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Abstract

In an era where Internet security is paramount, cybersecurity tools that simulate attacks to pinpoint

system vulnerabilities are vital. Scapy is a Python library that specializes in packet manipulation. It is

widely used for network tasks such as scanning, tracerouting, and cybersecurity testing.

In this MSc Dissertation we developed a tool akin to Scapy, utilizing the Golang programming lan-

guage, renowned for its fast performance, low memory overhead, and exceptional concurrency support.

Scago is built upon the gopacket library. It follows the Scapy architecture and tries to mimic its read-

ability and user-friendly interface. The Scago library currently supports the following attacks: TCP SYN

flood, CAM overflow, ARP cache poisoning, STP root bridge hijack, VLAN double tagging, DHCP spoof-

ing, DNS spoofing and RIP poisoning. We compared the Scago implementation of these attacks with

equivalent implementations using Scapy. Our results show that Scago is significantly faster than Scapy,

especially in the implementations of DoS attacks. Moreover, while the readability of Scapy is in general

better, it becomes worse for attacks that require the use of concurrency. The library gives the user free-

dom to develop customizable scripts and create custom packets. Being a modular tool, we contributed

to the public library gopacket by adding support to RIP and 802.3 protocol layers.

This work was supported by Instituto de Telecomunicações.
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Resumo

Numa era em que a segurança na Internet é primordial, as ferramentas de cibersegurança que sim-

ulam ataques para identificar vulnerabilidades de sistemas são essenciais. Scapy é uma biblioteca

Python especializada na manipulação de pacotes. É amplamente utilizada para tarefas de rede, como

varreduras, traceroute e testes de cibersegurança.

Nesta Dissertação de Mestrado, desenvolvemos uma ferramenta semelhante ao Scapy, utilizando

a linguagem de programação Golang, conhecida pelo seu rápido desempenho, baixo consumo de

memória e excelente suporte à concorrência. Scago baseia-se na biblioteca gopacket. Segue a ar-

quitetura do Scapy e tenta imitar a sua legibilidade e interface amigável ao utilizador. Atualmente,

a biblioteca Scago suporta os seguintes ataques: inundação TCP SYN, overflow de CAM, envene-

namento de cache ARP, sequestro de bridge raiz STP, dupla etiquetagem VLAN, spoofing de DHCP,

spoofing de DNS e envenenamento de RIP. Comparamos a implementação destes ataques no Scago

com implementações equivalentes usando o Scapy. Os nossos resultados mostram que o Scago é

significativamente mais rápido que o Scapy, especialmente nas implementações de ataques DoS. Além

disso, embora a legibilidade do Scapy seja geralmente melhor, ela diminui em ataques que requerem o

uso de concorrência. A biblioteca permite ao utilizador desenvolver scripts personalizáveis e criar pa-

cotes personalizados. Sendo uma ferramenta modular, contribuı́mos para a biblioteca pública gopacket

adicionando suporte para as camadas de protocolo RIP e 802.3.

Este trabalho foi apoiado pelo Instituto de Telecomunicações.

Palavras Chave

Scapy, Golang, cibersegurança, rede, pacote, ataques
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1.1 Introduction

In today’s modern world, society relies more and more on the Internet for critical services such as health-

care, finance, and entertainment. This increases the importance of strengthening systems keeping them

secure. Security analysts play a key role in identifying and addressing vulnerabilities that could com-

promise the integrity of these systems. While many security measures target software vulnerabilities

in endpoint devices, there is also a need in addressing the vulnerabilities on the network infrastructure.

This includes routers, switches and other network devices.

There exists several tools designed to detect and exploit vulnerabilities in networks. For instance,

tools like arpspoof [1] and macof [2] from the dsniff suite focus on a specific attack type, while yersinia

[3] targets layer 2 attacks to the Spanning Tree Protocol (STP) and Virtual Local Area Networks (VLAN),

and ettercap [4] is employed for attacks to the Dynamic Host Configuration Protocol (DHCP) and var-

ious Man-in-the-Middle (MitM) attacks within local networks. When diving into route injection tools for

different routing protocols, the list dwindles further, with offerings such as vRIN, which handles basic

route injections, and OSV, which automates vulnerability checks on OSPF networks [5].

The Scapy library [6], written in Python, has packet construction and dissection capabilities. The

mentioned library allows to develop scripts to replicate some of the most common attacks. It belongs to

the collection of most used tools like nmap and tcpdump. However, it has some limitations. In some use

cases the performance of this library is not the best since it is limited by the restrictions of Python.

1.2 Objectives

This MSc dissertation aims to create a Golang (Go) based library for implementing network protocols

and security attacks, drawing inspiration from the Scapy architecture. Given Go’s advantages in speed

and enhanced concurrency, the library will be used to showcase key security attacks, followed by a

comparison with Scapy’s implementations.

1.3 Contributions

The contributions of this dissertation include the development of a library in Go, similar to Scapy. This

library is built upon the gopacket library, following Scapy user-friendly interface and architecture. We

demonstrated the use of the tool by coding the following security attacks: Content Addressable Mem-

ory (CAM) table overflow, VLAN double tagging, Address Resolution Protocol (ARP) cache poisoning,

Transmission Control Protocol (TCP) synchronize (SYN) flood, STP root bridge hijack, Domain Name

System (DNS) spoofing, DHCP spoofing and Routing Information Protocol (RIP) poisoning. For each
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attack, a comparison with a similar implementation using Scapy is done in terms of readability and ex-

ecution time. Being a modular library, it facilitates the process of adding support to another protocol

and gives the user freedom to developed customizable scripts. The library is provided through a Docker

container [7], and the attacks are demonstrated on the GNS3 software [8]. We also contributed to the

public library Gopacket by adding support to RIP and 802.3 ethernet layer (Dot3) protocol.

1.4 Report Structure

On chapter 2, we provide technical background on the Go and Python programming languages and

introduce the Scapy library. Chapter 3 introduces the Scago library. It starts by explaining the developed

code, the supported protocols and the utility functions. Chapter 4 gives examples of coding security

attacks using Scago and compares with equivalent implementations in Scapy in terms of execution

speed and readability. Finally, chapter 5 presents the conclusions and the topics for future work.
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This chapter contains details of Scapy library. It explains the purpose of this tool, the structure used

to built this tool and the most important functions and classes that will be useful to comprehend for

the developed library. Also, the Go programming language is introduced and a discussion is made to

understand the benefits and disadvantages when compared to Python.

2.1 Scapy

2.1.1 What is Scapy?

Scapy is a network packet manipulation library developed in Python. This programming language has

a simple and dynamic syntax, which makes it the ideal language for scripting and application develop-

ment. Python language is object oriented, which allows Scapy library to be modular, expandable and

customizable as we will discuss later in the report.

In this library, it is possible to send, receive and manipulate network packets. This library handles the

most common network tasks like scanning packets (Sniffing), building custom packets and creating au-

tomated answers for the supported network protocols (DNS, Internet Control Message Protocol (ICMP),

ARP ...) [9]. Scapy can be seen as a library that combines the most important features of previously

known tools like nmap, hping3, arpspoof, tcpdump, wireshark and so on.

2.1.2 What is Scapy used for?

Due to the vast possibilities and functionalities of Scapy, it can be used for many purposes. Focusing on

the field of computer security, Scapy can be used to perform network attacks and scans e.g. Port scans

to check open ports. The main advantage of this library is the possibility of modifying network packets at

a low level according to our needs. It is possible create packets with multiple stacked layers , manipulate

the values of each layer to create a custom packet to forge an attack, and, even if we don’t change

all values Scapy ensures that it automatically fills the necessary fields (Checksums, Destination ...) so

packets are valid to be sent across the network. Using the customization aspect of Scapy, it is possible to

write scripts to replicate the most common network attacks, e.g, ARP Cache poising, Man-in-the-Middle,

DNS poisoning and DoS attack [10].

The modular way Scapy is built, allows the developers to build custom apps for their needs and add

support to new protocols without worrying about the specifics of building new packets from scratch.

2.1.3 How Scapy works?

In this section we explore the most popular features of Scapy, focusing on the possibility of building

custom packets.This will allow us to understand better how Scapy is built and works.
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Scapy can be imported directly on the Python scripts since it is a publicly available library. It also

offers an interactive shell.

2.1.3.1 Scapy folder structure

The Scapy library is organized into a set of modules and submodules, with each module providing a

specific set of functions and classes. The top-level modules are organized into a set of folders, with

each folder containing related modules. To better understand future references to files and folders there

is a high-level overview of the Scapy folder structure in figure 1.

Figure 1: Scapy folder structure

2.1.3.2 Architecture of Scapy

The ability to nest multiple network layers in Scapy is achieved by using Python dictionaries. Each

packet contains several nested dictionaries, where each dictionary corresponds to a layer and its child

dictionary is the next available layer in the packet. To be able to understand how Scapy implements these

features there was the need to inspect and study Scapy source code, available publicly at GitHub [11].
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One of the most important files in Scapy structure is the base classes.py. This file defines the

base classes for the packet layers. These base classes provide the basic functionality for the packets

and are extended by the specific protocol classes to implement the behavior for each protocol. The

base classes.py file defines the following base classes: Packet metaclass and BasePacket. The

Packet metaclass and its subclasses provide additional functionality for constructing and modifying

packets. The BasePacket class, on the other hand, provides the basic functionality for packets and

defines the attributes and methods that are common to all packets in Scapy [12]. It is the foundation for

the Packet class and is not intended to be used directly.

Following, in the packet.py file we can find the Packet class itself. This class is the lowest level

class that will serve as a parent class for all the other layers that Scapy supports. To build a packet with

multiple layers in Scapy, we can use the operator ’/’ to add a layer on top of another. An example is

show in figure 2.

Figure 2: Scapy custom packet with 3 layers

The code shown in the above figure, creates a packet with an Ethernet layer, an IP layer, and a TCP

layer, in that order. The packet object represents the entire packet and contains the three layers as its

components. The output of the summary() function, defined in Packet class, will show the layers and

fields of the packet in a human-readable form.

The layers folder in Scapy contains the modules that define the packet layers for the various proto-

cols supported by Scapy. Each protocol has a separate module, organized into subfolders based on the

protocol family. Currently Scapy has support for the most important protocols, e.g. TCP, User Datagram

Protocol (UDP), Internet Protocol version 4 (IPv4), Internet Protocol version 6 (IPv6), ICMP, Internet

Control Message Protocol version 6 (ICMPv6), DNS, ARP, HTTP/S and many more. The inet.py con-

tains the definition of the modules for the Internet Protocol (IP) and its derivatives, such as IPv4, IPv6,

ICMP, TCP, etc. The l2.py file contains the modules for the Link Layer (L2) protocols, such as Ethernet,

FDDI, IEEE 802.11, etc. All those classes inherit from the Packet class previously mentioned [13]. In

figure 3, it is shown how the dependency and inheritance of packet classes in Scapy.
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Figure 3: Packet dependency on Scapy

With this analysis to the architecture of Scapy, we can now understand better how Scapy handles

the customization of packets and the possibility to stack multiple layers in the same packet. The way

Scapy is built, makes it fully modular and scalable which allows the users to create and modify packets

according to their needs. It also allows the developers to provide continuous support and improvements

to the library, since support for new protocols or layers can be added by just creating the necessary class

and adding the required fields. Let’s say we want to add support for a new layer called ExampleLayer

that has one field Description. For that we just need to define a new class, that should be a subclass

of Packet class and define the fields. In figure 4, the definition of the ExampleLayer is provided.

Figure 4: ExampleLayer creation example

Another interesting feature about Scapy is that as soon as the user starts the library, Scapy au-

tomatically determines some configurations like the interfaces and the routing tables available on the

operating system used. The configurations are saved under an instance of the class Conf, defined in

the file config.py. The mentioned class uses the support of two classes to store the interfaces and the

routes available. The NetworkInterfaceDict class defined in the interfaces.py file, stores the interfaces

at disposal. Finally, the Route class, defined in the route.py file, stores the routes available in the sys-

tem. Gathering those details about routes and interfaces, Scapy is also able to determine automatically

the interface to be used when sending a packet in layer 3 according to the available interfaces.
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2.1.3.3 Custom packets

As explained before, Scapy allows us to build packets and modify the fields of the built packet according

to our needs and objectives. In figure 5, we show the construction of a default DNS query packet and

the information of the packet summarized by the .mysummary() function.

Figure 5: DNS Query Packet

The figure shows that a DNS Query packet was created. Since we did not provide any details about

the query, Scapy automatically filled the query with the www.example.com website. However, we can

modify this packet by changing the query website to www.google.com. The figure 6 shows how we can

do it in Scapy.

Figure 6: Custom DNS Query Packet

The other functionality that Scapy has implemented is the possibility to have multiple layers, stacked

on one another. To illustrate this, we will create a custom DNS packet stacked on top of layer 2 and layer

3 headers. In figure 7, an example for creating a packet with 3 layers stacked is provided.

Figure 7: Custom DNS Query Packet with stacked Layers

As we have seen before, Scapy allows packets to be modified in all fields and even stack layers. If

we focus on the network security field, this feature allows the attackers/defenders to recreate multiple

network attacks that need to have custom handmade packets.

2.1.3.4 Send and receive Packets

Scapy also has the possibility of sending and receiving packets. There are three defined functions that

handles the network communication. All the mentioned functions can be found in the file sendrecv.py.

The sendp() and send() function are responsible for sending packets at layer 2 and 3 respectively.

Both functions take as arguments the packet to be sent and the network interface to use. The network

interface argument is optional. When talking about layer 3, Scapy can automatically determine the
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interface to use according to the routing table of the operating system in use, as explained in section

2.3.2. However in layer 2, there is always the need to provide the interface to be used.

Both functions use the internal send() function. This function generates an object called NetworkIn-

terface for a selected interface, which stores basic information about the interface such as its name, IP

address, and Media Access Control (MAC) address. The NetworkInterface object is defined by a class

in the interfaces.py file. The function then generates a SuperSocket object to handle socket communi-

cation, which will be explained in detail in section 2.3.7. Finally, it calls the gen send() function to send

a packet using the SuperSocket object [12]. The architecture and dependency of sendp() and send()

functions are shown in figure 8.

Figure 8: send() and sendp() functions architecture.

The sr() function is used to send a packet at layer 3 and receive its answer. The function uses

new classes to understand how packet reception works. It starts by selecting the interface and creating

a layer 3 socket for it. The method then calls sndrcv() function, which creates an instance of the

SndRcvHandler class. This class is used to send packets and correctly match their answers. It also

has support for threads, which are separate flows of execution in a program, and can increase the

execution speed when sending large amounts of data. However, the threaded mode has limitations and

known issues. According to the documentation, this mode can break the timestamps of packets, which

could result in an impossible negative latency. This limitation occurs due to Python’s limitations when

developing multi-threading software. The SndRcvHandler class uses Python’s callback functions to call

the sndrcv rcv() function and pass it as an argument to a function. A callback function is a function

that is passed as an argument to another function and is executed after a certain event [14].

The sndrcv rcv() function uses another important class: the AsyncSniffer also defined in sendrecv

file. Scapy has the possibility to be used as a network sniffer and this class is responsible for the sniffing

of packets and returns the list of sniffed packets. By default, this class is developed to sniff packets all

the interfaces available at the system in use. However, there is the possibility to select a single interface.

Scapy has the capability to parse offline pcap files (Packet Capture) [15]. This feature can be useful for

a variety of reasons:
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• Analyzing network traffic - Useful to detect traffic patterns, identify unusual activity or trou-

bleshoot network issues.

• Testing security controls - Pcap files can be used to test the effectiveness of security control

such as firewalls and intrusion prevention systems. By creating pcap files that simulate different

type of attacks, security experts can test how well the defense systems are able to detect and

block these threats.

• Investigate securtity incidents - By analayzing pcap files, we can reconstruct what happened

identifying the source of the problem and the corresponding timestamps.

Figure 9 shows the transmission of an IP packet to the address 8.8.8.8 which belongs to Google.

The send() function was used since we are working on layer 3 packets.

Figure 9: IP Packet to Google

Following, we sent a ICMP echo request packet for the website www.google.com and observe the

response. For that, we will use the sr1() function which is a variant of sr() function that returns only the

packet that corresponds to the answer of the sent one. The response is shown in figure 10.

