last flyby, it would be possible to encounter Rhea

without the need to perform an impulsive manoeuvre.
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6.2 Finding Tours

The moon tour is divided into several phases. Each phase is characterised by a VILT tour around one

moon. Therefore, there are 5 phases in this moon tour: Titan, Rhea, Dione, Tethys and Enceladus. The

first four are similar as the objective is to reach a transfer orbit to the next moon. The Enceladus phase

has the different goal of lowering V∞ as much as possible for orbit insertion. This is sometimes referred

to as an endgame [80].

Each phase of the moon tour is divided in three main components. The phase starts with a branch

and bound search, where a library of solutions is built. Then, one or more solutions are selected accord-

ing to criteria, such as ∆V and time of flight. Finally, the phase is connected to the next one through a

constrained optimisation problem based in a MGA-1DSM formulation.

6.2.1 Preparing the Search

The first step in each phase is to construct a list of allowed resonances that the branch and bound

algorithm will test. In general, the N number of moon revolutions is limited so that the maximum time of

flight for a resonant orbit is around 30 days (except for Titan). Short of testing all the possibilities, there

is no a priori way of telling what are the best resonances. With some design experience, it is possible

to detect higher resonances in the list, that are not required to build the moon tour, and remove them,

improving the performance of the algorithm.

The resonances allowed for each phase are shown in table 6.1.

Table 6.1: Resonances allowed for the branch and bound search.

Moon Resonances Allowed

Titan 4:1, 3:1, 2:1, 1:1
Rhea 3:1, 8:3, 5:2, 7:3, 9:4, 11:5, 2:1, 11:6, 7:4, 8:5, 3:2, 10:7, 7:5, 9:7, 6:5, 9:8, 1:1, 5:6
Dione 4:3, 9:7, 5:4, 6:5, 7:6, 8:7, 9:8, 10:9, 11:10, 12:11, 1:1, 11:12, 10:11, 9:10, 8:9, 7:8, 6:7
Tethys 11:9, 6:5 ,7:6 ,8:7 ,9:8 ,10:9 ,11:10 ,12:11 ,13:12 ,14:13 ,15:14 ,1:1 ,13:14 ,10:11 ,9:10 ,7:8

Enceladus 7:6, 20:17, 15:13, 8:7, 17:15, 9:8, 19:17, 10:9, 21:19, 11:10, 12:11, 13:12, 14:13, 15:14, 16:15, 19:18, 24:23

Next, the search space is partitioned in discrete V∞ values, like in a Tisserand graph. Naturally, the

more V∞ levels present in the search, the slower the algorithm is. For the purposes of this work, all

solutions were obtained at 50 m/s steps (except Titan, which allowed a reduction in step).

For each of these levels, the resonant and non-resonant ballistic orbits, corresponding to the allowed

resonances, are pre-calculated and stored as pump angles. The Ra and Rp of these resonant and non-

resonant ballistic orbits can be obtained by solving a phase-fixed VILT with V∞1 = V∞2 . The pump angle

can then be obtained from the Ra and Rp of the orbit through equation 3.12.

The last thing left to prepare before starting the Branch and Bound search are the start and goal

nodes. Goal nodes are found from the intersection of the V∞ levels with the horizontal line that marks

the periapsis of the orbit of the next moon in the sequence (which would be the points in the top edge of

the blue rectangle in figure 6.3). For Enceladus, result detection is a little different. The search algorithm

detects whether the node being tested has a V∞ that equals a user-defined V∞ level. If it does, it is
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considered a result hit and stored.

Start nodes are obtained from the previous phase of the moon tour. In Titan’s case, the start node is

given by the Ra and Rp of the post-PRM orbit. For other moons, the start node is given by the Ra and

Rp of the transfer orbit that connects the two phases together (see section 6.2.3). Start and goal node

coordinates are also stored as pump angles via the node data structure.

A node is the basic data structure of the Branch and Bound search. It represents an orbit in the

Tisserand plot and contains the following information:

• Pump Angle (α): Pump angle in the V∞ curve where the node is located.

• Geometry: OO/OI/IO/II

• Type: Start, Goal, VILT or Resonant

• Cost: ∆V

• Time of Flight: Only stored for nodes of type VILT and resonant.

• Orbit Info: Flyby radius, resonance N:M, VILT parameters (L, kei, post-flyby α) and V∞ level

6.2.2 Branch and Bound

All the information to start the branch and bound search is now available. The rules that define the

search algorithm are the following:

• Pruning Criteria: a branch is pruned when the path’s time of flight has exceeded a user-given

TOFmax or when the path’s cost is higher than a user-given ∆Vmax or than the actual best cost.

• Stop Conditions: the search stops when a maximum number of results has been reached or

when the entire tree has been explored.

• Result Criteria: A path is a result when it includes the goal node and its cost is equal or lower

than the actual best.

• Flybys have to obey the minimum flyby radius constraint.

• VILTs are constrained to a user-given ∆VV ILTmax
. This is done to avoid needlessly increasing the

search space with costly manoeuvres.

• Flybys can not be performed in an “uphill” direction, meaning αpost−GA > αpre−GA has to be

verified.

• The velocity vector can not be turned by 180o in a single flyby. This means that if the spacecraft

arrives outbound / inbound, it leaves outbound / inbound. This prunes out infeasible flybys and

reduces the number of VILTs that have to be computed at every step.
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Algorithm 7 VILT Tour Branch and Bound Search
Input: Start node, goal nodes, pruning and stop criteria, resonant transfers, V∞ levels

1: Initialise best cost . Can be∞ or a user-given value
2: Initialise the stack with the start node
3: while stack is not empty or nr. results ≤ max nr. results do
4: Vertex, Path← Last node in stack
5: if Path Cost > best cost or Path TOF > Max. TOF then
6: Prune branch and go to 2
7: Initialise an empty adjacency list
8: Allowed geometries← OI,OO if vertex geometry is IO or OO else IO,II
9: for N:M resonance in the resonance list of the current V∞ level do

10: if αresonance < αvertex then . Prevents uphill flybys
11: Go to 7
12: if |αresonance − αvertex| ≤ δmax then . Minimum flyby radius constraint
13: Add two resonant nodes to vertex’s adjacency list (one for each allowed geometry)
14: for V∞ ∈ V∞ levels do . Add possible VILTs to the adjacency list
15: for exterior, interior do
16: for geometry in allowed geometries do
17: for L from 0 to M-1 do
18: Compute phase-fixed VILT starting at V∞vertex

19: if ∆VV ILT < ∆VV ILTmax then
20: if |αpre−GA − αvertex| ≤ δmax then . Minimum flyby radius constraint
21: Add VILT node to adjacency list
22: for node in adjacency list do
23: if |αnode − αgoal| ≤ δmax then . If node is in range of a goal node
24: if cost of path + node < best cost then
25: best cost← cost of path + node . Set new best cost
26: Store: path + node . Store the result
27: Increment result counter and go to 22
28: else
29: Add the node and path information to the stack and go to 3
Output: Stored tour paths

With all the rules and conditions established, it is now possible to proceed to the implementation of

the branch and bound scheme. The pseudo-code is described in algorithm 7.

Branch and bound assumes a depth-first scheme, where the last nodes to enter the stack are the

first to be analysed (last in, first out). The depth-first search allows the search algorithm to refine the best

cost early on. This helps to narrow down the remaining search space as pruning will be more aggressive.

The downside to this approach is that the complexity of the algorithm is proportional to the dimension of

the tree. If too many resonances are added to the list, it may take a long time for the algorithm to find

results and will make it hard to exhaustively search the entire space because few branches are pruned.

If computational time is a problem, the number of computed VILTs can be drastically reduced by limiting

the L parameter of the VILTs to L = M - 1. This value was proven to generally produce the most efficient

VILTs [80].

The algorithm stores its results in a plain-text file with all the relevant information such as VILT

information, cost and time of flight of each manoeuvre and flyby radius.

Potential solutions for a given phase of the moon tour are selected based on ∆V and time of flight.

Sometimes, because phasing has to be taken into account, a tour that exhibits the lowest ∆V and time
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of flight might not be the best if the transfer between consecutive moons has a high cost. This means

that choosing a trajectory for each phase of the moon tour is an iterative procedure as the user has to

select trajectories and compute the inter-moon transfers until a satisfactory solution is found. Ideally, the

phasing problem should be solved for all solutions obtained by the search algorithm but this could lead

to high computation times. This automation remains a possibility to be investigated.

6.2.3 Inter-moon Transfers

Now that we have a potential tour for a selected phase, it is time to attach the solution to an epoch

and deal with the transfer orbits between one moon and the next. This procedure begins at the last

flyby in the tour where, to determine a transfer orbit to the next moon in the sequence, a constrained

optimisation problem is launched. The decision vector of this problem is given by

p = [T, η, β, rfb], (6.1)

where T is the transfer time of flight, η is the non-dimensional parameter that defines where in the arc

the DSM is executed, β is the 3D flyby plane change angle and rfb is the flyby radius of the last flyby.

