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Abstract 
 

There is an urgent need for new antifungal therapeutic approaches due to limited 

efficacy, increase in multidrug resistance, and high mortality rates associated 

with invasive fungal infections, particularly involving Candida and 

Cryptococcus species. However, the process of developing new drugs remains a 

difficult and costly task, as evidenced by the reduced number of new classes of 

antifungals that have emerged in recent decades. Genome-scale metabolic 

models (GSMMs) and virtual drug screening are emerging as attractive in silico 

approaches to accelerate and innovate drug discovery. In this thesis, GSMMs 

were reconstructed for four pathogenic invasive yeast species, namely Candida 

albicans, Candida parapsilosis, Candida auris, and Cryptococcus neoformans var grubii. 

These GSMMs were used to identify new potential drug targets through 

enzyme/gene essentiality prediction and to elucidate the complex metabolic 

mechanisms that enable these yeasts to thrive in the human host. The 

reconstructed models were experimentally validated, being able to accurately 

predict the compounds that can be used as sole carbon and nitrogen sources, as 

well as growth parameters such as specific growth rate. The reconstructed 

models enabled the identification of unique metabolic features for each pathogen, 

mainly related to alternative assimilation pathways, host adaptation, virulence 

mechanisms, or drug/stress resistance. Moreover, 47 fungal drug targets 

common to all analyzed yeast species were identified, including those already 

targeted by clinically used antifungals and others that represent potentially new 

drug targets that have been vaguely explored in fungi. In silico virtual drug 

screening from large compound databases was performed for two of the most 

promising targets, namely chitin synthase and dihydropteroate synthase, in 

order to identify potential inhibitors among compounds exhibiting affinity to the 

active site of those targets. A vast list of compounds with predicted high affinity 
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was identified, and some were tested for antifungal activity, revealing 5 

compounds with moderate activity against Candida or Cryptococcus species and 

a potential synergistic effect with fluconazole for one of them. However, further 

studies are needed to understand their mechanisms of action, interactions with 

host cells and other drugs, and to optimize their efficacy and safety. Altogether, 

this thesis provides valuable insights into fungal pathogenesis and drug 

discovery with the potential to have an impact on public health by addressing 

the challenges posed by fungal infections and drug resistance. 

 

Keywords: GSMM´s, Virtual drug screening, Pathogenic Fungi, Drug targets, 

Drug discovery 
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Resumo 
 

Existe uma necessidade urgente de novas abordagens terapêuticas antifúngicas 

devido à eficácia limitada das utilizadas correntemente, ao aumento da 

resistência a múltiplos fármacos e às elevadas taxas de mortalidade associadas a 

infeções fúngicas invasivas, especialmente envolvendo espécies de Candida e 

Cryptococcus. Contudo, o processo de desenvolvimento de novos fármacos 

permanece uma tarefa difícil e dispendiosa, como é evidenciado pelo reduzido 

número de novas classes de antifúngicos que emergiram nas últimas décadas. Os 

modelos metabólicos à escala genómica (GSMMs) e a triagem virtual de fármacos 

estão a emergir como abordagens in silico atrativas para acelerar e inovar a 

descoberta de novos fármacos. Nesta tese, foram reconstruídos GSMMs para 

quatro espécies patogénicas invasivas de leveduras, nomeadamente Candida 

albicans, Candida parapsilosis, Candida auris e Cryptococcus neoformans var grubii. 

Estes GSMMs foram usados para identificar novos potenciais alvos terapêuticos 

através da previsão da essencialidade de enzimas/genes e para elucidar os 

complexos mecanismos metabólicos que permitem a estas leveduras proliferar 

no hospedeiro humano. Os modelos reconstruídos foram validados 

experimentalmente, sendo capazes de prever com precisão compostos que 

podem ser usados como fontes únicas de carbono e de azoto, bem como 

parâmetros de crescimento, como a taxa de crescimento específica. Os modelos 

permitiram ainda a identificação de características metabólicas únicas para cada 

patogénio, principalmente relacionadas com vias de assimilação alternativas, 

adaptação ao hospedeiro, mecanismos de virulência ou resistência a 

fármacos/stress. Além disso, foram identificados 47 alvos terapêuticos fúngicos 

comuns a todas as espécies de leveduras analisadas, incluindo aqueles já visados 

pelos antifúngicos clinicamente utilizados, e outros que representam 

potencialmente novos alvos que foram vagamente explorados em fungos. A 
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triagem virtual in silico a partir de grandes bases de dados de compostos foi 

realizada para dois dos alvos mais promissores, nomeadamente a quitina sintase 

e dihidropteroato sintase, com o objetivo de identificar potenciais inibidores 

destas enzimas entre compostos que apresentam elevada afinidade para o seu 

centro ativo. Foi identificada uma vasta lista de compostos com elevada afinidade 

prevista, e alguns foram testados quanto à atividade antifúngica, levando à 

identificação de 5 compostos com atividade moderada contra espécies de 

Candida ou Cryptococcus e em um deles, um potencial efeito sinérgico com 

fluconazol. No entanto, são necessários mais estudos para compreender os seus 

mecanismos de ação, interações com as células hospedeiras e outros fármacos, e 

para otimizar a sua eficácia e segurança. Globalmente, esta tese fornece 

perspetivas valiosas sobre a patogénese fúngica e a descoberta de fármacos, com 

potencial impacto na saúde pública ao abordar os desafios colocados pelas 

infeções fúngicas e pela resistência a fármacos. 

Palavras-Chave: GSMMs, Triagem virtual de fármacos, Fungos patogénicos, 

Alvos de fármacos, Descoberta de fármacos 
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I.1. Thesis outline 

 

Fungal infections pose a significant public health threat, particularly for 

immunocompromised patients. While current antifungal treatments are 

reasonably effective, concerns about emerging drug resistance and the 

limitations of existing therapies persist. Mortality rates, particularly in cases 

involving Candida and Cryptococcus infections, remain alarmingly high. The 

proliferation of resistant clinical isolates, particularly within Candida and 

Aspergillus species, further worsens this issue. Some isolates of on-albicans 

pathogenic Candida species, such as C. auris, have even demonstrated resistance 

to the three antifungal classes currently used for its treatment. Given the 

increasing rates of therapeutic failure and mortality, there is an urgent need for 

new drug targets and novel drugs. However, the process of developing new 

drugs remains challenging and currently must go through not only the 

improvement or repurposing of existing drugs, but also through the discovery of 

other strategies of addressing fungal infections, searching for new distinct 

targetable cellular processes, and entirely novel drugs. With recent technological 

advances, in silico approaches and artificial intelligence offer a whole new 

perspective that could be the solution to this problem. In this scope, the use of 

GSMMs and molecular docking could play an important role in the search for the 

perfect antifungal agent and recent examples showcase their potential in 

identifying new drug targets for combating pathogenic organisms. Considering 

these challenges, with this work we propose an innovative in silico pipeline to 

assist the discovery of new antifungal drugs. First by reconstructing Genome-

scale Metabolic Models for relevant pathogenic fungal species a comprehensive 

understanding of cell metabolism and its unique metabolic features is provided. 

These models can then be used as a platform for the identification of potential 

drug targets through enzyme essentiality prediction in conditions similar to the 
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ones faced by pathogens inside the human host. Then by using virtual drug 

screening through molecular docking, compounds with the potential to inhibit 

the identified drug targets are identified and tested for antifungal activity.  

Altogether, this thesis provides comprehensive insights into discovering new 

drugs to combat fungal infections, providing new lists of enzymes and pathways 

suitable as future drug targets, along with sets of compounds with antifungal 

potential worthy of experimental testing. The integration of GSMMs and virtual 

drug screening is an innovative methodology with the potential to accelerate the 

development of novel antifungal agents, ultimately improving patient outcomes 

and addressing the growing challenges posed by fungal infections. 

Chapter I provides a literature review of current treatment options for invasive 

fungal infections while also focusing on the drug targets that have been under 

scrutiny for the development of novel antifungal agents. Additionally, it 

provides an overview of the evolutionary trajectory, and development stages, as 

well as the challenges and limitations inherent in the development of new 

antifungal drugs. The chapter introduces Genome-scale Metabolic Models as a 

promising avenue in drug discovery, offering insights into their methodology, 

applications, and the significance of tools like the merlin software. Furthermore, 

it delves into an extensive review of existing methodologies and applications 

pertaining to molecular docking, exploring its associated techniques and 

variations for a comprehensive understanding. 

Chapter II presents the reconstruction of the genome-scale metabolic models for 

the human pathogen Candida albicans (C. albicans), iRV781, Candida parapsilosis (C. 

parapsilosis) iDC1003, Candida auris (C. auris) iRV973, and Cryptococcus neoformans 

(C. neoformans) iRV890. The reconstruction steps are described and the validation 

strategy demonstrating the model's accuracy in predicting the utilization of 

different carbon and nitrogen sources and specific growth rate is highlighted. 

Some unique metabolic features of each pathogen that the models allowed to 
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predict are also addressed. This chapter also explores the models’ potential as 

platforms for identifying drug targets, by comparing known targets with 

predictions of gene essentiality under conditions mimicking the human host. 

This chapter sets the stage for further exploration and validation of this 

innovative approach, with the potential to contribute to the field of antifungal 

drug discovery. 

In Chapter III some of the drug targets identified in Chapter II (Fol1 and Chs1) 

are explored through in silico virtual drug screening of large databases of 

compounds homologous to compounds that naturally participate in the enzyme 

reaction and bind to the active site. Selected compounds were tested 

experimentally for antifungal activity, alone or in combination with other 

antifungal drugs, and for human cytotoxicity, leading to the identification of 

potential new antifungal principles.  

Chapter IV discusses all the results presented in this work, highlighting the 

importance of in silico approaches like GSMMs and virtual drug screening 

towards an increased comprehension of the mechanisms of virulence of fungi, 

metabolic characterization, and modern drug discovery, and the potential impact 

of this work in public health.    
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I.2. Invasive fungal infections 

 

More than one billion people worldwide are estimated to be afflicted by fungal 

diseases per year [1]. While many of these infections are superficial and easily 

treatable, mainly dermatomycoses, diseases that do not invade deep tissues and 

rarely lead to life-threatening complications [2], the toll rises significantly due to 

invasive fungal infections. According to the last systematic review published by 

The Lancet Infectious Diseases using data from more than 120 countries, it is 

estimated that 6.55 million people annually are affected by invasive fungal 

infection, resulting in 2.55 million deaths annually directly attributable to fungal 

diseases [3]. Species from the Aspergillus, Candida, Cryptococcus, and Pneumocystis 

genera are the most significant pathogenic fungi, Candida and Cryptococcus 

infections being particularly concerning since they have particularly high 

mortality rates (Table I.1). Over the years efficient antifungals have been 

developed for the treatment of infections caused by these pathogens. However, 

the current challenge lies in combating antimicrobial resistance. Recent years 

have witnessed a shift in therapeutic strategies within intensive care units, 

emphasizing timely and effective treatment that targets specific pathogens while 

minimizing the risk of inducing microbial resistance [4]. This requires not only 

swift and accurate identification of the causative agent but also the exploration 

and development of alternative drugs with unique mechanisms of action. 

Understanding the mechanisms and unique features of these antifungal agents is 

crucial for the effective management of invasive fungal infections and for 

mitigating the challenges posed by drug resistance. 
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Table I.1 - Statistics of the most significant invasive fungal infections, 

highlighting in purple those caused by Candida and Cryptococcus. Data collected 

from [3] 

Disease People affected 

worldwide/year 

Deaths 

worldwide/year 

Mortality 

Rate 

 

Chronic pulmonary aspergillosis 

 

1.84 million 

 

340 000 

 

18 % 

Invasive candidiasis 1.57 million 995 000 64 % 

Pneumocystis pneumonia 0.51 million 214 000 42 % 

Cryptococcal meningitis 0.19 million 147 000 76 % 

Other invasive fungal infections 0.30 million 161 000 54 % 

    

    

I.2.1. Antifungal Frontline: Current treatment options 

 

When dealing with invasive fungal infections, azoles and echinocandins are the 

first-line treatment options, though polyenes and fluoropyrimidines can also be 

used. These four families of antifungal agents are Food and Drug Administration 

(FDA)-approved for clinical use and represent the main treatment options 

currently available in the battle against fungal infections (Figure 1). The first 

antifungal drug to be approved was amphotericin B, in the 1950s, a polyene 

known for its potency as a fungicidal, but also for significant toxic effects [5]. This 

drug acts by binding to sterols, particularly ergosterol, creating pores in the 

fungal membrane causing leakage of cellular components, and ultimately 

leading to cell death [4]. While amphotericin B exhibits broad-spectrum 

fungicidal activity, its use is often limited due to toxicity concerns, leading to a 

preference for other antifungals available. Amphotericin is currently used as a 

second-line treatment option for invasive fungal infections [6,7] as prophylactic 
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therapy in immunosuppressed patients [4] and as first option in Cryptococcal 

meningitis in combination with flucytosine [8]. 

Flucytosine is a pyrimidine analogue approved in the 1960s, that acts by 

inhibiting DNA and RNA synthesis in fungi.  Flucytosine is metabolized inside 

fungal cells into 5-fluorouracil, which is then incorporated into RNA, while also 

inhibiting thymidylate synthase activity which affects DNA synthesis [9]. Since 

this drug is associated with high rates of drug resistance development its use is 

restricted, being always administrated in combination with other drugs. 

Currently, flucytosine is mostly used to treat Cryptococcal meningitis, as referred 

before, in combination with amphotericin B.  

Although discovered much earlier, azoles, one of the most commonly used 

families of antifungals in clinical practice, only began to be used for the treatment 

of fungal infections in the 1980s and were the only available oral agent for the 

treatment of systemic fungal infections for almost a decade [10]. Azoles inhibit 

14-α-lanosterol demethylase (Erg11), a cytochrome P-450 enzyme involved in the 

synthesis of ergosterol, resulting in decreased ergosterol synthesis and 

accumulation of toxic sterols that disturb membrane functions. While first-

generation azoles like miconazole and ketoconazole were followed by second-

generation extended-spectrum azoles such as fluconazole and itraconazole, 

third-generation options like voriconazole, posaconazole, and isavuconazole 

offer improved efficacy, safety, and pharmacokinetics [5]. Azoles are fungistatic 

and are commonly employed as first-line treatment strategy for invasive 

aspergillosis, as an alternative option for invasive candidiasis and cryptococcal 

meningitis, as step-down therapy for most fungal infections, and in prophylactic 

treatments [4,6–8]. Among azoles, fluconazole has been used preferentially, 

voriconazole being selected in the case of fluconazole-resistant strains and 

Candida krusei (C. krusei) (intrinsically resistant). Itraconazole, posaconazole, or 
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isavuconazole, have also been used in specific cases as second-line therapeutics 

[4,6].  

Echinocandins, the most recent class of antifungal drugs whose development 

began in the early 2000s, target the catalytic subunit of β-1,3-glucan synthase, an 

enzyme essential for fungal cell wall integrity. Echinocandins unlike azoles are 

fungicidal so they go well beyond preventing growth and are currently 

recommended to treat invasive candidiasis. Since β-1,3-glucan synthases are 

fungal-specific enzymes, echinocandins exhibit low host toxicity [5]. Within the 

echinocandin drug family, caspofungin is typically used to treat C. krusei or 

Candida glabrata (C. glabrata) infections, for which azole therapy has a higher 

propensity to fail. Micafungin and anidulafungin are additional options within 

the echinocandin family [4,6]. 

 

Figure I.1. Cellular target of the main treatment options currently used in the 

treatment of invasive fungal infections. Adapted from [5]. 
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I.2.2. Antifungal Frontline: Why are we losing the fight 

As presented before, fungal infections pose a significant threat to public health, 

especially among immunocompromised patients and those with underlying 

medical conditions. While antifungal agents play a crucial role in combating 

these infections, the emergence of drug resistance and the limitations of existing 

therapies raise concerns on our ability to effectively manage fungal diseases. As 

observed in Table I.1, despite the availability of antifungals, mortality rates 

remain extremely high, especially for Candida and Cryptococcus. The current 

antifungal treatment is often prolonged, raising concerns about poor immediate-

term fungicidal activity, the emergence of direct antifungal drug resistance, or 

even poor patient compliance. Additionally, invasive fungal infections are more 

prevalent in critically ill patients who may already be burdened with multiple 

therapies and are more vulnerable to organ toxicity and drug interactions [5]. 

In recent decades, there has been a concerning increase in the prevalence of drug-

resistant and multidrug-resistant clinical isolates, characterized by both acquired 

and intrinsic resistance, observed especially in Candida and Aspergillus species. 

This is one of the main factors contributing to the high mortality rates. This trend 

is particularly alarming in non-albicans pathogenic Candida species. Indeed, 

around 10% of C. glabrata clinical isolates are resistant to fluconazole [11,12] and 

nearly 40% of C. glabrata isolates resistant to at least one echinocandin were also 

resistant to fluconazole [13]. Also, some C. auris isolates display resistance to all 

three classes of available antifungal drugs. In a study involving 41 clinical isolates 

from different continents, 93% of isolates were resistant to fluconazole, 35% to 

amphotericin B, and 7% to echinocandins; 41% were resistant to 2 antifungal 

classes and 4% were resistant to the 3 classes [14].  

The same scenario is observed in Aspergillus species. Aspergillus terreus and 

Aspergillus flavus are known for their intrinsic resistance to amphotericin B. Some 

species pose an even greater challenge by exhibiting intrinsic resistance to both 
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amphotericin B and azoles, complicating treatment strategies [15]. Acquired 

resistance to azoles has also seen a significant surge, with some recent studies 

reporting a prevalence of 19% in some medical centers [16]. Additionally, clinical 

strains containing mutations that confer resistance to multiple azole drugs, even 

without prior exposure to azoles, are being reported in several hospitals around 

the world including Europe, Asia, the Middle East, Africa, Australia, and the 

USA [17–25].  

Cryptococcus species exhibit drug resistance less frequently, as they are typically 

treated with a combination therapy approach. Initial treatment often involves a 

combination of amphotericin B and flucytosine, followed by a consolidation 

regimen with fluconazole and long-term maintenance [26]. Despite its rarity, an 

increase in fluconazole resistance has been noted, rising from 7.3% to 11.7% 

between 1997 and 2007 [27], fluconazole resistance being particularly observed 

in relapse cases [28]. Notably, Cryptococcus can transform into large polyploid 

titan cells during pulmonary infection, crucial for virulence and dissemination to 

the central nervous system. Interestingly, these titan cells also generate daughter 

cells that exhibit increased resistance to fluconazole [29]. 

Given the increasing therapeutic failure, the high mortality rates, and the increase 

of multidrug resistance, the pursuit of new drug targets and novel drugs is 

essential, ideally with innovative mechanisms of action to mitigate cross-

resistance. An ideal antifungal agent should possess attributes such as reduced 

toxicity and side effects; a broad spectrum of activity against a range of fungal 

species; preferably fungicidal activity; act in fungal-specific primary pathways 

and targets; bioavailability; and a cost-effective synthesis [30]. Developing the 

ideal antifungal remains a big challenge. However, there have been notable 

strides in recent years, including the FDA approval and integration of new 

antifungal drugs into clinical practice (Table I.2). 
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I.2.3. Antifungal development - current drug targets 

I.2.3.1. Ergosterol 

Ergosterol is an important target for antifungal drugs due to its crucial role in the 

structure and function of fungal cell membranes. This sterol, analogous to 

cholesterol in animal cells, maintains membrane integrity, regulates fluidity, and 

is vital for fungal survival. Targeting ergosterol synthesis disrupts membrane 

integrity, making it an attractive strategy for antifungal therapy. As mentioned 

in a previous section, azoles, and polyenes target ergosterol biosynthesis or 

ergosterol itself, respectively. More recently, new progress has been made in 

developing more effective drugs targeting sterols, the most relevant cases being 

oteseconazole, isavuconazole, and Encochleated amphotericin B.  

Oteseconazole: this new oral drug is a tetrazole, a synthetic doubly unsaturated 

five-membered ring aromatic heterocycles, consisting of one carbon and four 

nitrogen atoms. Some tetrazole-based drugs have been under development in 

recent years, all developed by Mycovia Pharmaceuticals Inc. [31–33]. The most 

successful case is Oteseconazole (VT-1161) which was recently FDA approved. 

Oteseconazole was rationally designed as a potent inhibitor of fungal lanosterol 

14-alpha demethylase (Erg11) with improved selectivity over human enzymes 

[31,34]. This increased selectivity is due to the use of a tetrazole as the heme iron-

binding moiety instead of the common imidazole or triazole metal-binding group 

found in previously approved azole drugs. Studies demonstrate its efficacy 

against several fungal species, including Candida (also fluconazole-resistant 

ones), Cryptococcus, Coccidioides, and dermatophyte species [31,35,36]. Clinical 

trials phase I, II, and III have been successfully completed, showcasing 

Oteseconazole's effectiveness and safety in treating recurrent vulvovaginal 

candidiasis (VVC), leading to its FDA approval as the first and only medication 

authorized for chronic yeast infection therapy [37].  
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Table I.2 – Main different antifungal agents under development targeting intracellular fungal metabolic pathways, and their 

respective in vitro activity, clinical trials, and state of development. 
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Encochleated amphotericin B: Encochleated amphotericin B (MAT2203) 

represents a novel formulation of amphotericin B, designed to overcome 

challenges associated with its low solubility and poor oral bioavailability. 

Traditional amphotericin B formulations require intravenous administration due 

to its tendency to self-aggregate in aqueous media. However, MAT2203 uses 

cochleate's, multilayered phospholipid structures, to encapsulate amphotericin 

B, facilitating oral delivery while protecting the drug from gastrointestinal 

degradation. Preclinical studies in murine models have demonstrated the 

efficacy of MAT2203 against several fungal infections, including Candida, 

Aspergillus, and cryptococcal meningitis [38–40]. In these studies, MAT2203 

exhibited dose-dependent reductions in fungal load and mortality rates 

comparable to conventional amphotericin B treatments. Currently undergoing 

phase II clinical trials, MAT2203 has shown promise in the treatment of moderate 

to severe vulvovaginal candidiasis (VVC). Although fluconazole demonstrated 

superior clinical and mycological outcomes compared to MAT2203, it exhibited 

a favorable safety profile with no associated mortality or serious adverse events 

(same as fluconazole). MAT2203 was designated by the FDA as a Qualified 

Infectious Disease Product (QIDP) with Fast Track status, with the potential for 

Orphan Drug designation. 

 

I.2.3.2. β-1,3-glucan  

β-1,3-glucan is a polysaccharide found in fungal cell walls. Targeting β-1,3-

glucan biosynthesis represents an effective strategy for antifungal drug 

development since β-1,3-glucan synthase is fungal specific and its inhibition by 

echinocadins compromises cell wall integrity, leading to cell lysis and death. 

Recently, Rezafungin was added as the newest member of the echinocandin 

family, and Ibrexafungerp also a glucan synthase inhibitor appeared as the first 

approved drug in a novel antifungal class in more than 20 years. 
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Rezafungin: this drug developed by Cidara Therapeutics, represents the first 

member of the second generation of echinocandins and is a promising antifungal 

agent. It is a structural analog of anidulafungin, offering improved stability 

against host degradation pathways, enhanced solubility, and an extended half-

life while maintaining the typical efficacy and safety profile of echinocandins 

[41]. Rezafungin demonstrates potent antifungal activity against Candida and 

Aspergillus species, including strains resistant to fluconazole [42–44]. However, 

C. neoformans is resistant to Rezafungin, just like for the remaining echinocandins, 

and strains with mutations in FKS genes exhibit higher MIC values against 

Rezafungin as well [42]. Clinical trials, including phase I, II, and III studies, 

confirm Rezafungin's safety and efficacy and showed comparable outcomes to 

caspofungin in patients with candidemia and/or invasive candidiasis [45]. 

Rezafungin was designated by the FDA as a QIDP with Fast Track status for 

intravenous and topical use in the treatment of candidemia and invasive 

candidiasis in 2015 and 2016 respectively [41]. In March 2023, rezafungin 

received approval for the treatment of candidemia and invasive candidiasis in 

adults with limited or no alternative treatment options [46]. 

Ibrexafungerp: Ibrexafungerp, formerly known as SCY-078 and developed by 

Scynexis, is the first oral β -1,3-glucan synthase inhibitor. Unlike other glucan 

synthase inhibitors, Ibrexafungerp can be administered intravenously or orally, 

due to its excellent oral bioavailability, and permeability with pH-dependent 

solubility reaching the highest concentrations in acidic media like gastric and 

intestinal fluids [41]. This versatility expands treatment options for fungal 

infections. In vitro studies demonstrate Ibrexafungerp's potent fungicidal activity 

against Candida species [47], including biofilms, surpassing fluconazole in 

efficacy [48]. It also exhibits fungistatic activity against Aspergillus species [47]. 

This new drug is effective against azole and echinocandin-resistant strains since 

it has an independent target site with only a partial overlap with β-1,3-glucan 
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synthase active site, which confers different resistance mechanisms from those 

observed for echinocandins, resulting in very limited cross-resistance between 

the two drugs [49]. Phase I, II, and III clinical trials showed minimal side effects, 

notable responses in severe fungal infections, and successful treatment of 

candidemia caused by C. auris, resulting in FDA approval in 2021 for the 

treatment of vulvovaginal candidiasis. This was a significant milestone as it was 

the first approved drug in a new antifungal class in over two decades and the 

first and only non-azole treatment for VVC [50]. 

 

I.2.3.3. Other currently targeted pathways in fungi 

Chitin: Chitin, a polysaccharide consisting of β-(1,4)-linked N-acetylglucosamine 

units, is a fundamental component of the fungal cell wall, providing rigidity and 

integrity, so it is expected that the disruption of chitin biosynthesis results in a 

weakening of the cell wall, ultimately compromising fungal cell integrity and 

viability. Additionally, this enzyme is not present in humans representing an 

optimal drug target. Despite not being so much explored, there is a drug, 

Nikkomycin Z, a pyrimidine nucleoside produced as a secondary metabolite by 

Streptomyces tendaeis discovered in the 1970s [51], which is a competitive inhibitor 

of chitin-synthase. Nikkomycin demonstrates efficacy against C. albicans and C. 

parapsilosis, but its effectiveness is lower for other Candida species and fungal 

pathogens. Despite that, when used in combination with fluconazole or 

itraconazole, a synergistic effect is observed for most strains [52]. Preclinical 

animal studies have indicated no adverse effects or detectable toxicity of 

Nikkomycin [53]. Despite these promising findings, two phase II clinical trials 

initiated in 2014 were terminated due to recruitment challenges and lack of 

funding, and its development was abandoned.  
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GPI-anchored proteins: Glycosylphosphatidylinositol (GPI)-anchored proteins 

are found in eukaryotic organisms. These proteins are functionally diverse and 

play important roles including in fungal adhesion to the host cells, cell wall 

integrity, cell signaling, and virulence [54]. Targeting GPI anchor biosynthesis 

may represent a promising antifungal strategy. 

Currently, there is one drug targeting GPI-anchors in development, 

Fosmanogepix, developed by Amplyx Pharmaceuticals, which targets the 

enzyme inositol acyltransferase (Gwt1) involved in the 

glycosylphosphatidylinositol (GPI)-anchored biosynthesis pathway [55]. By 

inhibiting Gwt1, Fosmanogepix disrupts the proper trafficking and anchoring of 

mannoproteins to the fungal cell membrane and outer cell wall, crucial for cell 

wall integrity, adhesion, and evasion of the host immune system. Currently, in 

Phase II clinical trials for the treatment of invasive fungal infections, 

Fosmanogepix has shown promising results. In completed studies, a significant 

proportion of patients treated with Fosmanogepix achieved clearance of Candida 

from blood cultures without requiring additional antifungal treatment. Ongoing 

trials aim to further evaluate the safety and efficacy of both intravenous and oral 

administration of Fosmanogepix. Fosmanogepix exhibits broad-spectrum 

activity against clinically important yeasts and molds, including Candida [56–58], 

Aspergillus [59]), Scedosporium [59,60] and Fusarium [59,60]. Studies in various 

animal models, including those with multi-drug resistant infections, have also 

demonstrated its effectiveness [61]. Although resistance development has been 

evaluated, Fosmanogepix shows comparable spontaneous mutation frequencies 

to echinocandins like Anidulafungin and Caspofungin in Candida species. Serial 

passage experiments have shown a modest increase in MIC values for some 

Candida species [62].  

Mitochondria: The novel arylamidine ATI-2307, exhibits promising efficacy 

against Candida, Aspergillus, and Cryptococcus species, demonstrating in vitro 



17 
 

fungicidal activity [63]. Acting through a mechanism involving disruption of 

yeast mitochondrial membrane potential. ATI-2307 is efficiently internalized into 

C. albicans cells by a specific polyamine transporter, likely Agp2, related to the 

uptake of spermine and spermidine [64,65]. Once inside the cell, ATI-2307 

reaches mitochondria and disrupts the mitochondrial membrane potential, 

resulting in mitochondrial dysfunction. This inhibition seems to be fungal-

specific [66]. It was suggested by Yamashita et al. that mitochondrial dysfunction 

may be related to the inhibition of respiratory chain complexes III and IV in 

Saccharomyces cerevisiae and C. albicans, resulting in decreased intracellular ATP 

levels [63].  

Another mitochondrial inhibitor licicolin H, a polyketide produced by 

Cylindrocladium ilicicola and Gliocadium roseum, displays broad-spectrum 

antifungal activity against Candida spp., Cryptococcus spp., and Aspergillus 

fumigatus (A. fumigatus) [67]. This drug acts as a mitochondrial respiratory-chain 

inhibitor, it targets the yeast mitochondrial cytochrome bc1 reductase. Despite its 

unique inhibition mechanism, Ilicicolin H's clinical development has stagnated 

due to challenges associated with plasma protein binding, limiting its in vivo 

potency, and efforts to enhance its efficacy have yielded limited success. 

Pyrimidines: Olorofim a member of the orotomide class of antifungal agents, 

targets the fungal dihydroorotate dehydrogenase enzyme responsible for 

pyrimidine biosynthesis required for deoxyribonucleic acids, cell wall, 

phospholipid synthesis, cell regulation, and protein production [41,68]. This drug 

shows low toxicity to mammalian cells despite the enzyme being also found in 

humans [68]. With good bioavailability and distribution into tissues, including 

the brain, it exhibits activity against various pathogenic fungi, including 

Aspergillus spp., but not against Candida spp. and zygomycetes [68]. Olorofim's 

resistance is not easily induced, as demonstrated by microevolution studies [68]. 
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Currently in phase III trials to evaluate its effectiveness compared to 

Amphotericin B. 

Protein kinase: AR-12 is a celecoxib derivative initially it was explored as an 

anticancer agent, however demonstrated antifungal activity against Candida, 

Cryptococcus, and Aspergillus species. AR-12 displays two mechanisms of action: 

first, it targets the acetyl coenzyme A synthetase competing with ATP and 

inhibiting the production of acetyl-CoA, with impact on the regulation of histone 

acetylation and carbon metabolism [69]; additionally, it downregulates host 

chaperone expression, particularly GRP78, HSP90 and HSP27, reducing the host 

immune response [70]. Fungal cells treated with AR-12 show induction of 

autophagy, decreased histone acetylation, and loss of cellular integrity. AR-12 is 

a weak inhibitor of human acetyl CoA synthetase furthermore acetyl CoA is 

primarily synthesized by an alternate enzyme, ATP-citrate lyase, in mammalian 

cells, making this enzyme an excellent drug target [69]. Despite its potential, no 

ongoing studies exist due to the bankruptcy of the developing company, and 

developments are not expected in the near future [71]. 

Sphingolipids: Aureobasidin A is a cyclic depsipeptide isolated from 

Aureobasidium pullulans, targets inositol phosphorylceramide synthase, an 

enzyme responsible for sphingolipid synthesis exclusively found in the fungal 

cell membrane [72], offering low toxicity due to its fungal-specific nature. In vitro 

studies demonstrate antifungal activity against Candida and Aspergillus spp. [73]. 

Although mutations in the AUR1 gene confer resistance to this drug [74–76], 

which is an obstacle to its development, however, there are ongoing studies that 

aim to develop novel derivatives with enhanced antifungal activity [77].  

Siderophores: VL-2397 is a cyclic hexapeptide from Acremonium persicinum and 

exhibits potent antifungal activity against various species, including Aspergillus 

and Candida [78,79]. This new drug is structurally similar to the siderophore 

ferrichrome and acts through the chelation of aluminum ions instead of iron. Iron 
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is pivotal for the survival of microorganisms and siderophores are used to 

acquire iron from the environment [80]. While its mechanism of action is not fully 

understood, studies suggest dependency on the SIT1 gene for uptake in A. 

fumigatus and susceptibility influenced by iron availability [78]. Although 

showing promise in phase I trials with manageable adverse effects, a phase II trial 

for invasive aspergillosis was discontinued due to financial constraints, with no 

further development [71]. 

Histone deacetylase: MGCD290 is a fungal histone deacetylase inhibitor (Hos2). 

Histone deacetylases are enzymes responsible for deacetylation of lysines on core 

histones and other cellular proteins and play an important role in gene regulation 

and regulation of cellular proliferation and motility [81]. While this drug shows 

modest antifungal activity alone, it demonstrates synergistic effects when 

combined with fluconazole, posaconazole, voriconazole, and echinocandins 

against several fungal species, including Candida, Aspergillus, Fusarium, and 

Zygomycetes [81]. Despite safety demonstrated in initial clinical trials, a phase II 

clinical trial for moderate to severe VVC did not show significant improvement 

when MGCD290 was added to fluconazole compared to fluconazole alone [82]. 

No further clinical trials have been initiated.  

Hsp90: Efungumab is a monoclonal antibody targeting heat shock protein 90 

(HSP90), HSP90 is a conserved chaperone responsible for the regulation of 

function and stability of several proteins in pathogenic fungi under stressful 

environmental conditions such as exposure to antifungals or high temperatures  

[71,83]. This drug binds to the middle region of HSP90, preventing a 

conformational change needed for fungal viability, resulting in decreased 

resistance to antifungal agents and increased antifungal activity [84]. Efungumab 

shows synergy with amphotericin B and caspofungin against Candida spp. 

Clinical trials demonstrate improved outcomes in invasive candidiasis when 

combined with amphotericin B. Despite efficacy, marketing authorization was 
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denied due to quality and safety concerns related to the manufacturing process 

[85]. 

Glyoxylate cycle: The glyoxylate cycle is a pathway that allows pathogens to 

thrive on alternative carbon sources in host environments, it was shown to be 

required for C. albicans virulence [86]. Since this metabolic cycle is not present in 

humans it is considered a promising antimicrobial drug target [87]. Currently, 

there are 2 promising drugs targeting this pathway.  

Mohangamides A and B are novel dilactone-tethered pseudodimeric peptides 

isolated from Streptomyces sp. that target the isocitrate lyase enzyme encoded by 

the ICL1 gene in C. albicans. Bae et al. showed that when grown on glucose 

Mohangamides is unable to inhibit several fungal species, including C. albicans 

and A. fumigatus, however, when grown on acetate it inhibited C. albicans growth. 

Additionally, Mohangamide A showed potent inhibition against C. albicans 

isocitrate lyase with an IC50 value of 4.4 µM while Mohangamide B exhibited 

moderate inhibition [87]. Mohangamides did not display cytotoxicity against 

human carcinoma cell lines  [87]. This drug has only recently been reported as an 

antifungal and there are no ongoing clinical trials so far. 

