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Thesis to obtain the Master of Science Degree in

Biomedical Engineering

Supervisors:
Prof. Mário Alexandre Teles de Figueiredo

Dr. Nickolas Papanikolaou

Examination Committee

Chairperson: Prof. Patrı́cia Margarida Piedade Figueiredo
Supervisor: Prof. Mário Alexandre Teles de Figueiredo

Member of the Committee: Prof. Maria Margarida Campos da Silveira

November 2019





Preface

The work presented in this thesis was performed at the Computational Clinical Imaging Group at Cham-

palimaud Centre for the Unknown (Lisbon,Portugal), during the period February-October 2019, under

the supervision of Principal Investigator Nickolas Papanikolaou. The thesis was co-supervised at Insti-
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Abstract

Lung cancer is the most pervasive and one of the deadliest types of cancer, leading to more than 2

million cases being diagnosed each year, and a mortality rate of 60%. CT screening trials have played

a key role in improving early detection of lung cancer, which has shown to significantly improve patient

survival. Apart from lesion detection, tumour segmentation is critical for developing radiomics signatures.

In this work, we propose a novel hybrid approach for lung lesion detection and segmentation on CT

scans, where the segmentation task is assisted by prior detection of regions containing lesions. For the

detection task, we introduce a 2.5D residual deep CNN working in a sliding-window fashion, whereas

segmentation is tackled by a modified residual U-Net with a weighted-dice plus cross-entropy loss.

Experimental results on the LIDC-IDRI dataset and on the lung tumour task dataset within the Medical

Segmentation Decathlon show competitive detection performance of the proposed approach (0.902

recall) and superior segmentation capabilities (0.709 dice score). Further validation of the models was

also performed, with key components of both models tested through several ablation studies, in order to

assess its contribution to the final models. These results confirm the high potential of simpler models,

with lower hardware requirements, thus of more general applicability.

Keywords

Radiomics, lung cancer, segmentation, deep learning, convolutional neural network, residual connec-

tions.
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Resumo

O cancro do pulmão é um dos cancros que atualmente afeta mais pacientes, com mais de dois milhões

de novos casos por ano, sendo ainda um dos mais mortais, atingindo um indice de mortalidade de 60%.

A utilização de rastreio recorrendo a tomografia computorizada foi responsável por um elevado incre-

mento na deteção precoce de lesões pulmonares, tendo mostrado levar a uma melhoria significativa na

taxa de sobrevivência dos pacientes com esta doença. Para além da deteção de lesões, a segmentação

tumoral é crı́tica para desenvolver assinaturas radiómicas. Neste trabalho, propomos uma abordagem

hı́brida para a deteção e segmentação de lesões pulmonares em tomografias computorizadas, onde

a tarefa da segmentação é assistida pela deteção prévia de regiões que contenham lesões. Para a

tarefa de deteção introduzimos uma CNN residual profunda 2.5D, capaz de produzir modelos menos

complexos, e que é aplicada sob a forma de uma janela deslizante. A tarefa de segmentação é abor-

dada recorrendo a uma rede U-Net residual modificada, cujo treino é realizado recorrendo a uma

funcão de custo baseada na soma da entropia cruzada e do coeficient dice ponderado. Resultados

experimentais com a base de dados LIDC-IDRI e na tarefa de segmentação de tumores pulmonares

da competição Decathlon da Imagem Médica comprovam a capacidade da deteção (sensibilidade de

0.902) e de segmentação (coeficiente de dice de 0.709) da abordagem proposta. Os modelos foram

ainda avalidos, sendo as suas principais caraterı́sticas testas através de diversos testes de ablação com

o intuito de verificar a sua contribuição para os modelos finais. Estes resultados confirmam o elevado

potencial de modelos mais simples, com necessidades mais baixas de hardware, e consequentemente

com uma aplicação mais generalizada.

Palavras Chave

Radiomics, cancro do pulmão, segmentação, deep learning, redes neuronais convolucionais.
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1.1 Motivation and Objectives

According to the World Health Organization (WHO) [1], cancer is the second leading cause of death

globally, amounting to 9.6 million deaths in 2018. Particularly, lung carcinoma is presently the most

pervasive type of cancer, totalling 2.09 million cases. Just in the United States of America (USA), it was

estimated that the number of new cases in 2019 would sum to more than 220 000 [88].

(a) Survivability statistics per cancer stage (b) Distribution of cases per stage

Figure 1.1: Distribution and 5-year survivability per lung cancer stage, during 2008 through 2014. Data from [88].

The best treatment strategies to fight lung cancer mainly rely on early detection, as there is a great

increase in mortality rates following the progression of the cancer stage (Fig. 1.1(a)) [9]. However, this

is not an easy task, with a large portion of lung cancer cases only being detected in its later stages,

which leads to the distribution seen in Fig. 1.1(b). In this context, screening trials with thoracic Com-

puted Tomography (CT) scan have been been shown to prevent fatalities associated with this disease.

Particularly, the National Lung Screening Trial (or NLST) showed a decrease in 15-20Yet, most machine

learning systems traditionally rely on hand-crafted features (a process known as “feature engineering”),

which not only demands domain-specific expertise, but is also time-consuming to set up. Recently, rep-

resentation models, and specifically neural networks, have lead a transformation in the field by removing

this necessity, and producing state-of-the-art performance in several tasks [30, 52]. Particularly deep

learning architectures, a sub-set of neural networks, have enabled the fast development of highly accu-

rate models [78], with extraordinary results in several fields, and specifically in computer vision [78,108].

Recent attempts to transfer this knowledge to the medical imaging field have been mostly focused in

trying to use models that were originally developed for computer visions tasks, namely object detection

and image recognition [7,19,33,59,105]. One disadvantage of these approaches is the large complexity

of the produced models, which was adapted for the comparatively extensive data-sets in the computer
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vision field, but that lead to under-performance in the context of medical imaging tasks when evaluating

its ability to generalize [28]. The increased size of these models is also responsible to extreme compu-

tational and memory requirements [40,80], which leads to the necessity of highly capable machines for

both training, and posterior inference in unobserved CT images.

The main goal of this dissertation is to develop a simpler model that can perform the two most rele-

vant tasks within lung cancer screening: these are detection and segmentation of lesions. Such model

would be of great value to the medical community, due to both the significance of these tasks within

radiologists’ pipeline, as well as the increased usability of such models in clinical practice.

1.2 Approach and Organization

In order to achieve the goal of a simpler, non-overfitting model, a significant effort was made to avoid

previously explored complex models. Through a thorough analysis of basic principles in deep learning,

as well as an understanding of both the limitations of the current state-of-the-art, significant and novel

components, and methodologies to avoid overfitting, this objective became achievable. A pipeline was

then assembled to provide the deep learning models with the best possible pre-processed training data,

and extensive testing of several approaches to detection and segmentation models was then made,

with the intent of both optimizing the models’ architectures, and their training. These two steps were

approached with future reproducibility in mind, leading to the production of an open online python library.

The final goal of the work was achieved by integrating the detection and the segmentation models into

a hybrid model, and then performing considerable evaluation of both, with a comprehensive comparison

with the state-of-the-art. An evaluation of the short-comings of this proposal was performed, leading to

suggestions for the improvement of the approach and future work directions.

Following the described approach, this dissertation was divided into 6 chapters:

• Chapter 1: Motivation and objectives for the work are enunciated. Contextualization of the problem

within both the clinical, and the technical setting is provided.

• Chapter 2: Background on the data, the clinical problem, and its connection to the recent field

of radiomics give is given. The technical problem is formalized, and the background for Deep

Learning architectures is provided, along with the state-of-the-art for the detection and segmenta-

tion task. The chapter ends with an overview of how to avoid overfitting when solving a medical

imaging problem using machine learning.

• Chapter 3: Pre-processing, curation, and augmentation methodologies are described, together

with the details of the implementation.
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• Chapter 4: Final components of the network are introduced, and both the detection and the seg-

mentation network architectures are defined. Several possible designs are presented, and tested.

The training of both models is also described.

• Chapter 5: The final hybrid model, LungSD-Net, is presented, and all its components are evaluated

and compared with the state of the art.

• Chapter 6: Conclusions are drawn, and future work is recommended. Final remarks on the repro-

ducibility of the work are made.
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2.1 Lung Cancer and Radiomics

This chapter starts by establishing the context for the used data as well as the tasks at hand, through the

introduction of key concepts on lung cancer. This will be connected with the emerging field of radiomics,

where it will integrated within the radiomics platform.

2.1.1 Lung Anatomy and Anatomical Context

Figure 2.1: Anatomical representation of the lungs adapted from [68]

The lungs are highly complex biological structures located in the thoracic region that serves as the

main organs in the respiratory system (Fig. 2.1). Each lung has three borders and two surfaces (costal

and mediastinal). These are involved by the pleura, a serous membrane which is comprised of two

internal layers (parietal and visceral), separated by the heart and other mediastinum contents that are

placed in the central region of the thoracic cavity. The enveloping structures of the lungs are the rib

cage, which is composed by the sternum and the ribs, and provides structural rigidity and protection,

and the intercostal muscles, which engage in the respiratory exercise [32].

2.1.2 Types of Lung Lesions

According to their location, lung nodules can be classified as isolated, peri-fissural, juxta-vascular, or

juxta-pleural [98]. Isolated nodules are well-circumscribed lesions in the central region of the lung

parenchyma and, as the name indicates, are detached from any adjacent structure. On the other hand,

all the other lesions are connected to other structures. Namely, peri-fissural nodules occur adjacent

to lung fissures, whereas juxta-vascular nodules appear attached vascular vessels, and juxta-pleural
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nodules are attached to the pleura. These last nodules tend to be more difficult to detect [98]. The

evaluation of nodule texture is also relevant, with three main types arising: solid, sub-solid and non-solid

lesions. Solid lesions have high contrast in comparison to the parenchyma, and well-defined margins,

which leads to both easy detection and segmentation. Both sub-solid and non-solid lesions are the hard-

est to segment due to its highly irregular margins. Furthermore, non-solid nodules are usually diffused

abnormalities, therefore the most difficult to characterize, in opposition to sub-solid nodules, which only

partially obscure the lung parenchyma [8].

2.1.3 Computed Tomography

CT is a cross-sectional imaging technique that corresponds to an X-ray attenuation projection along

multiple directions, ultimately yielding a complete 3D view by compiling a series of slices from the orig-

inal 3D object. This is possible through the use of computed reconstruction, which attributes a linear

attenuation value, µ, to an individual voxel [14, 44]. In order to standardise the attenuation value to a

specific voxel, the so-called Hounsfield Units (HU) are used. These correspond to the normalization of

attenuation values with respect to the water attenuation value, and are given by

HU =
µ− µwater
µwater

× 1000. (2.1)

Ideally, water would have a value of zero HU, but due to variations in the acquisition, this is rarely the

case. The attenuation coefficients in HU of different types of tissues relevant for the thoracic CT scan

are shown in Figure 2.2.

Figure 2.2: HU Values for different tissues commonly seen in a thoracic CT scan: −1000 HU correspond to black
and +1000 HU correspond to white in a gray-scale image. The wide range of HU of the bone tissue
is due to variable bone structures which may have a higher (cortical bone) or lower density (trabecular
bone). (from [14])

CT scans allow the user to access internal information of the scanned objects, which has lead to

extensive use of this technique in clinical practice [14]. Axial and helical CT scans have, in particular,

become the most common medical examination techniques in the case of thoracic scanning [14, 50].

An example of a thoracic CT scan is displayed in Fig. 2.3, illustrating a correspondence of some of the

tissues mentioned in Figure 2.2 and their representation in a reconstructed image.
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Figure 2.3: The lung parenchyma, due to its percentage of air has an extremely low value in HU. One of the major
problems in lung lesion detection is high amount of vascularization in the lungs, which lead to blood
vessels being confused as nodules.

In the context of lung cancer, screening trials with helical CT have been been shown to prevent

fatalities associated with this disease. Particularly, the NLST showed 15-20% lower risk of death for

participants who underwent low dose helical CT scans, in comparison to other methods [96]. This

type of program has been extensively implemented in the USA and is currently being adopted by other

countries [69].

Comparatively, non-ionizing methods, as magnetic resonance imaging, face several challenges in

the context of thoracic scanning, such as the low signal to noise ratio, susceptibility to artifacts arising

from multiple air-tissue interfaces, as well as motion artifacts due to cardiac, vascular and respiratory

movements [102]. The lung lesion detection and segmentation system developed in this work will be

designed to deal exclusively with CT scans.

2.1.4 Radiomics

The large datasets arising from different efforts to improve medical information, together with the advent

of high-performance computing, have enabled the development of the field of radiomics [70]. It is now

possible to extract high-dimensional features from medical images, the so-called radiomic signatures.

These signatures combined with machine learning methods, such as feature selection methods, classi-

fication models, or deep learning algorithms, are used to predict cancer-related outcomes [28]. Within

this framework, it is common to talk about the radiomics pipeline [64], which describes several steps

between the detection of a lesion, and the final classification of its radiomic signature. The segmen-

tation of volumes of interest (VOI) around lesions, and possible sub-regions (i.e., habitats) within the

tumour, is critical, as radiomic features are directly extracted from the VOI. Therefore, the development
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of semi- or fully-automated methods for both detection and segmentation of lesions, is of great value

in clinical application, to avoid the intrinsic inter-reader variability of human VOI segmentation. [66, 70].

Moreover, manual detection and segmentation of lung nodules and tumours require a large amount of

tedious, expensive, and time-consuming work by human experts (radiologists) [28, 78]. Automatic tools

can thus be extremely useful in daily clinical work and will play a pivotal role in increasing the quality of

early cancer detection and diagnosis [70].

2.2 Deep Learning

Currently, most automatic tools used in the tasks of detection and segmentation of lung lesions rely

on machine learning methods. These are methods within the field of artificial intelligence that can learn

patterns from data and use them to perform predictions based on unobserved data. In the context of this

work, we will deal with a sub-set of machine learning methods that seek to find a function, F , that maps

the observations into desired outcomes, by learning a set of paremeters of F , θ. These are learned from

a set of labeled pairs of observations and outcomes known as training set. Traditional machine learning

methods come with several drawbacks, one of the main ones being their reliance on engineered/de-

signed data representations [11, 30]. Representation learning algorithms, of which neural networks are

a very successful example, are able to learn without any prior feature engineering. These rely on a se-

ries of non-linear transformations of the data that lead to increasingly deeper levels of abstraction, and

which will be introduced in Sections 2.2.2 and 2.2.3, and further discussed in Section 2.2.4. When the

number of non-linear transformations (or, as discussed below, layers) is more than three, the models are

called deep [30]. Recently, what once was thought impossible, increasingly more complex models have

been able to achieve outstanding results in computer vision tasks [52, 77]. These deep learning archi-

tectures have become the state-of-the-art models in tasks such as image recognition, object detection,

and object segmentation, and have been extended to several fields, including medical imaging [33].