The problem is similar to MGA-1DSM in formulation. The user inputs the pre-flyby velocity, time of

flight bounds and desired arrival V∞ and inclination with respect to the next moon. The objective function

then works by calculating the post-flyby velocity vector, propagating the post-flyby trajectory until the time

of the DSM (given by ηT ) and then launching a Lambert problem to have the spacecraft meet the next

moon after t = (1 − η)T . If T is big enough, then the spacecraft can perform multiple revolutions of

the central body before the DSM is executed. This is convenient in the Saturn system because moon

periods are small, when compared to the Solar system. A multi revolution geometry allows the spacecraft

to “wait” until the alignment with the moon is most convenient to perform the impulsive manoeuvre.

Furthermore, it is important for the optimiser to be able to configure the flyby’s properties, such as

flyby height and plane change angle, allowing it to target different V∞ curves in the next phase of the

moon tour. Figure 6.4 illustrates this. For different target V∞ levels, different flyby heights are required

to move from the green circle (the last flyby in the phase) to each of the red crosses.

V
∞1

 

V
∞2

V
∞3

 

Moon A

Moon B

Figure 6.4: Example tisserand graph portraying potential transfer orbits between moons. The blue
rectangle represents orbits with a periapsis lower than that of the next moon. The green circle is the last
flyby in moon A’s tour.
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This problem is subject to two equality constraints,

V∞ = V∞next and itransfer = inext, (6.2)

where i is the inclination. The arrival V∞ at the next moon must equal a user-defined value and the

inclination of the arrival orbit must be in the orbital plane of the next moon in the sequence, to maintain

the reasonability of the assumption that all flybys are planar during a moon tour phase. The complete

Tisserand plot of the moon system (an example is shown in figure A.2) is useful when choosing V∞next
,

as it allows an overview of the paths that lead to the lowest possible V∞ level when arriving at Enceladus.

Unlike the interplanetary trajectory, this optimisation problem is solved with the SLSQP algorithm

implemented in PyGMO (see section 4.3.1). This problem is suited for local optimisers due to its small

number of optimisation variables. Stochastic algorithms were not chosen here due to the difficulty that

this type of algorithms has in handling constraints (see Chapter 4).

The coordinates of the starting point for the next phase in the moon tour are fully defined by the

arrival V∞, and the Ra,Rp of the transfer orbit. The branch and bound search can now be used to find

solutions for the next phase and the process is repeated.

6.3 Enceladus Orbit Insertion

The capture procedure around Enceladus mirrors the method explained in Section 5.3. The key differ-

ences are that the post-insertion orbit is different and there is no need for a PRM.

Enceladus’ proximity to Saturn, coupled with its low mass and orbital perturbations induced by other

moons, leads to instabilities in the orbit of spacecraft around the moon [95]. Traditional planetary science

orbits aim for a near-polar inclination that allows the sensors to acquire data with near-global coverage

and under varied lighting circumstances. At Enceladus, these traditional orbits are not long-term stable,

either requiring constant maintenance (expensive) or impacting the surface of the moon within 1 to 3

days [95]. Through detailed stability analysis using unaveraged models, researchers [95] have found

long-term stable orbits (>180 days) around Enceladus with relatively high inclinations (up to 65o) at

average altitudes, around 200 km, that are stated to be suitable for scientific missions. An example orbit,

determined by Russell and Lara [95], is shown in table 6.2. The orbital elements are defined in the

IAU-defined Enceladus body fixed frame [70].

Table 6.2: Enceladus science orbit. Subscripted quantities are initial values.

Element Units

h0 km 295
a0 km 498.763
e0 — 0.075947
i0

o 58.725
Period days 10.26

Average Inclination o 60.3

The spacecraft will be inserted into this long-term stable orbit upon reaching Enceladus.
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Chapter 7

Results

The methods outlined in the previous chapters are applied to design a mission to the icy moon Ence-

ladus. Results are shown for each main phase of the mission. Several options are provided for the

interplanetary cruise but only one is chosen to perform the insertion and moon tour phases. The moon

tour’s five phases are individually presented and then the final trajectory obtained is analysed in-depth

and compared to other missions and mission concepts from literature.

7.1 Phase I — Earth to Saturn

The interplanetary phase of the mission is fixed by the constraints established in Chapter 5: the mission

should take place from January 1, 2022 to January 1, 2030 and the cruise duration can not exceed 10

years. The trajectory design starts with establishing possible sequences through use of the Tisserand

sequencer (see Section 5.1.1) and then globally optimising each of these sequences to find the best

trajectory candidates.

7.1.1 Flight Sequences

Table 7.1 shows the flight sequences that will be tested in the optimisation phase. The Tisserand Se-

quencer parameters used to obtain these results were:

• Planets: Venus, Earth, Jupiter, Saturn

• Tisserand Plot Resolution: V∞ ranging from 1 km/s to 12 km/s at 1 km/s steps.

• Launch V∞: 3.0 km/s, 4.0 km/s and 9.0 km/s

• Max. Flyby Number: 4

• Max. Time of Flight: 10 years

Table 7.1 shows that the Tisserand sequencer finds some of the sequences seen in literature, specif-

ically the sequences of the Cassini and Decadal Survey missions. TSSM’s sequence is not found be-

cause it makes use of a ∆V -EGA manoeuvre that is not compatible with the Tisserand graph unless

VILT manoeuvres are added. The V∞ required to enter this sequence is low because TSSM departed

the Earth under its own low-thrust propulsion. The reader can “connect the dots” in figure A.1 to verify
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Table 7.1: Sequences found in the literature and using the Tisserand sequencer. Note that the minimum
launch V∞ may not be accurate due to the grid size used with the Tisserand Sequencer (V∞ can be
smaller than stated).

Sequence Min. Launch V∞ [km/s] Source

EVEVES 3.0 Sequencer, Decadal Survey [21]
EVEJS 3.0 Sequencer

EVVEJS 3.0 Sequencer, Cassini [96]
EVEEJS 3.0 Sequencer

EVES 4.0 Sequencer
EVVEES 4.0 Sequencer
EVEES 4.0 Sequencer
EVVES 4.0 Sequencer

EJS 9.0 Sequencer
EEVEES 0.75 TSSM (Low-Thrust) [22]

that each sequence can indeed be traced in the Tisserand Graph. Mars was not considered to be a part

of the flight sequence of this mission because its lower gravity attraction is not as beneficial to perform

gravity assists as Earth or Venus. Not considering Mars may rule out an opportunistic flyby but, on the

other hand, does not increase the search space.

7.1.2 Interplanetary Trajectories

The sequences obtained in the previous section were globally optimised according to the methods laid

out in Chapter 5. The results obtained were compiled and the best from each sequence were selected

and are shown in table 7.2. The table is sorted by total estimated ∆V . The Saturn orbit insertion values

shown are merely an estimate for insertion into an elliptic orbit with rp = 1.7Rs and e = 0.99. This

estimate does not account for the full characteristics of the b-plane approach.

As table 7.2 shows, some sequences perform clearly better than others. Sequences using Jupiter as

a gravity-assist body underperformed, leading to the conclusion that the giant planet is not in the proper

alignment to be used for flybys, during the selected launch window. On the other hand, EVEES and

EVVES sequences consistently performed better than other sequence candidates and established their

superiority for the defined launch window. In general, the optimiser tends towards the end of the launch

window, indicating that a late 2020’s launch may offer a better planetary alignment and, therefore, a

higher number of trajectory options to choose from. Especially interesting trajectories are trajectory 1,

with the lowest overall ∆V and interplanetary ∆V , trajectory 3, with the earliest arrival, trajectory 14, with

the fastest interplanetary cruise and trajectory 16, with the lowest arrival V∞ (due to taking advantage of

a Jupiter gravity assist).

Due to the stochastic nature of the algorithms employed, it is not possible to guarantee that the

solutions presented are the globally optimum solutions. Moreover, a solution that presents the lowest

∆V cost may not be a suitable trajectory due to the Saturn insertion characteristics. In fact, this is what

happens to some of the solutions presented in table 7.2. Trajectory 1 (T1) presents the lowest cost

but the asymptote declination for arrival at Saturn is 15o (in the IAU SATURN reference frame) when

compared to the 4o declination at arrival for trajectory 2 (T2). When T1 is patched through to the Saturn
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Table 7.2: Interplanetary phase results. The best results for each sequence are shown.

