
Connecting NFC to the Cloud
Remote Updating of Smart Cards

Daniel Correia Andrade

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Examination Committee
Chairperson: Prof. João Emílio Segurado Pavão Martins
Supervisor: Prof. Miguel Nuno Dias Alves Pupo Correia
Co-Supervisor: Prof. Tuomas Aura
Member of the Committee: Prof. Rui Miguel Soares Silva

November 2013

Resumo

Near Field Communication (NFC) é uma tecnologia sem fios com empar-
elhamento automático dos dispositivos intervenientes. Um dispositivo NFC
comunica com outro dispositivo NFC ou com uma tag quando são coloca-
dos junto um do outro. No contexto de dispositivos móveis e no modo de
operação leitura-escrita, um telemóvel equipado com NFC normalmente lê
dados de uma tag mas não escreve para essa tag por razões de segurança.
As modificações à tag são efectuadas localmente num ponto de venda do
operador.

Esta tese propõe um novo modelo de utilização para o modo de operação
leitura-escrita, no qual um servidor remoto consegue manipular a informação
presente numa tag através de um telemóvel equipado com NFC. O servidor
remoto envia comandos para a tag, e recebe as respectivas respostas, através
do telemóvel. A tese apresenta um protocolo de comunicação que permite
alcançar este objectivo tendo em consideração a confiabilidade e a segurança
do sistema.

Começamos por estudar as funcionalidades e os mecanismos de segurança
do cartão MIFARE DESFire EV1. Com base no conhecimento adquirido, de-
senhamos um protocolo de comunicação que permite a um servidor remoto
modificar o conteúdo dos ficheiros de um cartão DESFire EV1 de forma
segura. É também analisada a possibilidade de falhas e é apresentada uma
solução para essas falhas resultando num protocolo mais robusto. Este proto-
colo é avaliado, tendo em conta uma lista de requisitos previamente elaborada
para o sistema, através de um protótipo que é testado num operador público
de computação em nuvem.

Palavras-chave: nfc

modo de operação leitura-escrita

mifare desfire ev1

protocolo de actualizações remotas

protocolo seguro

Abstract

The purpose of this thesis is to research a new usage model for the reader-
writer operating mode, where the NFC-enabled mobile phone not only reads
from but also writes into the tag, according with instructions dictated by
a remote server. We start by studying the functionality of the MIFARE
DESFire EV1 smart card. We then create a set of requirements for a system
capable of remotely updating files on a card application of a DESFire EV1
and devise a remote update protocol that satisfies those requirements. This
protocol is evaluated through a prototype we built as a proof of concept,
which in turn is subject to experiments in a cloud provider.

This thesis demonstrates that it is feasible for a remote server to update
the files contained in a card application of a DESFire EV1 via an NFC-
enabled mobile phone, and that this can be accomplished in a reliable and
secure way. We analyze the failures that may affect the remote update pro-
tocol and provide a solution to those failures leading to a robust protocol.
Its security comes from the use of encrypted communication between server
and mobile phone, from the use of the enciphered communication mode of
DESFire EV1 between the mobile phone and the smart card, and from the
fact that the mobile phone does not have access to the secret keys required
to read and update the data stored on the card application.

Palavras-chave: nfc

reader-writer operating mode

remote update protocol

mifare desfire ev1 smart card

remote update protocol

Acknowledgments

This undertaking was feasible as a result of the support of my supervisors
who motivated me in the best way possible and always found the time to
help me when needed, and to whom I express my gratitude.

I thank Professor Tuomas Aura for his guidance, for his insightful re-
marks, and for providing me with all the necessary equipment and with a
place at Aalto to work on this project. It was an invaluable experience to
be able to learn from someone as knowledgeable. Thank you for lending me
your smart phone during the evaluation phase!

I thank Professor Miguel Pupo Correia for his advice, for his careful
review of the thesis, which resulted in a more coherent manuscript, and for
helping me improve the presentation for the thesis defense at IST.

Thank you Professor Pavão Martins for presiding the thesis defense.
Thank you Professor Rui Silva for the interesting questions and comments
about the thesis; and for having traveled from far to be present at the defense.

There were others working next door whom I occasionally met with and
who I would like to acknowledge: Sandeep, Anh and Robert. I particularly
thank Sandeep Tamrakar for sharing his knowledge and answering my ques-
tions about the intricacies of NFC; and thank you for helping me process the
thesis approval. Best of luck with the remainder of your doctoral studies!

When your brain is locked in the thesis operating mode from dawn to
dusk, seven days a week, it is always nice to have someone around to chit-
chat for a bit and make it wander off somewhere else. Incidentally, I thank
the many I met in Otaniemi and around and who made my stay in Finland
more enjoyable. Thank you Alice.

Last but not least I thank my grandparents—João and Maria—without
whom I would not have made it this far.

Lisbon, November 2013

Daniel Andrade

Abbreviations and Acronyms

AID Application IDentifier

APDU Application Protocol Data Unit

CAR Change Access Rights

CBC-MAC Cipher-Block Chaining MAC

CICC Close-coupled Integrated Circuit Card

CMAC Cipher-based MAC

DES Data Encryption Standard

2K3DES Triple DES, keying option 2 (K1 6= K2 ∧K1 = K3)

3K3DES Triple DES, keying option 1 (K1 6= K2 6= K3)

FID File IDentifier

MAC Message Authentication Code

MF0ICU2 MIFARE Ultralight C

MF3ICD40 MIFARE DESFire (predecessor of MF3ICD41)

MF3ICD41 MIFARE DESFire EV1

NFC Near Field Communication

OTP One-Time Programmable

PCD Proximity Coupling Device

PICC Proximity Integrated Circuit Card

POS Point of Sale

IV Initialization Vector

RF Radio Frequency

Triple DES Triple Data Encryption Algorithm (TDEA)

UID Unique IDentifier

VICC Vicinity Integrated Circuit Card

9

Symbols

{0, 1}s An s-byte long byte string consisting of random zeros
and ones.

x⊕ y The bitwise exclusive OR of bit strings x and y.

EK(y) Symmetric encryption of y using secret key K.

DK(y) Symmetric decryption of y using secret key K.

RotLefts(x) Rotate the byte string x, s bytes to the left.

Zs–t The byte string consisting of, and including, bytes s
to t of the byte string Z.

11

Contents

Abbreviations and Acronyms 9

Symbols 11

1 Introduction 17
1.1 Problem statement and methodology 17
1.2 Structure of the thesis . 19

2 Background and related work 21
2.1 Smart cards . 22
2.2 Near field communication . 24

2.2.1 Operating modes . 25
2.2.2 Standards . 26
2.2.3 Security . 27

2.3 Related projects . 29

3 MIFARE DESFire EV1 31
3.1 Commands . 32
3.2 File system . 32
3.3 Security . 34

3.3.1 Cryptographic primitives 35
3.3.2 Authentication protocol 37
3.3.3 Keys . 40
3.3.4 Data transmission . 42

3.3.4.1 Communication settings 42
3.3.4.2 Access rights 45

3.4 Trace . 46

4 Remote card update 55
4.1 Requirements . 55
4.2 Solution . 57

13

4.2.1 Architecture . 57
4.2.2 Transactions . 59
4.2.3 Protocol . 61

4.2.3.1 Failures . 64
4.2.3.2 Early-commit attack 66

5 Implementation 69
5.1 Tools and technologies . 69
5.2 Architecture . 71

5.2.1 Communication between the phone and the server . . . 72
5.2.2 Communication between the phone and the card 73
5.2.3 Class diagrams and dependencies 73

5.3 Flow of operations . 79
5.3.1 Acquiring a new update 79
5.3.2 Updating the card . 80

5.4 Implementation issues . 82

6 Evaluation 87
6.1 Experimental setup . 87
6.2 Experiments . 88

6.2.1 Experiment 1—functional requirements 88
6.2.2 Experiment 2—reliability 91
6.2.3 Experiment 3—security 94

6.3 Analysis of requirements . 95

7 Discussion 99
7.1 Rethinking the NFC Java library 99
7.2 Improving the system . 100

7.2.1 UID and RID . 100
7.2.2 Token-based authentication 101
7.2.3 Other enhancements 102

7.3 Insights and applications . 103

8 Conclusions 105

A MIFARE Ultralight C 111
A.1 Memory organization . 112
A.2 Security . 113

B New NFC Java library 117
B.1 Evaluation of the MDF implementation 118
B.2 Evaluation of the MUC implementation 124

14

C Creation of digital certificates 127

15

Chapter 1

Introduction

Near Field Communication (NFC) is a recent but promising technology, that
enables two NFC-enabled devices, or an NFC-enabled device and an NFC
tag, to wirelessly exchange data. NFC-enabled devices include NFC readers,
such as contactless Point of Sale (POS) terminals, and NFC-enabled mobile
phones. NFC devices interact with one another when brought close together.

NFC devices can operate in three different modes: peer-to-peer mode,
card emulation mode and reader-writer mode. In peer-to-peer mode, two
NFC-enabled devices exchange data, for example, business cards. In card
emulation mode, an NFC-enabled device acts as a tag and communication
takes place with another NFC-enabled device. This mode makes it possi-
ble for the mobile phone to replace cards and keys, such as credit cards,
travel cards, coupons, car keys and house keys. This means that the already
ubiquitous mobile phone will have an even greater impact in our daily lives.
In reader-writer mode, an NFC-enabled device reads from and writes into a
tag or another NFC-enabled device operating in card emulation mode. This
thesis focuses on this popular [32] last operating mode.

1.1 Problem statement and methodology

Alice uploads her completed assignment to the system and prepares
to leave the department. It is nearly midnight. She walks towards
the bus stop and realizes she forgot to top-up her travel card at the
station earlier that day. Alice uses her NFC-enabled phone to pay
for a top-up online and update her travel card.

To update a smart card, e.g. a travel card, it is necessary to go to a point of
sale of the service provider, i.e. the place where a retail purchase is completed.
Alternatively, some service providers make available point-of-sale terminals,

17

18 CHAPTER 1. INTRODUCTION

allowing customers to autonomously—and locally—update their cards. Our
objective is to enable the remote update of cards with the help of an NFC-
enabled mobile phone and of a remote server.

The typical architecture of the reader-writer operating mode, in the con-
text of mobile devices, consists of an NFC-enabled mobile phone and an NFC
tag. The mobile phone touches the tag to acquire a small amount of data
that can be displayed on the screen of the device or trigger an action such as
downloading additional content from the Internet, opening an application,
calling a number or sending a message. The mobile phone receives data from
the tag but does not write into it. In fact, it is reasonable to assume the tag
to be locked to prevent accidental or malicious data alteration.

This thesis presents a new usage model for the reader-writer operating
mode, where the mobile phone reads and updates the tag according with
instructions dictated by a remote server. In this architecture, the commands
sent to the smart card come from the remote server instead of being produced
by the mobile phone. The mobile phone effectively acts as a proxy, enabling
the remote server to reach the card and manipulate its contents. A range of
new possibilities such as topping-up travel cards and loading vouchers into
loyalty cards while on the move becomes possible in this novel architecture.

We start by studying and reverse engineering the functionality of DES-
Fire EV1, using the specification of its predecessor and other information
found online, since we do not have access to its technical documentation.
We create a set of requirements for a system capable of remotely updating
files on a card application of DESFire EV1. Then we base ourselves on the
knowledge acquired about this smart card to devise a remote update proto-
col that satisfies the requirements previously set. This protocol is evaluated
through a prototype we built as a proof of concept, which in turn is subject
to experiments in a public cloud provider.

These experiments test the prototype to find if the functional, reliability
and security requirements previously set for the system are met. In addition,
we test the network latency and server congestion effect on the card, and
measure the time taken to perform a card operation to verify that it completes
in a timely manner. The experiments are carried in the pay-per-use public
cloud provider Jelastic [14], which offers Platform as a Service (PaaS) cloud
computing hosting for Java-based applications. We chose to host the remote
server in the cloud due to its benefits [1], namely the provisioning of resources
on demand and only paying for the resources used.

This thesis demonstrates that it is feasible for a remote server hosted
in a cloud provider to update the files contained in a card application of a
DESFire EV1 via an NFC-enabled mobile phone, and that this can be ac-
complished in a reliable and secure way. We analyze the failures that may

1.2. STRUCTURE OF THE THESIS 19

affect the remote update protocol and provide a solution to those failures
leading to a robust protocol. Its security comes from the use of encrypted
communication between server and mobile phone, from the use of the en-
ciphered communication mode of DESFire EV1 between the mobile phone
and the smart card, and from the fact that the mobile phone does not have
access to the secret keys required to read and update the data stored on the
card application. The remote update protocol is optimized by minimizing
the number of round trips on the communication between server and mobile
phone. Finally, and as a result of the laborious task of studying the func-
tionality of DESFire EV1, a library that eases the manipulation of DESFire
EV1 and of Ultralight C smarts cards is produced a part of this work.

1.2 Structure of the thesis

The thesis is organized in eight chapters. Chapter 2 presents background
work related to the topic, namely about smart cards and near field communi-
cation. Chapter 3 provides a comprehensive study of the MIFARE DESFire
EV1 smart card, which is necessary to understand the following chapters.
The focus of this study is on the security mechanisms of DESFire EV1.
Chapter 4 proposes a solution to the problem. It achieves this by creating a
set of requirements for a system capable of solving the problem stated and
conceiving a remote update protocol that meets those requirements. Chap-
ter 5 details the design of the proof of concept prototype. Chapter 6 evaluates
the proposed solution against the requirements previously set for the system.
Chapter 7 discusses potential improvements for the prototype and provides
insights into the researched topic. Finally, Chapter 8 concludes the thesis.

In addition to the chapters previously mentioned, the thesis includes three
appendices. Appendix A provides a study of MIFARE Ultralight C, that was
carried after studying MIFARE Ultralight and before studying the more com-
plex MIFARE DESFire EV1. MIFARE Ultralight is quite similar to MIFARE
Ultralight C and is not included in the thesis for that reason. Appendix B
presents a Java library to manipulate both MIFARE Ultralight C and MI-
FARE DESFire EV1 smart cards. This library is a working proof of the card
functionalities and was key in understanding how MIFARE DESFire EV1
operates. The resulting knowledge assisted in developing the proposed solu-
tion, taking into account the behaviors of the card. Appendix C shows the
commands used to created the digital certificates used by the prototype.

Chapter 2

Background and related work

The ubiquity and increasing processing, memory, network and battery capac-
ities of smart phones made them a platform of choice for multiple services.
Long gone are the days when mobile phones were used just to make calls.
From instant messaging and browsing the web to multiplayer games and
movies, these mobile devices pack an assortment of applications and multi-
media capabilities. With the rise of near field communication, the mobile
world is yet again taking another leap forward. Among many other applica-
tions, NFC-enabled systems can replace house and car keys, credit and debit
cards, travel cards, boarding passes, cinema and concert tickets, and they
can be used to track and monitor both persons and objects and adjust the
surrounding environment to our preferences.

Mobile devices, smart phones in particular, are central in the NFC world.
The integration of personal and private information, such as credit cards,
into mobile phones is the main motivation for NFC. However, while mobile
phones are intrinsically connected to NFC, by no means are smart phones the
only way to take advantage of this technology. An NFC-enabled wristwatch
can be used to open a door. A new kind of NFC-enabled device can be
created to work only as an electronic card wallet and key ring. This new
device would hold credit and debit cards, identification and social security
number cards, and the house and car keys. Should the mobile phone, which is
often connected to untrusted networks, be subject to malicious software, lost
or stolen, the cards and the keys would still be secure on the other dedicated
device since it is independent from the compromised device. This offers an
additional sense of security to the owner, at the expense of yet another device
to carry.

This chapter contains three sections. Section 2.1 introduces smart cards.
Section 2.2 presents the NFC technology including the operation and com-
munication modes, the relevant standards, and a listing of possible attacks

21

22 CHAPTER 2. BACKGROUND AND RELATED WORK

to tags. Section 2.3 provides examples of research papers related to each of
the three operating modes of NFC and aims to illustrate the potential of the
technology.

2.1 Smart cards

Nearly 7.7 billion microcontroller-based smart secure devices will be shipped
in 2013 according to Eurosmart [5]. Smart cards are portable computational
devices—containing a memory or a microprocessor chip—used in a variety of
sectors, such as banking, retail and transportation, for identification, authen-
tication, authorization and data storage purposes. The motivation behind
smart cards is the need for a convenient and efficient way to store portable
records, namely personal and private information. Consider a mass transit
operator using a ticketing system based on smart cards. Customers swipe the
contactless smart card through a reader to validate their ticket, a practical
and easy to use solution. A personal travel card is easily updated or reloaded
through automated processes and canceled if lost or stolen. While the initial
system setup is costly, smart cards by themselves are affordable. The opera-
tor also gains valuable data, which can be used to optimize the mass transit
system. For example, the amount of customers that used a given station
during a period in time and their transfers and itinerary. As the data is in
electronic form, it can be efficiently processed and transferred.

Capability-wise, smart cards can be grouped into memory-based cards
and into microprocessor-based cards. Memory-based cards have no data pro-
cessing capacity and data is read from and written to fixed memory addresses.
Intelligent memory cards have an additional access control logic imposing re-
strictions on which memory sectors can be read or written. Microprocessor-
based cards comprise a microprocessor, a memory and an operating system.
In addition to data processing capabilities, an elaborate access control mech-
anism providing a higher level of security in comparison to memory-based
cards is usually included. These cards may have a file system capable of
containing several coexisting applications. Smart card operating systems
(SCOS) eased the implementation of multiple applications on the same card.

Until the mid-nineties it was a challenge to develop even a single applica-
tion for smart cards, mainly due to memory constraints. Multi-application
smart card operating systems enabled the implementation of multiple appli-
cations on a single card and to dynamically load new ones during its lifecycle.
The two main multi-application smart card operating systems are Java Card
and MULTOS [4, 37]. In its simplest form, the architecture of a multi-
application SCOS consists of the hardware, that is the smart card chip, the

2.1. SMART CARDS 23

operating system and one or more applications.
Java Card enables multiple applications written in the Java Card language

to run on the same smart card. The applications are known as applets
and the Java Card language is a subset of the Java programming language.
The applets are interpreted by the Java Card Virtual Machine (JCVM),
ensuring their independence from the underlying hardware and promoting
interoperability. The JCVM is divided into the byte code interpreter and the
converter. The byte code interpreter runs on the card and the converter runs
outside of the card, handling tasks such as class loading, byte code verification
and optimization. The Java Card Runtime Environment (JCRE) provides
a firewall, which keeps each applet in its own context, enforcing application
isolation.

MULTOS uses the MULTOS Executable Language (MEL) for application
development, running on a virtual machine. MEL is an optimized language
for smart cards based on Pascal P-codes. Applications can be written in
C or Java, among other programming languages, and then translated into
MEL. In comparison with Java Card, MULTOS smart card manufacturers
are restricted to use the well-defined provided API and are not authorized
to create their own APIs. The aim of this policy is to achieve real interoper-
ability between smart card manufacturers.

Smart cards are divided into contact smart cards and contactless smart
cards. Contact smart cards are inserted into a reader and the connectivity
is established through a contact pad on the surface of the card. Contactless
smart cards are held in close proximity to the reader and connectivity is
established through inductive coupling. Readers are usually connected to
a computer which handles most of the data processing. An alternative to
smart card readers are terminals. Terminals can be thought of as a self-
contained computer, e.g. a Point of Sale, used to interact with the card, and
that communicate with the outside world via a network connection. Further
classifications of smart cards include hybrid smart cards and dual-interface
cards. Hybrid smart cards have two independent chips, each with its own
interface. Dual-interface smart cards have two interfaces but a single chip.

Contactless smart cards can be grouped in three different types accord-
ing with the operating distance from the card reader. These are proximity
cards (PICC), vicinity cards (VICC) and close-coupled cards (CICC). The
operating range is up to 10 cm for PICCs, up to 1 m for VICCs and up
to 1 cm for CICCs. CICCs operation may be designated as slot or surface
operation because the card is either inserted into a slot or laid on a marked
surface on the reader. In practice, CICCs do not offer significant advantages
in relation to contact smart cards, which partly explains their low adoption
by the market [34].

24 CHAPTER 2. BACKGROUND AND RELATED WORK

Popular contactless smart card systems include FeliCa and MIFARE. Fe-
liCa is a trademark of Sony and offers a line of contactless integrated circuit
products popular in Japan. MIFARE is a trademark of NXP Semiconduc-
tors for a line of contactless integrated circuit products, including card and
reader components, that follow ISO/IEC 14443. This standard is used in
more than 80% of all contactless smart cards according to Coşkun, Ok, and
Özdenizci [2, ch. 1].

Two smart cards of the MIFARE line of products, the MIFARE Ultralight
C and the MIFARE DESFire EV1, are analyzed in this thesis in Appendix A
and Chapter 3 respectively. The remote update protocol detailed in Sec-
tion 4.2 and the implemented prototype detailed in Chapter 5 are based on
and use DESFire EV1.

2.2 Near field communication

Near field communication (NFC) is a technology relying on inductive coupling
for low bandwidth short-range—commonly 4 to 10 cm—wireless connectivity.
It operates at a frequency of 13.56 MHz enabling data transfers at up to 424
Kbit/s. Deloitte predicts that up to 300 million NFC-enabled smart phones,
tablets and e-readers will be sold in 2013 [3].

Central to NFC is the touch paradigm. An NFC-enabled device—for ex-
ample, an NFC-enabled mobile phone—touches another NFC-enabled device
or an NFC tag to initiate an action. If the NFC-enabled device touches a
target with the expected form of data, this intuitive mechanism prompts
NFC applications to start. The result of this process ranges from paying for
a service using one of the credit or debit cards stored in the NFC-enabled de-
vice or validating the presence of the carrier at the workplace to sharing data
between two devices such as business cards. The NFC Forum created the
N-Mark, which is the universal symbol for NFC. The N-Mark indicates that
a device or object is NFC compliant and functions as a touch point, showing
consumers where to touch to initiate NFC actions. Touch, swipe and tap are
terms found in the literature that essentially have the same meaning. The
range of operation of NFC is rather small. To trigger an action, the target
must come within the electromagnetic field of the initiator, which implies
close proximity. However, it is not necessary for the initiator to physically
touch the target.

Jaring et al. [13] state that usability studies show the touch paradigm
as easy to learn and intuitive to use, and through six test pilots focused on
work time management, logging, and electronic reporting, demonstrate that
NFC-based systems can enhance mobile and remote workflow and improve

2.2. NEAR FIELD COMMUNICATION 25

productivity. Textual input in the field is pointed as a disadvantage given
the small-sized keyboard of mobile devices and should be avoided. This
disadvantage, however, is not restricted to NFC but is part of the mobile
ecosystem. Franssila [6] explores user experiences—ease of use, usability and
performance—in NFC through a pilot in three units of a company offering
security and guarding services. The author positively concludes that the
usability and reliability of NFC applications and NFC-enabled phones are
important determinants for the success of the technology and that NFC must
beat the alternative older technologies in user experience and performance for
NFC to succeed, especially when both options offer nearly the same end-user
functionality.

Coşkun et al. [2] provide a study of NFC covering both theory and prac-
tice. Özdenizci et al. [32] offer a review of NFC literature and propose a
content-oriented NFC research framework by categorizing the NFC academic
literature in NFC theory and development, NFC infrastructure, NFC appli-
cations and services, and NFC ecosystem.

2.2.1 Operating modes

Communication always takes place between two NFC devices: the initiator
and the target. The initiator initiates the communication and the target
waits for an initiator to start a communication session. The initiator is
always an active device but the target can be an active device or a passive
device.

An NFC-enabled device is an active device and can operate in reader-
writer and peer-to-peer modes, may operate in card emulation mode and
is able to generate its own electromagnetic field. A passive device such as
an NFC tag does not produce its own electromagnetic field and uses the
one produced by the active device instead. The initiator transfers data by
directly modulating its electromagnetic field and the target responds to ini-
tiator commands through load modulation.

The three operating modes offered are reader-writer mode, card emulation
mode and peer-to-peer mode. In reader-writer mode, the NFC device acts
as the initiator and can read and write data from passive targets. A passive
target can be an NFC-enabled device in card emulation mode or an NFC tag.
In card emulation mode, the NFC device acts as a passive target. Because the
NFC tag is being emulated, the NFC device can present itself to readers as
different tags as appropriate. In peer-to-peer mode, two NFC devices establish
a bidirectional communication channel to exchange data. While the initiator
must be in active mode, the target can be in either active mode or passive
mode. The latter has the advantage of saving energy on the target. Example

26 CHAPTER 2. BACKGROUND AND RELATED WORK

applications are respectively buying a movie ticket by taping an NFC-enabled
smart phone against a movie smart poster, using an NFC device as both a
travel card and a corporate identification card, and exchanging business cards
between two NFC-enabled smart phones.

2.2.2 Standards

The International Organization for Standardization (ISO) and the Inter-
national Electrotechnical Commission (IEC) defined multiple standards re-
garding NFC and smart cards. The most relevant ones are ISO/IEC 7816,
ISO/IEC 14443, ISO/IEC 15693, ISO/IEC 18092 and ISO/IEC 21481.

