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Resumo

É feita a comparação entre duas geometrias para um veı́culo de levitação magnética usando super-

condutores de alta temperatura (HTS), com zero-field-cooling (ZFC), do tipo YBCO. As duas geome-

trias são: uma geometria rectangular, que usa blocos de magnetos permanentes para fazer a pista

magnética, e um carro com blocos supercondutores, que levitam sobre a pista magnética; uma nova

geometria cilı́ndrica que consiste numa pista magnética cilı́ndrica discreta, feita de magnetos perma-

nentes, igualmente espaçados, e de supercondutores com uma geometria de meio anel, a levitar na

pista magnética, com um espaçamento radial constante. A métrica de comparação entre as duas ge-

ometrı́as é a estabilidade lateral.

Um protótipo já existente da geometria rectangular é usado para serem realizadas experiências

para determinar a resposta do sistema a uma perturbação lateral. Para a nova geometria cilı́ndrica,

simulações em 2D e 3D foram realizadas usando um programa de elementos fı́nitos. As simulações

serviram para o dimensionamento desta nova geometria, tendo em conta a grossura e profundidade

dos supercondutores, do espaçamento entre os magnetos permanentes, e do espaçamento entre o

superconductor e os magnetos. O dimensionamento teve em conta os superconductores conseguirem

estar em equı́librio estático, i.e, a força de levitação estar equilibrada com a força gravı́tica do supercon-

dutor, tendo em vista manter a simetria do sistema. As duas geometrias foram comparadas em relação

às suas respostas a perturbações laterais.

As conclusões chegadas foram que a geometria rectangular apresenta uma resposta não linear e

os deslocamentos laterais máximos para o qual o sistema ainda é estavel são por volta de 21 mm.

Palavras-chave: Superconductores de Alta Temperatura (HTS), Levitação Magnética (Ma-

glev), Forças de Guiamento, Estabilidade Lateral
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Abstract

This dissertation makes the comparison between two types of geometries for a magnetic levitating vehi-

cle using YBCO zero field cooled (ZFC) high temperature superconductors (HTS) under: a rectangular

geometry, using rectangular bulks of permanent magnets to make the tracks, and a car with super-

conductors, levitating above the magnetic track; and a cylindrical geometry, consisting of a cylindrical

magnetic track, with equally spaced permanent magnets, and superconductors with the geometry of an

half ring, levitating on the cylindrical track, with a constant radial air gap. The metric for comparison is

the lateral stability of both geometries.

The analysis made in this dissertation is the following: for the rectangular geometry, the prototype is

used to make an analysis to estimate its response to lateral displacements. For the cylindrical geometry,

2D and 3D simulations are made using a finite element method (FEM) software. The simulations made

are for the dimensioning of the new cylindrical geometry, regarding the thickness and depth of the YBCO

superconductor half rings, the spacing between the permanent magnets, and the air gap between the

YBCO superconductor half ring and the permanent magnets. These studies are evaluated and chosen

considering if their levitating forces are close to the gravitational force of the superconductor, to maintain

a constant radial air gap. The two geometries are then compared, regarding their response to lateral

displacements.

It was found that, the rectangular geometry presents a non-linear response for a lateral displacement

and the maximum displacement for which the system is still stable is around 21 mm. For the cylindrical

geometry, the response is very close to linear and it has an inherent stability. However, the maximum

displacements for the possible geometries can be lower than 21 mm, since the geometries that gua-

rantee a stable levitation have a small air gap, and the air gap is closely related to the possible lateral

movement, due to the nature of the geometry.

Keywords: High-temperature superconductor (HTS), Magnetic Levitation (Maglev), Guidance

Forces, Lateral Stability
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Chapter 1

Introduction

This chapter describes the motivation and goals for this thesis. A topic overview of the use of super-

conductors in vehicle applications is also presented. To conclude, the objectives and thesis outline are

stated.

1



1.1 Motivation

The studies presented in this dissertation are a continuity of previous research made, regarding the use

of Zero Field Cooled (ZFC) High Temperature Superconductors (HTS) for the design of a new magnetic

levitating system [1]. One main aspect was the comparison between field cooled (FC) and ZFC HTS. To

prove such concept, the prototype of the rectangular geometry was developed, which is in Chapter 3,

and studies regarding the levitating forces and lateral forces were made, as well as a study comparing

the power losses of both cooling methods. The main conclusions of this research were that, although

FC systems have a better stability than ZFC systems, their levitating forces are lower, and the guidance

forces of FC systems are dependent on the initial cooling height. Lower levitating forces makes FC

systems having more superconductors and magnets than ZFC systems, for the same application. This

has implications on the costs between FC and ZFC systems, making FC systems more expensive.

Regarding the guidance forces of FC systems, they are dependent on the initial cooling height, and

are less strong for increased cooling heights, making the stability height dependent for FC systems, a

situation that in ZFC systems does not happen. Also, the power losses are higher in FC systems, and

can compromise their superconductivity state. One can conclude that ZFC systems present to be a

better candidate for vehicle applications, since the objective for vehicles are to increase the efficiency,

to achieve higher speeds and have the capability of higher loads. In this dissertation, all the studies will

focus on vehicle applications using ZFC HTS, being a continuation of the previous work stated.

This dissertation follows a proposal of Bruno Painho’s future work [2]. In [2], Painho briefly states

about the stability and levitation forces of a new cylindrical geometry, and makes a positive remark of

being more stable than the rectangular geometry.

1.2 Topic Overview

Nowadays there are several levitation systems being used, each using active elements, namely electro-

magnets. The Transrapid, of German design, with an experimental track in Germany and implemented

in China, connecting Shanghai to its airport. In Japan, it is used the L0-Maglev, which is a high-speed

maglev that is in developing and testing. In April 2015, it achieved the velocity record of 603 kilometers

per hour for magnetic levitation systems [3]. For low speed applications, there is the Linimo maglev

line, in Japan, which is an automated Urban Maglev system, with top speeds of 100 kilometers per hour

and served more than 20 million passengers [4]. Recently, the Beijing municipal government has built

China’s second low-speed maglev line, S1 Line, which has a top speed of 105 kilometers per hour [5].

However, there has been a push for the development of a levitation based on passive elements,

such as permanent magnets and superconductors. Brazil has developed a full scale magnetic levitating

vehicle, using FC HTS, called the Maglev-Cobra. It was developed in Universidade Federal do Rio de

Janeiro and a magnetic track was built, that connects two distant parts of the campus, and it is used as

a method of transportation along the campus. It was designed to operate low speed, usually around 8

meters per second [6] [7].
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1.3 Objectives

The objectives of this thesis are: to study the lateral forces of the initial rectangular geometry prototype

and to develop a model for the dynamics of the lateral movement; to make a new cylindrical geometry

design of the superconductors and the permanent magnets regarding the levitation and guidance forces;

to study and develop a model for the dynamics of the lateral movement of the new design; to compare

both systems and discuss the outcomes.

1.4 Thesis Outline

This thesis is divided in five chapters, being the first Chapter, this introductory one. Chapter 2 is dedi-

cated to give some background about some aspects of the High Temperature Superconductors, and a

more detailed specification about the differences of Zero-Field-Cooled and Field Cooled HTS. Chapter 3

describes the first prototype developed by Bruno Painho, and the experiments made to evaluate the

responses to lateral disturbances. Chapter 4 presents the simulations done for the development of the

new cylindrical geometry, regarding the levitation and guidance forces of the geometry. In Chapter 5,

a collection of the main results of Chapter 3 and 4 is made, and a comparison between the models is

made. Finally, Chapter 6 completes this work by presenting the main conclusions of this work.
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Chapter 2

High Temperature Superconductors

This chapter provides a summary of high temperature superconductors characteristics, describing their

behavior and unique phenomena.
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2.1 Fundamentals

It is noted that some metals or oxide composites, when subjected to a low enough temperature, start to

have negligible electrical resistance. Who first discovered this effect was Heike Kamerlingh Onnes [8],

that used liquefied Helium (4.2 K) to cool down mercury and noticed that below a certain temperature,

the resistance could not be measurable. This is called the superconductive state. Due to its low electrical

resistance, a superconductor can carry high values of current without significant temperature increases

and high joule losses, in comparison to normal conductors, such as copper, silver or gold. [8] Another

consequence of the superconductive state is the perfect diamagnetism it possesses.

Later, it was discovered that some oxide composites, such as the LaBaCuO, could be superconduc-

tive with temperatures as high as 35 K [9]. This results marked the first steps to the development of

high temperature superconductors (HTS). Presently, the temperatures of superconductive state of some

materials are around 100 K, such as the YBaCuO (YBCO) composite, used in this dissertation, and

liquid Nitrogen can be used (boiling point of 77 K) instead of liquid Helium, to refrigerate.

The development of HTS induced new studies that confirmed that not all superconductors behave

in the same matter, and type-I and type-II superconductors, respectively, were discovered. Type-I su-

perconductors are the ones that need temperatures below 30 K to be superconductive. These usually

are metals, present a perfect diamagnetism when near a magnetic field and are fully explained by the

Bardeen–Cooper–Schrieffer (BCS) theory [8]. In this dissertation, type-I superconductors will not be

further analyzed, and the main focus will be on type-II superconductors, also called high temperature

superconductors, or HTS.

2.2 Critical Region and Superconductive States

Superconductivity is characterized by three parameters: the critical magnetic fieldHC , the critical current

density JC and the critical temperature TC [8]. If the material surpasses any of this values, it loses

its superconductive state. Figure 2.1 shows the volume defining the superconductive region. Any of

Figure 2.1: Volume defining the superconducting region [10].
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these parameters can be exceeded only locally, turning some parts of the superconductor to a normal

state. These parts will turn superconductive again once the quantities in question fall back bellow the

respective critical values [10].

Regarding the magnetic field density in which the HTS is present, there can be two possible super-

conductive states, which are represented in Figure 2.2 . Those are the diamagnetic state and the mixed

state.