ID Sequence Launch V∞
[m/s]

Interplanetary ∆V
[m/s]

Arrival V∞
[m/s]

Time of Flight
[Years] Launch Date Arrival Date Est. ∆VSOI

[m/s]
Total ∆V

[m/s]

1 EVEES 3.95 136 5826.95 9.98 19-11-2024 15-11-2034 676.68 812.68
2 EVEES 3.99 455.13 5761.4 9.97 12-12-2022 03-12-2032 663.24 1118.30
3 EVEES 3.99 462.49 5760.9 9.56 14-12-2022 30-11-2032 663.12 1125.6
4 EVEES 3.49 769.45 5237.3 9.8 19-04-2028 13-02-2038 560.97 1330.42
5 EVVES 3.5 652.64 5943.3 9.54 16-03-2026 02-10-2035 700.91 1353.55
6 EVVES 3.49 893.70 5908.35 9.35 15-10-2026 23-02-2036 693.58 1587.28
7 EVVES 3.49 894.80 5964.05 8.96 10-10-2026 28-09-2035 705.28 1600.08
8 EVEVES 3.49 1131.30 6120.65 9.98 16-04-2028 11-04-2038 738.72 1870.02
9 EVEJS 6.55 655.78 8683.2 9 01-08-2029 01-08-2038 1400.94 2056.72
10 EVVEJS 3 1316.8 7953.6 9.92 09-11-2029 13-10-2039 1190.71 2507.51
11 EVEJS 4.55 2043.2 6626.8 8.9 23-08-2029 16-07-2038 852.44 2895.64
12 EVES 3.5 2349.8 5741.3 9.22 28-02-2029 21-05-2038 659.14 3008.94
13 EEVES 3.85 2462.4 5790 8.39 09-06-2028 31-10-2036 669.08 3131.48
14 EEVES 3.48 2620.67 5861.15 8.05 23-09-2025 13-10-2033 683.75 3304.42
15 EVES 7 3067 5956.35 8.97 21-06-2024 11-06-2033 703.65 3770.65
16 EJS 5 3963.2 3508.2 10 01-01-2030 01-01-2040 290.92 4254.12
17 EVEEVS 3.5 3809.52 6461 10 15-12-2029 16-12-2039 814.24 4623.76
18 EVEEJS 3.96 3984.84 6546.7 10 20-06-2023 19-06-2033 833.87 4818.71
19 EEVEES 2.36 4403.66 5715.63 9.17 01-09-2027 05-11-2036 653.93 5057.59
20 EJS 3.99 4899 3509 10 31-12-2029 01-01-2040 291.03 5190.03
21 EVEEJS 7 4210.47 7760.3 9 16-11-2029 16-11-2038 1137.86 5348.33

Orbit Insertion phase, it is verified that the cost of the PRM is higher than that of T2. Moreover, the

post-insertion orbit has an inclination that is higher than that of T2, resulting in a longer moon tour due

to the need to perform plane-changes at Titan to reduce the inclination of the orbit to the orbital plane of

Titan. Finally, due to the high arrival declination of T1, the spacecraft’s Titan arrival V∞ (around 4 km/s)

is also higher than that of trajectory 2 (around 3 km/s), resulting in a costlier moon tour.

Relatively to T1, T2 has the disadvantage of having a higher interplanetary ∆V and time of flight.

Additionally, T2 is launched, and arrives, two years earlier than T1 which has an impact in mission

operations and planning that needs to be considered but is out of the scope of this work. Since the

advantages in the final phases outweigh the disadvantages of a higher cost in phase one, trajectory 2

was considered as option A for the mission to Enceladus and will be used to obtain the results for the

next sections. A detailed description of T2 is available in Appendix B, table B.1.

7.2 Phase II - Saturn Orbit Insertion

This section describes the results of the analysis of the Saturn orbit insertion geometry. The orbit

insertion calculator receives the arrival epoch and arrival V∞ vector with respect to Saturn as inputs from

phase 1. The user-defined parameters, rp and e, are set to 1.705 Saturn Radii and 0.99, respectively, to

allow the spacecraft to safely cross the ring plane in the F-G gap. Figure 7.1 and table 7.3 contain the

main results for the orbit insertion phase. A close-up of figure 7.1 can be seen in Appendix B along with

a detailed description of the trajectory.

Upon arrival at Saturn, the spacecraft descends through the ring plane and safely crosses it at around

2.5 Saturn Radii, well within the F-G gap, halfway between the F ring and the Janus ring, with about 4000

km of clear space to each side. The capture manoeuvre occurs after ring crossing, at 1.705 Saturn Radii

and places the probe into a highly elliptical orbit with a period of 370 days. The PRM takes place near

the apoapsis of the post-capture ellipse and brings the spacecraft to Titan after 230 days, bringing the
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duration of this phase to a lengthy total of 383 days. This duration can be reduced at the expense of

extra ∆V , by reducing the period of the post-capture orbit, by decreasing the allowable post-PRM time

of flight or by relaxing the maximum inclination or maximum arrival V∞ constraints (see Section 5.3.2).

Post-Insertion Orbit

e = 0.99

rp = 1.705 Saturn Radii

Period = 370.3 days

PRM

∆V = 328.4 m/s

After 153 days

Post-PRM Orbit

e = 0.89

Time of Flight = 230.78 days

i = 6.92º (IAU_SATURN)

Titan Arrival (21-12-2033)

V
∞ 

= 3000 m/s

Saturn Arrival (03-12-2032)

∆V
SOI

 = 639.5 m/s

Ring Crossing in F-G Gap at 2.495 R
SATURN

Figure 7.1: Saturn orbit insertion results

Table 7.3: Saturn Orbit Insertion re-
sults

Saturn Orbit Insertion

Total ∆V 967.86 m/s
Time of Flight 383.62 days
Closest Approach 1.705 RSaturn

Ring Crossing 2.495 RSaturn

Titan Arrival V∞ 3 km/s
Titan Arrival Date 21-12-2033
Titan Arrival Inclination 6.92o

7.3 Phase III - Moon Tour

The moon tour starts when the spacecraft reaches Titan, after the Periapsis Raising Manoeuvre. Since

the incoming orbit’s inclination does not match Titan’s orbital plane, it is necessary to perform an incli-

nation “clean-up” flyby before starting the VILT search. Afterwards, the Ra and Rp of the post-flyby orbit

are used as starting coordinates for the Titan phase of the design of the moon tour. The properties of

this flyby can be consulted in table 7.4. Resulting trajectory images and Tisserand plots of the moon

tour can be consulted in Appendix A.

Table 7.4: Inclination change flyby (T0)

Plane-Change Flyby (T0) Units

Post-flyby orbital period days 63.78 (4TTitan)
Flyby Height km 1059.8

Plane-change angle (β) deg 141.89
Post-Flyby Inclination (IAU) deg 0.316

Tisserand Coordinates (Ra,Rp) (m,m) (5152306304,1001817141)

7.3.1 Titan Phase

The Titan phase of the moon tour starts with the coordinates provided by the inclination change flyby.

After the VILT search is performed and trajectories are compared and selected, the best result obtained

is shown in table 7.5. Two manoeuvres with a cumulative ∆V cost of 54.57 m/s bring the spacecraft

trajectory’s V∞ with respect to Titan from 3 km/s to 2.68 km/s (a 320 m/s decrease). Remember that

V∞1
and V∞2

are fixed by the search algorithm (see Section 3.7.2). Afterwards, a transfer orbit departs

Titan and reaches Rhea with a V∞Rhea
of 2 km/s, from where the next phase can start. As mentioned in

Section 6.2.3, the arrival V∞ at the next moon in the sequence is a user-defined value.
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While some results indicated that it would have been possible to perform the Titan phase with reso-

nant flybys only (no fuel consumption), selecting results for Titan depended on the performance of the

algorithm for the Rhea phase. At first, Rhea sequences were not being easily found because the transfer

orbits from Titan would reach Rhea in a situation where no resonant flybys or cheap VILTs were possi-

ble, resulting in very high ∆V impulsive manoeuvres to continue with the tour. To solve this, the decision

was made to spend more fuel in Titan VILTs so that the transfer orbit would bring the spacecraft to Rhea

in better conditions. Specifically, the apoapsis of the transfer orbit had to be below 2 × 109 metres to

continue the tour. This difficulty could be overcome if the Titan arrival V∞ could be lowered to values

closer to 2 km/s because, as figure A.2 shows, Titan’s 2 km/s Tisserand curve intersects Rhea’s curves

at lower Ra values, closer to available resonant orbits and exterior VILTs.

Table 7.5: Titan Phase. Each row refers to an individual VILT transfer or resonant orbit modify the
spacecraft’s V∞ (with respect to the moon) between two V∞ “levels” (as seen in section 3.7). The
quantities on the right are the result of calculating that specific phase-fixed VILT. The last row, which is
marked as TRANSFER, refers to the inter-moon transfer orbit and its associated cost.

ID Transfer Type
N:M(L)

V∞1

[km/s]
V∞2

[km/s]
∆V
[m/s]

TOF
[d]

Flyby Height
[km]

T1 ext-OO 3:1(0) 3.0 2.68 54.57 54.47 24291.5
T2 OO 1:1 2.68 2.68 0.0 16.54 846.6
T3 Transfer (OO) 2.68 RHEA 2.0 28.10 9.93 9287.3

Totals 82.55 75.7

7.3.2 Rhea Phase

The starting coordinates for Rhea’s phase are obtained from the Titan-Rhea transfer orbit: Ra = 1.58×

109 m, Rp = 0.52327× 109 m, corresponding to an initial pump angle α2000 = 19.73o. The results for the

Rhea phase of the moon tour are displayed in table 7.6.

