
UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

When the Answer comes into Question
in Question-Answering

Ana Cristina Bastos Mendes

Supervisor: Doctor Maria Lúısa Torres Ribeiro Marques da Silva Coheur

Co-Supervisor: Doctor Gábor Magyar

Thesis approved in public session to obtain the PhD Degree in

Information Systems and Computer Engineering

Jury final classification: Pass with Merit

Jury

Chairperson: Chairman of the IST Scientific Board

Members of the Committee:
Doctor Mário Jorge Costa Gaspar da Silva
Doctor Gábor Magyar
Doctor Anselmo Peñas
Doctor Paulo Miguel Torres Duarte Quaresma
Doctor Pável Pereira Calado
Doctor Maria Lúısa Torres Ribeiro Marques da Silva Coheur

2013

UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

When the Answer comes into Question
in Question-Answering

Ana Cristina Bastos Mendes

Supervisor: Doctor Maria Lúısa Torres Ribeiro Marques da Silva Coheur

Co-Supervisor: Doctor Gábor Magyar

Thesis approved in public session to obtain the PhD Degree in

Information Systems and Computer Engineering

Jury final classification: Pass with Merit

Jury

Chairperson: Chairman of the IST Scientific Board

Members of the Committee:
Doctor Mário Jorge Costa Gaspar da Silva, Professor Catedrático
do Instituto Superior Técnico, da Universidade de Lisboa

Doctor Gábor Magyar, Associate Professor,
Budapest University of Technology and Economics, Hungary

Doctor Anselmo Peñas, Associate Professor,
Universidad Nacional de Educación a Distancia,
Escuela Técnica Superior de Ingenieria Informática, Espanha

Doctor Paulo Miguel Torres Duarte Quaresma, Professor Associado (com Agregação)

da Universidade de Évora
Doctor Pável Pereira Calado, Professor Auxiliar
do Instituto Superior Técnico, da Universidade de Lisboa

Doctor Maria Lúısa Torres Ribeiro Marques da Silva Coheur, Professora Auxiliar
do Instituto Superior Técnico, da Universidade de Lisboa

Funding Institutions
Fundação para a Ciência e a Tecnologia

2013

Resumo

Um sistema de resposta automática a perguntas tem como objectivo devolver respostas cor-

rectas a perguntas formuladas em ĺıngua natural. A arquitectura t́ıpica deste tipo de sistemas

inclui um componente dedicado à Extracção da Resposta, no qual esta tese se foca.

Este documento começa por apresentar o sistema Just.Ask, desenvolvido no curso destes

estudos de doutoramento e que constitui a baseline e o foco de todas as experiências. Seguida-

mente, aborda as tarefas de extracção de respostas candidatas e de selecção da resposta final.

A primeira utiliza padrões lexico-sintácticos, aprendidos automaticamente a partir de fontes de

informação de larga escala, através de uma abordagem com supervisão mı́nima. Na segunda,

relações semânticas – equivalência e inclusão – são detectados entre as respostas candidatas

e usadas para melhor escolher a resposta final.

Finalmente, é apresentada uma nova abordagem ao problema de responder automatica-

mente a perguntas, tornando o Just.Ask no primeiro sistema, de acordo com o nosso melhor

conhecimento, que usa as respostas correctas a perguntas anteriores para responder a pergun-

tas futuras, utilizando os padrões entretanto aprendidos. Nesta abordagem, o utilizador tem

um papel fundamental, permitindo que o processo de aprendizagem se desencadeie: confirma

a correcção da(s) resposta(s) dada(s) pelo sistema. Caso nenhuma das respostas devolvidas

esteja correcta, poderá ele próprio fornecer a resposta correcta à pergunta formulada.

Abstract

A Question-Answering system aims at returning correct answers to questions posed in natural

language. The typical architecture of a Question-Answering system includes a component

dedicated to Answer Extraction, which is the focus of this thesis.

This thesis starts by presenting Just.Ask, the Question-Answering system developed

during the course of these Ph.D. studies, that represents the baseline and the target of all the

experiments. Afterwards, the tasks of candidate answer extraction and final answer selection

are addressed. The former uses (lexico-syntactic) patterns, automatically learned from large-

scale information sources using a minimally supervised approach. In the latter, semantic

relations – equivalence and inclusion – are detected between the candidate answers and used

to better choose the final answer.

Finally, a new approach to the Question-Answering challenge is presented, making

Just.Ask the first system, to the best of our knowledge, which uses the correct answers

to past questions to answer future questions, employing the learned patterns. In this ap-

proach, the user has a fundamental role that allows the learning process to be triggered: s/he

confirms the correctness of the system’s answer(s). However, if none of the returned answers

is correct, the user can provide the correct answer to the posed question.

7

Palavras-Chave

Palavras-Chave

Sistemas de Pergunta/Resposta

Extracção de Respostas Candidatas

Padrões Lexico-sintácticos

Aprendizagem de Padrões

Unificação Padrão/Frase

Estratégias de Relaxamento

Selecção da Resposta Final

Relações Semânticas

Aprender a Responder

Feedback do Utilizador

Keywords

Keywords

Question-Answering Systems

Candidate Answer Extraction

Lexico-syntactic Patterns

Pattern Learning

Pattern/Sentence Unification

Relaxation Strategies

Final Answer Selection

Semantic Relations

Learning to Answer

User Feedback

Acknowledgements

Acabou-se! Ou então é aqui que esta tese tem ińıcio... E agora que termina (ou começa), os

agradecimentos são devidos:

À minha orientadora, a Prof. Lúısa Coheur, por sabiamente (e numa segunda vez) me ter

guiado pelos caminhos intrincados do Processamento da Ĺıngua Natural, por me motivar em

momentos de desânimo, por me dar ideias e por confiar nas minhas e em mim. E à minha

amiga, a Lúısa, por ser uma fonte de inspiração, por partilhar histórias e dar conselhos, por

se rir comigo (É a partir de agora que vou ser considerada uma crescida?).

Ao meu grupo, o L2F, por me ter proporcionado um ambiente de trabalho fantástico e

por me ter sempre feito sentir em casa (tanto, que muitos foram os fins-de-semana que passei

no 2o andar do edif́ıcio do INESC-ID Lisboa!). Em especial ao Prof. Serralheiro, com quem

partilhei sala (e bem me lembro do meu sentimento de quase petrificação nos primeiros dias!)

e que tinha sempre qualquer coisa nova e interessante para me ensinar. Ao meu grupo de QA,

ao Sérgio, ao Hugo, ao Pedro, ao outro Pedro, ao André, ao Ricardo, por serem excelentes

colegas de trabalho.

À Vanda, pela amizade incondicional que me transmite a cada abraço. E à Susana e à

Cátia. Às três, pela amizade, pelo apoio, pelas gargalhadas, pela presença que não dispenso,

por se terem ido despedir de mim ao aeroporto. À IdRdS... ([Sentir agora arrepio de puro

terror, apesar de não se saber muito bem qual a sua origem!]).

Ao meu sócio, o Lúıs Sarmento, que foi um companheiro inesperado de casa e de tango,

e que se tornou assim numa espécie de irmão mais velho e experiente. E à Anabela, pelas

nossas conversas à porta das nossas casas e que me sabiam sempre tão bem.

Aos que aqueceram o meu Inverno em Pittsburgh (e se esteve frio em Pittsburgh...).

Em particular ao Rui, que me deu as melhores boas-vindas e uma ajuda preciosa na minha

integração no burgo (e que esteve sempre atento às novidades do meu blog!), à Laura, que

me fez sentir em casa logo assim que passei a porta, à Seza, pela boa disposição contagiante,

e ao Avner, um melhor amigo que eu nunca pensei vir a ter (and just because I thanked you

in my thesis, it doesn’t mean that I don’t hate you!).

A todas as pessoas importantes que tive a sorte de se terem cruzado no meu caminho e

que me ajudaram a tornar-me naquilo que sou hoje. Em especial à Raquel, ao András e ao

Dário. E a todos os meus amigos. Sim, mesmo aqueles que, depois de duas teses, continuam

a não saber qual é o tópico da minha investigação!

E à minha famı́lia. Ao meu irmão. E aos meus pais! Que sempre apoiaram as minhas

decisões, mesmo aquelas com as quais não concordavam assim muito. E pelo amor e carinho

com que o fizeram. E pronto, Mãe e Pai, prometo que é agora que vou arranjar um emprego

“a sério”! Acho eu...

Finalmente, à Fundação para a Ciência e a Tecnologia, que financiou esta tese através da

Bolsa de Investigação com a referência SFRH/BD/43487/2008.

Lisboa, Outubro 2013

Ana Cristina Bastos Mendes

Aos meus pais e ao meu irmão

Contents

1 Introduction 1

1.1 Thesis Statement . 2

1.2 Thesis Contributions . 4

1.3 Research Methodology . 6

1.4 Thesis Structure . 7

2 Just.Ask: A Multi-pronged Approach to Question-Answering 9

2.1 Related Work . 9

2.2 Introducing Just.Ask . 13

2.2.1 Question processing in Just.Ask . 13

2.2.2 Passage retrieval in Just.Ask . 16

2.2.2.1 Information sources . 18

2.2.2.2 Query formulation . 18

2.2.3 Answering in Just.Ask . 19

2.2.3.1 Candidate answer extraction 21

2.2.3.2 Final answer selection . 23

2.2.3.2.1 Normalization . 23

2.2.3.2.2 Aggregation . 24

2.2.3.2.3 Clustering . 24

2.2.3.2.4 Filtering . 25

2.2.3.2.5 Selection . 26

2.3 Evaluation Corpora . 26

2.3.1 GoldWebQA . 26

2.3.2 TREC-QA 2002-2007 . 29

i

2.3.3 On the sources of unstructured information 31

2.4 Evaluation Measures . 32

2.5 Baseline Evaluation . 34

2.5.1 Results – JustAsk@GoldWebQA . 34

2.5.1.1 Question processing results 34

2.5.1.2 Non factoid-like questions . 35

2.5.1.3 Factoid-like questions . 36

2.5.1.3.1 Passage retrieval results 36

2.5.1.3.2 Answer extraction results 38

2.5.1.3.3 Overall results of the factoid-like questions 41

2.5.2 Results – Just.Ask@TREC-QA 2002-2007 44

2.5.2.1 Question processing results 45

2.5.2.2 Passage retrieval results . 45

2.5.2.3 Answer extraction results . 46

2.5.2.4 Overall results . 47

2.6 Discussion . 49

2.6.1 Comparison with other systems . 49

2.6.2 Strengths and weaknesses of Just.Ask 51

2.6.3 On the evaluation of question-answering systems 52

2.7 Summary . 53

3 Candidate Answer Extraction based on Learned Patterns 55

3.1 Related Work . 55

3.2 Pattern Learning via a Minimally Supervised Approach 58

3.2.1 Question processing . 59

3.2.2 Passage retrieval . 61

3.2.3 (Lexico-syntactic) Pattern building . 61

3.2.3.1 Types of patterns . 63

3.3 Pattern-Based Answer Extraction . 65

ii

3.3.1 Pattern/sentence unification . 65

3.3.2 Relaxing the unification . 68

3.4 Evaluation . 69

3.4.1 Pattern learning . 69

3.4.2 Pattern/sentence unification . 72

3.4.2.1 Experiments . 72

3.4.2.2 Results . 73

3.4.2.2.1 Experiment 1 – N-fold cross validation 73

3.4.2.2.2 Experiment 2 – Yearly evolution 76

3.4.3 Influence in Just.Ask . 80

3.5 Discussion . 81

3.6 Summary . 83

4 Final Answer Selection based on Semantic Relations 85

4.1 Related Work . 85

4.1.1 Techniques for final answer selection 85

4.1.2 Relating answers . 89

4.1.3 A typology of relations . 90

4.2 Final Answer Selection based on Semantic Relations 92

4.2.1 Detecting equivalence and inclusion 93

4.2.2 Selecting the final answer . 95

4.3 Evaluation . 96

4.3.1 Experiments . 96

4.3.2 Results . 101

4.3.2.1 Experiment 1 – Multi-stream question-answering 101

4.3.2.2 Experiment 2 – Single-stream question-answering 104

4.3.2.3 Other results . 106

4.3.3 Influence in Just.Ask . 108

4.4 Discussion . 109

4.5 Summary . 110

iii

5 From Answered Questions to Question Answering 113

5.1 Related Work . 113

5.2 Learning to Answer from Answered Questions 115

5.2.1 Iterative learning to answer . 116

5.2.2 Just.Ask’s new architecture for answering questions 116

5.3 Evaluation . 118

5.3.1 Evaluation measures . 118

5.3.2 Experiments . 119

5.3.3 Results . 121

5.3.3.1 Experiment 1 – Iterative learning to answer 121

5.3.3.2 Experiment 2 – Revising past questions 125

5.3.3.3 Further analysis . 126

5.3.4 New results – Just.Ask @TREC-QA 2002-2007 129

5.4 Discussion . 133

5.5 Summary . 135

6 Conclusions and Future Work 137

6.1 Contributions . 138

6.2 Final Discussion . 140

6.3 Future Work . 141

Bibliography 145

iv

List of Figures

2.1 Typical pipelined architecture of a Question-Answering (QA) system. 10

2.2 Detailed view of the Question Processing component of Just.Ask. 14

2.3 Detailed view of the Passage Retrieval component of Just.Ask. 17

2.4 Detailed view of the Answer Extraction component of Just.Ask. 20

3.1 Parse tree of the question What is another slang expression for the Madness? 60

3.2 Parse tree of the sentence In the 14th century Dante has written The Divine
Comedy, considered the preeminent work of Italian literature. 62

3.3 Building a (lexico-syntatic) pattern from (the parse-tree of) a sentence that
contains entities from the question and the question’s answer. 64

3.4 Parse tree of the sentence With the sponsorship of the Medici family Botticelli
has painted the Birth of Venus. 67

3.5 Number of patterns learned per question category. 72

3.6 Precision when varying the values of MAXpl and MAXae, with and without
relaxation, in Experiment 1. 75

3.7 MRR when varying the values of MAXpl and MAXae, with and without re-
laxation, in Experiment 1. 76

4.1 Relations between numeric candidate answers. 95

5.1 Learning from answered questions: the new architecture of Just.Ask. 117

5.2 Evolution of Just.Ask’s performance with the number of posed questions, in
scenarios 1 (NER) and 2 (P+RF) in the five different runs. 122

5.3 Evolution of Just.Ask’s precision with the number of posed questions, in
scenarios 1 (NER) and 2 (P+RF) in the five different runs. 123

5.4 Evolution of Just.Ask’s performance with the number of posed questions, in
scenario 4 (NER+P+RF) in the five different runs, with and without relaxation.124

5.5 Evolution of Just.Ask’s precision with the number of posed questions, in
scenario 4 (NER+P+RF) in the five different runs, with and without relaxation.125

v

vi

List of Tables

2.1 Li and Roth’s two-layer taxonomy for question classification. 15

2.2 Number of questions per category in the GoldWebQA corpus. 28

2.3 Number of questions per question word in the GoldWebQA corpus. 28

2.4 Number of questions in the TREC-QA 2002-2007 corpus gathered from each
year of the Text REtrieval Conference (TREC) competition. 30

2.5 Number of questions per question word in the TREC-QA 2002-2007 corpus. . 30

2.6 Some Question/Answer (Q/A) pairs in the reference corpus. 30

2.7 Comparison of accuracy results attained by Just.Ask’s Question Classifier,
against other results reported in the literature that use the same train and test
datasets. 35

2.8 Passage retrieval intrinsic evaluation, while varying the number of passages
retrieved from the web search engine. 37

2.9 Answer extraction intrinsic evaluation, using 64 passages from the search engine
Google. The results achieved in the candidate answer extraction (CAE) and
final answer selection (FAS) stages of Just.Ask are shown. 39

2.10 Answer extraction intrinsic evaluation, using Google and two different amounts
of retrieved passages. The results achieved in the candidate answer extraction
(CAE) and final answer selection (FAS) stages of Just.Ask are shown. . . . 40

2.11 Answer extraction intrinsic evaluation, for different amounts of retrieved pas-
sages, according to the question category. The results achieved in the candidate
answer extraction (CAE) and final answer selection (FAS) stages of Just.Ask
are shown. 41

2.12 Best results achieved by Just.Ask in the evaluation using the GoldWebQA
corpus. 42

2.13 Just.Ask results according to the different question categories. 42

2.14 Results according to the different question words. 43

2.15 Number of times each component is the first to fail, avoiding the system to
return the correct answer to 95 (wrong or unanswered) questions. 43

vii

2.16 Number of questions per category in the TREC-QA 2002-2007 corpus. 46

2.17 Passage retrieval intrinsic evaluation. 46

2.18 Answer extraction intrinsic evaluation, using 100 passages from the search en-
gine Bing. 47

2.19 Results achieved by Just.Ask in the evaluation using the TREC-QA 2002-
2007 corpus. 47

2.20 Just.Ask results according to the different question categories. 48

2.21 Just.Ask results according to the different question words in the TREC-
QA 2002-2007 corpus . 48

3.1 Distribution of the number of learned patterns per (coarse) category. 71

3.2 Number of correct questions and recall when varying the values of MAXpl and
MAXae in Experiment 1. 74

3.3 Some statistics from the TREC-QA 2002-2007 corpus. 77

3.4 Number of correct questions and achieved recall in Experiment 2, configuration
a). 77

3.5 Number of correct questions and recall achieved in Experiment 2, configuration
b). 78

3.6 Number of correct questions and recall achieved in Experiment 2, configuration
c). 79

3.7 Number of correct questions and associated recall when using uniquely the
Named Entity (NE)-based strategies and when using the NE-based strategies
plus the Pattern-based strategy to candidate answer extraction. 80

4.1 Relations between candidate answers. 92

4.2 Details of the corpus used in Experiment 1, setting a). 98

4.3 Details of the corpus used in Experiment 1, setting b). 98

4.4 Details of the corpus used in Experiment 2. 99

4.5 Example of the final answer selection as presented in this section. 100

4.6 Results achieved in experiment 1 – Multi-stream Question-Answering, setting
a). 102

4.7 Evaluation results of the relations detected in setting a) of experiment 1 –
Multi-stream question-answering. 103

4.8 Results achieved in experiment 1 – Multi-stream question-answering, setting b).104

viii

4.9 Results achieved in experiment 2 – Single-stream question-answering. 105

4.10 Evaluation results of the relations detected in experiment 2 – Single-stream
question-answering. 106

4.11 Answer selection results when every candidate answer is unique. 107

5.1 Performance of Just.Ask when varying the scenario. 121

5.2 Impact of the relaxation strategies in the best scenario NER+P+RF. 123

5.3 Overall performance when reiterating. The system revises past questions at
every (i× n) interactions (n ∈ {1, ..., 10} and i ∗ n < 1440). 125

5.4 Examples of patterns that matched sentences for each given question. 127

5.5 Just.Ask best achieved results in the evaluation using the TREC-QA 2002-
2007 corpus, after the iterative learning approach has been introduced. 131

5.6 Just.Ask results according to the different question categories. 131

ix

x

1Introduction
The amount of available data grows at a staggering pace. This trend is perhaps most visible

in the World Wide Web (WWW), where a large amount of user-generated content (text,

audio, video,...) is published every day in social networks, news, blogs and others. In this

conjecture, the challenge is to satisfy the user’s information needs, regardless of the size of the

available data and of its growing rate. The need to deal and leverage those amounts of data

to respond to the users’ requests led to the foundation of (nowadays) very active research

fields, like Data Mining or Information Retrieval, and to the appearance of buzzwords like

big data [Manning et al., 2008; Baeza-Yates and Ribeiro-Neto, 2011; Rajaraman and Ullman,

2012].