Figure 10: ICMP ping to Google

2.1.3.5 Sniffing

Scapy can be used to implement a packet sniffer, which captures and analyzes network traffic passing

through a network interface. The sniff() function is defined in the sendrcv.py file and uses the class

AsyncSniffer, also defined in the same file. This class allows you to capture packets asynchronously,

using a separate thread or process to handle the packet capture. This can be useful if you want to

perform other tasks while the sniffer is running, or if you want to capture packets from multiple interfaces

simultaneously. When the sniffer starts, Scapy creates a session, explained in section 2.3.5, and stores

the captured packets in that session. In figure 11, we set up a sniffer in the interface en0 and used the

show() function that will show the details of the caputured packets at the moment.
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Figure 11: Sniffing Packets

2.1.3.6 Socket communication

Scapy provides a number of classes and functions for creating and interacting with network sockets,

which are used to send and receive packets over the network. The SuperSocket class, defined in the

supersocket.py file, is a base class for socket-like objects that can be used to send and receive packets

over the network. It is designed to be a flexible and extensible class for interacting with network sockets,

and provides a number of methods and properties for managing the connection and handling of packets.

When an instance of this class is created, it stores information such as the interface used and the socket

for the communication (from the socket Python library, family AF INET and type SOCK STREAM by

default).

This class redefines the send and receive methods from the traditional socket library in Python. The

send function transforms the packets into bytes and sends them using the send() method defined in the

socket library. The receive method, uses the recv() function from the socket library and transforms the

data received into a Packet Scapy object, defined in packet.py file.

Scapy also contains several variations from the SuperSocket class. We have the L2ListenTCPDump

which is a type of socket that reads packets at layer 2 using the tcpdump function. The L3RawSocket

uses raw sockets PF INET/SOCK RAW and it also contains. It is also available a class SimpleSocket,

which is used when a traditional socket is already provided and there is only the need to store that socket

into an object. Finally, the StreamSocket that inherits the attributes and methods from SimpleSocket

and SuperSocket. According to Scapy documentation, it used to transform a simple socket into a layer

2 socket. It is important to mention that all the previous classes inherit from the SuperSocket metaclass.

The figure 12 describes the hierarchy of the SuperSocket class and the corresponding variations.

Figure 12: SuperSocket class hierarchy and the corresponding variations

2.1.4 Higher level functions

As we have seen in the previous sections, Scapy is developed in a very modular way. We have also

explained how packets are built, customized and how the socket communications is handled.
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Scapy also contains several useful high level functions and classes, that are worth to mention and

explain. Those functions are built using the low level functions that we’ve explained in the previous

sections and add interesting functionalities to Scapy.

2.1.4.1 AnsweringMachine

The AnsweringMachine is a class, defined in the ansmachine.py file. This class is used to create

automated responses when a packet is received. It can be used to forge DNS replies or to create a

ICMP reply as soon as we receive a ICMP request.

To create a reply, there is the need to have a sniffer on the desired interface so we can create the

response as soon as we received the desired packet. For that, the class uses the AsyncSniffer class

and the sniff() function previously explained.

2.1.4.2 Traceroute and traceroute map

Scapy also includes a built-in traceroute function. This function works the same way as the traditional

traceroute available in Unix systems. The function traceroute() is defined in the file inet.py.

It takes as arguments the target IP address or host name, the destination port, the minimum and

maximum time to leave and the source port. It also has the option to use a Scapy defined Packet

instead of a normal ICMP packet.

The function uses the previously explained sr() function to send and receive packets. Finally, it builds

an object of the class TracerouteResult which is an extension of the class SndRcvList. This class is

the set of all packets that will be used to define the traceroute.

It also has the option to print a world map of the traceroute. The function traceroute map() is used

to call traceroute on multiple targets and display the world map with the traceroute results. This function

calls the traceroute() on each of the specified targets.

2.1.4.3 Bridge and Sniff

In Scapy, the bridge and sniff function is a convenience function that combines the functionality of

the sniff and sendp functions to allow sniffing and sending packets on a bridged interface. The

bridge and sniff function sniff packets on two specified interfaces, iface1 and iface2, and calls a pro-

vided function, prn, for each packet that is sniffed. It also sends any packets that are sent using the send

function on either interface.

The bridge and sniff function is useful for sniffing and sending packets on a bridged interface, for

example, when you want to sniff and send packets between two networks connected by a bridge.
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2.1.4.4 Tshark

This is a simple function that is intended to replicate the text-wireshark version. Basically, it sniffs the

packets on a certain interface and calls the summary() function on the packet object. This function will

summarize the packet into text.

This is an example of how easy it is to implement new simple but useful functions on Scapy. This is

possible due to the modular way Scapy is built, which allows the developers to use the already developed

functions to create new functionalities.

2.2 Go

In this chapter we introduce the Golang language and discuss its benefits or disadvantages when com-

paring with Python. We will also study how those benefits can be used to improve a tool similar to Scapy

but developed in Golang.

2.2.1 Introduction to Golang

Golang, which is also known as Go, is an open-source, multipurpose and statically-typed programming

language with a syntax similar to C. This language is supported by Google and it allows the developers

to build reliable and trustworthy code. The Go language started in 2009 and has constantly grown in

popularity since then. Many named organizations in the industry are using Go on their services, e.g.

Paypal, Meta, Microsoft and Netflix. Also, the Docker Kubernetes were developed using Go [16].

Golang is designed to be a fast, scalable and effiencient language for building large-scale systems. It

is suited for a variety of use cases such as bulding web servers and web services, developing command-

line tools and utilities, creating distributed systems and microservices and building cloud-based applica-

tions and infrastructure. Go has a large standard library and a growing ecosystem of third-party libraries

and frameworks, making it a popular choice for developers building a wide range of applications [17].

2.2.2 Features of Golang

Golang is a compiled programming language, meaning that the source code is transformed into a

machine-readable form called executed, which can be run on a computer. In contrast, interpreted

languages (e.g. Python) are executed directly by the interpreter, without the need of an intermediate

executable. There are key differences between compiled and interpreted languages specially when talk-

ing about execution speed. Compiled languages are generally faster that interpreted languages since

the executable code is optimized for the target platform and can be run directly by the machine. On the

interpreted languages, the code is translated into machine code at run time by the interpreter.
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2.2.2.1 Object-oriented programming

Object-oriented programming (OOP) has been one of the dominant paradigm that is based on the con-

cept of objects which contain data and methods that operate on that data. As we have seen on section

2.1, Scapy uses this concept to define the core functionality into classes and respective objects. This

allows Scapy to have a modular and extensible designed, making it easier to add new features.

Altough Go is not considered an OOP language, it has some features that allow developers to use it

as an OOP language. It does not have traditional objects and classes, instead it has structs, methods

and interfaces [18]. As explained in section 3.2.1 structs are a composite type that allow to group multiple

variables of different types, similar to classes in Python. Methods are functions that operate on struct

values, defined on structs themselves. An interface is a set of method signatures that defines a contract

for types that implement the interface. The example on figure 13 will be used to show how Go uses

structures to achieve a similar behaviour to classes in Python. This was the method that we used in the

developed library.

Figure 13: Structs, Interfaces and Methods in Go

In the example of figure 13 there are two define structs Car and Boat. Those structs have two

attributes and work similar to classes in Python. An interface named Engine defines the method Start().

The same method is defined for each available struct that will operate under the specific struct value

motor. We can say that the type Car and Boat implement the interface Engine.
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2.2.2.2 Concurrency

One of the most important features of Go is the concurrency support. Concurrency is about multiple

tasks that start, run and finish in no order, at overlapping time periods. The way Go implements concur-

rency is using goroutines and channels.

A goroutine is a lightweight thread of an execution that is started by using the keyword go before

calling a function. They are similar to threads in other programming languages but have some important

differences. Goroutines are managed by the Go runtime, while threads are usually managed by the

operating system. This implies that creating and managing goroutines is less expensive, in terms of

memory usage, than creating threads. It is a common practice to create goroutines for tasks like I/O

as it improves performance, scalability and eases concurrent and parallel code [19]. Channels are a

way for goroutines to communicate with each other. They work as a pipe that can be used to send

and receive values between goroutines. This allows for goroutines to synchronize the execution and

activities. Combining channels and goroutines ease the process of development of concurrent programs

and fault-tolerant systems [19].

Starting a goroutine is simple, and it uses the go keyword followed by the function to be executed.

An example is show in figure 14.

Figure 14: Go keyword

This will run bridge aux() in a new goroutine and the control will immediately return to the next line

of the calling function, making the execution non-blocking.

When developing apps with goroutines, we must be wary of a unique behavior. Unlike other lan-

guages where the program counter waits for the called function to return before proceeding to the next

instruction, a goroutine call in Go returns immediately. It’s crucial to ensure the main routine that ex-

ecuted the goroutine remains active, giving it ample time to execute and return its value. [19]. This

behavior is illustrated in two examples of the same algorithm, as shown in figure 15 and figure 16.

16



Figure 15: Goroutine hello world test without sleep

Figure 16: Goroutine hello world test with sleep

By looking at the output of the execution on figure 15, we can observe that only the print instruction

inside the main function was executed. That happened because the main routine ended before the

execution of goroutine hello() is concluded. On figure 16, a sleep instruction was inserted in line 14 and

the print instruction on the goroutine hello() was executed alongside the print from the main function.

To avoid this, we can use a variable of sync.WaitGroup type. The sync.WaitGroup is a straightfor-

ward way to wait for a collection of goroutines to finish executing. It’s a counter underneath. When you

launch a goroutine that you want to wait for, you increment the counter. When that goroutine finishes,

it decrements the counter. When the counter reaches 0, it is safe to proceed in the main function that

launched the goroutines. An example is shown in figure 17.

In the example, we can observe a goroutine function from lines 37 to 40. On line 33, the variable

sync.WaitGroup is initiated, and on line 36 the counter is increased by 1. Following, a goroutine is

launched to execute the function and on line 38 the instruction defer wg.Done() will assure the counter

17



Figure 17: Sync.WaitGroup variable usage

is decreased when the go routines finishes. Finally, on line 43 the instruction wg.Wait() will assure that

the main function does not finish before all go routines have returned.

Another mechanism to control is semaphores. A semaphore is a structure that is used to control the

maximum number of goroutines that can be launched, working as a counter. An example is shown in

figure 18.

Figure 18: Semaphore example

On line 137, a semaphore structure is established with a size limit set to maxGoroutines. Then, on

line 140, a slot on the structure is taken up. The statement on line 141 ensures that once the function

completes, this slot is freed. This mechanism guarantees that only 2 goroutines run concurrently.

2.2.3 Disadvantages and benefits of Golang

As any other programming language, Go has its benefits and downsides. One of the benefits of this

language is the capacity to implement concurrent programs. There are another advantages attached to

the use of Go. It is a simple language to learn as it has a syntax similar to C and C++ and there are

a lot of documentation and support to ease the learning process. It is still a growing language and the

community is still building support libraries. Therefore, we can not expect to have an extensive library like

we have for an older language like Python. However, Go as some weak points as well. This language is

not fully object-oriented but it has some features that can help us achieve similar results to an OOP.
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2.2.4 Comparison with Python

Before moving with the explanation of the proposed tool, it is interesting to compare directly the Go with

Python, which is the language Scapy is written, to understand what can be improved or what will be our

difficulties.

2.2.4.1 What is Python?

Python is an interpreted, object-oriented, high-level programming language. Being an interpreted lan-

guage, it works differently than Golang, which is a compiled language. On interpreted languages, the

compilation is done during the run time, line by line. Python was made to be a simple, easy to read,

learn and comprehend. It has a lot of built-in functions and it has an extensive support from the commu-

nity with open source libraries. Being an object-oriented programming language, Python has a modular

structure facilitating the reuse of objects and pieces of code as we have seen in Scapy architecture.

2.2.4.2 Differences and similarities with Golang

By looking at the explanation of Golang and Python we can start observing some differences between

them. Both languages have their strong and weak points. There is no best programming language, it is

a matter of choosing which one is more appropriate for our use case.

Starting by comparing the language itself, Golang is a compiled language and Python is an inter-

preted language. Also, Python has a simpler and easier to read syntax. While the Golang syntax is

more similar to the C and C++ programming language. This can increase the learning curve for a

developer that starts using Golang.

When talking about performance, Golang executes code faster since it does not compile the code on

the run time like Python does. There are several benchmarks already performed for similar programs

showing that Golang is faster that Python while consuming less computer resources. Looking at the

example of the binary-tree implementation, which relates to a simplistic adaptation of Hans Boehms’s

GCBench by creating a binary-tree [20]. Another interesting benchmark is the reverse-complement test

that relates to write the reverse-complement of a known DNA sequence [21]. The results are shown in

the tables 2.1 and 2.2.

Golang Python
1st implementation 12.23 sec 47.80 sec
2nd implementation 12.77 sec 48.11 sec
3rd implementation 12.93 sec 50.62 sec

Average 12.64 sec 48.84 sec

Table 2.1: Results of benchmark binary-tree
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Golang Python
1st implementation 1.33 sec 7.22 sec
2nd implementation 1.34 sec 9.38 sec
3rd implementation 1.90 sec 9.63 sec

Average 1.52 sec 8.74 sec

Table 2.2: Results of benchmark reverse complement

As we can observe in the results there are significant performance increases when using Go instead

of Python. On the binary-tree benchmark we can observe almost a 386% performance increase, and on

the reverse complement benchmark we can see a 575% increase.

Another major difference between Go and Python is the support for concurrency. As explored in

section 3.2.4, Go has built in support for concurrency through the use of goroutines and channels while

Python does not have a built-in mechanism for concurrency. Python uses parallelism, which is a concept

of running multiple tasks simultaneously on hardware with threads or multi-core processor. Concurrency

is not parallelism. Concurrency is defined as an application that can handle more than one task at the

same time, even if it has only one processing unit [19].

Finally, in Python there is a error handling mechanism through exceptions while in Go, the errors are

only shown after the compilation.
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In this chapter, we explain in detail the developed library. We start by explaining how the packets

are built, and how it is possible to stack multiple layers inside the same packet. We also explain how

the tool handles network communication, namely the send and receive methods. Finally, we explain the

necessary utility functions that were developed.

3.1 Library Architecture

Scago is a comprehensive library designed for packet manipulation and network analysis. Inside the root

directory, we can find several folders. Folders in Go are referred as packages. Within its architecture,

the packet package stands as the backbone, offering implementations for all supported layers. In each

supported layer, a structure is defined and the developed functions allow the modification of attributes

inside the structures. The supersocket package, taking inspiration from Scapy, facilitates the sending

and receiving of packets. For real-time traffic monitoring, the sniffer package provides packet sniffing

capabilities. Enhancing Scago’s protocol support, the protocols package introduces specialized layers,

notably for the RIP and Dot3 protocols. The utils package serves as Scago’s toolkit, introducing several

functions that aid the other packages and improves the readability for the end user. Lastly, the higher-

level package contains a collection of scripts for supported attacks, integrating structures and methods

from the supersocket, sniffer, utils, and packet packages. Note that in this report the term ”layer”

refers to protocols like ICMP, DNS, etc., and not the protocol layers defined by the OSI model. We will

explain in detail each package in the following sections of this chapter.

The directory structure of the developed library is shown in Figure 19.

Figure 19: Directory structure overview

Starting by the root directory, it contains the go.mod and go.sum files. The go.mod file handles

all the project dependencies, which means that for all the packages that are imported in our project an

entry will be created on that file. It also contains the module name that was given to our project. The

content of go.mod file can be seen in Figure 20.

Module is the url used for version control, in our case we use Git and Github. In this library the
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Figure 20: Go.mod file

version 1.19 was used for Go. Finally, we used 3 libraries in our project, gopacket, net and sys. The

gopacket library will be explained in detail in the following sections. All libraries were imported using the

keyword require.

Within the main directory, each folder signifies a specific package. In subsequent sections, we will

detail each package, explaining its significance within Scago’s architectural framework.

3.2 Packet

All the code related to the layer crafting can be found in the Go package packet, within the folder with

the same name. The objective was to achieve a behaviour similar to Scapy. In Scapy, it is possible to

nest multiple network layers within the same packet. This is achieved using Python dictionaries, where

each dictionary corresponds to a layer and its child dictionary is a pointer to the next available layer. As

we’ve investigated on section 2.1.3.2, Scapy achieves this by using two base classes, BasePacket and

Packet metaclass. Those classes provides basic functionality for the packets and can be extended to

each available layer in Scapy. Comprehending Scago’s packet construction architecture necessitates a

clear understanding of the gopacket library’s functionality. In the subsequent subsections, we’ll begin

with an explanation of the gopacket library before diving into Scago’s architecture.

