
Patterns for DevOps Pipeline Quality

Francisco José Costa Silva

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. António Manuel Ferreira Rito da Silva

Examination Committee

Chairperson: Prof. Miguel Leitão Bignolas Mira da Silva
Supervisor: Prof. António Manuel Ferreira Rito da Silva

Member of the Committee: Prof. Ademar Manuel Teixeira de Aguiar

November 2022

This work was created using LATEX typesetting language
in the Overleaf environment (www.overleaf.com).

Acknowledgments

A special thanks to Prof. António Rito Silva, this thesis supervisor, since he deserves my special

gratitude for his insights, guidance, and knowledge sharing, which made this research possible.

I also want to thank my lovely wife, Margarida, for her unconditional support throughout my life. It

was crucial to have her assistance and understanding to complete this work.

I also want to show gratitude to my father and mother for all their investment and dedication to me

throughout my life and to my brother for his unconditional support.

This work is dedicated to my eternal friend, Silvestre.

i

Abstract

Software quality is one of the most important characteristics while the development teams build software

products and artifacts. DevOps brought speed and agility and the need to create artifacts with quality to

avoid unnecessary future work.

This research proposes a qualitative analysis supported by complexity expressions describing pipeline

patterns used by small size development teams driven by two of the most common source management

strategies, Trunk-based and Feature Branch.

A Systematic Literature Review was executed to assess the current scientific state of the art in

DevOps pipeline patterns and Quality Attributes of pipelines. The Design Research Methodology will

support the execution of the qualitative analysis, using the pipeline patterns as artifacts.

In this research, we observe that while using Trunk-Based Driven Pipelines (TBDP), the development

team can rely on full automation of the delivery process driven by pipelines with higher efficiency, secu-

rity, and reliability. This pipeline type also gives the developers a faster delivery of new features promoted

by the pipeline’s high availability. Using Feature-Based Driven Pipelines (FBDP), the development team

has more control over the code integration and can rely on isolating new features in a dedicated pipeline

during development due to the pipeline’s high suitability for the stakeholders. Due to this pipeline type’s

high availability, the development team will also count on the capacity to respond quickly to unplanned

releases.

Keywords

DevOps; Pipeline Quality; Trunk-Based Development; Feature-Based Development

iii

Resumo

A qualidade do software é uma das caracterı́sticas mais importantes enquanto as equipas de desen-

volvimento constroem produtos e artefactos de software. O DevOps trouxe velocidade e agilidade,

mas com isso a necessidade de criar artefactos de software com qualidade para evitar trabalhos fu-

turos desnecessários. Este trabalho de investigação propõe uma análise qualitativa suportada por

expressões de complexidade que descrevem os padrões de uma pipeline de entrega de software, uti-

lizados por equipas de desenvolvimento de pequena dimensão, orientada por duas das estratégias

mais comuns de Code Source Management, Trunk-based e Feature-Based. Foi realizada uma Revisão

Sistemática da Literatura para avaliar o estado de arte atual dos vários padrõesjá existentes da pipeline

de DevOps e Atributos de Qualidade das mesmas. A metodologia de invertigação utilizada foi Design

Science Research, e apoiará a execução da análise qualitativa, utilizando os padrões de pipeline como

artefactos. Nesta pesquisa, observamos que ao usar uma Trunk-Based Driven Pipeline (TBDP), a

equipa de desenvolvimento pode contar com a automação total do processo de entrega através de

pipelines com maior eficiência, segurança e confiabilidade. Esse tipo de pipeline também oferece aos

developers uma entrega mais rápida de novos recursos promovida pela alta disponibilidade da pipeline.

Também observámos que usando uma Feature-Based Driven Pipelines, a equipa de desenvolvimento

tem mais controlo sobre a integração do código e pode contar com o isolamento de novos recursos

numa pipeline dedicado durante o desenvolvimento devido à alta adequação da pipeline aos stakehold-

ers. Devido à alta disponibilidade desse tipo de pipeline, a equipa de desenvolvimento também contará

com a capacidade de responder rapidamente a releases não planeadas.

Palavras Chave

DevOps; Pipeline Quality; Trunk-Based Development; Feature-Based Development

v

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Problem . 3

1.3 Objectives and Deliverables . 4

1.4 Thesis Outline . 4

2 Research Methodology 5

2.1 Design Science Research . 7

2.2 Systematic Literature Review . 9

2.2.1 Planning . 9

2.2.2 Conducting . 11

2.2.3 Reporting the Review . 13

3 Theoretical Background 17

3.1 Devops . 19

3.1.1 Feature Flags . 19

3.1.2 Quality Gates and Triggers . 20

3.1.3 Tools . 20

3.1.4 Team Roles . 20

3.1.5 Principles . 21

3.2 Software Configuration Management . 22

3.2.1 Git Operations . 22

3.2.2 Branching Patterns . 23

3.2.3 Build Phase and Testing Phase . 24

3.2.4 Deployment Phase . 26

3.2.5 Release Phase . 26

3.3 DevOps Pipeline . 27

3.3.1 DevOps Standard Pipeline . 28

3.4 Quality Attributes . 29

vii

3.4.1 Software Quality Attributes . 29

3.4.2 Pipeline Quality Attributes . 30

4 Solution 33

4.1 Trunk-Based Driven Pipeline . 35

4.1.1 Common Pipeline Ramifications . 36

4.1.2 Advantages and downsides . 41

4.2 Feature-Based Driven Pipeline . 42

4.2.1 Common Pipeline Ramifications . 43

4.2.2 Advantages and Downsides . 50

4.3 Patterns Analysis . 50

5 Evaluation 53

5.1 Evaluation Method . 55

5.1.1 Number of Automated operations . 55

5.1.2 Possible Number of Pipelines . 56

5.1.3 Quality Gates . 56

5.2 Complexity Expressions . 62

5.2.1 Trunk Based Complexity Expressions . 62

5.2.2 Feature-Based Complexity Expressions . 63

5.3 Qualitative Analysis . 64

5.3.1 Trunk Based Driven Pipelines Qualitative Analysis 64

5.3.2 Feature-Based Driven Pipelines Qualitative Analysis 66

6 Conclusion 69

6.1 Conclusions . 71

6.2 System Limitations . 73

6.3 Future Work . 73

Bibliography 75

A Code of Project 81

A.0.1 Trunk-Based Pipelines Code . 81

A.0.2 Feature-Based Pipelines Code . 91

viii

List of Figures

2.1 Figure representing the phases of DSRM process reprinted from [1] 7

2.2 Ilustration of the Review Protocol . 10

2.3 Illustration of the Studies Selection process . 11

2.4 Data Sources Bar Graphic . 11

2.5 Articles Creation Date Distribution . 12

2.6 Publications types . 12

2.7 Tag Cloud . 13

3.1 DevOps team Roles Diagram reprinted from [2] . 21

3.2 Low Frequency vs High-Frequency Integration. Reprinted from [3] 23

3.3 SDLC standard business practices relation representation 27

3.4 Caption for all diagram representations . 28

3.5 Illustration of a Standard Pipeline . 29

4.1 Illustration of Principal Pipeline driven by a Trunk-Based code version strategy 35

4.2 Illustration of Pipeline Ramification A . 37

4.3 Illustration of Trunk-based driven Pipeline Ramification B 38

4.4 Illustration of Trunk-based driven Pipeline Ramification C 39

4.5 Illustration Trunk-based driven Pipeline Ramification D . 41

4.6 Illustration of Principal Pipeline driven by a Feature-Based code version strategy 42

4.7 Illustration of the Pipeline Ramification A . 44

4.8 Illustration of the Pipeline Ramification B . 45

4.9 Illustration of the Pipeline Ramification C - Simple Version 46

4.10 Illustration of the Pipeline Ramification C - Complex Version 46

4.11 Illustration of the Pipeline Ramification D . 47

4.12 Illustration of the Pipeline Ramification E . 48

4.13 Illustration of the Pipeline Ramification F . 49

ix

5.1 Qualitative Analysis for Automated Operations . 55

5.2 Possible Number of Pipelines Impact in pipeline quality 56

5.3 Quality Gates Impact in pipeline quality . 57

5.4 Illustration Project Structure using Feature Toggles . 58

5.5 Notification for Approval of the Release . 60

5.6 Manual Operations Impact in pipeline quality . 62

5.7 Trunk-based Driven Pipelines Qualitative Analysis . 64

5.8 Feature-Based Driven Pipelines Qualitative Analysis . 66

x

List of Tables

2.1 Inclusion and Exclusion Criteria . 10

5.1 Trunk Based Complexity Expression . 63

5.2 Feature-Based Complexity Expressions . 63

xi

xii

Listings

5.1 Simple Python Application . 57

5.2 Load Feature toggle pipeline operation . 57

5.3 Feature Pipeline Trigger Example . 58

5.4 Continuous Deployment pipeline Trigger Example . 59

5.5 Release Operation definition in the pipeline . 59

5.6 Example of a schedule pipeline . 60

5.7 Configuration of the schedule pipeline . 61

A.1 Simple Trunk-Based Driven Pipeline Example. 81

A.2 Trunk-Based Driven Pipeline with complex tests Example. 86

A.3 Trunk-Based Driven Parallel Pipeline with complex tests Example. 90

A.4 Simple Feature branch Mainline Pipeline Example. 91

A.5 Simple Feature branch Pipeline Example. 94

xiii

xiv

Acronyms

CI Continuous Integration

DSR Design Science Research

SLR Systematic Literature Review

CDY Continuous Delivery

CDT Continuous Deployment

SCM Source Code Management

FBDP Feature-Based Driven Pipeline

TBDP Trunk-Based Driven Pipelines

xv

xvi

1
Introduction

Contents

1.1 Motivation . 3

1.2 Problem . 3

1.3 Objectives and Deliverables . 4

1.4 Thesis Outline . 4

1

2

1.1 Motivation

Software is part of life. It is prevalent in companies and daily human activities. This importance in our

life implies the need to have software products and services that are reliable, useful for the users, and

secure every time we use them [4]. With the increased business needs, the developers identified the

need to respond quickly to client’s needs and get feedback every time new functionality is deployed in

production.

DevOps is a recent approach to Software Development. The process has its roots in the agile

development mindset, aiming for fast delivery to customers by bringing the development and operation

teams closer. DevOps began in 2008 when Patrick Debois, at the Agile 2008 Conference, mentioned

the need for an agile infrastructure and interaction between the development and operations teams [5].

Delivery faster is good, but this new approach leads to quality in the final artifacts the software team will

deliver to their clients.

The design decisions defined at the beginning of the Software projects can influence the project’s

long-term success. In an increasingly more automated software world [6], automated delivery pipeline

patterns start to appear, and with them, the need for research studies on the pipelines to understand

the suitable pipeline pattern for software project requirements. Sustained planning can contribute to

lowering the risk of the project’s unsuccess [7].

A recent research survey [8] made to a large number of IT professionals regarding the bests practices

when implementing DevOps in one organization shows that emphasizing quality early in the process

impacts the success of implementing DevOps.

Several studies already focus on the DevOps impact on software development and software quality

[9] [4]. However, only some research studies focus on the study of pipeline quality attributes and their

implications.

This research motivation is based on almost four years of experience working with DevOps tools and

implementing pipelines. It pretends to create a helpful tool for developers during the Design Phase and

contributes to increasing research work targeting the pipeline quality attributes as study artifacts.

1.2 Problem

To the author’s knowledge of this thesis, no research was conducted to study the impact of pipeline

pattern complexity on pipeline quality attributes. The problem identified for this research problem is:

Problem: The Assessment of the complexity of pipeline patterns driven by the most common source

code management strategies to understand their impact on the pipeline quality attributes.

3

1.3 Objectives and Deliverables

Having all the needed and accurate information during the design of a pipeline that will support a soft-

ware delivery process is very important. A pipeline that corresponds to the requirements and is helpful

for the development teams can be before starting development can be achievable, knowing what a

pipeline pattern will affect in the long term.

This dissertation aims to propose a qualitative analysis of the pipeline patterns driven by two source

management strategies, Trunk-based and Feature-Based. The first part of the research will be the

proposal of pipeline patterns that will support the implications of delivering software applications that

use the most common source management strategy (Trunk-based and Feature-Based). After that, these

models (the pipeline patterns) will be transformed into complex expressions. The interpretation of this

complexity expression will support the qualitative analysis. For the methodology chosen to support the

study of this research artifact, we will use Design Science Research (DSR).

To sustain research, we first will execute a Systematic Literature Review (SLR) to comprehend the

state of the art of the DevOps pipeline by understanding the most consensual pipeline stages of its op-

erations. Then we need to understand the already existing pipeline patterns and their quality attributes.

The research questions are:

• RQ1: What is the impact of DevOps in automating the Software Delivery process?

• RQ2: What operational stages define the automated software delivery pipeline that supports the

DevOps approach?

• RQ3: What are the existing design patterns and quality attributes of an automated software deliv-

ery pipeline that supports the DevOps approach?

1.4 Thesis Outline

Our research document is divided into six chapters. Chapter 1 will exhibit the motivation, research prob-

lem, objectives, and deliverables. The literature review performed before this research is disclosed in

Chapter 2, highlighting the motivation, research questions, review protocol, and results. In Chapter 3,

a theoretical background on the following themes: DevOps, DevOps Pipeline, Software Configuration

Management, and Quality Attributes. In Chapter 4 is disclosed in detail the Design Phase belonging

to Design Science Research (DSR) methodology, where pipeline patterns are defined and discussed.

Chapter 5 delivers the Demonstration and Evaluation phases of the DSR, which reflects the transforma-

tion of the pipeline pattern diagrams into complexity expressions that will support the qualitative analysis.

Chapter 6 closes the research document structure and presents the Research Conclusions, System lim-

itations, and Future Work.

4

2
Research Methodology

Contents

2.1 Design Science Research . 7

2.2 Systematic Literature Review . 9

5

6

A qualitative study of the pipeline patterns driven by the Trunk-based and Feature-Based Source

Management strategies is the primary goal of this thesis. In order to be able to study the research

artifacts properly, in this chapter, we will define the Design Science Research (DSR) used in this thesis

and expose the baseline research work done using a SLR to identify any related existing studies.

2.1 Design Science Research

Firstly suggested by March and Smith in the article ”Design and natural science research on information

” [10] and more recently by Henver et al. [11] , Design Science Research (DSR), is traditionally used in

Information System related research. This research methodology qualifies the conducting of studies by

understanding the domain and testing ”new and innovative artifacts” [11].

Figure 2.1: Figure representing the phases of DSRM process reprinted from [1]

Peffers et al. [1] conferees the following six steps to execute a DSR:

1. Problem identification and motivation,

2. Definition of the objectives for a solution,

3. Designing and development of artifact,

4. Demonstration of the use of the artifact to solve one or more instances of the problem,

5. Evaluation by observing and measuring how well the artifact supports a solution to the problem,

6. Communication of the problem and its importance, the artifact, its utility and novelty, the rigor of its

design, and its effectiveness to researchers and practicing professionals.