This phase is accomplished with 16 flybys that bring the spacecraft’s V∞ with respect to Rhea from 2

km/s to 1.3 km/s by using 404 m/s of ∆V . This phase is the longest in the tour with a duration of 1 year

and 1 month. Solutions for the Rhea phase were challenging to obtain due to the problem mentioned

in Section 7.3.1. In addition to lowering Titan arrival V∞, reducing the safe flyby radius can help by

increasing the maximum turn angle of Rhea flybys, decreasing the duration of the phase at the expense

of more complex ground and spacecraft systems. This was performed in literature [53] but will not be

performed here, with the objective of obtaining a slightly more realistic trajectory.

It is also noteworthy to state that some flybys have less than 10 days of interval (R12,R13,R14),

which could lead to a harder navigation environment as there would not be much time to determine

the spacecraft’s post-flyby position and correct errors. This is in line with literature [53, 57], where short

consecutive flybys are also used. In the future, a new rule can be added to the branch and bound search

that will eliminate flybys that are too close in time.

This phase ends with a multi-revolution transfer to Dione, where the spacecraft reaches the moon

with an arrival V∞Dione
of 1 km/s (with respect to Dione).

Figure A.10 (in appendix A) clearly illustrates the effect that the moon tour has in the spacecraft’s
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Table 7.6: Rhea Phase. Description as in table 7.5.

ID Transfer Type
N:M (L)

V∞1

[km/s]
V∞2

[km/s]
∆V
[m/s]

TOF
[d]

Flyby Height
[km]

R1 int-OO 5:2(0) 2 1.9 99.74 22.57 209
R2 Int-OO 9:4(1) 1.9 1.8 99.46 40.62 132.26
R3 Int-OI 5:2(1) 1.8 1.7 98.64 26.53 135.23
R4 IO 11:6 1.7 1.7 0 50.31 252.76
R5 ext-OO 7:4(0) 1.7 1.35 31.38 47.66 261.98
R6 int-OO 8:5(0) 1.35 1.3 49.22 36.11 92.47
R7 OO 3:2 1.3 1.3 0 13.54 292.33
R8 OO 7:5 1.3 1.3 0 31.60 340.25
R9 OI 3:2 1.3 1.3 0 16.96 690.87

R10 IO 6:5 1.3 1.3 0 28.52 136.78
R11 OI 6:5 1.3 1.3 0 29.95 1274.20
R12 IO 1:1 1.3 1.3 0 6.58 279.18
R13 OO 1:1 1.3 1.3 0 4.52 397.1
R14 OI 1:1 1.3 1.3 0 6.13 327.04
R15 IO 5:6 1.3 1.3 0 25.90 85.05
R16 Transfer (OO) 1.3 DIONE 1.0 25.95 21.32 1315.5

Totals 404.4 408.81

orbit. For each consecutive flyby, the apoapsis of the orbit is becoming smaller and, consequently, so

are the semi-major axis and orbital energy.

7.3.3 Dione Phase

The starting coordinates for Dione’s phase are obtained from the Rhea-Dione transfer orbit: Ra = 5.57×

108 m, Rp = 3.756 × 108 m, corresponding to an initial pump angle α1000 = 23.27o. The results for the

Dione phase of the moon tour are displayed in table 7.7. This phase has a duration of nearly 6 months.

The Dione phase is interesting as it is composed entirely of resonant flybys. Nevertheless, the search

algorithm did find solutions that made it possible to shorten time of flight at the expense of ∆V but it was

considered that reducing the potential ∆V cost should be a priority for this phase after an expensive tour

of Rhea. Once again, flybys D7, D8 and D9 are separated by less than 10 days, something that may be

avoided in a future version of the search algorithm.

7.3.4 Tethys Phase

The starting coordinates for Tethys’ phase are obtained from the Dione-Tethys transfer orbit: Ra =

3.853 × 108 m, Rp = 2.947 × 108 m, corresponding to an initial pump angle α800 = 24.5o. The results

for the Tethys phase of the moon tour are displayed in table 7.8. In this phase, flybys Te6, Te7 and Te8

are very close in time. When working in a full perturbation model this could lead to navigation problems,

since orbits are never exactly resonant due to perturbations acting on the spacecraft and moon and

2/3 days could pose a challenge for engineers to be able to accurately determine the position of the

spacecraft and execute any correction manoeuvres. A possible solution to this is to force the search

algorithm to use higher period resonances. Additionally, some flybys pass low above the surface of

Tethys. It was considered that the two initial flybys (at 461 km and 376 km) could be used for mapping
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Table 7.7: Dione Phase. Description as in table 7.5.

ID Transfer Type
N:M(L)

V∞1

[km/s]
V∞2

[km/s]
∆V
[m/s]

TOF
[d]

Flyby Height
[km]

D1 OO 4:3 1 1 0 10.90 130.44
D2 OO 9:7 1 1 0 24.53 272.15
D3 OO 5:4 1 1 0 13.63 693.42
D4 OO 6:5 1 1 0 16.35 361.92
D5 OO 7:6 1 1 0 19.08 890.32
D6 OI 9:8 1 1 0 26.35 224.39
D7 IO 1:1 1 1 0 3.922 148.16
D8 OO 1:1 1 1 0 2.73 364.85
D9 OI 1:1 1 1 0 3.75 328.15
D10 II 10:11 1 1 0 27.26 154.17
D11 IO 6:7 1 1 0 18.48 405.39
D12 Transfer (OO) 1 TETHYS 0.8 8.67 10.85 416.62

Totals 8.67 177.82

purposes, reducing the risk of performing such low flybys at Tethys.

In this fourth phase of the moon tour, the spacecraft’s V∞ with respect to Tethys is reduced from 0.8

km/s to 0.7 km/s, with a ∆V cost of 22.96 m/s, in 5 months.

Table 7.8: Tethys Phase. Description as in table 7.5.

ID Transfer Type
N:M (L)

V∞1

[km/s]
V∞2

[km/s]
∆V
[m/s]

TOF
[d]

Flyby Height
[km]

Te1 OO 11:9 0.8 0.8 0 20.78 461.23
Te2 OO 6:5 0.8 0.8 0 11.34 376.58
Te3 ext-OO 7:6(0) 0.8 0.7 17.86 13.18 60.31
Te4 OI 8:7 0.7 0.7 0 16.63 50.98
Te5 II 14:13 0.7 0.7 0 26.45 71.54
Te6 IO 1:1 0.7 0.7 0 2.70 54.79
Te7 OO 1:1 0.7 0.7 0 1.89 519.23
Te8 OI 1:1 0.7 0.7 0 2.62 493.33
Te9 II 14:15 0.7 0.7 0 26.45 77.55

Te10 II 9:10 0.7 0.7 0 17.00 72.28
Te11 II 7:8 0.7 0.7 0 13.22 103.48
Te12 Transfer (IO) 0.7 Enceladus 0.7 5.1 5.58 206.66

Totals 22.96 157.83

7.3.5 Enceladus Phase

The initial conditions for the final phase of the moon tour are obtained from the Tethys-Enceladus transfer

orbit, which has Ra = 2.954 × 108 m and Rp = 2.386 × 108 m, resulting in an initial pump angle α700 =

22.54o at Enceladus.

Solutions for the Enceladus phase of the moon tour were found by fixing L = M−1 (the most efficient

value [57]) to reduce the large search space created by the high number of allowed resonances. The

endgame at Enceladus was performed with the objective of lowering the spacecraft’s V∞ with respect to

Enceladus as much as possible (by gradually lowering the apoapsis of the Saturn-centred orbit to that

of Enceladus). This phase has a duration of 5.5 months and lowers the spacecraft’s V∞ from 0.7 km/s
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to 0.35 km/s with a cost of 98.87 m/s (see table 7.9).

If a direct orbit insertion at the beginning of the endgame were to be performed, the capture manoeu-

vre’s ∆V cost would approximately be 578 m/s. By lowering V∞ to 0.35 km/s, that cost is reduced by

approximately 45%, to around 257 m/s, by spending 99.27 m/s. This results in a net ∆V saving of about

220 m/s. Unlike the literature [53, 57], the minimum allowed flyby radius at Enceladus is always above

50 km (as opposed to 25 km [53]), reducing the complexity of the navigation system required to perform

the mission.

The complete moon tour ends with the orbit insertion at Enceladus, after 53 flybys across 1054 days

and with a total ∆Vtour cost of 617 m/s.

Table 7.9: Enceladus Phase. Each row refers to an individual VILT transfer or resonant orbit modify
the spacecraft’s V∞ (with respect to the moon) between two V∞ “levels” (as seen in section 3.7). The
quantities on the right are the result of calculating that specific phase-fixed VILT.