In the particular case of textual data, we have witnessed the rise and establishment of web

search engines (like Google1, Bing2 or Yahoo!3) as major role players in people’s everyday’s

lives, supported by the indisputable fact that it is simply impossible for a user to grep such

amounts of textual data searching for the information that meets his/her needs. However, it

should be clear that oftentimes it is also not viable to let him/her choose among a (possibly)

large set of information snippets retrieved by the search engines. Question-Answering (QA)

systems appear in this context as the optimal solution to this problem, as they aim to deliver

the exact correct responses – answers – to the users’ requests – questions posed in natural

language. QA systems have been around since the 60’s, when they first appeared as natural

language interfaces to databases. Since that date, and motivated by the emergence of the

WWW, Question-Answering systems began to deal with information sources composed of

large amounts of unstructured textual data. The new architecture has becme rather stan-

1http://www.google.com/
2http://www.bing.com/
3http://www.yahoo.com/

http://www.google.com/
http://www.bing.com/
http://www.yahoo.com/

2 CHAPTER 1. INTRODUCTION

dard [Jurafsky and Martin, 2008], consisting of a pipeline composed of three main components,

each dedicated to a specific task: the first to the processing of the input question, the second

to the retrieval of the textual information where the answers might lie, and the third to the

extraction, selection and presentation of the correct answer to the user.

A huge importance is attributed to the understanding of the posed question (the first task

in QA), with research lines like question classification being widely explored [Li and Roth,

2002; Pan et al., 2008; Blunsom et al., 2006; Huang et al., 2008; Silva et al., 2011]. The

identification of the pieces of information relevant for a question (the second task in QA) has

also deserved much attention, and is often based on the developments achieved in the field

of Information Retrieval [Tellex et al., 2003; Clarke and Terra, 2003; Khalid and Verberne,

2008; Tiedemann and Mur, 2008]. The primary focus of this Ph.D. thesis lies, however, on

the third task within a QA pipeline: the answering task, which we consider as the aggregated

tasks of extracting candidate answers from the information sources and selecting the final

answer(s) from the group of candidate answers. Moreover, it will focus on the development

of a strategy that allows a QA system to learn to answer based on previous, correctly

answered questions.

1.1 Thesis Statement

The scientific hypotheses behind this work are the following:

• Relations between the question and answer can be automatically learned and used as

an effective approach to candidate answer extraction.

• Relations between candidate answers can positively influence the selection of the final

answer from a set of candidate answers to a question.

• If a QA system is able to assess the correctness of its answers, it can learn to answer

new, previously unseen questions, from past interactions.

These hypotheses are based on the following.

1.1. THESIS STATEMENT 3

In what regards the task of candidate answer extraction, some systems [Soubbotin, 2001;

Mollá and Gardiner, 2004; Hickl et al., 2006; Shima and Mitamura, 2010] rely on the fact

that language comprises several regularities, or patterns, that indicate the existence of certain

information. For instance, The Birth of Venus was painted by Botticelli is a common way

to say that Botticelli made a painting called The Birth of Venus. This is expressed by the

sequence of the words was painted by. The pattern-based approach to candidate answer

extraction relies on the observation that the answer to a given question will probably occur in

sentences that contain a rewrite of the original question. For instance, given Who painted the

Birth of Venus?, the above-mentioned sentence The Birth of Venus was painted by Botticelli

is composed of a rewrite of the question (The Birth of Venus was painted) followed by a

preposition (by) and the question’s correct answer (Botticelli). Being so, in this thesis we

aim at automatically capturing the patterns that convey the relation existing between (parts

of) the question and its correct answer – in the example (Who painted the Birth of Venus?,

Botticelli) this is the relation between the action “painted”, the object of the action “the Birth

of Venus” and the subject of the action “Botticelli” (which is the answer to the question).

In what concerns the task of final answer selection, a usual approach is the selection of the

final answer depending on its frequency of occurrence in the information sources [Brill et al.,

2001; Roussinov et al., 2005; Lin, 2007]. However, in many situations, the candidate answers

to a question are related among them, which can help to more accurately select the final

correct answer. For example, given the question When was the Birth of Venus painted? and a

group of candidate answers {1485-86,XV century, 1485, 1500, c1485}, we aim at relating them

(equals(1485,c1485), includes(XV century,1485), includes(1485-1486,1485), and so

forth) through previously defined semantic relations. Therefore, in this thesis we aim at

improving the selection of the final answer by detecting and using the relations that the

candidates hold between them.

Finally, a typical interaction with a QA system is that in which a question is posed and

its answer is returned. This means that, after being presented to the user, the system’s

answers are usually discarded from further processing. However, there is much information

4 CHAPTER 1. INTRODUCTION

conveyed by the correct answer to a question that is simply lost in every interaction. For

example, knowing that Botticelli correctly answers the question Who painted The Birth of

Venus? and that it can be found in the sentence Botticelli has painted The Birth of Venus,

such information might be important to locate the correct answer to the similar question Who

wrote the Divine Comedy?. This problem is addressed in this thesis as we aim at allowing a

QA system to learn new patterns (and to answer new questions) using information obtained

from positive feedback given in previous interactions.

This thesis will focus on open-domain, factoid QA. Factoid QA systems are expected to

deliver short, fact-based answers to natural language questions. Since the questions are not

limited to any particular domain, rather they can be about virtually anything, systems are

told to be open-domain.

1.2 Thesis Contributions

The contributions of this thesis are the following:

• The reimplementation/improvement, description and thorough evaluation of a running

open-domain QA system (called Just.Ask);

• The proposal, description and evaluation of an algorithm based on a minimally super-

vised approach to learn answer extraction patterns from pairs of questions and their

answers;

• The proposal, description and evaluation of a pattern/sentence unification method,

which relies on the existence of relaxation strategies that flexibilize that unification;

• The description and evaluation of an approach to final answer selection based on the

detection of semantic relations between candidate answers;

• The proposal, description and evaluation of an approach that allows the system to

iteratively learn to answer new questions based on previous correct interactions;

1.2. THESIS CONTRIBUTIONS 5

• The description of the modifications that occurred in a QA system’s architecture in

order to support learning from previous interactions.

Moreover, the following tools and resources were also made freely available for the research

community:

• Just.Ask, the open-domain QA system described in the thesis and in a recent journal

paper [Mendes et al., 2013b].

• A corpus that consists of 200 questions, their categories, a set of snippets retrieved from

the Web and all the correct answers occurring in the snippets.

• The Just.Ask’s question classifier [Silva et al., 2011].

It should be mentioned that Just.Ask benefitted from collaborations with colleagues

from my group, the Spoken Language Systems Laboratory (L2F)4 of INESC-ID, Lisboa. In

fact, the origins of this system date back to the scholar year of 2008/2009, when a QA system

named QA+ML@Wikipedia&Google was built in the context of a Master’s Thesis [Silva,

2009]. The goal was the creation of a QA system that would combine established techniques

on the Natural Language Processing and Machine Learning fields, and the main efforts were

dedicated to question classification.

By the end of 2009, QA+ML@Wikipedia&Google was handled over to me and became my

main research tool. My first tasks in the improvement of the system included code refactoring,

cleaning and documentation, the indexing of a local document collection, the development of

new regular expressions to answer extraction, the development of the answer normalizers, the

establishment of a pipeline for answer selection. Also, I focused on the question classification

component of the system, which led to the publication of a journal paper [Silva et al., 2011].

After the first improvements, the system was renamed to Just.Ask and the baseline

system for my PhD thesis was settled. Just.Ask was fully described and thoroughly evaluated

4https://www.l2f.inesc-id.pt

https://www.l2f.inesc-id.pt

6 CHAPTER 1. INTRODUCTION

in a journal paper [Mendes et al., 2013b], a work which was possible due to creation of an

evaluation corpus in collaboration with Gonçalves [2012]. Recent work I have conducted in

Just.Ask has specially addressed extensions and improvements to the Answer Extraction

component of the system, which will be fully described in this thesis.

1.3 Research Methodology

The work presented in this thesis was integrated in the QA line of research of L2F.

The general methodology of the thesis consisted of the following: first, the baseline of the

system was established, which allowed to have the first results against which the improvements

brought to the system by any strategy could be measured. The baseline (including tools

and testing data) was released in order to serve as a benchmark, since there is a shortage of

available resources that allow a true comparison of the advancements in this area. Afterwards,

the first two scientific hypotheses of this research were tackled individually, since they relate

with two self-contained sub-tasks in the QA pipeline: candidate answer extraction and final

answer selection. The best configurations regarding both tasks were integrated in the system.

Finally, the system’s architecture was changed to test the last hypothesis, allowing an iterative

approach to QA where new questions are answered based on previous (successful) interactions.

In each of these steps, a thorough evaluation was performed, based on traditional evalua-

tion metrics in the QA field of study (e.g., recall, precision and accuracy). Moreover, regarding

the evaluation corpora and information sources, whenever possible we employed data that is

freely available and used in the context of evaluation forums of QA systems. During this

work, we tried not to commit to any paradigm, and made use of several techniques, from

more traditional rule-based to more recent machine learning-based.

All the publications, tools and resources resulting from this thesis are freely available and

can be found online at https://qa.l2f.inesc-id.pt/.

https://qa.l2f.inesc-id.pt/

1.4. THESIS STRUCTURE 7

1.4 Thesis Structure

This thesis does not follow the typical organization of an engineering work presentation,

with an introduction/related work/architecture/evaluation/conclusion structure. It is our

opinion that the current structure will allow a better understanding by the reader, since in

each chapter we focus on a different, self-contained aspect of the developed work, which we

introduce with references to related work, describe, evaluate and discuss.

This thesis is structured as follows:

• Chapter 2 describes Just.Ask, the open-domain QA system that is the focus of this

thesis. We detail the pipelined architecture of Just.Ask, including its Question Pro-

cessing (in Section 2.2.1), Passage Retrieval (in Section 2.2.2) and Answer Extraction

components. We devote particular attention to the latter component (in Section 2.2.3).

Moreover, we describe the corpora built to evaluate the system in Section 2.3 and in

Section 2.4 the evaluation metrics are presented. The results of the evaluation of the

baseline of the system are shown in Section 2.5. We make a brief discussion in Section 2.6

and conclude the chapter in Section 2.7.

• Chapter 3 focuses on the task of candidate answer extraction, using learned (lexico-

syntactic) patterns. In Section 3.1, we start by reviewing related work in answer ex-

traction. After, in Section 3.2, we detail a minimally supervised approach to learn

patterns that connect questions to their answers and, in Section 3.3, our method to use

the patterns to extract correct answers to factoid questions. Next, we present the results

of the evaluation of our pattern learning and matching strategies (in Section 3.4). We

make a brief discussion in Section 3.5 and conclude the chapter in Section 3.6.

• Chapter 4 addresses the task of final answer selection, in particular in using semantic

relations in order to make a better selection of the system’s final answer. We start

by referring to related work in Section 4.1, namely we present four semantic relations

– equivalence, inclusion, aggregation and alternative – and a review of techniques for

8 CHAPTER 1. INTRODUCTION

their detection. Next, we introduce our approach to answer selection based on the

semantic relations (in Section 4.2), including how we detect the relations of equivalence

and inclusion between answers (in Section 4.2.1), and we select the final answer based in

the relations (in Section 4.2.2). We present the results of the evaluation of the approach

in Section 4.3. We make a brief discussion in Section 4.4 and sum up the chapter in

Section 4.5.

• Chapter 5 describes our approach that allows Just.Ask to use the correct answers

to previous questions to learn patterns to answer future questions. In Section 5.1 we

start by showing approaches that rely on learning from questions and (their) answers.

Afterwards, we describe our iterative approach to learn to answer new questions from

past successful interactions (Section 5.2.1), we refer to the changes that were made on

Just.Ask to accommodate the work done regarding the candidate answer extraction

and final answer selection tasks and the system’s new architecture (in Section 5.2.2). In

Section 5.3 we evaluate our approach and present Just.Ask’s new results. We discuss

the chapter in Section 5.4 and sum up the chapter in Section 5.5.

• The thesis finishes in Chapter 6, where we summarize the document. In Section 6.1, we

refer to the contributions of this Ph.D., including the resources made publicly available

to the research community and the published contributions (accepted scientific confer-

ence and journal papers). Finally, we point to future work directions and we indicate

new paths in which this work can evolve (in Section 6.3).

2
Just.Ask: A

Multi-pronged Approach

to Question-Answering

The present chapter is dedicated to introduce Just.Ask, its architecture and main compo-

nents. It starts with a review of related work in QA, followed by the description of the system.

A thorough baseline evaluation is also presented, using two different corpora. Afterwards, the

evaluation results are analysed and discussed. The chapter ends with a brief summary.

2.1 Related Work

Question-Answering (QA) has deserved a great deal of attention from the research community

and, nowadays, it is still a very active field of research. Almost 50 years ago, Simmons [1965]

published a survey article describing no less than fifteen QA systems for the English language

that were built in the preceding five years. The system BASEBALL [Jr. et al., 1961], which

handled questions about baseball games played in the American League over a period of one

year, was among them. A few years later, with the sponsorship of NASA, William Woods

[1972] developed LUNAR, which answered questions about lunar rock and soil samples that

were collected by the Apollo Moon missions. The system was demonstrated at the Lunar

Science Conference in 1971, where it answered correctly to 78% of the questions posed by the

attending geologists [Hirschman and Gaizauskas, 2001].

Both LUNAR and BASEBALL were essentially natural language interfaces to databases

(NLIDB), in which the user’s question is translated into a database query, and the query’s

output is returned as the answer. Many other systems were developed along the lines of

LUNAR and BASEBALL; however, the majority of them are limited to restricted-domains, their

knowledge is stored in a database and are very complex to port to different domains. A

detailed survey on NLIDBs can be found in Androutsopoulos et al. [1995].

10 CHAPTER 2. JUST.ASK

With the advent of the WWW in the early 1990s, and the resultant explosion of electronic

media, many research groups began to exploit the web as a large text corpus, creating the

so called web-based question answering systems, such as START1 [Katz, 1988, 1997]. In 1999,

with the launch of the QA track [Voorhees, 1999] in the renowned TREC2, the field of QA

gained new momentum. In fact, in the recent years, several evaluation forums, like the Cross-

Language Evaluation Forum (CLEF) and TREC, have promoted and testified many of the

improvements of QA systems. The participating systems implement an extensive panoply of

techniques, but the general architecture of a modern information retrieval-based QA system

has become somewhat standardized [Jurafsky and Martin, 2008]: it consists of a pipeline

composed of three main components dedicated to the tasks of Question Processing, Passage

Retrieval and Answer Extraction, respectively. Figure 2.1 depicts the typical QA pipeline.

Question Processing

Question Answer
DocumentDocument

Document
Document

Document

Processed
Question

Relevant
Passages

Passage Retrieval Answer Extraction

Figure 2.1: Typical pipelined architecture of a QA system.