ISO/IEC 7816 is composed by fourteen parts. The first three parts are
specific to contact smart cards and define the physical characteristics of the
card, the location and dimension of the contact pads, and the electrical in-
terface and transmission protocols. The remaining parts define, among other
topics, the logical structure of the card and the commands and responses
and are independent of the physical interface therefore applying to both con-
tact and contactless smart cards. ISO/IEC 14443 is composed by four parts
and refers to proximity cards. It specifies the physical characteristics of the
card, radio frequency power and signal interface between PCD (Proximity
Coupling Device) and PICC, and initialization, anticollision and communi-
cation protocols. ISO/IEC 15693 is composed by three parts and is similar
to ISO/IEC 14443 but applied to vicinity cards. ISO/IEC 18092 defines
an interface and protocol for NFC. In particular, it defines the active and
passive communication modes, modulation schemes, codings, transfer speeds
and frame formats of the RF interface, and initialization, data collision and
transport protocols. NFC devices comply with ISO/IEC 18092 for peer-to-
peer mode and with ISO/IEC 14443 for reader-writer and card emulation
modes. ISO/IEC 21481 defines a communication mode selection mechanism
for devices implementing ISO/IEC 14443, ISO/IEC 15693 or ISO/IEC 18092.
An older standard not considered by ISO/IEC 21481 is ISO/IEC 10536 for
close-coupled cards.

Another relevant standard is the Japanese Industrial Standard (JIS) X6319-
4. This standard, known as FeliCa, was proposed for ISO/IEC 14443 type C
but was rejected.

In 2004, Nokia, Philips and Sony formed the NFC Forum [21], which
currently has over 170 members. The objective of the forum is developing
NFC standards, in order to maintain the interoperability of NFC devices and
protocols, and to encourage the use of NFC technology in general. It is also
a certification body for NFC devices. Among the standards specified by the
NFC Forum, the NFC Data Exchange Format (NDEF) and the NFC Forum

2.2. NEAR FIELD COMMUNICATION 27

Tag Types are of particular relevance.

The NFC Data Exchange Format specification [22] defines a common
message format to exchange information between two NFC devices, or a
device and a tag. It strictly defines a format to encapsulate application-
defined payloads, independently and without making assumptions about the
actual data transfer over the communication link.

The NFC Forum Tag Types defines four types of tags that are operable
with NFC devices [23–26]. The tags differ from one another in the transmis-
sion protocol, memory size and organization, and security features. Type 1
and type 2 tags are based on ISO/IEC 14443A. Type 1 tags have 96 bytes of
available memory and type 2 tags have 64 bytes of available memory, both
expandable to 2 KB. Type 3 tags are based on JIS X6319-4 and have a the-
oretical memory limit of 1 MB. Type 4 tags are compatible with ISO/IEC
14443 and have a memory of up to 32 KB. Examples of tags are, respectively,
Innovision Topaz, MIFARE Ultralight C, Sony FeliCa Lite, and MIFARE
DESFire EV1.

2.2.3 Security

Incentives to attack an NFC system range from the challenge and reputation
that a successful attack comes with to financial rewards and espionage. The
following section lists possible attacks to tags and the respective solution or
mitigation strategy.

Active attacks

Cloning. Cloning consists in copying the contents from one tag into
another tag. This enables, for example, to reuse the credit on
the first tag over and over again. The unique ID can be used to
prevent tag cloning.

Denial of service. Touching an NFC reader with a tag keeps the de-
vice occupied. Leaving the tag in place prevents other users from
interacting with the NFC reader.

Data corruption. This is similar to a DoS attack, but instead of keep-
ing an NFC reader active by touching it with a forged tag, the ob-
jective is to corrupt the data being transmitted by two legitimate
parties. This attack can be detected by monitoring the RF field
while transmitting data, because the power required to corrupt
the data is significantly large [12].

28 CHAPTER 2. BACKGROUND AND RELATED WORK

Forging/alteration. An attacker modifies the contents of, or replaces,
a legitimate tag. Some devices are configured to take actions au-
tomatically when a tag is touched, for instance, to open a URL
present on the tag. When the user touches a forged tag, she may
become the victim of a phishing or spoofing attack.

In a phishing attack, the victim is redirected to a forged website
and lead to enter personal information such as access credentials,
which are captured by the attacker.

In a spoofing attack, the victim may unknowingly trigger an
action such as making a call to a premium number or sending a
message to a third party.

In addition, the legitimate tag may be modified to do nothing or
replaced with an empty tag, causing a denial of service since
the victim is unable to access the intended service.

This attack can be overcome by using signed tags [16].

Relay attack. This attack requires a card reader and a card emulator,
respectively the mole and the proxy, and a low latency commu-
nication channel between the two because of timing constraints.
The attacker places the mole next to the tag of the victim and
relays the data to the proxy. The proxy then touches a legiti-
mate card reader, which believes to be communicating with the
tag of the victim. This is feasible because the mole does not have
to touch the tag of the victim and because the tag of the victim
activates autonomously when it is in the field of the mole [11].

A similar attack, known as software-based relay attack, exists for
NFC devices working in card emulation mode. In this scenario,
the mole is a malicious application installed in the NFC device of
the victim. The communication with the Proxy takes place, for
instance, through the cellular network [35].

The first version of the attack can be prevented by physically
shielding the card, when not in operation, using a Faraday cage
and by using two-factor authentication. In both cases, the attack
can be mitigated by introducing distance bounding protocols.

Passive attacks

Eavesdropping. The close range at which NFC operates confers it
some security. It is still possible, however, to eavesdrop the com-
munication between two NFC devices or between an NFC device
and a tag by using a high-powered antenna. Eavesdropping can

2.3. RELATED PROJECTS 29

be prevented by establishing a secure channel between the two
communicating parties, commonly by means of encryption [12].

2.3 Related projects

This section describes relevant research projects related to each of the three
operating modes of NFC and innovative ideas found in the literature. It
aims to illustrate the potential of NFC in connection with mobile phones.
The following paragraphs give a brief description of the projects and their
relevance to this thesis is established at the end of the section.

Gh̀ıron et al. [9] develop an NFC ticketing application to allow users to
buy tickets for public transportation by touching a smart poster. The NFC-
enabled mobile phone is used in card emulation mode and the smart poster
relies on a passive MIFARE tag. Usability plays an important part in this
work, which attemps to achieve a good balance between the cognitive load
imposed to the user and the functionality of the system.

Saminger et al. [36] present an approach for ticketing systems using an
inverse reader mode, which consists in using the NFC-enabled mobile phone
in reader-writer mode and the NFC readers of the service provider in card
emulation mode. The objective is to bypass access restrictions imposed to
the secure element of the phone, which are usually under the control of the
handset manufacturer, the mobile network operator (MNO), or a trusted
service manager (TSM).

Siira et al. [38] use the reader-writer mode to create an NFC-based wiki
system. Tags placed in areas of interest return an identifier when tapped,
which is used to download contextual information from a server. A tag at a
bus stop, for instance, may return information about the bus timetables and
nearby restaurants, tourist attractions and events.

Fressancourt et al. [7] integrate NFC with messaging systems and social
networks, to overcome the tedious process related to keeping an up-to-date
presence across all platforms. Touching a tag placed in a key location brings
up a menu to choose one of two predefined moods, which is then sent to the
platforms. The tag may include elements of contextual information such as
its location, which raises privacy concerns. The authors of the paper consider
the act of touching the tag as an agreement by the user to reveal her location
to selected peers.

Nandwani et al. [20] research the use of the peer-to-peer operating mode
of NFC for social mobile games. Two games, inspired by parlor games, are
developed and tested in different social areas. The usability tests confirm the
ease of use of NFC by users and the interacting parties felt more connected

30 CHAPTER 2. BACKGROUND AND RELATED WORK

to each other due to the shift of focus from the screen to the player area.
It is also argued that the general public awareness of NFC can be increased
through gaming.

Matos et al. [17] rely on NFC to address security issues of WiFi configu-
ration and access in public locations. The user touches a passive tag or an
active NFC device to receive network parameters and a public key certificate,
which are used to establish a secure connection with a local wireless network
and confirm the legitimacy of the AP. This method avoids the authentication
via captive portals, subject to evil twin and man-in-the-middle attacks, and
prevents the eavesdropping associated with using an open network.

The approach followed by Gh̀ıron et al. [9] to create a ticketing application
is the obvious one, i.e. using the mobile phone in card emulation mode to
replace the travel card. However, this operating mode requires an autho-
rization by the issuer of the secure element in order to gain access to it and
this may also imply paying a fee to that entity. Saminger et al. [36] use a
different approach to achieve a similar objective and bypass the restriction
of the secure element. This is achieved by using the phone in reader-writer
mode and the ticketing terminal in card emulation mode. In this thesis we
also use the mobile phone in reader-writer mode. However, while Saminger
et al. [36] simulate the card using a terminal which is connected to the back-
end system, effectively resulting in having both ends of the communication
connected to the server, we are interacting directly with an isolated NFC tag
which is unable to reach the remote server on its own. These two papers
focus on replacing the ticket itself by the mobile phone whereas in this thesis
the objective is not to replace the tag but to enable the users of the system
to use it remotely.

The papers by Siira et al. [38], by Fressancourt et al. [7], and by Matos et
al. [17], use the mobile phone in reader-writer mode to achieve their respective
objectives. These three projects illustrate the typical usage model for the
reader-writer mode, where the mobile phone touches the tag to acquire a
small amount of data that can be displayed on the screen of the device and
trigger other actions. In our usage model, the mobile phone not only reads
from but also writes into the tag and is able to do it in a reliable and secure
way, following the instructions of a server hosted on the cloud.

The usability tests by Nandwani et al. [20] confirm the ease of use of
NFC, which is an aspect of the technology that we should not neglect. The
end users must feel comfortable using the technology in order to accept it.
This thesis uses a different operating mode but the same usability principles
apply.

Chapter 3

MIFARE DESFire EV1

MIFARE DESFire EV1 is the evolution of MIFARE DESFire (MF3ICD40).
The security of MF3ICD40 was broken in 2011, when researchers were able
to retrieve the secret key by means of a power analysis attack [31].

DESFire EV1 is a contactless smart card that holds up to 28 applications.
Each application can have up to fourteen keys associated with it and contain
up to 32 files. There are five different file types. Each file has its own file
settings, which include communication mode and access control parameters.
The communication modes are plain, mac’ed and enciphered and are dis-
cussed in Section 3.3.4. Each DESFire EV1 has a single PICC master key
and supports DES, 2K3DES, 3K3DES and AES. In comparison, its prede-
cessor, DESFire, only holds up to sixteen files per application and supports
DES and 3DES. DESFire EV1 is backward compatible with DESFire [28].

This chapter discusses the operations and data storage of DESFire EV1
and its security mechanisms. It focuses on the cryptographic operations
taking place, authentication protocol and data transmission modes between
the reader and the card. The objective is to understand the functionality
of DESFire EV1 before attempting to solve the problem statement from
Section 1.1.

The specification of DESFire EV1 is not publicly available and other
resources had to be used instead to reach a deep understanding of its func-
tionality. An old specification [33] of its predecessor, DESFire, can be found
online and Kasper, von Maurich, Oswald, and Paar [15, sec. 3.2] expose the
AES authentication protocol for DESFire EV1; the libfreefare [19] project
aims at providing a C library for the manipulation of MIFARE cards, but
unfortunately the code is not documented and the card reader used for the
thesis is incompatible with this library. Additionally, pieces of information
regarding MIFARE smart cards is found in blogs and forums via search en-
gines, albeit often incomplete.

31

32 CHAPTER 3. MIFARE DESFIRE EV1

3.1 Commands

Level Commands

Security-related
Authenticate, ChangeKeySettings,
SetConfiguration, ChangeKey, GetKeyVersion

PICC-level

CreateApplication, DeleteApplication,
GetApplicationsIDs, FreeMemory, GetDFNames,
GetKeySettings, SelectApplication,
FormatMF3ICD81, GetVersion, GetCardUID

Application-level

GetFileIDs, GetFileSettings,
ChangeFileSettings, CreateStdDataFile,
CreateBackupDataFile, CreateValueFile,
CreateLinearRecordFile,
CreateCyclicRecordFile, DeleteFile

File-level

ReadData, WriteData, GetValue, Credit, Debit,
LimitedCredit, WriteRecord, ReadRecords,
ClearRecordFile, CommitTransaction,
AbortTransaction

Table 3.1: List of commands of DESFire EV1, grouped by level.

DESFire EV1 commands are divided in four levels: security-related com-
mands, PICC-level commands, application-level commands and data manip-
ulation (file-level) commands. Table 3.1 lists the available commands for the
manipulation of the contents of DESFire EV1. The commands were retrieved
from the short data sheet of the card, made available by NXP Semiconduc-
tors [28].

Security-related commands include authentication and key-related opera-
tions. PICC-level commands include application and memory manipulation
operations. Application-level commands include operations to manipulate
files such as file creation and file deletion. File-level commands include op-
erations that manipulate data such as reading from files and writing to files.
See Table 3.1 for a list of commands organized by level.

3.2 File system

DESFire EV1 has a flexible file system capable of containing up to 28 ap-
plications and up to 32 files in each application. One can think of the file

3.2. FILE SYSTEM 33

system as directories containing files, where the directories are the appli-
cations. Each application is represented by a 3-byte application identifier
(AID), set on application creation. Each file is represented by a 1-byte file
number, set on file creation. Access to files may require a preceding au-
thentication, depending on the file access rights. Keys and access rights are
discussed in Section 3.3.3 and in Section 3.3.4.2 respectively.

File type Description Commands

Standard data file Storage of unformatted user
data

ReadData

WriteData*

Backup data file Storage of unformatted user
data + integrated backup
mechanism

ReadData

WriteData*
CommitTransaction

AbortTransaction

Value file Storage and manipulation of
a 32-bit signed integer

ReadData

WriteData*
GetValue

Credit*
Debit*
LimitedCredit*
CommitTransaction

AbortTransaction

Linear record file Storage of structured user
data
(e.g. loyalty programs)

WriteRecord*
ReadRecords

ClearRecordFile*
CommitTransaction

AbortTransaction

Cyclic record file Storage of structured user
data + automatically
overwrite oldest record when
full
(e.g. logging transactions)

WriteRecord*
ReadRecords

ClearRecordFile*
CommitTransaction

AbortTransaction

Table 3.2: DESFire EV1 file types and data manipulation operations. The
starred commands require validation.

Table 3.2 summarizes the main points of the types of files available on
the card. The files contained by an application can be of the same type or of
different types. DESFire EV1 supports five different types of files, each one
with a different purpose and with a set of operations that can be performed
on it. The types of files are standard data files, backup data files, value files,

34 CHAPTER 3. MIFARE DESFIRE EV1

linear record files, and cyclic record files. Standard data files and backup
data files are used for the storage of unformatted user data. Value files are
used for the storage and manipulation of a 32-bit signed integer value. Linear
record files and cyclic record files are used for the storage of structured user
data. Structured user data are also called records. A record is a single piece
of data organized in a predetermined way and with size, in bytes, set on file
creation. A linear record file will become full of records at some point, after
which it has to be cleared for further writing. A cyclic record file automat-
ically overwrites the oldest record once it is full. Backup data files, value
files, linear record files and cyclic record files include an integrated backup
mechanism and require a CommitTransaction to validate commands that
modify data stored on the card. Alternatively, an AbortTransaction can
be used to abort the command and proceed with other operations on the
card. Multiple commands may be issued, within the same application, with
a single commit or abort command at the end. This applies to commands
targeting the same file or different files, irrespective of the file type. If com-
mands requiring validation are sent to the card and a SelectApplication

takes place before a CommitTransaction, the data modifications requiring
validation are discarded. The backup mechanism takes an additional portion
of memory from the card. For backup data files, it consumes double the
non-volatile memory when compared with standard data files with the same
size. For cyclic record files, it consumes one extra record, which must be
taken into account when defining the maximum number of records upon file
creation.

3.3 Security

The security of DESFire EV1 relies on multiple mechanisms. It uses error-
detecting codes to detect unintentional changes to the data, message authen-
tication codes to ensure the data authenticity and integrity, and encryption
algorithms to ensure data confidentiality. The error-detecting codes used are
CRC16 and CRC32, implemented according with ISO/IEC 14443A and ITU-
T Recommendation V.42 respectively. The message authentication codes are
CBC-MAC and CMAC and the encryption algorithms are DES, 2K3DES,
3K3DES and AES. The cryptographic primitives of DESFire EV1 are further
explained in Section 3.3.1.

Each DESFire EV1 can be identified by its unique UID, which is pro-
grammed into the device during production and cannot be altered. This is
done by writing into a manufacturer reserved part of the non-volatile memory
and write-protecting those bytes. MF3ICD81 conforms to the Smartcard IC

3.3. SECURITY 35

Platform Protection Profile and is certified by the German Federal Office for
Information Security according with the Common Criteria for Information
Technology Security Evaluation (CC) at level EAL 4 augmented [8, 29].

3.3.1 Cryptographic primitives

DESFire EV1 supports the following cryptographic primitives: CBC-MAC,
CMAC and encryption and decryption using the ciphers Triple DES with
56/112/168-bit keys and AES. Each message authentication code is associ-
ated with a cipher. CBC-MAC is used in conjunction with DES and 2K3DES
and CMAC is used in conjunction with 3K3DES and AES.

There is a notion of a global IV, where the input or output of an encryp-
tion, decryption or CMAC operation is used as initialization vector for the
next cryptographic operation. This only applies to 3K3DES and AES. The
global IV is defined as the last block of the ciphertext resulting from an en-
cryption, as the last block of the ciphertext about to be decrypted and as the
result of a CMAC operation. These cryptographic operations—encryption,
decryption and CMAC calculation—use the session key created after a suc-
cessful authentication as secret key. The global IV is set to zeros after the
successful authentication and is only applied while the authenticated state is
valid.

The CBC-MAC is calculated by applying Triple DES encryption in CBC
mode to the data. It is used with DES and 2K3DES, which has a block size
of 8 bytes. Since the data length must be multiple of 8 bytes it is padded
with zeros if required. The MAC is defined as the first half of the last block,
that is, the first 4 bytes of the last 8-byte block.

The CMAC is calculated according with the NIST Special Publication
800-38B, with the modification that the encryption function, during MAC
generation, receives the global IV as its initialization vector instead of an IV
composed by zeros. For 3K3DES, the resulting 8-byte CMAC is used as is.
For AES, the first half of the resulting block is used as CMAC, that is, the
first 8 bytes of the resulting 16-byte block.

The data length is included in the commands that read data and in the
commands that write data. The padding of the CBC-MAC and the padding
of the CMAC is only used for the computation and is not exchanged between
PICC and PCD.

When using a DES or 2K3DES cipher, the PCD always decrypts the
data and the PICC always encrypts the data.1 The cryptographic operation

1The DESFire MF3ICD40 is only able to encrypt data in order to save on hardware
implementation costs. The DES and 2K3DES related operations on DESFire EV1 are

36 CHAPTER 3. MIFARE DESFIRE EV1

plaintext plaintext plaintext

IV ⊕ ⊕ ⊕

K DK K DK K DK

ciphertext ciphertext ciphertext

(a) CBC send mode for PCD.

ciphertext ciphertext ciphertext

K DK K DK K DK

IV ⊕ ⊕ ⊕

plaintext plaintext plaintext

(b) CBC receive mode for PCD.

Figure 3.1: CBC send mode and CBC receive mode for PCD.

is done in either CBC send mode or CBC receive mode. In CBC send mode,
the PCD performs the logical operation XOR before decrypting a block of
data. The data block being decrypted is xor’ed before the decryption, with
the previously decrypted data block, as seen in Figure 3.1(a). In CBC receive
mode, the PCD performs the logical operation XOR after decrypting a block
of data. The data block being decrypted is first decrypted and only then it is
xor’ed, with the previous 8-byte block of ciphertext, as seen in Figure 3.1(b).
In both cases and since there is no previous block, the first block being
decrypted is xor’ed with an all-zero initialization vector.2

backward compatible with DESFire MF3ICD40.
2For all practical purposes, this returns the first block without any modification, making

3.3. SECURITY 37

When using 3K3DES or AES, the PCD encrypts when sending data and
decrypts when receiving data. CBC mode is used in both cases. In compari-
son to DES and 2K3DES, there is an IV maintained between cryptographic
operations: the global IV. The first block of data being encrypted or being
decrypted is xor’ed with this IV and not with the all-zero IV. Like previously
mentioned, this is the same IV used in the encryption operation that takes
place during the MAC generation phase of CMAC.

Operation DES/2K3DES 3K3DES/AES

CBC-MAC DES/2K3DES encryption
+ CBC

CMAC CMAC + reuse of IV
in MAC generation phase

Encryption DES/2K3DES decryption
+ CBC send mode

3K3DES/AES encryption
+ CBC + reuse of IV

Decryption DES/2K3DES decryption
+ CBC receive mode

3K3DES/AES decryption
+ CBC + reuse of IV

Table 3.3: Cryptographic operations in DESFire EV1.

The cryptographic primitives detailed in the previous paragraphs are out-
lined in Table 3.3. The operations for DES are essentially the same for
2K3DES and the same relation applies to 3K3DES and AES.

3.3.2 Authentication protocol

A mutual three-pass authentication may take place before transmitting data,
which ensures that both the PCD and the PICC are in possession of a com-
mon secret. This secret, the secret key, is stored on the PICC and the PCD is
required to have the correct key for the authentication to succeed. A success-
ful mutual authentication results in a session key that can be used to protect
subsequent data transmissions. The data transmission modes supported by
DESFire EV1 are described in Section 3.3.4.

The authentication protocol is similar for all ciphers. The differences
are on the length of the random numbers generated, the algorithms used
for the encryption of data and for the decryption of data, and the session
key generation algorithm. The length of the random numbers is 8 bytes for
DES and 2K3DES, and 16 bytes for 3K3DES and AES. The encryption and
decryption algorithms are presented in Section 3.3.1, and the session key

the XOR operation redundant.

38 CHAPTER 3. MIFARE DESFIRE EV1

Cipher Session key

DES RndA0−3‖RndB0−3

2K3DES RndA0−3‖RndB0−3‖RndA4−7‖RndB4−7

3K3DES RndA0−3‖RndB0−3‖RndA6−9‖RndB6−9‖RndA12−15‖RndB12−15

AES RndA0−3‖RndB0−3‖RndA12−15‖RndB12−15

Table 3.4: Session key generation for DESFire EV1 using RndA and RndB.

generation algorithm is presented in Table 3.4. A diagram of the DES and
2K3DES authentication protocol is depicted in Figure 3.2, and a diagram of
the 3K3DES and AES authentication protocol is depicted in Figure 3.3. The
authentication protocol is always initiated by the PCD and it is composed
by the following steps:

1. The PCD sends an authentication request to the PICC, along with a
1-byte key number. This key number references the secret key to be
used during the authentication protocol. The secret key can be part
of an application or it can be the PICC master key, depending on the
selected AID. After powering up the PICC, the 3-byte AID 00 00 00H

is implicitly selected.

2. The PICC receives the authentication command and generates and
encrypts a random number RndB. The length of the random number
generated and the algorithm used for encryption are related to the
cipher associated with the key number received from the PCD. The
resulting ciphertext is sent to the PCD as a response.

3. The PCD receives and decrypts the response obtaining the random
number RndB generated by the PICC. It then rotates RndB one byte
to the left yielding x2 = RndB′. The PCD generates its own ran-
dom number RndA and concatenates RndB′ to it. RndA‖RndB′ is
encrypted and sent to the PICC.

4. The PICC decrypts the received message, rotates its RndB to the left
and compares it with the decrypted RndB′ sent by the PCD. If the
match fails, the PICC returns an error code to the PCD. Otherwise,
it rotates RndA one byte to the left, yielding RndA′ (x8). RndA′ is
encrypted and sent to the PCD.

5. The PCD decrypts the received message, rotates its RndA one byte
to the left and compares it with the RndA′ received from the PICC.
If the match fails (x10 6= x11), the PCD may abort the authentication

3.3. SECURITY 39

PCD PICC

AUTH(keyNo)

x0 RndB ∈R {0, 1}8
x0 = EK(RndB)

x1 = DK(x0)
x2 = RotLeft1(x1)
RndA ∈R {0, 1}8
x3 = DK(RndA)
x4 = DK(x3 ⊕ x2)

x3‖x4

x5 = EK(x3)
x6 = x3 ⊕ EK(x4)

x7 = RotLeft1(RndB)

ERROR
if x6 6= x7

x9
if x6 = x7

x8 = RotLeft1(x5)
x9 = EK(x8)

x10 = DK(x9)
x11 = RotLeft1(RndA)

x10
?
= x11

session keyDES = RndA0−3‖RndB0−3
session key2K3DES = RndA0−3‖RndB0−3‖RndA4−7‖RndB4−7

Step 2

Step 3

Step 4

Step 5

Step 6

Figure 3.2: DES and 2K3DES authentication protocol for DESFire EV1.

protocol at this point. If the verification is successful (x10 = x11), then
the PCD is ready to generate a session key.

6. The session key is generated by the PCD and by the PICC using both
RndA and RndB according with Table 3.4. For 3K3DES and for AES,
the global IV is reset to zeros at this point and is reused between
all subsequent cryptographic operations. For DES and for 2K3DES,
cryptographic operations are independent from each other and always
start with an IV set to zeros.

40 CHAPTER 3. MIFARE DESFIRE EV1

PCD PICC

AUTH(keyNo)

x0 RndB ∈R {0, 1}16
x0 = EK(RndB)

x1 = DK(x0)
x2 = RotLeft1(x1)
RndA ∈R {0, 1}16

x3 = EK(x0 ⊕RndA)
x4 = EK(x3 ⊕ x2)

x3‖x4

x5 = x0 ⊕DK(x3)
x6 = x3 ⊕DK(x4)

x7 = RotLeft1(RndB)

ERROR
if x6 6= x7

x9
if x6 = x7

x8 = RotLeft1(x5)
x9 = EK(x4 ⊕ x8)

x10 = x4 ⊕DK(x9)
x11 = RotLeft1(RndA)

x10
?
= x11

session key3K3DES = RndA0−3‖RndB0−3‖RndA6−9‖RndB6−9‖RndA12−15‖RndB12−15
session keyAES = RndA0−3‖RndB0−3‖RndA12−15‖RndB12−15

Step 2

Step 3

Step 4

Step 5

Step 6

Figure 3.3: 3K3DES and AES authentication protocol for DESFire EV1.