Figure 2.2: Possible superconductive states in an HTS. [11]

2.2.1 Diamagnetic State and Meissner Effect

Regarding Figure 2.2 , if the magnetic field density B is lower than BC1, the superconductor is in its

diamagnetic state, and the superconductor repels the magnetic field that tries to penetrate it. This effect

is called the Meissner Effect [8] [9] [10] and it is represented in Figure 2.3.

Figure 2.3: Illustration of the Meissner Effect. The streamlines represent the magnetic field lines. Note
that the superconductor repels the magnetic field.
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2.2.2 Mixed State and Flux Pinning

If the field is between BC1 and BC2, with BC1 < BC2, the superconductor loses its property of mag-

netic field expulsion and enters the mixed state. In this mixed state, the magnetic field lines penetrate

the superconductor in non superconductive regions, where impurities exist, and microscopic tubes are

created, allowing the concentration of a magnetic flux. This causes an electric current to flow, and sur-

rounds those tubes of magnetic flux, creating what is called as Abrikosov vortices. Figure 2.4 shows the

tubes of magnet flux in an YBCO sample.

Figure 2.4: SQUID microscopy scanning of the magnetic flux density tubes of a 200-nm-thick YBCO film
[12].

Due to the vortices, in this mixed state, a magnetic field can be trapped inside the superconductor,

making the superconductor being in a region of space where the net force is null. This effect is called

flux pinning, represented in Figure 2.5.

Figure 2.5: HTS subject to flux pinning [13]. In a diamagnetic state, the superconductor would normally
expel the field, resulting in a higher downward force than the existing force of gravity of the HTS. Since
the material is subject to flux pinning, the HTS is trapped in the magnetic field, resulting in a null net
force.
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2.3 Cooling Mechanisms

When a HTS is cooled under the presence of a magnetic field, it retains that magnetic field when it

reaches its superconductive state. This cooling mechanism is called Field-Cooling (FC) and it is repre-

sented in Figure 2.6a. When field-cooled, if the superconductor is again exposed to an external magnetic

field, it will try to align its internal field to the external field, making the superconductor trapped in that

stable position, as it is in Figure 2.5.

If the superconductor is cooled without the presence of a magnetic field, it will try to retain that

configuration, which means that any external field that tries to penetrate the superconductor will be

repelled. This method of cooling is called Zero-Field-Cooling (ZFC). Both FC and ZFC are represented

in Figure 2.6.

(a) (b)

Figure 2.6: HTS in a Field-Cooled process (a) and in a Zero-Field-Cooled process (b). In (a), the
superconductor traps the magnetic field that penetrated him and can maintain that magnetic field, without
an external source. in (b), the HTS repels the magnetic field that tries to penetrate.

2.3.1 Forces and Energy Losses in FC and ZFC Systems

In [1], a comparison between the vertical and horizontal forces of a superconductor maglev system

using ZFC and FC HTS is made. Figure 2.7 shows the levitation forces for the ZFC and FC system. The

conclusions of the experiment are that the ZFC system has higher levitation forces. This guarantees

that the ZFC system can support more weight than the FC system.

Regarding the lateral stability, Figure 2.8 shows the horizontal forces with respect to a lateral dis-

placement in a ZFC and FC system. This figure shows that the FC system has a better stability than

ZFC systems, since their horizontal forces are higher. However, the FC system has a drawback: their

joule losses are higher than the ZFC system. Since the horizontal forces are higher and the force is

F = B × J , this means that higher forces in a constant magnetic field density produce a higher current

density inside the superconductor, which produce higher joule losses.
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Figure 2.7: Levitation forces obtained for the ZFC and FC system [1].

(a) (b)

Figure 2.8: (a) Guidance force versus ZFC system lateral displacement. (b) Guidance force versus FC
system lateral displacement [1].

The horizontal forces in the FC system are dependent on the initial cooling height, and are less strong

for increased cooling heights. Figure 2.9 shows the dependency of the horizontal forces with respect to

the cooling height. With this results, it is shown that the stability of the FC system varies with the cooling

height, making this system more complex than the ZFC system.

Figure 2.9: Levitation forces obtained for the FC system with different cooling heights [1].

It is with these results of [1] that the ZFC HTS system was preferred over the FC HTS system, for

vehicle applications.
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2.4 Electromagnetic Model Formulation

The foundations for this model stand on the Maxwell’s equations in a quasi-stationary regime, neglecting

the displacement vector D, since the capacitive effects are negligible. For this type of regime, one has

∇×E = −∂B
∂t

(2.1a)

∇ ·B = 0 (2.1b)

∇×H ≈ J (2.1c)

where E is the electric field vector, B is the magnetic flux density vector, H is the magnetic field vector

and J is the current density vector. To completely solve Maxwell’s equations, one needs relations be-

tween B and H, and between E and J. These are the constitutive relations, and for the magnetic fields,

it is used the relation for isotropic linear materials and media

B = µH. (2.2)

where µ is the magnetic permeability.

2.4.1 HTS E-J Power Law

For type II superconductors, there is a non linear constitutive relation between the electric field E and

the current density J, for low current densities (below or near the maximum critical current density JC0)

[14]

E = E0

(
J

JC

)n
J

J
, (2.3)

where E0 and n are parameters that depend on the superconductor, and JC is the critical current density,

which depends on the magnetic flux density

JC =
B0

B0 +B
JC0. (2.4)

The term JC0 in (2.4) represents the maximum critical current density of the material (for B = 0). This

value is temperature dependent, while B0 represents the value of the applied magnetic flux density that

reduces the value of the critical current density to half of its maximum value JC(B0) = JC0/2.

With (2.3) and (2.4) and wanting to make a relationship with the linear constitutive relation E = ρJ,

one has the value of the resistivity:

ρ =
E0

JC0

(
B0 +B

B0

)n(
J

JC0

)n−1
. (2.5)
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2.4.2 Mathematical Description of the Magnetic Field H

Using Faraday’s law (2.1a), Ampere’s law (2.1c), the magnetic constitutive relation (2.2) and (2.3) with

(2.5) 
∇×E = −µ∂H∂t

∇×H = J

E = E0

JC0

(
B0+µH
B0

)n (
J
JC0

)n−1
J

, (2.6)

one has

∇×
(
E0

JC0

(
B0 + µH

B0

)n( |∇×H|
JC0

)n−1
∇×H

)
= −µ∂H

∂t
. (2.7)

Equation (2.7) is a non linear partial differential equation with respect to space and time. This equa-

tion is solved using a FEM software, and the solved magnetic field H can be used to calculate the

magnetic flux density B and the current density J, using (??) and (2.1c), respectively. Nonetheless, this

equation can be further analyzed, to get some information of the characteristics of the magnetic field

near the HTS.

Using (2.7) without describing the ρ parameter

∇× (ρ (∇×H)) = −µ∂H
∂t

, (2.8)

and using the vector identity for ∇× (ρ (∇×H)) 1

∇ρ× (∇×H) + ρ (∇× (∇×H)) = −µ∂H
∂t

. (2.9)

The second term of the right-hand side also has a vector identity associated with it

∇× (∇×H) = ∇ (∇ ·H)− (∇ ·∇)H, (2.10)

where ∇ ·∇ is the vector Laplacian and it has the form of

∇ ·∇ = ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.11)

The vector Laplacian is the application of the scalar Laplacian to each of the components of the

vector. In this case

∇2H =


∂2H1

∂x2 + ∂2H1

∂y2 + ∂2H1

∂z2

∂2H2

∂x2 + ∂2H2

∂y2 + ∂2H2

∂z2

∂2H3

∂x2 + ∂2H3

∂y2 + ∂2H3

∂z2

 . (2.12)

With (2.10) and knowing that ∇ ·H = 0, (2.9) becomes

∇2H =
∇ρ

ρ
× (∇×H) +

µ

ρ

∂H

∂t
. (2.13)

1∇× (ρA) = ∇ρ×A+ ρ (∇×A)
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Equation (2.13) describes the magnetic field. By knowing the Laplacian of the magnetic field, one

can describe the entire field. However, the Laplacian of the magnetic field is a function of the changes in

space and time of the magnetic field, which makes the solution of this equation to be dependent on time

initial conditions and boundary conditions. To add to the complexity, it has the gradient of the resistivity,

which itself is a function of H. Note that (2.5) can be described only using H (which is in (2.7), but it is

mentioned here again, for clarity)

ρ =
E0

JC0

(
B0 + µH

B0

)n(‖∇×H‖
JC0

)n−1
, (2.14)

which means that ∇2H is not described by external quantities, but entirely by itself, and the current is

not imposed, but a consequence of the magnetic field imposed, external to the HTS.

Looking at (2.13), and assuming H does not change over time, a steady-state solution can be

achieved

∇2H =
∇ρ

ρ
× (∇×H) , (2.15)

if the right-hand side term is not null. To know if that is the case, ∇ρ needs to be known. Since

∇×H = J, the mathematical analysis will use J for simplification.