Question processing (also known as question analysis or question interpretation) is the

task responsible for understanding the posed question and often involves several subtasks, like

question classification or the extraction of different types of information from the question

(named entities or main verbs, for example). In question classification (a subtask transversal

to most systems), a semantic category representing the type of the answer that is being sought

after is assigned to the question. It is considered of extreme importance to a QA system due

1http://start.csail.mit.edu/
2http://trec.nist.gov/

http://start.csail.mit.edu/
http://trec.nist.gov/

2.1. RELATED WORK 11

to two reasons:

1. the classification can help narrowing down the number of possible candidate answers

and, depending on the question category, different strategies can be used to extract the

correct answer from the information sources; and

2. a misclassified question can hinder the ability of the system to reach the right answer,

because it can cause downstream components to make wrong assumptions about the

question.

Therefore, to achieve good overall results, it is of crucial importance to have a precise ques-

tion classifier.3 The set of question categories is referred to as question type taxonomy and

several question type taxonomies have been proposed in the literature [Moldovan et al., 2000;

Hermjakob et al., 2002; Li and Roth, 2002]. The hierarchical taxonomy of Li and Roth [2002]

is one of the most well known and widely used in QA, mainly due to the fact that, besides

the taxonomy, the authors published nearly 6,000 labelled questions and made them freely

available. As so, the use of this corpus in the evaluation of machine learning techniques for

the purpose of question classification is recurrent in the literature [Li and Roth, 2002; Pan

et al., 2008; Blunsom et al., 2006; Huang et al., 2008].4

After the question processing, the next step is to find the relevant passages where the

answer(s) to the question might be found. This step is usually referred to as passage re-

trieval. It should be noticed that some systems, like the one of Grau et al. [2006], prefer

to retrieve documents instead of passages and analyze them when searching for the answer.

If, on the one hand, this approach can introduce noisy information to be later filtered in

the answer extraction module, on the other hand, the usage of advanced Natural Language

Processing (NLP) techniques can potentiate the detection of answers hidden in anaphoric

and elliptic expressions, which is more complex (or even impossible) to achieve when using

passages. The trade-off between the use of passages and documents as retrieval units has been

3For a study on the impact of question classification in QA, refer to the work of Moldovan et al. [2003b]
4A more detailed review of question classification can be found in the paper of Silva et al. [2011].

12 CHAPTER 2. JUST.ASK

the subject of study of several authors (see Clarke and Terra [2003] and Monz [2003]). Despite

such studies and the importance of this step in the overall performance of a QA system, the

passage retrieval component is often neglected by QA developers and researchers in the sense

that most prefer to rely on pre-existing off-the-shelf solutions, like Google or Lucene5 search

engines. However, there are still a few systems, such as the one from PRIBERAM [Amaral

et al., 2008], QA@L2F [Mendes et al., 2008] or QRISTAL [Laurent and Sophie Nègre, 2005], that

endeavour in a stage of pre-processing the corpus, by collecting, organizing and storing the

information contained in thousands of documents in databases. The task of passage retrieval

can take advantage of the output of the preceding question classification task, to retrieve only

those documents that contain at least one occurrence of a named entity that agrees with the

expected question category. By doing so, the answer extraction module only has to search

passages/documents that may potentially have the correct answer. Another fundamental task

in passage retrieval has to do with query formulation, in which the question is translated

into a suitable representation that can be used by the search engine to retrieve relevant pas-

sages. Note that this representation is not necessarily an unstructured set of keywords (it

can, for instance, be a structured query language) and is tightly coupled and dependent of

the used search engine.

The answer extraction is the last task in the typical QA pipeline, responsible for ex-

tracting and selecting the final answer(s) to the posed question from the relevant passages

returned by the passage retrieval component and present it to the user. As an example, con-

sider the question Who painted the Birth of Venus?, classified as Human:Individual, and

for which the following passages were retrieved:

• The Birth of Venus is a 1486 painting by Sandro Botticelli.

• The Birth of Venus: A Novel is a 2003 novel by Sarah Dunant, a bestselling British

author. The story is set in the late 15th century in Florence, Italy.

• The Birth of Venus is probably Botticelli’s most famous painting

5http://lucene.apache.org/

http://lucene.apache.org/

2.2. INTRODUCING JUST.ASK 13

• Alessandro di Mariano di Vanni Filipepi, better known as Sandro Botticelli ...

Among his best known works are The Birth of Venus and Primavera.

Given the above information, the answer extraction task should extract the candidate

answers from the passages (the individual names in bold face), select the correct answer

(Sandro Botticelli) and, finally, present it to the user. In this example are patent some of the

challenges that QA systems must circumvent, in particular:

• to realize that a painting is the result of the action painted (or to paint) expressed in

the question;

• to realize that the expression Birth of Venus can refer either to a novel or a painting.

Given that the question mentions painted, the candidate answer Sarah Dunant is wrong;

and,

• to realize that the candidate answers Sandro Botticelli, Botticelli and Alessandro di

Mariano di Vanni Filipepi are equivalent.

2.2 Introducing Just.Ask

Just.Ask is an open source QA system for the English language, entirely implemented in

Java and freely available for the research community. The parametrization of Just.Ask is

primarily done in an XML file. Among others, in this file one can parameterize the different

components of Just.Ask, as well as the system general configuration.

2.2.1 Question processing in Just.Ask

The Question Processing component of Just.Ask receives a natural language question as

input and outputs a processed question, which is a structure composed of several different

types of information extracted from the question, including: the question tokens, the question

syntactic components, the question headword, the question focus and the question category.

14 CHAPTER 2. JUST.ASK

Therefore, this component is responsible for two main tasks: question analyzis and ques-

tion classification. For this, it makes use of available NLP tools/resources and techniques.

Moreover, Just.Ask implements a module that, depending on the question, determines its

headword or focus. A detailed view of the Question Processing component of Just.Ask is

shown in Figure 2.2.

Question

Processed Question

Question
Processing

Question Classifier

Question
Analizer

Tokenizer

Syntactic Analyzer

Headword Extractor

SVM

Naïve Bayes

Rule-based

...

Figure 2.2: Detailed view of the Question Processing component of Just.Ask.

Just.Ask classifier exploits the widely used Li and Roth [2002]’s two-layer question type

taxonomy, consisting of 6 coarse.grained categories (Abbreviation, Description, Entity,

Human, Location, and Numeric), which are further refined into 50 fine-grained categories

(see Table 2.1). By using this taxonomy, Just.Ask’s question classifier can be directly

compared with other classifiers described in the literature.

The Just.Ask’s classifier permits the usage of different classification techniques. In par-

ticular, classification can resort to hand-built rules or machine-learning techniques, namely

Support Vector Machines (SVM) and Näıve Bayes. State of the art results were attained by

the classifier of Just.Ask when modeling the task of question classification as a supervised

learning classification problem (using SVM), although the most successful features used to

2.2. INTRODUCING JUST.ASK 15

Coarse Fine

Abbreviation abbreviation, expansion

Description definition, description, manner, reason

Entity animal, body, color, creative, currency, medical disease, event,
food, instrument, language, letter, other, plant, product, religion,
sport, substance, symbol, technique, term, vehicle, word

Human description, group, individual, title

Location city, country, mountain, other, state

Numeric code, count, date, distance, money, order, other, percent, period,
speed, temperature, size, weight

Table 2.1: Li and Roth’s two-layer taxonomy for question classification.

train the model are generated by the rule-based classifier. In fact, after several experiments,

we realized that the use of unigrams, headwords and its semantic classification as features

resulted in the highest accuracy, being the last two set of features created by the rule-based

classifier [Silva et al., 2011].

In what concerns the question headword, Just.Ask adopts a similar notion to that de-

scribed in Huang et al. [2008]: the headword is a word in a question that represents the

information that is being sought after. For instance, considering the question What is the

capital of Spain?, capital is its headword. Note that many questions do not have a headword.

For example, in How many plays has Shakespeare written? one is searching for the number

of plays written by the poet, not the plays themselves (for that, the question could be Which

plays has Shakespeare written?, with headword plays). In order to find the headword of a

question, Just.Ask’s uses its parse tree, traversed top-down by a pre-defined set of rules – the

head-rules. For the purpose of parsing the input question, we use the Berkeley Parser [Petrov

and Klein, 2007], trained on the QuestionBank [Judge et al., 2006], a treebank of 4000 parse-

annotated questions. When it comes to the head-rules, they are a heavily modified version

of those given in the work of Collins [1999], specifically tailored to extract headwords from

questions. There are, however, a few exceptions to the head-rules and, for that, we use a set

of non-trivial rules that determine the correct headword for situations that cannot be covered

by the head-rules.

16 CHAPTER 2. JUST.ASK

In order to enrich the question headword with semantics, WordNet [Fellbaum, 1998],

the lexical database of English, was incorporated in Just.Ask. Therefore, sets of related

WordNet synsets were manually grouped into 50 clusters [Silva, 2009], each representing a

question category. Then, the question headword was translated into a WordNet synset using

a set of heuristics. Finally, a breadth-first search on the translated synset’s hypernym tree

was employed, in order to find a synset that pertains to any of the pre-defined clusters; several

heuristics were used to aid word sense disambiguation.

A thorough description of the classification task in Just.Ask can be found in the work

of Silva et al. [2011], which also includes an extensive report on the experiments we con-

ducted to find the most promising features to train the machine-learning classifier. The set of

hand-built rules used in Just.Ask rule-based classifier is described in the same paper and is

publicly available for research purposes at http://qa.l2f.inesc-id.pt/wiki/index.php/

Resources. At the present moment, Just.Ask depends on this classifier which, in turn, relies

on Li and Roth’s question type taxonomy.

2.2.2 Passage retrieval in Just.Ask

The Passage Retrieval component of Just.Ask receives as input the processed question

from the preceding component and outputs the set of relevant passages for the posed question.6

Figure 2.3 shows a zoom-in perspective of this component.

Just.Ask employs a multi-strategy approach to passage retrieval, with each strategy

tailored to a specific question category or groups of question categories. Different strategies

involve the use of different information sources and different query formulations. Once

the information source to be used has been selected and the queries have been formulated, the

last step is to submit the queries to the information source’s endpoint and fetch the results.

These queries are submitted and processed in parallel, using multiple threads, in order to

reduce the amount of time dedicated to this task. The results retrieved for each query are

6Throughout this paper, we will refer to the output of the Passage Retrieval component as passage, re-
gardless of it being a paragraph or a short summary (snippet) of a document retrieved by a search engine.

http://qa.l2f.inesc-id.pt/wiki/index.php/Resources
http://qa.l2f.inesc-id.pt/wiki/index.php/Resources

2.2. INTRODUCING JUST.ASK 17

Relevant Passages

Passage
Retrieval

Searcher
LuceneSearcher

BingSearcher

WikipediaSearcher

DBPedia Searcher

Processed Question

KeywordQueryFormulator

FocusQueryFormulator

...
Query Formulator

...

Query

Figure 2.3: Detailed view of the Passage Retrieval component of Just.Ask.

aggregated (with duplicates removed) and sent to the answer extraction component for further

processing. Besides the passages, relevant metadata is collected and stored (being available

if necessary), including: the rank of each result is the list of retrieved results, the title and

url of the respective webpage/resource, and whether the information source is unstructured

or not.

The usage of a certain information source depends on the category attributed to a question:

while search engines are typically used to retrieve relevant passages to factoid-like questions,

the semi-structured sources (like Wikipedia7 and DBPedia [Auer et al., 2007]) are used to

answer non factoid-like questions that require longer answers.

In Just.Ask, the inclusion of a new strategy to Passage Retrieval implies modifications in

the XML configuration file (besides the addition of the class(es) that implement the strategy).

This file also allows to parametrize the search engines in use, respective query formulators

and maximum number of passages to be retrieved. However, if one desires to associate a

search engine to a specific question category, this must be done programmatically.

7http://www.wikipedia.org/

http://www.wikipedia.org/

18 CHAPTER 2. JUST.ASK

The following subsections describe the information sources and the query formulation

strategies currently available in Just.Ask.

2.2.2.1 Information sources

At the present moment, Just.Ask uses Lucene search engine and the Bing search API8 to

retrieve relevant passages from unstructured sources; Wikipedia and DBpedia are repositories

of semi-structured content also used by the system.

The passages from the search engines (sources of unstructured information) correspond to

the snippets/paragraphs that the search engine associates with each returned search result.

Due to their encyclopaedic nature, Just.Ask uses the semi-structured sources to answer

non factoid-like questions that require longer answers. In particular, Wikipedia is utilized to

answer Description:Definition and Human:Definition questions. DBpedia is used in

conjunction with Wikipedia. Briefly, Wikipedia is used to locate the article where the answer

to a given question might be found, while DBpedia is used to extract the actual answer from

the article in a structured manner, without having to access the full-text of the article’s web

page. We discuss this strategy in the following subsection.

2.2.2.2 Query formulation

The most simple query formulation strategy is based on keywords and consists of generating a

query that comprises all the words in a given question, except the stopwords, question words

and punctuation. For instance, given the question When was Beethoven born?, the query

Beethoven born would be generated. The keyword query formulator is used to generate

queries for search engines and, therefore, it is applied to every question whose category is

associated with this information source – i.e., factoid-like questions.

The simplicity of the query formulation strategy based on keywords is indisputable. How-

ever, oftentimes questions contain expressions that should not be modified and should be sent

8https://datamarket.azure.com/dataset/8818F55E-2FE5-4CE3-A617-0B8BA8419F65

https://datamarket.azure.com/dataset/8818F55E-2FE5-4CE3-A617-0B8BA8419F65

2.2. INTRODUCING JUST.ASK 19

to the search engine as is (e.g., questions containing quotes, referring for instance to book

or movie titles, or citations). An extended keyword query formulation strategy was built; it

only discards words that are not contained in the quote, while those expressions that should

be present in the search results are put in between quotation marks in the query.9

A last query formulation strategy is based on the focus of the question. The literature

in QA is not consensual in the definition of question focus, but in Just.Ask we adopt a

similar notion to that of Bunescu and Huang [2010], who see it as ‘the set of all maximum

noun phrases in the question that co-refer with the answer’. For example, in the question

Who was Afonso Henriques?, Afonso Henriques is the focus as it co-refers with the answer

first king of Portugal. This formulator is applied in non factoid-like questions and, therefore,

used in a combined strategy that exploits both Wikipedia & DBpedia. The general idea is to

use Wikipedia’s search to locate the title of the article where the answer to a question might

be found, and then use DBpedia to retrieve the abstract10 of the article, which is considered

the answer. For that purpose, the focus query formulator builds the query uniquely with the

focus of the question. Considering again the example question Who was Afonso Henriques?,

a query with the question focus Afonso Henriques is generated and sent to Wikipedia’s API.

Second, the first result returned – Afonso I of Portugal, in this case – is transformed into

a DBpedia resource – http://dbpedia.org/resource/Afonso_I_of_Portugal. At last, we

create the query to retrieve the abstract of the article from DBpedia.

2.2.3 Answering in Just.Ask

The Answer Extraction component receives the processed question originated in the Ques-

tion Processing component, as well as the relevant passages retrieved by the Passage Retrieval

component. The answer extraction can be divided in two stages – candidate answer ex-

traction and final answer selection. For candidate answer extraction, we take advantage

of the rich question type taxonomy utilized in this work to devise strategies for each particular

9The syntax of the query often varies according to the search engine in use. Putting one or more
words in between quotation marks is the common syntax used to obligate the search results to contain that
word/expression.

10A abstract in DBPedia roughly corresponds to the first paragraph of the respective Wikipedia article.

http://dbpedia.org/resource/Afonso_I_of_Portugal

20 CHAPTER 2. JUST.ASK

question category or groups of question categories. For instance, for Numeric type questions,

we employ an extensive set of regular expressions to extract candidate answers, whereas for

Human type questions, we use a machine learning-based named entity recognizer. In what

regards the answer selection, our strategy is to first normalize candidate answers, aggregate

answers by lexical equivalence, apply a clustering algorithm to group together similar answers

and then filter out unwanted candidate clusters. Finally, since each resulting cluster is scored,

the final answer is decided by ballot – i.e., the representative answer within the cluster with

highest score is chosen.

The Answer Extraction component and its sub components are depicted in Figure 2.4.

Answer
Extraction

Answer Normalizer DateNormalizer

NumericNormalizer

...

Processed
Question StatisticalRecognizer

RegExpRecognizer

GazeteerRecognizerEntity Recognizer
Candidate Answers

Relevant
Passages

Answer

...

Candidate
Answer

Extraction

Final
Answer

Selection Answer Aggregator

Answer Clusterer

Cluster Filter

Figure 2.4: Detailed view of the Answer Extraction component of Just.Ask.

In Just.Ask, the inclusion of a new strategy to candidate answer extraction implies

modifications in three different files (besides the inclusion of the class(es) that implement

the strategy): the XML configuration file, which contains reference to the answer extraction

strategies active in the current session; the class that keeps track of the list of available answer

extraction strategies; and a class that represents a factory of all the available recognizers in

2.2. INTRODUCING JUST.ASK 21

the system. Also in the XML configuration file, one is able to deactivate (or activate) the

candidate answer extraction strategies to be used, as well as each of the (optional) tasks that

can be performed before the selection of the final answer.