3.3.3 Keys

There is a single PICC master key and up to fourteen keys per application.
Each application always has at least one key: the application master key.
The PICC master key and the application master key have the key number
00H. For certain commands, a preceding authentication with a specific key is
a requisite for their successful completion. For instance, a preceding authen-
tication is compulsory when changing a key. For other commands, however,
whether a preceding authentication is required for a successful completion or
not depends on the access rights of files, explained in Section 3.3.4, and on
the PICC master key settings or on the application master key settings.

The PICC master key settings apply to PICC level and each application

3.3. SECURITY 41

has its own application master key settings. In both cases, the size of the
master key settings is 1 byte. These settings define if the master key is
changeable and if the master key settings are changeable. In addition, the
master key settings indicate if an authentication is required to perform certain
operations such as getting the master key settings and creating applications
and files. This is achieved by toggling bits on the master key settings byte.
The MF3ICD40 specification [33, sec. 4.3.2] provides more information about
the master key settings and about which commands will require a preceding
authentication when bits are toggled.

The length of the keys, when interacting with the card, is 8 bytes for
DES, 16 bytes for 2K3DES, 24 bytes for 3K3DES, and 16 bytes for AES.
Triple DES keys use the least significant bit of each byte as a parity bit,
which means that the actual size of the keys is respectively 56, 112 and 168
bits for DES, 2K3DES and 3K3DES. DESFire EV1 ignores the parity bits
when handling Triple DES ciphers and these can be used for key versioning.
It is advisable to set the parity bits to a default value, if not used for key
versioning, because the PICC will reveal them with a GetVersion command.
This would reduce the strength of the key if the bits were really used as parity
bits. The key version is only one byte and for Triple DES it is taken from
the first key. If using AES, there is an extra byte specifically for the purpose
of key versioning.

Internally, DESFire EV1 handles both DES and 2K3DES keys as 16-byte
keys. When the first half of the key is equal to the second half of the key, the
key type is considered to be DES. When the first half of the key is different
from the second half of the key, the key type is considered to be 2K3DES. For
example, 20 00 00 00 20 00 00 00 20 00 00 00 20 00 00 00H is a DES key
and 20 00 00 00 60 00 00 00 00 00 00 00 00 00 00 00H is a 2K3DES key.
Note that a key such as 00 00 00 00 00 00 00 02 00 00 00 00 00 00 01 03H

is a DES key because the key values only differ in the parity bits, i.e. key
version. In the example, the version of the key would be 00H and clearing the
parity bits results in the key 00 00 00 00 00 00 00 02 00 00 00 00 00 00 00

02H. In the authentication, differences in the parity bits have no effect in the
access as failure.

The cipher used by an application is decided during its creation to-
gether with the number of keys. Three possibilities exist for this option:
DES+2K3DES, 3K3DES and AES. The type of cipher cannot be changed
for the application later on. The default secret keys, upon application cre-
ation, are 16 bytes set to zero for DES+2K3DES and AES and 24 bytes set
to zero for 3K3DES. Since DES and 2K3DES are grouped, it is possible to
have DES and 2K3DES keys mixed within the same application and it is
possible to change a key from DES to 2K3DES and vice versa. When using

42 CHAPTER 3. MIFARE DESFIRE EV1

DES and 2K3DES as the application cipher, the default key is 16 bytes set
to zero, which means it is a DES key. The cipher of the PICC master key
can be altered during a key change by tweaking the key number.

To change a key, the PCD sends the message C4‖keyNo‖ciphertext to
the PICC. C4 is the command code. keyNo is the number of the key to be
changed and contains a value between 00 and 0D. ciphertext contains infor-
mation about the new key and its generation is presented in Algorithm 3.1.
When changing the PICC master key, the keyNo is tweaked according with
the cipher used by the new key. When the new key type is 3K3DES, the key
number is set to 40H, and when the new key type is AES, the key number is
set to 80H. For both DES and 2K3DES keys, the key number is set to 00H.
For applications, the tweak is not required because the cipher chosen when
the application is created is fixed.

3.3.4 Data transmission

The three communication modes supported by DESFire EV1 are plain, mac’ed
and enciphered. Which communication mode is used during an operation de-
pends on the file settings, if dealing with files, and on the command itself. A
rule of thumb is that the plain communication mode is used for all commands,
unless stated otherwise.

Each file is associated with its own file settings. The file settings indicate
the file size for data files, the record size, boundaries and current number
of records for record files, and the boundary values and state of the limited
credit option for value files. Additionally, the file settings include the com-
munication settings and the access rights for the file. The communication
settings point out the communication mode to use when operating on this
particular file. The access rights state whether a preceding authentication
is required to interact with the file or not and, if so, which key number the
PCD is to authenticate against.

3.3.4.1 Communication settings

The different communication settings are applied to the file-level commands
ReadData, WriteData, GetValue, Credit, Debit, WriteRecord, ReadRecords
and LimitedCredit. The application-level command ChangeFileSettings

uses the enciphered communication mode and requires the preceding authen-
tication to be done with the CAR key of the related file. If the CAR key of
that file is set to free access, then the data is exchanged in cleartext. The
commands ChangeKeySettings and GetCardUID use the enciphered commu-
nication mode. The commands Authenticate and ChangeKey use their own

3.3. SECURITY 43

keyNo number of the key to be changed

new key the new key

old key the old key (only required if changing different keys)

if changing the PICC master key then
if type of new key is 3K3DES then

keyNo ← 40h
else if type of new key is AES then

keyNo ← 80h
end

else if authentication key number 6= number of key to change then
temp ← new key ⊕ old key (concatenate multiple copies of old key if
necessary)

end

if new key type is AES then
plaintext ← temp + key version

else
plaintext ← temp

end

switch type of key used for authentication do
case DES or 2K3DES

compute the CRC16 of plaintext
append the resulting CRC16 to plaintext
if authentication key number 6= number of key to change then

compute the CRC16 of new key
append the resulting CRC16 to plaintext

end
ciphertext ← decryption of plaintext in CBC send mode

endsw
case 3K3DES or AES

compute the CRC32 of cmd‖keyNo‖plaintext
append the resulting CRC32 to plaintext
if authentication key number 6= number of key to change then

compute the CRC32 of new key
append the resulting CRC32 to plaintext

end
ciphertext ← encryption of plaintext in CBC mode using global IV

endsw

endsw

DES or 2K3DES: DCBCsend
(new ⊕ old‖CRC16(new ⊕ old)‖CRC16(new))

3K3DES or AES: ECBC(new ⊕ old‖CRC32(cmd‖keyNo‖new ⊕ old)‖CRC32(new))

Algorithm 3.1: Computation of the ciphertext for the change key com-
mand.

44 CHAPTER 3. MIFARE DESFIRE EV1

security mechanisms, which are detail in Section 3.3.2 and in Section 3.3.3 re-
spectively. The remaining commands use the plain communication mode but
some of these commands may require a preceding authentication to succeed
depending on the PICC master key settings or on the application master key
settings, and on the command itself.

A native DESFire EV1 command can be divided in a command code,
headers and the data to be secured. The command code is one byte stating
which operation is under action. The headers are pieces of data which are
part of the payload of the command but which are not to be encrypted. These
include the 1-byte key number referencing secret keys, and the 3-byte offset
and 3-byte length fields when writing data to files. The data to be secured is
the piece of data which is to be stored on the card. A native DESFire EV1
response can be divided in a status code and the data to be secured. The
status code indicates whether the command is successful and the error code
if it failed, and the data to be secured is the piece of data received from the
card.

When calculating a cyclic redundancy check or message authentication
code, or when ciphering data, it is necessary to know on which piece of data
to perform the operation. The CRC16 and the CBC-MAC are calculated
only over the data to be secured for both commands and responses. The
CRC32 and the CMAC are calculated over the command code, headers and
data for commands, and over the status code and data, if any, for responses.
While a native response is presented as the status code followed by the data,
the CRC32 and CMAC calculation is done over the data followed by the
status code, i.e. the status code and the data swap for the computation.
The encryption and decryption takes place only over the data to be secured
and the CRC, leaving out the command code and headers and the response
status code.

The objective of the communication modes is to protect the data ex-
changed between the two parties. In other words, while both the command
and respective response are interlinked, the security is applied to the direc-
tion carrying the data. If writing data into the card, then the command is
protected. If reading data from the card, then the response is protected.
This is how DES and 2K3DES operate. For 3K3DES and for AES the sys-
tem is different because all the operations are chained in order to improve
the overall security of the system.

The chaining occurring for 3K3DES and for AES relies on a global initial-
ization vector, an IV which is shared between the commands and responses.
This IV is read and subsequently updated when computing CMACs and when
encrypting and decrypting data. If authenticated, the IV is still kept up to
date even when the plain communication mode is used, which means this

3.3. SECURITY 45

chaining is applied to nearly all commands. The exception are commands
that cause the authentication state to be changed, such as a new authentica-
tion, or that cause the authentication state to be lost, such as an application
selection operation.

In the plain communication mode, the data is transmitted between the
PCD and PICC in cleartext for DES and for 2K3DES. This is also the be-
havior for 3K3DES and for AES if not authenticated. If authenticated then
the CMAC is calculated over the commands and over the responses enabling
all the operations to be chained. For commands, the CMAC is not appended
but it is still calculated by the PCD in order to update the global IV. For
responses, the CMAC is calculated and appended to the data by the PICC.

In the mac’ed communication mode, a CBC-MAC or CMAC is appended
to the data. The message authentication code is appended to the command
if modifying data on the card and is appended to the response if reading data
from the card. When using 3K3DES or AES, the CMAC is always appended
to the response.

In the enciphered communication mode, a CRC is appended to the data
for integrity, and the payload—data to be secured and the CRC—is encrypted
for confidentiality. For DES and for 2K3DES, the CRC16 is calculated over
the data to be secured. For 3K3DES and for AES, the CRC32 is calculated
over the command code, headers and data to be secured in the case of com-
mands, or over the data to be secured and the status code in the case of
responses. The encryption is done according with Table 3.3.

3.3.4.2 Access rights

Access rights are used to control the access to files. Each file has four access
rights associated with it: read (R), write (W), read&write (RW) and change
access rights (CAR). Each of these access rights is coded in 4 bits and ref-
erences one of the keys associated with the file. A file can have between 1
and 14 keys associated with it and this value is set when the file is created.
To reference a key, the access right will hold a value between 0 and D. The
key referenced is required to exist. There are two special values, E and F,
to respectively indicate free access and deny access. Free access means that
access is always granted to the linked access right, with or without a pre-
ceding authentication. Deny access means that access is always denied to
the linked access right, irrespective of the authentication state. Table 3.5
lists the access rights and the commands to which they apply. These are
all file-level commands, with the exception of the application-level command
ChangeFileSettings.

For a command to succeed, one of the associated access rights must be

46 CHAPTER 3. MIFARE DESFIRE EV1

Command
Access rights

R W RW CAR

ChangeFileSettings 7

GetValue 7 7 7

Debit 7 7 7

LimitedCredit 7 7

Credit 7

ReadData 7 7

WriteData 7 7

ReadRecords 7 7

WriteRecords 7 7

ClearRecordFile 7

Table 3.5: DESFire EV1 access rights associated with commands.

satisfied. This means that a single positive acknowledgment suffices, inde-
pendently of the amount of access rights associated with a given command.
An access right is satisfied when a preceding successful authentication takes
place using the referenced key. Alternatively, access is always granted when
one of the access rights associated with the command is set to EH.

If one of the access rights associated with a command references the key
number used to reach an authenticated state, then the communication takes
place according with the communication settings for that file. Otherwise,
one of those access rights may contain the free access value E, in which case
communication is done in plain mode, ignoring the communication settings
of the file. In this case, the authentication state is irrelevant. If neither of
the access rights associated with the command references the authenticated
key number or contains the free access value E, the command fails with an
authentication error status code.

3.4 Trace

The goal of the following traces is to illustrate the differences between the
communication modes and between DES/2K3DES and 3K3DES/AES ci-
phers in DESFire EV1. The traces are generated by a sample application
created for this purpose that uses the library developed during this thesis and
presented in Appendix B. The communication between the reader and card is
shown in command–response pairs with the native DESFire EV1 commands

3.4. TRACE 47

and responses wrapped in ISO/IEC 7816-4 APDUs. Only DES and AES are
used in the example, but the same line of thought used for DES applies to
2K3DES, and the same line of thought used for AES applies to 3K3DES.
The flowchart of the sample application showing the commands sent to the
card is depicted in Figure 3.4.

The sample application authenticates at PICC-level and formats the card,
which deletes all the existing applications and frees the corresponding mem-
ory, and creates a new card application setting its cipher to either DES or
AES. This new application is selected and another authentication takes place
but at the application-level instead of PICC-level. Three value files are then
created, one for each of the three possible communication settings—plain,
mac’ed and enciphered. A value file consists of a four-digit counter, which is
in this example set to the initial value of 32H (5010). A value of 7H is credited
twice in each file and the new value 40H (6410) is retrieved from the card.

1 PC/SC card in SCL011G Contactless Reader [SCL01x Contactless Reader]

(21161044200765) 00 00, protocol T=1, state OK

2 >> 90 aa 00 00 01 00 00 (AUTHENTICATE_AES)

3 << c9 c1 a7 12 57 e5 2c b6 d7 c8 9c ea 9a 73 c1

17 91 af (ADDITIONAL_FRAME)

4 >> 90 af 00 00 20 02 f4 cc 61 fb 8a b1 33 2c 48 87 cf 44 c5 bf c2 57 41 a7

b1 8a 24 8b 14 0f 39 08 a4 96 35 c3 d6 00 (MORE)

5 << 18 e9 ba c5 7f 99 c1 3a d8 ba 5f d6 de 96 90 ce 91 00 (OPERATION_OK)

6 The random A is 76 69 06 3b d7 51 01 a8 0a 5a b8 35 2b 23 4d 5a

7 The random B is ad 2c a4 85 6d 7d f5 73 ae 87 0e 7f 07 6a 3c cc

8 The secret key is 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

9 The session key is 76 69 06 3b ad 2c a4 85 2b 23 4d 5a 07 6a 3c cc

10 >> 90 fc 00 00 00 (FORMAT_PICC)

11 << fd 21 05 eb 70 fa e9 62 91 00 (OPERATION_OK)

12 >> 90 ca 00 00 05 01 02 03 0f 05 00 (CREATE_APPLICATION)

13 << 2a fd d4 17 a4 21 34 73 91 00 (OPERATION_OK)

14 >> 90 5a 00 00 03 01 02 03 00 (SELECT_APPLICATION)

15 << 91 00 (OPERATION_OK)

16 >> 90 0a 00 00 01 03 00 (AUTHENTICATE_DES_2K3DES)

17 << da eb 40 1d c9 49 56 6a 91 af (ADDITIONAL_FRAME)

18 >> 90 af 00 00 10 ac d7 f0 80 f6 18 97 70 17 f3 74 76 75 8c e7

54 00 (MORE)

19 << ca 92 61 78 15 31 b2 1e 91 00 (OPERATION_OK)

20 The random A is c5 a0 5c 2c 39 4c 91 42

21 The random B is d0 04 8c 5e 1a 2f 4b f0

22 The secret key is 00 00 00 00 00 00 00 00

23 The session key is c5 a0 5c 2c d0 04 8c 5e

24 >> 90 cc 00 00 11 04 00 30 00 0a 00 00 00 5a 00 00 00 32 00 00 00 00 00 (

CREATE_VALUE_FILE)

25 << 91 00 (OPERATION_OK)

26 >> 90 cc 00 00 11 05 01 30 00 0a 00 00 00 5a 00 00 00 32 00 00 00 00 00 (

48 CHAPTER 3. MIFARE DESFIRE EV1

connect

Lines
2–5

authenticate

Lines
10–11

format

Lines
12–13

create
application

Lines
14–15

select
application

Lines
16–19

authenticate

Lines
24–29

create value
file 04H

create value
file 05H

create value
file 06H

Lines
32–37

credit 7H

to file 04H

credit 7H

to file 04H

commit
transaction

Lines
40–45

credit 7H

to file 05H

credit 7H

to file 05H

commit
transaction

Lines
48–53

credit 7H

to file 06H

credit 7H

to file 06H

commit
transaction

Lines
56–57
61–62
66–67

get value
from file 04H

get value
from file 05H

get value
from file 06H

disconnect

Figure 3.4: Flowchart of the sample application that generates the traces
showing the commands sent to the card.

3.4. TRACE 49

CREATE_VALUE_FILE)

27 << 91 00 (OPERATION_OK)

28 >> 90 cc 00 00 11 06 03 30 00 0a 00 00 00 5a 00 00 00 32 00 00 00 00 00 (

CREATE_VALUE_FILE)

29 << 91 00 (OPERATION_OK)

30 >> 90 f5 00 00 01 04 00 (GET_FILE_SETTINGS)

31 << 02 00 30 00 0a 00 00 00 5a 00 00 00 00 00 00 00 00 91 00 (OPERATION_OK)

32 >> 90 0c 00 00 05 04 07 00 00 00 00 (CREDIT)

33 << 91 00 (OPERATION_OK)

34 >> 90 0c 00 00 05 04 07 00 00 00 00 (CREDIT)

35 << 91 00 (OPERATION_OK)

36 >> 90 c7 00 00 00 (COMMIT_TRANSACTION)

37 << 91 00 (OPERATION_OK)

38 >> 90 f5 00 00 01 05 00 (GET_FILE_SETTINGS)

39 << 02 01 30 00 0a 00 00 00 5a 00 00 00 00 00 00 00 00 91 00 (OPERATION_OK)

40 >> 90 0c 00 00 09 05 07 00 00 00 e1 f6 48 e4 00 (CREDIT)

41 << 91 00 (OPERATION_OK)

42 >> 90 0c 00 00 09 05 07 00 00 00 e1 f6 48 e4 00 (CREDIT)

43 << 91 00 (OPERATION_OK)

44 >> 90 c7 00 00 00 (COMMIT_TRANSACTION)

45 << 91 00 (OPERATION_OK)

46 >> 90 f5 00 00 01 06 00 (GET_FILE_SETTINGS)

47 << 02 03 30 00 0a 00 00 00 5a 00 00 00 00 00 00 00 00 91 00 (OPERATION_OK)

48 >> 90 0c 00 00 09 06 5c ba af d0 96 5c d3 fc 00 (CREDIT)

49 << 91 00 (OPERATION_OK)

50 >> 90 0c 00 00 09 06 5c ba af d0 96 5c d3 fc 00 (CREDIT)

51 << 91 00 (OPERATION_OK)

52 >> 90 c7 00 00 00 (COMMIT_TRANSACTION)

53 << 91 00 (OPERATION_OK)

54 >> 90 f5 00 00 01 04 00 (GET_FILE_SETTINGS)

55 << 02 00 30 00 0a 00 00 00 5a 00 00 00 00 00 00 00 00 91 00 (OPERATION_OK)

56 >> 90 6c 00 00 01 04 00 (GET_VALUE)

57 << 40 00 00 00 91 00 (OPERATION_OK)

58 The stored value (fileNo=4, cs=0) is 64

59 >> 90 f5 00 00 01 05 00 (GET_FILE_SETTINGS)

60 << 02 01 30 00 0a 00 00 00 5a 00 00 00 00 00 00 00 00 91 00 (OPERATION_OK)

61 >> 90 6c 00 00 01 05 00 (GET_VALUE)

62 << 40 00 00 00 24 3a fa 5d 91 00 (OPERATION_OK)

63 The stored value (fileNo=5, cs=1) is 64

64 >> 90 f5 00 00 01 06 00 (GET_FILE_SETTINGS)

65 << 02 03 30 00 0a 00 00 00 5a 00 00 00 00 00 00 00 00 91 00 (OPERATION_OK)

66 >> 90 6c 00 00 01 06 00 (GET_VALUE)

67 << 93 a9 4b 99 61 fd 21 68 91 00 (OPERATION_OK)

68 The stored value (fileNo=6, cs=3) is 64

69 success.

Listing 3.1: Trace with DES.

1 PC/SC card in SCL011G Contactless Reader [SCL01x Contactless Reader]

50 CHAPTER 3. MIFARE DESFIRE EV1

(21161044200765) 00 00, protocol T=1, state OK

2 >> 90 aa 00 00 01 00 00 (AUTHENTICATE_AES)

3 << 48 2f 40 ad eb f2 47 a6 e6 e3 fe fe 83 06 0c

07 91 af (ADDITIONAL_FRAME)

4 >> 90 af 00 00 20 91 89 ac dc 04 37 67 fa 7d 25 ef 5f b3 ce 68 9d a7 cc 9e

a8 a7 5b 2a 69 73 9c f0 ab 64 f0 8d 92 00 (MORE)

5 << 88 30 a2 33 db b8 d1 16 1d 28 fa 08 af f6 3e e4 91 00 (OPERATION_OK)

6 The random A is 95 6b 22 dc 89 f3 ae 21 ab 3c 5b d1 97 11 a3 e1

7 The random B is 14 43 ba 75 6c 21 84 5b 4c 30 a7 83 d0 d2 1b 8c

8 The secret key is 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

9 The session key is 95 6b 22 dc 14 43 ba 75 97 11 a3 e1 d0 d2 1b 8c

10 >> 90 fc 00 00 00 (FORMAT_PICC)

11 << 66 75 82 d7 7b 34 fc 64 91 00 (OPERATION_OK)

12 >> 90 ca 00 00 05 01 02 03 0f 85 00 (CREATE_APPLICATION)

13 << d9 6a c1 e7 7b 7b 43 76 91 00 (OPERATION_OK)

14 >> 90 5a 00 00 03 01 02 03 00 (SELECT_APPLICATION)

15 << 91 00 (OPERATION_OK)

16 >> 90 aa 00 00 01 03 00 (AUTHENTICATE_AES)

17 << 1f 56 4c 74 42 d0 d6 81 76 5a 29 92 7c d6 f6

a4 91 af (ADDITIONAL_FRAME)

18 >> 90 af 00 00 20 76 1b fe 66 9c 55 d9 04 7a 5f ec c2 a8 68 02 8b 07 0b ec

22 d2 ab d2 3b b6 87 63 bc e7 6f 06 f9 00 (MORE)

19 << 4f 62 62 2d f0 e8 a5 aa 97 46 22 5c 7e d2 ec 1f 91 00 (OPERATION_OK)

20 The random A is ab df 1b 16 60 7d 5c cd fe 74 97 35 c2 5e bf a4

21 The random B is 0f a9 a1 2c 31 4f 93 e4 85 8a 0c e7 b2 80 f9 a7

22 The secret key is 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

23 The session key is ab df 1b 16 0f a9 a1 2c c2 5e bf a4 b2 80 f9 a7

24 >> 90 cc 00 00 11 04 00 30 00 0a 00 00 00 5a 00 00 00 32 00 00 00 00 00 (

CREATE_VALUE_FILE)

25 << 38 71 1c 80 dd b4 c9 99 91 00 (OPERATION_OK)

26 >> 90 cc 00 00 11 05 01 30 00 0a 00 00 00 5a 00 00 00 32 00 00 00 00 00 (

CREATE_VALUE_FILE)

27 << 93 4f 97 85 4d 56 5c 6d 91 00 (OPERATION_OK)

28 >> 90 cc 00 00 11 06 03 30 00 0a 00 00 00 5a 00 00 00 32 00 00 00 00 00 (

CREATE_VALUE_FILE)

29 << 6e d7 80 b7 b7 58 9f fe 91 00 (OPERATION_OK)

30 >> 90 f5 00 00 01 04 00 (GET_FILE_SETTINGS)

31 << 02 00 30 00 0a 00 00 00 5a 00 00 00 00 00 00 00 00 63 87 c3 00 59 1d 6d

00 91 00 (OPERATION_OK)

32 >> 90 0c 00 00 05 04 07 00 00 00 00 (CREDIT)

33 << 20 bf 20 a0 6a 48 1b eb 91 00 (OPERATION_OK)

34 >> 90 0c 00 00 05 04 07 00 00 00 00 (CREDIT)

35 << a4 d1 20 40 48 42 cd 4b 91 00 (OPERATION_OK)

36 >> 90 c7 00 00 00 (COMMIT_TRANSACTION)

37 << be bf a5 86 0d 5a f3 2c 91 00 (OPERATION_OK)

38 >> 90 f5 00 00 01 05 00 (GET_FILE_SETTINGS)

39 << 02 01 30 00 0a 00 00 00 5a 00 00 00 00 00 00 00 00 5b 1f 61 37 d7 37 f2

f9 91 00 (OPERATION_OK)

40 >> 90 0c 00 00 0d 05 07 00 00 00 1b b5 e6 91 77 50 d2 ca 00 (CREDIT)

3.4. TRACE 51

41 << 0c b6 7f a8 12 69 62 4f 91 00 (OPERATION_OK)

42 >> 90 0c 00 00 0d 05 07 00 00 00 7b 36 d6 fe f0 66 15 7c 00 (CREDIT)

43 << 62 50 7a cc f4 15 54 0d 91 00 (OPERATION_OK)

44 >> 90 c7 00 00 00 (COMMIT_TRANSACTION)

45 << 13 7a af 32 5d e5 a3 38 91 00 (OPERATION_OK)

46 >> 90 f5 00 00 01 06 00 (GET_FILE_SETTINGS)

47 << 02 03 30 00 0a 00 00 00 5a 00 00 00 00 00 00 00 00 f4 f2 44 99 12 58 78

e3 91 00 (OPERATION_OK)

48 >> 90 0c 00 00 11 06 c7 12 75 ba 6b 57 7f ec 92 91 3d 7c ef 4c 1a

27 00 (CREDIT)

49 << c7 dd 3f 55 94 e3 b8 25 91 00 (OPERATION_OK)

50 >> 90 0c 00 00 11 06 3c 42 75 b5 c9 7e 08 94 c0 88 17 a1 c0 c2 f0

29 00 (CREDIT)

51 << d8 1c 31 e4 72 7c 57 fb 91 00 (OPERATION_OK)

52 >> 90 c7 00 00 00 (COMMIT_TRANSACTION)

53 << e2 ba 9a e7 7d 63 aa 77 91 00 (OPERATION_OK)

54 >> 90 f5 00 00 01 04 00 (GET_FILE_SETTINGS)

55 << 02 00 30 00 0a 00 00 00 5a 00 00 00 00 00 00 00 00 f1 0d 4e 2d 33 31 2e

3d 91 00 (OPERATION_OK)

56 >> 90 6c 00 00 01 04 00 (GET_VALUE)

57 << 40 00 00 00 c6 ed 8f 47 49 4b 83 0d 91 00 (OPERATION_OK)

58 The stored value (fileNo=4, cs=0) is 64

59 >> 90 f5 00 00 01 05 00 (GET_FILE_SETTINGS)

60 << 02 01 30 00 0a 00 00 00 5a 00 00 00 00 00 00 00 00 ac 3e bc 34 09 c5 de

89 91 00 (OPERATION_OK)

61 >> 90 6c 00 00 01 05 00 (GET_VALUE)

62 << 40 00 00 00 81 b2 95 31 ac bf d9 bb 91 00 (OPERATION_OK)

63 The stored value (fileNo=5, cs=1) is 64

64 >> 90 f5 00 00 01 06 00 (GET_FILE_SETTINGS)

65 << 02 03 30 00 0a 00 00 00 5a 00 00 00 00 00 00 00 00 67 9e b6 25 d4 3f c9

4c 91 00 (OPERATION_OK)

66 >> 90 6c 00 00 01 06 00 (GET_VALUE)

67 << 99 ff 1c 08 9f 2b 33 8a d4 67 d0 94 74 3d 08 2e 91 00 (OPERATION_OK)

68 The stored value (fileNo=6, cs=3) is 64

69 success.