Using (2.14) and rearranging it to

ρ =
E0

(JC0B0)
n (B0 + µH)

n
Jn−1, (2.16)

the partial derivative with respect to a space coordinate xi is

∂ρ

∂xi
=

E0

(JC0B0)
n

(
n (B0 + µH)

n−1
µ
∂H

∂xi
Jn−1 + (n− 1) (B0 + µH)

n
Jn−2

∂J

∂xi

)
, (2.17)

which can be further simplified, taking the term (B0 + µH)
n
Jn−1 out of the parenthesis, into

∂ρ

∂xi
= ρ

(
µ

n

B0 + µH

∂H

∂xi
+
n− 1

J

∂J

∂xi

)
. (2.18)

The gradient of the resistivity, ∇ρ, is described as 2

∇ρ =


∂ρ
∂x

∂ρ
∂y

∂ρ
∂x

 , (2.19)

and using (2.18), ∇ρ is

∇ρ = ρ

(
µ

n

B0 + µH
∇H +

n− 1

J
∇J

)
. (2.20)

With (2.20), one can rewrite (2.15) as

∇2H = µ
n

B0 + µH
(∇H × J) +

n− 1

J
(∇J × J) . (2.21)

2any gradient of a scalar field φ can be described as a column vector ∇φ =
(
∂φ
∂x
, ∂φ
∂y
, ∂φ
∂z

)
.
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All is left to know are the gradients of the norms of the magnetic field and the current density, H and

J , respectively. To do this, note that

∂

∂xi

(
H2
)
=

∂

∂xi
(H ·H) =

∂H

∂xi
·H+H · ∂H

∂xi
= 2

(
H · ∂H

∂xi

)
, (2.22)

and for the derivative of the norm, the chain rule is applied to (2.22) to give

∂

∂xi
(H) =

∂

∂xi

(√
H ·H

)
=

H√
H ·H

· ∂H
∂xi

=
H

H
· ∂H
∂xi

. (2.23)

The gradient of the norm is, then

∇H =
1

H


H · ∂H∂x
H · ∂H∂y
H · ∂H∂z

 . (2.24)

In (2.24), ∇H can be described in another way. Considering that the derivative of H with respect to a

coordinate is still a column vector, then ∇H can be described as

∇H =
1

H


∂H1

∂x
∂H2

∂x
∂H3

∂x

∂H1

∂y
∂H2

∂y
∂H3

∂y

∂H1

∂z
∂H2

∂z
∂H3

∂z



H1

H2

H3

 =
1

H
DT

HH, (2.25)

where DH is the jacobian matrix of the vector field. 3 For clarification, in (2.25), the superscript T in DH

is to indicate the transpose of the matrix. Combining the vector H with its norm in (2.25), one gets the

unit vector of uH, and ∇H is a directional derivative of H in the directional uH
4

∇H = DT
HuH. (2.26)

In the same manner, ∇J can be described in the same way as ∇H

∇J = DT
JuJ. (2.27)

So, (2.21) becomes

∇2H = µ
n

B0 + µH

((
DT

HuH

)
× J

)
+
n− 1

J

((
DT

JuJ

)
× J

)
. (2.28)

Note that the right-hand side of (2.28) does not have a particularity that makes it a null result. This

strongly indicates that in a general way the superconductor reaches a steady-state condition, where the

magnetic field does not change in time.

3DH can also be written has ∇H.
4DT

HuH is also written as (uH ·∇)H, an expression generally used in continuum mechanics.
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Chapter 3

Lateral Stability of the Rectangular

Geometry Prototype

This chapter describes the existing prototype, of rectangular geometry, and presents a transient and

steady state response analysis regarding the lateral stability.
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3.1 System Description

The rectangular geometry prototype is shown in Figure 3.1. It is composed by two separated parts: i)

one fixed part containing an array of 2x2 superconductor bulks and ii) one movable part formed by an

array of 3x4 neodymium permanent magnets. The middle row of magnets is shifted and with an opposite

magnetic polarization from the two other rows, as it is shown in Figure 3.1,

Figure 3.1: Technical drawing of the HTS planar levitation prototype.

Figure 3.2 depicts the movements the system may experience in this study. This thesis will only focus

on the lateral stability and guidance forces, being disregarded the forward motion.

Figure 3.2: Depiction of the types of movements of the system.
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3.1.1 Description of the Lateral Movement

Regarding the lateral movement, there is a stable position for the superconductors to be with respect to

the magnetic track. When the middle line of the rows of the superconductors are aligned with the middle

line of the gaps between the rows of permanent magnets, the resultant lateral magnetic force is null,

and the superconductors are laterally stable [15]. To see this better, Figure 3.3 shows the magnetic flux

density distribution when the car is center aligned with the magnetic track, which is its stable position

(Figure 3.3a) and when it is off-centered to the left or to the right (Figure 3.3b and 3.3c, respectively).

When the HTS car is center aligned with the magnetic track, the resultant force is null, and the car is in

a stable position. When they are off center, the net force will not be null, and it will have the opposite

direction of the direction of the movement. This means that there will be an attractive force to the center

position if they are laterally displaced. This attraction force will occur if the displacements are no further

than 21.5 mm from the center position [15]. If the displacement is higher, the forces will be in the direction

of the movement, making the system unstable.

3.1.2 System Lateral Dynamics

Since the system has an attractive force towards the center, one can make a relationship between the

magnetic force F and the displacement from the center x:


Fmag > 0 , x < 0

Fmag = 0 , x = 0

Fmag < 0 , x > 0

. (3.1)

This relationship expresses that the force is symmetric to the displacement

Fmag = −f(x), (3.2)

being f(x) a function with respect to the displacement. With (3.2), and considering that the aerodynamic

friction force is proportional to the velocity, one can express the system’s dynamic as:

mẍ+ bẋ+ f(x) = 0. (3.3)

Equation (3.3) is the one used to estimate the lateral dynamics of the system using the experimental

data. In Section 3.2.2, it is covered the experiments made to have the system’s response to an ini-

tial condition, and, with the force measurements shown in Section 3.2.1 and the mass of the system,

estimate the friction coefficient b of (3.3).
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Figure 3.3: Distribution of the magnetic flux density lines and resultant forces (adapted from [15]). In a),
the car is center aligned with the magnetic track, resulting in a null net force. in b) and c) there is an
attractive force to the center position when the magnetic track is displaced with respect to the YBCO car.

3.2 Experimental Setup

An experimental rig was made to test the conditions for lateral stability shown in Figure 3.4, with the

overall configuration presented in Figure 3.4a. The rig consists of a base with the mechanical rails and

threaded rods (Figure 3.4b), the magnetic rail (Figure 3.4c) and the car holding the YBCO HTS bulks

(Figure 3.4d).

For all experiments made, there are necessary steps that are needed to make. First, the YBCO bulks

are Zero-Field Cooled. To do that, they are placed in the car, and cooled with liquid nitrogen, without the

presence of a magnetic field. When the YBCO Bulk plus liquid nitrogen reach the thermal equilibrium,

the YBCO bulks are superconductive. Second, the magnetic rail is positioned in the base with the

mechanical rails. Last, the car is placed in the experimental rig, and tightened with nuts in the threaded
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(a) (b)

(c) (d)

Figure 3.4: Experimental rig: a) Overall view of experimental rig b) Base of the experimental rig. c) Top
view of magnetic rail. d) Top view of car which the four YBCO bulks are laid in.

rods, and with a height of 15 mm with respect to the magnetic track, as previously shown in Figure 3.1.

This will make the magnetic forces align the magnetic rails (figure 3.4c) with the superconductors, and

have the reference position of Figure 3.3a.

The experiments made in this setup are to determine the dynamics and the response of the car to

lateral displacements. In this sense, the transient response to initial conditions of displacement was

determined, and a model was developed to estimate the experimental results.

3.2.1 Force Field and Mass Measurement

Before conducting the experiments, measurements of the mass and the lateral forces experienced by

the magnetic track were made. For the measurement of the mass, a simple scale was used, and the

mass of the car is m = 1.8 kg. For the lateral forces, a SCAIME K-12 force sensor is used to measure

the lateral forces, which the datasheet is on Annex B.2. The experiment to make the measurements for

the force were as following: first, the magnetic track is first displaced from the center. Second, the force

sensor is placed in the opposite direction of the displacement, for it to measure the force experienced

by the magnetic track. The results of this experiment and the fitting curve are shown in Figure 3.5.
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Figure 3.5: Lateral forces with respect to the lateral displacement.

The fitting used for the measurements of the magnetic force in Figure 3.5 is a sinusoidal function

Fmag = −F sin

(
π

xmax
x

)
, (3.4)

with a spatial period of 43 mm which corresponds with null magnetic forces in the maximum lateral

displacements |xmax| = 21.5 mm, and an amplitude of F = 2.6 N . Equation (3.3) with (3.4) becomes,

then:

mẍ+ bẋ+ F sin

(
π

xmax
x

)
= 0. (3.5)

3.2.2 Transient Experiment

Figure 3.6 depicts the experimental setup to test the transient conditions. The magnetic track is made to

be displaced 21 mm and 15 mm, each side. Then, it is made free to move until it reaches its final position.

All the motion is measured using a ultrasonic sensor, the UNAM 18U6903/S14, where the datasheet is

shown in Annex B.1, and its recorded to the oscilloscope. The oscillograms of the experiments are

shown in Figure 3.7.

The measurements taken from the ultrasonic sensor are in volt, having a need to convert the mea-

sured values to proper displacement values. Making a simple measure of the voltage of the sensor with

respect to the displacement value, a linear regression was made:

x [mm] = 8.63U [V ]− 8.59. (3.6)

Using (3.6), the data is then transformed to displacement values, shown in Figure 3.8.
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Figure 3.6: Overall view of experimental setup.

(a) (b)

Figure 3.7: Oscillograms of the transient response to initial conditions with initial position (orange curves)
of: a) 20 mm and b) 15 mm. The displacement reference is the center position. The blue curve is the
trigger switch to pinpoint the start of the movement of the magnetic track.

To determine the system’s dynamic function, first it is needed to estimate the friction coefficient b.

Since (3.5) is a non-linear function, analytical methods based on the solution of the equation are not

possible, and computation methods are required. The approach used was to sweep values for the friction

coefficient b, solve equation (3.5) computationally and check the root mean square error between the

experimental response and the solution of (3.5):

RMSE =

√
1

N

∑
i

(yi − si)2, (3.7)

where yi is a sample point of the experimental response at time ti, si is a sample point of the solution of

(3.5) at the same time ti and N is the number of samples. This approach will be used for the response

shown in Figure 3.7a and it will be validated using the response shown in Figure 3.7b. Figure 3.9
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Figure 3.8: Response of the system due to a initial condition of x = 20 mm and x = 15 mm.

and Figure 3.10 show the value of the RMSE with respect to b and the minimum value achieved, and

the estimation and validation of the solution of (3.5), respectively. The results of the validation are

very similar, making this model valid to use in the dynamics of this system. Using the results of the

experiment, the dynamic equation is:

1.88ẍ+ 6.1ẋ+ 2.6 sin
( π

0.021
x
)
= 0. (3.8)
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Figure 3.9: root mean square error as a function of the friction coefficient b.
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Chapter 4

New HTS Cylindrical Geometry and

Simulation Analysis

In this chapter, a new HTS cylindrical geometry is analyzed concerning its use in a ZFC-Maglev vehicle.