ID Transfer Type
N:M(L)

V∞1

[km/s]
V∞2

[km/s]
∆V
[m/s]

TOF
[d]

Flyby Height
[km]

E1 int-OO 20:17(16) 0.70 0.65 49.80 27.56 262.84
E2 OO 15:13 0.65 0.65 0.00 20.67 170.38
E3 ext-OO 8:7(6) 0.65 0.60 7.83 11.00 61.64
E4 ext-OO 17:15(14) 0.60 0.55 7.69 23.40 55.60
E5 OI 8:7 0.55 0.55 0.00 12.26 69.00
E6 IO 10:9 0.55 0.50 8.17 13.94 69.80
E7 ext-OO 21:19(18) 0.50 0.50 0.00 28.94 275.98
E8 OO 11:10 0.50 0.50 0.00 15.16 688.45
E9 ext-OO 13:12(11) 0.50 0.35 25.38 17.81 51.22

Totals 98.87 170.745

7.4 Enceladus Orbital Insertion

When the Enceladus endgame is over, an Enceladus Orbit Insertion manoeuvre is performed to insert

the probe into the orbit described in section 6.3. This procedure mirrors the one performed for the Saturn

Orbit Insertion, but with a different central body and without the need to perform a PRM. The capture

geometry can be seen in figure 7.2 and the main results of this phase can be seen in table 7.10.

A detailed description of the Enceladus Orbit Insertion can be seen in Appendix 2.

Figure 7.2: Enceladus Orbit Insertion

Table 7.10: Enceladus Orbit Insertion

Enceladus Orbit Insertion

∆VEOI 243.5 m/s
Arrival V∞ 350 m/s

Arrival Date 25-Oct-2036

B-Plane Information

θB 58.72 deg
B.T 313.048 km
B.R 515.381 km
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There is a considerable reduction in ∆VEOI of around 3.3 km/s, when compared to the cost of capture

after a direct Hohmann transfer from Titan (3.55 km/s for a 295 km circular orbit).

7.5 ∆V and Mass Budgets

Table 7.11 details the estimated budgets of all phases of the mission. The following margin philosophies

were used:

1. Tour Statistical ∆V : additional 5 m/s per flyby in the moon tour [53].

2. 5% per deterministic manoeuvre (DSMs, insertion manoeuvres) [68]. This margin was not applied

to the moon tour’s ∆V ’s.

The mass budget is estimated by taking into account launcher performance. The maximum mass an

Atlas 551 rocket can place on an interplanetary trajectory with C3 = 16 km2/s2 is around 5000 kg [68]

(see Section 3.4). By assuming a spacecraft dry mass of two tonnes and using Tsiolkovsky’s Rocket

Equation (2.2), applied to the ∆V budget (after margins), the final wet mass of the spacecraft would

be around 4550 kg, leaving a launch mass margin of approximately 10% to account for changes in

the mission that may require carrying more weight. The Isp assumed was 326 seconds, based on

TSSM’s 890N HiPAT bi-propellant high performance liquid apogee thruster [22, 97]. Naturally, if a smaller

spacecraft is desired, cheaper and smaller launchers can be used.

Table 7.11: ∆V and mass budgets.

Mission to Enceladus ∆V Budget
[m/s]

∆V Budget (with margins)
[m/s]

Propellant Mass
[kg]

Time of Flight
[years]

Interplanetary Trajectory 455.14 477.90 632.40 9.97
Saturn Orbit Insertion 639.47 671.44 742.92 1.05Periapsis Raising Manoeuvre 328.39 344.81 324.97

Titan Phase 82.55 97.55 85.75 0.38
Rhea Phase 404.4 484.40 389.10 1.12
Dione Phase 8.67 68.67 50.54 0.48
Tethys Phase 22.96 82.96 59.62 0.43

Enceladus Phase 98.87 143.87 99.80 0.46
Enceladus Orbit Insertion 243.5 255.68 166.64 —

Total 2283.95 2627.28 2551.73 13.9

Orbit maintenance, TCMs and disposal manoeuvres are out of the scope of this work and were not

added to the ∆V budget.

7.6 Discussion

Table 7.12 displays a comparison of the results obtained in this work with those of other missions and

mission concepts [21, 22, 53, 57? ]. The interplanetary trajectory obtained for the Mission to Enceladus

is in line with the other state-of-art trajectories, an important factor that supports the quality of the solution

obtained. The island model implemented in PyGMO contributed to achieve this result thanks to the ease

in creating topologies that allowed the optimisation algorithms to cooperate. While inferior in terms of

interplanetary ∆V , this mission’s cruise trajectory reaches Saturn in better conditions (lower V∞) than
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Table 7.12: Comparison of Solutions. ∆V results are shown without margins applied.

Mission to Enceladus TSSM [22] Decadal [21] Cassini [14, 15? ] [53] [57]

Launch Date 12 Dec. 2022 Sep. 2020 Jan. 2023 15 Oct. 1997 — —
Flight Sequence EVEES EEVEES EVEVES EVVEJS — —

∆VIP [m/s] 455.13 2750 350 466 — —
∆VSOI [m/s] 639.47 746 960 613 1310 (TSSM) 1310 (TSSM)
∆VPRM [m/s] 328.4 564 534 333
∆VTour [m/s] 617.45 — 527.3 — 492 316
∆VEOI [m/s] 243.5 — — 242 129
Total ∆V 2284 — 2371 — — —

Dry Mass [kg] 2000 (Atlas V) 3127 1154 2445 — —
Launch Mass [kg] 4551 (Atlas V) 6203 (Atlas V) 3560 5712 — —

Moon Tour Time [y] 2.89 — 2.7 — 2 2.7
Cruise Time [y] 9.97 9 8.5 7 — —

the alternatives presented in table 7.12, resulting in a considerable reduction in ∆VSOI . Despite the

advantage in cost, the trajectory obtained is inferior in terms of time of flight (9.97 years), but still within

the bounds set for the mission. This could be improved by taking advantage of a higher number of flybys,

possibly at the expense of higher ∆V . Since the focus of the work is to minimise ∆V , it was decided

that a lower interplanetary ∆V would be preferable to a lower time of flight, as long as the time of flight

was within the bounds set for the mission (6 years to 10 years of interplanetary cruise time).

Additionally, the combined higher dry mass of TSSM’s Titan orbiter and its in-situ packages of 2446

kg [22] (with margins) reveals that there may be some interest in exploring the use of Solar electric

propulsion (SEP) for the interplanetary cruise with the objective of increasing the mass of instruments

that can be delivered to Saturn and its moons. This has to be carefully analysed as the inclusion of a

separate SEP module may increase the mass of the spacecraft to a point where the fuel required to

support the addition of the new propulsion module nullifies its benefits.

The Saturn orbit insertion manoeuvre occurs successfully as the spacecraft descends through the

ring plane safely, crossing in the F-G gap, and is then inserted into the post-capture elliptic orbit. The

cost of the PRM in this mission is lower than in the missions present in table 7.12 due to the high period

of the post-capture orbit, result of a large major axis. As a consequence of this high period capture orbit,

the time of flight from capture until the first Titan flyby is high (383 days). This time can be lowered by

reducing the period of the post-capture orbit, resulting in a higher ∆V cost associated with capture and

the PRM.

The moon tour has been demonstrated to be an essential technique to perform when the objective

is to place an orbiter around a low mass moon, such as Enceladus. The V∞-leveraging technique

implemented in this work achieved a net saving of about 2.69 km/s, when compared to a direct Titan-

Enceladus Hohmann transfer.

When compared to other tours from literature [21, 53, 57], the moon tour that was designed for the

Mission to Enceladus resulted in a higher cost and time of flight. This happens because:

1. The Titan arrival V∞ is higher than those in literature (3 km/s when compared to 1.46 km/s) [21,

53, 57]. This requires more, or more expensive, VILTs to achieve the necessary reduction in the

orbit’s major axis for the Titan and Rhea phases of the tour, increasing their cost and time of flight.
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2. The addition of the inter-moon transfer orbits, taking the required phasing into account, did not

have a negligible effect in the ∆V budget as the literature suggests [53, 57], with these transfer

costs summing up to 68 m/s — around 10% of the total cost of the tour. However, the time of

flight added by these transfers did not have a large impact in the total time of the moon tour. More

importantly, selecting an appropriate transfer orbit was revealed to be an important factor in the

quality of the solution. Different transfer orbits allow the spacecraft to access different resonances

at arrival to a new moon and, if less expensive VILTs are not available after transfer, this can result

in an expensive phase start, such as what happened in this work regarding the Titan-Rhea transfer.

3. A higher number of flybys is required to compensate for the fact that the minimum flyby radii used

in this work are more conservative than in literature.

4. It was not possible to exhaustively obtain all the solutions for some phases of the moon tour due

to high computational times, a downside of a Python implementation as this potentially eliminated

optimal solutions. This limitation could be countered by implementing the branch and bound routine

in a compiled language, such as C++, and exposing it to Python via a wrapper. The performance

of the algorithms was not evaluated but the Rhea phase was left to run, unconstrained, for four

days without having finished (intel core i7). While this may not be a significant computational time

in the field of trajectory design, it was significant for the time that was left to perform this work.

It should be noted that the final Enceladus V∞ could be lowered below 350 m/s through more VILTs,

resulting in a cheaper Enceladus Orbit Insertion. While this was done in Campagnola et al. [57] and for

the Decadal Survey, it was not explored in this work due to the already lengthy duration of the moon tour

(2.9 years). This was a design decision and not a limitation imposed by the models or implementation.