Listing 3.2: Trace with AES.

1 PC/SC card in SCL011G Contactless Reader [SCL01x Contactless Reader]

(21161044200765) 00 00, protocol T=1, state OK

2 >> 90 aa 00 00 01 00 00 (AUTHENTICATE_AES)

3 << ec 42 de 2d c8 0a 67 4b 94 9e 52 e9 ad 6c 69

ba 91 af (ADDITIONAL_FRAME)

4 >> 90 af 00 00 20 b3 b0 a5 26 49 5c 97 72 a6 9b 88 cb c9 f7 b3 aa 2c f9 ba

08 fd c6 86 99 05 84 64 73 8a 55 77 26 00 (MORE)

5 << 72 8c 5c 09 6f f8 ba f8 de 8a 00 99 b2 27 2b ec 91 00 (OPERATION_OK)

6 The random A is 4c a1 76 1b c4 c9 b5 5d ad ee 29 09 17 d7 a6 4f

7 The random B is df a3 28 c7 3e 68 e5 88 99 a5 3a 65 03 1a 80 b4

8 The secret key is 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

52 CHAPTER 3. MIFARE DESFIRE EV1

9 The session key is 4c a1 76 1b df a3 28 c7 17 d7 a6 4f 03 1a 80 b4

10 >> 90 fc 00 00 00 (FORMAT_PICC)

11 << c8 18 0c 83 ae f2 8c e6 91 00 (OPERATION_OK)

12 >> 90 ca 00 00 05 01 02 03 0f 85 00 (CREATE_APPLICATION)

13 << 43 c3 2e 35 64 5d d5 bc 91 00 (OPERATION_OK)

14 >> 90 5a 00 00 03 01 02 03 00 (SELECT_APPLICATION)

15 << 91 00 (OPERATION_OK)

16

17

18

19 // No authentication

20 // inside the application.

21

22

23

24 >> 90 cc 00 00 11 04 00 30 00 0a 00 00 00 5a 00 00 00 32 00 00 00 00 00 (

CREATE_VALUE_FILE)

25 << 91 00 (OPERATION_OK)

26 >> 90 cc 00 00 11 05 01 30 00 0a 00 00 00 5a 00 00 00 32 00 00 00 00 00 (

CREATE_VALUE_FILE)

27 << 91 00 (OPERATION_OK)

28 >> 90 cc 00 00 11 06 03 30 00 0a 00 00 00 5a 00 00 00 32 00 00 00 00 00 (

CREATE_VALUE_FILE)

29 << 91 00 (OPERATION_OK)

30 >> 90 f5 00 00 01 04 00 (GET_FILE_SETTINGS)

31 << 02 00 30 00 0a 00 00 00 5a 00 00 00 00 00 00 00 00 91 00 (OPERATION_OK)

Listing 3.3: Trace with AES and no authentication at the application-level.

The same piece of code is used for the three traces with minor differences.
The security of the operations, after selecting the application, is based on
CBC-MAC and DES for the first trace, and it is based on CMAC and AES
for the second and third traces. For the third trace, however, there is no
authentication inside the application, which results in the last steps, Credit
and GetValue, not being executed. In this case, the application terminates
before the first Credit because it verifies the settings of the target file, in
lines 30–31, and realizes that it does not have the necessary permissions. The
traces are presented in Listing 3.1, Listing 3.2 and Listing 3.3.

AES is always used for the PICC-level authentication in lines 2–5. The
application-level authentication uses DES or AES, according with the pa-
rameters used on application creation. The CreateApplication command
in line 12 contains either 05H or 85H as the penultimate byte. The first digit
is associated with the cipher used by the application, which is DES for the
first case and AES for the second case. The second digit is the number of
keys, which is five in this example.

3.4. TRACE 53

File FileNo CommSett ARs

Value file 1 04H 00H–plain 30 00H

Value file 2 05H 01H–mac’ed 30 00H

Value file 3 06H 03H–enciphered 30 00H

Table 3.6: Settings of the value files.

The three value files are created with the same access rights but with
different communication settings and the initial value 32H. The access rights,
explained in Section 3.3.4.2, control the access to the file. The communica-
tion settings, explained in Section 3.3.4.1, define the level of security for the
communication between the reader and the card. The communication set-
tings for the first, second and third value files are respectively plain, mac’ed
and enciphered. The communication settings are represented by the seventh
byte in lines 24, 26 and 28, and the access rights are represented by the eigth
and ninth bytes of the same lines. The settings for each value file are summed
up in Table 3.6.

The access rights of the value files are 30 00H. This indicates that an
authentication with key number 3H grants RW access and that an authenti-
cation with key number 0H grants CAR, R and W access. RW access allows
the use of Credit and GetValue. R and W also grant access to GetValue.
The first two traces are complete because the authentication done inside the
card application is against the third key, granting the program access to the
required commands. However, the third trace does not authenticate inside
the card application; hence the Credit and GetValue commands are not
executed and the program terminates before reaching the end. This is the
reason why Listing 3.3 ends in line 31, just before the Credit command.

Command Plain Mac’ed Enciphered

Credit 32–35 40–43 48–51

GetValue 56–57 61–62 66–67

Table 3.7: Lines of the Credit and GetValue commands per communication
mode.

The Credit and the GetValue commands are affected by the communi-
cation settings of the target file. The Credit command writes data into the
card and the GetValue command reads data from the card. When a secure
communication mode is used, it applies to the command APDU for Credit

and it applies to the response APDU for GetValue. The objective is to add

54 CHAPTER 3. MIFARE DESFIRE EV1

the security mechanism to the messages carrying data. Table 3.7 shows the
lines where these two commands occur and the respective communication
modes.

In Listing 3.1, since the application relies on DES for security, each
command-response pair is an independent operation when calculating the
CBC-MAC or enciphering data. In Listing 3.2, the application relies on AES
instead of DES for security, which reuses the IV between operations making
the end operation dependent from the previous one. As long as the pre-
ceding authentication is done successfully, a CMAC is appended to all the
responses, unless the response data is enciphered. When creating the value
files in lines 24–29 of Listing 3.2, the CMAC is appended to the response
received from the PICC but in Listing 3.3 the CMAC is not appended. This
happens because the authenticated state at PICC-level is lost in lines 14–15,
when the application is selected, and in Listing 3.3 there is not a successful
authentication inside the application. Without the authenticated state it
is not possible to calculate the CMAC, because the cryptographic functions
require the session key generated after a successful authentication to operate.

For the mac’ed communication mode, a MAC is appended to the com-
mand when crediting and a MAC is appended to the response when retrieving
data. For the enciphered communication mode, the body of the command is
enciphered when crediting and the body of the response is enciphered when
retrieving data. Additionally, if AES is used and a preceding successful au-
thentication took place inside the application, a CMAC is also appended to
the responses when crediting. Since with DES the pairs of operations are in-
dependent from each other, it is likely that operations such as Credit can be
successfully replayed by a third party. For example, in Listing 3.1, repeating
lines 42–43 after line 43 or lines 50–51 after line 51 appears to be feasible and
would result in additional credit being added to the target files. However,
in the latter case, with an enciphered command-response pair, the amount
being credited is not visible. The application purposely contains Credit op-
erations in pairs to illustrate their similarities when using DES and their
differences when using AES. For Listing 3.1, the command-response pair in
lines 32–33 is exactly the same as in lines 34–35, and likewise when compar-
ing lines 40–41 with lines 42–43 and lines 48–49 with lines 50–51. This does
not happen in Listing 3.2, where all the Credit command-response pairs are
similar, yet with a different CMAC. Equally important, the security mecha-
nisms when relying on the 2K3DES cipher operate the same way as in DES,
hence suffering from the same weakness. In conclusion, an attacker relay-
ing messages between the PCD and the PICC and with the ability to inject
new ones can take advantage of this protocol flaw, effectively producing a
man-in-the-middle attack.

Chapter 4

Remote card update

The goal of the system presented in this thesis is to enable secure remote
manipulation of data on a DESFire EV1 smart card. This includes both
reading data and modifying data. Data is read to check for a particular
piece of information stored on the smart card and data is modified to update
that information. Possible uses include checking the balance on the smart
card, performing a remote top-up and updating personal information fields.

This chapter collects a set of requirements for the successful operation
of the system and presents a solution for the problem. The communication
protocol detailed in this section is at the core of the proposed solution.

4.1 Requirements

The foremost requirement of the system—and the problem we are trying
to solve—is enabling reliable and secure remote manipulation of data on a
DESFire EV1 smart card, a clear requisite, but too general nevertheless. This
requirement can be divided into smaller parts. The constituting parts can
then be defined, subdivided and grouped into functional and non-functional
requirements, resulting in a better picture of what the system should be.

The stakeholders of the system are defined in order to understand the
requirements that follow. Only two stakeholders are considered, for the sake
of simplicity. These are the service provider and the user of the service. The
service provider is the entity responsible for the service. The responsibilities
of the service provider include managing the application on the smart card
and handling the respective servers. The service provider may or may not
be the issuer of the smart card. The role of issuing smart cards may be
taken by a third party, trusted by the other entities of the ecosystem. The
initialization of the card application, however, lies with the service provider.

55

56 CHAPTER 4. REMOTE CARD UPDATE

The user of the service is the entity consuming the service. The user is in
possession of and uses the smart card to access the service.

The problem of enabling reliable and secure remote manipulation of data
on a DESFire EV1 smart card is subdivided into the functional requirement
to enable remote manipulation of data and into the non-functional require-
ments reliability and security. Enabling remote manipulation of data is de-
fined as the ability to remotely update data on the card and as the ability
to read data from the card. Reliability is defined as the ability to resume
an interrupted operation, at a later time, with loss for neither the service
provider nor the user. Security is defined as the user being only able to read
and modify the content of the application on the smart card with the consent
of the service provider.

A further subdivision of these high-level requirements yields the following
list of functional and non-functional requirements:

Functional requirements

REQ1. The service provider can update the data stored on the card ap-
plication remotely.

REQ2. The service provider can read data from the card application re-
motely.

Non-functional requirements

REQ3. Interrupted operations can be resumed without loss. (reliability)

REQ4. Only the service provider can update the data stored on the card
application. (authorization)

REQ5. Only the service provider can read the data stored on the card
application. (authorization)

REQ6. Only authenticated operations may perform data updates on the
card application. (authentication)

REQ7. The confidentiality of the data stored on the card application is
at the discretion of the service provider. (confidentiality)

REQ8. The integrity of the data stored on the card application is enforced.
(integrity)

REQ9. Users cannot deny having used the smart card. (non-repudiation)

4.2. SOLUTION 57

4.2 Solution

The focus of the proposed solution is on the ability to manipulate the DES-
Fire EV1 smart card remotely. A remote operation is defined as an operation
on the smart card using an NFC-enabled mobile device as card reader. The
NFC-enabled mobile device is connected to the server, possibly through the
cellular network, and is a personal device of the user, for example, an NFC-
enabled smart phone.

In addition to remote operations, the solution takes into account that
smart cards are likely to be operated in a traditional fashion. A traditional
operation is defined as an operation on the smart card using a card reader
of the service provider, for example, a POS terminal. This type of operation
is not explored in detail but is defined in order to better understand the
architecture of the system.

The card manipulation is based on transactions. A transaction is an ac-
tion to be performed on the card such as reading or updating one or more
files. In the context of the proposed solution, the server applies the transac-
tions to the card through remote operations which are done via smart phone.

This section presents the architecture of the proposed solution, how trans-
actions are managed, and the communication protocol. The protocol section
details how remote operations should be carried in order to ensure their re-
liability and security.

4.2.1 Architecture

The main components of the architecture of the proposed solution are the
DESFire EV1 smart card, the NFC-enabled smart phone, and the server.
The smart card is the secure device storing the data. The smart phone
relays messages between the smart card and the server. The server is able to
generate the secret keys of all the smart cards for a specific card application
and manipulate the data present on that application.

The architecture of the proposed solution includes a POS terminal to
illustrate the traditional mode of operation. In this case, it is the POS that
relays messages between smart card and server instead of the smart phone.
The POS terminal may be able, on its own, to manipulate the data on the
smart card and operate without being permanently connected to the server.
The POS is only included in the architecture to have a point of comparison
with the remote type of operation and is not part of the communication
protocol detailed in Section 4.2.3.

The smart card and the server are both assumed to be trusted components

58 CHAPTER 4. REMOTE CARD UPDATE

of the system. The POS terminal may be trusted, depending on the design of
the system. The NFC-enabled smart phone cannot be trusted with complete
access to the contents of the files on the card application, as it may attempt
to corrupt the system for the benefit of its user, for instance, by acquiring
extra credit without paying for it.

traditional
operations

remote
operations

smart
phone

smart
card

server

POS

Figure 4.1: Architecture of the proposed solution.

The architecture is presented in Figure 4.1. To perform remote opera-
tions, the NFC-enabled smart phone reads from and writes into the DESFire
EV1 smart card as indicated by the server. The smart phone acts as a proxy,
enabling the server to reach the smart card and manipulate its data. In tradi-
tional operations, the POS terminal reads from and writes into the DESFire
EV1 smart card. This may be done without permanent access to the server,
depending on how the system is designed and implemented.

A permanent link must exist between the smart phone and the server
while remote operations are taking place. To establish a secure session with
the smart card, a preceding authentication is required. If the smart card is
torn apart from the reader, the authentication protocol must be restarted.
This means that the smart card has to be kept inductively coupled to the
smart phone from the beginning to the end of the session. During the au-
thentication protocol and the manipulation of data, messages are exchanged
with the server. It is assumed that the phone has a continuous connection to
the server. In order to support offline use of the system, that is, to perform
remote operations without a permanent link between the smart phone and
the server, the smart card would have to be kept near the smart phone from

4.2. SOLUTION 59

the beginning of the session until the end of it, including the periods when
the connection to the server is lost. Aside from the added complexity, this
is impractical from a usability perspective. Therefore, in our system, if the
communication link between smart phone and server is broken, a new session
is started once it is resumed.

A POS terminal may operate on smart cards without a permanent con-
nection to the central server because it is a trusted component. For that
reason, it can contain the necessary keys enabling it to read from and write
into selected files of the application on the smart card. This means it can
operate offline and update the server with the new transactions when it goes
online.

4.2.2 Transactions

The actions to be performed on the card, for instance, reading and updating
files, are grouped in transactions. When a user logs into the server, the server
checks whether there are pending transactions for the smart card associated
with this user. If there are pending transactions, these are applied to the
card.

The server uses the Transaction, StartedTx and FileUpdate tables to
manage transactions. These tables are presented in Figure 4.3, next to the
sequence diagram of the communication protocol which is detailed on the
following section. The Transaction table associates transactions to cards
and keeps the state of each transaction. The StartedTx table contains tem-
porary entries used when a transaction is in progress, i.e. being applied to
the card. Each of these entries store temporary data for a transaction in
progress such as the session key and the final ACK. The session key grants
access to the card application by the server to carry the necessary operations
and the final ACK is the response of the card to the CommitTransaction, the
last command sent to the card. Since all the operations are chained, the final
ACK is used as proof that all preceding operations have been executed on the
card as indicated by the server. The FileUpdate table contains individual
updates to files which are linked to an existing transaction. A transaction
can have multiple file updates but a file update can only be associated with
a single transaction.

Each entry in the Transaction table can be in one of three different
states. These are WAITING, STARTED and COMPLETE. The WAITING state is
for new transactions. The STARTED state is for transactions in progress, that
is, transactions that are currently being applied to the card. The COMPLETE

state is for transactions that have been applied to the card and for which the
server successfully received an acknowledgment.

60 CHAPTER 4. REMOTE CARD UPDATE

no pending
transaction(s)

pending
transaction(s)

transaction(s)
started

new

new

startfail

complete

Figure 4.2: State machine of the state of transactions for a single smart card,
from the perspective of the server.

Figure 4.2 presents the lifecycle of transactions, for a single card, on the
server side. The state no pending transaction(s) indicates that there are no
transactions associated with this card or that all the existing transactions
are in the COMPLETE state. The state pending transaction(s) indicates that
pending transactions exist. Transactions in states WAITING and STARTED are
both pending transactions, but at this stage, the latter implies one or more
failed attempts to update the smart card and inform the server. The state
transaction(s) started indicates that one or more transactions are in progress.
A transaction in progress is set to the STARTED state.

A transaction in the third state, transaction(s) started, can either succeed
or fail. If the transaction succeeds, there is a move to the first stage of
the lifecycle and the state of the transaction is updated to COMPLETE in the
Transaction table. In this case, the entry in the StartedTx table associated
with the transaction in progress and holding temporary data is deleted. If the
transaction fails, it returns to the previous lifecycle stage and the STARTED

state remains unchanged.

4.2. SOLUTION 61

4.2.3 Protocol

A smart phone will typically produce itself the commands that it uses to
interact with a smart card. In the proposed solution, the smart phone receives
those commands from a remote server. The communication interface between
the smart phone and the smart card is still the same, but we take advantage
of the security features of DESFire EV1 to achieve our goal. The proposed
remote update protocol connects the smart card of the user to the server of
the service provider. This is done via an NFC-enabled smart phone, which
relays messages between the smart card and the server.

The protocol is presented in Figure 4.3, which depicts the communication
between the parties and the required tables for data storage and user and
card management. The communication between the server and the smart
phone relies on the SSL/TLS protocol to enforce the confidentiality and the
integrity of data traveling over the Internet. The server authenticates itself
before the client using a certificate and the client authenticates itself before
the server using a username and a password. Once the SSL/TLS handshake
is completed, the server and the smart phone are ready to exchange messages
through the secure channel. Since the user logged into the server, the server
is able to check on the database whether there are any pending transactions
for the smart card associated with this username. If there are no pending
transactions, the server informs the smart phone that there are no pending
transactions for the smart card of this user. Otherwise, the server instructs
the user to touch the smart phone to the smart card in order to proceed with
the update. A successful run of the communication protocol, performing an
update, is composed by the following steps:

1–6: Phone�Card. The smart phone reads the UID from the smart card
and selects the application. It initiates the authentication protocol,
described in Section 3.3.2, and receives the random number B from the
smart card, ciphered with the secret key K1 shared between the smart
card and the server.

7–8: Server�Phone. The smart phone sends the UID and the ciphered
random number B to the server. The server calculates the session key
and creates an entry in the StartedTx table to store it. The trans-
action state changes from WAITING into STARTED. The server replies
with the next message to be sent to the smart card to conclude the
authentication protocol and the expected response to that command.

9–16: Phone�Card. The smart phone is able to conclude the authentica-
tion protocol with the smart card, checking that the {r′A}K1 received

62 CHAPTER 4. REMOTE CARD UPDATE

Server
TLS/SSL

Phone Card

GetUID
(1)

UID
(2)

SelectApplication(AID)
(3)

OK
(4)

AUTH(K1)
(5)

{rB}K1
(6)

UID + {rB}K1
(7)

{rA‖r′B}K1 + {r′A}K1
(8)

{rA‖r′B}K1
(9)

{r′A}K1
(10)

Read: tx log file 1
(11)

{tx log file 1}SK
(12)

Read: filesi
(13)

{filesi}SK
(14)

Read: tx log file 2
(15)

{tx log file 2}SK
(16)

{tx log file 1}SK ,
{filesi}SKi=1...n,
{tx log file 2}SK

(17)

{new log entry 1}SK ,
{updated filesi}SKi=1...n,
{new log entry 2}SK ,
OK1‖MACSK(OK1),
OKi‖MACSK(OKi)i=1...n,
OK2‖MACSK(OK2)

(18)

Write: {new log entry 1}SK
(19)

OK1‖MACSK(OK1)
(20)

Write: {updated filesi}SK
(21)

OKi‖MACSK(OKi)
(22)

Write: {new log entry 2}SK
(23)

OK2‖MACSK(OK2)
(24)

CommitTransaction
(25)

OKF‖MACSK(OKF)
(26)

OKF‖MACSK(OKF)
(27)

ACK or NACK
(28)

Account(
username,
hash(password),
salt

)

Account CardKey(
username,
uid

)

CardKey(
uid,
secret key

)

Transaction(
txid,
uid,
state

)

StartedTx(
txid,
session key,
final ack

)

FileUpdate(
txid,
file id,
data

)

verify {r′A}K1

repeat for i = 1 . . . n

repeat for i = 1 . . . n

Figure 4.3: Sequence diagram of remote update to DESFire EV1.

4.2. SOLUTION 63

from the smart card matches the one received from the server. This
check is only for error detection and is insecure because it is done on the
smart phone side. At this point, the smart phone reads the files within
the application on the smart card, namely the log files containing the
identifiers of the last completed transactions.

17–18: Server�Phone. The smart phone sends all the files read from the
smart card to the server. The server replies with the updated version of
the files, ready to be written to the smart card. The reply also includes
the confirmation messages that the card is expected to reply with at
each write.

19–26: Phone�Card. The smart phone writes the updated files into the
smart card, verifying that the responses received from the smart card
match the ones received from the server. A CommitTransaction is then
issued to make the previous changes to the files permanent. The smart
card replies with the confirmation message OKF‖MACSK(OKF).

27–28: Server�Phone. The smart phone sends the confirmation mes-
sage of the CommitTransaction operation, OKF‖MACSK(OKF), to
the server. The server compares the message with the one stored and
replies with either ACK if the messages are equal or NACK if the mes-
sages are different. If the confirmation message received by the server
matches the one stored in the database, the transaction state is set to
COMPLETE and the corresponding entry is removed from the StartedTx

table.

The remote update protocol has been optimized in order to minimize the
number of round trips of the communication with the server. In a traditional
communication setting with the card, the initiator would send a request to
the card, wait for the associated response, and only then send a new request
to the card. The protocol presented takes advantage of the fact that some
commands sent to the card are always the same. These commands are sent
by the phone without being instructed by the server. The only commands
and responses exchanged with the server are the ones which are different in
between sessions with the card. The messages are also ordered in a way that
minimizes the total number of messages required to update the card in a
secure and reliable fashion. In addition, the SSL/TLS connection with the
server is established at the beginning of the protocol in order to reduce the
latency of the subsequent message exchanges.

These optimizations are important since the protocol is aimed at mobile
devices. In comparison to wired networks, wireless networks are more likely

64 CHAPTER 4. REMOTE CARD UPDATE

to suffer from sudden drops in throughput or increased latency, and from
loss of connectivity. Minimizing the amount of round trips and grouping
the messages to be exchanged with the server also saves battery power by
reducing the usage of the radio interface of the mobile device.

4.2.3.1 Failures

Failures may occur at any stage of the protocol. The network connection
linking the smart phone to the server may be closed or the smart card may
be torn apart from the smart phone, preventing messages from reaching their
destination. Whatever the cause leading to the loss of messages, the system
is expected to eventually resume and complete the interrupted operation.

When the objective is to read data from the smart card, failures are
harmless except for the inconvenience to the user. This case does not require
data to be changed on the system. When the objective is to update data on
the smart card, failures become a problem. The following paragraphs explain
where failures happen and how the protocol handles those failures in order
to keep a consistent state in the system, and an improvement to the protocol
regarding the recovery from failures.