The magnetic field distribution and levitation and guidance forces are studied using a Finite Element

Method (FEM) software. First, a two dimensional geometry is made. Second, taking into account

manufacturing constraints, the 2D simulations are remade to satisfy the constraints and a preliminary

analysis of the results is made. Third, using the results from the 2D simulations, a three dimensional

geometry FEM simulation is made, and the results are compared to the 2D Simulations. Lasty, 3D

simulations are made for several possible geometries for the new HTS cylindrical geometry.
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4.1 Overview

The approach for a new ZFC-Maglev geometry is to guarantee a better lateral stability and thus better

guidance for the vehicle. A proposed geometry from [2] is a cylindrical geometry. In [2], it is stated that a

cylindrical geometry will behave better than the rectangular geometry of Chapter 3, regarding the lateral

stability, while also using less material. In this sense, a cylindrical geometry is developed and using

a finite element analysis, its magnetic field distribution and current densities are simulated to evaluate

the levitation and guidance forces experienced by the HTS. The choice for a cylindrical geometry is

to guarantee a more symmetrical and linear magnetic field than the one obtained in the rectangular

geometry prototype. Figure 4.1 shows the conceptual design of the new magnetic circuit topology. It

represents the final design the ZFC-Maglev rail. Two, or more, HTS half rings are levitating under the

magnetic rail, which is made up with permanent magnets, equally distanced apart.

FEM simulations are made to determine the levitation and guidance forces of the cylindrical YBCO

bulk. Since there are geometric variables that are subject to change, a study was made regarding the

levitation and guidance forces with respect to the geometric variables. The levitation forces are also

compared to the weight of the YBCO and the liquid nitrogen required for the cooling. This comparison

is made to check what are the geometries that can guarantee levitation forces higher than the weight of

the system, to guarantee they can be under additional load.

Figure 4.1: Conceptual design of the magnetic rails of the new cylindrical geometry for the ZFC-Maglev
vehicle.

4.1.1 Geometric Description of the System

Figure 4.2 shows a representation of a HTS cylindrical block in a magnetic rail in an overall view

(Fig. 4.2a) and a front view (Fig. 4.2b). There are six geometric parameters: Radius of the perma-

nent magnet RPM , depth of the PM DPM , radius of the air gap Rair, thickness of the superconductor T ,
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depth of the HTS D and spacing distance between permanent magnets dPM . These are the geometric

parameters used as variables in the FEM analysis, to determine the levitation and guidance forces.

For the 2D FEM simulations described in section 4.4, the model in Figure 4.2b is used, as well as

the geometric parameters, for the FEM simulations. These 2D FEM Simulations set the parameters for

the following 3D FEM Simulations. The 3D FEM simulations described in section 4.6 are to validate the

results of the 2D simulations, and to set the parameters presented in Figure 4.2a.

(a) (b)

Figure 4.2: New model of the ZFC-Maglev system: a) overall view of the model and b) front view of the
model (2D Representation).

4.2 Finite Element Method Model and Analysis

In this section, it will be described the model used in the FEM simulations and how the forces are

calculated for the analysis of the cylindrical ZFC-Maglev vehicle.

4.2.1 H Formulation

This model is based on the H-formulation model used in [10] and [16]. The model uses the magnetic

field H as an independent variable, and all the constitutive relations can relate to H.

For easier readability, equation (2.6) is expressed again, but using (2.3) instead of (2.5)


∇×E = −µ∂H∂t

∇×H = J

E = E0

(
J
JC

)n
J
J

. (4.1)
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The equations in (4.1) are going to be described coordinate wise. Starting with Ampere’s Law


Jx = ∂Hz

∂y −
∂Hy

∂z

Jy = ∂Hx

∂z −
∂Hz

∂x

Jz =
∂Hy

∂x −
∂Hx

∂y

, (4.2)

and substituting in the E-J power law


Ex = E0

(
J
JC

)n( ∂Hz
∂y −

∂Hy
∂z

J

)
Ey = E0

(
J
JC

)n ( ∂Hx
∂z −

∂Hz
∂x

J

)
Ez = E0

(
J
JC

)n( ∂Hy
∂x −

∂Hx
∂y

J

) , (4.3)

where J is the norm of the current density, which is also a function of the magnetic field

J =

√(
∂Hz

∂y
− ∂Hy

∂z

)2

+

(
∂Hx

∂z
− ∂Hz

∂x

)2

+

(
∂Hy

∂x
− ∂Hx

∂y

)2

. (4.4)

For the Faraday’s law, one has, coordinate wise


∂Hx

∂t = 1
µ

(
∂Ez

∂y −
∂Ey

∂z

)
∂Hy

∂t = 1
µ

(
∂Ex

∂z −
∂Ez

∂x

)
∂Hz

∂t = 1
µ

(
∂Ey

∂x −
∂Ex

∂y

) , (4.5)

and using (4.3) and (4.4), one has the complete description of the system in terms of the magnetic field,

coordinate wise.

4.2.2 Maxwell Stress Tensor and Force Calculation

Starting with the Lorentz Force considering a charge q moving through a magnetic field, of magnetic flux

density B, with velocity v

F = qv ×B, (4.6)

the force density f can be obtained from (4.6) by summing all the forces experienced in a small volume.

Mathematically, it is written as

f = lim
δV→0

∑
iFi

δV
= lim
δV→0

∑
i qivi ×Bi

δV
, (4.7)

where Fi, qi and vi are the force, charge and velocity of the ith particle in the volume δV and Bi is the

flux density experienced by the ith particle. If one can assume that all the particles within δV experience
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the same flux density B, one can use the definition of current density

J = lim
δV→0

∑
i qivi
δV

, (4.8)

to write (4.7) as

f = J×B. (4.9)

This approximation can be made because the volume δV can be made small enough to enclose a region

of essentially constant magnetic flux, still including many free charges.

Using (4.9) to calculate the force density is a difficult process, since it is needed to know the current

distribution of the solid. The force density can be only expressed using only field quantities. With the

constitutive relation (??) and Ampere’s law (2.1c), (4.9) can be written in the form

f = µ (∇×H)×H. (4.10)

It is a vector identity that this expression can be written as 1

f = µ (H ·∇)H− µ

2
∇ (H ·H) . (4.11)

The description of the force field f usually is not made component wise, but in this case, there

are some manipulations that are easier to perform component by component. For this mathematical

operations, the expressions at hand will be dealt using index notation.

For the following analysis, some assumptions are to be made. First, a right-hand cartesian coordinate

system x1, x2, x3 (it is the same as x,y,z) is assumed. The component of a vector in the direction of an

axis carries the subscript of that axis. This means that fm is the mth component of the vector f , where

m can be 1, 2 or 3. The differential operator ∂/∂xn can be ∂/∂x1, ∂/∂x2 or ∂/∂x3. Second, when the

index is repeated in a single term, it implies summation over the three values of the index

∂Hn

∂xn
=
∂H1

∂x1
+
∂H2

∂x2
+
∂H3

∂x3
= ∇ ·H (4.12)

and

Hn
∂

∂xn
= H1

∂

∂x1
+H2

∂

∂x2
+H3

∂

∂x3
= H ·∇. (4.13)

This equations illustrate the summation convention or Einstein convention. If one wants to represent

one of the nine possible derivative of components of H, one writes ∂Hm/∂xn.

Third, the Kronecker delta δmn is defined as

δmn =

1, if m = n

0, if m 6= n

, (4.14)

1(∇×A)×A = (A ·∇)A− 1
2
∇ (A ·A)
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and, using the summation convention, has the properties

δmnHn = Hm (4.15)

and

δmn
∂

∂xn
=

∂

∂xm
, (4.16)

which can be verified by using the definition (4.14).

With these definitions, one can write the mth component of (4.10) as

fm = µHn
∂Hm

∂xn
− µ

2

∂

∂xm
(HkHk) . (4.17)

With the property of the Kronecker delta (∂/∂xm = δmn(∂/∂xn)) and some manipulation, one can write

(4.17) as

fm = µHn
∂Hm

∂xn
− µ

2

∂

∂xm
(HkHk) + µHm

∂Hm

∂xn
− µHm

∂Hm

∂xn

=
∂

∂xn

(
µHnHm −

µ

2
δmnHkHk

)
−Hm

∂µHn

∂xn
. (4.18)

The last term on the right is (remembering the summation convention) the divergence of the magnetic

field

Hm(∇ · µH) = Hm(∇ ·B) = 0,

and this in turn gives a concise form to write (4.17) as

fm =
∂Tmn
∂xn

, (4.19)

where Tmn is the Maxwell stress tensor and is given by

Tmn = µHnHm −
µ

2
δmnHkHk. (4.20)

Looking at (4.20), once can see that the Maxwell stress tensor Tmn is a function of only the total magnetic

field H. A conclusion made is that the force density f can be calculated using only the magnetic field.

To find the mth component of the total force F, the volume integration of the force density is made:

Fm =

∫∫∫
V

fm dV =

∫∫∫
V

∂Tmn
∂xn

dV. (4.21)

If the components of a vector A are defined as

A1 = Tm1, A2 = Tm2, A3 = Tm3, (4.22)

(4.21) becomes

Fm =

∫∫∫
V

∂An
∂xn

dV =

∫∫∫
V

(∇ ·A) dV (4.23)
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Using the divergence theorem, one arrives to the conclusion that the total force is a surface integral of

the stress tensor:

Fm =

∫∫
S

(A · nS) dS =

∫∫
S

An(nn)S dS, (4.24)

where nn is the nth component of the outward-directed unit vector n normal to the surface S and the

surface S encloses the volume V. Using (4.22) to substitute back to (4.24) yields

Fm =

∫∫
S

Tmn(nn)S dS. (4.25)

It is with (4.25) that the forces are calculated in the simulations.