Monoterpenoid perillyl alcohol was also recently reported [88] as a possible new 

drug to treat Candida infections, however only preliminary studies were 

presented, and more studies will be needed. Nevertheless, this molecule appears 

as another inhibitor of the glyoxylate cycle. Enzyme kinetics showed that 

monoterpenoid perillyl alcohol inhibits C. albicans isocitrate lyase in a 

competitive manner and C. albicans malate synthase in a non-competitive 

manner, both key enzymes of the glyoxylate cycle. The antifungal efficacy of this 

new drug was also shown by enhanced survival of Caenorhabditis elegans model 

infected with C. albicans [88]. 
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Calcineurin pathway: Calcineurin pathway is crucial for activating virulence 

genes and proteins essential for fungal growth, hyphal development, and 

survival. This signaling pathway is highly conserved among pathogenic fungi 

like Cryptococcus spp, Aspergillus spp, and Candida spp [89]. However, developing 

drugs targeting this pathway is challenging due to Calcineurin's conservation 

from fungi to mammals and the immunosuppressive nature of compounds 

targeting it [90]. Despite that some attempts have been made, Juvvadi et al. 

reported a new compound, APX879, analog to FK506, a known calcineurin-

targeting molecule, with an acetohydrazine substitution of the C22-carbonyl, 

which exhibits reduced immunosuppressive activity and shows efficacy against 

some pathogenic fungi tested, including A. fumigatus, C. albicans, and C. 

neoformans [91]. Further research led to the discovery of JH-FK-05, a novel 

compound from a panel of C-22-modified compounds. JH-FK-05 exhibits broad-

spectrum antifungal activity in vitro without causing immunosuppression in 

vivo. Treatment with JH-FK-05 in murine models infected with C. neoformans 

significantly decreased fungal burden and increased survival rates [89]. 

Homoserine dehydrogenase: the homoserine dehydrogenase enzyme, encoded 

by the HOM6 gene, plays a vital role in fungal cells. Disruption of this gene leads 

to growth inhibition due to the accumulation of toxic aspartate β-semialdehyde 

[92]. In C. albicans, disruption of the HOM6 gene results in growth defects under 

amino acid starvation conditions, reduced cell adhesion, and subsequently 

diminished virulence [93]. The natural compound 5-hydroxy-4-oxo-l-norvaline 

(HONV) acts as an inhibitor of homoserine dehydrogenase and exhibits 

antifungal activity against Candida spp. However, HONV faces limitations in 

penetrating the yeast cell cytosol, where homoserine dehydrogenase is located, 

thus limiting its antifungal potential [94]. Despite this challenge, ongoing studies 

are exploring solutions to overcome this barrier. In a recent study, Skwarecki et 

al reported a novel strategy for the internalization using antifungal dipeptides 
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incorporating HONV, that once internalized are cleaved by intracellular 

peptidases to release the inhibitor [94]. Using this strategy, they were able to 

produce a dipeptide incorporating HONV that showed a slightly higher in vitro 

anticandidal activity in RPMI-1640 medium compared to HONV alone.  

 

I.2.4. The antifungal discovery strategy 

The journey of drug discovery spans across millennia, reaching back to the early 

times of human civilization. Treatments were often stumbled upon by chance or 

derived from keen observations of nature. Ingredients sourced from plants or 

animals played a pivotal role [95]. In the early 1900s, scientists began to explore 

drugs in a more systematic manner, marking a shift toward modern 

pharmaceutical research. Despite all the advances in medicine nowadays and the 

steady increase in research and development, the discovery of new drugs seems 

to be drying-up or to remain essentially stable [95]. The discovery of penicillin by 

Alexander Fleming in 1928 [96] is considered one of the most important 

breakthroughs in medical history. The drug discovery landscape was forever 

changed after the arrival of penicillin [97]. The following period, until the 1960s, 

witnessed the flourishing of antibiotic development, famously dubbed the 

golden age of antibiotics. However, the extensive search through soil microbes 

eventually led to the rediscovery of known compounds, prompting a shift in 

focus within the pharmaceutical industry during the 1960s and 1970s to the 

chemical tailoring of existing antibiotics to create successive generations of 

antibiotics in order to improve the efficacy or pharmacological properties [97]. 

Presently, traditional drug discovery strategies aim to identify the next 

breakthrough chemical or molecular entity with a novel mechanism of action to 

combat antimicrobial resistance. However, the journey from discovery to 

approval by the FDA, and similar regulatory entities, is fraught with challenges, 

with only a mere 1-2 drugs out of an initial pool of 10,000 compounds succeeding 
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[97]. Following target identification and validation, researchers develop high-

throughput screening assays from compound libraries, aiming to identify 

promising hits. Each hit then undergoes further screening and potential chemical 

modifications to enhance its effectiveness before progressing to in vitro and in 

vivo testing in animal models [97]. Through these rigorous processes, only a 

handful of drug candidates from the initial pool of 10,000 compounds typically 

advance to clinical trials. Furthermore, the success rates for drugs entering Phase 

I clinical trials hover around a mere 10% [98]. 

There is currently a demand for alternative and innovative approaches in order 

to accelerate the complicated process of discovery of new drugs including high-

throughput screening [99,100], omics technologies [101,102], structural biology 

[103,104], computational modeling [105–107] and more recently artificial 

intelligence [108–110].  

Genome-scale metabolic models (GSMM) offer a comprehensive insight into cell 

metabolism. Historically, these global mathematical descriptions of cell 

metabolism have mostly been linked to the metabolic engineering of microbial 

cell factories given their potential to simulate global metabolic behavior and 

provide hints to guide experimental optimization of such organisms for the 

production of added-value compounds [111]. However, several recent examples 

have demonstrated their potential as an approach to the identification of new 

targets for drugs against pathogenic organisms [112–117]. 
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I.3. Genome-Scale Metabolic Models 

 

The first genome-scale metabolic model was reconstructed in 1999 for 

Haemophilus influenzae [118]. Since then, at an increasing pace more than 6000 

distinct models have been reconstructed, for different species of bacteria, archaea, 

and eukaryotes, including Homo sapiens [119]. A GSMM represents a 

reconstruction of the complete metabolic network and may be applied to 

different types of cells, including, microorganisms, plants, and mammals. It may 

even represent entire tissues or body of a multicellular organism instead of a 

single cell [120]. These computational models encompass a whole set of 

stoichiometry-based, mass-balanced metabolic reactions within an organism 

using gene-protein-reaction (GPR) relationships that are formulated based on 

genome annotation data and experimentally obtained information [119]. Using 

optimization techniques like flux balance analysis (FBA), GSMMs can predict 

metabolic flux values for an entire set of reactions, allowing the prediction of 

microbial responses to different genetic or environmental stressors through in 

silico simulations, not offered by conventional metabolic pathway databases like 

KEGG [120,121] and circumventing the need for costly and time-consuming wet-

lab experiments [122]. 

GSMM´s offer a comprehensive insight into cell metabolism. Historically, these 

global mathematical descriptions of cell metabolism have mostly been linked to 

the metabolic engineering of microbial cell factories given their potential to 

simulate global metabolic behavior. This approach provides hints to guide the 

experimental optimization of such organisms for the production of added-value 

compounds, by predicting which genes may be manipulated (knocked-out, up- 

or down-regulated) to yield the desired effects [111]. Through analysis of 

simulation outcomes, it’s possible to identify new metabolic features, uncovering 

previously unknown reactions or enzyme functions [119]. Additionally, several 
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recent examples have demonstrated the potential of GSMMs as an approach for 

the identification of new drug targets to be used against pathogenic organisms 

[112–117]. Using GSMMs, it is possible to predict an organism’s essential genes, 

reactions, or those that, not being strictly essential, are required for growth under 

different environmental conditions, including for example the ones faced inside 

the human host. These predicted essential genes constitute promising new drug 

targets. 

The process of reconstructing a GSMM involves more than 100 steps and can take 

from approximately six months to two years or more depending on the 

complexity of the organism, size of its genome, and degree of study [123]. Very 

often, this reconstruction process is progressive and can have continuous 

expansion and refinement over the years [124]. Recent software, such as merlin, 

seeks to solve this problem, offering options that allow optimizing reconstruction 

time [122]. The extensive process of GSMM reconstruction can be divided into 4 

stages: draft reconstruction; refinement of reconstruction; network assembly; and 

model validation. The last 3 stages are cyclical and must be repeated successively 

until the model is refined and completed (Figure I.2) 
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Figure I.2 - Methodology for the reconstruction of the C. albicans iRV781 

metabolic model using merlin. Adapted from [111]. 

 

Thiele and Palsson provided a detailed methodology for the reconstruction of 

GSMMs, [123], which is followed by the merlin platform [122], including the 4 

stages summarized below: 

Draft reconstruction: initially, a draft reconstruction is generated based on the 

genome annotation of the target organism and biochemical databases. This 

automated process collects genome-encoded metabolic functions but may 

include false positives or miss crucial functions due to incomplete annotation. In 

this step manual curation is essential. The quality of genome annotation directly 
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impacts the subsequent reconstruction quality. In this stage, metabolic reactions 

catalyzed by the identified gene products are connected with the draft 

reconstruction by using the enzyme commission (E.C.) numbers and biochemical 

reaction databases, e.g., KEGG [125] or Brenda [126]. In merlin, this stage is 

optimized, as the platform provides tools to automatically retrieve the genome 

and perform a genome functional annotation [122]. Similarly, in merlin, the 

process of integrating transporter annotation into the draft network is optimized 

and can be performed using the state-of-the-art tool Transport Systems Tracker 

(TranSyT), developed by the same team [127]. Additionally, merlin enables 

performing and integrating compartment annotation into a draft genome-scale 

metabolic network using results provided by Psortb3, WoLFPSORT, and 

LocTree3, automatically loading all information regarding compounds, enzymes, 

reactions, and pathways into merlin’s internal database. 

Refinement of reconstruction: in this stage, the draft reconstruction undergoes 

thorough evaluation and refinement. Each gene and reaction entry is scrutinized 

to determine its relevance and completeness within the network. This manual 

assessment involves comparing metabolic functions and reactions with 

organism-specific literature, as not all annotations are highly reliable, and 

biochemical databases may list organism-unspecific reactions. Additionally, data 

on biomass composition, maintenance parameters, and growth conditions are 

gathered to support subsequent simulations. This manual evaluation is crucial to 

enhance the accuracy of the reconstruction. merlin provides a tool (e-Biomass 

equation tool) to automatically generate the biomass equation which, based on 

genome content, is able to estimate the protein, DNA, and RNA content of the 

cell. Additional detailed information must, then, be provided based on literature 

or experimental data. merlin also provides several tools to help the model 

refinement process, including correct reversibility, find unbalanced reactions, 

and find blocked reactions. 
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Network assembly: In the third stage, the reconstruction undergoes conversion 

into a mathematical format, and condition-specific models are established. This 

stage is largely automated, with defined system boundaries to transform the 

general reconstruction into a condition-specific model. The initial model may 

differ from the final model due to multiple iterations of validation and 

refinement. This final model is then used for simulating phenotypic behavior. 

Simulation constraints are established using functions in the Constraints-Based 

Reconstruction and Analysis (COBRA) Toolbox, facilitating easy adjustment of 

reaction constraints. In this process, it is important to meticulously track these 

changes to prevent simulation errors. merlin provides the Biological networks 

constraint-based In silico Optimisation (BioISO) tool, based on the COBRA and 

FBA frameworks, which can be used to evaluate biomass formulation and 

genome-scale metabolic network and find potential errors in the biomass 

formulation or gaps in the metabolic network. 

Model validation: in the fourth stage of the reconstruction process, the network 

undergoes verification, evaluation, and validation. Common errors such as 

wrong reaction constraints, missing transport reactions, missing exchange 

reactions, metabolites not consumed or produced, and lack of transport for 

metabolites between compartments should be identified in this stage and 

corrected. The metabolic model created in the third stage is tested for its capacity 

to synthesize all the biomass precursors allowing the identification of missing 

metabolic functions, known as network gaps. This iterative process highlights the 

ongoing refinement of the reconstruction. Determining when to conclude the 

process and consider the reconstruction "finished" is crucial and typically based 

on the defined scope and purpose of the reconstruction. merlin facilitates this 

process with the BioISO tool, however, it's common to utilize other external 

software’s such as Optflux [128] because it is more practical and offers more 

testing features.  
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I.3.1. Current challenges in GSMM reconstruction and exploitation 

While the methodology for reconstructing genome-scale metabolic models has 

become standardized, eukaryotic organisms, such as fungi present ongoing 

challenges due to their large genomes and complexity [129]. Despite efforts to 

approximate reality as closely as possible, the complexity inherent to these large 

models inevitably introduces errors, leading to minor discrepancies in 

predictions. These errors may include incorrect assignment of GPR associations, 

inaccuracies in reaction directionality or reversibility, inconsistencies in 

stoichiometric parameters, the absence of crucial reactions, and inaccuracies in 

biomass composition [129]. Moreover, current modeling tools are limited in 

addressing network properties beyond metabolism at a global scale, such as the 

regulatory network which has a big impact on the regulation of cell metabolism. 

Another limitation of GSMMs is not taking into account the time or the 

mechanisms required for cells to adapt to genetic perturbations or environmental 

variability [129]. Furthermore, interactions between yeast and other 

microorganisms, as well as the secretion of compounds influencing the 

surrounding environment, are often disregarded [130]. Despite these limitations, 

genome-scale metabolic reconstructions have proven highly effective in 

discovering new drug targets [112–117]. Once a model is constructed, predicting 

drug targets becomes relatively straightforward. However, the experimental 

validation of these targets and the identification of effective drugs pose an even 

more difficult challenge. 
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I.4. Molecular Docking 

 

The exponential growth in available genome sequences witnessed over recent 

decades has substantially expanded our access to an increasing number of new 

potential therapeutic targets for drug discovery. At the same time, advances in 

spectroscopy techniques have played a pivotal role in elucidating the structures 

of numerous proteins, including information on molecular details on protein 

interactions with solutes, such as substrates, co-factors, or inhibitors [131]. These 

advances have coincided with the evolution of computational strategies aimed at 

guiding drug discovery endeavors. Since the 1980s, computer technologies have 

revolutionized the drug discovery landscape, giving rise to innovative 

approaches such as computer-guided drug design and virtual drug screening 

approaches [131]. The ability to predict ligand binding modes holds immense 

value, facilitating the optimization and suggestion of novel ligands, in fact, with 

the rise in frequency of multidrug-resistant clinical isolates, the identification of 

new drug targets and new drugs is crucial to overcome the increase in 

therapeutic failure. 

Currently, the process of identifying a drug target, synthesizing an active 

compound with reduced toxicity, bioavailability, and cost-effective synthesis is a 

time-consuming, complex, and expensive process [132]. Molecular docking is an 

attractive computational technique that can be used to understand drug 

biomolecular interactions for rational drug design and discovery, and currently, 

plays an important role in the discovery and development of new drugs [133]. 

The aim of this technique is to predict ligand-receptor complex structure 

interaction using computational methods, being one of the most applied virtual 

screening methods.  

Molecular docking applied to protein-ligand interactions consists of two 

interrelated steps: 1) sampling conformations of the ligand in the active site of 
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the protein; and 2) ranking these conformations via a scoring function. In an ideal 

scenario, sampling algorithms should be able to reproduce the experimental 

binding mode and the scoring function should be able to distinguish correct from 

incorrect poses or the binders from the non-binders in the pool of poses generated 

by the sampling process in a reasonable computation time [131,134]. A molecular 

docking protocol needs some general requirements, common to all the different 

docking programs: 

• The availability of the three-dimensional structure of the molecular target. 

This structure can be obtained experimentally (by X-ray crystallography, 

NMR, or cryo-EM) or predicted based on computational techniques 

(homology modeling or AlphaFold) [131]. 

• A database containing existing or virtual compounds for the docking 

process [135]. 

• Sampling and scoring methods, which require a computational 

framework for its efficient exploitation [135]. 

Another very important aspect of molecular docking involves determining the 

precise location of the binding site. Preselecting the precise binding site location 

prior to docking processes is crucial and significantly enhances docking 

efficiency. This selection procedure often relies on available information 

regarding substrate or co-factor binding sites within the target protein. Ideally, 

such information is acquired experimentally, for example through co-

crystallization of the protein with its ligand(s). Alternatively, binding sites can be 

predicted, such as by comparing the target protein with a family of proteins 

sharing similar functions or with proteins co-crystallized with other ligands. In 

cases where knowledge about binding sites is entirely lacking, docking can serve 

as a tool to gain insights into their location by conducting blind docking 

experiments [134]. However, there are some cavity detection tools, such as GRID 
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[136], POCKET [137], SurfNet [138], PASS [139], and MMC [140] that can be used 

to identify putative active sites in an attempt to overcome this problem. 

Molecular docking pipelines for virtual drug screening consist of 4 steps: 

preparing the ligand; preparing the receptor; defining the search box and 

running the docking calculation. An additional step involving the analysis and 

interpretation of the obtained results is usually also considered (Figure I.3). In the 

following sections, the methodologies and approaches available to pursue each 

step are presented and discussed. Protein structure prediction methods such as 

homology modeling and AlphaFold are examined for their importance in 

achieving reliable docking predictions. Finally, applications, current challenges, 

and future perspectives of molecular docking, namely in virtual drug screening, 

are discussed. 

  

I.4.1. Docking methodologies 

Docking methods can be divided into 3 categories according to the degrees of 

flexibility of the molecules involved in the calculation: 

• Rigid docking: in this methodology, the ligand and the receptor are both 

treated as rigid bodies resulting in very limited search space considering 

only three translational and three rotational degrees of freedom [134]. Due 

to its limitations, this methodology is no longer widely used, it can still be 

found in programs such as early versions of DOCK [141], FLOG [142], 

FTDOCK [143].
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Figure I.3 – Virtual Drug screening methodology using molecular docking. 1. Receptor structure selection and preparation for 

molecular docking, which can be retrieved from a 3D structure available in PDB, or from in silico predicted structures using homology 

modeling or from the AlphaFold database. 2. Ligand preparation for molecular docking, which can be a group of compounds from a 

compound database, or specific selected ligand(s) of interest. 3. Searching box design, defining the special restraints within the target 

structure where the molecular docking calculation will be performed, using one of the different docking programs available. 4. 

Analysis and selection of the best-hit results based on criteria such as binding energy calculated by scoring functions. 5. In vivo 

validation of the predicted activity (e.g. antimicrobial activity) and potential cytotoxic effects.
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• Semi-flexible docking: in this methodology, the ligand is treated as 

flexible while the receptor is kept rigid during docking. This is the most 

common methodology, because of the trade-off between accuracy and 

computation time, since considering both ligand and receptor as flexible 

has very high computational costs [134]. Almost all the docking programs 

use this methodology, including AutoDock Vina [144]. 

 

• Flexible docking: it considers the flexibility of both the ligand and 

receptor, being the closest scenario to reality since both the ligand and 

receptor change their conformations to form a minimum energy perfect-

fit complex. However, incorporating the receptor flexibility in docking is 

significantly challenging due to its high computational expense, which 

prevents this method from being used in the screening of large chemical 

databases [134]. Some programs have tried to implement this 

methodology, and they have options for the user to consider the flexibility 

of the receptor, including GOLD [145], AutoDock Vina [144], ICM [146], 

AutoDock 4 [147], DOCK [148] and FlexE [149].  

 

 

I.4.2. Compound and receptor preparation for docking 

When starting a structure-based docking project, the optimal scenario is starting 

from a high-resolution ligand-bound structure. Ligand-bound structures are 

favored due to the more clearly defined geometries of the binding pocket in the 

bound state compared to the unbound state [150]. Furthermore, it is 

advantageous to utilize small, enclosed binding pockets that closely complement 

a ligand rather than large, flat, and solvent-exposed binding sites [150]. Once a 

suitable structure has been identified as a starting point, it is important to 
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meticulously assess for any structural anomalies and rectify them as needed. For 

instance, certain protein structures may have been determined in a mutant form. 

In such cases, it is advisable to revert mutated structures back to their predicted 

wild-type configuration, especially if the mutations occur within the targeted 

ligand site. Additionally, if any atoms are found to be inadequately solved and 

missing from the structure, particularly in proximity to the binding site, their 

predicted position should be added to the structure [150]. Furthermore, it is 

essential to account for any water molecules enclosed within the binding pocket, 

as they may partake in interactions that influence side-chain conformations or 

provide additional hydrogen-bonding sites. Similarly, cofactors such as heme 

groups or metal ions should be considered, as they can also play crucial roles in 

the binding environment. [150]. Buffer components, specific to the crystallization 

conditions should be removed. Additionally, molecular docking requires to have 

both the protein binding site and the putative ligands correctly protonated. If this 

is not the case, it may not be possible to even dock compounds, due to steric or 

electrostatic clashes [151].  Usually, ligand and protein are processed and 

prepared separately. In virtual screening, ligands are retrieved from sources 

other than the Protein Data Bank (PDB), such as compound databases like 

PubChem, Zinc15, Sigma Aldrich, and others. In these instances, the procedure 

may vary but sometimes involves reconstructing the molecule from its Simplified 

Molecular Input Line Entry System (SMILES) format or sketching the molecule 

and saving it in an SDF/MOL file format [152]. 

 

I.4.3. Sampling algorithms 

Docking a ligand into a receptor pocket involves six degrees of translational and 

rotational freedom per atom from both the ligand and protein. Consequently, this 

yields a huge number of possible binding modes between two molecules [135]. 

Thus, a large computational power is needed to sample the conformational space. 
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The sampling algorithms seek to find a balance between performance and 

required computation. The following sampling algorithms are among the most 

common: 

• Matching algorithms: in these algorithms, the protein and the ligand 

atoms are superimposed into predefined binding-site points. Shape 

complementarity is measured by Fast Fourier Transform or Geometric 

Hashing functions [153] and ligand conformations are then defined by the 

distance matrix between the protein and the corresponding ligand atoms, 

taking into consideration chemical properties, like hydrogen-bond donors 

and acceptors [134]. These algorithms allow a fast generation of results, 

with no high computational power requirement and are used in programs 

like DOCK [154], FLOG [142], LibDock [155] and SANDOCK [156].  

• Fragment-based algorithms: incremental construction algorithms are 

more common in this category. In this methodology the ligand is divided 

into several fragments by breaking its rotatable bonds and one of these 

fragments is selected to dock into the active site first, working as an 

anchor, usually the largest fragment or a part with a known important role 

in protein interaction. The remaining fragments are then added 

incrementally resulting in the generation of different orientations in order 

to fit in the active site according to the ligand flexibility [134]. These 

algorithms are used in the programs DOCK 4.0 [157], FlexX [158], 

Hammerhead [159], SLIDE [160] and eHiTS [161]. There are other available 

fragment-based algorithms using different methodologies, such as 

Multiple Copy Simultaneous Search (MCSS) [162] or LUDI [163]. MCSS 

makes 1,000 to 5,000 copies of a functional group which are then randomly 

placed in the binding site of interest; while LUDI focuses on the hydrogen 

bonds and hydrophobic contacts which could be formed between the 

ligand and protein.  
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Stochastic methods: These algorithms explore the conformational space 

by randomly modifying a ligand or a population of ligand conformations. 

This class includes Monte Carlo and genetic algorithms. In the Monte 

Carlo approach, ligand poses are generated through bond rotation, rigid-

body translation, or rotation. Subsequently, the resulting conformation is 

tested with an energy-based selection criterion. If it passes the criterion, it 

is saved and further modified to generate the subsequent conformation 

[134]. The iterations will proceed until the predefined quantity of 

conformations is collected. This algorithm is used in programs like 

AutoDock [164], AutoDock Vina [144], ICM [146] and QXP [165]. Genetic 

algorithms utilize binary strings, referred to as genes, that encode the 

degrees of freedom of the ligand. In turn, these genes constitute the so-

called chromosomes, which represent the poses of the ligand. Mutations 

represent random changes to the genes while crossover entails exchanging 

genes between two chromosomes. These genetic operations result in the 

generation of new ligand structures. Subsequently, these structures are 

evaluated using a scoring function, and those surpassing a predetermined 

threshold are retained for the next generation [134]. These algorithms can 

be found in programs like AutoDock [166], GOLD [145], DIVALI [167] and 

DARWIN [168]. 

 

I.4.4. Scoring functions 

During the docking process, a sampling algorithm generates a vast number of 

different poses for each ligand. The scoring functions play a critical role in 

assessing the quality of these docking poses, helping us identify the most relevant 

ligand conformations [169]. A reliable scoring function must be able to 

distinguish the experimentally observed binding modes from all the other poses 
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discovered by the search algorithm. Those poses should be associated with the 

lowest binding energy and accurately discriminate between ligands that bind 

and those that do not, and they should predict the absolute binding affinity, 

effectively ranking compounds based on their potential [132,169]. Additionally, 

scoring functions must be fast enough to assess millions of compounds within a 

set computational timeframe. Popular scoring functions have an adequate 

balance between accurately estimating binding energy and computational 

efficiency [132]. Scoring functions can be divided into 3 categories:  

• Force-field based scoring functions: binding energy is calculated by the 

sum of the physical atomic interactions: electrostatic potential, described 

by the Coulomb function where a distance-dependent dielectric may be 

introduced to mimic the solvent [131]; and van der Waals interactions 

described by the Lennard-Jones potential. Additional terms have been 

added to the force-field scoring functions, such as solvation terms, 

hydrogen bonds, and entropy contributions [134]. Programs, such as 

DOCK [154], GOLD [145], AutoDock [166] use this type of scoring 

functions.  

• Empirical scoring functions: in these types of functions binding energy is 

calculated by the sum of several energy components including van der 

Waals energy, electrostatics, hydrogen bond, desolvation, entropy, 

hydrophobicity, etc [170] and uses known binding affinity data of 

experimentally determined structures to determine the coefficients 

associated with the functional terms. Each energy component is then 

multiplied by these coefficients and then summed up to give a final score 

[134]. Empirical scoring functions are used by LUDI [163], PLP [171], 

ChemScore [172], ID-Score [173], GlideScore [174] and Autodock Vina 

[144]. 
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Knowledge-based scoring functions: this type of functions, uses 

statistical analysis of ligand-protein complex crystal structures from a 

database. From this database, the frequencies of ligand-protein atom pair 

contacts are computed and converted into an energy component, that is 

then used to evaluate a pose and assign a score to it [131]. The score is 

calculated by favoring preferred contacts and penalizing repulsive 

interactions between each atom in the ligand and the protein within a 

given cutoff [134]. DrugScore [175], GOLD/ASP [176], PMF [177], SMoG 

[178] and Bleep [179] use this type of scoring functions. 

 

I.4.5. Autodock Vina 

There are several docking programs as mentioned in the previous sections, each 

resorting to different methodologies, algorithms, and purposes. Autodock Vina 

[144] is one of the fastest and most widely used open-source docking engines, 

partly due to its ease of use, but also due to its speed, up to 100x faster than other 

docking engines. It is based on a simple scoring function and rapid gradient-

optimization conformational search. Vina uses Monte-Carlo as sampling 

algorithm treating docking as a stochastic global optimization of the scoring 

function, and a new specific hybrid empirical and knowledge-based scoring 

function considered by the creators more like a machine learning than directly 

physics-based in its nature. This scoring function extracts empirical information 

from both the conformational preferences of the receptor-ligand complexes and 

the experimental affinity measurements [180]. For its input and output, Vina uses 

PDBQT molecular structure file format and provides a tool, MGLTools where the 

PDBQT files can be generated, edited, and viewed. It is an open-source free 

software and allows the user to take advantage of multiple CPUs or CPU cores 

to significantly shorten its running time. 
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I.4.6. Homology Modeling 

Homology Modeling is a computational structure prediction method that goes 

hand in hand with molecular docking. Since molecular docking requires a 

protein structure to be able to perform the docking, when the structure is not 

available, resorting to prediction techniques is an attractive alternative to its 

crystallographic determination. Despite notable advancements in the quality of 

3D structures derived from crystallography methods, determining the structure 

of a novel protein remains an arduous, time-consuming, and costly endeavor. In 

contrast, homology modeling offers a fast method to predict protein structures 

within a matter of days [181]. 

Moreover, high-resolution 3D structures are lacking for certain protein classes, 

particularly membrane proteins, due to the challenges associated with their 

purification and crystallization [181]. Given the role membrane proteins play in 

drug internalization by pathogens, as well as their importance in cell structure 

and survival, they represent promising therapeutic drug targets. Therefore, 

progress in elucidating their protein structures is vital for advancing the drug 

discovery pipeline. 

Homology modeling is based on two foundational principles: first, that protein 

3D structures are determined by their amino acid sequences, and second, that 

there exists conservation in the 3D structure relative to a primary sequence [182]. 

For this second point, it’s known that evolutionary-related proteins share a 

similar structure, and consequently, sequences with high similarity fold into 

identical structures, facilitating the prediction of a protein's structure solely based 

on its amino acid sequence, as long as homologous proteins with established 

structures are available [181]. A homology modeling methodology typically can 

be explained in six steps: 
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• Template selection: Every homology modeling project starts with the 

search for a suitable template to be used for structure prediction. During 

this phase, the target sequence is used to perform sequence–sequence 

alignment to identify the most closely related available proteins. The Basic 

Local Alignment Search Tool (BLAST) is commonly utilized for this 

purpose, and this search is narrowed down by selecting only crystal 

structures available in the Protein Data Bank (PDB) 

(http://www.wwpdb.org/) database [182]. Once template candidates are 

identified, a selection process ensues to determine the most optimal 

structures. Sequence similarity between the template and the target 

sequence stands as the primary criterion. Additionally, factors such as 

phylogenetic proximity, ligand binding, and experimental structure 

resolution are also taken into consideration. The predictive accuracy of the 

homology modeling depends largely on the degree of similarity between 

the model and template sequences, with a similarity threshold of 25% 

considered the limit [181]. In cases where homology is low, alternative 

alignment methods may be employed to minimize shifts and gaps. These 

methods include profile-profile alignments, Hidden Markov Models 

(HMMs), and position-specific iterated BLAST (psi-BLAST) [182]. In some 

cases, more than one structure may be selected as template, for example, 

different regions of the target sequence may have an ideal template from 

different proteins or structures.  

• Sequence alignment and correction: After selecting the most appropriate 

templates, the alignments undergo correction and optimization to ensure 

accurate alignment of protein sequences and construct the entire 

backbone. Multiple alignment tools, such as ClustalW [183], are 

commonly employed for this purpose. In regions where sequence identity 

is particularly low, aligning template and model sequences can pose 

challenges. One approach to address this is by increasing the identity 

http://www.wwpdb.org/
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percentage through additional sequences from other homologous proteins 

[184]. Accurate alignment of sequences is crucial in homology modeling 

and can significantly enhance the quality of the results. Therefore, 

meticulous checks and corrections during the alignment process are 

essential for ensuring high-quality 3D protein structure construction [182]. 

• Model building: several tools can be used to generate 3D models in 

homology modeling. However, Modeller [185] is the most commonly used. 

Modeller uses a spatial restraint approach to generate three-dimensional 

models by optimally satisfying spatial restraints derived from the 

alignment and expressed as probability density functions for the 

restrained features [185]. These restraints include homology-derived 

restraints on the distances and torsional angles, stereochemical restraints 

such as bond length and bond angle parameters, and optional restraints 

derived from experimental data [182]. 

• Loop modeling: most loops have no function other than to connect 

secondary structural elements and typically exhibit low sequence 

conservation, leading to significant variation in conformation among 

related proteins. As a result, predicting changes in loop conformation is a 

difficult task. Two main approaches are commonly employed for loop 

modeling: knowledge-based and energy-based methods. Knowledge-

based loop modeling assesses the orientation and separation of backbone 

segments flanking the target region and searches the PDB repository for 

loops of similar length with comparable end-point geometry [186]. 

Energy-based loop modeling utilizes an energy function to evaluate loop 

quality and identify the optimal loop conformation based on statistical 

preferences of atoms for several geometries, derived from a database of 

known protein structures [187]. 

Side-chain modeling: side-chain modeling plays an important role in 

protein structure prediction since protein side chains make a dominant 
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contribution to molecular recognition. Typically, protein side chains 

occupy a limited number of energetically favorable conformations known 

as rotamers [181]. The general strategy of modeling programs is to align 

the target side chains as closely as possible to their counterparts in the 

template structure. However, this approach is not always possible due to 

variations in amino acid composition between the target and template 

sequences. To address this problem, side-chain modeling adopts a 

knowledge-based approach, utilizing libraries of rotamers to position side 

chains correctly [181,186]. 

• Model evaluation and validation: after generating a model, it is necessary 

to evaluate the success of the process. Different scores can be used to 

evaluate and validate the models. Distance-based and contact-based 

similarity scores are used in experimental evaluation of homology models. 

Other scores can be used for quality check such as physics-based, 

knowledge-based, and combined scores [182]. For example, the Discrete 

Optimized Protein Energy (DOPE) score is implemented in MODELLER 

and this knowledge-based quality score evaluates the model based on 

atomic distance-dependent statistical potential calculated from a set of 

native crystallographic structures and can be used to estimate the obtained 

model quality [188]. Besides those scores, it is also important to perform a 

manual inspection and evaluate the residue placement and the interaction 

of neighboring residues. After taking into account all these aspects, 

subsequent analyses are carried out on the best model. 

 

I.4.7 AlphaFold 

AlphaFold, developed by Google DeepMind, surged in 2018 as an alternative and 

revolutionary approach for protein structure prediction. Unlike conventional 

homology modeling, AlphaFold uses the power of machine learning to predict a 
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protein's three-dimensional structure from its amino acid sequence. While 

homology modeling relies heavily on sequence similarity with known proteins, 

AlphaFold utilizes machine learning that incorporates physical and biological 

knowledge about protein structure to predict protein structures with remarkable 

accuracy, even in cases where no similar structures are known [189].  

The AlphaFold database is currently open access, containing over 200 million 

protein structure predictions available for research purposes. It surges as an 

important alternative approach for accessing the protein 3D structure, especially 

in cases where conventional prediction methods fall short of atomic accuracy, for 

example when no homologous structure is available [189]. Another compelling 

aspect of AlphaFold is its speed and scalability. While conventional homology 

modeling techniques can be time-consuming, AlphaFold can rapidly generate 

accurate structural predictions, accelerating research in drug discovery, protein 

engineering, and molecular biology and contributing to a better understanding 

of human health, disease, and the environment. 

The AlphaFold algorithm combines physical and geometric biases, learning from 

PDB data with high efficiency while accommodating the complexity and 

diversity of structural data, being trained to produce structures that align with 

constraints implicit in the sequence, such as specific stoichiometry, ligands, or 

ions. In a simple definition, the AlphaFold algorithm is trained to produce the 

protein structure most likely to appear as part of a PDB structure [189]. 

AlphaFold usage has increased within the scientific community over the past five 

years, with more than 1,000 entries in the PubMed database between 2021 and 

2024, being applied in numerous successful cases, the most notable being SARS-

CoV-2 protein structure prediction during the pandemic [190]. 

Google DeepMind is currently developing a new service for the scientific 

community, the AlphaFold Server, still in beta test and launched on May 8, 2024. 
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This server is powered by the newest AlphaFold 3 model and serves as a platform 

to modulate complex binding structure, including options for the user to 

modulate the structure of complexes, including proteins, nucleic acids, 

biologically common ligands, and ions, and modified residues [191]. AlphaFold 

3 demonstrates greater accuracy in protein-ligand and protein-nucleic acid 

interactions than state-of-the-art docking tools/predictors [191]. Despite being in 

the beta phase only, it will certainly revolutionize the future of virtual drug 

screening and the drug discovery process. 

 

I.4.8. Application of molecular docking to virtual drug screening 

As mentioned before, molecular docking enables the modeling of interactions 

between small molecules and proteins at the atomic level, allowing for the 

characterization of small molecule behavior within the binding site of their 

predicted target and the elucidation of fundamental biochemical processes. It is 

generally employed for three different purposes: binding mode prediction, 

virtual drug screening, and free energy of binding prediction [134]. Virtual drug 

screening, in particular, is an important application of molecular docking, as this 

procedure saves time and money, and being widely used by many 

pharmaceutical industries [132].  