The messages exchanged between the server, the smart phone and the
smart card are numbered, as shown in Figure 4.3. When the message lost is
up to and including the CommitTransaction operation numbered (25), the
failure is considered an update failure because the data on the smart card
is not modified. When the failure happens after the CommitTransaction,
the failure is considered an acknowledgment failure because the data on the
smart card is modified but at least one of the parties is not informed. For
all practical purposes, the update is done when an acknowledgment failure
takes place and the data on the smart card is modified. However, one of
three problems arise:

• Message (26) is lost: neither the smart phone nor the server is aware
that the update is done;

• Message (27) is lost: the smart phone knows the update was successful
but the server does not and is therefore unable to deem the transaction
complete; or

• Message (28) is lost: both the smart phone and the server are aware
that the update is done but the smart phone does not know whether
the server has been notified.

Recall that transactions can be in one of three states: WAITING, STARTED
and COMPLETE. Transactions in state WAITING have definitely not been applied

4.2. SOLUTION 65

to the card since these are new transactions. However, the server does not
know whether a transaction in state STARTED is applied to the card and
the server failed to receive the acknowledgment message, or the transaction
completely failed and the card data did not change.

Recovering from a failed operation is achieved by restarting the protocol.
The log files sent to the server in message (17) contain the txid of the last
transaction successfully applied to the card. Transaction identifiers are se-
quential and only the transactions that made changes to the card are logged
by the smart cards logs. For these reasons, all transactions with txids up to
the txid from the logs can be considered complete. The server compares the
txids of the pending transactions in state STARTED with the txid from the
logs. If the txid of an entry in the Transaction table is less than or equal
to the txid from the card logs, then this transaction has been applied to the
card, although the server was not aware of it completing. The state of these
transactions can safely be set to COMPLETE and the associated StartedTx

entry deleted.

An improvement to the presented solution to failures can be made, when
the lost message is the acknowledgment sent to the server or the reply to
that message by the server. That is, the lost message is message (27)
or message (28). For these particular cases, the smart phone stores the
OKF‖MACSK(OKF) received from the smart card. Upon the next attempt
at updating the smart card, OKF‖MACSK(OKF) is sent to the server right
after establishing the secure tunnel before message (1) in Figure 4.3. The
server verifies if an entry exists in the StartedTx table related to this user. If
an entry related to the user does not exist in the StartedTx table, the server
safely assumes that message (28) was lost and informs the smart phone that
the transaction is complete. If an entry related to the user does exist in the
StartedTx table, the message lost was message (27). In this case, the server
compares the received OKF‖MACSK(OKF) from the smart phone with the
one stored in the database. If there is a match, the transaction is com-
plete, the entry removed and an acknowledgment sent to the smart phone.
Otherwise, the protocol proceeds as normal.

For the last improvement to work, the NFC-enabled smart phone must
be the same one that was used on the previous failed attempt at updat-
ing the smart card. A different smart phone will not have the required
OKF‖MACSK(OKF) stored in it. The major benefit of this improvement
relates to usability, since the user does not have to touch the smart card
with the smart phone. Additionally, since less messages are exchanged in the
system, the entire update process is faster.

66 CHAPTER 4. REMOTE CARD UPDATE

4.2.3.2 Early-commit attack

This section discusses an attack on the remote update protocol where a mali-
cious user sends a premature CommitTransaction command to the card thus
breaking the protocol. The following solution does not prevent the attack
from happening but can successfully detect it giving the service provider an
opportunity to take action.

Attacking the protocol. The transaction mechanism of DESFire EV1 en-
sures the atomicity of operations, but it only does so for accidental
failures. A malicious user with the capacity to inject commands into
a transaction in progress can submit a premature CommitTransaction

command causing only some of the files to be permanently written into
the card. In the proposed communication protocol, the server reaches
the card via an NFC-enabled mobile phone. The phone is in a privi-
leged position that enables it to perform this attack.

The data exchanged between the server and the card, via the phone,
is enciphered using AES. In addition, all the commands and responses
are cryptographically chained. DESFire EV1, however, does not vali-
date the commands received unless they change data on the card. A
write command is sent enciphered and a CRC32 is concatenated to the
payload. When it reaches the card, the data is validated before being
written. A read command, which does not change data on the card,
is sent without a MAC appended. A malicious user would still be un-
able to understand the contents of the file read because he does not
have access to the session key. Nonetheless, the command sent by the
malicious user is executed by the card.

This problem happens because DESFire EV1 does not validate all com-
mands. The respective MAC is still calculated in order to keep the IV
up to date for future commands and responses, but it is not appended to
the command sent to the card. Therefore, the card cannot tell whether
the CommitTransaction command is legitimate or not.

Mitigation strategy. The protocol relies on two log entries to wrap the
file updates in order to detect the early-commit attack. The backup
mechanism of DESFire EV1 is explained first since it is necessary to
understand the solution to detect the attack.

The backup mechanism of DESFire EV1 works by using extra space for
each file. When writing into these files, the backup area is used to store
the new data. The CommitTransaction command basically flips a bit
that instructs the card to turn the backup space into the main content

4.2. SOLUTION 67

and the previous main content area into the next backup space of that
file. This is the reason why a backup data file consumes twice as much
space than a regular data file and why with record files it is necessary
to allocate one more entry than the file size. The card supports writing
into multiple files and committing all changes only at the end. There
is the restriction, however, that only one update can be submitted for
each record file during one transaction. Otherwise, the previous write
into that file, yet to be committed, is overwritten.

The remote update protocol writes two log entries for every card up-
date, one entry at the beginning of the card update and another entry
after writing into all the other files. After writing to all the necessary
files on the card application, a CommitTransaction is sent to make all
the changes permanent. If a failure occurs during the writing process,
nothing is written because the changes are still in the backup area.
Since the CommitTransaction command is not sent to the card be-
cause of the failure, the updates to the files are abandoned. Two cyclic
record files are used to keep the two log entries because, with a single
log file, the last entry would overwrite the first.

Write {<new log entry 1>||CRC32}sk // start log

...

Credit {<value file 5>||CRC32}sk

Update {<bdata file 6>||CRC32}sk

...

Write {<new log entry 2>||CRC32}sk // end log

CommitTransaction // make changes permanent,

// not validated

Figure 4.4: A card update with two logs wrapping the remaining file
changes.

The protocol starts by writing an entry into the first log file, then
writes to all other files it needs to update, and finally writes an entry
into the second log file, as shown in Figure 4.4. Basically, the main
files to be updated are wrapped in two log files. This can somewhat be
thought of as a transaction, where the first log file marks the beginning
of the transaction, and the second log file marks the end. The card
validates these commands because all of them modify the content of
files. Since the commands and response are cryptographically chained,
the attacker cannot choose in which order to write these files into the
card. The only possibility is to issue an early CommitTransaction. By

68 CHAPTER 4. REMOTE CARD UPDATE

doing so, at least the last log file is not written into. On a subsequent
access to the card, the server can compare both log files and find the
mismatch in the log entries. The incoherent log entries give grounds to
the server to believe that the card has been tampered with. So while it
does not solve the problem entirely, this mechanism with two log files
allows the server to successfully detect the attack and subsequently
blacklist the card.

Chapter 5

Implementation

This chapter describes the implementation of a prototype enabling the remote
update of DESFire EV1 smart cards. This prototype works as a proof of
concept to demonstrate the feasibility of the solution presented in Section 4.2.

The prototype consists of four related components, in addition to the NFC
Java library previously developed. The four projects are a client, a server, a
set of classes common to the previous two projects, used to exchange data
between them, and a last project used to initialize the smart card application.
The client and the server form the bulk of the system. The client is an
Android application that serves as a proxy between a DESFire EV1 smart
card and the server and provides an interface for the users of the system.
The server includes a web application that provides REST-compliant web
services to the client.

5.1 Tools and technologies

Multiple tools and technologies are required to develop and successfully run
the implemented system. The following paragraphs describe which tools and
technologies are used and why these are needed.

The development machine runs the desktop version of the Linux distri-
bution Ubuntu 12.04 LTS. The client application is developed in Android
Studio 0.2.x and the remaining development is done in Eclipse IDE for Java
EE Developers 4.3. All projects use Java 7 but the client and projects im-
ported into the client require compliance with Java 6. The reason behind
this is the Android platform not supporting some features of Java 7 that
were initially used, such as multi-catch exceptions and try-with-resources.
OpenJDK is the chosen Java implementation both because it is the reference
implementation for Java 7 and because it is the default implementation of

69

70 CHAPTER 5. IMPLEMENTATION

the Linux distribution.

The web service is hosted in Apache Tomcat 7. GlassFish 4 was used
at the beginning of the development but was dropped because of the high
resource consumption when compared to Apache Tomcat 7. The extra re-
source consumption is not a problem in the development machine but the
cloud provider chosen to host the server application, Jelastic [14], charges
according with the resources consumed. Hosting the web service on a cloud
provider results in a more reliable evaluation of the system in comparison to
running it only on a local development machine. In addition to the extra cost
for GlassFish, the cloud provider does not support GlassFish 4 but GlassFish
3.1. Changing from GlassFish 4 to Apache Tomcat 7 required setting up the
new servlet container and modifying configuration files on the web service,
but there was no change in code.

The communication between the client and the server uses the wireless
local area network eduroam [18]. The data is exchanged, in XML, through
a secure tunnel. Java objects are used on the client and on the server to
encapsulate the data to be exchanged, since it would be cumbersome to
interact directly with XML. To marshal classes into XML and unmarshal
XML into classes, the server uses the Java Architecture for XML Binding
(JAXB) API, which is part of Java SE. JAXB is not supported on Android.
XML Pull Parser is used to parse XML instead, which has the disadvantage
of requiring a lot of additional work since the entire XML string is manually
parsed. Although XML Pull Parser is not part of Java SE, it is natively
supported by Android.

The web application uses JAX-RS to provide resources to clients. JAX-
RS is a framework that supports the development of RESTful web services in
Java. Jersey 2.1, the reference implementation of JAX-RS, was used initially.
When the change from GlassFish 4 to Apache Tomcat 7 took place, Jersey
was downgraded to version 1.17 because Apache Tomcat 7 does not support
version 2.1. Despite the downgrade of Jersey, no modifications were required
on the server. The resources provided to clients use the REST architectural
style.

The secure connection between the phone and the server requires the
creation of public-private key pairs and the corresponding certificates. These
are created using keytool and OpenSSL. The Bouncy Castle Crypto APIs,
and later on Spongy Castle, are used to handle the BKS storetype used in
Android.

The persistent data storage uses the SQLite database engine. This database
is created using a Python script and is accessed from the server using the
SQLite JDBC Driver.

5.2. ARCHITECTURE 71

5.2 Architecture

The architecture of the system is composed by three main entities in addition
to the user. The three entities are the server, the phone and the card, which
directly relate to the components of the architecture of the proposed solution
for remote operations presented in Figure 4.1. The user interacts directly
with the phone and is responsible for triggering actions on the system. When
an operation is selected on the phone by the user, the phone interacts with
the server and, depending on the operation, may also interact with the card.
The architecture of the system is shown in Figure 5.1.

Server machine

Apache Tomcat 7

Web application

database

NFC-enabled mobile phone

Android application

MIFARE DESFire EV1 smart card

Smart card application

secure link
insecure link

101
010

101
010

101
010

101
010

Figure 5.1: The architecture of the prototype.

The server is composed by the SQLite database and by the Apache Tom-
cat 7 servlet container, which in turn contains the web application. The
database is stored on the server data storage device and is composed by a
single file. Since the database does not run in its own separate process, it can
be considered part of the web application. Nonetheless, an SQLite database
allows access from, and can be opened by, multiple applications at the same
time. For this reason, it is depicted as a separate component inside the server

72 CHAPTER 5. IMPLEMENTATION

instead of an integral part of the web application.

The client is an NFC-enabled Android mobile phone and it holds the
client application of the system. In addition to NFC, the phone also has
network capabilities used to interact with the server.

The card is a MIFARE DESFire EV1 smart card. It contains the smart
card application, which is required to be initialized by a separate application
prior to being used in the system.

The communication between the phone and the server is done through
an SSL/TLS tunnel and it is detailed in Section 5.2.1. The communication
between the phone and the card uses its own security mechanism and is
detailed in Section 5.2.2.

5.2.1 Communication between the phone and the server

The phone and the server exchange data through an SSL/TLS tunnel to
enforce data confidentiality and integrity during transit. The server authen-
ticates itself to the phone using a digital certificate. The phone authenticates
itself to the server using a username and a password.

The secure connection is established before data is exchanged between
the two parties. The digital certificate, sent to the phone by the server, is
signed by a root certification authority (Root CA). The digital certificate of
the Root CA is installed, by default, on the client application. When the
client application receives the digital certificate from the server, it validates
the certificate by verifying that it is signed by the Root CA and by checking
that the address of the resource matches the address stored on the certificate.
This enables the server to change its digital certificate by having the Root
CA sign the new one and without having to reinstall it in all the client
applications. The digital certificates, including the certificate from the Root
CA, are created using keytool. Appendix C demonstrates the creation process
of the certificates and Section 5.4 discusses issues that occurred during the
setup of the secure connection.

The system uses HTTP Basic Authentication to authenticate the user.
The client application establishes the secure connection with Apache Tomcat
7 and not with the web application directly. The servlet container is also
responsible for the authentication of the users. The credentials of the user
cannot be eavesdropped during transport because they are sent to the server
over HTTPS.

5.2. ARCHITECTURE 73

5.2.2 Communication between the phone and the card

All the files in the card application use the enciphered communication mode
and none of the access rights of those files is set to free access (see Sec-
tion 3.3.4). This means that a previous successful authentication is required
to manipulate those files. It also implies that the card returns enciphered
data when reading from this card application and expects to received enci-
phered data when writing into this card application. The phone serves as
a proxy between the card and the server but does not have access to the
contents of the files because it does not have access to the session key. For
the same reason, and because a CRC is appended to the data before it is
enciphered, the card and the server will know if the data has been tampered
with. The commands sent to the application in the card and the respec-
tive responses are cryptographically chained to prevent replay attacks. This
chaining is achieved by using the session key to both encipher files and to
calculate CMACs, and by reusing the initialization vector.

The card application and the web application share a secret key. The
application is created with five keys, with key number 03H being the shared
secret key. If this specific key number is not used outside of the system,
then the only entities that know the secret key are the card, the server, and
the card reader that initialized the card application. Since the card reader
that initialized the card application had, at some point in time, access to the
secret key, the card cannot be absolutely certain that it is talking with the
server. It is expected that the provider of the system manages both the card
reader that initialized the card application and the web application. For this
reason, the card reader that initialized the card application and the server
are considered to be the same entity, and the secrecy of the shared secret key
is maintained. Following steps 1–10 in Figure 4.3, the card and the server
can mutually authenticate themselves and reach a shared session key.

5.2.3 Class diagrams and dependencies

The following figures depict the class diagrams of the client application and
of the web application. The class diagrams do not include all implementation
details in order to keep them clear and concise.

Figure 5.2 represents the class diagram for the client application and its
dependencies. The client application is composed by a MainActivity that
uses the classes AcquireProduct and CardUpdate. The class AcquireProduct
is used when the user buys a credit top-up or updates her personal informa-
tion. The class CardUpdate is used to update the files on the card application.
In both cases, Android AsyncTasks are used to perform network operations

74 CHAPTER 5. IMPLEMENTATION

NetworkBrokerPutXml

...

+ connect(resourcePath) : boolean

+ disconnect() : boolean
+ putXml(message) : Message
+ putXmlNoResponse(message) : int

<<extends android.app.Activity>>

MainActivity

...

...

AcquireProduct

...

...

CardUpdate

...

...

ClientMDF81

+ readRecords(isoDep, fileId) : byte[]
<<extends java.net.Authenticator>>

CustomAuthenticator

...

...

+ getValue(isoDep, fileId) : byte[]
+ readData(isoDep, fileId) : byte[]
+ splitSend(isoDep, apdu) : byte[]
...

...

+ queueCreditUpdate(...) : void
+ queueInfoUpdate(...) : void

<<extends android.os.AsyncTask>>

QueueUpdateTask

- putBroker : NetworkBrokerPutXml

...

...

+ cancelCU(feedback) : void
- terminateCU(feedback) : void

+ run() : void

<<Anonymous>>

AsyncTask

...

...

- putBroker : NetworkBrokerPutXml

- sendLostFinalACK(okn, uid) : void

- initConn() : void
+ touchTag1(tag) : void
- beginCardAuth(tag) : void
- exchangeAUTH(uid, aid, randBe) : void
- finishCardAuth(message) : void
- readFilesFromCard(message) : void
- exchangeDATA(message) : void
- writeFilesIntoCard(message) : void
- sendFinalACK(message) : void

...

- state : FlowControl

Spongy Castle 1.47.0.2

NFC Java library 0.3a11 Squirrel-Common 0.4a1

Figure 5.2: Class diagram and dependencies of the client application.

5.2. ARCHITECTURE 75

and manipulate the tag. Network operations are done through the class
NetworkBrokerPutXml. These are required when contacting the server to
acquire new updates and to update the card. The CustomAuthenticator

is called to authenticate the user to the server. Since the credentials are
stored on the phone, the user is only required to introduce the credentials if
the credentials stored are wrong or non-existent. Tag manipulations are done
through the class ClientMDF81, although some of the less complex commands
are done inline. The external dependencies of the client application include
the Spongy Castle core lightweight API and JCE provider, the NFC Java
library and the Squirrel Common project. The Squirrel Common project
contains classes to encapsulate the data exchanged between the web service
and the client application and is further explained on the last paragraph of
this section.

Figure 5.3 represents the class diagram for the web application and its
dependencies. The class AppBoot tells the environment, the Apache Tom-
cat 7 servlet container, which JAX-RS services should be registered. In
this web application, only the class CardappResourceService is registered.
When a request for one of the methods served by this registered class ar-
rives, the JAX-RS vendor implementation, Jersey in this particular case,
creates a new instance for the duration of the request. This follows a per-
request model. The alternative would be to reuse the same instance, by
overriding the getSingletons method instead of the getClasses method.
CardappResourceService implements the CardappResource interface, which
contains the methods to be provided to the clients in the context of the pro-
totype. One of those methods is used to acquire new updates and the other
to apply the updates to the card. The class CardappResourceService pro-
vides additional resources, which are not part of the implemented interface.
The objective of those resources is to debug the system and these would
not be present on a production environment. getHelloUnprotected and
getHelloProtected both return text to test the access to the protected
area of the application. The difference is that the latter requires authentica-
tion, while the former does not. The method dumpSquirrelDB returns the
content of some of the database tables. The external dependencies of the web
application include Jersey, which is the reference implementation of JAX-RS,
the SQLite JDBC Driver, the NFC Java library and the Squirrel-Common
project. It also depends on JAXB, which is now part of Java SE.

Figure 5.4 represents the class diagram for the persistence package
of the web service. This package serves as an interface for the SQLite
database. It contains a ConnectionFactory that provides Connections to
the database, data access objects (DAO), that implement CRUD functions
to access the persistent storage, and the respective Java beans.

76 CHAPTER 5. IMPLEMENTATION

<<extends javax.ws.rs.core.Application>>

AppBoot

- s : Set<Class<?>>

+ getClasses() : Set<Class<?>>

CardappResourceService

...

+ getHelloUnprotected() : Response

<<Interface>>

CardappResource

+ putXmlCardUpdate(context, message) : Response
+ putXmlShop(context, message) : Response

+ getHelloProtected() : Response
+ dumpSquirrelDB() : Response
...

- LOG_FID_1 : byte = 0x01 {readOnly}
- VAL_FID : byte = 0x05 {readOnly}
- BDF_FID : byte = 0x06 {readOnly}
- LOG_FID_2 : byte = 0x02 {readOnly}

- CHAR_SET : String = "UTF-8" {readOnly}

NFC Java library 0.3a11 Squirrel-Common 0.4a1

Jersey 1.17.1 SQLite-JDBC 3.7.2

fi.aalto.cse.dcs.nordroom.squirrel.server.util

fi.aalto.cse.dcs.nordroom.squirrel.server.persistence

AppBoot is the entry point for
the Server web application.
Classes providing resources

are added to s.

Figure 5.3: Class diagram and dependencies of the web application.

Figure 5.5 represents the class diagram for the utilities package of the
web service. The class ServerMDF81 provides methods to logically manip-
ulate APDUs. Logically, because the server does not have direct access to
a physical device. These methods allow to create and encipher command
APDUs and respective response APDUs to be sent to client application, and
to decipher response APDUs received from the client application. These AP-
DUs wrap the updated files to be written to the card and the files read from
the card. The class SecretKey enables the generation of secret keys for the
card application, based on the smart card UID and a secret key known only
to the entity providing the services. Since the cards are initialized by a dif-
ferent application and the web service can obtain the already diversified keys
from the database, this class is included only for the purpose of completeness.

5.2. ARCHITECTURE 77

ConnectionFactory

- DRIVER : String = "org.sqlite.JDBC" {readOnly}

- ConnectionFactory()

- URL : String = "jdbc:sqlite:"
 + System.getenv("CATALINA_HOME")
 + "/webapps/Server/squirrel.db" {readOnly}
- connectionFactory : ConnectionFactory

+ getInstance() : ConnectionFactory
+ getConnection() : Connection

<<Interface>>

K, T

CRUD

+ create(entity : T) : T {exception=SQLException}
+ read(pk : K) : T {exception=SQLException}
+ update(entity : T) : T {exception=SQLException}
+ delete(pk : K) : void {exception=SQLException}
+ read() : List<T> {exception=SQLException}

AccountBean

- username : String

(accessor/mutator methods)

- password : String
- cards : List<byte[]>

<<bind>> <K::String, T::AccountBean>

AccountDAO

- conn : Connection

+ AccountDAO(conn : Connection)

CRUD

CardKeyBean

- uid : byte[]

(accessor/mutator methods)

- secretkey : byte[]

<<bind>> <K::byte[], T::CardKeyBean>

CardKeyDAO

- conn : Connection

+ CardKeyDAO(conn : Connection)

CRUD

<<bind>> <K::Integer, T::StartedTxBean>

StartedTxDAO

- conn : Connection

+ StartedTxDAO(conn : Connection)

CRUD

StartedTxBean

- txid : int

(accessor/mutator methods)

- sessionkey : byte[]
- okn : byte[]

FileUpdateBean

- txid : int

(accessor/mutator methods)

- fid : byte
- data : byte[]

<<bind>> <K::Integer, T::List<FileUpateBean>>

FileUpdateDAO

- conn : Connection

+ FileUpdateDAO(conn : Connection)

CRUD

<<Enumeration>>

State

WAITING
STARTED
COMPLETE

<<bind>> <K::Integer, T::TransactionBean>

TransactionDAO

- conn : Connection

+ TransactionDAO(conn : Connection)
+ read(uid : byte[], state : State)
 : List<TransactionBean>
 {exception=SQLException}

CRUD

TransactionBean

- txid : int

(accessor/mutator methods)

- uid : byte[]
- state : State

Figure 5.4: Class diagram of the persistence package of the web service.

78 CHAPTER 5. IMPLEMENTATION

L, R

Pair

+ left : L {readOnly}

+ Pair(left : L, right : R)

+ right : R {readOnly}

ServerMDF81

+ decipherLogFile(...) : byte[]
+ decipherValFile(...) : byte[]
+ decipherBdfFile(...) : byte[]
+ encipherWriteRecord(...) : Pair<byte[], byte[]>
+ encipherCredit(...) : Pair<byte[], byte[]>
+ encipherWriteData(...) : Pair<byte[], byte[]>

SecretKey

+ SERVER_SECRET_KEY : byte[] {readOnly}

+ generate(a : byte[], secretKey : byte[]) : byte[]

Figure 5.5: Class diagram of the utilities package of the web service.

The client application and the web service have two common dependen-
cies, the NFC Java library and the Squirrel-Common project. The NFC Java
library supports the manipulation of DESFire EV1 and the role of the Squirrel-
Common project is described on the following paragraph.

The Squirrel-Common project contains classes to encapsulate the data ex-
changed between the web service and the client application. When the client
application makes a request to the server, it sends a marshalled Message

object and, depending on the operation, it may also receive a marshalled
Message object. The object is marshalled and unmarshalled on the web ser-
vice using JAXB. On the client application this parsing is done by hand, with
the support of the XML Pull Parser library for unmarshalling. The Message

class contains an Intent, that is, the purpose of the request or response
message, and the AID of the application. These are the only attributes re-
quired. Optionally, it may contain the UID of the card, the enciphered and
already manipulated random numbers to generate the session key, an array
of files and the final ACK, that is, the response received from the card when
the CommitTransaction command is sent. Each file contains its FID and
space to store the enciphered data read from the card. Alternatively, instead
of the enciphered data read from the card, it can hold an already prepared
command to send to the card and the expected response to that command.
When marshalling the Message class, the unused fields are omitted from
the XML exchanged between the client application and the web application.
Listing 5.1 exemplifies a marshalled Message object. All the attributes of

5.3. FLOW OF OPERATIONS 79

Message are present, but the second file does not have the ack set.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <message intent="NOT SET">

3 <uid>172582</uid>

4 <aid>340595</aid>

5 <session-key-data>

6 <randBe>1a1b1c1d1e1f</randBe>

7 <randABre>2a2b2c2d2e</randABre>

8 <randAre>3a3b3c3d</randAre>

9 </session-key-data>

10 <files>

11 <file fid="01">

12 <data>010203040e</data>

13 <ack>1a2b</ack>

14 </file>

15 <file fid="05">

16 <data>050607080f</data>

17 </file>

18 </files>

19 <commit-response>4a4b4d4e4f5a5b</commit-response>

20 </message>

Listing 5.1: Example of a marshalled Message.

5.3 Flow of operations

The operation to be performed by the system dictates whether the phone
only needs to contact the server or if it needs to contact both the server and
the card. A full purchase is a two-step process. First, there is the acquisition
of the new update(s) to be performed on the card. Second, any pending
transactions are applied to the card.