4.2.3 Application Example of the Maxwell Stress Tensor

For matter of example, consider applying (4.25) on a cubic volume V . The integrand Tmnnn, in view of

the summation convention, is the mth component of a vector. This vector has the name traction and a

symbol τ . Thus the mth component of the traction is written as

τm = Tmnnn = Tm1n1 + Tm2n2 + Tm3n3. (4.26)

Figure 4.3 presents the cubic volume in question, with the top, bottom and right normal vectors to the

top, bottom and right surfaces, respectively. For this example, let us consider that this is a small enough

cubic volume V , such that there is no change in the Maxwell stress tensor Tmn over one face. With this

in mind for the calculation of (4.25), one needs to calculate for each surface, i.e., for each normal of the

surface in choice. Considering the top surface, which has a normal nt

nt1 = 0, nt2 = 0, nt3 = 1,

and the traction for the top surface τ t is, then:

τ t1 = T13, τ t2 = T23, τ t3 = T33.

For the bottom surface, since the normal nb is

nb1 = 0, nb2 = 0, nb3 = −1,

the traction for the bottom surface is:

τ b1 = −T13, τ b2 = −T23, τ b3 = −T33.

For the right surface, the normal nr

nr1 = 0, nr2 = 1, nr3 = 0,
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Figure 4.3: Example of cubic volume V enclosed by the surface S, displaying the top, bottom and right
normal of the surface.

the traction for the bottom surface is:

τ r1 = T11, τ r2 = T21, τ r3 = T31.

This means that the elements of the traction depend on what and where is the normal, and the mth

component of a force depends on all the mth components of the traction. In mathematical terms, and

for this example, this means that the mth component of the force Fm is:

Fm =

∫∫
St

τ tmdS
t +

∫∫
Sb

τ bmdS
b +

∫∫
Sl

τ lmdS
l +

∫∫
Sr

τ rmdS
r +

∫∫
Sf

τ fmdS
f +

∫∫
Sbk

τ bkm dS
bk, (4.27)

where t,b,l,r,f,bk, represent top, bottom, left, right, front and back, respectively. Using the fact that all

the components of the traction τ are the stress tensor Tmn or its inverse value −Tmn, then (4.27) can be

described as the sum of the products of the stress tensor with the surface area S

Fm = S
(
T t
m3 − T b

m3

)
+ S

(
T r
m2 − T l

m2

)
+ S

(
T f
m1 − T bk

m1

)
. (4.28)

Figure 4.4 illustrates the tensors in each face of the cubic volume. Tensors of the same color represent

the contributions to the force of the same direction. the ones in the same, but lighter color, represent the

contributions in the opposite direction.
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Figure 4.4: Example of cubic volume V enclosed by the surface S, displaying the tensors in each face.

4.3 Material Characteristics

For the simulation of the system, the electromagnetic, mechanical and geometric properties of the YBCO

and the permanent magnets of the magnetic rail must be specified.

For the YBCO HTS, the electromagnetic parameters needed are the ones used in the E-J power law,

shown in (2.3): E0, B0, JC0 and n. The electromagnetic values used for the simulations are taken from

[11]. For the mechanical values, the density is needed for the calculation of the mass and the weight of

the YBCO. The density was measured using the YBCO bulks used in the system of Chapter 3. These

parameters are shown in Table 4.1.

Table 4.1: Electromagnetic and mechanical parameters of the YBCO Bulk.

Electromagnetic Par. Values
E0

[
Vm−1

]
1 · 10−4

B0 [T] 0.1

JC0

[
Am−2

]
1.82 · 108

n 30

Mechanical Par. -
ρY BCO

[
kg m−3

]
5.81 · 103

The geometric parameters are needed to calculate the area, volume and, consequently, the weight

of the YBCO. Figure 4.2b is shown again here, in Figure 4.5, for easier readability.

Using the variables in Figure 4.5, the inner and outer radius of the YBCO Bulk, rin and rout, respec-

tively, can be derived as: rin = DPM/2 +Rair

rout = rin + T = DPM/2 +Rair + T

. (4.29)
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Figure 4.5: Front view of YBCO half ring bulk with the magnetic rail.

The area of the YBCO bulk is, then:

Abulk =
π

2
(T + 2rin)T. (4.30)

For the volume of the half ring, (4.30) is multiplied by the depth D

Vbulk =
π

2
(T + 2rin)TD, (4.31)

and using the density of the YBCO, its mass and weight are, then:

mYBCO = VYBCOρYBCO

Fg = VYBCOρYBCOg

. (4.32)

For the permanent magnets, the magnetization curve is

BPM = µ0µrPM
HPM +Br, (4.33)

where Br is the remanent flux density and µrPM
is the relative permeability of the permanent magnets.

Table 4.2 shows the electromagnetic and geometric parameters of the PM.

Table 4.2: Electromagnetic and geometric parameters of the permanent magnets.

Electromagnetic Par. Values
Br [T] 1.2

µrPM
1.05

Mechanical Par. -
RPM [mm] 12.5
DPM [mm] 14
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4.4 2D Distributed Parameters Model

For the 2D analysis, there are some considerations to make: first, along the z axis, which is the axis

along the depth of the model, the electromagnetic results do not change. This means, for example, that

the magnetic flux dispersion is only considered along the x and y axis, and not the z axis. Second, the

depth of the model is set to D = 1 m. This means that the PM and the YBCO have the same depth,

and there is no piecewise magnetic rail, but a continuous cylindrical PM and the forces computed can

be considered as a force density, along the z axis. In the following sections, the 2D FEM analysis model

description and results are shown.

4.4.1 2D FEM Model

As it was described in section 4.2.1, the FEM software uses the magnetic field formulation to solve

(2.7) from Section 2.4.2 and this equation has a time derivative. This means that this equation needs

initial conditions to be solved. To do this, the main simulation is made by making a step function of the

magnetic field of the PM. This simulates the already ZFC YBCO being put near the permanent magnets.

Figure 4.6 shows a schematic of the model used in the FEM software and Figure 4.7 shows the initial

conditions of the simulation, which is a step function of the remanent magnetic field in the y direction.

Figure 4.6: Schematic of the cylindrical ZFC-Maglev geometric model used in the 2D electromagnetic
simulations.
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Figure 4.7: Initial conditions and representation of the magnetization direction in the PM used in the 2D
simulations.

This simulation uses a 2D model of the geometry, and so, the H formulation described in Section 4.2.1

has a different form. In 2D models, H only has x and y components, and there is no change in the

z direction, which means that ∂/∂z = 0. This makes (4.2) have the following form:


Jx = 0

Jy = 0

Jz =
∂Hy

∂x −
∂Hx

∂y

. (4.34)

Consequently, the electric field in (4.3) only has a z component

Ez = E0

( ∂Hy

∂x −
∂Hx

∂y

JC

)n
, (4.35)

and Faraday’s law becomes 
∂Hx

∂t = −E0

Jn
C

∂
∂y

(
∂Hy

∂x −
∂Hx

∂y

)n
∂Hy

∂t = E0

Jn
C

∂
∂x

(
∂Hy

∂x −
∂Hx

∂y

)n . (4.36)

4.4.2 Physical Interpretation of the 2D Simulation using FEM

Figure 4.8 shows the results of the electromagnetic model of the HTS, using the initial conditions shown

in Figure 4.7. Analyzing the magnetic vector field, it is visible that the HTS is repelling the magnetic

field of the PM. This is a consequence of the current density distribution in the HTS. The current density

only has the z component, and the currents are in a closed loop, creating, by Ampère’s law, an opposite

magnetic field. This creates a null resultant magnetic field in the surface of the superconductor. However,

this is not a completely repulsive behavior, and there is some field penetration in the HTS, as it can be

seen in Figure 4.8.
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Figure 4.8: Results of the simulation. Here, the surface current density in the z component are shown in
the color graph, and the black arrows are the magnetic vector field.

4.4.3 2D FEM Simulations for the Calculation of the Levitation Force Fy

The first simulations made are to compute the levitation force Fy of the HTS, by making a parametric

sweep of the thickness T and the air gap Rair, making all of the possible combinations between the

variables. Table 4.3 shows the values for the parametric sweep. With these values, Fy is computed

for each air gap and thickness. Figure 4.9 shows a graphic of the results of the levitation force Fy with

respect to the air gap, for different thicknesses. These results show that the levitation forces are similar

for different thicknesses, especially for air gaps greater than 10 mm.

Table 4.3: Values of the geometric variables for the parametric sweep.

Variables Values [mm]
T (7, 10, 14, 16)
Rair from 1 to 30, in steps of 1

Regarding the air gap, the best function that fitted the data of Fy is the function

ffit(x) = aebx
2+cx. (4.37)

Figure 4.10 shows the graph of the fitting curve and the data of Fy with respect to the air gap. Since the

results are similar for each thickness, it is only displayed the simulation with a thickness of 10 mm, the

values for equation (4.37) are:

a = 3.67 · 103, b = 1.8 · 10−3, c = −0.17,
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4.4.4 Calculation of the Equilibrium Force FEq

With (4.32) and (4.37), the weight of the YBCO and the air gap value resulting in a null resultant force

was calculated, respectively. The results are shown in Table 4.4. An important fact to notice is that

the fitting function (4.37) is convex, and this behavior of the function does not correspond to the actual

physics of the model, since the value of the force goes to zero as the air gap increases. Table 4.4

also shows the value of the minimum of each fitting function. Only for a thickness of 7 mm that the air

gap value was higher than the minimum, which makes the result invalid to use. To surpass this, a new

simulation would need to be made, with larger air gaps. However, this study is not made, due to the

manufacturing constraints, explained in section 4.5.

