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Abstract 

This document proposes a novel analytical-experimental hybrid methodology for the determination 

of the longitudinal and shear dynamic moduli, in which the longitudinal modulus was compared with 

the Dynamic Mechanical Analysis (DMA) results for several Cork Composite Materials (CCMs). 

Symbolic computation was intensively used to achieve a simple equation for the storage modulus and 

the Rational Fraction Polynomial method was used to determine the natural frequency and its 

respective loss factor. 

Such methodology allowed the development of validated numerical models of Phononic-inspired 

Vibration Isolators (PIVIs) in the frequency domain. The CCMs have been proposed by the author to 

achieve significant vibration attenuations at low and wide frequency ranges within reasonable lengths 

of the PIVIs. A test with a compressor motor illustrates the potential of those devices combined with a 

spring. 

The author also proposes validated numerical models in the frequency domain for metallic panels 

using CCMs for Surface Damping Treatments (SDTs), to study whether they are a low density 

alternative to the conventional damping materials. 

Topology optimization has been applied to PIVIs and SDTs to improve their performance.  

This study was performed to contribute for innovative applications using CCMs under dynamic 

loading, where the dynamic moduli is now of simpler assessment. 

 

Keywords: Passive vibration isolation, Dynamic modulus, Cork composite, Resonant method, 

Material property identification, Model validation, Phononic device, Surface damping treatments, 

Structural optimization, Inverse problem. 
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Resumo 

Este documento propõe uma nova metodologia híbrida analítico-experimental para determinação 

dos módulos de elasticidade dinâmicos longitudinal e de distorção, cujos resultados no caso 

longitudinal foram comparados através de Análise Mecânica Dinâmica em vários Compósitos de 

Cortiça (CCM). Utilizando computação simbólica intensiva obteve-se uma equação simples de cálculo 

dos módulos dinâmicos, recorrendo ao método polinomial em fracções racionais para identificação da 

frequência natural e factor de perda. 

Esta metodologia permitiu o desenvolvimento de modelos numéricos validados de Isoladores de 

Vibração Inspirados em Estruturas Fonónicas (PIVIs) no domínio da frequência. Os CCMs propostos 

pelo autor visam alcançar regiões de atenuação significativas em gamas de baixas frequências e 

comprimentos razoáveis dos PIVIs. Um teste com um motor de compressor ilustra o potencial destes 

dispositivos combinados com uma mola. 

O autor propõe modelos numéricos validados no domínio da frequência de painéis metálicos 

utilizando CCMs nos tratamentos de amortecimento (SDT) para estudar se estes são alternativa de 

baixa densidade aos materiais convencionais de amortecimento. 

Optimização topológica foi aplicada aos PIVIs e SDTs para melhorar o desempenho destes. 

Este estudo visa contribuir para o desenvolvimento de aplicações inovadoras que utilizam CCMs sob 

solicitações dinâmicas, onde o módulo dinâmico das CCMs é agora de avaliação mais simples. 

 

Palavras-chave: Isolamento passivo de vibrações, Módulo dinâmico, Compósitos de cortiça, Método 

ressonante, Identificação de propriedades do material, Validação de modelos, Dispositivo fonónico, 

Tratamentos superficiais, Optimização estrutural, Problema inverso. 
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Chapter 1 

 

 

1. Introduction and motivation 

 
This thesis presents a study on the development of numerical and experimental dynamic models 

for the characterization of the dynamic moduli of resilient materials, with emphasis on Cork Composite 

Materials (CCMs), allowing for numerical model validation and structural optimization. Furthermore, it 

presents methodologies developed to simulate the dynamic behavior of the two types of resilient layer 

structures, here considered, for passive vibration attenuation under steady-state conditions. Namely, a 

one-dimensional (1D) two-material Phononic-inspired Vibration Isolator (PIVI) and metallic panels 

subject to the constrained and unconstrained Surface Damping Treatments (SDTs).  

The first part of this study consists of the characterization of the dynamic longitudinal and shear 

moduli of CCMs. Even though, it might be considered to be somewhat off-topic for a mechanical 

engineer, the fact that the dynamic properties of CCMs are usually inaccessible to the engineer (in 

spite of their proven success in dynamic applications), motivated one of the main topic of this thesis. It 

is noted that, considerable part of the time available for this thesis was dedicated to an accurate 

characterization of the dynamic moduli of the materials, which is essential to validate the numerical 

models used to simulate the dynamic behavior of the two types of layer structures analyzed in this 

study. A new experimental method (and specimen) is proposed making use of the inverse problem 

formulations associated with analytical models. 

The second part of this study consists of structural analysis, experimental testing, model validation 

and optimization of the numerical models of the two types of resilient layer structures here studied.  

The first type of structure studied is a 1D two-material PIVI that attenuates vibrations in the 

direction of the stacked layers. The fact that traditional vibration isolators may lack a satisfactory 

performance in a wide service frequency range motivates the development of the PIVI as an 

alternative solution, since it can be designed to present significant wider frequency gaps, designated 

as Attenuation Regions (ARs), between adjacent frequencies. The PIVI is a finite repetitive device and 

so it does not present a stopband, i.e., a frequency band in which waves are not allowed to propagate, 

but in its place a strong AR. 

The second structure studied is a metallic panel that is subject to SDTs, free layer damping (FLD) 

or constrained layer damping (CLD), to reduce the vibration of the panel. The properties, location and 

thickness of the materials used in these treatments dictate the efficiency of the treatment. Usually, 

synthetic polymers are used in SDTs. However, their efficiency is often reduced if not lost at 

sufficiently higher temperatures, e.g., > 100ºC.  
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Motivated by this lack of efficiency and by the increasing concern regarding the comfort of the 

passengers in vehicles, in this study, the use of CCMs are considered as alternative materials in 

SDTs. Furthermore, an original methodology to optimize the application of SDTs in panels is 

developed and presented. 

A brief background revision that support the development of this study in the areas of structural 

dynamics with layer structures applied to vibration isolation/attenuation follows. 

1.1. Background and previous works 

Vibration control is still a recurrent problem in structural dynamics. Vibrations may be controlled 

essentially by using passive methods, active methods or a combination of both usually designated as 

hybrid methods [1]. Active vibration control systems consist essentially of sensors and actuators, 

which are driven by external power, that measure and actuate directly on the vibrating system in order 

to control it. On the other hand, passive vibration control systems do not need external power and are 

usually less expensive when compared to the active systems. Passive vibration control usually 

involves adjustment of the stiffness and/or mass and/or damping of the vibrating structure. In [2], 

Mead describes four different methods for passive vibration control: structural design; localized 

additions; added damping; and resilient isolation. For context purposes, a brief summary of these four 

methods follows. 

Passive vibration control by structural design is usually applied if severe or excessive vibration is 

expected at the design stage or is encountered in a prototype. Hence, it is common to analyze how 

the different response quantities depend in different ways on the fundamental structural properties of 

mass, stiffness and damping [3]. Passive vibration control by localized additions consist in the 

insertion of additional devices and/or material, usually categorized as localized additions, damping 

systems, isolation systems, e.g., a lumped mass that changes a troublesome frequency (which may or 

may not be a resonance) of a system usually designated as vibration absorber [4]. Passive vibration 

control by added damping consists of increasing the damping properties of the vibrating system. This 

is usually achieved by applying highly damped polymeric materials at strategic location within the 

structure where the added damped material is responsible for dissipating as much energy as possible 

[5]. Passive vibration control by resilient isolation consists of improving the vibration transmissibility 

between the “source” and the “receiver” at one or more connection points by making them sufficiently 

soft or resilient [6], e.g., using rubber pads and/or springs in the path between the “source” and the 

“receiver”.    

The mechanical characterization of resilient materials, i.e., viscoelastic materials intended to 

reduce the transmission of vibration, shock or noise [7], is of major importance for proper development 

and the characterization of new materials dedicated to sound and vibration control. Ferry [8] and 

Nashif et al. [9], state that the dynamic properties of linear viscoelastic isotropic materials can be 

represented by any two of the following parameters, namely the storage modulus 
'E , loss modulus 

''E and loss factor 
'' 'E E  , i.e., the dynamic modulus 

* ' ''iE E E  (where i is the imaginary unit).  
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The idea of measuring the dynamic modulus from vibration tests that require solving an inverse 

problem [10], in which experimental measurement data is used to infer values of the parameters that 

characterize the system, dates back to the 1950s, where abundant literature may be found on the 

subject.  

In 1957, Schlägel [11] described the methods successfully used at the time for measuring the 

dynamic modulus and divided them into: resonant and non-resonant methods. This division depends 

on whether the dynamic modulus is determined at a resonant frequency or in a range of non-resonant 

frequencies.  

Resonant methods based on the response of a bar specimen subjected to different types of 

dynamic loads and frequencies have been extensively researched. For e.g., Norris and Young [12] 

and Madigosky and Lee [13] evaluated the dynamic modulus at the resonance frequencies from the 

measured accelerations at both ends of a bar specimen subjected to a harmonic load at one end. 

In the context of resonant methods, the works of Pritz (see [14]-[16]) are considered of major 

importance. The transfer function method was used to evaluate the dynamic modulus of resilient 

acoustic materials by exciting, longitudinal and transversally, a cylindrical or prismatic specimen at one 

end, the other end being loaded with different masses, and by modeling the specimen with lumped 

mechanical elements. These works, among a few others (see e.g., [13]), have led to standardization of 

resonant method procedures to determine the dynamic modulus of viscoelastic materials (see, e.g., 

ISO 18437-2:2005 [7]). Other resonant methods involving vibrating beams with unconstrained 

viscoelastic layer were presented by Oberst and Frankenfeld [17] and more recently by Liao and Wells 

[18].  

Non-resonant methods, for which the dynamic stiffness is determined from the response of a rod 

specimen subjected to different types of dynamic loads, are used to determine the dynamic modulus 

as for e.g., in the work of Gade et al. [19]. Among the non-resonant methods is the Dynamic 

Mechanical Analysis (DMA), for which the experimental setup apparatus and equipment is 

commerciality available [20]. In DMA the specimens are relatively small (Iess than a few square 

centimeters) and excited at relatively low frequencies (usually at a few hertz) inside a temperature 

controlled chamber. From the DMA results, the dynamic modulus and other properties such as creep 

and relaxation functions are estimated (see, e.g., [21]). Another non-resonant method is the wave 

propagation method. It consists of determining the dynamic modulus on the basis of strains that are 

known at three or more points on a longitudinal impacted bar specimen. Among these, some methods 

are based on the measurement of one wave at a time [22]-[23] and other methods allow the 

overlapping of waves at instrumented points of the bar specimen [24]-[27]. With the exception of DMA 

and the wave propagation method, which are considered well suited for broad frequency ranges, the 

methods previously mentioned are best suited for a narrower frequency range.  

It should be noted that, each of these methods relates the response to the perturbation field with 

the dynamic modulus through a complementary method of analysis. By considering the precise 

boundary conditions, the analysis should give a rigorous solution to the field equations. However, in 

practice, to overcome the inherent technical difficulties it is usually necessary to introduce 
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approximations that may affect the equations just as the boundary conditions do. Thus, some 

experimental methods may be considered better conceived than others and, as a general rule, a 

simple method is considered more desirable than a more complex one since it allows these technical 

difficulties to be simplified or eliminated. 

Nevertheless, the methods previously referred are perhaps the most common methods to 

determine the dynamic modulus of viscoelastic materials. Some relevant reviews describing in more 

detail several of these methods may be found in [8], [21] and [28]. 

Polymeric viscoelastic materials are conceivably the most common materials used to passively 

control the vibration response of structures, e.g., SDTs, with low cost and acceptable reliability [29]. 

Nevertheless, for applications that are subjected to a wide or high range of temperatures, like in the 

proximity of exhaust systems, engine parts, automotive panels, etc., the success of these materials is 

often reduced.  

The use of cork and CCMs, which is the designation adopted along this text, are also referred to as 

cork agglomerate(s), cork-rubber(s) or composition cork(s), among other descriptions, may be 

foreseen as an alternative solution providing a damping capacity over a wide temperature range (e.g., 

-60ºC to 150ºC) with the additional characteristics of a low mass density and thermal and acoustic 

insulation [30]. CCMs are available in the market in a wide range of material compositions varying in 

cork and/or agglomerate, density, grain size and binder resin material [31]-[33]. Reference to the 

composition and/or to the properties of cork and CCMs are usually not available in the literature or in 

material databases. Thus, it is interesting to note that in spite of the widespread use of these 

materials, e.g., in gaskets (see e.g., [34] and [35]), practically no detailed information on their dynamic 

properties is usually found. This might be due to the recent use of these types of materials under 

dynamic conditions, for which (and surprisingly enough) the usually denoted static properties are often 

misused, as stated by the author and other researchers [36]. Furthermore, it may not be easy to 

warrant these dynamic properties as they may be affected by environmental condition changes (e.g., 

temperature, humidity, etc.).  

As previously referred, and among others, the rod apparatus and the DMA methods that are 

usually used in the characterization of the dynamic properties of polymeric viscoelastic materials are 

also used to identify the dynamic properties of cork and CCMs. As contributions to the knowledge of 

the dynamic properties of cork and CCMs and as examples of the use of non-resonant vibrating 

methods, among few others, are the works developed Diogo [37], who conducted a preliminary study 

of the application of dynamic mechanical techniques to biological polymers, namely cork, by Mano 

[38], who investigates the viscoelastic properties of cork using DMA, and by Moreira et al. [39], who 

presents a static and dynamic characterization method, using transfer functions, for sandwich beams 

with CCM cores.  

In previous works (see [40]-[41]), the author has used different approaches in his progression to 

estimate the storage and loss modulus of CCMs. In the above-mentioned paper [40], a study on the 

design of ARs concluded that by using CCMs it was possible to lower the frequencies of the frequency 

range of the ARs to a value of interest for several mechanical applications. However, and not to drift 



  

5 

away from the objectives of the work at that time (in which the test specimen was the periodic or 

repetitive bar for which the material properties were needed), the storage modulus of the CCMs was 

approximated by trial and error and based on a visual comparison of the experimental Frequency 

Response Function (FRF) and Finite Element Method (FEM) results. In [41] a Lagrangian finite 

element (FE) was used to estimate the storage modulus of CCMs. Initially, a FE undamped free 

vibration analysis was conducted, where the unknown variable, the storage modulus, was initially 

considered of unitary value, i.e., 
'
FEM 1E  Pa. Afterwards, the square ratio of the experimental and 

FEM first natural frequencies was used to estimate the storage modulus,  

where 
2

T

T

 
 

 

K

M
 and FEM  obtained with 

'
FEM 1E  Pa. This was then verified by a structural 

harmonic analysis to obtain the FRF curve, which was then compared to the one obtained 

experimentally.  As expected, it was verified that in order to obtain an acceptable accuracy some care 

should be considered with respect to the number of Lagrangian FEs used per wavelength of the 

vibration wave c f   where c  is the magnitude of the phase velocity and f  is the frequency of the 

wave (see, e.g. [42] for a detailed discussion on the numerical aspects involved).  

From that work, the author understood the need for a more rigorous method to characterize the 

storage and loss modulus of CCMs. Thus, a hybrid analytical-experimental methodology, which is 

addressed in this thesis, was developed [43] allowing the validation of the FE models that simulate the 

dynamic behavior of the two types of resilient layer structures, studied here, for passive vibration 

isolation. 

The first type of resilient layer structure consists of a PIVI, see Figure 1.1, that was first introduced 

by the author in his MSc dissertation [44].  

 

Figure 1.1 – 1D two-material phononic-inspired device for longitudinal vibration attenuation. 

The concept of a phononic device can be considered parallel to that of a photonic device since the 

main difference is the type of waves involved, i.e., phononics deals with elastic waves whereas 

photonics deals with electromagnetic waves.  

One example of the simplest forms of a photonic crystal is illustrated in Figure 1.2. This photonic 

crystal is a block of silica with a regular grid of holes [45]. The difference in refractive index between 

the silica and the air in each hole means that light is scattered at the boundary. If the distance 

between the holes is similar to the wavelength of the incident light, the scattered photons interfere 

destructively and a photonic bandgap, i.e., forbidden band of wavelengths in which photons do not 

propagate, is created.  

2
' 'EXP
estimated

FEM

E E




 
 

 

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Figure 1.2 – Photograph of a cross-section of a silica photonic crystal fiber. (Image reproduced from [45]). 

An unexpected breakthrough took place in 1995 between photonics scientist, Meseguer, and 

acoustics scientist, Llinares. The scientists realized that if these structures were scaled up to the 

corresponding wavelength of sound then, it might be possible to create an acoustic analogue of a 

photonic crystal. In this sense, inside the phononic crystal sound waves should bounce off the “atoms” 

in such a way that the waves interfere destructively, cancelling out the oscillations in the air creating a 

phononic bandgap, i.e., a forbidden band of wavelengths in which phonons do not propagate. 

The scientists suspected that some form of phononic structure might already exist. Indeed, a great 

illustration of the phononic properties of a periodic structure was provided by Meseguer and co-

workers when the acoustic characteristics of a minimalist sculpture by Eusebio Sempere (a Spanish 

sculptor, painter and graphic artist), illustrated by Figure 1.3, was studied.  

 

Figure 1.3 – Photograph of a kinematic sculpture by Eusebio Sempere consisting of a periodic array of hollow 

stainless-steel cylinders, each 30 mm in diameter and arranged on a square 100 mm lattice (spacing) forming a 

structure with 4 m in diameter. (Image reproduced from [46]). 
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In addition to being visually appealing, the researchers question themselves about the possibility 

that the sculpture possess a phononic bandgap. Thus, measurements of the acoustic transmission as 

a function of frequency and direction were conducted on the sculpture. It was found that sound 

travelling perpendicular to the axes of the cylinders was strongly attenuated after a frequency of 

1670 Hz. This provided the first experimental evidence for the existence of phononic bandgaps in 

periodic structures [47]. 

To gather additional data, the researchers decided to build their own minimalist sculpture (see, 

Figure 1.4) by hanging cylinders of stainless steel from a frame mounted in an acoustic chamber [48].  

 

Figure 1.4 – Photograph of a bottom view of a triangular metal bar lattice used to demonstrate an acoustic 

bandgap. (Image reproduced from [48]). 

Results revealed that the structure strongly suppressed sound waves in the audible range, at 

frequencies between 1400 and 1700 Hz. Similar tests were also conducted in the author’s research 

group where Cartaxo [49] and Cartaxo et al. [50]-[51] studied the wave propagation through an array 

of metallic cylinders obtaining suppressed sound waves of approximately 25 dB at frequencies 

between 1250 and 1750 Hz. There was clear evidence of a phononic structure. 

Phononic crystals were further used to build a structure that can block seismic waves in the 

ground. In [52], Meseguer and his colleagues drilled two vertical lattices, one honeycomb-shaped and 

the other triangular in a bed of marble, see Figure 1.5. Each hole in these lattices was 60 mm across, 

1600 mm deep and separated from its neighbors by 140 mm. 

Vibrations were created by dropping a steel ball bearing onto the marble floor, and sensors were 

used to measure how the vibrations were transmitted through the lattices. It was verified that both 

lattices significantly attenuated the vibrations. Nevertheless, to protect against real seismic waves, the 

holes would have to be hundreds of meters across and at least a kilometer deep [52]. 
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a) 

 

b) 

Figure 1.5 – Photographs of: a) the honeycomb; b) the triangular arrangements of cylindrical holes drilled on the 

surface of marble. (Images reproduced from [52]). 

Sánchez-Dehesa confesses that such proposal is not feasible yet, however, you can protect an 

isolated building [52].  

The concepts of phononic crystals described above and more specifically the 1D phononic crystal 

and its dispersion relations motivated the author to initiate his research in this field. One of the main 

objectives of the research was, and continues to be, to explore the concept and the design phononic 

structures for vibration isolation in several mechanical applications [44]. 

The  research began with the basics, i.e.: Bloch’s theorem [53] for the characterization of 

longitudinal waves, in structures with infinite periodicity repetition [54]-[55], leading to the 

corresponding dispersion relation [56]; and for structures build with finite periodic repetition, which was 

the case, a description of the basics was found in, e.g., [57]-[59].  

Soon after, a study on the dynamical characterization of passive attenuation of longitudinal 

vibrations through two-material periodic structures, see Figure 1.6, was presented in [40] and [44]. 

One of the main contributions of these works (within the project entitled Bloch wave techniques 

applied to design periodic structures, see [60]) was to lower the frequencies were the first AR is 

verified to values of interest for several mechanical applications. 

 

Figure 1.6 – Photograph of the experimental setup used to test a 5.5 cell steel-Polymethyl Methacrylate (PMMA) 

periodic cylindrical bar with a uniform diameter of 0.020m, composed of six steel and five PMMA half-cells each 

with a length of 0.135m [44]. 

However, the structure is approximately 1.5 meters long, presenting an AR initiating at 

approximately 1840 Hz. In spite of not being the most suitable solution for vibration isolation in 

mechanical applications, experimental evidence of the existence of phononic bandgaps in 1D two-

material periodic structures was obtained with this device. 
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From these early studies, a patent [61] of a 1D two-material periodic structure for vibration isolation 

was submitted and conceded in 2009, see Figure 1.7. 

 

a) 

 

 

 

 

b) 

Figure 1.7 – Images of the two-material periodic structure vibration isolator in the published patent [61]: a) 

cylindrical shaped structure; b) rectangular shaped structure. Legend of the figures: 1) cylindrical shaped 

structure; 2) steel layer; 3) resilient material; 4) rectangular shaped structure; 5) anti-slip material. 

Note that it was not until 2011, that the first international conference on phononic crystals 

(Phononics 2011) took place in New Mexico where interesting works reporting recent research and 

developments in the field were presented. For instance, the prediction and experimental validation of 

the dynamical response and tailoring of wave propagation filters for practical frequency ranges using 

periodic devices of finite length considering: periodic distribution of materials; addition of masses to a 

tube; and periodic curvatures [62]. Other examples such as: topology optimization methods for wave 

propagation of nonlinear wave devices [63]; as well as phononic metamaterials comprising structural 

framework of a stiff material and a more compliant material that can dissipate energy [64] were 

addressed.  

With reinforced inspiration from the novel potential of phononic structures and based on the 

author’s initial research ([40] and [44]), the author continued his research foreseeing the need to use 

materials with high contrast in the wave phase velocity (or impedance) between the two-material 

periodic structure. By doing so, the structure would present a reasonable dimension (i.e., in the 

centimeters range) as well as a considerable AR in a frequency range of practical use for vibration 

isolation of mechanical devices. 

The materials selected and proposed to fulfill such requirements were steel and CCMs. Steel due 

to the fact that it may be the material that presents the highest wave phase velocity at the lowest cost. 

CCMs because they presents relatively low wave phase velocity at an affordable cost. Additionally, it 

is available in the market in a wide range of compositions. It is as if you can almost select a CCM that 

meets your requirements. Furthermore, it is of easy access in the market, and in particular at the 

author’s country.    
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The author’s easy access to CCMs and to their dynamic moduli, by means of the hybrid analytical-

experimental characterization methodology presented by the author in this thesis, additionally 

motivated its study on the application for SDTs on metallic panels, where in most cases, polymeric 

viscoelastic damping material layers are used. As previously referred, for applications subjected to a 

wide range of temperatures like nearby engine parts, exhaust systems, automotive panels, etc., the 

use of CCMs as damping layers may be seen as an alternative low mass density, thermal and 

acoustic insulation solution which provides a damping capacity over a wide temperature range (e.g.,    

-60ºC to 150ºC) [30]. 

 SDTs for noise and vibration reduction of structures (usually associated to sheet metal structure) 

by means of passive techniques [2] and [29], are used in several areas such as automotive [65]-[67], 

railway [68] and aerospace engineering [65] and [69]. Such treatments are commonly classified 

according to whether the damping material is subjected to predominantly extensional or shear 

deformation and are referred to as extensional, unconstrained or FLD and as shear or constrained 

CLD treatments, respectively [9].  

Considering the automobile as an example, it is consensual that there are several sources (e.g., 

motor) and paths (e.g., bolts) of vibration transmission to the different components (e.g., panels) of the 

vehicle that may cause discomfort to the passengers. To improve it, FLD treatments are currently 

applied in the industry. In Figure 1.8 is illustrated a typical layout of FLD treatments in an automobile. 

 

Figure 1.8 – Topology of usual SDTs applied to an automobile. (Image reproduced from [70]). 

Amongst the several panels where SDTs may be applied, one that stands out due to the high 

amount of area treated is the bottom of the vehicle, see Figure 1.8. In fact, the corresponding weight 

of the materials commonly used in the FLD treatments in this area alone is approximately 10 kg [70]. 

In Figure 1.9 is illustrated the interior front view of an automobile with specific areas subject to FLD 

treatments. These FLD treatments are applied using viscoelastic material sheets, e.g., asphaltic melt 

sheet (with a mass density varying between 1200 kg m
-3

 and 1600 kg m
-3

 [70]) or liquid sprays 

designated as liquid applied sprayable damper (with a mass density of approximately 1000 kg m
-3

 

[70]).   
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Figure 1.9 – Interior view of the front of an automobile with an FLD SDT applied. (Image reproduced from 

[70]). 

It is clear that the benefits of the SDTs must be paid in terms of additional mass, resulting in 

additional fuel consumption. In this context, one challenge is to balance the comfort with the need to 

reduce mass and cost. Thus, in this thesis, the author studies the use of CCM sheets, which have a 

mass density of approximately 200 kg m
-3

, in FLD and CLD treatments, see Figure 1.10 a) and 

Figure 1.10 b), respectively. 

 

a) 

 

b) 

Figure 1.10 – Cross-section view (on black background) of SDTs using a CCM: a) FDL; b) CLD. (Each layer 

has a thickness of 2 mm). 

In the SDTs area, it is quite consensual that FLD treatments are the most common due to their 

application simplicity using auto-adhesive viscoelastic layers and sprays [65]-[70]. However, there are 

automobiles in which the typical metallic panels are replaced by CLD panels [71]. Even though, the 

CLD treatments are generally more efficient than the FLD treatment, for a given weight of damping 

material, they may present considerable complication in both analysis and application [69]. 

Metal 

CCM 

CCM 

Metal 

Metal 
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In this context, and in spite of the type of damping treatment, it is desirable to optimize the spatial 

distribution of damping treatment in the structure. Numerous reported approaches can be found in the 

scientific literature to fully automate optimization procedures of SDTs.   

For example, Eschenauer and Wodtke [72], Yildiz and Stevens [73] and Lumsdaine and Scott [74] 

considered the thickness of the damping layer as a design variable and used different optimization 

methods to vary the individual thickness of each damping layer. Bandini et al. [75] used a different 

approach by considering a constant thickness of the damping treatment on the structure where a 

genetic algorithm was used to control the evolution and a FEM was used to evaluate the performance 

of the configurations. Lin and Scott [76] optimized the shape of a damping layer for both constrained 

and unconstrained beams. Alvelid [77] proposed a modified gradient method to find “allowable 

positions” of damping materials to reduce noise and vibration. Zheng et al. [78]  used topology 

optimization with the method of the moving asymptotes approach to optimally design damping 

treatment by maximizing the attenuation effect. In [79], the author presents a structural topology 

optimization scheme in which commercial FEM software was used to evaluate the performance of a 

FLD treatment with constant thickness. The properties of the material (used in the damping treatment) 

follow the Solid Isotropic Material with Penalization (SIMP) idea [80], where material properties are 

assumed constant within each element used to discretize the design domain and in which the stiffness 

is proportional to density in the power n (greater than one). In [81], the author extended a similar 

optimization scheme to the CLD treatments and to the use of CCMs as the damping layer material. 

This subject will be further discussed later in this thesis. 

From the previous brief on optimization of SDTs, it quite consensual to mention that FEMs were 

and continue to be responsible for fostering the improvement of these treatments in more or less 

complex structures. 

Note that, until the late 1940s, vibration analyses of even the most complex engineering systems 

were modeled using simple approximated methods and considering a few Degrees-of-Freedom 

(DOFs). Nowadays, and due to the development of the FEM it is possible to consider thousands of 

DOFs to approximate practical problems in a wide variety of areas. Information on FEM basics and 

other advanced topics may be found in Bathe [82], Zienkiewicz and Taylor [83]-[85], Cook et al. [86], 

and Reddy [87]. 

The FEM involves dividing the actual physical system into small subdomains or elements. Each 

element is a simple unit, the behavior of which can readily be analyzed using approximation of 

displacement or stress fields by shape functions. Thus, the resulting mathematical model is a set of 

equations that represent the actual structure with more or less accuracy. The inaccuracies or 

uncertainties that may be represent in FE models need to be assessed and when required, minimized. 

This allows adjusting (updating) the FE models so that their results match the experimental vibration 

test results of structures, at least in certain parameters’ domains. 

Modal testing has been a fast developing technique in the experimental evaluation of the dynamic 

properties. It consists of data acquisition and data analysis for the identification of modal parameters 

such as natural frequencies, mode shapes, damping ratios, etc. [88]. This area has been extensively 
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developed where for e.g., various techniques for identifying modal models from FRF data have been 

proposed. Further details of the theoretical and practical aspects of vibration measurement techniques 

are given by Maia et al. [88], Broch [89], Ewins [90] and McConnell [91].  

Like other methods, modal testing possesses several limitations such as: a limited number of 

measurement locations; a limited number of identified modes which is defined by the frequency range; 

difficulty in establishing some boundary conditions, e.g., fixed or clamped; and noise in the measured 

data; among others. 

For various reasons, to elaborate later on, the numerical predictions and experimental results often 

collaborate to disagree. So being, the scene is set to improve the numerical predictions using the 

experimental results. This improvement is possible, e.g., by modifying the modeling assumptions 

and/or parameters until the correlation of numerical predictions and experimental results satisfies 

practical requirements. 

Initially, model updating was accomplished by a trial and error approach, which is normally time 

consuming and/or not be feasible in some cases. However, computational methodologies have been 

developed and numerous updating algorithms that use test data to update the parameters of the 

numerical models have been developed and presented. Particularly, modal data (natural frequencies 

and mode shapes) determined from measured frequency responses have wide application as a target 

or model parameter adjustment, see Mottershead and Friswell [92]-[93] and Mottershead et al. [94] for 

a detailed description. Surveys may be found in review articles of Hatke [95] and Imregun and Visser 

[96]. 

More recently, model updating has been developed into an established technology successfully 

applied to the correction of industrial scale FE models. Essentially, at this level, model updating is a 

process of adjusting a set of predefined parameters of the FE model. Usually, it is required the 

application of considerable physical insight in the choice of parameters to update and in the 

arrangement of the constraints, force inputs and response measurements in the experimental vibration 

test.  

Developing sophisticated physics based models does not necessarily guarantee accuracy and 

predictability. The aim of structural analyses to predict the structural response can be achieved if the 

modeling errors are minimized with respect to the given purpose of the structural analysis. Models that 

contemplate these requirements are usually designated as validated models [96].  

1.2. Problem description, main objectives, motivation and achievements 

This thesis presents a study on the development of numerical and experimental models for 

structural vibration attenuation of two types of resilient layer structures under steady-state conditions 

using cork composite materials. Namely, phononic-inspired one-dimensional two material periodic 

vibration isolators and metallic panels subject to the unconstrained and constrained SDTs. The main 

objectives of this study are to formulate and develop theoretical, numerical and experimental models 

to: 

 characterize the dynamic longitudinal and shear moduli of resilient materials, e.g., CCMs; 
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 validate the numerical models that simulate the dynamic behavior of these layer structures in a 

given frequency range and under steady-state conditions. 

 In this sense, and for presentation purposes, this study is divided into two main topics. 

The first topic of this study regards the determination of the dynamic moduli of the resilient 

materials that in this study are mainly CCMs. This is motivated by the lack of technical data supplied 

by the manufactures regarding the dynamic modulus. Thus, one of the objectives of this study is to 

develop a methodology that allows obtaining these dynamic material properties on-site, i.e. with the 

common equipment available to an experimental vibration analyst in a vibration laboratory (which 

usually consists of an impact hammer and/or shaker, force transducers and accelerometers). In this 

sense, a novel hybrid analytical-experimental methodology for the determination of the dynamic 

moduli of resilient materials is developed and presented. Note that considerable part of the time 

available for this thesis was dedicated to an accurate characterization of the materials dynamic 

moduli, which is essential to validate the numerical models. 

The second topic of this study regards the structural analysis, experimental testing, validation and 

optimization of the numerical models that simulate the dynamic behavior of the two types of resilient 

layer structures studied here.  

The first type of structure consists of a structurally inspired phononic resilient layer vibration isolator 

that was introduced by the author in his MSc dissertation [44]. This vibration isolator may be used to 

control in a passive form longitudinal vibration in specific frequency ranges for which it was designed. 

The objective is to present a design methodology for these devices, which is based on a new 

perspective given by the Bloch wave theory of and conduct a rigorous evaluation of the pros and cons 

as well as the limitations of this methodology. This is motivated by the fact that traditional vibration 

isolators do not always provide a satisfactory performance in a wide service frequency range, since 

they present natural frequencies in the service frequency spectrum, originating unwanted vibration and 

possible acoustic discomfort, for frequencies nearby the resonances. These resilient layer vibration 

isolators are here introduced and studied as an alternative solution since they can be designed to 

present significant wider ARs between two adjacent frequencies and for certain frequency ranges, 

relatively to the traditional commercial vibration isolators.  

The second type of structure consists of a metallic panel that is subject to SDTs. These treatments 

are a way for vibration reduction, usually associated with sheet metal structure vibration, by means of 

passive techniques. The usefulness of damping treatments depends upon its material properties, 

location and thickness of the treatment. The objective is to develop adequate rigorous numerical 

models to deal with the problem of finding the optimized spatial distributions of the damping material 

used in the SDTs of panels. This is motivated by an increasing concern on the comfort of the 

passengers. Therefore, SDTs and its materials have to be developed and optimized to balance the 

comfort of the passengers with the need to reduce the mass and cost of the vehicle.  

The main achievements and contributions of this study are: 
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 The novel analytical-experimental hybrid methodology that allows for the successful determination 

of the dynamic moduli of resilient materials, with special emphasis to cork and CCMs; 

 Experimental and validated numerical models of PIVIs composed of steel and CCMs, which 

present satisfactory performance in a low and wide service frequency range; 

 Experimental and validated numerical models illustrating the potential use of CCMs in surface 

damping which presents an alternative low mass density damping solution to the conventional 

polymeric materials; 

 topology optimization procedures improving the material disposition and consequently the 

performance of both PIVIs and SDTs.  

This thesis resides in a linkage amongst different areas of science and engineering. In particular, 

symbolic computation, numerical methods, structural analysis, theoretical and experimental modal 

analysis of vibrations, rheology, materials characterization, prototyping and in more recent areas such 

as phononics. 

It should be noted that this study adds value and knowledge to applications with CCMs, whose 

importance for the Portuguese industry has been evidenced though innovative international projects, 

e.g., Amorim Cork Composites LIFE project [97]. Apart from the quality of the scientific component, 

the use of CCMs is an additional contribute to the development of the cork sector of which Portugal is 

considered a leader in production, processing, research, development and innovation.  

It is expected that this study will have a high impact, especially amongst the cork and CCMs 

environments, manufactures and research and development institutes and groups, since these 

materials are capable of new and innovative applications even when subject to dynamic solicitations, 

where the dynamic moduli are now of simpler determination using the proposed analytical-

experimental hybrid methodology. 

To conclude this introductory chapter, next is presented the layout of this thesis. 

1.3. Layout of the thesis 

This document is composed of six main chapters. The first is an introductory chapter where the 

theme is introduced justifying the importance and motivation of this study in terms of engineering and 

particularly in the structural vibrations field. Then, a non-exhaustive careful review of some of the most 

relevant research works that supports the development of this study is presented. This is followed by 

asserting the problem here addressed, its motivation, the main objectives and the methodologies 

adopted and proposed for fulfillment.  

The second chapter introduces some of the most relevant fundaments regarding physical laws 

and/or mathematical concepts that support the study developed in this thesis. The equilibrium and 

constitutive equations, types of analysis, definitions, properties and characteristics used, are 

presented in this chapter. Furthermore, a general description of both modal testing and FEM is 

presented. Validation, correlation analysis and model updating concepts are then introduced. The 

formulation of the optimization problem and a brief introduction on vibration isolation and attenuation 



  

16 

mechanisms is followed by a brief introduction to the inverse problem formulation that conclude this 

chapter. 

In the following chapters all the contents, except when referenced to the respective authors, are 

original contributions of this study.  

Hence, the third chapter regards the characterization of the dynamic modulus. The proposed new 

analytical-experimental hybrid method is presented to characterize first the dynamic longitudinal 

modulus and then adapted to characterize the dynamic shear modulus. The analytical formulation, its 

numerical implementation, the construction of the test specimens and the experimental setups used in 

the proposed methodology are presented. Then, follows a brief description of DMA (that is used to 

characterize the longitudinal dynamic modulus), the Time-Temperature-Superposition (TTS) principle, 

the methodology, and the experimental setup adopted in this study. The main results from each 

method are presented and then compared and discussed. For a quick guidance of the main result 

relative to this third chapter, see the following list below at the indicated pages.  

     ● Materials studied, see Table 3.1 and Figure 3.15 ..................................................................... 77 

     ● 
2

'
MatE  and respective 

2Mat , obtained via hybrid methodology, see Table 3.4   .................. 83 

     ● 
2

'
MatG  and respective 

2Mat
 
, obtained via hybrid methodology,  see Table 3.5   ................ 86 

     ● DMA results – power law for 
2

'
MatE  and 

2Mat  , see Table 3.9 ............................................ 96 

     ● Hybrid methodology and DMA result comparison, see Table 3.10.......................................... 97 

The presentation of the main contributions and conclusions complete this chapter. 

In the fourth chapter, are first presented the analytical, numerical and experimental models of the 

proposed PIVI. The selection of the pair of materials, the design, structural improvement and 

optimization of the PIVI for several mechanical applications follow. An experimental comparison, in 

terms of force transmissibility, between two Commercial Vibration Isolators (CVIs) and some of the 

proposed PIVI is also presented. Then, PIVIs are applied in an industrial application to a motor of a 

hermetic compressor. Following are presented the main results and their discussion. For a quick 

guidance of the main result relative to this fourth chapter, see the following list below at the indicated 

pages. 

      ● PIVI prototypes developed and studied, see Figure 4.15 ...................................................... 116 

     ● Structural optimization results, see Table 4.7 and Table 4.8  ................................................ 125 

     ● Transmissibility result comparison for CVIs and PIVIs, see Table 4.10 and Figure 4.29 ...... 130 

     ● Results obtained using the motor of a compressor, see Figure 4.37 .................................... 136 

To conclude this chapter, the respective contributions and conclusions are presented. 

The fifth chapter regards the SDTs. First, a brief introduction to the FLD and CLD treatments is 

presented. Then, FE modeling and analysis of SDTs are presented and followed by the structural 
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optimization method developed. Following are presented the experimental setup and specimens used. 

Then, are presented the main results and respective discussion. For a quick guidance of the main 

result relative to this fifth chapter, see the following list below at the indicated pages.   