3.2.1 Gopacket

Gopacket is a library, in Go programming language, that provides packet decoding capabilities. It is built

on top of Google’s pcap library and allows users to capture, read, write, create and dissect packets. It

can be used to decode packets from raw bytes and to create packets with several layers. This library

will serve as basis of our tool since it comes with support for multiple layers, therefore it is important to

understand how this library is built.

3.2.1.1 Directory structure of Gopacket

The directory structure of the Gopacket library is shown in figure 21.
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Figure 21: Gopacket directory structure

Gopacket contains many sub packages inside its structure. We will be focusing on the layers pack-

age, within the folder with the same name. This package contains the logic for all supported network

protocols. Currently, gopacket supports many protocols including UDP, TCP, IPv4, IPv6, ARP etc.

3.2.1.2 Layers folder

Gopacket implements protocol layers by defining a Go structure for each protocol. This structure will

contain the necessary fields for each protocol, e.g, source IP, destination IP, etc. Following, it implements

methods to decode and encode from/to raw bytes. Figure 22 illustrates how protocols are implemented

in gopacket.

Figure 22: Protocol implementation in gopacket

As we can see in figure 15, all the structures implement the BaseLayer struct. This structure is a con-

vience structure that implements the data and payload from each protocol layer. There are 3 important

methods that gopacket implements on all supported layers. The LayerType() function simply returns the

type of the layer corresponding to the specific structure. The DecodeFromBytes() function receives the
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data in bytes and populates the fields defined by the structure from raw data. The SerializeTo() function

serializes the fields defined in the structure to raw data.

To illustrate an example, we can take a look at the ARP layer. This layer is defined in the arp.go file

under the layers folder. The structure that defines the fields for the ARP layer is shown in figure 23.

Figure 23: ARP structure in gopacket

As we can observe, the ARP structure defined by gopacket reflects the fields found in standard ARP

packet, as defined by the protocol specification. The protocol specification is shown in figure 24.

Figure 24: ARP protocol specification

We can match the data structures defined in gopacket to the fields defined in the ARP protocol

specification:

• AddrType - Corresponds to Hardware Type.

• Protocol - Corresponds to Protocol Type.
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• HwAddressSize - Corresponds to Hardware Address Length.

• ProtAddressSize - Corresponds to Protocol Address Length.

• Operation - Corresponds to Operation Code. It specifies the type of the: reply or request.

• SourceHwAddress - Corresponds to Sender Hardware Address. MAC address of the sender.

• SourceProtAddress - Corresponds to Sender L32. IP address of the sender.

• DstHwAddress - Corresponds to Target Hardware Address. MAC address of the receiver.

• DstProtAddress - Corresponds to Target L32. IP address of the receiver.

As explained, gopacket also defines functions to decode and encode data to/from raw bytes. The

DecodeFromBytes() function of the ARP protocol is shown in figure 25.

Figure 25: DecodeFromBytes function of ARP protocol

This function, takes raw data in bytes and populates it to the fields defined in the ARP structure.

Looking at ARP protocol, the first 2 bytes corresponds to the Hardware Type and in line 47 the first 2

bytes from the raw data are assigned to the AddrType field of the ARP structure. The same process is

done for the rest of the remaining bytes in the raw data. The function SerializeTo() of the ARP protocol

is shown in figure 26.
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Figure 26: SerializeTo function from ARP protocol

The SerializeTo() function, takes the values defined in the fields of an ARP structure and serializes

it to raw data that can be sent over the network. In line 88, the byte[4] of the raw data uses the value

defined in the field HwAddressSize. If we look at ARP protocol, we can observe that the 5th byte

corresponds to the Hardware Address Length, making it the correct assignment. The same process is

done for all the remaining fields.

The function gopacket.NewPacket() transforms raw byte data, typically representing captured net-

work packets, into a structured format. This transformation is essential for subsequent analysis, as it de-

codes the raw data into distinct protocol layers, making the extraction of specific information like source

and destination addresses or protocol-specific data straightforward. On the capture side, pcap.Handle

is a key component, facilitating the capture of live packet data from network interfaces. It allows for

the setting of filters to isolate specific types of traffic, providing granular control over the data being

analyzed. The synergy of these two elements is significant in the process of network packet analysis.

Packets captured via pcap.Handle are often fed into gopacket.NewPacket() for detailed decoding. The

resulting Packet structure offers an organized view of the data, laying out each protocol layer and its

contents. This structured approach is integral to efficient and effective network analysis, allowing for a

deeper understanding of the traffic patterns and anomalies within network environments.

3.2.2 Packet crafting in Scago

The objective is to achieve a behaviour similar to Scapy related to packet crafting. We have seen that

gopacket can provide the necessary support for the protocols that are needed for the developed tool.

In Scapy, it is possible to stack layers using the ’/’ operator. This is possible due to the operator

overloading feature. In Python, this feature is supported by defining methods that can give custom
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behaviours to the operators. In Go, this feature is not supported so it is not possible to have a similar

behaviour to Scapy on this topic.

Layers in networking come with unique attributes and in Scapy those attributes have default values.

This makes it easy for the user to create a layer in Scapy, e.g the code for creating a Ethernet, IP and

TCP layer using Scapy is shown in figure 27.

Figure 27: Scapy custom packet with 2 layers

The code shown in the above figure, creates a packet with an Ethernet layer and an IP layer. The

packet variable represents the entire packet and contains the two layers as its components. If we run

this script, we can observe that Scapy defined the value 127.0.0.1 as the source and destination IP. The

result is shown in figure 28.

Figure 28: Scapy script result

Gopacket is not as user friendly as Scapy is on this respect and does not assign default values to

layer’s attributes, so, to achieve a similar behaviour we created a go structure for each supported layer

in our developed library. This way, we can assign default values and create simpler methods to modify

those values achieving a behaviour similar to Scapy. We will explain the approach done in the next

section.

3.2.2.1 Protocol layer construction

To achieve a similar behaviour than Scapy, we had to create a structure for each supported layer. The

structure will define default values for some attributes as well as some methods that allow the user to

change the values of those attributes. This approach also allows the tool to be modular, e.g. in a case

that a user needs to add support for a protocol layer he just needs to create a structure. The approach

taken is shown in figure 29.
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Figure 29: Generic structure hierarchy

The figure shows that gopacket’s structure contains specific layer attributes. In Scago, a structure

includes a pointer to gopacket’s structure and adds methods to modify gopacket’s attributes, making it

more abstract and user-friendly. In the following sections, we will provide two examples of the supported

layers in Scago. For a comprehensive list and details of all the supported layers in the system, please

refer to Appendix A at the end of the document.

3.2.2.2 Ethernet

The code for the Ethernet layer is located in packet/ethernet.go file and the code is shown in figure 30.

The Ethernet structure, located in line 10, encapsulates a pointer to a layer of type golayers.Ethernet.

This layer, defined in gopacket library in the layers/ethernet.go file, contains all the attributes of the Eth-

ernet layer such as source and destination MAC address and length. The code for the layer defined in

Gopacket is shown in figure 31. The function EthernetLayer(), defined in line 14, acts as a constructor

for our Ethernet structure. When invoked, it initializes a new Ethernet layer and sets the default values

for the EthernetType variable. In this function, we can achieve a behaviour similar to Scapy since we

can define default values without the need of user’s input. Following, we defined some methods that

can change the value of attributes. The SetSrcMac() method, line 22, takes as argument a string that

should be a MAC address and set it as the source MAC. The SetDstMac() method, line 31, takes as

argument a MAC address that is set as destination MAC address for the golayer.Ethernet layer. The

SetEthernetType() method, line 40, changes the Ethernet type of the layer. It receives as argument a

golayers.EthernetType, which is an enumeration or type definition used to specify the type of protocol

that is encapsulated by the Ethernet layer. Finally, we have the Layer() method, defined in line 44, that
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is used to get direct access to the golayer.Ethernet layer. This will be used to create the packet, that

we will address in further sections.

Figure 30: Ethernet structure

Figure 31: Ethernet structure defined in gopacket

To understand how the hierarchy works with this approach, figure 32 illustrates how our structure

interacts with the ethernet layer.
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Figure 32: Ethernet layer hierarchy

The code to create an Ethernet layer with specific source and destination MAC addresses is shown

in figure 33.

Figure 33: Ethernet layer using developed library

In line 30, we call the constructor to initialize the Ethernet layer and in line 31 and 32 we set the

source and destination MAC using the defined functions. Note that the constructor EthernetLayer()

is preceded by the keyword craft. This keyword is the identifier that we used when the library was

imported.

3.2.2.3 ARP

The code for the ARP layer is located in packet/arp.go file and is shown in figure 34 and figure 35.

The ARP structure, encapsulates a pointer to a layer of type golayers.ARP. This layer is defined in

gopacket library in layers/arp.go file and it contains all the attributes of the ARP layer such as source

and destination MAC and IP. The code for the layer defined in gopacket is shown in figure 23. The

function ARPLayer(), defined in line 13, acts as a constructor for our ARP structure. When this function

is invoked, it initializes a new ARP layer and sets defaults values for the address and protocol type, as

well as the size of the MAC and IP addresses on lines 16 to 19. Following, the SetSrcMac() method,

defined in line 24, takes as arguments a MAC address in string format and sets it as source MAC.

The SetDstMac() method, defined in line 35, sets the received MAC address as the destination. The

SetSrcIP() and SetDstIP() methods, defined in line 46 and 58 respectively, takes as arguments an IP

address in string format and sets it to the source and destination field.
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Figure 34: ARP Structure 1 Figure 35: ARP Structure 2

Finally, we have the SetReply() and SetRequest() methods, defined in line 69 and 73 respectively.

Those functions set the operation of the ARP packet to either a reply or a request. The Layer() method,

defined in line 77, is used to get direct acccess to the golayer.ARP layer.

The hierarchy for this layer is shown in figure 36.

Figure 36: ARP layer hierarchy

Using the above structure, we can create an ARP request with specific values using the code ob-

served in figure 37.
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Figure 37: ARP request using developed library

In line 31, the ARP layer is created using the constructor. Note that the packet keyword is the

identifier that we used when the library was imported. Following, in line 32 and 36 the source and

destination MAC are set using the developed functions. The same process is done for the IP addresses,

in lines 33 and 34. Finally, we set the ARP operation to an ARP request using the method SetRequest().

The explanation of the code for all the supported layers can be found in Appendix A.

3.2.3 Combining multiple layers

In Scapy, there is a possibility to stack multiple layers using the ’/’ operator. As mentioned before, this is

not possible in Go since this programming language does not support operator overloading. Therefore,

we had to create a specific method where we provided all the created layers and the packet is generated.

The function can be found in packet/packet.go file with the name CraftPacket(). The code for this

function is shown in figure 38.

Figure 38: CraftPacket function

This function accepts a non-defined number of the parameter layers which means it can take any

number of arguments of the type gopacket.SerializableLayer. The gopacket.SerializableLayer is an

interface implemented by layers that can be serialized, meaning that they can convert their data into a

sequence of bytes that can be sent over the network. This interface implements the following functions:

SerializeTo(), converts the data stored in the layer to bytes; LayerType(), returns the type of layer that

is being used. Those functions are mandatory when creating a new layer in gopacket as we will see in
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section 3.5. The code for the interface is shown in figure 39.

Figure 39: SerializableLayer interface

Focusing on the CraftPacket() function, it starts by calling the function packetCheck(). This function

mimics a behaviour of Scapy, it automatically checks if an ethernet layer is provided, if not it creates one

and populates it with the correct source and destination MAC. The function is explained further in this

section. To determine the source MAC, the function either uses the interface that has the source IP of

the IP layer, or if it does not find any interface with the source IP

Next, it creates a buffer that will write the packet data, in line 19. Following, it creates a structure of

type gopacket.SerializableOptions. This structure contains the options for the serialization process.

In this case, we used the ComputerChecksums and FixLengths. These options will calculate the

checksums fields accurately and will ensure that the length fields are correctly set.

In line 17, it serializes all the layers into the buffer with the function SerializableLayers() from the

Gopacket library. This function receives the buffer, the SerializableOptions variable and the layers to

be serialized. It will iterate over the layers, call the SerializeTo() function of each layer and fill the buffer

with the information serialized in bytes. The code for this function is shown in figure 40.

Figure 40: SerializableLayers function

To create a similar packet to the one created in figure 2 using the developed library, the code in figure
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41 can be used.

Figure 41: Packet creation using developed library

Comparing the two figures, we can conclude that Go code is slightly more verbose as it requires more

function calls to set the attributes for each layer. The Scapy code, is more concise and all attributes can

be set in a single line when calling the method. In Go it is not possible to define a variable when calling a

method, therefore achieving the same behaviour that Scapy as it is not possible. Despite the code being

more verbose, it provides more readable syntax due to the explicit method calls for setting attributes.

Focusing on the packetCheck() function. As explained, this function assures that the packet is

correctly built providing more readability to the user by omitting needed steps specially on ethernet layer

and tranports layers (TCP and UDP). The code for this function is shown in figure 42.

Figure 42: PacketCheck function code
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Initially, it checks for the presence of ethernet and IPv4 layers within the given argument layers slice,

as denoted by the flags hasEthernetLayer and hasIPLayer, lines 35-36. As it iterates through the

layers, lines 39-55, it identifies Ethernet, IPv4, UDP, and TCP layers, and sets the network layer for

checksum for UDP, line 48, and TCP layers, line 52. This will omit the instruction SetNetworkLayer-

ForChecksum() to the user, improving the user-friendly interface. This instruction aids the calculation

of the checksum field when a TCP or UDP layer is present. If the layers lack an Ethernet layer but

have an IPv4 layer, lines 56-81, the function adds an Ethernet layer to the beginning of the layers slice.

The function has the capability to ascertain the source MAC either by aligning it with the source IP or

via the interface linked to the default gateway. Specifically, on line 63, it calls the GetInterfaceByIP()

function from the utils package to obtain the interface matching the source IP of the IPv4 layer. If such

an interface does not exist, the function then, on line 67, resorts to the GetDefaultGatewayInterface()

from the utils package to identify the interface leading to the system’s default gateway. Shifting focus

to the destination MAC, the function initially invokes the AreIPsInSameSubnet(), line 70, from the utils

package to verify if the source and destination IPs coexist on the same subnet. If so, it triggers the

ARPScanHost(), line 71, function, executing an ARP request to fetch the destination MAC. If the IPs

reside on different subnets, the function called is the GetDefaultGatewayIP(), line 74, to retrieve the IP

of the default gateway, followed by another round of ARPScanHost() to fetch the MAC of said default

gateway. Finally, the function converts the modified layers slice into a slice of serializable layers (lines

82-88) before returning it. The used functions of the utils package will be explain in the further section

that referes to this package.

3.3 Supersocket

Scapy provides a number of classes and functions for creating and interacting with network sockets,

which are used to send and receive packets over the network. The SuperSocket class is a base class

for socket-like objects that can be used to send and receive packets over the network. It is designed to

be a flexible and extensible class for interacting with network sockets, and provides a number of methods

and properties for managing the connection and handling of packets. When an instance of this class

is created, it stores information such as the interface used and the socket for the communication (from

the socket Python library, family AF INET and type SOCK STREAM by default). This class redefines

the send and receive methods from the traditional socket library in Python, this is done to achieve a

more user friendly usage. The send function transforms the packets into bytes and sends them using

the send() method defined in the socket library. The receive method, uses the recv() function from the

socket library and transforms the data received into a Packet Scapy object, defined in packet.py file. A

more detailed explanation can be read in section 2.1.3.4.
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In Scago we have a structure, similar to supersocket, that redefines the send and receive method

while also implementing custom methods. The developed supersocket object can be found in super-

socket/supersocket.go file and it uses the pcap library from gopacket. The pcap library, from gopacket,

is a wrapper around the C library with the same name. It provides functionalities to capture and send

network packets. The code for the supersocket structure is shown in figure 43.

Figure 43: Supersocket structure

The structure contains a pointer to the pcap.handle object and the interface used. The pcap.handle

object is defined by gopacket and used to allow sending and reading packets. To create a supersocket

object, the function NewSuperSocket() can be used. The code for that function is shown in figure 44.