2.2.1 Problem Formulation

Before any further explanation of neural networks and deep learning, this subsection introduces some

notation regarding the tasks at hand by formalizing the lung lesion detection and segmentation problems.

First, the task of finding nodules in a CT image will be defined. Consider the observation X ∈

Rn,where n = H ×W ×D, which denotes the 3D tensor of dimension H ×W ×D corresponding to the

CT image after being stacked into a n-dimensional vector, where each entry represents one voxel (or

3D pixel) of the data scan. The goal is to find the set of coordinates for each lesion that is present in X,

which can be denoted as D = {(y11 , y12 , y13), ..., (yN1 , y
N
2 , y

N
3 )}, where N denotes the number of existing

nodules in X and (y11 , y
1
2 , y

1
3) ∈ {1, ...,H} × {1, ...,W} × {1, ..., D} is the vector of voxel coordinates of
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the i-th lesion. Let F1 be defined as a function that corresponds to the detection model, that is

F1 : Rn −→ ({1, ...,H} × {1, ...,W} × {1, ..., D})∗, (2.2)

where ∗ is the Kleene star. The problem of learning a lung lesion detector is defined as that of finding

a function F1 as defined in Equation 2.2. This problem can also be restructured if a strict bounding-box

around each nodule is required. In this case D would be rewritten as

D = {(y11 , y12 , y13 , y14 , y15 , y16), ..., (yN1 , y
N
2 , y

N
3 , y

N
4 , y

N
5 , y

N
6 )}, (2.3)

where y1−3 are the coordinates of the nodule’s centroid, and y4−6 are the sizes of the bounding-box.

Similarly, for the task of segmenting a lung lesion, let Z ∈ Rm be defined as a 3D cubic patch of a

CT scan that contains a nodule, and S with the same dimensions as Z, where each voxel si ∈ {1, 0},

depending on being part of a nodule or not. Let F2 be defined as the function that maps Z to S, from

onwards called segmentation model :

F2 : Rm −→ {0, 1}m. (2.4)

Finally, the problem of learning to segment a lung lesion is defined as that of finding F2.

The solution to these problems will be presented in Sections section 4.2 and section 4.3. For the rest

of this chapter, both models will be referred to abstractly as a mapping F : Rn −→ Rm.

2.2.2 Neural Networks

Neural networks (NN) are biologically-inspired machine learning models that have dramatically improved

the state-of-the-art in speech recognition, visual object recognition, object detection, and several other

domains [52], and will be the backbone of all the work developed in this thesis. Figure 2.4 shows a

simple feedforward forward neural network with two hidden layers, where, in contrast with other types

of networks (such as the recurrent neural network), information only flows from the input, going through

each layer, and finally reaching the output. The goal of a feedforwad network is to approximate a function

F and it is the quintessential deep learning model [30].

The simple architecture presented in Figure 2.4 is called the multilayer perceptron (MLP), and it is

formed by a set of units that are all connected to each unit in the following layer. The value of the j-th

element of layer k + 1 computed according to

zk+1
j =

∑
xk
i ∈Hk

wki x
k
i + bk (2.5)
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Figure 2.4: Representation of a feedforward network with two stages. The pre-activation z is also presented, fol-
lowed by the activation function g, that generate the hidden unit x1i .

xk+1
i = σ

(
zk+1
j

)
, (2.6)

where σ : R←→ R is called the activation function, Hk is the set of elements in the n-th layer, and bk is

a bias term. Assuming a K0-dimensional input X ∈ RK0 , represented as x0, and each hidden layer Hk

having Kk hidden units, Equations 2.5 and 2.6 can be rewritten as

zk+1 = Wkxk + bk, (2.7)

and,

xk+1 = σ
(
zk+1

)
. (2.8)

with W ∈ RKk×Kk+1 , and bk ∈ RKk .

The overall network function of a MLP with K+1 layers can then be written as a composition of each

of its hidden layers [30]:

F ∗(x0; θ) = σK(WKσK−1(...σ1(W1(σ0(W0x0 + b0) + b1)...) + bK), (2.9)

where θ is a vector containing all the parameters of the network, i.e., all the weight matrices W 0,...,W k

and all the bias terms b0,...,bk.

One of the main advantages of these models is given by the Universal Approximation Theorem, which

states that, given enough hidden units, a network with a single hidden layer can approximate arbitrarily

well any continuous function [38]. The key concept is that each unit of the hidden layer computes a

representation of the input and then propagates it forward. These models are trained using the gradient
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descent algorithm (or other versions thereof) which will be explained in Section 2.2.7. Even though

simple feedforward networks are not used directly in current state-of-the-art models, they serve as a

basis for recent developments, and are still used as an integrating part of newer architectures.

2.2.3 Convolutional Neural Networks

Convolutional neural networks (CNN) were originally developed for handwriting recognition [54], but a

wide range of other applications have ensued, becoming one of the most successful architectures [52].

CNN are inspired by the working principles of the primary visual cortex in animals. Several descriptions

of a convolutional neural network have been presented, but this section will rely on the original work

of [54] and its recent description by the same author in [52], which presents a CNN as being comprised

of two main building blocks: convolutional layers and pooling layers.

Figure 2.5: Example of 2D convolution with no kernel flipping. Drawn boxes with arrows indicate how the first
element of the output is calculated by applying the kernel to the upper-left region of the input tensor.
Image adapted from [30]

Convolutional layers are based on the previously described units from the feedforward network, and

rely on the convolution operation to calculate the pre-activation, z, which, in the case of images, is

extended to a two-dimensional kernel [30],

convolution(X,K)(i, j) =
∑
m

∑
n

X(m,n)K(i−m, j − n), (2.10)

where X is a two-dimensional tensor and K is a two-dimensional kernel. In the context of neural net-

works, a related function called the cross-correlation is used [30]
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cross-correlation(X,K)(i, j) =
∑
m

∑
n

X(i+m, j + n)K(m,n), (2.11)

which only differs from the convolution by not flipping the kernel. In the context of machine learning pro-

gramming several libraries also call this function convolution. This convention will be followed throughout

the rest of this work, and denoted with ∗. See Fig. 2.5 for an example of a convolution with no kernel

flipping applied to a 2-D tensor.

In convolutional layers, the weights that connect layer Hk to layer Hk+1 are the values of the kernel,

and are calculated as shown in Fig. 2.5. This operation can be formalized in the context of NNs by

defining each value of the output Xk+1 in layer Hk+1, which is called the activation map, as a result of

applying the convolution operation to Equation 2.6, and is given by

xk+1
i = σ(zk+1

i ). (2.12)

Here, σ is the previously-defined R −→ R activation function that is applied to the pre-activation, zk+1
i ,

obtained by convolving the d× d kernel Kk, with a single d× d patch of Xk:

zk+1
i =

(
d−1∑
n=0

d−1∑
m=0

Xk(i+m, j + n)K(m,n)

)
+ bki . (2.13)

Similarly to the feedforward network, Equations 2.12 and 2.13 can be simplified into:

Xk+1 = σ(Xk ∗K + bk). (2.14)

where σ denoted the component-wise aplication of the activation function. Besides the variable sizes

between kernels, the convolution can also be applied with different shifts in the pixels of the kernel; this

is called stride. The relationship between size of the image, size of the kernel, and stride is relevant to

determine the size of the output. For instances, given an M ×M image and d× d kernel, with stride s,

the resulting output will be of size N ×N , where

N =
M − d
s

+ 1. (2.15)

In practice, it is also common to apply zero-padding to the borders of the input, in order to both reduce

the shrinking of the output size, and also give more information about the border pixels. In order to

preserve the output size it is common to use a padding size of (d−1)
2 .

Moreover, often several kernels are applied in a single convolutional layer, yielding one activation

map per kernel, which is the result of convolving each kernel with the full space image [77]. Each

activation map, Xk
i , can be computed using Equation 2.14 for each kernel, Kk−1

i :
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Xk
i = σ(Xk−1 ∗Kk−1

i + bk). (2.16)

Figure 2.6: Multi-kernel convolution. The inner box i represents the region of the image to which each of the
kernels K1, Ki, and KN are applied to generate outputs a1,ai, and aN , in each of the activation maps.
To generate the full activation maps A1, Ai, and AN each kernel needs to convolve with the full image.
For simplification purposes only three kernels are represented.

Pooling layers are applied alternating with the convolutional layers. However, two or more convolu-

tional layers may appear together in the architecture before a pooling layer. This layer is responsible for

making the representation approximately invariant to small translations and oscillations of the input [30]

and is usually associated with downsampling [52]. Several types of pooling exist, such as the average

of a rectangular neighbourhood, the `2-norm of a rectangular neighbourhood, or a weighted-average

based on the distance from the central pixel. One of the most used pooling operations is max-pooling

which reports the maximum value within a rectangular neighbourhood [30, 47]. This will be the pooling

operation used in this work, and is depicted in Figure 2.7.

The application of the convolution operation to neural networks brings several ideas that improve the

way these systems encode information. First of all, information is encoded through a typically smaller

number of interactions, in comparison to traditional FC neural networks. This is a consequence of

using a kernel smaller than the input image (as seen in Fig. 2.6), allowing the network to have fewer

parameters. On the other hand, each parameter is used for more than one ”function” in a model, further

decreasing the memory requirements and improving the statistical efficiency of the network [30]. Finally,

one key interpretation of a CNN is that each layer is trained to extract specific features from the input,

with a higher level of complexity found in layers closer to the output [47,55].
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2.2.4 Feature Extraction and Linear Classifiers

Before continuing to the state-of-the-art models in each of the tasks of this work, we will make a short

detour by giving some intuition on how these models might be interpreted.

Usually, modern CNN architectures are built with both convolutional and pooling layers, as well as

fully connected (FC) layers, i.e, layers based on the feedforward networks architecture. In the context

of a classification CNN architecture, as those shown in Section 2.2.5, it is possible to interpret the con-

volutional and pooling layers as feature extraction sub-networks, and the latter FC layers as a decision

sub-network [49]. Depending on the number of hidden layers, this can be a linear classifier (zero hidden

layers), or a non-linear classifier (one or more layers). Specifically, in the case of object detection, the de-

cision sub-network is often called a detection network. In the case of a classification problem, it is quite

common to have a softmax unit as the last activation function [52], which is given by g : Rd −→ [0, 1]d,

such that

(g(z))l =
exp(zl)∑
n

exp(zn)
, (2.17)

thus (g((z))1, ..., g((z))d) can be interpreted as the posterior probability classes.

In the case of segmentation CNN architecture, as the ones presented in Section 2.2.6, it is harder to

formalize an abstraction for a decision sub-network, as these networks usually don’t use FC layers, and,

instead, convert the final feature map to pixel-by-pixel (or voxel) classification using a 1x1 convolutional

layer.

Another interpretation of a deep CNN is that the last layer works as a linear model applied to a

transformed input φ(X), where φ is a non-linear transformation. Under this interpretation, all the layers

work to transform the input into a representation that can be used as an input for a classification model.

This insight is used to motivate recent work in which the last layer of a deep NN is substituted by another

classifier [22,46,95] or the penultimate one is used as an input for other models, both isolated or mixed

Figure 2.7: Image represents max-pooling operation. A max operation is applied to each rectangular neighbour-
hood (denoted in blue). In this case the neighbourhood is a 2x2 window with a stride of 2.
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with engineered features [15,82].

Figure 2.8 summarizes some of the key concepts. These were intended to deliver some intuition

behind a CNN architecture with fully connected layers, in the context of a classification task.

Figure 2.8: Representation of a CNN architecture with fully-connected layers at the end, designed for a classifica-
tion task. The feature extraction is performed by the convolutional layers followed by pooling, while the
fully-connected layers at the end can be interpreted as a classifier.

2.2.5 Object Detection Networks

The generic object detection task in computer vision closely relates to the task of finding lesions in med-

ical images. In recent years we have seen a large improvement that was mostly due to new advances in

DL models applied to object detection. This leads to a large knowledge transfer between fields, as will

be shown, and enabled several deep learning models to be used in medical imaging.

2.2.5.A Image Classification

The generic object detection task saw strong improvements after the development of deep CNNs for

image classification, starting with Alexnet [47]. Its results were mostly due to an increase in the num-

ber of kernels per layer, as well as stacked convolutional layers [108]. This work was then followed by

the VGG-16 [89], which increased the number of hidden layers to 16. Even though with an extremely

large number of parameters (originally it was trained during 2-3 weeks on 4 GPUs), it became the pre-

ferred choice for extracting features and served as the backbone for the early object detection models
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based on DL. The next great improvement in the image recognition task was the use of residual connec-

tions, which yielded one of the state-of-the-art models, the ResNet [36]. The residual connection will be

presented in Section 4.1.1. Almost in parallel (even if slightly earlier), the inception module [94] was pro-

duced, allowing a strong reduction of the size of the models with almost no detriment to its classification

accuracy.

Figure 2.9: Two main frameworks for DL object detection models: region proposal based and regression/classifica-
tion based. SPP: Spatial Pyramid Pooling, FRCN: Fast R-CNN; RPN: Region Proposal Network; FCN:
Fully Convolutional Network; BN: Batch Normalization; DL: Deconvolutional Layer. Adapted from [108].

2.2.5.B Generic Object Detection Models in Computer Vision

Finally, getting closer to the final architectures that are currently used to tackle detection problems,

generic object detection models followed two categories (Fig. 2.9): (1) architectures that rely on a two-

step process, first generating region proposals, then classifying each proposal into different object cat-

egories; (2) architectures that applied an unified approach to achieve both categories and locations, by

approaching the task as a regression or classification problem [108]. Recent region proposal models

have in their core three main components: a backbone network that is responsible for extracting the

features (feature extraction sub-network), a detection sub-network that uses the features to find a vector

of coordinates and a bounding box for each object found, and a Region Proposal Network (RPN). The

intermediate RPN sub-network is convolutional and produces a prediction of object bounds and scores,

and connects the features to the sub-detection network [81]. These sub-networks are usually trained

separately. On the other hand, one-step frameworks map straight from the image features of the last

feature map, to the bounding box coordinates and class probabilities. You Only Look Once (YOLO) [79],

one of the recent models following this scheme, performs this task by first dividing the input image into

a grid and then predicting both a bounding box, as well as a confidence score for each class. Finally,

the lastest improvement in object detection was the introduction of the Retina-Net [58], which works as

a single unified network composed of a backbone and two task-specific sub-networks dedicated to the
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classification and box regression tasks.