In virtual drug screening, basically, a group of compounds from a database are 

docked against a target structure, allowing for large-scale prediction of which 

compounds bind with greater affinity to the target protein, thereby identifying 

which are the best candidates as potential inhibitors. There are many successful 

cases of application of this technique for drug discovery. For example, Boehm et 

al. used de novo design for a DNA gyrase and successfully obtained several new 

inhibitors for this antibacterial target [192]. Schames et al., using molecular 

docking, discovered a new binding site for drugs in the HIV 1 Integrase, which 
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resulted in the development of drugs with a new mode of inhibition for AIDS 

therapy [193]. Becker et al. screened 40,000 compounds from a database, using 

molecular docking, against the serotonin receptor (5HT1A). Based on this 

approach, 78 virtual hits were discovered and experimentally tested. The most 

potent molecule was selected as a lead molecule for further optimization 

reaching Phase I clinical trial very quickly [194]. Moreover, molecular docking 

also plays a prominent role in the initial prediction of drugs’ nucleic acid binding 

properties, which can be useful in predicting their cytotoxicity. This is 

particularly valuable not only for developing new antimicrobial drugs but also 

for understanding the molecular mechanisms underlying anticancer effects [133]. 

 

I.4.9. Current challenges in molecular docking 

One of the primary challenges encountered in the field of docking is receptor 

flexibility [132,152]. Proteins can assume various conformations depending on 

the ligand they bind to. Arguably, considering the receptor as flexible is the most 

appropriate approach to studying protein-ligand complex behavior [195]. 

However, due to its high computational demand, this methodology is not 

commonly utilized. As a result, docking performed with a rigid receptor 

represents only a single receptor conformation, often resulting in false negatives 

where the ligand later proves to be active [132]. There have been some advances 

in addressing this limitation, and, in fact, some programs already have options 

for performing docking with a flexible receptor.  

Another significant challenge in docking is the lack of confidence in the accuracy 

of scoring functions to provide precise binding energies. Scoring functions often 

struggle to accurately predict certain intermolecular interactions, such as 

solvation effects and entropy changes. Additionally, some intermolecular 
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interactions are rarely considered [132]. Currently, machine learning is being 

used to improve docking and scoring functions [196].  

Ligand preparation also represents a big challenge in this technique, having a big 

impact on docking results. Most databases contain molecules in their neutral 

forms, whereas, under physiological conditions, they are predominantly ionized. 

During the docking process, it's common to ionize ligands before calculating 

docking scores. This task involves removing or adding hydrogens, which is 

relatively straightforward. However, when dealing with tautomeric and/or 

protomeric states of the molecules being docked, significant discrepancies may 

persist [133]. Addressing water molecules or metal ions in the binding pocket can 

also be a challenge. The high importance of metal cofactors on many protein 

families is well known, this is particularly important when modeling interactions 

with zinc, calcium, and magnesium, which are prominent metal ions in drug 

discovery [152]. Autodock tool developers have put some effort into this issue 

and yielded a more accurate solution to pose and scoring in ligand-zinc 

interaction, for example [197,198].   

Sometimes, x-ray crystal structures lack coordinate information for hydrogen 

atoms. The absence of precise hydrogen positions can lead to inaccuracies in 

identifying water molecules, potentially impacting receptor-ligand binding. 

Furthermore, predicting the number of water molecules in the binding pocket 

that might be displaced by potential ligands, and understanding how ligand 

binding disturbs the hydrogen bonding network, presents challenges [132]. Most 

docking programs can now consider the presence of water molecules during 

calculations and some methods have made advances in accurately representing 

water molecules in proteins, including Monte Carlo [199], molecular dynamics of 

water on the binding site implemented by Schrödinger [200], “Attachment” of 

water molecules to ligands as additional torsions [201], free energy perturbation 

methods, water displacement as implemented by PLANTS [171], QM/MM 
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hybrid methods [202], COSMO solvation and semi-empirical charges for ligands 

[203], “hydrated docking” scripts used by Autodock [204], protein-centric and 

ligand centric hydration implemented by Rossetta [205], Water docking using 

Autodock Vina [206], WScore [207] and grid inhomogeneous solvation theory 

applied by Autodock [208]. 

In recent decades, molecular docking has seen significant advances. Nowadays, 

docking millions of compounds has become a routine procedure, based on the 

existence of extensive compound databases. The development of fast docking 

programs and software platforms enabling the automation of virtual screening 

processes made its use more widespread. While there is still much room for 

improvement, the ongoing advancements in physics-based scoring 

methodologies and machine-learning techniques hold great promise for the 

future [209]. 
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II.1. Genome-scale metabolic model of the human pathogen C. 

albicans: a platform for drug target prediction 

 

II.1.1. Abstract 

C. albicans is one of the most impactful fungal pathogens and the most common 

cause of invasive candidiasis, which is associated with very high mortality rates. 

With the rise in frequency of multidrug-resistant clinical isolates, the 

identification of new drug targets and new drugs is crucial to overcome the 

increase in therapeutic failure. In this study, the first validated genome-scale 

metabolic model for C. albicans, iRV781, is presented. The model consists of 1221 

reactions, 926 metabolites, 781 genes, and four compartments. This model was 

reconstructed using the open-source software tool merlin 4.0.2. It is provided in 

the well-established systems biology markup language (SBML) format, thus, 

being usable in most metabolic engineering platforms, such as OptFlux or Cobra. 

The model was validated, proving accurate when predicting the capability of 

utilizing different carbon and nitrogen sources when compared to experimental 

data. Finally, this genome-scale metabolic reconstruction was tested as a platform 

for the identification of drug targets, through the comparison between known 

drug targets and the prediction of gene essentiality in conditions mimicking the 

human host. Altogether, this model provides a promising platform for global 

elucidation of the metabolic potential of C. albicans, with an expected impact in 

guiding the identification of new drug targets to tackle human candidiasis.  

Keywords: C. albicans, global stoichiometric model, drug targets, metabolic 

reconstruction, gene essentiality 
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II.1.2. Introduction 

In the last few decades, a significant increase in nosocomial fungal infections has 

been observed, and Candida species are by far the most common cause of invasive 

fungemia in humans [210,211]. Among Candida species, C. albicans is the main 

etiological agent of invasive candidiasis [212,213], being associated with high 

mortality rates [212,213]. Together with its virulence traits [214,215], its ability to 

acquire drug resistance [216–218] makes this opportunistic pathogen a severe 

threat.  

Only three classes of antifungal drugs are licensed to treat Candida infections 

(azoles, echinocandins, and amphotericin B), and only fluconazole and 

echinocandins are recommended as first-line agents [219]. Currently, there has 

been a rise in the frequency of multidrug-resistant clinical isolates, and 

therapeutic options are running low. This is true for C. albicans, but even more so 

for other emerging non-albicans Candida species, such as C. glabrata, C. krusei, and 

C. auris. For example, in recent studies, almost 40% of the C. glabrata isolates 

shown to be resistant to at least one echinocandin were also resistant to 

fluconazole [12]. In non-albicans pathogenic Candida species, the scenario is even 

more frightening, as several of them display either intrinsic or easily acquired 

resistance to several of the available antifungal agents. For example, in a recent 

case, C. auris isolates were identified as resistant to the three classes of available 

antifungal drugs, further raising public concern on the future efficacy of current 

antifungal therapeutic options [14]. The identification of new drug targets and 

new drugs is crucial to overcome the increase in therapeutic failure. 

Genome-scale metabolic models have the potential to provide a holistic view of 

cell metabolism. Historically, these global mathematical descriptions of cell 

metabolism have mostly been linked to metabolic engineering of microbial cell 

factories, given their potential to simulate global metabolic behavior and provide 

hints to guide experimental optimization of such organisms for the production 
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of added-value compounds [111]. However, recent examples have shown the 

potential of these models in the quest for novel drug targets in pathogenic 

organisms [112–116]. For example, Abdel-Haleem et al., 2018, described the 

reconstruction of genome-scale metabolic models for five life cycle stages of 

Plasmodium falciparum, enabling the identification of potential drug targets that 

could be used as both anti-malarial drugs and transmission-blocking agents 

[117]. 

Here, we present the first validated in silico genome-scale metabolic 

reconstruction of C. albicans, the iRV781. This model is provided in the well-

established SBML format and can easily be read in most metabolic engineering 

platforms such as OptFlux [128] and COBRA [220]. The model validation 

procedure is detailed, and an evaluation of the potential of this model for the 

search for new drug targets in this fungal pathogen is put forward. 

 

II.1.3. Materials and Methods  

 

II.1.3.1. Model development 

The C. albicans iRV781 genome-scale metabolic model was developed following 

the methodology represented in Figure II.1, using merlin 4.0.2 [122] for the 

reconstruction process, as described elsewhere [221], and OptFlux 3.0 [128], for 

the curation and validation of the model. All predictions were performed using 

the IBM CPLEX solver. merlin is a platform that allows performing the 

reconstruction process of metabolic models semi-automatically, providing a 

user-friendly interface that assists the user in the manual curation process [122]. 
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Figure II.1 - Methodology for the reconstruction of the C. albicans iRV781 

metabolic model. Adapted from [111]. 

 

II.1.3.2. Genome Annotation and Assembling the Metabolic Network 

The genome sequence of the reference strain C. albicans SC5314 was obtained 

from NCBI’s Assembly database, accession number ASM18296v3 

(www.ncbi.nlm.nih.gov/assembly) [222] and the Taxonomy ID from NCBI 

(www.ncbi.nlm.nih.gov/taxonomy) [223], which is required by merlin to 

univocally identify the organism under study throughout the reconstruction 

process.  In order to establish a proximity between species, the 16S rRNA gene of 

several known closely related species was used to construct a Phylogenetic tree, 

http://www.ncbi.nlm.nih.gov/assembly
http://www.ncbi.nlm.nih.gov/taxonomy
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the sequences being retrieved from NCBI’s database and aligned using MEGA X 

10.0.5 [224] the evolutionary history was inferred by using the Maximum 

Likelihood method and Tamura-Nei model [225] (Supplementary Figure II.1.1). 

The genome-wide functional annotation was processed by merlin based on 

taxonomy and frequency of similar sequences trough remote BLAST [226] 

similarity searches to the UniProtKB/Swiss-Prot database [227] 

(http://www.UniProt.org/) and HMMER [228]. Protein-reaction associations 

available in the KEGG BRITE database were used to assemble the draft network. 

All reactions classified as spontaneous or non-enzymatic were also included in 

the first draft of the model. The assembly of the metabolic network is performed 

by merlin, using genome annotation to determine which reactions will be 

included in the model based on an algorithm described in detail elsewhere  [122]. 

 

II.1.3.3. Reversibility and Balancing 

In order to ensure that all reactions in the network are balanced is important to 

verify the stoichiometry. merlin includes a tool to identify unbalanced reactions, 

that were manually verified and corrected. The reaction reversibility should also 

be confirmed to avoid gaps and mispredictions of the model, merlin also provides 

a tool to correct reversibility using BRENDA [126] as reference and the data 

provided elsewhere [229]. Since there are no guarantees that the EC numbers 

available in the different databases are updated, a manual inspection was also 

performed to correct a few cases of enzymes with deleted/transferred EC 

numbers, using public databases (BRENDA [230], UniProt, MetaCyc [231] and 

KEGG [125]) and literature search. 

 

 

 

http://www.uniprot.org/
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II.1.3.4. Compartmentalization 

This model includes four compartments: extracellular, cytoplasm, 

mitochondrion, and cytoplasmic membrane. The prediction of compartments for 

each enzyme and carrier was performed using the WoLF PSORT [232]. 

 

II.1.3.5. Transport reactions 

Given the existence of compartments in the model, it is necessary to create 

transport reactions for the metabolites. Transport reactions were generated using 

genomic information together with the public database TCDB [233] by merlin’s 

TranSyT [127]. Transport reactions across internal and external membranes for 

currency metabolites, such as H2O, CO2, and NH3, which are often carried by 

facilitated diffusion, were added to the model with no gene association. 

 

II.1.3.6. Biomass Equation 

The biomass formation was represented by an equation that includes proteins, 

DNA, RNA, lipids, carbohydrates, and cofactors, and detailed information for 

the composition of each one of these macromolecules. The content of each 

component was determined based on literature or using experimental data. All 

the calculations were performed as described previously [234]. 

For the phosphorus to oxygen ratio, the same theoretical ratio used in the S. 

cerevisiae iMM904 metabolic model was applied, 1.5. This ratio represents the 

relationship between ATP synthesis and oxygen consumption, indicating the 

number of orthophosphate molecules used for ATP synthesis per atom of oxygen 

consumed during oxidative phosphorylation [111]. Three generic reactions 

contributing to this ratio were automatically generated by merlin, and were 

updated to replicate the same ratio as in the iMM904 model: 
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Reaction R00081_C4: 

1.0 Oxygenmito + 4.0 Ferrocytochrome cmito + 6.0 H+ mito ↔ 2.0 H2Omito + 4.0 Ferricytochrome cmito + 

6.0 H+cyto,                                                                                                                                                                                                                                                                   (1) 

 

Reaction T02161_C4: 

1.0 Ubiquinolmito + 2.0 Ferricytochrome cmito + 1.5 H+ mito ↔ 1.0 Ubiquinonemito + 2.0 

Ferrocytochrome cmito + 1.5 H+cyto,                                                                                                                                                                                          (2) 

 

Reaction T00485_C4: 

1.0 Orthophosphatemito + 1.0 ADPmito + 3.0 H+ cyto ↔ 1.0 ATPmito + 1.0 H2Omito + 3.0 H+mito,                        (3) 

 

The final balance reaction: 

3.0 Orthophosphatemito + 1.0 Oxygenmito + 3.0 ADPmito + 2.0 Ubiquinoolmito ↔ 3.0 ATPmito + 5.0 
H2Omito + 2.0 Ubiquinonemito                                                                                                                                                

(4) 

 

This model also includes ATP requirements for biomass formation and 

maintenance (non-growth). The growth ATP requirements, 23.346 mmoles 

ATP/gDCW, were introduced directly into the biomass equation; this value was 

calculated based on ATP requirements for biosynthesis of cell polymers for S. 

cerevisiae, adjusted for the composition in macromolecules of the biomass 

equation [235]. 

Non-growth associated ATP maintenance, the amount of ATP required by the 

cell even when it is not growing, was represented in the model by an equation 

that forces ATP consumption via a specific flux. The boundaries of this flux were 

inferred from Candida tropicalis [236]. For more detailed information on the 

computation of the biomass equation, see Supplementary Data II.1.1. 

 

 

 



57 
 

II.1.3.7. Curation of the Model 

Throughout the curation process, reactions were edited, manually added to, or 

removed from the model to correct some gaps in the network, using KEGG 

pathways, MetaCyc Database, and literature data as standards. 

 

II.1.3.8. Strains and growth media 

C. albicans reference strain SC5314 was batch-cultured at 37ºC, with orbital 

agitation (250 rpm) in Yeast Nitrogen Base (YNB) medium without amino acids: 

5g/L glucose (Merck), 6.8 g/L YNB (Difco). Solid media contained, besides the 

above-indicated ingredients, 20 g/L agar (Iberagar).  

 

II.1.3.9. Carbon and nitrogen source utilization assessment 

The capability of utilizing different carbon and nitrogen sources for cell growth 

was assessed by comparing in silico predictions to literature data for C. albicans. 

For the few carbon or nitrogen sources for which the model predictions were not 

consistent with literature data, wet-lab experiments were conducted. Specifically, 

the utilization of cellobiose, D-Ribose, and mannitol as carbon sources, by the C. 

albicans reference strain SC5314, was evaluated in solid YNB medium containing 

either 5g/L glucose as control, or 5g/L of either one of the mentioned carbon 

sources. C. albicans cell suspensions used to inoculate the agar plates, were mid-

exponential cells grown in YNB medium with 5g/L glucose, until culture 

OD600nm = 0.5 ± 0.05 was reached and then diluted in sterile water to obtain 

suspensions with OD600nm = 0.05 ± 0.005. These cell suspensions and 

subsequent dilutions (10-1; 10-2; 10-3) were applied as 4 µL spots onto the surface 

of solid YNB media, with the indicated carbon sources. Growth was assessed 

after incubation at 37ºC for 24h. 
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II.1.3.10. Network simulation and analysis 

All the phenotype simulations were performed with FBA in OptFlux 3.0 [128] 

using the IBM¨CPLEX solver. Gene essentiality was also determined by OptFlux 

3.0 which provides a tool that allows to determine critical genes automatically by 

performing individual gene knockouts and stimulating growth in a given 

environmental condition. In these simulations, environmental conditions that 

simulated the Roswell Park Memorial Institute (RPMI) medium were used, in 

order to replicate the human serum conditions.  

 

II.1.4. Results and Discussion 

 

II.1.4.1. Model characteristics 

The final version of the iRV781 (Supplementary Data II.1.4) model includes 781 

genes associated with 1221 reactions, among which, 174 are transport reactions, 

and 196 are external drain reactions (exchange constraints set to mimic the 

environmental conditions), involving 927 metabolites and four different 

compartments. Analyzing the distribution of genes by the compartments, 205 are 

plasma membrane genes, 521 cytoplasmatic genes, and 139 mitochondrial genes.  

In order to elucidate the characteristics of our model we selected well-

characterized genome-scale metabolic models of C. glabrata [237] and S. cerevisiae 

[238] as a comparison. Table II.1 shows the distribution of those reactions by the 

main pathways in the three models. In general, the number of reactions by 

pathway is quite similar to C. glabrata, S. cerevisiae, or both. 

Although our model has common standard identifiers for reactions (KEGG ID), 

it is not possible to assess how the reactions differ among the three models, since 
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the remaining two models do not possess the same identifiers. However, 

considering only the proteins associated with an EC number, it is possible to 

make a comparison across the existing models. More than 80% of the proteins 

with an associated EC number in our model are also present at least in one of the 

other 2 models (S. cerevisiae or C. glabrata).  Furthermore, about 65% of the 

proteins are shared by the three models while about 20% are unique in iRV781 

(Figure II.2). The complete list of unique EC numbers can be found in 

Supplementary Data II.1.3. 

 

Table II.1 - Number of reactions in the main pathways of the C. albicans iRV781 

model in comparison to C. glabrata iNX804 model and S. cerevisiae iMM904 model. 

 
C. albicans C. glabrata S. cerevisiae 

 
iRV781 iNX804 iMM904 

Amino acid metabolism 218 223 217 

NAD biosynthesis 20 20 24 

Cofactors and vitamins 122 120 127 

Nucleotide metabolism 120 138 135 

Alternate carbon metabolism 27 31 27 

Glycolysis/gluconeogenesis 26 18 22 

Citrate cycle 24 20 13 

Pentose phosphate pathway 18 16 13 

Pyruvate metabolism 31 28 18 

Oxidative phosphorylation 10 13 19 

Sterol metabolism 29 30 49 

Fatty acid metabolism 87 81 108 

Glycerolipid metabolism 13 9 12 

Phospholipid metabolism 34 44 52 

 

In most cases, the observable differences in EC numbers were related to outdated 

EC numbers or were compensated by other enzymes that are responsible for the 

same reactions in the model. However, some cases stand out as potential unique 

features of C. albicans: 

The enzyme 1.13.99.1, inositol oxygenase, responsible for the conversion of myo-

inositol into D-glucuronate. This enzyme seems to be involved in resistance to 
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toxic ergosterol analogs [239], is also present in other Candida species, including 

some important pathogens (C. parapsilosis, Candida dubliniensis (C. dubliniensis), C. 

auris), however, is absent in C. glabrata. 

The enzyme 1.1.1.289, sorbose reductase, responsible for the interconversion of 

L-Sorbose into D-Sorbitol. In fact, the presence of this enzyme allows C. albicans 

to use L-Sorbose as carbon source. Contrary to S. cerevisiae, the utilization of L-

Sorbose is confirmed experimentally [240]. 

The enzyme 1.14.19.17, sphingolipid 4-desaturase, responsible for the conversion 

of dihydroceramide into N-Acylsphingosine. This protein is involved in 

sphingolipid metabolism, and it has been shown that altering sphingolipid 

composition is a possible mechanism of azole resistance in C. albicans [241]. The 

presence of this enzyme may represent a specific resistance feature of some 

Candida species, which is present in some pathogenic species, C. parapsilosis, C. 

dubliniensis, and C. auris, but not in C. glabrata for example.  

The enzyme 1.1.99.2, L-2-hydroxyglutarate dehydrogenase, is a metabolite repair 

enzyme responsible for the conversion of (S)-2-hydroxyglutarate into 2-

oxoglutarate, in other organisms such as plants [242] or humans [243], the 

inactivation of this enzyme leads to the accumulation of the toxic (S)-2-

hydroxyglutarate. 

The enzyme 2.7.1.59, N-acetylglucosamine kinase, responsible for the conversion 

of N-acetyl-D-glucosamine into N-acetyl-D-glucosamine 6-phosphate. Many 

yeast species including S. cerevisiae have lost their ability to utilize N-acetyl-D-

glucosamine as carbon source, however, genetically altered yeasts are able to use 

it, based on expression of C. albicans genes [244]. In fact, this enzyme allows C. 

albicans to utilize this carbon source, feature that is particularly important for Its 

survival inside the phagosomes [245]. 
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The enzyme 3.5.1.25, N-acetylglucosamine-6-phosphate deacetylase, responsible 

for the conversion of N-acetyl-D-glucosamine 6-phosphate into D-glucosamine 

6-phosphate. Like 2.7.1.59, this enzyme is also involved in N-acetyl-D-

glucosamine metabolism.  

The enzyme 1.4.3.3, D-amino-acid oxidase, responsible for the conversion of a D-

amino acid into a 2-oxo carboxylate and ammonia, is the first enzyme involved 

in the catabolism of D-amino acids and may allow the utilization D-amino acids 

as a source of carbon or nitrogen in some yeasts [246], may be an interesting 

feature to be explored in C. albicans. 

 

 

Figure II.2 - Comparison between C. albicans, S. cerevisiae, and C. glabrata proteins 

with associated EC Numbers present in the genome-scale metabolic models 

iRV781, iIN800, and iNX804, respectively. Diagram obtained using VENNY2.1 

tool [247]. 
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II.1.4.1.1 Gap filling and Model Curation 

During the process of manual curation described in the methods section, a total 

of 66 reactions were manually added to the initial model obtained from the 

results of re-annotation to fill gaps. For additions, evidence from the literature 

was always considered, or of the well-studied S. cerevisiae. On the other hand, 336 

reactions were removed from the initial model, have been removed for being 

unconnected reactions, general reactions, reactions using metabolites that are not 

included in the model, or reactions for which it was manually verified that the 

model does not have the enzyme coding gene. Additionally, the compartment of 

79 reactions was changed, and 94 reactions were altered in order to become 

balanced. The complete list of alterations can be found in Supplementary Data 

II.1.2. 

 

II.1.4.1.2 Biomass Equation 

The biomass equation (Table II.2) includes the composition of proteins, DNA, 

RNA, lipids, carbohydrates, and cofactors. For the composition of DNA, the 

whole genome sequence was used to estimate the amount of each 

deoxyribonucleotide as described in [123], while mRNA, rRNA, and tRNA were 

used to estimate the total RNA in the cell as described in [111]. For the amino acid 

composition, the percentage of each codon usage was calculated from the 

translated genome sequence [123] using the e-BiomassX tool [248].  

Carbohydrate [249], Lipid [250], Sterol [250], Phospholipid [251], and Fatty acid 

[252] compositions were inferred from literature data. Essential metabolites were 

included in the biomass composition to qualitatively account for the essentiality 
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of their synthesis pathways [237,253]. The growth and non-growth ATP 

requirements were adopted from S. cerevisiae [254]. 

 

Table II.2. Biomass Composition used in the model iRV781 

Metabolite g/gDCW   Metabolite g/gDCW 

     
Proteins 

  
Lipids 

 
L-Valine 0,02001 

 
Lanosterol 0,00166 

L-Tyrosine 0,02153 
 

Squalene 0,00088 

L-Tryptophan 0,00671 
 

Ergosterol 0,00247 

L-Threonine 0,02311 
 

Phosphatidylserine 0,00299 

L-Serine 0,02908 
 

Phosphatidylinositol 0,00417 

L-Proline 0,01616 
 

Phosphatidylcholine 0,00681 

L-Phenylalanine 0,02407 
 

Phosphatidylethanolamine 0,00542 

L-Methionine 0,00869 
 

Cardiolipin 0,00201 

L-Lysine 0,03535 
 

Phosphatidic acid 0,00271 

L-Leucine 0,03874 
 

Phosphatidylglycerol 0,00174 

L-Isoleucine 0,02992 
 

Tetradecanoic acid 0,00003 

L-Histidine 0,01067 
 

Hexadecanoic acid 0,00073 

L-Glutamate 0,03084 
 

Palmitoleic acid 0,00022 

L-Cysteine 0,00410 
 

Octadecanoic acid 0,00035 

L-Aspartate 0,02508 
 

Oleic acid 0,00163 

L-Asparagine 0,02841 
 

Linoleate 0,00054 

L-Arginine 0,02203 
 

Linolenate 0,00008 

L-Alanine 0,01334 
 

Triacylglycerol  0,00573 

Glycine 0,01077 
 

Monoacylglycerol 0,00620 

L-Glutamine 0,02158 
 

Diacylglycerol 0,00087 

   
Sterol esters 0,01177 

Carbohydrates 
   

Chitin  0,01368 
 

Ribonucleotides 
 

Mannan 0,14669 
 

UTP 0,00603 

β (1,3)-Glucan 0,23962 
 

GTP 0,00714 
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CTP 0,00561 

Deoxyribonucleotides 
 

ATP 0,00714 

dTTP 0,02072 
   

dGTP 0,01266 
 

Soluble Pool 
 

dCTP 0,01118 
 

Thiamine 0,00290 

dATP 0,02114 
 

Ubiquinone-6 0,00290 

   
NADP+ 0,00290 

More detailed information in 

Supplementary Data II.1.1. 
 

NAD+ 0,00290 

   
FMN 0,00290 

   
FAD 0,00290 

   
CoA 0,00290 

   
Biotin 0,00290 

   
Pyridoxal phosphate 0,00290 

   
5-Methyltetrahydrofolate 0,00290 

     

II.1.4.2. Validation of the iRV781 model 

II.1.4.2.1 Carbon and nitrogen source utilization 

Based on the literature, phenotypic growth data were collected from different 

sources. Data related to C. albicans strains, other than the reference SC5314 strain, 

was also considered in the analysis to increase the number of carbon and nitrogen 

sources tested. 

In a first simulation, this model correctly predicted the usability of 92% of the 39 

tested carbon sources. According to data available on Royal Netherlands 

Academy of Arts and Sciences (CBS-KNAW) Fungal Biodiversity Centre 

webpage [255], the C. albicans CBS562 strain seems not to be able to use cellobiose 

and D-Ribose, contrary to the model’s prediction. The prediction also failed for 

mannitol that, according to the model, could not be used as carbon source by C. 

albicans. However, C. albicans SC5314 strain has been shown to be able to grow 

on mannitol as single carbon source [256], [257]. Thus, the utilization of cellobiose, 

D-Ribose, and mannitol as carbon source by C. albicans SC5314 was evaluated 
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experimentally to assess if the prediction failure could result from a different 

metabolic capacity exhibited by the reference strain. The results (shown in figure 

II.3) confirmed the model’s prediction regarding the utilization of cellobiose and 

D-Ribose, but not for the mannitol, suggesting that the reference C. albicans strain 

has higher metabolic capabilities, when compared to other strains, while 

showing that the model is able to correctly predict the usability of 97% of the 

tested substrates. 

 

Figure II.3 - Utilization of glucose (control), cellobiose, D-Ribose, and mannitol 

by C. albicans reference strain SC5314 as carbon source in solid YNB medium. 

Initial OD600nm = 0.5 ± 0.05. Growth was assessed after incubation at 37ºC for 

24h. 

Altogether, the constructed model proved accurate when predicting the 

utilization of different carbon and nitrogen sources, when compared to 

experimental data (Table II.3). It correctly predicts the usability of 97% of the 

tested carbon sources, and 80% of the 15 tested nitrogen sources. It should be 

noted that in the nitrogen tests, none of the data belongs to the reference strain; 

therefore, the prediction accuracy of the model might be even closer to reality. 

 

Table II.3. Comparison between in vivo and in silico phenotypic behavior of C. 

albicans under different carbon and nitrogen sources. 
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Biomass  

 
In vivo In silico Reference 

Carbon Source    

N-acetylglucosamine + +  [256,258] 

Glucose + +  [256–258] 

Maltose + + [258] 

Galactose + +  [256–258] 

Sucrose + + [258] 

Fructose + +  [256–258] 

Mannitol + - This study 

Acetate + + [258] 

Ethanol + + [258] 

Glycerol + +  [256–258] 

Mannose + +  [256,257] 

Citrate + + [255] 

Lactate + + [256] 

Sorbitol + + [256] 

L-sorbose + + [255] 

D-xylose + + [255] 

L-rhamnose - - [255] 

α,α-trehalose + + [255] 

Cellobiose + + This study 

Salicin - - [255] 

Myo-inositol - - [255] 

D-ribose + + This study 

Ribitol - - [255] 

D-glucuronate - - [255] 

D-galacturonate - - [255] 

Succinate + + [255] 

D-gluconate + + [255] 

Arbutin - - [255] 

D-arabinose - - [255] 

Galactitol - - [255] 

Starch + + [255] 

D-glucosamine + + [255] 

Inulin - - [255] 

Melibiose - - [255] 

Lactose - - [255] 

Raffinose - - [255] 
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Erythritol - - [255] 

Xylitol + + [255] 

L-arabinitol - - [255] 

   
 

Nitrogen Source 
  

 

Nitrate - -  [255,259] 

Nitrite - -  [255,259] 

Ethylamine + - [255] 

L-Lysine + + [255] 

Ammonia + +  [255,259] 

Cadaverine + - [255] 

Glucosamine - + [255] 

Creatine - - [255] 

Creatinine - - [255] 

Imidazole - - [255] 

L-asparagine + +  [255,259] 

Urea + +  [255,259] 

Hydroxylamine - -  [255,259] 

Hydrazine - -  [255,259] 

D-Tryptophan - - [255] 

 

Growth (+); lack of growth (–). 

 

II.1.4.2.1 Growth parameters in batch culture 

Experimental data obtained elsewhere [260] from synthetic minimal media batch 

cultures with glucose as carbon source were used to validate the model 

quantitatively. The model was simulated in environmental conditions that 

simulate the medium used in [260]. The glucose uptake flux was fixed to 

qGlucose=7.56 mmol.g-1 dry weight.h-1 as per such work, and the remaining 

nutrients flux were left unconstrained, as the model in this condition is glucose-

limited. Once again, the model proved to be robust as the experimentally 

observed growth rate is similar to that predicted by the model (table II.4). 

Additionally, the formation of glycerol, acetic acid, and ethanol as by-products 
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was not predicted to occur, which is in agreement with the experimental data, 

except for ethanol, that appears to be produced in trace amounts. C. albicans, as a 

crabtree-negative yeast [261], under aerobic conditions does not produce 

significant concentrations of ethanol. Nonetheless, the model predicts ethanol 

production under low-oxygen conditions (qOxygen<5.5 mmol.g-1 dry weight.h-

1). 

Table II.4 - Growth parameters of iRV781 and comparison with in vivo values for 

C. albicans and S. cerevisiae. 

 

C. albicans is unable to grow in anaerobic conditions in minimal media. However, 

C. albicans colonization is known to spread into anaerobic niches of the 

gastrointestinal tract or in the inner sections of biofilms where the oxygen 

availability is scarce or null. Dumitru et al., 2004 reported a defined anaerobic 

growth medium for studying C. albicans. In this medium (GPP) oleic acid and 

nicotinic acid were added as required growth factors for anaerobic growth [262]. 

Interestingly, S. cerevisiae under anaerobiosis also requires growth factors, such 

as ergosterol and Tween 80, a source of oleic acid, if growing in a defined medium 

(SMM), it should be noticed that SMM medium also contains nicotinic acid in its 

composition despite not being a required growth factor in anaerobic conditions 

[263]. Cultivation was simulated in the absence of oxygen in GPP medium and 

GPP medium supplemented with oleic acid and nicotinic acid, to assess if this 

model is capable of predicting growth in anaerobic conditions. Our model 

 
Specific growth 

 rate (h-1) 

q (mmol g-1 dry weight h-1) 

 

Glucose Ethanol  Glycerol  Acetic acid 

In silico  C. albicans 0.53 7.56 0 0 0 

In vivo  C. albicans  
[260] 0.51 7.56 0.38 0 0 

In vivo  S. cerevisiae 
[260] 0.38 13.26 21.87 1.98 <0.1 
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predicts the growth only in media supplemented with specific anaerobic growth 

factors. For the simulation, the glucose uptake flux was set to qGlucose=6.58 

mmol.g-1 dry weight.h-1, to compare the growth parameters with the reported 

values for S. cerevisiae. Indeed, for the same anaerobic conditions, the specific 

growth rate of the model and the ethanol production are similar to data reported 

for S. cerevisiae [263], though the model does not predict the production of glycerol 

in such conditions (Table II.5).  

Table II.5 - Anaerobic growth assessment of iRV781 model in defined media with 

or without anaerobic supplements. DMM [263] (defined minimal medium); 

DMMsup. [263] (defined minimal medium supplemented with ergosterol and 

Tween 80); GPP [262] (glucose-phosphate-proline); GPPsup. [262] (glucose-

phosphate-proline supplemented with oleic acid and nicotinate). 

Condition Specific growth rate (h-1) 
q (mmol g-1 dry weight h-1) 

Glucose Ethanol Glycerol 

In silico GPP 0 0 0 0 

In silico GPPsup. 0.08 6.58 10.80 0 

In silico DMM 0 0 0 0 

In silico DMMsup. 0.08 6.58 10.80 0 

S. cerevisiae DMM 0.10 6.58 9.47 1.11 

 

 

II.1.4.3. Gene essentiality assessment: a tool for drug target discovery? 

A set of C. albicans essential genes collected from other work [264], were used to 

evaluate the model's ability to predict essentiality. For each gene, a simulation 

was performed, on the same environmental conditions described in the reference 

[264] (YNB medium), eliminating the corresponding reactions for that gene. Only 

protein-coding genes present in the model were considered. The model was able 

to correctly predict 78% (84 out of 108) of the identified essential genes 

(Supplementary Data II.1.5). It is important to highlight that in this type of 
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models, the regulatory network is not considered, so it will always be expected 

that some predictions are not close to reality. 

To evaluate if gene essentiality assessment could be a promising tool in drug 

target discovery, each one of the identified essential enzymes in the RPMI 

medium, was searched in the DrugBank database [265] as a possible drug target 

of known antimicrobial agents. RPMI medium simulates human serum, thus 

allowing to simulate the natural environment faced by C. albicans in systemic 

infections. 

Interestingly, 11 ERG genes, including the well-known azole drug target ERG11, 

were predicted by the model to be essential in RPMI medium. Although most 

ERG genes are not essential, the inhibition of the activity of this pathway has a 

fungistatic effect indeed. They encode the enzymes that guide the last steps of 

ergosterol biosynthesis. This pathway is the main target of azole drugs, one of 

the most common antifungal agents to treat Candida infections [266]. These drugs 

act by blocking ergosterol biosynthesis inhibiting the Erg11 encoded by the 

ERG11 gene. When an azole drug binds to this enzyme, ergosterol synthesis is 

inhibited, leading to lower concentrations of this metabolite in the plasma 

membrane [267]. Given that ergosterol is part of the C. albicans biomass, it is 

acceptable to consider that enzymes that participate in its synthesis pathway can 

be essential, making most ERG genes attractive alternatives as new drug targets 

[268]. 