Figure 44: NewSuperSocket function

The function receives as arguments the interface that will be used and a filter to be applied. It

initializes the supersocket object and in line 20 it uses the function pcap.OpenLive() to open a socket

on the mentioned device. The socket will read a maximum of 1600 bytes per packet, it will work in

promiscuous mode. Following, from line 25 to 31 it will apply any filter if specified. The Close() function,

defined in line 38, will close the created socket.

We have also redefined the send and receive methods from the original pcap library. This redefinition

was needed to achieve a user friendly usage. In case of Send() function, the user just needs to call that

function with the packet to be sent ignoring the pcap function WritePacketData(). The same happens

for the Recv() function. With this redefinition we can omit the code that is needed to either receive or

send a packet. The code for those methods is shown in figure 45.The Close() function, defined in line
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37, will close the created socket.

Figure 45: Send and receive function

The Send() function, defined in line 42, will receive the bytes and send it using the function WritePack-

etData() from the pcap library. Finally, the Recv() function, defined at line 46, will read the bytes coming

to the interface and convert it to a packet from the gopacket libary. It uses the ZeroCopyReadPack-

etData() function, defined in pcap library, to read the bytes and then on line 51 it uses those bytes to

convert it to a packet.

The SendMultiplePackets() function will use the go concurrency capabilities to send multiple pack-

ets efficiently. In Scapy, it is possible to send multiple packets using the send function with a list of

packets given as an argument. However in Scapy, this method does not use concurrency. It iterates

over a the list of packets and sends it one by one. In our implementation, we used Go concurrency to

send the list of packets. This will have a significant impact on execution time as we will demonstrate in

chapter 4. The code for this function is shown in figure 46.

Figure 46: SendMultiplePackets function

The SendMultiplePackets method, starting from line 54, is defined on the SuperSocket struct

and takes two parameters: packets, a slice of byte slices, and maxConcurrentSends, an integer.

In lines 55 to 57, the method checks if maxConcurrentSends is less than or equal to zero. If so, it sets

38



maxConcurrentSends to the length of the packets slice, which implies that the function will attempt to

send all packets concurrently if no valid limit is provided. Moving to lines 59 and 60, the method initializes

a synchronization WaitGroup (wg) and a semaphore channel (sem) variables. The semaphore channel

is created with a size of maxConcurrentSends. This setup is crucial for managing concurrency in the

subsequent operations. From line 62 to 74, the method loops over each packet in the packets slice.

Inside this loop, on line 63, the WaitGroup’s counter is incremented for each packet. Then, on line 64,

the method tries to send an empty struct into the semaphore channel. This operation might block if the

semaphore is already filled up with maxConcurrentSends goroutines running concurrently. Following

this, lines 66 to 73 start a new goroutine for each packet. Within each goroutine two defer statements

are placed. The first defer call, on line 67, ensures that once the goroutine finishes its execution, the

wg.Done() method is invoked, which decrements the counter of the WaitGroup. This decrement signals

that one less goroutine is running. The second defer statement, inside a function call on line 68, is

designed to release a slot in the semaphore channel once the goroutine completes. This release is

critical as it allows another goroutine to start. The sending of the packet happens on line 69, where the

Send() method of the SuperSocket instance is called with the packet as its argument. Finally, after the

loop, on line 76, the method calls wg.Wait(). This line ensures that the method waits for all the goroutines

to complete their execution before proceeding.

On figure 47 we can observe an illustration of the supersocket class.

Figure 47: Supersocket illustration

On figure 48, we can find an example of usage that illustrates the creation of packets and how to

send them.
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Figure 48: Supersocket usage

At line 15, we start by creating the supersocket object. Following, on line 21 we create a slice of

packets to store the bytes. The SendMultiplePackets function is called on line 52 to send the packets

concurrently. In this example, we can identify two main parts. The first part is the block from line 24 to

45 and refers to the packet crafting. In the referred block a packet with an ethernet and ip layer is crafted

using concurrency. Note that on line 26, the keyword go alongside func(i int) creates a function that will

run concurrently responsible of creating a packet. This means that for every packet, a thread is created

and the packet is crafted. Following, we have the sending block from line 50 to 54. This block will send

the created packets using the function explained at figure 46.

In the supersocket library, users traditionally need to first create a supersocket object and then call its

methods. This approach can complicate development when using our library. For comparison, in Scapy,

functions like Send() and Recv() operate directly without the need for an initial object creation.

To simplify usage in our library and mimic this direct approach, we introduced the following functions:

Send(), SendMultiplePackets(), Recv() and SendRecv(). These functions utilize the methods, with the

same name, from the supersocket structure, but they eliminate the necessity for users to first create a

supersocket object. The code for Send() and Recv() function is shown at figure 49.

These functions accept the interface in string format, then construct the supersocket structure and in-
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Figure 49: Send() and Recv() functions

voke its corresponding methods. This design allows us to emulate behavior similar to Scapy, as detailed

in section 2.1.3.4.

Another function present in Scapy is the sr() function. This function sends the packet and returns

the immediate packet received. We have developed a function, SendRecv() similar to this. The function

creates the supersocket, sends the packet using the Send() function and returns the received packet

using the Recv() function. The code is shown at figure 50.

Figure 50: SendRecv function code

3.4 Sniffer

One notable functionality in Scapy is its AsyncSniffer, which performs asynchronous packet sniffing,

enabling concurrent packet capture and processing in an efficient manner. The AsyncSniffer is ex-

plained in detail on section 2.1.3.5. The objective was to use Go concurrency support to implement a

sniffer with the same functionalities as Scapy.. For that we have created a sniffer structure with methods

that will operate on that structure. The code for the structure is located in sniffer/sniffer.go file and is

shown in figure 51.
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Figure 51: Sniffer structure

The structure Sniffer, line 9, contains a pointer to pcap.handle that will be used to receive the

packets. It also contains a slice of gopacket.Packet that will store the captured packets. A sync.Mutex

that will ensure exclusive access to the packet list to avoid race conditions. Finally, it has the variable

packetLimit that will limit the number of packets received.

The constructor NewSniffer(), defined in line 16, receives as arguments the interface, the filter

to be used and the number of packets to be captured. As the supersocket structure, it uses the

pcap.OpenLive function to open the interface and applies the BPFFilter if specified.

Figure 52: Sniffer functions

Following, we defined the Start() and Stop() functions. The Start() function, starts the sniffer and
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populates the list of packets with the packets received on the interface. The Stop() function, simply

closes the socket. Finally, the function GetPackets() will return the list of packets. The code for those

functions is shown in figure 52.

We also developed a function with the name SniffP(). This function receives as arguments the

interface and a filter to be applied to the sniffer. The purpose of this function is to enhance user-

friendliness. It simplifies the sniffer usage by allowing the user to specify just the interface, eliminating

the need for additional code. The code for this function is shown at figure 53.

Figure 53: Sniff function

The SniffP() function uses the Sniffer structure and the functions Start() and GetPackets() to print

the information of the received packets. We can observe an example of usage at figure 54.

Figure 54: Sniff function example

The implemented sniffer supports packets filters. A packet of filter is a set of criteria applied that will

decide which packets to capture and which to ignore. By using filters, you can focus on specific network

traffic, making analysis more efficient and manageable. The argument filter, receive by the SniffP()

function, is applied to the filter using the SetBPFFilter() function from the pcap library. Like in Scapy, the

filter uses the Berkeley Packet Filter syntax [22]. In figure 55 we can observe an example of a sniffer
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with the filter tcp port 443. This filter will only capture packets that have source or destination port as

443.

Figure 55: Sniff filter example

Bridge and sniff is a functionality that is available on Scapy. The Bridge and sniff function estab-

lishes a transparent bridge between two network interfaces, denoted as iface1 and iface2. Packets

incoming on iface1 are transmitted through iface2 and vice-versa, enabling bidirectional communication.

This function is specifically used in some attacks that we will demonstrate later. Therefore, we have

implemented a function similar in our library . The bridge and sniff implementation can be found on

sniffer/bridge and sniff.go file and the code is shown in figure 56.

Figure 56: Bridge and sniff code

The BridgeAndSniff function starts by initializing two supersocket on the provided interfaces. Fol-

lowing, on line 17 and 18 it instantiates two concurrent go routines employing bridge aux, respectively

facilitating packet flow from iface1 to iface2 and from iface2 to iface1, thereby accomplishing bidirectional

bridging. The select instruction on line 20 assures that the function does not finish, closing all the go
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routines. This behaviour was explained in detail on section 2.2.2.2.

The bridge aux function accepts two pointers for the supersocket objects representing the inter-

faces. Following, on line 24 we are using the gopacket.NewPacketSource() function from the Gopacket

library. This function creates a new packet source from the ss1 supersocket. The function GetHandle()

returns the pcap.Handle pointer that is available on supersocket structure. The LinkType() function

returns the layer to be used as the first decoder method, so it correctly decodes all incoming packets.

On line 26, a for loop assures that all packets received are sent to the other interface, creating a bridge

between them. This function will be used in chapter 4, where we will demonstrate how it works.

3.5 Utils

During the development of this tool, it was necessary to develop generic utility functions that are also

available on Scapy. Those functions can be found under the utils package in two files utils.go and

layerUtils.go. The following functions are available on this package: ParseIPGen(), ParseMACGen(),

MacByInt(), IPbyInt(), GetRouteInterface(), GeneratePool(), GetInterfaceByIP(), AreIPsInSameSub-

net(), GetDefaultGatewayInterface() and GetDefaultGatewayIP(). The functions will be explained in

this section.

The functions ParseIPGen() and ParseMACGen() are used to generate random IP and MAC ad-

dresses. In case of IP, the function is able to generate an IP for a specified subnet, e.g, if we want to

generate a random IP within the network 192.168.1.0/24, the function performs this task. The code for

those functions is shown in figure 57.

Figure 57: ParseIPGen and ParseMACGen functions

The functions MacByInt() and IPbyInt() receive an interface as argument. Those functions read the

MAC and IP of the interface and return them as a string. The RandomPort() generates a random integer
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that can be used as a network port. The code for those functions can be seen in figure 58.

Figure 58: MacByInt, IPbyInt and RandomPort functions

The GetRouteInterface() function. This function is able to determine the interface that as an avail-

able route to the mentioned IP. This is a feature that is also available on Scapy, making it possible to

send a packet to its destination if no interface is provided. The code is shown in figure 59.

Figure 59: GetRouteInterface function

The function GeneratePool() receives a network IP pool and the respective network mask. Based

on those inputs it generates the list of IPs available. The function code is shown in figure 60.
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Figure 60: GeneratePool function

The function GetInterfaceByIP() receives an IP as an argument and iterates over the available in-

terfaces on the system to obtain the interface that has the received IP address assigned. The function

AreIPsInSameSubnet() verifies if the two received IP addresses belong to the same network. The code

for those functions is shown in figure 61.

Figure 61: GetInterfaceByIP and AreIPsInSameSubnet functions

The two functions, GetDefaultGatewayInterface() and GetDefaultGatewayIP(), are responsible for

obtaining the system’s interface that links to the default gateway and the IP address of that gateway,

respectively. The code for those functions is shown in figure 62.
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Figure 62: GetDefaultGatewayInterface and GetDefaultGatewayIP function

3.6 Higherlevel

The higherlevel package contains all the functions dedicated to perform attacks. This package is in-

spired in the higher level functions of Scapy, explained in section 2.1.4, and in the scripts developed by

Duarte Matias in his MSc thesis [23]. Those functions were built using all the methods and structures

defined in the above sections. Each of the developed functions will be explained in detail in chapter 4.

3.7 Protocols

As mentioned before, gopacket does not have support for all the network layers. To be able to demon-

strate some of the attacks we need to implement support for new layers. We have added support for the

following layers: 802.3 and RIP layer.

3.7.1 802.3

Gopacket provides support for 802.3 protocol layer, however it does not have a dedicated structure like

Scapy has. By having a dedicated structure, we can handle 802.3 frames disticly from other ethernet
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frames. This will be useful on the demonstrations performed on chapter 4. For those reasons we

implemented a specific protocol layer for 802.3, similar to the Dot3 structure in Scapy.

The file that implements this layer can be located in protocols/dot3.go. As mentioned before, to

implement a new layer in gopacket there are several requirements. First we must register the layer.

Next, we need create the structure that will hold the attributes for the layer. Two functions must be

created: SerializeTo(), this function will copy the values of the attributes and serialize them into bytes

to be sent; DecodeFromBytes(), this function will receive data in bytes and will populate the structure

of the layer with the correct information. To help understand the functions and structures created, the

802.3 header structure is shown in figure 63.

Figure 63: 802.3 header

The only components of the 802.3 header that we set as configurable are the destination and source

address, as well as the length. The other components are used for communication and are calculated

automatically during the sending process with gopacket. Therefore, we have created the structure and

registered the layer as we see in figure 64.

Figure 64: 802.3 Structure

In line 10, we register the layer in the gopacket library using the function RegisterLayerType().

This function receives 2 arguments: a unique number that will be used to identify the new layer in the

gopacket, in our case 2001; Following it receives a LayerTypeMetadata field that will specify the name

of the layer and of the decoder function, in our case decodeDot3.

Next in line 12, we create the Dot3 structure. This structure will have the DstMAC, SrcMAC and

Length variables. The code for the SerializeTo() function is shown in figure 65.
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Figure 65: 802.3 SerializeTo function

In line 20, the function starts by defining the variable length with value 14. This variable will be used

to create the bytes buffer that will store the information of the structure. Next in line 29, it copies the

value of DstMAC to the first six bytes of the buffer. The SrcMAC is copied to the bytes 6-12. Finally the

length is copied to the last two bytes. As we can see in figure 63, this behaviour goes accordingly to the

802.3 header format. The first 6 bytes after the SFD field are for the destination address, the following 6

bytes are for the source address and the final 2 bytes are for the length.

In line 42, we define the function LayerType(). This function returns the variable created when we

registered the layer.

The DecodeFromBytes() function is shown in figure 66.

Figure 66: 802.3 DecodeFromBytes function
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The decodeDot3() function is the method called to decode data from the received bytes. The method

is defined in line 60. It starts by creating an empty Dot3 structure. That structure will be used by the

function DecodeFromBytes() to save the decoded data. Following, the DecodeFromBytes() function

is called and as explained before, the first 6 bytes are copied to the DstMAC in line 45. The following

6 bytes are copied to the SrcMAC field and the final 2 bytes are copied to the Length field. Finally, the

decodeDot3() method returns the decoder for the next layer, in this case it is the LLC layer as shown in

line 53.

In figure 67 the relation between the functions can be visualized.

Figure 67: Illustration of SerializeTo and Decode functions

3.7.2 RIP

The fule that implements RIP protocol layer can be located in protocols/rip.go. As mentioned in sec-

tion 3.8.1, to implement a protocol layer we need to do the following steps by order: register the layer,

create a structure that will hold the attributes for the layer, create the functions SerializeTo() and De-

codeFromBytes(). In our case, we have focused on developing support for the RIP version 2. To aid

the explanation of the developed functions and structures we can see the RIP packet format in figure 68.

Figure 68: RIP packet header

The RIP packet header contains the following fields: command, version, zero field and RIP entry.

The RIP entry field has a specific format and we replicated that in developed implementation. The RIP

entry field is shown in figure 69.
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Figure 69: RIP entry field

Considering the two structures show in figure 56 and figure 57, we have created the structures shown

in figure 70.

Figure 70: RIP structures

Starting by the RIPPacket structure, defined at line 21, we defined the same fields that are described

on RIP packet header. The following fields are available: command, version, zero and a list of RIPEntry

structure. The RIPEntry entry structure is defined at line 12 and contain the same fields described in

figure 69. On line 10, we registered the layer using the function RegisterLayerType() the same way we

did for 802.3 layer.

The function DecodeFromBytes() decodes the data received in bytes to the RIP structures created.

The code for this function is shown at figure 71.
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Figure 71: DecodeFromBytes function of RIP protocol

We can identify two main parts of this function, the first from line 41 to 43 decodes the RIP header.

The first byte corresponds to the command, therefore it is assign the the variable command in the

RIPPacket structure on line 41. The second byte corresponds to the version and it is assigned to

the version variable in the same structure. Finally, the following 2 bytes have the zero value and are

assigned to the zero variable in the RIPPacket structure. The second part of this function, from line 46

to 55, decodes the RIP entries of the received data. A RIPEntry structure is created and the values are

fulfilled with the corresponding data in bytes according to the RIP entry structure.

The function SerializeTo() transforms the structures into data in bytes, ready to be sent over the

network. The code for this function is shown at figure 72.