      ● Experimental results for the metalic panel, see Figure 5.8 .................................................... 147 

     ● Cantilever plate optimized results, see Table 5.7 .................................................................. 152 

     ● Floor of a simplified car model optimized results, see Table 5.8 ........................................... 153 

The respective contributions and conclusions complete this chapter. 

In the sixth and final chapter, entitled, “Contributions, conclusions and future works” are presented 

the main original contributions and conclusions of this thesis as well as some suggestions for future 

works.    
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Chapter 2 

 

 

2. Fundaments 

 
Fundamental concepts used in this thesis are presented at this chapter in a summarized format to 

introduce existing knowledge, from a broad range of physical laws and mathematical concepts, as a 

starting point of this study. In this sense, the proposed idea, methods and original contributions are 

presented in the following chapters. 

 Since it is not possible, even if intended, to cover all subjects in detail it is preferable that some of 

the most relevant references regarding each topic are specified to further guide the reader. 

Nevertheless, and before proceeding to an overview of the fundaments that support this thesis, three 

basic assumptions, that will be taken as given throughout this thesis, are now established: i) the 

structures studied are assumed as linear systems whose dynamic behavior may be described by a set 

of second order differential equations; ii)  the structure obeys the reciprocal theorem associated with 

the names of Maxwell, Betti, and Rayleigh and; iii) steady-state conditions are assumed. 

2.1. Equilibrium and constitutive equations 

The theory of continuum mechanics regards matter as continuum that remains continuous in the 

sense that it pays no attention to the molecular or microstructure of a material. Thus, in this 

idealization matter may be indefinitely divisible into infinitesimal volumes of continuum matter to study 

the motion and the mechanical behavior of materials and structures. 

The mechanical behavior of continuum materials is generally defined by constitutive stress-strain 

relations expressing the stress as a function of the strain, strain rate, strain history, temperature, and 

material properties. In this study, a brief introduction to linear theory of elasticity is presented, boarding 

the necessary concepts and formulations. 

Thus, consider a closed sub-domain   with volume V  and surface S  within a continuum body in 

elastic equilibrium. The region has a general distribution surface forces T  on the boundary surface   

and body forces f  in the volume   as illustrated in Figure 2.1.  

After applying the loads, the body (or the material points of the body) changes its position from the 

initial or undeformed configuration to the current or deformed configuration. The displacement u  of 

the body is defined by the difference of these two positions vectors [98]. 
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Figure 2.1 – Body   with surface forces T acting on arbitrary portion of its boundary   and volume forces 

f acting on an arbitrary volume  . 

The infinitesimal strain tensor neglects the nonlinear terms of the Green strain tensor and may be 

written as 

where, ,i j i ju u x    (a partial derivative of the iu  component of u  with respect to the coordinate 

jx

 

is indicated by a comma) with i

 

and j =1, 2, 3 where i  and j

 

are notation indices with respect to 

directions in the space. In the above, and in the sequel is adopted the convention that repeated 

indices in a term are summed over the range of the index. 

The Cauchy stress tensor
 
at the boundary is defined by the traction vector iT  on the boundary 

surface   characterized by a unit vector, jn , normal to the surface at each point expressed by 

The principle of linear momentum, states the rate of change of the linear momentum of a body is 

equal to the sum of the forces acting on the body.  

Hence, it may be written in the weak form as 

where,   is the mass density, c  is a constant that takes into account the velocity dependent damping 

forces, i.e., the viscous damping constant, and u  and u

 

are the displacement’s second and first order 

derivatives, respectively, with respect to time (a superposed dot denotes partial differentiation in 

respect to time).  

Eq. (2.3) may be rewritten using Eq. (2.2) as 

 , ,
1

, and 1, 2, 3
2

ij i j j iu u i j       (2.1) 

i ij jT n    (2.2) 

i i i iT d f d u d c u d



   
V V V

V = V + V.    (2.3) 
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Using the Divergence theorem of Gauss Eq. (2.4) becomes 

Since   is of arbitrary volume, Eq. (2.5) may be rewritten in the strong form as 

To obtain a solution to Eq. (2.6) it is necessary to assume the material behavior (constitutive laws), 

the initial conditions for a given reference instant 0t  and the boundary conditions. The problem 

discretization follows the path of the parabolic problem [99] obtaining a system of second order 

differential equations that in matrix notation for a Multiple-Degree-Of-Freedom (MDOF) system with 

N  DOF may be expressed as 

where M , C
 
and K are the N N  mass, damping and stiffness matrices, respectively and F  is the 

1N   applied load vector.  

2.1.1. Stress-strain relations 

The linear elastic dynamic properties of continuum solid materials may be characterized in the 

frequency domain by the dynamic modulus *E , see [8]. The dynamic modulus is also referred to as 

the complex modulus of elasticity, the dynamic modulus of elasticity, among other designations. 

For an applied harmonic force, it relates the amplitudes of the stress  
i

0
apt

t e


   and of strain 

 
i ( ) i

0 0
ap apt t

t e e
  

  


  where  i
0 0 e

  
  , as  

where i= 1  is the imaginary unit, ap  is the applied excitation angular frequency, t  is the time 

variable and   is the phase lag between the stress and the strain, as illustrated by Figure 2.2 a). 

            ij i i i in d f d u d c u d 



   
V V V

V = V + V.    (2.4) 

             ,ij i i i i in f d u c u d  
V V

V = + V.    (2.5) 

     ,ij i i i i in f u c u  = +    (2.6) 

       ,  M u C u K u F    (2.7) 

i* 0 0

0 0

E e
 

 
   (2.8) 
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a) 

 

 

b) 

Figure 2.2 – a) Stress-strain curves and phase lag  (where t  relates to the angle); b) Geometric relations 

involved in 
*E . 

The elasticity moduli E  must therefore be redefined using complex quantities to include this time 

dependence. A geometric relation of these quantities is illustrated in Figure 2.2 b). Thus, the dynamic 

modulus of elasticity is defined as 

where 'E  is the storage modulus (the real component of *E ), and is a measure of the energy stored 

elastically and ''E  is the loss modulus (the imaginary component of *E ), which is a measure of the 

energy lost, e.g. as heat or sound. The loss factor   is defined as 

The definition of the dynamic modulus expressed in Eq. (2.8) presents no restrictions on the type of 

deformation such as shear, bulk, tensile, etc. Therefore, *E  may represent the complex form of any 

dynamic modulus of elasticity.   

The phase lag between the stress and the strain  , see Figure 2.2, may serve to determine the 

type of material behavior. Hence, if 2   the material is said to present a purely linear viscous 

elastic behavior. If 0< < 2  the material is said to present a linear viscoelastic behavior. Whereas, if 

 =0 the material is said to present a purely linear elastic behavior. 

In the last case ( =0), the dynamic modulus Eq. (2.9) is simplified and may be expressed as 



' 0

0* * ' ''0

'' 00

0

cos

i ,

sin

yieldsi

E

E e E E E

E

















    

 


 (2.9) 

'' ' .tg E E    (2.10) 

'0

0

* ,E E E



      (2.11) 
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where, E  is the Young’s modulus also known as the tensile or longitudinal elastic modulus, among 

other designations. Note that the Young’s modulus can be determined by a static or quasi-static 

experimental test. Most structural metals are nearly linear elastic under small strain at ambient 

temperature and follow a constitutive law based on Hooke’s law, i.e., E  . 

Besides the Young’s modulus, there are other elastic moduli such as the shear modulus and bulk 

modulus. Hence, for a material that presents a purely linear elastic behavior ( =0 ) the shear modulus 

G  may be obtained similarly to Eq. (2.11) and expressed as  

where 
*G is the dynamic shear modulus, 0  and 0 are the amplitudes of the shear stresses and 

strains, respectively and 
'G is the shear storage modulus. The bulk modulus K  that measures the 

response of the material to uniform pressure may be expressed by relating the Young’s and shear 

moduli, see Eq.(2.11) and Eq. (2.12), as 

where 
*K and 

'K  are the dynamic and storage bulk moduli, respectively.  

Furthermore, it is also common to measure the Poisson effect, i.e., the expansion/contraction of the 

material in one or more directions when subject to a compression or traction in a different 

perpendicular direction. For this, the Poisson’s ratio is defined as the negative of the ratio of the 

expansion (contraction) strain divided by the fraction of compression (traction) strain. Similarly to the 

bulk modulus and for a material that presents a purely linear elastic behavior ( =0), the Poisson’s 

ratio may be expressed by relating the Young’s and shear moduli, see Eq.(2.11) and Eq. (2.12), as 

2.2. Types of structural analysis  

Once the material behavior is known (or assumed) it is possible to evaluate the effects of loads on 

the body (structure). This type of evaluation is usually referred to as structural analysis. In this study, 

three types of structural analyses are considered: i) static analysis, which is used to determine the 

effects of steady loading conditions on a structure, while neglecting inertia and damping effects, such 

as those caused by time-varying loads; ii) free vibration analysis, which is used to determine the 

vibration characteristics (natural frequencies and mode shapes) of a structure; iii) and steady state 

forced vibration analysis, which is used to determine the steady state response of a structure to time-

varying loads. 

* '0

0

,G G G



      (2.12) 

 
* ' .

3 3

E G
K K K

G E
  


   (2.13) 

1.
2

E

G
      (2.14) 
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2.2.1. Static analysis 

The static analysis consists of solving Eq. (2.7) in which the inertia and damping effects, such as 

those caused by time-varying loads are not considered (since they do not induce significant effects), 

i.e.:  u u 0  and  t F F , where F  is a constant vector. It is obtained a linear force-displacement 

law expressed by Eq. (2.15), which is rewritten here for demonstration purposes, as 

In this study, whenever static loading and response conditions are considered, it means that the 

loads and the response of the structure to those loads are assumed as static. 

2.2.2. Free vibration analysis 

The free vibration analysis consists of calculating the natural vibration frequencies   of the 

structure considering that external forces vanish ( F 0 ) after an initial perturbation. Assuming that 

where 
i

0 0 e u u  is the amplitude of the displacement and   is the phase angle of the harmonic 

motion, by substituting Eq. (2.16) and its derivatives with respect to time in Eq. (2.7), after some 

mathematical manipulation one obtains 

In the general case, where damping is non-proportional, one is faced with a quadratic problem and 

one can recur to e.g., the state-space analysis to solve Eq. (2.17), see [88] for more details.  

In the case of proportional damping, i.e., when the viscous damping matrix C  is directly 

proportional to the stiffness matrix, mass matrix or to a linear combination of both as 

where  and   are constants, one is faced with a set of N  uncoupled damped Single Degree-of-

Freedom (SDOF) equations and one may recur e.g., to the Laplace domain [88] to solve Eq. (2.17).  

For the undamped case, Eq. (2.17) is a homogeneous system of equations with non-zero solution 
when 

Solving this equation leads to the characteristic equation, and the left-hand side is called the 

characteristic polynomial. When expanded, this gives a polynomial equation in  2
r r  .  For a large 

number or DOFs other numerical methods may be preferable to solve this type of problem [100]. 

.K u F    (2.15) 

i
0 ,te u u    (2.16) 

 2 i .    M C K u 0    (2.17) 

,  C K M    (2.18) 

 2det 0. K M    (2.19) 

http://en.wikipedia.org/wiki/Characteristic_equation
http://en.wikipedia.org/wiki/Characteristic_polynomial
http://en.wikipedia.org/wiki/Polynomial
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2.2.3. Forced steady state vibration analysis  

Whenever external energy is supplied, through either dynamic applied forces or displacements to a 

structural system, it is said to undergo forced vibration. The dynamical applied forces and 

displacements may be classified as: periodic harmonic or periodic non-harmonic; non-periodic; with 

long or short duration; or random in nature. The dynamical response of a system to a harmonic 

excitation is called harmonic response. In this study, it is considered a harmonic excitation that may be 

presented in the complex form as 

where 
i

0 0 e F F  is the force amplitude and   is the phase angle of the harmonic excitation. For 

an excitation frequency coincident to the natural frequency, the response of the system will be large, 

tending to infinite if there is no damping. This is known as resonance and is generally avoided to 

prevent system failure. However, in some particular cases the resonance phenomenon is used, e.g., 

in the design of atomic probes for microscopes, see [101]. 

The steady-state solution will be given by substituting Eq. (2.16) and its derivatives with respect to 

time and Eq. (2.20) in Eq. (2.7), obtaining 

Note that for each given  , the only unknown is the respective 0u . 

2.3. Receptance frequency response function  

The ratio between the displacement response due to the excitation force, as a function of 

frequency is designated as the receptance (compliance) FRF [88] which can be expressed by the 

matrix of the frequency response functions as  

Note that its inverse is usually designated as the dynamic stiffness and represented by  Z . The 

receptance FRF is a complex function with magnitude  H  and phase ∡  H  illustrated in 

Figure 2.3 a) and Figure 2.3 b), respectively.  

The physical interpretation of the FRF is that a sinusoidal input force, at a frequency  , will 

produce in the time domain a sinusoidal output motion at the same frequency with an amplitude 

multiplied by  H , and a phase shifted by ∡  H . 

Since the dynamic properties of a system may be expressed in terms of any convenient response 

characteristic, i.e., displacement, velocity or acceleration that are mathematically interrelated response 

quantities, knowledge of an FRF in terms of any one of the motion parameters allows for derivation of 

i ,te  0F F    (2.20) 

 2
0 0i .    M C K u F    (2.21) 

     
1

2 1i .   


  H M C + K = Z     (2.22) 
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the other FRF form. In this sense, FRFs may be referred to as receptance, mobility or accelerance 

when the response characteristic is displacement, velocity or acceleration, respectively. It is usual to 

use the receptance FRF for modeling and the accelerance FRF for measurements, since the most 

common motion transducer is the accelerometer.   

 

a) 

 

b) 

Figure 2.3 – Receptance FRF curve: a) magnitude; b) phase. 

In general, the FRF curves may be estimated: analytically (at least for simple systems and up to 

certain frequencies); numerically using the FEM to model and solve more complex systems and; 

experimentally by modal testing of the real structure. 

2.4. Modal testing  

One may say that there is no single right way to perform an experimental modal test. In almost 

every case, the support, the excitation equipment or the transducers will influence the dynamic 

behavior of the structure under test. In experimental modal testing one has to realize that these 

influences exist, understand them, and then design the test to minimize their effects on the dynamic 

behavior of the structure. In many aspects, experimental modal testing can be considered as part art 

and part science in the sense that the validity and accuracy of the experimental results may strongly 

depend on the knowledge and experience of the user.  

In this study, one of the objectives of experimental modal testing is to acquire sets of FRFs that are 

sufficiently extensive and accurate to enable analysis and extraction of the properties for the required 

modes of the structure. However, the frequency domain extent of experimental measurements will be 

dictated by the capabilities of the hardware equipment (transducers, data processing equipment, etc.) 

used in the measurements.  
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In experimental modal testing, the measurement chain can be divided into three main                

sub-sets [88]: i) the excitation components; ii) the sensing components and; iii) the data acquisition 

and processing components. However, in the author’s opinion a fourth sub-set regarding the 

supporting/linking components, i.e., the components that support/link: the structure under test (e.g., 

rubber springs); the excitation system (e.g., metallic chains) and the sensing components (e.g., 

beeswax), should also be considered in the measurement chain. A brief introduction to these topics is 

presented next. 

2.4.1.   Excitation of the test structure 

The excitation mechanism provides the input solicitation, generally in the form of a driving force 

applied to the structure under analysis. There are some variants for this mechanism depending on the 

desired input, accessibility and properties of the test structure. The most popular are the exciter, also 

referred to as shaker and the impact hammer. 

 The shaker is usually an electromagnetic vibrator capable of transmitting different excitation 

signals (generated by a signal generator and then amplified by a power amplifier), e.g., stepped-sine, 

swept-sine, random, etc., to the structure under test.  

This excitation mechanism requires physical contact with the structure, see Figure 2.4 a). The 

objective is to transmit controlled excitation to the structure in a given direction and, simultaneously, to 

impose as small restraint on the structure as possible in all other directions. A push-rod (drive-rod or 

stinger) is usually used to form a link between the shaker and the structure under test. The push-rod is 

designed so that it is highly stiff axially and relatively flexible to lateral and rotational motions. 

A popular alternative to the shaker is the impact hammer, which consists of a hammer with a force 

transducer attached to its head and a rubber, plastic or metallic tip, see Figure 2.4 b). The hammer 

itself is the excitation mechanism, which exempts the signal generator and the power amplifier. 

Furthermore, its use avoids structure restraint and mass loading on the test structure. 

 
a) 

 
b) 

Figure 2.4 – Excitation mechanism of the test structure: a) vibration transmissibility between the shaker and the 

structure through a push-rod; b) impact or impulse hammer. 
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One may state that, without prior knowledge of the dynamic characteristics of a structure or its 

model, the best location of the excitation and response measurement points is a matter of trial and 

error coupled with experience and engineering judgement. Here, the use of numerical models is 

expected to be of great help. 

2.4.2. Sensing transducers 

The technology developed in measurement equipment allows the direct measurement of physical 

quantities that characterize movement like displacement, velocity and acceleration. Thus, for 

measuring displacements the most common instruments are potentiometers (of simple conception), 

while for measuring velocities, laser equipment (using the Doppler’s effect) is probably the most 

popular option. Relatively to acceleration measurements transducers, usually designated as 

accelerometers, they can be piezoelectric, piezoresistive, capacitive or force balanced.  

 

a) 

 

b) 

Figure 2.5 – Technical drawings of sensing transducers [88]: a) partial cut of a piezoelectric accelerometer; b) 

partial cut of a piezoelectric force transducer. 

A partial cut of a typical piezoelectric accelerometer is illustrated in Figure 2.5 a). There are four 

basic components: a base and case, a center post, an annular section of piezoelectric ceramic and an 

annular seismic mass element. The base of the accelerometer moves with the motion structure to 

which is attached, and to cause equivalent motion of the seismic mass, a force must be applied. This 

force is transmitted through the piezoelectric crystal that deforms slightly as a consequence. The 

deformation produces a charge in the piezoelectric crystal that is proportional to the deformation and 

hence, ultimately, to the acceleration of the seismic mass and structure. These devices operate well 

over a fairly wide frequency range, but they are not generally well suited to low frequency applications 

[88], i.e., less than approximately 10 Hz, depending on the accelerometer. 

The most common type of force transducers (see Figure 2.5 b) ), works on the principle that the 

deformation of  a piezoelectric crystal produces a charge output proportional to the force acting on that 

crystal (same principle as described for the piezoelectric accelerometer). In Figure 2.5 b) it is 

illustrated the cross-section of a typical piezoelectric force transducer from which is possible to identify 

two constitutive masses: one below the piezoelectric element (“base-side” mass) with ≈3 grams; and 

the other above the piezoelectric element (“live-side” mass) with ≈18g [88]. The “live-side” mass of the 

force transducer is kept small minimizing the modification to the structure. For a typical force 
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transducer, the “base-side” is only ≈3 grams. In reference [88] it is discussed the importance and 

influence of the active and total mass of the force transducers in experimental work.  

Furthermore, there are also “dummy” sensing transducers that have similar mass properties to the 

real transducers [88]. These are normally used in cases where there are not sufficient real transducers 

available. Hence, the dummy transducers may be systematically and temporarily replaced by real 

transducers until all the intended measurements locations have been covered. Note that the results 

obtained from tests that use these types of transducers should be the same as if a complete set of real 

transducers had been attached to the structure. 

2.4.3. Data acquisition and processing components 

These components are used to acquire and process the signals developed by the sensing 

components, e.g., magnitudes and phases of the excitation forces and its responses. Signal 

conditioning, power amplifiers, generators and analyzers are an example of types of these 

components. Nowadays, this information is transmitted to a digital computer, in which specific 

software, e.g. Pulse Labshop (Brüel & Kjaer), processes the acquired data.  

2.4.4. Supporting components 

Considerations of the support of the structure under test as well as the excitation system and 

sensing components is an import part of the setup of the test. The support conditions must be well 

defined and experimentally repeatable if the results of the dynamic measurements are to reflect the 

properties of the test structure. 

For laboratory testing of structures usually free boundary conditions are employed since they are 

achieved with relative ease by recurring to flexible suspensions (e.g., soft springs) so that the 

resonance frequency of the mass of the structure on the stiffness of the suspensions or devices are 

low and distant from the frequency range of interest. 

Even though, the support of the excitation system is less important it should still be considered. It is 

common to support a shaker on a hoist due to its convenience for positioning and alignment with the 

test structure. However, the shaker on a hoist is a dynamic system and will move as a result of the 

internal force generated.  This movement may cause problems at low frequencies where the modes of 

the suspensions of the shaker can be excited.  

The attachment of sensing transducers to the test structure will necessarily have more or less 

inertial loading effects on the structure. When necessary, these effects should be considered at an 

early stage of the setup. One other aspect is that the stiffness of attachment has to be sufficiently high 

throughout the frequency range of interest so that the motion of the transducer is identical to that of 

the attachment point of the structure. For low frequency measurements it is common to use beeswax. 

However, for high frequency measurements the sensing transducers have to be firmly 

bolted/cemented to the structure. 
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2.4.5. Estimation of frequency response functions 

In addition to the previous mentioned aspects that may affect the dynamics of the test structure 

there are other aspects that one faces in practice and that have to be considered when estimating an 

FRF. Apart from low-level electrical noise, dynamic processes (e.g., machines, wind, footsteps etc.) 

may result in mechanical noise that produces vibration in the test structure. This is typically referred to 

as noise in the measured output signal in the sense that the response signal contains the response 

due to the measured excitation and external random excitations. 

The least squares principle may be used to minimize the effect of noise at the output as [88] 

where the superscript   indicates the complex conjugate.  1 H  may be seen as the ratio of the 

cross spectrum, between the response X  and force F , divided by the autospectrum of the force. This 

FRF estimator removes the random noise in the output during the averaging process of the cross 

spectrum and converges to the true  H  as the number of averages is increased.  

Another noise source may appear when a vibration exciter is used. At its natural frequencies, the 

structure becomes highly compliant resulting in high vibration amplitudes. The exciter may then use all 

the available energy to accelerate its own mechanical components, leaving no force to drive the 

structure. The signal-level of the force may then drop towards the normal noise-level in the 

instrumentation, in contrast to the response that is at a maximum and likely to obscure any noise. This 

is typically referred to as having noise at the input. An estimator that minimizes this input signal noise 

effect is expressed as [88] 

By using the  2 H FRF estimator, the input noise is removed from the cross spectrum during the 

averaging process. As the number of averages is increased,  2 H  converges to the true  H . In 

cases where noise is present at both output and input,  1 H  and  2 H  generally form the 

confidence interval for the true  H . 

To conclude the brief introduction on FRF estimators and measurement errors, two rules of thumb 

may be established depending on whether the structure is subject to a random or an impact excitation. 

Thus, for random excitations,  2 H  is preferable since it cancels noise at the input being a better 

estimator at resonances and for impact excitations both  1 H  and  2 H  will generally be equal at 
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the resonances. However,  1 H  is preferred since it cancels noise at the output being a better 

estimator at anti-resonances. 

Besides these estimators, that filter output and input signal noise, the quality of the FRFs are 

affected by many other parameters. Identifying and introducing every single one of these parameters 

is beyond this study. However, a few of the most relevant are: the weighting function also known as 

the window; the frequency resolution; and the frequency and spatial truncation, among many others. 

Thus, the modal parameters, i.e., natural frequencies, damping ratios, modal constants and their 

phases that characterize the FRF are also affected by these parameters.   

To identify the modal parameters of an FRF or a set of FRFs it is common to recur to modal 

identification methods. Whether in the time or frequency domains, various direct (based on the general 

matrix equation of dynamic equilibrium) and indirect (based on the modal parameters) modal 

identification methods have been developed for both SDOF and MDOF systems. A detailed review of 

the most widely known methods may be found in [88]. 

2.4.6. Rational fraction polynomial method for modal identification  

In this study, an indirect frequency domain identification curve fitting method based on the Rational 

Fraction Polynomial method is used (see [102] for a detailed discussion and [103] for the online link to 

a MATLAB
®
 implementation code). From references [88] and [102], the receptance FRF for a linear 

system with N  DOFs and viscous damping may be expressed in the rational fraction form as 

and in the partial fraction form as 

where ka  and kb  are the coefficients of the polynomial of the numerator and of the polynomial of the 

denominator, respectively; kr  is the residue of the thk pole; ik k kp     is the thk  pole where 

k ,  k n k
   , and  i k are the axes in the s-plane known as the damping and frequency 

axes, respectively; k  
and

 n  
21k n     

   
are the damped and undamped natural 

frequencies, respectively, and   is the modal damping ratio. This RFP method fits the analytical 

expression Eq. (2.25), by finding the unknown coefficients , 1, ,2 1ka k N 
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, 1, ,2kb k N , as described in [102], to the experimental FRF measurement in a least-squared 

error sense. Once the coefficients are known, it is a straightforward process to obtain the modal 

properties of the FRF. The natural frequency n  of each pole kp  
 
is  

and the correspondent modal damping ratio is 

Note that the RFP method is developed considering the viscous damping model ([88] and [102]). 

In this study, i.e., for the materials and frequency range studied and tested, the modal loss factor   is 

successfully approximated by 2  , as the results show.  

The RFP method may also be applied to FRFs obtained using the FEM. 

2.5. Finite element method 

The FEM is a method for numerical solutions of field problems, which require determining the 

spatial distribution of one more dependent variables. Mathematically, field problems may be described 

by either differential or integral equations to formulate FEs that can be visualized as small pieces of a 

structure. The field quantity in each FE is restricted to simple spatial variations described, e.g., by 

second order polynomials. FEs are connected at points designated as nodes and the union of FEs 

(designated as a mesh) is the FE structure. The FE mesh is represented by a system of algebraic 

equations to be solved for nodal unknowns. The assumed field in an element combined with the 

solution of nodal quantities determines the spatial variation field in that element. Hence, the field 

quantity over the entire structure is approximated element by element and can be improved by using 

more elements to represent the structure. 

The mathematical formulation of the FEM [86] can be presented as a variational problem with an 

element-wise Rayleigh-Ritz treatment and shape function discretization. Alternatively the FE equations 

may be obtained directly from the differential equations using a Galerkin approach weighted by the 

element’s shape functions. 

A variational (weak) form of Eq. (2.6) that yields the virtual work equations may be expressed as 

where the virtual strains   are related to virtual displacements (kinematically admissible) u  as 

 , ,
1

2
ij i j j iu u    . Furthermore and as previously defined in sub-chapter 2.1, V  is the volume of 

a closed sub-domain with a boundary surface  ,   is the mass density, c  is a constant that takes 

  2 2 ,n k k k kp p        (2.27) 
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into account the velocity dependent damping forces, i.e., the viscous damping constant, ij  are the 

components of the Cauchy stress tensor, jt  are the components traction vector, jf  are the 

components of the body forces, and u  and u

 

are the displacement’s second and first order 

derivatives, respectively, with respect to time. 

In Eq. (2.29) the terms one to five indicate the virtual work associated with: the inertia forces, the 

damping forces, the internal elastic forces, the boundary contact forces; and the volume forces, 

respectively. 

The FE custom notation provides 

where interpolating shape functions N
 
are function of space x  while nodal DOFs d

 
may or not be 

function of time, depending on the type of problem. Furthermore, B  is the matrix containing the partial 

derivatives of the shape functions, i.e., , , , 1, ,j j jx y z j n           B N N N N . 

By substituting the terms expressed in Eq. (2.30) in Eq. (2.29) one obtains in matrix notation that  

The first two integrals in Eq. (2.31) are the element’s mass 
el

M  and damping 
el

C matrices, 

respectively, expressed as  

The third integral in Eq. (2.31) is related with the strain energy. If the material is linear elastic, then the 

loads associated with the element’s stresses are 
el T Td d  K d B σ B E B d

V V

V = V  where E  is 

the elasticity matrix and 
el

K  is the conventional element’s stiffness matrix expressed as 

Note that sometimes proportional (Rayleigh) damping defined as 
el el el  C K Μ  where   and 

  are the proportional stiffness and mass constants, respectively, is used. The last two integrals in 

Eq. (2.31) express the volume and surface loads (forces and/or moments) which are then applied to 

the nodes as equivalent loads on the element and adding nodal external forces iF  may be expressed 

as 

; ; ; ,   u N d u N d u N d ε B d    (2.30) 
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V V V - V = 0.    (2.31) 

el el .T Td c d  M N N C N N

V V
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 By substituting Eq. (2.32) - Eq. (2.34), and vanishing the left d  which is true for an arbitrary 

kinetically admissible d , Eq. (2.31) of a multi-element structure after assembly becomes 

Note that Eq. (2.35) is a system of coupled, second order differential equations in time. The nodal 

vector D  consists on discrete functions of space but continuous functions of time.  

2.5.1. Basic steps in finite element method 

The basic steps involved in most FE analysis are: preprocessing; solution; and post-processing. 

For a more detailed description, see e.g. Cook et al. [86]. The pre-processing step is quite generally 

described as defining the model, i.e.: the geometric domain of the problem; the element types to be 

used (bar, plate); the material properties of the elements (
' , , , etc.E c ); the geometric properties of 

the elements (length, section properties); the element connectivities (mesh of the model); and the 

physical constraints (boundary and loading conditions). The preprocessing step is critical since even a 

perfectly computed FE solution is of absolutely no value if it corresponds to a different problem. 

To initialize the solution step, first the analysis type is chosen, i.e.: static; free vibration; or forced 

harmonic vibration. Then, the governing algebraic equations are assembled in the matrix form and the 

unknown values (usually displacements) are computed. The computed values are then used to 

compute additional derived variables, such as reaction forces, element stresses, etc.  

Post-processing is commonly referred to as analysis and evaluation of the solution results and may 

be divided into generic post-processing (static and free vibration) and time-history post-processing 

(forced harmonic vibration). The objective is to present adequately the results obtained from the 

numerical solution given by the solver. 

2.5.2. Type and geometry of the finite element  

In general, the geometry of the FE is defined by the location of the nodal points and the 

interpolation functions. Most elements used in practice have simple geometries: 1D elements are 

usually straight lines or curved segments; 2D elements are of triangular or quadrilateral shape; and 3D 

elements are of three common shapes, i.e., tetrahedral, pentahedral (also called prisms) and 

hexahedra (also called bricks). Furthermore, there are also single node elements used to model 

concentrated masses and massless longitudinal two-node spring and damper dashpot elements that 

provide a variety of element formulations that may be used individually or in combination. 

2.5.2.1. Point mass finite element  

The structural mass element is a point element defined by a single node, concentrated mass 

components in the element coordinate directions, and rotary inertias about the element coordinate 

el .T T
id d
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axes having up to six degrees of freedom: translations in the nodal x, y, and z directions and rotations 

about the nodal x-, y-, and z-axes, see Figure 2.6. Note that a different mass and rotary inertia may be 

assigned to each exiting coordinate direction. This element does not account for any stiffness or 

damping capabilities, only adds corresponding entries to the mass matrix. 

 

Figure 2.6 – Discrete mass finite element coordinate system. 

2.5.2.2. Longitudinal linear elastic spring finite element 

The longitudinal elastic spring element is a two nodes 1D tension-compression massless linear 

elastic spring with a spring constant k , see Figure 2.7,     

 

Figure 2.7 – Discrete two-node linear elastic spring finite element model. 

The deformation, assuming that the nodal displacements are zero when the spring is not deformed, 

may be expressed as 2 1( )u u u    and the resultant axial force in the spring as 2 1( )f k u u  . In 

equilibrium 1 2f f  , then terms of the applied nodal forces can be expressed in matrix form as  

where el
K  is the element stiffness matrix in the element coordinate system, u  is the nodal 

displacements vector and el
F  is the element’s nodal forces vector. Note that this element does not 

account for any damping capabilities or inertia effects. 

2.5.2.3. Longitudinal linear elastic damper finite element 

Similar to the spring, the longitudinal damper element is a massless two nodes 1D tension-

compression massless element used to represent the energy dissipation observed in structures. For 

linear elastic materials, two types of damping are commonly used: viscous and hysteretic (also 

commonly referred to as structural) damping. The viscous damping force is proportional to velocity 
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f c u  and hysteretic damping force is proportional to displacement f d u  where c  and d  are 

the viscous and hysteretic damping factors, respectively.  

As in the case of the longitudinal linear elastic spring, a similar line of thought may be applied to the 

viscous and hysteretic damping models where the elements viscous and hysteretic damping matrices 

may be expressed as 

The hysteretic damping model is justified by the fact that rubber and other viscoelastic materials 

exhibit frequency dependence, usually less pronounced than that associated with a viscous damper 

and, over a limited range of frequencies, the properties may often be assumed constant. Thus, a 

hysteretic damper model opposes the relative motion between its ends with a force that is proportional 

to the displacement and not to the velocity (though still in phase with the velocity) is apparently 

required. This is equivalent to using a viscous damper with a viscous damping rate that varies 

inversely with frequency, i.e., c d   where d k  and   is the loss factor. In this case, it is 

common to define a dynamic stiffness 
*k  as  

The hysteretic damping model has the advantage of not only describing more closely the energy 

dissipation mechanism exhibited by several real structures, but also provides a much simpler analysis 

by considering the use of dynamic moduli, e.g., Eq. (2.9), i.e., 
* '(1 i )E E   , in the analysis of 

complex systems. 

2.5.2.4. One-dimensional bar finite element for dynamic linear elasticity 

The bar (truss/link) FE is also a two-node element. For it, consider a material body with cross 

sectional area A
 
with the axis aligned in the lengthwise direction x . It is assumed that the material of 

the body is homogeneous, i.e., the material properties are independent of the position. Considering 

that one isolates from the body a small element with length dx , see Figure 2.8, the internal efforts at 

the cut faces are axial and symmetrically positioned with respect to the geometric centroid of the 

cross-section. Note that they represent the summation of the internal efforts of all material points along 

the cut surfaces. Then the axial stress x , i.e., force per unit area, in the member, except near the 

points of load application (see Saint-Venant’s principle), will be uniform in the transversal section. 

Such members are usually designated as bars and if cylindrical as rods.  
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Figure 2.8 – Forces acting on a small element with length dx of a slender bar in the longitudinal direction x . 

The governing equations of bars can be derived from Newton’s second law applied to a small 

element of the bar QR  with length dx . In the absence of distributed (volume) forces, the summation 

of the internal forces along the element with length dx  results in 
xA dx

x




, as illustrated by 

Figure 2.8, competing with the inertial force 

2

2

u
A dx

t




  

as 

i.e., 

where   is the mass density of the material;  ,u u x t
 
is the displacement response at the 

longitudinal coordinate x  and at time t . 

Using Newton’s second law applied to an element of the body, see [86], and x x
u

E E
x

 


 


, 

the forced harmonic longitudinal vibrations are locally governed by the following second order 

hyperbolic partial differential equation (also known as stress wave equation) as 

with Neumann boundary conditions, i.e., an applied harmonic force in the axial direction expressed as 

   i
  

t
F t e

 
 0F , where 0F

 
is the force amplitude and   is the phase angle of the harmonic 

excitation, c E   is the longitudinal wave phase velocity in the bar material, which is independent 

of the frequency. Rigorously, this frequency independence assumption is only valid for waves with a 

2
0,

2
x

x x
u

A d A d
x t


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wavelength   large ( a >10) compared with the characteristic dimension of the cross-section of the 

bar a , see [104] for more details.  

Hence, consider a two node (nodes 1 and 2 of Figure 2.9 which corresponds to points Q and R  

of Figure 2.8) 1D uniform prismatic elastic bar FE of length L , with cross-sectional area A , a 

characteristic dimension of the cross-section of the bar a , elastic modulus E  and mass density  , 

as illustrated in Figure 2.9.  

 

Figure 2.9 – Two-node bar finite element. 

By considering the nodal displacements   10u u ,   2u L u , the displacement field 

1 1 2 2u u N u N   and the shape functions  1N L x L   and 2N x L , the element matrices may 

now be obtained using Eq. (2.32) and Eq. (2.33) as 

The stress wave equation for torsional vibrations, i.e. the equivalent of Eq. (2.41) for torsion, may 

be obtained and expressed as 

where 
 
is the torsional (angular) displacement response and c  

is the wave phase velocity in 

torsional vibrations expressed as 

where 
'G  is the shear storage modulus of elasticity; tJ

 

is the torsional constant; and pJ

 

is the polar 

moment of the cross-section with respect to the centroid. Note that for circular cross-sections of radius

r  , 
4 2tJ r  and p tJ J  whereas, for square cross-section with a side length a , 

42.25tJ a  and 

4 12pJ a  [98].  

Hence, for both longitudinal and torsional vibrations the model presents similar equations with 

different parameters and displacement fields. Nevertheless, in both cases it is assumed uniform 

properties ( , , , , , ,t pE G A L J J ) along each element. 
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2.5.2.5. Plate finite element  

Regarding the 2D FEs, perhaps the most common is the plate element. For it, the Kirchhoff-Love 

(KL) and Reissner-Mindlin (RM) plate theories that are often used to formulate plate elements [105] 

are introduced in this sub-chapter. The difference between the two theories consist essentially in the 

fact that KL plate theory does not account for transverse shear stresses and rotational inertia while 

RM plate theory take into account the shear stress distribution over the thickness as well as rotational 

inertia. Consequently, the KL plate elements may underestimate deformation especially for thick 

plates while, the RM plate elements typically demonstrate a softer deformation behavior due to the 

presence of shear stresses. A brief summary on the RM and KL plate theories are presented next.  

In this sense, consider the RM plate theory and a plate of thickness h  with a mid-surface (located 

in the xy  plane at z =0) at / 2h  from each lateral surface as illustrated in Figure 2.10 a). It is 

assumed that a straight line normal to the mid-surface remains straight but not necessarily normal to 

the deformed mid-surface when a load is applied. Furthermore, for small rotation of this straight line, 

see Figure 2.10 b), with components x  and y , and small displacements xu z   and yv z   

of a point (out of the mid-surface) in the x  and y  directions, respectively, the strains (normal   and 

shear  ) may be expressed as   

where w  is the deflection of the mid-surface in the z  direction. The normal strain term z  is left 

undefined in the plate element to avoid ill conditioning due to small thickness. 

 

 

a) 

 

b) 

Figure 2.10 – A plate element: a) with corner nodes illustrating the typical DOF ( , ,i xi yiw   ); b) with deformed 

cross section, viewed in the + y direction. 

Usually, the stresses (normal   and shear  ) are associate with moments M  and forces Q  (per 

unit of length) in the xy  plane as 

 , , , , , ,; ; ; ; ,x x x y y y xy x y y x yz y y zx x xz z z w w                         (2.45) 
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To describe the state of deformation and stress in a plate it is required that three independent fields 

( w , x  and y ) are each expressed in terms of x  and y . Thus, the moment curvature relations for 

a homogeneous, isotropic and linear elastic RM plate may be expressed as 

where   3 212 1D Eh v   is the flexural rigidity, RMD  is the flexural rigidity matrix, RMκ  is the 

curvature vector,  0  is the initial curvature vector and k  is a shear correction factor (with a value of 

5/6 for homogeneous plates with uniform thickness [105]) that accounts for the parabolic z  direction 

variation of the shear stress. 