7

Henver et al. [11], in the study entitled ”Design Science in Information System Research” suggests

seven guidelines for the development of DSR in Information Systems Research:

1. Design as an artifact - producing a viable artifact that can be constituted using a construct, a

model, a method, or an instantiation providing the vocabulary and symbols to defined problems

and solutions

2. Problem relevance- the solution should be technology-based and relevant for business problems,

which can be defined as the differences between the goal state and the system’s current state.

3. Design Evaluation - The three dimensions of the artifact target for the research, utility, quality,

and efficacy, should be rigorously demonstrated. The Evaluations methods can be categorized as

Observational, Analytical, Experimental, Testing, and Descriptive.

4. Research Contributions - The design research should contribute in a verifiable manner to the

artifact design functionalities and/or methodologies.

5. Research Rigor - The design research should apply rigorous methods in constructing and evalu-

ating the artifact targeted by the research.

6. Design as a Search process - while searching for a compelling artifact, we should utilize all the

means to accomplish the ideal outcomes while fulfilling the laws in problems solving.

7. Communication of Research - The presentation of the Design-science research results should be

adequate for technology and management-oriented audiences.

The DSR methodology steps, illustrated in figure 2.1, will be used in this research to support the qual-

itative study of the pipeline patterns driven by the Trunk-based and Feature-Based Source Management

strategies.

The Problem Identification, Motivation, and Research Objectives reflected in Section 2 are supported

by the initial work executed using the procedures suggested by Kitchenham et al. [12] to perform a Sys-

tematic Literature. Chapter 3 presents the Design and Development of the artifact disclosure in-depth

research to support all the concepts supporting the pipeline patterns. Chapter 4 presents the Demon-

stration of the Artifact, exposing an in-depth study of the principal Trunk-based driven and Feature-Based

driven pipelines and their suggested pipeline ramifications using the simulation method. The Evaluation

will be revealed in Chapter 5 using illustrative scenarios described by complexity expressions repre-

senting the artifact models presented in Chapter 4. The Research Results will be communicated via

submissions to journals and conferences.

8

2.2 Systematic Literature Review

Systematic Literature Review (SLR) is defined as “a means of identifying, evaluating, and interpreting all

available research relevant to a particular research question, or topic area, or phenomenon of interest”

[12].

Our SLR was performed with Kitchenham’s Procedures for Performing Systematic Reviews guidance.

The procedures used are [12]:

• Planning – In Section 2.2.1 we expose the motivation to perform this research, in Section 2.2.1 the

specification of research questions, and in Section 2.2.1 the review protocol.

• Conducting – presented in Section 2.2.2 of this document is the application of the review protocol,

resulting in the primary studies and data extraction.

• Reporting the review – this is the last phase of the review. Section 2.2.3 summarizes the extorted

information for the selected studies.

We chose to perform this SLR because we needed to summarize state-of-the-art information regard-

ing DevOps Pipelines Structure, existing Patterns, and the Software Quality of the DevOps pipelines.

The result o the SLR will help support the Problem, Motivation, and Research Objectives.

2.2.1 Planning

Motivation

DevOps is a relatively new approach to software development. Due to the benefits of this new ap-

proach, companies have massively started using it. [6] A recent research survey [8] made to a large

number of IT professionals regarding the bests practices when implementing DevOps in one organi-

zation shows that emphasizing quality early in the process impacts the success of implementing De-

vOps. Several studies already focus on the DevOps impact on software development and software

quality [9] [4]. However, only some research studies focus on the study of pipeline quality attributes

and their implications. We pretend to create a helpful tool for developers during the Design Phase and

contribute to increasing research work targeting the pipeline quality attributes as study artifacts.

Research Questions

• RQ1: What is the impact of DevOps in automating the Software Delivery process?

• RQ2: What operational stages define the automated software delivery pipeline that sup- ports the

DevOps approach?

• RQ3: What are the existing design patterns and quality attributes of an automated software deliv-

ery pipeline that supports the DevOps approach?

9

Review Protocol

The first step identified in Kitchenham’s procedures for defining the review protocol [12] is to create

a search string to retrieve the maximum number of studies related to our proposed research questions.

All the steps of the review protocol defined are illustrated in Figure 2.2.

The Search Strings were: DevOps AND (patterns OR practices); DevOps AND Software Delivery ;

Devops AND (Quality OR Quality Attributes) AND Software

The Data Sources where the search string was performed were: ACM Digital Library, IEEE Digital

Library, Science Direct, Books, ArXiv, Springer Link, and Wiley Online Library.

Figure 2.2: Ilustration of the Review Protocol

The second step is to define the inclusion and exclusion criteria and apply them to the returning

articles from a search string. Both criteria are illustrated in Table 2.1.

Inclusion Criteria Exclusion Criteria
Articles from Journals and Conference

Proceedings that relate DevOps and Quality in software Products
Different Subject

Articles from Journals and Conference

Proceedings about DevOps approach
No references

Books related to DevOps Approach Only full Documents
Books related to Software Products Studies Not Related with DevOps
Thesis or scientific articles where the subject is related to DevOps No duplicates
Thesis or scientific where the subject is Related
to Quality Attributes or Software Quality Unable to get full documents

Conference Proceedings, and Books
Non-scientific articles from Journals,

Conference Proceedings and Books

Table 2.1: Inclusion and Exclusion Criteria

10

2.2.2 Conducting

Selection of Studies

Figure 2.3: Illustration of the Studies Selection process

With the search string int datasets defined in the review Protocol, we found 3646 artifacts. After

applying the inclusion and exclusion criteria to the title and abstracts and removing the duplicates, we

ended with 139 articles. Each of the 139 articles was read, getting 26 articles relevant to our research.

We also added four more that we reached using Reference Snowballing. Figure 2.3 illustrates the

studies selections process.

Data Extraction Analysis

In Data Extraction Analyses, we will present the analysis of different parameters of the selected

studies, such as their data sources, this distribution over the years, and a Tag Cloud, which shows the

most relevant terms from a list of titles.

Figure 2.4: Data Sources Bar Graphic

11

By observing Figure 2.4, we notice that most select studies were from IEEE Explore, followed by the

Books. After that, Springer followed with the same number, ScienceDirect, ACM DL, and ArXiv, finishing

with the Wiley Online Library.

Figure 2.5: Articles Creation Date Distribution

In figure 2.5 is possible to observe the distribution of studies over the years. 2015 and 2018 are the

years from which more studies were selected for this research.

Figure 2.6: Publications types

The most common type among the selected papers in the Conference Proceedings is fifty-eight

percent of documents. Papers from journals Articles twenty-nine percent, books twelve percent, and

thesis 3 percent were also determined. This distribution I represented in 2.6.

12

Figure 2.7: Tag Cloud

Figure 2.7 represents a tag Cloud that gives the most relevant terms from a list of titles of the final set

of selected papers. The most relevant terms are, with no surprise, “Software,” “Continuous,” “DevOps,”

and “Delivery.”

2.2.3 Reporting the Review

RQ1 - What is the impact of DevOps in automating the Software delivery process?

The DevOps approach can help automate the software delivery process. DevOps software delivery

automation can be separated into three concepts: Continuous Delivery, Continuous Integration, and

Continuous Deployment. Continuous Delivery (CDY) enables operation teams to interactively deliver

available software artifacts in a short cycle of time to ensure the software is always in a release state

while daily, developers make thousands of changes [13]. Continuous Integration (CI) is the technique

that continually merges artifacts, including source code updates from all developers on a team, into

a shared mainline to build and test the developed system . [14] Continuous Deployment (CDT) is the

automated process of deploying changes to production [14]. CI, CDY, and CDT consummations are

called Automated Deployment Pipeline [15]. Four main quality attributes define a DevOps automated

pipeline: Continuous Testing, Code Review, Release engineering, and Deployment [16]. Continuous

Testing. This characteristic represents a software product’s quality validation, and verification [17]. The

pipeline is responsible for executing the tests previously developed by the developers in automation test-

ing tools [16]. Code Review. This characteristic assures the quality of the code written by developers.

The automated build of the code delivery process has a notable impact on code. Review participation

improves and brings a higher percentage of code reviews [18]. This also increases the involvement and

13

responsibility of developers in the software life-cycle. Release Engineering is a software engineering dis-

cipline that develops, implements, and optimizes processes to deploy high-quality software reliably and

predictably [19]. This characteristic ensures traceability of changes reproducibility of build, configuration,

and release while maintaining a revertible repository of all changes. [16].

RQ2 - What operational stages define the automated software delivery pipeline that supports the

DevOps approach?

According to an empirical investigation from Mojtaba Shahin et al. [20], version control, build, unit/in-

tegration testing, continuous integration, and production deployment are the most common deployment

pipeline stages. Toh et al. [21] quantitative survey introduces three more stages for continuous delivery:

delivery to staging, automated testing, and release.

Version Control. This stage, according to Nicolás Paez [22], can be defined considering four specific

concerns:

• Artifacts under Version Control. Some examples are the application’s source code, the infrastruc-

ture’s source code, the configuration files, the deployment files, or the application’s binary code.

Sometimes, the environment variables can be added to the previous list.

• Tools for version control. We must choose a Source Code Management (SCM) tool to store and

manage your files. We should separate the source code into three types: Secrets, Binary Artefacts,

or Plain Text. We must choose an SCM tool that encrypts the information saved for secrets. In

Binary files, we must use the Artifactory repository’s

• Identification of versions. We must define Semantic Versions rules to name versions/tags to identify

each version.

• Relationships between artifact versions. We must set a traceability strategy if we have one or more

source control repositories. An option could be a Tracker Repository.

Build. The build stage generates an executable and testable system from source versions, or base-

lines [14]. This stage is automated by utilizing build tools that manage the software development and

service life cycle. This may involve compiling code, managing dependencies, generating documentation,

or running tests. [23].

Unit/Integration Testing. This stage automates the build executable artifacts tests [24]. These tests

can be for functionality, integrity, consistency, performance, security, or non-functional requirements. It

also enables the creation of quality gates that are defined and implemented to get faster feedback from

tests over the whole pipeline up to production environments. [25]. It is intended to share within com-

ponent teams and integrated beyond component boundaries at the product integration level, validating

how the code behaves continuously [26].

14

Delivery to Staging – Staging is where we can test and experiment with new features merged into

the system before releasing them to the Production Environment. The data collected in this stage can

be used to prevent software errors. [27].

Automate testing – This Stage main component is the automation tools used to test the application.

The test activities in this stage can be test case design, test scripting, test execution, test evaluation, or

test result reporting. [28]

Release – In this stage, the organization’s teams typically have a release engineer, whose primary

responsibilities are dealing with the source code branching and managing source code merges between

branches. This stage can be done manually or automatically. [29]

Production Deployment. This is one of the most crucial stages in a DevOps approach pipeline. There

are three specific concerns we must take in this stage [24]:

• Early Release testing. Some testing methods are Beta Release, Canary Testing, and A/B testing.

• Error detection. Errors can be either functional or nonfunctional. To identify non-functional mis-

takes, we can include some indicators of poor behavior in a monitoring system.

• Live Testing. While monitoring is passive, live testing intentionally perturbs the running systems.

This method is commonly called Chaos Monkey.

RQ3 - What are the existing design patterns and quality attributes of an automated software

delivery pipeline that supports the DevOps approach?

The pipelines supporting the DevOps approach can uniquely reflect the organization’s needs. How-

ever, with the growing market adoption of automated software delivery, some design patterns started to

appear. Typically these patterns reflect the driven goal of the different pipelines.

A report from the software product provider Harness [30] proposes eighth pipeline patterns. With a

brief description, the pipeline patterns proposed are:

• Button Pushing supports manual approval at the finish of the delivery process.

• Test Automation supports the automation of all the code tests

• Multiservice supports the automated deployment of multiple artifacts with only one pipeline

• Multiservice Environment supports the automated deployment of multiple artifacts with only one

pipeline in multiple environments

• Semi Approval supports a mix of automation and human approval

• Full approval supports full automation of the software delivery

15

• Gitops is the fattest pattern for developers to deploy code changes to environments, and it supports

an automated software delivery process without making changes via UI or CLI, being git the only

source of true

An article from the software provider Red Hat [31] provides differentiation in two groups of pipeline

design patterns, one for application developers and the other for infrastructure operators. Applications

developer’s pipeline pattern supports software delivery automation, starting with a checkout from Source

Code Manager, build operations, and delivery in a Virtual Machine. Infrastructure Operating pipeline

pattern supports the automation of the clone of all the infrastructure files from the Source Code Manager

and all operations related to the provisioning or update of the infrastructure.

An article from the online community DZOne [32] suggests seven pipeline patterns that support

Continuous Delivery. With a brief description, the proposed pipelines patterns are:

• Pipeline as code supports the codifications of the pipeline logic. The resulting code can be stored

in the Source Code manager.

• Externalize Logic into Reusable Libraries supports using common pipeline logic that can be refer-

enced in multiple pipeline codes.

• Separate Build and Deploy Pipelines support the logical separations between a Build pipeline and

a deploy pipeline.

• Trigger the Right Pipeline, support the trigger pipeline behavior affected by Branch commits, pull

requests, and merges to the mainline

• Fast Team Feedback supports the trigger of multiple pipelines and omnichannel notifications.

• Stable Internal Releases support the deployment of only versioning packages produced by the

pipeline supporting the build of automated operations.

• Buttoned Up Product Releases support the deployment and audibility of tagged releases to pro-

duction.

The pipeline quality can be measured by evaluating the pipeline suitability for stakeholders and the

Maintainability, Availability, Performance Efficiency, Reliability, and Security attributes [24] [6].

16

3
Theoretical Background

Contents

3.1 Devops . 19

3.2 Software Configuration Management . 22

3.3 DevOps Pipeline . 27

3.4 Quality Attributes . 29

17

18

In this Chapter, we introduce a more in-depth description of DevOps, DevOps Pipeline, Software

Configuration Management, and Quality Attributes

3.1 Devops

DevOps is a collaborative framework that stresses empathy and cross-functional collaboration within

and between software development teams to operate resilient systems and accelerate the delivery of

changes in an organization [19]. This framework’s main elements are Collaboration, Automation, Mea-

surement, and Monitoring [33].

The implementation of DevOps in practice, according to Macarthy et al. 2020 [34], could describe

the collaboration between:

• Developers and DevOps teams based on automation;

• Mixed responsibilities of developers without an IT Ops team;

• Developers working with DevOps teams only;

• DevOps teams serve as a bridge between developers and IT Ops teams.

These collaborations between teams help mitigate some problems in the software industry by leading

to less fear of change in stakeholders, decreasing the risks of deployment, distributing the responsibility

between all teams involved equally, adding feedback loops between developers and operations teams,

and reducing silos in the organization [35].

The foundation of DevOps approach practices is automation in standard software Life Cycle steps

like development, delivery, deployment, and operations. This automation enables the latency reduction

of product releases [36] [26].

3.1.1 Feature Flags

During the automation process, the team must control the feature enablement in different environments.

So the team creates a configured file with Feature Flags to achieve that control. The Feature Flags are

variables used in a conditional statement to guard code blocks, aiming to enable or disable the feature

code in those blocks for testing or release [37].

This approach can be applied in the pipeline using a configuration file that stores and loads the

values feature flags introduced by the developers to memory. Each environment has a configuration file.