Figure 2.10: Scheme of the Faster R-CNN architecture. The feature map produced by the backbone network will
be used by the RPN, in a sliding-window fashion, to generate a set of rectangular object proposals that
are used by a Region of Interest (ROI) pooling layer to extract feature map regions. These are used
by a detection network to produce the true bounding box and a classification for each object found.
Details on the region proposal mechanism are given in Fig.2.12

.

2.2.5.C Lung Lesion Detection Models

Even though these models were developed to find a huge number of classes, not comparable to those

in a lesion detection task, several approaches in the field were based on these architectures. However,

one problem arises when comparing medical imaging with RGB images: the later is 2D, whilst the

former is 3D. Several approaches have only relied on models which use information from single slices

of the original volume to perform their tasks, therefore ignoring the intrinsic 3D nature of the data [64].

Recently, there has been an increased interest in using 2.5D models, which are based on multiple slices

of the image data [33], as well in using pure 3D architectures, where the convolution operations of the

DCNN are performed on the 3D data [16]. Although there are clear advantages in using 3D DCNNs,

there are also severe limitations, due to very high GPU memory requirements and higher potential for

overfitting [42].

Most of the works in computer vision try to tackle the problem of finding the detection model defined

in Equation 2.2, with the formulation of D as a set of the coordinates of each lesion and their bounding

box. Some have engaged this task based on a region-proposal-based model, mostly using the Faster

R-CNN [81], the architecture that first introduced the RPN (Fig. 2.12(a)), and which was able to deliver

real-time object detection in several real-world applications [108]. Details of the Faster R-CNN are

described in Figure 2.10. Most of the works that followed that approach had to adapt those architectures
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Figure 2.11: Scheme of the YOLOv2 architecture. A backbone network produces a feature map that is used by a
fully convolutional detection network, with no pooling layers to generate the final output (presented in
Figure 2.13(b)). The feature map are reorganized through the operation described in Figure 2.13(a),
and concatenated to a layer inside the detection network, in order to provide higher grain features.

to the different requirements of medical imaging. The addition of deconvolution layers to a 2.5D Faster

R-CNN [19] has produced state-of-the-art performance for non-3D architectures. A 2D Faster R-CNN

relying on boosting approaches for both the RPNs and the decision sub-networks was proposed in [105].

Recently, a hybrid model that performs both detection and classification of lung lesions, the DeepLung,

uses a 3D Faster R-CNN for the first stage [109]. The architecture of this model was upgraded using both

residual connections, and dense connections. These last are simple extensions of residual connections

that allow to increase the propagation of information across different levels of the NN. This model was

then called, a 3D Faster dual-path R-CNN and, even though with heavy computational and memory

requirements, it was able to achieve state-of-the-art results in the lung detection task.

Several works have been based on a newer version of the YOLO, the YOLOv2 [80], which combines

some strategies used in the Faster R-CNN, such as the use of anchor boxes and dimension clusters,

with further improvements, such as batch normalization and multi-scale training. These enhancements

led to a slight increase in accuracy, and a vast speed improvement in comparison to the Faster R-CNN.

One of the main goals of YOLOv2 was to make the representation easier to learn. This extremely fast

model was also applied, with small adjustments, to the lesion detection task [7], leading to competitive

results.

Finally, the RetinaNet was also very recently applied to this task, by being modified to allow 3D

images as input, and integrated an end-to-end deep learning based approach for lung cancer screening.

The full pipeline of this approach led to better-than-human results in the task of classifying a lesion as

malignant or non-malignant [6].
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(a) Region Proposal Network (RPN) (b) Sliding-window and anchors

Figure 2.12: Region proposal mechanism. a) In a sliding window fashion, patches of the feature map are extracted,
which are convoluted with k predefined anchors, to generate a fixed sized vector. These are used first
by a general FC layer and then fed to two sibling FC layers: a regression and a classification layer. b)
Each window from the sliding window will be convoluted with the k rectangular, fixed sized, anchors.

(a) Reorganization Operation (b) Structure of the output

Figure 2.13: Details on the YOLOv2 architecture. a) The reorganization operation takes every alternate voxel and
places it in a different positon, reducing, in the example, the size of the input ot half and creating 4
new channels. b) The output of the network is dividided in a grid, and assigns a position and box-size
vector y = [y1, y2, y3, y4], as well as a probability distribution over each class for a set of n anchors
(similar to Fig. 2.12(b)), to each entry.

2.2.6 U-Net and other Segmentation Networks

2.2.6.A Before the U-Net

In the context of computer vision, there have been multiple approaches to image segmentation with

deep learning models. Early work in the field used patch-wise CNN [23], which are architectures that

look at a small rectangular neighbourhood (often square) in the image, and output a classification for

that region’s central pixel. By running this operation for all the regions in an image, each pixel in the

image is associated with a label. The specific approach in [23] also used other techniques such as

superpixels and segmentations trees. Following the large breakthrough in image classification with deep

learning models [47,89], a fully convolutional network was also developed for this task with a structured
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Figure 2.14: Comparison between a typical classification CNN (on top) and a fully convolutional network (below).
As depicted, both architectures share a feature extraction sub-network. The changes to the fully
connected network are the substitution of the fully connected layers by a deconvolution and a 1 × 1
convolution.

output [60]. This network relied on a pre-trained CNN (originally AlexNet [47], VGG-16 [89] and the first

version of the InceptionNet [94] were tested), with two major modifications to turn it into a segmentation

CNN:

1. The last layer was changed to a 1×1 convolutional layer, therefore allowing the network to output a

spatial map (i.e., a tensor that assigns a label to each pixel), instead of a classification label vector.

2. In order to ensure that the spatial map has the same dimensions as the input image, an up-

sampling layer was also added (also called deconvolution layer), which implements the deconvo-

lution operation, or more accurately the transposed convolution (Fig. 2.15).

The work in [60] also uses residual connections, which will be described in Section 4.1.1.

2.2.6.B U-Net and its application to medical imaging

The U-Net model [83] was built upon the previous fully convolutional network [60]. It is also a fully

convolutional network, but it is trained from scratch and can be divided in two sub-components: an

encoder (a down-sampling path that produces a high-density low-resolution feature map) and a decoder

(an up-sampling path, which translates the features into the final spatial segmentation map) (Fig. 2.16).

The down-sampling operation is the already presented max-pooling (Fig. 2.7), while the up-sampling

operation is the deconvolution (Fig. 2.15).
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(a) Non-strided (b) Strided

Figure 2.15: Examples of non-strided (a) and strided (b) deconvolution. The output of the operation is represented
on the top, in light blue, while on the bottom, the input for the operation is represented in dark-blue.
The black pixel is obtained by convolving the pixels inside the dashed square in the input, with a 3× 3
kernel.

In order to increase the feature content in the decoder path, at each up-sampling step, a concatena-

tion is performed with feature maps from the encoder path of corresponding size. This model is currently

the state-of-the-art for several image segmentation tasks, being widely used in medical imaging [87].

One major adaptation of this model for anatomical and lesion segmentation in medical images was the

nnU-Net (no-new-U-Net) [42], which, without changing any of the core components of the U-Net, was

able to achieve state-of-the-art results in several medical segmentation tasks, one being lung tumour

segmentation. It relies on extensive data curation techniques, as well as on a cascade scheme which

combines two U-Net models in sequence, allowing the use of a 3D architecture [16] without overflowing

the GPU memory.

In parallel, another U-Net-based architecture was developed in order to tackle the lung lesion seg-

mentation task. This work introduced a central focused double branched CNN, or CF-CNN, which relied

on a novel pooling able to pool features mostly from the center of the feature map [101]. The goal of this

approach was to have the model focused in the center of the input image, assuming a VOI around each

lesion was already detected. That work was able to achieve state-of-the-art results, at the cost of huge

amounts of training time, as well as an extremely high computational requirement.

Recently, residual connections have also been added to the U-Net [4, 18], with positive results, but,

at the time of writing, no U-Net with added residual connections was found to have been applied to lung

lesion segmentation.

2.2.7 Loss Function and Model Training

As mentioned in Section 2.2.2, the goal of a neural network is to aproximate an unknown function F

with a model F (X; θ). In the case of supervised learning, the set of paremeters θ = {Wk,bk} for all

layers k that define F are learned from the training data, a set of labelled pairs of observations and
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Figure 2.16: Descending arrows in the encoder path denote a 2×2 max-pooling operation, while ascending arrows
in the decoder path denote a 2× 2 up-convolutional operation. Every convolution uses a 3× 3 kernel.
Blue dashed arrows represent the cropping of the feature map from encoding path and concatenation
to the feature map of the decoding path. The original U-Net architecture has four down-sampling and
up-sampling operations, yielding five levels. These levels were omitted for representation purposes,
therefore only showing three levels.

outcomes, D = {(X1, Y 1), ..., (XM , YM )}. The goal will be then to find the best set of parameters θ,

that will minimize some measure of difference between the true output in the training data Y , and the

estimated Ŷ , given its corresponding observation X:

θ = arg min
θ
L(Y, F (X, θ)) = arg min

θ
L(θ), (2.18)

where is the function to be minimized, and that will be defined in the context of the specific problems

at hand. The goal is to have this function to match as close as possible the ideal metric that F is trying

to minimize. We will call this function loss function, but it may also be called objective function, cost

function, or error function. The goal will be then to ideally find the θ∗ that minimizes L, such that, for any

θ ∈ Rd, L(θ∗) ≤ L(θ) [11].

2.2.7.A Gradient Descent

The estimation of θ is made using iterative descent methods that proceed in small steps in the optimal

direction, until a stopping criterion is met. At the core of the methods used is the gradient descent

that updates the parameters at each iteration t as follows: θ(t+1) ← θ(t) − λ(t)∇L(θ(t)) [11, 30], and its

intuition is presented in Fig 2.17(a). Additionally, as the method is applied to the full training dataset
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(a) Gradient Descent (b) Gradient Descent with and without momentum

Figure 2.17: The goal of the gradient descent is to iterativelly converge from an initial value of the loss function
L(θ) to the optimal θ∗. a) Indication of the use of the gradient estimate at θ(t) to find a value of the
new iteration θ(t+1). b)Comparison of GD with and without momentum. If the loss function has a local
minimum, it might get stuck (black arrows). The usage of momentum is mimmicking a ball descending
down a hill: as it accumulates momentum it rolls faster enabling it to descend quicker. If it has enough
momentum it might roll up a hill, thus being able to descend to lower minimum.

D = {(X1,Y1), ..., (XM ,YM )}, with M examples, the loss function needs to be defined as:

L(θ) =
1

M

M∑
i=1

L(F ∗(Xi; θ), Y i) =
1

M

M∑
i=1

Li(θ). (2.19)

And the gradient of the loss function is then:

∇θL(θ) =
1

M

M∑
i=1

∇θLi(θ). (2.20)

Unfortunately, finding such set of parameters is extremely hard in the context of deep learning as the

number of model parameters, d, is extremely large (within the range of the millions), and the loss function

is non-convex, with a huge number of saddle points and local minima [30]. Another major limitation to

the gradient descent method is that it requires a full pass by all the pairs of examples in the training set,

when computing ∇θL(θ), before updating the parameters in each iteration. For large datasets this task

takes a long time [12,30] and requires a large amount of memory [52], therefore becoming impractical.
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2.2.7.B Stochastic Gradient Descent

The stochastic gradient descent (SGD) method updates the gradient estimation with a single training

example by sampling it uniformly (choosing a random r ∈ [1, ...,M ]) [12,30]:

∇θL(θ) =
1

M

M∑
i=1

∇θLi(θ) (2.21)

w ∇θLr(θ) (2.22)

The result is an unbiased, but extremely noisy estimate of the gradient, as the examples are chosen

uniformly at random. [12,30]. In practice a small amount of training examples can be used, the so called

batch, which will yield a less noisy (more examples lead to a better estimation of the gradient), but still

unbiased estimate of the gradient [30,52]:

∇θL(θ) w
1

|B|
∑
i∈B
∇θLi(θ) (2.23)

where the batch, B, is defined as a set of |B| randomly sampled examples {r1, ..., rB}, with |B| � N .

The term stochastic here refers to the fact that an estimation of the gradient is being computed, which

will be a noisy sampling of the average gradient computed over the full training dataset [52]. Even though

this is a noisy estimate, the approach typically is shown to result in faster convergence towards a good

set of parameters [54]. The update rule for the weights can be finally defined:

θ(t+1) ← θ(t) − λ(t) 1

|B|
∑
i∈B
∇θLi(θ), (2.24)

where λ(t)is called the learning rate.

It is now possible to iteratively estimate the weights of the model, but several questions arise. Will

the SGD algorithm be able to minimize such a highly non-convex function as the loss function in hand?

Can we efficiently calculate and update the parameters of both fully connected layers and convolutional

layers? We will begin by answering the first question, and will after give some key intuition on the second

one in the next sub-section.

2.2.7.C The Adam Algorithm

As previously mentioned the optimization problem being solved is extremely hard, therefore, the guar-

antee of convergence to a global minimum might be impossible to achieve. Even though SGD is a

good first approach to finding the parameters θ, it is highly dependent on initialization, and has several

shortcomings [12, 30]. Instead of using the plain SGD, most recent works use other iterative descent
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methods, with one of the most used being the adaptive moment estimation method [45], or Adam, which

will be the one adopted in this work. This model combines the usage of two major concepts: (1) a mov-

ing average of the gradient instead of the gradient itself (as is the case in SGD); (2) an adaptive learning

rate taking into account information of the first and second moments of the gradient, which correspond

to the mean and the uncentered variance of the gradient.