Note that in the KL plate theory, shear deformation is not considered, thus ,x xw   and ,y yw   

and consequently the strains expressed by Eq. (2.45) may be rewritten as 

Furthermore, in the KL plate theory the terms of forces Q  in Eq. (2.46) are zero. Thus, the moment 

curvature relations of Eq. (2.47) may be simplified as  

Returning to the RM plate theory, the lateral displacements and rotations fields of a RM plate having 

n  nodes can be expressed as  

/2 /2 /2 /2 /2

/2 /2 /2 /2 /2

; ; ; ; ,
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The curvature term (transverse and shear) RMκ  of Eq. (2.47) may be expressed as  

By substituting Eq. (2.50) in Eq. (2.51) one obtains for an element with n  nodes  

In general, isoparametric coordinates   and   are used in the mid-surface which for a four node 

element the shape functions N  are expressed as 

Then, similarly to Eq. (2.33) the element stiffness matrix may expressed as 

It should be noted that the inclusion of the transverse shear strains in the RM plate theory may 

present computational difficulties when the side to the thickness ratio of the plate is large, i.e., for thin 

plates. In this case, the transverse shear strains are negligible and consequently the element stiffness 

matrix becomes stiff yielding erroneous results for the generalized displacements. This occurrence is 

known as shear locking [105]. To overcome this, reduced integration is used to evaluate the stiffness 

coefficients involving the transverse shear terms. Thus, when a four node rectangular element is used, 

the one-point Gauss rule may be used to evaluate the shear energy terms while, the two-point Gauss 

rule may be used for all the other terms. 

2.5.3. Matrix equations for structural analysis 

   The structural analysis presented in this sub-chapter, even though similar to those presented in 

sub-chapter 2.2, are formulated via the FEM [86] and after the respective matrices assemblage, 

are expressed by Eq. (2.35). Similarly, to Eq. (2.15) the static analysis to obtain the static 

displacement may be expressed as 
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with given boundary conditions. Usually, the unknowns are the displacements D  at the nodes, which 

once known may be used to obtain results like element forces, strains, and stresses on an element‐

by‐element basis. 

  For the free vibration analysis, similar to Eq.(2.17), to obtain the eigenfrequencies and 

eigenmodes the matrix equations are in the form 

where, ψ  is the eigenvector associated with the respective eigenfrequency  .  

The non‐trivial solutions are the singular values of the system matrix, commonly referred to as 

eigenvalues. For a FE model with N  DOFs, there are 2 N  eigenvalues. For vibrating structures, 

these always occur in complex conjugate pairs. Therefore, there are N  pairs of eigenvalues: 

where, j  is the modal damping and the value j  is the damped natural frequency for mode j . 

Corresponding to each eigenvalue is a real eigenvector jψ . Each pair of eigenvalues and 

corresponding eigenvector represents, mathematically, a free vibration mode of the structure.  

 For the steady-state analysis, similar to Eq.(2.21), to obtain the frequency response one uses 

the following matrix equation 

where ap  is the applied force excitation frequency, D  and 
apF

 
are the magnitudes and phases of 

the displacement and applied force vectors, respectively.  

2.6. Model validation 

Having introduced both experimental modal FE analyses, see sub-chapter 2.4 and sub-chapter 2.5, 

respectively, a critical issue that usually arises immediately is how to assess confidence between the 

numerical and experimental models. It must somehow be accessed that the many assumptions 

involved in the successive steps of idealization, discretization, modeling and experimentation yield 

satisfactory predictions.  

This results in a concept that numerical models can be validated. Model validation is the 

assessment of the accuracy of a numerical simulation by comparison with experimental data for a 

range of parameters. In model validation, the relationship between the numerical and the real world is 

the issue. Model validation should not be expected to result in a perfect model, since the perfect 
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model would be the real system itself and by definition, any model is a simplification of reality. Then, 

the validated model should be accurate enough, which depends on the goal of the model.  

The American Institute of Aeronautics and Astronautics (AIAA) and the American Society of 

Mechanical Engineers (ASME) define validation as “the process of determining the degree to which a 

model is an accurate representation of the real world from the perspective of its intended uses” [106].  

To do this, several steps must be taken (see, [107] and [108]) and often recurring to an iterative 

process as that illustrated by Figure 2.11. 

 

Figure 2.11 – Model validation flowchart. (Adapted from [107]). 

The model validation process begins by creating a conceptual model of the reality of interest taking 

into account the domain of interest, physical processes and assumptions, system-response quantities 

and the intended use of the model so that the relevant physics are included in both the model and the 

experiments conducted to validate the model. 

From the conceptual model, two branches derive. In the left branch it is common to start off by 

building a mathematical interpretation of the conceptual model that results in a mathematical model 

which is a set of equations e.g., governing and constitutive equations, and both initial and boundary 

conditions that describe physical reality. Then a numerical model is built, e.g., a FE model, for solving 

the equations prescribed by the mathematical model providing the simulation results, which are post-

processed to generate response features for comparison with experimental data.  

In the right branch experiments are conducted via the physical modeling, where the conceptual 

model is physically designed from which, the experimental model is conceived accounting for locations 
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of sensor positioning, boundary conditions, types of measurements, among others. When necessary, 

the experimental results may be post-processed into other experimental features that are more useful 

for direct comparison with the numerical data, i.e., a correlation analysis. 

2.6.1. Correlation analysis and frequency response function correlations 

Correlation analysis is a technique to quantitatively and qualitatively examine the correspondences 

and differences between numerically and experimentally obtained modal parameters (resonance 

frequencies, damping and mode shapes), which characterize the linear dynamics of the structure. 

Different levels of correlation analysis exist. They range from visual comparison of the mode shapes, 

global and local correlation, and FRFs. 

The use of FRFs for correlation instead of mode shapes might be considered advantageous in 

some cases, e.g., when the data is noisy and/or significant modal damping is present, as it becomes 

difficult to extract the modes shapes accurately. Furthermore, the experimental FRFs are easier to 

obtain than mode shapes, which require post-processing analyses of numerous FRFs.  

In this study, two local assurance criteria are used to determine the level of assurance between the 

analytical and the experimental FRF, ranging from 0 to 1 (where 0 and 1 indicate 0% and 100% 

correlation, respectively), and evaluated at each frequency point q . 

The first is the Frequency Response Assurance Criterion (FRAC) (see [109]-[110]) which is 

somewhat analogous to the Coordinate Modal Assurance Criterion (COMAC) (see e.g., [111]) since it 

contains information about a specific measuring point for a given excitation point. It is a measure of 

the shape correlation of the FRFs thus, is most sensitive to changes in mass and stiffness. For a given 

DOF, it is expressed as  

where, AH  and MH  are the estimated FRFs (analytical or numerical) and the measured FRFs 

vectors of each DOF, respectively, the superscript 
H

indicates the Hermitian transpose and freqN  is 

the number of frequency points used in the frequency range to discretize it. 

Since the FRF is not only defined by its shape, but also by amplitude a second assurance criterion 

also of COMAC type is used. It is designated as the Frequency Assurance Amplitude Criterion (FAAC) 

(see [109]-[110]) which is a measure of the FRFs amplitude discrepancies. Thus, it is more sensitive 

to deviations in damping modeling. It is expressed as 

 
   

         

2
H

freqH H
FRAC , 1,2, ,

A q M q

q

A q A q M q M q

q N
 


   

 
H   H

H   H H   H
   (2.59) 

 
   

         

H

freqH H

2
FAAC , 1,2, ,

A q M q

q

A q A q M q M q

q N
 


   

 


H   H

H   H H   H
   (2.60) 



  

44 

Note, that the diamond symbol in the previous flowchart (see Figure 2.11) provides a decision point 

for the need of test improvements in the numerical model (even though, in some cases it may be 

necessary to return to the mathematical model or even to the conceptual model to initiate the proper 

improvements).  

When satisfactory results and assurance values are obtained it is common to state that the model 

is validated [112]. 

2.6.2. Sensitivity analysis in model validation 

However, for several reasons the numerical estimates and experimental results often disagree. So 

being, all is set to use the experimental results to improve the numerical estimates by modifying the 

modeling assumptions and parameters until the correlation of numerical estimates and experimental 

results satisfies the intended requirements. 

Sensitivity analysis is a technique that determines how the structural responses of a model are 

influenced by modifying one or more parameters p  used to model the real structure [94]. These 

parameters can be a material property, plate thickness, lumped mass, joint stiffness or any other 

physical property for which uncertainty exist or that is used to compensate errors due to geometrical 

simplification.  

The sensitivity matrix S  represents the slope of the response jR  with respect to a set of 

parameters kp , computed at a given state of the parameter as  

where, 1, ,j n responses and 1, ,k m parameters.  

The FRF sensitivities may be derived by considering the following identity 

where, H , Z  and I  are the receptance (see, Eq. (2.22) ), dynamic stiffness (see, Eq. (2.22) ) and 

identity  matrices, respectively. Then, one obtains 

Since H Z Ι , Eq. (2.63) may be simplified as 
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The correlation sensitivity coefficients for FRF correlation function FRAC and FAAC are obtained 

by deriving Eq. (2.59) and Eq. (2.60) with respect to the parameter p . In the general case of a 

damped structure, the sensitivities are functions of the numerical AH  and experimental MH  FRFs 

but also of the real  Re AH and imaginary  Im AH  parts of the numerical FRFs as  

2.6.3. Model updating 

In this study, an iterative sensitivity method that improves the correlation between analytical and 

experimental FRFs over a given frequency range in terms FRF correlation functions FRAC and FAAC 

is used. 

The updating task may be expressed as 

where, S  is the sensitivity matrix, p  is the selected updating parameter and Δp  is parameter change 

vector.  

Once the improvements to one or more sets of parameters originates an acceptable agreement 

between the sets of numerical and experimental data then, the numerical models can be said to have 

been validated and are fit to be used for further analysis.  

2.7. Optimization 

Optimization is an important tool in decision science and in the design of physical systems. To 

make use of its tools, it is necessary to first identify some objective function of the involved parameters 

that quantitatively measure of the performance of the system under study. The objective depends on 

certain characteristics of the system, called variables or unknowns. The goal is to find values of the 

variables that optimize the objective. Often the variables are restricted, or constrained, in some way. 

The process of identifying objective, variables, and constraints for a given problem is known as 

formulating the optimization problem.  

Construction of an appropriate model is the first step, sometimes the most important step, in the 

optimization process. Once the model has been built and the optimization problem formulated, an 
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optimization algorithm can be used to find its solution. Note that there is no universal optimization 

algorithm but rather a collection of algorithms. If the optimality conditions are not satisfied, they may 

give useful information on how the current estimate of the solution can be improved. The model may 

be improved by applying techniques such as sensitivity analysis revealing the sensitivity of the solution 

to changes in the model and data. Interpretation of the solution in terms of the application may also 

suggest ways in which the model can be refined or improved. If any changes are made to the model, a 

new the optimization problem is solved, and the process repeats.  

Mathematically speaking, optimization is the minimization or maximization of a function subject (or 

not) to constraints on its variables. For a more detailed description see for e.g., Arora [113]. The 

optimization problem is usually formulated as 

where objF  is the objective function, x  is the vector of design variables, also referred to as unknowns 

or parameters, ig  and ih  are equality and inequality constraint functions, which are scalar functions 

of x  that define certain restrictions that the unknown vector x  must satisfy and   and   are sets of 

indices for equality and inequality constraints, respectively. 

In this study, a constrained nonlinear optimization methodology, a Sequential Quadratic 

Programming (SQP) algorithm, is used (see [113] for more details) in which, a sequence of quadratic 

problems are solved. The second order derivatives are determined using a quasi-Newton method 

whereas, the gradients of the objective function are obtained by an adaptive finite difference method.  

2.8. Vibration isolation/attenuation mechanisms 

Nowadays, a great amount of mechanisms dedicated to vibrations reduction (some of which can be 

tuned and/or optimized) are commercially available. Perhaps the most common are the vibration 

isolators, vibration absorbers [4] and SDTs. Even though the isolator and absorber as well as the 

absorber and SDTs may seem similar in the way they reduce vibrations, they are in fact quite different. 

The isolator and absorber dissipate energy depending on their location on the vibrating structure 

whereas, the absorber depends on the local displacement of the structure and the SDTs depend on 

the surface strains.  

Due to the interest for this study, a brief summary on the isolator and absorber is presented next 

whereas, the SDTs will be addressed in chapter 5. 

Common isolators are composed of springs and/or dashpot and/or rubber mounts for isolating 

machinery. For example, the isolator at Figure 2.12 a), provides stiffness k  and damping c  to the 
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system of mass m  through their physical connections with the surroundings. On the other hand, the 

absorber at Figure 2.12 b), is an auxiliary mass Am  connected to the system.  

 

a) 

 

b) 

Figure 2.12 – Vibration isolation/attenuation mechanisms: a) vibration isolator; b) vibration absorber. 

If the connection of the auxiliary mass has stiffness Ak  and little damping Ac  it is classified as a 

dynamic absorber, which can be tuned to “absorb” (neutralize) the vibration amplitude at a specific 

troublesome frequency (which may or may not be a resonance), in which case it acts like a “notch” 

filter. Often the “troublesome frequency” is indeed the resonant frequency. In that case the absorber is 

tuned so that its natural frequency matches the natural frequency of the main system. Hence, the 

absorber exerts a force on the main system that is equal and opposite of the excitation force, reducing 

vibration at the resonant frequency. The fact that the motion of the absorber is finite at this resonant 

frequency, even though there is none or little damping involved is justified by the fact that the system 

has changed to a 2-DOF system and now it has two resonance frequencies, neither of which equals 

the original resonance frequency of the main system or absorber.  

However, if the connection of the auxiliary mass presents significant damping Ac , it is classified as 

a damped dynamic absorber, which can be tuned to “absorb” (damp) the vibration amplitude at a 

specific troublesome frequency over a wider band of excitation frequencies. For optimal behavior the 

absorber minimizes the maximum amplitude of the two resonance frequencies. This may be achieved 

by increasing the damping of the absorber until the optimal value for which the amplitudes of the 

resonance frequencies coincide with the “fixed-points” frequencies, i.e., frequencies at which the 

response amplitude of the main system is independent of the absorbers damping (the response of the 

main system passes through them regardless the value of the damping). A further increase in 

damping causes the amplitude to increase beyond the minimum value. 

Hence, a common and significant difference between the absorber and isolator is their location on 

the vibrating structure. The absorber should be placed at the nearest possible location of the highest 

vibration of the system to reduce vibrations whereas, the isolator should be located in the transmission 

path between the disturbance source and the equipment or between the equipment and its support to 

isolate and filter unwanted vibrations above a certain frequency (depending on the stiffness of the 

isolator).  
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When subjected to steady-state sinusoidal force F

 

or displacement x

 

solicitation, the 

performance of these devices may be measured by the transmissibility concept.  

In general, transmissibility rT  is defined as being the ratio between the magnitude of the output 

and input entities (force, displacement, velocity or acceleration). If the ratio is greater than one, the 

entity is amplified, and if the ratio is less than one, the entity is reduced, isolated or attenuated and, 

may be defined for the case of forces as 

Note that these ratios are equivalent for 1D linear systems [114]. For MDOF systems see chapter 6 

of Maia et al. [115] and the respective references, as well as Lage et al. [116]. 

Particularizing for the case of the vibration isolator (see, e.g. [2] for the case of the absorber), 

considering that the support base is fixed or is stiff or massive enough that its displacement may be 

taken to be zero, the force transmissibility may be given by the same expression as the motion 

transmissibility, i.e., 

where, cc c  is the ratio of the system’s viscous damping coefficient c  to its critical damping 

coefficient 04cc f m  (beyond which the system will not vibrate), 0f f   is the ratio of the 

excitation frequency 2f    to the undamped natural frequency 0f , also designated as corner 

frequency or mount frequency of the system, expressed as 

or alternatively as 

where, g  denotes the acceleration of gravity and stX  is the static deflection of the spring due to the 

weight W  associated with the mass m . Recall that, the relation stX k W  is only valid for linear 

systems, i.e., where the slope of the force-deflection curve is constant.  

Note that in the presence of damping, if 1  , the system will oscillate at its damped natural 

frequency expressed as  

output

input

.r

F
T

F
    (2.68) 

2

2 2 2

1 (2 )

(1 ) (2 )
rT



 




 
,   (2.69) 

0
1

2

k
f

m
 ,   (2.70) 

0

1 1

2 2 st

k g g
f

W X 
  ,   (2.71) 



  

49 

However, if 1  , the system will not vibrate when disturbed, i.e., the system when disturbed from 

its equilibrium position will return to its equilibrium position without vibrating. 

In Figure 2.13 are illustrated the transmissibility curves, see Eq. (2.69), of a SDOF isolator, see 

Figure 2.12 a), as a function of the frequency ratio   for different values of the damping ratio  .  

 

Figure 2.13 – Vibration isolator transmissibility curves as a function of the frequency ratio   considering different 

values of the damping ratio . 

From Figure 2.13 it becomes clearer that, besides the stiffness and/or damping, the frequency ratio 

also becomes important when analyzing the transmissibility of a system. For disturbances at 

frequencies above 02 f , the transmissibility is less than unity and vibration isolation occurs whereas, 

for disturbance at frequencies less than 02 f , vibration amplification occurs. For disturbance 

frequencies much lower than the corner frequency 0f , the transmissibility is of unitary value. However, 

when the disturbance frequency approaches the natural frequency of the system, a resonant condition 

occurs and the transmissibility is unbounded if no damping is present in the isolator. 

Since the isolator operates when the disturbance frequency is greater than , the corner 

frequency 0f  of the isolator should be minimized as much as possible. However, there is a limit on 

the value of the corner frequency and the limit is determined by the static displacement stX  of the 

isolator when the system is subjected to a static loading. Therefore, the isolator must support the 

equipment under static loading and must also be compliant so that disturbances are not transmitted to 

the equipment.  

Another design constraint for the isolator is the amount of damping present in the isolator. If 

damping is not present, the absolute transmissibility will be theoretically unbounded when the 

02 f

2

0 1df f   .   (2.72) 
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disturbance frequency approaches the natural frequency of the system. If damping is present, the 

transmissibility will no longer approach infinity at the resonant condition but will be finite. However, the 

transmissibility at disturbance frequencies greater than  will be amplified due to the isolators 

damping which is counterproductive from the isolation point of view. 

2.8.1. Helical springs and elastomeric mounts for vibration isolation 

Perhaps, the first vibration isolating devices that come to mind are coil springs or alternatively 

some type of elastomeric mount. In most datasheets, it is common to find data tables and/or figures, 

e.g., see Table 2.1 and Figure 2.14, indicating the vibration transmissibility of these devices (or their 

efficiency) in isolating vibrations as a function of the equipment’s working frequency f (usually given 

in RPM) and the required static deflection stX  which is directly related to the undammed natural 

frequency 0f , see Eq. (2.71), or damped natural frequency df , see Eq. (2.72). 

Equipment 

speed (RPM) 

f  

Vibration Transmission 

99.5% 99%  85% 60% 

Static deflection required for isolator  stX   (mm) 

3600 0.55 0.27  0.02 0.01 

2400 1.2 0.62  0.05 0.02 

      

300 - -  3.0 1.4 

250 - -  4.3 2.0 

Table 2.1 – Example of a table usually found in datasheets of vibration isolation devices indicating the 

transmissibility as a function of the excitation frequency  and the static deflection . 

 

Figure 2.14 – Example figure usually found in vibration isolation devices datasheets indicating the transmissibility 

as a function of: excitation frequency f ; natural frequency of the system 0f  ; and static deflection stX . 

02 f

f stX
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From Figure 2.14 and Table 2.1, it is possible to observe that low transmissibility implies a higher 

static deflection stX  (i.e., reduced stiffness) of the vibration isolator. Thus, by operating at a higher 

excitation frequency it is possible to improve (lower) the transmissibility.  

A reduced stiffness of the vibration isolator is not always compatible with the high stiffness required 

to meet the performance of the isolated object. Even so, the vibration isolators may be subject to 

optimization and with it obtain an optimal solution that satisfies the requirements.  

In this thesis, the vibration isolator concept will be addressed when developing periodic bars with 

parallel alternating layers of two materials (metallic and resilient) to isolate vibrations in specific 

frequency ranges.  

Under dynamic solicitations, solid materials present in practice elastic and damping properties that 

are dependent to a greater or lesser extent of: the operational conditions, e.g., frequency; and the 

existing environmental conditions, e.g., temperature and humidity (which in this study are not 

considered). Knowledge of the dynamic properties of the materials involved are essential in the design 

of these mechanisms, especially if one intends to obtain a validated model. 

Nevertheless, the dynamic properties of some material, e.g., CCMs are usually not available and/or 

known. Hence, one way to determine the dynamic properties of these materials is to solve the inverse 

problem where, observed measurements are converted into information about the system of interest 

and consequently to the materials dynamic properties.  

2.9. Inverse problem 

Formally, a generic inverse problem may be stated as a counterpart to the definition of the direct 

problem [10], which may be described as the calculation of the responses (like displacements u , 

natural frequency  , etc.) in a specific body defined by its domain (geometry)  , material properties 

 , physical model (operator Z ) and boundary conditions like imposed values of u  (Dirichlet 

boundary conditions) and forces F  (Neumann boundary conditions) as 

where, the nature of the unknowns (which in this study are related to the material properties, i.e., 

some parameters characterizing  ) yields different classifications for the inverse problems (see e.g., 

Kubo [117]). Namely, domain/boundary inverse problems, governing equation inverse problems, 

boundary value/initial value inverse problems, force inverse problems, and material properties inverse 

problems. 

Usually, inverse problems are not easy to solve due to their common ill-posed nature. Note that a 

well-posed mathematical problem must satisfy the existence, uniqueness and stability requirements 

[10]. The existence requirement may really not be an issue in many realistic situations since the 

physical reality is itself a solution. Nevertheless, due to noisy and/or insufficient measurement data, an 

accurate solution to the problem may not exist. On the other hand, a major difficulty is to find a unique 

solution especially when solving a parameter identification problem for which, different combinations of 

 , on .Z u F      (2.73) 
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parameter values (including boundaries and boundary conditions) may lead to similar solutions. The 

stability requirement is perhaps the most delicate where inevitable measurement and round-off errors 

can be amplified by large factors and turn the computed solution useless. For more details on this 

topic see, e.g., Tarantola [10]. 

As previously stated, in this study one deals with the material properties inverse problems for which 

the unknowns are some parameters characterizing  . Thus, in order to determine these unknown 

parameters, supplementary information has to be provided, in the form of experimental measurements 

of u  (and/or F ) made on accessible points of the domain or boundary of the structure. 

In this sense, in the next chapter is proposed a new hybrid analytical-experimental methodology in 

which, an inverse problem (based on the analytical model and experimental data) is solved to 

determine the dynamic modulus of resilient materials. 
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Chapter 3 

 

 

3. Characterization of the dynamic modulus of resilient 
materials 

 
3.1. Introduction 

The dynamic modulus is a material property concept commonly used in the frequency domain [118] 

to characterize the elasto-dynamic properties of viscoelastic materials. This concept allows regarding 

the elastic moduli (longitudinal, shear, bulk, etc.) of a solid material, whether isotropic or anisotropic, 

as a complex quantity [119]. The knowledge of the dynamic modulus is of major importance for proper 

and efficient development and characterization of novel materials and applications in many scientific 

areas, e.g., viscoelastic materials intended to reduce the transmission of vibration, shock or noise for 

sound and vibration control.  

Even though several methods have been developed, studied and applied to characterize the 

dynamic modulus of viscoelastic materials, information regarding their values, limitations and precision 

is not often found in the literature. The same applies to the sources of discrepancies between different 

experimental methods. 

In this study, two methods, a proposed new analytical-experimental hybrid method and the 

Dynamic Mechanical Analysis (DMA), are used to characterize the longitudinal dynamic modulus of 

CCMs. A judicious analysis of the results obtained by both methods is presented. The 

advantages/disadvantages, limitations, sources of error among others are accounted for and 

discussed in this framework.  

The new hybrid analytical-experimental methodology was developed to determine the longitudinal 

dynamic modulus of resilient materials using a new three-layer specimen created for this test and a 

simple equation from the analytical model for the longitudinal vibrations of the specimen. This 

methodology is developed to avoid dealing with geometric constraints in slender specimens, and 

boundary condition difficulties (e.g., fixation of the structure (see, sub-chapter 2.4.4) ) found on other 

tests, obtaining by this way a simple and more rigorous method. Furthermore, it requires only the 

basic common equipment of a vibration laboratory, i.e., impact hammer with force transducer, one 

accelerometer, data acquisition equipment and cables. 

A new hybrid analytical-experimental methodology is also proposed to determine the shear 

dynamic modulus of resilient materials. Even though the experimental specimen is similar to the one 

used in the longitudinal dynamic modulus characterization, and the fact that the analytical formulation 
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remains simple (just have to consider the torsion constants) the experimental setup is not equally 

simple, as will be seen.  

Nevertheless, in this study the new analytical-experimental hybrid method is used to characterize 

both the longitudinal and the shear dynamic moduli of CCMs whereas, DMA tests are only used for 

the longitudinal dynamic modulus characterization.  

To further clarify the advantages of the proposed method and how it was achieved, a brief 

background and description on the most common methods used for the characterization of the 

dynamic modulus of viscoelastic materials follows. 

Since the 1950s, numerous experimental techniques have been developed to determine the 

dynamic modulus of viscoelastic materials. These methods may be divided into resonant and                

non-resonant methods depending on whether the dynamic modulus is determined at a resonant 

frequency or in a range of non-resonant frequencies, respectively [11]. Some relevant reviews 

describing several of these methods may be found in [8], [21] and [28].  

It should be noted that, each of these methods relates the response to the perturbation field with 

the dynamic modulus through an auxiliary method of analysis. By considering the exact boundary 

conditions, these analyses should give the exact solution to the field equations. However, in practice, 

to overcome the inherent technical difficulties it is usually necessary to introduce approximations that 

may affect the equations just as the boundary conditions do. Thus, some experimental methods may 

be considered better conceived than others, and, as a general rule, a simple method is always more 

desirable than a more complex one when it allows these technical difficulties to be simplified or 

eliminated.  

Following is presented a brief description of the rod apparatus and DMA. Perhaps, two of the most 

common methods used.  

Possibly, one the most popular resonant method which, has led to standardization (see, e.g., 

ISO 18437-2 (2005) [7]), is the rod apparatus. It is based on the response of a cylindrical or prismatic 

bar attached to the excitation source (vibration exciter) and subjected to different types of dynamic 

loads and/or frequencies [12]-[15] at one end, being the other end free or loaded with different masses 

[16]. The transfer function method is used to evaluate the dynamic modulus where the specimen is 

modeled with lumped mechanical elements. The fact that it is considered one of the most common 

methods to determine the dynamic modulus of viscoelastic materials may be due to its simplicity in 

both theory and experimental setup, even though it depends on specific boundary conditions (e.g., 

load distribution on the specimen) that may not be easy to obtain in practice.  

Probably, one the most common non-resonant method is the DMA, for which the experimental 

setup apparatus and equipment is commerciality available [20]. In DMA the specimens are relatively 

small (Iess than a few square centimeters) and excited at relatively low frequencies (usually at a few 

hertz) inside a temperature controlled chamber. This method relies on the TTS principle and on the 

subsequent shift factors required for constructing a master curve over a broad frequency range from 

the measurements taken at multiple temperatures. DMA is commonly used by material engineers and 

others to study the rheological and viscoelastic properties of polymers [20]. 
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Polymeric viscoelastic materials are conceivably the most common materials used to passively 

control the response of structures, e.g., SDTs, with low cost and high reliability [29]. Nevertheless, for 

applications that are subjected to a wide or high range of temperatures, like in the proximity of exhaust 

systems, engine parts, automotive panels, etc., the success of these materials is often reduced.  

In this sense, in preliminary works (see [40]-[41]), the author has used a finite periodic two-material 

bar with parallel alternating layers (half-cells) of two-material differing in wave phase velocity under 

free-free displacement boundary conditions (avoiding the clamped-free displacement boundary 

conditions of the standardized rod apparatus of ISO 18437-2:2005 [7])  and recurred to different 

approaches in his progression to estimate the dynamic modulus, i.e., the storage and loss moduli of 

CCMs. Note that by avoiding the fixed displacement boundary condition that is rigorously more difficult 

(if not even impossible) to obtain in practice than the free boundary condition, the experimental setup 

is considerably simplified in the opinion of the author. 

In [40], the storage modulus of a commercial CCM was estimated by trial and error which was 

based on a visual comparison of the experimental FRF and FEM results using a sequence of steel-

CCM-steel-CCM-steel-CCM-steel, i.e., a 3.5 cell steel-CCM finite periodic bar. An identical 3.5 cell bar 

configuration was adopted in [41] where a Lagrangian bar (link) FE is used to estimate the storage 

modulus of CCM and as expected, it was verified that in order to obtain an acceptable accuracy some 

care should be considered with respect to the number of Lagrangian FE used per wavelength of the 

vibration wave [42].  

From that work, the author understood the need for a more rigorous method. Thus, in [43], the 

author proposed the new hybrid analytical-experimental methodology, which is presented here. It 

estimates the storage modulus having the objective of easing the characterization procedure for 

resilient materials, in this case with particular interest in CCMs. That is achieved by the developed 

simple equation from the analytical model of a 1.5 cell (three-layer) specimen test, i.e., steel-CCM-

steel lamina sequence. The proposed methodology is validated in this study using correlation criteria 

for five CCMs. This hybrid methodology although simple, has shown more rigorous due to the 

introduction of the analytical equation when compared for example with the optional case of using the 

FEM (in which it is necessary to pay special attention to the number of FEs used per wavelength that 

increases with frequency).  

Furthermore, DMA are conducted to measure the longitudinal dynamic moduli of the same five 

CCMs tested using the proposed hybrid analytical-experimental methodology. The main objectives are 

to compare and discuss the experimental data obtained from both methodologies as well as the 

frequency independency hypothesis often assumed in this framework (for more details see e.g., 

[120]). 

Results show a good agreement between both methodologies for the five CCMs tested presenting 

deviations less than 0.42% for the storage modulus and 0.86% for the loss factor relative to the results 

obtained using the proposed hybrid analytical-experimental methodology. Furthermore, it was verified 

that in the frequency range between 1Hz and ≈10000 Hz the storage and loss moduli present a 

frequency dependence that may be modeled using a power law model (with power >0). Thus, the 
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frequency dependence decreases with the increase in frequency, i.e., high frequency dependence at 

lower frequencies and low frequency dependence at higher frequencies. 

Regarding the shear dynamic modulus characterization using the new hybrid analytical-

experimental method, the results obtained for the two CCMs tested present correlation values in the 

interval of 90% and 99.9% thus, validating and demonstrating the potential of the proposed 

methodology. 

Hence, a characterization tool is presented to rigorously estimate the longitudinal and shear 

dynamic moduli, and with it, the bulk modulus and Poisson’s ratio (under the assumption of the 

homogeneous isotropic linear elastic material behavior), of resilient materials, e.g., CCMs.   

The author hopes it presents a good contribution to the estimation of the dynamic properties of 

CCMs. 

To conclude this introductory sub-chapter, a brief discretion of its layout follows. Note that except 

when referenced to the respective authors, all contents are original contributions from this study. 

This chapter is composed of eight sub-chapters. This first introductory sub-chapter is followed by a 

second sub-chapter where a brief review of the dynamic modulus previously introduced in sub-chapter 

2.1.1 is presented. In the third sub-chapter is presented the new hybrid analytical-experimental 

methodology used to characterize the longitudinal dynamic modulus of resilient materials. The 

analytical formulation of a finite two-material layer bar with uniform cross section is presented and then 

particularized for the three-layer bar model, which is used in the experimental test. For comparison 

purposes a two DOF discrete model composed of two rigid masses and one massless spring is 

introduced.  This is followed by a description of: the proposed methodology (an inverse method); the 

numerical implementation for the storage modulus estimation; the construction of the test specimens; 

and the experimental setup used to obtain the FRF curves. In the fourth sub-chapter is presented the 

new analytical-experimental hybrid method now used to characterize the shear dynamic modulus of 

two CCMs. The experimental specimen is similar to the one used in the longitudinal dynamic modulus 

characterization and the analytical formulation remains simple (just have to consider the torsion 

constants). In sub-chapter five is presented a brief description of the DMA used in this study, which 

includes: TTS principle; the methodology adopted and; the experimental setup. In the sixth sub-

chapter are presented the CCMs to be characterized using both methodologies. Then, in the seventh 

sub-chapter are presented the main results and their discussion. To conclude, an eighth sub-chapter 

containing the main contributions and conclusions, regarding this chapter, is presented.  

3.2. A brief review on the dynamic modulus  

The dynamic modulus has been introduced with some detail in sub-chapter 2.1.1. Nevertheless, a 

brief contextual review on its basics follows.  

The dynamic modulus *E , also referred to as the dynamic modulus of elasticity and the complex 

modulus of elasticity, is a concept used in the frequency domain to characterize the elasto-dynamic 

properties of viscoelastic materials. By relating the stress and strain amplitudes as expressed by 
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Eq. (2.8), the dynamic modulus of elasticity is a complex quantity with real ( 'E  - the storage modulus) 

and imaginary ( ''E  - the loss modulus) components defined as 

i.e.,  

where   is the corresponding loss factor. 

Note that the concept of the dynamic modulus presents no restrictions on the type of deformation 

such as shear, bulk, tensile, etc. Hence, in this study, both longitudinal and shear dynamic moduli are 

experimentally determined using the new hybrid analytical-experimental methodology proposed.  

3.3. Hybrid analytical-experimental methodology   

To obtain a simple (in the sense that avoids specific boundary conditions found on other tests) and 

rigorous (in the sense that avoids the dependence of the number of FEs per wave length) method for 

the estimation of the storage modulus of the resilient material, an analytical formulation for a finite 

periodic two-material multi-layer bar is used here to predict the dynamical (harmonic) response of the 

particular three-layer case of the specimen.   

3.3.1. General case of a two-material layer bar subject to longitudinal vibrations 

Hence, lets first consider the general case of a 1D bar (rod) with uniform transversal sectional area

A , as illustrated in Figure 3.1, with parallel alternating layers of two materials ( Mat ), where index 

  1 is used for steel and index   2 for the resilient material, with longitudinal storage moduli of 

elasticity 
1

'
MatE

 
and 

2

'
MatE , mass densities 

 
and  and lengths 

1MatL
 
and 

2MatL , 

subjected to a longitudinal harmonic force excitation at one extremity. 

 

Figure 3.1 – Finite uniform periodic bar composed of two materials. 

If the wavelength   of the stationary waves in the dynamically and longitudinally loaded bar is 

much longer than the characteristic transverse dimension a
 
of the bar the elementary 1D theory of 

longitudinal vibrations of bars may be used, see sub-chapter 2.5.2.4 and [104], [121] and [122]  for 

more details.  

1Mat
2Mat

* ' ''i ,E E E   (3.1) 

 * ' 1 i ,E E    (3.2) 
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So being, for a piecewise heterogeneous bar, i.e., material properties are not independent of the 

position along the axial direction (see Figure 3.1), with constant cross sectional area A , Eq. (2.41) 

may be rewritten for each material layer Mat , where   is layer’s type number, as  

where, 
'
MatE

  
is the corresponding longitudinal storage modulus of elasticity, Mat

  is the 

corresponding mass density and  Mat ,u x t
  

is the corresponding displacement response at the 

longitudinal coordinate x  and time t .  

Note that in Eq. (3.3) the damping term is not included. This is justified as to identify the storage 

modulus 
'
MatE


 only an accurate value of the undamped natural frequency is needed. However, this 

is only valid for frequency independent or weakly frequency dependent materials [88].  

For the free longitudinal vibration problem, i.e., when the bar is excited and released to vibrate with 

no external force, the solution may be developed (assuming that vibrations are harmonic 

displacements) using the method of the separation of variables and expressed as  

where  U x
 
is the eigenfunction, the constants 1B

 
and 2B

 
can be evaluated from the boundary 

conditions, the function  T t  indicates harmonic motion and the constants 3B
 
and 4B

 
can be 

determined from the initial conditions of the bar,   is the angular frequency of vibration and  

is the wave phase velocity in the respective material  .  

As one is interested in steady-state response and undamped free vibration, neglecting at this step 

the damping one is dealing with the frequency domain analysis, which is conducted on  U x . 

Introducing the wave number ,  U x  and its first derivative with respect to space 

,xU  may expressed as 

1
Mat Mat
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Figure 3.2 – Nodal displacements and forces at the extremity nodes. 

For the local referencial with origin at the left node i ,the nodal displacement at nodes ( 0)i x 
 

and
 Mat( )j x L


 , see Figure 3.2, may be expressed as 

and the nodal forces 
u

F A AE
x




 


, see Figure 3.2,  may be expressed as 

By replacing constants 
 
and 2B

 
from Eq. (3.7) into Eq. (3.8) (i.e., taking into account that 

U = UD B  and F = FD B ,

 

hence 
-1

F = FD UD U ) one obtains the elementary longitudinal 

dynamic stiffness matrix 
-1

Z = FD UD  expressed as  

where  
1'

Mat Mat Mat Mat Matsin( )E k k L
    




 

 

and

 
Mat Mat Mat Matcos( )k L

   
    are 

considered for  1, 2  , i.e., the index of the material type.  

Hence, for the general case of a 1D bar (rod) illustrated in Figure 3.1, the global dynamic stiffness 

matrix is expressed as 

1B

Mat

0 1

Mat Mat Mat Mat 2

0 1
,

sin( ) cos( )

xi

j x L

UU B

U k L k LU B
   
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         
        

           
BU UD

 (3.7) 

Mat

0'
Mat

Mat 1'
Mat

2Mat Mat Mat Mat Mat Mat

,

,

0
.

cos( ) sin( )

x xi

xj x L

UF
A E

UF

k B
A E

Bk k L k k L









     





     
    

     

   
    

    

F

BFD

 
(3.8) 

  α α

α α

Mat Mat

Mat Mat

,A
 


 

 
  

  

Z   (3.9) 



  

60 

Usually for the direct problem, the material properties 
'
MatE

  
and Mat

  are known and the natural 

frequencies are calculated from the nontrivial solution of the system of linear equations ( )Z U = 0 , 

which can be obtained solving the characteristic equation
  

Hence, for this case, the direct problem that consists of obtaining the dynamic response u  for a 

given bar and harmonic excitation may be formulated as. 

Direct problem 

Input:  , Z , F ,  , of 

 , onZ u F    

where 

geometry  : A , 
1MatL  and 

2MatL ; 

physical model Z : 
i* 0

0

E e



  

boundary conditions: u  (free-free) and F (harmonic) 

material properties  : 
1Mat ,

2Mat  , 
1

'
MatE  and 

2

'
MatE  

Output: displacements u ; and natural frequencies   and vibration modes   ( constantu   ) 

obtained by solving the characteristic equation  det , 0 Z  with all  known.  

 

In this study, one deals with the inverse identification problem (see, sub-chapter 2.9 and/or [10] for 

a detailed discussion), where 
1

'
MatE  , 

1Mat , 
2Mat , as well as  the first natural frequency 1

 
of the 

specimen, are known. Then, after introducing 1  (obtained from the experimental test) the only 

unknown parameter of   is 
2

'
MatE . 