Table 4.4: Results for the air gap value for null resultant force, for each thickness, and the minimum of
the fitting curve.

Thickness [mm] Air gap [mm] Function minimum [mm] Equilibrium Force [N]
7 50.1 46.0 82
10 36.4 46.0 97
14 30.1 48.1 125
16 28.5 46.0 141

4.5 Manufacturing and Budget Constraints: New Model and Sec-

ond Simulation

One of the initial objectives of this dissertation was to make a functional prototype of the new geometry

considered in this chapter. In order to fulfill this requirement, a quotation was sent to CAN Supercon-

ductors for the HTS with different thicknesses. In reply, CAN stated that they can only manufacture HTS

with a thickness of T = 10 mm and a maximum depth of D = 40 mm and, for this geometry, the half ring

is divided in 6 equal pieces.

4.5.1 Piecewise HTS FEM Model

Using the results of section 4.4.4 and the manufacturing constraint, a new 2D model was made for the

FEM Analysis, shown in Figure 4.11.

The first simulation made is to verify if there is an influence on the levitation force regarding the

YBCO being made with 6 bulks, instead of a complete one. On the simulations, this is made by making

a discontinuity on the distribution of current between the YBCO bulk pieces. The levitation force of this

experiment was of 95.5 N and it presents a deviation from the result of table 4.4 of 1.6 %, which is

negligible. This confirms that it is plausible to have the same levitation forces and the same behavior

being the YBCO a piecewise or a continuous half-ring bulk.
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Figure 4.11: Representation of the new geometry, satisfying the manufacturer constraints.

4.5.2 2D FEM simulations of the New Piecewise HTS and Computation of the

Levitation and Lateral Forces

The next simulation made is a parametric sweep regarding translations of the HTS. This simulation

computes the levitation and lateral forces, Fy and Fx respectively. Figure 4.12 shows the results of Fy

and Fx with respect to the coordinate pair (x, y). In Chapter 5, the results of this simulation will be

compared with the results of Chapter 3, regarding the stability of both geometries.

5

Lateral Forces

-600

-400

y [mm]

-20 0

-200

0

f x [N
/m

]

-10

200

x [mm]

400

0

600

10 -520

(a)

40



5
80

Levitation Forces

100

y [mm]

-20 0

120

140

f y [N
/m

]

-10

160

x [mm]

180

0

200

10 -520

(b)

Figure 4.12: 2D results of the Forces computed: a) Guidance Forces. b) Levitation Forces.

4.6 3D Distributed Parameter Model

In comparison with the 2D FEM analysis, the 3D FEM analysis will have in consideration all the variables

in all the axes, e.g, the magnetic flux dispersion will happen in x, y and z. Also the depth is not fixed as it

is in the 2D analysis, meaning that it is set a depth for the magnetic track, either being a continuous PM

or a piecewise magnetic track, and the simulations will also focus on the possible depths of the YBCO.

In the following sections, the 3D FEM analysis model description and results are shown.

4.6.1 3D FEM Model

For the 3D simulations, the model used is shown in Figure 4.13. For the simulations made, the magnetic

track needs to be able to be made of a continuous cylindrical PM, or made with several PM, equally

spaced apart. To address this property and maintain only on FEM model, the magnetic track was made

with several PM, and when the spacing between them is null, it is regarded in the simulations as if it is a

continuous cylindrical tube.

Figure 4.13 shows the initial conditions of the 3D simulations. It follows the same procedure as the

2D FEM simulations: the main simulation is made by making a step function of the magnetic field of

the PM. This simulates the already ZFC YBCO being put near the permanent magnets. The remanent

magnetic field is in the z direction.
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Figure 4.13: Schematic of the cylindrical ZFC-Maglev geometric model used in the 3D electromagnetic
simulations.

Figure 4.14: Initial conditions and representation of the magnetization direction in the PM used in the
3D simulations.

4.6.2 3D FEM Simulations for the Calculation of the Levitation Force and Com-

parison with the 2D Results

The first 3D FEM simulation is made to compare the value of the levitation force computed Flev3D with

the computed in the 2D simulations of Section 4.4.4. The simulation consists of a parametric sweep

of the depth D of the YBCO bulk for the calculation of the levitation force Flev3D. Table 4.5 shows the

geometric parameters used for the simulation. Note that the thickness is set to T = 10 mm because of

the manufacturing constraints imposed, and the distance between permanent magnets is dPM = 0 mm

since the comparison between the 2D and 3D levitation forces is only valid considering a continuous

cylindrical PM tube.
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Table 4.5: Values of the geometric variables used for the comparison between the 2D and 3D levitation
forces.

Variables Values [mm]
Rair 35
T 10
D (16, 20, 24, 28, 32, 36, 40)
dPM 0

For the levitation force Flev2D, one uses the levitation force density flev2d computed in Section 4.4.4

shown on Table 4.4. The levitation force Flev2D for each depth D is

Flev2D = flev2DD. (4.38)

The 2D and 3D levitation forces for each depth are shown in Table 4.6, as well as the error between

them

error[%] =
|Flev3D − Flev2D|

Flev3D
· 100. (4.39)

Table 4.6: Comparison between the values of the levitation forces in the 2D and 3D simulations.

Depth [mm] Flev3D [N] Flev2D [N] Error [%]
16 1.03 1.55 51.3
20 1.40 1.94 38.1
24 1.83 2.33 27.5
28 2.25 2.72 20.7
32 2.71 3.10 14.6
36 3.14 3.49 11.0
40 3.57 3.88 8.55

Analyzing the error between Flev3D and Flev2D shown in Table 4.6, it can be concluded that the levita-

tion forces greatly differ from one another, especially with smaller depth values. Since the 2D simulations

neglect magnetic flux dispersion in the 3D y-axis (which is the z-axis in the 2D simulations), as also con-

sidering that the magnetic field along the 3D y-axis is constant, it is to be expected that the levitation

forces computed in the 2D simulations are higher than the ones computed in the 3D simulations. With

this results, the 2D simulations made to estimate the optimal air gap are remade in the 3D environment.

4.6.3 Liquid Nitrogen and YBCO Container Weight for the Computation of the

Total Weight

For the 3D simulations, the weight of the liquid nitrogen (LN2) and the container for the YBCO Bulk and

the LN2 will be added to the analysis, since their weights cannot be neglected, especially the weight of

the LN2. Figure 4.15 shows the volumes of the LN2 and the container, in blue and red, respectively. To

determine the weight of the LN2 and the container, first their volumes need to be calculated.

Starting with the LN2 volume, VLN2, first the volume of the rectangular prism V Box
LN2 , which is the

total volume, that includes the YBCO and the outer volume below the YBCO, is calculated. Then, it is

43



(a) (b)

Figure 4.15: Representation of the volumes in the YBCO container: a) volume of Liquid Nitrogen; b)
container volume.

subtracted from V Box
LN2 the volume of the halfdisk VHalfDisk, which is the volume of the YBCO and the outer

volume below the YBCO. VLN2 is then:


V Box

LN2 = (2 (Rin + T )) · (Rin + T ) ·D

VHalfDisk = π
2 (Rin + T )

2
D

VLN2 = V Box
LN2 − VHalfDisk

. (4.40)

Knowing the volume and knowing that the LN2 density is ρLN2 = 0.807 gml−1, the LN2 weight F LN2
g

is: mLN2 = ρLN2VLN2

F LN2
g = mLN2 · g

. (4.41)

For the container, it encloses the YBCO bulk and the LN2 and it has a wall thickness Twall on every

dimension. The calculations are similar to the LN2: the total volume of the container box V Box
Cont is cal-

culated and it is subtracted from the total volume the outer volume V Box
Outer, the LN2 Volume VLN2 and the

YBCO Volume VYBCO
V Box

Cont = (2 (Twall + T +Rin)) · (2Twall + T +Rin) · (2Twall +D)

V Box
Outer = (2 (Twall +Rin)) · Twall · (2Twall +D) + π

2 (2 (Twall +Rin))
2

VCont = V Box
Cont − V

Box
Outer − VLN2 − VYBCO

. (4.42)

The material used for the calculation is the same one used for the YBCO car in Chapter 3, which as

44



a density of ρCont = 0.171 gml−1, and so the weight of the container FCont
g is:

mCont = ρContVCont

FCont
g = mCont · g

. (4.43)

With the weights of the container, the YBCO and the LN2, the total weight F Total
g is:

F Total
g = FCont

g + FYBCO
g + F LN2

g . (4.44)

F Total
g will be used to calculate the net forces of the system in the 3D simulations of the following sections.

4.6.4 3D FEM Simulations for the Computation of the Net Force Varying the

YBCO Geometric Parameters

For this simulation, a parametric sweep is made regarding the geometric parameters air gap Rair and

depth D. The values of the parametric sweep are shown in Table 4.7.

Table 4.7: Values of the geometric variables used for the computation of the YBCO levitation force Flev3D.

Variables Values [mm]
Rair (5, 10, 15, 20, 25, 30, 35)
T 10
D (16, 20, 24, 28, 32, 36, 40)
dPM 0

For every air gap and depth, the weights of the YBCO, the LN2 and the container are calculated.

The thickness of the wall of the containers was considered to be Twall = 2.5 mm, which is the minimum

thickness possible for the material considered.

Figure 4.16 shows the values of the YBCO, LN2 and total weight, FYBCO
g , F LN2

g and F Total
g , respec-

tively. Although the weight of the container is considered in the total weight, its influence is negligible in

comparison to the weights of the YBCO bulk and the LN2, having a maximum value of 0.084 N, for an

air gap of 35 mm and a depth of 40 mm.

Regarding the LN2 weight, for lower values of depth and air gap, the LN2 weight has a small value

when compared to the weight of the YBCO. This means that for systems with a low value of depth and

air gap the weight of the LN2 can be neglected. However, the weight of the LN2 increases quadratically

with the air gap and linearly with the depth. This means that for higher values of air gap and depth, the

weight of the LN2 can non longer be neglected. In fact, for an air gap of 35 mm, the increase in weight

when considering the weight of the LN2 is of 13.4%, regarding the weight of the YBCO.
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Figure 4.16: Weights of the YBCO, LN2 and the total weight for different air gaps and depths of the
YBCO.