Figure 72: SerializeTp function of RIP protocol
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3.8 Usage

This library is publicly available on Github [24] and distributed in a Docker container [7]. It also contains

an interactive shell, like Scapy, where it is possible to launch the built-in attacks. The code for the shell

can be found in scaGo.go file and can be launched by running the instruction go run scaGo.go on

any shell. From there, a shell will be launched and with the instruction help we can see in detail all the

available attacks and how to launch them.

The docker container imports and installs all the necessary tools and libraries in a Unix environment

to be able to run the library without internet connection. When the docker container is installed, you can

use the main.go file located in the /app directory in the docker to write any code that depends on the

developed library. The code for the Dockerfile is shown in figure 73.

Figure 73: Dockerfile

The FROM instruction, on line 1, indicates the image that will be used for the docker container, in

this case we will use the Go environment in the latest version. Following, we set the working directory

on the directory /app. This way, when the docker container is launched it will automatically start at the

/app directory. From line 5 to 8, the go.mod file is copied to the container and the instructions go mod

download and go mod tidy will assure that all the dependencies are installed so that the container can

be used in an offline environment. On line 10, we copy the directory of the Dockerfile to the container.

This directory contains a file named main.go, where the user will write the customizable scripts. On line

14 we install the following tools: time, net-tools, nano and libpcap-dev. Those tools will be used when

performing demonstrations and can be useful for the user. Finally, on line 16, a shell is launched on the

container.

The documentation for this library can also be read on the website Pkg.go.dev [25]. The website

allows to write documentation for open source library. This will popularize the library and facilitate the

future additions to the tool.
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In this chapter we use the developed library to demonstrate the following security attacks: CAM

table overflow, ARP Cache Poisoning, VLAN Double Tagging, STP Root Bridge manipulation, TCP SYN

flood, DHCP Spoofing, DNS Spoofing and RIP poisoning. In each attack, we will compare it with a

Scapy implementation and draw conclusions.

4.1 CAM table overflow

4.1.1 Attack description

Switches in local networks use a CAM table to remember which devices (MAC addresses) are connected

to which ports. This helps them send data efficiently to the right device without broadcasting to everyone.

The CAM Overflow attack exploits a limitation in this system. Switches have limited memory in their

CAM table. An attacker can flood the switch with data from fake MAC addresses, causing this memory

to fill up. Once full, the switch starts broadcasting data to all devices, like a simpler network hub.

4.1.2 Developed script

The developed functions to replicate this attack can be found in the higherlevel/cam.go file. The file

contains three functions, Cam(), CamBatch() and CamSequential(). The Cam() function produces a

prespecified number of packets, concurrently, and sends them. The CamBatch() produces a prespec-

ified number of packets and sends them in batches. The batching approach in CamBatch() is efficient

for managing memory, especially when dealing with a large number of packets, as it doesn’t retain all

packets in memory simultaneously. The CamSequential() function performs the same task as Cam()

function, but does not use concurrency. The code for Cam(), CamBatch() and CamSequential() func-

tions is shown in figure 74, figure 75 and figure 76.
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Figure 74: CAM function

Figure 75: CAMBatch function

Figure 76: CAMSequential function

Focusing on the Cam() function, on figure 74, this function starts by creating a slice that will store

the created packets on line 14. On line 24, it enters a for loop where the packets will be created. A

goroutine is launched to create each packet and store it in the slice. Note that the variable wg from

the type sync.WaitGroup, created on line 16, will assure that all goroutines launched will finish before

proceeding to sending the packets. The instruction wg.Add(), on line 18, will increment the goroutine

counter. The instruction wg.Wait(), on line 38, will wait for all goroutines that are on the counter to

finish. The created packets will have a random source and destination MAC address, as well as a

random source and destination IP. On line 40, it sends the packets concurrently using the function
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SendMultiplePackets(). Be aware that the keyword communication refers to the name we assigned

when importing the supersocket package.

The CamBatch() function, located at figure 75, has the same behaviour as Cam(). The difference is

in the for loop that creates the packets. The loop, in line 50, runs from 0 to the prespecified number of

packets packetCount incrementing by batchSize at each iteration. For each batch, a slice is created

that will store the packets for that batch. Following, another for loop launches a goroutine that creates

and stores packets. On line 82, the batch is sent and another iteration starts.

The CamSequential() function, located at figure 76, has the same behaviour as the Cam() function

except it does not launch a goroutine to create each packet. This function will be used in the demon-

strations to have a fair comparison with the Scapy implementation. This way we can draw conclusions

about the execution time of the programming language Go in comparison with Python.

4.1.3 Attack results

To replicate this attack, we used GNS3 to simulate a network environment. The network topology built

has 3 hosts, simulated with 2 VPCs (victims) and a Docker container (attacker). The switch used to

connect all hosts is a router cisco c3725 configured with the instruction no ip routing. This instruction

will make the router behave like a switch. The built network topology and the IPs assigned to the hosts

is shown in figure 77 and table 4.1.

Figure 77: Network Topology for CAM attack

Host IP
PC1 10.0.0.100
PC2 10.0.0.200

Table 4.1: Host’s IP for CAM

As explained before, the objective is to observe the traffic between PC1 and PC2 in the connection

between the attacker and the switch. This will prove that the switch has its CAM table full and enters in
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hub mode, forwarding the traffic to all the interfaces. To launch the attack, we wrote the script shown in

figure 78 and started a Wireshark capture in the connection between the attacker and the switch.

Figure 78: Script to launch CAM

To verify the effectiveness of the attack, we must first await the overflow of the CAM table. Following

this, we initiate a ping between PC1 and PC2. If the attack has succeeded, we should observe ICMP

packets captured on the attacker’s eth0 interface. This is illustrated in figure 79, where a packet is

captured on the attacker’s end.

Figure 79: ICMP packets captured on Attacker’s interface

The figure 79 shows that the attacker can observe the traffic between PC1 and PC2. This happens

because the switch has the CAM table full and, therefore, it transforms itself on a hub, sending the

packets to all the ports.

4.1.4 Comparison with Scapy

To have a fair comparison with Scapy, all tests were done in the same environment and we used the

CamSequential() function. For our comparison we will consider two measures: code legibility and the

execution time of the script to send a certain number of packets. The script in Scapy that performs this

attack is shown in figure 80.
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Figure 80: Scapy script to perform CAM attack

4.1.4.1 Code readability

The Scapy script starts by generating sequentially the mentioned number of packets in the function

generate packets(). The packets generated have the ethernet and IP layer, both with random source

and destination MAC and IP respectively. Following it uses the sendp() function to send the generated

packets. In terms of code legibility, comparing with figure 76, we can observe that the code in Go is more

verbose and in Scapy is more compact. In packet crafting, Scapy allows for concise packet building in

just one line (as seen in line 7). In contrast, the Go implementation requires several lines (from line 97 to

105). This difference arises because, in Go, each attribute’s value must be set using individual method

calls, whereas Scapy lets you specify these values directly when invoking the layer.

4.1.4.2 Execution time comparison

Comparing both implementations, the algorithm behind the scripts is similar. Both generate a given

number of packets in a for loop and send the packets sequentially. To retrieve the execution times,

we have used the time instruction of unix environments. We measured the execution times of both

implementations for the following number of packets: 5000, 30000, 100000 and 200000. The results are

shown in table 4.2.

5000 packets 30000 packets 100000 packets 200000 packets
Golang Python Golang Python Golang Python Golang Python

1strun (seconds) 0.732 3.769 1.579 28.358 3.903 67.814 7.117 177.851
2ndrun (seconds) 0.742 3.723 1.589 26.911 3.831 62.551 7.250 174.999
3rdrun (seconds) 0.728 3.635 1.554 27.593 3.838 66.813 7.055 176.493
4thrun (seconds) 0.745 5.013 1.614 28.020 3.845 65.193 7.142 177.867
5thrun (seconds) 0.750 3.899 1.597 28.001 3.878 65.007 7.377 177.095

Average (seconds) 0.739 4.001 1.586 27.776 3.859 65.475 7.188 179.276

Table 4.2: Benchmark of CAM attack
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Looking at table 4.2, we can observe that Go implementation executes faster in all tests. In terms

of percentages, Go outperforms by 541% in the 5,000 packets implementation, by 1751% in the 30,000

packets implementation, by 1698% in the 100,000 packets implementation, and by 2494% in the 200,000

packets implementation. We can conclude that as the number of packets increases, the difference

becomes more accentuated. The graphic illustration is shown at figure 81.

Figure 81: CAM execution times graph

The chart depicts the relationship between the number of packets and the time taken, in seconds

for the two different implementations: Scapy (represented by the orange line) and Scago (represented

by the blue line). The exponential curve fitting indicates that as the number of packets increases, the

time taken for the Scapy implementation rises significantly compared to the Scago implementation. This

suggests that the Scago implementation may be more efficient in handling larger numbers of packets in

a given time span.

To study the impact of concurrency, we compared the time taken to send an identical number of

packets (200000), both concurrently and non-concurrently. For that we have used the functions Cam()

and CamSequential(). The results are shown in table 4.3

Concurrency Non-concurrency
1stRun 6.891 sec 7.117 sec
2ndRun 6.517 sec 7.250 sec
3rdRun 6.524 sec 7.055 sec
4thRun 6.948 sec 7.142 sec
5thRun 7.015 sec 7.377 sec
Average 6.779 sec 7.188 sec

Table 4.3: Benchmark of CAM with concurrency

Upon analyzing the results, we see that concurrency offers a better execution time. Yet, the gains are

limited since all packets use the same network path. The notable advantage is in the concurrent crafting

of the packets.
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4.2 VLAN double tagging

4.2.1 Attack description

In Ethernet networks, VLANs allow for the creation of multiple virtual LAN segments on a single physical

infrastructure. Devices within a specific VLAN can communicate with each other as if they are on an

isolated network, even though they might share the physical medium with devices from other VLANs.

VLAN information is carried within Ethernet frames using tags specified in the IEEE 802.1Q standard.

In the double tagging attack, the attacker sends frames with two VLAN tags. The outer tag cor-

responds to the attacker’s VLAN, and the inner tag corresponds to the target VLAN. When a switch

receives this frame, it only understands and processes the outer tag, removes it, and forwards the frame

to the specified VLAN. As the packet continues through the network, another switch might see the inner

tag and forward the frame based on that tag, allowing it to reach the target VLAN. This could potentially

allow an attacker to send packets to a VLAN they shouldn’t have access to.

For this attack to be successful, the attacker must be positioned on a native VLAN (untagged) that

doesn’t have 802.1Q tagging and be targeting a switch that doesn’t have VLAN ingress filtering enabled.

Furthermore, the attacker needs to target a VLAN that exists and is active on the trunk link.

4.2.2 Developed script

The script to perform this attack can be found in higherlevel/doubletag.go file and the code is shown

in figure 82.

Figure 82: DoubleTag script in Go

The DoubleTagVlan() function, starts by crafting the ethernet layer with a random MAC address as
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source and the broadcast address as its destination from lines 14 to 17. Following, the first Dot1Q layer

is created on line 20. This layer corresponds to the VLAN that the attacker wants to reach. Another

Dot1Q layer with the outer tag is created identifying the native VLAN. Finally, the IPv4 and ICMP layers

are created.

4.2.3 Attack results

To replicate this attack we built the network topology of figure 83.

Figure 83: Network topology for Double Tagging attack

The attacker is connected to VLAN 1, which is also the native VLAN of the trunk connection between

the switches. The objective is to observe the packet sent by the attacker in the connection between PC2

and Switch. This connection belongs to a different VLAN, therefore if we are able to observe the packet

we can conclude that the attack worked. To launch the attack, we can execute the code demonstrated

on figure 84.

Figure 84: Script to execute the Double Tag attack

We set up a Wireshark capture in all the connections of the network to observe the packet route. The

attacker will create an ICMP packet with the outer tag VLAN 1 and inner tag VLAN 2. The ICMP packet

is shown in figure 85.

As expected the ICMP packet has the outer tag VLAN 1 and the inner tag VLAN 2. When the packet

reaches Switch 1 the first 802.1q layer with the outer tag will be removed. Therefore, it is expected that

ICMP packet captured on the connection between Switch 1 and Switch 2 will only have the 802.1q layer
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Figure 85: ICMP packet on the connection between the Attacker and Switch1

with the tag VLAN 2. The packet is shown in figure 86.

Figure 86: ICMP packet on the connection between the Switch1 and Switch2

When the packet arrives to Switch 2, it will only have the tag VLAN 2. Therefore the switch will forward

the packet to the connections of VLAN 2, in this case, PC2. The packet captured in the connection

between PC2 and Switch 2 is shown in figure 87.

Figure 87: ICMP packet on the connection between the Switch 2 and PC2

4.2.4 Comparison with Scapy

To replicate this attack using Scapy, the script show in figure 88 can be used.
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Figure 88: Scapy script to execute Double tag attack

The script calls the function vlan double tagging() that creates the ICMP packet with the two layers

of 802.1q. Following, it sends the packet 10 times in line 11.

4.2.4.1 Code readablity

Comparing to the developed script in Go, the implementation is similar in terms of code verbose. The

most noticeable difference is that Scapy can stack layers using the division operator while in the devel-

oped library we need to use the function CraftPackets(). The difference is located in line 10 of figure 88

and lines 14 - 35 from figure 82.

4.2.4.2 Execution time comparison

To test execution times, we set the scripts to send 10000 packets and the results are shown in table 4.4

Golang Python
1st Run 6.254 sec 45.504 sec
2nd Run 5.305 sec 38.407 sec
3rd Run 4.254 sec 41.692 sec
4th Run 5.047 sec 44.899 sec
5th Run 4.098 sec 37.315 sec
Average 4.991 sec 41.563 sec

Table 4.4: Benchmark of Double Tag attack

The differences observed in the CAM table overflow can also be observed in this attack. Go has a

faster execution time than Scapy, with similar implementations.
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4.3 ARP Cache Poisoning

4.3.1 Attack description

The ARP Cache Poisoning is a man-in-the-middle (MitM) attack. It consists of sending unsolicited ARP

Replies to other hosts on the subnet with the MAC Address of the attacker and the IP address they want

to claim. Therefore, any host can claim to be the owner of any IP/MAC they choose. After the poison of

ARP cache of the victims, the attacker can observe all the traffic, performing a MitM attack.

4.3.2 Developed script

The script to perform this attack can be found in the higherlevel/arpcache.go file. The file contains the

following functions: ARPScanHost(), enableIPForwarding(), disableIPForwarding() and ArpMitm().

The first function found is the ARPScanHost(). This function obtains the MAC address of a desired IP

using an ARP request. The code for this function is shown in figure 89.

Figure 89: ARPScan function

The function starts by retrieving the MAC and IP address of the interface to be used in line 16 and

17. From line 19 to 29, an ethernet layer and an ARP layer are created. The created packet corresponds

to an ARP request for the IP given on the argument. Finally, a for loop sends the crafted packet and

waits to receive a reply from the host using the function SendRecv from the supersocket package. The

received packet is filtered on line 39, and if it is the reply from the host it returns the MAC address.

Continuing analysing the arpcache.go file, we can observe two functions enableIPForwarding() and

disableIPForwarding(). As the name says, those functions will either enable or disable the forwarding

of packets on the interface. The code for those functions is shown in figure 90.

The next function in the file is the ArpMitM(). This function is the main function of this file and it is

used to launch the attack on the two victims. The code is shown in figure 91.
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Figure 90: enableIPforwarding and disableIPforwading functions

Figure 91: ArpMitm function

The function initiates its process by invoking the enableIPForwading() method to permit the for-

warding of packets across the interface. On line 61, the defer keyword is utilized in conjunction with the

disableIPForwarding() function, ensuring that IP forwarding is deactivated upon the termination of the

ArpMitm() function.

After the ARPScanHost() function is called to retrieve the MAC addresses of the victims. On line

66, fake ARP replies are crafted through the CreateFakeArp() function. The initial ARP reply targets

victim 1, using victim 2’s source IP and the attacker’s source MAC. Consequently, victim 1’s ARP table

becomes poisoned, redirecting any packets intended for victim 2 to the attacker instead. A similar

poisoning occurs in the ARP table of victim 2. The code for this function is shown in figure 92.