Many additional proteins stand out as promising new drug targets, including 

some for which there are already predicted inhibitory drugs, based on results for 

homologous proteins in other organisms. For example, Atovaquone is a drug 

used as a fixed-dose combination with Malarone for treating uncomplicated 

malaria cases or as chemoprophylaxis in travelers. This drug is an analogue of 

ubiquinone and targets enzyme 1.3.5.2 encoded by URA9 in Plasmodium 

falciparum. Atovaquone acts as a competitive inhibitor of ubiquinol inhibiting 
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the mitochondrial electron transport chain at the bc1 complex, resulting in a loss 

of mitochondrial function [269]. It would be interesting to check if these drugs are 

also active against C. albicans by targeting CaUra9. 

Another promising example of a predicted C. albicans drug target is Fol1, which 

corresponds to enzyme 2.5.1.15. Fol1 is the target of the sulfa drugs (sulfonamides 

and sulfones), a very well-known class of drugs, used to treat infectious diseases 

[270]. The effect of sulfa drugs on C. albicans has not been sufficiently investigated; 

however, it seems that sulfa-fluconazole combination results in increased 

antifungal activity against C. albicans, leading to the reversal of azole resistance 

in previously resistant strains [271]. 

Since a reaction can be catalyzed by a protein encoded by more than one gene, 

and genes may encode more than one protein, we decided to analyze the model’s 

critical reactions. This analysis allowed to increase the number of confirmed drug 

targets predicted as essential enzymes. 

As example, the FKS genes stand out. They are not considered essential as the 

enzyme beta-1,3-glucan synthase can be encoded by more than one 

FKS/GSC/GSL genes [272]. However, the model predicts the reaction in which 

this enzyme participates as essential. The beta-1,3-glucan synthase is the target 

of the echinocandin class of antifungal drugs. Via noncompetitive inhibition, 

these drugs block the enzyme and stop beta-1,3-glucan synthesis, compromising 

the integrity of the cell wall [273]. 

Other drugs, such as ethionamide, sulfacetamide, azelaic acid, cerulenin, or 

trimethoprim, were identified as targeting proteins from various organisms. 

These proteins are homologous to the ones encoded by genes identified as 

essential in RPMI, in the C. albicans model (Table II.6). Altogether, these results 

indicate a high capability of the iRV781 to predict drug targets, offering predicted 

essential genes that have great potential as targets for new antifungal drugs. The 
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predictions of this model may even be applied to other pathogenic Candida 

species given the proximity of most species. In fact, if we search the 12 genes 

present in Table 6 in emerging non-albicans Candida species, 12 have ortholog 

genes in C. parapsilosis and C. dubliniensis, 11 in C. auris, and 8 in C. glabrata. 

Despite the methodology for the reconstruction of genome-scale metabolic 

models being standardized, eukaryotic models remain a challenge, due to their 

larger genomes and complexity [129]. These models always seek to get as close as 

possible to reality; however, given the complexity of the networks, they are 

always subject to some errors, which may cause small deviations in the 

predictions. Some errors may include incorrect assignment of GPR associations, 

reaction directionality or reversibility, incongruous stoichiometric parameters, 

missing reactions, and inaccurate biomass composition [129].  

Genome-scale metabolic reconstructions have been effective in drug target 

prediction and they are expected to continue to expand in the future [274]. Gene 

essentiality assessment is the most common method to identify potential drug 

targets, and for a better prediction, it is necessary to consider the medium in 

which the organism is exposed. In this work, we simulate gene essentiality in 

RPMI medium in order to simulate the natural environment faced by C. albicans 

in systemic infections. However, it is important to highlight that in these 

reconstructions, it is not considered that cells may need time to adapt to genetic 

perturbations or environmental variability [129]. Additionally, yeast interactions 

with other microorganisms and the secretion of compounds that can influence 

their surrounding environment are not taken into account [130]. Despite these 

inaccuracies, genome-scale metabolic reconstructions have proved to be very 

efficient in discovering new drug targets, and once a model is built, drug targets 

can be predicted relatively easily. In fact, the experimental validation of the 

targets and the identification of the effective drugs represent a more demanding 

challenge [119]. 
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II.1.5. Conclusions 

The first validated global metabolic model for the human pathogen C. albicans is 

presented in this study. The model was manually curated and validated 

thoroughly, constituting a powerful platform for the study of C. albicans 

metabolic potential and weaknesses. The iRV781 model includes 781 genes 

associated with 1221 reactions, the number of reactions in the main pathways 

being similar to those in C. glabrata and S. cerevisiae models. However, about 20% 

of the proteins associated with EC numbers in iRV781 are unique in relation to 

these models. The model proved accurate when predicting the utilization of 

different carbon and nitrogen sources, and in anaerobic growth in defined 

anaerobic media. In silico growth parameters are also in agreement with the 

experimental data. We were able to identify as essential genes in the RPMI 

medium, a medium that simulates the human body environment, previously 

known targets of antifungal agents and other antimicrobial agents used in clinical 

practice. This observation demonstrates that the C. albicans global stoichiometric 

model, presented herein, constitutes a promising platform for the identification 

of targets for new antifungal drugs, that may circumvent the current tendency of 

growing therapeutic failure. 
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Table II.6 - Drug targets evaluated for gene essentiality prediction in RPMI medium, as identified by the iRV781. Data retrieved from 

DrugBank database; only drugs with known pharmacological action were selected.

Systematic Name Standard Name EC number Organism Drug PDB Entry Similarity Coverage 

Candida albicans Terbinafine - - -

Candida albicans Tolnaftate - - -

C1_09720W_A URA1 1.3.5.2 Plasmodium falciparum  Atovaquone 5DEL 37% 81%

C2_02460W_A ERG7 5.4.99.7 Candida albicans Oxiconazole - - -

Mycobacterium tuberculosis Ethionamide

Mycobacterium tuberculosis Isoniazid

C5_00770C_A FOL1 4.1.2.25 Saccharomyces cerevisiae Sulfacetamide 2BMB 42% 65%

C5_02710W_A TRR1 1.8.1.9 Staphylococcus aureus Azelaic acid 4GCM 42% 98%

C7_03130C_A DFR1 1.5.1.3 Escherichia coli Trimethoprim 4GH8 35% 77%

Escherichia coli Sulfonamides and sulfones 1AJ2 36% 40%

P. falciparum Sulfonamides and sulfones 6KCM 26% 65%

C1_02420C_A GSC1 Candida albicans Anidulafungin - - -

C1_05600W_A GSL1 Candida albicans Caspofungin - - -

CR_00850C_A GSL2 Candida albicans Micafungin - - -

C3_04830C_A FAS2 2.3.1.41 Escherichia coli Cerulenin 2BYX 31% 8%

CR_00850C_A ERG11 1.14.14.154 Candida albicans Azoles - - -

30% 45%4V8W

C1_08590C_A 1.14.14.17

	C5_00190C_A 1.3.1.9

2.4.1.34

C5_00770C_A 2.5.1.15

ERG1

FAS1

FOL1
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II.2. A Genome-scale metabolic model for the human pathogen C. 

parapsilosis and Early Identification of Putative Novel Antifungal 

Drug Targets 

 

II.2.1. Abstract  

C. parapsilosis is an emerging human pathogen whose incidence is rising 

worldwide, while an increasing number of clinical isolates display resistance to 

first-line antifungals, demanding alternative therapeutics. Genome-Scale 

Metabolic Models (GSMMs) have emerged as a powerful in silico tool for 

understanding pathogenesis due to their systems view of metabolism but also to 

their drug target predictive capacity. This study constructed the first validated 

GSMM for C. parapsilosis – iDC1003 – comprising 1003 genes, 1804 reactions, and 

1278 metabolites across four compartments and an intercompartment. In silico 

growth parameters as well as predicted utilization of several metabolites as sole 

carbon or nitrogen sources were experimentally validated. Finally, iDC1003 was 

exploited as a platform for predicting 147 essential enzymes in mimicked host 

conditions, in which 56 are also predicted to be essential in C. albicans and C. 

glabrata. These promising drug targets include, besides those already used as 

targets for clinical antifungals, several others that seem to be entirely new and 

worth further scrutiny. The obtained results strengthen the notion that GSMMs 

are promising platforms for drug target discovery and guide the design of novel 

antifungal therapies. 

Keywords: C. parapsilosis; Genome-scale metabolic model; Drug target; Drug 

discovery. 
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II.2.2. Introduction 

In a world of climate and social change, human susceptibility to microbial disease 

is increased. In particular, fungal infections have seen a significant rise in 

incidence worldwide since the 1980's, with Candida spp. accounting for the 

majority of cases [275]. Although C. albicans is the most commonly isolated species 

from candidiasis patients, the 1990s saw a shift in incidence within the genus 

towards Non-C. albicans Candida species (NCAC) [276]. From these, C. parapsilosis 

has seen one of the most significant increases, often surging as the second most 

common etiological agent of Candida spp. infections, subverting historical trends 

in species incidence and even outranking C. albicans in some European countries 

[277]. Non-geographically restricted and with a broad range of virulence factors, 

adding to C. parapsilosis' already complex pathogenicity, is both the rise in 

resistance to first-line antifungals and intrinsically lower susceptibility to 

alternative therapies – such as azoles [278] and echinocandins [275], respectively. 

Thus, there is a strong need to develop new antifungal therapies and develop 

new research tools to understand the metabolism of pathogenesis and, if possible, 

to use metabolic impairment as an antifungal strategy. 

Genome-Scale Metabolic Models (GSMMs) have emerged as a systems biology 

approach to tackle this issue [119]. GSMMs correspond to the in silico 

reconstructed metabolic network of a given organism [120] and thus enable a 

systems perspective of metabolism. In the little more than 20 years since the 

publication of the first model [118], GSMMs have proven their applicability and 

versatility from guiding strain design in metabolic engineering to elucidate novel 

drug target discovery in molecular medicine [112]. In the past, GSMMs have been 

mostly associated with the metabolic engineering of microbial cell factories due 

to their potential to simulate global metabolic behavior and provide clues for the 

optimisation of added-value compound production [111]. However, recent 
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examples have demonstrated the potential of these models in the search for new 

drug targets in pathogenic organisms [112–117]. 

This work presents the first validated in silico genome-scale metabolic 

reconstruction of the human pathogen C. parapsilosis, iDC1003. This model is 

provided in the well-established SBML format and can easily be read in most 

metabolic engineering platforms, such OptFlux [128] and COBRA [220]. A set of 

predicted essential genes and reactions common to other pathogenic Candida 

spp. was obtained from the validated model, and their targetability as putative 

novel antifungal drug targets is discussed. 

 

II.2.3 Materials and Methods 

 

II.2.3.1. Model reconstruction 

The herein described metabolic model reports to the yeast C. parapsilosis with the 

taxonomic ID 5480. Model reconstruction was performed using merlin 4.0.5 [122], 

and further curation and validation were performed on OptFlux 3.0 [128] using 

the IBM CPLEX solver. Throughout the curation process, reactions were edited, 

manually added to, or removed from the model to correct gaps in the network, 

using KEGG pathways, MetaCyc Database, and literature data as standards. 

 

II.2.3.1.1. Enzyme and Reaction Annotation 

The initial draft model construction comprised enzyme and subsequent reaction 

annotation. The genome sequence of the reference strain C. parapsilosis CDC317 

was obtained from NCBI's Assembly database, accession number ASM18276v2 

(www.ncbi.nlm.nih.gov/assembly) [222] and the Taxonomy ID from NCBI 

http://www.ncbi.nlm.nih.gov/assembly
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(www.ncbi.nlm.nih.gov/taxonomy) [223], which is required by merlin to identify 

the organism under study throughout the reconstruction process univocally. The 

genome-wide functional annotation was processed by merlin based on taxonomy 

and frequency of similar sequences through remote BLAST [226] similarity 

searches to the UniProtKB/Swiss-Prot database [227] (http://www.uniprot.org/). 

Hit selection was performed as described elsewhere [221], and phylogenetic 

proximity was implemented as described in Tsui et al. 2008 [279]. Protein-reaction 

associations available in the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

[280] database were used to assemble the draft network. 

 

II.2.3.1.2. Correcting Reaction Reversibility, Directionality and Balance 

The initial reversibility curation was automatically performed by merlin, which 

implements information from remote tools such as eQuilibrator [281] as 

described by Dias et al. [221].Further curation was entirely manual and justified, 

resorting to information from MetaCyc [231] and existing literature. Unbalanced 

reactions were identified automatically, and balancing was performed manually 

and explained with MetaCyc [231], ChEBI [282], Brenda [283] and existing 

literature. All the reactions manually edited during the curation process can be 

found in Supplementary Data II.2.1. 

 

II.2.3.1.3. Compartmentalization 

Compartmentalization was implemented using WoLF PSORT [232], a protein 

localization predictor, on the already connected non-compartmentalized model 

to simplify issue-solving. The constructed model includes four compartments: 

http://www.ncbi.nlm.nih.gov/taxonomy
http://www.uniprot.org/
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extracellular, cytoplasm, mitochondrion, and peroxisome, and one 

intercompartment, the cytoplasmic membrane. 

A compartmentalised model calls for the implementation of transport reactions 

to connect inter-compartment pathways. Transport reactions were generated 

using genomic information together with the public database TCDB [233] using 

merlin's integrated tool TranSyT [127].Transport reactions across internal and 

external membranes for currency metabolites, such as H2O, CO2, and NH3, often 

carried by facilitated diffusion, were added to the model with no gene 

association. 

 

II.2.3.1.4. Defining the Biomass Equation 

The Biomass equation encompasses the cells' major components and their 

relative numerical contributions – DNA, RNA, Carbohydrates, Lipids and 

Proteins – and acted as the objective function in the presented essentiality 

analysis. The content of each component was determined based on the literature. 

All the calculations were performed as described previously [234]. 

The reconstructed model also includes ATP requirements for both biomass 

production and cell maintenance – Growth Associated Maintenance (GAM) and 

Non-Growth Associated Maintenance (NGAM), respectively. A GAM value of 

25.65 mmol ATP/gDCW was considered for the biomass equation, calculated 

based on the ATP requirements for the biosynthesis of cell polymers as shown in 

Mishra et al.[236], then adjusted for the considered biomass macromolecule 

composition. Non-growth associated ATP maintenance, the amount of ATP 

required by the cell repair and similar processes was implemented in this model 

as an autonomous equation, thus forcing a basal ATP consumption – flux bounds 

inferred from Candida tropicalis [236]. The biomass equation's components and 
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their relative content are shown in Supplementary Data II.2.1. The theoretical 

ratio used in the S. cerevisiae iMM904 metabolic model for the phosphorus to 

oxygen ratio was applied. Three generic reactions contributing to this ratio were 

automatically generated by merlin and were updated to replicate the same ratio 

as in the iMM904 model: 

Reaction R00081: 

1.0 Oxygenmito + 4.0 Ferrocytochrome cmito + 6.0 H+ mito ↔ 2.0 H2Omito + 4.0 Ferricytochrome cmito + 

6.0 H+cyto,                                                                                                                                         (1) 

Reaction T02161: 

1.0 Ubiquinolmito + 2.0 Ferricytochrome cmito + 1.5 H+ mito ↔1.0 Ubiquinonemito + 2.0 Ferrocytochrome 

cmito + 1.5 H+cyto                                                                                                                                         (2) 

Reaction T00485: 

1.0 Orthophosphatemito + 1.0 ADPmito + 3.0 H+ cyto ↔ 1.0 ATPmito + 1.0 H2Omito + 3.0 H+mito                          (3)                                                                                                                                                                   

The final balance reaction: 

3.0 Orthophosphatemito + 1.0 Oxygenmito + 3.0 ADPmito + 2.0 Ubiquinoolmito ↔ 3.0 ATPmito + 5.0 

H2Omito + 2.0 Ubiquinonemito                                                                                                                                                                                                    (4) 

 

 

II.2.3.2. Model Simulations and Enzyme Essentiality Prediction 

The model simulations were performed using the FBA [284] formulation on 

OptFlux 3.0 [128] using the IBM CPLEX solver. The determination of critical 

essential genes or reactions was performed with the following rationale: a 

gene/reaction is considered essential if, when removed from the model, this leads 

to a value of biomass flux of less than 5% of the reference value calculated for the 

wild-type strain. The essentiality of a gene/reaction was assessed by setting the 

flux of the reactions corresponding to a particular gene to zero and simulating 

the optimal growth rate with FBA. If deletion of one gene/reaction leads to non-
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growth, that gene/reaction is defined as essential. The simulations for 

gene/reaction essentiality were performed in environmental conditions 

simulating the RPMI medium, which mimics human serum. 

 

II.2.3.3. Model Validation 

 

II.2.3.3.1. Strains and Growth Media 

C. parapsilosis type strain CDC317 was batch cultured at 30 ºC in orbital agitation 

(250 rpm) in Yeast Extract-Peptone-Dextrose (YPD) for inoculating cultivation 

and in Synthetic Minimal Media (SMM) for growth parameter determination. 

Media composition are as follows: YPD: 20 g/L glucose (Merck), 20 g/L peptone 

(Merck) and 10 g/L yeast extract (Merck); SMM: 20g/L glucose (Merck), 2.7 g/L 

ammonium sulphate (Merck), 0.05 g/L magnesium sulphate (Riddle-de-Haen), 2 

g/L potassium dihydrogen phosphate (Panreac), 0.5 g/L calcium chloride 

(Panreac) and 100 µg/L biotin (Sigma).  

 

II.2.3.3.2. Aerobic Batch Cultivation 

Precultures (100 mL) for aerobic batch experiments were grown in SMM in 

500mL flasks at 30 ºC in orbital agitation (250 rpm). Cells were grown until the 

exponential phase and used to inoculate fresh media at an initial Optical Density 

at 600nm (OD600nm) of 0.3. Aerobic batch cultivations were incubated in SMM at 

30 ºC with orbital agitation (250 rpm) for 10 hours. 
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II.2.3.3.3. Cell Density, Dry weight and Metabolite Concentration Assessment 

During C. parapsilosis cell cultivation in SMM medium, 4 mL samples were 

harvested from the cell culture every two hours, aiming for the quantification of 

biomass and extracellular metabolites. Cell density was monitored by measuring 

the OD600nm. For dry weight determination, culture samples were centrifuged at 

13000 rpm for 3 min, and the pellets were lyophilised for 72 h at -80 ºC and 

weighted. The supernatants were centrifuged once more for clarification, and the 

concentrations of glucose, ethanol, glycerol and acetic acid in the supernatants 

were determined by HPLC on an Aminex HPX-87 H Ion Exchange 

chromatography column, eluted with 0.0005 M H2SO4 at a flow rate of 0.6 

mL/min, at room temperature. Concentrations were determined through the 

corresponding calibration curves. Samples from any batch cultivation were 

analysed in triplicate. The specific growth rate, specific glucose consumption 

rate, and the specific production rates of ethanol, glycerol, and acetic acid were 

calculated during the exponential growth phase as indicated elsewhere [285]. 

 

II.2.4. Results and Discussion 

 

II.2.4.1. Model Characteristics, highlighting C. parapsilosis unique metabolic 

features 

The herein described C. parapsilosis metabolic model, iDC1003, comprises 1003 

genes associated with 1804 reactions – of which 358 are drains (exchange 

constraints set to mimic the environmental conditions) and 536 are transport 

reactions - and 1278 metabolites across four compartments (extracellular, 

cytoplasm, mitochondria, and peroxisome) and within an intercompartment, the 
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plasma membrane. The model can be found in SBML format in Supplementary 

Data II.2.2. 

Manual curation assessed a total of 847 reactions from which 83 were mass 

balanced, 162 were corrected regarding reversibility or directionality, and 625 

were added or removed from the model or had their annotation corrected or 

completed, as detailed in Supplementary Data II.2.1. 

The Biomass equation (Table II.7) encompasses the cell's major components along 

with their respective and relative contributions – DNA, RNA, Carbohydrate, 

Protein, Lipid, and Cofactor content. The equation's composition in 

Carbohydrate [286], Lipid [236,287] – Sterol [236], Phospholipid [236], and Fatty 

acid [252] – and Protein [236] was inferred from literature data. On the other hand, 

for the composition of DNA, the whole genome sequence was used to estimate 

the amount of each deoxyribonucleotide as described in [123] while mRNA, 

rRNA, and tRNA were used to estimate the total RNA in the cell as described in 

[111]. Essential metabolites were included in the biomass composition to account 

for the essentiality of their synthesis pathways 39 qualitatively. The growth and 

non-growth ATP requirements were inferred from Candida tropicalis [236]. 

The iDC1003 model was compared to the well-characterised genome-scale 

metabolic models of C. glabrata [237] S. cerevisiae [238] and C. albicans [288] to 

highlight unique metabolic features of C. parapsilosis. Although iDC1003 uses 

standard identifiers for reactions (KEGG ID), it is not possible to assess how the 

reactions differ among the four models, as the remaining models do not use the 

same identifiers (except for C. albicans). Thus, a comparison across the existing 

models was carried out based on the proteins associated with an EC number. 
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Table II.7 - Biomass composition used in the model iDC1003. The full individual 

validated contributions of each of these metabolites are shown in Supplementary 

Data II.2.1. 

Metabolite g/gDCW   Metabolite g/gDCW 

          

Lipids   Proteins 

Lanosterol 0.00063   L-Valine 0.03536 

Squalene 0.00017   L-Tyrosine 0.02771 

Ergosterol 0.00455   L-Tryptophan 0.01356 

Phosphatidylserine 0.00237   L-Threonine 0.02230 

1-Phosphatidyl-D-myo-inositol 0.00173   L-Serine 0.02478 

Phosphatidylcholine 0.00288   L-Proline 0.01902 

Phosphatidylethanolamine 0.00194   L-Phenylalanine 0.02845 

Phosphatidic acid 0.00052   L-Methionine 0.04275 

Phosphatidylglycerol 0.00186   L-Lysine 0.06440 

Tetradecanoic acid 0.00001   L-Leucine 0.03933 

Hexadecanoic acid 0.00074   L-Isoleucine 0.02115 

(9Z)-Hexadecenoic acid 0.00010   L-Histidine 0.01887 

Octadecanoic acid 0.00032   L-Glutamate 0.03987 

(9Z)-Octadecenoic acid 0.00278   L-Cysteine 0.00487 

(9Z,12Z)-Octadecadienoic acid 0.00071   L-Aspartate 0.00346 

(9Z,12Z,15Z)-Octadecatrienoic acid 0.00016   L-Asparagine 0.00362 

Triacylglycerol 0.00467   L-Arginine 0.00008 

Monoacylglycerol 0.00401   L-Alanine 0.03551 

Diacylglycerol 0.00316   Glycine 0.02150 

Sterol esters 0.00445   L-Glutamine 0.03987 

Soluble Pool   Carbohydrates 

Thiamine 0.00096   Chitin 0.01170 
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Ubiquinone-6 0.00096   Mannan 0.23437 

NADP+ 0.00096   β (1,3)-Glucan 0.13621 

NAD+ 0.00096   Deoxyribonucleotides 

FMN 0.00096   UTP 0.01599 

FAD 0.00096   GTP 0.01378 

CoA 0.00096   CTP 0.01313 

Biotin 0.00096   ATP 0.01730 

Pyridoxal phosphate 0.00096   Ribonucleotides 

Tetrahydrofolate 0.00096   dTTP 0.00111 

      dGTP 0.00074 

      dCTP 0.00086 

      dATP 0.00111 

 

After intersecting the EC numbers present in each of the three models, 85% of the 

proteins with an associated EC number in the C. parapsilosis model were found to 

also be present in at least one of the other three models (Figure II.4). However, 

the remaining 15% (89/528) are exclusive to this model and may represent unique 

metabolic features of C. parapsilosis. It's also interesting to observe that 41 EC 

numbers are shared exclusively by Candida species and not by S. cerevisiae. These 

41 enzymatic activities may be related to unique features of this genus, eventually 

linked to its pathogenicity. The complete list of unique EC numbers can be found 

in Supplementary Data II.2.1. 

Occasionally, EC numbers might be related to outdated EC numbers or 

associated with other enzymes responsible for the same reactions in the different 

models. Nevertheless, specific cases stand out as potentially unique features of 

C. parapsilosis: 
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- 1.1.1.138: mannitol 2-dehydrogenase enables C. parapsilosis to use mannitol as a 

carbon source. 

- 1.3.1.38: trans-2-enoyl-CoA reductase involved in fatty acid elongation, likely 

affecting membrane properties. 

- 3.1.4.12: sphingomyelin phosphodiesterase participates in sphingolipid 

metabolism, responsible for sphingomyelin hydrolysis. 

- 3.5.1.75: urethane amidohydrolase enables C. parapsilosis to use urethane as a 

nitrogen source. 

- 1.16.1.7: ferric-chelate reductase, which is involved in iron starvation, catalyses 

the reduction of bound ferric iron in a variety of iron chelators (siderophores), 

resulting in the release of ferrous iron. 

- 1.16.3.1: ferroxidase, involved in iron homeostasis, oxidises Fe(II) to Fe(III), 

which allows the subsequent incorporation of the latter into proteins such as 

apotransferrin and lactoferrin. 

 

Figure II.4 - Comparison between C. parapsilosis, C. albicans, S. cerevisiae and C. 

glabrata proteins with associated EC Numbers present in the iDC1003, iRV781, 

iIN800, and iNX804 genome-scale metabolic models, respectively. A: Venn 
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Diagram. B: Pairwise Intersections. Diagrams were obtained using Multiple List 

Comparator (www.molbiotools.com). 

 

 

II.2.4.2. Model Validation 

 

II.2.4.2.1. Assessing the Model's Ability to Predict Carbon and Nitrogen Source 

Usage 

Simulations were performed in SMM and compared to phenotypic growth data 

from existing literature to assess iDC1003's reliability in predicting biomass 

production from different sole carbon or nitrogen sources. Data related to C. 

parapsilosis strains, other than the reference CDC317 strain, were also considered 

in the analysis to increase the number of carbon and nitrogen sources accounted 

for. A total of 47 sole carbon sources and 17 sole nitrogen sources were evaluated. 

The C. parapsilosis model correctly predicted growth in 94% of the carbon sources 

tested and in 100% of the nitrogen sources (Table II.8). The model only failed for 

three carbon sources, 2-Keto-D-gluconic acid, L-arabinose and ribitol, which the 

literature indicates that C. parapsilosis can use for growth. Interestingly, as far as 

it could be assessed, there is no experimental evidence of any enzymes behind 

these pathways existing in yeasts. It would be interesting to look deeper into 

these organisms' eventually unique 2-Keto-D-gluconic acid, L-arabinose and 

ribitol assimilation pathways. 

Table II.8 - In silico predictions versus in vivo described data regarding C. 

parapsilosis ability to grow in the presence of sole carbon and nitrogen sources. 

From the 62 different tested compounds, iDC1003 correctly predicted positive or 

null biomass production on 95%. A plus represents biomass production (+), a 
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minus (-) no biomass production, and prediction disparities are highlighted in 

bold. Referenced data from Westerdijk fungal collection refer to strains CBS 1954 

and CBS 604. 

  
In 
vivo 

In 
silico Reference   

In 
vivo 

In 
silico Reference 

Carbon Source 

Glucose + + [255,289–293] L-Sorbose + + [255] 

Maltose + + [255,290–293] D-arabinose - - [255] 

Sucrose + + [255,289,291–293] L-arabinose + - [255] 

Lactose - - [255,290,292,293] i-Erythritol - - [255] 

Galactose + + [255,290–293] Fucose - - [290] 

Melibiose - - [255,290,291,293] Salicin - - [255] 

Cellobiose - - [255,290–293] Arbutin - - [255] 

Inusitol - - [255,290,293] D-ribose + + [255] 

Xylose + + [255,290,292,293] D-Gluconate + + [255] 

Raffinose - - [255,290–293] 2-Keto-D-gluconic acid + - [255] 

Trehalose + + [255,290–293] Inulin - - [255] 

Galactitol - - [255,290,292,293] D-Glucosamine - - [255] 

Rahmnnose - - [255] D-Galacturonate - - [255] 

Glycerol + + [255,290] Quinate - - [255] 

Ribitol + - [255,290] D-Glucono-1,5-lactone + + [255] 

Mannitol + + [255,290] Propane-1,2-diol - - [255] 

Sorbitol + + [255,290] D-Glucarate - - [255] 

Ethanol + + [255,290] L-Arabinitol - - [255] 

Methanol - - [255] D-Glucuronate - - [255] 

Succinate + + [255] Butane 2,3 diol - - [255] 

Lactate - - [255] D-Galactonate - - [255] 

Citrate + + [255] D-Tagaturonate - - [255] 

Starch - - [255] Fructose + + [289] 

Xylitol + + [255]         

Nitrogen Source 

Ammonium + + [255,294] Urethane + + [295] 

Citrate - - [255] Creatine - - [255] 

L-Lysine + + [255] Imidazole - - [255] 
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Creatinine - - [255] L-Glutamate + + [294] 

D-Tryptophan - - [255] L-Proline + + [294] 

Nitrite - - [255] L-Isoleucine + + [294] 

Cadaverine + + [255] Allantoin + + [294] 

Glucosamine - - [255] 4-Aminobutanoate + + [294] 

Ethylamine + + [255]     

 

II.2.4.2.2. Assessing the Model's Ability to Quantitatively Predict Growth 

Parameters 

Specific growth rate, glucose consumption rate, and metabolite production rates 

were experimentally determined to validate the model quantitatively due to the 

lack of literature data for C. parapsilosis. The C. parapsilosis CDC 317 cells were 

cultivated in SMM medium, and growth was followed by regular measurements 

of the OD600nm and the cell dry weight. Samples were harvested to assess glucose 

concentration as a function of time during the exponential growth phase. In these 

conditions, a glucose consumption rate of 2.098 +/- 0.404 mmol.gDCW-1.h-1 was 

determined, while no ethanol, glycerol or acetate production could be detected. 

A simulation of the system's behaviour in environmental conditions of SMM 

medium, with a fixed glucose uptake flux of 2.098 mmol.g-1 dry weight.h-1 was 

performed to evaluate the model's ability to predict the specific growth rate. The 

remaining nutrient fluxes were left unconstrained, as the system in these 

conditions is glucose-limited. Considering the experimentally determined 

glucose consumption rate of 2.098 mmol.gDCW-1.h-1, the model predicted a 

specific growth rate of 0.172 h-1. Compared to the experimentally determined rate 

of 0.159 +/- 0.027 h-1, the predicted growth rate is within the uncertainty interval 

of the experimentally determined parameter. Thus there is no significant 

difference between both, which suggests iDC1003 can predict C. parapsilosis 
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growth parameters (Table II.9) quantitatively. Additionally, the formation of 

glycerol, acetic acid, and ethanol as by-products was not predicted to occur, 

which agrees with the experimental data and the notion that C. parapsilosis is a 

crabtree-negative yeast. Altogether, iDC1003 proved to predict the main 

metabolic features of C. parapsilosis quantitatively. 

Table II.9 - Growth parameters of iDC1003 and comparison with experimentally 

determined values. 

  Specific growth  

rate (h-1) 

q (mmol g-1 dry weight h-1) 

  Glucose Ethanol Glycerol Acetic acid 

In silico 0.172 2.098 0 0 0 

In vivo 0.159 ± 0.027 2.098 ± 0.404 0 0 0 

 

II.2.4.3. Enzyme essentiality assessment: looking for new drug targets  

Identification of essential enzymes of a given pathogen should, in principle, lead 

to the identification of good drug targets, since if one enzyme is essential for its 

growth or survival, a compound capable of inhibiting it could turn out to be used 

as a drug with pharmacological activity against that pathogen. The drug target 

will be ideal if it is essential, or at least essential under conditions that mimic the 

human host environment, while having no human homolog. Based on these 

principles, iDC1003 was used to identify potential new drug targets by 

determining enzyme essentiality. For that, a list of essential reactions was 

obtained through simulation of the system's behaviour in RPMI medium, which 

mimics the environmental conditions of human serum. A total of 147 enzymes 

were predicted as essential in iDC1003, excluding drains, transport reactions, and 



92 
 
 

 

those without an associated or incomplete EC number. The complete list of 

predicted essential enzymes can be found in Supplementary Data II.2.1. 

Finally, we decided to intersect the potential drug targets obtained through the 

C. parapsilosis model with those resulting from the two existing models for 

pathogenic Candida species, C. albicans [288] and C. glabrata [237] to focus on 

essential enzymes that can be used as targets in the treatment of infections caused 

by all Candida species. After the intersection, 56 essential enzymes common to the 

three models were found (Table II.10, Figure II.5). Consistently, well established 

antifungal drug targets were identified, including the well-known targets of 

azoles and echinocandins, Erg11 and Fks1, respectively.  

Additionally, some of the identified predicted drug targets are homologs of 

enzymes used as drug targets against other pathogenic organisms, including 

Imh3, which is targeted by inosinic acid in Streptococcus pyogenes, Fol1, a target of 

sulfonamides, and Fas1, a target of ethionamide, used in the treatment against 

Mycobacterium tuberculosis. These confirmatory results illustrate the potential of 

the used approach in the quest for new drug targets. More interesting, however, 

is the identification of numerous potential targets, as identified herein, that are 

not currently targeted by any drug used in clinical practice. There are some new 

targets with tremendous potential as these do not have an orthologous enzyme 

in humans. Although not an excluding factor, the absence of a human 

orthologous is a preferable attribute as this translates into lower chances of host 

drug toxicity and may allow for greater freedom of drug design. 

 



93 
 
 

 

 

Figure II.5 - Intersection of C. parapsilosis, C. albicans, and C. glabrata essential EC 

Numbers in RPMI medium environmental conditions in the genome-scale 

metabolic models iDC1003, iRV781, and iNX804, respectively. Diagrams were 

obtained using Multiple List Comparator (www.molbiotools.com).  

 

Table II.10 - Enzymes predicted to be essential in RPMI medium, based on the 

screening of the genome-scale metabolic models of C. parapsilosis, iDC1003, C. 

albicans, iRV781, and C. glabrata, iNX804. 