Having the total weight of the system and the YBCO Levitation Force computed, the net force Fnet is

calculated

Fnet = Flev3D − FYBCO, (4.45)

and the results of the computation of the levitation and the net force are shown in Figure 4.17.

In Figure 4.17, it can be seen that the net forces decrease with an increasing air gap and, between

the air gap values of 30 to 35 mm, the net forces do not vary significantly with respect to the depth of

the YBCO. This indicates that between those two values of air gap, the system has a net force close to

zero, and the system is inherently stable, without needing additional weight. To see that the net forces

are considerably small, Table 4.8 shows the values of the levitation and net force for the air gaps of 30

and 35 mm.

In Table 4.8 it can be seen that the net force stays constant with respect to the changes in depth, for

air gap values of 35 mm. Analysing these information, it means that with air gap values above 35 mm,

this system can not support its own weight, and the system would lose its radial symmetry.

With lower values of air gap, all the geometries are possible geometries, since additional load can be

added to the system, in order to have a null net force.
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Figure 4.17: Net forces for a continuous magnetic track and for different air gaps and depths of the
YBCO.

Table 4.8: Levitation and net force values for the air gap values of 30 and 35 mm.

Air gap [mm] Depth [mm] Flev3D [N] Fnet [N]

30 16 1.56 -0.03
30 20 2.13 0.15
30 24 2.76 0.39
30 28 3.45 0.69
30 32 4.11 0.96
30 36 4.81 1.26
30 40 5.49 1.55
35 16 1.03 -0.75
35 20 1.40 -0.80
35 24 1.83 -0.82
35 28 2.25 -0.83
35 32 2.71 -0.80
35 36 3.15 -0.80
35 40 3.57 -0.81

4.6.5 3D FEM Simulations for the Computation of the Net Force Varying the

Permanent Magnets Spacing

This simulation is to determine the influence of the PM spacing dPM regarding the levitation forces. In

the simulations, the YBCO bulk is positioned on top of a PM, center aligned with it, as it is shown in

Figure 4.18. The values of the parametric sweep are shown in Table 4.9. The levitation forces drop

considerably with a magnetic track with spaced PM, and so, the air gap values considered for this

simulation were only up to 20 mm, since the levitation forces of the simulations shown in Section 4.6.4
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Figure 4.18: Depiction of the YBCO bulk centered with a PM of the magnetic track.

were close to zero for air gap values higher than 20 mm.

Table 4.9: Values of the geometric variables used for the computation of the YBCO levitation force Flev3D.

Variables Values [mm]
Rair (5, 10, 15, 20)
T 10
D (16, 20, 24, 28, 32, 36, 40)
dPM (10, 15)

The results of this simulation are shown in Figure 4.19. In Figure 4.19, it can be seen that the net

forces are lower in comparison to the net forces of Figure 4.17. This is due to the fact that the levitation

forces are lower in this situation, which results in a lower net force, since the weight of the system for

each geometric configuration is the same as it is on the simulations of Section 4.6.4.

Comparing these results with the results of Section 4.6.4, it can be concluded that the possible YBCO

geometric configurations reduce, given that the net force is positive until an air gap value of 20 mm. To

see if there is a relationship between the levitation forces and the PM spacing, the relative difference

between the levitation forces was made. The deviation from the levitation force of a PM spacing of

10 mm, DevPM10 [%], and the deviation from the levitation force of a PM spacing of 15 mm, DevPM15 [%],

are described as DevPM10 [%] =
|Flev−F PM10

lev |
Flev

· 100

DevPM15 [%] =
|Flev−F PM15

lev |
Flev

· 100
(4.46)

where Flev is the levitation force without PM spacing, and FPM10
lev and FPM15

lev are the levitation forces for a

PM spacing of 10 and 15 mm, respectively. Figure 4.20 shows the results of the deviation in percentage

of the levitation for the PM spacing of 10 mm and 15 mm.

Analyzing the deviations for both levitation forces with PM spacing, it can be seen that, as the depth

of the YBCO increases, the value of the deviation for each air gap start to get similar. Also, for the air

gap value of 20 mm, the deviations of the levitation forces remain almost constant, for different depths.
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Figure 4.19: Net vertical forces for magnetic tracks with a PM spacing of 10 and 15 mm.
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Figure 4.20: Levitation force deviations, in percentage, from the levitation forces of Section 4.6.4.

Regarding the computational and simulation aspect of the design of the new cylindrical geometry,

the results shown in Figure 4.20 can provides us estimates for the levitation forces, without the need to

make further simulations. With the results of Figure 4.17, if there is a need to interpolate the value of

a levitation force for values of air gap, depth or PM spacing that were not simulated, the data shown in
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Figure 4.20 proves to be rather useful, since it is a faster way to estimate the levitation forces and the

FEM analysis is too time consuming, reaching from hours to days of simulation time.
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Chapter 5

Comparison of the Lateral Stability

Between the Two Geometries

This chapter presents a comparison for the lateral stability for the existing rectangular geometry and

the new cylindrical geometry. The comparison will be made regarding the guidance forces of both

geometries and their response to lateral perturbations.
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5.1 Guidance Force of both geometries

Figure 5.1 shows the guidance forces measured of the rectangular geometry prototype, previously

shown in Section 3.2.1, and the guidance force of the cylindrical geometry. The computations of the

guidance forces for the cylindrical geometry were only made for the 2D FEM model, for a thickness of

10 mm and an air gap value of 35 mm. It was not possible to make the computation for the guidance

forces on the 3D FEM model, since it is too time consuming, and it was not possible to have the results

in time. However, considering the error between the levitation forces of the 2D and 3D Simulations (Ta-

ble 4.6), the error for a depth of 40 mm is of 8.55 %, and so, it is assumed that the error for the guidance

forces is of similar value and the main aspects of the analysis using the values of the 2D simulations are

the same for the 3D FEM model.
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Figure 5.1: Lateral forces with respect to the lateral displacement of the rectangular and cylindrical
geometries.

Analyzing the guidance force of both geometries shown in Figure 5.1, the cylindrical geometry

presents a more linear force curve than the rectangular geometry. This indicates that the cylindrical

geometry can be linearly controlled in the 21 mm displacement range, while in the rectangular geometry

is not possible for the same displacement range.

Another difference between the two geometries is their range of motion. Although the maximum

displacement for the rectangular geometry is of 21 mm, it is not due to a physical constraint, but because

the system would be off centered from the magnetic track. In the Cylindrical Geometry, this does not

happen, because the system cannot laterally displace more than its air gap value, since it will collide

with the magnetic track. On top of that, as the Cylindrical YBCO gets closer to the magnetic track, the

lateral forces increase in the opposite direction of the movement, which makes a stronger repulsive force

in the YBCO.
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5.2 Lateral Response of both geometries

In this section, it will be compared the lateral response of the rectangular and the cylindrical geometry.

Since there is no information about the friction forces of the cylindrical geometry, the comparison of

both geometries is made using the undamped response. This way, the comparison will focus on the

differences of the guidance forces of the two geometries. The undamped responses of both geometries

are also compared with a linear response of the same characteristics as the undamped responses, to

analyze the linearity of the undamped responses.

5.2.1 Dynamic Equations and Comparison Model

For the rectangular geometry, the expression of the guidance force FRect
lat is (3.8), and it is shown here

again, for easier readability:

FRect
lat = −2.6 sin

( π

0.021
x
)
. (5.1)

For the cylindrical geometry, a cubic fit is made for the curve of the guidance force in Figure 5.1 and the

guidance force FCyl
lat is:

FCyl
lat = −1.1 · 106x3 − 3.8x2 − 500x+ 0.006. (5.2)

With (5.1) and (5.2), the dynamic equations for the rectangular geometry and the cylindrical geometry

are, respectively: mRectẍ+ 2.6 sin
(

π
0.021x

)
= 0

mCylẍ+
(
1.1 · 106

)
x3 + 3.8x2 + 500x− 0.006 = 0

. (5.3)

The solutions of (5.3) considered in the comparison are made for the initial conditions of x0 = 20 mm

and x0 = 15 mm. The solutions of the equations are to be compared with the response of a linear

undamped system, which is

mẍ+ kx = 0, (5.4)

and its solution to a initial condition is

x = x0 cos

(√
k

m
t

)
. (5.5)

Analyzing (5.5), and knowing that

ω =

√
k

m
, (5.6)

a linear response of the same frequency as the solutions for both geometries can be made. This way, a

comparison between the linear and non-linear response is made.
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5.2.2 Results of the Comparison of the Dynamic Response of the Two Geome-

tries

Figure 5.2 and Figure 5.3 show the solution of the dynamic equations to a initial condition of the rect-

angular geometry and the cylindrical geometry, as well as the linear response, for x0 = 20 mm and

x0 = 15 mm, respectively.

Regarding the rectangular geometry, it is noticeable that the frequency of oscillation is different for

each response. In the response for the initial condition of x0 = 20 mm, the frequency of oscillation

is of 0.9 Hz, and for the response for the initial condition of x0 = 15 mm, the frequency is of 1.57 Hz,

which is an increase of 70%. This is another indication that the system is non-linear, which makes it a

more complex system to control, since the frequency of oscillations is not constant for different initial

conditions.

For the cylindrical geometry, the frequency of oscillation does not vary much from the different initial

conditions, being the frequency 6.85 Hz and 6.21 Hz for the initial conditions of x0 = 20 mm and x0 =

15 mm, respectively, which is a variation of about 10%. Also, the response of the system for both initial

conditions is very similar to the linear response. This strongly indicates that the cylindrical geometry can

be more easily controlled, since it can be modeled by a linear system.