2.2.3.1 Candidate answer extraction

In the following we describe the strategies developed to extract candidate answers from rel-

evant passages (namely, Just.Ask uses a statistical recognizer for the purpose of Named

Entity Recognition (NER), Regular Expressions, Gazetteers, WordNet-based recognizers), as

well as the question categories that each strategy is associated with.

An extensive set of regular expressions was created to extract candidate answers for

questions of category Numeric. Regular expressions provide a very concise way to de-

scribe candidate answers for this type. For instance, to identify potential answers to

Numeric:Temperature questions, the regular expression /[0-9]+(K|R|◦C|◦F)/ could be

used. Expressions were also created in a modular manner, with a numerical basis be-

ing shared among several categories. For example, both Numeric:Distance and Nu-

meric:Temperature share the same numerical basis, with the only difference being in the

units that follow the numbers – linear measures and temperature units, respectively. More-

over, we developed a set of regular expressions that are made specific to each question, since

they are built with the question focus. For instance, given What does NEO stand for?, we

dynamically create a group of expressions in order to match answers to that question, such as

/.* +(NEO)/ or /.* +, NEO,/. Currently, these regular expressions exist uniquely for ques-

tions that belong to categories Abbreviation and Numeric:Count, but can be further

extended. Each regular expression is paired with a numeric score, which is assigned to every

candidate answer that is matched and extracted by it. As a final remark, it is worth men-

tioning that the regular expressions utilized in this work are far more complex than those of

the examples we have given, and take into consideration a wide range of formats and numeric

units.

Although regular expressions are a very powerful tool, they can become cumbersome to

22 CHAPTER 2. JUST.ASK

use when what we are trying to search for is not in a rigid format. For instance, some of the

questions require particular names as candidate answers – e.g., Human:Individual questions

call for person names –, which can occur in many different formats, and are therefore difficult

to express using regular expressions. Moreover, some of these names can refer to different

entities, depending on the context in which they occur, thus aggravating the problem. An

example of this situation is the name Washington, which can either refer to a city, a state, or

a person. To cope with the above problems, we used a machine learning-based named entity

recognizer, which is able to automatically learn a model to extract entities, based on a set of

annotated examples. In particular, we employed Stanford’s Conditional Random Field-based

named entity recognizer [Finkel et al., 2005], which is able to recognize four entity types:

Person, Location, Organization, and Miscellaneous. The latter serves as a container

for named entities that do not fit in the first three categories, such as book and song titles.

Just.Ask is also able to deal with type of questions. Consider the Entity:Animal

question Which animal is the fastest?. In this question, the answer is not a particular instance

of an animal, but rather a type of animal – cheetah. These answers are very difficult to extract

from natural language text, since they can be easily confused with other nouns that are present

in relevant passages. A new approach was suggested by Silva [2009] to extract answers for

type of questions, using WordNet’s hyponymy relations, which we use in Just.Ask. Based

on the fact that candidate answers for these questions are often hyponyms of the question’s

headword, a dictionary is constructed in run time11 with the entire hyponym tree of the

headword. The dictionary is then used by an exact dictionary matcher algorithm to extract

candidate answers. For this work, LingPipe’s implementation of the Aho-Corasick [Gusfield,

1997] algorithm was used. Also, as a corollary of this strategy, particular instances of a given

word can also be extracted, if they exist in WordNet. For example, in the questions What

is the largest planet in the Solar System? and What is the world’s best selling cookie?,

both Jupiter (⇒ planet) and Oreo (⇒ cookie) are extracted. This algorithm is utilized in

all questions that belong to the Entity category, with the exception of Entity:Event,

11We use the term run time to refer to the fact that the dictionaries are not constructed a priori, but rather
when they are needed, in run time.

2.2. INTRODUCING JUST.ASK 23

Entity:Letter, Entity:Term, and Entity:Word. Moreover, it is also used for the

categories Human:Title, Location:Mountain, and Location:Other.

Finally, certain question categories, such as Location:Country, have a very limited set

of possible answers – names of all the countries in the world, in this case. For these situations,

a gazetteer12 can help [Lita et al., 2004] to accurately extract candidate answers, as it can

be used to assure that only candidate answers of the expected type are extracted. We used a

gazetteer for both Location:Country and Location:City categories. The gazetteers are

utilized in a similar way as the exact dictionary matcher described previously in this section,

with the difference being in the fact that gazetteers are not constructed in run time, but they

already exist when the system starts up.

As a final note, we should mention that the answer extraction strategies are applied in

parallel, using multiple threads (one thread per passage), in order to maximize the perfor-

mance of the system. Moreover, since in essence all of them aim at extracting named entities

from text, for reference purposes we denominate this set of strategies as NE-based strategies

to candidate answer extraction.

2.2.3.2 Final answer selection

After candidate answers have been extracted, the last step is to choose the final answer to be

returned. In Just.Ask, four tasks can be performed before this decision: normalization,

aggregation, clustering and filtering. However, as previously said, in our system they are

optional and each one can be activated or deactivated using the configuration file.

2.2.3.2.1 Normalization We start by normalizing candidate answers that belong to cat-

egories Numeric:Count and Numeric:Date. In these cases, we attempt to diminish the

variation of the answers by reducing them to a canonical representation. Since our recognizer

is able to extract entities written with numeric and alphabetic characters (and both), this

12A gazetteer is a geographical dictionary, typically used to identify places. However, we use the term in a
more broader sense to refer to a dictionary of any type of entities.

24 CHAPTER 2. JUST.ASK

representation allows comparisons between answers: for instance, one thousand and 1000 are

both reduced to 1000.0.

2.2.3.2.2 Aggregation After being normalized, candidate answers are aggregated by lex-

ical equivalence. The goal is to reduce the number of candidate answers by merging those

that are lexicographically equal (insensitive case) into a single candidate answer. The score

of the new answer is the sum of the scores13 of all the answers it comprises.

For example, in the above example of retrieved passages for the question Who painted the

Birth of Venus? (see Section 2.1), the candidate answers Sandro Botticelli, Sandro Botticelli,

Botticelli, Sarah Dunant and Alessandro di Mariano di Vanni Filipepi are extracted with

score 1.0. After this step, the (now unique) answer Sandro Botticelli is scored 2.0, due to the

aggregation the two equal answers Sandro Botticelli and Sandro Botticelli.

2.2.3.2.3 Clustering Once equal candidate answers have been aggregated, we perform a

clustering step. For that purpose, it is required the definition of a distance measure, which

determines how the similarity of two candidate answers is calculated. In Just.Ask, we have

the possibility to chose from the overlap distance and the Levenshtein distance [Levenshtein,

1966] normalized to the maximum length of the two answers being compared (notice, however,

that other measures can be easily integrated in Just.Ask).

The Levenshtein distance measures the least number of edit operations to transform one

string into another, while the overlap distance measures the distance between two sets (a

token is an object in the set) and returns a value of 0.0 for candidate answers that are either

equal or one is contained in the other (without taking into account the order of the tokens).

In either cases, the lower the distance, the similar the strings are. The chosen distance

is used in conjunction with a standard single-link agglomerative clustering algorithm, which

works as follows. Initially, every candidate answer starts in its own cluster. Then, at each

step, the two closest clusters, up to a specified threshold distance, are merged. The distance

13With the exception of candidate answers that are extracted using regular expressions, all other candidate
answers have a score of 1.0. Being so, in most scenarios, the score of each new answer boils down to the number
of answers it aggregates.

2.2. INTRODUCING JUST.ASK 25

between two clusters is considered to be the minimum of the distances between any members

of the clusters, as opposed to complete-link clustering, which uses the maximum.

To illustrate the clustering algorithm at work, used in conjunction with the over-

lap distance with a threshold of 0.0, consider the following set of candidate an-

swers: {Sandro Botticelli,Botticelli, painter Sandro Botticelli, painter Michelangelo}. In

the first step, Sandro Botticelli and Botticelli are merged together. In the second

step, painter Sandro Botticelli is merged with the resulting cluster from the previous

step. Finally, since the minimum distance from painter Michelangelo to the cluster

{Sandro Botticelli,Botticelli, painter Sandro Botticelli} is 0.5, and this value is greater than

the threshold, the algorithm halts.

In addition, the representative answer of each cluster is defined as the most informative,

that is, the longest answer. Just.Ask uses a set of heuristics to choose the representative

answer among the candidate answers in the cluster. First, it uses the score of the answer

(recall that, if the answers have been aggregated, their score is the sum of the scores of

the answers it aggregates). In case of a tie, the system uses the most informative answer.

For instance, in the cluster {Sandro Botticelli,Botticelli, painter Sandro Botticelli}, painter

Sandro Botticelli is selected as representative answer of this cluster. Again, in the case of a

tie, Just.Ask uses the rank and alphabetical order of the answers.

Moreover, a score is assigned to each cluster, which is simply the sum of the scores of all

candidate answers within it.

2.2.3.2.4 Filtering After the clusters of candidates have been built, and in order to

remove undesired answers, we apply a simple filter to our clusters. If any of the answers present

in any of the clusters is contained in the original question, than the whole cluster is discarded.

To understand the importance of this filter, consider the question Which painters influenced

Sandro Botticelli?, classified as Human:Individual. For this question, Sandro Botticelli and

Botticelli are extracted as candidate answers, since both answers match the named entity

type associated with the question’s category (Person), and, due to their similarity, they are

26 CHAPTER 2. JUST.ASK

clustered together. However, it is clear that none is the answer that is sought. Moreover,

since the Sandro Botticelli answer appears in almost every passage, as the formulated query

itself contains Sandro Botticelli, this will result in a very high score for it. Thus, in order to

prevent this unwanted answer to be returned, the entire cluster is discarded.

2.2.3.2.5 Selection Finally, after these intermediate steps, the representative answer of

the cluster with highest score is returned. Furthermore, in case two clusters happen to have

the same score, the tie is settled by returning the answer of the cluster with highest search

rank – i.e., the cluster whose answers were in the first results returned by the information

source.

2.3 Evaluation Corpora

In this section we describe the corpora used as reference, and against which we compare the

system’s results.

2.3.1 GoldWebQA

The Web is constantly changing and, due to this reason, results attained by a Web QA system

might differ in every run. In addition, it is probable that some questions that are plausible

during a certain time period, no longer make sense some time after. For instance, the question

How old is Deng Xiaoping?, from the Multisix corpus [Magnini et al., 2003b], makes no sense

anymore, since Deng Xiaoping died in 1997. Moreover, some question/answer pairs become

obsolete through time. As an example, the answer to the question Who is the Japanese Prime

Minister? was, in 1994, Morihiro Hosokawa and, at the time of our experiments (2011- 2012),

was Noda Yoshihiko. Furthermore, each correct answer can be stated in multiple forms, posing

problems in a QA system evaluation if all the possible reformulations of an answer are not

present in the reference. For instance, if a list of correct answers contains uniquely the answer

“March 21, 1961” to the question When was Lothar Matthaeus born?, the answers “March

21st 1961”, “Tuesday, March 21, 1961”, “in March of 1961”, “21-Mar-1961”, “21st March

2.3. EVALUATION CORPORA 27

1961” and “on 21st March 1961” will be considered incorrect. Hence, we decided to build a

gold corpus – the GoldWebQA – that tries to puzzle out all these problems.

The GoldWebQA consists of 200 questions, a set of snippets retrieved from the Web that

contain possible answers to the questions, all the correct answers occurring in the snippets

regardless of the format in which they are stated, and the category of the questions, according

to Li and Roth’s question type category. All the questions were plausible and valid when the

snippets were retrieved (representing a snapshot of the Web).

The set of questions from the GoldWebQA is an updated and extended version of the

Multisix corpus [Magnini et al., 2003b], also composed of 200 English questions and the

respective correct answers, manually collected from the Los Angeles Times corpus of the year

of 1994, that was initially built for the cross-language tasks at CLEF QA-2003. Questions

from the GoldWebQA were obtained as follows:

1. Each question from Multisix was manually validated, to eliminate questions that no

longer make sense. With this, 12 questions were removed from the corpus.

2. Each answer from Multisix was manually updated, as there were many obsolete answers.

3. The first 12 questions belonging to categories description:definition and hu-

man:definition from the UIUC dataset (see Section 2.5.1.1 for details) were added

to the corpus, in order to deal with the lack of questions from these categories in Mul-

tisix (non factoid-like questions).

4. The 200 questions were manually classified according to Li and Roth’s question type

taxonomy.

The number of questions per category and question word in the GoldWebQA corpus is

presented in Tables 2.2 and 2.3, respectively.

In what concerns the retrieved snippets, they allow to truly simulate the functioning of an

online QA system that resorts to a Web search engine. Moreover, besides protecting against

28 CHAPTER 2. JUST.ASK

Category # Questions Category # Questions

description:definition 6
9

location:city 8

39
description:description 2 location:country 4
description:manner 1 location:mountain 1
entity:animal 1

21

location:other 25
entity:creative 10 location:state 1
entity:medicine 2 numeric:count 24

63

entity:other 1 numeric:date 30
entity:plant 1 numeric:distance 2
entity:substance 3 numeric:money 2
entity:term 3 numeric:percent 1
human:description 6

64
numeric:period 4

human:group 21 abbreviation:abbreviation 1
4

human:individual 37 abbreviation:expansion 3

Table 2.2: Number of questions per category in the GoldWebQA corpus.

Question word Who(m) When Where What Which How Name Other

Questions 36 25 22 50 8 29 8 22

Table 2.3: Number of questions per question word in the GoldWebQA corpus.

the changes occurring in the Web, their use has several advantages when compared to the

use of the real Web, namely: it reduces the latency time of the system when waiting for an

external component; and, it allows benchmarking of systems that are, by nature, very difficult

to evaluate, in particular in the answer extraction/selection steps.

In order to build the set of snippets plus the reference:

1. From each question of the GoldWebQA, we built keyword-based queries (as described in

Section 2.2.2.2), and collected 64 snippets using the search engines Google and Yahoo.

2. We manually updated the GoldWebQA by adding variations of each correct answer that

were found in the snippets to the existing correct answers.

To mention some statistics of this test collection, there is an average of 3.89 correct answers

per question with standard deviation of 5.82. The top 6 questions with higher number of

correct answers (from 21 to 50) start with the question word Name, like Name a German

philosopher.

2.3. EVALUATION CORPORA 29

2.3.2 TREC-QA 2002-2007

The TREC-QA 2002-2007 corpus was built from the freely available data of the TREC QA

tracks, from the years 2002 to 2007, and it is composed of questions and their answers. In

particular:

• the questions expect short-size, factual answers. Given that TREC 2002 focused on

factoid questions and in TRECs 2003 to 2007 the questions are annotated with their

type (factoid, other, description, list), it was possible for us to extract uniquely

the fact-based questions.

• the answers are those given by the competing systems and judged as correct or unsup-

ported by the human assessors.

The reason why we refrained from using the data from all TREC QA tracks14 in our

automatic evaluation of Just.Ask lies in the fact that, in the years 1998-2001, the exact

answers to the questions are not available, rather than a text snippet that contains the

answer. Moreover, from the original corpus, the following questions were discarded:

• anaphoric questions (e.g.: How often does it approach the earth? or What is the mon-

etary value of the prize?), since at the present moment Just.Ask does not deal with

this linguistic phenomenon. This was important specially because after TREC 2004 the

test set organized the questions into groups, each group related to a topic, and many of

those test questions included an (anaphoric) reference to the topic, or to the answer or

entity of a previous question in the group;

• questions that require multiple semantically distinct answers (e.g.: In what city and

state are Habitat for Humanity International headquarters?);

• outdated questions, either because the question no longer makes sense (e.g.: Who is

Tom Cruise married to? as at the present moment Tom Cruise is not married) or

14Recall that the QA track in TREC was active from 1998 to 2007.

30 CHAPTER 2. JUST.ASK

because the answers to the question are no longer correct (e.g., Sundquist is no longer

the correct answer to Who is the governor of Tennessee?).

Therefore, in the subset of the corpus corresponding to years 2004-2007, for the cases of

questions with pronominal anaphora we used a set rules to automatically filter out the ques-

tions containing the pronouns "he","she","him","her","his","hers","their","they","it"

and "its". The remaining data was manually verified and the unwanted questions were

removed.

The resulting corpus contains 1440 questions, with an average of 2.34 correct answers per

question. Table 2.4 shows the number of questions gathered from each year of the TREC

competition that compose the TREC-QA 2002-2007 corpus.

TREC year 2002 2003 2004 2005 2006 2007 Total
Questions 447 378 66 141 209 199 1440

Table 2.4: Number of questions in the TREC-QA 2002-2007 corpus gathered from each year
of the TREC competition.

The number of questions per question word in the TREC-QA 2002-2007 corpus is shown

in Table 2.5.

Question word Who(m) When Where What Which How Name Other

Questions 121 171 84 666 23 243 1 131

Table 2.5: Number of questions per question word in the TREC-QA 2002-2007 corpus.

Table 2.6 shows examples of Q/A pairs in the TREC-QA 2002-2007 corpus.

Q/A seed pairs

(When did the U.S. Congress approve CAFTA?, 2005)
(Who is the father of the U.S. Navy?, John Paul Jones)
(Where is Merrill Lynch headquartered?, New York)

Table 2.6: Some Q/A pairs in the reference corpus.