Taking that value into account and using simple if-then instruction, it is decided in run-time whether the

feature is active or not. If this solution does not comply with the needs (high number of feature toggles),

the team can use other options like a Feature Flag management software or a Feature Flag service.

19

The Feature Flags can be applied to all application environments, from Development to Production.

3.1.2 Quality Gates and Triggers

To control the workflow of the automated deployment pipelines, the development teams can configure

Quality Gates and Triggers.

The development team can use Gates to control the deployment in different environments. There

are two condition types of gates: pre-deployment and post-deployment gates. The pre-deployment

guarantees no problems in the management system or that all requirements for the deployment are

respected. The execution of this gate type happens before the deployment. [38]

Post Deployment gates ensure that incidents from monitoring or incident management systems do

not exist before the deployment to the following environments.

Triggers automate the start of the pipeline operations in response to actions or schedule runs (spe-

cific times and frequencies). [39]

3.1.3 Tools

The DevOps tools can be aggregated into four domains: Log Monitoring, Resource Monitoring, Build

Automation, and Configuration and Deployment Automation. [40]

Log monitoring tools automate the analysis of the logs collected from the system performance and

the process running. The developers can also use this type of tool in the debugging processes.

Resource Monitoring tools can be classified as System and Network Monitor tools. System Tools au-

tomate, aggregate, and produce graphs from data collected from the system performance and resource

usage. Network Tools will monitor the network devices and automate notifications or actions to solve

emerging problems.

Build automation tools, and support the automation of the built phase, more precisely, the linting and

compiling operations and all software test types’ execution.

Configuration and Deployment tools allow the team to automate the system configuration and de-

ployment process.

3.1.4 Team Roles

The DevOps team’s primary goal is to close the operations team to the development teams.

The DevOps team structure can have multiple alternatives. Interdepartmental Dev and Ops col-

laboration, Interdepartmental Dev and Ops team, Boosted (cross-functional) DevOps team, and Full

(cross-functional) DevOps team are four suggested team structure types. [2]

20

Figure 3.1: DevOps team Roles Diagram reprinted from [2]

In the Interdepartmental Dev and Ops collaboration team structure, represented in 3.1 with the letter

A, the developers and operations belong to different departments and collaborate sporadically on a

specific project.

The Interdepartmental Dev and Ops team, represented in 3.1 with the letter B, is a stable team that

will work on ongoing projects. However, the developers and operations are kept in different departments.

Boosted DevOps team is a team structure, represented in 3.1 with the letter C, where DevOps experts

uplift the development teams until they can have full autonomy to apply the DevOps Values and operate

the DevOps Tools.

Full DevOps, represented in 3.1 with the letter D, is reached when the team was full autonomy to

apply the DevOps Values and operate the DevOps Tools.

3.1.5 Principles

The DevOps approach has four core principles [14]:

• Business or mission first. Focus on the business needs ahead of procedural and technical consid-

erations. This principle helps balance risks and activities to provide the most value to the customer;

• Customer Focus. We apply the right approach if the strategy makes sense to the customer and

meets a consumer’s need;

• Left shift and continuous everything. Continuous everything meant using the same practices in

development and operations teams and maintaining them. In practice, the left shift means lower

risks deployments by applying more rigorous release procedures;

• Systems thinking. The approach encourages all members involved to understand the systems

from end to end completely.

21

3.2 Software Configuration Management

3.2.1 Git Operations

To support all interactions with the repository in the Build phase, the development team uses git opera-

tions.

Git is a version control system used to manage and track the changes in the source code. The Git

repository comprises a local repository that resides in the developer’s machine and a remote repository

hosted in a Remote Server accessible to all team members. [41]

Every local copy of a version archive is managed through local branches. Remote branches are

visible to users with access to the remote repositories. Checking out a branch, making a local change,

and committing.

A branch is a foundational mechanism in git. The local copy of the code base is managed using local

branches. Remote Branches are available to all users with access to the repository. The mainline (or

master) defines the stable code branch where the development team can execute the operations from

the Build Phase without problems or blockers. Git branches are a pointer to a specific commit. This

pointer moves along with each new commit made by the development team. All git operations can be

automated using DevOps Tools and contribute directly to Continuous Integration. [42]

The most typical operations used are [43]:

• Git Push - Operation that uploads the code references and objects to the remote repository.

• Git Merge - Operation that compares and merges the changes between two branches and detects

the existence of code conflicts.

• Git Clone - Operations that download the code version from the remote server to the local environ-

ment.

• Git Fetch - Operation that synchronizes the branch references and objects from the local repository

with the same branch in the remote repository without changing anything in the remote repository.

• Git Pull - Operation that combines a git fetch followed by a git merge in the local environment.

The term ”Pull Request” is commonly used when the code contributor asks the remote repository

maintainer to review the code generated in the local environment before merging it into the remote

repository.

• Git Commit - Operation where all stage changes in the local environment are ready to be pushed

to the remote environment.

• Git Fork - Operation that creates a copy of the repository without affecting the upstream repository.

22

3.2.2 Branching Patterns

In the article Patterns for Managing Source Code Branches, published by Martin Flower [3], the author

correlates the branching strategies with Continuous Integration, Continuous Deployment, and Continu-

ous delivery. The article gives the following Branching Patterns definitions:

Trunk-based or mainline is a branching pattern where the developer team has one branch (mainline),

and as soon they have a healthy commit with new code changes, they integrate them into the mainline.

The team can use feature flags to disable unfinished features in the healthy commits. This branch-

ing pattern allows the team to have high integration frequency and increases the frequency of merges

but reduces their complexity and risk, see Figure 3.2. The high frequency contributes to Continuous

Integration.

Figure 3.2: Low Frequency vs High-Frequency Integration. Reprinted from [3]

Feature-Based is a branching Strategy where the developer team creates a different branch, and

all the changes are pulled to the created branch while developing a new feature. The code base is

integrated with the mainline when the feature is complete. This branching pattern is popular in the

industry, but the low integration frequency, see Figure 3.2, due to the length of feature branches can

increase risk and complexity.

Release Branch is an alternative branching pattern based on Feature-Base. This branch only re-

ceives commits to stabilize a version of a product ready for release. This pattern is practical if the team

cannot maintain the mainline in a healthy state.

Maturity Branch is an alternative branching pattern based on a Feature-Based strategy, whose head

marks the latest code-based version. With this, every team member can access the most stable version

23

of the code.

Environment Branch is an alternative branching pattern based on a Feature-Based strategy. This

pattern allows the development team to have a branch containing commits that apply the source code

that rearranges the product to run in different environments. A separate branch is created for each

environment.

Hotfix Branch is an alternative branching pattern based on a Feature-Based strategy that allows

the team to seize all the needed work to fix an urgent production defect. After the fix is applied, it is

integrated into the mainline.

Release Train is an alternative branching pattern based on a Feature-Based strategy that allows the

team to have regular schedule releases. Each branch created is associated with a different release.

After the scheduled time, the branch doesn’t suffer more modifications.

Release-Ready Mainline is an alternative branching pattern based on the Trunk-Based strategy,

which requires having the mainline healthy enough so the code-based can be deployed directly in pro-

duction environments. This branching strategy allows for coupled Continuous Integration and Continu-

ous Delivery.

Git-flow is based on a Feature-Based strategy and is one of the most used branching patterns.

This pattern is a compilation of most of the patterns mentioned above. It uses the mainline (named

develop), feature branches to allow the developers to develop their features separately, a production

maturity branch (called master), a hotfix branch, and a release branch. The mainline is the origin of the

repository. All the feature branches are cloned from the develop branch when created and integrated

with the mainline when finished. The code base present in the mainline is integrated into the release

branch. When it is ready for Production, the code is merged from the release branch into the master

branch. If a hotfix is needed, the team creates a hotfix branch.

3.2.3 Build Phase and Testing Phase

For this research, the build operations refers to transforming a high-level programming language (under-

standable and written by humans) into a low-level binary language (understood by the computer).

The code compilation is the first operation from the build phase. However, a code repository must be

in place to execute this operation. We will explore more around this topic further. The compilation oper-

ation defines when a computer program translates and tests computer code written in one programming

language (source) into another language (target). [44]

Before the code compilation, the source code can be lint (an operation that automatically checks the

source code for programmatic and stylistic errors).

The build environment (where the build workflow operations are executed) can be separated into a

Local Build, where the system boundary is the developer machine, and Remote Build, where the system

24

boundary is a remote server. Two types can also define the build execution: Full Build, where the code

is complied like was the first time, and Incremental Build, which only generates the new code changes (

by comparing to a previous build).

The development team runs all the necessary code tests in the Testing phase. There are four types:

Unit, Integration, Functional and Non-Functional.

The Unit Testing defines the code tests of total isolated software pieces without dependencies (A

single function or a Single class) [45].

When software pieces depend on others, the development team uses Integration Testing. It is also

an aggregation test strategy for various services or software pieces. To test these dependencies, the

team considers all possible side effects when they start writing them.

To validate the code against the function requirements of specifications made by the software client,

the team uses Functional Testing [46].

The Non-functional Testing validates the operation of systems like performance, reliability, scalability,

or load capacity rather than code-specific behaviors [46].

Before releasing the code in a Production Environment, the development team can execute a last set

of operations to guarantee that we release high-quality code.

End-to-End (E2E) testing is a set of operations that allows validating all software product compo-

nents, from the origin to the end, to ensure that the application flows are conducted as expected. With

these testing operations, the team can simulate a real user scenario, validating if all components integra-

tion pieces are working as expected and if there is data integrity. There are two methods to execute E2E

testing, horizontal where the testing is executed horizontally across the context of multiple applications,

and vertically, where tests happen in all architecture layers of a single application from top to bottom [47].

The tasks workflow to execute end-to-end testing are:

1. Test Planning - where all tasks and resources needed are defined;

2. Test Design - specifying tests, test cases, and risk or usage analysis;

3. Test Execution - execution of all tests;

4. Results Analysis - interpret and evaluate all the test results and perform additional tests if neces-

sary.

The Continuous Testing defines the Process of automating the code tests mentioned above. Con-

tinuous Integration is defined by the creation of automated interactive builds and running of automated

software tests. [24]

In short, the build phase aggregates the following operations workflow:

1. Find the source code from the code repository;

25

2. Use a tool to lint and compile the code;

3. Debug the code generated and check dependencies;

4. Run source code tests.

3.2.4 Deployment Phase

After the build phase, the code repository receives the generated executable code.

The deployment phase aggregates the operations that will allow the development team to retrieve

the executable code from the repositories and move from one controlled environment to another.

According to ITIL 4 practices guides [48], an environment is: A subset of IT infrastructure for a

particular purpose.

The most common environments are:

• Development Environment : where the developers build the code produced by them and run the

unit tests. This code build can be a Local Build or a Remote Build;

• Integration Environment : is where all the code from the different team developers is integrated,

and all the integration tests are executed;

• Testing Environment : where all the functional and non-functional tests are executed;

• Staging or Pre-Production Environment : this is where the code tests use real data, but the envi-

ronment is unavailable to the software client;

• Production Environment : where the code runs with real data available for the software clients.

A Container is an operating system (OS) level virtualization that encloses standard OS processes

and their dependencies. They are typically used to support the development and deployment of the

applications in the infrastructure (A different container supports each environment) [49]. This virtual-

ization helps reduce the time between developing the application code and production deployment and

increases environment standardization. [40]

The automation process of the code transition between all the environments before Production is

commonly known as Continuous Delivery.

3.2.5 Release Phase

According to the ISO/IEC 20000 [50], a release is:

A collection of one or more new or changed services or service components deployed into the live

environment as a result of one or more changes.

26

In a few words, the release is the operation where features and services are available to the software

clients.

The release can be characterized by Major and Minor, which describes the significance of the change

in the code. A Release can also be planned or not Planned.

The release by type can be defined by the following;

• Emergency release or hotfix defines an emergency deployment of software packages to solve

performance or a security issue. (Not Planned);

• Maintenance releases, to deploy code packages to fix bugs or patches (Planned);

• Feature release, for deploying code packages for new changed functionality (Planned).

The automation of the entire process of Releasing code is commonly known as Continuous Deploy-

ment.

3.3 DevOps Pipeline

Software Development Life Cycle 3.3 is the application of standard business practices to support the

building of software applications. These business practices can be automated using tools that help to

apply the DevOps Approach.

Figure 3.3: SDLC standard business practices relation representation

These standard business practices are Planning, Requirement Engineering, System Design, Build,

Testing, Deployment, Releases, and Operation/Maintenance.

Figure Caption

27

Figure 3.4: Caption for all diagram representations

Figure 3.4 illustrates the caption for all figures used in the pipeline diagram presented in Chapter 4.

The black arrow with the green diamond represents pull request triggers. The blue diamond represents

the Approval gates in the pipeline. The green blocks illustrate all automated operations in the pipeline,

and the red ones are the operations related to the Release. The white rectangles with green borders

represent the manual operations The blue blocks represent the different environments. The back arrows

display the environment deployment flow, the gray ones show the operations flow in the pipeline and

other pipelines, and the red represents the release flow. The purple rectangle represents the pipeline

identifier.

3.3.1 DevOps Standard Pipeline

A pipeline in DevOps is composed of a set of stages executed based on a Trigger. These stages have

specific responsibilities. Every stage contains multiple tasks executed step by step. [51]

28

Figure 3.5: Illustration of a Standard Pipeline

For the context of this research, we proposed a standard pipeline representing standard operations of

the Build, Deployment, and Release phases. With this, we assume that this standard pipeline supports

the development team to achieve Continuous Integration, Continuous Testing, Continuous Delivery, and

Continuous Deployment. We also assume that the code base uses only one branch (mainline) and that

the pipeline execution runs on a remote server. Figure 3.5 illustrates the Standard DevOps Pipeline.

3.4 Quality Attributes

3.4.1 Software Quality Attributes

A quality attribute is a measurable or testable property of a system that indicates how well the system

satisfies the need of its stakeholders [52]. The ISO 9126 model introduced two types of quality attributes

[53]:

Internal quality attributes – refers to system properties evaluated without executing them.

External quality attributes - refers to system properties that can be accessed by observing during

execution. The ISO 25010 model was an update to ISO 9126 indicates a subdivision of the quality

attributes into eight key characteristics [54]:

• Functional Suitability - the degree to which a product or system provides functions that meet the

stated or implicit requirements when used under specific conditions;

• Reliability - The degree to which a system, product, or component performs specified functions

under specified conditions for a specified time frame;

• Performance Efficiency - this characteristic represents the performance relative to the number of

resources used under stated conditions;

29

• Operability - Technical Learnability and Accessibility;

• Security - The degree to which a product or system protects information and data so that persons

or other products or systems have the degree of data access appropriate to their types and levels

of authorization;

• Compatibility - Degree to which a product, system, or component can exchange information with

other products, systems, or components, and/or perform its required functions while sharing the

same hardware or software environment;

• Maintainability - Degree of effectiveness and efficiency with which a product or system can be

modified to improve it, correct it or adapt it to changes in the environment and requirements;

• Transferability - Degree to which a product or system can effectively and efficiently be adapted for

different or evolving hardware, software, or other operational or usage environments.