Before discussing these two concepts, lets us first define the concept of momentum. First-order

gradient methods, like SGD, have trouble navigating ”ravines” (i.e. areas where the level curves of L(θ)

curve steeply in one of the dimensions), usually getting stuck in local minimuma [30]. In order to deal

with this, some algorithms add a small fraction γ of the previous update vector,vt−1 to the current update

vector, vt. This is called the momentum term, and it is given by

v(t+1) = γvt + λ∇θL(θ) (2.25)

θ(t+1) ← θ(t) − v(t+1) (2.26)

Some intuition on the momentum term is given comparing gradient descent to a ball rolling down a

hill. With enough momentum, it is able to avoid getting stuck in local minima. (Fig 2.17(b)). This also

allows the gradient to converge with less oscillations. As a result, it is possible to converge faster, and

ultimately achieve a better solution to Equation 2.18 [30,74]. Adam uses a similar mechanism by storing

a decaying average of past gradients, as well as an exponentially decaying average of past squared

gradients [45]:

m(t+1) = β1m
t + (1− β1)∇θL(θ) (2.27)

v(t+1) = β2v
t + (1− β2)(∇θL(θ))2, (2.28)

where, β1 and β2 are two hyperparameters that need to be tuned. The update rule for Adam is then [45]

θ(t+1) ← θ(t) − λ√
v̂(t) + ε

m̂(t), (2.29)

where, v̂(t) and m̂(t) are the bias-corrected first and second moment estimates, and ε is a term to avoid

a zero in the denominator (usually set to 10−8). Details on applications and limitation of the Adam

algorithm are given in [30], and the pseudo-code for the algorithm can be found in [45]. Note that more

recent versions of the Adam algorithm have been developed [20, 107], but weren’t considered in this

work.
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2.2.7.D Backpropagation algorithm

Finally, an efficient way to calculate∇θL(F ∗(X; θ), Y ) is needed. To do so, the gradient backpropagation

method is used [11,54]. This algorithm mainly relies on the application of the chain rule of derivation to

each layer. The core of this algorithm is that, at each of the hidden units, the derivative of the loss function

L(θ) [52] is calculated with respect to the input of the following unit. The way that the algorithm efficiently

implements the derivatives is by dividing this process into two steps: the first stage is the forward pass

(already discussed in Sub-section 2.2.2), where the outputs of each hidden unit are computed according

to Equations 2.5 and 2.6. The second stage is called the backward pass, and starts by computing the

derivative of the loss function with respect to the output, and then applies the chain rule of derivatives at

each hidden layer. The mathematical details are shown in Appendix A.

2.3 Generalization and Overfitting

In this section, the concepts of model generalization, overfitting, and underfitting are reviewed. Section

2.3.2 will describe how to evaluate generalization error, focusing on DL in the medical imaging field,

which will be followed by the introduction of several changes to both the network architecture (residual

connections), as well as the training of the model (regularization and dropout), that will allow for better

generalization.

2.3.1 Overfitting, underfitting and the generalization error

Until now, we have talked about building a model F (X; θ) through the use of a trainingset, by minimizing

a loss function L(θ). Yet, the ultimate goal in machine learning is to perform accurately in an unseen set

of inputs {X̃1, ..., X̃K0
}, usually called the test set [30,65]. This goal can be summarized as minimizing

the so called generalization error, which amounts to the expected error, computed using the predefined

metric, and averaged over future data [65]. This can be estimated by computing the error in an external

set of examples, separated from the training examples, which its called test error.

The comparison of the generalization error and the training-error yields the concepts of underfitting

and overfitting (Fig. 2.18), as functions of the so-called model capacity. Figure 2.18 illustrates te rela-

tionship: generally, as the model capacity is increased, there is an improvement of the results in the

training-set, but the performance in test-set is going to decrease. This is caused by an increase in the

sensitivity of the model to small fluctuations in the training-set, that are unlikely to be due to variations of

interest [65]. The opposite is expected to occur as the model’s capacity is decreased, as the model loses

sensitivity to any fluctuations in the data, becoming unable to learn its task. In specific, one can prove

that the discrepancy between training error and generalization error is bound from above by a quantity
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Figure 2.18: Relationship between capacity and error. The goal is to determine the optimal capacity regime which
is confined between the underfitting and overfitting regime.

that grows as the model capacity grows by shrinking as the number of training examples increase [99].

Note that this classical perspective is currently being reshaped to a ”double descent” risk curve [10],

in order to address some of the recent observations in modern machine learning practice. Yet, as no

exhaustive study has been carried out in the context of CNNs and deep networks in non-benign datasets,

such as the case of medical imaging, and therefore this work will address the problem of minimizing the

generalization error according to the classical perspective.

2.3.2 Generalization error in medical imaging

In the field of medical imaging, evaluating the generalization error is sometimes a difficult task. This is

due to the large size of current deep learning models [33]. Medical images have features that are shared

within a single patient, but that are not relevant for the task. Nonetheless, due to its high capacity,

these will be captured by the model, increasing its performance in the training-set, without encoding

any relevant information [28, 59]. Therefore, slice-wise separation of the dataset within a patient is not

suitable for a thorough analysis of the generalization ability of the model. Accordingly, a clean patient-

wise example separation between training and test set is of paramount importance to transition the

models to clinical practice [59]. Furthermore, the sheer amount of variation between acquired images

[64], due to the inherent disparity in the acquisition process, as well as the multiple possible machines

used for the acquisition [28, 64], lead to a high probability of overfitting to specific features that are not

shared by all images. Ultimately, a good practice in this field is to have an external dataset used for the
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test set, preferably from a different institution than the ones which provided the data for the training-set,

in order to effectively assess the generalization of the model [70].

2.3.2.A No free lunch theorem

However, even through the use of extensive testing in cleanly separated, or external datasets, the best

model that is chosen is never a universal best model, as this hypothetical model does not exist - this is

called the no free lunch theorem [103]. This theorem states that ”averaged over all possible data gen-

erating distributions, every classification algorithm has the same error rate when classifying previously

unobserved points” [30]. At the core of this statement is the set of the assumptions that are chosen

for each task, which have no certainty of working as well in other domains. This leads to the need for

working towards a set of models and algorithms that best solve each problem [65]. In this case, a set of

NN architectures that are developed for the problems at hand (Equations 2.2 and 2.4), specified for the

medical imaging domain.

2.3.2.B Validation set

When trying to assess the generalization error during training, it is good practice to use a different dataset

than the external test set, as by assumption it isn’t accessible during training [65]. This dataset, called

validation set, and is used to fine-tune any hyperparameter of the model, which includes its capacity

and complexity, as well as the already mentioned learning rate, and any other parameter not related to

θ [30]. If the model complexity was chosen by looking directly at the generalization error of the test set,

the model choice would be biased, as there would exist an over-optimistic performance estimation of the

model by overfitting of the test data [11].

2.3.2.C Limiting the Model’s Capacity

The model capacity can be controlled by limiting the hypothesis space of the model - the set of functions

that the learning algorithm will be restricted to learn [65]. In the context of NN, this can be achieved

primarily by reducing both the number of hidden layers and the number of hidden units (or the size

and number of kernels, in the case of CNN) [30]. Note that, due to the highly complex problem that is

being tackled, in fact, what is achieved is not the representational capacity of the model, but its effective

capacity, defined by the parameters θ to which the learning algorithm converges to [30]. Therefore,

another away to effectively control the capacity of the model is to tune the learning algorithm in order

to find a model with an effective capacity that is within the optimal capacity regime. The easiest way to

do so is to either stop the iterative learning algorithm when the generalization error starts increasing, or

save several models during the training process and select the best one a posteriori.
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Currently, in medical imaging, the application of early stoping is quite common when dealing with

complex models. However, by stopping the training early, or through the application of model complexity

restrictions, which include both the reduction of the number of layers and the number of hidden units in

the network, the NN might not be able to learn enough from the training set to fit any relevant model.

There is then a trade-off between accuracy and generalization that is hard to tackle.

Currently, in the field of medical imaging, choosing a model that does not underfit is quite easy, simply

by both increasing the number of parameters and letting the model increase its complexity during the

training. However, by stopping the model too early and/or imposing too strict complexity restrictions -

there is a risk that the NN will not be able to learn a good model from the data. There is then a trade-off

between accuracy in the training set and generalization, which is hard to tackle [65]. In the rest of this

chapter, several alternatives will be presented to address this issue.

2.3.3 Parameter Regularization

One of the most common approaches to limit overfitting is to control the effective complexity of the

model by adding a parameter penalization term Ω(θ) to the loss function, which limits the capacity of the

model [11,30]. The resulting regularized loss function can be written as such

Lreg(θ) = L(θ) + αΩ(θ), (2.30)

where λ ∈ R+ is a hyperparameter that weighs the relative contribution of the parameter penalization

term, Ω(θ), with respect to the loss function, L(θ). In practice, only the weights of the affine transfor-

mation at each layer are penalised, since the biases usually require less data to accurately fit. This

leads to less induced variance when leaving the bias unregularized [30]. Due to its already well-tested

advantages when working with neural networks, these regularization methods will be extensively used

throughout this work.

2.3.3.A `2 regularization

One common choice term used is `2 regularization, which drives the weights closer to the origin by

defining Ω(θ̃) as the squared `2 norm of all the weights. This type of regularization is commonly known

in the context of neural networks as weight decay, but can also be called ridge regression or Tikhonov

regularization [30] . With this regularization, the loss function can be described as

Lreg(θ) = L(θ) +
α

2
w>w, (2.31)

where w is the vector containing all the weights in the network. The gradient of Lreg with respect to w is
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∇wLreg(θ) = ∇wL(θ) + αw (2.32)

Lets analyze this regularization, by considering a single gradient step to update the weights w:

w ←− w − λ(αw +∇wL(θ)) (2.33)

w ←− (1− λα)w − λ∇wL(θ)), (2.34)

where λ is the learning rate that defines the update step as seen in Subsection 2.2.7.B. Therefore, at

each update step the term (1−λα) will multiplicatively decrease the weights w. Taking this analysis one

step further, it is possible to define a quadratic approximation of the loss function from Equation 2.31 in

the neighborhood of the optimal solution of w∗ = arg minw L(w):

L(θ) = L(θ∗ +
1

2
(w − w∗)>H(w − w∗), (2.35)

where H is the Hessian matrix of L with respect to the w computed in w∗. The missing-first order term

is due to the fact that the gradient will be zero at the minimum w∗ [11]. The effect of the weight decay is

that w∗ will be rescaled along the axis defined by the eigenvectors of H [30]. A graphical interpretation

of this effect is shown in Figure 2.19(a), where the directions of the eigenvalues that are large are less

affected by the regularization [30].

(a) `2-regularization (b) `1-regularization

Figure 2.19: Illustration on the effect of `2 and `1 regularization on the optimal w. The dashed circles and dashed
lines represent contours of equal value of the `2 and `1 regularizers respectively, whereas the solid
elipses denote countours of equal valued unregularized loss function around the optimal weights val-
ues, w∗. The blue dot represents the weight values w̃ were the two competing terms of the loss
function arrive at an equilibrium, for each regularizer.
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2.3.3.B `1 regularization

An alternative to the `2 regularization, is the `1, which is a type of weight decay that is sometimes called

lasso, in reference to the least absolute shrinkage and selection operator for feature selection [97] used

in feature selection [30]. Instead of quadratically penalizing the weights, this regularization usesthe sum

of absolute values of the individual weights [11]:

‖w‖1 =
∑
i

|wi|, (2.36)

This induces sparsity in the parameters, which can be translated as the optimal solution having some

parameters at zero, which greatly reduces the complexity of the model [30]. With this regularization, the

loss function is then given by

Lreg(θ) = L(θ) + α‖w‖1, (2.37)

with the corresponding sub-gradient:

∇wLreg(θ) = ∇wL(θ) + α sign(w), (2.38)

where sign(w) is simply the element-wise application of the sign to w. A graphical interpretation of this

regularization is still possible, as can be seen in Figure 2.19(b), where the previous ball seen in Figure

2.19(a), is now replaced by a region delimited by the `1 norm.

2.3.4 Dropout

One recent regularization technique extensively used in a wide range of NN architectures is named

dropout. Dropout works by randomly dropping hidden units, hi and their incoming (Wk
i ) and outgoing

(Wk+1
i ) connections, at each iteration of the training phase [30,91]. The unit’s retaining rate, p, is usually

called dropout rate. After training, when applying the network to the test set, the weights of the network

are downscaled by a factor equal to p, which can be seen as a computationally efficient approximation

of the average prediction of all the sub-networks [91].

Dropout can be seen as analogous to the training of an ensemble of sub-networks that share pa-

rameters, but where each model inherits a separate sub-set of parameters from the original network.

A visual representation is presented in Figure 2.20, where two possible sub-networks arise from the

application of dropout with a dropout rate of 1
3 to three successive layers. Alternatively, dropout can be

thought of as a sort of regularization to each hidden units that forces each feature to be good in different

contexts [30], by limiting the co-adaptation of the units to the training data, dropout prevents overfit-

ting [91], therefore increasing the generalization power of the network as each hidden unit is forced to
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(a) Network without dropout (b) Sub-network 1 (c) Sub-network 2

Figure 2.20: Region proposal mechanism. a) In a sliding window fashion, patches of the feature map are extracted,
which are convoluted with k predefined anchors, to generate a fixed sized vector. These are used first
by a general FC layer and then fed to two sibling FC layers: a regression and a classification layer. b)
Each window from the sliding window will be convoluted with the k rectangular, fixed sized, anchors.

redundantly encode its information [30].

Finally, one of the major advantages of this method is that it works well with nearly any model that

uses a distributed representation, while still allowing the learning algorithm to rely on stochastic gradient

descent methods (such as Adam) [30], and therefore is well suited for regularization in the models

developed in the context of this work.

2.3.5 Data Augmentation

One obvious way to improve the generalization ability of a model is to train it with more data [30]. This

is often not possible, as the amount of available data is limited. However, artificial ways to increase the

number of examples exist, and these are known as data augmentation. In image classification tasks,

these methods are reasonably straightforward: a classifier can be improved through data augmentation

techniques that exploit its invariance to several transformations [30, 73]. Therefore, it is possible to

generate a new set of examples by applying label preserving transformation to the existing X in the

training-set, which include geometric augmentations, such as scaling, translations, and rotations, as

well as colour augmentations [30].

When applying these techniques, one important consideration is that the transformations need to

generate new examples, without corrupting any significant features in the original ones, as this could

result in changes to the class [30].

Due to the inherently limited number of examples in the medical field, and the huge need for examples

when training CNNs, data augmentation is extraordinarily useful in this context [41], and will be largely

used in this work. One recent augmentation method relied on generative adversarial networks (GANs)
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[31], a type of generative model based on differentiable generator networks, and which was used to

perform unsupervised generation of new images for training, with powerful results in data augmentation

for image recognition models [63,73]. In medical imaging classification, this technique has also allowed

for improved performance in comparison to traditional data augmentation techniques [13,24,35].

2.3.6 Class Imbalance and Example Sampling

Another issue deeply ingrained in classification tasks is that of data imbalance, which corresponds to

the existence of one (or more) classes with a vastly smaller amount of examples, in comparison to

others [30]. The main problem is that the imbalanced example distribution will lead to overfitting to the

most represented classes [11, 30]. In the context of DL, usually two major approaches to deal with

this problem are used: artificially re-balance the data, and/or use of an appropriate loss function that

takes into account the imbalance depending on the amount of data imbalance after the re-balancing

techniques are applied.

Methods dedicated to data engineering include applying data augmentation techniques only to the

minority classes [30], which carry the same limitations of the approaches already seen in Subsection

2.3.5, or sampling more examples from the under-expressed classes, when preparing the training-set.