Regarding the information sources from where to extract answers, Bing is used as search

engine to passage retrieval. To avoid the constant changes of the Web and of the algorithms

behind the search engine, the data was retrieved and previously stored. Data was collected

between September 24, 2012 and October 10, 2012.

2.3. EVALUATION CORPORA 31

2.3.3 On the sources of unstructured information

A characteristic of the pipelined architecture in systems of different natures is the fact that

errors in a certain component are propagated through the pipeline, resulting in failures of

downstream components. In particular in Just.Ask, not being able to retrieve relevant

passages/documents causes the failure of the Answer Extraction component and, therefore,

of the entire system.

When evaluating Just.Ask, we had to decide which source of unstructured information

(and, thus, which search engine) to use: a closed document-collection or the web. Several

(positive and negative) factors were weighted, which we summarize in the following:

Web

Positive – it is highly redundant: answers are stated in multiple forms, in multiple

documents;

Positive – nowadays, web search engines are a focus of intense research and subject of

constant changes and improvements;

Negative – it is not stable: changes occur over time with the introduction/indexation

of new information. Thus, experiments are not replicable;

Negative – many web search APIs are becoming deprecated and even closed (for ex-

ample, the Google Web Search API has been deprecated as of November 1, 2010.)

In other cases, a payment is required to access the search results after a certain

limit of queries (Bing starts charging after a limit of 5000 queries/month). Also,

some search engines do not allow the local storage of the results for more than a

certain period of time, which makes it hard to rerun experiments.

Document Collection

Positive – it is stable over time, does not change. Therefore, the approaches and

results can be replicable;

32 CHAPTER 2. JUST.ASK

Negative – there is not enough redundancy (when compared to the Web);

Negative – it has to be locally indexed, requiring some fine tuning in order to achieve

effective results;

Negative – the availability of corpora often depends on license agreements. In par-

ticular, we do not have free access to a part of the collections used in the TREC

competition of the year 2002 (the AQUAINT Corpus of English News Text).

In the evaluation of Just.Ask, we adopted an hybrid between the Web and a document

collection: we used the web as source of the information, but stored locally the search results

associated with each query. Therefore, we take advantage of the redundancy of the web and

of the recent advances done to the search engine, while not compromising future tests of our

approach.

Note that, the fact that we decided to use the web as source of information also influenced

our choice of which retrieval unit to use: passages (i.e., the small summary retrieved by the

search engine for a given query) or webpages/documents. Since the web is composed of pages

that follow a hight variety of formats, we opted to use passages instead of the content of the

webpage/document so we did not have to deal with the problem of webpage pre-processing

(e.g., removal of advertisements, navigation bars,) and content extraction, which represents

in itself a body of research [Baroni et al., 2008].

2.4 Evaluation Measures

To assess the performance of Just.Ask and its components, we use several measures that

have been proposed and extensively reported in the literature, namely for the evaluation

of QA systems [Voorhees, 2003a]. We also include a metric (coverage) that indicates the

proportion of answered (correct or wrong) questions in the total questions. In the evaluation

of Just.Ask, the following measures are used:

2.4. EVALUATION MEASURES 33

Accuracy, defined as the proportion of questions correctly answered:

Accuracy =
#Correctly answered questions

#Questions in the test corpus
. (2.1)

Recall, defined in QA in a non-standard way, corresponding to the definition of accu-

racy [Artstein, 2011]. In this thesis, we use the term recall whenever we compute the

F-measure; otherwise, we use accuracy.

Precision, defined as the proportion of questions answered correctly in the total of questions

answered:

Precision =
#Correctly answered questions

#Answered questions
. (2.2)

F -measure, used to combine the above two measures into a single metric, and it is defined

as a weighted harmonic mean of precision and recall:

Fβ =
(β2 + 1)× Precision×Recall
β2 × Precision+Recall

, (2.3)

where the parameter β is used to adjust the weights that are given to each measure. A

value of β > 1 favours recall, whilst a value of β < 1 favors precision. When precision

and recall are equally weighted (i.e., β = 1), the measure usually goes by the name of

F1.

Mean Reciprocal Rank (MRR), used to evaluate systems that return ranked lists of

items to a query. The reciprocal rank of an individual query is defined to be the

multiplicative inverse of the rank of the first relevant item, or zero if no relevant items

are returned. Thus, the mean reciprocal rank is the average of the reciprocal rank of

every query in a test corpus. More formally, for a test collection of N queries, the MRR

is given by:

MRR =
1

N

N∑
i=1

1

ranki
. (2.4)

34 CHAPTER 2. JUST.ASK

Coverage, defined as the proportion of questions answered in the total of questions:

Coverage =
#Answered questions

#Questions in the test corpus
. (2.5)

2.5 Baseline Evaluation

2.5.1 Results – JustAsk@GoldWebQA

2.5.1.1 Question processing results

In what concerns the Question Processing component, the evaluation is focused on the ques-

tion classifier, due to its vital importance for the QA task.

The classifier of Just.Ask was tested using the GoldWebQA corpus where it was able to

correctly classify 185 questions, resulting in an accuracy of 92.5% for the fine-grained cate-

gories. The 15 questions that were not correctly classified belonged to categories description

(3), entity (4), human (4), numeric (1) and location (3). From the erroneously clas-

sified questions that should have been classified with the coarse-grained category human,

all belonged to the fine-grained category group (for instance, the question Which fast-food

chain cut the price of the Big Mac hamburger was classified as entity:food, instead of hu-

man:group). This is not a surprise as this type of questions are known to be particularly

difficult to classify.

Moreover, for benchmarking purposes, we have previously carried out an intrinsic eval-

uation of Just.Ask question classifier [Silva et al., 2011] on the UIUC corpus, the publicly

available data set of the Cognitive Computing Group at University of Illinois at Urbana-

Champaign15, which consists of a training corpus of nearly 5500 questions and a test corpus

with 500 questions, each question labeled according to Li and Roth’s taxonomy for question

15http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/.

http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/

2.5. BASELINE EVALUATION 35

classification. The question classifier of Just.Ask uses the LIBSVM [Chang and Lin, 2001]

implementation of a SVM classifier with a linear kernel, trained with all 5500 questions from

the referred training corpus, using the one-versus-all multi-class strategy.

Granularity
Work Coarse Fine

Just.Ask 95.0% 90.4%
[Li and Roth, 2002] 91.0% 84.2%
[Zhang and Lee, 2003] 90.0% 80.2%
[Krishnan et al., 2005] 93.4% 86.2%
[Li and Roth, 2006] 92.5% 85.0%
[Blunsom et al., 2006] 91.8% 86.6%
[Moschitti et al., 2007] 91.8% -
[Pan et al., 2008] 94.0% -
[Huang et al., 2008] 93.6% 89.2%

Table 2.7: Comparison of accuracy results attained by Just.Ask’s Question Classifier, against
other results reported in the literature that use the same train and test datasets.

Since we made use of the same corpora, either for training and testing, we can compare

Just.Ask question classifier performance with other works. The attained results are sum-

marized in Table 2.7, and discussed in detail in Silva et al. [2011], where we show that by

training a machine learning classifier with unigrams and the information generated by our

rule-based classifier, higher accuracy is achieved for coarse- and fine-grained categories than

the ones mentioned in state of the art literature.

As mentioned earlier, depending on the category of the posed question, Just.Ask uses

distinct information sources in the Passage Retrieval component and adopt different strategies

in the Answer Extraction component. Therefore, in the following we split the evaluation into

two major subsections: the first is dedicated the results achieved for non factoid-like questions

(belonging to categories Description:Definition and Human:Description); the second

is focused on the results achieved for factoid-like questions.

2.5.1.2 Non factoid-like questions

Regarding the non factoid-like questions, Just.Ask correctly answered 9 of the 12 questions

categorized as Description:Definition or Human:Description.

36 CHAPTER 2. JUST.ASK

The system was not able to find the correct answer in DBPedia to two Descrip-

tion:Definition questions (What are liver enzymes? and What is the nature of learning?)

and to one Human:Description question (Who is Coronado?). In the formers, Just.Ask

returned a wrong answer; in the latter, Just.Ask did not return any answer.

2.5.1.3 Factoid-like questions

2.5.1.3.1 Passage retrieval results Regarding the Passage Retrieval component, the

goal was to study the influence of different settings to the retrieval of passages. Specifically,

we wanted to understand if there exists any significant difference when using different search

engines and if there exists any significant difference when dealing with a different number of

retrieved passages.

Being so, in several runs of Just.Ask, we varied different parameters in the Passage

Retrieval component, namely:

• the used search engine: either Google or Yahoo16.

• the number of passages retrieved from the search engine: 8, 32 and 64.

With this, we could analyze the impact of each parameter in the performance of the

Passage Retrieval component, particularly in the number of questions for which the retrieved

passages contain at least one correct answer. For simplicity reasons, we will denote these

passages as positive passages.

Table 2.8 present, for different amounts of retrieved passages, the number of factoid-like

questions for which there is at least one positive passage (# Questions1+PosPassages), the

mean reciprocal rank of the first positive passage for all factoid-like questions (MRRAllQ)17

and the mean reciprocal rank of the first positive passage only for the factoid-like questions

for which at least one positive passage exists (MRRQPosPassages).

16At the time of our experiments, neither of the API’s was deprecated
17Recall that there are 188 factoid-like questions in the GoldWebQA corpus.

2.5. BASELINE EVALUATION 37

Google

Questions1+PosPassages MRRAllQ MRRQPosPassages

8 129 (68.6%) 0.43 0.62
32 152 (80.9%) 0.44 0.54
64 158 (84.0%) 0.44 0.52

Yahoo

Questions1+PosPassages MRRAllQ MRRQPosPassages

8 117 (62.2%) 0.34 0.55
32 146 (77.6%) 0.36 0.46
64 153 (81.4%) 0.36 0.44

Table 2.8: Passage retrieval intrinsic evaluation, while varying the number of passages re-
trieved from the web search engine.

The first consideration after the analysis of the table is that the passage retrieval results

when using Google surpass the results attained when we use Yahoo.

Regardless of the search engine, the number of questions for which there is at least one

positive passage increases as the number of retrieved passages also increase, but this amount

does not pass the barrier of 84% (in the total number of factoid-like questions). Also, if

all questions are considered, the increase in the number of passages retrieved by the search

engine leads to an increase of the MRR of the first positive passage, even if always lower than

0.5. However, if only the questions with positive passages are considered, the MRR values

decrease, indicating that, in average, the first positive passage is encountered in the tail of

the set of passages. Thus, the results attained suggest that, for some cases, the first correct

answer that solves a question does not appear in the top first results retrieved by search

engines.

We have also inspected the questions for which neither of the search engines retrieved

a positive passage. An example of such occurs, for instance, in the question Which Elvis

Presley’s cover did Gilmore sing?, where none of retrieved passages contain any of its correct

answers. From the 30 questions with no retrieved positive passages when using Google and

the 35 questions with no retrieved positive passages when using Yahoo, 19 overlap.

The results achieved lead us to two main considerations. On the one hand, the usage

of both search engines in parallel could boost the results of the accuracy of the Passage

38 CHAPTER 2. JUST.ASK

Retrieval component to the mark of 90% (169 positive passages retrieved for 188 queries).

Indeed, it agrees with the principle behind data redundancy in which “more is better”, also

supported by other works in the literature, like [Lin, 2007]. On the other hand, the queries

to 11 different questions could not retrieve any positive passage, regardless of the engine in

use, which suggests an open research line when it comes to the understanding of questions

and their translation into queries.

2.5.1.3.2 Answer extraction results The evaluation of the Answer Extraction compo-

nent of Just.Ask is important to understand if the system successfully extracts and selects

the correct final answer.

Here we particularly analyze its sub-components dedicated to the tasks of candidate an-

swer extraction and final answer selection, respectively. We use the setting in which the

Passage Retrieval component of Just.Ask yielded the best results, that is, when 64 passages

were retrieved from Google. Moreover, to calculate the distance between candidate answers

we used the normalized Levenshtein distance, with a threshold of 0.2 (empirically set).

Table 2.9 presents the number of questions for which a certain amount of answers was

extracted. For those questions, the table shows the amount in which the candidate answer

extraction sub-component was successful, and the amount in which the final answer selection

sub-component was successful. We consider the candidate answer extraction stage as being

successful when it extracts at least one correct answer. By the same token, the final answer

selection stage is successful when a correct answer is selected to be in the list of 3 answers

that the system consider as final.

Several considerations can be made from the analysis of the table. When the number of

extracted candidate answers is low (between 1 and 10), if it happens to contain the correct

answer (that is, the candidate answer extraction stage is successful), then the answer selection

stage chooses it as final answer. When the number is higher, some questions for which a

correct answer exists in the passages are filtered out in both sub-components of the Answer

Extraction component. However, we can not discriminate any tendency of results to improve

2.5. BASELINE EVALUATION 39

Google – 64 passages
Extracted Questions CAE FAS CAE FAS

Answers (#) success success accuracy accuracy

0 10 0 – 0.00% –
1 to 10 12 4 4 33.33% 100.00%
11 to 20 10 7 5 70.00% 71.43%
21 to 40 23 16 12 69.57% 75.00%
41 to 60 40 34 25 85.00% 73.52%
61 to 100 32 29 26 90.63% 89.66%
> 100 31 27 21 87.10% 77.78%

All 158 117 93 74.05% 79.49%

Table 2.9: Answer extraction intrinsic evaluation, using 64 passages from the search engine
Google. The results achieved in the candidate answer extraction (CAE) and final answer
selection (FAS) stages of Just.Ask are shown.

or deteriorate with the increase of the number of extracted answers.

For comparison purposes, Table 2.10 shows the results achieved by the Answer Extraction

component when 8 and 32 passages from Google are used.

As expected, the number of candidate answers per question decreases when the number of

passages available also diminish. Achieved results show a compromise between the number of

passages from where to extract candidate answers and the accuracy of the Answer Extraction

component. Indeed, if the number of passages is too low, there is the possibility that the

passages do not contain true positives (correct answers) in sufficient amount than can lead

to their selection as the final answer. If the number of passages is too high, there is a chance

that the system will extract too many false positives (wrong answers), leading to mistakes in

the selection of the final answer.

Regarding the influence of the decrease of the number of passages on the performance

of each of the stages, there is an increase of 2% on the accuracy of the candidate answer

extraction stage (from 72.09% when using 64 passages to 74.05% when using 8), and a decrease

of 5% on the accuracy of the answer selection stage (from 84.95% when using 64 passages to

79.79% when using 8).

In Table 2.11 we present the results of intrinsic evaluation of the Answer Extraction

component of Just.Ask according to the question category. We show the total number of

40 CHAPTER 2. JUST.ASK

Google – 8 passages
Extracted Questions CAE FAS CAE FAS

Answers (#) success success accuracy accuracy

0 16 0 – 0.00% –
1 to 10 73 59 51 80.82% 86.44%
11 to 20 34 29 23 85.29% 79.31%
21 to 40 5 4 4 80.00% 100.00%
41 to 60 1 1 1 100.00% 100.00%
61 to 100 0 – – – –
> 100 0 – – – –

All 129 93 79 72.09% 84.95%

Google – 32 passages
Extracted Questions CAE FAS CAE FAS

Answers (#) success success acc acc

0 12 0 – 0.00% –
1 to 10 18 8 8 44.44% 100.00%
11 to 20 21 14 10 66.66% 71.43%
21 to 40 57 52 41 91.23% 78.85%
41 to 60 26 22 18 84.62% 81.82%
61 to 100 14 11 10 78.57% 90.91%
> 100 4 4 3 100.00% 75.00%

All 152 111 90 73.03% 81.08%

Table 2.10: Answer extraction intrinsic evaluation, using Google and two different amounts
of retrieved passages. The results achieved in the candidate answer extraction (CAE) and
final answer selection (FAS) stages of Just.Ask are shown.

questions existing for each category and, for the different amounts of retrieved passages from

Google, the number of questions that resulted in the extraction of at least one candidate

answer.

This table shows the categories that had higher impact on the results achieved by the

candidate answer extraction and final answer selection stages of Just.Ask. For instance,

when it comes to the coarse-grained category Entity, the system only extracts a correct

answer for 5 questions in the 21 possible. We notice also that increasing the number of

passages does not always lead to better results. For example, for the category Entity, the

best absolute results are achieved when only 8 passages are used. For categories Human

and Location, there is a drop in the performance of the Answer Extraction component

(measured by the number of questions that returned a correct answer divided by the number

of questions for which a positive passage exists).