3.4.2 Pipeline Quality Attributes

When a DevOps pipeline is responsible for automating the deployment of new features to a system,

the developers have in mind the quality attributes of the pipeline to assertively choose the best pipeline

pattern that suits the team’s needs. .

We can evaluate the DevOps pipeline quality attributes in two ways— the Pipeline Suitability for the

stakeholders and with software quality attributes that can also be associated with the pipeline. (a full

automated pipeline is composed of a set of automated software tasks). [24]

Automated monitoring, automated testing, and code review automation are DevOps activities used

to integrate security in the pipeline [55]. We can measure the Pipeline’s Security by evaluating the

efficiency of the tasks related to the activities mentioned. The existence of credentials/tokens in the

code and using high privileges running the commands can decrease the pipeline’s security. [6]

The Reliability and Availability evaluate DevOps pipeline delivery mechanism [24]. To measure Re-

liability, the team must consider the probability of having errors when the feature is delivered. If the

delivery mechanism fails, the time required to deliver a new feature increases, affecting the Availability.

The DevOps pipeline definition strategy impacts their Maintainability. Typically, the pipeline is defined

as a code using a YAML file. The Readability of the code snippets and complexity of the build matrix

(several pipeline execution running in parallel) affect the pipeline Maintainability. Using Environment

Variables can help increase pipeline Maintainability. [6]

Pipeline Performance Efficiency is related to pipeline build time. This time is affected by the use or

not of parallelization execution of the pipeline, the use of caching in continuous integration operations,

and the existence of unneeded components in the build. [6]

30

For this research context, we will evaluate the DevOps pipeline only on the following quality attributes:

Pipeline Suitability, Maintainability, Availability, Readability, Performance Efficiency, Reliability, and Se-

curity.

31

32

4
Solution

Contents

4.1 Trunk-Based Driven Pipeline . 35

4.2 Feature-Based Driven Pipeline . 42

4.3 Patterns Analysis . 50

33

34

The source control strategy is ground-based for all software projects. This design decision can affect

how the team interacts, the number of steps a pipeline must have, and most importantly, can give the

team tools to resolve different challenges. Using the standard pipeline as a reference, in this chapter

4, we will study the impact of the Source Code Management (SCM) strategy on the automated delivery

pipeline.

For the Trunk-based and Feature-Based strategies, we will define the principal pipeline, validating

some possible ramifications and studying the advantages and disadvantages of the different pipeline

patterns. The final Section of this chapter is the Patterns analysis based on all the work presented in all

previous sections of this chapter will be summarized.

4.1 Trunk-Based Driven Pipeline

The trunk based is a code version control management approach that enables development teams to

merge small and frequent updates to the mainline (or core trunk).

The Pipeline driven by a Trunk-Based code version strategy allows the full automation of the software

delivery process. This pipeline is most suitable for projects with small, experienced development teams.

Figure 4.1: Illustration of Principal Pipeline driven by a Trunk-Based code version strategy

The principal pipeline with a very simple pipeline build matrix (uses only the mainline pipeline) can

support Continuous Integration, Continuous Testing, Continuous Deployment, and Continuous Delivery.

The figure 4.1 illustrates the principal pipeline that runs starts with a trigger (a code push operation

into the mainline branch in the remote repository or a command execution by the development team).

The first pipeline step in Development Environment is the code’s clone from the remote mainline. After

the clone operation, the Linting and Compiling operations start. With the code compiled, the pipeline

executes the unit tests. If all unit tests pass successfully, the executable code remains running in the

35

development environment until it is deployed in the integration environment. In this scenario, code is

only built once during the pipeline execution. After the development environment, the code generated

will not change.

The integration testing starts after the pipeline deploys and executes the generated code in the

Integration Environment. If all integration tests pass in the Integration Environment, the pipeline deploys

the executable code in the Testing Environment.

The pipeline executes the code generated in the Testing environment and starts the Functional and

Non-Functional tests. The executable code is deployed in the Staging Environment if all tests pass.

The executable code running in the Staging Environment allows the team to perform tests end-to-end

to guarantee the code quality before releasing it in the Production Environment.

After the development team’s approval, the release operation can be executed automatically or man-

ually (this will remove the Continuous Deployment capability).

This principal pipeline only supports planned releases. Unplanned releases must follow the pipeline

workflow from the beginning to release the code generated with the corrections in Production.

The smaller deployment of code generated and the faster capability to deliver new features are

perks of using only one pipeline. It will also force the team members to merge new code with the

mainline before running the pipeline. The code merge will drive each team member to guarantee a

higher percentage of test code coverage and automated tests in the code produced.

Using only the mainline in the source code repository may reduce the integration time and increase

the delivery speed. However, to properly implement this scenario, the development team must be able

to enable or disable features on every pipeline execution. By defining feature toggles in the project

code-based or a pipeline configuration file, the development team will avoid unfinished features running

in not expected environments. Using feature toggles will also allow the team to mitigate risks by gaining

the ability to roll back to previous versions rapidly. The downsides of this technique are the increased

percentage of dead code (a section of code present in the source code but whose execution result is not

used in any computation operation) and the increase of complexity in the pipeline execution.

If the team decides not to apply Continuous Delivery, it should implement a quality gate in the pipeline

configuration before the code release operation.

Implementing feature flags and quality gates will decrease the pipeline maintainability and readability.

4.1.1 Common Pipeline Ramifications

Support a High number of Complex Integration Tests

In some software projects (especially those that use Microservices Software architecture), the in-

tegration tests run for extended periods and are more suitable to run at concrete timeframes. This

limitation affects the feedback cycle proposed by the DevOps mindset. Even though it is essential to

36

have a high testing percentage, if the test duration becomes too long, it can rapidly become an obstacle

to the developers.

This pipeline ramification, illustrated in Figure 4.2, proposes one viable proposed solution to deal

with automated complex integration tests. The most simple and quick tests are delegated to the primary

pipeline. A second pipeline (Alternative Pipeline) needs to be created with the responsibility to run only

these complex tests in the integration environment. This pipeline can run after business hours and will

be responsible for running the more time-consuming and not convenient tests to be made during work

hours (Complex Integration Testing).

Figure 4.2: Illustration of Pipeline Ramification A

To guarantee that the pipeline workflow is respected, a Quality Gate must be added before the de-

ployment into the Testing environment to grant that the generated code passes all integration tests. This

implementation will reduce the pipeline maintainability due to the number of new pipelines, increasing

the pipeline build matrix.

However, the performance efficiency of the pipeline will increase due to the parallelization in the

integration test executions. It will also reduce Continuous Deployment by having a gate to validate if all

tests pass before deploying the code into the Testing Environment.

Lower CPU and memory availability to run the pipeline stages

In development teams lacking compute resources, all CPU or memory available must be used more

efficiently to support the automation of the development process.

Typically, the pipeline execution is executed entirely in a remote environment. However, some oper-

ations can be executed in a local environment.

37

Figure 4.3: Illustration of Trunk-based driven Pipeline Ramification B

Figure 4.3 shows a pipeline using a local build to execute the pipeline operations belonging to the

development environment, the team can use the resources from each developer’s machine, reducing

the resource usage in a remote server. All the tasks performed in a local environment are executed

manually.

Local Builds are executed in developers’ machines, leading to different Development environments

that can cause unexpected errors during or after the compilation operation. Performing the linting, com-

piling, unit testing, and artifacts in a standardized environment mitigates possible errors and contribute

to compatibility.

To archive this standardization, the team can use a virtual machine(VM) or virtual container in-

stances, share it with all team members, and run it in their local machines with all software and needed

configurations.

This pipeline ramification supports code generation always in the same environmental conditions,

regardless of the configuration or operative system of the host machine. This capability makes the

pipeline more reliable. Using the resources from the developer’s machines increases the suitability for

stakeholders with limited resources.

Standardization has a maintainability cost. The team must support the updates and security patches

in the VMs and distribute the image to all team members. If the team uses container images, it will

require container technology and a remote repository to store the generated container images.

This pipeline ramification will reduce the pipeline availability due to the build matrix composed of var-

ious local pipelines running in the developer’s machines. It will also reduce the pipeline efficacy because

38

all the operations in the development environment are performed manually. The pipeline security will

decrease because to support the local pipelines, the developers will need their own credentials, used in

a non-isolated environment.

Support Inexperience Team

Applying the principal pipeline driven by the trunk-based strategy to an inexperienced team can be

challenging. Having a single branch implies that the developers must ensure that the code is mature

enough, with a high percentage of unit test code coverage and a low probability of generating bugs. In

an inexperienced team, this is hard to accomplish at the beginning.

Figure 4.4: Illustration of Trunk-based driven Pipeline Ramification C

As shown in Figure 4.4, the team must guarantee that the code is mature before reaching the mainline

pipeline in the development environment. Introducing the pull request operation and creating a pipeline

to support mainline forks is one solution to accomplish code maturity in an inexperienced team.

This pipeline ramification supports the ability for developers to use a fork from the mainline, make the

needed changes, and integrate without affecting the project code mainline with a pull request, forcing a

code peer review from the code maintainer in the remote repository before merging to the code mainline.

Developers may require a more in-depth verification of the code generated in their pipelines support-

ing the fork before making the pull request. The primary maintainer from the remote repository will spend

time reviewing and approving the code merge. These two tasks will improve the pipeline’s suitability in

code integration.

However, this pipeline ramification will reduce the Continuous deployment and lower the pipeline

performance efficiency due to the manual validation operations (increasing the build time of the pipeline).

The workflow of the pipeline ramification is the following:

39

1. The developer creates forks the mainline it into their local machine, where they will write and test

the new code;

2. To support the development in the fork must be created a new pipeline (Where the team can have

pipelines templates supported by source code libraries);

3. When the developer wants to merge his fork to the mainline, he creates a pull request to the remote

repository;

4. After the creation, the multiple main maintainers of the remote repository are notified to execute a

code review;

5. The maintainer will review the code from the fork, make some comments, or request any changes

(Send them back to the developer);

6. If everything is OK, the pull request is approved, and the fork is merged into the mainline;

7. After merging the fork with the mainline, the pipeline must be deleted.

We do not consider this pipeline a ramification of a Feature-Based because it is a fork from the

mainline, not a creation of a different branch.

Support a Release Ready Mainline

To achieve a release ready mainline, the team must guarantee that the code base present in the

mainline is ready to be released in the production environment at any point. This pipeline ramification

can be used by high-performance teams and products that need high availability.

As shown in Figure 4.5, the development teams developed the new code in a fork of the mainline in

the Development Environment. After the pull request with origin in the fork and destiny mainline, the new

code changes from the fork are deployed in the Integration Environment. In this environment, build oper-

ations are automatically executed again to guarantee stability during the code delivery after integrating

the new code. With these added operations, we can guarantee that the code is not committed directly

in the mainline, decreasing the probability of causing instability in the code base and guaranteeing that

the code is only merged in the mainline after more controlled code integration.

40

Figure 4.5: Illustration Trunk-based driven Pipeline Ramification D

The code release to the Production Environment is also automated and can be performed automati-

cally without gates.

This pipeline ramification will increase the pipeline’s Suitability for the stakeholders due to the added

actions (pull request and a release fork to control which release in merge in the mainline) but decrease

the Pipeline Performance efficiency due to the increase in build time.

We do not consider this pipeline a ramification of a Feature-Based because it is a fork from the

mainline, not a creation of a different branch.

4.1.2 Advantages and downsides

The advantages of using a Trunk-Based driven pipeline are:

• A high percentage of test code coverage;

• Reduced number of pipelines to be maintained compared with the other Feature-Based Driven

Pipelines;

• Faster capability to deliver new features;

• Smaller Deployment size of the code generated;

• Supports the implementation of Continuous Integration.

41

The downsides of a Trunk-Based driven pipeline are:

• The pipeline workflow must be followed from the beginning to implement Hotfixes or Unplanned

releases;

• Implementation of feature toggles to avoid unfinished features running in not expected environ-

ments;

• Need for a permission gate in the pipeline configuration before the Production Environment if the

team does not desire Continuous Deployment;

• The pipeline needs adaptation to run long-duration Integration testing.

4.2 Feature-Based Driven Pipeline

The Feature-Based is a code version control management approach that allows the developers to have

a copy from the main code base (or mainline) where they can work on a new feature until it is completed.

The pipeline driven by a Feature-Branch code version strategy allows the development team to have

a more controlled automated delivery, introduce non-planned releases quickly, and have various code-

based versions supported by multiple pipelines.

Figure 4.6: Illustration of Principal Pipeline driven by a Feature-Based code version strategy

The principal pipeline illustrated in Figure 4.7 uses n+1 pipelines (n expresses the number of branches

created plus the one pipeline for mainline). This principle pipeline supports the team’s continuous Testing

and Continuous Delivery implementation. The need for having a new branch for each feature removes

the ability to integrate and deploy the code continuously.

42

The development environment supports multiple pipelines that build the source code cloned from

each branch. Each pipeline run starts with a trigger (a code push operation into the Feature-Based

in the remote repository or a command execution by the development team). It will automatically run

linting, compile the code and run the unit tests. The executable code starts running in the development

environment only if all unit tests pass successfully.

The developer responsible for the branch creates a pull request when the branch is ready to be

merged with the mainline. In this operation, the developers do a significant amount of integration work.

The longer the branch lifetime, the more integration work has to be done by the developers. The Feature-

Based is deleted after merging with the mainline. From this step forward, all tests are made in the

mainline branch.

The mainline pipeline starts with a trigger (a code push operation into the mainline branch in the

remote repository or a command execution by the development team). The pipeline will clone the source

code from the remote mainline into the Integration Environment, and perform the operations of linting,

compiling, and unit tests to guarantee the code stability after the integration. The executable code starts

running in the Integration Environment only if all unit tests pass successfully. The Integration Testing

starts after the generated code is running in the Integration Environment. If all integration tests run

successfully, the pipeline deploys the executable code in the Testing Environment. After the Integration

Environment, the code generated will not change unless a hotfix is needed.

The pipeline executes the code generated in the Testing environment and starts the Functional and

Non-Functional tests. The executable code is deployed in the Staging Environment if all tests conducted

in the Testing Environment pass. In the Staging Environment, the development team can perform end-

to-end tests. The release operation can be executed automatically or after the development team’s

approval. This principal pipeline supports planned and non-planned releases.

This principal pipeline is the most suitable for inexperienced or multiple development teams working

on the same project. Creating Pull Requests to Integrate the code in the mainline will force a code peer

review to increase code quality.

It will also more rapidly support testing new features (without integration). However, it will force the

creation of more complex build matrix pipelines due to the number of code branches needed and their

specifications. The number of pipeline stages is proportional to the number of feature branches multi-

plied by the stages per environment needed. The integration Stage will be a bottleneck to continuous

delivery. This stage may contribute to feature delivery delays due to the need to add manual refactoring

in the code integration process.

4.2.1 Common Pipeline Ramifications

Release a Hotfix in Production

43

A hotfix branch allows the team to solve unexpected production environment problems rapidly. How-

ever, the delivery pipeline must support the rapid creation of a new environment similar to Production to

test the hotfix and execute the build operations to produce the generated code.

If the team uses containers to support the environment, the team can quickly generate the environ-

ment automatically using the pipeline.