This is usually called oversampling, and may lead to good results depending on how unevenly distributed

the classes are in the dataset is, and on the number of examples. If the training set is extremely small,

reducing the number of examples even further will negatively impact the performance of the model, yet

in cases where this is not the situation, it might lead to better results [39]. Usually, the loss function for

image classification tasks is the softmax (Eq. 2.17). However, it is possible to reshape the loss function

to down-weight the loss assigned to well-classified examples, which corresponds to the so-called focal

loss [58]. One of the major reported issues with the focal loss is its recall, which is is one of the most

relevant qualities in medical applications. This issue has recently been explored in an application for

satellite images, but no work has been developed specifically for medical imaging [86].

2.3.7 Architectural Changes for Rotation Invariance

As already explained, invariance to rotation and shifts is extremely important to avoid overfitting. If the

model isn’t able to generalize to objects in different poses and positions, it will underperform when shown

the same object rotated or shifted from the position it was in the examples of the training set [30]. As

previously presented in Section 2.2.3, by incorporating a pooling layer in CNNs and, more specifically,

by using a max-pooling layer, it is possible to grant the network some invariance to small shifts and

rotations [30,47]. Another common way to limit the overfitting of the network is to use data augmentation

to the training set with specific augmentation techniques that focus in delivering new examples that
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simulate objects in different positions, such as random rotations, mirroring, and shifts [41,73].

Another recent architectural change to the models, is the use of capsule structures [84, 85], which

allow data representation in a CNN to take into account important spatial hierarchies, and that have

had an impact in increasing models’ generalization ability [84, 104]. These are based on the concept

of inverse graphics that brings one key idea: representation of objects should not depend on view

angle [84]. There are already several successful applications of these architectures in the medical

imaging domain [3, 48], and its impact on performance is only significantly noticeable for a training-set

with a lower amount and imbalanced set of examples [43]. Yet, there are still several limitations when

bringing these models to practice as current programming frameworks have not yet been optimized for

this type of networks [25].

2.3.8 Transfer Learning

Outside the field of medical imaging, it is possible to have datasets comprising millions of images. These

enable the use of models with extremely high capacity with limited risk of overfitting [30]. One recent

technique enabled the use of these large models by taking pre-trained weights of a neural net trained

on some similar and more comprehensive data, and fine-tune certain parameters to best solve a more

specific problem [52]. To do so, only the last layers of the model is re-trained in the application-specific

training set, effectively re-learning the weights of the classifier sub-network and/or some previous con-

volutional layers, and leaving all other ”frozen” [30,59].

This allows networks extensively trained in extraordinarily large datasets, such as the ImageNet

dataset - comprised of more than 1.2 million images from 1000 different categories, to be used in prob-

lems where such data availability would be impossible. Yet, for large scale medical tasks, little benefit

when using transfer learning has been shown, and simple lightweight models have a comparative perfor-

mance to models trained using ImageNet [75]. Nonetheless, this technique still offers a viable application

where larger datasets are impossible to attain.
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3.1 Used Data

3.1.1 The LIDC-IDRI Dataset

The Lung Image Database Consortium - Image Database Resource Initiative (LIDC-IDRI) is a public and

free dataset that contains 1018 thoracic CT scans, both standard and low-dose CT scans, all annotated

by four experienced radiologists in a two-phase blind annotation process. [8]. Seven academic centers

and eight medical imaging companies collaborated to identify and ultimately resolve all the inherent

technical, organizational, and clinical issues of building such a large dataset. The dataset has a total of

2669 lesions that were marked as a nodule with a diameter larger than 3 mm, by at least one radiologist,

from which 34.7% (928 lesions) were marked by all four radiologists.

To increase the quality of the examples, all scans with slice thickness greater than 3 mm, inconsistent

slice spacing, or missing slices, were excluded, therefore yielding 888 scans. Taking into account recent

metrics for the follow-up of detected pulmonary lesions, only nodules larger than 6 mm were included [9].

The final distribution of the nodule size is shown in Figure 3.1, where the diameter of the lesions ranges

from 6 mm to 32 mm with a large proportion os smaller nodules. This dataset was the one used to train

and evaluate the detection model of the hybrid DL architecture by dividing it into three parts: 80% of the

scans constitute the training set and the remaining were equally split into validation and test sets. From

each scan, a variable number of 64 × 64 patches was extracted for training and validation, maintaining

a balanced distribution of classes, and totalling 1908 patches from 704 scans for the training set, and

344 patches from 88 scans for the validation set. Patches for the test set were sampled following a

sliding-window approach from a total of 88 scans, with each CT scan producing 1156 patches per slice

with a highly unbalanced class distribution.

3.1.2 Decathlon Competition Dataset

The medical Decathlon competition was a recent effort to develop a machine learning model that could

generalize to segmentation tasks from a wide range of clinically relevant anatomies. This led to the

development of a large collection of annotation medical datasets with high-quality imaging data that was

released as a free open-source platform. The lung task of the Decathlon competition encompassed the

segmentation of lung tumours from thin-section CT scans. The dataset contains 64 labelled CT scans

with singular non-small lesions annotated by an expert thoracic radiologist on a representative cross-

section [90]. In the context of this work, this was the dataset used to train and evaluate the segmentation

model in the hybrid DL architecture. As the segmentation of pulmonary lesions is relevant in the context

of the radiomics pipeline only for larger ones [28], tumours smaller than 25mm were excluded. The final

dataset totalled 32 scans, and a variable number of 64×64 patches was extracted from the VOI around

each lesion. Each VOI had the same number of slices with and without lesion, the latter being equally
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Figure 3.1: Final size distribution of the lesions in the training set of the detection network.

distributed above and below it. Finally, 5-fold cross-validation (CV) was used, with 21 scans used to train

the model, and the rest split by assigning 6 examples to the validation set and 7 to the test set.

3.2 Image Pre-processing

In machine learning, one of the most important steps for high-performance models, is to implement a

series of steps that improve the quality of the data. The steps adopted in the processing methodology

are presented next. These are partially outlined in Figure 3.2.

Figure 3.2: Depiction of the preprocessing and data curation steps used to prepare the training set for the detection
model. The raw thoracic CT image first preprocessed by having the lungs extracted, followed by resolu-
tion resampling to the median of the training-set voxel size and histogram-based normalization. Sets of
3 patches were extracted, maintaining a balanced class distribution and focusing on highly informative
patches. The training was optimized by using several data augmentation techniques.

42



3.2.1 Lungs Extraction

One of the main issues in the automatic detection of lung lesions is the number of false positives outside

of the lung region. To avoid this issue, using the lung masks provided in the LIDC-IDRI dataset, the

lungs were extracted from all images. A small dilation was also applied to the masks beforehand to

allow the accurate detection of juxta-pleural nodules – nodules attached to the side-wall of the lung.

Due to the hybrid approach to the detection and segmentation tasks, which will be further described in

Section 4.4), only the CT scans used for lesion detection will have the lungs removed. This effort also

serves the purpose of reducing the amount of information that needs to be encoded by the model, as all

the regions outside of the lung will be easily detected as not containing any lesion.

As the accuracy of the lung segmentation is not a factor for the deep learning model performance (as

long as within certain quality criteria that guarantees all the lung region is included in the mask), the lung

extraction could have been performed by other non-supervised methods such as [5,67].

3.2.2 Resampling

In general, DCNNS are not prepared to handle the voxel spacing heterogeneity of CT images, which

arises from different scanners and different acquisition protocols. To overcome this issue, resampling

was applied to all scans by first estimating a common image resolution through a median of the dataset

voxel size, and then performing a second-order B-spline interpolation to this size. The resampling is

reported to improve the system’s performance by close to 20% in other 2.5D CNN based systems [7].

3.2.3 Normalization

Finally, as previously stated in Section 2.1.3, the CT scans have an absolute intensity scale arising from

the estimation of the attenuation coefficients. This yields a scale that ranges from -1000 to 1000, and

which may introduce instability when training a DCNN, as it usually performs better with values in a lower

range [51]. Therefore, the final input images for both networks were volume-level normalized by using a

histogram-based normalization, following a clipping to the [1, 99] intensity value percentiles.

3.3 Data Curation

Due to the limited amount of training data in both tasks, extensive data curation of training examples was

performed. This also consisted of implementing extensive data augmentation techniques to increase the

amount of data available in the training-set.
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3.3.1 Example Resampling

As explained in Section 2.3.6, in the case of imbalanced datasets, one of the first attempts should be to

artificially balance the data through oversampling strategies. Therefore, weighted sampling of significant

examples was applied, with a balanced sampling of examples for training the detection network: equal

numbers of patches with and without nodules were extracted from each scan. Due to the extraction

of the lungs from the image, learning the false examples from outside the lungs is a trivial task for the

network, so 90% of the negative examples were chosen from within the lungs. A similar strategy was

applied to train the segmentation network with examples selected through weighted sampling where the

sampling likelihood of each voxel, and window around it, is proportional to its class frequency.

3.3.2 Data Augmentation

Finally, several data augmentation schemes were applied to both the final 1908 patches that consti-

tuted the training-set of the detection model, and to the 24 VOI that comprised the training-set for the

segmentation model. Several extensions of the transformations to 3D input, as well as specific data

augmentation strategies for medical imaging, which try to capture and replicate relevant data statistics,

were used.

Nonetheless, the data augmentation methodology used in this work was defined with a focus on

techniques that retain relevant features for the tasks at hand, specifically anisotropic deformations that

could distort texture features were avoided, such as shearing and elastic deformations, as well as any

techniques involving the addition of noise. Common augmentation techniques in this context include [41]:

• flipping the image with respect to its axis;

• rotations around one of the three dimensional axis;

• scaling by an affine transformation AX

A =

 sx 0 0
0 sy 0
0 0 sz

 , (3.1)

and sx,sy, and sz are scaling factors.

• mirroring, by flipping with respect to a specific axis..

Both the detection and the segmentation datasets were augmented using random isotropic scaling, and

horizontal mirroring; however, random rotations and vertical mirroring was only used for the segmenta-

tion, as orientation may encode relevant features for the detection task.
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3.4 Implementation and Hardware Details

Several programming frameworks are currently available for the efficient implementation of DL architec-

tures, with the majority of them being developed either with a TensorFlow [2] or a PyTorch backend [71].

In this work, NiftyNet was used. This is a TensorFlow-based platform, which provides a modular DL

pipeline with components dedicated to data loading, data augmentation, network architectures, loss

functions, and evaluation metrics, all tailored for medical imaging tasks [27]. Some of the advantages

of using the NiftyNet infrastructure include its ability to rapidly develop and test DL solutions for seg-

mentation and classification within the context of medical imaging, as well as the existence of several

models already implemented and ready for use. Finally, experiments were run on a machine with an

Intel Xeon-1620 CPU and two NVidia Geforce GTX 1080 GPUs (totalling 22 GB on-board memory),

which enabled the models to be trained with reasonably high batch size, whilst maintaining reasonable

training times.
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4.1 Components of the Architecture

In this work, two architectures were developed: one for the detection task, and another for the segmen-

tation task. The main goal of the work was to produce high-performance models, while still focusing on

reducing their final capacity, and thus enabling them with good chances of not overfitting. During the

process of developing each model, two notable additions were made: the inclusion o residual connec-

tions, and the use of leaky-ReLUs as activation functions; both components will be addressed in this

section.

4.1.1 Residual Connections

Figure 4.1: Representation of a residual block, where the input Xk is depicted skipping a set of i layers and added
to layer k + 1.

Residual connections, also called skip-connections, were developed for refined training of deep net-

works, and, even though they do not directly tackle the problem of overfitting, by enabling the reduction

of the size of the architectures it allows the reduction of the model’s capacity [36]. The key idea of a

skip-connection is to define an identity mapping to bypass one or more parameterised layers in a net-

work, through the addition of the input of a residual block to its output (Fig. 4.1) [36,57]. Specifically, let

a convolutional layer Hk with a set of kernels {Kk
1 , ..,K

k
n} and an input Xk, as defined in Equation 2.11,

be denoted by Xk+1 = F ({Kk
1 , ...,K

k
n}, Xk−1). Then, the output of a residual block with i layers can be

described as

Xk+i+1 = Xk + F ({Kk+i
1 , ...,Kk+i

n }, F (...(F ({Kk
1 , ...,K

k
n}, Xk))...). (4.1)

Another major advantage of this technique is that it helps to deal with the vanishing gradient prob-

lem, an existing difficulty in gradient-based learning. This problem occurs when the gradient becomes

extremely smaller, preventing the weights from being effectively updated, and in the worst case, it might

lead to completely stopping the training [30,37]. The skip-connection between layers reduces the length

of the backward paths, from the output of each layer, thus mitigating gradient problems [92]. It was
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also shown that using residual connections in a CNN smooths the loss landscape, and produces loss

functions that are easier to train [56].

Recently, it has been found that residual networks operate similarly to an ensemble of relatively

shallow networks [100]. Models without residual connections will have, for each single unit xki , a fixed

number of input units in X that affect it - the commonly named receptive field of an unit [30]. However,

training a network with n residual blocks will use 2n different paths, and therefore features can be learned

by a varied set of different receptive fields. Experiments in medical imaging tasks suggest that residual

networks reduce the effective receptive field of the network [57]. These also indicate that it is possible to

reduce the number of parameters by one order of magnitude, while comparing favourably against other

models.

4.1.2 Activation Function

As mentioned in Section 2.2.2, any neural network first relies on the use of a activation function σ,

as presented in Equation 2.14 for the non-linear characteristics of the model. The most commonly

used activation function is the rectifier linear unit (ReLU) [52, 76], which has already been shown to

improve training comparatively to other previously widely used activation functions [29], such as the

logistic sigmoid and the hyperbolic tangent. The ReLU activation function is simply defined as

σ(z) = ReLu(z) = max(0, z) (4.2)

One important advantage of this activation function is that it has an extremely computationally efficient

derivative, which allows it to be calculated much more easily than other activation functions. Recently,

several variants have arised, such as the noisy-ReLU, the parametric ReLU, and the activation function

that was mostly used in this work: the leaky-ReLU. This specific activation function allows a small,

positive gradient when the unit is not active and was proven to avoid the vanishing gradient problem

[62,106]. The leaky-ReLU is defined as

σ(z) = leaky-ReLu(z) =

{
z if z > 0
αz otherwise. (4.3)

where α > 0 is a small constant, typical values are α ' 0.01. Throughout all this work, the leaky-ReLU

was used in all layers of the detection architectures, except in the last layer, where a softmax is always

used.
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4.2 Detection Network

4.2.1 Architectures

In the context of building this network an effort was made to minimize the complexity of the model. This

attempt was loosely guided by the principle of parsimonony, Occam’s razor, which states:

”Among competing hypotheses that explain known observations equally well, one should

choose the simplest.”