Comparing the two systems, the cylindrical geometry has a more linear and steady response, for

different initial conditions. Also, the cylindrical geometry is inherently more stable than the rectangular

geometry, since the range of lateral motion is limited due to the geometric aspect of the design and, if

the YBCO bulks get closer to the magnetic track, they are repelled with an higher force. In the rectan-

gular geometry, this does not happen, since the distance of the YBCO bulks to the magnetic track is

constant, regarding the lateral movement, and the force distribution as an entirely different pattern than

the cylindrical geometry has.

Two possible disadvantages of the cylindrical geometry are that the frequency of oscillations is higher,

which needs to be accounted for the control aspect of the system, and also if the YBCO bulk gets to

close to the magnetic track, flux pinning can occur, and the YBCO remains trapped in that position,

making the system off centered from the magnetic track. This two situations need to be present when

designing the control system of the maglev.
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Figure 5.2: Undamped, Lateral response of the rectangular and cylindrical geometry for an initial dis-
placement of x0 = 20 mm, as well as the linear response, for comparison.

0 0.5 1 1.5 2 2.5
time [s]

-20

-10

0

10

20

D
is

pl
ac

em
en

t x
 [m

m
]

Rectangular Geometry

0 0.5 1 1.5 2 2.5
time [s]

-20

-10

0

10

20

D
is

pl
ac

em
en

t x
 [m

m
]

Cylindrical Geometry

Non-linear Response
Linear Response

Figure 5.3: Undamped, Lateral response of the rectangular and cylindrical geometry for an initial dis-
placement of x0 = 15 mm, as well as the linear response, for comparison.
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Chapter 6

Conclusions

This chapter finalizes this work, summarizing conclusions and pointing out aspects to be developed in

future work
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6.1 Achievements

This dissertation consisted of a two part study: experimental study regarding an HTS maglev prototype,

with a rectangular geometry; and the design and simulation of a new HTS maglev with a cylindrical

geometry.

Regarding the rectangular geometry, first, experimental measurements were made regarding the

lateral forces experienced by the YBCO. Second, the lateral response to initial conditions was recorded.

Last, a model was developed to estimate the lateral response of the rectangular geometry. The model

can estimate with a high degree of accuracy how the system behaves regarding lateral disturbances,

which is essential for any type of control, being it an active or a passive type.

For the new cylindrical geometry, 2D and 3D simulations were made, to study the influence that the

geometric parameters have on the levitation and guidance forces. These studies revealed a number of

possible geometric configurations for which the system is vertically stable, i.e., it has a null net force,

with the possibility to have load.

A study regarding the lateral forces of the cylindrical geometry was made, as well as a model for the

response to lateral disturbances. This model was then compared to the model of the existing rectangular

geometry. The main conclusions were that the cylindrical geometry is inherently more stable than the

rectangular geometry, since it is a more linear system than the system of the rectangular geometry, and

it has lateral movement limitations, due to the geometry, i.e, it is more difficult to derail than the system

of the rectangular geometry. A disadvantage of the cylindrical geometry could be that, if the HTS are

too close to the magnetic track, it can occur a flux pinning effect, making the HTS off centered.

6.2 Future Work

Simulations need to be made regarding the levitation and guidance forces in several positions of the

magnetic track, since it is made of piecewise permanent magnets, and so, the levitation and guidance

forces are not constant over the magnetic track.

An experimental prototype has to be developed, to validate the simulation results and also make

experiments regarding the lateral response and stability of the system.

A study regarding the possibilities of flux pinning occuring in the HTS, when the YBCO bulks are

closer to the magnetic track, and what are the influences in the lateral stability, linear and rotational

movement of the maglev.

Finally, a study and development of a passive or active control system, to guarantee the lateral

stability of the maglev needs to be in consideration, since the system was not studied regarding the

stability when in movement.
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Appendix A

Vector calculus

Some definitions and vector identities are listed in the section below.

A.1 Vector identities

Distributive Properties

∇(ψ + φ) = ∇ψ +∇φ (A.1)

∇ · (A+B) = ∇ ·A+∇ ·B (A.2)

∇× (A+B) = ∇×A+∇×B (A.3)

Product of a scalar and a vector

∇× (ρA) = ∇ρ×A+ ρ (∇×A) (A.4)

Vector dot Product

1

2
∇ (A ·A) = (A ·∇)A− (∇×A)×A (A.5)

Second Derivatives

∇× (∇φ) = 0 (A.6)

∇ · (∇× u) = 0 (A.7)

∇× (∇×A) = ∇ (∇ ·A)− (∇ ·∇)A (A.8)
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Appendix B

Technical Datasheets

B.1 UNAM 12U9914/S14 Ultrasonic Distance Measuring Sensor

8/12/2017

UNAM 12U9914/S14

UNAM 12U9914/S14

Ultrasonic distance measuring 
sensors

Ultrasonic sensors

www.baumer.com

general data

scanning range Sd 20 ... 200 mm

scanning range close limit Sdc 20 ... 200 mm

scanning range far limit Sde 20 ... 200 mm

repeat accuracy < 0,5 mm

resolution < 0,3 mm

response time ton < 30 ms

release time toff < 30 ms

temperature drift < 2 % of distance to target So

sonic frequency 380 kHz

adjustment external Teach-in

alignment aid target indication flashing

light indicator yellow LED / red LED

electrical data

voltage supply range +Vs 15 ... 30 VDC

current consumption max. (no load) 35 mA

output circuit voltage output

output signal 0 ... 10 V / 10 ... 0 V

output current < 20 mA

residual ripple < 10 % Vs

short circuit protection yes

reverse polarity protection yes

mechanical data

type cylindrical threaded

housing material brass nickel plated

width / diameter 12 mm

height / length 70 mm

connection types connector M12

ambient conditions

operating temperature -10 ... +60 °C

protection class IP 67

photo

connection diagram

control/Teach-In

Analog 
output

BU (3) 

BN (1) 

WH (2)

+VS

Z
0V

BK (4) 

dimension drawing

70

55

M12 x 1

M12 x 1

LED

SW 17

	 Analog voltage output 0 - 10 V

UL.eps

B.2 SCAIME K12 Force Sensor
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0 ... 0.5 kN à 0 ... 1 000 kN

Capteurs de Force - Traction/Compression
Tension/Compression Force Sensor

• Construction en acier inoxydable
• Degré de protection IP67
• Faible encombrement
• Facilité de montage grâce aux 2 raccords

mécaniques fi letés

• Stainless steel construction
• Protection level IP67
• Small dimensions
• Ease of assembly with the 2 thread

mechanical joins

A

25
46

A

ØD

Ø
17

Ø5.0 cable 3 m

E
C

F

B

Charge Nominale (C.N.) 
kN

A B C D E F

0.5, 1, 2, 5, 10 M12 x 1.75 24 79 50 20 37
20, 50 M20 x 1.5 25 90 59 25 45
100 M36 x 3 45 135 64 45 67.5
200 M45 x 3 50 170 79 50 85
500 M60 x 4 80 240 90 80 120

1 000 M100 x 3 110 300 130 110 150

K12

+ alim. + signal - signal - alim. Cran de calibration Masse
+ excit. + signal - signal - excit. Calibration control Shield
marron jaune blanc vert gris -
brown yellow white green grey -

Câblage - Wiring

Toutes dimensions en mm. Dimensions et spécifi cations non contractuelles.
All dimensions in mm. Dimensions and specifi cations do not constitute any 
liability whatsoever.

Caractéristiques - Specifi cations

K12
0 ... 0.5 kN à 0 ... 1 000 kN

FT
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Capteurs de Force - Traction/Compression
Tension/Compression Force Sensor

Accessoires - Accessories

MÉCANIQUES MECHANICAL

Charge Nominale (C.N.) Nominal load (C.N.)
0.5, 1, 5, 10

20, 50, 100, 200, 500, 1 000
kN

Force max. sans détérioration Limit load 130 % C.N.
Force ultime avant rupture Ultimate load > 300 % C.N.
Défl exion sous force nominale Position feedback at nominal load < 0.1 mm

PRÉCISIONS ACCURACY

Erreur linéarité en traction
ou compression

Linearity error for tension
or compression

±0.1 % C.N.

Erreur combinée en traction
et compression

Combined error for tension
and compression

±0.4 % C.N.

Hystérésis Hysteresis ±0.1 % C.N.
Répétabilité Repeatability ±0.08 % C.N.

ÉLECTRIQUES ELECTRICAL

Impédance du pont Bridge resistance 350 Ω
Résistance d’isolement Insulation resistance > 2 x 109 Ω
Tension d’alimentation Supply voltage 2 ... 12 Vcc
Tension d’alimentation max. Max. supply voltage 15 Vcc
Signal de sortie Sensitivity 1.00 mV/V

GÉNÉRALES GENERAL

Dérive thermique du signal Temperature coeffi cient of sensitivity 0.007 % C.N./°C
Dérive thermique de zéro Temperature coeffi cient of zero signal 0.025 % C.N./°C
Plage de température compensée Nominal temperature range compensated -10 ... +70 °C
Plage de température opérationnelle Service temperature range -30 ... +80 °C
Degré de protection Level of protection IP67

Matériau Material
Acier Inoxydable

Stainless steel
Connexion Connection Câble 3 m

Options - Options

Cran de calibration Calibration control 100 % C.N.
Plage de température compensée Nominal temperature range compensated (C.N. > 1 kN) -30 ... +100 °C
C.N. spéciales Special ranges

Rotules de charge EF
Load adapters EF

CPJ GM80 PA

Siège Social - Headquater : Technosite Altéa - 294, Rue Georges Charpak - 74100 JUVIGNY - FRANCE

SCAIME SAS - 294, RUE GEORGES CHARPAK - CS 50501 - 74105 ANNEMASSE CEDEX - FRANCE

Tél. : +33 (0)4 50 87 78 64 - Fax : +33 (0)4 50 87 78 46 - info@scaime.com - www.scaime.com
Téléchargez tous nos documents sur notre site internet - Download all our documents on our website
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