On line 69, the crafted packets are sent through a for loop with 100 iterations, ensuring the sustained

poisoning of the ARP table. Finally, at line 76, the restoreARP() function crafts and dispatches the

authentic ARP replies, thereby restoring the ARP tables of the victims to their original states. The code

the restoreARP() function is shown in figure 93.
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Figure 92: CreateFakeArp function
Figure 93: RestoreArp function

4.3.3 Attack results

To replicate this attack, we built a network topology with 1 switch, 2 hosts and the attacker. The objective

is to observe the traffic from victim 1 to victim 2 by flooding the ARP table of the the victims. The network

topology and the IPs assigned to the hosts is shown in figure 94. The MAC address table is shown in

table 4.5.

Figure 94: Network topology for ARP cache attack

Host MAC
Attacker 2a:4f:d7:16:94:88

PC1 c2:02:7e:72:00:00
PC2 c2:01:ad:e9:00:00

Table 4.5: Host’s MAC

To launch the attack, the script observed at figure 95 was launched and a Wireshark capture was set

in the connection between the attacker and the switch.

68



Figure 95: Script to run ARP cache poison attack

With the Wireshark capture, we were able to observe the fake ARP replies sent by the attacker. The

packets is shown in figure 96.

Figure 96: Fake ARP replies

As we can see by looking at the packets, the attacker is sending ARP replies to the victims saying

that the victims addresses have the MAC address of the attacker, 2a:4f:d7:16:94:88. We can confirm by

observing the ARP table of PC1 figure 97.The ARP table of PC1 indicates that the address 10.0.0.200,

which corresponds to PC2, has the same MAC address of the attacker 2a:4f:d7:16:94:88. Now, execut-

ing a ping from PC1 to PC2 we can observe the ICMP packets in the connection between the attacker

and the switch. The results are shown in figure 98.

Figure 97: ARP table

Figure 98: ICMP packets from PC1 to PC2 in attacker’s connection

4.3.4 Comparison with Scapy

The script to perform this attack with Scapy is shown in figure 99 and figure 100.
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Figure 99: Scapy ARP cache poison 1

Figure 100: Scapy ARP cache poison 2

The main function of the scapy script is the mitm(). This function starts by getting the MAC of both

victims on line 40 and 47. For that, it uses the get mac() function, which performs obtains the MAC of

a specific host by using an ARP request packet. Following, the trick() function sends the forged ARP

replies poisoning the ARP table of the victims. [26]

4.3.4.1 Code readability

Comparing the Go implementation with the Scapy one, it is possible to conclude that both perform the

same tasks. Although Scapy implementation has several more print instruction, those are only used

whenever an exception occurs. Therefore it does not affect performance or tasks. Excluding those, the

rest of the scripts are similar on both implementations. We can observe that the Go code gets more
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verbose when creating a packet and populating it with values. In Scapy, the packet crafting can be done

in a single line.

4.3.4.2 Execution time comparison

To compare both scripts, we configured the scripts to send 20 fake ARP replies each and analyzed the

execution time. The results are shown in table 4.6.

Golang Python
1st Run 24.720 sec 35.102 sec
2nd Run 25.177 sec 34.783 sec
3rd Run 23.186 sec 33.989 sec
4th Run 24.150 sec 35.855 sec
5th Run 25.033 sec 35.065 sec
Average 24.453 sec 34.959 sec

Table 4.6: Benchmark of ARP cache attack

From our analysis of the CAM overflow and VLAN Double Tagging attacks, Go consistently runs faster

than Python, a trend also evident in this ARP Cache Poison attack. The results do show increased time

values, resulting from the time taken to fetch the MAC addresses of both victims. Even considering this

factor, Go remains superior to Python in terms of processing, analyzing, and crafting network packets.

4.4 STP root bridge hijack

4.4.1 Attack description

The STP root bridge hijacking is a MitM attack aimed at a network’s Spanning Tree. The Spanning Tree

protocol is designed to prevent loops in layer 2 networks by accommodating redundant connections.

It accomplishes this by allowing each switch, designated a bridge, to adjust its port state. This state

determines if a specific port will process and forward frames. The decision is based on the bridge’s con-

figurations and the information acquired from other bridges through BPDU packets. Within a Spanning

Tree setup, a root bridge is chosen based on its Bridge ID. This ID is a combination of a Priority value

and the bridge’s MAC address, which gets relayed in BPDUs.

STP root nridge hijacking involves an attacker overtaking the root bridge’s function. By positioning

between two bridges, the attacker can intercept every frame they forward. Achieving this isn’t straight-

forward, as it necessitates the attacker to link two separate interfaces to two distinct bridges. To perform

the attack, fake BPDUs will be created with a modified MAC address which will make the attacker the

root bridge. Following, all the packets will be redirected to the attacker connections with the bridges,

performing a MitM attack.

71



4.4.2 Developed script

There are two scripts defined that can perform a STP root bridge hijacking attack. The first script,

rootbridge.go under the higherlevel package, can be used when the attacker has only one interface

connected to a bridge. The script named rootbridge2int.go is used for scenarios where the attacker

is placed between two bridges. It offers the functionality to transfer data from one interface to another

and vice versa, performing a MitM attack. Both scripts are similar, with the exception that in root-

bridge2int.go, the function bridgeAndSniff is used. This function takes as argument two interfaces

and forwards the traffic between them.

Focusing on the rootbridge.go file, the following functions are available: StpRootBridgeMitM() and

stpRootBridgeHijack(). The code for StpRootBridgeMitM() is shown at figure 101.

Figure 101: Code for StpRootBridgeMitM for 1 interface

This functions receives the interface as argument. Following, it uses the Recv() function to receive

packets on the given interface. If the packet has an STP layer (line 18), the function obtains the MAC

address of the root bridge (line 24) and it decreases its value by 1 (line 27). This decrement will allow

the attacker to take over and assume the root bridge role. Following, on line 35 the params variable

is created and populated with the new MAC address calculated and the ID of the STP packet. The

StpRootBridgeHijack() function will craft the fake BPDUs and the respective BPDUs acknowledge with

the data obtained from the received STP packet. While this acknowledge might not be necessary for the

attack to be successful, it is still the expected behavior of the root bridge and thus we chose to send the

acknowledge. The code of this function is shown at figure 102.

72



Figure 102: Code for StpRootBridgeHijack

The StpRootBridgeHijack() function starts by retrieving the received information for the STP packet

at lines 47 to 50. Following, from lines 52 to 62 the fake BPDU is crafted with the following layers: 802.3,

LLC and STP. The packet is destined to the MAC address 01:80:c2:00:00:00 which is the default for

STP BPDUs. The retrieved information and the MAC address calculated are used to craft the packet.

In line 66, it uses the function SendRecv() to send the crafted packet, awaits for any topology change

BPDU and crafts the acknowledge.

Examining the rootbridge2int.go file, this script is designed for situations where an attacker is linked

to two bridges. Besides taking on the role of the root bridge, this script ensures a bridge is established

between the attacker’s two interfaces, allowing for the transfer of packets between them.. The code for

the StpRootBridgeMitM2() is shown in figure 103.
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Figure 103: Code for StpRootBridgeMitM2 for 2 interfaces

This function starts by launching a goroutine to execute the function BridgeAndSniff on line 14.

This function will be responsible to redirect the traffic from one interface to another. Its code and func-

tionality are detailed on section 3.5 Following, as the StpRootBridgeMitM function, it awaits to receive

a STP packet so it can calculate the decreased MAC address (line 24 to 33). Finally, two goroutines

are launched to execute the function stpRootBridgeHijack, line 41 and 42, on both interfaces. This

goroutines will ensure that the fake BPDU and the respective acknowledge are crafted and sent on

both interfaces. Note that the running variable is used to avoid the launch of multiple goroutines of the

function stpRootBridgeHijack. As soon as the function is called, the variable is set to 1 and the loop

stops.

It is important to notice how practical it is to developed concurrent code in Go. In this example,

with just the keyword Go we are able to launch 3 different threads that will ensure the attacks works as

expected.
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4.4.3 Attack results

To replicate this attack, we built a network topology with 2 VPCS hosts and 3 Cisco IOSvL2 switches.

The attacker is connected to two switches. The objective is to observe the packets coming from PC2 to

PC1 in the connection between the switches and the attacker. The network topology is shown in figure

104.

Figure 104: Network topology for STP Root Bridge Hijacking

The PC1 and PC2 have the IPs 10.0.0.10 and 10.0.0.20 respectively. By default, the root bridge of

this topology is Switch 2. The packets from PC1 to PC2 are sent from Switch 1 to Switch 2 and delivered

to PC2. In this STP topology the Switch 2 Gi0/1 interface is blocked to avoid loops. With the instruction

show spanning-tree on Switch 2 we can observe its STP topology, shown in figure 105.

Figure 105: Spanning tree on Switch 2

The table 4.7 contains the MAC addresses of all the switches.

Host MAC
Switch1 0c:be:9b:fb:00:00
Switch2 0c:79:72:9a:00:00
Switch3 0c:d1:07:a2:00:00

Table 4.7: MAC addresses of switches
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To launch the attack, we can use the script shown in figure 106.

Figure 106: Script to launch STP Root Bridge Hijacking

Following, with a wireshark capture set up on the connection between the Attacker and Switch 2. We

can observe the fake BPDU with the calculated MAC address. On figure 107 it is possible to observe a

BPDU crafted by the attacker.

Figure 107: Fake BPDU crafted by the attacker

As we can observe, the attacker crafted a BPDU with the MAC address as 0c:79:72:99:ff:ff which

corresponds to the MAC address of Switch 2 decremented by 1. This will make the attacker the root

bridge. The output of the instruction show spanning-tree on Switch 2 is shown in figure 108.

Figure 108: Spanning tree after attack

As we can observe, the root bridge is now the attacker. Launching a ping from PC2 to PC1 we can

observe the ICMP packets in the connection between attacker and Switch 2. Figure 109 shows the

results of the capture.
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Figure 109: ICMP packets in the connection between Attacker and Switch 2

4.4.4 Comparison with Scapy

To achieve the same results using Scapy, we used the script developed by Duarte Matias in his MSc dis-

sertation [23]. This script uses the ”asyncio” library to simultaneously schedule two tasks for transmitting

BPDU packets. Additionally, it employs the multiprocessing library to connect the two interfaces used

in the attack. The need for the multiprocessing library arises because the ”bridge and sniff” function

provided by Scapy is a blocking function. These are functions that don’t return until they complete their

execution, therefore blocking the whole program. For that reason, a new process developed with the aid

of the multiprocessing library needs to be launched to execute the bridge and sniff function.

The snippet of code responsible for the sniffing and the launch of the attack is located in figure 110.

Figure 110: Snippet of code to sniff and launch the attack in Scapy

The code starts by creating a sniffer that only receives STP packets, from line 22 to 30. Following, it

retrieves the necessary information from the BPDU packet received, specifically, the Root bridge MAC
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and Root bridge ID. Next, it calculates the MAC address to be used by the attacker by decrementing 1 to

the Root bridge MAC, from lines 37 to 40. Finally, on line 45 it uses the asyncio.run() function to launch

the main coroutine with the given parameters. The code for the main coroutine is shown in figure 111.

Figure 111: Scapy main coro function

The main coro function starts by initializing the multiprocessing library. This library will create a

new Python process, that in this case will be used to run the bridge wrapper function which corresponds

to the bridge and sniff function from Scapy library. The necessity for a new Python process arises from

the blocking nature of the function bridge and sniff. When bridge and sniff is invoked, the function

essentially enters a loop where it continuously listens for packets on one interface and forwards them to

the other interface (and vice versa). This continuous listening and forwarding loop inherently makes the

function blocking. Though Scapy offers an Asyncsniffer feature that allows non-blocking packet reading,

it’s not suitable for bridging two interfaces. Instead, we’ll have to utilize the bridge and sniff function.

From line 49 to 51, the multiprocessing library launches a new Python process to run the bridge and sniff.

Following, on line 53 the asyncio.gather and asycio.create task will launch two instances of the func-

tion hijack coro. Each instance will be responsible to craft and send the fake BPDUs so that the attacker

can takeover as the root bridge. The code for the hijack coro function is shown at figure 112

Figure 112: Scapy hijack coro function

The hijack coro function will craft the fake BPDU, in line 71, and sends it to the interface given using

the srp1() function. Following, it crafts the BDPU acknowledge and sends it to the same interface.

In figure 113 we can observe the illustration of this attack, with the respective functions it uses to run.
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Figure 113: Scapy STP attack illustration

To compare with ScaGo implementation, we can observe the attack illustration on figure 114.

Figure 114: ScaGo STP attack illustration

When contrasting both figures, noticeable differences in concurrency management emerge. In

Scapy, to replicate the same concurrent behavior, we must employ the multiprocessing library and

initiate a separate process for the bridge and sniff function, to avoid its blocking nature as explained

before. Next, two asyncio tasks must be created to run the hijack coro function on each of the inter-

faces. Conversely, in Golang, achieving concurrency is more straightforward. By prefixing a function call

with the go keyword, the function runs in a separate thread, preventing blockages and ensuring the pro-

gram continues its operation. As we can observe, to replicate the same behaviour we just need to launch

three goroutines, one for BridgeAndSniff and two for the StpRootBridgeHijack function, one for each

interface. We can conclude that for concurrent implementations, Go has a simpler implementation and

does not need to use external libraries as Python does.

4.5 TCP SYN flood

4.5.1 Attack description

A TCP SYN Flood attack is a type of Distributed Denial of Service (DDoS) attack that exploits part of

the normal TCP three-way handshake. The TCP three-way handshake has three steps: First, the client
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sends a TCP packet with the SYN flag, asking to establish connection. Second, the server sends back a

packet with both SYN and ACK flags, acknowledging the connection of the client. Third, the client sends

the ACK packet back to the server, establishing the connection. [27]

In a TCP SYN Flood attack, the attacker sends a rapid succession of SYN packets to the target

server, often using a forged source IP address. The server then sends SYN-ACK responses to each

of these requests and waits for the final ACK, which never comes. Since the source IP addresses are

often forged, the server is essentially waiting for acknowledgments from IP addresses that might not

even be in use. This behavior causes a problem for the server because for each SYN request, it keeps

track of the half-open connection during the handshake process. If the server receives an high number

of these SYN requests, it can exhaust its resources, which can lead to legitimate connection requests

being denied, thus achieving the denial-of-service effect.

4.5.2 Developed script

The developed script to perform this attack is located at higherlevel/tcpsyn.go file. The code for this

script is shown at figure 115.

Figure 115: TCPSYNFlood function

The TCPSYNFlood() function receives as arguments, the interface to be used, the target IP and port

and the number of packets to be sent. Following, from line 11 to line 16, it creates the IP and TCP layer.

On the IP layer it sets as destination the IP of the victim on line 12. On the TCP layer it sets the target

port, line 15, and with the function SetSyn() it sets the SYN flag.

On line 18, a loop is created. This loop will fill the source IP and the source port as random values.

The reason why the source IP and source port are calculated in this loop is because they need to be

different each packet. Therefore, to save resources and reduce execution time, the static fields are

defined outside the loop, while the dynamic are calculated inside the loop. As explained in the section

3.2, the ethernet layer and the checksums for the TCP layer are automatically calculated when the
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function CraftPacket() is invoked.

4.5.3 Attack results

To replicate this attack, we have built a network topology with 1 host (attacker) and 1 c3725 router acting

as an http server. The network topology is shown in figure 116.

Figure 116: TCPSYNFlood network topology

With the instructions show tcp statistics on the router, we can observe if there were dropped con-

nections. The objective is to send multiple TCP packets with the SYN flag until we can observe dropped

connections on the router. To launch the attack, the script shown in figure 117 can be used.

Figure 117: Script to launch TCPSYNFlood attack

A Wireshark capture was set in the connection between the attacker and the router. We can observe

the malicious TCP SYN packets on figure 118.

Figure 118: TCP SYN packets sent by the attacker

If we use the show tcp statistics instruction on the router we can observe that there were connec-

tions that were dropped. This concludes that the number of open connections achieved the maximum,

dropping the new connections. The output of this instruction is shown at figure 119.
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Figure 119: TCP Statistics on router

4.5.4 Comparison with Scapy

The Scapy script that reproduces this attack is shown at figure 120.

Figure 120: Scapy script for TCP SYN Flood

This script creates the IP layer, on line 6, with a source IP and the provided destination IP. Next, on

line 7, the TCP layer is created with a random source port, the provided destination port and the SYN

flag is set. Following the packet is sent count times.