For the problem described in this work, this means that when taking into account the problem of

finding a function F (X, θ) that maps X to the set of nodules centroid coordinates, and bounding-box

sizes,D, the goal should be to choose the simplest model F that achieves a feasible performance within

the context of the clinical problem. This premise is also well adjusted within the framework that was

described in Section 2.3.2.C, where in order to minimize the overfitting of a model, its capacity should

be reduced.

In this chapter, the general approach for nodule detection will be described, which will be followed by

the details on the architectures and training schemes that were tested for this task.

4.2.1.A Rewriting detection as a patch classification problem

To more effectively tackle this problem, the lesion detection model that was first described in Equation 2.2

was written as a patch classification problem. This meant first transforming the input CT scan X into a

set of patches P = {p1, ..., pn}, where pi ∈ RN×N×Z is a two-dimensional or three-dimensional patch,

depending on Z being equal or larger than 1. In this work, N was set to 64, to include the larger sized

nodule in the dataset, and at the same time to be able to deal with input size restrictions of the U-Net

architecture. The problem could then be rephrased as one of binary-classification, where each patch

is classified as having, or not, a lesion. Let us then redefine the detection model as a function F1 that

maps from a single patch pi to its corresponding classification ci:

F1 : RN×N×Z −→ {0, 1}. (4.4)

Through this reformulation of the problem, it is possible to restrict the lesion detection task to a much

simpler binary classification problem, instead of having to determine a set of values {y1, y2, y3, y4, y5, y6}

for each lesion that is required to be detected. The integration of this detection model into the full lesion

detection and segmentation model will be made clear in Section 4.4.

Following this definition of F1, the goal will then be to approximate this function with a DL model by

learning a set of weights and bias θ = {W k, bk} as previously specified in Section 2.2.7, for all layers

in the architecture. In this work, several architectures were tested, with a focus on using a small set
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of parameters. To guarantee the validity of the each added element of the network, several tests were

performed starting from the simplest fully connected model, and finalizing with a model with several

state-of-the-art components that was able to achieve competitive performance.

4.2.1.B NaiveNet

Figure 4.2: Depiction of the NaiveNet architecture. The layout follows the previously shown iconographic represen-
tation of FC layers.

Based on the first iterations of NN architectures that were applied to image classification tasks [53],

the earliest sketch of the architectures that were tested amounted to a simple multilayer perceptron.

This architecture, which we called NaiveNet, is depicted in Figure 4.2. The focus of this first approach

with an architecture containing only FC layers, was to establish a lower bound on what was possible to

achieve in this problem using NN. Several numbers of hidden units and layers were tested; the final NN

was composed of two FC layers, each with 512 hidden units, and using a leaky-ReLU as the activation

function, with α = 10−2. The last set of hidden units was connected to two outputs, with a binary-softmax

as the activation function. All details regarding the NaiveNet architecture are described in Table 4.1.

Table 4.1: Architecture details of the NaiveNet.

Layer FC layers
number of units activation function

FC 1 512 leaky-ReLU
FC 2 512 softmax

4.2.1.C NaiveConvNet

The next NN architecture that was tested, besides the FC layers that were present in the NaiveNet,

also included convolutional layers, which loosely followed the description of the first layers of the VGG-

16 [89]. The final architecture was empirically obtained by testing various NN variations to optimize

the number of parameters of both the FC layers and the convolutional layers, as well as the number

52



Figure 4.3: Scheme of the NaiveConvNet architecture. In this case, the input was assumed to a three slice patch.
The FC and convolutional layers follow the pictorial representation introduced in 2.

of layers and kernels in the convolutional layers. This architecture was named NaiveConvNet and it

has three convolutional layer blocks that extract features from the data and two fully connected layers

that perform classification, as shown in Figure 4.3. All the convolutional layers used a 3 × 3 kernel,

which were grouped into sets of 3, before the application of a max-pooling. Convolutions and pooling

are all applied with appropriate padding, with convolutions having stride 1, and max-pooling using 2x2

kernels and stride 2. The FC layers used followed the same specifications of the NaiveNet, and the full

description of the network is indicated in Table 4.2.

Table 4.2: Architecture details of the NaiveConvNet network divided into convolutional layers and fully connected
layers.

Layer convolutional layers
kernel size number of kernels stride

Conv 1 3×3 64 1
Conv 2 3×3 64 1
Conv 3 3×3 64 1
Max Pooling 1 2×2 - 2
Conv 4 3×3 128 1
Conv 5 3×3 128 1
Conv 6 3×3 128 1
Max Pooling 2 2×2 - 2
Conv 7 3×3 256 1
Conv 8 3×3 256 1
Conv 9 3×3 256 1
Max Pooling 3 2×2 - 2

fully connected layers
number of units activation function

FC 1 512 leaky-ReLU
FC 2 512 softmax
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Figure 4.4: Depiction of the DetectionNet, which constitutes a novel residual DCNN model developed for the de-
tection of lung lesions in CT images. The input was assumed to be a three slice patch. All component’s
representations follow the sketchs introduced in Section 2.

4.2.1.D Residual CNN

Finally, the last iteration of the NN was completely based in the architecture of the NaiveConvNet, but

also included residual connections, following the description in Section 4.1.1. This addition was imple-

mented with a skip connection being completed between the first and the third layer of each block of

three convolutional layers, and preceding the max-pooling. All other details of the architecture follow the

description regarding the NaiveConvNet, including the number of paremeters and kernels, as well as

its strides. These again are provided in Table 4.2. This deep CNN constitutes a novel residual DCNN

model for the detection of lung lesions. Its architecture is shown in Figure 4.4,

4.2.2 Training

4.2.2.A Loss Function

The loss function chosen was used to simultaneously train all the NN that were presented above. In

classification tasks, the most commonly used loss function is the cross-entropy [30], which is only out-

performed by the focal loss [58], when the dataset at hand is heavily unbalanced. As in this work several

strategies were implemented to deal with unbalanced distribution of the examples (Sec. 2.3.6), such as

oversampling and data augmentation, there was no need to implement the focal loss. The loss function

is then defined as

L(θ) =
1

|B|
∑
i∈B

Lce(ĉi, ci), (4.5)

where B is the training set batch, and the cross-entropy loss function, Lce, for binary classification, is

given by

Lce(ĉi, ci) = −(ci log(ĉi) + (1− ci) log(1− ĉi)), (4.6)
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and ĉi is the estimated classification probability from the binary-softmax output, given the 64x64xC patch,

and ci ∈ {0, 1} is the corresponding label (lesion or no lesion) on the middle slice of the patch.

The next step is to add parameter regularization terms to the loss function, following the description

in Section 2.3.3, to deal with overfitting. Therefore, the loss function is the rewritten as

L(θ) =
1

|B|

B∑
i=1

Lce(ĉi, ci) + α1‖w‖1 + α2‖w‖2, (4.7)

where w is a subvector of θ that contains the weights, but not the biases, the first added term is the

`1-norm introduced in Section 2.3.3.B, and α1 is its weight, whereas the second term is the `2-norm

introduced in Section2.3.3.A, and α2 is its weight.

4.2.2.B Optimization

The optimization of all hyperparameters was performed empirically, with the learning rate λ defined

as 10−5 for the NaiveNet and as 3 × 10−4 for the other two models. In order to balance the effect of

increasing the generalization of the model when the batch size is large, and the overfitting that occurs

when this number gets to high [30], B was set to 300. Finally, extensive regularization was implemented

through penalization terms added to the loss function, taking into account the specifications of each

model. For the NaiveNet only `2-regularization was applied, with the α`1 set to zero. Regarding the

other two networks, due to their larger size, the parameter penalization strategy was defined in order to

benefit from both terms. In the first 500 iterations, α1 was set to 0.1, whilst α2 was set to zero, in order to

select the weights that contribute the most to the improvement in performance, and attempting to leave

the others as zero. After this, α1 was set to zero, and α2 was set to 0.1. These non-conservative values

were chosen in order to compensate for the inherent high tendency of the models to overfit in this small

dataset.

4.2.3 Final Model Choice

In order to evaluate each one of the models, an experiment in a synthetic dataset was performed. The

main goal was to assess the performance and stability of each model, in a much more benign, and

controlled environment.

4.2.3.A Synthetic dataset

When developing the synthetic dataset, special attention was given to limit the variability of the images,

while still striving the keep the noisy nature of thoracic CT images. Therefore, any representation of

possible confounding objects, such as vascular structures, was rejected. This lead to only one clearly
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(a) Patch with positive class (b) Patch with negative class

Figure 4.5: Example of synthetic patches used to evaluate the three types of detection architectures.

detectable object per positive patch. The lesions were simulated through elliptical shapes. In order

to provide a similar object size distribution to the one present in the LIDC-IDRI dataset (Fig. 3.1), the

distribution of the maximum diameter in each ellipse of the synthetic dataset was set following a gamma

distribution, with the shape parameter, and the scale parameter, respectively set to 3 and 2. Each patch

was then corrupted with Gaussian noise, followed by the application of a Gaussian kernel to reduce the

edge contrast, as commonly seen in CT images. The dataset was composed of a total of 5300 patches.

Note, that the full dataset was designed following a balanced distribution of classes, where the number

of positive and negative examples was the same. Examples of synthetic images are shown in Figure 4.5,

one for each class.

4.2.3.B Tests Performed

As there was no hyperparameter tuning during this experiment, the dataset was split into a training

set, composed of 80% of dataset, and a test set. Each architecture was then trained 100 times for

1000 iterations, yielding, from each trial, four models taken from iterations 100, 200, 500 and 1000.

These were then evaluated in both the training set and the test set. The results for this experiment are

summarized in Appendix C, in Figure C.1. As expected, the performance of the Naive-Net is already

extremely high, with values of accuracy above 0.90 for models from the iteration 100. The addition

of convolutional layers in the NaiveConv-Net leads to some improvements in performance, which are

then just marginally surpassed by the residual DCNN. Nonetheless, the final architecture used in the

LIDC-IDRI dataset was the residual DCNN.
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4.3 Segmentation Network

4.3.1 Architectures

The main approach relied in the previously shown U-Net (Section 2.2.6.B), with a new version focusing

on reducing the number of parameters. Due to the recent successes in the field, relying in models using

residual connections, besides the vanilla U-Net, a version with residual blocks was also tested [21].

4.3.1.A U-Net

In order to adapt the original U-Net architecture to the segmentation of 64 × 64 patches, its size was

reduced. This change aimed at limiting the effective maximum capacity of the model, and, therefore,

lessen overfitting. Incidentally, the number of levels in both the descending and ascending paths of the

network was scaled down from four blocks to three blocks. Also, in order to better tackle the vanishing

gradient problem, a leaky-ReLU with a slope of 10−2 was defined as the activation function for all the

layers except for the last one where softmax was used. Following the original description, 3 × 3 con-

volutional kernels were implemented with a stride of 1, as well as 2 × 2 deconvolutional kernels with a

stride of 2. Each pooling layer was set with a 2 × 2 kernel with a stride of 2. Similarly, the number of

channels per layer also followed the original work. Finally, convolutions, deconvolutions and pooling are

all applied with appropriate padding. The architecture details can be seen in Table 4.3.

As stated, a residual U-Net was also tested. In this case, a skip connection was added in each block

of the encoding and decoding path, between the first and the second layer. It is important to notice

that this model didn’t have any other changes in comparison to the vanilla U-Net architecture. The final

residual U-Net architecture is depicted in Figure 4.6.

4.3.2 Training

4.3.2.A Loss Function

The dice-score, also called Sørensen-Dice coefficient, or F-1 score, is a common metric that is used to

evaluate segmentations in the field of medical imaging [110] by evaluating the similarity of the ground-

truth segmentation and the estimated segmentation. It is given by the expression

dice-score =
2|S · Ŝ|
|S|2 + |Ŝ|2

, (4.8)

where S is the ground-truth segmentation mask, Ŝ is the estimation that is obtained from the model

at the output of the binary-softmax. Several variations of loss functions based on the dice-score have

been recently proposed [21, 42, 93]. The basis for the loss function that was used in this work was the

57



Table 4.3: Architecture details of the detection network

Layer Contracting path
kernel size activation function number of kernels stride

Conv 1 3×3 leaky-ReLU 64 1
Conv 2 3×3 leaky-ReLU 64 1
Max Pooling 1 2×2 - - 2
Conv 4 3×3 leaky-ReLU 128 1
Conv 5 3×3 leaky-ReLU 128 1
Max Pooling 2 2×2 - - 2
Conv 6 3×3 leaky-ReLU 256 1
Conv 7 3×3 leaky-ReLU 256 1
Max Pooling 3 2×2 - - 2

Bridge

Conv 7 3×3 leaky-ReLU 512 1
Conv 8 3×3 leaky-ReLU 512 1

Expanding path

Deconvolution 1 2×2 - - 2
Conv 9 3×3 leaky-ReLU 256 1
Conv 10 3×3 leaky-ReLU 256 1
Deconvolution 2 2×2 - - 2
Conv 11 3×3 leaky-ReLU 128 1
Conv 12 3×3 leaky-ReLU 128 1
Deconvolution 3 2×2 - - 2
Conv 11 3×3 leaky-ReLU 64 1
Conv 12 3×3 leaky-ReLU 64 1
Conv 13 1×1 softmax 2 1

dice plus cross-entropy loss function that previously achieved state-of-the-art results in the Decathlon

segmentation competition [42],

L(θ) =
1

|B|

|B|∑
i=1

Ldice(Ŝi,S
i) +

1

|B|
1

m

|B|∑
i=1

m∑
j=1

Lce(ŝ
i
j , s

i
j), (4.9)

where sji is the j-th voxel of the i-th ground segmentation mask, Si, in the training batch, Lce is the

cross-entropy loss function previously defined in Equation 4.6, Ldice is the dice loss function, defined as

Ldice(Ŝ
i,Si) = −

m∑
j=1

ŝjis
j
i + ε

m∑
j=1

ŝji +
m∑
j=1

sji + ε
, (4.10)

where ε is an added term to avoid underflow. The definition of the dice loss function can be extended

to include all elements of the batch, which is equivalent to considering the samples in the batch as a

pseudo-volume, avoiding the need to average the dice loss over the batch. This leads to writing Equation

4.9 as
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Figure 4.6: Schematic depiction of the final residual U-Net architecture that was used to build the segmentation
model. All notation and illustrative representations of components was already presented in Chapter 2.
Note that changes to the original U-Net model include the reduced number of layers in both the encod-
ing and the decoding path, as well as the inclusion of the residual connections in each convolutional
block.