Gene name 

EC Number 

 
Gene name 

EC Number 

C. parapsilosis 

S. cerevisiae Human 
 

C. parapsilosis 

S. cerevisiae Human 

Homologue Homologue 
 

Homologue Homologue 

CPAR2_302110 ERG26 NSDHL 1.1.1.170 
 

CPAR2_805350 PEL1 PGS1 2.7.8.5 

CPAR2_104580 IMD4 IMPDH 1.1.1.205 
 

CPAR2_804250 PHO8 ALPL 3.1.3.1 

CPAR2_801560 ERG27 DHRS11 1.1.1.270 
 

CPAR2_602700 GEP4 PTPMT1 3.1.3.27 

CPAR2_110330 HMG1 HMGCR 1.1.1.34 
 

CPAR2_100500 URA4 CAD 3.5.2.3 

CPAR2_405900 ERG24 TM7SF2 1.3.1.70 
 

CPAR2_806200 IPP1 PPA2 3.6.1.1 

ERG4 ERG4 - 1.3.1.71 
 

CPAR2_805940 ADE2 PAICS 4.1.1.21 

CPAR2_206550 TMP1 TYMS 2.1.1.45 
 

URA3 URA3 UMPS 4.1.1.23 

http://www.molbiotools.com/
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CPAR2_202250 ADE17 ATIC 2.1.2.3 
 

CPAR2_109530 MVD1 MVD 4.1.1.33 

CPAR2_203160 URA2 CAD 2.1.3.2 
 

CPAR2_800750 CAB3 PPCDC 4.1.1.36 

CPAR2_203160 URA2 CAD 6.3.5.5 
 

CPAR2_303390 FOL1 - 4.1.2.25 

CPAR2_106400 FKS1 - 2.4.1.34 
 

CPAR2_303390 FOL1 - 2.5.1.15 

CPAR2_802790 URA5 UMPS 2.4.2.10 
 

CPAR2_212310 ABZ2 - 4.1.3.38 

CPAR2_208260 ADE4 PPAT 2.4.2.14 
 

CPAR2_204960 ADE13 ADSL 4.3.2.2 

CPAR2_302840 BTS1 GGPS1 2.5.1.1 
 

CPAR2_401630 IDI1 IDI1 5.3.3.2 

CPAR2_103950 ERG20 FDPS 2.5.1.10 
 

CPAR2_301800 ERG7 LSS 5.4.99.7 

CPAR2_403110 ABZ1 - 2.6.1.85 
 

CPAR2_212740 MET7 FPGS 6.3.2.17 

CPAR2_502760 CAB5 COASY 2.7.1.24 
 

CPAR2_500190 ADE1 PAICS 6.3.2.6 

CPAR2_202590 FMN1 RFK 2.7.1.26 
 

CPAR2_208400 ADE5,7 GART 6.3.3.1 

CPAR2_602050 CAB1 PANK 2.7.1.33 
 

CPAR2_208400 ADE5,7 GART 6.3.4.13 

CPAR2_105320 URA6 CMPK2 2.7.4.14 
 

CPAR2_803640 ADE12 ADSS 6.3.4.4 

CPAR2_400710 ERG8 PMVK 2.7.4.2 
 

CPAR2_204070 ADE6 PFAS 6.3.5.3 

CPAR2_304260 PRS1 PRPS1 2.7.6.1 
 

CPAR2_804060 ACC1 ACACA 6.4.1.2 

CPAR2_500260 PIS1 CDIPT 2.7.8.11 
 

CPAR2_803530 ERG12 MVK 2.7.1.36 

CPAR2_211620 ADE8 GART 2.1.2.2 
 

CPAR2_701400 ERG13 HMGCS 2.3.3.10 

CPAR2_602300 COQ3 COQ3 2.1.1.114 
 

FAS1 FAS1 - 2.3.1.86 

CPAR2_209250 COQ5 COQ5 2.1.1.201 
 

CPAR2_803560 GUA1 GMPS 6.3.5.2 

ERG11 ERG11 CYP51A1 1.14.14.154 
 

CPAR2_100620 URA7 CTPS1 6.3.4.2 

CPAR2_303080 GUK1 GUK1 2.7.4.8 
 

CPAR2_804900 URA1 - 1.3.98.1 

 

Blue: enzymes without any human homolog or drug association. Red: enzymes 

targeted by drugs currently used to treat Candida infections. Green: enzymes with 

homologs that are currently targeted in the treatment of infections caused by 

other pathogens. 

Among the identified potential new drug targets, Abz1/2, Erg4, and Ura1 emerge 

as enzymes without any human homolog or drug association. Fungi rely on 

folate de novo biosynthesis given their inability to uptake folate from the 

environment [296]. FOL1, ABZ1 and ABZ2 encode key enzymes in the folate 
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biosynthesis pathway (Figure II.6). Furthermore, these enzymes have no human 

orthologs, as humans rely on a diet derived folate [296]. The dihydropteroate 

synthase encoded by FOL1 has been shown to be successfully inhibited by 

antifolates such as sulfonamides in a series of microorganisms [296,297]. 

However, antifolate therapy for Candida infections is not particularly effective 

considering current antifolate compounds [298]. In fact, for C. albicans only 

sulfanilamide is used clinically, and it is restricted to topical use [271]. Given the 

efficacy of antifolates in treating infections by other etiologic agents, this might 

present the opportunity to design new effective antifungal compounds against 

Candida Fol1. On the other hand, no inhibitors of the para-aminobenzoate 

synthetase encoded by ABZ1, or of the 4-amino-4-deoxychorismate lyase 

encoded by ABZ2, are currently known, making these two enzymes fully novel 

putative drug targets worth for further exploitation. 

Figure II.6 - Folate biosynthetic pathway. Red boxes highlight the enzymes 

considered essential in the three analysed models. 
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The Ura1 and Erg4 proteins may also be interesting drug targets. Ura1 has no 

human ortholog and, although this protein is not the target of any known drug, 

Aro9, from the same pathway, is a known target of atovaquone used to treat 

Plasmodium falciparum infections. In turn, Erg4, also with no human ortholog, 

is involved in ergosterol biosynthesis, a pathway currently targeted by azole 

drugs.  

 

II.2.5. Conclusions 

The first validated global metabolic model for the human pathogen C. parapsilosis 

is presented in this study. The model was manually curated and validated 

experimentally and proved to be able to predict the main metabolic features of 

C. parapsilosis quantitatively. Furthermore, iDC1003 is robust in predicting the 

use of several carbon and nitrogen sources. The model shares 85% of the proteins 

with an associated EC number in other already published yeast models. 

However, 15% of them are exclusive to this model and may represent some 

unique metabolic features of C. parapsilosis. Using iDC1003, several enzymes 

were predicted to be essential in RPMI medium, including some already known 

targets of antifungal agents and other antimicrobial agents used in clinical 

practice, illustrating the potential of the used approach in the quest for new drug 

targets. Several of the identified potential drug targets are not currently targeted 

by any drug used in clinical practice, deserving further study. Among the 

identified potential new drug targets, Abz1/2, Erg4, and Ura1 stand out as 

enzymes without any human homolog or drug association. However, all other 

targets are worthy of scrutiny as, in fact, many of the drug targets currently 

targeted by drugs used in clinical practice have human orthologs. In these cases, 

the strategy may involve taking advantage of the structural differences between 

the proteins in the two organisms to design efficient compounds. 



97 
 
 

 

Despite the clear usefulness of these types of models, it is important to highlight 

that these reconstructions have limitations. Firstly, the basis of GSMMs is the 

genome's functional annotation. Depending on the stringency of the criteria 

imposed on hit selection, such a procedure may lead either to compromising 

rates of false positive or negative annotations. Furthermore, such models do not 

encompass regulatory processes due to the high complexity of such an 

integration. Note how enzymatic activity can be regulated at different levels – 

from gene expression to post-translational modifications - and may result in 

given pathways being preferential in certain environmental conditions. The 

exclusion of such mechanisms, particularly regarding essentiality prediction, 

may result in predicted essential ECs that would otherwise not be metabolically 

relevant in the conditions of interest. Lastly, these simulations do not consider 

supra-metabolic factors, such as stress factors. Even so, and considering all these 

limitations, GSMMs allow for increasingly guided and reliable drug target 

discovery – as illustrated in this paper. 
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II.3. Metabolic reconstruction of the human pathogen C. auris: 

using a cross-species approach for drug target prediction 

 

 

II.3.1. Abstract  

C. auris is an emerging human pathogen, associated to antifungal drug resistance 

and hospital candidiasis outbreaks. Genome-scale metabolic models (GSMMs) 

have recently been used as a platform for drug target identification, a feature that 

may prove particularly valuable in the search for new C. auris drug targets. 

In this work, we present iRV973, the first reconstructed GSMM for C. auris. The 

model, provided in the SBML format, was manually curated and experimentally 

validated, being able to accurately predict the specific growth rate of C. auris and 

the utilization of several sole carbon and nitrogen sources. The model was 

compared to GSMMs available for other pathogenic Candida species and 

exploited as a platform for cross-species comparison, aiming the analysis of their 

metabolic features and the identification of potential new antifungal targets 

common to the most prevalent pathogenic Candida species. From a metabolic 

point of view, we were able to identify some unique enzymes in C. auris in 

comparison with other existing Candida models, which may represent unique 

metabolic features of C. auris. Additionally, 50 enzymes were identified as 

potential drug targets, given their essentiality in conditions mimicking human 

serum, common to all the 4 different Candida models analyzed. These enzymes 

represent interesting drug targets for antifungal therapy, some are already 

known targets of antifungal agents used in clinical practice, but other new 

potential drug targets also stand out without any human homolog or drug 

association in Candida species. 
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Keywords: C. auris; Global stoichiometric model; Gene essentiality; Drug target; 

Metabolic features 

 

II.3.2. Introduction 

C. auris is an emerging human pathogen. First isolated in 2009 [299], C. auris is 

geographically non-restricted [300] and thrives in nosocomial environments 

[301]. While C. albicans is still the most frequent etiological agent of candidiasis, 

a shift towards non-C. albicans Candida species (NCAC) [302] has been registered 

since the 1990s [302]. Among the NCAC, C. glabrata, C. parapsilosis, and Candida 

tropicalis account for the majority of candidiasis cases. Although the prevalence 

of C. auris among candidiasis patients is relatively low, concern is raising on its 

impact as a serious threat to public health due to three factors: 1) its diagnosis is 

difficult using standard methods, which may lead to non-optimal therapeutic 

choices; 2) resistance against multiple antifungal drug families has been often 

identified in clinical isolates; and 3) it causes outbreaks in healthcare settings 

[299], possibly due to its ability to resist for long periods on hospital surfaces. The 

isolation of C. auris strains displaying resistance to the three main classes of 

available clinically used antifungal drugs (azoles, echinocandins, and polyenes), 

highlights the need to identify novel antifungal drug targets and design entirely 

new effective antifungal therapies. 

Genome-Scale Metabolic Models (GSMMs) are in silico reconstructions of global 

metabolic networks. They have been used to model the full metabolism of 

individual organisms [120] constituting a Systems Biology tool to analyze 

metabolic features [119]. GSMMs have been used for decades for guiding strain 

design, in a metabolic engineering perspective. More recently, however, they 

have also been used in the elucidation of pathogenesis and drug target 
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identification [112]. Interestingly, such models have been built for the most 

clinically relevant Candida species, including C. albicans [288], C. glabrata [237], 

and C. parapsilosis [303], but not yet for C. auris. The exploitation of these GSMMs 

provide recent examples of the reliability of this approach in the identification of 

putative novel drug targets in pathogenic organisms.  

Herein, the construction and validation of the first GSMM for the human 

pathogen C. auris is described. This model is provided in the well-established 

SBML format and can easily be read in most metabolic engineering platforms, 

such as OptFlux [128] and COBRA [304]. A set of predicted essential genes was 

obtained from the validated model, and their targetability as putative novel 

antifungal drug targets is discussed. Additionally, the existent Candida GSMMs 

were exploited as a platform for cross-species comparison, aiming the analysis of 

their metabolic features, including the study of reactions and pathways which 

are common to all Candida species and the identification of reactions and 

pathways that are unique to each pathogen. 

 

II.3.3. Materials and Methods 

 

II.3.3.1. Model Construction  

The metabolic model described here refers to the yeast C. auris with the 

taxonomic ID 498019. Network reconstruction was performed using merlin 4.05 

[122] and subsequent curation and validation were performed on OptFlux 3.0 

[128] using the IBM CPLEX 12.10 solver. Curation consisted of the editing, 

addition, or removal of reactions so to correct previous gaps in the network using 

KEGG pathways, MetaCyc Database, and literature data as reference. 



101 
 
 

 

II.3.3.1.1. Enzyme and Reaction Annotation  

Draft model construction consisted of an initial enzyme and reaction annotation 

from the reference genome sequence of the reference strain C. auris B11221_V1, 

retrieved from NCBI’s Assembly Database, accession ID 

“Cand_auris_B11221_V1” along with the respective Taxonomic ID [223]. 

Genome-wide functional annotation was performed by merlin by homology 

alignment assessment with resource to BLAST [226] against the remote databases 

UniProtKB/Swiss-Prot [227]. Hit selection was performed as described in Dias et 

al. 2018 [221] and phylogenetic proximity was implemented based on 

phylogenetic tree from literature [305]. The Kyoto Encyclopedia of Genes and 

Genomes (KEGG) [280] database served as reference for protein-reaction 

associations and consequent draft network construction.  

 

II.3.3.1.2. Correcting Reaction Reversibility, Directionality, and Balance  

Reaction reversibility curation comprised an initial automatic curation step 

followed by extensive manual curation. Automatic curation was performed by 

merlin referencing remote databases such as eQuilibrator [281], as described by 

Dias et al. [221]. Manual curation referenced other databases such as Meta- Cyc 

[231] as well as existing literature. Unbalanced reactions were identified 

automatically and manually balanced with resort to information from databases 

such as MetaCyc, ChEBI [282], Brenda [283] and existing literature. All manually 

edited reactions can be found in Supplementary Data II.3.1. 
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II.3.3.1.3. Compartmentalization 

The model described herein comprises four compartments: extracellular, 

cytoplasm, mitochondrion, peroxisome and one intercompartment: the 

cytoplasmic membrane. The online protein localization predictor tool WoLF 

PSORT [232] was used in model compartmentalization and was implemented on 

the already connected non-compartmentalized model through direct import of 

the report, as merlin has an integrated import tool for WoLF PSORT and other 

similar tools. Transport reactions – which connect the networks compartments – 

were generated from the genome sequence with resort to the public database 

TCDB [233] and using merlin’s integrated tool TranSyT [127].Transport reactions 

across internal and external membranes for currency metabolites, such as H2O, 

CO2, and NH3, often carried by facilitated diffusion, were added to the model 

with no gene association. 

 

II.3.3.1.4. Defining the Biomass Equation  

The biomass equation comprises all the cell’s major components along with their 

respective relative numerical contributions - DNA, RNA, carbohydrates, lipids, 

and proteins – and was used as the objective function in all performed 

simulations, including essentiality prediction. The reconstructed model also 

includes ATP requirements for both biomass production and cell maintenance—

growth-associated maintenance (GAM) and non-growth-associated maintenance 

(NGAM), respectively. A GAM value of 25.65 mmol ATP/gDCW was considered 

for the biomass equation, calculated based on the ATP requirements for the 

biosynthesis of cell polymers, as shown in Mishra et al. [236], then adjusted for 

the considered biomass macromolecule composition. Non-growth-associated 

ATP maintenance was implemented in this model as an autonomous equation, 
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thus forcing a basal ATP consumption —flux bounds inferred from Candida 

tropicalis [236]. The Supplementary Data II.3.1 details the biomass equation’s 

components and their relative content. The theoretical ratio used in the 

Saccharomyces cerevisiae iMM904metabolic model for the phosphorus-to-oxygen 

ratio was applied. Three generic reactions contributing to this ratio were 

automatically generated by merlin and were updated to replicate the same ratio 

as in the iRV973 model:  

Reaction R00081: 

1.0 Oxygenmito + 4.0 Ferrocytochrome cmito + 6.0 H+mito ↔ 2.0 H2Omito + 4.0 Ferricytochrome cmito + 

6.0 H+cyto                                                                                                                                                      (1)                                                                                                                                                                

Reaction T02161: 

1.0 Ubiquinolmito + 2.0 Ferricytochrome cmito + 1.5 H+mito ↔ 1.0 Ubiquinonemito + 2.0 

Ferrocytochrome cmito + 1.5 H+cyto                                                                                                                                                                                    (2)                                                                                                                                                                                                                                                            

Reaction T00485: 

1.0 Orthophosphatemito + 1.0 ADPmito + 3.0 H+cyto ↔ 1.0 ATPmito + 1.0 H2Omito + 3.0 H+ mito           (3)                              

The final balance reaction: 

3.0 Orthophosphatemito + 1.0 Oxygenmito + 3.0 ADPmito + 2.0 Ubiquinolmito ↔ 3.0 ATPmito + 5.0 

H2Omito + 2.0 Ubiquinonemito                                                                                                                    (4)                                                                              

 

II.3.3.2. Model Simulations and Enzyme Essentiality Prediction 

Flux balance analysis (FBA) [284] on OptFlux 3.0 [128] using the IBM CPLEX 

solver was used to conduct model simulations.  Genes and reactions were 

considered essential if when removed from the model the resulting simulation’s 

predicted biomass flux is less than 5% of the wild-type strain. Gene and reaction 

removal was simulated by restraining its corresponding flux bounds to zero. 

Gene/reaction essentiality was searched for in environmental conditions 

mimicking the human serum, namely the composition of the RPMI medium. 
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II.3.3.3. Model Validation  

 

II.3.3.3.1. Strains and Growth Media  

C. auris type strain B11221 was routinely maintained in Yeast extract–Peptone–

Dextrose (YPD) and synthetic minimal media (SMM) was used for batch cultured 

experiments. YPD contained: 20 g/L glucose (Merck, Darmstadt, Germany), 20 

g/L peptone (Merck, Darmstadt, Germany), and 10 g/L yeast extract (Merck, 

Darmstadt, Germany), while SMM included: 20g/L glucose (Merck, Darmstadt, 

Germany), 2.7 g/L ammonium sulphate (Merck, Darmstadt, Germany), 0.05 g/L 

magnesium sulphate (Riddle-de-Haen), 2 g/L potassium dihydrogen phosphate 

(Panreac, Barcelona, Spain), 0.5 g/L calcium chloride (Merck, Darm- stadt, 

Germany), and 100 µg/L biotin (Sigma). 

II.3.3.3.2. Aerobic Batch Cultivation 

Aiming the validation of the constructed model, C. auris B11221_V1 cells were 

batch cultivated in Erlenmeyer flasks containing 250ml of SMM medium, at 30 

ºC (250 rpm). Exponential phase inocula (Optical Density at 600 nm (OD600nm) 

of 0.3) were prepared and cells were transferred Erlenmeyer flasks containing 

250ml of fresh SMM medium and cultivated at 30 ºC with orbital agitation (250 

rpm) for 10 h. 

II.3.3.3.3. Cell Density, Dry Weight, and Metabolite Concentration Assessment  

Throughout cell cultivation in SMM 4 mL samples were retrieved every two 

hours for subsequent biomass and extracellular metabolite quantification, and 

cell density was monitored through OD600nm measuring. For dry weight 

determination, culture samples were centrifuged at 13,000 rpm for 3 min and the 

pellets were lyophilized for 72h at −80 ◦C and weighted. For extracellular 



105 
 
 

 

metabolite identification and quantification and the concentrations of glucose, 

ethanol, glycerol, and acetic acid in the supernatants were determined by HPLC 

on an Aminex HPX-87 H Ion Exchange chromatography column, eluted with 

0.0005 M H2SO4 at a flow rate of 0.6 mL/min at room temperature. Samples were 

analysed in triplicate and concentrations determined via adequate calibration 

curves. The specific growth rate, specific glucose consumption rate, and the 

specific production rates of ethanol, glycerol and acetic acid were calculated 

during the exponential growth phase as indicated elsewhere [285].  

 

II.3.3.3.4. Carbon and Nitrogen Source Utilization Assessment  

The capability of utilizing different carbon and nitrogen sources for cell growth 

was assessed by comparing in silico predictions to literature data for C. auris. For 

the carbon sources for which the model predictions were not consistent with 

literature data, experimental testing was conducted with the B11221 C. auris 

reference strain used in the model reconstruction, and also with representative 

strains from clades I and II, C. auris B8441 and C. auris B11220, respectively. The 

utilization of ethanol, glycerol, and galactitol as sole carbon source, by the C. auris 

strains was evaluated in solid YNB medium containing: either 5 g/L glucose as 

control, or 5 g/L of either one of the mentioned carbon sources; 1.7 g/L Yeast 

nitrogen base without amino-acids without ammonium sulfate (Sigma); 5 g/L 

Ammonium sulfate (Merck, Darmstadt, Germany) and 20g/L Agar (Iberagar, 

Barreiro, Portugal). C. auris cell suspensions used to inoculate the agar plates, 

were mid-exponential cells grown in YNB medium with 5 g/L glucose, until 

culture OD600nm = 0.5 ± 0.05 was reached and then diluted in sterile water to 

obtain suspensions with OD600nm = 0.05 ± 0.005. These cell suspensions and 

subsequent dilutions (10−1 ; 10−2 ; 10−3 ) were applied as 4 µL spots onto the surface 
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of solid YNB media, with the indicated carbon sources. Growth was assessed 

after incubation at 37 ◦C for 48 hours.  

 

II.3.4. Results and Discussion 

 

II.3.4.1. Model characteristics 

The C. auris metabolic model, iRV973, comprises 973 genes associated with 2863 

reactions – of which 352 are drains (exchange constraints for external metabolites 

used to simulate the environmental conditions allow metabolites to be removed 

from the system) and 1035 are transport reactions - and 2150 metabolites across 

four compartments (extracellular, cytoplasm, mitochondria, and peroxisome) 

and within an intercompartment, the plasma membrane. The model can be found 

in SBML format in Supplementary Data II.3.2. 

Manual curation assessed a total of 776 reactions requiring alterations, from 

which 75 were mass balanced and 701 were corrected regarding reversibility, 

directionality, annotation, or added or removed from the model as detailed in 

Supplementary Data II.3.1. 

The Biomass equation (Table II.11) encompasses the cell's major components 

along with their respective and relative contributions, DNA, RNA, lipids, 

carbohydrates, and cofactors. The equation's composition in Carbohydrate (M. 

Pfaller & Riley, 1992), Lipid [236,287], Sterol [236], Phospholipid [236], Fatty acid [252] 

and Protein [236] was inferred from literature data. On the other hand, for the 

composition of DNA, the whole genome sequence was used to estimate the 

amount of each deoxyribonucleotide as described in [123], this was automatically 

performed using the e-BiomassX merlin tool, while mRNA, rRNA, and tRNA 
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were used to estimate the total RNA in the cell as described in [111] automatically 

performed using the e-BiomassX merlin tool. The growth and non-growth ATP 

requirements were inferred from Candida tropicalis [236]. 

Table II.11 - Biomass composition used in the model iRV973. The full individual 

validated contributions of each of these metabolites are shown in Supplementary 

Data II.3.1. 

Metabolite g/gDCW   Metabolite g/gDCW 

          

Lipids1     Proteins2   

Lanosterol 0,000054   L-Valine 0,021208 

Zymosterol 0,000189   L-Tyrosine 0,025060 

5,7,22,24(28)-Ergostatetraenol 0,000269   L-Tryptophan 0,015297 

Ergosterol 0,002047   L-Threonine 0,011456 

Phosphatidylserine 0,018028   L-Serine 0,004758 

Phosphatidylinositol 0,005408   L-Proline 0,015616 

Phosphatidylcholine 0,008089   L-Phenylalanine 0,021862 

Phosphatidylethanolamine 0,006425   L-Methionine 0,007562 

Cardiolipin 0,003883   L-Lysine 0,020142 

Tetradecanoic acid 0,000026   L-Leucine 0,017778 

Hexadecanoic acid 0,001329   L-Isoleucine 0,002905 

Octadecanoic acid 0,000489   L-Histidine 0,016385 

Oleic acid 0,002276   L-Glutamate 0,015260 

alpha-Linolenic acid 0,000109   L-Cysteine 0,027463 

Triacylglycerol  0,013575   L-Aspartate 0,014186 

Diacylglycerol 0,001001   L-Asparagine 0,007636 

Sterol esters 0,014687   L-Arginine 0,017066 

      L-Alanine 0,006159 

Carbohydrates3     Glycine 0,020616 

Chitin  0,026552   L-Glutamine 0,009458 

Mannan 0,181732       

 β (1,3)-Glucan 0,381756   Soluble Pool4   

      Thiamine 0,000174 

Ribonucleotides     Ubiquinone-9 0,000174 

UTP 0,008262   NADP+ 0,000174 

GTP 0,006585   NAD+ 0,000174 

CTP 0,008267   FMN 0,000174 

ATP 0,006984   FAD 0,000174 

      CoA 0,000174 

Deoxyribonucleotides     Biotin 0,000174 

dTTP 0,000647   Pyridoxal phosphate 0,000174 
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dGTP 0,000537   5-Methyltetrahydrofolate 0,000174 

dCTP 0,000534       

dATP 0,000646       

 

 

II.3.4.2. Model validation 

 

II.3.4.2.1 Carbon and nitrogen source utilization 

Simulations were performed in silico SMM medium with different molecules as 

sole carbon and nitrogen sources and compared to phenotypic growth data from 

existing literature to assess iRV973's reliability in predicting biomass production 

from different sole carbon or nitrogen sources. Data related to C. auris strains, 

other than the reference B11221 strain, were also considered in the analysis to 

increase the number of carbon and nitrogen sources accounted for. A total of 36 

sole carbon sources and 8 sole nitrogen sources were evaluated. In an initial 

assessment our model correctly predicted growth in 92% (33/36) of the carbon 

sources tested and in 100% (8/8) of the nitrogen sources. The model failed to 

predict growth in galactitol and wrongly predicted growth in ethanol and 

glycerol, however, since the literature data is based on strains different from the 

one used to reconstruct our model, CBS10913 [299] and several other clinical 

isolates [306,307], we decided to test experimentally these 3 cases with one 

representative strain of C. auris clades I, II and III (B8441, B11220 and B11221). 

The results confirmed the model’s prediction regarding the utilization of glycerol 

as carbon source and regarding the non-utilization of dulcitol (Figure II.7). 

Interestingly, none of the C. auris strains tested was able to grow in ethanol as the 

sole carbon source, contradicting the model’s prediction and suggesting that, 

although having all the required enzymes for ethanol utilization, C. auris cannot 
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use it, which may be due to regulatory reasons not accounted for in the model. 

Altogether our model only failed to predict growth in ethanol and was able to 

correctly predict 97% of the carbon sources tested (Table II.12).  

Figure II.7 - Utilization of glucose (positive control), no carbon source (negative 

control), glycerol, ethanol, and dulcitol as carbon source by C. auris strains I: 

B8441 II: B11220 and III: B11221 in solid YNB medium. Initial OD600nm = 0.5 ± 

0.05. Growth was assessed after incubation at 37 ◦C for 48 h. 

A particular case worth mentioning is the use of melezitose as a sole carbon 

source. According to the literature, it is known that C. auris is able to use this 

compound as a carbon source [299,306,308], this being a metabolic feature that 

distinguishes C. auris from other Candida species. However, as far as it could be 

assessed, there is no experimental evidence of any enzymes behind melezitose 

degradation. As far as we know, the melezitose degrading enzymes remain 

unknown for any species, making it impossible to add the corresponding 

reactions to the model. 
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Table II.12 - Comparison between in vivo and in silico phenotypic behavior of C. 

auris under different carbon and nitrogen sources. 

  In vivo In silico Reference   In vivo In silico Reference   

Carbon Source                 

D-Glucose + + 1,4,5   D-Xylose - - 4 

D-Glucosamine - - 4   L-Rhamnose - - 3,4 

L-Arabinose - - 3,4   a,a-Trehalose + + 4,5 

Sucrose + + 1,4,5   Salicin - - 4 

β-D-galactoside - - 4   Raffinose + + 4 

Melibiose - - 4   Starch + + 4 

Glycerol + + 3,4   Ribitol - - 4 

Xylitol - - 3,4   D-Mannitol + + 4 

Galactitol - - 4   2-Keto-D-Gluconate - - 4 

D-Gluconate - - 3,4   Succinate - - 3,4 

Citrate + + 4   Ethanol - + 1,3,4 

D-Galactose - - 3,4   Methanol - - 3,4 

D-Ribose - - 4   N-acetylglucosamine - - 2,4 

D-Arabinose - - 3,4           

Maltose + + 4,5   Nitrogen Source       

Cellobiose - - 4   Nitrite - - 4 

Lactose - - 1,4   Cadaverine + + 4 

Inulin w - 3,4   Nitrate - - 1,2,4 

Erythritol - - 4   L-Lysine + + 4 

D-Sorbitol + + 4   Ethylamine - - 4 

myo-Inositol - - 4   Ammonia + + 4 

DL-Lactate - - 4   Urea - - 2,4 

L-Sorbose - - 3,4   Glycine - - 1 
 

Growth (+); lack of growth (–);  1:[307]; 2:[306]; 3:[308]; 4:[299]; 5:[309] 

 

II.3.4.2.1 Growth parameters in batch culture 

Specific growth rate, glucose consumption rate, and metabolite production rates 

were experimentally determined to validate the model quantitatively. A specific 

growth rate of 0.110 h-1 was observed for a glucose consumption rate of 2.19 

mmol.gDCW-1.h-1, while no ethanol, glycerol or acetate production could be 

detected. In order to compare with the in silico results, a simulation of the 
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system's behavior in SMM medium, with a fixed glucose uptake flux of 2.19 

mmol.g-1 dry weight.h-1 was performed to evaluate the model's ability to predict 

the specific growth rate. The remaining nutrient fluxes were left unconstrained, 

as the system in these conditions is glucose-limited. In this simulation the model 

predicted a specific growth rate of 0.155 h-1, similar to the experimentally 

determined value (Table II.13). Additionally, the formation of glycerol, acetic 

acid, and ethanol as by-products was not predicted to occur, which agrees with 

the experimental data and the notion that C. auris is a Crabtree-negative yeast. 

Table II.13 - Growth parameters of iRV973 and comparison with experimentally 

determined values for C. auris. 

  Specific growth  
rate (h-1) 

q (mmol g-1 dry weight h-1) 

  Glucose Ethanol Glycerol Acetic acid 

In silico 0.153 2.19 0        0 0 

In vivo 0.110 2.19 0        0 0 

 

II.3.4.3. C. auris unique metabolic features 

To identify potentially unique metabolic features of C. auris, the iRV973 model 

was compared to the C. glabrata [237], S. cerevisiae [238], C. albicans [288] and C. 

parapsilosis [303] GSMMs. A comparison across the existing models was carried 

out based on shared EC numbers. After intersecting the EC numbers present in 

each of the five models, 88% (467/556) of the proteins with an associated EC 

number in the C. auris model were found to also be present in at least one of the 

other four models (Figure II.8). However, the remaining 12% (69/556) are 

exclusive to this model and may represent unique metabolic features of C. auris. 

It is also interesting to point out that 37 EC numbers are shared by all Candida 

species and absent in S. cerevisiae, which could represent unique features of 

pathogenic yeasts. However, after a literature search and a manual inspection of 
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the S. cerevisiae model we were not able to identify any Candida specific enzyme, 

in all the cases the enzymes were also present in S. cerevisiae, and not in the 

GSMM, probably due to changes in annotation, or update of EC numbers. The 

complete list of “unique” EC numbers can be found in Supplementary Data II.3.1. 

 

Figure II.8: Comparison between C. auris, C. parapsilosis, C. albicans, S. cerevisiae, 

and C. glabrata proteins with associated EC Numbers present in the iRV973, 

iDC1003, iRV781, iIN800 and iNX804 genome-scale metabolic models, 

respectively. A: Venn Diagram. B: Pairwise Intersections. Diagrams were 

obtained using Multiple List Comparator (www.molbiotools.com). 

 

From the 69 C. auris unique EC numbers, some are related to 

outdated/incomplete EC numbers or associated with other enzymes responsible 

for the same reactions in the different models. However, some EC numbers stand 

out as potentially real unique features of C. auris: 

- 1.1.1.24: this EC number represents a quinate dehydrogenase that catalyzes the 

oxidation of quinate to 3-dehydroquinate and is involved in quinate degradation, 

this enzyme seems to be a unique feature of C. auris among Candida species and 
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may allow this yeast to utilize quinate as source for the biosynthesis of folates, 

quinones, and aromatic amino acids [310]. 

- 1.1.1.10: this EC number represents a chloride peroxidase, which is able to 

catalyze the production of hypochlorous acid by transferring one oxygen atom 

from H2O2 to chloride. This is a very interesting feature since hypochlorous acid 

is used for microbial killing by phagocytic cells and in nature this enzyme is often 

associated with the production of halogenated antibiotics [311]. In C. auris this 

enzyme may represent a competitive advantage or even a potential mechanism 

of defense to the host.  

- 1.13.11.24: this EC number represents a quercetinase which catalyzes the 

degradation of quercetin, a molecule that exhibits antioxidant and antibacterial 

properties and is present in edible fruits and vegetables, being part of the human 

diet and also of soil composition due to degradation of those fruits. Some 

microorganisms exposed to these compounds developed the ability to degrade it 

[312]. This may be the case for C. auris.  

- 3.1.1.65: this EC number represents a L-rhamnono-1,4-lactonase, which 

participates in the L-rhamnose degradation pathway. Although having some 

enzymes of this pathway, C. auris seems to be unable to use L-rhamnose as sole 

carbon source.  

- 3.5.1.128: this EC number represents a deaminated glutathione amidase which 

may be involved in the clearance of toxic deaminated glutathione, working as a 

repair enzyme [313].  

 

 



114 
 
 

 

II.3.4.4. Drug target forecast based on gene essentiality prediction: a cross-

species evaluation 

IRV973 was used to identify potential new drug targets by determining enzyme 

essentiality. A list of essential reactions was obtained through simulation of the 

system's behavior in RPMI medium, which mimics the environmental conditions 

of human serum, in order to narrow down the results to enzymes that should be 

essential in the conditions that a pathogen faces inside the host. A total of 158 

reactions and 82 genes were predicted as essential in iRV973. The complete list 

of predicted essential genes and reactions in C. auris can be found in 

Supplementary Data II.3.1. 

As seen before using a similar approach for C. albicans and C. parapsilosis, proteins 

which are targeted by currently used antifungal drugs were identified, including 

the targets of azoles, Erg11, and echinocandins, Fks1. This observation confirms 

the potential of using this approach in the quest for new drug targets. The most 

interesting outcome of this analysis, however, is the identification of numerous 

potential targets that are not currently used in clinical practice.  

In the search for potential new antifungal drug targets suitable to be used against 

all forms of candidiasis, the enzymes predicted to be essential in C. auris were 

compared with those predicted to be essential in C. albicans, C. parapsilosis and C. 

glabrata [237,288,303]. A total of 50 enzymes were predicted to be essential in the 

4 species, according to the simulations run in the 4 corresponding GSMMs 

Supplementary Table II.3.1. From this list we excluded drains, transport 

reactions, and those without an associated or incomplete EC number. The 50 

essential predicted enzymes can be grouped in 13 different pathways: steroid 

biosynthesis, purine metabolism, pyrimidine metabolism, terpenoid backbone 

biosynthesis, 1,3-beta-glucan biosynthesis, CoA biosynthesis, riboflavin 
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metabolism, glycerophospholipid metabolism, ubiquinone biosynthesis, folate 

biosynthesis, oxidative phosphorylation, fatty acid biosynthesis, and chitin 

biosynthesis. Some of these pathways are already targets of drugs used in clinical 

practice (Supplementary Table II.3.1), however, some could be explored as 

potential targets, in this work we not only propose these pathways as potential 

targets but also identify possible enzymes that should receive special focus in 

each of them. 

For example, Erg4 (ergosterol biosynthesis) Chs2 (chitin biosynthesis), and Fol1 

(folate biosynthesis) are targets without an orthologous enzyme in humans that 

are currently not targeted by any drug in Candida species. The absence of a human 

orthologous is a preferable attribute as this translates into lower chances of host 

drug toxicity and may allow for greater freedom of drug design, making these 

targets good candidates for drug targeting. However, the potential of the 

remaining candidates should not be discarded. Indeed, there are several reported 

cases of drug targets for which there are human orthologs. In those cases, the 

drug specificity relies on its design favoring affinity to the pathogen’s target, 

when compared to the eventual human target.  

 

II.3.5. Conclusions 

This study represents a significant milestone in the field of fungal pathogen 

research, as it presents the first validated global metabolic model for the human 

pathogen C. auris. The manual curation and experimental validation of the model 

have demonstrated its capability to quantitatively predict the main metabolic 

features of C. auris and its utilization of various metabolites as sole carbon or 

nitrogen sources. The overlap of 88% of the proteins with associated EC numbers 

in other already published yeast models establishes a foundation of shared 
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metabolic pathways among yeast species. Notably, the remaining 12% of 

exclusive proteins in this model may unveil unique metabolic characteristics 

specific to C. auris. 