Hence, for this case, the inverse problem may be formulated as follows. 

1 1

1 1 2 2

2 1 2 1

1 1 2

Mat Mat

Mat Mat Mat Mat

Mat Mat Mat Mat

Mat Mat Mat
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   

   
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  

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 
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 
 

 


 
 
 
 
  

Z
 

 (3.10) 

det ( ) 0. Z  (3.11) 
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Inverse problem 

Input:  , Z , u , F , and part of  , of 

 , onZ u F    

where 

geometry : A , 
1MatL  and 

2MatL  

physical model Z : 
i* 0

0

E e



   

boundary conditions: u  (free-free) and F (harmonic) 

responses: 1  known from an experimental test 

known part of the material properties  : 
1Mat ,

2Mat  and 
1

'
MatE  

Output: 
2

'
MatE , the remaining unknown part of  , obtained with the characteristic equation 

 1det , 0 Z  with 1  known. 

 

Thus, Eq. (3.11) may be rewritten as  

In this case, setting the determinant of the matrix Z  to zero leads to a one variable scalar 

nonlinear equation, which allows determining the unknown 
2

'
MatE  once the experimentally identified 

1  is known and introduced. Hence, once 
2

'
MatE  is determined, the analytical FRF curve may be 

obtained by solving the forced harmonic vibration problem. Using the dynamic stiffness matrix, Eq. 

(3.10), one obtains for each applied frequency ap
 
the following system of linear equations  

where 0F  is the amplitude vector of the nodal applied harmonic forces (at same excitation frequency) 

and U  is the vector that defines the nodal displacement response (steady-state solution).  

3.3.2. Identification problem of a three-layer two-material bar subject to longitudinal vibrations  

Consider now a three layer bar, as illustrated in Figure 3.3, with the material of the extremity layers 

differing from the material of the intermediate layer.  Recall that this study focuses on the cases where 

the extremity layers have known elastic properties 
1

'
MatE  and mass density 

1Mat . Regarding the 

intermediate layer, it is assumed to have a linear viscoelastic behavior and only the mass density 

2

'
Mat 1det ( , ) 0.E  Z  

(3.12) 

ap 0( ) ,Z   U = F  (3.13) 
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2Mat  is known. Here, for the identification problem the first natural frequency 
 
of the specimen 

(previously determined from an experimental test) is known. 

 

Figure 3.3 – Three layer bar composed of two materials. 

Thus, the general dynamic stiffness matrix expressed by Eq. (3.10) may now be particularized for 

this case and expressed as a function of the only unknown variable 
2

'
MatE  as 

In this case, the solution of Eq. (3.12), 
2

'
Mat 1det ( , ) 0,E  Z  as obtained by the direct calculus of the 

determinant is expressed as 

The last expression may be considered as relatively complicated in comparison with usual 

expressions available for these experimental tests. For a detailed description, see Policarpo et al. 

([123] and [124]). As result of this, it would be most likely that experimentalists would fully ignore this 

hybrid analytic-experimental method if present in the form of Eq. (3.15). Note that symbolic 

computation was here intensively used (see the MATLAB
®
 code in Appendix A.1) to acquire a much 

simpler equation (i.e., Eq. (3.16) ) than the one that is achieved without symbolic computation (i.e., 

Eq. (3.15) ). 
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where:  

2 1

2 2 2
1 Mat 1 2Mat

c    , 

1 1 2

1 2' 3
2 Mat 1 2Mat Mat

2E c     , 

1 2

22
3 Mat 1Mat

L  
, 

 
1

2' 2 2
4 1Mat

1E    ,  

, 

 
and  

.   

Eq. (3.16) is a one variable scalar nonlinear equation, which allows us to determine 
2

'
MatE  once 

the experimentally identified 1  is known and introduced.  

  Fortunately, the actual symbolic computation tools allows for the obtaining Eq. (3.16). It is as 

simple as the usual formulæ in this field presenting a rigorous and more accurate on hand alternative 

solution when compared to other actual methods, e.g., 2 DOF discrete model and to the Lagragian FE 

(mention before in relation to [41]), as far as the author is aware and as shown in the results. 

 Remember that the Lagragian FE strongly depends on the number of FE per wavelength of the 

vibration wave. The solution proposed here does not suffer from that problem and has also the 

purpose of avoiding the need for a FE code. However, one has to verify the assumption that the 

wavelength   is large (at least, a >10) compared with the characteristic dimension of the cross-

section of the bar a , see [104] for more details.  

 In this sense, the simple scalar nonlinear Eq. (3.16) is proposed instead. 

3.3.3. Two degrees-of-freedom discrete model  

The bar illustrated by Figure 3.3, may alternatively be modeled using two infinitely rigid point 

masses 
1MatM  (see, sub-chapter 2.5.2.1) and one massless spring 

2Matk (see sub-chapter 2.5.2.2.) 

as illustrated in Figure 3.4. Note that it is the lowest discretization possible (2 DOFs) that allows to 

1 1

1
1 1 Mat Mat

cos( )L c  

1 1

1
2 1 Mat Mat

sin( )L c  

 11 1
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' 1
MatMat Mat
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characterize the first natural frequency 1  of the three layers with the resilient (intermediate) layer 

having mass density 
2Mat considerably lower than 

1Mat  so that the mass of this layer may be 

neglected.  

 

Figure 3.4 – Two DOF discrete model. 

Solving Eq. (2.19), (see, appendix A.2. for more details) one obtains the first non-zero natural 

frequency of the 2 DOFs discrete model, as    
2 1

1
1 Mat Mat

2DoF
2 2 ,f Mk




 
where 1 12  f , 

1 1 1 1Mat Mat Mat MatM A L  and 
2 2 2 2

'
Mat Mat Mat MatA Lk E which, when solved in order to the 

unknown  and considering that 
1 2Mat MatA A A 

 
leads to 

 

This is an alternative procedure that may be used to obtain 
2

'
MatE  knowing 1 . Note that 

Eq. (3.17) may be used to determine the initial guess value of 
2

'
MatE  used to solve Eq. (3.16), see the 

MATLAB
®
 code presented in Appendix A.3.  

3.3.4. Proposed methodology for the inverse method 

In this study, a hybrid analytical-experimental methodology is proposed for which an inverse 

method (see sub-chapter 2.9 and/or [10]) is used to identify the dynamic modulus (storage modulus 

and modal loss factor) of CCMs.  

Figure 3.5 illustrates the main steps of the proposed methodology, which is here described as: 

1. Start by building the test specimen (for which the material properties of the extremity layers, i.e., 

the modulus of elasticity
1

'
MatE , mass density 

1Mat  and modal loss factor 
1Mat 0   and mass 

density 
2Mat of the intermediate resilient material are known. The unknown material properties 

are the storage modulus 
2

'
MatE  and modal loss factor 

2Mat  of the resilient material).  Conduct 

an experimental analysis of the test specimen to obtain the experimental FRF curve (as described 

in sub-chapter 3.3.7); 

 

2

'
MatE

    2 1 1 1 2

' 2 2
Mat Mat Mat Mat Mat 1

2DoF 2DoF
2 .M L L fE    (3.17) 
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Figure 3.5 – Flowchart of the proposed methodology for determination of the dynamic modulus. The numbers 

within circles from 1 to 6 underline the steps of the identification procedure, while the sub-chapter of this paper 

that describes the step is also indicated. 

2. Conduct a modal identification analysis using the method RFP (as described in sub-chapter 2.4.6) 

to identify the first natural frequency 1  of the specimen and the correspondent modal damping 

ratio 1 ; 

3. Introduce the first natural frequency 1  into the one variable nonlinear equation Eq. (3.16), 

obtained from the analytical model (as described in sub-chapter 3.3.2) and use it to estimate the 

storage modulus ; 

4. Estimate the dynamic modulus of the resilient layer 
2

*
MatE

 
based on the identified material 

properties: 
 
and (as described in sub-chapter 3.2). As 

1 2

' '
Mat MatE E  i.e., in these 

cases  is approximately 
410  order of magnitude greater than and for the tested 

2

'
MatE

2

'
MatE

2Mat

1

'
MatE

2

'
MatE
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frequency range , then the modal loss factor of the resilient layer  is 

successfully approximated at the first natural frequency  by 
2Mat 1 12    , as the results 

show. Identification is terminated and if validation is required then follow to step 5. 

5. Use the identified material properties ( and ) and solve the forced vibration problem 

Eq. (3.13) using the analytical model of the specimen, to obtain the FRF curve (as described in 

sub-chapter 2.2.3); 

6. Then, conduct a validation analysis, e.g., by correlating the experimental and analytical FRF 

curves using the FRAC and FAAC assurance criteria (see sub-chapter 2.6.1). If the correlation 

values are not satisfactory then return to step 2. Otherwise, validation is successful and the 

identification with validation process is terminated.  

 

The following note is important to clarify the approximation assumed in step 4, i.e., that the modal 

loss factor of the resilient layer  is successfully approximated by 
2Matt  . Note that when 

springs are connected in series, the total stiffness tk
 
is determined by 1 21 1 1t s sk k k  

 
(where 

1sk , 2sk , … are the stiffness of the springs one, two and so forth).  The longitudinal stiffness of a 

uniform bar with cross sectional area A and length L  may be expressed as  *k E A L . Therefore, 

the two-material bar present a total longitudinal stiffness 
*

tE

 

which can be estimated as with springs 

connected in series by the following relation      
1 1 2 2

* * *

Mat Mat Mat Matt tL E A L E A L E A  . Since 

and
 

, the modal loss factor of the resilient layer  is successfully 

approximated by the total modal loss factor, i.e. . A detailed description on this is presented 

in appendix A.4. 

3.3.5. Numerical implementation for the storage modulus estimation 

The numerical implementation of Eq. (3.16) is considered simple (see the developed code in 

appendix A.3). Once the values of the input variables (
1

'
MatE , ,  , 

1MatL
 
, 

2MatL and ) 

are inserted, the k
 
with  k=1,2,3 and 4 (represented by LAM_ variables in the appendix A.3) are 

concatenated horizontally using the  “horzcat” function to automate the building of the one variable,  

2

'
MatE , nonlinear Eq. (3.16).  

The nontrivial solutions are the roots of the obtained equation or function. Here, the built-in 

MATLAB
®
 “fzero” function is used. It requires an initial guess or starting point (see initial_guess 

attribution in appendix A.3. Note that Eq. (3.17) may be and is here used to determine the initial guess 

value). To do it, the “fzero” function uses a combination of bisection, secant, and inverse quadratic 

interpolation methods (see the help documentation manual from MATLAB
®
 [125] or the link to 

1

42 10Mat  
2Mat

1

2

'
MatE

2Mat

2Mat

1 2

' '
Mat MatE E

1

42 10Mat  
2Mat

2Matt 

1Mat
2Mat 1
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MathWorks
®
 online documentation [126]). By using Eq. (3.17) to determine the initial guess value 

which is close enough to the solution, one avoids the need to use several starting points to assure the 

correct solution since “fzero” converges to the nearest zero. 

3.3.6. Proposed test specimens 

The experimental test specimen proposed by the author consists of a three-layer bar with extremity 

layers of steel and an intermediate layer of the resilient material to characterize in terms of its dynamic 

modulus, see Figure 3.6. The construction process of the specimens is described in appendix A.5.  In 

[44], the author present a brief study on the influence of the adhesive layer in the behavior of these 

structures, which showed to be unnoticed for, thin layers (we considered < 50 µm) of the adhesive. 

Note that no special cares are required to obtain such a thickness, just the necessary amount of liquid 

adhesive to cover uniformly the metallic surface to bond is needed. 

  

Figure 3.6 – Photograph of the experimental test specimen proposed in this study for measurements of dynamic 

modulus. 

3.3.7. The experimental setup to obtain the frequency response function curve 

The experimental setup used in this study to characterize the longitudinal dynamic modulus of 

resilient materials is illustrated by Figure 3.7. It may be described as: the specimen is suspended from 

a fix support by two thin elastic nylon strings. In the following, the commercial name of the equipment 

is indicated within parenthesis. With an impact hammer a longitudinal impact force is applied (a 

vibration exciter may also be used) to an extremity of the specimen; the force effectively applied to the 

specimen is measured (input signal) through a force transducer (PCB 208C01). The dynamical 

deformation propagates throughout the specimen and, at the opposite extremity, an accelerometer 

(Brüel & Kjaer 4508-B) measures the longitudinal acceleration (output signal).  

 

Figure 3.7 – Basic layout of the experimental setup used to identify the first natural frequency 1
 
and the modal 

loss factor .  
2Mat
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The input and output signals are acquired using a data acquisition unit (Brüel & Kjaer 3560D) and 

analyzed (Bruel & Kjær analysis software PULSE
®
 LabShop Version 6.1.5.65). The FRF curve is 

obtained allowing identification of the value of the first natural frequency  and correspondent modal 

loss factor 
2Mat , using the RFP method (as described in sub-chapter 2.4.6). 

3.4. Identification problem of a three-layer two-material bar subject to torsional vibrations  

The analytical formulation previously presented in sub-chapter 3.3.1 for the characterization of 

longitudinal dynamic modulus of elasticity may be similarly applied (using a parallel line of though as in 

sub-chapter 2.5.2.4) to the shear dynamic modulus of elasticity. For this reason, only the three-layer 

case will be presented here as the reader can see the work of Policarpo et al. [127] for a detailed 

discussion on the subject.   

Consider a three-layer bar, as illustrated by Figure 3.8 (may or not be the same as the one 

illustrated by Figure 3.3) with uniform transversal sectional area A , torsional (Saint-Venant) constant 

tJ  and polar moment of the cross-section with respect to the centroid pJ , subjected to a torsional 

harmonic force excitation at one extremity. The material of the extremity layers differ from the material 

of the intermediate layer where the extremity layers have known elastic properties 
1

'
MatG and mass 

density 
1Mat . Regarding the intermediate layer, it is assumed to have a linear viscoelastic behavior 

and only the mass density 
2Mat  is known. Here, for the inverse identification problem (see sub-

chapter 2.9 and/or [10] for a detailed discussion) the first natural frequency 1
 
of the specimen 

(previously determined from an experimental test) and the only unknown parameter of   is 
2

'
MatG . 

 

Figure 3.8 – Three layer bar composed of two materials 

For this case, the equivalent of Eq. (3.3) written for each material layer Mat , where   is layer’s 

type number is 

where  Mat ,x t



 
is the torsional displacement response at coordinate x  and at time t  and  Mat

c
  

is the corresponding wave phase velocity in the respective material   expressed as 

1

               
   

α α

α

2 2
Mat Mat2

Mat 2 2

, ,
0 1,2.

x t x t
c

x t

 


 
  

 
 (3.18) 
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where 
'
MatG


is the corresponding shear storage modulus of elasticity.  

The free vibration problem solution, i.e., when the bar is excited and released to vibrate with no 

external force, may be developed using the method of the separation of variables, see Eq. (3.4). The 

procedure is similar to the one used in sub-chapter 3.3.1 however: i) instead of the cross transversal 

sectional area A  one considers the torsional constant tJ ; ii) instead of the longitudinal storage 

modulus one considered the shear storage modulus and; iii) the adequate expression of the wave 

phase velocity, i.e., instead of Eq. (3.5) one considered Eq. (3.19). 

Thus, the dynamic stiffness matrix for this case may be expressed as a function of the only 

unknown variable 
2

'
MatG  as 

In this case, the solution of 
2

'
Mat 1det ( , ) 0,G  Z may be expressed as 

where, 

2 1

2 2 2
1 Mat 1 2Mat

c    , 

1 1 2

1 2' 3
2 Mat 1 2Mat Mat

2G c     , 

1 2

22
3 Mat 1Mat

L  
, 

 
1

2' 2 2
4 1Mat

1G    ,  

 , 

 and 

 '
Mat Mat Matt pc G J J

  
 .  

1 1

1
1 1 Mat Mat

cos( )L c  

1 1

1
2 1 Mat Mat

sin( )L c  

 '
Mat Mat Matt pc G J J

  
  (3.19) 
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Identically to Eq. (3.16), Eq. (3.21) is a one variable scalar nonlinear equation, which allows one to 

determine 
2

'
MatG , once 1

 
is experimentally identified and introduced. 

The modal identification method, i.e., the hybrid analytical-experimental methodology proposed in 

sub-chapter 3.3.4, may be used to identify the shear dynamic modulus of elasticity 
2

*
MatG  (storage 

modulus 
2

'
MatG  and the respective modal loss factor 

2Mat ) of resilient materials.  Additionally, the 

numerical implementation of Eq. (3.21) is identical to that of Eq. (3.16) which was previously 

presented in sub-chapter 3.3.5. Furthermore, the experimental test specimen can be the same as the 

ones proposed in sub-chapter 3.3.6 consisting of a simple three layer bar with extremity layers of steel 

and a resilient layer of the material to characterize in terms of its dynamic modulus, see Figure 3.6. 

However, the experimental setup is different and is presented next. 

3.4.1. The experimental setup to obtain the frequency response function curve: Torsion case 1 

 To characterize the shear dynamic modulus of elasticity 
2

*
MatG the experimental setup illustrated in 

Figure 3.9 was used (designated as torsion case 1). To create torque on the specimen an auxiliary rod 

designated as torque rod, see Figure 3.9, is coupled to the specimen. Any lateral motion of the 

structure may be minimized by using an additional rod mounted on a lubricated puncture made on the 

torque rod (see point P2 in Figure 3.9) and fixed at the other extremity.   

 

Figure 3.9 – Basic layout of the torsional experimental setup used to identify the first natural frequency 1
 
and 

modal loss factor 
2Mat . 
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Using a vibration exciter, see Figure 3.9, a transverse force is applied to an extremity of the torque 

rod (e.g, point P3 in Figure 3.9); the force effectively applied to the torque rod is measured through a 

force transducer (input signal). This force creates a torsional moment (but also some flexural moment, 

which means no pure torsion) in the specimen, which has an extremity fixed to a rigid support. Three 

accelerometers mounted on the torque rod measure the transverse accelerations at points P1, P2 and 

P3 (output signals).  

The input and output signals are acquired by a data acquisition unit and processed using analysis 

software. To experimentally characterize the shear dynamic modulus in a way that the analytical 

formulation described in sub-chapter 3.3.2 is applicable it is required that: the mass and inertia of the 

torque rod are accounted for, which does not present any difficulty; and that the specimen is in pure 

torsion. From the experimental point of view, this last requirement is not easily fulfilled.  

Not to drift away from the objective of experimentally characterizing the shear dynamic modulus of 

the resilient material of the specimen 
2

*
MatG , the author decided to apply an approach based on a FE 

modal analysis see, [40] and [41] for more details. Initially a FE modal analysis was conducted, where 

the unknown variable, the shear storage modulus 
2

'
MatG , was initially considered of unitary value, i.e., 

'
FEM 1G  Pa. Afterwards, the square ratio of the experimental and FEM first natural frequencies was 

used to estimate the shear storage modulus, as 

This is followed by a structural harmonic analysis, see Eq. (3.13), to obtain the FRF curve that is 

then compared with the one obtained experimentally. Validation by correlating the experimental and 

numerical FRF curves using the FRAC and the FAAC
 
correlation measures (see sub-chapter 2.6.1) is 

then conducted. 

3.4.2. The numerical equivalent of the experimental setup to obtain the frequency response 

function curve: Torsion case 2 

From the experimental point of view, applying a pure torsion moment to the specimen is not easily 

fulfilled. Thus, FEs are used to study the FE model of a specimen with free displacement boundary 

conditions (designated as torsion case 2). In this case, the FE model of the specimen is subjected to a 

torsional excitation  ,f x t  applied at an extremity (see Figure 3.10) and the response is obtained at 

the opposite extremity. 

 

Figure 3.10 – Numerical model, of specimen used in torsion case 2, used to identify the first natural frequency 

1
 
and modal loss factor 

2Mat . 

 
2

2 '
EXP FEM Mat .G    (3.22) 
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Using the shear storage modulus 
2

'
MatG and modal loss factor 

2Mat determined using the torsion 

case 1 (see sub-chapter 3.4.1) FE structural harmonic analysis of the specimen is conducted to obtain 

the frequency response function (FRF) curve which is then compared with the one obtained 

analytically. The FRF curve is obtained allowing identification of the value of the first natural frequency 

1  and correspondent modal loss factor 
2Mat , using the RFP method (as described in sub-chapter 

2.4.6). 

3.5. Dynamic mechanical analysis  

Continuing with the longitudinal dynamic modulus estimation, another method used in this study is 

the DMA. 

DMA consists of applying a small oscillating force (or displacement) causing a sinusoidal strain (or 

stress), in the linear viscoelastic regime, on a material sample and measuring the resulting stress (or 

strain) response. By measuring both the lag   between the stress and strain sine waves and the 

amplitude of the deformation at the peak of the sine wave, quantities like the dynamic modulus *E  

may be determined. In this way, with DMA it is possible to obtain the modulus every single time a sine 

wave is applied. Thus, one can sweep along the temperature T and/or frequency   range to obtain 

the modulus as a function of the temperature and/or the frequency, see Figure 3.11.  

 

Figure 3.11 – Storage modulus (
'E ) curves obtained by DMA at different temperatures and frequencies. 

However, this is easier said than done since experimental data may not be available and/or 

obtainable. Note that while wide range temperatures measurements may be made with relative ease, 

it is not as easy to assess for measurements in which changes occur at relative high or low 

frequencies, i.e., in less than, e.g., a second or in longer than, e.g.,  an hour. 
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Nevertheless, a solution arises from the experimental findings that time (or frequency) and 

temperature dependent processes present equivalent effects on the rheological properties of linear 

viscoelastic materials [8]. Thus, if the temperature of the material is lowered, the dynamic mechanical 

responses take longer than they would present at a higher temperature, and the extent of these 

processes is slowed in proportion to the temperature reduction. On the other hand, elevating the 

temperature speeds these processes in proportion to the temperature increase.  

 

Figure 3.12 – Storage modulus (
'E ) curves measured ( log ) and the master curve obtained ( ) after 

shifting the measured curves where 
'  is the shifted frequency.  

Three distinct areas or ranges are illustrated in Figure 3.12. In the shaded area, designated as 

starting range, the storage modulus curves of Figure 3.11 are represented for different temperatures 

T  and measured frequencies  . To the left and right hand side of the shaded area are two other 

areas designated as extended ranges, which contain the data obtained at lower and higher 

temperatures, respectively.  

As illustrated in Figure 3.12, the main effect from the temperature change is the rescale of 

frequency (or time), i.e., temperature changes shift the viscoelastic functions along the modulus and 

time (or frequency) scales without changing their shapes. This produces a composite curve called a 

master curve, which can be generated from a series of curves by overlapping data collected at 

different temperatures and frequencies, see Figure 3.12. This procedure is usually referred to as time-

temperature superposition (TTS) principle as described in e.g., Fesko and Tschoegl [128].  

'log
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3.5.1. Time-temperature superposition principle  

The underlying bases of the TTS principle are: i) that the processes involved in molecular 

relaxation or rearrangements in viscoelastic materials occur at accelerated rates at higher 

temperatures and; ii) that there is a direct equivalency between frequency (or time) and temperature. 

Hence, the time over which these processes occur can be reduced by conducting the measurement at 

elevated temperatures and transposing (shifting by a factor Ta ) the resultant data to lower 

temperatures. The result of this shifting is a master curve where the material property of interest at a 

specific temperature can be predicted over a broad frequency scale. A comprehensive discussion on 

TTS is provided by the text of Ferry [8]. In order to apply the TTS principle it is required that all the 

relaxation times (or the full relaxation spectrum) must show practically the same temperature 

dependence. In these conditions, the curves representing the material functions can be superimposed 

by translation in the time axis (or in the frequency axis, as illustrated by Figure 3.12). In multiphase 

systems, the relaxation spectrum of every component presents different temperature dependence, so 

it is expected that for multi-phase systems TTS will not hold [128]. Nevertheless, in circumstances 

where the contribution of one component is dominant in the involved relaxation processes, TTS may 

still be useful and provide numerical values rather close to the experimental ones. 

Determination of the shift factor by aligning curves taken at multiple temperatures provides shift 

factor values only for temperatures at which data is known. Often it is useful to be able to shift the 

master curve to any arbitrary temperature, which requires knowledge of the shift factor as a 

continuous function of temperature. This is generally accomplished by fitting the empirically obtained 

shift factors to an appropriate function. One of the most common functions used for this purpose is 

based on the Arrhenius equation [129] 

where Ta  is the temperature shift factor, H  is the apparent activation energy in [kJ/mol], R  is the gas 

constant 8.314 [J/(ºK mol)], T  is the absolute measurement temperature and 0T  is the absolute 

reference temperature.  

When applied to DMA data, which is the case, TTS relates temperature and frequency rather than 

temperature and time. Data is measured at multiple frequencies over a range of temperatures, see 

shaded area in Figure 3.12. The data may then be shifted onto a single master curve by treating 

frequency as the inverse of time and determining shift factors as described above, see Eq. (3.23), 

representing the storage modulus as a function of shifted frequency 
'

Ta   at the reference 

temperature as illustrated by Figure 3.12 . Note that the master curve may be used to predict behavior 

at frequencies outside the practical limitations of the test equipment. 

0

1 1
log ,

2.303
T

H
a

R T T

 
  

 
 (3.23) 
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3.5.2. Methodology 

In this study, DMA tests are conducted under dual cantilever clamped conditions as illustrated in 

Figure 3.13. The DMA dual cantilever clamp measuring system is similar to the typical three-point 

bending except that in the DMA the ends of the specimen are clamped. The clamping center screws 

are threaded on the support bar allowing movement of the jaws to clamp/unclamp the specimen to the 

fixed clamps (that are supported by mounting posts) and to a moveable clamp that is driven by a 

driveshaft that applies a sinusoidal controlled force/ displacement to the specimen. 

 

Figure 3.13 – Illustration of the DMA dual cantilever clamp measuring system.  

The specimens are tested inside a controlled temperature furnace, which is initially cooled using 

liquid nitrogen to a specific temperature (e.g., -50ºC) bellow the glass temperature allowing one to 

register part of the glassy region as well as the glass transition region in order to obtain a 

characterization in the low frequency range. Recall that temperature changes shift the viscoelastic 

functions along the modulus and frequency scales as illustrated by Figure 3.12. 

 When that temperature is reached the specimen in maintained under isothermal conditions for a 

specific time to ensure thermal and mechanical equilibrium after which, the experiment is initialized. 

Subsequently, the furnace is heated at a specific rate that should be such that its change per cycle is 

not significant allowing the specimen to reach thermal equilibrium. The specimen is subject to a 

control strain at different frequencies and the respective resulting strains are measured. The 

experiment ends when a specific final temperature is reached. 

With this, one obtains the storage modulus 'E  and loss factor   curves (usually designated as 

tg  in DMA, see Eq. (2.9) ), among other data. Using commercial software (TA Instrument Universal 

Analysis 2000 [130]) the data file format is converted to TTS data format. The TTS analyses are then 

conducted also using commercial software (TA Instrument Rheology Advantage Data Analysis [131]). 
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TTS analysis begins by selecting a reference temperature to determine the shift factors that best fit the 

Arrhenius equation, see Eq. (3.23), leading to the master curves of the storage modulus 'E  and loss 

factor   as a function of frequency. 

3.5.3. Experimental setup  

The experimental apparatus used to conduct the DMA tests is the illustrated in Figure 3.14 and 

consists of the following: 1 – DMA test equipment referenced as Q800 from TA Instruments to conduct 

the analyses with a; 2 – dual cantilever clamp system and; 3 – a furnace to control the temperature of 

the test. Connected to the Q800 is a; 4 – tank containing liquid nitrogen used to lower the 

temperatures of the tests and; 5 – a computer is used to control define the parameters of the DMA 

tests as well as record the data obtained. 

 
 

a) 

 
 

b) 

Figure 3.14 – Experimental DMA test apparatus: a) 1–TA Instruments Q800 DMA; 2 – Dual cantilever clamp 

measuring system; 3 – Furnace; 4 – Liquid nitrogen gas cooling tank; 5 – Computer for data analyses; b) Dual 

cantilever clamp system. 

Once the DMA test data, i.e., 'E  and  tg  at different temperatures and for different frequencies, 

is obtained, commercial TA Instrument software (TA Instrument Universal Analysis 2000 [130] and TA 

Instrument Rheology Advantage Data Analysis [131]) is used to obtain the master curves. 

3.6. Materials studied  

Five different CCMs (illustrated by Figure 3.15), four types of cork-rubber and one type of cork 

agglomerate are studied. These materials were supplied by a cork composite producer (Amorim Cork 

Composites [132]) that referenced the cork-rubber materials by the initials VC and the cork 

agglomerate material by the initials NL. For future reference, these designations will be maintained in 

this document. 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

Figure 3.15 – Amplified photograph of the used intermediate resilient materials (Area=40 mm
2
): a) VC 6400; b) 

VC 5200; c) VC 2100; d) VC 1001 (porous); e) NL20. 

The mass density 
2Mat  of each material is estimated by measuring the dimensions and the 

weight of the material specimen. This is based on 
2 2 2

1
Mat Mat Mat

M V  , where 
2MatM  and 

2MatV  are 

the mass and the volume of the resilient layer, respectively. For each material, ten samples were 

used, from which the five with the lowest standard deviation (< 10 kg m
-3

) are considered to determine 

the arithmetic mean value of the mass density 
2Mat

 
of the material as indicated in Table 3.1. 

 

Steel 

1   

VC 6400 

2   

VC 5200 

2   

VC 2100 

2   

VC 1001 

2   

NL20 

2   

Mat
 (kg m

-3
) 

7640 

[44] 
893 590 836 516 210 

MatE


(GPa)
 

205 

[44] 

To be 

determined 

To be 

determined 

To be 

determined 

To be 

determined 

To be 

determined 

Mat


 ≈ 0 
To be 

determined 

To be 

determined 

To be 

determined 

To be 

determined 

To be 

determined 

Table 3.1 – Known and unknown material properties. 

3.7. Results and discussion 

In this sub-chapter are presented the main results obtained using the proposed analytical-

experimental hybrid method to characterize the longitudinal and shear dynamic moduli of the above 

five CCMs. DMA tests were also conducted to characterize the longitudinal dynamic modulus of the 

same CCMs. Analyses of the results obtained by both methods are presented and discussed in this 

framework. Furthermore and to conclude, are presented the results obtained using the proposed 

analytical-experimental hybrid method to characterize the shear dynamic modulus of elasticity of two 

CCMs. 

3.7.1. Proposed methodology:  Analytical-experimental hybrid methodology   

Eighteen experimental test specimens (see sub-chapter 3.3.6), three of each type of resilient 

material, were built and tested using the experimental setup described in sub-chapter 3.3.7. A total of 
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10 averages were used for each specimen, minimizing the lack of repeatability inherent to impact 

testing, see sub-chapter 2.4.1.  

A transient time weighting function was used for the force signal to improve the signal to noise 

ratio, and an exponential time weighting function was used for the response signal, to reduce leakage 

effects and noise. Auto-ranging of the input/output signals for the impulse measurements was 

conducted to optimize the signal to noise ratio and automatic rejection of “overload” signals was 

considered. See sub-chapter 2.4 and Maia et.al [88] for more details.  

The identification methodology described in sub-chapter 2.4.6 (the indirect frequency domain 

identification curve fitting method based on the RFP method) was used to determine the poles, the 

first natural frequency 1f  (where 1 12 f  ), see Eq. (2.27), the correspondent modal damping ratio 

1  
see Eq. (2.28) (where the modal loss factor may be approximated by  as results will 

show), and the residue. It was considered that the degree of the denominator of Eq. (2.25) was equal 

to five since, it was the lowest value that produced satisfactory results. The loss modulus was 

determined by Eq. (2.10), and the storage modulus 
2

'
MatE

 
was determined as the solution of 

Eq. (3.16). All these results as well as the longitudinal lengths (
1MatL

 
and 

2MatL ) of the steel and the 

resilient materials are presented in Table 3.2 and Table 3.3. 

For the cases considered in this study, the behavior of 
2

'
Mat 1det ( , )E Z ,i.e., Eq. (3.12), is 

illustrated by Figure 3.16. It was considered in the Figure 3.16 a) that 1f =533 Hz and in the 

Figure 3.16 b) it was considered that 
2

'
MatE =17.9 MPa. This behavior allows us to use the “fzero” 

function to determine a solution of Eq. (3.16) (see sub-chapter 3.3.5 and for more detail see, e.g., 

[125]). 

 
 

Figure 3.16 – Plot of  as a function of: a) 
2

'
MatE  and considering 1f =533 Hz and; b)

 
  and considering    

2

'
MatE =17.9 MPa.  

2Mat 2 

det Z

Keeping fixed =533 Hz 1f Keeping fixed =17.9 MPa
 
 

2

'
MatE

 
 

2

'
MatE

1 12f   

a) 
b) 
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Figure 3.17 illustrates the dependence of the first solutions of the nonlinear Eq. (3.16) with respect 

to the measured natural frequency 1f . It is represented by the lines without dots considering three 

different steel lengths: 
1MatL = 0.0100 m, 

1MatL = 0.0205 m and 
1MatL = 0.0300 m; and a resilient 

material (VC6400) layer with fixed length 
2MatL = 0.0128 m, see Table 3.2. The properties of the steel 

as well as the mass density of the resilient material layer are presented in Table 3.1. 

Furthermore, Figure 3.17 also illustrates the solutions of a lumped 2 DOFs semi-definite dynamic 

system model (represented by the lines with dots), previously described in sub-chapter 3.3.3, in which: 

the extremity steel layers with a cross-sectional area
 1Mat 0.004A A   m

2 
 are modeled as 

infinitely rigid masses 
1MatM , and the resilient material (VC 6400) layer with a cross-sectional area 

2Mat 0.004A A   m
2  

is modeled as a massless spring. For the two DOF model the equivalent to  

Eq. (3.16), is represented by Eq. (3.17). 

 

Figure 3.17 – Dependence of the solutions of Eq. (3.16)
2

'
MatE on the measured frequency 1f for three values of 

steel lengths and a fixed resilient material length (lines without dots); and 2 DOF lumped model (lines with dots).  
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In Figure 3.17, one may observe that the identified storage moduli using the 2 DOF lumped 

model Eq. (3.17) (lines with dots) diverge from the identified storage moduli of the proposed nonlinear 

Eq. (3.16) (lines without dots), as the identified natural frequency 
 
increases.  

As an example, in Figure 3.17 consider a measured natural frequency 1f  
of 1124 Hz and a steel 

length 
1MatL of 0.0205 m, which is equivalent to a mass 

1MatM of 0.061 kg. It is possible to observe 

that the storage modulus  identified using the 2 DOF lumped model Eq. (3.17) is approximately 

48.7 MPa, whereas the storage modulus 
2

'
MatE  identified using the proposed nonlinear Eq. (3.16)  is 

49.5 MPa. From this example, even though others were verified, one may conclude that the storage 

moduli identified using the 2 DOF lumped model presents a relative deviation of 1.6%.   

Furthermore, based on Figure 3.17, one may conclude that the sensitivity of the identified storage 

modulus 
2

'
MatE

 
increases with the identified natural frequency 1f  

(in Hz) as well as with the 

reduction of length 
1MatL of the extremity (steel) layers. Thus, small lengths for the extremity steel 

layers 
1MatL are advantageous. However, small length of the extremity steel layers lead to higher 

natural frequencies of the specimen, which is where the proposed nonlinear Eq. (3.16) is considered 

more accurate than the 2 DOF lumped model.  

Additionally, it was verified that Eq. (3.16) presents a relatively low sensitivity regarding the 

identified natural frequency 1f . Indeed, considering the previous example (i.e., VC 6400 as the 

resilient material, 1f  
of 1124 Hz and a steel length 

1MatL of 0.0205 m) and a perturbation of 0.1 Hz in 

the identified natural frequency leads to a relative deviation of approximately 0.017% in the identified 

storage modulus 
2

'
MatE .  

In this study, the lengths of all the resilient materials were kept constant; thus, it was necessary to 

increase the length of the extremity steel layers in order to characterize the storage modulus for lower 

frequencies. In this context, the sensitivity regarding the identified natural frequency 1f using longer 

extremity steel layers increases, which can be verified by the slope of the curves illustrated in 

Figure 3.17. Therefore, one may conclude that in these cases (long extremity steel layers) a more 

precise and accurate frequency measurement is required. 

With this in mind, the author tested the cases of extremity steel layers with lengths of: i) 
1MatL  of 

approximately 20.5 mm (for higher frequencies), see Table 3.2 and ii) 
1MatL  of 0.976 m (for lower 

frequencies), see Table 3.3. Hence, the results of Table 3.2 and Table 3.3 are not comparable among 

each other. The length 
2MatL  was fixed at the thickness value available from the CCMs supplied. 

 

2

'
MatE

1f

2

'
MatE
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Material 
1MatL   

(mm) 

2MatL   

(mm) 

Pole 

Eq. (2.27) 

1f  (Hz) 

Eq. (2.27) 

2Mat  

Eq. (2.28) 

Residue 

kr

 

2

'
MatE   

(MPa)

 

2

''
MatE   

(MPa)

 VC 6400 20.5 12.8 -660.0+7030.7i 1123.9 0.187 (1-6i)×10
-4

  49.5 9.3 

VC 5200 20.5 10.1 -700.0+5690.0i 912.4 0.244 (1-5i)×10
-4

 26.2 6.4 

VC 2100 20.4 10.0 -1258.4+6960.6i 1125.8 0.356 (1+6i)×10
-4

 40.0 14.2 

VC 1001 20.7 10.1 -245.4+1989.6i 319.1 0.245 (3+23i)×10
-4

 3.1 0.8 

NL20 20.5 20.0 -217.7+3343.8i 533.3 0.130 (1+14i)×10
-4

 17.9 2.3 

Table 3.2 – Poles, first natural frequency of the test specimens, modal loss factor, residue and storage and loss 

moduli of the resilient materials for ≈20.5 mm. 

 

 

Material 
1MatL   

(mm) 

2MatL   

(mm) 

Pole 

Eq. (2.27) 

1f  (Hz) 

Eq. (2.27) 

2Mat  

Eq. (2.28) 

Residue 

kr

 

2

'
MatE   

(MPa)

 

2

''
MatE   

(MPa)

 VC 6400 976 12.8 -77.7+1000.2i 159.7 0.155 (0+1i)×10
-4

 48.8 7.6 

VC 5200 976 10.1 -86.5+801.6i 128.3 0.214 (0+1i)×10
-4

 24.5 5.3 

VC 2100 976 10.0 -161.6-995.3i 160.5 0.321 (0-1i)×10
-4

 38.4 12.3 

VC 1001 976 10.1 -31.8+280.6i 44.9 0.225 (0+3i)×10
-4

 2.9 0.7 

NL20 976 20.0 -28.1+480.4i 76.6 0.117 (0+2i)×10
-4

 17.3 2.0 

Table 3.3 – Poles, first natural frequency of the test specimens, modal loss factor, residue and storage and loss 

moduli of the resilient materials for =976 mm. 