If containers are not used, the team will need to have a replica of the production environment up

and running to solve problems. This replica can be configured using a new pipeline but will increase the

complexity of the pipeline’s build matrix, reducing the pipeline’s maintainability.

Figure 4.7: Illustration of the Pipeline Ramification A

The new hotfix branch must be a clone from the master/mainline latest commit. The pipeline ram-

ification, represented in Figure 4.7, must be configured to deploy the changes in the hotfix branch in

the environment replica and execute the automated build operations for the team to test the solution.

When the solution is ready and all the end-to-end tests executed, the generated code is deployed in the

Production environment.

The post-deployment process is to merge hotfix code manually to the master branch (resolving any

conflicts).

This pipeline ramification can increase pipeline availability and reliability due to the ability to solve

problems quickly. Having a second pipeline to support the hotfix decreases the pipeline maintainability

due to the need for another pipeline creation, increasing the complexity of the pipeline build matrix.

Experiment a new feature

When the developers want to try out new software approaches, an experiment branch can be used.

The pipeline ramification to support that branch must be able to create or deploy in an experimental

environment and automate the build operations.

This pipeline ramification that supports the deployment of experimental artifacts, represented in Fig-

ure 4.8, runs in parallel with the main pipeline responsible for the delivery process. This pipeline will run

the build and deployment operations in the Experimental Environments. All the artifacts running in this

environment experiment are not deployed in the main pipeline.

44

Figure 4.8: Illustration of the Pipeline Ramification B

Using this ramification of the Feature-Based-driven pipeline, the team can, without affecting the main

pipeline of the project, automatically deliver the new techniques in a parallel environment.

This pipeline ramification is a straightforward approach that enables the team to test new approaches

in code development. It is an excellent opportunity to improve the Functional Suitability of the code

by creating specific conditions and testing provided new requirements for the software product. Even

though having one more pipeline will increase the team’s work by maintaining it.

Support a branch per Environment

Using an environment branching strategy allows the team to have the desired code source version

with all configuration changes required to run in a specific environment without using feature branches,

feature toggles, or configuration files stored in the code repository.

This pipeline ramification supports all the build operations in each environment (Because the differ-

ent configurations lead to a different and compatible generated code), all the automated tests, and git

operations needed. It should also support the pipeline triggers after the Pull request approval for each

branch environment.

This pipeline ramification can have a very simple pipeline build matrix, with only two pipelines, and

can become more complex the more environments the team needs to have. (Each Pipeline supports

one environment only)

If the team uses only two environments, Development/Quality Assurance and Production, the build

matrix becomes very simple with only two parallel pipelines as illustrated in Figure 4.9.

45

Figure 4.9: Illustration of the Pipeline Ramification C - Simple Version

One pipeline will automate the Development/Quality Assurance operations, where the pipeline sup-

ports the build operations, integration, and functional and non-functional tests.

A second pipeline automates the production environment operations where all end-to-end test exe-

cution and delivery of the new features to the client occur.

Figure 4.10: Illustration of the Pipeline Ramification C - Complex Version

46

Represented in Figure 4.10, we can see a pipeline ramification with a more complex build matrix. In

this case, we can observe five different pipelines.

When the code is ready to be deployed in a different environment, the development team creates a

pull request to merge the new changes.

After the approval, the pipeline executes a clone from the code source, and build and test operations

are executed. Each environment has its build operations and testing operations.

Using a simple build matrix can result in an increase in pipeline maintainability compared with the

principal pipeline. Nevertheless, this maintainability can decrease with the number of different environ-

ments created. This pipeline ramification also contributes to increasing the pipeline suitability to the

stakeholders by separating code-building operations in different environments with different configura-

tions. However, the quantity of automated operations decreases pipeline maintainability.

Support Multiple Releases of the Product

Having the ability to have multiple version of the code running allow the development team to exe-

cute the needed bug resolution without affecting the mainline, providing the user with the most stable

version of the product and efficiently upgrading the version when all the bugs are resolved. This pipeline

derivation is more suitable for multiple Version Products, like mobile apps.

Figure 4.11: Illustration of the Pipeline Ramification D

As we can see in Figure 4.11, each code version will have a respective pipeline, but all the operations

are operationalized in the same environments. In the production environment, the team will have multiple

version releases.

It is also a suitable pipeline ramification if the team needs to support a manual approval of each ver-

47

sion, guaranteeing that each version is frozen until the release manager decides to release the Product

user.

This pipeline ramification complex build matrix increases the maintainability. However, the possibility

of having multiple versions released increases the pipeline suitability for the stakeholders and increases

the pipeline availability due to the ability to release new features quickly and have older versions in

production for more time, allowing a quick rollback if needed.

Supporting Git Flow

Git flow is the most used branching pattern used. This pattern merges the feature, hotfix, and release

branches. But having multiple branches to support the pipeline is a challenge.

Figure 4.12: Illustration of the Pipeline Ramification E

This pipeline ramification that supports the git flow strategy inherits the characteristics of the two

other pipeline ramifications (hotfixes (Figure 4.7) and the releases(Figure 4.11)). The pipeline ramifi-

cation supporting multiple releases is used to support multiple code releases, The pipeline ramification

supporting hotfixes is used to resolve problems in production, increasing this pipeline’s availability and

suitability for the stakeholders.

Figure 4.12 reflects this pipeline’s very complex build matrix, which will decrease the maintainability

and readability of the pipeline.

48

Having multiple different pipelines and manual operations decreases the pipeline performance effi-

ciency.

Programmatic releases

Programmatic Releases (or Release Train) involve all teams developing the product with the same

release cadence (can be a release once a quarter, once a month, or even once a week).

This strategy is commonly used in large programs or when individual teams are working as part of a

larger whole.

As we can see in Figure 4.13 this pipeline ramification must be an enabler to support a controlled

integration between features and releases and between the releases and the mainline.

Figure 4.13: Illustration of the Pipeline Ramification F

The feature branches are supported by a dedicated pipeline, allowing the developer’s team to build

the new features automatically.

To pass the code to the integration environment, first, the code merge of the feature branch with the

release branch must be executed.

Another pipeline will be dedicated to supporting the release, being responsible for cloning the code

from the release branch execute the automated operations that build and test the code of the features

chosen to be released in a predefined deployment time window.

It will also be in the build matrix, a pipeline dedicated to automating the mainline operations. It is

triggered after merging the release branch into the mainline branch. This pipeline is responsible for

deploying the code in a pre-production environment where the final checks are made before the release

of the new code version in the production environment.

This pipeline ramification will also allow having multiple release version pipelines, allowing the de-

velopment team to start working in parallel on future versions of the product. This characteristic will

increase the pipeline’s suitability.

Being the team constrained to a standard release schedule will affect the ability to deliver code,

49

reducing the pipeline efficiency and availability.

The pipeline ramification maintainability will also decrease due to the number of pipelines that need

to be maintained, increasing the pipeline build matrix.

4.2.2 Advantages and Downsides

The advantages of using a Feature-Based Driven Pipeline are:

• Automates the Experimentation of new code features in an isolated environment.

• Support quickly deploys unplanned releases in production.

• Supports the ability to have programmed Releases for the Product.

• Supports having multiple version releases in Productions.

• The manual review before merging features in the mainline gives the pipeline high reliability and

availability.

The downsides of using Feature-Based Driven DevOps Pipeline are:

• Complex build matrices lead to low pipeline maintainability.

• Cannot implement continuous Integration and Continuous Delivery due to the use of manual oper-

ations (Pull Requests).

• The high number of manual operations reduces the pipeline efficiency.

4.3 Patterns Analysis

Having source code a critical role in the software development teams, we can easily conclude that his

management strategy directly impacts the automated pipelines that support the software delivery. This

analysis pretended to give the development teams important insights before choosing the branching

strategy based on the Feature-Based Driven Pipeline (FBDP) and Trunk-Based Driven Pipelines (TBDP)

and their respective ramifications.

The drive for having a high percentage of code coverage, the simple and highly maintainable pipeline

build matrix, and the faster capability to deploy new features make the Trunk-based driven pipelines the

best approach to implement Continuous Deployment, Continuous Integration, and Continuous Delivery.

Suppose that Continuous integration and Continuous delivery are not required, but the team wants

to implement Continuous Deployment with the automation of the build and testing process. In that case,

the Feature-Based driven pipeline is the best approach.

50

Using FBDP will contribute to a more controlled delivery process, partially automated, due to the

need to support a manual review of the code. With this, the team can have a pipeline dedicated to each

feature, supporting the isolation and automation of the build and testing operations. When needed, this

pipeline type will also support the direct merge of unplanned features into the mainline and release them

quickly in Production. All characteristics make this pipeline type the better approach for a controlled

continuous deployment of multiple features.

If the team chooses to use a TBDP will be forced to implement feature toggles to control the feature’s

availability in the environments. Using feature toggles implies a change in the code structure, increases

the code base complexity, and contributes to the percentage of dead code in the code base. In FBDP,

because each branch has its dedicated pipeline, and the new feature is ”activated” when the code branch

merges with the mainline, there is no need to use features toggles.

Unplanned releases take more time to implement in a TBDP than in FBDP due to the need to pass

the new code changes in all environments before reaching Production. In FBDP, a parallel pipeline

supports the automation of the build operations for unplanned release features and releases them in

Production. This ability shorter the time to release a hotfix in production.

Using a TBDP, the development team can support Continuous Integration and Delivery. The team

can fully automate the delivery process using a single pipeline that supports all delivery and integration

operations. It is impossible to achieve this in FBDP due to the manual Integration and Deployment tasks.

In summary, we can make a simple distinction. Using Trunk-Based Driven Pipelines (TBDP), we have

full automation of the delivery process, a higher pipeline efficiency, and faster delivery of new features.

Using Feature-Based Driven Pipeline (FBDP), we have more control over the code integration, isolate

the development of new features, and respond more quicker to unplanned releases.

51

52

5
Evaluation

Contents

5.1 Evaluation Method . 55

5.2 Complexity Expressions . 62

5.3 Qualitative Analysis . 64

53

54

5.1 Evaluation Method

The evaluation of each pipeline pattern driven from the defined source code management strategies,

illustrated in the pipeline use cases presented in Chapter 4, will be executed in two phases. First,

we will use complexity expressions representing four complexity measures: The number of Automated

Operations, Possible Pipelines, Quality Gates, and the Number of Manual Operations. This complexity

expression will convert the use case illustrations to support the results from the qualitative study of the

artifact.

To better understand the complexity measures, the subsections below briefly explain each.

5.1.1 Number of Automated operations

The Number of Automated Operations metric measures the number of operations needed to support

the automated delivery operations, represented in green and red in Figure 3.4, plus the automated

deployment operations, represented in white and red the Figure 3.4. The automated operations sup-

porting the delivery mechanism will be represented in the complexity expressions with the letter o and

the automated deployment operations with the letter d.

A higher number of operations will promote an increase in pipeline efficiency (decreasing the build

time), an increase in pipeline reliability (More automation leads to fewer errors), increase in Security (All

needed credentials are isolated and only used by the pipeline and supports the Automated monitoring,

automated testing, and code review automation) and increases the pipeline availability (reduced the time

to recovery if the delivery process fails). The need to maintain and evolve the automated operations

will lower the pipeline maintainability and readability. Automatic operation limits the user’s freedom to

perform tasks, taking into account the steps that best suit their needs, reducing the Pipeline Suitability.

Figure 5.1: Qualitative Analysis for Automated Operations

55

5.1.2 Possible Number of Pipelines

The Possible Number of Pipelines measures the number of pipelines required to support the delivery

process, the build matrix. A higher number of pipelines contributes to lower pipeline maintainability,

readability, and efficiency (Increases the points of failure and contributes to the existence of pipelines

that are occasionally used). The ability to separate the different needs in different pipelines increases the

suitability for all stakeholders (the pipeline scope can be delegated to a specific scope) and the pipeline

availability (Support of multiple versions of the code running in parallel). The number of pipelines doesn’t

affect pipeline security and reliability in this context (the Number of pipelines doesn´t directly affect the

security [56] nether the probability of having errors when the feature is delivered).

In Feature-Based Driven Pipeline (FBDP), the number of feature branches directly impacts the num-

ber of pipelines. A new pipeline must be created for each branch created to support the automated

operations of the branch code delivery.

Figure 5.2: Possible Number of Pipelines Impact in pipeline quality

5.1.3 Quality Gates

The Quality Gates measures the number of Feature Toggles, Pull requests, and Approvals of a re-

lease in Production present in the pipeline. All these decisions can decrease the pipeline readability

and maintainability (increase the work done in the pipeline to support the control gates in the pipelines)

but increase the pipeline reliability (More control gates, less probability for errors) and pipeline avail-

ability (Fewer errors, lower time to deliver). The ability to control the activation of features in different

environment increase the Pipeline Suitability for the stakeholders. When used to contribute to support

automated monitoring. automated testing, and code review automation, the quality gates increased the

pipeline security.

56

Figure 5.3: Quality Gates Impact in pipeline quality

Features Toggles

As already seen in Section 4.1, all the Trunk-based driven pipelines and respective ramifications use

feature toggles to control the state of a feature in specific environments. To understand the complexity

of implementing feature toggles in a trunk-based driven pipeline, we will provide an example pipeline

that materializes in Figure 4.1. The full version of the code can be accessed in Annex A. This example

supports a straightforward python application.

The first step to implementing feature toggles is to add conditionals that will control the code with

part of the code that will be applied.

Listing 5.1: Simple Python Application

1 # Import the os library to be able to use the Environment Variables

2 import os

3 # If the Feature Toggle represented by "Feature1" is enabled

will print the text inside the

4 # function print()

5 if os.environ.get('FEATURE1') == "True":

6 print("Running FEATURE1"))

7 # If the Feature Toggle represented by "Feature2" is enabled will

8 # print the text inside the function print()

9 if os.environ.get('FEATURE2') == "True":

10 print("Running FEATURE2")

In Listing 5.1, we can observe that the conditional IF will increase the cyclomatic complexity of the

code. The complexity of the pipeline because a new step must be added to the pipeline to load the

Feature Toggle to the environment variables, as seen in the Listing 5.2

57

Listing 5.2: Load Feature toggle pipeline operation

1 - uses: cardinalby/export-env-action@v1

2 name: Load Feature toggles

3 with:

4 # Will need to set for each environment the path for the config-env

5 # containing all the feature toggles with the key-value definitions

6 envFile: './env/testing/config.env'

7 expand: 'true'

The project code Structure will also increase the complexity because it will force to have a config.env

file for each environment with file structure shown in Figure 5.4

Figure 5.4: Illustration Project Structure using Feature Toggles

The Feature Toggles will be represented in the Complexity Expressions with the variable f.

Pull Requests in a Feature-Based Driven Pipeline

To understand the complexity of implementing pull requests in a Feature-Based Driven Pipeline, we

provide an example pipeline illustrated in Figure 4.6. The full version of the code can be accessed in

Annex A.

The build matrix to support pull requests is composed of at least two pipeline types, a Feature

Pipeline and a Mainline Pipeline

The pull requests are illustrated in Figure 3.4 as a green diamond shape.