A new update can be a credit purchase or an update to the personal
information of the user. In both cases, the phone only needs to communicate
with the server. A new update is stored by the server, in the form of a pending
transaction, and waits until a card update is requested by the phone.

A card update is requested by the phone to apply pending transactions to
the card. In this case, the phone needs to communicate with both the card
and the server. The card update follows the protocol detailed in Section 4.2.3.

5.3.1 Acquiring a new update

The user can either acquire a credit top-up or a personal information update.
To acquire a credit top-up, the user selects an amount on the phone and

80 CHAPTER 5. IMPLEMENTATION

presses Buy.1 This action creates a new Message with the NEW FILE UPDATE

Intent, the AID of the card application, and the amount to top-up and
respective value file number. To update her personal information, the user
fills in the required fields and presses Update. This action creates a new
Message with the Intent NEW FILE UPDATE, the AID of the card application,
and the updated information and respective backup data file number.

When the web service receives the Message, it finds the card associated
to this user to retrieve the UID of the card. A new Transaction and a
new associated FileUpdate are then created on the database containing the
update information. The state of the Transaction is set to WAITING.

At the end of this process, the HTTP status code 200 is returned to the
client application. If the client application sends an invalid request, it receives
a 400 HTTP status code. If a valid request is received but the web service
is unable to process it, the client application receives the HTTP status code
500.

There is a caveat regarding the insertion of new transactions on the
database: there can never be, at any point in time, more than five pend-
ing transactions. Pending transactions are transactions in the WAITING or
in the STARTED state. If multiple pending transactions exist, these are
applied to the card in a single card update, even though only one log entry
is created for each of the two log files. Each entry contains the txids of the
transactions applied to the card. If there are many txids, it is possible that
this will generate a larger log entry than what is allowed by the card. The
limit of five pending transactions prevents the overflow.

5.3.2 Updating the card

To update the card, the user selects the Update option on the client applica-
tion. The card update follows the protocol detailed in Section 4.2.3, but the
next paragraphs provide more details in relation to this implementation.

Multiple steps are taken on both the client application and on the web
service to perform a card update. The user also participates actively in the
update process because she is asked to, at some point, hold the card next to
the phone. The steps are, in order:

Phone: initiate connection; touch card. The first action taken by the
client application is to establish a secure connection to Apache Tomcat
7 and authenticate the user. This contributes to a reduced latency on
the following message exchanges with the web service. The next step is

1Buying additional credit is done for free and without limits since setting up an online
payment system is outside the scope of this thesis.

5.3. FLOW OF OPERATIONS 81

for the user to hold the card next to the phone. The client application
waits until this action is taken.

Phone: initiate authentication. Once the user touches the phone, the
UID of the card is read. Then the card application created for the
prototype is selected and the authentication protocol is initiated for
key number 03H. The client application stores the enciphered random
number received from the phone in a Message and sets the Intent to
AUTHENTICATE. It also includes the UID and the AID before sending the
Message to the web service. This Message will be the one exchanged
between the client application and the web service until the end of the
card update process, although its attributes are updated or deleted at
different steps.

Server: process random numbers. The web service uses the diversified
secret key associated with this card, which is stored on the database,
to calculate the session key. It also finds all Transactions for this card
in the WAITING or STARTED state. These are pending transactions in
both cases, but a card update was already attempted for the latter.
The state of the pending transactions found is set to STARTED and a
StartedTx entry is added to the database, or updated if it already ex-
ists, with the new session key. If no pending transactions are found, the
update is complete at this point and the client application is informed.
Otherwise, the next command APDU to send to the card, in order to
proceed with the authentication protocol, and the respective response
APDU, are created and sent to the client application.

Phone: conclude authentication; read files. According with the Intent
received, the client application either terminates the update or proceeds
to a new step. The new step consists in sending the command APDU,
received from the web service, to the card. The card replies with a
new enciphered and rotated random number. The client application
validates the response APDU against the one received from the server.
The authentication protocol is now complete and the client application
reads the files from the card application. The files read are enciphered
with the session key, which the client application does not have access
to. The data read is stored in the Message and sent to the web service
using the EXCHANGE FILES Intent.

Server: update files. The web service deciphers the files using the session
key previously stored in a StartedTx entry. The log files read are
validated. In practice, the last entry of the first log file is compared

82 CHAPTER 5. IMPLEMENTATION

with the last entry of the last log file. The timestamp and the identifiers
of the transactions have to be the same in both log entries, otherwise
it is likely that the system has been tampered with.

The files read are updated using the contents of FileUpdates associ-
ated with Transactions in STARTED state. Updates for the same file
are aggregated in a single update for that file. The files are finally
enciphered and added to Message, which is then sent to the client ap-
plication.

Phone: write files. The client application writes the updated files into the
card application and concludes the operation by sending the command
CommitTransaction to the card. This makes the changes on the files
of the card application permanent. The response APDU to this last
command is sent to the web service.

Server: conclude update. The web service compares the received response
APDU with the one pre-calculated and stored in StartedTx. If there is
a match, it replies to the client application with an UPDATE COMPLETE

Intent. Otherwise, it replies with a FINAL ACK MISMATCH Intent.
On success, the web service deletes the respective entries from the
StartedTx table and sets the state of the Transactions to COMPLETE.

Phone: conclude update. Whether there is a final ACK mismatch or not,
the files have been updated and written to the card, or this step would
have not been reached. The client application informs the user that
the card has been updated. If there was a final ACK mismatch, the
user is also informed.

Even though the updated files have been written to the card applica-
tion, it is possible that the final ACK is not delivered. Attempting a
new update will solve this situation, as discussed in Section 4.2.3.1.

On every request the web service receives, it validates not only the contents of
Message but also makes sure that the username and the UID are associated
with each other. This is possible because users cannot have multiple cards.

5.4 Implementation issues

The following section lists and describes issues with the implementation of
the system and provides additional details regarding its functioning.

5.4. IMPLEMENTATION ISSUES 83

Initialization of the card application. The card application is initialized
by an additional Java project. This involves the creation of the appli-
cation itself and of the files in the application, the initialization of those
files to default values and changing the secret keys of the application.

The application is created with master key settings 0BH instead of the
default of 0FH. This forces a previous authentication with the applica-
tion master key to create and delete files, to change keys within the
application and to modify the master key settings.

Two cyclic record files, a value file and a backup data file are created
inside the card application. The two cyclic record files, with FIDs 01H

and 02H, constitute the start log file and the end log file. Each of these
record files is created with five entries, which means that only four
entries are usable since one of these entries is required for the backup
mechanism. The capacity of each entry is 64 bytes. The start log file
is initialized with the entry “201307070800;S;0” and the end log file is
initialized with the entry “201307070800;E;0”. The value file is created
with zero credit, a minimum value of zero and a maximum value of 1024.
The backup data file is created with a size of 128 bytes. It takes double
of this memory on the card because of the backup data mechanism. A
regular data file, without the backup mechanism, would not work, since
the backup mechanism is needed to ensure atomic transactions. The
backup data file is initialized with “Jane Doe;Female;Adult;Espoo”.

The access rights of the files are set to 3000H, which means that key
number 03H has read and write access rights. The remaining access
rights, given to key number 00H, are read, write and change access
rights. The key number 03H is the one used by the phone, although
the phone does not know the secret key. This key is diversified by
hashing the card UID concatenated to a secret string. The first half
of the SHA256 hash is used as the diversified key. The other keys of
the application are changed to new diversified keys, which follow the
same process. The secret string is different for the other keys, hence
the other keys are also different.

The card application cannot be created remotely by an untrusted de-
vice, such as the phone, because it requires access to the secret keys.
The keys could be generated by the web service and sent to the card
application enciphered. However, the phone knows the default keys
and can gain access to the new ones using that information.

Digital certificates. The digital certificates were created using keytool.
When creating a key pair, keytool stores it in a keystore. The store-

84 CHAPTER 5. IMPLEMENTATION

type, by default, is JKS. This is fine for the server keystore, but Android
does not support the JKS storetype. Instead it uses BKS from Bouncy
Castle, which is natively supported by the Android platform.

For keytool to support the BKS storetype, the Bouncy Castle collection
of APIs must be included in the keytool path. This enables the creation
of a keystore that Android is expected to work with. Even so, Android
ships with an outdated version of Bouncy Castle and it is not trivial to
import the updated version into the application because of classloader
conflicts.

The solution is to use Spongy Castle, a modified version of Bouncy
Castle. It contains the same libraries as Bouncy Castle but renames all
packages and the security provider to avoid conflicts. By using Spongy
Castle with keytool and importing it into Android, it is possible to
successfully use the BKS storetype and have an updated version of the
libraries in Android.

Root CA from industry. The system works with its own Root CA to sign
the server digital certificate. The initial idea was to also support the
use of certificates signed by a real CA from industry, and have the client
application seamlessly working with both. Unfortunately, this was not
possible because CAs require validation of the domain by email when
using the free trial and there is no possibility of receiving an email on
the subdomain assigned by the cloud provider.

A single company signed the digital certificate of the server. However,
since this was a free trial for testing purposes only, the aforementioned
company also provided the corresponding root certificate to be installed
on the client machine. In the end, this amounted to what is already
present when using the custom Root CA of this system.

Apache Tomcat 7 and SSL/TLS. To setup a secure connection to the
resources of the web application, it is necessary to modify the config-
uration file server.xml of Tomcat and the web.xml configuration file
of the web application. The server.xml configuration file needs a new
Connector customized with the details of the keystore the server will
use to provide a digital certificate to clients. The web.xml configura-
tion file is updated to state which resources are to be protected and
which users and/or realms have access to those resources.

This setup works for the development machine but not for Jelastic.
Instead of setting up a new Connector in the server.xml configuration
file, the customer is required to upload the signed domain certificate,

5.4. IMPLEMENTATION ISSUES 85

the intermediate certificate of the Root CA and the private key of
the server. In the current system setup, the two certificates can be
obtained using keytool but not the server private key. To extract the
server private key from a keystore, the keystore if first converted to the
PKCS12 storetype and then the key is extracted using OpenSSL.

Apache Tomcat 7 and SQLite. SQLite is a library that implements a
self-contained transactional SQL database engine. It is used in the
system given its simplicity. Apache Tomcat 7 allows the use of an ex-
ternal database to manage user accounts but does not support SQLite.
The tables to manage users were created in the database of the sys-
tem, but given this restriction the information had to be replicated on
Apache Tomcat 7.

This is not a problem for the prototype. In a production system either
Apache Tomcat 7 would have to be extended to support SQLite or the
system would have to use a different database engine to avoid redundant
information. GlassFish 4 does not support SQLite either.

Android tag dispatch system. Android creates an NFC intent when a
tag is touched and sends it to interested applications. The client appli-
cation is using ACTION TECH DISCOVERED, a rather general intent, which
may cause it to open when an unrecognized type of tag is touched.

Chapter 6

Evaluation

This chapter evaluates the proposed solution and the implemented prototype
against the requirements previously set for the system, provides a network
latency and server congestion simulation to find how the implementation be-
haves under these conditions, and measures the time taken to perform a card
update operation to verify that it completes in a timely manner. The evalu-
ation is carried by means of experiments and in particular cases of a textual
analysis. Recall that Section 4.2 describes the proposed solution, Chapter 5
describes the implemented prototype and the requirements previously set can
be found in Section 4.1.

The experimental evaluation involves a remote server, an NFC-enabled
smart phone and a smart card. The roles of these entities are introduced
in Section 5.2 and depicted in Figure 5.1. Section 6.1 describes the test
environment before proceeding to the analysis of the requirements in Sec-
tion 6.3. Some of the requirements are proved by means of experiments,
detailed in Section 6.2.

6.1 Experimental setup

The test environment is composed by three distinct entities. A web service
contained in Apache Tomcat 7 and hosted by the Jelastic cloud provider,
a Samsung Galaxy S3 GT-I9300 smart phone running Android 4.1.2, and a
MIFARE DESFire EV1 smart card. The DESFire EV1 storage size is 4096
bytes, the hardware version is 1.0 and the software version is 1.4.

The web service is uploaded to Jelastic and started just before the tests
and the server database file is recreated using a Python script. This script
creates the required tables and inserts a few test accounts and associated
cards, namely the Alice account used throughout the evaluation process.

87

88 CHAPTER 6. EVALUATION

The previously created digital certificates are uploaded to Jelastic, enabling
SSL/TLS communication with the Apache Tomcat 7 servlet container. The
secure communication between the phone and the server is discussed in Sec-
tion 5.2.1.

The client application is uploaded to the smart phone several times through-
out the evaluation process, since some of the tests require code modifications
on the client side. However, the application preferences are kept. These in-
clude the user credentials and the web service base address. The smart phone
has also been recently reset to its factory default settings and has been used
exclusively to develop the application since that time. For that reason, it
only contains a few test applications and the implemented prototype. The
phone is connected to the eduroam WLAN, through which is able to reach
the server.

The smart card is formatted before the first test and the card application
is recreated. The card default master key is of type AES and it is maintained
since it is not used. The application master key and remaining keys are mod-
ified according with the card initialization application. Section 5.4 contains
additional information regarding the initialization of the card application.

6.2 Experiments

The following experiments aim to test the functionality of the system. The
results are analysed in Section 6.3, taking into account the requirements set
in Section 4.1.

There are three experiments. Experiment 1 tests the functional require-
ments of the system and the network latency and server congestion effect
on the card, and measures the time taken to perform a card update opera-
tion. Experiment 2 tests the reliability of the system. Experiment 3 tests
the authentication and authorization security properties.

6.2.1 Experiment 1—functional requirements

Experiment 1 involves remotely reading and updating the data stored on the
card. It is composed by the following steps:

1. Attempt an update without having any pending transactions.

2. Acquire a credit top-up and apply this update to the card.

3. Acquire a personal information update and five credit top-ups. Apply
these updates to the card.

6.2. EXPERIMENTS 89

4. Acquire a personal information update and apply this update to the
card. This test includes a simulation of network latency and server
congestion.

StartedTx // no entries

Transaction // no entries

FileUpdate // no entries

Log 1 (Start): 201307070800;S;0

201307070800;S;0

201307070800;S;0

201307070800;S;0

Value (0x5): 0

BData (0x6): Jane Doe;Female;Adult;Espoo

Log 2 (End): 201307070800;E;0

201307070800;E;0

201307070800;E;0

201307070800;E;0

Figure 6.1: The empty StartedTx, Transaction and FileUpdate tables and
default values of the files on the card application.

Figure 6.1 shows the content of the relevant tables on the database and
files on the card application, before attempting an update without having
any pending transactions. The tables and the files do not change for step 1.
These are also the default contents when database and card application are
recreated.

Figure 6.2 shows the content of the same tables and files after executing
steps 2–4. Transaction 1 is added by step 2, transactions 2–6 are added by
step 3 and transaction 7 is added by step 4. When the updates are performed
at each of these steps, the files are also updated to reflect the new credit value,
personal information and log entries. Two interesting things happen here on
step 2 and on step 4.

On step 2, one personal information update and five credit top-ups are
acquired and applied to the card. However, only five entries are shown and
not six. This happens because the last credit top-up was not acquired, since is
not possible to have more than five pending transactions for reasons explained
in Section 5.3.1. This is the expected behavior.

On step 4 and in order to simulate network latency and server congestion,
the server includes a 60-second Thread.sleep on the method providing card
resources. Network latency and server congestion are likely to be less than
60 seconds in a real usage scenario but testing the system with extreme

90 CHAPTER 6. EVALUATION

StartedTx // no entries

Transaction

(1, 04 2f 19 c2 80 26 80, COMPLETE) // from step 2

(2, 04 2f 19 c2 80 26 80, COMPLETE) // from step 3

(3, 04 2f 19 c2 80 26 80, COMPLETE) // from step 3

(4, 04 2f 19 c2 80 26 80, COMPLETE) // from step 3

(5, 04 2f 19 c2 80 26 80, COMPLETE) // from step 3

(6, 04 2f 19 c2 80 26 80, COMPLETE) // from step 3

(7, 04 2f 19 c2 80 26 80, COMPLETE) // from step 4

FileUpdate

(1, 05, 05 00 00 00)

(2, 06, 41 6c 69 63 65 3b 46 65 6d 61 6c 65

3b 41 64 75 6c 74 3b 45 73 70 6f 6f)

(3, 05, 0a 00 00 00)

(4, 05, 0a 00 00 00)

(5, 05, 0a 00 00 00)

(6, 05, 0a 00 00 00)

(7, 06, 41 6c 69 63 65 3b 46 65 6d 61 6c 65 3b

41 64 75 6c 74 3b 48 65 6c 73 69 6e 6b 69)

Log 1 (Start): 201307070800;S;0

201308220851;S;1 // from step 2

201308220855;S;2;3;4;5;6 // from step 3

201308220900;S;7 // from step 4

Value (0x5): 45

BData (0x6): Alice;Female;Adult;Helsinki

Log 2 (End): 201307070800;E;0

201308220851;E;1 // from step 2

201308220855;E;2;3;4;5;6 // from step 3

201308220900;E;7 // from step 4

Figure 6.2: The contents of the tables and of the files after the updates.

values ensures the common cases are covered. The client application is set
to timeout after 30 seconds when connecting to the server and 90 seconds
when performing a request-response cycle. Since the 60-second delay and
processing time on the server side and the current network latency between
the phone and the server are less than 90 seconds, the client application
does not timeout when requesting a resource, and the card update succeeds.
The smart card is also active and touching the phone during the card update.

6.2. EXPERIMENTS 91

From the perspective of the smart card, this period is higher than 120 seconds
because that is the sleep time from the first two request-response cycles
between the client and the server. The card can safely be pulled apart from
the phone after writing and committing the files, which happens just before
the third and last data exchange to inform the server of the successful card
update.

The experiment demonstrates that it is possible to perform a remote
update to the files on the card application. Implicitly, it also demonstrates
that the files on the card application can be remotely read. This happens
during the card update because the files are read before being sent to the
server to be updated.

In addition to the above tests, time measurements of the card update
operation are taken to verify that it completes in a timely manner. Each
round creates a transaction containing two updates, one for a credit file and
one for a data file, and then executes the card update operation to apply
the pending transaction to the card. The results are based on the execution
of one hundred rounds and the time is measured only for the card update
operation. The completion time for a card update (N = 100) operation
averaged 1979.5 ms (sample standard deviation s = 153.8 ms).

6.2.2 Experiment 2—reliability

Experiment 2 tests the reliability of the system. The objective of this exper-
iment is to observe how the data in the database and the card application
change, when the update protocol is interrupted in key points. The protocol
is interrupted at the following stages:

(1) Before initiating the secure connection with the server.

(2) When waiting for the user to touch the tag.

(3) Before initiating the authentication protocol with the card.

(4) Before exchanging the authentication data with the server.

(5) Before completing the authentication protocol with the card.

(6) Before reading the files from the card application.

(7) Before exchanging the files with the server.

(8a) Before writing the updated files into the card application.

(8b) After writing the files and before the CommitTransaction.

92 CHAPTER 6. EVALUATION

(9a) Before sending the final ACK to the server.

(9b) The final ACK is sent, but the server does not reply.

(10) The protocol runs from the beginning to the end.

For each stage and for each type of interruption, the tables StartedTx,
Transaction and FileUpdate on the database and the content of the files
on the card application are analyzed.

The six different forms of interrupting the system at these stages are:
introducing a System.exit; pressing the Android Home button; pressing
the Android Back button; switching off the wireless connection to eduroam;
pulling the card away from the phone—card tear; and switching off the server.
A System.exit terminates the card application immediately and proves to
be the best way to test the protocol itself, since the exact exit point is known.
For the other interruption types, a Thread.sleep is used to provide enough
time for the interruption method to be carried.

In some cases, the client application does not leave at the Thread.sleep.
This happens because either the interruption method does not apply imme-
diately to the following instructions or the client application is still able to
process additional instructions while the interruption method is being car-
ried. Examples for the first case include switching off the wireless connection
or the server, or pulling the phone and the card apart. The client application
will only be unable to proceed when the required resource is not available.
Examples for the second case include pressing the Android Home or Back
buttons. The Home button sends the application to background and the
Back button closes the application. In both cases, operations in progress are
canceled, but the key press effect is not immediate.

Figure 6.1 presents the results of the experiment. Rows indicate the
stage at which the client application is interrupted and columns indicate
the interruption method. The ε symbol indicates an update failure, the ς
symbol indicates an acknowledgment failure and the ϕ symbol indicates that
the update protocol ran to its completion. See Section 4.2.3.1 for additional
information on update and acknowledgment failures. The subscripts provide
information on the data changed on the database and on the card application:

ε No data is changed.

ε1 The transaction is started on the server. An entry is created in StartedTx

with the session key set and the corresponding Transaction entry is
updated from WAITING to STARTED.

6.2. EXPERIMENTS 93

System.exit Home Back Wireless Tear Server

(1) ε ε ε ε – ε

(2) ε ε ε ε – ε

(3) ε ε ε1 ε ε ε

(4) ε ε ε1 ε ε1 ε

(5) ε1 ε1 ε1 ε1 ε1 ε1
(6) ε1 ε1 ε1 ε1 ε1 ε1
(7) ε1 ε1 ε2 ε1 ε2 ε1
(8a) ε2 ς ϕ ς ε2 ς

(8b) ε2 ς ς ς ε2 ς

(9a) ς ς ϕ ς ϕ ς

(9b) ς1 ς1 ς1 ς1 ς1 –

(10) ϕ ϕ ϕ ϕ ϕ ϕ

ε: update failure
ς: acknowledgment failure
ϕ: protocol completed

Table 6.1: The results of the reliability experiment.

ε2 This implies ε1, and in addition the StartedTx is later on updated with
the final ACK during the file exchange.

ς The files on the card application are successfully updated but the server is
not informed. The database state is the same as in ε2.

ς1 The files on the card application are successfully updated and the server
is informed, but the client application is not aware that the acknowl-
edgment message reached the server. The StartedTx entry is deleted
and the Transaction is updated from STARTED to COMPLETE.

ϕ The protocol runs in its entirety from the beginning to the end.

In all stages marked with ε, and independently of changes happening on
the database, the protocol is always restarted on a subsequent card update
operation. In ε1 and ε2, since the state of the Transaction is already updated
to STARTED and the entry in StartedTx is already created, the subsequent
card update does not recreate the entry but updates the session key and the
final ACK on the current entry instead.

In all stages marked with ς, the files on the card application are success-
fully updated but the server is not informed. When this happens, the client

94 CHAPTER 6. EVALUATION

application stores the final ACK and on a following card update attempts to
send this information to the server before beginning the update protocol. If
the final ACK sent matches the one stored by the server, the card update is
complete without having to touch the card. Otherwise, the protocol restarts
and the server can deduce from the logs read from the card application which
transactions were applied. ς1 is similar to ς, but the server fails to inform
the client that it is aware of the finished state of the transaction. For that
reason, the client application still stores the final ACK. When it is sent to
the server, it is ignored because the entry in the StartedTx table has al-
ready been deleted. The client application then deletes the final ACK from
its persistent storage.

To summarize, for all tested interruptions at these stages, the card, the
phone and the server are eventually brought to a consistent state. Even when
the files on the card application are updated but the final acknowledgment
is lost, a consistent state between all entities is achieved.

6.2.3 Experiment 3—security

Experiment 3 tests the authentication and authorization properties of the
system. Four different experiments are conducted:

(a) Attempt a card update without entering any credentials.

(b) Attempt a card update with a non-existent user.

(c) Attempt a card update with incorrect credentials.

(d) Attempt to update a card associated with a different user.

For the first test, a card update attempt is made without entering the
credentials. For the second test, the user is set to Mallory in the client ap-
plication settings. This user does not exist in the system. For the third test,
the user is set to Alice in the client application settings. Alice is a legitimate
user of the system, but the password entered is incorrect. A card update
can be performed even without previously acquiring an update, resulting in
an update complete, no pending transactions message. An authentication is
still needed, but when the server finds that no pending transactions exist
the operation is terminated. When a card update is attempted, the user is
presented with a sign in screen in all three tests. The system does not inform
the user whether the username does not exit or if it is only the password that
is incorrect. The sign in screen disappears after entering valid credentials or
after selecting a new option in the application, thus canceling the operation
in progress.

6.3. ANALYSIS OF REQUIREMENTS 95

For the fourth test, the user is set to Alice in the client application settings
and the correct password is entered. A credit top-up is acquired, which does
not require using the card, and stored as a pending transaction for Alice. The
test itself lies in attempting to apply this new update to a card belonging to
Bob, who is a legitimate user of the system. This card update fails because
the card is not associated with Alice. The system only allows users to perform
operations on their cards.

6.3 Analysis of requirements

This section argues that the prototype satisfies the requirements set for the
system in Section 4.1. This claim is supported by the experiments carried in
the public cloud provider Jelastic and described in Section 6.2.

The tables StartedTx, Transaction and FileUpdate are cleared before
each experiment. StartedTx contains transactions in progress, Transaction
contains all the transactions and respective state and FileUpdate contains
the data to apply to files. The card is also formatted and the card application
is recreated. The content of the tables and the files on the card application,
before initiating the tests, are shown in Figure 6.1.

Functional requirements

REQ1. Users can update the data stored on the card application remotely.

REQ2. Users can read data from the card application remotely.

Non-functional requirements

REQ3. Interrupted operations can be resumed without loss.

REQ4. Users can only update the data stored on the card application with
the consent of the service provider.

REQ5. Users can only read the data stored on the card application with
the consent of the service provider.

REQ6. Only authenticated operations may perform data updates on the
card application.

REQ7. The confidentiality of the data stored on the card application is at
the discretion of the service provider.

REQ8. The integrity of the data stored on the card application is enforced.