The CCMs tested in this study present considerable damping (see 
2Mat  presented in the sixth 

column, i.e., second shaded column, of Table 3.2 and Table 3.3). This fact justifies the use of the RFP 

method (see sub-chapter 2.4.6) in the identification process of the modal loss factor 
2Mat

 
and first 

natural frequency 1f  of the specimen.  

Note that in Figure 3.18 and Figure 3.19 the lower and the upper bounds values of the storage 

modulus 
 

and modal loss factor 
 

were determined using test specimens with          

=976 mm and ≈20.5 mm, respectively. 

1MatL

1MatL

2

'
MatE

2Mat

1MatL
1MatL
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Figure 3.18 – Estimated frequency dependence of the storage modulus for the tested materials (left points 

=976 mm and right points =20.5 mm). Each line corresponds to a specific CCM. 

 

Figure 3.19 – Estimated frequency dependence of the modal loss factor for the tested materials (left points 

1MatL =976 mm and right points 
1MatL =20.5 mm). Each line corresponds to a specific CCM. 

In Table 3.4 are presented the frequency dependence of the identified storage modulus 
2

'
MatE

 
 

and respective modal loss factor 
2Mat

 
for the tested materials. 

 

2

'
MatE

1MatL
1MatL

2Mat
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 =960 mm ≈20.5 mm
 

Slope 

Material 1f  (Hz) 2

'
MatE  

(MPa) 
2Mat  1f  (Hz) 2

'
MatE  

(MPa) 
2Mat  (MPa Hz

-1
)  (Hz

-1
) 

VC 6400 159.7 48.8 0.155 1123.9 49.5 0.187 7.26×10
-4

 3.32×10
-5

 

VC 5200 128.3 24.5 0.214 912.4 26.2 0.244 2.17×10
-3

 3.83×10
-5

 

VC 2100 160.5 38.4 0.321 1125.8 40.0 0.356 1.66×10
-3

 3.63×10
-5

 

VC 1001 44.9 2.9 0.225 319.1 3.1 0.245 7.29×10
-4

 7.29×10
-5

 

NL20 76.6 17.3 0.117 533.3 17.9 0.130 1.31×10
-3

 2.85×10
-5

 

Table 3.4 – Frequency dependence of the identified storage modulus and modal loss factor . 

As illustrated by Figure 3.18 and Figure 3.19 and presented in Table 3.4, a low frequency 

dependence of the identified storage modulus 
2

'
MatE

 
 and respective modal loss factor 

2Mat
 
is 

observed for the tested materials. For e.g., =7.26×10
-4

 MPa Hz
-1

 and  =3.32×10
-5

 Hz
-1

 

for the VC6400 material.   

Tests were conducted at an approximately constant temperature and relative humidity of 20.5 ºC 

and 40%, respectively. The experimental FRF curves obtained are represented by the dotted-circle 

line in Figure 3.20 and Figure 3.22.  

3.7.2. Validation of the proposed methodology 

Having identified the dynamic modulus 
2

*
MatE , the analytical receptance FRF curves were 

obtained by solving the forced harmonic vibrations problem, see Eq. (3.13), which was implemented in 

MATLAB
®
 where the dynamic stiffness matrix Z  is in this case (see Figure 3.3) expressed by 

Eq. (3.14). The material properties 
1Mat ,

2Mat ,
1

'
MatE  and 

1Mat are presented in Table 3.1 

whereas, 
1MatL ,

2MatL  ,
2

'
MatE  and 

2Mat  are presented in Table 3.2 and Table 3.3.  

Even though validation was successfully conducted for all resilient materials, next only are 

presented the results for the resilient materials VC6400 illustrated by Figure 3.15 a) and VC1001 

illustrated by Figure 3.15 d) as they present the main characteristics found in all (see, Appendix A.6 for 

the other results). The experimental and analytical receptance FRF curves are represented by the 

dotted-circle and filled lines, respectively, in Figure 3.20 and Figure 3.22. The experimental and 

analytical receptance FRF curves were then correlated using the FRAC, Eq. (2.59), and the FAAC, 

Eq. (2.60), assurance criteria and are illustrated by Figure 3.21 and Figure 3.23 by the dotted line and 

filled lines, respectively.  

1MatL
1MatL

2

'
MatE

2Mat

2

'
MatE

2Mat

2

'
MatE

2Mat
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a) 

 

b) 

Figure 3.20 – Experimental and analytical FRF curves of test specimen with resilient material VC 6400: a) 

magnitude; b) phase. 

 

 

Figure 3.21 – FRF correlation functions curves of test specimen with resilient material VC 6400. 
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a) 

 

b) 

Figure 3.22 – Experimental and analytical FRF curves of test specimen with resilient material VC1001: a) 

magnitude; b) phase. 

 

Figure 3.23 – FRF correlation functions curves of test specimen with resilient material VC1001. 

The presented analytical and experimental FRF are in a good agreement in terms of magnitude 

and phase as illustrated by the above figures. Note that similar results have been obtained for the 

other resilient materials tested.  Some discrepancy is noticed for the VC 1001 specimens above 

500 Hz, as illustrated by Figure 3.22 and nearby the natural frequency (320 Hz), as illustrated by 

Figure 3.23. This is justified by the fact that this is a porous CCM, see Figure 3.15 d), that presents 

more significant storage modulus frequency dependence at higher frequencies (> 500 Hz). Even so, 

with the proposed methodology it was possible to estimate the dynamic modulus of this porous 

material. However, and since the dynamic modulus of porous materials is not a topic of this study, 

reference [133] may be recommended for further details. 

The results of the receptance FRF correlation criteria present values above 99.5% and 95% for the 

FAAC and the FRAC assurance criteria, respectively. The presence of flexural modes is almost 
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unnoticed in receptance FRF curves. However, their presence is evidentiated by the FRF assurance 

criteria, e.g., as seen in Figure 3.21 near 600 Hz.  

3.7.3. Shear dynamic modulus results 

The shear dynamic modulus of elasticity of two CCMs, one cork-rubber VC 6400 illustrated by 

Figure 3.15 a), and one of cork agglomerate NL20 illustrated Figure 3.15 e) where characterized using 

the proposed hybrid methodology presented in sub-chapter 3.4. The experimental test specimen is 

illustrated by Figure 3.6 and consists of a simple three layer bar with extremity layers of steel and an 

intermediate resilient layer of the material to characterize (in terms of shear dynamic modulus). The 

extremity layers have known elastic properties 
1

'
MatE =205 GPa, 

1

'
MatG =79.2 GPa, and mass density

1Mat =7640 kg m
-3

. Regarding the resilient layer only the mass density 
2Mat  are known and are 

893 kg m
-3

 and 210 kg m
-3

 for materials VC 6400 and NL20, respectively. 

Following the procedures described in sub-chapter 3.4.1 and sub-chapter 3.4.2 for the torsion 1 

and torsion 2 cases, respectively, the results presented in Table 3.5 were obtained. For comparison 

purposes, the values of the longitudinal dynamic modulus (see Table 3.2 and Table 3.3) of the 

materials subject to shear dynamic modulus characterization, i.e., VC 6400 and NL 20, are also 

presented.  

 

 
Resilient 

Material 2MatL  (mm) 1f  (Hz) 
2Mat  2

'
MatE  

(MPa)

 

2

'
MatG  

(MPa)

 

2

''
MatE  

(MPa)

 

2

''
MatG  

(MPa)

 
Longitudinal 

VC 6400 10.0 1123.9 0.187 49.5 - 9.3 - 

NL20 20.0 533.3 0.130 17.9 - 2.3 - 

Shear 

Torsion 1 

VC 6400 10.0 106 0.189 - 16.8 - 3.2 

NL20 20.0 57 0.135 - 7.5 - 1.0 

Shear 

Torsion 2 

VC 6400 10.0 599 0.189 - 16.9 - 3.2 

NL20 20.0 317 0.135 - 7.6 - 1.0 

Table 3.5 – First natural frequency  of the test specimens, modal loss factor , longitudinal storage 

modulus , shear storage modulus , longitudinal loss modulus  and shear loss modulus 

of the resilient materials for =20.5 mm. 

Having determined the longitudinal 
2

'
MatE  and shear 

2

'
MatG storage moduli of the resilient 

materials, see Table 3.5, the bulk storage modulus 
2

'
MatK  (considering an homogeneous isotropic 

linear elastic material) expressed by Eq. (2.13) and Poisson’s ratio   expressed by Eq. (2.14) were 

estimated and the respective results obtained are presented in Table 3.5. 

 

1f 2Mat

2

'
MatE

2

'
MatG

2

''
MatE

2

''
MatG

1MatL
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Resilient Material 
2

'
MatE  (MPa)

 

2

'
MatG  (MPa)

 

2Mat  

Eq.(2.14) 

2

'
MatK  (MPa) 

Eq.(2.14) 

VC 6400 49.5 16.8 0.47  308 

NL20 17.9 7.5 0.23 11.6 

Table 3.6 – Longitudinal , shear and bulk storage moduli and Poisson’s ratio  of the 

resilient materials. 

The values of the Poisson’s ratio  , presented in Table 3.6, are expected in the sense that: 

VC 6400 is a cork rubber composite material (and the Poisson’s ratio of rubber is approximately 0.5); 

NL20 is a cork agglomerate material in which an epoxy resin is used as the agglomerate element (and 

the Poisson ratio of cork is approximately 0). 

Having identified the shear dynamic modulus of elasticity 
2

*
MatG (see Table 3.5), the analytical 

receptance FRF curves were obtained by solving the forced harmonic vibrations problem, see 

Eq. (3.13), which was implemented in MATLAB
®
 where the dynamic stiffness matrix Z is in this case 

(see Figure 3.8) expressed by Eq. (3.20). The material properties 
1Mat , 

2Mat ,and 
1Mat are 

presented in Table 3.1 whereas, 
1MatL ,

2MatL  ,
2

'
MatG  and 

2Mat  are presented in Table 3.5 and 

1

'
MatG =79.2 GPa.  

For the torsional case 1 described in sub-chapter 3.4.1, the experimental and numerical receptance 

FRF curves are represented by the dotted-circle and filled lines, respectively, in Figure 3.24 and 

Figure 3.26. For the torsional case 2 described in sub-chapter 3.4.2, the numerical and analytical 

receptance FRF curves are represented by the dotted-circle and filled lines, respectively, in 

Figure 3.28 and Figure 3.30. The receptance FRF curves were then correlated using the FRAC, 

Eq. (2.59), and the FAAC, Eq. (2.60), correlation measures and are illustrated by Figure 3.25,  

Figure 3.27, Figure 3.29 and Figure 3.31 by the dotted and solid lines, respectively.   

 

 

 

 

 

2

'
MatE

2

'
MatG

2

'
MatK

2Mat



  

88 

 

a) 

 

 

b) 

Figure 3.24  – Torsional (case 1) experimental and FE method FRF curves of test specimen with resilient material 

VC6400: a) magnitude; b) phase. 

 

 

Figure 3.25  – Torsional (case 1) FRF correlation functions curves of test specimen with resilient material 

VC6400. 
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a) 

 

b) 

Figure 3.26  – Torsional (case 1) experimental and FE method FRF curves of test specimen with resilient material 

NL20: a) magnitude; b) phase. 

 

 

Figure 3.27  – Torsional (case 1) FRF correlation functions curves of test specimen with resilient material NL20. 

For the torsional case 1 described in sub-chapter 3.4.1, the FRF curves, see Figure 3.24 and 

Figure 3.26, illustrate a good agreement in terms of magnitude and phase between the numerical and 

experimental receptance FRF curves. The results of the receptance FRF correlation functions present 

mean values above 50% and for the FRAC and the FAAC
 
correlation measures, respectively, in the 

tested frequency range. However, nearby the resonance values above 90% are obtained for the 

FRAC and the FAAC correlation measures. The presence of flexural modes are evidentiated by 

discrepancies in the receptance FRF curves and FRF correlation functions curves, e.g., see 

Figure 3.25 near 25 Hz and 325 Hz and  see Figure 3.27 near 145 Hz and 270 Hz. 
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a) 

 

 

b) 

Figure 3.28  – Torsional (case 2) FE method and analytical FRF curves of test specimen with resilient material 

VC6400: a) magnitude; b) phase. 

 

 

 

Figure 3.29  – Torsional (case 2) FRF correlation functions curves of test specimen with resilient material 

VC6400. 
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a) 

 

 

b) 

Figure 3.30  – Torsional (case 2) FE method and analytical FRF curves of test specimen with resilient material 

NL20: a) magnitude; b) phase. 

 

 

 

Figure 3.31  – Torsional (case 2) FRF correlation functions curves of test specimen with resilient material NL20. 

For the torsional case 2 described in sub-chapter 3.4.2, the FRF plots, see Figure 3.28 and 

Figure 3.30, illustrate a good agreement in terms of magnitude and phase between the numerical and 

experimental receptance FRF curves. The results of the receptance FRF correlation functions present 

values above 99% and 99.9 % for the FRAC and the FAAC correlation measures, respectively. The 

presence of flexural modes is almost unnoticed in receptance FRF curves.  
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3.7.4. Dynamic mechanical analysis results 

In this study, DMA tests were conducted to simply determine the longitudinal dynamic modulus *E , 

i.e., longitudinal storage modulus 'E  and respective loss factor  , of five CCMs. The DMA test 

specimens have a rectangular geometry, see Table 3.7 and Figure 3.32, and were tested using the 

experimental setup described in sub-chapter 3.5.3 for each of the five types of CCMs indicated in sub-

chapter 3.6.  

Material VC 6400 VC 5200 VC 2100 VC 1001 NL 20 

1l  (mm)
 

20.00 20.00 20.00 20.00 20.00 

2l  (mm) 13.95 13.09 14.22 12.58 14.16 

h  (mm)
 

3.25 2.22 2.06 3.02 2.03 

Table 3.7 – Geometric properties of the DMA test specimens where 
 
is the longer side, is the shorter side 

and 
 
is the thickness. 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

Figure 3.32 – Photographs of the DMA test specimens: a) VC6400; b) VC5200; c) VC2100; d) VC1001; and e) 

NL20. 

The methodology adopted and previously presented in sub-chapter 3.5.2 consists of having a 

specimen under dual cantilever clamp conditions as illustrated in Figure 3.13 and tested inside a 

controlled temperature furnace (see label 3 of Figure 3.14), which is initially cooled using liquid 

nitrogen to a temperature, see Table 3.8, bellow the glass temperature of the material, allowing one to 

register part of the glassy region and the glass transition region, i.e., to obtain a characterization in the 

low frequency range. 

When that temperature is reached, the specimen is maintained under isothermal conditions for 180 

seconds to ensure thermal and mechanical equilibrium after which, the experiment is initialized. 

Subsequently, the furnace is heated at a rate of 0.05ºC/s that is such that its change per cycle is not 

significant allowing the specimen to reach thermal equilibrium. The specimen is submitted to an 

imposed sinusoidal stress, at three different frequencies (1Hz, 3 Hz and 10 Hz). The amplitude of the 

imposed stress is such that the amplitude of the resultant displacement is about 10μm.  The 

experiment ends when final temperature reaches 150ºC.  

1l 2l

h
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Material VC 6400 VC 5200 VC 2100 VC 1001 NL 20 

initialT  (ºC)
 

-80 -70 -50 -80 -50 

Table 3.8 – Initial temperatures of the DMA tests for each material specimen. 

With this, one obtains the storage modulus 'E  and loss factor   curves (usually designated as 

tan delta or tg  in DMA), as a function of the temperature, see Figure 3.33 and/or frequency, see 

Figure 3.34. Even though tests were conducted for all five materials, next are only illustrated the 

results for the VC 6400 material as it present the main characteristics found in all and avoiding by this 

way a too extensive illustrated sub-chapter. Nevertheless, further results and illustrations regarding 

the other materials are presented in Appendix A.7.  

 

Figure 3.33 –  Storage modulus 
'E  and loss factor   curves as a function of the temperature for three different 

frequencies for material VC 6400 obtained using DMA. 

 

Figure 3.34 – Storage modulus 
'E  as a function of the frequency for different temperatures for material VC 6400. 
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Using commercial software (TA Instrument Rheology Advantage Data Analysis [131]), the TTS is 

applied at a reference temperature of 20ºC which, is used to determine the shift factors Ta , see 

Figure 3.35, that best fit the Arrhenius Equation, see Eq. (3.23), considering an activation energy of              

H =79.40kJ/mol for the VC6400, leading to the master curves of the storage modulus 'E  and loss 

factor   as a function of frequency, as can be seen in Figure 3.36.  

It should be noted that the materials tested in this study (CCMs, see Figure 3.15) are essentially 

two-phase systems (with a polymer and cork matrix) for which the TTS principle does not usually 

apply. Nevertheless, in this study, the applicability of TTS principle is justified by the fact that the 

matrix does not undergo significant changes during the DMA test.  

 

Figure 3.35 – Shift curve as a function of the temperature for material VC 6400. 

 

Figure 3.36 – Master curves of the storage modulus 
'E  and loss factor 

 
as a function of the frequency for 

material VC 6400. 

A curve fitting power law with two terms ( by a x c   where y is the storage modulus 'E  or loss 

factor   and x  is the frequency) is applied to the curves in the frequency range of interest illustrated 

Range of 

interest 
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in Figure 3.36 to obtain Figure 3.37 and the analytical expressions, see Table 3.9, that allows 

determining the storage modulus 'E  and loss factor   in the interval between 1Hz and 10
4
Hz.  

For clarification purposes note that Figure 3.36 and Figure 3.37 have different right and left scales. 

For this reason, in Figure 3.36 the storage modulus 'E  curve appears bellow the loss factor   curve 

and in Figure 3.37 it appears above. 

 

Figure 3.37  – Curve fitting of the master curves of the storage modulus 
'E  and loss factor   as a function of the 

frequency in the interval between 1Hz and 10
4
Hz (on logarithm scale) for material VC 6400. 

Figure 3.38 illustrates the same data as Figure 3.37 but in linear scales. Sometimes this is more 

convenient, e.g., for visualization ease of the frequency dependence of both the storage modulus 'E  

and loss factor   with the increasing frequency.   

 

Figure 3.38  – Curve fitting of the master curves of the storage modulus 
'E  and loss factor   as a function of the 

frequency in the interval between 1Hz and 10
4
Hz (on linear scale) for material VC 6400. 

As previously stated, only the graphical results for the VC6400 material are presented in the main 

text as for the remaining materials tested the respective figures are presented in Appendix A.7. 
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Nevertheless, next are presented the terms of the analytical expression, i.e., the curve fitting power 

law for the materials tested. 

Material Property a  b  c  R-square 

VC 6400 
'E  6.871×10

7
 4.852×10

-3
 -2.161×10

7
 0.985 

  0.0996 0.09384 -3.866×10
-3

 0.998 

VC 5200 
'E  

2.124×10
7
 0.03348 -4.150×10

5
 0.988 

  0.1748 0.06078 -0.0195 0.995 

VC 2100 
'E  

3.296×10
7
 0.02547 6.65×10

5
 0.985 

  0.2303 0.05588 0.01603 0.991 

VC 1001 
'E  

2.567×10
6
 0.03381 -1.076×10

4
 0.983 

  0.1755 0.04648 0.01653 0.989 

NL 20 
'E  

1.733×10
6
 0.1124 1.447×10

7
 0.964 

  0.09246 0.05423 1.112×10
-3

 0.961 

Table 3.9 – Terms of the analytical expression of the storage modulus  and loss factor  obtained using a 

power law  where is the storage modulus  or loss factor  and  is the frequency. 

By using the analytical expressions of Table 3.9 or by visual observation of Figure 3.37 it is 

possible to determine the storage modulus 'E  and loss factor   in the interval between 1Hz and 

10
4
Hz. Hence, it is now possible to compare these values with those obtained using the proposed 

analytical-experimental hybrid methodology (see, sub-chapter 3.3). 

3.7.5. Result comparison of the identified longitudinal dynamic modulus obtained via dynamic 

mechanical analysis and via hybrid analytical-experimental methodology 

The respective longitudinal dynamic moduli results, i.e., storage moduli 'E  and loss factors  , of 

both DMA and the proposed analytical-experimental hybrid methodology for two frequencies (those for 

which results were obtained using hybrid analytical-experimental methodology) designated as lower 

and upper frequencies are presented in Table 3.10. 

The values of the storage modulus 'E  and loss factors   (shaded lines of Table 3.10) obtained 

using DMA were determined by using of the curve fitting power law ( by a x c   where y  is the 

storage modulus 'E  or loss factor  , x  is the frequency f (second line of Table 3.10) and the 

constants a , b  and c  may be found in Table 3.9. 

 

 

 

'E 

by a x c  y 'E  x
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Material 

type 
VC 6400 VC 5200 VC 2100 VC 1001 NL20 

 

Frequency 

f  (Hz) 
159.7 1123.9 128.3 912.4 160.5 1125.8 44.9 319.1 76.6 533.3 

'E (MPa)
 

DMA 48.9 49.6 24.6 26.3 38.5 40.1 2.9 3.1 17.3 17.9 

Hybrid M. 48.8 49.5 24.5 26.2 38.4 40 2.9 3.1 17.3 17.9 

  

DMA 0.156 0.188 0.215 0.245 0.322 0.357 0.226 0.246 0.118 0.131 

Hybrid M. 0.155 0.187 0.214 0.244 0.321 0.356 0.225 0.245 0.117 0.13 

Relative 

deviations 

DMA

DMA

HMy y

y


 

'y E  0.20% 0.20% 0.41% 0.38% 0.26% 0.25% 0.00% 0.00% 0.00% 0.00% 

y   0.64% 0.53% 0.47% 0.41% 0.31% 0.28% 0.44% 0.41% 0.85% 0.76% 

Table 3.10 – Storage modulus  and loss factor  values obtained via DMA and the proposed hybrid 

methodology for two frequencies and the respective relative deviations. 

Based on the results obtained with the DMA and those obtained using hybrid analytical-

experimental methodology, see Table 3.10, Figure 3.39 and Figure 3.40, next are presented the 

relative deviations of the storage modulus and loss factor, respectively, for the materials tested. 

 

 

Figure 3.39  – Deviations of the storage modulus obtained via DMA relative to those obtained using the proposed 

hybrid methodology. 

'E 
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Figure 3.40  – Deviations of the loss factor obtained via DMA relative to those obtained using the proposed hybrid 

methodology. 

As can be seen from Table 3.10, Figure 3.39 and Figure 3.40, the results obtained via DMA are 

similar to those from hybrid analytical-experimental methodology. The five CCMs tested present 

deviations less than 0.42% for the storage modulus and 0.86% for the loss factor relative to the results 

obtained using analytical-experimental hybrid methodology. Thus, the applicability of the TTS 

procedures may be considered useful under the conditions assumed and for the materials tested in 

this study. 

Based on the R-square values (that measure the goodness of the fit varing between 0 and 1 where 

1 is best) of Table 3.9, it is verified in the frequency range between 1Hz and ≈10
4
Hz that the storage 

and loss factor present a frequency dependence which may be modeled using a power law model 

(with a positive power).  

In Table 3.11 are presents the results of the frequency dependence for both the storage modulus 

'E  or loss factor   considering the power law ( by a x c   where y is the storage modulus 'E  or loss 

factor  , x  is the frequency f and the constants a , b  and c  may be found in Table 3.9. 

Material type VC 6400 VC 5200 VC 2100 VC 1001 NL20 

f  (Hz) 1 10000 1 10000 1 10000 1 10000 1 10000 

'E (MPa) 
47.1 50.2 20.8 28.5 33.6 42.3 2.56 3.49 16.2 19.3 

  0.0957 0.233 0.155 0.286 0.246 0.401 0.192 0.286 0.0936 0.153 

'E  (MPa Hz
-1

) 
3.14×10

-4
 7.67×10

-4
 8.72×10

-4
 9.38×10

-5
 3.15×10

-4
 

  (Hz
-1

) 1.37×10
-5

 1.31×10
-5

 1.55×10
-5

 9.38×10
-6

 5.99×10
-6

 

Table 3.11 – Frequency dependence of the storage modulus and respective loss factor  in the frequency 

interval between f =1 Hz and f =10
4
 Hz. 

'E 
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Thus, and as illustrated by Figure 3.38, the frequency dependence for both the storage modulus 'E  

or loss factor   decreases with the increase in frequency, i.e., high frequency dependence at lower 

frequencies and low frequency dependence at higher frequencies. Furthermore, in the frequency 

range between the 1 and 10
4
 Hz (see Table 3.11) and for each of the materials tested the storage and 

loss factor present a low frequency dependence, e.g., 
'E =3.14×10

-4
 MPa Hz

-1
 and                       

 =1.37×10
-5

 Hz
-1

 for the VC6400 material.   

The results previously presented in Table 3.4, determined using the hybrid analytical-experimental 

methodology had already indicated for a low frequency dependence for both the storage modulus 'E  

and loss factor  , but in a narrower frequency range than the one now available from DMA tests, i.e., 

between 1 Hz and 10
4
 Hz. 

3.8. Conclusions on the characterization of the dynamic modulus 

In this sub-chapter are presented the original contributions and main conclusions regarding the 

characterization of the dynamic modulus conducted on this study.   

The first original contribution is the proposed new hybrid analytical-experimental methodology to 

determine the longitudinal dynamic modulus of resilient materials, e.g., CCMs. It is based on a simple 

equation from the analytical model of a three-layer specimen (with an intermediate resilient material 

layer which is the material to be characterized and two steel extremity layers) and on an experimental 

modal test of the specimen (considering free-free boundary conditions). It also involves the 

development of a new specimen. 

This hybrid methodology has its inherent advantages/disadvantages and limitations as all 

methodologies do. A list is presented and a brief discussion follows. 

 

Advantages Disadvantages and limitations 

 Simple analytical expression; 

 Experiment requires only the common 

equipment found in a vibration laboratory; 

 Simple experimental setup; 

 Rigorous results; 

 Prompt characterization; 

 Characterization only at the resonant 

frequency; 

 Frequency range limited by the length of the 

specimens. 

 

This hybrid methodology revealed to be simpler (when compared to other methods) and more 

rigorous due to the introduction of the analytical equation which, is as simple as the usual formulæ 

used in this field, presenting a rigorous and more accurate on hand alternative solution when 

compared to other actual methods, e.g., 2 DOF discrete model and to the Lagragian FE (for which it is 

necessary to pay special attention to the number of FEs used per wavelength, that increases with 

frequency). 
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Note that the modal test requires only the common equipment found in a vibration laboratory, i.e., 

impact hammer with force transducer, one accelerometer, data acquisition equipment and cables. This 

is advantageous, as one does not require any special equipment to obtain a prompt dynamic modulus 

characterization of the materials.  

Furthermore, this hybrid methodology avoid geometric constraints, e.g., slender specimens, and 

boundary condition difficulties, e.g., fixed displacement boundary condition, that is rigorously more 

difficult (if not even impossible) to obtain in practice than the free boundary condition, found on other 

tests. 

Being this a resonant method, where the characterization is conducted at a resonant frequency, it 

is possible, by changing the length of the steel extremities, to test and characterize the resilient 

material at different resonant frequencies. Nevertheless, for higher frequencies (shorter lengths of the 

steel extremities) it is recommended to use lightweight accelerometers so that their influence (in terms 

of weight) may be neglected and thus, not accounted for in the model. For low frequencies (long 

lengths of the steel extremities), the limit is set by the recti-linearity of the specimen. 

The second original contribution, and perhaps part of the first, is the development of the hybrid 

analytical-experimental methodology to determine the shear dynamic modulus of resilient materials. 

Besides the experimental setup, which is not as simple as in the longitudinal case, the remaining 

advantages and all the disadvantageous and limitations are verified. 

Furthermore, and regarding the shear dynamic modulus characterization, besides DMA 

techniques, there is a considerable lack of work and development of characterization methodologies in 

the scientific literature.  

DMA test, that requires specific dedicated equipment as well as liquid nitrogen for characterization 

at low frequencies, were conducted in this study and allowed characterizing the longitudinal dynamic 

modulus for several frequencies and temperatures per test (reason why it was more time consuming   

≈ 80 minutes per test).  

The results obtained via DMA verify, in the sense that they are in agreement with, the ones 

obtained using the proposed hybrid analytical-experimental methodology. Furthermore, and as already 

indicated by the results obtained by the hybrid analytical-experimental methodology but for a narrower 

frequency range, DMA results show low frequency dependence for both the storage modulus 'E  and 

loss factor  , in a wider frequency rage, i.e., between 1 Hz and 10
4
 Hz. 

Thus, and for all the reasons previously mentioned, the hybrid analytical-experimental method here 

presented is a tool that allows for a rigorous and prompt characterization of the longitudinal and shear 

dynamic moduli, and with it, the bulk modulus and Poisson’s ratio of resilient materials (under the 

assumption of the homogeneous isotropic linear elastic material behavior, which is a simplification).    

It should be noted that even though the temperature and humidity effects were not considered in 

this study for the proposed hybrid method, the respective values were registered at the time of the 

tests. Thus, studying how the effect of changes in the temperature, humidity, age of the materials, 
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amount of overload, among other parameters, influence the dynamic modulus of the materials is 

suggested for future works. 

Altogether, the hybrid analytical-experimental method is one of the main original contributions of 

this study. Note that it was motivated by the fact that the dynamic properties of CCMs were usually 

inaccessible in spite of being essential for the development and validation of the numerical models 

which, simulate the dynamic behavior of structures that in one way or another use these types of 

materials, e.g., phononic-inspired vibration isolators. 
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Chapter 4 

 

 

4. Phononic-inspired vibration isolator  

 
4.1. Introduction 

Similarly to the semiconductor in which electrons can only occupy certain energy bands, and to 

photons (quantum of electromagnetic energy) in photonic crystals [134] where electromagnetic waves 

can only propagate in certain frequency ranges, one can also idealized structures in which phonons 

(quantum of vibrational energy) propagate only in certain frequency ranges that, by analogy with the 

previous may be designated as phononic crystals. It uses the characteristics of the dispersive medium 

relatively to elastic waves. Hence, the frequency range where the phonons are not allowed to 

propagate is usually designated as a bandgap (also referred to as a stopband) which, is formed due to 

periodical change in the mass density and/or elastic constants of the materials, i.e., due to the 

periodical changes in wave phase velocity in the structure. 

Phononic structures are raising nowadays a considerable interest and expectation in many 

promising areas of science and in particular for engineering applications. Namely, in wireless 

communications by developing frequency sensors [135]; semiconductor to control the thermal 

transport at the nano-scale [136]-[137], in the vibration isolation of systems of micro-electro-

mechanical components [138] or in buildings [139]; in acoustics with the development of an acoustic 

shield to block radar signals and sonar [140], and in opto-mechanics with the development of invisible 

and silent materials [141], among others. 

Within this context and in this chapter (in which all contents are original contributions from this 

study except when referenced to the respective authors), is presented a study in which the analysis, 

design, prototyping and experiments of 1D PIVI, previously introduced as (phononic-inspired vibration 

isolator) with alternating layers of two materials (where each two successive layers can be regarded 

as a cell) with a significant contrast in the wave phase velocity. Such a contrast associated with the 

adequate length of the cell (thickness of the layers) allows for vibration isolation in a relatively low and 

wide frequency range that is of high interest for several mechanical applications, and which up to date 

and to the knowledge of the author has not yet been sufficiently explored in the field of phononics. 

To determine the location and width of the bandgaps, a computational component is explored to 

develop the analytical and numerical models used in simulation, which revealed to be strategic for 

prototyping and experimentation. Furthermore, the computational component is also essential when 

recurring to the Bloch wave theory [53], in which the dispersion equations are used to determine the 
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location and width of the bandgaps in frequency for structures with infinite periodicity (infinite periodic 

structures), and allowing extrapolating for the particular case of finite periodicity (finite repetitive 

structures). For the finite structure, it is verified that with only two or three cells (depending on 

materials) relatively strong ARs were obtained instead of bandgaps [142]-[143] at the same frequency 

ranges. Thus, it is possible to numerically predict the location and width of the ARs in frequency, which 

in this study is validated with the subsequent application to finite repetitive structures. 

Similarly to the bandgaps, the ARs are formed due to the abrupt change in the wave phase velocity 

of the two materials that comprise the structure. Thus, an algorithm is developed for selection of the 

pair of material and for their optimal proportion within the cell to obtain a finite repetitive phononic-

inspired structure with the intended width and location (in frequency) of the AR.  

From an abundant material diversity, the selection of the pair of materials and the respective 

proportions in the cell (each pair is a cell) is made taking into account the following requirements: 1) 

solid materials; 2) materials which have a high contrast in the wave phase velocity, allowing obtaining 

ARs in frequency ranges that are useful for several mechanical applications; 3) materials which allow 

for periodic structures in the range of centimeters, to simplify the construction of the prototypes and 

the execution of experimental tests and; 4) materials easily accessible both in terms of logistics and 

monetary cost. 

Thus, the pairs of selected materials are steel and CCMs such as cork-rubbers and cork 

agglomerates. However, with the choice of CCMs emanates a new and unexpected challenge. 

Despite the high diversity of CCMs in the market, differing in mass density of cork and/or agglomerate, 

grain size and binder resin [32], it is noted that their dynamic properties are rarely known, in which 

(and surprisingly enough) the static properties are often misused, as stated by the author and other 

researchers [34]. 

Since cork presents a viscoelastic behavior [38] the dynamic modulus of elasticity differs from the 

static modulus, which is usual for these kind of materials. The dynamic modulus is a complex quantity 

[8], in which the real component is designated as the storage modulus (accounts for the elastic energy 

stored), and an imaginary term, designated as the loss modulus (accounts for the dissipated energy), 

see sub-chapter 2.1.1. 

There are several methods available to characterize the dynamic properties of viscoelastic 

materials, see sub-chapter 3.1. However, when dealing with CCMs there are some difficulties in 

meeting the specifications related to the experimental clamped boundary condition due to the low 

density and stiffness of some of the CCMs. 

To avoid these difficulties, the author proposed in chapter 3 a new hybrid analytical-experimental 

methodology for the characterization of the dynamic modulus for these types of CCMs (although it can 

also apply to other materials), see sub-chapter 3.3 for more details. The method consists of 

experimental testing of a specimen (under free-free boundary conditions, avoiding difficulties 

associated with the boundary conditions used in other methods), in the numerical implementation of a 

numerical method for modal identification in the frequency domain, see sub-chapter 2.4.6, and solving 

an equation to identify the dynamic modulus. 



  

104 

Once the dynamic modulus of the chosen materials that form the periodic structure are known, the 

study of the PIVI for the isolation of vibrations in frequency ranges of interest can be conducted. 

The results obtained in this study verify the validity of the extrapolation of the infinite periodic to the 

finite repetitive medium considering three or more cells as previously verified by Jensen and Pedersen 

in [144]-[145]. Through the algorithm developed for the selection of the pair of materials and the 

optimization of their proportions (thickness of the layers) it was possible to obtain a solution that 

contemplates the use of different pairs of steel and CCMs. Using the hybrid analytical-experimental 

method it was possible to characterize the longitudinal and shear dynamic moduli of various CCMs.  

Through the interconnection between the symbolic and numeric computation with numerical 

methods, optimization techniques and the experimental modal analysis, reside the main tools used in 

this study to design several PIVIs with ARs situated in different frequency ranges of interest. 

Furthermore, a practical application regarding the suspension of the motors used in hermetic 

compressors is addressed. Originally, helical spring are used as supports. However, these may 

present undesirable vibration transmissibility to the carcass at certain frequencies, and consequently 

undesirable noise to the environment. The aim is to test the application of a PIVI, as presented here. 

Additionally, the possibility of combining these isolators with the spring in order to maintain the 

flexibility of the support in which the PIVI acts as a filter, is also presented  

4.2. Phononic devices 

Phononic crystals may be conceptualized as (micro) structures composed of numerous cells 

(composed of two materials) arranged accurately (or with some defects) and repeatable in space, 

leading to some ideal order and symmetry as illustrated by Figure 4.1. Due to the periodical change in 

mass density and/or elastic constants (i.e., on the wave phase velocity through the cells in the crystal) 

and making use of the fundamental properties of  waves (namely, scattering and interference), it is 

possible to create in a periodic structure/media forbidden bands (also referred to as bandgaps and 

stopband), i.e., ranges of frequencies within which the phonons (mechanical waves) do not propagate. 

 

a) 

 

b) 

 

c) 

Figure 4.1 – Examples of phononic crystals with one, two and three dimension periodicities: a) 1D crystal 

consisting of alternating layers of two materials with different mechanical properties; b) 2D crystal consisting of 

parallel cylinders of a material inserted in another material with different mechanical properties; c) 3D crystal 

consisting of one material spheres embedded in another material with different mechanical properties [134]. 
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Note that one of the differences between mechanical waves and electromagnetic waves is the fact 

that mechanical waves cannot propagate in a vacuum thus necessitating a medium for propagation. 

The propagation of 1D longitudinal mechanical waves is typically described by a dispersion relation 

that relates the frequency   and wavenumber k . For the homogeneous case this relationship is 

expressed by 

 where c  is the wave phase velocity in the medium. However, the dispersion relations for materials 

that are not homogeneous, such as phononic crystals (see Figure 4.1), are not so simple as will be 

shown. 

4.3. Bloch wave analytical model for structural analysis 

Hence, consider a piecewise heterogeneous bar, i.e., material properties are dependent of the 

position along the axial direction as illustrated by Figure 4.2. The bar has a uniform transversal 

sectional area  and parallel alternating layers of two materials, with longitudinal dynamic moduli of 

elasticity 
1

*
MatE

 
and 

2

*
MatE , mass densities 

 
and  and lengths 

 
and . 

 

Figure 4.2 – 1D uniform periodic bar composed of two materials. 

So being, the 1D forced harmonic longitudinal vibrations (where the wavelength  of the stationary 

waves in the dynamically and longitudinally loaded bar is much longer than the characteristic 

transverse dimension 
 
of the bar, see sub-chapter 2.5.2.4 and [104], [121] and [122]  for more 

details) Eq. (2.41) may be rewritten for each material layer Mat , where   is layer’s type number, as 

where, 
*
MatE

  
is the corresponding longitudinal dynamic modulus of elasticity, Mat

  is the 

corresponding mass density and  Mat ,u x t
  

is the corresponding  displacement response at the 

longitudinal coordinate x  and time t .  
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4.3.1. Infinite periodic two-material layer bar  

From the Bloch wave theory [53] it is known that due to the periodicity of the infinite structure, the 

natural modes of such structure may be characterized by using wave number k  and assuming that 

displacement in the cell is expressed by 

where n  is the total number of the cells, 
1 2Mat MatL L L   is the length of the cell and 0u  is the 

periodic solution, i.e., 0k  . Thus, the dispersion equation is a function of the wave number and may 

be expressed as [56] 

where 
1Matk  and 

2Matk
 

are the wave numbers in the respective materials expressed as

 where is the wave phase velocity and  is the type of 

material.  

From Eq. (4.4) it is possible to determine for the infinite layer bar the wave number k  versus 

frequency  . For frequency values   that make the wave number k  complex, the amplitude of the 

displacements is exponentially attenuated. Thus, the frequency ranges where k  is complex are 

bandgaps (stopbands) while the frequency ranges where k  is real bands are passbands. 