2.5. BASELINE EVALUATION 41

Google – 64 passages
Questions CAE FAS CAE FAS

Total (#) success success accuracy accuracy

abb 4 4 3 3 75.00% 100.00%
des 3 2 0 – 0.00% –
ent 21 17 5 2 21.41% 40.00%
hum 58 51 42 35 82.35% 83.33%
loc 39 35 29 24 82.86% 82.76%
num 63 49 38 29 77.55% 76.32%

188 158 117 93 74.05% 79.49%
Google – 32 passages

abb 4 3 2 2 66.66% 100.00%
des 3 2 0 – 0.00% –
ent 21 16 3 2 18.75% 66.66%
hum 58 50 41 33 82.00% 80.48%
loc 39 34 28 25 82.35% 89.29%
num 63 47 37 28 78.72% 75.68%

188 152 111 90 73.03% 81.08%
Google – 8 passages

abb 4 3 1 1 33.33% 100.00%
des 3 2 0 – 0.00% –
ent 21 15 3 3 20.00% 100.00%
hum 58 42 35 32 83.33% 91.43%
loc 39 27 24 21 88.89% 87.50%
num 63 40 30 22 75.00% 73.33%

188 129 93 79 72.09% 84.95%

Table 2.11: Answer extraction intrinsic evaluation, for different amounts of retrieved passages,
according to the question category. The results achieved in the candidate answer extraction
(CAE) and final answer selection (FAS) stages of Just.Ask are shown.

The achieved results clearly evince the categories in which more efforts should be invested.

For instance, the main improvement for the category Entity should be in the extraction of

candidate answers, while for categories Human and Numeric it should rather be in the

selection of the final answer.

2.5.1.3.3 Overall results of the factoid-like questions The best result of Just.Ask

in the GoldWebQA corpus was achieved when we used the first 64 passages from Google.

Table 2.12 presents the system’s overall results. Since Just.Ask returns a list with 3 possible

final answers to a given question, the precision, recall, F1-measure, and MRR are measured

and shown for the top 3 answers returned by the system. In this table, we also present the

42 CHAPTER 2. JUST.ASK

results for the top one answer returned (we denote it as accuracy@1).

Questions Correct Wrong Unanswered

188 93 77 18

Precision Recall F1-measure MRR Accuracy@1

54.7% 49.5% 0.52 0.40 30.0%

Table 2.12: Best results achieved by Just.Ask in the evaluation using the GoldWebQA
corpus.

In a total of 188 questions, Just.Ask gave answers to 170. From these, 93 were correct

and 77 wrong. Being so, the system attained a recall of 49.5%. Moreover, the results in

accuracy@1 show that, from the 93 correctly answered questions, the system was able to

push the correct answer to the first position of the list in 60 questions (this result is not

shown in the table).

Detailed results Table 2.13 details the achieved results according to the question cat-

egory. The result that first pops out is that for the category description the system had an

accuracy of 0.0%. The second worst result is that of category entity, for which the system

failed to answer 13 questions and skipped 6, from a total of 21. For instance, the system did

not gave any answer to the question What is the Chicken Boy sculpture made of? and gave

the wrong answer to What flower was named after the first lady Hillary Rodham Clinton? :

“orchid” instead of “tulip”.

Category Correct Incorrect Unanswered Accuracy

abbreviation 3 1 0 75.00%
description 0 0 3 0.00%

entity 2 13 6 9.50%
human 35 20 3 60.34%

location 24 15 0 61.54%
numeric 29 28 6 46.03%

Total 93 77 18 49.47%

Table 2.13: Just.Ask results according to the different question categories.

In Table 2.14 we show the system’s results depending on the question word. Whereas

Just.Ask demonstrates a good performance in questions that typically involve the name or

definition of a person (question word “Who(m)”), the worst results happen for questions that

start with “How”.

2.5. BASELINE EVALUATION 43

Question word Correct Incorrect Unanswered Accuracy

Who(m) 19 11 0 63.33%
When 18 7 0 72.00%
Where 12 10 0 54.55%
What 17 15 12 38.64%
Which 4 3 1 50.00%
How 8 16 5 27.59%

Name 6 2 0 75.00%
Other 9 13 0 40.91%

Total 93 77 18 49.47%

Table 2.14: Results according to the different question words.

Impact of the components As previously said, Just.Ask follows the typical pipelined

architecture. Thus, it is relevant to understand which components are failing, since this failure

will reflect on the following components. Being so, we consider that the question processing

fails when it does not attribute the correct category to a question, the passage retrieval fails

if it does not retrieve at least one positive passage for a question, and the answer extraction

fails when it does not extract and selects the correct answer for a question.

For each of the 95 wrong and unanswered questions, we analyzed which component is

the first one failing. The results on Table 2.15 show the impact on the final answer of each

component independently, and do not account for the failures in cascade that occur in the

system due to its pipelined architecture.

Component # Questions

Question Processing 15
Passage Retrieval 24

Answer Extraction 56

95

Table 2.15: Number of times each component is the first to fail, avoiding the system to return
the correct answer to 95 (wrong or unanswered) questions.

From the table, we can see that:

• in a total of 188 factoid-like questions, the Question Processing component succeeded

in 173 (92.02% of the questions) and failed in 15;

• in a total of 173 correctly classified questions, the Passage Retrieval succeeded in 158

44 CHAPTER 2. JUST.ASK

(84.04%) and failed in 24; and,

• in a total of 158 correctly classified questions for which at least one positive passage

was retrieved, the Answer Extraction succeeded in 93 (49.47%) and failed in 56.

There is still work to be done in Just.Ask components: the Question Processing was

properly tuned, reflecting in a small number of failures due to this component; when it

comes to the Passage Retrieval component, we believe that one way to improve our results

may imply the recourse to query expansion; regarding the Answer Extraction, it requires

deeper improvements, and probably new strategies, as most of our failures originate in this

component.

2.5.2 Results – Just.Ask@TREC-QA 2002-2007

In the evaluation of Just.Ask using the TREC-QA 2002-2007 corpus, the following config-

uration was used:

In the Passage Retrieval component, we used all the search results returned for each query

(Just.Ask asked 100 search results to the engine Bing).

In the Answer Extraction component, in the clustering step, the distance between candidate

answers is calculated using the normalized Levenshtein distance with a threshold of 0.2.

Moreover, as the TREC-QA 2002-2007 corpus is composed uniquely by factoid-like ques-

tions, we disabled the Passage Retrieval and Answer Extraction strategies for non factoid-like

questions (that is, those based on the Wikipedia/DBPedia).

Just.Ask returns a list of possible final answers, which are the representative answers of

the cluster with highest scores, and, in the typical evaluation, each answer is evaluated against

the reference. The downside of this approach is that if there is a slight lexical difference

between the reference and the system’s answer the latter is considered wrong. For example, if

the reference answer is August 1987 and the system picks the answer Aug. 1987 as final from

2.5. BASELINE EVALUATION 45

the cluster of candidates (Aug. 1987, 08-1987 and August 1987), it is evaluated as wrong.

This is particularly necessary since the TREC-QA 2002-2007 corpus lacks variations of the

correct answers that allow us to precisely identify if an answer is correct or not (which can

be particularly important in the case of numeric answers), a situation that did not occur in

the GoldWebQA corpus, as it contains all possible variations of the answers contained in the

information sources. Being so, to circumvent this issue, when evaluating the system’s results

using the TREC-QA 2002-2007 corpus, we consider every answer in the cluster, rather than

only its representative.

2.5.2.1 Question processing results

Table 2.16 indicates the number of questions per category in the TREC-QA 2002-2007 corpus,

according to Just.Ask’s question classifier.

The TREC-QA 2002-2007 corpus does not contain the reference categories for each ques-

tion. Therefore, we picked a random sample of 100 classified questions which we manually

evaluated. Results showed that the classifier correctly classified 87% of the questions.

One point that deserves particular attention is the existence of 42 questions classified

as description:definition and 1 classified as human:description. Recalling that all

questions expect short-sized fact-based answers (as mentioned when the characteristics of the

TREC-QA 2002-2007 corpus were presented), this results in the fact that at least 43 questions

are wrong (or unanswered) due to errors in the question processing step.

2.5.2.2 Passage retrieval results

For the total 1440 questions, the passage retrieval component retrieved at least one passage

for 1437, being 99.4 the average number of retrieved passages for each question. However, the

average number of positive passages retrieved per question is much lower (15.8). Moreover,

in only 1216 of these questions at least one positive passage was retrieved, meaning that 224

questions will not be answered due to failures in the passage retrieval component. Table 2.17

46 CHAPTER 2. JUST.ASK

Category # Questions Category # Questions

description:definition 42

100

human:description 1

298
description:description 14 human:group 78
description:manner 37 human:individual 213
description:reason 7 human:title 6

entity:animal 24

204

location:city 56

293
entity:body 2 location:country 57
entity:color 6 location:mountain 4
entity:creative 39 location:other 157
entity:event 6 location:state 19
entity:currency 1 numeric:code 2

524

entity:food 10 numeric:count 124
entity:instrument 4 numeric:date 271
entity:language 4 numeric:distance 45
entity:medicine 5 numeric:money 12
entity:other 43 numeric:other 12
entity:plant 1 numeric:percent 11
entity:religion 1 numeric:period 25
entity:sport 3 numeric:size 9
entity:substance 11 numeric:speed 8
entity:symbol 2 numeric:temperature 4
entity:technique 1 numeric:weight 1
entity:term 32 abbreviation:abbreviation 2

21
entity:vehicle 6 abbreviation:expansion 19
entity:word 3

Table 2.16: Number of questions per category in the TREC-QA 2002-2007 corpus.

summarizes those results and includes the mean reciprocal rank of the first positive passage

for all questions and for the questions for which at least one positive passage exists.

Bing

#Questions1+Passages # Questions1+PosPassages MRRAllQ MRRQPosPassages

1436 (99.7%) 1215 (84.4%) 0.29 0.35

Table 2.17: Passage retrieval intrinsic evaluation.

2.5.2.3 Answer extraction results

For the 1215 questions with positive passages, Just.Ask could extract and select the correct

answer to 791 and 678 questions, respectively. The results of the answer extraction component

are displayed in Table 2.18, where it can also be seen that, in most questions, Just.Ask

extracts a large amount of candidates and the accuracy in the selection of the final answer

2.5. BASELINE EVALUATION 47

decreases when the number of candidate answers is higher. In 186 questions for which there

was at least one positive passage, the system is not able to extract any correct answer.

Bing – 100 passages
Extracted Questions CAE FAS CAE FAS

Answers (#) success success accuracy accuracy

0 186 0 – 0.00% –
1 to 10 51 18 18 35.29% 100.00%
11 to 20 68 33 32 48.53% 96.97%
21 to 40 157 106 96 67.52% 90.57%
41 to 60 148 117 106 79.05% 90.60%
61 to 100 231 186 152 80.50% 81.72%
> 100 374 331 274 88.50% 82.78%

All 1215 791 678 65.10% 85.71%

Table 2.18: Answer extraction intrinsic evaluation, using 100 passages from the search engine
Bing.

2.5.2.4 Overall results

Table 2.19 presents the system’s overall results for the TREC-QA 2002-2007 corpus. Again,

the precision, recall, F1-measure, and MRR are measured and shown for the top 3 answers

(clusters) returned by the system. In this table, we also present the results for the top one

answer returned (denoted as accuracy@1).

Questions Correct Wrong Unanswered

1440 678 511 251

Precision Recall F1-measure MRR Accuracy@1

56.7% 47.1% 52.6% 0.51 36.3%

Table 2.19: Results achieved by Just.Ask in the evaluation using the TREC-QA 2002-2007
corpus.

In a total of 1440 questions, Just.Ask returned answers to nearly 83%. From these,

678 were considered correct and 511 wrong. Therefore, the system’s recall was of 47.1%.

Moreover, in 522 questions, the correct answer was the one in the highest position of the list

of returned answers.

Detailed results Table 2.20 shows the system’s results according to the question categories.

The first thing to be mentioned is that the system did not try to answer any of the Descrip-

48 CHAPTER 2. JUST.ASK

tion questions (recall that the strategies for non factoid-like questions were disabled). On

the contrary, it answered all the Location questions, and it was successful in nearly 70% of

them.

Category Correct Incorrect Unanswered Accuracy

abbreviation 14 2 5 66.67%
description 0 0 100 0.00%

entity 29 76 99 14.22%
human 147 145 6 49.33%

location 200 93 0 68.26%
numeric 288 195 41 54.96%

Total 678 511 251 47.08%

Table 2.20: Just.Ask results according to the different question categories.

In Table 2.21 the system’s results according to the question word are presented. The

lowest performance (ignoring the Name question) occurs in the How and What questions:

regarding the former, Just.Ask only answers around 75% (183 in 243) and, from these, less

than 44% are correct; regarding the latter, Just.Ask leaves around 25% of the questions

unanswered (174 in 666) and from the remaining, it correctly answers only 52.24% (257 in

492). We observed that all questions marked as Definition start with the question word

What.

Question word Correct Incorrect Unanswered Accuracy

Who(m) 71 49 1 58.68%
When 135 35 1 78.95%
Where 56 28 0 66.67%
What 257 235 174 38.53%
Which 17 5 1 73.91%
How 79 104 60 32.51%

Name 0 1 0 0.00%
Other 63 55 14 47.73%

Total 678 511 251 47.08%

Table 2.21: Just.Ask results according to the different question words in the TREC-
QA 2002-2007 corpus

2.6. DISCUSSION 49

2.6 Discussion

2.6.1 Comparison with other systems

In the evaluation with the GoldWebQA corpus, Just.Ask achieved an accuracy@1 of 31.9%,

with 60 correct questions in a total of 188. If we consider the top three answers returned by

the system, the accuracy increases to almost 50%, with 93 correctly answered questions (see

Table 2.12).

A direct comparison with the other systems evaluated with the corpus in which the Gold-

WebQA is based (the Multisix corpus) is not possible. This is due to the fact that the Multisix

corpus was used mainly in bilingual QA,18 while in monolingual tasks the English language

was not used. Nevertheless, it is worth mentioning that, in the monolingual task using other

languages (namely, Spanish, Italian and Dutch), the competing systems returned between 77

and 101 correct questions [Magnini et al., 2003a],19 in a setting where a maximum of 3 answers

were allowed per question and unsupported answers also accounted as correct. Therefore, the

values of accuracy@3 ranged between 38.5% and 50.05%. Regarding the MRR, it ranged

between 0.317 and 0.442; Just.Ask achieved 0.40. In the monolingual task, answers were to

be found in a document collection of the same language as the question (recall that Just.Ask

searched for the answers in the Web), while in the bilingual task, the systems are supposed

to find the answer in English, which implies a task of translation in the QA pipeline. This

resulted in a decrease of the overall systems performance that ranged between an accuracy of

45% (90 correct answers, MRR of 0,40, in Italian → English) and 11.5% (23 correct answers,

MRR of 0,115, in French → English).

In the evaluation with the TREC-QA 2002-2007 corpus, Just.Ask attained an accuracy

of 47.1% in 1440 questions, with 678 correct questions within the top 3 returned answers. In

522 questions, the system was able to push the correct answer to the first position of the list

18In bilingual QA, systems receive a question in a source language and are expected to return an answer in
a different target language. In the CLEF 2003 evaluation, in the bilingual task, the answer was to be searched
in an English document collection.

19We report results of the lenient evaluation, where the unsupported responses are also considered correct.

50 CHAPTER 2. JUST.ASK

of returned answers, resulting in an accuracy@1 of 36.3% (see Table 2.19).

Again, a direct comparison between Just.Ask and the other systems is not possible,

mostly due to the fact that we are not using the same questions nor the same information

sources. Although the test questions used in TREC are freely available, as we mention

in Section 2.3.3, we do not have license to access all the information sources used in the

competitions. Moreover, another reason that does not allow us to directly compare the results

lies on the fact that the answers at TREC are evaluated manually, by human accessors, and

ours was made automatically, by matching Just.Ask answers with the correct answers that

the systems competing at TREC returned. Therefore, there might be correctly extracted

answers by Just.Ask that were not in the reference corpus and, thus, not accounted as

correct. Finally, an answer is correct in the TREC evaluation if it contains the passage that

supports it; in our evaluation, we do not required the presence of a supporting snippet to

consider an answer as correct.

Despite these contrarieties, for the purpose of this comparison, we split the questions in

the TREC-QA 2002-2007 corpus according to the different years (some statistics about the

division of the corpus will be given in the next chapter, in Table 3.3) and compare Just.Ask’s

accuracy@1 results with the results achieved on the best runs of the top systems at TRECs

2002-3-4-5-6-7 for the factoid component.

In 2002, Just.Ask ranks 4th with an accuracy@1 of 44.5% in a year where the best result

was of 83.0% and the worse was of 21.0% [Voorhees, 2002]. In the year of 2003, competing

systems results ranged from 14.5% to 70.% [Voorhees, 2003b] and our system ranks 5th with

an accuracy@1 of 32.0%. The question topics were introduced in 2004, a year where accuracy

results ranged between 21.3% and 77.0% [Voorhees, 2004] and Just.Ask is positioned at

number 4, with an accuracy@1 of 42.42%. In 2005, Just.Ask accuracy@1 was of 34%,

positioned 3rd in a list where the best result was of 71.3% and the worst of 21.5% [Voorhees

and Dang, 2005]. In 2006, our system’s accuracy@1 was of 32.1%; the best and worst run

attained 57.8% and 21.3% [Dang et al., 2006], respectively, our system lays at number 5 in

the list. Finally, in 2007, Just.Ask is positioned in 3rd, with an accuracy@1 of 29.6%; in this

2.6. DISCUSSION 51

year the best result was of 70.6% and the worst of 20.6% [Dang et al., 2007].