Each feature branch must have its own pipeline feature pipeline. This pipeline is only triggered when

a push is made to the feature branch. We can observe the implementation of this trigger in Listing 5.3.

Listing 5.3: Feature Pipeline Trigger Example

58

1 name: Feature Pipeline

2 on:

3 # This Definition sets the trigger of the Feature Pipeline

4 # only when the code is pushed to the feature branch

5 push:

6 branches:

7 - feature/**

The Mainline Pipeline is only triggered when the pull request is approved and the code merged in

the mainline. We can observe the implementation of this trigger in Listing 5.4.

Listing 5.4: Continuous Deployment pipeline Trigger Example

1 name: CD

2 on:

3 # This Definition sets the trigger of the CD pipeline only when the code

4 # is pushed to the mainline

5 push:

6 branches: [main]

7 # and also when the pull request is approved and the code merged in

8 # the mainline

9 pull request:

10 branches: [main]

Additionally to these steps, we need software, in most cases embedded in the source code manager,

where the code contributor can create the pull request, validate the changes, and request a review from

the remote repository maintainer.

The Pull Requests will be represented in the Complexity Expressions with the variable p.

Approval of Releases

If Continuous Delivery is not applicable by the team in the delivery process, a manual intervention

must be introduced to control the release of the code in the Production Environment.

First, the Source Code Manager must be configured for each environment, and the group of users

that can approve the pipeline runs access to the environment. Then this configuration is introduced in

the pipeline as represented in Listing 5.5.

Listing 5.5: Release Operation definition in the pipeline

1 release:

2 name: Release in Production

59

3 needs: staging enviroment

4 runs-on: ubuntu-latest

5 # Using the environment tag, we can configure the place where the code

6 # will be deployed and the need for permissions to approve the

7 # Releases/Deployment of the code in the environment

8 environment:

9 name: Prodution

10 url: https://github.com

11 steps:

12 - name: Run Code in Production

13 run: echo Coding is deployed

Before the pipeline executes the release of the code in the production environment, a notification,

represented in Figure 5.5, is launched, and only the team member with the required permission will be

able to approve the release.

The Approval Releases will be represented in the Complexity Expressions with the variable a.

Figure 5.5: Notification for Approval of the Release

Approval

In some pipeline ramifications, the progression to other environments depends on another pipeline’s

successful build. In the example pipeline presented in Annex Aand representing Figure 4.4, the quality

gates are used to guarantee that the new version of the code is deployed into the testing environment if

the principal pipeline and a parallel pipeline running in a scheduled time executing complex integration

tests run successfully.

In the Listing 5.6, we have a code snippet of the scheduled pipeline.

Listing 5.6: Example of a schedule pipeline

1 on:

60

2 # In this example, the pipeline runs every 15th minutes, but this value

3 # can be changed

4 schedule:

5 - cron: '*/15 * * * *'

6

7 jobs:

8 name: Run Complex Tests

9 runs-on: ubuntu-latest

10 environment:

11 name: testing

12 url: https://github.com

13 steps:

14 - uses: actions/checkout@v2

15 - name: Running Complex tests

16 run: echo Tests are running

In the principal pipeline, we need to add a link to this schedule pipeline and configure the dependency

on the deployment of the next environment, as we can see in Listing 5.7.

Listing 5.7: Configuration of the schedule pipeline

1 # Link to the scheduled pipeline

2 complex tests:

3 name: Run Complex Tests

4 runs-on: ubuntu-latest

5 environment:

6 name: integration

7 url: https://github.com

8 steps:

9 - uses: cardinalby/schedule-job-action@v1

10 with:

11 ghToken: ${{ secrets.WORKFLOWS TOKEN }}

12 templateYmlFile: '.github-scheduled-workflows/complex test example.yml'

13 deployment testing:

14 name: Deploy in Testing Environment

15 # Configuration of the dependency in the scheduled pipeline and principal pipeline

16 needs: [integration enviroment,complex tests]

17 runs-on: ubuntu-latest

18 environment:

61

19 name: testing

20 url: https://github.com

21 steps:

22 - name: deploy

23 run: echo Coding is deployed

The Quality Gates will be represented in the Complexity Expressions with variable q.

Number of Manual Operations

The Number of Manual Operations measures the number of operations in the pipeline workflows

that need human interaction to be completed. Manually performing the pipeline operations decreases

pipeline security by promoting the use of high-privileged commands and multiple credentials in non-

isolated environments. The pipeline reliability, efficiency, and availability also decreased due to the

increase in the probability of human error and increased build time due to manual operations.

The liberty of manual operations allows the developers to execute the tasks without dependency or

restrictions, increasing the stakeholder suitability of the pipeline.

The manual operations don´t affect the pipeline readability or maintainability in this context.

Figure 5.6: Manual Operations Impact in pipeline quality

5.2 Complexity Expressions

In this section, we will present all the resulting complexity expressions and discuss qualitative analyses

of each pipeline pattern.

5.2.1 Trunk Based Complexity Expressions

In the table 5.1 the X represents the number of feature toggles, Y is the number of developers, and the

Z is the number of forked pipelines.

62

Number of Automated
Operations

Number of
Manual
Operations

Possible
Pipelines Quality Gates

Trunk-Based
Driven DevOps
Pipeline

18o + 4d 0 1 Xf + 1a*

Support a High
number of Complex
Integration Tests

19o+ 4d 0 2 Xf + 1q +1a*

Lower CPU and
memory availability
to run the pipeline stages

11o + 4d 7Y 1 1*

Support
Inexperience Team Z(5o) + 18o + 4d 2Z Z +1 Xf + Zp +1a*

Support a
Release Ready Mainline Z(5o) + 12o + 4d 2Z Z + 1 Xf+ Zp +1a*

Table 5.1: Trunk Based Complexity Expression

*This operation only exists if the team doesn’t use continuous delivery

5.2.2 Feature-Based Complexity Expressions

In the table 5.2 X represents the number of Feature Branch, Y is the number of Hotfixes, the R represents

the number of active releases of the code.

Number of Automated
Operations

Number of
Manual
Operations

Possible
Number of
Pipelines

Quality Gates

Feature-Based
Driven DevOps
Pipeline

X(5o) + 12o + 3d 1X X +1 Xp + 1a

Release a Hotfix
in Production Y(6o) + X(5o) +12o + 2d 1X X + Y +1 Xp + Ya +1a

Experiment a
new feature 4o 0 1 0

Support a branch
per Environment
(Simple)

14o 1 1 p

Support a branch
per Environment
(Complex)

29o 4 5 4p

Support Multiple
Releases
of the Product

X(5o) + 9o + 1d + R(5o) + R(1d) 1X + R X+1+R Xp + Rp + Ra

Supporting
Git Flow X(5o) + 11o +2d +R(5o) +Rd + Y(8o) 1X + 2R X + R + Y +2 Xp + R(2p) + Ya + 1a

Programmatic
Releases X(5o) + 15o + 3d 1X + 1 X + 2 Xp + p + 1a

Table 5.2: Feature-Based Complexity Expressions

63

5.3 Qualitative Analysis

The following qualitative analysis takes as its target the study of the complexity expression described

in section 5.2, and is a visual interpretation of resulting the congregation of the complexity measures

presented in section 5.1. Each complexity-expression illustration was interpreted to reflect the impact of

each complexity measure in each pipeline quality attribute, supported by the interpretation of the values

defined in complexity expressions.

5.3.1 Trunk Based Driven Pipelines Qualitative Analysis

Figure 5.7: Trunk-based Driven Pipelines Qualitative Analysis

64

Trunk-Based Driven DevOps Pipeline The suitability to the stakeholders is low but will increase the

more features toggles we have present. The increment of elements will also progressively decrease the

pipeline maintainability and readability. Not having manual operations contributes to increased pipeline

availability, efficiency, security, and reliability.

Support a High number of Complex Integration Tests This pipeline ramification will improve the

pipeline’s suitability due to the presence of another pipeline and approval gate. Having another pipeline

will also mean a slight decrease in pipeline efficiency. The other complexity attributes maintain the same

values as the principal pipeline.

Lower CPU and memory availability to run the pipeline stages The use of manual operations will

allow this pipeline ramification to improve the pipeline’s suitability but will slightly decrease the pipeline’s

security, reliability, efficiency, and reliability. It will not have an impact on the pipeline’s Maintainability

and Readability.

Support Inexperience Team and Support a Release Ready Mainline These two pipeline ramifications

have similar contributions from the complexity attributes. Increasing the number of Forks and Feature

toggles, the suitability for the stakeholders tends to increase but will affect the Maintainability and Read-

ability, decreasing them. Having more forks will contribute to an increase in manual operations, which

will slightly decrease pipeline availability, efficiency, security, and reliability.

65

5.3.2 Feature-Based Driven Pipelines Qualitative Analysis

Figure 5.8: Feature-Based Driven Pipelines Qualitative Analysis

Feature-Based Driven DevOps Pipeline This principle pipeline contributes to high pipeline suitability,

increasing the more features branches the team creates (Will increase the number of pipelines and

Quality gates). This principal pipeline will also have low maintainability and readability due to the num-

ber of automated operations and quality gates needed. The number of manual operations will slightly

decrease the security and reliability of the pipeline. This pipeline pattern and its ramifications have lower

availability and efficiency than the trunk-based driven principle pipelines.

Release a Hotfix in Production This pipeline ramification was similar to quality attributes distribution

compared with the principal pipeline. A slight increase in the number of automated operations, possible

pipelines, and quality gates set the difference between the principal pipeline, increasing the pipeline

66

suitability for the stakeholders and the pipeline availability. The downside is a decrease in maintainability

and readability. The pipeline efficiency is more or less the same (Even though we have more automated

operations and quality gates that increase the efficiency, the number of possible pipelines growing and

the presence of manual operations contributes to the decrease)

Experiment with a new feature This pipeline ramification is composed of only two complexity attributes:

Automated Operations and a Possible Number of pipelines. This composition contributes to increased

pipeline availability and efficiency when compared principal pipeline. We can also identify a slight in-

crease in pipeline maintainability and readability (due to the simplicity of the pipeline definition). Re-

garding pipeline suitability, even though we have automated operations, the ability of the stakeholders

to test new features contributes to an increase, making this pipeline ramification highly suitable for the

stakeholders.

Support a branch per Environment (Simple and Complex) The use of this pipeline ramifications in-

creases the pipeline suitability influenced by the number of manual operations, pipeline possible number,

and quality gates. More elements lead to an increment in pipeline suitability. Nevertheless, the pres-

ence of these complex elements in the pipelines decreases pipeline Maintainability and readability. The

pipeline efficiency stays the same (same justification as in the Release Hotfix in Production)

Support Multiple Releases of the Product The more features and releases we had supported by this

pipeline ramification, the higher the pipeline suitability will be and the lower the pipeline maintainability

and readability. The pipeline efficiency will be slightly reduced compared with the principal pipeline,

influenced by the number of manual operations and possible pipelines. The security and reliability will

stay the same as the principal pipeline. Even thrown we have manual operations that decrease these

two complexity attributes, the automated pipelines and quality gates balance by increasing them.

Supporting Git Flow The number of quality gates, manual operations, and possible pipelines in this

pipeline ramification contributes to very high pipeline suitability and availability. However, this high

number of these complexity attributes contributes to low pipeline maintainability and readability. The

pipeline’s security and reliability remain the same as the principal pipeline due to the same reason men-

tioned in the pipeline ramification Support Multiple Releases of the Product.

Programmatic Releases This pipeline ramifications increase the pipeline’s suitability compared with the

principle pipeline. However, the presence of manual operations and the possible number of pipelines

will decrease pipeline availability and efficiency. The pipeline security and reliability slightly decrease

due to manual operations. The pipeline maintainability and readability will be lower due to the number

of automated operations, a possible number of pipelines, and quality gates.

67

68

6
Conclusion

Contents

6.1 Conclusions . 71

6.2 System Limitations . 73

6.3 Future Work . 73

69

70

In this chapter, we conclude the research with general conclusions, limitations and future work

6.1 Conclusions

We believe all the findings will enrich the current knowledge regarding pipeline quality attributes and

their implications, contributing valuable insights to academia and the industry.

After modeling the Trunk-Based Driven Pipelines (TBDP) patterns (Principal Pipeline and their rami-

fications), we reach the following conclusions:

• Trunk-Based Driven Pipeline fully supports Continuous Integration, Continuous Testing, Continu-

ous Deployment, and Continuous Delivery (Figure 4.1).

• The pipeline ramification that supports a High number of Complex Integration Tests enables the

use of a parallel pipeline to deal with automated complex integration tests. (Figure 4.2).

• The pipeline ramification that contributes to dealing with Lower CPU and memory availability to run

the pipeline stages supports the use of local builds (But operations locally are executed manually)

(Figure 4.3).

• The pipeline ramification that supports Inexperience Teams allows the developers to make the

needed changes in a fork supported by a pipeline and integrate them into the mainline when the

code is ready (Figure 4.4).

• The pipeline that supports a Release Ready Mainline contributes to a new layer of control in the

delivery process, allowing the development team only to merge a new release in the mainline when

they have a high confidence degree in the new code changes implementation (Figure 4.5).

After modeling the Feature-Based Driven Pipeline (FBDP) patterns (Principal Pipeline and their ram-

ifications), we reach the following conclusions:

• Feature-Based Driven Pipeline enables the development team to have a more controlled auto-

mated delivery, introduce non-planned releases quickly and have various code-based versions

supported by multiple pipelines (Figure 4.1).

• The pipeline ramification that supports the Release of a Hotfix in Production allows the develop-

ment team to rapidly deliver in the Production Environment a resolution to an unexpected problem

in the software application (Figure 4.7).

• The pipeline ramifications that support the Experimentation of new features allow the development

team to automatically deliver experimental artifacts in an isolated environment, not affecting the

71

principal delivery pipeline. This allows the developers to experiment without affecting the delivery

mechanism of the software product (Figure 4.8).

• The pipeline ramification that supports a branch per Environment Simple and Complex gives the

development team the possibility of having different environments without using feature branches,

feature toggles, or configuration files stored in the code repository (Figure 4.10 and Figure 4.9).

• The pipeline ramification that supports multiple releases of the product contributes to the automa-

tion of the delivery of multiple versions of the code-version simultaneity (Figure4.11).

• The pipeline ramification supporting Git Flow aggregates the other two pipeline ramifications (Re-

leases of a Hotfix and Multiple Releases) (Figure 4.12).

• The pipeline pattern supporting Programmatic releases enables a controlled integration between

features and releases and between the releases and the mainline (Figure 4.13).

After modeling the pipelines using Trunk-Based Driven Pipelines (TBDP), we observe that the devel-

opment team with this pipeline pattern can rely on complete automation of the delivery process, higher

pipeline efficiency, and faster delivery of new features. When using a Feature-Based-Driven Pipeline

(FBDP), the development team has more control over the code integration, can rely on the isolation of

new features in a dedicated pipeline during development, and will have the capacity to respond quickly

to unplanned releases.

The pipeline quality attributes used to evaluate the pipeline patterns in this research were Pipeline

Suitability, Maintainability, Availability, Performance Efficiency, Reliability, and Security.