The mission ends with a successful orbital capture at Enceladus, directly into the science orbit pre-

sented in Section 6.3. Associating the trajectory designed here with the use of an Atlas V 551 launcher

for departure, it is possible to place a spacecraft with around two tonnes of mass into Enceladus orbit.

This is close to the dry mass of the Cassini spacecraft (2485 kg) and an increase over the dry mass of

the Decadal Survey’s orbiter (1154 kg) but the latter would be launched in a smaller launcher, the Atlas

521. The use of solar electric propulsion enables the TSSM spacecraft to have a higher dry mass, as

the required fuel mass is lower. TSSM’s orbiter and two landers would also be launched atop an Atlas V

551 rocket and have a combined dry mass of 2446 kg (after margins).

In an overall analysis, the results of the mission to Enceladus are comparable in quality to other

state-of-art trajectories in literature [21, 22? ], in terms of ∆V cost and mass placed in orbit. The

design process resulted in a lengthy mission, nearly 14 years. In comparison, Cassini’s mission will

end in 2017, 19 years after being launched from Earth [14, 15]. The mission’s duration is close to the

recommended time of use of RTGs (14 years) but new technologies, such as ASRGs, that have a higher

recommended time (17 years) [21, 94], could power the mission to Enceladus. Finally, the time spent in

orbit of Enceladus can be complemented with valuable scientific data that may be gathered from close

flybys of other moons in the Saturn system during the 3 years of the moon tour, resulting in a science-rich

exploration mission to this dynamic and fascinating moon system.

79



Chapter 8

Conclusions

The feasibility of an orbiter mission to Enceladus was successfully demonstrated through a preliminary

spacecraft trajectory study that includes all phases of the mission: interplanetary, capture and moon tour

to reach the final destination. The interplanetary trajectory was obtained through an optimisation pro-

cedure that relied in a cooperative topology of stochastic algorithms and a method based on Tisserand

graphs to find potential flight sequences. To obtain a moon tour trajectory, a complex V∞-Leveraging

technique, based on Tisserand graphs, was studied and implemented. This resulted in a moon tour

solution that accomplishes a significant reduction in the cost of Enceladus Orbit Insertion of 2.69 km/s,

when compared to a traditional Titan-Enceladus Hohmann transfer. This shows that VILTs are a pow-

erful technique for designing trajectories in low-gravity moon systems. Furthermore, in a step beyond

current literature, the effect of taking into account the need for phasing in inter-moon transfer orbits was

studied and found to be potentially non-negligible as it accounts for around 10% of the total ∆V budget

of the designed moon tour. Finally, the primary objective of placing an orbiter around Enceladus was

successfully achieved since the example trajectory in this work is capable of placing a payload up to

two tonnes (with current launchers) in orbit of this icy moon. This mass is similar to that of other large

interplanetary spacecraft or spacecraft concepts, such as Cassini-Huygens and TSSM.

8.1 Future Work

The branch and bound and other time critical algorithms should be implemented in a compiled language,

such as C++, to minimise some of the computational limitations encountered during this work and to

permit the designer to use the branch and bound technique to its full potential to find better moon tour

trajectories. Furthermore, after results comparison, it was clear that there may be some advantage in

using a hybrid approach to the mission, with solar electric propulsion being used for the interplanetary

phase. This could lead to a higher maximum mass at Enceladus and bring other benefits associated with

the use of low-thrust propulsion. Additionally, it would be interesting to remove the 2D approach to the

VILT technique and investigate how orbital cranking (changing orbital plane) using flybys could improve

the quality of the solution [98]. Issues such as communications, navigation and scientific observations

also need to be analysed to obtain a realistic trajectory. Finally, a fully integrated trajectory in a multiple

body environment, using the solution obtained as an initial guess, should be determined.
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[40] D. Izzo, L. F. Simões, M. Märtens, G. C. H. E. de Croon, A. Heritier, and C. H. Yam. Search

for a Grand Tour of the Jupiter Galilean Moons. Genetic and Evolutionary Computation Con-

ference (GECCO 2013), pages 1301–1308, 2013. doi: 10.1145/2463372.2463524. URL

http://sophia.estec.esa.int/gtoc{_}portal/wp-content/uploads/2012/11/gtoc6{_}316.

pdf$\delimiter"026E30F$nhttp://dl.acm.org/citation.cfm?doid=2463372.2463524$\

delimiter"026E30F$nhttp://www.genetic-programming.org/hc2013/Izzo-Paper.pdf.

[41] G. Colasurdo, A. Zavoli, A. Longo, L. Casalino, and F. Simeoni. Tour of Jupiter Galilean moons:

Winning solution of GTOC6. Acta Astronautica, 102:190–199, 2014. ISSN 00945765. doi: 10.

1016/j.actaastro.2014.06.003. URL http://dx.doi.org/10.1016/j.actaastro.2014.06.003.

[42] M. R. Sentinella and L. Casalino. Cooperative evolutionary algorithm for space trajectory optimiza-

tion. Celestial Mechanics and Dynamical Astronomy, 105(1):211–227, 2009. ISSN 09232958. doi:

10.1007/s10569-009-9223-4.

[43] M. Vasile and P. D. Pascale. Preliminary design of multiple gravity-assist trajectories. Journal of

Spacecraft and Rockets, 43(4):794–805, 2006.

[44] B. A. Conway, C. M. Chilan, and B. J. Wall. Evolutionary principles applied to mission planning

problems. Celestial Mechanics and Dynamical Astronomy, 97(2):73–86, 2006. ISSN 09232958.

doi: 10.1007/s10569-006-9052-7.

[45] B. J. Wall and B. A. Conway. Genetic algorithms applied to the solution of hybrid optimal control

problems in astrodynamics. Journal of Global Optimization, 44(4):493–508, 2008. ISSN 09255001.

doi: 10.1007/s10898-008-9352-4.

[46] M. Vasile, E. Minisci, and M. Locatelli. On testing global optimization algorithms for space trajectory

design. In AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, 2008.

[47] M. Vasile, E. Minisci, and M. Locatelli. An inflationary differential evolution algorithm for space tra-

jectory optimization. IEEE Transactions on Evolutionary Computation, 15(2):267–281, April 2011.

ISSN 1089-778X. doi: 10.1109/TEVC.2010.2087026.

[48] B. Addis, A. Cassioli, M. Locatelli, and F. Schoen. A global optimization method for the design of

space trajectories. Computational Optimization and Applications, 48(3):635–652, 2009. ISSN 1573-

2894. doi: 10.1007/s10589-009-9261-6. URL http://dx.doi.org/10.1007/s10589-009-9261-6.

[49] A. Gad. Space Trajectories Optimization Using Variable-Chromosome-Length Genetic Algorithms.

Master’s thesis, Michigan Technological University, 2011.

[50] G. A. Rauwolf and V. L. Coverstone-Carroll. Near-optimal low-thrust orbit transfers generated by a

genetic algorithm. Journal of Spacecraft and Rockets, 33(6):859–862, 1996.

[51] B. Dachwald. Optimization of interplanetary solar sailcraft trajectories using evolutionary neurocon-

trol. Journal of Guidance, Control, and Dynamics, 27(1):66–72, 2004.

84

http://sophia.estec.esa.int/gtoc{_}portal/wp-content/uploads/2012/11/gtoc6{_}316.pdf$\delimiter "026E30F $nhttp://dl.acm.org/citation.cfm?doid=2463372.2463524$\delimiter "026E30F $nhttp://www.genetic-programming.org/hc2013/Izzo-Paper.pdf
http://sophia.estec.esa.int/gtoc{_}portal/wp-content/uploads/2012/11/gtoc6{_}316.pdf$\delimiter "026E30F $nhttp://dl.acm.org/citation.cfm?doid=2463372.2463524$\delimiter "026E30F $nhttp://www.genetic-programming.org/hc2013/Izzo-Paper.pdf
http://sophia.estec.esa.int/gtoc{_}portal/wp-content/uploads/2012/11/gtoc6{_}316.pdf$\delimiter "026E30F $nhttp://dl.acm.org/citation.cfm?doid=2463372.2463524$\delimiter "026E30F $nhttp://www.genetic-programming.org/hc2013/Izzo-Paper.pdf
http://dx.doi.org/10.1016/j.actaastro.2014.06.003
http://dx.doi.org/10.1007/s10589-009-9261-6


[52] B. J. Wall and B. A. Conway. Shape-Based Approach to Low-Thrust Rendezvous Trajectory Design.

Journal of Guidance, Control, and Dynamics, 32(1):95–101, 2009. ISSN 0731-5090. doi: 10.2514/

1.36848.

[53] N. J. Strange, S. Campagnola, and R. P. Russell. Leveraging flybys of low mass moons to en-

able an Enceladus orbiter. Advances in the Astronautical Sciences, 135:2207–2225, 2010. ISSN

00653438.