L(θ) =
1

|B|
1

m

|B|∑
i=1

m∑
j=1

Lce(ŝ
i
j , s

i
j) + Ldice(V̂ , V ), (4.11)

where V̂ is the set of voxels that are estimated by applying the network to each Zi, and V is the

corresponding set of voxels from the ground-truth segmentation. This forces the dice loss function to be

re-written as:

Ldice(V̂ , V ) = −

∑
v̂i∈V̂ ,vi∈V

v̂ivi + ε∑
v̂i∈V̂

v̂i +
∑
vi∈V

vi + ε
. (4.12)

As the U-Net usually struggles to segment objects occupying small fractions of the total number of

voxels/pixels of the input image, as is usually the case for the the target segmentation of this task: lung

lesions. To overcome this hurdle, a novel loss-function was introduced that weights in differently the

contribution of the two classes. Such loss-function was named weigthed dice (w-dice) and changes

Equation 4.12 to

Lw-dice(V̂ , V ) = −
∑

k∈{0,1}

wk

∑
v̂i∈V̂k,vi∈Vk

v̂ivi + ε∑
v̂i∈V̂k

v̂i +
∑

vi∈Vk

vi + ε
, (4.13)
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where the set of voxels V̂ and V were each separated into two subsets, with each k respective subset

V̂k and Vk corresponding to one class; the weights w0 and w1 control the contribution of each class to

the loss, with w0 < w1, thus down-weighting the background contribution. In this work, w0 was set 0.4

and w1 was set to 0.6.

Similarly to the case of the detection network, a parameter penalization term is added to the loss

function. In this case, only `2-regularization was used. The final expression for the loss function is then

L(θ) = Lw-dice(V̂ , V ) +
1

|B|
1

m

|B|∑
i=1

m∑
j=1

Lce(ŝ
i
j , s

i
j) + α2‖w‖2, (4.14)

where α2 is the weight of the regularization term.

4.3.2.B Optimization

A large number of tests was performed to empirically determine the hyperparameters. This included first

optimizing the learning rate, which was set to 10−3 for the U-Net-based models. Due to the high memory

requirements of these two networks, the number of examples in the training batch was extremely limited.

In this case, the maximum batch-size, was set to 12, maximizing the memory usage. Finally, a slight

amount of parameter penalization was applied, with α2 being set to 10−4, as a noticeable decay in

performance was found for higher values of regularization.

4.4 LungSD-Net

In order to tackle recent limitations in current lung lesion and detection models, an hybrid detection and

segmentation network is proposed, following a novel integrated approach, where the detection of lung

lesions is connected to its segmentation. The network is composed by the detection network and the

segmentation network, which were, respectively, presented in Section 2.2.5 and Section 2.2.6. The

details of this new design will be shown next.

4.4.1 Sliding Window Approach and Final Model

As previously stated, for the detection model, the approach used was based on first defining a set of

patches, P = {p1, ..., pn}, from the original input scan X, which leads to both a simpler task and a

simpler model. The detection model can then be incorporated into a sliding-window approach, meaning

that each patch pi will be sampled from X by using a window that will run through each full slice of

the image, with a fixed step size, s, when a new CT scan is being inferred. Similarly, the segmentation

model is integrated into this final architecture by taking as an input each patch that is positively classified
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Figure 4.7: Overview of the LungSD-Net architecture, including a representation of the sliding-window approach.
One 64×64×3 patch was extracted with a step of 15 voxels, and is used as input for the detection
model, the 2.5D residual DCNN, that classifies the middle slice as having or not a lesion. The patches
positively classified are used as input for the second step of the model, the 2D residual U-Net, that
yields a final segmentation

as having a lesion. This model will be called LungSD-Net, as it performs the segmentation of lesions

subsequently to its detection. A depiction of the model can be seen in Figure 4.7. In this work, a

64×64×3 sliding-window was defined with s set to 15, to guarantee that each lesion would not be sliced

in any of the steps.
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5.1 Performed Tests and Evaluation Metrics

In order to assess the proposed LungSD-Net, separate evaluations were made for each of its sub-

networks’ models. The performance of the detection model was estimated in a hold-out methodology,

using the already presented detection test-set. The goal of this test-set is to simulate the inference on full

CT images, using the described sliding-window approach. On the other hand, the segmentation model

was evaluated assuming pre-detected lesions, and using a 5-fold cross validation, due to the limited

number of examples available. Both networks were also compared to the best performing models for

both tasks, which were introduced in Section 2.2.5.C. Furthermore, an effort to evaluate most of the

key contributions of this work was made. Therefore, a set of experiments was defined, where several

models were trained with a selection of features that were chosen as potentially being crucial to the

final model performance. This group of tests was mostly guided towards assessing the performance of

the detection model due to its lack of dependence on previous work. These included an evaluation of

the impact of both weight penalization, and drop-out in the ability of the model to generalize, as well as

estimating the effect of data curation and data preparation. The final experiment, still concerning the

detection model, dealt with the impact of using a 2.5D approach, instead of using a single slice as a

input to the network. Nonetheless, the segmentation model was also tested for the impact of adding

residual blocks, by comparing it to the vanilla U-Net. Note that for all experiments, the best iteration of

the model was chosen as that with the best detection accuracy, or best dice score for the segmentation

task, both on the validation dataset. This was performed in order to minimise overfitting through early

stopping.

The overfitting of each model was evaluated for both the training set and the validation-set, as well

as through the comparison of the performance of the model in the test-set and training set. This assess-

ment is possible, first, through the computation of the loss function at each training iteration, enabling the

assessment of the convergence of the model for the training and validation sets; and then, by assess-

ing how well the model performs in the test-set, through several suitable metrics specific to the tasks

at hand. In the case of the detection task, the accuracy was used to evaluate the performance of the

model during training. Yet, this metric is not applicable in the case of the test-set, as the example distri-

bution is extremely unbalanced, and would lead to an overoptimistic performance estimation. Therefore,

for the test-set, the receiver operating characteristic (ROC) curve was computed, using the probability

distribution provided by the output of the softmax. From here, it was possible to compute the area under

the curve (AUC). In addition to this metric, the confusion matrix was also calculated, and other metrics

were derived. Namely, the true positive rate (TPR), also called sensitivity, or recall, and the true negative

rate (TNR), also commonly known as specificity. The AUC and the TNR were patch-wise evaluated, in

order to have an estimate of the performance of the sliding-window approach, whereas the TPR was

computed slice-wise, as the fraction of true positives and the total number of lesions. Note, that the
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assessment of the TPR and TNR of the models was done by performing an arg-max on the output of

the softmax. This is equivalent to using a threshold of 0.5. It is also important to mention that the TPR

was chosen in accordance to common practices in the literature [72], and complemented with the AUC

and the TNR order to have a better appraisal of the novel approach. On the other hand, in the case

of the segmentation models, only the loss function was used to assess the models performance during

training, as it was derived directly from the most common metric of evaluation for medical segmentation:

the dice-score. The final performance of the model was assessed in the test-set, using the dice-score,

which was comprised of variably sized VOI, extracted around a lesion. Notice that this approach intends

to mimic the behaviour of the full hybrid LungSD-Net. Finally, it is relevant to observe that the Jaccard-

index was not included, due its equivalence to the dice coefficient by performing: D = 2J/(1+J), where

the D represents the dice coefficient and J represents the Jaccard index.

5.2 Detection Task

The analysis of the detection network will focus on evaluating the final 2.5D residual DCNN, first show-

casing three ablation tests, and then comparing the best model with results from the literature. Nonethe-

less, the empirical assessment of the NaiveNet, and of the NaiveConvNet on the LIDC-IDRI dataset,

showed the superior performance of the 2.5D residual DNN. Note that all the figures regarding the re-

sults of the following set of experiments are compiled in Appendix D. A table with a summary of all results

(Tab. D.1) can also be found in Appendix D.

5.2.1 Impact of regularization

The first ablation test performed intended to assess the contribution of the weight penalization design

and the addition of drop-out during training, therefore, three models were compared:

1. detection model 1: 2D residual DCNN with no weight penalization, and no drop-out;

2. detection model 2: 2D residual DCNN with both `1 and `2 regularization, but no drop-out;

3. detection model 3: 2D residual DCNN with weight penalization, and drop-out.

Table 5.1: Comparison of the models used to assess the impact of regularization to the model. Evaluation metrics
are AUC from the ROC curve, true positive rate (TPR), and true negative rate (TNR).

Model Evaluation Metrics
AUC TNR TPR

detection model 1 0.66 0.645 0.710
detection model 2 0.78 0.734 0.846
detection model 3 0.80 0.766 0.871
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In Figure D.2, in Appendix D, it is possible to compare the impact of the regularization in all models.

It is clear that the weight penalization term highly increases the value of the loss during training, and

both regularization strategies make the model converge slower. In specific, the loss function is the same

for the detection model 1, as the the regularization weights are zero. The values of the accuracy during

training, which are visible in Figure D.1, also in Appendix D, already showcase the impact of these added

methodologies, where the added regularization leads to an increase of the accuracy in the validation-set.

In addition, the evaluation of the models in the test-set (Tab. 5.1) help strengthen this conclusion, as all

the performance metrics assessed - AUC, TPR and TNR - increase from the detection model 1 to the

detection model 2, and then to the detection model 3. Furthermore, it is possible to note that the added

weight penalization terms contribute significantly to the increase in performance, with a relevant benefit

in the decrease of false positives.

5.2.2 Impact of data curation and augmentation

Table 5.2: Comparison of the models used to assess the impact of regularization to the model. Evaluation metrics
are AUC from the ROC curve, true positive rate (TPR), and true negative rate (TNR).

Model Evaluation Metrics
AUC TNR TPR

detection model 3 0.80 0.766 0.871
detection model 4 0.56 0.548 0.597
detection model 5 0.74 0.718 0.806

In order to estimate the impact of data curation and augmentation, two different models were trained

and evaluated for the second experiment performed. These are:

1. detection model 4: 2D residual CNN trained with only raw images and no data augmentation;

2. detection model 5: 2D residual DCNN trained with pre-processed images, but no data augmenta-

tion.

These were compared with the detection model 3 already mentioned. For detection model 4, all the

steps of resampling, lung extraction, and normalization were excluded, and the example sampling was

redefined in accordance: the false examples were extracted with no biased sampling. The plots for

the accuracy of the model during training are shown in Figure D.1, in Appendix D. As visible, for both

cases, training is much more unstable, taking many more iterations to train, with the first model only

converging after 7000 iterations, and not being able to generalize to the validation-set, and the second

model eventually being able to converge after more than 15000 iterations, with a slight decrease in

accuracy in the middle of the training.

The evaluation of the performance in the test-set also contributes to the conclusion that both data
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augmentation and image pre-processing have an impact in the final models’ performance. This informa-

tion is summarized in Table D.1, where it is possible to observe the large decrease in performance when

the both data curation, and image pre-processing are removed from the pipeline. Several factors may

contribute to the inability of detection model 4 to generalize in comparison to the model only lacking data

augmentation. These can be the large range of values of the images’ voxels, which are known cause

instability when training NN [51], as well as the multiple steps to curate the examples for training the

model [101].

Also, when compared with the 2D residual CNN trained with fully pre-processed, curated, and aug-

mented images, the results of the detection model 4 fall slightly short. It is thus possible to claim that

the augmentation techniques used also contribute, both to the training and the generalization of the final

model.

5.2.3 Impact of a 2.5D approach

Table 5.3: Comparison of the models used to assess the impact of regularization to the model. Evaluation metrics
are AUC from the ROC curve, true positive rate (TPR), and true negative rate (TNR).

Model Evaluation Metrics
AUC TNR TPR

detection model 3 0.80 0.766 0.871
2.5D residual CNN 0.87 0.830 0.901

Finally, to evaluate the impact of the added slices it possible to compare the performance of the

already shown 2D residual CNN - the detection model 3, and a 2.5D residual CNN, which has one slice

above, and one slice below, in the axial plane - the one with the lowest spatial resolution. Note that in

this test, both models were trained with the full pipeline, so the only difference is the number of input

image slices. It is possible to have a better assessment of the performance in the test-set by looking

at Table 5.3. Although training is slightly more unstable, the overall evaluation metrics still allow us to

conclude that the model with added context outperforms the previous model. It is also relevant to note

that decrease in performance in the 2D residual CNN is more noticeable with respect to the TNR. One

possible explanation is that the added context allows the model to better detect common false positives,

such as vascular structures, which are common confounders in the axial plane of CT scans [7]. This

is supported by the fact that anatomical information, specially in the transverse direction, might encode

relevant features for the detection of these structures,
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(a) Accuracy measured during training

(b) Cross-entropy loss during training (c) Cross-entropy and weight penalization
loss during training

Figure 5.1: Metrics assessed during training for the final detection model.

5.2.4 Comparison with the state of the art

The evaluation of the model during training is showcased in Figure 5.1. From Figure 5.1(a), the final

model was chosen by maximizing the accuracy in the validation-set; this corresponds roughly to the

1250-th iteration. Figure 5.1(b) shows that this model has a minimal cross-entropy loss in the validation-

set, before it starts diverging due to overfitting.

From the ROC curve computed on the test-set, shown in Figure 5.2, an AUC of 0.87 was computed.

Taking into account the many false examples in the test-set, it can be claimed that AUC = 0.87 is a

meaningful value for a sliding-window approach. Nonetheless, a TNR of 0.83 leads to 196.52 false

positives per slice, which is a number comparable to [105], but higher than the 15.0 candidates/slice,

reported by [19]. Therefore, it is possible to suggest that the LungsSD-Net would greatly benefit from

a false positive reduction model, such as those presented in [19, 105]. The analysis of a slice-wise

nodule detection rate can be seen in Table 5.4, where we compare our results with the state of the art

for lung lesion detection. Note that both the YOLO-based approach [26], and the RetinaNet model [6]

were not presented, as no values for the detection task were found; a particle swarm optimisation based

model [17] was also excluded from the comparison, as it didn’t perform patient-wise separation when
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Figure 5.2: ROC of the lesion detection task (AUC = 0.87)

building the test-set.

Table 5.4: State-of-the-art 2D detection models comparison.

Model Recall

3D dual path network R-CNN [109] 0.958
3D Deep CNN w/ lung extraction [34] 0.947

2.5D Faster RCNN w/ deconv layer [19] 0.946
YOLOv2 w/ InceptionV3 backbone [7] 0.890
triple 2D Faster RCNN w/ deconv layer and RPN ensemble [105] 0.864

2.5D residual DCNN (proposed) 0.902

In comparison to much more complex architectures and training methodologies, the proposed, much

simpler, 2.5D residual DCNN achieves recall values on par with the state of the art. Arguably, regular-

ization and data augmentation largely contribute to the good results herein reported. Also, reducing the

problem to the inside of the lungs allowed to benefit from resampling of the training examples, which

may contribute to the ability of the network to learn more relevant features from within the lungs. This

may justify to the comparable results achieved, as none of the non-3D models performed lung extraction,

and only one of the 3D models used it as pre-processing step. Moreover, it is important to mention that

the 2.5D Faster RCNN was also helped by extensive data augmentation, as well as positive oversam-

pling. Finally, it is important to note that a disparity in the size of lesions that are considered for analysis

currently exists, but that this work followed the parameters set by the Fleischner Society.