The utilization of iRV973 to predict essential genes in RPMI medium has 

unveiled a list of potential drug targets. Remarkably, 50 of these essential genes 

have been predicted as vital in all Candida species for which GSMMs are 

available. Among these identified potential drug targets, some encode proteins 

already known to be targets of antifungal agents and other antimicrobial agents 

used in clinical practice, demonstrating the potential of this approach in 

identifying new drug targets. Of particular interest are the enzymes lacking any 

human homolog or drug association, making them highly promising candidates 

for new drug targets. Targeting such enzymes could lead to novel therapeutic 

strategies with reduced risks of off-target effects on human cells. 

Looking to the future, this validated global metabolic model for C. auris opens 

exciting prospects for further research and applications. It can be used as a 

platform to investigate the metabolic network of C. auris and with advancements 

in computational biology and systems biology, this model could be further 

refined and expanded to encompass additional aspects of the pathogen's biology. 

In summary, the publication of this validated global metabolic model for C. auris 

provides valuable insights into its metabolism and offering potential new clues 

for therapeutic interventions against C. auris and potentially other Candida 

species, given the alarming increase in drug-resistant fungal infections 

worldwide, the identification of new drug targets and the understanding of 

unique metabolic features are of utmost importance in combating these 

pathogens effectively. 
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II.4. Unveiling new features of the human pathogen C. neoformans through the 

construction and exploitation of a dedicated Genome-Scale Metabolic Model 

 

II.4.1. Abstract 

C. neoformans is notorious for causing severe pulmonary and central nervous 

system infections, particularly in immunocompromised patients. High mortality 

rates even with access to the best medical care associated with its tropism and 

adaptation to the brain microenvironment and its intrinsic resistance to 

echinocandins and an observed increase in fluconazole resistance in the past 

decades, makes this pathogen a public health threat and a World Health 

Organization (WHO) priority. 

In this study, the GSMM iRV890 was constructed for C. neoformans var. grubii, 

offering a promising platform for comprehensively understanding the unique 

metabolic features of C. neoformans, shedding light on its complex tropism for the 

microenvironment within the human and mammalian brain and potentially 

guiding the discovery of new drug targets. The model, available in the SBML 

format, underwent validation using experimental data for nitrogen and carbon 

assimilation, as well as specific growth and glucose consumption rates. Based on 

the comparison with GSMMs available for other pathogenic yeasts, unique 

metabolic features were predicted for C. neoformans, including key pathways 

shaping the dynamics between C. neoformans and the human host, and 

underlying its adaptation to the brain environment. Finally, predicted essential 

genes from the validated model are explored herein as potential antifungal drug 

targets. 
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Keywords: C. neoformans, Global stoichiometric model, Drug targets, Metabolic 

features, neurotropism. 

 

II.4.2. Introduction 

Cryptoccocal meningitis is a disease caused by some pathogenic species of 

basidiomycetous yeasts, namely Cryptococcus neoformans (C. neoformans) and 

Cryptococcus gatii. These yeasts are notorious for their potential to induce severe 

pulmonary and central nervous system infections [314]. While this pathogen is 

harmless in healthy individuals, it poses a serious threat to 

immunocompromised patients, especially with acquired immunodeficiency 

syndrome (AIDS) or those undergoing immunosuppressive therapies, causing 

severe meningoencephalitis and other grave neurological complications [315–

317]. According to a recent systematic review using data from more than 120 

countries, it is estimated that Cryptococcal meningitis affects 190 000 people 

worldwide annually, however, this situation is particularly concerning due to the 

extremely high mortality rates of those infections, with 147 000 deaths annually 

and a mortality rate of 76% [3] Cryptococcus species show relatively infrequent 

drug resistance since they are commonly treated with combination therapy, 

usually flucytosine in combination with amphotericin B in a first induction stage, 

followed by consolidation and long-term maintenance with high dose 

fluconazole [26]. Fluconazole, due to its fungistatic mode of action, is not 

considered optimal for anti-cryptococcal monotherapy, with the risk of 

developing drug resistance [318]. In fact, an increase in fluconazole resistance 

among C. neoformans isolates was noted in the past decades, rising from 7.3% in 

1997 to 11.7% in 2007 [27]. Fluconazole resistance is particularly notorious in 

relapse cases [28]. One entire class of antifungal drugs is not effective against 
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Cryptococcus, the echinocandins. This class of drugs is not used clinically to treat 

cryptococcosis due to intrinsic resistance, despite in vitro susceptibility [319], 

which is attributed to an inability of the drug to penetrate the host brain. Another 

possible cause of echinocandin resistance in Cryptococcus species is the fungal 

cell wall melanization that occurs in the brain environment, through the action 

of a fungal laccase, that uses L-DOPA and dopamine found in the human brain 

as precursors [320]. Melanin is an important virulence factor in C. neoformans since 

it can neutralize oxidative stress radicals protecting cells against host oxidative 

attack [321]. Melanin can also neutralize some toxic compounds, including some 

antifungal drugs, such as caspofungin and amphotericin B [322,323].  

C. neoformans is widely spread in the environment, with worldwide distribution, 

mainly attributed to the particles in bird guano found in soil and trees that are 

then inhaled by humans and other mammals [324]. This pathogen is 

characterized by their high resistance to harsh environments in nature and in 

mammalian hosts [325], and after entering the host it can stay in a dormant latent 

granulomatous form for long periods of time. However, their preference for 

causing central nervous system infections in response to immunosuppression is 

not yet fully understood [314,324]. Despite being a public health threat and a 

WHO priority pathogen [326], C. neoformans still has many aspects of its peculiar 

metabolism associated with the central nervous system and interactions with the 

host that remain poorly understood [327]. 

Cryptococcosis is caused by three Cryptococcus species/variants, C. neoformans var. 

grubii (serotype A), responsible for 95% of Cryptococcus infections worldwide 

[328]; C. neoformans var. neoformans (serotype D) and Cryptococcus gattii (serotypes 

B and C) geographically restricted to tropical and/or subtropical regions [324]. In 

this work, iRV890 the first reconstructed GSMM for the human pathogen C. 

neoformans var. grubii, is presented. The model is provided in the widely used 
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SBML format. Model validation was conducted using experimental data for 

nitrogen and carbon assimilation from phenotypic arrays covering 222 different 

sources [329]. 

Specific growth and glucose consumption rates were experimentally determined 

in order to quantitatively validate the model’s predictive power. A set of essential 

genes derived from the validated model is predicted and discussed in terms of 

their potential as novel antifungal drug targets. An additional comparison, with 

GSMM´s for other pathogenic yeast species and S. cerevisiae was performed 

regarding the gene essentiality prediction and unique metabolic features of C. 

neoformans. Some peculiar characteristics and pathways of this fungus relevant to 

its pathogenicity are also discussed based on our findings. The iRV890 model 

provides a promising platform for global elucidation of the metabolic features of 

C. neoformans var. grubii, with an expected impact in guiding the identification of 

new drug targets and understanding the complex metabolism of this pathogen 

in the context of the human brain.  

 

II.4.3. Materials and Methods 

 

II.4.3.1. Model Development 

The genome-scale metabolic model of C. neoformans var. grubii H99, designated 

as iRV890, was reconstructed using merlin 4.0.5 [122] following the methodology 

described elsewhere [221] and OptFlux 3.0 [128], for curation and subsequent 

validation stages. All computational analyses were executed utilizing the IBM 

CPLEX 12.10 solver. 
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II.4.3.2. Genome Annotation and Assembling of the Metabolic Network 

The genome sequence of the C. neoformans var. grubii was retrieved from NCBI’s 

Assembly database, with the accession number ASM1180120v1 [222] and the 

Taxonomy ID 235443 from NCBI´s Taxonomy database [223]. The genome-wide 

functional annotation was based on taxonomy and frequency of similar 

sequences through remote DIAMOND alignment [330] and similarity searches 

using the UniProtKB/Swiss-Prot database. Draft network assembly relied on 

protein-reaction associations available in the KEGG (Kyoto Encyclopedia of 

Genes and Genomes) database [280], with all reactions categorized as 

spontaneous or non-enzymatic also incorporated in the initial draft model. Hit 

selection was performed as described elsewhere [221] and phylogenetic 

proximity was implemented based on phylogenetic tree from the literature [122], 

this process is automated via the “Automatic workflow” merlin tool and then 

integrated into the draft model [122].  

 

II.4.3.3. Reversibility, Directionality and Balancing 

Reaction reversibility and stoichiometry curation involved a multi-step process 

combining both automated and manual efforts. Initially, automatic curation was 

conducted by merlin, utilizing references from remote databases like eQuilibrator 

[281] to predict reaction directionality, as described by [221]. This was followed 

by extensive manual curation, exploiting databases such as MetaCyc [231], 

Brenda [230], UniProt [331], FungiDB [332], RHEA [333], KEGG [231] and 

existing literature, in order to ensure that all reactions in the network are 

balanced, and with the correct directionality. All manually edited reactions can 

be found in Supplementary Data II.4.1. 
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II.4.3.4. Compartmentalization and Transport reactions 

This model includes four compartments: extracellular, cytoplasm, 

mitochondrion, and peroxisome, and one intercompartment, the cytoplasmic 

membrane. The prediction of compartments for each enzyme was performed 

using the DeepLoc - 2.0 [334] and directly imported to merlin. The transport 

reactions were automatically generated by the merlin integrated tool TranSyT 

[127] based on the public database TCDB [233]. Additional transport reactions 

across internal and external membranes for common metabolites, such as H2O, 

CO2, and NH3, often carried out without a transporter, were added to the model 

with no gene association.  

 

II.4.3.5. Biomass Equation 

The biomass formation was depicted through an equation including proteins, 

DNA, RNA, lipids, carbohydrates, and cofactors, with detailed composition 

information for each macromolecule sourced from literature or experimental 

data. All calculations were performed as in previously described methodology 

[39] and are detailed in Supplementary Data II.4.1. ATP requirements for biomass 

production and growth-associated maintenance (GAM) were added to the 

biomass equation with a value of  25.65 mmol ATP/gDCW, based on the ATP 

requirements for the biosynthesis of cell polymers as reported in [236], and ATP 

requirements for non-growth-associated maintenance (NGAM) was inserted in 

the model by an equation with specific fixed flux boundaries inferred from 

Candida tropicalis [236]. The theoretical phosphorus to-oxygen ratio used in the 

Saccharomyces cerevisiae iMM904metabolic model was applied to our model 

adding three generic reactions contributing to this ratio: 
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Reaction R00081: 

1.0 Oxygenmito + 4.0 Ferrocytochrome cmito + 6.0 H+ mito ↔ 2.0 H2Omito + 4.0 Ferricytochrome cmito + 

6.0 H+cyto,                                                                                                                                                                                                                                                        (1) 

 

Reaction R_Ubiquinol_Cytochrome_Reductase: 

1.0 Ubiquinolmito + 2.0 Ferricytochrome cmito + 1.5 H+ mito ↔ 1.0 Ubiquinonemito + 2.0 

Ferrocytochrome cmito + 1.5 H+cyto,                                                                                                                                                                                   (2) 

 

Reaction T_ATP_Synthase: 

1.0 Orthophosphatemito + 1.0 ADPmito + 3.0 H+ cyto ↔ 1.0 ATPmito + 1.0 H2Omito + 3.0 H+mito,                       (3) 

 

The final balance reaction: 

3.0 Orthophosphatemito + 1.0 Oxygenmito + 3.0 ADPmito + 2.0 Ubiquinoolmito ↔ 3.0 ATPmito + 5.0 

H2Omito + 2.0 Ubiquinonemito                                                                                                                    (4)                                                                                                                        

 

II.4.3.7 Network simulation and model curation 

During the model reconstruction process, extensive manual curation was needed 

in order to correct gaps in some pathways, due to incorrect reversibility; 

incomplete reactions; annotation errors; and blocked metabolites. Each case was 

meticulously inspected and studied, and reactions were edited, manually added 

to, or removed from the model based on literature evidence or databases such as 

KEGG pathways, MetaCyc, FungiDB, etc. The detailed list of all the alterations 

performed can be found in Supplementary Data II.4.1. 

During this process, the merlin tool “Find blocked reactions” was used to assist and 

accelerate the process. Additionally, the BioISO tool based on COBRA and FBA 

[284] frameworks, also integrated in merlin, assisted in the process of identifying 

potential errors in the network and accelerated the process of correcting the gaps.  
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II.4.3.8 Model Validation 

 

II.4.3.8.1. Strains and Growth Media 

C. neoformans var. grubii H99 strain, obtained via the Fungal Genomic Stock 

Center, was routinely maintained in Yeast extract–Peptone–Dextrose (YPD) and 

synthetic minimal media (SMM) was used for batch cultured experiments. YPD 

contained: 20 g/L glucose (Merck, Darmstadt, Germany), 20 g/L peptone (Merck, 

Darmstadt, Germany), and 10 g/L yeast extract (Merck, Darmstadt, Germany), 

while SMM included: 20g/L glucose (Merck, Darmstadt, Germany), 2.7 g/L 

ammonium sulphate (Merck, Darmstadt, Germany), 0.05 g/L magnesium 

sulphate (Riddle-de-Haen), 2 g/L potassium dihydrogen phosphate (Panreac, 

Barcelona, Spain), 0.5 g/L calcium chloride (Merck, Darm- stadt, Germany), and 

100 µg/L biotin (Sigma). 

 

II.4.3.8.2. Aerobic Batch Cultivation 

C. neoformans var. grubii H99 cells were batch cultivated in Erlenmeyer flasks 

containing 250ml of SMM medium, at 30 ºC (250 rpm). Exponential phase 

inocula, with an Optical Density (OD) (Hitachi u2001) at 600nm of 0.3, were 

prepared and cells were transferred to Erlenmeyer flasks containing 250ml of 

fresh SMM medium and cultivated at 30 ºC with orbital agitation (250 rpm) for 

10 h. 

II.4.3.8.3. Cell Density, Dry Weight, and Metabolite Concentration Assessment 

Throughout cell cultivation in SMM, 4 mL samples were collected every two 

hours for subsequent quantification of biomass and extracellular metabolites. 
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Cell density was monitored by measuring OD600nm. For dry weight determination, 

culture samples were centrifuged at 13,000 rpm for 3 minutes, and the resulting 

pellets were freeze-dried for 72 hours at -80 ◦C before being weighed. 

Extracellular metabolites, including glucose, ethanol, glycerol, and acetic acid, 

were identified and quantified by High-performance liquid chromatography 

(HPLC) on an Aminex HPX-87 H Ion Exchange chromatography column, eluted 

with 0.0005 M H2SO4 at a flow rate of 0.6 mL/min at room temperature. Samples 

were analyzed in triplicate, and concentrations were determined using 

appropriate calibration curves. During the exponential growth phase, the specific 

growth rate, specific glucose consumption rate, and specific production rates of 

ethanol, glycerol, and acetic acid were calculated as described elsewhere [285]. 

 

II.4.3.8.4. Network simulation and analysis 

All the phenotype simulations were performed with FBA in OptFlux 3.0 using 

the IBM¨CPLEX solver, including: gene and reaction essentiality; growth 

assessment; metabolite production and consumption; and carbon and nitrogen 

source utilization. For gene and reaction essentiality, in silico growth was 

simulated in environmental conditions mimicking RPMI medium (described 

above), and a biomass flux lower than 5% of the wild-type strain, after the 

respective gene/reaction knockout, was considered the threshold for essentiality. 

Gene and reaction knockout was simulated by restraining its corresponding flux 

bounds to zero.  
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II.4.4. Results and Discussion 

 

II.4.4.1. Model characteristics 

The C. neoformans var. grubii genome-scale metabolic model constructed herein, 

and denominated iRV890, comprises 890 genes associated with 2598 reactions, of 

which 683 are transport reactions, and 2047 metabolites across four 

compartments (extracellular, cytoplasm, mitochondria, and peroxisome). The 

model can be found in SBML format in Supplementary Data II.4.2. Among the 

2598 reactions, 1747 are cytoplasmic, 351 mitochondrial, 60 peroxisomal, and 440 

are drains (exchange constraints for external metabolites used to simulate the 

environmental conditions allow metabolites to be removed from the system). 

During the manual curation process, a total of 639 reactions/genes required 

alterations, including 80 that were mass balanced, 518 that were corrected for 

reversibility, directionality, or added or removed from the model, and 41 whose 

annotation was corrected, as detailed in Supplementary Data II.4.1. 

The Biomass equation (Table II.14) encompasses the cell's major components 

along with their respective and relative contributions, including DNA, RNA, 

lipids, carbohydrates, and cofactors. The equation's composition in 

carbohydrates [335],  and lipids [336–338] was inferred from literature data for C. 

neoformans. The composition of Proteins, DNA, and RNA was determined by the 

e-BiomassX where the whole genome sequence was used to estimate the amount 

of each deoxyribonucleotide as described in [123] mRNA, rRNA, and tRNA being 

used to estimate the total RNA in the cell as described in [111,123]. 
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Table II.14: Biomass composition used in the model iRV890. The full individual 

validated contributions of each of these metabolites are shown in Supplementary 

Data II.4.1. 

 

Metabolite g/gDCW Metabolite g/gDCW

Lipids Proteins

Lanosterol 0,000122 L-Valine 0,021577

Zymosterol 0,000254 L-Tyrosine 0,015049

Squalene 0,000209 L-Tryptophan 0,009327

Ergosterol 0,000724 L-Threonine 0,021232

Phosphatidylserine 0,005024 L-Serine 0,028926

Phosphatidylinositol 0,004638 L-Proline 0,023588

Phosphatidylcholine 0,031241 L-Phenylalanine 0,018311

Phosphatidylethanolamine 0,017714 L-Methionine 0,010414

Cardiolipin 0,002254 L-Lysine 0,024010

Phosphatidic acid 0,000644 L-Leucine 0,036460

Phosphatidylglycerol 0,000644 L-Isoleucine 0,019954

Tetradecanoic acid 0,000020 L-Histidine 0,011797

Hexadecanoic acid 0,000097 L-Glutamate 0,030725

Octadecanoic acid 0,000038 L-Cysteine 0,003906

Dodecanoic acid 0,000021 L-Aspartate 0,022303

Decanoic acid 0,000011 L-Asparagine 0,014317

Octanoic acid 0,000038 L-Arginine 0,033954

Octadecanoic acid 0,000038 L-Alanine 0,021391

(9Z)-Octadecenoic acid 0,000093 Glycine 0,014693

(9Z,12Z)-Octadecadienoic acid 0,000116 L-Glutamine 0,018063

(9Z,12Z,15Z)-Octadecatrienoic acid 0,000002

Triacylglycerol 0,032969 Soluble Pool

Sterol esters 0,001127 Pyridoxine 5'-phosphate 0,000833

FAD 0,000833

Carbohydrates Thiamine(1+) diphosphate 0,000833

Chitin 0,005645 NAD 0,000833

Mannan 0,033956 Glutathione 0,000833

 β (1,3)-Glucan 0,360399 Riboflavin 0,000833

Eumelanin 0,000833

Ribonucleotides Ubiquinone-6 0,000833

UTP 0,006713 NADP 0,000833

GTP 0,006806 COA 0,000833

CTP 0,005381 FMN 0,000833

ATP 0,007101 5-Methyltetrahydrofolate 0,000833

Deoxyribonucleotides

dTTP 0,016718

dGTP 0,017029

dCTP 0,015059

dATP 0,017193
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The translated genome sequence was used to calculate the amino acid 

composition using the percentage of each codon usage as described in [123]. 

Essential metabolites were included in the biomass composition to qualitatively 

account for the essentiality of their synthesis pathways [237,253].The growth and 

non-growth ATP requirements were adopted from S. cerevisiae [254]. 

 

II.4.4.2. Model validation 

 

II.4.4.2.1 Carbon and nitrogen source utilization 

In silico simulations were conducted using 222 different compounds as the 

exclusive carbon or nitrogen sources, under environmental conditions 

mimicking those of the minimal medium reported in [329]. The in silico growth 

was then compared to public available data on experimental growth data from 

commercially available phenotypic microarrays (Biolog) for C. neoformans var. 

grubii performed in [329]. For the analyses we used the data from STAT 

(stationary phase yeasts) condition after calculating the difference from the 

respective negative control group. A total of 155 sole carbon sources and 67 sole 

nitrogen sources were evaluated. iRV890 model correctly predicted growth in 

85% (133/155) of the carbon sources tested and in 85% (57/67) of the nitrogen 

sources Supplementary Table II.4.1. We tried to analyze and understand the 

reason behind the cases that failed the prediction. In some cases, mainly 

associated with amino acids, L-ornithine and glycerol (carbon source) and amino 

acids and D-Glucosamine (nitrogen source) the model seems to have all the 

necessary tools to assimilate the compounds as carbon/nitrogen sources, 

however, the experimental evidence states no growth. In those cases, the failed 

prediction may be related to regulatory information that is not taken into account 
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in this model simulations, or misinformation regarding the transporter 

annotation which is still a big challenge in the current model development 

process. In many cases, however, the prediction failed because specific enzymes 

are not yet characterized for C. neoformans. The comparison between the model’s 

prediction and experimental evidence suggests that the following enzyme 

activities are likely to be present in C. neoformans, although the underlying genes 

and proteins were not yet identified: 1.2.1.3 (aldehyde dehydrogenase), 1.1.1.21 

(aldose reductase), 3.1.1.65 (L-rhamnono-1,4-lactonase), 1.1.1.56 (ribitol 2-

dehydrogenase), 5.1.3.30 (D-psicose 3-epimerase), 2.7.1.55 (allose kinase), 4.1.2.10 

((R)-mandelonitrile lyase), 5.3.1.3 (D-arabinose isomerase), 3.2.1.86 (6-phospho-

beta-glucosidase), 4.1.2.4 (deoxyribose-phosphate aldolase), 3.2.1.86 (6-phospho-

beta-glucosidase) and 1.1.1.16 (galactitol 2-dehydrogenase). The identification 

and characterization of these predicted functions and their underlying gene(s) 

will shed light on the specific pathways of carbon or nitrogen assimilation in this 

pathogen, potentially revealing new mechanisms of virulence related to 

adaptation to the host environment and contributing to understanding its 

neurotropism. Altogether, the model achieved 85% predictability which is a high 

value, especially considering that the extensive list of carbon and nitrogen 

sources tested includes many that are not commonly used in traditional 

metabolic and phenotypic experiments and thus lack biochemical 

characterization. The specific example of the inositol assimilation pathway is 

paradigmatic in this sense, as explored later on. 

 

II.4.4.2.2 Growth parameters in batch culture 

To quantitatively validate the model, the specific growth rate, glucose 

consumption rate, and metabolite production rates were experimentally 
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determined, and compared with in silico predicted values. For a glucose 

consumption rate of 1.72 mmol.gDCW-1.h-1, a specific growth rate of 0. 188 h-1 was 

experimentally determined, leading to no detectable production of ethanol, 

glycerol, or acetate. For comparison with in silico results, we simulated the 

system's behavior in SMM medium with a fixed glucose uptake flux of 1.72 

mmol.g-1 dry weight.h-1. Other nutrient fluxes were left unconstrained, as the 

system was glucose-limited under these conditions. The simulation predicted a 

specific growth rate of 0.124 h-1, a difference of 0.06 h-1 to the experimentally 

determined value (Table II.15). In these conditions, the model did not predict the 

formation of glycerol, acetic acid, or ethanol as by-products, consistent with the 

experimental data. Moreover, the model does not predict the growth of C. 

neoformans under anaerobic conditions which is expected since this pathogen is 

an obligate aerobic fungus.  

Table II.15 - Growth parameter values predicted by the iRV890 model, in 

comparison with those determined experimentally. 

  Specific growth  

rate (h-1) 

q (mmol g-1 dry weight h-1) 

  Glucose Ethanol Glycerol Acetic acid 

In silico 0.124 1.72 0        0 0 

In vivo 0.188 1.72 0        0 0 

 

 

II.4.4.3. C. neoformans unique metabolic features 

To uncover unique metabolic features of this pathogen, a comparison was made 

between the C. neoformans GSMM with those previously built for C. glabrata [237], 

C. albicans [288], C. auris [339] and S. cerevisiae [238]. A comparison across the 

existing models was carried out based on shared EC numbers. After intersecting 

the EC numbers present in each of the five models, 83% (470/566) of the proteins 
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with an associated EC number in C. neoformans were found to also be present in 

at least one of the other four organisms (Figure II.9). Additionally, 40% (229/566) 

of the EC numbers were common among all the tested yeasts. However, the 

remaining 17% (96/556) are exclusive to the C. neoformans model and may 

represent unique metabolic features of this species relative to the remaining. 

None of these 96 EC numbers were associated with outdated, incomplete, or 

incorrect reaction associations. However, a small subset of these 96 EC numbers 

may be present in other species included in the comparison, but not accounted 

for in their respective GSMMs during the process of reconstruction. 

 

Figure II.9: Multi-species comparison in terms of proteins with an associated EC 

number present in the C. neoformans iRV890, C. albicans iRV781, C. auris iRV973, 

S. cerevisiae iIN800 and C. glabrata iNX804 GSMMs. The multiple intersection was 

performed using jvenn [340].  
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From the list of 96 C. neoformans unique EC numbers (Supplementary Data II.4.1), 

we searched for metabolic features or pathways relevant in the context of fungal 

infection in the host brain, either by constituting defense mechanisms or enabling 

host adaptation, through degradation or biosynthesis of specific metabolites. A 

few of these unique EC numbers with higher potential of impacting C. neoformans 

pathogenesis are discussed below:  

1.1.1.12 and 1.1.1.287- L-arabinitol 4-dehydrogenase and D-arabinitol 

dehydrogenase are two enzymes that are required for L-arabinitol assimilation 

as carbon source. Neither Candida species [288,303] nor S. cerevisiae [341], unless 

genetically engineered [342], can assimilate L-arabitol, which is a particular 

metabolic feature of C. neoformans when compared to other yeast species 

(Supplementary Table II.4.1).  In fact, it was shown that the deletion of the 

transporter for arabitol and other polyols, Ptp1 (polyol transporter protein 1) was 

associated with patient survival [343], while PTP1 expression is highly induced 

in macrophage and amoeba infection [343]. Since, arabitol is present in the 

cerebrospinal fluid, or is a known product of other human pathogens, for 

example, Candida species [344] this underscores the metabolic flexibility of C. 

neoformans. 

1.1.3.8 and 3.1.1.17 - L-gulonolactone oxidase and gluconolactonase are two 

enzymes that participate in ascorbate metabolism, allowing the utilization of 

Inositol and D-glucuronate as source for L-ascorbate biosynthesis (Figure II.10). 

Interestingly, it was reported by two independent studies that the presence of 

ascorbate, an antioxidant, lowers the susceptibility towards fluconazole in C. 

neoformans [345,346]. However, this effect seems to not be related to its 

antioxidant potential but to ascorbate-induced up-regulation of Upc2, a 

transcriptional regulator of genes involved in ergosterol biosynthesis, as shown 

in C. albicans [347].  The ability of C. neoformans to synthesize ascorbate from 
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inositol is particularly noteworthy, given the abundance of inositol in the human 

brain [327] and the widespread use of fluconazole in treating infections. Having 

a mechanism to produce a compound that mitigates the toxicity of fluconazole 

represents a significant adaptive advantage for this species. 

Figure II.10 – C. neoformans pathway for 

ascorbate biosynthesis, with the respective 

C. neoformans var. grubii EC numbers 

present in the iRV890 model. The 1.1.3.8 

and 3.1.1.17 enzymes, which are unique to 

C. neoformans among other pathogenic 

yeasts, are highlighted in purple.  

 

 

 

 

 

 

 

 

Additionally, the 1.1.3.8 and 3.1.1.17 enzymes are also important for inositol 

assimilation as carbon source through a variation of the previous pathway 

(Figure II.11). This pathway was suggested recently as an alternative pathway in 

fungi for inositol assimilation, and since inositol is highly abundant in the human 

brain, this may represent a very important metabolic feature for C. neoformans, as 
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an alternative carbon source in that environment, where some nutrients may be 

scarce. In fact, in order to implement that pathway in the model, two of the 

reactions reported were recreated and attributed with the names 

R2_Inositol_Pathway and R1_Inositol_Pathway in the model, although the 

corresponding EC numbers and genes have not been identified in the annotated 

C. neoformans genome [348]. This pathway was recreated exclusively from 

literature, and while it lacks more study, we suggest the gene CNAG_02553 is a 

probable candidate for encoding the 1.1.1.69 enzyme, predicted by OrthoMCL 

[349] as an ortholog of other genes with the same function [349]. Additional 

pathways for inositol assimilation are reported for animals (Figure III.11.B) and 

bacteria (Figure III.11.C), however, since C. neoformans lacks almost all the 

enzymes in those pathways, we considered that the new pathway reported in 

fungi [348] was the most probable to occur in this pathogen.  

1.1.1.377 - L-rhamnose 1-dehydrogenase is an enzyme required for L-rhamnose 

assimilation as carbon source. Candida species [288,303,339] and S. cerevisiae 

(unless engineered) [350] cannot assimilate L-rhamnose, which is a particular 

metabolic feature of C. neoformans when compared to these yeast species 

(Supplementary Table II.4.1).  Rhamnose is used by some pathogens, for example 

Pseudomonas aeruginosa, to produce rhamnolipids, and constitutes an important 

virulence factor in those bacteria, with roles in biofilm formation, hydrophobic 

nutrient uptake, and host immunity evasion, characterized for increasing lung 

epithelial permeability [351,352] and inhibition of macrophage phagocytosis 

[353]. Rhamnose utilization may represent an important adaptative advantage if 

C. neoformans, whose primary route of infection is, like P. aeruginosa, the 

respiratory system.  
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Figure II.11 - Metabolic pathways for inositol assimilation as carbon source, A - 

based on the proposed fungal inositol assimilation pathway reported in 

Kuivanen et al. 2016 [348]. B – based on the animal inositol assimilation pathway, 

and C- based on the bacterial inositol assimilation pathway. The respective C. 

neoformans var. grubii genes present in iRV890 are highlighted in purple. The 
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currently unknown genes are highlighted in red and the proposed reactions with 

an unknown EC number are represented as a question mark in red.  

1.14.13.231 - tetracycline 11a-monooxygenase is an enzyme that allows the direct 

conversion of tetracycline into 11a-hydroxytetracycline, and it was reported to 

confer resistance to all clinically relevant tetracyclines, by efficient degradation of 

a broad range of tetracycline analogues but also conferring resistance to these 

antibiotics in vivo. The hydroxylated product, 11a-hydroxytetracycline, is very 

unstable and leads to intramolecular cyclization and non-enzymic breakdown to 

undefined products, completely neutralizing the tetracycline effects [354,355]. 

Although tetracyclines are generally used as antibacterial antibiotics and have 

poor antifungal activity, the presence of this enzyme in C. neoformans should be 

taken into consideration when designing tetracyclines against fungi.  

3.1.3.8 - 3-phytase is an enzyme involved in inositol metabolism that may be 

involved in the production of phytic acid from inositol, a primary storage 

molecule of phosphorus and inositol. It was previously reported that mutation 

of this enzyme reduces the utilization of alternative carbon sources and confers 

attenuated virulence of C. neoformans associated with failed dissemination into 

the brain [356]. 

3.5.2.17 – hydroxyisourate hydrolase is an enzyme essential for the assimilation 

of uric acid as a nitrogen source. Uric acid is a normal component of urine, which 

is an interesting feature since this yeast is frequently isolated from bird guano, 

which is rich in uric acid. Additionally, uric acid enhances the production of key 

cryptococcal virulence factors, including capsule and urease, an enzyme required 

for full fitness at mammalian pH and dissemination to the brain [357]. C. 

neoformans capsule is induced in the presence of uric acid, which is a metabolite 

also found at high concentrations in the human blood [358,359]. 
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4.1.1.105 – L-tryptophan decarboxylase catalyzes the conversion of L-tryptophan 

into Tryptamine, which can then be converted into serotonin, and shares 

structure with several aminergic neuromodulators. However, the reaction is 

bidirectional, and Tryptamine can also be converted into L-tryptophan. While it 

is unclear which may be the role of this enzyme in C. neoformans, it may be related 

to the brain environment, specifically in the utilization of serotonin as nitrogen 

source through its conversion into L-tryptophan.  

4.1.1.28, 1.14.18.1, and 1.10.3.2 – DOPA decarboxylase, tyrosinase, and laccase are 

particularly important in C. neoformans, as they are involved in the biosynthesis 

of melanin, an important virulence factor in C. neoformans. Melanin is able to 

neutralize oxidative stress radicals as well as protecting the pathogen against the 

host immune system and antifungal drugs, such as caspofungin and 

amphotericin B. L-DOPA and Dopamine are present in the human brain and 

serve as precursors for dopamine biosynthesis in this pathogen.  

 

II.4.4.4. Drug target analysis based on gene essentiality prediction 

Pathogen’s GSMM are particularly useful to identify potential new drug targets, 

among predicted essential genes. For that purpose, a list of all predicted essential 

genes and enzymes in C. neoformans was obtained through simulation of the 

system's behaviour in RPMI medium, which mimics the environmental 

conditions of human serum. A total of 157 enzymes and 101 genes were identified 

as essential in RPMI medium. Among these targets, some have been previously 

identified as essential genes in other pathogenic yeasts (see Table 4), indicating 

potential drug targets common to all Candida species and C. neoformans. Notably, 

Erg11 and Fks1 are already targets of currently used antifungals, fluconazole, and 

echinocandins, respectively. Additionally, Erg26, Erg27, Erg24, Erg4, Erg7, 
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Erg12, and Erg13 have all been identified herein as potential drug targets within 

the ergosterol biosynthetic pathway. Particularly interesting is Erg4, as it lacks a 

human ortholog, suggesting an opportunity for designing compounds with 

enhanced selectivity and lower toxicity. Similarly to Candida, which lacks a 

Folate transporter [360] and relies on its de novo biosynthesis, C. neoformans seems 

to also not have a cytoplasmic folate transporter, leading to the identification of 

Fol1 as a promising multi-yeast drug target. Furthermore, Fas1, a fatty acid 

synthase enzyme, and Chs1, a chitin synthase, also lack human orthologs and 

constitute promising alternative antifungal drug targets due to their important 

role in membrane and cell wall structure and integrity. Other noteworthy targets 

span various pathways, including purine metabolism, terpenoid backbone 

biosynthesis, pyrimidine metabolism, CoA biosynthesis, glycerophospholipid 

biosynthesis, and ubiquinone biosynthesis (Table II.16). However, exploring 

these targets requires leveraging potential structural differences in the enzyme's 

active site compared to their human counterparts.  

Since C. neoformans colonizes a different host environment and is 

phylogenetically distant from Candida spp. we extended our evaluation to 

include potential new drug targets that are unique to this species, and not shared 

by any of the Candida spp.. We identified only two such targets: the 1.14.18.1 

tyrosinase, encoded by the gene CNAG_03009, and the 2.5.1.83 hexaprenyl 

diphosphate synthase, encoded by the gene CNAG_04375. While tyrosinase, 

responsible for melanin production, has a human ortholog (since humans also 

synthesize melanin), hexaprenyl diphosphate synthase (2.5.1.83) is fungal-

specific and may represent an interesting target. This enzyme plays a crucial role 

in terpenoid backbone biosynthesis, serving as a key contributor to the synthesis 

of precursors for ubiquinone biosynthesis. 
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Table II.16 - Enzymes predicted to be essential in RPMI medium in 5 pathogenic fungal species, based on the screening of the genome-

scale metabolic models of C. neoformans iRV890, C. auris IRV973, C. parapsilosis iDC1003, C. albicans iRV781, and C. glabrata iNX804. 

Grey rows highlight enzymes that are not encoded in the human genome. Data regarding the drug association was retrieved from 

the DrugBank database; only drugs with known pharmacological action against pathogens were selected. 