4.5.4.1 Code readability

In terms of code readability, both implementations are similar. The key distinction between Scapy and

Scago is Scapy’s ability to stack layers using the dividend operator, as previously mentioned. Both

implementations show similarities throughout the rest of the script.

4.5.4.2 Execution time comparison

To compare both scripts, we configured the scripts to send 15000 TCP SYN packets. The results are

shown in table 4.8.
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Golang Python
1st Run 1.901 sec 11.109 sec
2nd Run 1.416 sec 10.833 sec
3rd Run 1.994 sec 12.492 sec
4th Run 1.579 sec 11.173 sec
5th Run 1.872 sec 11.911 sec
Average 1.752 sec 11.503 sec

Table 4.8: Benchmark of TCP SYN flood attack

As we have observed in the previous attacks, the tendency of Go implementation being faster is also

observed in this attack. We can conclude that despite the Go implementation being more verbose, it

also executes faster that Python.

4.6 DNS Spoofing

4.6.1 Attack description

DNS Spoofing is a type of attack where the attacker introduces malicious DNS data causing the name

server to return an incorrect result record, leading to a malicious website. The objective of this attack is

to demonstrate the DNS Spoofing by redirecting the victim to a fake webserver. This attack is preceded

by the ARP cache poisoning. By poisoning the ARP cache of a victim, it will redirect the DNS requests

to our attacker allowing to reply with a forged DNS response to the query. This response will redirect the

victim to the attacker webserver.

4.6.2 Developed script

The developed script to perform this attack can be found in higherlevel/dns.go file. This file has the fol-

lowing function: DNSSpoofing(), parseHosts() and PoisonArp(). The main function being DNSSpoof-

ing(). The code for this function is shown in figure 121.
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Figure 121: DNSSpoofing function

This function receives as arguments the interface, a file containing the IP of the hosts inside the

network and the fake webserver IP address that we want to redirect the victim to. On line 60, it adds an

iptables rule that drops outgoing ICMP destination-unreachable packets. This precaution prevents the

attacker from unintentionally disrupting the victim’s DNS client when DNS queries are received, given

that the attacker’s port 53 (used for DNS) is not active.

On line 62, the function parseHosts() is called. This function will parse the file given as an argument

and using the ARPScanHost() function from the ARP cache poison attack it will obtain the MAC address

of the IP addresses in the hosts file. The code for this function is shown in figure 122. Following, a

goroutine is launched for the function PoisonArp. This function will continuously poison the ARP cache

of the victims and the code is shown in figure 122. Next, a for loop is created where it uses the function

Recv() to receive packets (line 66), checks if the received packet has a DNS layer (line 67) and if it has

it retrieves all the layers of the packet (from line 69 to 72).

Finally, from lines 74 to 99 the forged DNS packet, with all the required layers, is crafted. It utilizes

attributes from the received DNS request and forges a fake DNS reply with the fakeIP associated to the

question asked by the victim (line 94).
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Figure 122: ParseHosts and PoisonArp functions

4.6.3 Attack results

The objective of this attack it to first poison the ARP cache the hosts inside the network. This will redirect

the DNS request to the attacker where we can craft the forged DNS response and redirect the victim to

the fake webserver. The network topology built is shown in figure 123. The IPs and MAC for each host

are described on table 4.9
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Figure 123: Network Topology for DNS Spoofing

Host IP MAC
WebTerm 192.168.122.20 fe:29:ed:da:d7:78
Attacker 192.168.122.10 36:06:74:ec:48:9f
Toolbox 192.168.122.30 a6:10:9b:e0:97:4a

NAT 192.168.122.1 N/A

Table 4.9: IP and MAC of the hosts in DNS topology

In this attack scenario, the webterm acts as a web browser, representing the victim. The Toolbox is

a malicious web server set up by the attacker, and its purpose is to deceive the victim. Through the use

of NAT, the victim retains the ability to connect to the internet. The main goal of the attack is to intercept

and spoof a DNS request made by the victim when attempting to visit linkedin.com. Instead of reaching

the genuine site, the victim will be redirected to the Toolbox. The script to launch the attack is shown at

figure 124.

Figure 124: Script to run DNS Spoofing

On figure 125 we can observe the fake ARP replies sent by the attacker and on figure 126 and figure

127 the ARP table of the toolbox and the victim is shown.
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Figure 125: ARP replies crafted by the attacker

Figure 126: ARP table of Toolbox

Figure 127: ARP table of Webterm

As we can observe, the ARP table of the victim is poisoned and all the addresses point to the MAC

address of the attacker. When the victim inquiries for the IP address of the website linkedin.com, this

request will be redirected to the attacker where it will send the forged DNS response. The DNS request

and the respective forged DNS response is shown in figure 128 and figure 129.

Figure 128: DNS Request by the victim

Figure 129: DNS Response sent by the attacker

In the response, the address given by the attacker points to the fake webserver. On the browser, we

are now redirected to the fake website as we can observe in figure 130.
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Figure 130: Fake web page redirected

4.6.4 Comparison with Scapy

As this is an attack where the attacker merely waits for a DNS request before crafting a response,

we won’t be comparing execution times. We will be just comparing the code in Scapy with the Go

implementation. The code for the Scapy implementation of this attack is shown in figure 131.

Figure 131: DNS Spoofing with Scapy

On line 120, an iptables rule is added to suppress outgoing ICMP ”destination-unreachable” mes-

sages. From lines 123-127, the script scans the network to gather MAC addresses for the hosts in the

specified range. These addresses are stored in the mac list dictionary. Line 127 filters out hosts with

no detected MAC address. Line 134 initiates ARP poisoning, sending fake ARP responses to make the

target devices send their traffic to the attacker’s machine. For this, it uses the same functions as the
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ARP cache poison attack, explained in section 4.3.4. From line 138 onward, the script starts an asyn-

chronous packet sniffer, explained in detail on section 2.1.3.5, to listen for DNS queries (UDP port 53),

and periodically re-sends the ARP poisoning packets every 5 seconds. When a DNS packet is received

the function packet handler is called. The code for this function is shown in figure 132.

Figure 132: Packet Handler function Scapy

Firstly, from line 21 to 24 this function retrieves the ethernet, IP, UDP and DNS layer from the received

packet. Following, using the attributes obtained from those layers it crafts the forged DNS response and

sends it.

In contrasting the two implementations, there are disparities in their approaches. Scapy’s version

conducts an ARP scan across the entire network, while Scago’s version focuses on specified IP hosts.

Upon gathering the addresses, Scapy’s script calls the ARP poison() function to poison the ARP tables

of identified hosts. Conversely, Scago uses a goroutine to initiate the Poisonarp() function. This spawns

a distinct thread dedicated to compromising the ARP tables of the targets. This highlights the simplicity of

embedding concurrency in Go. Although the packet crafting methods are akin, Go necessitates slightly

more explicitness since each value requires a separate method call.

4.7 DHCP Spoofing

4.7.1 Attack description

A DHCP server assigns IP configurations to clients. Clients request this with a DHCPDISCOVER mes-

sage and servers reply with a DHCPOFFER. Clients accept with a DHCPREQUEST, and servers confirm

with a DHCPACK. In a DHCP spoofing attack, a malicious the attacker poses as a DHCP server, sending

misleading IP details to clients. This can lead to MitM attacks if the attacker’s IP is given as the default

gateway. When a host seeks an IP, it accepts the first offer, leading to a race between real and fake

servers. The attacker’s response must be the first to arrive to the host.
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4.7.2 Developed script

The script developed to reproduce this attack is found at higherlevel/dhcpspoofing.go file and the

code is shown in figure 133 and figure 134.

Figure 133: DHCPSpoofing function

Figure 134: DHCPOfferAck function

The core function of this attack is named DHCPSpoofing(). It accepts parameters for the IP pool,

network mask, gateway, and the interface to be employed during the attack. On line 15, the function

computes the range of available IP addresses based on the provided pool and network mask. Subse-

quently, line 16 initiates a packet sniffer set to exclusively capture UDP packets that use ports 67 or 68,
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these ports are standard for DHCP communications. The sniffer is started through a goroutine launched

on line 20. Once a packet is intercepted, lines 31 to 39 assess its DHCP message type. Depending on

whether the message type is ”Discover” or ”Request”, it triggers the DHCPOfferAck() function. This par-

ticular function, as detailed in figure 130, is responsible for crafting fake DHCP packets. When the DHCP

message type is ”Discover”, the dhcpType argument is set to offer, directing the function to formulate

a DHCP offer packet. Conversely, if the message type is ”Request”, an Acknowledge (ACK) packet is

assembled. In lines 46 to 48, the initial entry of the availableIP variable is deleted because the client has

taken that IP.

The DHCPOfferAck() function crafts a deceptive DHCP packet in a stepwise manner. It begins by

constructing the Ethernet layer from lines 55 to 58, then moves on to create the IP layer in lines 60 to

65, followed by the UDP layer between lines 65 and 68. The function finalizes the packet crafting by

establishing the DHCP layer, incorporating all necessary DHCP options, from lines 70 to 85. Once fully

assembled, the packet is sent.

4.7.3 Attack results

To replicate this attack, we have built a network that contains 2 Cisco IOSvL2 switches, 2 VPCS as

victims, the attacker and a cisco c3725 as the DHCP server. The network will have the following subnet

address: 10.0.0.0/24. The DHCP server is addressed at 10.0.0.10 and PC2 will have a static IP address,

10.0.0.2/24. The legit DHCP in this network, will assign the IP addresses from the network 10.0.0.0/24.

The attacker will assign the IP addresses from the subnet 192.168.1.0/24. We ensure that the response

coming from DHCPRogue always arrives first. This happens since the attacker is closer to PC1. The

response from the attacker must only travel between 1 switch, while the response from the legit DHCP

server must travel between 2 switches. The network topology is shown at figure 135.

Figure 135: DHCP Spoofing network topology

In this simulation, PC1 will get an IP configuration using DHCP. To run the attack, the script shown at

figure 136 can be used.
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Figure 136: Script to run DHCPSpoofing function

We set up a wireshark probe between the attacker and the switch. On PC1, the instruction ip dhcp

will try to get a DHCP IP configuration. On figure 137 we can observe the DHCP negotiation between

the attacker and PC1.

Figure 137: DHCP negotiation between the attacker and PC1

Packet 376 is a DHCP discover broadcast from PC1. Following this, two DHCP offers are evident:

Packet 377, originating from the rogue server, and Packet 378, sent by the official DHCP Server. Notably,

Packet 377 lacks a source IP. The inspection of packet 377 is shown in figure 138.

Figure 138: DHCP packet 377

As seen in figure 138, the offered IP address is 192.168.1.1. This IP does not correspond to the

configured network. By using the instruction show ip on PC1 we can see the IP configuration. The
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result is shown in figure 139

Figure 139: PC1 with wrong configuration

4.7.4 Comparison with Scapy

In this attack, the attacker waits for a DHCP Discovery before crafting a response, we won’t be comparing

execution times. We will be just comparing the code in Scapy with the Go implementation. The code is

shown at figure 140.

Figure 140: DHCP Spoofing on Scapy

This script expects four arguments specifying the IP pool, netmask, gateway, and network interface
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(line 5). The script starts by initiating a sniffer set to exclusively capture UDP packets on ports 67 or 68

(line 48). The IP addresses from the given pool are generated (lines 8-10). A function, dhcp offer ack(),

crafts fake DHCP responses based on provided details and the type of DHCP message (lines 13-28).

Another function, dhcp(), processes incoming DHCP packets, checking if they are DHCP Discover or

Request messages, and responds with the appropriate spoofed DHCP Offer or ACK (lines 30-42). The

script sniffs network traffic on the specified interface for UDP packets on ports 67 and 68, processing

them with the dhcp() function (line 48).

From our observations, Scago is more detailed in its approach compared to Scapy, especially in

packet crafting. In Scago, each value requires a method call to set, while in Scapy, values can be

directly assigned during layer declaration. For a clearer comparison, refer to lines 14-25 in figure 140

and lines 55-85 in figure 134. An advantage of Scago is its ability to easily make functions concurrent

using the ’go’ keyword. On the other hand, to achieve the same in Scapy, more development is needed.

4.8 RIP Poisoning

4.8.1 Attack description

The RIP poison attack works by sending forged routing updates. In this attack, the attacker sends a

forged RIP update, which can lead to denial of service and data interception (MitM). The vulnerability

arises from RIP’s method of choosing the optimal route, which favors the route with the lengthiest prefix.

If an attacker claims a route to a certain network with a prefix greater the best route available before the

poison, the router will consistently deem it the superior path.

4.8.2 Developed script

The developed script is found at higherlevel/rippoisoning.go file and the code is shown in figure 141.

Figure 141: RIPPoison function
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The RIPPoison() function accepts the following arguments: the network that he has a route to, the

respective subnet mask, the interface and the interval for sending the packet. Next, the IP, UDP and

RIP layers are created from line 12 to 23. Note that the IP 224.0.0.9 is used in RIPv2 to send routing

information and the port 520 is the default for RIP. In line 22, the entry is created with the provided

arguments from the user. The loop on lines 27 to 34, send the packet every interval seconds.

4.8.3 Attack results

The purpose of this attack is to inject a forged routing into RIP protocol. For that, we have built a network

that has RIPv2 has the routing protocol and contains 2 VPCS hosts, 3 Cisco c3725 router and the

attacker. The network topology is shown in figure 142.

Figure 142: RIPPoison network topology

The goal is to reroute traffic for the network 192.168.0.0 towards the attacker’s connection with R2.

To achieve this, a crafted RIP response packet is sent, announcing a route for 192.168.0.0/24 using the

subnet mask 255.255.255.128. As noted earlier, RIP prioritizes the route with the longest prefix, leading

it to choose the attacker’s route in this scenario. In figure 143 the routing table of R2 before the attack is

shown.

Figure 143: Router R2 routing table before the attack

As we can observe, the route to the network 192.168.0.0/24 is done through R1. To launch the

attack, the script in figure 144 is used.
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Figure 144: Script to run RIP Poison

We set up a wireshark probe in the connection between the attacker and R2. After running the attack,

we can see the crafted RIP response packet in figure 145 and the routing table of R2 in figure 146.

Figure 145: RIP response sent by the attacker

Figure 146: Router R2 routing table after attack

The attacker broadcasted a route for the 192.168.0.0 network using the mask 255.255.255.128. This

led to the addition of a routing table entry for the 192.168.0.0 network. Consequently, any packet aimed

at this network will now be directed to the attacker.

4.8.4 Comparison with Scapy

The code for Scapy implementation of this attack is shown in figure 147.

Figure 147: Scapy RIP Poison implementation code

The script receives 4 arguments, the network, the mask, the time interval to send packets sent and

the interface to be used. Next, line 6 and 7 it crafts the packet with IP, UDP and RIP layers and sends

it from the given interface.On line 8, the packet is transmitted using the sendp() function. The inter
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parameter determines the interval between packet transmissions.

In terms of code clarity, Scago and Scapy implementations are comparable. The main variation

between them is how Scapy can stack layers using the dividend operator and directly assign values

when initializing the layer.
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5
Conclusions and further work
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Conclusions and further work

In this report, we describe a library developed in Go, named Scago. We began by outlining the approach

used to develop this library and comparing it to Scapy. We detailed all the supported protocols as well

as the necessary functions and structures to build a tool akin to Scapy. Subsequently, we demonstrated

how this library can be used to replicate various security attacks. In each of these attacks, we compared

the Go implementation to the Scapy one, drawing conclusions about execution speed and readability. In

conclusion, while the developed library may be more verbose in certain cases, it offers faster execution

speeds than Scapy. We can also comment on the concurrency support provided. A significant advantage

of Go is its simplicity in developing concurrent software. This was evident in the STP root bridge hijack

attack, where the Go implementation proved to be simpler than the Scapy version. This simplicity is

largely attributed to Go’s ease in facilitating concurrent programming. Thus, in real-world scenarios and

large-scale systems, Scago outperforms Scapy in terms of efficiency. It’s publicly available on GitHub

for further development and is also packaged in a Docker container for versatile deployment.

Further work should introduce support for more protocols, as well as the range of attacks imple-

mented, and incorporate VPN protocols like IKEv2, which is currently unsupported by gopacket. Ad-

ditionally, efforts should be directed towards making the library as user-friendly as Scapy. This can be

realized by enhancing the packet crafting process, providing additional default values when the user

doesn’t specify them, and optimizing the existing crafting technique to improve its efficiency and reduce

execution time.
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A
Code for supported layers

A.1 LLC

The code for the LLC layer is located in packet/llc.go file and the code can be observed in figure 148.