[54] NASA Space Science Data Coordinated Archive. Planetary Fact Sheets. http://nssdc.gsfc.

nasa.gov/planetary/planetfact.html. Retrieved on July 2016.

[55] SETI Institute. Vital Statistics for Saturn’s Rings and Inner Satellites. http://pds-rings.seti.

org/saturn/saturn_tables.html. Retrieved on July 2016.

[56] International Astronomical Union Working Group for Planetary System Nomenclature. Ring and

Ring Gap Nomenclature. http://planetarynames.wr.usgs.gov/Page/Rings. Retrieved on Au-

gust 2016.

[57] S. Campagnola, N. J. Strange, and R. P. Russell. A fast tour design method using non-tangent

V-Infinity Leveraging Transfers. Advances in the Astronautical Sciences, 136(2):983–1003, 2010.

ISSN 00653438. doi: 10.1007/s10569-010-9295-1.

[58] W. J. Larson and J. R. Wertz. Space Mission Analysis and Design. 1999. ISBN 1881883108. URL

http://www.osti.gov/energycitations/product.biblio.jsp?osti{_}id=7369177.

[59] D. Brown, M. Martinez, and G. Napier. Juno Launch. 2011.

[60] G. H. Fountain, D. Y. Kusnierkiewicz, C. B. Hersman, T. S. Herder, T. B. Coughlin, W. C. Gibson,

D. A. Clancy, C. C. Deboy, T. A. Hill, J. D. Kinnison, D. S. Mehoke, G. K. Ottman, G. D. Rogers, S. A.

Stern, J. M. Stratton, S. R. Vernon, and S. P. Williams. The new horizons spacecraft. New Horizons:

Reconnaissance of the Pluto-Charon System and the Kuiper Belt, (July 2015):23–47, 2009. ISSN

00386308. doi: 10.1007/978-0-387-89518-5 3.

[61] NASA. Galileo spacecraft facts, . URL http://solarsystem.nasa.gov/galileo/facts.cfm. Re-

trieved on July 2016.

[62] D. Doody. Deep Space Craft: An Overview of Interplanetary Flight. Springer Praxis Books.

Springer Berlin Heidelberg, 2010. ISBN 9783540895107. URL https://books.google.pt/books?

id=Gp-2B7AUPVUC.

[63] S. Kemble. Interplanetary Mission Analysis and Design. Springer-Praxis, 2006. doi: 10.1007/

3-540-37645-3.

[64] H. D. Curtis. Orbital Mechanics for Engineering Students. 2014. ISBN 9780080977478. doi: 10.

1016/B978-0-08-097747-8.00007-4. URL http://www.sciencedirect.com/science/article/

pii/B9780080977478000074.

85

http://nssdc.gsfc.nasa.gov/planetary/planetfact.html 
http://nssdc.gsfc.nasa.gov/planetary/planetfact.html 
http://pds-rings.seti.org/saturn/saturn_tables.html
http://pds-rings.seti.org/saturn/saturn_tables.html
http://planetarynames.wr.usgs.gov/Page/Rings
http://www.osti.gov/energycitations/product.biblio.jsp?osti{_}id=7369177
http://solarsystem.nasa.gov/galileo/facts.cfm
https://books.google.pt/books?id=Gp-2B7AUPVUC
https://books.google.pt/books?id=Gp-2B7AUPVUC
http://www.sciencedirect.com/science/article/pii/B9780080977478000074
http://www.sciencedirect.com/science/article/pii/B9780080977478000074


[65] D. Izzo. Revisiting Lambert’s problem. Celestial Mechanics and Dynamical Astronomy, 121(1),

2014. ISSN 15729478. doi: 10.1007/s10569-014-9587-y.

[66] R. H. Gooding. A procedure for the solution of Lambert’s orbital boundary-value problem.

Celestial Mechanics and Dynamical Astronomy, 48(2):145–165, 1990. ISSN 09232958. doi:

10.1007/BF00049511.

[67] N. Arora and R. P. Russell. A fast and robust multiple revolution Lambert algorithm using a cosine

transformation. In Advances in the Astronautical Sciences, volume 150, pages 411–430, 2014.

ISBN 9780877036050.

[68] R. Biesbroek. Lunar and Interplanetary Trajectories. Springer, 2016. ISBN 978-3-319-26981-8. doi:

10.1007/978-3-319-26983-2. URL http://link.springer.com/10.1007/978-3-319-26983-2.

[69] G. R. Hintz. Orbital Mechanics and Astrodynamics: Techniques and Tools for Space Missions.

Springer, 2015. ISBN 978-3-319-09444-1. doi: 10.1007/978-3-319-09444-1.

[70] B. A. Archinal, M. F. A’Hearn, E. Bowell, A. Conrad, G. J. Consolmagno, R. Courtin, T. Fukushima,

D. Hestroffer, J. L. Hilton, G. A. Krasinsky, G. Neumann, J. Oberst, P. K. Seidelmann, P. Stooke,

D. J. Tholen, P. C. Thomas, and I. P. Williams. Report of the IAU Working Group on Cartographic

Coordinates and Rotational Elements: 2009. Celestial Mechanics and Dynamical Astronomy, 109

(2):101–135, 2011. ISSN 09232958. doi: 10.1007/s10569-010-9320-4.

[71] W. M. Folkner, J. G. Williams, D. H. Boggs, R. S. Park, and P. Kuchynka. The Planetary and Lunar

Ephemerides DE430 and DE431. 2014. ISBN 2013072201.

[72] Jet Propulsion Laboratory. HORIZONS Web Interface. http://ssd.jpl.nasa.gov/horizons.cgi.

Retrieved on October 2016.

[73] NAIF (Navigation and Ancillary Information Facility). SPICE Toolbox. http://naif.jpl.nasa.gov/

naif/. Retrieved on August 2016.

[74] A. Annex, J. McAuliffe, and The Gitter Badger. SpiceyPy. March 2016. doi: 10.5281/zenodo.48437.

[75] NASA’s Jet Propulsion Laboratory. Approximate Position of the Major Planets, . URL http:

//ssd.jpl.nasa.gov/txt/aprx_pos_planets.pdf and http://ssd.jpl.nasa.gov/?planet_pos.

Retrieved on August 2016.

[76] N. Arora and R. P. Russell. A fast, accurate, and smooth planetary ephemeris retrieval system.

Celestial Mechanics and Dynamical Astronomy, 108(2):107–124, 2010. ISSN 09232958. doi:

10.1007/s10569-010-9296-0.

[77] SciPy. SciPy Toolbox. https://www.scipy.org/. Retrieved on August 2016.

[78] N. J. Strange and J. M. Longuski. Graphical Method for Gravity-Assist Trajectory Design. Journal

of Spacecraft and Rockets, 39(1):9–16, 2002. ISSN 0022-4650. doi: 10.2514/2.3800.

86

http://link.springer.com/10.1007/978-3-319-26983-2
http://ssd.jpl.nasa.gov/horizons.cgi
http://naif.jpl.nasa.gov/naif/
http://naif.jpl.nasa.gov/naif/
http://ssd.jpl.nasa.gov/txt/aprx_pos_planets.pdf
http://ssd.jpl.nasa.gov/txt/aprx_pos_planets.pdf
http://ssd.jpl.nasa.gov/?planet_pos
https://www.scipy.org/


[79] J. Sims, J. M. Longuski, and A. J. Staugler. V8 Leveraging for Interplanetary Missions: Multiple-

Revolution Orbit Techniques. Journal of Guidance, Control, and Dynamics, 20(3):409–415, 1997.

ISSN 0731-5090. doi: 10.2514/2.4064.

[80] S. Campagnola and R. P. Russell. The Endgame problem part A: V-Infinity Leveraging technique

and the Leveraging graph. Advances in the Astronautical Sciences, 134(2):1867–1886, 2009. ISSN

00653438. doi: 10.2514/1.44258.

[81] ESA. PyKEP. https://esa.github.io/pykep/, . Retrieved on February 2016.

[82] ESA. PyGMO. https://esa.github.io/pygmo/, . Retrieved on February 2016.

[83] D. Izzo. PyGMO and PyKEP: open source tools for massively parallel optimization in

astrodynamics (the case of interplanetary trajectory optimization). Proceed. Fifth Inter-

national Conf. Astrodynam. Tools and Techniques, ICATT, 2012. URL https://scholar.

google.com.br/citations?view{_}op=edit{_}citation{&}hl=en{&}citation{_}for{_}view=

ykp4zwQAAAAJ:OU6Ihb5iCvQC{&}continue=/scholar{%}3Fhl{%}3Den{%}26as{_}sdt{%}3D0,

5{%}26scilib{%}3D1{%}26scioq{%}3Dpygmo{&}citilm=1.
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Appendix A

Images

A.1 Tisserand Plots

This section contains Tisserand plots for the Solar System and the moons of Saturn:

• Figure A.1 displays an example Tisserand plot of the Solar System (between Venus and Saturn).

• Figure A.2 is the Tisserand Graph for Saturn’s moon system.