C. neoformans C. albicans C. glabrata C. parapsilosis C. auris S. cerevisiae Human 
Pharmacological 

action EC Number Pathway/Target 

                    

CNAG_04605 ERG26 CAGL0G00594g CPAR2_302110 CJI97_000938 ERG26 NSDHL   1.1.1.170 Steroid  

CNAG_00441 IMH3 CAGL0K10780g CPAR2_104580 CJI97_000080 IMD4 IMPDH - 1.1.1.205 Purine  

CNAG_07437 ERG27 CAGL0M11506g CPAR2_801560 CJI97_004310 ERG27 DHRS11 - 1.1.1.270 Steroid  

CNAG_06534 HMG1 CAGL0L11506g CPAR2_110330 CJI97_003299 HMG1 HMGCR - 1.1.1.34 Terpenoid backbone  

CNAG_00117 ERG24 CAGL0I02970g CPAR2_405900 CJI97_003097 ERG24 TM7SF2 - 1.3.1.70 Steroid  

CNAG_02830 ERG4 ERG4 ERG4 CJI97_002908 ERG4 - - 1.3.1.71 Steroid  

CNAG_04692 CDC21 CDC21 CPAR2_206550 CJI97_005101 TMP1 TYMS - 2.1.1.45 Pyrimidine  

CNAG_00700 ADE17 CAGL0A03366g CPAR2_202250 CJI97_002511 ADE17 ATIC  - 2.1.2.3 Purine  

CNAG_07373 URA2 CAGL0L05676g CPAR2_203160 CJI97_002269 URA2 CAD - 2.1.3.2 Pyrimidine  

CNAG_06508 GSC1 FKS1 CPAR2_106400 FKS1 FKS1 - Echinocandins 2.4.1.34 1,3-beta-glucan  

CNAG_03196 URA5 URA5 CPAR2_802790 CJI97_002422 URA5 UMPS - 2.4.2.10 Pyrimidine  

CNAG_02853 ADE4 CAGL0M13717g CPAR2_208260 CJI97_001833 ADE4 PPAT - 2.4.2.14 Purine  

CNAG_02084 BTS1 CAGL0H05269g CPAR2_302840 CJI97_003197 BTS1 GGPS1 - 2.5.1.1 Terpenoid backbone  

CNAG_07780 ERG20 ERG20 CPAR2_103950 CJI97_001757 ERG20 FDPS  - 2.5.1.10 Terpenoid backbone  

CNAG_02787 C5_05130C CAGL0F05555g CPAR2_502760 CJI97_003836 CAB5 COASY - 2.7.1.24 CoA  

CNAG_02976 CR_03740C CAGL0K11022g CPAR2_202590 CJI97_005311 FMN1 RFK - 2.7.1.26 Riboflavin  

CNAG_02866 C6_02980C CAGL0H01551g CPAR2_602050 CJI97_004586 CAB1 PANK - 2.7.1.33 CoA  
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CNAG_05935 URA6 CAGL0L09867g CPAR2_105320 CJI97_000033 URA6 CMPK2 - 2.7.4.14 Pyrimidine  

CNAG_06001 ERG8 ERG8 CPAR2_400710 CJI97_001215 ERG8 PMVK - 2.7.4.2 Terpenoid backbone  

CNAG_03335 C5_00260W CAGL0D00550g CPAR2_304260 CJI97_000019 PRS1 PRPS1 - 2.7.6.1 Purine  

CNAG_05384 C4_05210W CAGL0G03157g CPAR2_500260 CJI97_005306 PIS1 CDIPT  - 2.7.8.11 Glycerophospholipid  

CNAG_02795 ADE8 CAGL0F02761g CPAR2_211620 CJI97_002826 ADE8 GART - 2.1.2.2 Purine  

CNAG_02609 COQ3 CAGL0I07601g CPAR2_602300 CJI97_005452 COQ3 COQ3 - 2.1.1.114 Ubiquinone  

CNAG_00138 COQ5 CAGL0J06710g CPAR2_209250 CJI97_003704 COQ5 COQ5 - 2.1.1.201 Ubiquinone  

CNAG_00040 ERG11 ERG11 ERG11 ERG11 ERG11 CYP51A1 Azoles 1.14.14.154 Steroid  

CNAG_02844 PEL1 PGS1 CPAR2_805350 CJI97_000224 PEL1 PGS1 - 2.7.8.5 Glycerophospholipid  

CNAG_02878 C6_01340C CAGL0H04389g CPAR2_602700 CJI97_005490 GEP4 PTPMT1 - 3.1.3.27 Glycerophospholipid  

CNAG_00734 URA4 CAGL0J04598g CPAR2_100500 CJI97_002941 URA4 CAD - 3.5.2.3 Pyrimidine  

CNAG_02294 ADE2 ADE2 CPAR2_805940 CJI97_004071 ADE2 PAICS - 4.1.1.21 Purine  

CNAG_04961 URA3 URA3 URA3 CJI97_003384 URA3 UMPS - 4.1.1.23 Pyrimidine  

CNAG_02786 FOL1 CAGL0J07920g CPAR2_303390 CJI971_001274 FOL1 - Sulfacetamide 4.1.2.25 Folate biosynthesis 

CNAG_02786 FOL1 CAGL0J07920g CPAR2_303390 CJI971_001274 FOL1 - Sulfonamides 2.5.1.15 Folate biosynthesis 

CNAG_05125 MVD CAGL0C03630g CPAR2_109530 CJI97_001340 MVD1 MVD - 4.1.1.33 Terpenoid backbone  

CNAG_00909 CAB3 CAGL0L05302g CPAR2_800750 CJI97_003563 CAB3 PPCDC - 4.1.1.36 CoA  

CNAG_03270 ADE13 CAGL0B02794g CPAR2_204960 CJI97_000801 ADE13 ADSL - 4.3.2.2 Purine  

CNAG_00265 IDI1 CAGL0J06952g CPAR2_401630 CJI97_001183 IDI1 IDI1 - 5.3.3.2 Terpenoid backbone  

CNAG_01129 ERG7 CAGL0J10824g CPAR2_301800 CJI97_005090 ERG7 LSS Oxiconazole 5.4.99.7 Steroid  

CNAG_00143 ADE1 CAGL0I04444g CPAR2_500190 CJI97_003065 ADE1 PAICS - 6.3.2.6 Purine  

CNAG_06314 ADE5,7 CAGL0H07887g CPAR2_208400 CJI97_001704 ADE5,7 GART - 6.3.3.1 Purine  

CNAG_06314 ADE5,7 CAGL0H07887g CPAR2_208400 CJI97_001704 ADE5,7 GART - 6.3.4.13 Purine  

CNAG_04192 ADE6 CAGL0K04499g CPAR2_204070 CJI97_002160 ADE6 PFAS - 6.3.5.3 Purine  

CNAG_05759 ACC1 CAGL0L10780g CPAR2_804060 CJI97_001038 ACC1 ACACA - 6.4.1.2 Fatty acid  

CNAG_02686 ERG12 CAGL0F03861g CPAR2_803530 CJI97_005606 ERG12 MVK - 2.7.1.36 Terpenoid backbone  
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CNAG_03311 ERG13 ERG13 CPAR2_701400 CJI97_004952 ERG13 HMGCS - 2.3.3.10 Terpenoid backbone  

CNAG_02099 FAS1 CAGL0D00528g FAS1 CJI97_001309 FAS1 - - 2.3.1.86 Fatty acid  

CNAG_01877 GUA1 CAGL0F03927g CPAR2_803560 CJI97_005609 GUA1 GMPS - 6.3.5.2 Pyrimidine  

CNAG_03099 CHS1 CAGL0I04818g CPAR2_805640 CHS2 CHS2 - - 2.4.1.16 Chitin  
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II.4.5. Conclusions 

The construction and validation of iRV890, the first genome-scale metabolic 

model for C. neoformans var. grubii is presented herein. iRV890 constitutes a robust 

platform for exploring and elucidating the metabolic features of this poorly 

understood pathogen, particularly concerning its interaction within the central 

nervous system and the human host. By encompassing 890 genes associated with 

1466 reactions, this model offers a comprehensive view of the metabolic 

landscape of the pathogen. Through in silico simulations, we predicted the use of 

more than 200 compounds as sole carbon or nitrogen sources, and after 

comparison to experimental data from phenotypic microarrays, we gained 

valuable insights into the metabolic capabilities of C. neoformans. The model 

correctly predicts 85% of the carbon and nitrogen sources tested. The model was 

able to predict accurately the organism’s specific growth rate and confirmed its 

inability to grow under anaerobic conditions or to accumulate glycerol, acetic 

acid, or ethanol as metabolic by-products during growth in synthetic minimal 

medium, with glucose as carbon source. Additionally, we propose a list of yet 

unidentified enzymes expected to be present in C. neoformans, based on the 

carbon and nitrogen utilization and with potential to represent new host 

adaptation or virulence mechanisms.  

Our investigation into the unique metabolic features of C. neoformans has 

unveiled several pathways and enzymatic activities that are proposed to play 

pivotal roles in fungal infection within the host brain. Some enzymes constitute 

important virulence factors, such as Tyrosinase and laccase, enzymes responsible 

for the production of melanin which has an important role in host immune 

evasion [321], infection proliferation, and drug resistance [322,323]. Other 

enzymes are related to drug and stress resistance, such as tetracycline 11a-

monooxygenase, L-gulonolactone oxidase, and gluconolactonase. The remaining 
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enzymes are directly related to alternative carbon/nitrogen source utilization and 

are important for environmental adaptation. For example, hydroxyisourate 

hydrolase is essential for the assimilation of uric acid as a nitrogen source, an 

important virulence factor mechanism, and 3-phytase is involved in inositol 

metabolism and storage, important for brain dissemination.  

In this work, we also propose several potential drug targets in C. neoformans. 

Notably, enzymes such as Erg4, Chs1, Fol1, and Fas1 present promising 

opportunities for targeted drug development, due to their absence in human 

cells, offering opportunities for the development of selective and low-toxicity 

compounds. The CNAG_03009 and CNAG_04375 genes, encoding a tyrosinase 

and a hexaprenyl diphosphate synthase, are presented as potential antifungal 

drug targets specific of C. neoformans.  

Our model contributes to a better understanding of C. neoformans metabolism, 

especially within the host environment. With this work, we not only propose new 

metabolic enzymes awaiting characterization but also offer insights into key 

pathways and interactions shaping the dynamics between host and pathogen 

and its adaptive strategies. We also propose some potential antifungal targets, 

for C. neoformans and confirmed the coverage of already identified targets also to 

that species.  These results hold promise for the discovery of novel drug targets 

and for the full comprehension of this pathogen’s metabolic network with an 

expected impact in combating cryptococcosis. 
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III: Identification of Potential New Antifungal 

Drugs: from virtual drug screening to 

experimental validation. 
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III.1. Abstract 

Fungal infections pose a significant threat to human health, driven by increasing 

drug resistance and limited treatment options. The emergence of multidrug 

resistance further increases the urgency of discovering novel antifungal agents 

with enhanced efficacy and safety profiles.  

In this work, a multidisciplinary approach integrating computational modeling, 

molecular docking, and experimental validation was used to identify and 

evaluate potential antifungal agents targeting essential enzymes in pathogenic 

fungi. Specifically, focus was given to finding inhibitors of chitin synthase (Chs2) 

or dihydropteroate synthase (Fol1), previously identified as potential drug 

targets. Through high-throughput in silico molecular docking, compound 

libraries were screened and among 317 and 20,000 tested molecules, 37 and 76 

were identified as promising candidates as inhibitors of Fol1 and Chs2, 

respectively. Upon selection of some of the compounds exhibiting higher 

predicted affinity to the active site of Fol1 or Chs2, Homopteroic acid (C5) and 5-

(perylen-2-ylethynyl)-arabino-uridine (2a), were identified as the most 

promising compounds, exhibiting moderate antifungal effects. C5 was found to 

be fungicidal against the tested Candida species with an MIC of 256 mg/L and 

exhibiting synergy with fluconazole against C. albicans. However, cytotoxicity 

against mammalian cell lines was observed for this antifolate compound. 2a, with 

no detected cytotoxicity, was found to exhibit fungistatic activity against C. 

neoformans at 400 µM. 

Altogether, the compounds identified in this study show potential as active 

molecules against fungal pathogens, although further optimization to increase 

their antifungal activity and decrease cytotoxicity is still required. Additionally, 

a vast list of new alternative compounds for antifungal therapy is provided, 
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laying the foundation for future research and development in the field of 

antifungal drug design. 

Key-words: Molecular docking; Virtual drug screening; Antifungal agents; Drug 

discovery; Pathogenic fungi 

 

III.2. Introduction 

Fungal infections pose a significant threat to human health, with morbidity and 

mortality rates on the rise due to increasing drug resistance and limited treatment 

options [3,4]. Addressing this urgent clinical need requires the discovery and 

development of novel antifungal agents with improved efficacy and safety 

profiles. Particularly concerning are infections caused by pathogenic fungi 

belonging to the Aspergillus, Candida, Cryptococcus, and Pneumocystis genera, 

which exhibit high mortality rates, especially in immunocompromised patients 

[3]. The emergence of multidrug resistance in these pathogens further 

exacerbates the urgency of the situation [11–15].  

There is currently a demand for alternative and innovative approaches to 

accelerate the process of discovery of new drugs and deal with the rise of 

multidrug resistance in pathogenic fungi. Indeed, the traditional drug 

development process is hindered by its time-consuming, complex, and costly 

nature [132].  

Molecular docking emerged as a promising computational technique in rational 

drug design and discovery, and currently, plays an important role in the 

discovery and development of new drugs [133]. Molecular docking enables the 

modeling of interactions between small molecules and proteins at the atomic 

level, allowing the prediction of ligand-receptor complex structures within the 
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binding site of their predicted target and the elucidation of fundamental 

biochemical processes [131,134]. This approach can be used to perform a virtual 

drug screening of a large database of compounds against a certain target, offering 

large-scale prediction of compounds with superior binding affinities as potential 

inhibitors. Successful applications of molecular docking in drug discovery 

underscore its potential and widespread utilization in modern drug 

development [192–194]. 

In previous work from our lab [288,303,339] we identified chitin synthase (EC 

number 2.4.1.16) and dihydropteroate synthase enzyme (EC: 2.5.1.15) as potential 

drug targets in pathogenic fungal species using a cross-species approach 

integrating enzyme essentiality within host prediction from 5 different genome-

scale metabolic models (GSMM´s) for Candida and Cryptococcus species.  

In this work we used a multidisciplinary approach, integrating computational 

modeling, molecular docking, and experimental validation, to identify and 

evaluate potential new drugs targeting dihydropteroate synthase and chitin 

synthase in different Candida and Cryptococcus species. The integration of GSMMs 

and virtual drug screening is an innovative methodology with the potential to 

accelerate the development of novel antifungal agents. Our findings are 

anticipated to offer new alternative compounds for drug discovery, contributing 

to new advancements in addressing the challenges posed by fungal infections. 
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III.3. Materials and Methods 

 

III.3.1. Protein structure selection and modeling  

For the chitin synthase enzyme Chs1, the structure of Candida albicans (C. albicans) 

co-crystalized with UDP-N-acetylglucosamine and deposited in Protein Data 

Bank (PDB) with the code 7STM was used. For the Dihydropteroate synthase 

enzyme, Fol1, there was no available structure for any Candida or Cryptococcus 

species in PDB, so we decided to model its structure by homology modeling 

using MODELLER version 9.6 [185]. The structure of Saccharomyces cerevisiae (S. 

cerevisiae) Fol1 (PDB code: 2BMB) was used as a template to model the C. albicans 

Fol1 protein, except for some small regions where the S. cerevisiae Fol1 structure 

exhibited low confidence. In those cases, the Plasmodium vivax Fol1 structure 

(PDB code: 5Z79) was used as a complementary template. Multiple amino acid 

sequence alignments were performed using Clustal Omega [361]. The modeling 

was performed with 2 ligands fixed in the active site (4-aminobenzoate, and (7,8-

dihydropterin-6-yl)methyl diphosphate), and a magnesium cofactor. Thirty 

independent models were generated and ranked using the normalized Discrete 

Optimized Protein Energy (DOPE) score. Subsequent analyses were carried out 

on the model with the lowest score and with no visually detected clashes between 

non-bound atoms. The structures were visualized and analyzed using PyMOL 

2.3 [362]. 

 

III.3.2. Molecular Docking simulations and Virtual drug screening 

The docking calculations for the C. albicans Fol1 and Chs1 structures were 

performed using AutoDock Vina [144]. The receptor and ligands for each 

docking experiment were pre-treated and converted to PDBQT file format using 
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the AutoDockTools and used in AutoDock Vina to perform the simulations with 

an exhaustiveness value of 50 and a grid box centralized at the ligands covering 

the active site for each protein, with sizes 18,20,18 Å for Fol1 and 40, 40, 35 Å for 

Chs1. For each docking calculation, 30 solutions were generated and ordered by 

the binding energy. The docking results with the lowest binding energies were 

selected for visual inspection and further analysis.  

For the virtual drug screening on the Fol1 protein active site, analogous 

compounds of the product of the enzymatic reaction, 7,8-dihydropteroate, were 

searched in the Zinc15 database using two different search approaches, SMARTS 

search and Tanimoto 30 search, resulting in 317 analogs selected. The selection 

was filtered by the availability of the compounds to be purchased. For the Virtual 

drug screening on Chs1 active site, N-Acetyl-D-Glucosamine (chitin monomer) 

analogous compounds were searched in the PubChem database also using two 

different search approaches, SMARTS search and Tanimoto 30 search, leading to 

the selection of 22,000 compounds. This search was not restricted by compound 

purchase availability. 

III.3.3. Compounds 

The compounds 5-(perylen-2-ylethynyl)-arabino-uridine (2a), 5-(perylen-3-

ylbutadiynyl)-arabino-uridine (3a), 5-(perylen-3-ylethynyl)-2′-O-methyl-uridine 

(4a), 5-(4-phenyl-1,2,3-triazol-1-yl)uridine (5a), 5-[4-(perylen-3-yl)-1,2,3-triazol-1-

yl]uridine (6a), 5-[4-(perylen-2-yl)-1,2,3-triazol-1-yl]uridine (7a), 5-[3-(4-

benzoylphenoxy)prop-1-ynyl]-1-[(2R,4S,5R)-4-hydroxy-5-

(hydroxymethyl)tetrahydrofuran-2-yl]pyrimidine-2,4-dione (y7) and 2'-Deoxy-

5-[(perylen-3-yl)ethynyl]uridine (y11) where kindly provided by Luis M. Schang, 

Baker Institute for Animal Health, Cornell University, USA [363]. Homopteroic 

acid (compound C5) was purchased from Fluorochem, and N10-
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(Trifluoroacetyl)pteroic acid (compound CH1) was purchased from Musechem 

(Figure III.1). 

 

Figure III.1 – Molecular 2D structure of all the compounds acquired and 

experimentally tested in this work. 2a - 5-(perylen-2-ylethynyl)-arabino-uridine. 

3a - 5-(perylen-3-ylbutadiynyl)-arabino-uridine. 4a - 5-(perylen-3-ylethynyl)-2′-

O-methyl-uridine. 5a - 5-(4-phenyl-1,2,3-triazol-1-yl)uridine. 6a - 5-[4-(perylen-3-

yl)-1,2,3-triazol-1-yl]uridine. 7a - 5-[4-(perylen-2-yl)-1,2,3-triazol-1-yl]uridine. y7 

- 5-[3-(4-benzoylphenoxy)prop-1-ynyl]-1-[(2R,4S,5R)-4-hydroxy-5-

(hydroxymethyl)tetrahydrofuran-2-yl]pyrimidine-2,4-dione. y11 – 2'-Deoxy-5-

[(perylen-3-yl)ethynyl]uridine. C1 - N10-(Trifluoroacetyl)pteroic acid. C5 - 

Homopteroic acid.  
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III.3.4. Strains and growth media 

C. albicans SC5315, C. glabrata CBS138, C. parapsilosis CDC317, C. auris B8441 and 

C. neoformans var. grubii H99 strains were used in this study. Cells were pre-

cultured at 30ºC, with orbital agitation (250 rpm) in yeast extract-peptone-

dextrose (YPD) liquid medium containing per liter: 20 g glucose (Merck), 20 g 

yeast extract (Difco) and 10 g bacterial-peptone (LioChem). For minimal 

inhibitory concentration assays and checkerboard assays the Roswell Park 

Memorial Institute (RPMI) 1640 medium was used, containing per liter: 18 g 

glucose (Merck), 10.4 g RPMI-1640 (Sigma), 34.53 g morpholinepropanesulfonic 

acid (MOPS; Sigma).  

 

III.3.5. Minimal inhibitory concentration and Checkerboard assays 

The susceptibility of the fungal cells towards the selected compounds and 

determination of the minimal inhibitory concentration (MIC) was performed by 

broth microdilution method according to Clinical and Laboratory Standards 

Institute (CLSI) M27-S4 [364], using a range of concentrations for the new 

compounds from 4µM to 1000µM. In order to evaluate the eventual interaction 

of the compounds with known effective drugs, fluconazole, amphotericin B, and 

caspofungin, checkerboard assays were also performed. Several combinations of 

each pair of drugs were used in each well, using several dilutions for each one. 

All plates were incubated at 37°C for 24 h to 48h and the growth was assessed by 

measuring the value of optical density (OD) at 600 nm in a microplate reader 

(SPECTROstar Nano, BMG Labtech). In all experiments, a negative control 

without any drug concentration and a control with only DMSO at the same 

volume of the higher drug concentration were carried out in order to exclude a 

potential cytotoxic effect of DMSO.  
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The procedure for testing the compounds Y7, Y11, 2a, 3a, 4a, 5a, 6a and 7a was 

slightly different. Those compounds are amphipathic and have the peculiar 

characteristic of adhering strongly to plastic surfaces, for this reason, the 

traditional 96-well polystyrene microplates could not be used. Instead, the 

experiments were performed in individual glass vials, one vial for each different 

condition. Additionally, the cells were added to the vials before the compounds, 

and the medium with the cells was previously acclimatized at 37ºC. By the end 

of the growth inhibition experiments, the optical density was measured using a 

spectrophotometer (Hitachi u-2001) at 600 nm.  

 

III.3.6. Cytotoxicity assays 

The cytotoxicity of compounds Y7, Y11, 2a, 3a, 4a, 5a, 6a and 7a was evaluated 

elsewhere [365]. The cytotoxicity of compound CH1 was not assessed given that 

it did not present inhibitory activity against the tested fungal pathogens. The 

cytotoxicity of compound C5 was evaluated in three cellular models purchased 

from European Collection of Authenticated Cell Cultures, HeLa human cervical 

cancer cell line, L929 mouse Fibroblast cell line, and VK Murine myeloma cells. 

The cells were cultured and routinely maintained at 37°C in a humidified 

chamber containing 5% of CO2 (Binder CO2 incubator C150) in Dulbecco’s 

Modified Eagle Medium (DMEM; Gibco® by Life Technologies), supplemented 

with 10% of heat-inactivated Fetal Bovine Serum (FBS; Gibco® by Life 

Technologies), penicillin/streptomycin 100 U/ml (Gibco, ThermoFisher). Cell 

viability was assessed by the tetrazolium (MTT) reduction assay. Cells were 

seeded on 96-well plates (Orange Scientific) at a density of 1 × 104. After 24 h, 

medium was exchanged with 100ul of medium with a range of concentrations of 

C5 compound from 64 to 2 mg/L and incubated for 24 hours, DMSO was also 
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used at the highest concentration used for the drug dilution. Then MTT was 

added to each well and incubated at 37°C for 2 h. Absorbance was measured at 

570 nm in a microplate reader (SPECTROstar Nano, BMG Labtech). Untreated 

cells were used as control, in order to determine the relative cell proliferation of 

treated cells. 

 

III.3.7. Fluorescence microscopy 

Since compounds Y11, 2a, 3a, 4a, 6a, and 7a exhibit intrinsic fluorescence, it was 

possible to measure their intracellular localization in exposed fungal cells, with a 

Zeiss Axioplan fluorescence microscope (Carl Zeiss Microimaging) using 

excitation and emission wavelengths of 395 and 509 nm, respectively. 

Fluorescence images were captured using a cooled Zeiss Axiocam 503 color 

camera (Carl Zeiss Microscopy). 

 

III.4. Results and discussion 

 

III.4.1 Virtual screening for potential inhibitors of Fol1 

III.4.1.1. Modeling Fol1 protein structure 

In previous work from our lab, we identified Fol1, dihydropteroate synthase 

enzyme (EC: 2.5.1.15) as a potential drug target in pathogenic fungal species 

using a cross-species approach integrating enzyme essentiality within host 

prediction from 5 different genome-scale metabolic models (GSMM´s) for 

Candida and Cryptococcus species. Information regarding the active site residues 

of this protein is available, and the residues are conserved among the 5 species, 

with a 73% identity and 93% similarity (Figure III.2). This conservation opens the 
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possibility of developing novel and effective inhibitory compounds targeting all 

five species. 

 

Figure III.2 - Multiple Sequence Alignments of Fol1 protein of C. albicans 

(C5_00770C_A) and respective orthologs of C. parapsilosis (CPAR2_303390), C. 

auris (B9J08_001330), C. glabrata (CAGL0J07920g) and C. neoformans 

(CNAG_02786). The residues involved in the active site are highlighted in blue, 

with 73% identity and 93% similarity among all the proteins. Alignment 

performed with CLUSTAL 2.1.  

Fol1 protein has no available structures for Candida or Cryptococcus species, the 

closest related structure being for S. cerevisiae (PDB code: 2BMB). In order to 

perform molecular docking studies and screening for compounds capable of 

inhibiting this target, the structure of Fol1 from C. albicans was predicted by 
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homology modeling using as a template the 3D structure of S. cerevisiae with a 

resolution of 2.30 Å and PMM an analog of (7,8-dihydropterin-6-yl)methyl 

diphosphate, one of the reagents of the enzyme. The P. vivax Fol1 structure (PDB 

code: 5Z79) with 2.90 Å resolution and PAB and HH2, also an analog of (7,8-

dihydropterin-6-yl)methyl diphosphate, was also used as a template for some 

regions with no coverage in the Fol1 S. cerevisiae structure. C. albicans and S. 

cerevisiae 2BMB Fol1 sequences share 62% similarity and 42% identity, however, 

this identity is even higher if we consider only the residues reported to be 

involved in the active site [296], with 100% similarity and 93%identity (Figure 

III.3), making it possible to perform the modeling of C. albicans 3D protein 

structure with a high confidence, especially in the active site region, the most 

critical for the docking studies.  

 

Figure III.3 - Sequence alignment of S. cerevisiae (PDB code 2BMB) and C. albicans 

Fol1. Residues from the active site are highlighted in orange. Similar residues are 
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represented in green, and identical in yellow. The two sequences share globally 

62% similarity and 42% identity, and 100% similarity and 93% identity if 

considering the active site alone. 

The modeling was performed using MODELLER 9.23 and the best solution 

without atomic clashes and a DOPE score of -1.87 was used in the subsequent 

docking studies (Supplementary Data III.1). Comparison of the 2BMB structure 

with the modeled Fol1 C. albicans structure revealed a consistent overlap (Figure 

III.4B), with no significant differences observed in the positioning of side chains 

within the active site (Figure III.4A). 

 

Figure III.4 - Overlap between S. cerevisiae 3D structure (PDB code: 2BMB) and 

modeled structure of C. albicans using MODELLER 9.23.  A – overlap of active 

side residues. B – overlap of the full structures.  

 

III.4.1.2. Fol1 virtual drug screening 

In order to find new compounds with the potential to bind to the active site of 

Fol1 and inhibit its activity, the modeled 3D structure of C. albicans Fol1 was used 

as the receptor for molecular docking studies against libraries of compounds 
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analogous to 7,8-dihydropteroate, the product of the Fol1 enzymatic reaction. 

Out of a total of 317 compounds tested, 37 exhibited a binding energy lower than 

-9.0 kcal/mol, with an additional 91 displaying energies lower than -8 kcal/mol. 

Some of the compounds with the lowest binding energies are represented in 

Figure III.5, and the full list of the compounds with all the binding energies can 

be found in Supplementary Data III.2. 

 

Figure III.5 - Overlap of 7,8-dihydropteroate (white) and 5 of the compounds 

with higher affinity to C. albicans Fol1 modeled active site 3D structure obtained 

from virtual drug screening through molecular docking studies. The respective 

binding energy is indicated for each compound. C1: 4-[(2-amino-4-oxo-1H-

pteridin-6-yl)methoxy]benzoic acid; C5: Pteroic acid; C8: ethyl 4-[acetyl-[2-(2-
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amino-4-oxo-7,8-dihydro-1H-pteridin-6-yl)ethyl]amino]benzoate; C6: 

Homopteroic acid; C13: 4-((2-(2-Amino-4-oxo-3,4,7,8-tetrahydropteridin-6-

yl)ethyl)amino)benzoic acid. 

Among the most promising compounds, experimental testing was focused on 

compound C5, used as a case-study. Although not further pursued herein, all 

other identified potential Fol1 inhibitors constitute promising avenues for future 

exploitation. The molecular docking simulations of compound C5 in the active 

site of C. albicans Fol1 revealed that the compound seems to occupy the exact 

same position of 7,8-dihydropteroate, as expected (Figure III.6B). Similarly and 

also expected, the compound shares the same binding mode to the active site 

with the same polar interactions between the ligand and protein (R519, D557, 

N576, D675, R731, and K732) as observed for PAB in the carboxylate group and 

for (7,8-dihydropterin-6-yl)methyl diphosphate in the amide groups [296], 

products of the enzymatic reaction catalyzed by Fol1 (Figures III.6A, C and D). 

Given this similar binding mode and the occupation of the same space as the 

ligands within the active site and its high affinity predicted by molecular docking 

studies, it is expected that the compound C5 will be an efficient inhibitor of this 

protein, competing with the substrate for the binding to the active site. 
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Figure III.6 - A – PAB (yellow) and (7,8-dihydropterin-6-yl)methyl diphosphate 

(pink) docked in C. albicans Fol1 3D structure. B – overlap of compound C5 (dark 

blue) and 7,8-dihydropteroate (light blue) docked in C. albicans Fol1 3D 

structure. C – mesh representation of compound C5. D - Polar interactions 

between C5 and protein active site residues.  

 

III.4.1.3. Antifungal activity assessment  

In order to assess compound C5 antifungal activity, broth dilution antifungal 

susceptibility testing was performed against several pathogenic fungal species. 

C5 exhibited moderate inhibition against all tested species, including C. albicans, 

C. glabrata, C. parapsilosis, C. auris, and C. neoformans, with MIC50 values of 

200mg/L (820 µM). Interestingly the MIC80 against all tested Candida strains was 

also of 200mg/L, the compound displaying fungicidal activity at this 

concentration (Table III.1 and III.2). The MIC80 against C. neoformans was higher 
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than 512 mg/L. This lower capacity of C5 to inhibit C. neoformans may possibly be 

related to the presence of a capsule in this pathogen, which constitutes an 

important mechanism of resistance against toxic compounds.  

Given the moderate fungicidal activity of C5, we explored the potential for 

synergistic effects when combined with other known effective antifungal drugs. 

Checkerboard assays were performed to evaluate a possible synergistic effect of 

C5 when in combination with Fluconazole, Amphotericin B, and Caspofungin, 

used as representatives of each drug class. These drugs are known to impact 

fungal cell wall or plasma membrane integrity, potentially facilitating C5's access 

to the interior of fungal cells. 

C5 when in combination with Fluconazole was found to display a synergistic 

effect against C. albicans and C. neoformans with an Fractional Inhibitory 

Concentration (FIC) Index of 0.31 and 0.38, respectively, and an additive effect 

against C. glabrata and C. parapsilosis with FIC indexes between 0.75 and 1 (Table 

III.1). Synergistic assessment against C. auris was not feasible due to the strain's 

resistance to fluconazole. In contrast, no synergistic or additive effects were 

observed when C5 was combined with Amphotericin B or Caspofungin for any 

of the species or drug concentrations. 

 

Table III.1: MIC50 of compound C5 and Fluconazole alone and in combination 

against C. albicans, C. glabrata, C. parapsilosis, C. auris, and C. neoformans.  

 

C5 (mg/L) Fluco (mg/L) C5 (mg/L) Fluco (mg/L)

C. albicans 256 1 16 0,25 0,31 synergistic

C. glabrata 256 16 2 16 1,01 additive

C. parapsilosis 256 2 64 1 0,75 additive

C. neoforamans 256 0,5 32 0,125 0,38 synergistic

C. auris 256 >64 >128 >64 nd indifferent

MIC50 Drug alone MIC50 Drug Synergy
 FIC Index EffectStrain
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Table III.2: MIC80 of compound C5 and Fluconazole against C. albicans, C. 

glabrata, C. parapsilosis and C. neoformans. 

 

 

III.4.1.4. C5 cytotoxicity assessment  

Compound C5 showed moderate antifungal activity against Candida species, 

with a synergistic effect with fluconazole against C. albicans. In order to assess the 

possibility of this compound as a human antifungal drug we decided to evaluate 

its cytotoxicity against three different mammalian cell lines, HeLa (human), L929 

(mouse), and VK (Murine). The cytotoxicity was evaluated by MTT re-duction 

assay upon exposure to different concentrations of C5, using absorbance 

measurements to quantitatively evaluate cell proliferation indicated by the 

reducing power of living cells. Compound C5 seems to have a toxic effect even 

at lower concentrations in VK and HeLa cell lines. For L929 cells, no cytotoxic 

effect was detected, when compared to control conditions (Figure III.7). 

 

C5 (mg/L) Fluco (mg/L) C5 (mg/L) Fluco (mg/L)

C. albicans 256 128 16 1 0,07 synergistic

C. glabrata 256 128 64 64 0,75 additive

C. parapsilosis 256 4 32 2 0,63 additive

C. neoforamans >512 0,5 512 0,125 1,25 additive

C. auris 256 >64 >128 >64 nd indifferent

Strain
MIC80 Drug alone MIC80 Drug Synergy

 FIC Index Effect
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Figure III.7 - Cytotoxicity assessment of compound C5 with a range of concentrations from 2 to 64 mg/L against VK, L929, and HeLa 

cell lines, upon 48h drug exposure. Cell viability was assessed by the tetrazolium (MTT) reduction assay, reading 570 nm absorbance. 

C5 showed cytotoxicity at all concentration ranges especially against, VK (murine) and HeLa (human) cell line
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III.4.2 Virtual screening for potential chitin synthase inhibitors 

 

III.4.2.1. Virtual drug screening 

Adopting a similar strategy to our approach with Fol1, molecular docking was 

used to conduct virtual drug screening of a large compound database targeting 

the active site of the C. albicans chitin synthase (EC number 2.4.1.16), previously 

identified as a promising new antifungal drug target lab [288,303,339]. C. albicans, 

similar to most fungi, has multiple chitin synthase isoforms, including Chs1, 

Chs2, and Chs3. Although these isoforms share the same function and catalyze 

the same enzyme reaction, they are expressed under different conditions 

throughout the fungal cell life cycle. Chs1 is primarily involved in primary 

septum formation, while Chs2 participates in repairing damaged chitin during 

cell separation and depositing chitin in hyphae. Chs3 serves as an additional 

chitin synthase in both yeast and hyphal forms. Despite the challenges posed in 

protein crystallization by its transmembrane nature, there is an available 3D 

structure for the C. albicans Chs2, deposited in the PDB with the code 7STM, at a 

resolution of 3.02 Å. This structure, co-crystallized with an analog of chitin and a 

magnesium cofactor in the active site, is ideal for molecular docking studies, 

given its resolution and information on active site location and substrate-binding 

residues. 