REQ9. Users cannot deny having used the smart card.

96 CHAPTER 6. EVALUATION

REQ1 and REQ2 are substantiated in Section 6.2.1 by Experiment 1.
The card is successfully updated remotely. During a card update, the files
on the card application are both read and updated.

REQ3 is substantiated in Section 6.2.2 by Experiment 2. A card update
operation is interrupted at different stages of the protocol and using different
methods. The system successfully recovers from failures.

REQ4 and REQ5 are substantiated in Section 6.2.3 by Experiment 3
(d). Alice authenticates successfully with the server but is denied permission
to update the card, because the card belongs to a different user. Furthermore,
a rogue user attempting to read or update the files on the card application,
without contacting the server, is unable to do so since the secret key required
to read and update files is known only to the service provider. During a card
update, the files on the card application are both read and updated.

REQ6 is substantiated in Section 6.2.3 by Experiment 3 (a–c). The
user is unable to access the resources provided by the web service, which are
required to perform operations, without being authenticated with Apache
Tomcat 7.

REQ7 relates to the communication settings and the access rights of
files, which are establish by the server provider. In the prototype and for all
files, the communication settings are set to 03H and none of the access rights
is set to EH. This implies that a previous authentication is always required
to read and update files and that files can only be received from the card
and sent to the card enciphered. It is possible for the service provider to
relax these settings and allow, for instance, reading a specific file without a
previous authentication. This would enable everyone to read that file in any
card holding the same card application, which may raise privacy concerns.

REQ8 is accomplished by having the communication settings of files on
the card application set to 03H. This implies that updates to files on the
card can only be sent enciphered. Before the enciphering operation, a CRC
is calculated and appended to the data. When the card receives a file, it
validates the CRC and only proceeds with writing the file if it is correct.

REQ9 is fulfilled by logging every card update. The log files have limited
but enough space to record the most recent updates applied to the card
application. The server may include a logging mechanism, which can keep a
longer history than what can be stored on the card.

The implementation passes the requirements set for the system, but with
a notice. One special case related to Experiment 2, which proves REQ3, is
not tested. When the client application sends a CommitTransaction to the
card, it is theoretically possible that the card commits the transaction but
the response to that command is lost. This means that the client application
is unable to know whether the card update succeeded or not. The response to

6.3. ANALYSIS OF REQUIREMENTS 97

this command is known in the previous sections and chapters as the final ACK
and corresponds to message (26) in Figure 4.3. Its presence and correctness
proves that the files on the card application were successfully updated.

In theory, if this response is lost the system is still able to reach a consis-
tent state on a subsequent card update attempt. From the perspective of the
server, it is as if the final exchange between client and server, which informs
the server of the success of the operation and corresponds to message (27), is
lost. The failure of this final exchange request is successfully tested in Exper-
iment 2. It is therefore assumed that if the CommitTransaction response is
lost the system can equally recover successfully and reach a consistent state.

Chapter 7

Discussion

The prototype enables a user to acquire updates for a card online and to rely
on an NFC-enabled mobile phone and on a remote web service to apply those
updates to the files on the card application. The card update operation is
done in a reliable and secure way as proved by the evaluative tests.

This chapter discusses potential improvements to the designed and de-
veloped system and restrictions of the NFC Java library created during the
study of DESFire EV1. It concludes with possible applications of, and some
insights into, the researched subject.

7.1 Rethinking the NFC Java library

The NFC Java library assumes that the entity communicating with the smart
card has all the required parameters for the manipulation taking place. This
is not the case on the prototype, since the device interacting with the card,
the NFC-enabled Android mobile phone, does not know the secret keys re-
quired to manipulate the files on the card application on its own. The phone
only knows so much and mostly acts as a proxy, enabling the server to read
and update files on the card application. In addition to creating command
APDUs, wrapping native commands, validating responses, and updating the
initialization vector autonomously, the library also applies the correct secu-
rity mechanisms—CRC, MAC and encryption and decryption according with
the selected cipher—to command APDUs and to response APDUs, shielding
the application developer from tedious tasks prone to errors.

During the creation of the library, the priority was to understand how
the card worked. The filesystem, its security mechanisms, the operations
available and how to use them. A use case like the one of the prototype
was not foreseen when developing the architecture of the library, in part

99

100 CHAPTER 7. DISCUSSION

because of the lack of experience on this subject. This lead to the creation
of additional methods specifically for this implementation. Some of these
methods, the more general ones, were included in the library, while others,
more specific, were added to the client application and to the web application.

7.2 Improving the system

The prototype developed as part of the thesis meets the requirements previ-
ously set for the system. There are, however, improvements to be made.

These improvements include using a database engine with a higher level
of support for concurrency, such as MySQL [39]; and allowing more than five
pending transactions for the system, which can be achieved by applying five
transactions at a time, when more than five pending transactions are avail-
able. Additional enhancements to the system are discussed in the sections
that follow.

7.2.1 UID and RID

A card update requires the card UID to be read before the first message ex-
change with the server. This raises a problem because DESFire EV1 requires
a previous authentication to use the GetCardUID command, which returns
the card UID, and the authentication protocol with the card only happens
after this particular message exchange.

The implementation solves this problem by asking for the UID using the
Android getId method for tags, which does not require a previous authenti-
cation. However, this method may return a random ID instead or no ID at
all. The assumption is that the getId method uses the lower level ISO/IEC
14443-3 ANTICOLLISION and SELECT commands to acquired the tag ID,
because the method header states “The tag identifier is a low level serial
number, used for anti-collision and identification.” [10]. This would be in
agreement with the specification for handling of UIDs from NXP [27], where
it is said that when using ISO/IEC 14443-3 identification and anticollision
procedures, DESFire EV1 returns the RID instead of the UID if the RID
option is enabled.

The cards used in the prototype return the UID using getId, because
the random ID option is not enabled. Since each user only has one card and
is authenticated with Apache Tomcat 7 before a card update, the system
could also fetch the UID associated with the username from the database.
Assuming a user with multiple cards, the system could ask the user to select
the card she wants to update before starting the operation.

7.2. IMPROVING THE SYSTEM 101

Another solution is for the service provider to write a unique custom
identifier into a file and allow the file to be freely read, i.e. without being
authenticated. The server would first read that file to acquire the custom card
identifier and then proceed with the authentication protocol to gain access
to the other files. Since this file can be freely read, the service provider can
store the custom ID encrypted to prevent others from gaining access to the
plaintext value. The disadvantage of this method is that the secret key used
to decipher the contents of the file is the same across all cards.

Alternatively, instead of ciphering the contents of the file the service
provider can simply protect the file with a secret key different from the
one that grants access to the remaining files of the card application. This
is possible since each card application can hold multiple secret keys. If the
communication settings of the file are set to enciphered then only the service
provider can read the contents of the file unless it shares the secret key with
a third party. This option would require a higher number of messages to be
exchanged with the card in comparison with the previous solution because
the authentication protocol would have to be executed twice instead of only
once. A first execution of the authentication protocol to retrieve the cus-
tom ID, which is used to generate the diversified secret key, and a second
execution of the authentication protocol with the diversified secret key to
gain access to the remaining files in the card application. This is a generic
solution that could be applied to other systems.

7.2.2 Token-based authentication

The client application is required to authenticate against the Apache Tomcat
7 servlet container when performing requests to the web application. The
client application stores the user credentials in cleartext for future use. This
enables the application to only request new credentials from the user when
the ones stored on the phone are either incorrect or non-existent. It is a
useful feature from a usability perspective but it is also relatively insecure.

A possible approach to solve this security hole would be to use token-based
authentication, that is, to store a token on the phone instead of the password
of the user. When the user signs in, the server validates the credentials and
creates an entry with the username, a creation timestamp and a token on a
table. The token is sent to the client application. This token can be used
by the client application to authenticate itself on future requests and can be
safely stored on the phone.

There are multiple possibilities on how to create the token. For instance,
the server can create a single secret key using a cryptographically secure
PRNG. The token can then be generated by computing a HMAC-SHA256

102 CHAPTER 7. DISCUSSION

over the username and the timestamp. If the client application sends the
username, timestamp and token to the server, the server is able to com-
pute the token again and check if it is forged. Alternatively, it can look for
the token in the database and only grant access if a corresponding entry is
present.

The user can sign out from the system by deleting the token in the client
application and the corresponding entry in the server. Should the phone be
lost or stolen, it should also be possible for the user to access the server,
for example, through a browser, and instruct the server to sign out from
a particular device or to sign out from all devices. In practice, this would
respectively delete a specific token or all tokens, associated with the user,
from the table. If a malicious user had access to the device, while it would
be possible to access the server until a password change occurs or the token
expires, it would be impossible to change the password without knowing the
current one. In addition, since the password is not stored on the phone, the
malicous user cannot recover it from the device.

7.2.3 Other enhancements

When performing a card update the system requires the user to be authen-
ticated and to hold the phone next to the card. This happens because the
proposed protocol for updating the card is followed to the letter in the im-
plementation. In order to improve the usability of the system, the client
application can first query the web service to find if there are pending trans-
actions. If there are pending transactions, then the server asks the user to
touch the card, which may imply, for instance, having to fetch the card out
of the wallet. Otherwise, the card update completes without requiring the
user to touch the card.

A constraint of allowing only one card per user was decided in order to
lighten the complexity of the system. The database is designed to support
multiple cards per user, but changes would have to be made in both web
service and client application to support this new feature. In relation to the
last paragraph, the system would then inform the user about which card to
touch. When acquiring an update, the user could choose for which card the
update is intended.

A further optimization is to allow users to buy updates to other users, for
example, by entering the username of the target user. In addition, the system
could also enable anyone with the client application installed to update any
card with updates associated to that card. This is feasible since, from a
design perspective, an authentication is not strictly required to execute the
update protocol, although the current implementation enforces a previous

7.3. INSIGHTS AND APPLICATIONS 103

authentication by the user. If so decided by the service provider, this feature
could be restricted by having a list of authorized users associated with each
account.

Updating the cards of other users would not work with RID enabled.
Since there is no authentication procedure with the server, it cannot find
the UID in the database through the username. A possibility would be
for the user to indicate a username when touching the card, but without
providing a password. The server then relies on that username to find the
associated cards and continue the authentication protocol with the card,
which would fail if the username and the card are not associated, as a result
of the diversified secret key being incorrect.

7.3 Insights and applications

The capability of applying updates to a tag following the orders of a remote
server brings new and exciting possibilities. The service provider of a mass
transit system, for instance, can develop an application to enable users to
top-up their travel cards without the hassle of going to a service point, and
to do so at their convenience; a supermarket chain can issue coupons for
their customers, who are able to load them to their loyalty cards at home;
a company can distribute discount vouchers for their employees over the
Internet, and the employees can update the discount cards themselves. In all
cases and from the perspective of the service provider, it is possible to apply
the changes to the card securely and to save resources since less equipment
and staff are required.

Consider a company that stores an identification number, name, gender
and birth date in each of their employee cards. At some point later in time
it is decided that an employee card should contain neither gender nor birth
date. An update to the file containing that information would solve the
issue and could be applied by the employees themselves via an NFC-enabled
device. This would avoid having to call back all cards to the department
responsible for them to perform the update.

Two optimizations proposed in Section 7.2.3, allowing the acquisition of
new updates for other users and updating the cards of other users, enable
a new interesting use case for the system. Dave went to school and forgot
to top-up his travel card. His mom, Carol, uses her mobile phone to acquire
a new credit top-up for the travel card of Dave. Since Dave does not have
an NFC-enabled mobile phone, he asks his friend Erin to apply the pending
updates to his card. Erin touches the travel card of Dave with her NFC-
enabled device and the system automatically finds and applies all pending

104 CHAPTER 7. DISCUSSION

updates for that card. Two interesting things happen in this scenario, a user
acquires an update not to herself but to a third party, and the receiver of
the update uses the NFC-enabled mobile phone of his friend to update the
travel card, overcoming the lack of an appropriate device of his own.

Chapter 8

Conclusions

The main benefits brought by NFC and typical usage scenarios are related
to the operating mode [30]. Card emulation mode allows to store multiple
objects in an NFC-enabled mobile phone, removing the need for its physical
counterpart. Examples include credit cards, tickets and keys. Peer-to-peer
mode enables to easily exchange data and to pair devices. Reader-writer
mode allows to transfer data from a tag, which can either be displayed to
the user or trigger an action such as downloading additional content from
the Internet, calling a number or sending an SMS.

In the traditional usage model of the reader-writer mode and in the con-
text of mobile devices, NFC-enabled mobile phones mostly receive informa-
tion from a tag. This thesis researched a new usage model that enables
the mobile phone not only to read data from a tag but also to update it in
a secure and reliable fashion with data supplied by a remote server. The
functionality of DESFire EV1 was studied and the possibility of applying
this novel model to the tag was analyzed. A communication protocol for
remotely updating the files on the tag was devised and its practicability was
successfully evaluated through a prototype built as a proof of concept. This
prototype was subject to experiments in a public cloud provider to attest the
correctness of the remote update protocol that it implements.

In the new usage model for the reader-writer mode, the NFC-enabled
mobile phone acts as a proxy relaying data between a server and a tag,
providing the remote server with the means to indirectly update the NFC
tag. The mobile phone is a central piece of the system as a result of being
responsible for reading from, and writing into, the tag and establishing the
communication channel between the server and the tag. However, at any
point in time is the mobile phone allowed to have access to the diversified
secret keys shared between the server and the card as this would compromise
the security of the system.

105

106 CHAPTER 8. CONCLUSIONS

The paradigm of remotely updating a tag via an NFC-enabled mobile
phone is as yet and to our knowledge not been studied in academic research;
no references to such approach were found in the literature. However, it is
known that several companies are working at the moment with NFC, e.g.
for transport-ticket top-up. Benefits include updating a smart card without
having to go to a specific location and at the convenience of the user, avoiding
long queues and the associated waiting time, and to reduce the need for staff,
which would otherwise be needed to serve customers, and automatic service
points, used to update the smart cards of customers.

In addition to this document and to the implemented prototype, this
work produced a Java library that eases the manipulation of Ultralight C and
DESFire EV1 smart cards by shielding the user from tedious tasks prone to
errors. The library code and respective documentation can be used by others
interested in learning about these two types of cards since their specification
is not publicly available.

Future work would involve restructuring the prototype taking into ac-
count the improvements discussed in Chapter 7, applying the proposed so-
lution to a concrete real-world scenario, finding if the model is suitable for
other types of smart cards or how it can be changed to fit the new card
structure, and collecting and discussing possible applications for the remote
update protocol. It would also be interesting to formally verify the optimized
remote update protocol to prove its correctness.

Bibliography

[1] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica,
I., and Zaharia, M. A view of cloud computing. Commun. ACM 53,
4 (Apr. 2010), 50–58.

[2] Coskun, V., Ok, K., and Ozdenizci, B. Near Field Communica-
tion: From Theory to Practice. Wiley, December 2011.

[3] Deloitte. NFC and mobile devices: payments and more! [Press
release], 2012. http://www.deloitte.com/assets/Dcom-Global/

LocalContent/Articles/TMT/TMTPredictions2012/16470ANFClb1.pdf.
Accessed 8.4.2013.

[4] Elliott, J. The MAOS trap [smart card platforms]. Computing Con-
trol Engineering Journal 12, 1 (2001), 4–10.

[5] Eurosmart. Eurosmart forecasts over 7 billion smart se-
cure devices to be shipped in 2012. [Press release], November
2012. http://www.eurosmart.com/images/doc/EurosmartPR/eurosmart_

-_pr_nov_2012.pdf. Accessed 8.4.2013.

[6] Franssila, H. User experiences and acceptance scenarios of NFC ap-
plications in security service field work. In Near Field Communication
(NFC), 2010 Second International Workshop on (2010), pp. 39–44.

[7] Fressancourt, A., Herault, C., and Ptak, E. NFCSocial: So-
cial networking in mobility through IMS and NFC. In Near Field Com-
munication, 2009. NFC ’09. First International Workshop on (2009),
pp. 24–29.

[8] German Federal Office for Information Security. MIFARE
DESFire EV1 MF3ICD81–Certification Report, July 2011. Certification
Report BSI-DSZ-CC-0712-2011.

107

http://www.deloitte.com/assets/Dcom-Global/Local Content/Articles/TMT/TMT Predictions 2012/16470A NFC lb1.pdf
http://www.deloitte.com/assets/Dcom-Global/Local Content/Articles/TMT/TMT Predictions 2012/16470A NFC lb1.pdf
http://www.eurosmart.com/images/doc/EurosmartPR/eurosmart_-_pr_nov_2012.pdf
http://www.eurosmart.com/images/doc/EurosmartPR/eurosmart_-_pr_nov_2012.pdf

108 BIBLIOGRAPHY

[9] Ghiron, S., Sposato, S., Medaglia, C., and Moroni, A. NFC
Ticketing: A prototype and usability test of an NFC-based virtual tick-
eting application. In Near Field Communication, 2009. NFC ’09. First
International Workshop on (2009), pp. 45–50.

[10] Google. getId method. [Website]. https://developer.android.com/

reference/android/nfc/Tag.html#getId(). Accessed 24.8.2013.

[11] Hancke, G. A practical relay attack on ISO 14443 proxim-
ity cards. [Online], January 2005. http://www.rfidblog.org.uk/

hancke-rfidrelay.pdf. Accessed 25.8.2013.

[12] Haselsteiner, E., and Breitfuss, K. Security in near field com-
munication (NFC). In Workshop on RFID Security 2006 (2006).

[13] Jaring, P., Törmänen, V., Siira, E., and Matinmikko, T. Im-
proving mobile solution workflows and usability using near field com-
munication technology. In Proceedings of the 2007 European conference
on Ambient intelligence (Berlin, Heidelberg, 2007), AmI’07, Springer-
Verlag, pp. 358–373.

[14] Jelastic. Jelastic java and php web cloud hosting with the best service
providers. [Website]. https://jelastic.com/. Accessed 24.8.2013.

[15] Kasper, T., von Maurich, I., Oswald, D., and Paar, C.
Chameleon: a versatile emulator for contactless smartcards. In Pro-
ceedings of the 13th international conference on Information security
and cryptology (Berlin, Heidelberg, 2011), ICISC’10, Springer-Verlag,
pp. 189–206.

[16] Madlmayr, G., Langer, J., Kantner, C., and Scharinger,
J. NFC devices: Security and privacy. In Availability, Reliability and
Security, 2008. ARES 08. Third International Conference on (2008),
pp. 642–647.

[17] Matos, A., Romao, D., and Trezentos, P. Secure hotspot au-
thentication through a near field communication side-channel. In Wire-
less and Mobile Computing, Networking and Communications (WiMob),
2012 IEEE 8th International Conference on (2012), pp. 807–814.

[18] n.a. education roaming. [Website]. https://www.eduroam.org/. Ac-
cessed 24.8.2013.

https://developer.android.com/reference/android/nfc/Tag.html#getId()
https://developer.android.com/reference/android/nfc/Tag.html#getId()
http://www.rfidblog.org.uk/hancke-rfidrelay.pdf
http://www.rfidblog.org.uk/hancke-rfidrelay.pdf
https://jelastic.com/
https://www.eduroam.org/

BIBLIOGRAPHY 109

[19] n.a. libfreefare. [Website]. https://code.google.com/p/libfreefare/.
Accessed 23.8.2013.

[20] Nandwani, A., Coulton, P., and Edwards, R. NFC mobile par-
lor games enabling direct player to player interaction. In Near Field
Communication (NFC), 2011 3rd International Workshop on (2011),
pp. 21–25.

[21] NFC Forum. Near Field Communication Forum. [Online]. http:

//www.nfc-forum.org/. Accessed 9.9.2013.

[22] NFC Forum. NFC Data Exchange Format (NDEF), July 2006.

[23] NFC Forum. Type 1 Tag Operation Specification, April 2011.

[24] NFC Forum. Type 2 Tag Operation Specification, May 2011.

[25] NFC Forum. Type 3 Tag Operation Specification, June 2011.

[26] NFC Forum. Type 4 Tag Operation Specification, June 2011.

[27] NXP. MIFARE and handling of UIDs (AN10927), August 2011.
http://www.mifare.net/files/6213/2453/8738/AN10927.pdf. Accessed
24.8.2013.

[28] NXP Semiconductors. MF3ICDx21 41 81–MIFARE DESFire EV1
contactless multi-application IC–Product short data sheet–Rev. 3.1,
December 2010. http://www.nxp.com/documents/short_data_sheet/

MF3ICDX21_41_81_SDS.pdf. Accessed 25.8.2013.

[29] NXP Semiconductors. Security Target Lite–MIFARE DESFire EV1
MF3ICD81–Rev. 1.5, May 2011. Security Target BSI-DSZ-CC-0712-
2011.

[30] Ok, K., Coskun, V., Aydin, M., and Ozdenizci, B. Current ben-
efits and future directions of NFC services. In Education and Manage-
ment Technology (ICEMT), 2010 International Conference on (2010),
pp. 334–338.

[31] Oswald, D., and Paar, C. Breaking mifare desfire mf3icd40: Power
analysis and templates in the real world. In Cryptographic Hardware
and Embedded Systems–CHES 2011, B. Preneel and T. Takagi, Eds.,
vol. 6917 of Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2011, pp. 207–222.

https://code.google.com/p/libfreefare/
http://www.nfc-forum.org/
http://www.nfc-forum.org/
http://www.mifare.net/files/6213/2453/8738/AN10927.pdf
http://www.nxp.com/documents/short_data_sheet/MF3ICDX21_41_81_SDS.pdf
http://www.nxp.com/documents/short_data_sheet/MF3ICDX21_41_81_SDS.pdf

110 BIBLIOGRAPHY

[32] Ozdenizci, B., Aydin, M., Coskun, V., and Ok, K. NFC re-
search framework: A literature review and future research directions.
In 14th IBIMA conference on Global Business Transformation through
Innovation and Knowledge Management (June 2010), pp. 2672–2685.

[33] Philips Semiconductors. mifare DESFire: Contactless Multi-
Application IC with DES and 3DES Security–MF3 IC D40–Product
specification–Rev. 3.1, April 2004.

[34] Rankl, W., and Effing, W. Smart Card Handbook, fourth ed. Wiley,
June 2010, ch. 10.

[35] Roland, M., Langer, J., and Scharinger, J. Applying relay
attacks to google wallet. In Near Field Communication (NFC), 2013
5th International Workshop on (2013), pp. 1–6.

[36] Saminger, C., Grunberger, S., and Langer, J. An NFC ticketing
system with a new approach of an inverse reader mode. In Near Field
Communication (NFC), 2013 5th International Workshop on (2013),
pp. 1–5.

[37] Sauveron, D. Multiapplication smart card: Towards an open smart
card? Information Security Technical Report 14, 2 (2009), 70–78.

[38] Siira, E., Tuikka, T., and Tormanen, V. Location-based mobile
wiki using NFC tag infrastructure. In Near Field Communication, 2009.
NFC ’09. First International Workshop on (2009), pp. 56–60.

[39] SQLite. Can multiple applications or multiple instances of the same
application access a single database file at the same time? [Website].
http://www.sqlite.org/faq.html#q5. Accessed 25.8.2013.

http://www.sqlite.org/faq.html#q5

Appendix A

MIFARE Ultralight C

This appendix provides a study of MIFARE Ultralight C, that was carried
after studying MIFARE Ultralight and before studying the more complex
MIFARE DESFire EV1. MIFARE Ultralight is quite similar to MIFARE
Ultralight C and is not included in the thesis for that reason.

MIFARE Ultralight C (MF0ICU2) is a low-cost memory-based smart card
for limited-use applications. For instance, event ticketing, loyalty schemes
and public transportation. It uses a page-based memory structure like that
of MIFARE Ultralight (MF0ICU1), but it has a larger amount of memory and
it comprises additional features such as the 16-bit counter and the 2K3DES
authentication mechanism. Ultralight C can be considered an intelligent
memory card because it offers an access control system, imposing restrictions
on which memory pages can be read and written.

Manipulation of the content of an Ultralight C smart card is done using
the Read and the Write commands. Read allows to read user data and
memory-mapped security configurations. Write allows to update user data
and modify the security configurations. In both cases, the access is done
one page at a time. Exceptions to this guideline include modification of the
locking mechanism and of the OTP bits, where only the bits to be modified
are set. Table A.1 lists the commands available for the manipulation of
Ultralight C.

Commands

Authenticate, Read, Write

Table A.1: List of commands of Ultralight C.

111

112 APPENDIX A. MIFARE ULTRALIGHT C

A.1 Memory organization

Ultralight C uses a page-based memory structure. Each of the 48 pages is 4
bytes in size, for a total of 192 bytes of EEPROM memory.

00H UID UID UID BCC0 Page 0

01H UID UID UID UID Page 1

02H BCC1 internal LOCK0 LOCK1 Page 2

03H OTP OTP OTP OTP Page 3

04H user data user data user data user data Page 4

...

27H user data user data user data user data Page 39

28H LOCK2 LOCK3 Page 40

29H counter counter Page 41

2AH AUTH0 Page 42

2BH AUTH1 Page 43

2CH K1/0 K1/1 K1/2 K1/3 Page 44

2DH K1/4 K1/5 K1/6 K1/7 Page 45

2EH K2/0 K2/1 K2/2 K2/3 Page 46

2FH K2/4 K2/5 K2/6 K2/7 Page 47

Figure A.1: Memory layout of MIFARE Ultralight C.