• Figures A.3 through A.7 are Tisserand graphs for the moons of interest in Saturn’s system. Not all

resonances are displayed for the sake of clarity.

Descriptions of each particular plot are in the figure’s caption.
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Figure A.1: Logarithmic Tisserand Graph of the Solar System. Curves between V∞ = 1 km/s and V∞ = 11 km/s at a step of 1 km/s. The circles are visual aids
that help understand the maximum movement that can be performed along a curve due to the minimum flyby radius constraint.
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Figure A.2: Logarithmic Tisserand Graph of Saturn’s moon system, from Enceladus to Titan. Curves between V∞ = 100 m/s and V∞ = 3.5 km/s at a step of 100
m/s. Darker curves mark V∞ = 1 km/s, 2 km/s and 3 km/s.
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Figure A.3: Tisserand Graph for Titan. Curves start at the top with V∞ = 1000 m/s and end at V∞ = 3.5 km/s with a step of 50 m/s. Dotted lines specify resonant
orbits. The blue line marks the orbital radius of the next body in the sequence (Rhea). The solution to the moon tour is overlaid on the Tisserand plot.
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Figure A.4: Tisserand Graph for Rhea. Curves start at the top with V∞ = 1000 m/s and end at V∞ = 2.5 km/s with a step of 50 m/s. Dotted lines specify resonant
orbits. The blue line marks the orbital radius of the next body in the sequence (Dione). The solution to the moon tour is overlaid on the Tisserand plot.
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Figure A.5: Tisserand Graph for Dione. Curves start at the top with V∞ = 100 m/s and end at V∞ = 2.5 km/s with a step of 50 m/s. Dotted lines specify resonant
orbits. The blue line marks the orbital radius of the next body in the sequence (Tethys). The solution to the moon tour is overlaid on the Tisserand plot.
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Figure A.6: Tisserand Graph for Tethys. Curves start at the top with V∞ = 100 m/s and end at V∞ = 2 km/s with a step of 50 m/s. Dotted lines specify resonant
orbits. The blue line marks the orbital radius of the next body in the sequence (Enceladus). The solution to the moon tour is overlaid on the Tisserand plot.
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Figure A.7: Tisserand Graph for Enceladus. Curves start at the top with V∞ = 100 m/s and end at V∞ = 1 km/s with a step of 50 m/s. Dotted lines specify
resonant orbits. The solution to the moon tour is overlaid on the Tisserand plot.
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A.2 Moon Tour

This section contains the moon tour trajectories. All trajectories are projected in the orbital plane of the

moon they refer to.

Titan Phase
Rhea Phase
Dione Phase
Tethys Phase
Enceladus Phase
Transfer Orbits

Figure A.8: Complete moon tour.

The Titan phase of the moon tour is shown in figure A.9. The inclination change flyby is not pictured.

T1

T2, T3

RHEA

Pre-VILT

Post-VILT

Transfer Orbit

Figure A.9: Moon Tour: Titan Phase. The X’s mark the locations of the DSM of each VILT.
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Figure A.10 displays the Rhea phase of the moon tour and the transfer orbit to Dione.

R1

Pre-VILT

Post-VILT

Transfer Orbit

Moon Tour

Rhea

Y_J2000

X_J2000

DIONE

Figure A.10: Moon Tour: Rhea Phase

Figure A.11 displays the Dione phase of the moon tour and the transfer orbit to Tethys.

Y_J2000
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Pre-VILT

Post-VILT

Transfer Orbit

Moon Tour

Dione

TETHYS
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Figure A.11: Moon Tour: Dione Phase
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Figure A.12 displays the Tethys phase of the moon tour and the transfer orbit to Enceladus.
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Figure A.12: Moon Tour: Tethys Phase

Finally, figure A.13 shows the last phase of the moon tour.
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Moon Tour
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Figure A.13: Moon Tour: Enceladus Phase
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A.3 Other images

This section includes images from this work that would break the layout of the document.

Figure A.14 shows a close-up of a typical entry geometry at Saturn. The planet is not to scale and

the PRM is not shown.

Figure A.14: Typical capture geometry at Saturn. The orbit comes from above and leaves below the
ring plane. Green: Arrival Hyperbola. Blue: Post-capture ellipse. Gaps are present where rings change
color. The blue x in the arrival hyperbola marks the spot where the spacecraft crosses the ring plane.
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Appendix B

Trajectory Information

This appendix contains detailed information about the trajectories obtained.

B.1 Interplanetary Option A (Trajectory 2)

Table B.1: Interplanetary Trajectory T2: Detailed Results

Interplanetary Trajectory 2 (EVEES)

Results (Summary) Units

Mission Time Launch on 12-12-2022 and Arrival on 03-12-2032
∆V 455.136 m/s

Time of Flight 9.969 years
Launch V∞ 4 km/s
Arrival V∞ 5.761 km/s

Results (Detailed) Units

Leg 1

Leg Earth to Venus (L)
Launch Epoch 8381.617 (12-12-2022) mjd2000

Duration 430.4 days
DSM After 173.5 days
∆VDSM 0.160 m/s

Leg 2

Leg Venus to Earth (V1)
Flyby Epoch 9208.397 (16-02-2024) mjd2000
Flyby Radius 1.585 Venus Radii

Duration 396.39 days
DSM After 21.96 days
∆VDSM 0.037 m/s

Leg 3

Leg Earth to Earth (E1)
Flyby Epoch 9208.397 (18-03-2025) mjd2000
Flyby Radius 2.36 Earth Radii

Duration 850.49 days
DSM After — days
∆VDSM — m/s

Leg 4

Leg Earth to Saturn (E2)
Flyby Epoch 10058.884 (16-07-2027) mjd2000
Flyby Radius 1.03 Earth Radii

Duration 1966.45 days
DSM After 69.033 days
∆VDSM 454.94 m/s

Arrival Details Epoch 12025.335 (03-12-2032) mjd2000
Arrival V∞ [5723.044293324046, 661.5850449698022, -57.275309120671864] m/s
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Figure B.1: Projection of trajectory 2 in the ecliptic plane

B.2 Saturn Orbit Insertion

This section presents detailed information regarding the Saturn Orbit Insertion solution achieved in this

work.

Table B.2: Saturn Orbit Insertion: Detailed Information

Saturn Orbit Insertion
Results (Summary)

Mission Time Capture on 12-12-2022. Arrival at Titan on 03-12-2022 Units
∆V 967.864 m/s

Time of Flight 383.62 days
Titan Arrival V∞ 3 km/s

Titan Arrival Inclination 6.92 deg
Results (Detailed)

Arrival

Arrival Information Units
Arrival Epoch 12025.334 (03-12-2032) mjd2000

Arrival V∞ [-5723.044293324046, -661.5850449698022, 57.275309120671864] m/s
Arrival Declination 4.79 deg

B-Plane Information Units
B-Plane Angle 0.0 rad

BdotT 486584721.05 m

SOI

∆VSOI 639.472 m/s
Periapsis Vector (J2000) (-95585185.91535664, 27410790.98265934, -1504928.3554632142) m

Rp 1.708 Saturn Radii
Ring Crossing 2.495 Saturn Radii

Post-Capture Orbit
Eccentricity 0.99 —

Inclination (IAU SATURN) 4.788 deg
Orbital Period 370.3 days

PRM and Post-PRM

∆VPRM 328.392 m/s
∆TApoapsis -32.31 days

Time of Flight 230.78 days
Inclination (IAU SATURN) 6.92 deg

Titan Arrival
Arrival Epoch 12408.95 (21-12-2033) mjd2000

Arrival Velocity Vector (J2000) (734.2955882450592, -7388.4583396920825, 1357.8212107142867) m/s
Arrival V∞ 3000 m/s

Figure B.2 shows a close-up of the Saturn orbit insertion trajectory. The red cross marks the spot

where the spacecraft crosses the ring plane. The green trajectory is the arrival hyperbola and the blue

trajectory is the post-capture ellipse. Rings are between circles with the same colours.
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Figure B.2: SOI, looking down on the planet’s north pole.

B.3 Enceladus Orbit Insertion

Table B.3 displays detailed information regarding the Enceladus Orbit Insertion manoeuvre.

Table B.3: Enceladus Orbit Insertion

Enceladus Orbit Insertion
Results (Summary)

Arrival Date 25-Oct-2036 Units
∆VEOI 243.5 m/s

Enceladus Arrival V∞ 350.0 m/s
Results (Detailed)

Arrival

Arrival Information Units
Arrival Epoch 13447.2858 (25-Oct-2036) mjd2000

Arrival V∞ [348.60501534750983, -8.92687915852457, -29.302763609082604] m/s
Arrival Declination -0.01 deg

B-Plane Information Units
B-Plane Angle 58.72 rad

BdotT 313048.95 m
BdotR 515381.51 m

Post-Capture Orbit

Eccentricity 0.076 —
Inclination (IAU ENCELADUS) 58.725 deg

Orbital Period 0.436 days
Periapsis Vector (J2000) [-9841.998383029713, -342113.4170946134, -479358.50936710427] m

Initial Altitude 295 km
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