It is common to plot the frequency versus wavenumber as illustrated by Figure 4.3, in which the 

respective dispersion curves for the  ,k   domain are presented. 

 

Figure 4.3 – Dispersion curves obtained from homogeneous Eq. (4.1) and heterogeneous Eq. (4.4).  
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From Figure 4.3 it is possible to observe that the heterogeneous two-material layer structure 

presents a bandgap (the grey shaded area corresponds to the first bandgap) when the wave number,

, is complex. On the other hand, for the homogeneous structure the wave number is always real, i.e, 

no bandgap exists.   

For an intuitive understanding of how bandgaps exist, consider a 1D periodic bar, as illustrated by 

Figure 4.2, composed of infinite alternating layers of two different materials with longitudinal storage 

moduli of elasticity 
1

'
MatE

 
and 

2

'
MatE , mass densities 

1Mat
 
and 

2Mat  and lengths 
1MatL

 
and 

2MatL . At every interface, an incoming wave transfers part of its energy into secondary, reflected 

waves, which then interfere with each other [134]. If this interference is destructive, all the energy of 

the original wave is reflected back and the wave cannot propagate through the crystal resulting in the 

creation of a bandgap (stopband). On the other hand, if the interference is constructive, then all 

energy of the original wave is transmitted through the crystal leading to the formation of propagation 

bands (passbands).  

4.3.2. Finite periodic two-material layer bar  

For the finite repetitive structure, consider the 1D finite two-material layer bar model (identical to 

that presented in sub-chapter 3.3.1 and here summarized for presentation ease) with uniform 

transversal sectional area A , as illustrated in Figure 4.4, with parallel alternating layers of two 

materials, with longitudinal storage moduli of elasticity 
1

*
MatE

 
and 

2

*
MatE , mass densities 

1Mat
 
and 

2Mat  and lengths 
1MatL

 
and 

2MatL .  

 

Figure 4.4 – 1D Finite uniform periodic bar composed of two materials. 

So being, the 1D forced harmonic longitudinal vibrations, see Eq. (2.41), of a piecewise 

heterogeneous bar, see Eq. (4.2), may be expressed, when damping is not considered (which is only 

valid for frequency independent or weakly frequency dependent materials [88] ) by Eq. (3.3). 

The analytical FRF curve may be obtained by solving the forced harmonic vibration problem 

expressed by Eq. (3.3). Using the dynamic stiffness matrix Z  expressed by Eq. (3.10), one obtains 

for each applied frequency 
 
the following system of linear equations  

k

ap

ap 0( ) ,Z   U = F  (4.5) 
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where 0F  is the amplitude vector of the nodal applied harmonic force (at same excitation frequency) 

and U  is the vector that defines the nodal displacement response.  

4.4. Finite element model 

In terms of FEs, the finite repetitive structure is modeled using a two node bar finite FE (see sub-

chapter 2.5.2.4). The dynamic stiffness *
elK , and mass elM  matrices and force vector elF  of a FE 

with length L  are 

where 1F  and 2F  are the amplitude of the nodal forces attributed to the respective element. Then, the 

element dynamic stiffness matrix is expressed as 

4.5. Prototypes 

The experimental models, also referred to as prototypes along this chapter (see Figure 4.5), are 

composed of alternate layers of two materials (each pair of layers is called a cell). The prototypes may 

differ depending on: the type of materials used in the cell; the lengths of each material and; the 

number of cells. 

  

Figure 4.5 – Photograph of a prototype with 3.5 cells and 
1 2

20 mmMat MatL L  , where   1 indicates 

steel and   2 indicates the resilient material. 

A two component epoxy adhesive, with a cure time of approximately five minutes is used to join the 

material layers along the structure (see procedure in Appendix A.5). A study to determine the effect of 

the adhesive layer in the structure was conducted concluding that the adhesive layer has negligible 

influence for thicknesses less than about 50 microns [44]. Note that no special care is needed to 

ensure the thickness of the adhesive, just a minimum amount of adhesive is used to uniformly fill the 

surfaces to be joined. 

Each prototype is subject to experimental modal analysis from which the respective FRF curves 

are obtained and subject to analysis.  
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4.6. The experimental setups to obtain the frequency response function curves 

The experimental setup used to obtain the receptance FRF curves from the prototypes follows that 

presented in subchapter 3.3.7 and illustrated by Figure 3.7 where the only difference is the prototype. 

Regarding the experimental setup used to obtain the force transmissibility curves of the 

prototypes, there are two configurations that essentially differ in the number of prototypes (i.e., one or 

three as illustrated by Figure 4.6 and Figure 4.7, respectively) that are used to support a load mass. 

The load mass is a portion of a cylindrical aluminum rod with a diameter of 150 mm, a length of 65 mm 

and a mass of approximately 3.2 kg. This value is similar to the mass of the motor of the hermetic 

compressor that is later addressed when considering these devices in a real industrial application. 

Furthermore, note that the supporting configurations may vary between helical springs, PIVI and a 

combination of both, which is the case illustrated in Figure 4.7. 

In either case it may be described as: a signal is generated and transmitted to the vibration exciter 

(Brüel&Kjaer 4808) which is suspended from a fix support by metallic chains. The force effectively 

applied to a load mass (input signal) is measured through a force transducer (PCB 208C01). The 

dynamical deformation propagates throughout the prototype and, at the opposite extremity, force 

transducer(s) (PCB 208C01) measures the force effectively transmitted to the foundation (output 

signal). 

The input and output signals are acquired using a data acquisition unit (Brüel&Kjaer 3560D) and 

analyzed (Bruel&Kjær analysis software PULSE
®
 LabShop Version 6.1.5.65).  

 

 

Figure 4.6 – Basic layout of the experimental setup to obtain the force transmissibility curves using one prototype.  
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Figure 4.7 – Basic layout of the experimental setup to obtain the force transmissibility curves using three 

prototypes to support the load mass.  

4.7. Selection of materials 

The material selection is considered essential to this study since one is targeting as low as possible 

frequency ranges of practical interest. In [40], the author has studied four materials, namely aluminum, 

epoxy and a CCMs, that were individually combined with steel. Note that previous to this work, the 

results presented in the literature regard ARs in frequency ranges which are considered high, see e.g., 

Jensen and Sigmund [145] in which the first AR of interest starts at ≈80 kHz. A rare exception is the 

work of Jensen and Pedersen [144]), that tested a steel-Polymethyl Methacrylate (PMMA) periodic rod 

with approximately 1.5 m long and obtained a considerable AR initiating at approximately 1840 Hz. 

Anyway, note that these authors were only interested in showing the presence of ARs at elastic solids 

under stress wave propagation. 

The choice of CCMs combined with steel was a novelty proposed, by the author of this thesis, with 

which was possible to have a high enough contrast in the wave phase velocity of the materials such 

that the first AR of interest initiates at frequencies bellow 1 kHz for prototypes with lengths less than 

0.2 m.  

As previously discussed, the widths and locations of the ARs are determined by the materials 

layout and the contrasting ratio of the material properties used. Among the materials studied in [40] 

and in this study, steel and CCMs present the highest contrasting ratio in wave phase velocity thus, 

the most suitable to target the design of ARs in the low frequency ranges, which are of interest in this 

study. 

4.8. Design, structural improvement and optimization of phononic-inspired vibration isolators 

4.8.1. Design and structural improvement  

To target a desired AR, both in width and location in the frequency range, the design of a unit cell 

may be considered as one of the most important steps in the design stage of the two-material layer 

periodic bar.  
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Hence, consider a unit cell as illustrated in Figure 4.8 a) made of two materials with high contrast in 

their elastic properties (
'
MatE


 and Mat

 ), e.g. steel and CCM. The length of each material layer, i.e. 

1MatL
 
and 

2MatL , is the design parameter. The improvement problem is subject to several length 

constraints, namely, minimum 
minMatL


 and maximum 

maxMatL


length of the layer of material   as 

well as the minimum 
minTL and maximum 

maxTL total length of the unit cell.  

 

 

 

 

 

a) 

 

b) 

Figure 4.8 – a) Unit cell; b) Frequency response curves illustrating minf , maxf , lowerf , upperf , and AR. 

As previously introduced in sub-chapter 4.3.1, the dispersion equation allows computing and 

plotting the frequency as an implicit function of the quasi-wave number k  obtaining the dispersion 

curves where the stopband and passband regions may be identified (see Figure 4.3). Solving the 

dispersion equation, see Eq. (4.4), would be an alternative to the numerical FE model for the design of 

a unit cell if it were differentiable in a specific domain. Figure 4.3 illustrates the dispersion curves 

where points A and B represent the initial and final frequency points, respectively, of the stopband. In 

these points, the dispersion equation is not differentiable. The numerical identification of these non-

differentiable points is not an easy task and is not considered in this study.  

Alternatively, the numerical FE model was introduced in sub-chapter 4.4. This is based on the 

relation between the curves obtained as will be shown. The modal and/or harmonic problems, see 

subchapter 2.2, are solved in this case (e.g., with a total of 5.5 unit cells), although three unit cells has 

shown to be enough for the steady-state dynamic behavior of a finite periodic structure to qualitatively 

match that of the infinite periodic structure [54]. In addition, 16 FEs per wavelength are used as it 

shown to be enough in this study [44]. 

The desired AR may be defined by the minimum  minf  and maximum  maxf  AR frequencies, 

that are equivalent to points A and B, respectively, as illustrated in Figure 4.3.   

The main concept introduced in [44] and illustrated by Figure 4.8 b) is that: 1) the maximum 

frequency of the AR ( maxf ) increases when the length of material 2 (
2MatL ) is decreased and; 2) 

increasing the length of material layer 1 (
1MatL ) the minimum frequency of the AR ( minf ) decreases. 
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A design procedure for these types of cells is developed here based on this concept, considering 

 
and  as the design parameters subject to the following constraints: minimum 

minMatL


 

and maximum 
maxMatL


length of the layer of material   as well as the minimum 

minTL and maximum 

maxTL total length of the cell, and applied as illustrated in the diagram of Figure 4.9. 

 

Figure 4.9 – Diagram of the design procedure applied to the design of a unit cell. The numbers within circles from 

1 to 4 underline the steps of the procedure.  

Figure 4.9 illustrates the main steps of the developed design procedure, which is here described as: 

1. Start by defining the minimum minf  and maximum maxf  AR frequencies, minimum 
minTL and 

maximum 
maxTL total length of the cell, the properties of the materials (

'
MatE


 and Mat

 ), and 

the minimum 
minMatL


 and maximum 

maxMatL


length of the layer of material  . The length of 

each material layer, i.e. 
 
and , are the design parameters, which initially assume the 

values of 
1 minMatL  and 

2 maxMatL , respectively. The improvement problem is subject to several 

length constraints, namely, minimum 
minMatL


 and maximum 

maxMatL


length of the layer of 

material   as well as the minimum 
minTL and maximum 

maxTL total length of the cell.    

1MatL
2MatL

1MatL
2MatL
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2. The free vibration analysis, see sub-chapter 2.2.2, is solved from which, the lower ( lowerf ) and 

upper ( upperf ) AR frequencies are computed. 

3. The upper ( upperf ) and maximum ( maxf ) AR frequencies are compared. While maxf > upperf  the 

length of material 2 ( ) is decreased by 
2MatL  (e.g., 10%) until <

2 minMatL . Once 

this constraint is satisfied the lower ( lowerf ) and minimum ( minf ) AR frequencies are then 

compared. While minf < lowerf  the length of material layer 1 ( ) is increased by 
1MatL  

(e.g., 10%) until ≤
1 maxMatL . The order in which the material lengths change is important, 

since an increase in the length of material 1 ( ) will not significantly affect the value of the 

upper ( upperf ) AR frequency previously obtained, as it will be shown.  

4. If no constraint is violated, a feasible solution is found and the lower and upper frequencies of the 

AR ( lowerf and upperf ) as well as the lengths of the materials (
 
and ) and the total 

length of the structure TL  are presented.  

Note that in this study, the value of 10% is used to increase/decrease lengths as it shown to be a 

good compromise between computational speed and results convergence.   

An alternative to this iterative method is a structural optimization procedure.   

4.8.2. Structural optimization  

A structural optimization procedure, see sub-chapter 2.7, that avoids including the upper and/or the 

lower design regions in the objective function can be obtained by defining a mass ratio cost function. 

The lengths of the material layer  and  are the design parameters subject to a set of 

frequency and length constraints. Hence, the optimization problem is formulated as 

where 
1Mat is the mass density of material 1, 

2Mat is the mass density of material 2, minf  and 

maxf  are the minimum and maximum frequencies of the AR, respectively, and  lowerf  and upperf  are 

the respective lower and upper frequencies of the AR obtained after optimization. 
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For the numerical optimizations a SQP algorithm (see e.g., [113] for more details) and an iterative 

procedure with the following steps are implemented: 1) Initialize by giving initial design values; 2) Run 

a modal analysis for the initial design; 3) Start the optimization loop. After writing the values of the 

current iteration design variables (  and  ) to a file, it will call the FE analysis in batch 

mode and will return to the optimization routine the current calculated values of the design variables 

and; 4) After satisfying the stopping criteria (constraints or predefined stopping parameters), run a 

modal analysis for the final design. 

4.9. Phononic-inspired vibration isolators for mechanical applications 

Looking back at one of the first experimental prototypes, developed and tested by the author 

(based on the work of Jensen and Pedersen [144]), it consisted of a steel-Polymethyl Methacrylate 

(PMMA) periodic structure with approximately 1.5 m long and a considerable AR initiating at 

approximately 1840 Hz as illustrated by Figure 4.11. However, the objective with that experiment was 

to validate the FE model and obtain the experimental evidence of the existence of a significant AR 

associated with the respective phononic bandgap in periodic structures. 

 

Figure 4.10 – Photograph of the experimental setup used to test a 5.5 cell steel-PMMA periodic cylindrical bar 

with a diameter of 0.020m, composed of six steel and five PMMA half-cells each with a length of 0.135m [44]. 

 

Figure 4.11 – Magnitude of the experimental and numerical FRF curves of a 5.5 cell steel-PMMA cylindrical bar 

with a diameter of 0.020m, composed of six steel and five PMMA half-cells each with a length of 0.135m [44]. 

With the knowledge that solid materials with high contrast in wave phase velocity are necessary to 

have a structure with acceptable dimension (in the centimeters range) as well as an AR in a frequency 

range of practical use for several mechanical applications, steel and CCMs were the selected 

materials for further analyses. 

1MatL
2MatL
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That next step, revealed to be a considerable challenge. It consisted in characterizing the dynamic 

properties of CCMs that allow matching simulation and experimental values, since their properties 

were unavailable. The author explored different approaches, starting from the standardized tests and 

ending by proposing a hybrid analytical-experimental methodology that revels to be simple and 

rigorous (see sub-chapter 3.3).  

Once the dynamic properties of the CCMs are accurately known, then the location and width of the 

bandgap is all about design. In this sense, the first two-material periodic layer structure with steel and 

a CCM (referenced as 8123 by a cork composite producer - Amorim Cork Composites [132]) was built 

and tested using the experimental setup illustrated by Figure 4.12, to determine its AR.  

 

Figure 4.12 – Photograph of the experimental test prototype periodic bar with square cross-section with a side 

length of 0.050m, composed of 3.5 unit cells, i.e., four steel and three CCM (ref.8123) half-cells each with a length 

of  
1MatL =0.010m and 

2MatL =0.050m, respectively [44]. 

Then, to lower the frequency range of the AR (maintaining a total of 3.5 repetitive cells for 

comparison purposes with the previous example) the length of the CCM  
2MatL was increased by a 

factor of two since, it was the largest dimension available by the producer at the time.  

 

Figure 4.13 – Photograph of the experimental test prototype periodic bar with square cross-section with a side 

length of 0.050m, composed of 3.5 unit cells, i.e., four steel and three CCM ref.8123 half-cells each with a length 

of  
1MatL =0.010m and 

2MatL =0.100m, respectively [44]. 

These two steel-CCM periodic devices may be considered as presenting acceptable dimensions as 

well as considerable ARs in a frequency range of interest for several mechanical applications as will 

be shown. 

Form what has been presented, it is quite reasonable to consider that with an analysis of the 

repetitive structure one could increase the capacity of the devices by reallocating the AR to a 

frequency range of interest, at least for certain frequency ranges. 

4.10. On commercial and proposed phononic-inspired vibration isolators 

Nowadays, besides the common rubber mount, illustrated by Figure 4.14 a), there are others, e.g., 

two-material vibration isolators illustrated by Figure 4.14 b) and Figure 4.14 c). The two materials are 

stacked up in a pile where one is best suited for damping and the other for rigidity of the isolator.  
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a) 

 

b) 

 

c) 

Figure 4.14 – Vibration isolators for machine application: a) rubber mount; b) neoprene waffle and cork sandwich; 

c) steel and CCM layer structure (Image reproduced from [146]). 

The performance of vibration isolators is usually accounted for in terms of force transmissibility, i.e., 

the ratio between the force that is effectively transmitted to the target from the source, see sub-

chapter 2.8. In this study, this concept is used to evaluate the performance of two commercial 

vibration isolators (previously designated as CVIs), illustrated by Figure 4.14 a) and Figure 4.14 b),  

and five PIVIs, illustrated by Figure 4.15. These PIVIs are compared using the experimental setup 

described in sub-chapter 4.6 and illustrated by Figure 4.6, where one prototype is tested between the 

force transducer fixed to the floor and the load mass on the other side. 

 

 

 

 

a) 

 

 

b) 

 

c) 

 

 

d) 

 

 

 

 

 

 

 

e) 

Figure 4.15 – Phononic-inspired vibration isolators tested with different resilient layers: a) cork-rubber ref. VC5200 

(SIPVI–1); b) cork agglomerate ref. NL20 (SIPVI–2); c) cork agglomerate ref. 8123 (SIPVI–3); d) urethane with 

20mm (SIPVI–4);  e) urethane with 10mm (SIPVI–5). 

Hence, the two CVIs tested, see Figure 4.14 a) and Figure 4.14 b), consist of a typical rubber 

mount (designated as CVI–1) and neoprene waffle cork sandwich (designated as CVI–2), respectively, 

which are commonly used in the support of machinery. The five PIVIs tested are illustrated in 

Figure 4.15. At Figure 4.15 a) is illustrated a steel-cork rubber (ref. VC5200) prototype with 2.5 cells 

and a total length of approximately 80 mm. At Figure 4.15 b) is illustrated a steel-cork agglomerate 
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(ref. NL 20) prototype with 3.5 cells and a total length of approximately 140 mm. At Figure 4.15 c) is 

illustrated a steel-cork agglomerate (ref. 8123) prototype with 3.5 cells and a total length of 

approximately 190 mm. At Figure 4.15 d) is illustrated a steel-urethane prototype with 3.5 cells and a 

total length of approximately 140 mm. The last prototype is illustrated by Figure 4.15 e) and consists of 

a steel-urethane prototype with 3.5 cells and a total length of approximately 70 mm.  

Note that urethane, being a resilient material, is only used in this study for comparison purposes 

with the CCMs.    

4.11. Phononic-inspired vibration isolators and spring tested using a load mass approximation  

In this sub-chapter is presented an initial study on the dynamic behavior, in terms of force 

transmissibility (see sub-chapter 2.8), of three different devices used to support a load mass of 

approximately 3.2 kg (previously referred in sub-chapter 4.6), which is similar to the mass of the motor 

of the hermetic compressor that is further addressed when considering these devices in a real 

industrial application.   

The three elastic support devices used to support the load mass are illustrated by Figure 4.16, and 

consist of: helical springs (with a height of 20.4 mm, a diameter of the wire of 1.5 mm, an inner 

diameter of 12 mm, 4 active coils and 2 close plain coils at each end [147]), PIVI prototypes and the 

combination of the previous two (PIVIs and helical springs). The experimental setup used is that 

described in sub-chapter 4.6 and illustrated by Figure 4.7. 

 

 

 

 

 

 

 

a) 

 

 

b) 

 

c) 

Figure 4.16 – Supporting devices: a) helical spring (the white terminations are plastic connection devices); b) PIVI 

steel-VC 5200; c) PIVI steel-VC 5200 + helical spring. 

The load mass is supported by three similar devices (of the type previously referred) as illustrated 

by Figure 4.17.  

An excitation force with excitation frequency  is applied to the load mass at the center of 

the top surface. Then, by measuring the force effectively transmitted to the foundation  TF
 
one uses 

apF ap
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the concept of force transmissibility, i.e., the ratio between the magnitude of the force that is 

transmitted to the foundation and the magnitude of the applied force, see sub-chapter 2.8. 

 

Figure 4.17 – Load mass supported by three devices. 

4.12. Phononic-inspired vibration isolators tested supporting a motor of hermetic compressor  

This sub-chapter is in fact a continuation of the previous where the load mass, see Figure 4.17, is 

replaced by a working motor of a hermetic compressor, see Figure 4.18.  

 

Figure 4.18 – Photograph of a motor of a hermetic compressor. 

Similarly, the objective is to evaluate the performance of the supporting devices in terms of force 

transmissibility (see sub-chapter 2.8). In this particular case, two types supporting devices are 

considered. The first type are the original helical springs that equip the hermetic compressor and the 

second type are the PIVI prototypes combined with these springs. 
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4.13. Results and discussion 

In this sub-chapter are presented and discussed the main results obtained in the framework of 

PIVIs.   

4.13.1. Structural improvement of the attenuation regions bandwidth  

As previously referred, the design of a unit cell, see Figure 4.8 a), is perhaps one of the most 

important steps in the design stage of the two-material layer periodic bar intended to target a specific 

AR frequency range. 

In this sense, consider a structural improvement problem that consists of varying the axial length of 

the resilient layer (
2MatL ) of each unit cell while maintaining the total length of the repetitive cell          

(
1MatL +

2MatL ), see Figure 4.8 a) to obtain the maximum amplitude of the AR.  

It was assumed that the bar has a total length of TL =0.036 m, the minimum length of the 

resilient layer 
2 minMat 0.0012L   m, the two material properties are those presented in Table 4.1 

and that the initial design consisted of  
1 2Mat Mat 2TL L L Ncel   with 3Ncel  .  

 '
MatE


(Pa) Mat

 (kg m
-3

) 

Material 1 ( 1  ) 205×10
9 

7860 

Material 2 ( 2  ) 3×10
6
 1140 

Table 4.1 – Storage modulus and mass density of the materials. 

By applying the developed design procedure described in sub-chapter 4.8.1 and illustrated by 

Figure 4.9, improvement in the separation of two adjacent frequencies ( j  and 1j  ) relative to the 

initial design, i.e. from initial separation to improved final value, were obtained as illustrated 

Figure 4.19 and shown by the values presented in Table 4.2, for j =3.  

 

Figure 4.19 – Results for j = 3Ncel  : a) eigenfrequencies curve plot; b) dispersion curves and c) FRF plot. 
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Note that j =3, means that 4f  will be put apart from 3f  as far as possible originating the grey 

areas illustrated in Figure 4.19. 

 
2MatL  (m)  

1j jf f f   (Hz) 

(Hz) 

Initial 6.00 × 10
-3 

 

3440 

Improved 1.20 × 10
-3

 

 

20160 

Table 4.2 – Output results from the structural improvement case with = 3. 

In Figure 4.19 a) is presented the solution obtained by solving the eigenvalue problem presented in 

Eq. (2.19) where in the abscissa is represents the number of the natural frequency and in the 

ordinate is the corresponding frequency value in Hz.  

The dispersion curves obtained as described in sub-chapter 4.3.1 are presented in 

Figure 4.19 b).  

The frequency response of displacement at node   T Tx L L Ncel   is presented in 

Figure 4.19 c) for an applied axial harmonic force with 200 N of magnitude at x=0 m. The ARs are 

identified (by the gray areas) and related with the stopbands given by the dispersion curves.  

The separations of the adjacent eigenvalues, expressed by f, are evident (see Table 4.2) 

when comparing the initial design curves with corresponding curves of the improved design.   

4.13.2. Structural improvement considering minimum and maximum bounds for the attenuation 

region 

In this second case, consider a prototype with a total number of 3.5 cells, see e.g. Figure 4.5, in 

which the cell is designed to have an AR with a minimum ( minf ) and maximum ( maxf ) frequency 

bounds of 1000 Hz and 4100 Hz, respectively.  It was assumed that material 1 is steel and material 2 

is a CCM. The  respective material properties are the presented in Table 4.3.  

 
'
MatE


(Pa) Mat

 (kg m
-3

) 

Material 1 ( 1  ) 205×10
9 

7860 

Material 2 ( 2  ) 40×10
6
 260 

Table 4.3 – Storage modulus and mass density of the materials. 

By applying the design procedure described in sub-chapter 4.8.1 and illustrated by Figure 4.9, the 

results presented in Table 4.4 and illustrated by Figure 4.20 are obtained.  

j
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 Target Design (obtained) 

f  (Hz) minf < 1000 lowerf =980 

f  (Hz) maxf > 4100 upperf =4139 

1MatL  (m) 0.01 ≤ 
1MatL  ≤  0.05 0.01 

2MatL  (m) 0.01 ≤ 
2MatL  ≤  0.05 0.05 

TL  (m) 0.02  ≤ TL ≤  0.10 0.06 

Table 4.4 – Target and design values of frequency and material lengths. 

 

Figure 4.20 – Attenuation region obtained considering minf < 1000 Hz and maxf > 4100 Hz. 

Figure 4.20 illustrates the AR obtained where the dotted lines represent the desired minimum          

( minf ) and maximum ( maxf ) bounds of the AR. The solid asterisk line represent the obtained design 

lower ( lowerf ) and upper ( upperf ) bounds of the AR. Table 4.4 indicates the target and the obtained 

values.  

The lower bound of the AR ( lowerf ) is 20 Hz lower than the minimum required ( minf ), see 

Table 4.4, leaving room for some optimization of the length of material 1 (
1MatL ) which can be 

decreased in order to approximate the lower and minimum bounds of the AR. 

 A decrease in 
1MatL  may be seen as advantageous since the total size of the structure will 

decrease, and if the weight of the structure and/or the cost of the material are to be accounted for, 

these will decrease. 

4.13.3. Structural improvement considering new minimum and maximum bounds for material 

lengths 

In this third structural improvement case, continue to consider that material 1 is steel and material 2 

is a CCM with the properties presented in Table 4.3 and a desired AR with minimum ( minf ) and 

maximum ( maxf ) bounds of 1000 Hz and 4100 Hz, respectively. The length of each material, which 
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differs from the previous case, are now 0.001 ≤
1MatL ≤ 0.05 m and 0.01 ≤

2MatL ≤ 0.05 m. By applying 

the design procedure described in sub-chapter 4.8.1, Figure 4.21 and Table 4.5 which illustrate and 

indicate the results determined are obtained. 

 

a) 

 

b) 

Figure 4.21 – Case 3: a) Attenuation region obtained; b) Frequencies and material length convergence history. 

Figure 4.21 a) illustrates the AR obtained between the lower ( lowerf ) and upper ( upperf ) 

frequencies. Figure 4.21 b) illustrates the convergence history for the frequencies and material length 

where the asterisk line represent the obtained design lower ( lowerf ), the circle line represent the 

obtained upper ( upperf ) bounds of the AR, the diamond line represent the obtained length for material 

1 (
1MatL ) and the square line represent the obtained length for material 2 (

2MatL ).  

 Target Design (obtained) 

f  (Hz) 
minf < 1000 lowerf =987 

maxf > 4100 upperf =4139 

1MatL  (m) 0.001 ≤ 
1MatL  ≤  0.05 0.0098498 

2MatL  (m) 0.01 ≤ 
2MatL  ≤  0.05 0.05 

TL  (m) 0.02  ≤ TL ≤  0.10 ≈0.05985 

Table 4.5 – Target and design values obtained for the frequency and material lengths. 

In this case, the obtained design length of material 1 (
1MatL )  is 0.0098 m, which is less than the 

value of 0.01 m obtained in example 2 due to the inputted length of material layer 1 which was of 

0.001 m. So being, it is noticed that the input length of material 1 (
1MatL ) should be the minimum 

length allowed, i.e., 
1 1Mat Mat minL L , in order to obtain a solution that presents a lower length of 

material 1 which is advantageous, as previously stated in the second case (see sub-chapter 4.13.2). 

For this case, an approximate reduction, in terms of mass density, of 1.6 kg/m
3
 is obtained. 
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It is also confirmed that as the length of material 1 (
1MatL ) increases the lower bound frequency of 

the AR ( lowerf ) decreases and the upper bound frequency of the AR ( upperf ) is not significantly 

affected, being nearly constant.  

4.13.4. Structural improvement with new minimum and maximum frequency bounds  

In this fourth structural improvement case, continue to consider that material 1 is steel and 

material 2 is CCM with the properties presented in Table 4.3. The desired AR minimum and maximum 

bounds to be considered are now of minf =1000 Hz and maxf =10 kHz, respectively. 

The length of each material, are the same as in the previous case, i.e., 0.001 m ≤ 
1MatL  ≤ 0.05 m 

and 0.01 m ≤ 
2MatL  ≤ 0.05 m. By applying the design procedure described in sub-chapter 4.8.1 (see 

Figure 4.9) Figure 4.22 and Table 4.6 are obtained.  

Similarly to the previous case, Figure 4.22 a) illustrates the AR obtained defined by lowerf  and 

upperf , Figure 4.22 b) illustrates the convergence history for the AR frequencies and material lengths 

MatL


 and Table 4.6 indicates the target values and the values obtained. 

 

a) 

 

b) 

Figure 4.22 – Case 4: a) Attenuation region obtained; b) Frequencies and material length convergence history. 

 Target Design (obtained) 

f  (Hz) 
minf   < 1000 lowerf =964 

maxf  > 10000 upperf =10668 

1MatL  (m) 0.001 ≤ 
1MatL  ≤  0.05 0.028102 

2MatL  (m) 0.01 ≤ 
2MatL  ≤  0.05 0.019 

TL  (m) 0.02  ≤ TL ≤  0.10 ≈ 0.0471 

Table 4.6 – Target and design values obtained for the frequency and material lengths. 
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As in the previous case (see sub-chapter 4.13.3), a similar line of though may be applied to the 

length of material layer 2, i.e., it should be inputted as the maximum length allowed 

2 2Mat Mat maxL L , in order to obtain a solution that presents a minimum length of material 2 which is 

advantageous as previously stated, see e.g., sub-chapter 4.8.1.  

It is confirmed that as the length of material 2 (
2MatL ) decreases the upper bound frequency of the 

AR ( upperf ) increases and the lower bound frequency of the AR ( lowerf ) also increases. It is re-

confirmed that as the length of material 1(
1MatL ) increases the lower bound frequency of the AR          

( lowerf ) decreases and the upper bound frequency of the AR ( upperf ) is not significantly affected, 

being nearly constant.  

In this example, there is also room for some optimization of the length of material 1 (
1MatL ) which 

can be decreased in order to approximate the lower and minimum bounds of the AR.  

The upper bound frequency of the AR ( upperf ) is slightly higher than the maximum required            

( maxf ), leaving room for some optimization of the length of material 2 (
2MatL ) which can be 

increased in order to minimize the difference between the two values. An increase in length of material 

2 (
2MatL ) may be seen as disadvantageous since the optimized AR would present a smaller 

bandwidth then the obtained AR, the total size of the structure will increase,  and if the weight of the 

structure and/or the cost of the material are to be accounted for, these will increase.  

On the other hand, one may be led to maximize the AR by maximizing the difference between the 

upper bound and the maximum required frequency ( maxf ) of the AR. But in contrast to the 

insignificant effects that an increase in the length of material 1 (
1MatL ) have in the upper bound 

frequency ( upperf ), a decrease in the length of material 2 (
2MatL ) leads to an increase of the lower 

bound frequency of the AR ( lowerf ). Consequently this would have to lead to an increase of the length 

of material 1 (
1MatL ) to decrease the lower bound frequency of the AR ( lowerf ) below the minimum 

required ( maxf ) and to all the disadvantages previously referred of a longer, heavier and possible 

more expensive structure. 

4.13.5. Structural optimization results 

An alternative to the structural improvement design procedure, presented in sub-chapter 4.8.1, is 

the structural constrained nonlinear optimization methodology, described in sub-chapter 4.8.2 and 

expressed by Eq. (4.8),  in which a mass ratio cost objective function is minimized in order to obtain 

the optimal material lengths (  and ) subject to several frequency and length constraints 

(see the Target column of Table 4.7 and Table 4.8). 

1MatL
2MatL
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For this, was considered a structure with a total number of 3.5 cells, see e.g. Figure 4.5, 

composed of steel (material 1) and a CCM (material 2) with the respective material properties 

presented in Table 4.3.   

Similarly to the third and fourth improvement cases, presented in sub-chapter 4.13.3 and sub-

chapter 4.13.4, respectively, consider that the ARs should present a minimum ( minf ) frequency 

bound inferior to 1000 Hz and maximum ( maxf ) frequency bounds greater than: i) 4100 Hz and; 

ii) 10 kHz. 

The results obtained are presented for case i) and ii) in Table 4.7 and Table 4.8, respectively. 

 
Target 

Design procedure 

(sub-chapter 4.13.3) 

Design (Optimization) 

(sub-chapter 4.13.5) 

f  (Hz) 
minf   < 1000 lowerf =987 lowerf =999.57 

maxf  > 4100 upperf =4139 upperf =4135 

1MatL  (m) 0.001 ≤ 
1MatL ≤  0.05 0.0098 0.0097 

2MatL  (m) 0.01 ≤ 
2MatL  ≤  0.05 0.0500 0.0499 

TL  (m) 0.02  ≤ TL ≤  0.10 ≈0.0598 ≈ 0.0596 

Table 4.7 – Target, design and optimized values considering  > 4100 Hz. 

 Target 
Design procedure 

(sub-chapter 4.13.4) 

Design (Optimization) 

(sub-chapter 4.13.5) 

f (Hz) 
minf   < 1000 lowerf =964 lowerf =998 

maxf  > 10000 upperf =10668 upperf =10185 

1MatL  (m) 0.001 ≤ 
1MatL ≤  0.05 0.0281 0.0253 

2MatL  (m) 0.01 ≤ 
2MatL  ≤  0.05 0.0190 0.0203 

TL  (m) 0.02  ≤ TL ≤  0.10 ≈ 0.0471 ≈ 0.0457 

Table 4.8 – Target, design and optimized values considering  > 10 kHz. 

The structural optimization results present lower values for the upper frequency bound ( upperf ) 

which is more evident in the second case (see Table 4.8) due to an increase in the length of material 2  

( ). Furthermore, and for both cases, see Table 4.7 and Table 4.8, higher values for the lower 

frequency bound ( lowerf ) are obtained due to the decrease of the length of material 1 (
1MatL ), as 

intended. So being, the disadvantage of a heavier structure previously referred (due to the high mass 

density of material 1 which, in these cases are steel) is now minimized. 

maxf

maxf

2MatL
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4.13.6. Phononic-inspired vibration isolators for mechanical applications 

Having presented the numerical results obtained using the structural improvement and optimization 

methodologies for the design of the unit cell and the PIVI itself, in this sub-chapter are presented the 

experimental modal analysis results of PIVIs prototypes composed of steel and CCMs. 

  Figure 4.23 illustrates the experimental setup (see subchapter 3.3.7 for more details) used to 

determine the AR of a two-material periodic structure with steel and CCM layers.  

 

Figure 4.23 – Photograph of the experimental test prototype periodic bar with square cross-section with a side 

length of 0.050m, composed of 3.5 unit cells, i.e., four steel and three CCM (ref. 8123) half-cells each with a 

length of  
1MatL =0.010m and 

2MatL  =0.050m, respectively [44]. 

The FRF curves obtained are presented in Figure 4.22 where the filled and dashed curves 

represent the experimental and the numerical (FEM) results, respectively. 

 

Figure 4.24 – Experimental and numerical FRF curves of the periodic bar with lengths 
1MatL =0.010m and 

2MatL =0.050m. 

As illustrated in Figure 4.22, the first AR of interest starts at approximately 940 Hz. It presents a 

width of approximately 3500 Hz and was obtained with the two-material periodic structure illustrated 

by Figure 4.23. 
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 To lower the starting frequency of the AR (maintaining a total of 3.5 repetitive cells for comparison 

purposes with the previous example) the length of the CCM (
2MatL ) was increased by a factor of two 

as illustrated by Figure 4.25.  

 

Figure 4.25 – Photograph of the experimental test prototype periodic bar with square cross-section with a side 

length of 0.050m, composed of 3.5 unit cells, i.e., four steel and three CCM ref. 8123 half-cells each with a length 

of  
1MatL =0.010m and 

2MatL  =0.100m, respectively. The half-cells are bonded with a structural adhesive 

creating a prototype with a total length of 0.340m [44]. 

The FRF curves obtained are presented in Figure 4.26 where the filled and dashed curves 

represent the experimental and the numerical (FEM) results, respectively. 

 

Figure 4.26 – Experimental and numerical FRF curves of the periodic bar with lengths 
1MatL =0.010m and 

2MatL =0.100m. 

As illustrated in Figure 4.26, the first AR of interest starts at a lower frequency of approximately 

665 Hz presenting a width of approximately 1550 Hz was obtained with the two-material periodic 

structure illustrated by Figure 4.25. 

From the author’s point of view, these steel-CCM PIVIs present acceptable dimensions as well as a 

substantial AR in a frequency range of interest for several mechanical applications. However, lower 

lengths of the structures and AR situated at lower frequency ranges are desirable. But remember, that 

one of the initial objectives was simple and prompt fabrication of the prototypes allowing for 

uncomplicated experimental setups leading to quick validation of the results obtained. And as 

presented, that was successfully achieved. 
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With this study, for a given set of: dimensions, AR location and width it is up to a simple 

optimization procedure, presented in sub-chapter 4.8.2, to verify the feasibility of such requirements 

and considering different material for these types of periodic structures.   

Nowadays, numerous types of vibration isolators are being commercialized and used in industrial 

applications and some of which, are composed of two materials as illustrated by Figure 4.14 b) and c), 

which are stacked up in a pile where one material is best suited for damping and the other for rigidity 

of the isolator.  

The AR aspects do not appear to be explored in the commercial solutions, which in the author’s 

opinion might be due to the fact that only recently, and with the work of the author that studies the use 

of CCMs combined with steel, has been shown evidence of ARs in a low frequency range that are 

useful for several mechanical applications.   

4.13.7. Brief comparison between two commercial and five phononic-inspired vibration 

isolators 

In this sub-chapter are presented the force transmissibility results obtained using the experimental 

setups described in sub-chapter 4.6 and illustrated by Figure 4.27 and Figure 4.28 for some of the 

isolators presented in sub-chapter 4.10.  

More specifically, two CVIs, i.e., CVI–1 and CVI–2 illustrated by Figure 4.14 a) and Figure 4.14 b), 

respectively (for which no technical specifications are available), and the five PIVIs illustrated by 

Figure 4.15.  

 

a) 

 

b) 

Figure 4.27 – Photograph of the experimental setup used to test the commercial vibration isolators: a) rubber 

mount (CVI–1); b) neoprene waffle and cork sandwich (CVI–2). 