We have defined four complex attributes categories (Manual Operations, Automated Operations,

Number of Possible pipelines, and Quality Gates), and we observed the following:

• The number of automated operations will contribute to increasing pipeline efficiency, reliability,

availability, and security. On the other side, it will decrease the pipeline maintainability and read-

ability, and also the suitability for the stakeholders.

• The number of manual operations will contribute to increasing the pipeline’s suitability to the stake-

holders but decrease the pipeline’s reliability, efficiency, and availability. The manual operations do

´not affect the pipeline readability or maintainability.

• The number of pipelines contributes to lower pipeline maintainability, readability, and efficiency.

However, the ability to separate the different needs in different pipelines increases the suitability

for all stakeholders and pipeline availability. The number of pipelines doesn’t have a direct impact

on pipeline security and reliability).

72

• The number of quality gates contributes to increasing the pipeline reliability, availability, security,

suitability for the stakeholders, and efficiency. The pipeline’s needed code work to support the

pipeline’s control gates decreases the pipeline’s readability and maintainability.

After executing the qualitative study, we can assume the following statements:

• The most stakeholder-suitable pipeline is the pipeline pattern supporting the git flow.

• The principal trunk-based pipeline is the more efficient and is the one with higher availability. It is

also the one that guarantees more security.

• The pipeline pattern that supports inexperienced teams and the pipeline patterns that support

Release Ready Mainline have very similar quality attributes distribution.

• The use of Feature Toggles instead of feature branches to control the enablement of features in the

different environments contributes to a more efficient pipeline. Using feature branches contributes

to increasing the availability of the pipeline.

6.2 System Limitations

There is a need to have more research studies with quality attributes of the pipeline that automates the

delivery process as target artifacts in academia. Because of that, it is hard to find information submitted

for a critical peer-review process that academic research is typically exposed to.

The complexity attributes lack a value for the variables, which can give the results presented in this

research an error margin.

6.3 Future Work

In future work, we propose a more extensive study on the quality attributes of the pipeline, studying other

possible quality attributes or contributing with more research in this domain.

There are also two new research themes in this study’s scope that are worth exploring. The first

proposed new research should be performed to calculate the values of the variables for the following

complexity measures: Pull requests (p), Feature toggles (f), Approval of releases (a), and Approval (q).

The second is new research with the main objective to apply in an actual use case the complexity

expressions expressed in Chapter 5 and then execute a qualitative and quantitative analysis of the

results.

73

74

Bibliography

[1] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design science research

methodology for information systems research,” Journal of Management Information Systems,

vol. 24, pp. 45–77, 12 2007.

[2] D. Lopez-Fernandez, J. Diaz, J. Garcia-Martin, J. Perez, and A. Gonzalez-Prieto, “Devops team

structures: Characterization and implications,” IEEE Transactions on Software Engineering, p. 1,

2021.

[3] M. Flower, “Patterns for managing source code branches,” 5 2020. [Online]. Available:

https://martinfowler.com/articles/branching-patterns.html

[4] P. Perera, R. Silva, and I. Perera, “Improve software quality through practicing devops,” 2017, pp.

1–6.

[5] P. Debois, “Agile infrastructure and operations: How infra-gile are you?” 2008, pp. 202–207.

[6] F. Zampetti, S. Geremia, G. Bavota, and M. D. Penta, “Ci/cd pipelines evolution and restructuring:

A qualitative and quantitative study,” 2021, pp. 471–482.

[7] M. M. I. Tarawneh, H. AL-Tarawneh, and A. Elsheikh, “Software development projects: An inves-

tigation into the factors that affect software project success/ failure in jordanian firms,” 2008, pp.

246–251.

[8] M. A. Akbar, S. Rafi, A. A. Alsanad, S. F. Qadri, A. Alsanad, and A. Alothaim, “Toward successful

devops: A decision-making framework,” IEEE Access, vol. 10, pp. 51 343–51 362, 2022.

[9] A. Mishra and Z. Otaiwi, “Devops and software quality: A systematic mapping,” Computer Science

Review, vol. 38, p. 100308, 2020. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S1574013720304081

[10] S. T. March and G. F. Smith, “Design and natural science research on information

technology,” Decision Support Systems, vol. 15, pp. 251–266, 1995. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/0167923694000412

75

https://martinfowler.com/articles/branching-patterns.html
https://www.sciencedirect.com/science/article/pii/S1574013720304081
https://www.sciencedirect.com/science/article/pii/S1574013720304081
https://www.sciencedirect.com/science/article/pii/0167923694000412

[11] A. Hevner, A. R, S. March, S. T, Park, J. Park, Ram, and Sudha, “Design science in information

systems research,” Management Information Systems Quarterly, vol. 28, p. 75, 1 2004.

[12] B. Kitchenham and P. Brereton, “A systematic review of systematic review process research

in software engineering,” Information and Software Technology, vol. 55, pp. 2049–2075, 2013.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0950584913001560

[13] L. Chen, “Continuous delivery: Huge benefits, but challenges too,” IEEE Software, vol. 32, pp.

50–54, 2015.

[14] “Ieee standard for devops:building reliable and secure systems including application build, package,

and deployment,” IEEE Std 2675-2021, pp. 1–91, 2021.

[15] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and

Deployment Automation, 1st ed. Addison-Wesley Professional, 2010.

[16] T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm, “Continuous deployment at

facebook and oanda.” IEEE Computer Society, 5 2016, pp. 21–30.

[17] M. Young and M. Pezze, Software Testing and Analysis: Process, Principles and Techniques. John

Wiley amp; Sons, Inc., 2005.

[18] M. M. Rahman and C. K. Roy, “Impact of continuous integration on code reviews,” 2017, pp. 499–

502.

[19] A. Dyck, R. Penners, and H. Lichter, “Towards definitions for release engineering and devops.”

Institute of Electrical and Electronics Engineers Inc., 2015, p. 3.

[20] M. Shahin, M. A. Babar, M. Zahedi, and L. Zhu, “Beyond continuous delivery: An empirical investi-

gation of continuous deployment challenges,” 1 2017.

[21] M. Z. Toh, S. Sahibuddin, and M. N. Mahrin, “Adoption issues in devops from the perspective of

continuous delivery pipeline.” Association for Computing Machinery, 2019, pp. 173–177. [Online].

Available: https://doi.org/10.1145/3316615.3316619

[22] N. Paez, “Versioning strategy for devops implementations,” 2018, pp. 1–6.

[23] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” IEEE Software, vol. 33, pp. 94–100,

2016.

[24] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspective. Addison-Wesley

Professional, 2015.

76

https://www.sciencedirect.com/science/article/pii/S0950584913001560
https://doi.org/10.1145/3316615.3316619

[25] P. Zimmerer, “Strategy for continuous testing in idevops.” Association for Computing Machinery,

2018, pp. 532–533. [Online]. Available: https://doi.org/10.1145/3183440.3183465

[26] M. Virmani, “Understanding devops bridging the gap from continuous integration to continuous

delivery.” 2015, pp. 78–78–82. [Online]. Available: https://search.ebscohost.com/login.aspx?direct=

true&db=edb&AN=110068582&site=eds-live

[27] A. Capizzi, S. Distefano, M. Mazzara, L. J. P. Araùjo, M. Ahmad, and E. Bobrov, “Anomaly

detection in devops toolchain,” 2019. [Online]. Available: http://arxiv.org/abs/1909.12682

[28] Y. Wang, M. Pyhäjärvi, and M. V. Mäntylä, “Test automation process improvement in a devops team:

Experience report,” 2020, pp. 314–321.

[29] N. Kerzazi and I. E. Asri, “Release engineering: From structural to functional view.” Association

for Computing Machinery, 2018. [Online]. Available: https://doi.org/10.1145/3289402.3289547

[30] H. Inc., “8 deployment pattern structures to transform your ci/cd,” 2022.

[31] B. Son, “An architect’s guide to devops pipelines: Continuous integration continuous delivery

(ci/cd),” 11 2020.

[32] C. Belyea, “The top 7 pipeline design patterns for continuous delivery,” 6 2020.

[33] Pasi, O. M. L. L. Ellen, and Kuvaja, “Dimensions of devops,” Torgeir, P. M. L. Casper, and Dingsøyr,

Eds. Springer International Publishing, 2015, pp. 212–217.

[34] R. W. Macarthy and J. M. Bass, “An empirical taxonomy of devops in practice.” Institute of Electrical

and Electronics Engineers Inc., 8 2020, pp. 221–228.

[35] A. Wahaballa, O. Wahballa, M. Abdellatief, H. Xiong, and Z. Qin, “Toward unified devops model,”

vol. 2015-November. IEEE Computer Society, 11 2015, pp. 211–214.

[36] R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer, “What is devops? a systematic mapping study

on definitions and practices.” Association for Computing Machinery, 2016. [Online]. Available:

https://doi.org/10.1145/2962695.2962707

[37] J. Meinicke, C.-P. Wong, B. Vasilescu, and C. Kästner, “Exploring differences and commonalities

between feature flags and configuration options,” 2020, pp. 233–242.

[38] M. M. A. Ibrahim, S. M. Syed-Mohamad, and M. H. Husin, “Managing quality assurance challenges

of devops through analytics.” Association for Computing Machinery, 2019, pp. 194–198. [Online].

Available: https://doi.org/10.1145/3316615.3316670

77

https://doi.org/10.1145/3183440.3183465
https://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=110068582&site=eds-live
https://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=110068582&site=eds-live
http://arxiv.org/abs/1909.12682
https://doi.org/10.1145/3289402.3289547
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/3316615.3316670

[39] I. Karamitsos, S. Albarhami, and C. Apostolopoulos, “Applying devops practices of continuous

automation for machine learning,” Information, vol. 11, 2020. [Online]. Available: https:

//www.mdpi.com/2078-2489/11/7/363

[40] H. L. Akshaya, J. Vidya, and K. Veena, “A basic introduction to devops tools,” International Journal

of Computer Science Information Technologies, vol. 6, pp. 5–6, 2015.

[41] D. Spinellis, “Git,” IEEE Software, vol. 29, pp. 100–101, 2012.

[42] S. Just, K. Herzig, J. Czerwonka, and B. Murphy, “Switching to git: The good, the bad, and the ugly,”

2016, pp. 400–411.

[43] E. R. A. N. D. W. G. B. J. D. and Davenport, “A quick introduction to version control with

git and github,” PLOS Computational Biology, vol. 12, pp. 1–18, 9 2016. [Online]. Available:

https://doi.org/10.1371/journal.pcbi.1004668

[44] S. McIntosh, B. Adams, T. H. D. Nguyen, Y. Kamei, and A. E. Hassan, “An empirical study of build

maintenance effort,” 2011, pp. 141–150.

[45] P. Runeson, “A survey of unit testing practices,” IEEE Software, vol. 23, pp. 22–29, 2006.

[46] F. Häser, M. Felderer, and R. Breu, “Software paradigms, assessment types and non-functional

requirements in model-based integration testing: A systematic literature review.” Association for

Computing Machinery, 2014. [Online]. Available: https://doi.org/10.1145/2601248.2601257

[47] W. T. Tsai, X. Bai, R. Paul, W. Shao, and V. Agarwal, “End-to-end integration testing design,” 2001,

pp. 166–171.

[48] C. AGUTTER, ITIL® Foundation Essentials – ITIL 4 Edition: The ultimate revision guide, 2nd ed.

IT Governance Publishing, 2019. [Online]. Available: http://www.jstor.org/stable/j.ctvckq658

[49] P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers and virtual machines at

scale: A comparative study.” Association for Computing Machinery, 2016. [Online]. Available:

https://doi.org/10.1145/2988336.2988337

[50] C. Engle, J. Brewster, and G. Blokdijk, ISO/IEC 20000 Certification and Implementation Guide -

Standard Introduction, Tips for Successful ISO/IEC 20000 Certification, FAQs, Mapping Responsi-

bilities, Terms, Definitions and ISO 20000 Acronyms. Emereo Pty Ltd, 2008.

[51] T. F. Düllmann, C. Paule, and A. van Hoorn, “Exploiting devops practices for dependable and secure

continuous delivery pipelines,” 2018, pp. 27–30.

78

https://www.mdpi.com/2078-2489/11/7/363
https://www.mdpi.com/2078-2489/11/7/363
https://doi.org/10.1371/journal.pcbi.1004668
https://doi.org/10.1145/2601248.2601257
http://www.jstor.org/stable/j.ctvckq658
https://doi.org/10.1145/2988336.2988337

[52] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd ed. Addison-Wesley

Professional, 2012.

[53] J. Miguel, D. Mauricio, and G. Rodriguez, “A review of software quality models for the evaluation of

software products,” International journal of Software Engineering Applications, vol. 5, pp. 31–54, 1

2014.

[54] I. 25010, “Iso/iec 25010:2011, systems and software engineering — systems and software quality

requirements and evaluation (square) — system and software quality models,” 2011.

[55] A. A. U. Rahman and L. Williams, “Security practices in devops.” Association for Computing

Machinery, 2016, pp. 109–111. [Online]. Available: https://doi.org/10.1145/2898375.2898383

[56] ——, “Security practices in devops.” Association for Computing Machinery, 2016, pp. 109–111.

[Online]. Available: https://doi.org/10.1145/2898375.2898383

79

https://doi.org/10.1145/2898375.2898383
https://doi.org/10.1145/2898375.2898383

80

A
Code of Project

In this Annex, we provide all the code used in the development of this thesis

A.0.1 Trunk-Based Pipelines Code

Listing A.1: Simple Trunk-Based Driven Pipeline Example.

1

2 name: CI/CD

3

4 on: [push]

5

6 jobs:

7 development evironment:

8 name: Development Enviroment

9 runs-on: ubuntu-latest

10 environment:

81

11 name: development

12 url: https://github.com

13 steps:

14 # Clone of the code

15 - uses: actions/checkout@v1

16 name: Clone code

17 - uses: cardinalby/export-env-action@v1

18 name: Load Feature toogles

19 with:

20 envFile: './env/development/config.env'

21 expand: 'true'

22 - name: Linting

23 run: echo Linting code.