2.6.2 Strengths and weaknesses of Just.Ask

The conducted evaluations allowed to identify the strong and weak points of the system,

stated in the following:

• The question classifier of Just.Ask attains state-of-the-art results when evaluated

against the UIUC corpus. When using the GoldWebQA corpus, it reached 92.5% of

accuracy and in the TREC-QA 2002-2007 corpus the accuracy was of 87%. This step is

surely one of the basis of the system, since no question incorrectly classified is correctly

answered.

• Regarding the Passage Retrieval component, results suggest that the increase on the

number of passages does not always lead to better overall performance. Indeed, for some

question categories, increasing from 8 to 32 passages compromises the relative accuracy

of the Answer Extraction component. This is mostly due to the fact that many more

wrong answers are involved in the answer selection stage.

• Another important conclusion is that a considerable number of questions resulted in

the retrieval of no passages with a correct answer (around 15% in the evaluation with

both the GoldWebQA and the TREC-QA 2002-2007 corpora, for 64 and 100 maximum

passages retrieved respectively). Query expansion is, thus, a desirable research direction.

• The Answer Extraction component also requires improvements. In the evaluation using

the GoldWebQA corpus it was responsible for 56 of the 95 failed questions (nearly 60%),

while in the evaluation using the TREC-QA 2002-2007 corpus, 537 questions were not

answered due to failures in this component (more than 37% of the total questions). One

of the weak points of Just.Ask lies exactly in the Answer Extraction component, since

even when Just.Ask extracts the correct answer from the information sources, often it

is not able to select it.

52 CHAPTER 2. JUST.ASK

• In overall terms, considering the different categories, the questions that belong to cate-

gory Entity as well as questions that start with How need improvements.

2.6.3 On the evaluation of question-answering systems

One of the most challenging tasks in QA has to do with the systems’ evaluation and compar-

ison with others, due to two main reasons:

• Lack of evaluation resources: existing test questions focus on different time frames and

require different information sources. In fact, and besides some specific sub-tasks of QA

that are already evaluated as a separate component (like the question classification),

there is still a lack of resources (questions, information sources and, more important,

the correct answers) in enough amount to allow a large-scale evaluation and a fair

comparison of systems. This issue is even more pernicious when the targeted language

is not English. While it is certain that the competitions promoted between QA systems,

like those at TREC and CLEF, greatly boosted the availability of resources, it is also

true that many of those resources (specially, the information sources) were restricted to

the participating systems and are not freely available.

• Need for manual evaluation: the evaluation of QA systems often requires the existence

of a human judger that explicitly validates the system’s answers, making it an effortful

and time-consuming task. A pure automatic evaluation is typically avoided, and is often

complemented with human supervision. Moreover, it is deemed imprecise if the judging

mechanism does not account for the lexical and semantic variations of the correct answer

to a question (for example, the answers July 20, 1969 and 07/20/1969 to the question

What day did Neil Armstrong land on the moon? are both correct and committed

suicide and killed himself correctly answer How did Adolf Hitler die?).

In this thesis, two overall evaluations will be presented, using two different corpora: the

GoldWebQA and the TREC-QA 2002-2007 corpora. In the former, given that we manually

identified all the correct answers that the system could extract from the information sources,

2.7. SUMMARY 53

we were able to have an exact perception of how the system behaves: when it is successful

and when it fails. In the TREC-QA 2002-2007 corpora, a much larger dataset of questions,

given that we did not have all the correct answers to the questions, we can only have an

approximate idea of how the system is behaving, knowing that some questions evaluated as

wrong are in fact true (just our evaluation mechanism was not 100% exact).

2.7 Summary

In this section we described Just.Ask, the open domain QA system that will be the focus of

this thesis. Just.Ask follows the conventional pipelined architecture composed of three main

components: Question Processing, Passage Retrieval and Answer Extraction. We detailed

each of the components, with special attention in the answering phase in Just.Ask. We

presented two test collections built to evaluate Just.Ask (the GoldWebQA and the TREC-

QA 2002-2007 corpora), the performance metrics and reported the detailed evaluation of the

system, which allowed us to identify the strong and weak points of Just.Ask. In particular,

the Answer Extraction component of Just.Ask deserves special attention since it is the root

of many of the system’s wrong answers.

Given the importance of the Answer Extraction component in the overall performance of

a QA system, new strategies to candidate answer extraction and final answer selection are to

be devised. In the following chapters, we will address these challenges.

54 CHAPTER 2. JUST.ASK

3
Candidate Answer

Extraction based on

Learned Patterns

The task of candidate answer extraction aims at locating and retrieving from the information

sources the possible answers to the posed question. In Chapter 2 we reported that, to solve

factoid questions, Just.Ask relies on strategies that focus on the identification of answers

through the use of regular expressions, gazetteers, statistical and WordNet-based recognizers.

Here we introduce an approach to candidate answer extraction based on (lexico-syntactic)

patterns, automatically learned from pairs of questions and their respective answers. This

approach was inspired by our previous work on Question Generation (QG) that successfully

used the learned patterns to generate questions (and their answers) from a target document,

published in international conferences [Mendes and Coheur, 2011; Curto et al., 2011a,b] and

the special issue of an international journal [Curto et al., 2012].

The present chapter is dedicated to the task of candidate answer extraction. It starts

with a review of related work, followed by a description of our approach to pattern learning

via a minimally supervised technique that takes pairs of questions and their answers as seeds.

Afterwards, we detail how candidate answers are extracted, by explaining the unification pro-

cess between the patterns and the sentences relevant to a question. Both the pattern learning

and candidate answer extraction approaches are evaluated, their influence in Just.Ask is

measured and a discussion of the results is shown. A brief summary ends the chapter.

3.1 Related Work

For factoid-like questions, candidate answer extraction can be made as simple as extracting

(groups of) consecutive tokens from text, discarding those that clearly do not agree with

the posed question. This technique was implemented in the Aranea system [Lin, 2007], a

56 CHAPTER 3. CANDIDATE ANSWER EXTRACTION

re-implementation of the AskMSR system by Brill et al. [2001]. Aranea extracts unigrams,

bigrams, trigrams and tetragrams as candidate answers, and exploits heuristic knowledge

to filter out those ‘that are obviously wrong’. For instance, to questions that start with

the phrase How far or How tall only n-grams with a numerical component are allowed; to

questions that start with Who or Where a capitalized n-gram is required.

However, systems tend to prefer the use more linguistically informed approaches, for

example based on NER. The underlying idea is the following: all named entities recognized

in the information sources that agree with the answer expected type are candidate answers

to the question. For instance, if a question expects as answer the name of an individual, all

named entities of type Person recognized in the information sources are considered candidate

answers. For this approach to work, it is required that the QA system discovers the type

of information that is being sought after, typically through question classification, and the

taxonomy of question categories has to be mapped into the taxonomy of named entity types.

This is the approach currently followed by Just.Ask and other systems [Mollá and Gardiner,

2004; Sarmento and Oliveira, 2007].

Another fairly used technique to candidate answer extraction relies on patterns. For

example, the question Who painted Guernica? can be solved by matching the pattern “X was

painted in 1937 by Y ” with the sentence Guernica was painted in 1937 by Picasso, where X is

an entity from the question (in this case, Guernica) and Y is the entity that answers it. The

pattern-based approach to candidate answer extraction has received attention in QA specially

after the TREC-10 competition, which consecrated as winner the system of Soubbotin [2001],

entirely built around a list of hand-built surface patterns. Many works followed that rely

on manually created patterns [Mollá and Gardiner, 2004; Hickl et al., 2006]. Nevertheless,

despite the high-precision results achieved by the hand-built patterns, their coverage is often

reported as very low; in addition, the creation of patterns is considered a time consuming,

tedious and error-prone task, which often requires a human expert.

The focus has therefore turned to automatic pattern learning, which often takes advantage

of information sources of large dimensions. Ravichandran and Hovy [2002] used a minimally

3.1. RELATED WORK 57

supervised approach to learn patterns for the purpose of candidate answer extraction and

experimented a two-step method to acquire surface patterns of a certain class, given a set

of seed examples composed of two entities: a question term and the answer. The first step

acquires lexical patterns (from the Web) that relate a question term to the answer. For

instance, to BIRTHYEAR questions the seed “Mozart 1756” is used to learn patterns like

“<NAME> was born on <ANSWER>,”. The second step validates the learned patterns by

calculating their precision, a measure of the frequency of the pattern in the information

sources. Other approaches that automatically learn patterns from large document collections

are similar to, or based on, the work of Ravichandran and Hovy: relevant terms are extracted

from the questions and used, with the answer, to query the information sources. Patterns

are afterwards built from the retrieved relevant sentences. The system of Zhang and Lee

[2002], called LAMP, uses questions, instead of two entities, and their answers (gathered from

the TREC competitions). However, the seeds to the pattern learning algorithm are again

composed of two entities: the answer and a question term, extracted by a set of regular

expressions applied to the questions, which also determine their type. In respect to this,

Schlaefer et al. [2006] argue that, on many questions, other important information is required

to be present in the pattern. For instance, a pattern built from the question How many

calories are there in a Big Mac? should contain the important terms “calories” and “Big

Mac”, besides the answer.1 Their work (the Ephyra system) takes as input questions and

answers, and learns patterns between the answer and two or more key-phrases. Again, these

are extracted from the question by hand-made patterns. The approach of Du et al. [2005],

however, resorts to a named entity tagger, a parser and a chunker to extract relevant terms

from a question. Patterns are built with these terms and the answer to the question.

The extraction of candidate answers using patterns requires a literal match of the pattern

with the sentence. Therefore, the number of extracted answers depends on: 1) the nature and

content of the pattern; and, 2) the redundancy and diversity of the information sources. In

particular, patterns that are too specific of an input seed are often ruled out by a validation

step or may not match with the sentences retrieved from the information sources. Such

1Example taken from [Schlaefer et al., 2006].

58 CHAPTER 3. CANDIDATE ANSWER EXTRACTION

problem is often circumvented with the introduction of higher levels of linguistic information

in the pattern [Greenwood and Gaizauskas, 2003; Kosseim et al., 2003; Shima and Mitamura,

2010; Curto et al., 2012]. For example, by replacing certain surface words by their Part-of-

Speech (PoS) or named entity tag: a pattern like “X was painted in 1937 by Y ” is rephrased

as “X was painted in <date> by Y ”, where the tag “<date>” abstracts the instance of date.

Jijkoun et al. [2004] studied the influence of the presence of surface and syntactic information

(by means of dependencies) on patterns and its overall impact on a QA system. Experiments

were performed on the AQUAINT collection and authors report an increase in recall when

using a higher layer of linguistic information, leading to the increment of the number of correct

answers (assuming a robust selection of the final answer).

Shen et al. [2005] and Bouma et al. [2011] learn patterns based in syntactic dependency

relations. A pattern is defined as the smallest dependency tree connecting two nodes (the

answer and one question term). However, while the approach of Shen et al. uses tree kernel

methods to compute the similarity between patterns and the parse trees of the sentences

where answers might be stated, the approach of Bouma et al. is used offline to extract

facts to populate a table (the Answer Extraction process is later accomplished by means

of table look-up). Mollá [2006] uses the graph representation of dependency parse trees (of

both questions and the sentences where the answers are stated) and builds answer extraction

rules through graph manipulation. Kosseim and Yousefi [2008] add semantic information to

the learned patterns. The learned patterns contain lexical, syntactic and semantic features

(surface words, NP and named entity tags, respectively) and are augmented with a semantic

constraint that indicates its semantics, based on the WordNet’s hierarchy.

3.2 Pattern Learning via a Minimally Supervised Ap-

proach

A pattern relates a question to its answer through the constituents of the sentence that con-

tains (parts of) the question and the answer. To learn patterns, we use a minimally supervised

approach where seeds are Q/A pairs. For instance (Who wrote The Divine Comedy?, Dante)

3.2. PATTERN LEARNING VIA A MINIMALLY SUPERVISED APPROACH 59

is a Q/A pair.

The process of learning patterns comprises three different sequential steps:

1. the Question Processing step, where several actions are performed on the question,

including its syntactic analysis and semantic classification;

2. the Passage Retrieval step, where multiple queries are built from the question and the

answer, and used to retrieve passages from the information sources (the Web or local

corpora); and,

3. the Pattern Building step, where the elements from the question, the answer and the

retrieved passages are chosen to build the patterns.

In the following we detail each of these steps. Since retrieval is limited to the use of a

search engine, when describing step 2, we will only focus on the process of building different

queries.

3.2.1 Question processing

A (Qi, Ai) pair is used to learn patterns. First, the question Qi is classified into a semantic

category that indicates the type of the expected answer (this corresponds to the task that was

previously introduced as question classification). Then, the lexical and syntactic constituents

of Qi (Li and Si, respectively) are captured by exploring its parse tree. To maximize the

number of learned patterns, different syntactic segments are captured, according to several

heuristics. In particular, we apply tree cuts at different levels, iteratively breaking the phrasal

nodes into its children nodes. As an example, consider the question What is another slang

expression for the Madness?, whose parse tree is shown in Figure 3.1.

The analysis of the parse tree of this sentence leads to three different segmentations:

1. Fine-grained segmentation

60 CHAPTER 3. CANDIDATE ANSWER EXTRACTION

ROOT.

SBARQ

.

?

SQ

NP a

PP

NP c

NNP

Madness

DT

the

IN

for

NP b

NN

expression

NN

slang

DT

another

VBZ

is

WHNP a

WP

What

Figure 3.1: Parse tree of the question What is another slang expression for the Madness?

• [syn-"WHNP VBZ NPb IN NPc"]

• [lex-"What, is, another slang expression, for, the Madness"]

2. Medium-grained segmentation

• [syn-"WHNP VBZ NPb PP"]

• [lex-"What, is, another slang expression, for the Madness"]

3. Coarse-grained segmentation

• [syn-"WHNP VBZ NPa"]

• [lex-"What, is, another slang expression for the Madness"]

With the three distinct segmentations we are varying the amount of information from the

question to be present in the learned patterns.

In should be clear that for some questions, the segmentation does not vary, regardless of

the granularity level: e.g. Who wrote The Divine Comedy? will only result in [syn-"WHNP

VBZ NP"] and [lex-"Who, wrote, The Divine Comedy"].

3.2. PATTERN LEARNING VIA A MINIMALLY SUPERVISED APPROACH 61

3.2.2 Passage retrieval

Multiple queries containing the seed answer Ai and subsets of Li (except the one that corre-

sponds to the wh-phrase in Si) are created and submitted to the search engine.

For each question segmentation, three query types are created, containing:

Query Type 1 – the answer Ai and subsets of Li. For example, wrote "The Divine Comedy"

Dante;

Query Type 2 – the answer Ai and subsets of Li, given that the main verb is conjugated in

its different inflections and the auxiliary verbs (if they exist) are removed. For example,

Dante written "The Divine Comedy";

Query Type 3 – the answer Ai and subsets of Li, except the verbs. For example, Dante

"The Divine Comedy";

All the passages retrieved for the queries are merged into a single data structure, with

duplicates removed. Our motivation to perform multiple searches in the Passage Retrieval step

is that it increases the number of relevant passages from where to build patterns. Furthermore,

by adjusting the amount of information from the question to be contained in the queries, we

allow patterns to be built from sentences that contain only parts of the question. An example

is the pattern “np? pos:’s np”, which does not contain reference to the main verb of the

question. In both cases, the goal is to maximize the number of learned patterns.

All query types are used to retrieve relevant passages for a single question Qi and, as we

will see in Section 3.2.3.1, they will originate the three different types of patterns.

3.2.3 (Lexico-syntactic) Pattern building

Consider again the Q/A pair (Who wrote The Divine Comedy?, Dante) with the previous

lexical and syntactic constituents, the query Dante written "The Divine Comedy" and the

62 CHAPTER 3. CANDIDATE ANSWER EXTRACTION

sentence In the 14th century Dante has written The Divine Comedy, considered the preeminent

work of Italian literature. retrieved as a search result, which has its parse tree in Figure 3.2.

ROOT

S

VP a

VP b

VP

NP

...

VBN

considered

,

,

NP b

NNP

Comedy

NNP

Divine

DT

The

VBN

written

VBZ

has

NP a

NNP

Dante

PP

NP

NN

century

JJ

14th

DT

the

IN

In

Figure 3.2: Parse tree of the sentence In the 14th century Dante has written The Divine
Comedy, considered the preeminent work of Italian literature.

The following procedure builds the lexico-syntactic patterns:

1. Using regular expressions, identify the sequence(s) in the sentence that contain(s) all

query elements, allowing one wildcard in between. In the example sentence, the regular

expression “Dante .* written The Divine Comedy” identifies the sequence Dante has written

The Divine Comedy.

2. In the subtree that conveys each identified sequence (Figure 3.3(a)):

(a) Identify the leaf nodes that contain the answer Ai and the elements of Li. In

this case, the nodes “Dante”, “written”, “The”, “Divine” and “Comedy” (Fig-

ure 3.3(b));

(b) Identify the topmost nodes that contain uniquely each of the elements of Li and

the answer Ai. In this example, the nodes NPa VBN NPb (Figure 3.3(c)).

(c) Identify the remaining leaf nodes. In this example, the node “has”;

(d) Collect the tags of the nodes identified in 2b. In this case, the tags NP VBN NP.