The properties of the materials that are used in the five PIVIs tested are presented in Table 4.9, 

whereas, some of the properties, e.g., 
1

'
MatE ,  have been determined by the author in [44] as 

indicated in Table 4.9. The remaining material properties, e.g., 
2

'
MatE , were determined using the 

hybrid analytical-experimental methodology presented in sub-chapter 3.3. 
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a) 

 

 

b) 

 

c) 

 

 

d) 

 

 

 

 

 

 

 

 

e) 

Figure 4.28 – Photograph of the experimental setup (between the floor and the load mass) used to test the PIVIs 

with different resilient layers: a) cork-rubber ref. VC5200 (PIVI–1); b) cork agglomerate ref. NL20 (PIVI–2); c) cork 

agglomerate ref. 8123 (PIVI–3); d) urethane with 20mm (PIVI–4);  e) urethane with 10mm (PIVI–5). 

Prototype Ncel Mat  MatL


 (mm)
 

'
MatE


(MPa) Mat

 (kg m
-3

)
 2Mat

 

Material type - =1  =2  =1  =2   
[44] 

=2   
[44] 

=2   
[44] 

=2  

PIVI–1 2.5 Steel VC 5200 20.5 10.1 205×10
3
 26.2 7640 836 ≈0.001 0.244 

PIVI–2 3.5 Steel NL 20 20.5 20.5 205×10
3
 17.9 7640 210 ≈0.001 0.130 

PIVI–3 3.5 Steel 8123 10.0 45.0 200×10
3
 43 

 [44] 
7860 256 

 [44] 
≈0.001 - 

PIVI–4 3.5 Brass Urethane 10.0 10.0 115×10
3
 - 8011 - ≈0.001 - 

PIVI–5 3.5 Brass Urethane 20.0 20.0 115×10
3
 - 8011 - ≈0.001 - 

Table 4.9 – Properties of the PIVIs: number of cells; material type; material length; material storage modulus, 

material mass density and material loss factor. 

This study is restricted to the experimental modal analysis and suited for comparing the 

performance of the different isolators in terms of force transmissibility. Numerical FE analyses were 

not addressed here and the main reason is that no properties are available for the CVIs. 

At Figure 4.29, are illustrated the force transmissibility FRFs for the different vibration isolators 

tested. Furthermore, in Table 4.10 are presented the frequencies after which the PIVIs are 

advantageous when compared to the CVIs and the respective attenuation reduction at 1600Hz. 

=1 =1 =1
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Figure 4.29 – Experimental force transmissibility results for different vibration isolators. 

 CVI–1 CVI–2 

PIVI Frequency (Hz) 

Attenuation 

reduction (dB) at 

1600 Hz 

Frequency (Hz) 
Attenuation reduction 

(dB) at 1600 Hz 

1 1110 25 885 50 

2 723 75 445 100 

3 1180 25 1040 50 

4 15 75 14 100 

5 26 100 25 125 

Table 4.10 – Frequency after which the PIVIs are advantageous when compared to the CVIs and the respective 

attenuation reduction at 1600Hz.                                                                                                                              

From Figure 4.29 it is evident that after specific frequencies, see Table 4.10, the PIVIs are more 

advantageous in terms of isolation then the CVIs, see Table 4.10. As an example, consider PIVI–1, 

which corresponds to the line with the square marker in Figure 4.29. PIVI–1 revels to be more 

advantageous after 1110 Hz relative to CVI–1 and after 885 Hz relative to CVI–2 presenting an 

attenuation reduction of 25 dB and 50 dB at 1600Hz relative to CVI–1 and CVI–2, respectively. 

However, when considering PIVI–4, which corresponds to the line with the diamond shape marker in 

Figure 4.29, one obtains after 14-15 Hz attenuation reduction of 75 dB and 100 dB at 1600Hz relative 

to CVI–1 and CVI–2, respectively. Furthermore, when compared to the other PIVIs it presents higher 

attenuation reductions from approximately 150 Hz to 1400 Hz. 
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Thus, and based on these results alone one may momentarily question the use of CCMs for the 

resilient layer. Nevertheless, it should be noted that e.g., this specific type of urethane presents a 

hardness of 30 in the Shore A hardness scale, meaning that it is a relatively soft and flexible material. 

Hence, its use in PIVIs is not recommended in the sense that the longitudinal stability of the device is 

not assured unless some sort of guiding mechanism is used. For this reason alone, CCMs are still 

used in the resilient layer of PIVIs. 

4.13.8. Test with load mass supported by springs, by phononic-inspired vibration isolators 

(PIVIs) and by the combined structure (PIVI-1 and spring) 

In the following are presented the main experimental results obtained, using the experimental setup 

described in sub-chapter 4.6 and illustrated by Figure 4.7, to study the dynamic behavior, in terms of 

force transmissibility (see sub-chapter 2.8), of three different devices, i.e., helical springs, PIVI-1 

prototypes and the combination of the previous two (PIVIs and springs). These devices are used to 

support a load mass of approximately 3.2 kg, which is similar to the mass of the motor of the hermetic 

compressor that is then addressed when considering these devices in a real industrial application. 

Thus, consider that: i) the load mass is supported by three helical springs; ii) the load mass is 

supported by three PIVI (VC5200) prototypes; and iii) the load mass is supported by three prototypes 

that combine the PIVI (VC5200) and the spring. 

 

 

a) 

 

b) 

Figure 4.30 – Case i): Load mass supported by helical springs: a) experimental setup; b) force transmissibility 

curves. 

 

For case i), it was verified that the dynamical behavior, with emphasis on the natural frequencies, 

of the three helical springs are not equal, as expected. However, it may be considered similar and 

located within a small enough bound that allows identification. 
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a) 

 

b) 

Figure 4.31 – Case ii): Load mass supported by PIVI-1: a) experimental setup; b) force transmissibility curves. 

In case ii), it is verified that the PIVI-1prototypes present a similar dynamic behavior presenting an 

AR of interest after approximately 800 Hz. Note that even though two flexural modes are present 

nearby 1 kHz and 1.23 kHz, with more significance for prototypes 1 and 2, these do not influence the 

longitudinal AR of interest.  

 

a) 

 

b) 

Figure 4.32 – Case iii): Load mass supported by the combined structures (prototype + spring): a) experimental 

setup; b) force transmissibility curves. 
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In case iii), the combined structures (prototype + spring) present a similar dynamic behavior even 

though, the combined structure 1 (solid curve) presents a lower natural frequency relative to the other 

two combined structures. Similarly to case i), it is considered to be located within a small enough 

bound that allows identification. 

To compare the relative performance, in terms of force transmissibility, of each type of supporting 

device, i.e., spring, prototype and the combined structure (prototype + spring) the force transmissibility 

curves of each of device (in this case position 3 was chosen) are illustrated in Figure 4.33. 

  

Figure 4.33 – Force transmissibility curves of the helical spring, the PIVI-1 prototype; and the combined structure 

(PIVI-1 prototype + spring).  

From Figure 4.33, it is verified that the combined structure (solid line) is capable of effectively 

reducing the amplitude of the springs responses (dashed line) with emphasis at the natural frequency 

within the prototypes AR (shaded area), i.e., after approximately 800 Hz.  

Thus, with the combined structure it is possible to improve isolation of a source of vibration, in 

terms of force, with a PIVI device that has an AR in a specific frequency range, which acts as a “filter”, 

and still maintains the flexibility of the support due to the combined spring. That flexibility is important 

for shock absorption but is out of the scope of this study.  

This conception can be useful and applied in several mechanical applications.  
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4.13.9. Test with motor of hermetic compressor supported by springs and the combined 

structure (PIVI-1 and spring)  

Instead of a load mass, consider that the working motor of a hermetic compressor, illustrated by 

Figure 4.18, is supported by: i) the original helical springs that equip the hermetic compressor and; ii) 

the combined structure consisting of PIVI-1 and the springs.  

To study the dynamic behavior, in terms of force transmissibility (see sub-chapter 2.8), of the two 

supporting device cases, consider the experimental setup (based on the one presented sub-

chapter 4.6) and illustrated by Figure 4.34, that may be summarized as follows. 

 

Figure 4.34 – Photograph of a motor of a hermetic compressor. 

The source of vibration is the motor itself that at the time of the experiment is working (as it was 

directly connected to the electricity net), so no vibration exciter is used. During the experiment, the 

piston and cylinder are manually lubrified to avoid overheating and consequently damage to the motor. 

Furthermore and as a precaution, the motor runs for approximately 1 minute and then rests at least 5 

minutes before the next experiment.  

This specific motor has four support points thus, it requires four supporting devices and 

consequently it would require eight force transducers to measure the input and output forces at all four 

support points. However, only four force transducers (PCB 208C01) were available and it was decided 

to used them to measure the force transmissibility at two of the four support points, see Figure 4.35 a) 

and Figure 4.36 a). On the other two support points, “dummy” force transducers (simulating the 

presence of functional force transducers from which no data was obtained, see sub-chapter 2.4.2) 

were used, see Figure 4.35 b) and Figure 4.36 b).  
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First, the original springs that equip the hermetic compressor are tested (see Figure 4.35).  

 

a) 
 

b)  

Figure 4.35 – Experimental setup of the motor of a hermetic compressor supported by helical springs: a) input-

output points; b) force transducers not connected. 

Then, the original helical springs that equip the hermetic compressor are combined with the PIVI-1 

prototypes (see Table 4.9) and tested, see Figure 4.36. 

 

a) 

 

b)  

Figure 4.36 – Experimental setup of the motor of a hermetic compressor supported by the combined structure 

(PIVI-1 + spring): a) input-output points; b) force transducers not connected. 

Figure 4.37 illustrates the force transmissibility curves obtained for the two supporting device cases 

previously referred, i.e.: i) the original helical springs that equip the hermetic compressor and; ii) the 

PIVI-1 prototypes combined with the springs. 

“Dummy” force transducers (not connected) 

Force 
transducers 

(not connected) 
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Figure 4.37 – Force transmissibility for the helical spring and combined structure (PIVI-1 + spring). 

From Figure 4.37 it is evident that when the combined structure (solid line) is used (instead of the 

original helical springs (dashed line) ) to support the working motor of hermetic compressor, in general 

the force transmissibility is lower. Even between 500-600 Hz it is not worst. This becomes more 

evident in the AR of interest (defined by the PIVI) that starts at approximately 800 Hz. Hence, it is 

possible to isolate vibration, in terms of force, with a PIVI that has an AR in a specific frequency range 

functioning as a “filter”, and still maintaining the flexibility due to the spring. 

At least from this point of view, the concept, design and application of PIVIs are sought to have a 

significant impact in the development of better vibration isolation devices as it presents a real isolation 

improved alternative and/or solution for several mechanical applications. 

4.14. Conclusions on phononic-inspired vibration isolator 

In this sub-chapter are presented the original contributions and main conclusions regarding a new 

concept of 1D vibration isolators that were inspired on phononic structures hence, its designation of 

PIVI.  

This works shows that combining PIVIs with springs has considerable effects in the reduction of the 

force transmissibility. The combined structure achieves at certain points 50dB of reduction and 

practically never present worst transmissibility than the original spring by itself. 

The author proposes in this chapter methodologies to perform analytical and numerical 

simulations/predictions as well as experimental methodologies to confirm the values with the 

prototypes built for this effect. 

The original contributions regarding the PIVIs, consists of the design, development and application 

of PIVIs that consists of a periodic bar with alternating layers of two materials with a significant 
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contrast in their wave phase velocities that together with the proper length of the cell (thickness of the 

layers) define the ARs widths and location in frequency ranges that are of interest for several 

mechanical applications. Recall that prior to this study, these type of phononic structures were not 

intended to function as mechanical vibrations isolators (presenting total lengths > 1 m) and with ARs in 

the kHz range.  

Thus, a solution that contemplates the use of different pairs of steel and CCMs was adopted in this 

study. Even though several other material pair combinations and cell lengths were used, e.g., brass-

urethane, the longitudinal stability of the isolator was a significant problem in those cases. For that 

reason, at this study these were not considered as an interesting and feasible solution from the 

application point-of-view. 

 Another aspect is that the hybrid analytical-experimental methodology (presented in chapter 3) 

was fundamental to characterize, in terms of dynamic modulus, the different CCMs used in the 

development of these PIVIs. Without that development many of these achievements would not have 

been possible at the modeling level. 

Furthermore, structural design procedures, FE analysis, optimization techniques, prototyping and 

modal testing were essential for the development of both numerical and experimental models of PIVIs 

that present significantly wide ARs in frequency ranges of interest for several mechanical applications. 

Modal testing was conducted on: 

i)  two CVIs and on five PIVIs to assess the performance of these devices, in terms of force 

transmissibility. Results evidentiated the presence of greater attenuation reduction (between 25 dB 

and 100 dB at e.g., 1600 Hz) for the steel-CCMs PIVIs relatively to the CVIs; 

ii) on a load mass (that simulates the mass of the motor of a hermetic compressor) that was 

supported first by springs and then by combined structures consisting of PIVIs and springs. Results 

show that the combined structure is capable of effectively reducing the amplitude of the force 

transmitted by the helical springs within the AR of the PIVI (i.e., after approximately 800 Hz); 

iii) a working motor of a hermetic compressor (excitation source) that was supported first by springs 

and then by combined structures consisting of PIVIs and springs. As in case ii) results evidentiate 

the capability of the combined structure in isolating vibrations. The PIVI has an AR in a specific 

frequency range operating as a “filter” and the spring maintain the flexibility of the combined 

supporting device. 

Further criteria such as: fatigue, durability, effect of temperature and humidity, etc. were not 

considered in this study. Additionally, protecting these devices from fluids e.g., oil, and the redesign of 

the connections to the motor are also topics that should be addressed in future work.  

In the author’s opinion, this study demonstrates the capability, relevance and impact that these 

PIVIs present for noise and vibration reduction applications as they can be design to suite a specific 

AR in the frequency range, its width, and level of attenuation. Unfortunately, and as far as the author 

knowledge, this aspect does not appear to be addressed by actual producers of isolation systems. 
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Chapter 5 

 

 

5. Surface Damping Treatments 

 
5.1. Introduction 

Surface damping treatments (SDTs) are a way for vibration reduction, usually associated to sheet 

metal structure vibration reduction, by means of passive techniques [1]. Such treatments are classified 

according to whether the damping material is subjected to predominant extensional or shear 

deformation and are referred to as extensional or FLD or unconstrained and as shear or CLD 

treatments, respectively. 

Due to an increasing concern on the vibro-acoustic comfort of the passengers, several studies on 

the performance of the SDTs have been conducted for different transportation areas, such as: 

automotive [65]-[67], railway [68], and aerospace [65] and [69]. Usually the vibrations are transmitted 

along different paths to the components (e.g., panels) causing discomfort to the passengers. 

To improve it, FLD and CLD treatments are currently available and being applied in the industry. 

Generally, the FLD treatments are applied using solid polymeric viscoelastic material sheets, e.g., 

asphaltic melt sheet (with a mass density varying between 1200 kg m
-3

 and 1600 kg m
-3

 [70]) or liquid 

polymeric damping sprays designated as liquid applied sprayable damper (with a mass density of 

approximately 1000 kg m
-3

 [70]). The CLD treatments, in most cases, involve the addition of a 

damping layer (similarly to the FLD treatments) and an additional metallic constraining layer [71]. 

However, for applications subjected to a wide range of temperatures like near of engine parts, 

exhaust systems, automotive panels, etc., the use of CCMs may be seen as an alternative low mass 

density, thermal and acoustic insulation solution which provides a damping capacity [30] over a wide 

temperature range, e.g., -60ºC to 150ºC.  

It is clear that the benefits of the SDTs must be paid at least in terms of additional mass, resulting 

in additional fuel consumption. Thus, the challenge is to balance the comfort of passengers with the 

need to reduce mass and cost. Hence, in this chapter, the author studies the use of CCM sheets, 

which have a mass density of approximately 200 kg m
-3

, in both FLD and CLD treatments. Note that 

with the exception of the author’s works ([81], [148] and [149]) no reference to the use of CCMs in 

SDTs was found by the author in the researched literature.  

Even though in general, the CLD treatment is more efficient than the FLD treatment, for a given 

weight of damping material, it presents greater complication in both analysis and application [69]. In 
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this context, numerous reported approaches to fully automate optimization of SDTs may be found in 

the literature [72]-[80].  

For example, Eschenauer and Wodtke [72], Yildiz and Stevens [73] and Lumsdaine and Scott [74] 

studied the optimal design of the damping layer distribution with variable thickness on thin walled 

structures using different optimization methods. Bandini et al. [75] considered a constant thickness of 

the damping layer and used a genetic algorithm to control the evolution and a FEM to evaluate the 

performance of the configurations. In [76], Lin and Scott studied the FLD and CLD treatments in 

beams and optimized the shape of a damping layer for both. To find optimal and “allowable” positions 

of damping materials Alvelid [77] proposed a modified gradient method. To design optimal SDTs 

Zheng et al. [78] used the topology optimization with the method of the moving asymptotes approach. 

In [79], the author presents a structural topology optimization scheme to evaluate the performance of a 

FLD treatment with constant thickness. Afterwards in [81], the author extended a similar optimization 

scheme to the CLD treatments and to the use of CCMs as the damping layer material.  

In this study (in which, all contents are original contributions except when referenced to the 

respective authors) a simplified car body in white (BIW), i.e., a bare body after welding but before 

painting, FE model is developed for optimization of the FLD and CLD treatments applied to the inside 

floor of the car. For this, the author developed a structural topology optimization scheme (in which 

commercial FEM software is used) to evaluate the performance and the use of CCM as the damping 

layer material in SDTs with constant thickness. The SIMP idea [80] (previously introduced as solid 

isotropic material with penalization) is used to model the properties of the material used in the SDTs. 

The properties are assumed constant within each element used to discretize the design domain in 

which the stiffness is proportional to density in the power n (>1). The optimization results are mostly 

“black-and-white”, i.e., either additional damping material is present in that element or it is not. 

The results obtained with the implemented method illustrate the capability of the developed 

methodology for improving the efficiency of the SDTs within a predefined range of frequencies. 

To conclude this introductory sub-chapter, the respective chapters layout follows. 

This chapter, is composed of eight sub-chapters. This first introductory sub-chapter is followed by a 

second sub-chapter where the FLD and CLD SDTs are briefly introduced. In the third sub-chapter is 

presented the FE parameterization adopted. This is followed by a fourth sub-chapter in which the 

formulation for the structural optimization problem solved here is presented. In the fifth sub-chapter 

are presented the FE models developed and used in this study for structural analysis. The sixth 

chapter regards the experimental setup used to obtain the modal test data to validate the numerical 

models. The seventh sub-chapter contains the main results and their discussion. To conclude, the 

main contributions and conclusions regarding this chapter are presented in the eighth sub-chapter. 

5.2. Unconstrained and constrained surface damping treatments 

SDTs are usually designated according to whether the damping material is subjected to 

predominant extensional or shear deformation and are referred to as FLD or CLD treatments, 

respectively. 
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In this study, it is assumed that there is no slipping between the elastic and viscoelastic layers at 

their interfaces (see Figure 5.1, and Figure 5.2). Thus, the analyses assume rigid connections 

between the various layers of the system. However, in practice and because in general most damping 

materials are not self-adhesive, an additional adhesive layer is used. In this case, the thickness of the 

adhesive layer must be kept to a minimum [9].  

For a detailed discussion of SDTs, such as effects of temperature, frequency, wavelengths, 

bonding techniques, etc., see Mead [2], Nashif et al. [9] and Jones [29]. 

5.2.1. Unconstrained surface damping treatments 

The extensional, unconstrained or free layer damping treatment (FLD) consists of coating one or 

both sides of the structure with a damping material [2]. So, whenever the structure is subjected to 

cyclic flexure, the damping material is predominantly subjected to tension-compression deformation 

parallel to the plane of the structure (see Figure 5.1 where 1e  and 2e  are the thicknesses of the 

structure and of the damping material, respectively).  

 

a) 

 

b) 

Figure 5.1 – FLD treatment – a) undeformed structure; b) deformed structure in flexure. 

5.2.2. Constrained surface damping treatments 

In the constrained damping treatment (CLD) the viscoelastic layer is constrained between two 

elastic layers [2], e.g., the structure and the metal sheet cover (see Figure 5.2 where 1e , 2e  and 3e
 

are the thicknesses of the structure, the damping material and the elastic layer, respectively). So, 

whenever the structure is subjected to flexure, the damping material layer is predominantly subjected 

to shear deformation, rather than tension-compression deformation. A generally accepted fact is that 

the CLD is more efficient in terms of dissipating energy in comparison with the FLD, see Mead [2], 

Nashif et al. [9] and Jones [29]. 

 

a) 
 

b) 

Figure 5.2 – CLD treatment – a) undeformed structure; b) deformed structure in flexure. 

In engineering practice, simple structures are rarely encountered, but simplicity is helpful in 

understanding and developing the basic principles. For FLD, approximate equations (e.g., Oberst’s 
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equation [29]) and various graphical information are available (see e.g. Jones [29]). For the CLD, 

several types of approximate equations are known, e.g., the Ross-Kerwin-Ungar (RKU) equation, 

which applies accurately only to beam like structures with pinned-pinned boundary conditions, even 

though being often applied to other boundary conditions, see, e.g. Jones [29]. More complicated 

structures with CLD treatment can be properly addressed, e.g., by FE analysis [29].  

5.3. Finite element modeling 

In this study, it is assumed the RM plate taking into account an approximate shear stress 

distribution over the thickness, see sub-chapter 2.5.2.5. 

The FE models of the structures are built considering a number of FEs ( elemN ) in the X and Y 

directions as illustrated by Figure 5.3. Even though one could allow several elements throughout the 

thickness of the damping layer, such an approach would require a significantly larger number of 

elements. Furthermore, as the optimization process may involve many FE runs, the time required 

would be computationally larger. Thus, only one element was used for the damping layer through the 

thickness. It is verified that this captures the essential features of the FLD and CLD behaviors. 

The base structures, illustrated by the dark gray areas in Figure 5.3, are modeled with RM plate 

elements defined by four nodes and having six degrees of freedom at each node (translations in the 

nodal x, y, and z directions, and rotations about the x, y, and z axes), see SHELL181 element in [150] 

for more details).  

The damping layer and the constraining elastic layer, see Figure 5.3, are modeled using solid FEs 

defined by eight nodes and having three degrees of freedom at each node, translations in the nodal x, 

y, and z directions, (see SOLID45 element in [150] for more details). 

 

a) 

 

b) 

Figure 5.3 – Parameterization of the structure – a) unconstrained damping treatment; b) constrained damping 

treatment. 

The geometric parameters of the elements are their lengths a  and b , and the thicknesses 1e , 2e
 

and 3e  of the structure, the damping material and the elastic constraining layer, respectively.  

As previously referred, and with more emphasis in the transportation industry, a compromise has to 

be made between the performance of the SDTs and the additional weight inherent to its use. One 
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obvious way of minimizing the SDT additional weight is to use lighter damping materials, e.g., CCMs, 

as previously referred. Furthermore, it is common practice to use topology optimization techniques 

(see e.g., [78], [79] and [81]) to determine the optimal layout distribution of the SDT over the structure. 

5.4. Structural optimization method 

In this study, the structural optimization problem (see sub-chapter 2.7) consists of finding an 

optimized layout of the uniform thickness for both FLD and CLD treatments that are spatially 

distributed over the vibrating structure.  

For this, a topology optimization problem is formulated as  

where elemN

 

is the total number of elements to which the SDTs are applied.  

The objective function consists of the root mean square of the maximum harmonic vibration 

response displacement ( )u   of one or more response points, N , of the structure for a specific 

frequency range min max[ , ]   from an initial value ( min ) to a final value ( max ), which contains one 

or more natural frequencies. 

The design variable  p x  indicates the existence ( p  = 1) or absence ( p  = 0) of the added 

damping layer in each point x , as it is characteristic of structural topology optimization problems. To 

relax the 0-1 problem to a continuum problem in ]0,1], p  can be relaxed to a “material relative density” 

value instead of the two extreme values.  

By relaxing the problem, intermediate values of ip  (piecewise constant parameter of each 

element) are allowed which can be understood as a “porous” material, which properties can be 

computed by  

To preserve the mesh and avoid computational problems, a value close to zero (e.g., minp =10
-6

) is 

used instead of zero. These properties follow the SIMP idea [80], where the stiffness is proportional to 

density in the power n  (greater than one). This penalizes intermediate values of ip

 

and for n  ≥ 3 the 

result of the optimization is mostly “black-and-white” ( 1p 

 

and 0p  , respectively).  
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For the numerical optimizations a SQP algorithm (see e.g., [113] for more details) and an iterative 

procedure with the following steps are implemented: 1) Initialize by giving initial design values; 2) Run 

a harmonic analysis for the initial design; 3) Start the optimization loop. After writing the values of the 

current iteration design variables to a file, it will call the FE analysis in batch mode and will return to 

the optimization routine the current calculated values of the design variables and; 4) After satisfying 

the stopping criteria (constraints or predefined stopping parameters), run a harmonic analysis for the 

final design. 

5.5. Finite element models for structural analysis 

In this study, and before applying the structural optimization procedure (described in sub-

chapter 5.4) it is first considered the case of a FE model of a rectangular panel, see Figure 5.4, which 

is subject to FLD and CLD treatments. The objective is to obtain validated FE models  for both types 

of SDTs, based on experimental modal tests which are addressed in the following sub-chapter. An 

introduction on the model validation can be found in sub-chapter 2.6, on the plate FE model in sub-

chapter 2.5.2.5 and on the experimental model tests in sub-chapter 2.4. 

 

 

Figure 5.4 – FE model and discretization of the panel (coordinates of points F and r1: X=230 mm and Y=125 mm; 

r2: X=10 mm and Y=175 mm; r3: X=60 mm and Y=70 mm; r4: X=220 mm and Y=98 mm). 

The panel has a thickness of 0.6 mm and is discretized using 52 FEs in the X direction and 38 FEs 

in the Y direction, see Figure 5.4 and Table 5.1 for additional parameterization details. 
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Once this FE model is validated, two other FE models of a cantilever plate, see Figure 5.5 a), and a 

simplified car BIW, see Figure 5.5 b), are developed and introduced to study the optimization of the 

material layout for both SDTs considering the procedure previously described in sub-chapter 5.4. 

For each of the case, a steady-state (harmonic) force is applied at point (F) and the displacements 

are determined at points r, see Figure 5.4, Figure 5.5 a) and Figure 5.5 b). Note that point r is not 

visible in Figure 5.5 b) since it is located on the floor of the car FE model. However, its location is 

presented along with the respective results.   

 

a)  

Figure 5.5 – Finite element discretization of the structures oriented according to the indicated coordinate axis 

OXYZ indicated: a) cantilever plate; b) simplified model of a car. 

The dimensions and FE discretization of the models is as follows:  

i) the cantilever beam with dimensions 1 m by 0.2 m is discretized using 10 FEs in the X direction 

and 2 FEs in the Y direction, see Figure 5.5 a) and Table 5.1. In this case, points F and r are 

coincident. 

ii) the floor of the simplified car BIW FE model with dimensions 2 m by 0.8 m is discretized using 20 

FEs in the X direction and 8 FEs in the Y direction, see Figure 5.5 b) and Table 5.1. Additionally, a 

uniform steel plate with a thickness of 10 mm was adopted for the shell of the car and was modeled 

using the RM plate element (see sub-chapter 2.5.2.5). Furthermore, to simulate the suspension (no 

dampers were included), four tension-compression springs (see sub-chapter 2.5.2.2) with a spring 

constant K0=30 kN/m are applied. A steady-state (harmonic) force is applied at one of those 

corners (point F), as indicated in Figure 5.5 b). 

 

Steel is considered for the structure and elastic layer (in the CLD treatment) while a CCM (NL20) is 

used as the damping layer. The material properties and geometric parameters of these materials ( , 

 and 3e  illustrated in Figure 5.3) are presented in Table 5.1, and Table 5.2.  

1e

2e

b) 
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Note that the dynamic properties of the damping material used in this study (CCM - NL20) were 

determined using the hybrid analytical-experimental methodology based on a three-layer specimen 

with metallic extremities and an intermediate resilient layer of the CCMs developed and presented by 

the author in sub-chapter 3.3. 

 elemN in X

 
elemN  in Y

  

(m) (m) 1e  
(m) 2e

 
(m) 3e

 
(m) 

Panel 52 38 0.005 ≈0.005 0.0006 0.002 0.0006 

Plate 10 2 0.1 0.1 0.01 0.002 0.001 

Car 20 8 0.1 0.1 0.01 0.002 0.001 

Table 5.1 – Values of the geometric parameters. 

 'E (MPa) 'G (MPa)  

Eq.(2.14) 


 

 (kg/m
3
)   

Stainless steel (panel) [151] 220×10
3
 - 0.33 7700 0.001 

Steel (cantilever plate and car) 210×10
3
 - 0.33 7850 0.001 

NL 20 (see Table 3.6) 

 

 

17.9 7.5  0.23 210 0.135 

Table 5.2 – Material properties: longitudinal storage  and shear storage moduli, and Poisson’s ratio  , 

mass density  and modal damping factor . 

Configuration 
1e  (mm)

 

 (mm)

 

 (mm)
 

1 – No treatment 0.6 - - 

2 - FLD 0.6 2.0 - 

3 - CLD 0.6 2.0 0.6 

Table 5.3 – Thickness , ,  and  for the different SDTs configurations. 

5.6. Experimental setup and test panels for surface damping treatment  

In this sub-chapter are presented the three experimental test panel configurations subject to 

experimental modal analysis, see Figure 5.6, and the respective experimental setup used for the 

purposes, illustrated by Figure 5.7.  

Thus: i) first it is considered the panel without treatment; ii) second, the panel is subjected to a FLD 

treatment using a CCM as the damping material layer and; iii) the panel is subject to a CLD treatment 

in which a CCM is used as the damping layer and a similar steel panel is used as the elastic 

constraining layer (see Table 5.1 and Table 5.2 for material and geometric properties).  

A high performance commercial adhesive tape (reference 3M
®
 467MP [152]) with a thickness of 

50 μm is used to bond the damping material to the structure as well as to the elastic constraining 

layer.  

a b

'E
'G

 

2e 3e

1e 2e 3e
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a) 

 

b) 

Figure 5.6 – Photographs of the experimental test panels: a) steel panel; b) constrained layer panel (side view). 

To obtain the experimental FRF curves, one uses the experimental setup illustrated in Figure 5.7, 

i.e., with an impact hammer one applies to the panel a perpendicular force at point F, see Figure 5.4, 

that is measured through a force transducer (input signal). The dynamical deformation propagates 

throughout the panel and, on the back side of the panel, four accelerometers at points r, see 

Figure 5.4, measure the accelerations (output signals). The panel is suspended from a fix support by 

two thin elastic nylon strings.  

 

Figure 5.7 – Basic layout of the experimental setup to obtain the experimental FRFs. 

The input and output signals are acquired by a data acquisition unit and analyzed using appropriate 

software. The FRF curve is recorded and compared with the one obtained numerically to validate the 

numerical model. 

5.7. Results and discussion 

In this subchapter are presented and discussed the main results obtained in the framework of the 

SDTs presented in this study.   
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5.7.1. Surface damping treatments on a metallic panel  

The experimental FRF curves were obtained using the experimental prototypes and setup 

previously described in sub-chapter 5.6. Tests were conducted at an approximately constant 

temperature of 20.5ºC and a relative humidity of 39.9%. Even though FRFs were obtained at four 

points r, see Figure 5.4, next are only illustrated the FRF curves obtained at point r1 as it present the 

main characteristics found in all and avoiding by this way an extensive illustrated sub-chapter. 

Nevertheless, the remaining illustrations regarding the other points are presented in Appendices A.8 

and A.9.  

Hence, Figure 5.8 illustrates the results obtained at point r1 considering the panel without damping 

treatment (solid line), with FLD treatment (dot line) and with CLD treatment (dashed line).  

 

Figure 5.8  –  Experimental FRF curves of a steel plate without treatment, with free layer damping treatment, and 

with constrained layer damping treatment (response at point r1: X=230 mm and Y=125 mm). 

From Figure 5.8, it is possible to see that the response of the panel with the CLD treatment 

(dashed line) presents a significantly lower magnitude relatively to the FLD treatment (dot line), which 

is similar in terms of magnitude to the case without treatment (solid line), confirming (as expected) the 

higher capability of the CLD in terms of SDT.  When comparing the FLD treatment (dot line) to the 

case without treatment (solid line) there is a slight decrease of the magnitude at the resonances 

(damping effect) and as well as a shift of the resonances to lower frequencies due to the added mass 

of the damping layer.  

Thus, from these experimental tests one can conclude that the use of this type of CCM in CLD 

treatments is capable of a significantly reducing the magnitude of the resonances. 

These experimental FRF curves are compared with the numerical FRF curves which were obtained 

by conducting a harmonic response analysis, see Eq. (2.58), using FE models of the three panel 

configurations, as described in sub-chapter 5.5, before and after model updating (see sub-chapter 

2.6.3). 

The experimental (solid line), numerical (dotted line) and numerical after model updating (dashed 

line) for each case  are  illustrated in Figure 5.9 for the case without treatment, in Figure 5.11 for the 
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case with FLD treatment and in Figure 5.13 for the case with CLD treatment at point r1. The remaining 

illustrations regarding the other points are presented in Appendix A.9. 

Furthermore, the experimental and numerical updated FRF curves were then correlated using the 

FRAC, Eq. (2.59), and the FAAC, Eq. (2.60), assurance criteria and are illustrated by Figure 5.10 a) 

and Figure 5.10 b), before and after updating, respectively.  

 

Figure 5.9  – Experimental and numerical FRF curves of a steel plate without treatment (response at point r1: 

X=230 mm and Y=125 mm).  

 

a) 

 

b) 

Figure 5.10  – FRF correlation functions curves of a steel plate without treatment: a) before updating; b) after 

updating (response at point r1: X=230 mm and Y=125 mm). 
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For the case of the panel without treatment, the experimental and numerical results obtained, see 

Table 5.4, present a maximum relative error in the first natural frequency of 4.76%. However after 

model updating, this value decreases to 2.5%. The FRF curves illustrated in Figure 5.9, namely the 

experimental (solid line) and numerical (dotted line) updated (dashed line) show a satisfactory 

agreement as also indicated by the FRF assurance criteria curves illustrated in Figure 5.10 b). In 

general, the FRAC and FAAC curves present values above 75% after updating.    

 

 

Figure 5.11  – Experimental and numerical FRF curves of a steel plate with free layer damping treatment. 

 

Figure 5.12  – FRF correlation functions curves of a steel plate with free layer damping treatment. 

For the case of the panel with FLD treatment, the experimental and numerical results obtained, see 

Table 5.5, present a maximum relative deviation in the sixth natural frequency of 0.80%. Thus, no 

updating was conducted for the FLD treatment. The FRF curves illustrated in Figure 5.11, namely the 

experimental (solid line) and numerical (dotted line) show a satisfactory agreement as also indicated 

by the FRF assurance criterions curves illustrated in Figure 5.12. Beyond 10 Hz, the FRAC and FAAC 

curves present values above 99.5%.    
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Figure 5.13 – Experimental and numerical FRF curves of a steel plate with constrained layer damping treatment. 

 

 

Figure 5.14  – FRF correlation functions curves of a steel plate with constrained layer damping treatment. 

For the CLD treatment, see Figure 5.8 (dashed line) and Figure 5.13, the values of the natural 

frequencies are not identifiable just by looking at the curves. Even though, the FEM results are known, 

the experimental values would have to be estimated using, e.g., an adequate modal analysis 

identification method, which is not always as simple to implement. Nevertheless, it is consensual to 

say that the FRF curves illustrated in Figure 5.13, namely the experimental (solid line) and numerical 

(dotted line) show a satisfactory agreement as also indicated by the FRF assurance criteria curves 

illustrated in Figure 5.14. Beyond 20 Hz, the FRAC and FAAC curves present values above 99.9%.     

The experimental and numerical results obtained in terms of the values of the natural frequencies 

and respective relative deviations for the panel without and with FLD treatment are presented in Table 

5.4. and Table 5.5, respectively.  
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 Configuration 1 - Panel without surface damping treatment  

Natural frequency
 

Experimental FEM FEM Updated 
Relative deviation 

 FEM 
Relative deviation  

FEM Updated 

1 40 Hz 42 Hz 41 Hz 4.76% 2.50% 

2 47 Hz 49 Hz 48 Hz 4.08% 2.13% 

3 95 Hz 99 Hz 96 Hz 4.04% 1.05% 

4 118 Hz 122 Hz 119 Hz 3.28% 0.85% 

5 180 Hz 186 Hz 180 Hz 3.23% 0.00% 

6 197 Hz 203 Hz 197 Hz 2.96% 0.00% 

7 289 Hz 292 Hz 288 Hz 1.03% 0.35% 

8 370 Hz 375 Hz 369 Hz 1.33% 0.27% 

Table 5.4 – Experimental, numerical and numerical updated natural frequencies for the panel without treatment. 

 

 Configuration 2 - Panel  with FLD treatment 

Natural frequency
 

Experimental FEM 
Relative deviation 

 FEM 

1 39 Hz 39 Hz 0.00% 

2 45 Hz 45 Hz 0.00% 

3 92 Hz 92 Hz 0.00% 

4 115 Hz 115 Hz 0.00% 

5 176 Hz 176 Hz 0.00% 

6 253 Hz 251 Hz 0.80% 

7 283 Hz 282 Hz 0.35% 

8 366 Hz 365 Hz 0.27% 

Table 5.5 – Experimental and numerical natural frequencies for the panel with free layer damping  treatment. 

In Table 5.6 are indicated the model parameters subject to updating and the respective values 

before and after the updating. 

Model parameters  Before updating [151] After updating 

'E (MPa) 220×10
3 
 216×10

3
 

 (kg/m
3
) 7700  7760 

  0.005  0.015 

1e  
(m) 0.0006 0.000597 

Table 5.6 – Model parameters used in updating. 

Note that it was not necessary to update the parameters of the CCM to obtain a satisfactory 

agreement between the experimental and numerically updated models. This is due to the rigorous 

proposed methodology previously presented (see sub-chapter 3.3) and used in this study to 
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characterize the dynamic modulus of the CCM used as the damping layer for both FLD and CLD 

treatments. 

As previously referred, the experimental and numerical updated FRF curves show a satisfactory 

agreement among each other and the FRAC and FAAC curve values further justify this agreement. In 

this sense, the numerical updated model is validated. Hence, it is considered suitable for further 

analyses. 

5.7.2. Structural optimization results  

The structural optimization formulation, previously described in sub-chapter 5.4, is first applied to 

the FE model of the cantilever plate illustrated by Figure 5.5 a). The cantilever plate is harmonically 

excited at point F with the displacements determined at point r, see Figure 5.5 a). The goal is to 

minimize the objective function (root mean square of a certain point over the frequency range of 

interest) expressed in Eq. (5.1) in a frequency range that contains the first natural vibration mode [1-20 

Hz], subjected to a 30% of the total damping treatment area (considering a constant thickness). The 

material and geometric properties are presented in Table 5.1 and Table 5.2. 