The virtual drug screening was performed using molecular docking to access 

from a large compound database which ones are predicted to bind with greater 

affinity to the reported active site. From the PubChem database, we searched for 

compounds analogous to N-Acetyl-D-Glucosamine (chitin monomer) and 

selected all identified compounds, regardless of their availability for purchase. 

This screening encompassed a total of 20,000 compounds, leading to the 
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identification of 76 compounds exhibiting a high predicted affinity to the C. 

albicans Chs2, with a free energy of binding prediction lower than -10 kcal/mol 

(Supplementary Data III.3). Table III.3 displays 10 compounds with higher 

predicted affinity that were selected for further experimental validation. 

 

Figure III.8 - Surface representation of the CaChs2, highlighting the central 

tunnel and active site.  

In the structure of C. albicans Chs2, it is possible to identify a central tunnel within 

the transmembrane domain, approximately 30 Å long. This tunnel, with the 

capacity to accommodate a chitin chain comprising approximately five or six 

GlcNAc units, is where chitin polymerization is expected to occur (Figure III.8). 

The binding site of the UDP-GlcNAc, is positioned close to the cytoplasmic 

entrance of this tunnel, where the residues Y319, E321, K441, D465, E603, D604, 

Q643, R644, R646 and W647 take an important role in the binding process and 

catalysis [366], which are highly conserved among fungi with 100% identity in 

Candida and C. neoformans (Figure III.9).  Among these residues, Q643 and W647, 
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located in the polar region terminal, appear to be involved in the binding of the 

analogous compounds tested in this study (Figure III.10). 

 

Figure III.9 - Multiple Sequence Alignments of residues 307-664 of Chs2 protein 

of C. albicans (CR_09020C_A) and respective orthologs of C. parapsilosis 

(CPAR2_701490), C. auris (B9J08_005077), C. glabrata (CAGL0J11506g) and C. 

neoformans (CNAG_03326), performed with CLUSTAL 2.1. The residues involved 

in the active site are highlighted in blue, with 100% identity among all the 

proteins. 
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Figure III.10 – A – Compound 7a (Best affinity in virtual drug screening -11.8 

Kcal/mol) docked in the active site of CaChs2 with respective observed polar 

interactions. B – overlap of compound 7a (light blue) and Chitin (pink). C and D 

– mesh and stick representation, respectively, of compound 7a in surface view of 

CaChs2 active site. 

 

III.4.2.2. Antifungal activity assessment and cellular localization 

In order to assess the antifungal activity of the 10 selected potential Chs2 

inhibitors, broth dilution antifungal susceptibility testing was performed against 

several pathogenic fungal species, including C. albicans, C. glabrata, C. parapsilosis, 
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C. auris, and C. neoformans. Compounds 2a, 4a, 5a, and y7 were found to exhibit 

moderate fungistatic activity against C. neoformans, with a MIC values of 400 µM 

(Table III.3). Among these, compound 2a displayed the strongest inhibition, with 

an MIC80 value of 400 µM against C. neoformans.  

 

Table III.3 – MIC50 values in µM of different compounds targeting the Chs2 

protein against the 5 indicated pathogenic fungal species. MIC50 for compounds 

2a, 4a, 5a, and y7 with a higher inhibition activity against C. neoformans are 

highlighted in bold. 

nt: not tested 

Notably, compounds 2a, 4a, and y11 emit fluorescence, allowing us to assess their 

subcellular localization following exposure. The localization studies revealed 

that all three compounds were localized in the membrane and cytoplasm of C. 

neoformans. This effect was more pronounced in compounds 2a and 4a compared 

to y11, potentially contributing to explain the higher inhibitory effect of these 

compounds (Figure III.11). However, these observations allow us to infer that the 

compounds are being internalized into the cells, especially compounds 2a and 

4a. To verify if any of the compounds could be used in combination therapy, 

checkerboard assays were performed with each compound in combination with 

Drug ID C. alb icans C.  g lab rata C .  neoformans C.  auris C .  p arap si losis

c1 >820 >820 >820 >820 >820

2a >400 >400 400 >400 nt

3a >400 >400 >400 >400 nt

4a >400 >400 400 >400 nt

5a >400 >400 400 >400 nt

6a >400 >400 >400 >400 nt

7a >400 >400 >400 >400 nt

y7 >400 >400 400 >400 nt

y11 >400 >400 >400 >400 nt

MIC50 (µM)
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Amphotericin B. However, none of the compounds showed any synergistic effect 

with FIC values between 0.75 and 1, indicating only an additive effect between 

the 2 drugs, with the best value being achieved for compound 5a (0.75). 

 

Figure III.11 – Fluorescence of C. neoformans cells after exposure to Chs2 

predicted inhibitors 2a, 4a, and y11, which exhibit intrinsic fluorescence. The 

higher preponderance of intracellular fluorescence observed for compounds 2a 

and 4a is possibly connected to their stronger antifungal activity when compared 
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to y11, which mostly accumulates in the cell periphery. Phase contrast images of 

the same cells are used as controls. 

Moreover, compounds 2a, 3a, 4a, 5a, 6a, 7a, y7, and y11 demonstrated low 

cytotoxic effects against mammalian cells (Vero cells), with MIC50 values higher 

than 50µM (maximum tested concentration), as determined in [363]. 

 

III.5. Conclusions 

 

This study highlights the importance of molecular docking as a valuable tool for 

virtual drug screening, enabling the identification of promising compounds 

targeting specific fungal enzymes. Through the used approach, successful 

identification of new compounds with potential inhibitory activity against key 

enzymes involved in important cellular processes and fungal cell wall 

biosynthesis, Fol1 and chitin synthase respectively, was achieved.  

The obtained results led to the identification of homopteroic acid (C5) as having 

fungicidal activity against a range of pathogenic Candida species. The observed 

synergistic effects with fluconazole against C. albicans suggest the possibility of 

combination therapy to enhance the efficacy of existing antifungal drugs. 

However, the cytotoxicity of C5 raises concerns regarding its safety profile for 

clinical use. Further studies are warranted to elucidate the mechanisms 

underlying the interaction between compound C5 and Fol1 and to optimize its 

pharmacokinetic properties for improved safety and efficacy. High-throughput 

in silico molecular docking also uncovered 76 potential Chs2 inhibitors.  Among 

others, 5-(perylen-2-ylethynyl)-arabino-uridine (2a) was identified as the most 

promising compound, with no detected cytotoxicity [365] and exhibiting 

fungistatic activity against C. neoformans at 400 µM.  
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In conclusion, our study highlights the importance of a multidisciplinary 

approach that combines systems biology, computational modeling, experimental 

validation the discovery and development of novel antifungal agents. The 

compounds identified in this study show potential for further exploration and 

optimization, with the ultimate goal of addressing the urgent clinical need for 

effective antifungal therapies. Additionally, it is important to note that the 

compounds tested represent only a fraction of those identified in the virtual drug 

screening experiments. Their potential effectiveness, if tested experimentally, 

could yield valuable insights and potentially lead to the discovery of even more 

promising candidates. 
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IV. Final Discussion 
 

The currently available antifungal treatments are limited and only reasonably 

effective, especially against invasive fungal infections in immunocompromised 

patients. This is evidenced by the alarmingly high mortality rates, particularly in 

cases involving Candida and Cryptococcus infections [3]. The proliferation of 

resistant clinical isolates, with some isolates demonstrating multi-resistance to 

the three main antifungal classes [14], further reinforces the urgent need for the 

development of new antifungal strategies, new drug targets, and new antifungal 

drugs. However, the process of developing new drugs remains a difficult and 

costly task, as evidenced by the reduced number of new classes of antifungals 

that have emerged in recent decades. Building upon this issue, this thesis focused 

on the exploitation of an in silico drug discovery pipeline to disclose new 

pathways/enzymes essential for the pathogen survival or adaptation to the host 

environment, followed by in silico and in vivo screening for inhibitors of such 

essential enzymes to be used as potential new antifungal drugs. Focusing on 

clinically relevant pathogenic invasive fungi, including C. albicans, C. auris, C. 

glabrata, C. parapsilosis, and C. neoformans, an innovative multidisciplinary 

approach was used, integrating GSMM´s, virtual drug screening using molecular 

docking and experimental testing, contributing for the comprehension of fungal 

metabolic intricacies, the discovery of new drug targets and new potential drug 

candidates (Figure IV.1).  

Chapter II describes the reconstructions of previously unavailable GSMM´s for 

C. albicans SC5314, C. parapsilosis CDC317, C. auris B11221_V1, and C. neoformans 

var. grubii H99 strains. The four models were validated using experimental data 

and proved accurate when predicting compounds that can be used as sole carbon 
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or nitrogen sources and specific growth rates. Globally, all the built models are 

able to predict the assimilation of sole carbon or nitrogen sources with at least 

85% certainty. As important as correct predictions are, the cases where 

predictions have failed are also relevant, as they often revealed the lack of 

characterization of certain enzymes or metabolic pathways in the pathogen, 

allowing the identification of gaps in the understanding of pathogen metabolism 

that may play a crucial role in its environmental/host adaptation and virulence 

mechanisms. Indeed, we provide an extensive list of enzymes lacking 

characterization in those pathogens involved in assimilation pathways, 

especially in C. neoformans.  

Candida species are commensal microorganisms commonly found as part of the 

normal microbial flora in various mucosal surfaces in the human body or even in 

the skin [367]. The GSMM´s for the Candida species led to the identification of 

some unique metabolic characteristics in these species, mostly related to the 

utilization of alternative carbon and nitrogen sources or the acquisition of other 

nutrients. Additionally, there are potential mechanisms directly related to 

competitive advantages and interplay with the rest of the microflora, such as in 

C. auris, the enzyme chloride peroxidase associated with the production of 

halogenated antibiotics. Potential defense mechanisms against the host or toxic 

compounds were also identified, such as the enzyme inositol oxygenase in C. 

albicans and C. parapsilosis, involved in the resistance to toxic ergosterol analogs, 

or the enzyme sphingolipid 4-desaturase possibly related to resistance to azoles 

through alterations in membrane composition. Additionally, the enzyme N-

acetylglucosamine kinase may represent a survival mechanism for Candida 

species within phagosomes. Another example is the enzyme quercetinase 

involved in resistance to quercetin in C. auris, possibly due to exposure to this 

compound in the environment or as a result of the human diet. 
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C. neoformans, on the other hand, is characterized for colonizing the central 

nervous system [368], thriving in an environment that is scarcer in certain 

nutrients and requiring unique adaptation capabilities compared to Candida 

species [369]. C. neoformans model allowed the identification of some interesting 

and unique metabolic features related to this particular environment. For 

example, L-gulonolactone oxidase and gluconolactonase are involved in 

ascorbate biosynthesis from inositol, a metabolite that is abundant in the human 

brain [327], ascorbate conferring resistance to fluconazole in this pathogen. 

Additional enzymes related to inositol assimilation as carbon source were also 

proposed, as well as enzymes related to inositol storage such as 3-phytase, which 

is important for C. neoformans dissemination into the brain [356]. Additionally, 

enzymes from melanin biosynthesis pathway were also identified, an important 

mechanism of defense in this pathogen against human defenses and toxic 

compounds such as caspofungin and amphotericin B [322,323].   

GSMM´s enabled the identification of several unique metabolic features, which 

may open new doors for exploring new potential mechanisms of inhibition or 

drug resistance in these pathogens. However, our approach was also focused on 

the identification of essential pathways and enzymes for the survival of these 

fungi inside the human host environment, preferably common to more than one 

fungal species in order to identify potential new fungal-specific drug targets with 

reduced potential of cross-resistance. For that purpose, a cross-species 

comparison was performed utilizing GSMM from five different Candida species 

and C. neoformans to identify essential enzymes for the survival of the pathogens 

when facing conditions similar to the ones of the human serum. With this 

approach, we identified 47 enzymes predicted as essential in all Candida species 

included in the study and C. neoformans. Notably, targets of azoles and 

echinocandins were identified in this list, revealing the potential of this approach 



175 
 
 

 

for the identification of new drug targets. Most of the remaining targets have a 

human homolog, which may make it difficult to design effective compounds with 

reduced toxicity. However, if the host and pathogen protein structures differ 

significantly from each other it may be possible to take advantage of those 

structural differences. The most interesting compounds are those that are fungal 

specific, capable of inhibiting all fungal targets, and able to enter or be 

transported into the cell, as these should exhibit high antifungal activity with 

reduced cytotoxicity. However, in the design of a compound, it is necessary to 

take into account factors beyond its specificity and intracellular access. For 

example, the pathogen may metabolically inactivate the compound through 

metabolism or degradation, or it may possess efflux pumps that actively remove 

the compound from inside the cell. Additionally, it is challenging to be able to 

predict, for instance, the compound's access to cells growing within biofilms, 

which are characteristic of Candida species, or ability to cross the blood-brain 

barrier, as required for the treatment of cryptococcosis, or even the interaction of 

the compound with other compounds in the environment. 

Aware of these limitations, in Chapter III, we also decided to expand our strategy 

for discovering new compounds with antifungal activity against some of the 

previously identified targets by using an in silico pipeline, integrating protein 3D 

determination by homology modeling (if required), virtual drug screening from 

large compound databases using molecular docking and experimental testing in 

order to access antifungal activity and human cytotoxicity. 
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Figure IV.1 - Schematic representation of the work performed in this thesis, with 

a focus on GSMM reconstruction and the compounds found from virtual drug 

screening that went through experimental testing and showed promising results 

(C5, 2a, 4a, 5a, y7).  
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Chitin synthase and dihydropteroate synthase were the two enzymes selected for 

virtual drug screening and experimental testing, given their potential as possible 

drug targets. Both enzymes are fungal-specific and have key roles in fungal 

cellular structure or function.  

Dihydropteroate synthase, an enzyme encoded by the FOL1 gene and with the 

EC number 2.5.1.15 is essential in most fungal cells, including Candida species 

which do not have a folate transporter [296], and rely on folate de novo 

biosynthesis. Folate has a crucial role for fungal cells, being required for example 

as a precursor for S-adenosyl-L-methionine biosynthesis, which in turn is 

required in the ergosterol biosynthesis pathway. Dihydropteroate synthase 3D 

structure was determined by homology modeling, and virtual drug screening 

was performed in the active site of the protein against 317 homologous 

compounds to 7,8-dihydropteroate, the product of the enzymatic reaction. C5, 

one of the identified compounds with a higher predicted affinity to the protein 

was found to have fungicidal activity against all Candida species tested with a 

MIC value of 200mg/L. More interesting was the synergistic effect of this 

compound against C. albicans when in combination with fluconazole with an FIC 

value of 0,31. This synergistic effect suggests that compound C5 might not be able 

to access the cell effectively unless there is membrane permeabilization (such as 

that caused by fluconazole). Despite the initial promising results, compound C5 

showed cytotoxicity against human cell lines, even at lower concentrations. 

Nevertheless, we highlight the potential of this compound for the possibility of 

combination therapy to enhance the efficacy of existing antifungal drugs, keeping 
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in mind the concerns regarding its safety profile and the need for optimization of 

its pharmacokinetic properties for improved safety and efficacy. 

Chitin synthase was the second enzyme included in the virtual drug screening. 

This enzyme is encoded by several genes in fungal species and plays a critical 

role in the integrity of the cell wall, a structure that does not exist in human cells, 

making this enzyme a great candidate for drug targeting. High-throughput 

virtual drug screening was performed in the active site of the 3D structure of the 

Chs2 protein of C. albicans available in PDB against 20.000 chitin homologous 

compounds, uncovering 76 potential Chs2 high-affinity inhibitors. Among the 9 

compounds selected for experimental testing, none showed antifungal activity 

against Candida species, however, compounds 2a, 4a, 5a, and y7 showed 

promising fungistatic activity against C. neoformans, with MIC50 values of 400 

µM, compounds 2a, 4a and y11 being effectively internalized into C. neoformans 

cells. While the antifungal activity of these compounds is relatively low even 

against C. neoformans, the active principal may be explored in the future in the 

design of an inhibitor with higher efficacy. Why the compounds are ineffective 

against Candida species remains to be explained, but it is possible to hypothesize 

that Candida species may have efflux pumps that actively export these 

compounds, structural differences in the cell membranes that prevent drug 

diffusion, or even the presence of multiple chitin synthases with redundant 

activities. 

Looking to the future, the recent launch of AlphaFold3 [191] and its new beta-

phase server opens exciting new possibilities in the field of fungal pathogen 

research and drug discovery. By integrating AlphaFold3's advanced capabilities 

in complex structure prediction into our in silico results, we can expect to be able 

to perform the virtual drug screening process for the remaining drug targets 

predicted by GSMMs much more efficiently and accurately. Additionally, this 
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new tool could also be very useful in the design of new compounds based on 

those already identified in this thesis, with improved efficiency and safety.  

Overall, this thesis highlights the complexity of fungal metabolism and the 

importance of innovative approaches in drug discovery to address the growing 

threat of fungal infections and drug resistance. With an innovative in silico 

approach, integrating GSMMs, a cross-species genes essentiality prediction, and 

virtual drug screening against selected potential drug targets, we not only were 

able to identify new drug targets and potential antifungal compounds, but also 

enlighten some specific and possibly important metabolic features of the fungal 

pathogens, related to its host adaptation, infection dissemination or drug/stress 

resistance. Ultimately, we expect that this work will have an impact on the 

discovery of new therapeutic strategies to target fungal pathogens, which 

requires our utmost attention due to its impact on public health, resulting from 

high mortality rates, the emerging increase in drug resistance, and the limited 

therapeutic options currently available. 
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Supplementary Figure II.1.1 – 16S rRNA phylogenetic tree of several known C. albicans closely related species. Sequences retrieved 

from NCBI´s database and aligned using MEGA X 10.0.5, the evolutionary history was inferred by using Maximum Likelihood 

method and Tamura-Nei model. The percentage of trees in which associated taxa clustered together is shown next to the branches. 

The Tree is drawn to scale, with lengths measured in the number of substitutions per site.
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Supplementary Data II.1.1 – Detailed information regarding biomass 

composition of Candida albicans used in iRV781.  

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5t

y?usp=sharing 

 

     

Supplementary Data II.1.2 – Detailed information regarding model iRV781 

curation process. 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5t

y?usp=sharing 

 

 

Supplementary Data II.1.3 – Unique EC numbers of iRV781 in comparison to the 

GSMM´s iIN800 and iNX804.  

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5t

y?usp=sharing 

 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
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Supplementary Data II.1.4 – Model iRV781 in sbml format. 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5t

y?usp=sharing 

 

 

Supplementary Data II.1.5 – Comparison of gene essentiality in C. albicans 

iRV781 with literature data. 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5t

y?usp=sharing 

 

 

Supplementary Data II.2.1 – 1 and 2: Detailed information regarding biomass 

composition of Candida parapsilosis used in iDC1003. 3,4 and 6: Detailed 

information regarding model iRV781 curation process. 6: List of essential 

enzymes in RPMI medium environmental conditions in C. parapsilosis iDC1003, 

C. albicans iRV781, and C. glabrata iNX804. 7: List of all EC numbers present in C. 

parapsilosis iDC1003, C. albicans iRV781, C. glabrata iNX804, and S. cerevisiae 

iIN800, and respective C. parapsilosis iDC1003 unique EC numbers. 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5t

y?usp=sharing 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
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Supplementary Data II.2.2 - Model iDC1003 in sbml format. 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5t

y?usp=sharing 

 

 

Supplementary Data II.3.1 - Detailed information regarding Candida auris 

iRV973 GSMM. Including: Detailed biomass composition; Detailed information 

regarding model curation process; List of essential enzymes and List of Unique 

enzymes. 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5t

y?usp=sharing 

 

 

 

 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
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Supplementary Data II.3.2 - Model iRV973 in sbml format. 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5t

y?usp=sharing 

 

 

 

 

 

 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
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Supplementary Table II.3.1 - Enzymes predicted to be essential in RPMI medium, based on the screening of the genome-scale 

metabolic models of C. auris IRV973, C. parapsilosis iDC1003, C. albicans iRV781, and C. glabrata iNX804. Bold: fungal-specific enzymes. 

Data regarding the drug association was retrieved from DrugBank database; only drugs with known pharmacological action against 

pathogens were selected. 

Gene name Pharmacological 
action 

EC Number Pathway 
C. auris C. albicans C. glabrata C. parapsilosis S. cerevisiae Human 

CJI97_000938 ERG26 CAGL0G00594g CPAR2_302110 ERG26 NSDHL - 1.1.1.170 Steroid biosynthesis 

CJI97_000080 IMH3 CAGL0K10780g CPAR2_104580  IMD4 IMPDH - 1.1.1.205 Purine metabolism 

CJI97_004310 ERG27 CAGL0M11506g CPAR2_801560 ERG27 DHRS11 - 1.1.1.270 Steroid biosynthesis 

CJI97_003299 HMG1 CAGL0L11506g CPAR2_110330 HMG1 HMGCR - 1.1.1.34 Terpenoid backbone biosynthesis 

CJI97_003097 ERG24 CAGL0I02970g CPAR2_405900 ERG24 TM7SF2 - 1.3.1.70 Steroid biosynthesis 

CJI97_002908 ERG4 ERG4 ERG4 ERG4 - - 1.3.1.71 Steroid biosynthesis 

CJI97_005101 CDC21 CDC21 CPAR2_206550 TMP1 TYMS - 2.1.1.45 Pyrimidine metabolism 

CJI97_002511 ADE17 CAGL0A03366g CPAR2_202250 ADE17 ATIC  - 2.1.2.3 Purine metabolism 

CJI97_002269 URA2 CAGL0L05676g CPAR2_203160 URA2 CAD - 2.1.3.2 Pyrimidine metabolism 

FKS1 GSC1 FKS1 CPAR2_106400 FKS1 - Echinocandins 2.4.1.34 1,3-beta-glucan biosynthesis 

CJI97_002422 URA5 URA5 CPAR2_802790 URA5 UMPS - 2.4.2.10 Pyrimidine metabolism 

CJI97_001833 ADE4 CAGL0M13717g CPAR2_208260 ADE4 PPAT - 2.4.2.14 Purine metabolism 

CJI97_003197 BTS1 CAGL0H05269g CPAR2_302840 BTS1 GGPS1 - 2.5.1.1 Terpenoid backbone biosynthesis 

CJI97_001757 ERG20 ERG20 CPAR2_103950 ERG20 FDPS  - 2.5.1.10 Terpenoid backbone biosynthesis 

CJI97_003836 C5_05130C CAGL0F05555g CPAR2_502760 CAB5 COASY - 2.7.1.24 CoA biosynthesis 

CJI97_005311 CR_03740C CAGL0K11022g CPAR2_202590 FMN1 RFK - 2.7.1.26 Riboflavin metabolism 
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CJI97_004586 C6_02980C CAGL0H01551g CPAR2_602050 CAB1 PANK - 2.7.1.33 CoA biosynthesis 

CJI97_000033 URA6 CAGL0L09867g CPAR2_105320 URA6 CMPK2 - 2.7.4.14 Pyrimidine metabolism 

CJI97_001215 ERG8 ERG8 CPAR2_400710 ERG8 PMVK - 2.7.4.2 Terpenoid backbone biosynthesis 

CJI97_000019 C5_00260W CAGL0D00550g CPAR2_304260 PRS1 PRPS1 - 2.7.6.1 Purine metabolism 

CJI97_005306 C4_05210W CAGL0G03157g CPAR2_500260 PIS1 CDIPT  - 2.7.8.11 Glycerophospholipid metabolism 

CJI97_002826 ADE8 CAGL0F02761g CPAR2_211620 ADE8 GART - 2.1.2.2 Purine metabolism 

CJI97_005452 COQ3 CAGL0I07601g CPAR2_602300 COQ3 COQ3 - 2.1.1.114 Ubiquinone biosynthesis 

CJI97_003704 COQ5 CAGL0J06710g CPAR2_209250 COQ5 COQ5 - 2.1.1.201 Ubiquinone biosynthesis 

ERG11 ERG11 ERG11 ERG11 ERG11 CYP51A1 Azoles 1.14.14.154 Steroid biosynthesis 

CJI97_000224 PEL1 PGS1 CPAR2_805350 PEL1 PGS1 - 2.7.8.5 Glycerophospholipid metabolism 

CJI97_004676 C1_08780W PHO8 CPAR2_804250 PHO8 ALPL - 3.1.3.1 Folate biosynthesis 

CJI97_005490 C6_01340C CAGL0H04389g CPAR2_602700 GEP4 PTPMT1 - 3.1.3.27 Glycerophospholipid metabolism 

CJI97_002941 URA4 CAGL0J04598g CPAR2_100500 URA4 CAD - 3.5.2.3 Pyrimidine metabolism 

CJI97_000499 IPP1 IPP1 CPAR2_806200 IPP1 PPA2 - 3.6.1.1 Oxidative phosphorylation 

CJI97_004071 ADE2 ADE2 CPAR2_805940 ADE2 PAICS - 4.1.1.21 Purine metabolism 

CJI97_003384 URA3 URA3 URA3 URA3 UMPS - 4.1.1.23 Pyrimidine metabolism 

CJI97_001340 MVD CAGL0C03630g CPAR2_109530 MVD1 MVD - 4.1.1.33 Terpenoid backbone biosynthesis 

CJI97_003563 CAB3 CAGL0L05302g CPAR2_800750 CAB3 PPCDC - 4.1.1.36 CoA biosynthesis 

CJI971_001274 FOL1 CAGL0J07920g CPAR2_303390 FOL1 - Sulfacetamide 4.1.2.25 Folate biosynthesis 

CJI971_001274 FOL1 CAGL0J07920g CPAR2_303390 FOL1 - Sulfonamides 2.5.1.15 Folate biosynthesis 

CJI97_000801 ADE13 CAGL0B02794g CPAR2_204960 ADE13 ADSL - 4.3.2.2 Purine metabolism 

CJI97_001183 IDI1 CAGL0J06952g CPAR2_401630 IDI1 IDI1 - 5.3.3.2 Terpenoid backbone biosynthesis 

CJI97_005090 ERG7 CAGL0J10824g CPAR2_301800 ERG7 LSS Oxiconazole 5.4.99.7 Steroid biosynthesis 

CJI97_003065 ADE1 CAGL0I04444g CPAR2_500190 ADE1 PAICS - 6.3.2.6 Purine metabolism 

CJI97_001704 ADE5,7 CAGL0H07887g CPAR2_208400 ADE5,7 GART - 6.3.3.1 Purine metabolism 

CJI97_001704 ADE5,7 CAGL0H07887g CPAR2_208400 ADE5,7 GART - 6.3.4.13 Purine metabolism 
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CJI97_002160 ADE6 CAGL0K04499g CPAR2_204070 ADE6 PFAS - 6.3.5.3 Purine metabolism 

CJI97_001038 ACC1 CAGL0L10780g CPAR2_804060 ACC1 ACACA - 6.4.1.2 Fatty acid biosynthesis 

CJI97_005606 ERG12 CAGL0F03861g CPAR2_803530 ERG12 MVK - 2.7.1.36 Terpenoid backbone biosynthesis 

CJI97_004952 ERG13 ERG13 CPAR2_701400 ERG13 HMGCS - 2.3.3.10 Terpenoid backbone biosynthesis 

CJI97_001309 FAS1 CAGL0D00528g FAS1 FAS1 - - 2.3.1.86 Fatty acid biosynthesis 

CJI97_005609 GUA1 CAGL0F03927g CPAR2_803560 GUA1 GMPS - 6.3.5.2 Pyrimidine metabolism 

CJI97_004456 URA7 URA7 CPAR2_100620 URA7 CTPS1 - 6.3.4.2 Pyrimidine metabolism 

CHS1 CAGL0I04818g CPAR2_805640 CHS2 - - 2.4.1.16 Chitin biosynthesis 
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Supplementary Data II.4.1 – 1, 2, 3, and 4: Detailed information regarding 

biomass composition of Cryptococcus neoformans used in iRV890. 3,4 and 6: 

Detailed information regarding model iRV890 curation process. 5: List of 

essential enzymes in RPMI medium environmental conditions in C. neoformans 

iRV890. 6: List of all EC numbers present in C. neoformans iRV890, C. parapsilosis 

iDC1003, C. albicans iRV781, C. glabrata iNX804, and S. cerevisiae iIN800, and 

respective C. neoformans iRV890 unique EC numbers, with a detailed 

description. 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5t

y?usp=sharing 

 

 

Supplementary Data II.4.2 - Model iRV890 in sbml format. 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5t

y?usp=sharing 

 

 

 

Supplementary Table II.4.1 - Comparison between experimental and in silico 

phenotypic behavior of C. neoformans under different carbon and nitrogen 

sources. Highlighted in grey are the cases that are not in accordance with both 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
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evidence. Carbon source utilization was predicted correctly in 86% (133/155) of 

the cases and nitrogen source 85% (57/67). Growth (+); lack of growth (–);   

Carbon source In silico Experimental 

Acetamide - - 

Acetic acid + + 

Acetoacetate - - 

Adenosine - - 

a-D-Glucose + + 

a-D-Lactose - - 

a-Hydroxyglutaric acid-g-Lactone - - 

a-Keto-Valeric acid - - 

Amygdalin - + 

Arbutin - + 

b-Hydroxybutyric acid - - 

b-Methyl-D-Galactoside - - 

b-Methyl-D-Xyloside - - 

Bromosuccinic acid - - 

Butylamine - - 

Butyric acid - - 

Capric acid - - 

Caproic acid - - 

Citric acid - - 

D,L-Carnitine - - 

D,L-Malic acid - - 

D-Alanine - - 

D-Allose - + 

D-Arabinose - + 

D-Arabitol + + 

D-Aspartic acid - - 

D-Cellobiose + + 

Deoxyadenosine - - 

Deoxyribose - + 

Dextrin + + 

D-Fructose + + 

D-Fructose-6-Phosphate - - 

D-Galactarate - + 

D-Galactose + + 

D-Galacturonate - + 

D-Glucarate - - 

D-Gluconic acid + + 

D-Glucosamine + + 

D-Glucose-1-Phosphate - - 

D-Glucose-6-Phosphate - - 

D-Glucuronate + + 

D-Lactic acid Methyl Ester - - 

D-Lactitol - - 

D-Malic acid - - 



221 
 
 

 

D-Mannitol + + 

D-Mannose + + 

D-Melibiose - - 

D-Psicose - + 

D-Raffinose + + 

D-Ribose + + 

D-Serine + - 

D-Sorbitol + + 

D-Tagatose - + 

D-Tartaric acid - - 

D-Threonine - - 

D-Trehalose + + 

D-Xylose + + 

Ethanolamine - - 

Formate - - 

Fumaric acid - - 

Galactitol - + 

Gelatin - - 

g-Hydroxybutyric acid - - 

Glucuronamide - - 

Glycerol + - 

Glycerone phosphate + + 

Glycine - - 

Glycolate - - 

Glyoxylate - - 

Hydroxyproline - - 

Inosine - - 

Inulin - - 

Itaconic acid - - 

Lactulose - - 

L-Alanine + + 

L-Arabinose + + 

L-Arabitol + + 

L-Arginine - - 

L-Asparagine - - 

L-Aspartate + - 

L-Fucose - - 

L-glutamate + + 

L-Glutamine + - 

L-Gulono-1,4-lactone + + 

L-Histidine - - 

L-Homoserine + - 

L-Isoleucine - - 

L-Leucine - - 

L-Lysine - - 

L-Lyxose + + 

L-Malic acid - - 

L-Methionine - - 

L-Ornithine + - 
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L-Phenylalanine - - 

L-Proline + + 

L-Rhamnose - + 

L-Serine + - 

L-Sorbose + + 

L-Threonine + - 

L-Valine - - 

Malonate - - 

Maltose + + 

Mannan - - 

Methyl beta-D-galactoside - - 

Methyl ethyl ketone - - 

Methylpyruvate - - 

Mono-Methylsuccinate - - 

myo-Inositol; + + 

N-Acetyl-D-Galactosamine - - 

N-Acetyl-D-Glucosamine + + 

N-Acetyl-D-mannosamine 6-

phosphate - - 

N-Acetyl-L-glutamate - - 

N-Acetylneuraminate - - 

Octopamine - - 

Oxalate - - 

Pectin - - 

Phenylethylamine - - 

Propane-1,2,3-tricarboxylate - - 

Propane-1,2-diol - - 

Propanoate - - 

Putrescine - - 

Pyruvate - - 

Quinate - - 

Ribitol - + 

Salicin - + 

Sebacic acid - - 

Sedoheptulose - - 

sn-Glycerol 3-phosphate - - 

Stachyose + + 

Starch - - 

Succinate - - 

Sucrose + + 

Thymidine - - 

Tyramine - - 

Uridine - - 

Xylitol - - 

(R)-2-Methylmalate - - 

(R)-Acetoin - - 

(R,R)-Butane-2,3-diol - - 

(R,R)-Tartaric acid - - 

(S)-Lactate - - 
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2-Amino-2-deoxy-D-gluconate - - 

2-Hydroxybenzoic acid - - 

2-Hydroxybutanoic acid - - 

2-Methylmaleate - - 

2-Oxobutanoate - - 

2-Oxoglutarate - - 

3-Hydroxyphenylacetate - - 

3-Oxalomalate - - 

4-Aminobutanoate + + 

4-Hydroxybenzoic acid - - 

4-Hydroxyphenylacetate - - 

5-Aminopentanoate - - 

5-Oxoproline - - 

6-Deoxy-D-galactose - - 

Nitrogen source In silico Experimental 

Ammonia + + 

Nitrite - - 

Nitrate - - 

Urea + + 

Biuret - - 

L-Alanine + + 

L-Arginine + + 

L-Asparagine - + 

L-Aspartic acid + + 

L-Cysteine - - 

L-glutamate + + 

L-Glutamine + + 

Glycine + + 

L-Histidine - - 

L-Isoleucine - + 

L-Leucine - + 

L-Lysine - + 

L-Methionine - + 

L-Phenylalanine - + 

L-Proline + + 

L-Serine + + 

L-Threonine + + 

L-Tryptophan + + 

L-Tyrosine - + 

L-Valine - + 

D-Alanine - - 

D-Aspartic acid + + 

D-Glutamic acid - - 

D-Lysine - - 

D-Serine + + 
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D-Valine - - 

L-Citrulline + + 

L-Homoserine + + 

L-Ornithine + + 

N-Acetyl-L-Glutamic acid + + 

N-Acetyl-L-glutamate - - 

Hydroxylamine - - 

Methylamine - - 

Ethylamine - - 

Ethanolamine + + 

Putrescine - - 

Agmatine + + 

Histamine - - 

Phenethylamine - - 

Tyramine - - 

Acetamide - - 

Formamide - - 

D-Glucosamine + - 

N-Acetyl-D-Glucosamine + + 

N-Acetyl-D-Galactosamine - - 

N-Acetyl-D-Mannosamine - + 

Adenine - - 

Adenosine - - 

Cytidine - - 

Cytosine - - 

Guanine + + 

Guanosine - - 

Thymine - - 

Thymidine - - 

Uracil - - 

Uridine - - 

Inosine - - 

Xanthine - - 

Xanthosine - - 

Uric acid + + 

Allantoin + + 

4-Aminobutanoate + + 
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Supplementary Data III.1 – 3D structure of Fol1 protein of C. albicans modeled 

structure using MODELLER 9.23 with a DOPE score of -1.87 used in the docking 

studies. 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5t

y?usp=sharing 

 

Supplementary Data III.2 - List of the compounds used in virtual drug screening 

of C. albicans Fol1 modeled structure with all the respective binding energies. 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5t

y?usp=sharing 

 

 

Supplementary Data III.3 - List of the compounds with binding energies lower 

than -10 kcal/mol calculated in virtual drug screening of C. albicans Chs2 3D 

structure. 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5t

y?usp=sharing 

 

https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing
https://drive.google.com/drive/folders/1oZUtNrh9nMAtFv7qcjiNYZrw3L6ZU5ty?usp=sharing