24 - uses: actions/setup-python@v2

25 name : Build

26 - name: Unit Testing

27 run: echo Run Unit testing

28 - uses: jannekem/run-python-script-action@v1

29 name : Run Code

30 with:

31 script: |

32 import os

33 if os.environ.get('FEATURE1') == "True":

34 print(os.environ.get('FEATURE1'))

35 if os.environ.get('FEATURE2') == "True":

36 print("Running FEATURE2 a")

37 deployment integration:

38 name: Deploy in Integration Environment

39 needs: development evironment

40 runs-on: ubuntu-latest

41 environment:

42 name: integration

43 url: https://github.com

44 steps:

45 - name: Deploy in Integration

46 run: echo Coding is deployed

47 integration enviroment:

48 name: Integration Environment

82

49 needs: deployment integration

50 environment:

51 name: integration

52 url: https://github.com

53 runs-on: ubuntu-latest

54 steps:

55 - uses: actions/checkout@v1

56 name: Clone code

57 - uses: cardinalby/export-env-action@v1

58 name: Load Feature toogles

59 with:

60 envFile: './env/integration/config.env'

61 expand: 'true'

62 - uses: jannekem/run-python-script-action@v1

63 name : Run Code

64 with:

65 script: |

66 import os

67 if os.environ.get('FEATURE1') == "True":

68 print(os.environ.get('FEATURE1'))

69 if os.environ.get('FEATURE2') == "True":

70 print("Running FEATURE2")

71 - name: Integration Testing

72 run: echo Run Unit testing

73 deployment testing:

74 name: Deploy in Testing Environment

75 needs: integration enviroment

76 runs-on: ubuntu-latest

77 environment:

78 name: testing

79 url: https://github.com

80 steps:

81 - name: deploy

82 run: echo Coding is deployed

83 testing enviroment:

84 name: Testing Environment

85 needs: deployment testing

86 runs-on: ubuntu-latest

83

87 environment:

88 name: testing

89 url: https://github.com

90 steps:

91 - uses: actions/checkout@v1

92 name: Clone code

93 - uses: cardinalby/export-env-action@v1

94 name: Load Feature toogles

95 with:

96 # Will need to set for each environment path for the config-env

97 # containing all the feature toggles with the key-value definitions

98 envFile: './env/testing/config.env'

99 expand: 'true'

100 - uses: jannekem/run-python-script-action@v1

101 name : Run Code

102 with:

103 script: |

104 # Import the from the library to be able to use the Environment Variables

105 import os

106 # If the Feature Toggle represented by "Feature1" is enable

107 # will print the text inside the function print()

108 if os.environ.get('FEATURE1') == "True":

109 print("Running FEATURE1")

110 # If the Feature Toggle represented by "Feature2" is enabled will print

111 # the text inside the function print()

112 if os.environ.get('FEATURE2') == "True":

113 print("Running FEATURE2")

114 - name: Non-Functional Testing

115 run: echo Run Non-Functional Testing

116 - name: Functional Testing

117 run: echo Run Functional Testing

118 deployment staging:

119 name: Deploy in Staging Environment

120 needs: testing enviroment

121 runs-on: ubuntu-latest

122 environment:

123 name: staging

124 url: https://github.com

84

125 steps:

126 - name: deploy

127 run: echo Coding is deployed

128 staging enviroment:

129 name: Staging Environment

130 needs: deployment staging

131 runs-on: ubuntu-latest

132 environment:

133 name: staging

134 url: https://github.com

135 steps:

136 - uses: actions/checkout@v1

137 name: Clone code

138 - uses: cardinalby/export-env-action@v1

139 name: Load Feature toggles

140 with:

141 envFile: './env/staging/config.env'

142 expand: 'true'

143 - uses: jannekem/run-python-script-action@v1

144 name : Run Code

145 with:

146 script: |

147 import os

148 if os.environ.get('FEATURE1') == "True":

149 print(os.environ.get('FEATURE1'))

150 if os.environ.get('FEATURE2') == "True":

151 print("Running FEATURE2")

152 - name: Non-Functional Testing

153 run: echo Run Non-Functional Testing

154 - name: Functional Testing

155 run: echo Run Functional Testing

156 release:

157 name: Release in Production

158 needs: staging enviroment

159 runs-on: ubuntu-latest

160 environment:

161 name: Prodution

162 url: https://github.com

85

163 steps:

164 - name: Run Code in Production

165 run: echo Coding is deployed

Listing A.2: Trunk-Based Driven Pipeline with complex tests Example.

1

2 name: CI/CD With Complex Tests

3

4 on: [push]

5

6 jobs:

7 development evironment:

8 name: Development Enviroment

9 runs-on: ubuntu-latest

10 environment:

11 name: development

12 url: https://github.com

13 steps:

14 # Clone of the code

15 - uses: actions/checkout@v1

16 name: Clone code

17 - uses: cardinalby/export-env-action@v1

18 name: Load Feature toogles

19 with:

20 envFile: './env/development/config.env'

21 expand: 'true'

22 - name: Linting

23 run: echo Linting code.

24 - uses: actions/setup-python@v2

25 name : Build

26 - name: Unit Testing

27 run: echo Run Unit testing

28 - uses: jannekem/run-python-script-action@v1

29 name : Run Code

30 with:

31 script: |

32 import os

86

33 if os.environ.get('FEATURE1') == "True":

34 print(os.environ.get('FEATURE1'))

35 if os.environ.get('FEATURE2') == "True":

36 print("Running FEATURE2 a")

37 deployment integration:

38 name: Deploy in Integration Environment

39 needs: development evironment

40 runs-on: ubuntu-latest

41 environment:

42 name: integration

43 url: https://github.com

44 steps:

45 - name: Deploy in Integration

46 run: echo Coding is deployed

47 integration enviroment:

48 name: Integration Environment

49 needs: deployment integration

50 runs-on: ubuntu-latest

51 environment:

52 name: integration

53 url: https://github.com

54 steps:

55 - uses: actions/checkout@v1

56 name: Clone code

57 - uses: cardinalby/export-env-action@v1

58 name: Load Feature toogles

59 with:

60 envFile: './env/integration/config.env'

61 expand: 'true'

62 - uses: jannekem/run-python-script-action@v1

63 name : Run Code

64 with:

65 script: |

66 import os

67 if os.environ.get('FEATURE1') == "True":

68 print(os.environ.get('FEATURE1'))

69 if os.environ.get('FEATURE2') == "True":

70 print("Running FEATURE2")

87

71 - name: Integration Testing

72 run: echo Run Unit testing

73 # Link to the scheduled pipeline

74 complex tests:

75 name: Run Complex Tests

76 runs-on: ubuntu-latest

77 environment:

78 name: integration

79 url: https://github.com

80 steps:

81 - uses: cardinalby/schedule-job-action@v1

82 with:

83 ghToken: ${{ secrets.WORKFLOWS TOKEN }}

84 templateYmlFile: '.github-scheduled-workflows/complex test example.yml'

85 deployment testing:

86 name: Deploy in Testing Environment

87 # Configuration of the dependency in the scheduled pipeline and principal

88 needs: [integration enviroment,complex tests]

89 runs-on: ubuntu-latest

90 environment:

91 name: testing

92 url: https://github.com

93 steps:

94 - name: deploy

95 run: echo Coding is deployed

96 testing enviroment:

97 name: Testing Environment

98 needs: deployment testing

99 environment:

100 name: testing

101 url: https://github.com

102 runs-on: ubuntu-latest

103 steps:

104 - uses: actions/checkout@v1

105 name: Clone code

106 - uses: cardinalby/export-env-action@v1

107 name: Load Feature toogles

108 with:

88

109 # Will need to set for each environment the path for the config-env

110 # containing all the feature toogles with the key-value definitions

111 envFile: './env/testing/config.env'

112 expand: 'true'

113 - uses: jannekem/run-python-script-action@v1

114 name : Run Code

115 with:

116 script: |

117 # Import the os library to be able to use the Environment Variables

118 import os

119 # If the Feature Toggle represented by "Feature1" is enable

120 # will print the text inside the function print()

121 if os.environ.get('FEATURE1') == "True":

122 print("Running FEATURE1")

123 # If the Feature Toggle represented by "Feature2" is enable

124 # will print the text inside the function print()

125 if os.environ.get('FEATURE2') == "True":

126 print("Running FEATURE2")

127 - name: Non-Functional Testing

128 run: echo Run Non-Functinal Testing

129 - name: Functional Testing

130 run: echo Run Functinal Testing

131 deployment staging:

132 name: Deploy in Staging Environment

133 needs: testing enviroment

134 runs-on: ubuntu-latest

135 environment:

136 name: staging

137 url: https://github.com

138 steps:

139 - name: deploy

140 run: echo Coding is deployed

141 staging enviroment:

142 name: Staging Environment

143 needs: deployment staging

144 environment:

145 name: staging

146 url: https://github.com

89

147 runs-on: ubuntu-latest

148 steps:

149 - uses: actions/checkout@v1

150 name: Clone code

151 - uses: cardinalby/export-env-action@v1

152 name: Load Feature toogles

153 with:

154 envFile: './env/staging/config.env'

155 expand: 'true'

156 - uses: jannekem/run-python-script-action@v1

157 name : Run Code

158 with:

159 script: |

160 import os

161 if os.environ.get('FEATURE1') == "True":

162 print(os.environ.get('FEATURE1'))

163 if os.environ.get('FEATURE2') == "True":

164 print("Running FEATURE2")

165 - name: Non-Functional Testing

166 run: echo Run Non-Functinal Testing

167 - name: Functional Testing

168 run: echo Run Functinal Testing

169 release:

170 name: Release in Production

171 needs: staging enviroment

172 runs-on: ubuntu-latest

173 environment:

174 name: prodution

175 url: https://github.com

176 steps:

177 - name: Run Code in Production

178 run: echo Coding is deployed

Listing A.3: Trunk-Based Driven Parallel Pipeline with complex tests Example.

1

2 name: CI/CD With Complex Tests

3

90

4 on:

5 # In this example the pipeline runs every 15th minute, but this value can be changed

6 schedule:

7 - cron: '*/15 * * * *'

8

9 jobs:

10 name: Run Complex Tests

11 runs-on: ubuntu-latest

12 environment:

13 name: testing

14 url: https://github.com

15 steps:

16 - uses: actions/checkout@v2

17 - name: Running Complex tests

18 run: echo Test are running

A.0.2 Feature-Based Pipelines Code

Listing A.4: Simple Feature branch Mainline Pipeline Example.

1

2 name: Mainline Pipeline

3 on:

4 # This Definition sets the trigger of the CD pipeline only

5 # when the code is pushed to the mainline

6 push:

7 branches: [main]

8 # and also when the pull request is approved and, the code merged in the mainline

9 pull request:

10 branches: [main]

11 jobs:

12 integration enviroment:

13 name: Integration Environment

14 environment:

15 name: integration

16 url: https://github.com

17 runs-on: ubuntu-latest

91

18 steps:

19 - uses: actions/checkout@v1

20 name: Clone code

21 - name: Linting

22 run: echo Linting code.

23 - uses: actions/setup-python@v2

24 name : Build

25 - name: Unit Testing

26 run: echo Run Unit testing

27 - uses: jannekem/run-python-script-action@v1

28 name : Run Code

29 with:

30 script: |

31 print("Hello World")

32 - name: Integration Testing

33 run: echo Run Unit testing

34 deployment testing:

35 name: Deploy in Testing Environment

36 needs: integration enviroment

37 runs-on: ubuntu-latest

38 environment:

39 name: testing

40 url: https://github.com

41 steps:

42 - name: deploy

43 run: echo Coding is deployed

44 testing enviroment:

45 name: Testing Environment

46 needs: deployment testing

47 environment:

48 name: testing

49 url: https://github.com

50 runs-on: ubuntu-latest

51 steps:

52 - uses: actions/checkout@v1

53 name: Clone code

54 - uses: jannekem/run-python-script-action@v1

55 name : Run Code

92

56 with:

57 script: |

58 print("Hello World")

59 - name: Non-Functional Testing

60 run: echo Run Non-Functional Testing

61 - name: Functional Testing

62 run: echo Run Functional Testing

63 deployment staging:

64 name: Deploy in Staging Environment

65 needs: testing enviroment

66 runs-on: ubuntu-latest

67 environment:

68 name: staging

69 url: https://github.com

70 steps:

71 - name: deploy

72 run: echo Coding is deployed

73 staging enviroment:

74 name: Staging Environment

75 needs: deployment staging

76 environment:

77 name: staging

78 url: https://github.com

79 runs-on: ubuntu-latest

80 steps:

81 - uses: actions/checkout@v1

82 name: Clone code

83 - uses: jannekem/run-python-script-action@v1

84 name : Run Code

85 with:

86 script: |

87 print("Hello World")

88 - name: Non-Functional Testing

89 run: echo Run Non-Functinal Testing

90 - name: Functional Testing

91 run: echo Run Functinal Testing

92 release:

93 name: Release in Production

93

94 needs: staging enviroment

95 runs-on: ubuntu-latest

96 # Using the environment tag, we can configure the place

97 # where the code will be deployed

98 # and the need for permissions to approve the Releases/Deployment

99 # of the code in the environment

100 environment:

101 name: prodution

102 url: https://github.com

103 steps:

104 - name: Run Code in Production

105 run: echo Coding is deployed

Listing A.5: Simple Feature branch Pipeline Example.

1

2 name: Feature Pipeline

3 on:

4 # This Definition sets the trigger of the CI pipeline

5 # only when the code is pushed to the feature branch

6 push:

7 branches:

8 - feature/**

9 jobs:

10 development evironment:

11 name: Development Environment

12 environment:

13 name: development

14 url: https://github.com

15 runs-on: ubuntu-latest

16 steps:

17 # Clone of the code

18 - uses: actions/checkout@v1

19 name: Clone code

20 - name: Linting

21 run: echo Linting code.

22 - uses: actions/setup-python@v2

23 name : Build

94

24 - name: Unit Testing

25 run: echo Run Unit testing

26 - uses: jannekem/run-python-script-action@v1

27 name : Run Code

28 with:

29 # This is a simple python script that prints in the console

30 # the values present inside the function print()

31 script: |

32 print("Hello World")

33 print("Hello Feature 1")

95

96

97

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Problem
	1.3 Objectives and Deliverables
	1.4 Thesis Outline

	2 Research Methodology
	2.1 Design Science Research
	2.2 Systematic Literature Review
	2.2.1 Planning
	2.2.2 Conducting
	2.2.3 Reporting the Review

	3 Theoretical Background
	3.1 Devops
	3.1.1 Feature Flags
	3.1.2 Quality Gates and Triggers
	3.1.3 Tools
	3.1.4 Team Roles
	3.1.5 Principles

	3.2 Software Configuration Management
	3.2.1 Git Operations
	3.2.2 Branching Patterns
	3.2.3 Build Phase and Testing Phase
	3.2.4 Deployment Phase
	3.2.5 Release Phase

	3.3 DevOps Pipeline
	3.3.1 DevOps Standard Pipeline

	3.4 Quality Attributes
	3.4.1 Software Quality Attributes
	3.4.2 Pipeline Quality Attributes

	4 Solution
	4.1 Trunk-Based Driven Pipeline
	4.1.1 Common Pipeline Ramifications
	4.1.2 Advantages and downsides

	4.2 Feature-Based Driven Pipeline
	4.2.1 Common Pipeline Ramifications
	4.2.2 Advantages and Downsides

	4.3 Patterns Analysis

	5 Evaluation
	5.1 Evaluation Method
	5.1.1 Number of Automated operations
	5.1.2 Possible Number of Pipelines
	5.1.3 Quality Gates

	5.2 Complexity Expressions
	5.2.1 Trunk Based Complexity Expressions
	5.2.2 Feature-Based Complexity Expressions

	5.3 Qualitative Analysis
	5.3.1 Trunk Based Driven Pipelines Qualitative Analysis
	5.3.2 Feature-Based Driven Pipelines Qualitative Analysis

	6 Conclusion
	6.1 Conclusions
	6.2 System Limitations
	6.3 Future Work
	Bibliography

	Bibliography
	Appendix A

	A Code of Project
	A.0.1 Trunk-Based Pipelines Code
	A.0.2 Feature-Based Pipelines Code