The results obtained are presented in Table 5.7 and are illustrated in Figure 5.15 and Figure 5.16.  

Type of damping treatment  FLD  CLD 

 Displacement  Mass  Displacement  Mass  

Initial (without damping) 240.00 mm 15.700 kg 240.00 mm 15.700 kg 

Before optimization ( ip =0.5) 30.83 mm 15.742 kg 20.52 mm 16.527 kg 

Optimized 20.32 mm 15.742 kg 1.06 mm 16. 527 kg 

Optimized variation relative to the 

initial design 
90.33% +0.16% 99.56% +3.06% 

Table 5.7 – Cantilever plate results. 

 

 

a) 

 

b) 

Figure 5.15 – Cantilever plate clamped at left extremity: a) 1
st
 natural vibration mode (with indication of points r 

and F); b) optimized material distribution. 

 

After application and optimization of the SDTs, see Figure 5.15 b), the displacements were 

minimized by approximately 90.3% (see Table 5.7 and Figure 5.16 a)  ) and by approximately 99.5% 

(see Table 5.7 and Figure 5.16 b)  ) for the FLD and CLD treatments, respectively. 
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a) 

 

b) 

Figure 5.16 – Displacement curves of cantilever plate with no damping treatment, before and after optimization 

considering: a) free layer damping treatment; b) constrained damping treatment. 

This was achieved with approximately 0.16% and 3.06% of additional mass for the FLD and CLD 

treatments, respectively. In this case, it can be observed that the optimized material layout, see 

Figure 5.15 b), is similar for both FLD and CLD treatments (due to the added mass at the tip while 

shear is constant along all the beam). 

In a similar way, the structural optimization formulation, previously described in sub-chapter 5.4, is 

applied only to the inside floor of a simplified car BIW FE model illustrated by Figure 5.5 b) keeping the 

other panels without damping treatment. A steady-state (harmonic) force is applied at one of those 

corners, as indicated in Figure 5.5 b) and the respective response displacements determined at point 

r, which is not visible in the same figure since it is located on the floor of the car FE model. However, 

its location is presented along with the results. Once more, the goal is to minimize the objective 

function expressed in Eq. (5.1) in a frequency range that contains the first vibration mode of the floor 

[20-60 Hz] subjected to a maximum of 30% of the total damping treatment area (considering a 

constant thickness). The material and geometric properties are presented in Table 5.1, and Table 5.2. 

An initial distribution of SDT with 0.5p   is considered over the entire floor panel. 

The results obtained are presented in Table 5.8 and are illustrated in Figure 5.17 and Figure 5.18. 

Type of damping treatment  FLD CLD 

 Displacement  Mass  Displacement  Mass  

Initial (without damping) 15.78 mm 1256.00 kg 15.78 mm 1256.00 kg 

Before optimization ( ip =0.5) 14.55 mm 1256.34 kg 1.76 mm 1259.97 kg 

Optimized 5.03 mm 1256.20 kg 0.15 mm 1259.97 kg 

Optimized variation relative to the 

initial design 
68.12% +0.02% 99.05% +0.32% 

Table 5.8 – Simplified car model results. 
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a) 

 

b) 

Figure 5.17 – Floor of the simplified BIW car model: a) 1
st
 natural vibration mode (with indication of point r); b) 

optimized material distribution. 

 

a) 
 

b) 

Figure 5.18 – Frequency response function curves of the floor of the simplified BIW car model with no damping 

treatment, before and after optimization considering: a) free layer damping treatment; b) constrained layer 

damping treatment. 

After application and optimization of the SDTs, see Figure 5.17 b), the displacements were 

minimized by approximately 68% (see Table 5.8 and Figure 5.18 a)  ) and by approximately 99% (see 

Table 5.8 and Figure 5.18 b)  ) for the FLD and CLD treatments, respectively. This was achieved with 

approximately 0.02% and 0.32% of additional mass for the FLD and CLD treatments, respectively. As 

in the cantilever beam, it can be observed that the optimized material layout, Figure 5.17 b), is similar 

in both FLD and CLD treatments. 

5.8. Conclusions on surface damping treatments 

The original contributions of this sub-chapter regarding the use of CCMs in SDTs consist of the 

demonstrated capability of using CCMs in SDTs. Furthermore, and with it arises an alternative low 

mass density solution (≈ 200 kg m
-3

, whereas asphaltic melt sheet mass density varies between 

1200 kg m
-3

 and 1600 kg m
-3

 [70] and liquid polymeric damping sprays mass density is ≈ 1000 kg m
-3

 

[70]) with the additional advantage of providing a damping capacity over a wide temperature range, 

e.g., -60ºC to 150ºC. 
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Additionally, FE models that simulate the dynamic behavior of metallic panels subject to FLD and 

CLD treatments were updated and validated using experimental data. Note that due to the rigorous 

proposed hybrid analytical-experimental methodology presented in chapter 3, which was used in this 

study to characterize the dynamic modulus of the CCM used as the damping layer for both FLD and 

CLD treatments, it was not necessary to update the parameters of the CCM to obtain a satisfactory 

correlation agreement between the experimental and numerically updated models. 

With the topology optimization procedure developed it was possible to improve the efficiency of the 

SDTs within a predefined frequency range. As expected, the CLD treatments revealed to be more 

efficient than the FLD treatment, for a given weight of damping material.  

Even though this chapter is somewhat shorter in contents relatively to the previous ones, in the 

author’s opinion it contains the initial and fundamental steps as well as the novelty that allows for the 

use of CCMs in several future new applications and for different areas of engineering.  
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Chapter 6 

 

 

6. Contributions, conclusions and future works 

 
In this thesis, theoretical, numerical and experimental models were formulated and developed 

allowing for characterization of the dynamic modulus of resilient materials and its application in 

dynamic analysis. This characterization, or material property identification, revealed to be essential for 

validating the numerical models that simulate the dynamic behavior of the two types of layer structures 

studied here, for a given frequency range and under steady-state conditions. 

 

The main four original contributions of this study are: 

i) A novel hybrid analytical-experimental methodology to determine the longitudinal dynamic modulus 

of resilient materials, with emphasis on cork composite material (CCMs); 

ii) Perhaps still part of i) is the development/adaptation of the hybrid analytical-experimental 

methodology to determine the shear dynamic modulus of resilient materials, again with emphasis 

on CCMs; 

iii) The design, development and application of phononic-inspired vibration isolators (PIVIs) that 

contemplates the use of different pairs of steel and CCMs presenting attenuation regions (ARs) 

that allow for vibration isolation in a frequency ranges of interest for several mechanical 

applications. With this is presented a novel perspective on the design of vibration isolators;   

iv) Experimental and validated numerical models as well as a topology optimization methodology 

illustrating the potential use of CCMs in surface damping treatments (SDTs) which in the author’s 

perspective presents an interesting alternative low mass density damping solution to the 

conventional polymeric materials.  

 

Based on the work conducted to achieve these original contributions, one may list the principal 

conclusions of this study as: 

a) The proposed hybrid methodology referred in i) revealed to be simpler (avoiding specific geometric 

and boundary constraints) and more rigorous (when compared to other methods), presenting a 

more accurate on hand alternative solution.  Furthermore, the modal test consists of a simple setup 

and requires only the common equipment found in a vibration laboratory (i.e., impact hammer with 

force transducer, one accelerometer, data acquisition equipment and cables). 
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b) Even though the experimental setup of the proposed hybrid methodology, referred in ii) for the 

shear complex modulus is not as simple as the one referred in i), it still provides a rigorous on hand 

solution for which does not exist (to the author’s knowledge) any simple and/or similar low cost 

alternatives. 

c) Thus, with the proposed hybrid methodologies referred in i) and ii) one obtains a rigorous and 

prompt characterization of both the longitudinal and shear dynamic moduli, and with it, the bulk 

modulus and Poisson’s ratio (under the assumption of the homogeneous isotropic linear elastic 

material behavior), of resilient materials.   

d) The results obtained using the proposed hybrid methodology referred in i)  were verified using 

dynamic mechanical analysis (DMA) and suggest for the tested CCMs a low frequency 

dependence for both the storage modulus 'E  and loss factor   in a frequency range between 1 Hz 

and 10
4
 Hz. 

e) Regarding the PIVIs, the numerical and experimental results obtained present a satisfactory 

agreement and evidentiate the significant ARs of interest in a frequency ranges of interest for 

several mechanical applications. 

f) When comparing the performance (in terms of force transmissibility) of PIVIs with commercial 

vibration isolators (CVI) it is verified that the PIVIs present interesting attenuation reduction (e.g., 

for the cases tested it varies between 25 dB and 100 dB at 1600 Hz). 

g) Furthermore, when the PIVI is combined in series with a spring it is verified that the combined 

structure is capable of effectively reducing the amplitude of the longitudinal force transmitted within 

the AR of the PIVI. 

h) In this sense, it is demonstrated the capability, relevance and impact that these PIVIs present for 

noise and vibration reduction applications as they can be design to suite a specific AR in the 

frequency range, its width, and level of attenuation. 

i) Regarding the SDTs, by using the topology optimization procedure developed it was possible to 

improve the efficiency of the SDTs within a predefined frequency range.  

j) In this sense, one may conclude that the use of CCM presents an interesting alternative low mass 

density solution, to the synthetic viscoelastic materials commonly used, with the additional 

advantage of providing a damping capacity and thermal insulation over a wide temperature range. 

 

For future works and among others, one may consider: 

 How the changes in the temperature, humidity, age of the materials, amount of overload among 

other parameters, influence the dynamic modulus of the materials; 

 Other criteria as fatigue, aging, etc., in the design of PIVIs;  

 How to protect the  PIVI from fluids (e.g., oil) by guiding and encapsulating; 

 The redesign of the connections points in the case of the motor of the hermetic compressor ; 

 The development of guiding devices, to be used in the presence of flexible PIVIs, in order to 

guarantee the longitudinal stability of the isolator; 
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 Search and develop new materials that allow for ARs in lower frequency ranges and/or that allow 

to keep the length of the cell while designing by phase velocity contrast; 

 The development of PIVIs for multiaxial vibration isolation; 

 Development of liquid cork sprays for SDT.  

 

To conclude, the author would like to remark that this thesis relates different areas of science and 

engineering such as: numerical methods, symbolic computation, structural analysis, theoretical and 

experimental modal analysis of vibrations, rheology, materials characterization, prototyping and more 

recent areas such as phononics. 

It should be noted that in the author’s opinion, this thesis enhances both value and knowledge to 

CCMs applications, whose significance for the Portuguese industry has been evidenced though 

pioneering international projects, e.g., Amorim Cork Composites LIFE project [97]. Apart from the 

quality of the scientific component, the use of CCMs is a supplementary contribute to the expansion of 

the cork sector of which Portugal is considered a leader in production, processing, research, 

development and innovation.  

It is expected that this study creates impact, especially amongst the cork and CCMs environments, 

manufactures and research and development institutes and groups, since these materials are capable 

of novel and innovative applications even when subject to dynamic solicitations, where both the 

longitudinal and shear dynamic moduli of elasticity are now of simpler determination by using the 

proposed hybrid analytical-experimental methodology here presented. 
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1. A.1 – A MATLAB
®
 Code for obtaining Eq. (3.16) using symbolic computation 

This code can be selected and past to the MATLAB
®
 command window. It has all symbolic 

computations done to obtain Eq. (3.16). 

% MATLAB 7.10 R(2010a) 
% This script obtains the scalar nonlinear equation Eq.(3.16) of  the 

inverse problem that solves the identification problem. 
clc; clear all; 
% Construct symbolic objects 
syms  w w1 x c cmat1 cmat2 B1 B2 Lmat Lmat1 Lmat2 kmat kmat1 kmat2 A 

Emat..., 
      Emat1 Emat2 rhomat1 rhomat2 D1 D2 
% The above entities are, respectively: 
% w - angular frequency (rad s^-1)  
% w1 - first natural frequency (rad s^-1)  
% x - Coordinate along the length of the bar 
% c - wave phase velocity (m s^-1)   
% A - cross sectional area of the specimen (m^2)  
% Lmat - Material length (m)                    
% Lmat1 - Length of material 1  (m)  
% Lmat2 - Length of material 2  (m)          
% kmat - Wave number 
% kmat1 - Wave number in material 1       
% kmat2 - Wave number in material 2 
% Emat - Storage modulus (Pa)                  
% Emat1 - Storage modulus of material 1 (Pa) first and last layer  
% Emat2 - Storage modulus of material 2 (Pa)     
% cmat1 - wave phase velocity in material 1 (m s^-1) 
% cmat2 - wave phase velocity in material 2 (m s^-1) 
% rhomat1 - Mass density of material 1 (kg m^-3)     
% rhomat2 - Mass density of material 2 (kg m^-3) 
%  
% Solution of differential equation (5) considering harmonic motion 
u=D1*sin(kmat*x)+D2*cos(kmat*x) 
%Neumman Boundary conditions  B.C. - Free : du/dx=0 <=> Stress=0 
x0=0; xLmat=Lmat;  
ux0=subs(u,{x},{x0});  
uxL=subs(u,{x},{xLmat}); 
%Displacement matrix [UD]: U=[UD]D 
%======================================================= 
% Extract coefficients of D1 and D2 from these 2 equations  
%======================================================= 
UD(1,1)=subs(ux0,{D1},{1}); UD(1,1)=subs(UD(1,1),{D2},{0}); 
UD(1,2)=subs(ux0,{D1},{0});UD(1,2)=subs(UD(1,2),{D2},{1});  
UD(2,1)=subs(uxL,{D1},{1}); UD(2,1)=subs(UD(2,1),{D2},{0}); 
UD(2,2)=subs(uxL,{D1},{0});UD(2,2)=subs(UD(2,2),{D2},{1}); 
UD 
%Derivative of the displacement u with respect to the coordinate x 
dudx=diff(u,x);   
dudx0=subs(dudx,{x},{x0});  
dudxL=subs(dudx,{x},{xLmat});  
% Derivative of displacement matrix [dU] 
%======================================================= 
% Extract coefficients of D1 and D2 from these 2 equations  
%======================================================= 
dU(1,1)=subs(-dudx0,{D1,D2},{1,0});   
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dU(1,2)=subs(-dudx0,{D1,D2},{0,1});   
dU(2,1)=subs(dudxL,{D1,D2},{1,0});   
dU(2,2)=subs(dudxL,{D1,D2},{0,1});  
% matrix [FD]: F=[FD]D where F is Force  
FD= Emat*A*dU;  
% U=[UD]D and F=[FD]D  ==> F=[FD]*inv([UD])*U ==> F=ZU 
% Obtain Z=[FD]*inv([UD]) 
Zz=FD/UD;  
Z=simplify(Zz) % Dynamic Stiffness matrix [Z] 
% Symbolic variables substitution 
% Generate matrix for each layer Lmat1=Lmat3 e Lmat2 
Zmat1=subs(Z,{Emat,kmat,Lmat},{Emat1,kmat1,Lmat1});  
Zmat2=subs(Z,{Emat,kmat,Lmat},{Emat2,kmat2,Lmat2});  
% Global dynamic stiffness matrix for a two-material three layer bar 
ZG(1,1)=Zmat1(1,1);  
ZG(1,2)=Zmat1(1,2); 
ZG(2,1)=Zmat1(1,2); 
ZG(2,2)=Zmat1(2,2)+Zmat2(1,1); 
ZG(2,3)=Zmat2(1,2); 
ZG(3,2)=Zmat2(1,2); 
ZG(3,3)=Zmat2(2,2)+Zmat1(1,1); 
ZG(3,4)=Zmat1(1,2); 
ZG(4,4)=Zmat1(2,2); 
ZG(4,3)=Zmat1(1,2); 
kkmat1=w/cmat1; 
kkmat2=w/cmat2;  
% Symbolic variables substitution 
ZZG=subs(ZG,{kmat1,kmat2},{kkmat1,kkmat2}); 
% Determinant of ZG gives the Characteristic Polynomial of the system 
DETZZG=det(ZZG) 
% Symbolic simplifications 
[NDet DDet]=numden(DETZZG); %Get numerator and denominator of  DETZZG 
AA=simplify(NDet); % Simplify numerator 
AAA=collect(AA, [A w Emat1]) 
P2=subs(AAA,{Emat1^3,Emat1^4},{0,0}) 
P3=subs(AAA,{Emat1^2,Emat1^4},{0,0}) 
P4=subs(AAA,{Emat1^2,Emat1^3},{0,0}) 
% Simplify previous symbolic expressions 
PP2=simplify(P2/DDet); 
PP3=simplify(P3/DDet); 
PP4=simplify(P4/DDet); 
% Introduce the c2 in terms of Emat2 
ccmat2=sqrt(Emat2/rhomat2); 
PPP2=subs(PP2,{cmat2},{ccmat2}); 
PPP3=subs(PP3,{cmat2},{ccmat2}); 
PPP4=subs(PP4,{cmat2},{ccmat2}); 
% Simplify previous symbolic expressions 
%% Automatic replacement of a group of factors: divide by the factors and 
%% multiply by the variable LAM and others that represents that group of 

factors  
syms LAM1 LAM2 LAM3 LAM4 C B1 B2 B3  
C=A^4*Emat1^2*w^4; 
B1=cos(w*Lmat1/cmat1); 
B2=sin(w*Lmat1/cmat1); 
B3=tan(w*Lmat2/ccmat2); 
% LAM1=(-C*rhomat2*cmat1^-2*B1^2*B2^-2)) 
TERM1=simplify(PPP2/(-C*rhomat2*cmat1^-2*B1^2*B2^-2))*LAM1; 
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% LAM2=(-2*C*Emat1*cmat1^-3*rhomat2^(1/2)*B1*B2^-1)) 
[TERM2_NUM TERM2_DEN]=numden(simplify(PPP3/(-2*C*Emat1*cmat1^-

3*rhomat2^(1/2)*B1*B2^-1))*LAM2); 
TERM2_NUM =simple(simple(TERM2_NUM)*tan((Lmat2*w)/(Emat2/rhomat2)^(1/2))); 
% LAM3=(Emat2)^(1/2) ????? 
TERM2_DEN =simple(TERM2_DEN)*tan(LAM3/(Emat2)^(1/2)); 
% The rhomat2^(1/2) should cancel in the denominator  
TERM2_DEN=subs(TERM2_DEN,rhomat2,1);  %%To simplify the expression  
% LAM4=(C*Emat1^2*cmat1^-4)) 
TERM3=simplify(PPP4/(C*Emat1^2*cmat1^-4))*LAM4; 
%% Group the compacted terms 
FF=TERM1+TERM2_NUM/TERM2_DEN+TERM3    
FF=collect(FF,[LAM1 LAM2 LAM3 LAM4]) 
pretty(FF) 
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2. A.2 – A note on the two DOF discrete layer bar model  

The two-material three layer bar illustrated by Figure 3.3, may alternatively be modeled using two 

infinitely rigid point masses 
1MatM  (see, sub-chapter 2.5.2.1) and one massless spring 

2Matk (see 

sub-chapter 2.5.2.2.) as illustrated in Figure A.2.1. 

 

Figure A.2.1 – Two DOF discrete model. 

For this system, Eq. (2.19), i.e.,  2det  K M 0  may be rewritten as 

leading to 

After simplification one obtains 

The solutions of Eq. (A.2.3) are 

Thus, the first non-zero natural frequency of the 2 DoF discrete model may be expressed as  

where 1 12  f , 
1 1 1 1Mat Mat Mat MatM A L  and 

2 2 2 2

'
Mat Mat Mat MatA Lk E which, when solved 

in order to the unknown  and considering that 
1 2Mat MatA A A 

 
leads to  
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3. A.3 –  A MATLAB
®
 Code for solving Eq.(3.16) using the solution of Eq. (3.17) as the initial guess 

This code can be selected and past to the MATLAB
®
 command window. It has all computations to 

estimate 
2

'
MatE  for the data introduced (at line where is the comment:  %Values of the variables). 

% MATLAB 7.10 R(2010a) 
% This script initializes the parameters, builds and solves the  
% scalar nonlinear function Eq. (3.16) of the identification problem 
% Knowing: 
% Emat1 - Storage modulus of material 1 (Pa) first and last layer; 
% rhomat1 - density of material 1 (kg m^-3);  rhomat2 - density of 
% material 2 (kg m^-3) intermediate resilient layer; 
% Lmat1 - length of material 1 (m); Lmat2 - length of material 2 (m); 
% A - cross sectional area of the specimen (m^2); 
% w1 - the first natural frequency of the specimen (rad s^-1)  
% obtained  experimentally on a three layer  
% specimen where w1=2*pi*f1 with f1 the frequency in Hz;   
% 
% Furthermore, this script obtains the solutions of the scalar nonlinear  

% equation of the inverse problem that solves the identification problem. 
% The fzero function is used to find the roots of the nonlinear equation  
% corresponding to the Emat2 parameter. 
% An appropriate initial guess (initial_guess) must be given to  
% obtain the first positive zero. 
clc; clear all; 
% Values of the variables 
A=0.0202*0.0202;  
Lmat1=0.0202; Lmat2=0.0128;  
Emat1=205E9; rhomat1=7640; rhomat2=893; 
f1=1120; % cyclic frequency Hz obtained from experimental test 
% Initialize the groups of factors 
w1=2*pi*f1;   
cmat1=sqrt(Emat1/rhomat1);  % Material 1 wave phase velocity (m/s) 
C=A^4*Emat1^2*w1^4;B1=cos((Lmat1*w1)/cmat1); B2=sin((Lmat1*w1)/cmat1);  
LAM1=-C*rhomat2*cmat1^-2*B1^2*B2^-2;LAM2=-2*C*Emat1*cmat1^-

3*rhomat2^(1/2)*B1*B2^-1; 
LAM3=rhomat2^(1/2)*Lmat2*w1;LAM4=C*Emat1^2*cmat1^-4; 
% Rescale the equation FF(x)=0 
maxLAM=max([abs(LAM1),abs(LAM2),abs(LAM4)]);  
LAM1=LAM1/maxLAM; LAM2=LAM2/maxLAM; LAM4=LAM4/maxLAM; 
LAM1;LAM2;LAM3; 
% Build the expression for the Eq.(3.16) 
FF=horzcat(num2str(LAM1),'*x+(',num2str(LAM2),'*tan((',num2str(LAM3),... 
    '*x^-0.5))^-1*x^0.5)+',num2str(LAM4));  
%% Solve for x the FF(x)=0 
% a good initial_guess can be obtained from the k-m 2 DOFs model approach 
initial_guess=2*pi^2*rhomat1*Lmat1*Lmat2*f1^2; %Eq.(3.16) 
Emat2=fzero(FF,initial_guess); % Emat2 (Pa) 
% Outputs 
[s,errmsg]=sprintf('Emat1= %f GPa and rhomat1 %f kg/m3',Emat1/1e9, 

rhomat1);disp(s) 
[s,errmsg]=sprintf('Emat2= %f MPa and rhomat2 %f kg/m3',Emat2/1e6, 

rhomat2);disp(s) 
[s,errmsg]=sprintf('A= %f m2, L1= %f m and L2= %f m  ',A, Lmat1, 

Lmat2);disp(s) 
[s,errmsg]=sprintf('Emat2 obtained with f1= %f Hz',f1);disp(s) 
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4. A.4 – A note on the total modal loss factor of a two-material uniform bar 

This note shows why t  is given by 
2Mat

 when 
1Mat

 can be neglected. For it, a MATLAB
®
 code 

that can be selected and past to the command window is appended at the end of this appendix. 

Consider an one-dimensional bar (rod) with uniform transversal sectional area A , as illustrated in 

Figure A.4.1, with two parallel layers of different materials, with longitudinal dynamic moduli of 

elasticity 
1

*
MatE

 
and 

2

*
MatE , modal loss factors 

1Mat
 
and 

2Mat  and lengths 
1MatL

 
and 

2MatL .  

 

Figure A.4.1 – Two layer bar composed of two materials. 

Under axial force excitation, one may assume that the longitudinal stiffness of the bar may be 

simulated as the stiffness of several springs that are connected in series where the total stiffness tk
 
is 

determined by 1 21 1 1t s sk k k   . Indeed, the longitudinal stiffness of a uniform bar with uniform 

cross sectional area A and length L  may be expressed as  *k E A L and therefore, when applying 

for the two-material bar and as a first approximation, the total longitudinal stiffness 
*

tE

 

can be 

estimated like with springs connected in series as 

Since areas A  are equal and attending to  * '

Mat Mat Mat1 iE E
  

  , Eq. 4.1 may be rewritten as, 

which when rearranged leads to  
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By expanding the denominator of Eq. (A.4.3) and considering that 
1 2Mat MattL L L   one obtains  

Multiplying the numerator and denominator by the complex conjugate of the denominator one obtains  

where  

 
1 2 1 2

' '

1 Mat Mat Mat MatC E E L L   and 

     
1 2 1 1 2 1 2 1 2 2 1 2 2

' 2 2 2 ' ' ' 2 2 2 2

2 Mat Mat Mat Mat Mat Mat Mat Mat Mat Mat Mat Mat Mat1 2 1 1C E L E E L L E L          . 

Separating the real and imaginary components of Eq. (A.4.5) and applying     * *Im Ret t tE E   

leads to 

Dividing the numerator and denominator of Eq. (A.4.6) by 
1

'

MatE one obtains 

Assuming in Eq. (A.4.7) that 
1 2

' '
Mat MatE E  it follows that 

Determining the limit of Eq. (A.4.8) when 
1Mat
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Thus, the modal loss factor of the intermediate resilient layer 
2Mat  is successfully approximated by 

the total modal loss factor, i.e., 

% MATLAB 7.10 R(2010a) 
% This script was used to show that the total modal loss factor of a two 
% layer bar with modal loss factors eta1 and eta2 is expressed by the  
% eta2 when eta1 can be neglected  
clc;clear all 
syms k1 k2 k3 Keq E1 L1 E2 L2 E3 L3 eta2 eta1 A Lt 'real' 
k1=(E1*(1+1i*eta1))/L1;  % Longitudinal stiffness Mat1 
k2=(E2*(1+1i*eta2))/L2;  % Longitudinal stiffness Mat2 
keq=(1/((1/k1)+(1/k2)));  % Equivalent stiffness Mat1-Mat2 in series 
pretty(keq)   %Eq.(A.4.1) 
K1=factor(keq); % Factorize keq 
pretty(K1)  %Eq.(A.4.3)  
[n,d] = numden(K1); % Numerator and denominator of keq 
dc=conj(d); % Complex conjugate of the denominator of keq 
KKn=expand(n*(L1+L2)*dc); % Multiply numerator by complex conjugate of 

denominator and by Lt 
pretty(KKn) 
KKnr=simplify(real(KKn)) 
KKni=simplify(imag(KKn)) 
KKd=simplify(d*dc) % Multiply denominator by its complex conjugate  
pretty(KKd) 
KKnn=expand(KKn); % Expand the numerator 
pretty(KKnn) 
KKdd=expand(KKd); % Simplify the numerator 
pretty(KKdd) 
KKK=simplify(KKnn/KKdd); % Built equivalent keq expression - Eq.(A.4.5) 
pretty(KKK)  
R=real(KKK); % Real component of Eq.(A.4.5) 
RR=simplify(R) % Simplify real component 
pretty(RR)  
I=imag(KKK); % Imaginary component 
II=simplify(I)% Simplify imaginary component of Eq.(A.4.5) 
pretty(II)  
etaT=II/RR; % eta_total = imag/real - Eq.(A.4.6) 
pretty(etaT) 
[nn,dd] = numden(etaT); % Numerator and denominator of etaT 
DD=(E2/E1); % factor E2/E1 
KKnn=expand(nn*DD); % Multiply numerator by factor E2/E1 and expand 
KKdd=expand(dd*DD); % Multiply denominator by factor E2/E1 and expand 
etaTr1=KKnn/KKdd; % eta_total = imag/real  
LLL=limit(etaTr1,(E2/E1),0,'right') ; % limit when E2/E1 -->0 
LLLL=simplify(limit(LLL,eta1,0,'right') ); % limit when eta1 -->0  
pretty(LLLL) % Expression that only depends on eta2  
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Mat1

Mat
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lim .t

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5. A.5 – Construction procedure of the test specimens 

The construction procedure of the specimens is described in the following: 

1. Start by cutting the material layers (see Figure A.5.1); 

2. The steel extremities layers were polished to minimize the rugosity originated during the cutting 

process; 

3. To remove traces of oil and grease the steel extremities layers were immersed successively in two 

tanks, each containing the same degreasing solvent (acetone). The first tank acts as a wash, the 

second as a rinse;  

4. The material layers are bonded alternately using a commercial high performance, two component 

epoxy adhesive (Araldite
®
)
(*)

, with a cure time of 5 minutes; 

5. The adhesive’s preparation consists of mixing equal portions of each of the components in a 

mixture recipient until a homogenized mixture is obtained; 

6. When so, the adhesive is ready to be applied and the material layers are bonded alternately; 

7. To minimize eventual centering deviations an L shaped beam was used to correctly align the 

layers as illustrated by Figure A.5.2. 

(*)
http://www.huntsman.com/advanced_materials/eng/Markets/Adhesives/For_Consumers/ 

Araldite®_Consumer_Adhesives/index.cfm?pageID=5902. (Accessed 7 March 2011). 

 

Figure A.5.1 – Steel and CCM layers. 

 

Figure A.5.2 – L shaped beam (side view) used to aid the centering of the cells during the cure of the adhesive. 
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6. A.6 – Further experimental and analytical FRF results determined using the proposed 

analytical-experimental hybrid methodology 

In this appendix are presented further results obtained using the proposed hybrid analytical-

experimental methodology, described in sub-chapter 3.3, to identify the dynamic modulus. 

Hence, once the dynamic modulus 
2

*
MatE  is identified, the analytical receptance FRF curves are 

obtained by solving the forced harmonic vibrations problem expressed by Eq. (3.13), where the 

dynamic stiffness matrix Z is in this case expressed by Eq. (3.14). The material properties 
1Mat ,

2Mat ,
1

'
MatE  and 

1Mat are presented in Table 3.1 whereas, 
1MatL ,

2MatL  ,
2

'
MatE  and 

2Mat  are 

presented in Table 3.2 and Table 3.3.  

The results obtained with materials VC6400 and VC1001 are presented in sub-chapter 3.7.2 as 

they present the main characteristics found in all. Further results were obtained considering other 

resilient materials, and are here presented where the experimental and analytical receptance FRF 

curves are represented by the dotted-circle and filled lines, respectively, in Figure A.6.1, Figure A.6.3 

and Figure A.6.5. The experimental and analytical receptance FRF curves were then correlated using 

the FRAC, Eq. (2.59), and the FAAC, Eq. (2.60), criteria and are illustrated by Figure A.6.2, Figure 

A.6.4 and Figure A.6.6, respectively.  

 

 

Figure A.6.1 – Experimental and analytical FRF curves of test specimen with resilient material VC 5200: a) 

magnitude; b) phase. 
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Figure A.6.2 – FRF correlation functions curves of test specimen with resilient material VC 5200. 

 

 

Figure A.6.3 – Experimental and analytical FRF curves of test specimen with resilient material VC 2100: a) 

magnitude; b) phase. 

 

Figure A.6.4 – FRF correlation functions curves of test specimen with resilient material VC 2100. 
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Figure A.6.5 – Experimental and analytical FRF curves of test specimen with resilient material NL 20: a) 

magnitude; b) phase. 

 

 

Figure A.6.6 –  FRF correlation functions curves of test specimen with resilient material NL20. 

 

The analytical and experimental FRF present a good agreement in terms of magnitude and phase 

as illustrated by the above figures. The results of the receptance FRF correlation criteria present 

values above 99% for both the FAAC and the FRAC assurance criteria, respectively. The presence of 

flexural modes is almost unnoticed in receptance FRF curves. However, their presence is evidentiated 

by the FRF assurance criteria, e.g., as seen in Figure A.6.4 near 600 Hz.  
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7. A.7 – Further experimental results obtained using DMA  

In this study DMA tests were conducted on five CCMs, see Figure 3.15. However, only the results 

obtained for VC 6400 were presented, see sub-chapter 3.7.4, as they present the main characteristics 

found in all and additionally avoiding by this way a too extensive illustrated sub-chapter.  In this sense, 

next are presented the results obtained for the other materials. 

From DMA tests, one obtains the storage modulus 'E  and loss factor   curves (usually designated 

as tan delta or tg  in DMA), as a function of the temperature, see Figure A.7.1, Figure A.7.5, Figure 

A.7.9, and Figure A.7.13 for the respective VC 5200, VC2100, VC 1001 and NL20 materials.  

Using commercial software (TA Instrument Rheology Advantage Data Analysis [131]), the TTS is 

applied at a reference temperature of 20ºC which, is used to determine the shift factors Ta , (see 

Figure A.7.2, Figure A.7.6, Figure A.7.10 and Figure A.7.14 for the respective VC 5200, VC2100, VC 

1001 and NL20 materials) that best fit the Arrhenius Equation, see Eq. (3.23).  

This allows obtaining the master curves of the storage modulus 'E  and loss factor   as a function 

of frequency, as can be seen in Figure A.7.3, Figure A.7.7, Figure A.7.11 and Figure A.7.15 for the 

respective VC 5200, VC2100, VC 1001 and NL20 materials. 

A curve fitting power law with two terms is applied to the curves in the frequency range of interest 

(between 1 Hz and 10 kHz) to obtain the analytical expressions, see Table 3.9  and  Figure A.7.4, 

Figure A.7.8, Figure A.7.12 and Figure A.7.16 for the respective VC 5200, VC2100, VC 1001 and 

NL20 materials, that allows determining the storage modulus 'E  and loss factor   in the interval 

between 1Hz and 10
4
Hz.  

Material VC 5200 

 

Figure A.7.1 – Storage modulus 
'E  and loss factor   curves as a function of the temperature for three different 

frequencies for material VC 5200. 
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Figure A.7.2 – Shift curve at 20ºC as a function of the temperature for material VC 5200. 

 

Figure A.7.3 – Master curves of the storage modulus 
'E  and loss factor   as a function of the frequency for 

material VC 5200. 

 

Figure A.7.4 – Curve fitting of the master curves of the storage modulus 
'E  and loss factor   as a function of the 

frequency in the interval between 1Hz and 10
4
Hz for material VC 5200. 
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Material VC 2100 
 

 

 

Figure A.7.5 – Storage modulus 
'E  and loss factor   curves as a function of the temperature for three different 

frequencies for material VC 2100. 

 

 

 

Figure A.7.6 – Shift curve at 20ºC as a function of the temperature for material VC 2100. 
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Figure A.7.7 – Master curves of the storage modulus 
'E  and loss factor   as a function of the frequency for 

material VC 2100. 

 

 

 

Figure A.7.8 – Curve fitting of the master curves of the storage modulus 
'E  and loss factor   as a function of the 

frequency in the interval between 1Hz and 10
4
Hz for material VC 2100. 
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Material VC 1001 
 

 

 

Figure A.7.9 – Storage modulus 
'E  and loss factor   curves as a function of the temperature for three different 

frequencies for material VC 1001. 

 

 

 

Figure A.7.10 – Shift curve at 20ºC as a function of the temperature for material VC 1001. 
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Figure A.7.11 – Master curves of the storage modulus 
'E  and loss factor   as a function of the frequency for 

material VC 1001. 

 

 

 

Figure A.7.12 – Curve fitting of the master curves of the storage modulus 
'E  and loss factor   as a function of 

the frequency in the interval between 1Hz and 10
4
Hz for material VC 1001. 
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Material NL20 
 

 

 

Figure A.7.13 – Storage modulus 
'E  and loss factor   curves as a function of the temperature for three different 

frequencies for material NL20. 

 

 

Figure A.7.14 – Shift curve at 20ºC as a function of the temperature for material NL 20. 
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Figure A.7.15 – Master curves of the storage modulus 
'E  and loss factor   as a function of the frequency for 

material NL 20. 

 

 

 

 

Figure A.7.16 – Curve fitting of the master curves of the storage modulus 
'E  and loss factor   as a function of 

the frequency in the interval between 1Hz and 10
4
Hz for material NL 20. 
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8. A.8 – Further experimental results obtained for the steel plate without treatment and with FLD 

and CLD treatments 

In this appendix are presented further results that were obtained for the steel plate considering the 

cases without treatment, with FLD treatment and CDL treatment. Tests were conducted using the 

experimental specimens and setup described in sub-chapter 5.6. FRFs were obtained at four points r, 

see Figure 5.4, where the results of point r1 have already been presented in sub-chapter 5.7.1 as they 

present the main characteristics found.  

Hence, the results obtained for points r2, r3 and r4 are illustrated by Figure A.8.1, Figure A.8.2 and 

Figure A.8.3, respectively. 

 

 

Figure A.8.1–  Experimental FRF curves of a steel plate without treatment, with free layer damping treatment, and 

with constrained layer damping treatment (response at point r2: X=10 mm and Y=175 mm). 

 

Figure A.8.2–  Experimental FRF curves of a steel plate without treatment, with free layer damping treatment, and 

with constrained layer damping treatment (response at point ; r3: X=60 mm and Y=70 mm). 



  

191 

 

Figure A.8.3 –  Experimental FRF curves of a steel plate without treatment, with free layer damping treatment, 

and with constrained layer damping treatment (response at point r4: X=220 mm and Y=98 mm). 

 

From Figure A.8.1, Figure A.8.2 and Figure A.8.3, it is possible to observe that the response of the 

panel with the CLD treatment (dashed line) presents a significantly lower magnitude relatively to the 

FLD treatment (dot line), which is similar in terms of magnitude to the case without treatment (solid 

line), confirming (as expected) the higher capability of the CLD in terms of SDT.   

Thus, and as expected confirming that the use of this type of CCM in CLD treatments is capable of 

a significantly reducing the magnitude of the resonances. 
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9. A.9 – Further experimental, numerical and updated results obtained for the steel plate without 

treatment. 

In this appendix are presented further updated results that were obtained for the steel plate without 

treatment. The experimental FRF curves are compared with the numerical FRF curves that were 

obtained by conducting a harmonic response analysis, see Eq. (2.58), before and after model 

updating (see sub-chapter 2.6.3). Results were obtained at four points r, see Figure 5.4, where the 

results of point r1 have already been presented in sub-chapter 5.7.1 as they present the main 

characteristics found.  

Hence, the results obtained for points r2, r3 and r4 are illustrated by Figure A.9.1, Figure A.9.2 and 

Figure A.9.3, respectively. 

 

Figure A.9.1 – Experimental and numerical FRF curves of a steel plate without treatment (response at point r2: 

X=10 mm and Y=175 mm). 

 

 

Figure A.9.2 – Experimental and numerical FRF curves of a steel plate without treatment (response at point ; r3: 

X=60 mm and Y=70 mm). 
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Figure A.9.3 – Experimental and numerical FRF curves of a steel plate without treatment (response at point ; r4: 

X=220 mm and Y=98 mm). 

 

Similarly to the results obtained for point r1, see sub-chapter 5.7.1, the FRF curves for the 

remaining points illustrated by Figure A.9.1, Figure A.9.2 and Figure A.9.3, namely the experimental 

(solid line) and numerical (dotted line) updated (dashed line) show a satisfactory agreement. 
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