In Figure 5.3, the comparison between the number of false negatives per lesion size, and the size

distribution of examples in the training set is presented. Although the number of nodules drastically
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Figure 5.3: Comparison between false negatives count in the test-set and percentage of examples, both with re-
spect to the lesion size. An inverse pattern trend is noticeable with an increase of false negative counts
as the percentage of examples decrease and the size of the lesions increases.

decreases in the dataset, the number of positive patch examples decreases at a slower rate, as it is

possible to extract a greater number of examples per lesion. As expected, due to the fewer amount of

larger examples, most of the undetected lesions coincide with larger sized lesions. It is also possible

to hypothesise that this trend is counterbalanced for larger nodules, as its sheer size might make them

easier to detect, as presented in Figure 5.3. Another reason for the low amount of undetected small

lesions, is the fact that a 2.5D approach is being used. This may have contributed to the detection of

small lesions, as they become distinguishable from other similar structures, such as blood vessels, which

are present in multiple slices. Nonetheless, a more comprehensive analysis of this detection model still

needs to be performed using a larger, independent test-set.

5.3 Segmentation

5.3.1 Vanilla U-Net vs residual U-Net

The goal of this experiment was to compare the impact of residual connections in the task of lung lesion

segmentation. For that, using the already established pre-processing pipeline, as well as the training

methodology specified in Section 4.3.2, a vanilla U-Net, and a residual U-Net, both following the modified

U-Net architecture described in Section 4.3.1.A.

These two models share an extremely similar pattern of loss convergence, with a possible indication

of less overfitting in the modified residual U-Net. The final assessment of the models in the test-set also

only shows marginal increase in the dice score of the second model, at the cost of a slight decrease in
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Table 5.5: Comparison of the vanilla U-Net, and a residual U-Net models in a 5-fold cross validation. The used
evaluation metric was the dice-score.

Model dice score

modified vanilla U-Net 0.692±0.115
modified residual U-Net 0.709±0.124

deviation. This lead us to choose the modified residual U-Net for the rest of the work.

5.3.2 Comparison with the state of the art

As shown in Table 5.6, the modified residual U-Net achieved 0.709 ± 0.124 dice score (assessed by

5-fold CV). This score outperforms the best model [42] so far (Table 5.6), without using a 3D approach

nor a cascaded network. It is also important to mention that the Central Focused double branched

CNN [101] outperforms both models, with a dice-score of 0.802, tested in an external test-set, but is

trained in a dataset which contains 893 nodules. A 2.5D approach was also tested, with training results

comparable to the proposed model, but presenting worse testing performance. Arguably, for the specific

case of the detected nodules, the added slices in a 2.5D approach only contribute to overfitting the model

to the training set. An exploratory assessment of a recent 3D segmentation model was also performed.

That network, called the HighResNet [57], allowed the improvement of multi-class segmentation of brain

lesions, in MRI data. Nonetheless, the early tests performed for lung lesion in CT scans showed a failure

of the model to fully segment the lesions.

Finally, Figure 5.4 shows two examples of segmented lesions, depicting one of the highest scoring

segmentations (Figure 5.4 (a) and (b)), and then one of lowest scoring segmentations (Figure 5.4 (c)

and (d)). As visible in both examples, the network is able to produce accurate segmentations in solid

nodules, but still struggles to provide a reliable segmentation of sub-solid nodules, as is the case of the

second segmented lesion shown.
Table 5.6: Comparison of the dice score with state-of-the-art model in the Decathlon-Lung task for lesion segmen-

tation.

Model Mean dice score

3D Cascade U-Net [42] 0.692
2D modified residual U-Net (proposed) 0.709

Another important remark is that this comparison validates the LungSD-Net as a viable approach

for lesion segmentation. However, in order to achieve clinically relevant results, it is still mandatory to

implement several improvements to its first stage, as these are directly connected to the segmnetation

task. Nonetheless, the proposed architecture proves to be viable for the segmentation task at hand,

without an extensive training setup, even when trained in a small dataset. These results illustrate the
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robustness of the model for the segmentation of lesions with challenging textures.

(a) Output mask over-
laying the original
scan

(b) Output mask over-
laying the ground-
truth segmentation

(c) Output mask overlay-
ing the original scan

(d) Output mask overlay-
ing the ground-truth
segmentation

Figure 5.4: Example of segmentation with the modified residual U-Net. a) and b) present one of the segmentations
with the best dice-score, whereas c) and d) show one of the lowest scoring segmentations.
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6.1 Conclusions

The main goal of this present work was to assess the viability of relatively simple deep learning models

for the detection and segmentation of lung lesions in computed tomography (CT) images. Both problems

encompass one major hurdle: the need to overcome the high tendency for overfitting that exists in the

field of medical image segmentation. In this scenario, the problem at hand was approached through a

thorough pre-processing pipeline, as well as careful data curation and data augmentation. This included

lung extraction, which helped to deal with false positives from outside of the lungs’ parenchyma, and

both resampling and normalization. A novel region-based hybrid model for detection and segmenta-

tion of lung lesions on 3D CT scans, which is comprised of a new 2.5D residual deep convolutional

neural network (DCNN) and a modified residual U-Net was also proposed. The results obtained in the

detection task support the hypothesis that simpler DCNN architectures are able to achieve relevant re-

sults in medical imaging, through careful design of the training scheme, powerful data augmentation,

and state-of-the-art architectural modifications, as this model was able to produce competitive results

in comparison with other current state-of-the-art models. This simpler, but highly accurate, model has

lower hardware requirements, thus is potentially of more widespread applicability. The results herein

presented also provide evidence for the advantages of reducing the problem of segmentation to the

volume of interest (VOI) around each detected lesion. This is a first step towards the creation of a fully

automated segmentation tool based on deep learning that first relies on the detection of lesions in a

sliding-window fashion.

6.2 Limitations and Future Work

In the field of medical imaging, the application of deep learning models involves two major problems.

The first one is data availability, which due to the extensive requirements of deep learning models, leads

to severe limitations when considering the costs, ethical hurdles, and very time-consuming annotation

of medical data. We were fortunate to have been able to use the Lung Image Database Consortium

- Image Database Resource Initiative (LIDC-IDRI) dataset, which provided a solid foundation for the

training of the detection model. Nonetheless, a requirement for a clinically applicable model is to have

it evaluated in an external test set, so this is an absolutely necessary step in the continuation of this

work. This need for more data is even more essential in the case of the segmentation task, where

the dataset was extremely reduced. In the future, it would also be interesting to tackle this problem

with non-conventional data augmentation techniques, such as the use of generative models (such as

generative adversarial networks) [13, 24, 35], to produce artificial images. Transfer learning is also an

attractive technique to increase the efficiency of the available data, which becomes even more appealing

with recent evidence that it might allow the use of light-weight models [75]. Currently, one of the frontiers
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that has started to expand is the field of unsupervised learning in medical image [33]. This would also

contribute to lessen the requirements on data annotation, and may be an attractive direction for future

work. Interpretability is the second common issue that is brought up when dealing with deep learning

models, which is of extreme importance within the clinical context. Therefore, we recommend the study

of potential interpretability in this work through methods such us SHAP [61].

Regarding actual changes to the LungSD-Net, there is quite some room from improvement. Due

to its sliding window approach, and the limited computational, and memory requirements, one clear

improvement to the model is to expand it to 3D. Also, the addition of a false positive reduction sub-

network between the detection model, and the segmentation model, could potentially drastically improve

the TNR of the detection stage. Dense connections were never tried in this work, and could also lead to

overall improved performance of the model.

Finally, as the ultimate goal of this project would be to have it applied in the context of clinical practice,

we suggest the integration of the improved model into a CAD system, and then testing the potential gains

when used by radiologists. A semi-supervised method for the segmentation task would also be expected

to yield a more clinically valid mask of the VOI, through its iterative refinement by the radiologists. The

integration of this work in a radiomics pipeline by using the radiomic features extracted from the VOI of

each lesion, and then perform its subsequent analysis and classification, is also a logic next step.

6.3 Reproducibility

During this project, a large effort was made to assure its reproducibility. All the programming involved

relied on open source tools, such as Python libraries, visualization tools, and deep learning packages,

such as NiftyNet. Furthermore, all the code was structured as a library that provides several structured

functions for all the steps in CT scan preprocessing, as well as data curation and augmentation for

training machine learning models. The same library includes scripts that integrate all the function into

pipelines for and end-to-end approach of prepraring the data. A separate module dedicated to synthetic

images production was also included in the package, which could be used for exploratory analysis of

machine learning models.

These tools are fully documented and will enable the reproduction of this work. This resource can be

accessed through this link: https://github.com/JoaoCarv/LungSDNet.
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A
Backpropagation Algorithm:

Mathematical Details

Firstly, in regards to Equation 2.5, a derivation is performed with respect to a generic hidden layer vector

with K units xk = {xk1 , ..., xkK}, of the previous layer:

∂L(F ∗(X; θ), Y )

∂xkj
=
∑
i

∂L(F ∗(X; θ), Y )

∂zk+1
i

∂zk+1
i

∂xkj
(A.1)

=
∑
i

∂L(F ∗(X; θ), Y )

∂zk+1
i

W k+1
i,k , (A.2)

where W k+1
i,k is obtained by deriving Equation 2.5 with respect to xk. This can be generalized to

vectors as:

∇xkL(F ∗(X; θ), Y ) = W (k+1)>∇zk+1L(F ∗(X; θ), Y ). (A.3)

The next step is to apply the same rational to the pre-activation term in the same layer(Eq. 2.6),
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remembering that in this case the activation function is defined as g : R −→ R. This is given by

∂L(F ∗(X; θ), Y )

∂zkj
=
∂L(F ∗(X; θ), Y )

∂xkj

∂xkj
∂zkj

(A.4)

=
∂L(F ∗(X; θ), Y )

∂xki
g′(zkj ), (A.5)

where g′(zkj ) is the derivative of the activation function. Similarly, this equation can be simplified by using

the activation function defined in Equation 2.14, and its respective derivative g′(zk):

∇zkL(F ∗(X; θ), Y ) = ∇xkL(F ∗(X; θ), Y )� g′(zk), (A.6)

where � is the element-wise multiplication. Here we ascertain an important requirement when building

a NN architecture: in order to apply the backpropagation algorithm, g′(zk) needs to exist, which means

that g ∈ C1. Finally, the last step is to calculate the parameter gradient of the same hidden layer:

∂L(F ∗(X; θ), Y )

∂W k
i,j

=
∂L(F ∗(X; θ), Y )

∂zki

∂zki
∂W k

i,j

(A.7)

=
∂L(F ∗(X; θ), Y )

∂zki
hk−1j . (A.8)

Further simplification yields:

∇WkL(F ∗(X; θ), Y ) = ∇zk .L(F ∗(X; θ), Y )hk−1
>

(A.9)

Similarly, for the bias term b, a simplified equation is attained:

∇bkL(F ∗(X; θ), Y ) = ∇zkL(F ∗(X; θ), Y ). (A.10)

By applying these computations to all layers, the gradients for each hidden unit (including activations,

pre-activations, weights and bias) are computed. The backpropagation algorithm connects all these

calculations by beginning in the foremost layer’s activation function, and computing the previous layers

gradients from activation, to pre-activation, and finally weights and bias, until it reaches the first layer [52].
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B
Sub-gradient

The definition of a subgradient allows is here defined in order to have a solution for the non differentia-

bility of the ReLu (and the leaky-ReLu) at z = 0.

Let s ∈ RKbe defined as a subgradient of σ at z ∈ RK if ∀z′ ∈ RK , σ (z′) ≥ σ(z) + sT (z′ − x). The

subset of all subgradients of σ at z is then called its subdifferential. Now, with a slight generalization

of the SGD to allow subgradients, is possible to compute the update for the loss function, even if the

architecture has a non differentiable function such us the ReLu. Note that in both the cases of the ReLu

and the leaky-ReLu, the subgradient for z = 0 is commonly set to zero.
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C
Detection Ablation Study

In AppendixC the results of the ablation study for the detection network are presented. The box plots

presented in Figure C.1 summarize the results of the 100 trials for each one of the models.
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(a) Box-plots for the Naive-Net experiment

(b) Box-plots for the NaiveCOnv-Net experiment

(c) Box-plots of the residual DCNN experiment

Figure C.1: Box-plots for the experiments performed using the three different architectures. Each figure summa-
rizes the experiment, condensing the results for each iteration.
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D
Detection Experiments

Table D.1 summarizes the results for all experiments. In comparison to all other models compared, the

final model, which integrates the full pipeline of data preparation with the 2.5D residual CNN, presents

the best score for all metrics. The evaluation of the model convergence is also presented in Figure D.1,

where we can see the impact of the regularization in the overfitting for Figures D.1(a), D.1(b) and D.1(c),

as well as the incresed instability of the model’s training in Figures D.1(d) and D.1(e), when the pre-

processing and augmentation pipelines are removed.

Table D.1: Summary of the all the models performance in the test-set. Evaluation metrics are AUC from the ROC
curve, true positive rate (TPR), and true negative rate (TNR).

Model Evaluation Metrics
AUC TNR TPR

detection model 1 0.66 0.645 0.710
detection model 2 0.78 0.734 0.846
detection model 3 0.80 0.766 0.871
detection model 4 0.56 0.548 0.597
detection model 5 0.74 0.718 0.806
final model 0.87 0.830 0.901
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(a) Detection model 1

(b) Detection model 2

(c) Detection model 3

(d) Detection model 4

(e) Detection model 5

Figure D.1: Accuracy plots during training of all the models used to assess impact of regularization, data curation
and augmentation, as well addition of context to the input.
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(a) Detection model 1 classifica-
tion loss

(b) Detection model 1 classifica-
tion and regularization loss

(c) Detection model 2 classifica-
tion loss

(d) Detection model 2 classifica-
tion and regularization loss

(e) Detection model 3 classifica-
tion loss

(f) Detection model 3 classifica-
tion and regularization loss

Figure D.2: Plots of the loss function during training of the three the models used to assess impact of regular-
ization. Classification loss corresponds only to the cross-entropy loss, whereas the classification and
regularization loss also includes the weight penalization.
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