The memory layout of Ultralight C is presented in Figure A.1. The first
nine bytes of memory contain the unique read-only 7-byte serial number
(SN/UID) and two block check character bytes (BCC). The last two bytes of
page 2 contain the lock mechanism for pages 3–15. Page 3 contains the one
time programmable (OTP) bits. Pages 4–39 are the user pages, that is, the
pages available for the application to store data. This means that 144-bytes
of application data can be stored on the card. The first two bytes of page 40
contain the lock mechanism for pages 16–47. The first two bytes of page 41
contain the 16-bit one-way counter. The first byte of page 42 and the first
byte of page 43 store the authentication configuration, used to restrict access
to pages. Pages 44–47 contain the 2K3DES secret key.

A.2. SECURITY 113

A.2 Security

The security features provided by Ultralight C include the unique UID, the
page locking mechanism, the OTP bits, the one-way counter and the au-
thentication configuration. The authentication configuration, allied with the
2K3DES authentication mechanism, enables access restrictions to pages.

The unique 7-byte UID of Ultralight C is programmed after production by
the IC manufacturer. These seven bytes, along with the two BCC bytes, are
write-protected to prevent later modification. The BCC calculation follows
ISO/IEC 14443-3 and is defined as CT ⊕ SN0⊕ SN1⊕ SN2 for BCC0 and
as SN3⊕SN4⊕SN5⊕SN6 for BCC1. CT stands for cascade tag byte and
is defined as 88H.

P7

msb

P6 P5 P4 P3 B15–10 B9–4 Bit3 LOCK0

P15 P14 P13 P12 P11 P10 P9 P8 LOCK1

B39–36 B35–32 B31–28 Bit7–5 B27–24 B23–20 B19–16 Bit1–3 LOCK2

B47–44 P43 P42 P41 Bit7 Bit6 Bit5 Bit4 LOCK3

Figure A.2: Layout of the lock bytes of MIFARE Ultralight C.

The page locking mechanism enables the write-protection of pages. How-
ever, it does not prevent pages from being read. The locking mechanism is
4 bytes in size. LOCK0–1 are the last two bytes of page 2 and LOCK2–3
are the first two bytes of page 40. The layout of the lock bytes of Ultralight
C is presented in Figure A.2. It is possible to lock individual pages, blocks
of pages and individual lock bits. These are represented respectively as PX,
BX –Y and BitZ. Pages 3–15 and pages 41–43 can be individually locked.
Pages 4–39, that is, the user data pages, can be locked in blocks. Pages
44–47, which contain the 2K3DES secret key and are not readable, can also
be locked as a single block. Some individual lock bits can be set to prevent
other lock bits from being accidentally or intentionally set. For example, if

114 APPENDIX A. MIFARE ULTRALIGHT C

the most significant bit of LOCK3 is set, the secret key stored in pages 44–47
is frozen. To prevent this bit from being set, the fourth bit of LOCK3 can
be set. If this is done while the eighth bit is cleared, then the secret key will
always be changeable.1

Page 3 contains 32 OTP bits. These bits are cleared by default and can
be individually set. Each of these bits can only be set once.

The 16-bit one-way counter, in page 41, is used to keep track of an always
incrementing value. The default value is 0000H.

The authentication configuration bytes, AUTH0 and AUTH1, can be used
to restrict either write or read and write access to pages. AUTH0 contains
a page number, in hexadecimal, marking the page from which the settings
in AUTH1 are applied. The effect extends from that page to the end of the
memory. If AUTH0 is set to 30H, then there are no restricted pages because
there are only 2FH pages in total. The configuration in AUTH1 is either 01H

or 00H, for respectively restricted write access and restricted read and write
access. A successful authentication enables full access to restricted pages.

The 2K3DES authentication protocol of Ultralight C ensures that both
parties share a common 16-byte secret key. The authentication protocol,
depicted in Figure A.3, is composed by the following steps:

1. The PCD sends an authentication request to the PICC. The APDU
wrapped authentication request command is FF EF 00 00 02 1A 00H.

2. The PICC receives the authentication command and generates and
encrypts an 8-byte random number RndB. The resulting ciphertext is
sent to the PCD as a response.

3. The PCD receives and decrypts the response obtaining the random
number RndB generated by the PICC. It then rotates RndB one byte
to the left yielding x2 = RndB′. The PCD generates its own 8-byte
random number RndA and concatenates RndB′ to it. RndA‖RndB′

is encrypted in CBC mode and sent to the PICC.

4. The PICC decrypts the received message, rotates its RndB to the left
and compares it with the decrypted RndB′ sent by the PCD. If the
match fails, the PICC returns an error code to the PCD. Otherwise,
it rotates RndA one byte to the left, yielding RndA′ (x8). RndA′ is
encrypted and sent to the PCD.

1Authentication with the current secret key may be required, depending on the au-
thentication configuration in pages 42–43.

A.2. SECURITY 115

PCD PICC

AUTH

x0 RndB ∈R {0, 1}8
x0 = EK(RndB)

x1 = DK(x0)
x2 = RotLeft1(x1)
RndA ∈R {0, 1}8

x3 = EK(x0 ⊕RndA)
x4 = EK(x3 ⊕ x2)

x3‖x4

x5 = x0 ⊕DK(x3)
x6 = x3 ⊕DK(x4)

x7 = RotLeft1(RndB)

ERROR
if x6 6= x7

x9
if x6 = x7

x8 = RotLeft1(x5)
x9 = EK(x4 ⊕ x8)

x10 = x4 ⊕DK(x9)
x11 = RotLeft1(RndA)

x10
?
= x11

Step 2

Step 3

Step 4

Step 5

Figure A.3: 2K3DES authentication protocol for Ultralight C.

5. The PCD decrypts the received message, rotates its RndA one byte to
the left and compares it with the RndA′ received from the PICC. If
the rotated RndA and RndA′ match, the authentication is successful.

The parity bits of the 2K3DES secret key are ignored by the card. This
means that a key with the parity bits set is equal to the same key with the
parity bits cleared.

To change the secret key, it is enough to write the new key to pages 44–
47. During the authentication protocol, the encryption and the decryption
of data is done with the 2K3DES secret key in big-endian form. However,
the secret key is stored in pages 44–47 in little-endian form, which is also
the adopted form when changing the secret key. The first part of the key
is written, in little-endian, to pages 44–45. The second part of the key is
written, in little-endian, to pages 46–47. Consider the secret key A7 A6 A5

116 APPENDIX A. MIFARE ULTRALIGHT C

A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0H. To authenticate, the key is used
as is. On the other hand, to change the secret key to this key, it is written
as A0 A1 A2 A3 A4 A5 A6 A7 B0 B1 B2 B3 B4 B5 B6 B7H. Page 44 stores A0 A1

A2 A3H, page 45 stores A4 A5 A6 A7H, page 46 store B0 B1 B2 B3H and page 47
stores B4 B5 B6 B7H. After changing the secret key, the new key becomes
active after reconnecting to the card. This implies that if the secret key is
changed and an authentication is attempted before halting the card, the old
secret key must be used.

Appendix B

New NFC Java library

The NFC Java library (nfcjlib) produced in this project eases the develop-
ment of applications for MIFARE smart cards. The objective is to accelerate
the development of applications and to increase their reliability by hiding
the complexity of the native commands and cryptographic operations and to
offer a less error-prone alternative to manually handle these repetitive tasks.
The library is used to manipulate both MIFARE DESFire EV1 and MIFARE
Ultralight C.

DESFireEV1 UltralightC ...

SimpleSCR

Java Smart Card I/O API

User applications

nfcjlib

Figure B.1: The NFC Java library architecture.

The library was designed to be simple and expandable. The ecosystem is
composed by three layers: the standard Java Smart Card I/O API, the nfcjlib
library itself, and the applications of the end user. The Java Smart Card I/O
API communicates with the smart card via a smart card reader and provides
functions to nfcjlib to interact with the smart card. Nfcjlib consumes those
functions and provides services to the end user. The end user manipulates
the smart card through the services provided by nfcjlib. The architecture
of the library is presented in Figure B.1 and is formed of two layers: the
reader module and the smart card modules. The reader module interacts
with the Java Smart Card I/O API and provides a service to the upper layer
to connect, disconnect and transmit APDUs. This upper layer is divided into

117

118 APPENDIX B. NEW NFC JAVA LIBRARY

modules, one for each smart card type. These modules, take DESFireEV1 for
instance, interact with the reader to establish and tear down connections and
exchange information with the smart card, and to provide services to the end
users on the upper layer.

The evaluation of the implementation relies on JUnit 4 for automated
testing.1 It aims to answer two questions:

Validation Are all the commands implemented for both smart cards?

Verification Are those commands implemented correctly?

To validate the library, the total number of commands is counted for both
smart cards and compared with the number of commands implemented. To
verify the correct implementation of those commands, a test plan is produced
and JUnit 4 is used for the creation of test cases. The evaluation of DES-
Fire EV1 is presented in Section B.1 and the evaluation of Ultralight C is
presented in Section B.2.

In JUnit 4, both Assume and Assert methods are heavily used. Assump-
tions are conditions expected to be met for the test to be considered valid.
Assertions are predicates related to the feature under test. For instance, sup-
pose feature X requires a preceding authentication to be successfully tested.
In such case, an assumption that a preceding successful authentication took
place, before testing the feature, is made. Only then, can assertions regarding
feature X take place. When an assertion fails, the test case fails. However,
when an assumption fails, the test case succeeds. This happens because the
conditions imposed for testing a feature are not met. This subtlety is im-
portant for a proper understanding of the test cases. It could be argued
that some features may never be tested because the assumptions for those
features are never met, and that it is impossible to tell whether a test is
successful because the assertions were correct or because the assumptions
failed. However, the assumptions are themselves tested. This ensures that if
a test suite completes without errors, then all the test cases and respective
assertions completed successfully.

B.1 Evaluation of the MDF implementation

The number of commands for the evaluation of the implementation of DES-
Fire EV1 is taken from Table 3.1. There are five security-related commands,
ten PICC-level commands, nine application-level commands and eleven data
manipulation commands, for a total of 35 commands. Of the 35 commands,

1JUnit 4 is a framework to write repeatable tests for Java. See http://junit.org/.

http://junit.org/

B.1. EVALUATION OF THE MDF IMPLEMENTATION 119

only two commands, SetConfiguration and GetDFNames, are not imple-
mented. This means that 33 out of 35 commands are implemented for DES-
Fire EV1.

The DESFire EV1 smart card used during the evaluation is required to
meet certain conditions. The PICC master key is set to 016 and the type of
key is AES. The PICC master key settings are set to 0FH. The following test
plan details the tests taking place. The results of the test cases implemented
in JUnit 4 are presented in Table B.1. All the test cases are done using all
the different ciphers available—DES, 2K3DES, 3K3DES and AES.

100/Security Authenticate at PICC-level (key with version bits cleared).

101/Security Authenticate at PICC-level (key with version bits set).

102/Security Authenticate at application-level with key number 00H (key
with version bits cleared).

103/Security Authenticate at application-level with key number 00H (key
with version bits set).

104/Security Authenticate at application-level with key number different
from 00H (key with version bits cleared).

105/Security Authenticate at application-level with key number different
from 00H (key with version bits set).

106/Security Change PICC master key: from key with all version bits
cleared to key with all version bits set and vice versa.

107/Security Change application master key: from key with all version
bits cleared to key with all version bits set and vice versa.

108/Security Change application key different from 00H: from key with all
version bits cleared to key with all version bits set and vice versa.

109/Security Change the PICC master key using X as version. Verify if
the key version returned by the PICC is X.

110/Security Change the PICC master key settings to 0FH. Verify if the
key settings are correct.

111/Security Change the key settings of an application to 0DH. Verify if
the key settings are correct.

120 APPENDIX B. NEW NFC JAVA LIBRARY

112/Security Successfully retrieve the manufacturing related data of the
card.

113/Security Successfully retrieve the card UID.

114/Security Authenticate and format the card.

115/Security Attempt to format the card without a preceding authentica-
tion. The command fails.

116/Security Retrieve the free memory on the card.

200/Application Successfully select the AID 00 00 00H.

201/Application Attempt to select the AID of a non-existing application.
The command fails.

202/Application Create an application.

203/Application Attempt to create an application with an existing AID.
The command fails.

204/Application Create an application and then delete it successfully.

205/Application Attempt to delete a non-existing application. The com-
mand fails.

206/Application Create file X. Delete file X. File X does not exist after
deletion.

207/Application Attempt to delete a non-existent file. The operation fails.

208/Application Create multiple files from 0 to 31 and verify if the amount
of file identifiers is correct.

209/Application Create file X. Get and verify the properties of file X.

210/Application Attempt to get the properties of a non-existent file. The
operation fails.

211/Application Create a file and successfully modify its properties.

300/SDF Create a standard data file.

301/SDF Create a standard data file and write X with offset Y . Read the
entire file and verify if X is written at offset Y .

B.1. EVALUATION OF THE MDF IMPLEMENTATION 121

302/SDF Create a standard data file with size X and write data with size
> X to it. The writing fails.

400/BDF Create a backup data file.

401/BDF Create a backup data file with size > 512. To test the correct
message separation in frames, write the full file length and read the
entire file. Verify if the length and contents read are correct.

500/VF Create a value file with initial value X. A GetValue returns X.

501/VF Create a value file with initial value X. Increase the stored value
by Y . The new value stored in the file is X + Y .

502/VF Create a value file with initial value X. Decrease the stored value
by Y and by Z with Y 6= Z. The new value stored in the file is
X − Y − Z.

503/VF Create a value file with initial value X and with LimitedCredit

enabled. Decrease the stored value by Y . Successfully increase the
value by Y using LimitedCredit.

504/VF Create a value file with initial value X and maximum value M .
Increase the initial value by Y such that X + Y > M . The Credit

command fails.

505/VF Create a value file with initial value X and minimum value M .
Decrease the initial value by Y such that X − Y < M . The Debit

command fails.

506/VF Create a value file with initial value X and with LimitedCredit

enabled. Decrease the stored value by 5. Now increase the value by
1 using LimitedCredit. Repeat the previous command after commit-
ting. LimitedCredit fails. It can only be done once after a transaction
involving a Debit.

507/VF Create a value file with initial value X and with LimitedCredit

enabled. Decrease the stored value by Y . Now increase the value by Z
using LimitedCredit, such that Z > Y . LimitedCredit fails.

508/VF Create a value file with initial value X and with LimitedCredit

disabled. Decrease the stored value by Y . Now increase the value by
Y using LimitedCredit. LimitedCredit fails.

600/LRF Create a linear record file.

122 APPENDIX B. NEW NFC JAVA LIBRARY

601/LRF Create a linear record file with record size X and number of
records Y . Create Y records. A full read returns X × Y bytes.

602/LRF Create a linear record file with two records. A read with offset 1
and number of records 0 returns 1 record.

603/LRF Create a linear record file with three records. A read with offset
0 and number of records 2 returns 2 records.

604/LRF Create a linear record file with record size 2. Create a record
containing 41 42H. A read of the created record returns 41 42H.

605/LRF Create a linear record file and write a record. Clear the record
file and attempt to read it. Reading fails because there are no records.

700/CRF Create a cyclic record file.

701/CRF Create a cyclic record file with record size 2 and number of
records 3. Create 3 − 1 records with contents 41 42H and 51 52H re-
spectively for the first and for the second records. A full read returns
41 42 51 52H.

702/CRF Create a cyclic record file with record size 1 and number of
records 3. Create 3 records with contents 1AH, 1BH and 1CH. A full
read returns 1B 1CH.

703/CRF Create a cyclic record file with record size 1. An attempt to write
a record with size > 1 fails.

800/File Create a value file with initial value X, credit Y and commit the
transaction. The value stored on the file is X + Y .

801/File Create a value file with initial value X, credit Y and abort the
transaction. The value stored on the file is X.

Id/context Key operations performed Test for Result

100/Security Authenticate success 4

101/Security Authenticate, ChangeKey success 4

102/Security Authenticate success 4

103/Security Authenticate, ChangeKey success 4

104/Security Authenticate success 4

105/Security Authenticate, ChangeKey success 4

B.1. EVALUATION OF THE MDF IMPLEMENTATION 123

106/Security Authenticate, ChangeKey success 4

107/Security Authenticate, ChangeKey success 4

108/Security Authenticate, ChangeKey success 4

109/Security GetKeyVersion, ChangeKey success 4

110/Security ChangeKeySettings,
GetKeySettings

success 4

111/Security ChangeKeySettings,
GetKeySettings

success 4

112/Security GetVersion success 4

113/Security GetCardUID success 4

114/Security Authenticate, FormatPICC success 4

115/Security FormatPICC failure 4

116/Security FreeMemory success 4

200/Application SelectApplication success 4

201/Application SelectApplication failure 4

202/Application CreateApplication success 4

203/Application CreateApplication failure 4

204/Application DeleteApplication success 4

205/Application DeleteApplication failure 4

206/Application DeleteFile, GetFileIds success 4

207/Application DeleteFile failure 4

208/Application GetFileIds success 4

209/Application GetFileSettings success 4

210/Application GetFileSettings failure 4

211/Application ChangeFileSettings success 4

300/SDF CreateStdDataFile success 4

301/SDF WriteData, ReadData success 4

302/SDF WriteData failure 4

400/BDF CreateBackupDataFile success 4

401/BDF WriteData, ReadData success 4

500/VF CreateValueFile, GetValue success 4

501/VF Credit, GetValue success 4

502/VF Debit, GetValue success 4

503/VF LimitedCredit, GetValue success 4

504/VF Credit failure 4

124 APPENDIX B. NEW NFC JAVA LIBRARY

505/VF Debit failure 4

506/VF LimitedCredit failure 4

507/VF LimitedCredit failure 4

508/VF LimitedCredit failure 4

600/LRF CreateLinearRecordFile success 4

601/LRF WriteRecord, ReadRecords success 4

602/LRF WriteRecord, ReadRecords success 4

603/LRF WriteRecord, ReadRecords success 4

604/LRF WriteRecord, ReadRecords success 4

605/LRF ClearRecordFile,
ReadRecords

failure 4

700/CRF CreateCyclicRecordFile success 4

701/CRF WriteRecord, ReadRecords success 4

702/CRF WriteRecord, ReadRecords success 4

703/CRF WriteRecord failure 4

800/File CommitTransaction success 4

801/File AbortTransaction success 4

Table B.1: Test case results of nfcjlib for DESFire EV1.

B.2 Evaluation of the MUC implementation

The number of commands, for the evaluation of the implementation of Ul-
tralight C, is taken from Table A.1. There are three commands, all of them
implemented in nfcjlib.

The Ultralight C smart card used during the evaluation is required to
meet certain conditions. The secret key is set to 016, the lock bytes are all
set to zero and AUTH0 is greater than or equal to 30H. The following test
plan details the tests taking place for the evaluation of Ultralight C. The
results of the test cases, implemented in JUnit 4, are presented in Table B.2.

900 Authenticate using the default secret key (016) with all parity bits
cleared. The authentication succeeds.

901 Authenticate using the default secret key with some parity bits set. The
authentication succeeds.

902 Change the secret key to X, where X is different from the default secret

B.2. EVALUATION OF THE MUC IMPLEMENTATION 125

key. Authenticate using X with all parity bits cleared. The authenti-
cation succeeds.

903 Change the secret key to X, where X is different from the default secret
key. Authenticate using X with some parity bits set. The authentica-
tion succeeds.

904 Authenticate with an incorrect secret key. The authentication fails.

905 Change the secret key. The command succeeds.

906 Update a user page. The commands succeeds.

907 Read a user page. The commands succeeds.

908 Write X into a user page Y . Reading page Y returns X.

909 Attempt to update a non-existent user page. The command fails.

910 Attempt to read a non-existent user page. The command fails.

Id Key operations performed Test for Result

900 Authenticate success 4

901 Authenticate success 4

902 Authenticate,
ChangeSecretKey

success 4

903 Authenticate,
ChangeSecretKey

success 4

904 Authenticate failure 4

905 ChangeSecretKey success 4

906 Update success 4

907 Read success 4

908 Update, Read success 4

909 Update failure 4

910 Read failure 4

Table B.2: Test case results of nfcjlib for Ultralight C.

Appendix C

Creation of digital certificates

This appendix shows the commands used to create the digital certificates
and to extract the private key from the keystore. Both keytool and OpenSSL
are used. The Spongy Castle security provider is added to the path when
handling the keystore of the client application. The certificate of the server
is tied to the Jelastic hostname squirrel.jelastic.planeetta.net.

Generate a key pair for the Root CA, export the self-signed certificate and import it into
the keystore of the client application.

$ keytool -genkeypair \

-alias myrootca -keyalg RSA -keysize 2048 -validity 365 \

-dname "cn=myrootca, ou=CSE, o=Aalto, l=Espoo, s=Uusimaa, c=FI" \

-ext bc:c -keystore ca.jks -storetype JKS \

-storepass rootpass -keypass rootpass

$ keytool -exportcert \

-alias myrootca \

-keystore ca.jks -storetype JKS -storepass rootpass \

-rfc -file myrootca.pem

$ keytool -importcert \

-alias myrootca -file myrootca.pem -keystore android.bks \

-storetype BKS -storepass changeme -noprompt \

-provider org.bouncycastle.jce.provider.BouncyCastleProvider \

-providerpath android-bks/scprov-jdk15on-1.47.0.2.jar

Generate a key pair for the server and import the self-signed certificate of the Root CA
into the keystore of the server.

$ keytool -genkeypair \

-alias squirrel.jelastic.planeetta.net -keyalg RSA \

-keysize 2048 -validity 365 \

-dname "cn=squirrel.jelastic.planeetta.net, ou=CSE, \

o=Aalto, l=Espoo, s=Uusimaa, c=FI" \

-keystore server.jks -storetype JKS \

-storepass changeit -keypass changeit

127

128 APPENDIX C. CREATION OF DIGITAL CERTIFICATES

$ keytool -importcert \

-alias myrootca -file myrootca.pem -keystore server.jks \

-storetype JKS -storepass changeit -noprompt

Export the keystore of the server into the PKCS12 storetype format and retrieve the
private key of the server using OpenSSL.

$ keytool -importkeystore \

-srcalias squirrel.jelastic.planeetta.net \

-destalias squirrel.jelastic.planeetta.net \

-srckeystore server.jks \

-destkeystore intermediate.squirrel.jelastic.planeetta.net.pkcs12 \

-srcstoretype JKS -deststoretype PKCS12

$ openssl pkcs12 \

-in intermediate.squirrel.jelastic.planeetta.net.pkcs12 \

-out squirrel.jelastic.planeetta.net.key -nocerts -nodes

Generate a CSR for the server.

$ keytool -certreq \

-alias squirrel.jelastic.planeetta.net \

-file squirrel.jelastic.planeetta.net.csr \

-keystore server.jks -storetype JKS \

-storepass changeit -keypass changeit

The Root CA uses the previously generated CSR to produce a signed certificate for the
server and the server imports the signed certificate into its keystore. This keystore is
accessed by the web server to retrieve the digitally signed certificate, which is sent to
clients during the setup of the secure connection.

$ keytool -gencert -alias myrootca \

-ext san=dns:"squirrel.jelastic.planeetta.net" \

-infile squirrel.jelastic.planeetta.net.csr -rfc \

-outfile squirrel.jelastic.planeetta.net.pem \

-keystore ca.jks -storetype JKS -storepass rootpass

$ keytool -importcert \

-alias squirrel.jelastic.planeetta.net \

-file squirrel.jelastic.planeetta.net.pem -keystore server.jks \

-storetype JKS -storepass changeit -noprompt

List the contents of the keystores.

$ keytool -list -keystore ca.jks -storetype JKS -storepass rootpass

$ keytool -list -keystore server.jks -storetype JKS -storepass changeit

$ keytool -list \

-keystore android.bks -storetype BKS -storepass changeme \

-provider org.bouncycastle.jce.provider.BouncyCastleProvider \

-providerpath android-bks/scprov-jdk15on-1.47.0.2.jar

	Cover page
	Abbreviations and Acronyms
	Symbols
	Contents
	1 Introduction
	1.1 Problem statement and methodology
	1.2 Structure of the thesis

	2 Background and related work
	2.1 Smart cards
	2.2 Near field communication
	2.2.1 Operating modes
	2.2.2 Standards
	2.2.3 Security

	2.3 Related projects

	3 MIFARE DESFire EV1
	3.1 Commands
	3.2 File system
	3.3 Security
	3.3.1 Cryptographic primitives
	3.3.2 Authentication protocol
	3.3.3 Keys
	3.3.4 Data transmission
	3.3.4.1 Communication settings
	3.3.4.2 Access rights

	3.4 Trace

	4 Remote card update
	4.1 Requirements
	4.2 Solution
	4.2.1 Architecture
	4.2.2 Transactions
	4.2.3 Protocol
	4.2.3.1 Failures
	4.2.3.2 Early-commit attack

	5 Implementation
	5.1 Tools and technologies
	5.2 Architecture
	5.2.1 Communication between the phone and the server
	5.2.2 Communication between the phone and the card
	5.2.3 Class diagrams and dependencies

	5.3 Flow of operations
	5.3.1 Acquiring a new update
	5.3.2 Updating the card

	5.4 Implementation issues

	6 Evaluation
	6.1 Experimental setup
	6.2 Experiments
	6.2.1 Experiment 1—functional requirements
	6.2.2 Experiment 2—reliability
	6.2.3 Experiment 3—security

	6.3 Analysis of requirements

	7 Discussion
	7.1 Rethinking the NFC Java library
	7.2 Improving the system
	7.2.1 UID and RID
	7.2.2 Token-based authentication
	7.2.3 Other enhancements

	7.3 Insights and applications

	8 Conclusions
	A MIFARE Ultralight C
	A.1 Memory organization
	A.2 Security

	B New NFC Java library
	B.1 Evaluation of the MDF implementation
	B.2 Evaluation of the MUC implementation

	C Creation of digital certificates