The LLC structure, introduced at line 7, encapsulates a pointer to a layer of type layers.LLC. This

layer belongs to the gopacket library, layers/llc.go file, and corresponds to the Logical Link Control

sublayer, a component of the data link layer in the OSI model. Contains attributes such as DSAP, SSAP,

and Control. The code for the gopacket LLC structure can be observed in figure 149.

The function LLCLayer(), detailed on line 11, serves as a constructor for the LLC structure. When

invoked, it initializes an instance of the LLC layer, setting the default values for the DSAP and SSAP

fields to 0x42, which is the default value for STP, and the Control field to 3.

The following functions allow the modification of the LLC structure:

• SetDSAP() - Defined in line 22, it allows the user to set a different value for the DSAP field.

• SetSSAP() - Defined in line 26, it allows the user to set a different value for the SSAP field.

• SetControl() - Defined in line 30, it allows the user to set a different value for the Control field.

• Layer() - Defined in line 45, provides a way for users to directly access the layers.LLC layer.
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Figure 148: LLC structure

Figure 149: LLC structure in gopacket

The hierarchy for the LLC structure can be observed in figure 150.
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Figure 150: LLC layer hierarchy

Using the developed library, we can create an LLC header using the code observed in figure 151.

Figure 151: LLC layer using developed library

A.2 802.1Q

The 802.1Q, known as Dot1Q, code can be observed in figure 152 and is located in packet/dot1q.go

file.

The Dot1Q structure, defined in line 8, holds a pointer to the gopacket pre-defined Dot1Q struc-

ture. This structure can be found in layers/dot1q.go file from the gopacket library, and the code

can be observed in figure 153. The constructor function Dot1QLayer(), defined at line 13, creates a

new instance of the Dot1Q structure with default values. It sets the VLAN ID to 1, the type to golay-

ers.EthernetTypeDot1Q, the priority to 0 and the DropEligible to false.

Following, we have the mentioned functions to change the value of those parameters:

• SetVLANIdentifier() - Defined in line 25, it allows the user to change the VLAN ID.

• SetType() - Defined in line 34, it allows the user to change the type of the layer.

• SetPriority() - Defined in line 39, it allows the user to set a different priority.

• SetDEI() - Defined in line 48, it allows the user to set true or false the DropEligible field.

• Layer() - Defined in line 53, provides a way for users to directly access the golayers.Dot1Q layer.

The hierarchy for the Dot1Q structure can be observed in figure 154.
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Figure 152: Dot1Q structure

Figure 153: Dot1Q structure in gopacket
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Figure 154: Dot1Q layer hierarchy

Using the developed library, we can create an Dot1Q header using the code observed in figure 155.

Figure 155: Dot1Q layer using developed library

A.3 802.3

Following the same logic as we did for other layers, we have also created a structure and the methods

for this layer. The code for this can be found at packet/dot3.go file and the code can be observed in

figure 156.

The Dot3 structure, defined in line 9, contains a pointer to the created Dot3 layer. The constructor

function Dot3Layer(), defined at line 14, initializes the structure Dot3 with empty values. Figure 157

shows the hierarchy for this layer. To modify the values of the structure we’ve defined the following

methods:

• SetDstMac() - Defined in line 25, it allows the user to modify the destination MAC address.

• SetSrcMac() - Defined in line 35, it allows the user to modify the source MAC address.

• SetLength() - Defined in line 45, it allows the user to modify the length of the layer.

• Layer() - Defined in line 87, provides a way for users to directly access the protocols.Dot3 layer.
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Figure 156: Dot3 structure

Figure 157: Dot3 hierarchy
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A.4 STP

The code for the STP layer is located in packet/stp.go file and can be observed in figure 158 and figure

159.

The STP structure, as showed in line 8, encapsulates a pointer to a layer of type layers.STP. This

layer is defined in gopacket library in layers/stp.go file and it defines attributes associated with STP like

protocolID, Version, Type, and Bridge ID. The code for the STP structure of gopacket can be observed

in figure 160.

The constructor function STPLayer(), defined at line 12, initializes a new STP structure. This function

populates the STP layer with default values. The defaults set in this function provide initial values for the

ProtocolID, Version, Type (which is set to 0, indicating a Configuration BPDU), TC (Topology change) and

TCA (Topology change acknowledge) flags, RouteID, Cost, BridgeID, and the default timing parameters

such as the MessageAge, MaxAge, HelloTime, and FDelay.

The following methods allow users to customize attributes of the STP layer:

• SetRootBridgeID() and SetRootBridgePriority() - Allow users to set the Root Bridge ID and its

priority respectively.

• SetBridgePriority() and SetBridgeID() - Defines the priority and ID for the bridge

• SetBridgeMacStr() and SetRootBridgeMacStr() - These methods parse MAC addresses pro-

vided as strings and then set them as the MAC addresses for the bridge and root bridge respec-

tively.

• Layer() - Provides a way for users to directly access the layers.STP layer.

The hierarchy for the STP layer can be observed in figure 161.
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Figure 158: STP structure 1

Figure 159: STP structure 2

Figure 160: STP structure in gopacket
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Figure 161: STP layer hierarchy

Using the above structure, we can create an STP layer using the code observed in figure 162.

Figure 162: STP layer using developed library

A.5 IPv4

The code for the IPv4 layer is located in packet/ipv4.go file and can be observed in figure 163.

The IPv4 structure, line 10, has a pointer to the layer defined by gopacket library, the golayers.IPv4.

The golayers.IPv4 layer can be found in layers/ip4.go and the code can be observed in figure 164.

When invoking the constructor function IPv4Layer(), defined in line 14, a new IPv4 structure is

created. By default, the IP version is set to 4, indicative of IPv4, and the Time-To-Live (TTL) value is set

to 64.

Following, we have the mentioned methods to modify the IPv4 structure:

• SetSrcIP() - Defined in line 23, it allows the user to set the source IP for the IP layer.

• SetDstIP() - Defined in line 32, it allows the user to set the destination IP for the IPv4 layer.

• SetProtocol() - Defined in line 41, This method allows users to specify the protocol used in the

data portion of the IP packet (often the transport layer). The protocol is represented by the golay-

ers.IPProtocol enumeration type.

• Layer() - Defined in line 45, provides a way for users to directly access the golayers.IPv4 layer.
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Figure 163: IPv4 structure

Figure 164: IPv4 structure in gopacket
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The hierarchy for the IPv4 layer can be observed in figure 165.

Figure 165: IPv4 layer hierarchy

Using the developed library, we can create an IPv4 layer with the code presented in figure 166.

Figure 166: IPv4 layer using developed library

A.6 IPv6

The code for the IPv6 layer is located in packet/ipv6.go file and can be observed in figure 167.

The IPv6 structure, defined at line 10, has a pointer to the golayers.IPv6 layer defined in gopacket

library. The golayers.IPv6 contains all the attributes from a IPv6 header and the code can be observed

in figure 168.

The function IPv6Layer(), introduced on line 14, acts as a constructor for the IPv6 structure. When

this function is called, it initializes an empty instance of the IPv6 layer.

The following functions are available to modify the IPv6 structure:

• SetSrcIP() - Defined in line 20, it allows the user to set the source IP for the IPv6 layer.

• SetDstIP() - Defined in line 29, it allows the user to set the destination port for the IPv6 layer.

• Layer() - Defined in line 45, provides a way for users to directly access the golayers.IPv6 layer.

113



Figure 167: IPv6 structure

Figure 168: IPv6 structure in gopacket
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The hierarchy for the IPv6 structure can be observed in figure 169.

Figure 169: IPv6 layer hierarchy

Using the developed library, we can create an IPv6 header using the code observed in figure 170.

Figure 170: IPv6 layer using developed library

A.7 UDP

The code for the UDP layer is located in packet/udp.go file and can be observed in figure 171.

The structure UDP, defined in line 10, has a pointer to the golayers.UDP layer from the gopacket

library. This layer is defined in layers/udp.go file in the gopacket library and the code can be observed

in figure 172. The constructor function, UDPLayer() in line 14, initializes a new UDP structure. When

invoked, it sets up an empty UDP layer with no default values.

The following methods are available to modify the UDP structure:

• SetSrcPort() - Defined in line 20, it allows the user to set the source port for the UDP layer.

• SetDstPort() - Defined in line 29, it allows the user to set the destination port for the UDP layer.

• Layer() - Provides a way for users to directly access the golayers.UDP layer.

115



Figure 171: UDP structure

Figure 172: UDP structure in gopacket
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The hierarchy for the UDP layer can be observed in figure 173.

Figure 173: UDP layer hierarchy

Using the developed library, we can create an UDP layer with the code presented in figure 174.

Figure 174: UDP layer using developed library

In the above figure, the UDP layer is created following by setting the ports 25 and 30 as source and

destination ports respectively.

A.8 TCP

The code for the TCP layer is located in packet/tcp.go file and can be observed in figure 175.

The TCP structure, defined in line 10, has a pointer to the native golayers.TCP layer, which is

part of the gopacket library. This layer in gopacket is defined in layers/tcp.go file and the code can

be observed in figure 176.When calling the constructor function TCPLayer(), in line 14, a new TCP

structure is initialized. By default, the sequence number (Seq) is set to 0, and the window size (Window)

is configured to 1505.

The following methods are available to modify the TCP structure:

• SetSrcPort() - Defined in line 23, it allows the user to set the source port for the TCP layer.

• SetDstPort() - Defined in line 32, it allows the user to set the destination port for the TCP layer.
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• SetSyn() - Defined in line 41, it allows to set the SYN flag in the TCP header to true.

• SetAck() - Defined in line 45, it allows to set the ACK flag in the TCP header to true.

• Layer() - Defined in line 49, provides a way for users to directly access the golayers.TCP layer.

Figure 175: TCP structure

Figure 176: TCP structure in gopacket

The hierarchy for the TCP layer can be observed in figure 177.
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Figure 177: TCP layer hierarchy

Using the developed library, we can create an TCP layer with the code presented in figure 178.

Figure 178: TCP layer using developed library

In the above figure, we start by creating the TCP layer in line 31. Following, we set 122 and 5353 as

source and destination ports respectively. Finally, the SYN flag is set to true using the SetSyn() function.

A.9 ICMPv4

The ICMPv4 code can be observed in figure 179 and is located in packet/icmpv4.go file.

The ICMPv4 structure, defined in line 7, encapsulates a pointer to a layer of type layers.ICMPv4

from the gopacket library. The code for the gopacket ICMPv4 layer can be observed in figure 180 and

can be found in layers/icmp4.go file. The function ICMPv4Layer(), presented on line 11, acts as a

constructor for the ICMPv4 structure. Upon invocation, it initializes a new instance of the ICMPv4 layer

with the TypeCode as an ICMPv4 echo request. The TypeCode variable is the combination of the fields

Type and Code from the ICMPv4 packet structure defined in RFC 792, and it defines the type of ICMP

packet. In gopacket, a constant variable is used golayers.ICMPv4TypeCode to save the integers that

represent the Type and Code respectively.

The following methods are available to modify the ICMPv4 layer:

• SetTypeCode() - Defined in line 19, it allows the user to set a different value for the TypeCode

field.

• SetChecksum() - Defined in line 24, it allows the user to set a different checksum value. Although

gopacket calculates automatically the checksum it is usefull to have an option to define a different
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value.

• SetId() - Defined in line 28, it allows the user to set a different value for the Id field.

• Layer() - Defined in line 32, provides a way for users to directly access the layers.IMCPv4 layer.

Figure 179: ICMPv4 structure

Figure 180: ICMPv4 structure in gopacket
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The hierarchy for the ICMPv4 structure can be observed in figure 181.

Figure 181: ICMPv4 layer hierarchy

Using the developed library, we can create an ICMPv4 layer on top of an Ip layer. The code used to

create both layers can be observed in figure 182.

Figure 182: ICMPv4 layer using developed library

A.10 DNS

The code for the DNS layer can be found in packet/dns.go file and observed in figure 183.

The DNS structure, defined at line 8, contains a pointer to the DNS structure defined by gopacket,

golayers.DNS. This structure, can be observed in figure 184 and found in layers/dns.go file. The

constructure function DNSLayer(), defined at line 12, initiates a DNS layer with a default value for ID

, QR, QDCount and ANCount. The QR variable specifies if the DNS packet is either a response or a

query. The QDCount and ANCount specifies the number of queries and answers respectively.

We defined the following functions to modify the DNS layer:

• AddQuestion() - Defined in line 23, it allows the user to add a query to the DNS layer. It

starts by increasing the number of queries in the layer and creates an object of type golay-

ers.DNSQuestion. This object stores the query in the correct format to be used by the gopacket

library.
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• AddAnswer() - Defined in line 32, it allows the user to add an answer to the DNS layer. It starts by

increasing the number of answers. Following, it creates an object of type golayers.DNSResourceRecord

that stores the answer in the correct format.

• Layer() - Defined in line 53, provides a way for users to directly access the golayers.DNS layer.

Figure 183: DNS structure
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Figure 184: DNS structure in gopacket

The hierarchy for the DNS structure can be observed in figure 185.

Figure 185: DNS layer hierarchy

Using the developed library, we can create an DNS header using the code observed in figure 186.
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Figure 186: DNS layer using developed library

A.11 DHCP

The code for the DHCP layer can be found in packet/dhcp.go file and the code can be observed in

figure 187 and figure 188.

The DHCP structure, defined in line 11, holds a pointer to the golayers.DHCPv4 which is the struc-

ture from gopacket library that has all the fields of a DHCPv4 layer. This structure can be found in

layers/dhcpv4.go file and the code can be observed in figure 189. The constructor is defined at line

15 and, when invoked, it creates an instance of DHCP layer. The created layer has default values, the

operation is by default a DHCP request. The transaction ID is randomly generated per default. We then

defined the following methods that allow modifications of the DHCP layer:

• SetDstMac() - Defined in line 29, it allows the user to modify the MAC address of the client.

• SetXid() - Defined in line 38, it allows the user to set the transaction ID.

• SetNextServerIP() - Defined in line 42, it allows the user to set the next server IP.

• SetDstIP() - Defined in line 46, it allows the user to set the client IP address.

• SetSrcIP() - Defined in line 55, it allows the user to set the DHCP server IP.

• SetRequest() - Defined in line 64, it sets the operation of the DHCP message to a DHCP request

type.

• SetReply() - Defined in line 68, it sets the operation of the DHCP message to a DHCP reply type.

• SetMsgType() - Defined in line 72. This method sets the DHCP message type based on a string

input. Depending on the provided string (”discover”, ”offer”, ”request”, or ”ack”), it sets the appro-

priate message type in the DHCP options.

• AddOption() - Defined in line 91. This method creates a instance of golayers.DHCPOpt which is

a option for the DHCP protocol and adds it to the layer.

• SetType() - Defined in line 137, sets the hardware type of the DHCP packet, which specifies the

type of network on which the DHCP message is being transmitted.

• Layer() - Defined in line 141, provides a way for users to directly access the golayers.DHCPv4

layer.
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Figure 187: DHCP structure 1
Figure 188: DHCP structure 2
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Figure 189: DHCP structure in gopacket

The hierarchy for the DHCP structure can be observed in figure 190.

Figure 190: DHCP layer hierarchy

Using the developed library, we can create an DHCP header using the code observed in figure 191.

Figure 191: DHCP layer using developed library

A.12 RIP

The code for the RIP layer can be found in packet/rip.go file and the code can be observed in figure 192.

The RIP structure, defined in line 9, holds a pointer to the implemented rip protocol protocols.RIPPacket

which is explained in section 3.8.2. The constructor is defined at line 13, when invoked, it creates an

instance of RIP layer with no default values. Observe that in line 14, we link the port 520, which is the
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default for RIP, to the crafted RIP layer using the RegisterUDPPortLayerType() method. This enables

gopacket to determine the subsequent layer after UDP when port 520 is in use. The following methods

allow modification of the RIP layer:

• SetCommand() - Defined in line 19, it sets the command of RIP packet.

• SetVersion() - Defined in line 23. Sets the version of RIP protocol.

• AddEntry() - Defined in line 27, creates a RIP entry and adds it to the RIP packet.

• Layer() - Defined in line 45, provides a way for users to directly access the protocols.RIP layer.

Figure 192: RIP structure

The hierarchy for the RIP structure can be observed in figure 193.
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Figure 193: RIP layer hierarchy
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