Notice that these tags are the syntactic constituents of the pattern, representing

an abstraction of the lexical components of the question and the answer;

3.2. PATTERN LEARNING VIA A MINIMALLY SUPERVISED APPROACH 63

(e) Collect the tags of the leaf nodes identified in 2c, and the tags of the nodes that

contain each of them. In this example, the tag VBZ. Notice that these tags repre-

sent the context of the pattern, in particular the lexical tokens that are not in the

seed question, nor in the answer;

(f) A pattern is created with n constituents, where n is the sum of the number of nodes

identified in step 2b and 2c. A pattern is basically the sequence of the collected

nodes, when the subtree is traversed in a depth-first fashion (see Figure 3.3(d)).

In this example, the pattern “np? vbz:has vbn np” is created.

(g) The correspondence between the elements of Si and the syntactic constituents of

the pattern is established by means of indices. In this example, the subscripted

indices in the pattern “np? vbz:has vbn1 np2” and in the syntactic segmentation of

Qi, [syn-"WHNP VBZ1 NP2"] allow to make the relation.2

Thus, in this work we define a pattern as a sequence of lexical and syntactic constituents.

All the learned patterns and the Q/A seed pairs are stored in a knowledge base, indexed by

the semantic category and syntactic segmentation of the seed question.

3.2.3.1 Types of patterns

Given that we vary the content of the query used to discover the documents from which the

patterns are learned, our approach is able to learn three types of patterns (such variability

in the type of learned patterns was also explored in the context of question-generation in the

The-Mentor system [Curto et al., 2012]).

1. strong patterns contain all the phrases (and their content) of the seed question. The

query submitted to the search engine is built with the content of all phrases and the

answer. For instance, “np? vbd dt:the nn:poem np” is a strong pattern learned from

the sentence Dante wrote the poem The Divine Comedy ;

2The constituent that conveys the answer is marked with a question mark.

64 CHAPTER 3. CANDIDATE ANSWER EXTRACTION

ROOT

S

NP

NNP VBZ

VP

VBN

VP

NP

DT NNP NNP

Dante has written The Divine Comedy

(a) The subtree that contains all the query elements,
plus an extra token matched with a wildcard.

ROOT

S

NP

NNP VBZ

VP

VBN

VP

NP

DT NNP NNP

Dante has written The Divine Comedy

(b) The leaves of the subtree that contain the elements
of Li and Ai.

ROOT

S

NP

NNP VBZ

VP

VBN

VP

NP

DT NNP NNP

Dante has written The Divine Comedy

NP

NPVBN

(c) Syntactic tags of the topmost nodes that contain the
elements of Li and the answer Ai

ROOT

S

NP

NNP VBZ

VP

VBN

VP

NP

DT NNP NNP

Dante has written The Divine Comedy

NP

NPVBN

VBZVBZ

has

Pattern: NP VBZ:has VBN NP

(d) The subtree nodes that compose a pattern.

Figure 3.3: Building a (lexico-syntatic) pattern from (the parse-tree of) a sentence that
contains entities from the question and the question’s answer.

2. inflected patterns are learned after the inflection of the main verb of the question

in its various tenses. The auxiliary verb is not required to be in the pattern. The

query submitted to the search engine is built with an inflected form of the main verb of

the question, the content of the remaining phrases and the answer. For instance, “np?

vbz:has vbn np” is an inflected pattern learned from the sentence Dante has written

The Divine Comedy ;

3. weak patterns do not contain any verb phrase. The query submitted to the search

engine is built with content of all phrases of the question, except the verb, and the

3.3. PATTERN-BASED ANSWER EXTRACTION 65

answer. For instance, “np? pos:’s np” is a weak pattern learned from the sentence

Dante’s The Divine Comedy.

The decision of learning different types of patterns resulted from the fact that, if patterns

are too specific (strong patterns), they will not frequently match and not many answers

will be found; if patterns are too generic (weak patterns), they will often match, but the

appropriateness of the discovered answers is not certain.

When it comes to the weak patterns, it should be noticed that the relation between

the entities is implicitly stated, since these patterns lack on the verbal constituent. Instead,

in the Strong and Inflected patterns, the relation is explicit, that is, we can capture the

relation from the pattern since we know which of its constituents is associated with the verbal

component of the seed question

3.3 Pattern-Based Answer Extraction

When a new question is posed to the system, a similar procedure to that of Pattern Learning

is followed. That is, the question is first syntactically analyzed and semantically classified

by the Question Processing component (as in Section 3.2.1), which is also responsible for

extracting the question’s lexical and syntactic segmentations. Afterwards, a set of relevant

passages are retrieved by the Passage Retrieval component (as in Section 3.2.2), however here

the formulated query does not contain the answer to the question. The next step is to extract

candidate answers from those passages using the patterns, which we detail in the following.

3.3.1 Pattern/sentence unification

The classification of the new question, as well as its syntactic segmentations, allows to retrieve

from the knowledge base all the applicable lexico-syntactic patterns. For example, consider

the question Who painted the Birth of Venus? and its syntactic segmentation [syn-"WHNP

VBZ NP"]. The pattern “np? vbz:has vbn1 np2” is retrieved from the knowledge base as being

66 CHAPTER 3. CANDIDATE ANSWER EXTRACTION

applicable. The next step is to unify the pattern with the relevant sentences (those that are

probable to contain the answer).

Given that we are dealing with patterns that convey lexical and syntactic informations,

the unification of the patterns with a sentence is done both at the lexical and syntactic levels.

For that purpose, we implemented a (recursive) algorithm that explores the parsed tree of

a sentence in a top-down, left-to-right, depth-first search, unifying the constituents of the

parsed text with the linguistic information in the patterns.

The algorithm for pattern/sentence unification goes as follows:

1. Tests if the sequence of syntactic constituents of the pattern exists in the sentence.

This means that, in a depth-first search of the tree, the sequence of syntactic tags in

the pattern has to occur (consecutively or not, given that we allow gaps between the

nodes). If so, collects that information chunk and continues; if not a relaxed strategy is

applied;

2. If the pattern does not contain lexical information, continues to (4);

3. If the pattern contains lexical information, tests if it matches the tokens in the leaves

of the parse tree of the text segment, in the same relative position. If so, continues;

4. Return the text segment, since there is a lexico-syntactic overlap between the pattern

and the text segment.

Again, for illustration, consider the pattern “np? vbz:has vbn1 np2” and the sentence With

the sponsorship of the Medici family Botticelli has painted the Birth of Venus, whose parse

tree is depicted in Figure 3.4.

There are 12 text segments that match the syntactic information present in the learned

pattern. They result from the all the possible combinations of the different NP’s before and

after the VBZ VBN sequence:

3.3. PATTERN-BASED ANSWER EXTRACTION 67

ROOT

S

VP

VP

NP e

PP

NP g

NNP

Venus

IN

of

NP f

NNP

Birth

DT

the

VBN

painted

VBZ

has

NP d

NNP

Botticelli

PP

NP a

PP

NP c

NN

family

NNP

Medici

DT

the

IN

of

NP b

NN

sponsorship

DT

the

IN

With

Figure 3.4: Parse tree of the sentence With the sponsorship of the Medici family Botticelli has
painted the Birth of Venus.

• the sponsorship of the Medici family has painted the Birth of Venus (conveyed by nodes

NPa VBZ VBN NPe);

• the sponsorship of the Medici family has painted the Birth (conveyed by nodes NPa VBZ

VBN NPf);

• the sponsorship of the Medici family has painted Venus (conveyed by nodes NPa VBZ

VBN NPg);

• the sponsorship has painted the Birth of Venus (conveyed by nodes NPb VBZ VBN

NPe);

• the sponsorship has painted the Birth (conveyed by nodes NPb VBZ VBN NPf);

• ...

At this point, there is a lexico-syntactic overlap between the pattern and every one of the

extracted text segments.

The goal of the unification is to recover from the sentence the information chunk that

represents the answer to the posed question. Therefore, the next step is to assure that the

68 CHAPTER 3. CANDIDATE ANSWER EXTRACTION

constituents of the extracted text fragment match the respective constituents of the posed

question. For that purpose, we compare the lexical constituents of the new question with

the lexical constituents of each extracted text fragment, using the associations between the

pattern and the source question. That is, from the pattern “np? vbz:has vbn1 np2” we know

that the last NP refers to the 2nd position of the question’s segmentation ([syn-"WHNP VBZ

NP"] and [lex-"Who, painted, the Birth of Venus"]). Therefore, we rule out all the text

segments that do not convey The Birth of Venus in the last NP.

Finally, the words in the text fragment associated with the pattern constituent relative to

the answer (marked with a question mark) is returned as the answer to the posed question.

Note that, if multiple unifications of a pattern in one sentence occur, we extract multiple

candidate answers from that sentence. In our example, Botticelli, the sponsorship of the

Medici family, the sponsorship and the Medici family are returned as candidate answers.

3.3.2 Relaxing the unification

The inherent variability of natural language often precludes a strict pattern/sentence unifica-

tion. A challenge in pattern-based approaches to Answer Extraction is, indeed, to understand

the linguistic level at which the unification should be performed [Shima and Mitamura, 2010].

To cope with this issue, we introduce a set of (lexicon, syntactic and semantic) relaxations,

that aim at easing the unification process, allowing the system to extract more instances of

answers.

Therefore, if there are patterns in the knowledge base that apply to the question, but

the unification does not succeed or no correct answer is captured, the system relies in the

following relaxation strategies:

1. A lexical distance (Levenshtein and Jaccard) is permitted between the sentence and

the lexical content of the pattern. This allows, for instance, to cope with orthographic

errors and, for instance, to extract the answer to Who wrote The Divine Comedy? in a

sentence such as Dante has written The Divine Commedy.

3.4. EVALUATION 69

2. A syntactic match is consented between (syntactic) classes that relate with each other

as they belong to the same (super) class (e.g., both “np” (proper noun) and “nns”

(plural noun) are nouns). This allows the pattern “np [has] vbn np” to match a sentence

analyzed as “nn [has] vbn np”.

3. A semantic match is allowed between two words, if there is a synonym relation between

them stated in WordNet. This allows a pattern “np vbd [established in] np” to match a

sentence Habitat for Humanity was founded in 1976.

The system’s performance cascades over five different performance levels, from the strictest

to the loosest, where the unification is continuously relaxed (for instance by allowing a higher

lexical distance between the pattern and the sentence).

3.4 Evaluation

In this section, we present the experiments conducted to evaluate the pattern-based approach

to candidate answer extraction and we show the achieved results.

We first report the number of patterns learned, afterwards we use the pattern-based

approach and show how it contributes to the candidate answer extraction in Just.Ask;

finally we discuss the influence of the pattern-based strategy on the system’s overall results,

when it is used in conjunction with the NE-based strategies implemented in Just.Ask.

The TREC-QA 2002-2007 corpus was used in all three experiments and, although there

is typically more than one correct answer for the questions in the corpus, a Q/A pair used

to learn patterns is always composed of the question and its first (correct) answer, unless

otherwise stated.

3.4.1 Pattern learning

A total of 195,787 patterns – 4,148 strong, 28,150 inflected and 163,489 weak – were

learned for 1,263 questions, 88% of the original set of 1,440 questions. That is, no patterns

70 CHAPTER 3. CANDIDATE ANSWER EXTRACTION

were learned for 177 questions, which is explained by the following reasons (the typical scenario

is all of the points contributing to the failure of the pattern-learning approach, not just one):

• the search engine did not retrieve any result to the queries formulated

for a given question, which happen mostly in queries composed of several

query terms ("12 500 miles" and "by" and "established" and "the boeing 777" and

"the non-stop distance record");

• not all of the (exact) terms of the query could be found in the search result and, there-

fore, the patterns could not be built. Recall that our approach requires that all of

the query terms should be in the retrieved search result; however, in many queries

that, for example, contain stop words ("in annapolis" and "naval academy") or ques-

tion words ("author jasper fforde’s" and "who killed humpty dumpty?"), the search

engine might simply omits those words in the results.

• there was not context between the query terms in order to a pattern to be built.

Again, remember that the learned patterns always contain context words to connect

the question parts to the answer and, therefore, a pattern can not be built from a

sentence the naval academy in annapolis retrieved for the query "in annapolis" and

"naval academy", for instance.

In this experiment, 50 passages were asked to the search engine from where to learn

patterns (per query). Table 3.1 shows the number of learned patterns per coarse category

and also indicates the number of questions that led to patterns in each category.

The number of patterns learned seem to depend both on the number of existing questions

and on the category of the questions. That is,

• the more questions exist, the more patterns are learned. For example, the number

of patterns learned for category Entity is much higher that the number of patterns

learned for category Abbreviation or description;

3.4. EVALUATION 71

Learned Patterns

Category # Q/A pairs strong inflected weak Total

Abbreviation 18 (85.7%) 24 394 2.352 2,770
Description 81 (81.0%) 408 2,498 8,481 11,387

Entity 191 (93.6%) 493 3,797 30,481 34,771
Human 269 (90.3%) 523 4,700 37,082 42,305

Location 264 (90.1%) 1,813 8,898 46,496 57,207
Numeric 440 (84.0%) 887 7,863 38,597 47,347

Total 4,148 28,150 163,489 195,787

Table 3.1: Distribution of the number of learned patterns per (coarse) category.

• some question categories are more likely to represent good seeds. For example, although

it is not the most populated category in terms of questions, the category Location lead

to the higher number of learned patterns. We believe that this is mostly related with

the lexical variation allowed in the answers of these categories: for example, there are

fewer ways to write the name of a location that to of a date.

Moreover, while nearly half of the strong patterns were learned for category Location, the

number of learned patterns per category seem more well distributed in the other types of

patterns.

Figure 3.5 shows the pattern distribution per (fine) question category. For a better visuali-

sation, we set the unit scale to Log (logarithmic). The highest number of patterns were learned

for category Human:Individual, while the questions of category Human:Description gen-

erated the fewer patterns. No patterns were learned for 2 categories (Entity:Technique

and Numeric:Weight). The question What kind of plant is kudzu? from category En-

tity:Plant led to the higher number of strong patterns, category Location:Mountain led

to the higher ratio of learned inflected patterns/question and category Entity:Currency

to the higher ratio of weak patterns/category. No strong patterns were learned for 11 cate-

gories.

We calculated the number of learned patterns if the seed Q/A pairs were built using the

questions and all their respective pairs in the TREC-QA 2002-2007 corpus (i.e., considering

all questions and all answers in the corpus). The results are the following: a total of 336,518

72 CHAPTER 3. CANDIDATE ANSWER EXTRACTION

1	

10	

100	

1000	

10000	

100000	
AB

B:
AB

BR
EV

IA
TI
O
N
	

AB
B:
EX
PA

N
SI
O
N
	

DE
SC
:D
EF
IN
IT
IO
N
	

DE
SC
:D
ES
CR

IP
TI
O
N
	

DE
SC
:M

AN
N
ER

	

DE
SC
:R
EA

SO
N
	

EN
T:
AN

IM
AL
	

EN
T:
BO

DY
	

EN
T:
CO

LO
R	

EN
T:
CR

EA
TI
VE

	

EN
T:
CU

RR
EN

CY
	

EN
T:
EV

EN
T	

EN
T:
FO

O
D	

EN
T:
IN
ST
RU

M
EN

T	

EN
T:
LA
N
GU

AG
E	

EN
T:
M
ED

IC
IN
E	

EN
T:
O
TH

ER
	

EN
T:
PL
AN

T	

EN
T:
RE

LI
GI
O
N
	

EN
T:
SP
O
RT

	

EN
T:
SU

BS
TA

N
CE

	

EN
T:
SY
M
BO

L	

EN
T:
TE
RM

	

EN
T:
VE

HI
CL
E	

EN
T:
W
O
RD

	

HU
M
:D
ES
CR

IP
TI
O
N
	

HU
M
:G
RO

U
P	

HU
M
:IN

DI
VI
DU

AL
	

HU
M
:T
IT
LE
	

LO
C:
CI
TY
	

LO
C:
CO

U
N
TR

Y	

LO
C:
M
O
U
N
TA

IN
	

LO
C:
O
TH

ER
	

LO
C:
ST
AT

E	

N
U
M
:C
O
DE

	

N
U
M
:C
O
U
N
T	

N
U
M
:D
AT

E	

N
U
M
:D
IS
TA

N
CE

	

N
U
M
:M

O
N
EY
	

N
U
M
:O
TH

ER
	

N
U
M
:P
ER

CE
N
T	

N
U
M
:P
ER

IO
D	

N
U
M
:S
IZ
E	

N
U
M
:S
PE
ED

	

N
U
M
:T
EM

PE
RA

TU
RE

	

strong	 inflected	 weak	

Figure 3.5: Number of patterns learned per question category.

patterns – 7,449 strong, 49,727 inflected and 279,342 weak – were learned for 1318 ques-

tions. The number of questions in the set of 1,440 that led to a pattern increased to 94%

(1,359 questions), pointing out the importance of choosing a good Q/A pair as the seed of

the pattern learning algorithm. From the 96 new questions that led to patterns, 17 belonged

to the coarse category Human and 52 to the coarse category Numeric.

3.4.2 Pattern/sentence unification

3.4.2.1 Experiments

To understand the impact of the pattern/sentence unification in the answering process of

Just.Ask, we conducted two different experiments. The difference between the two lies on

the usage of different training and testing sets, in particular:

Experiment 1: N-fold cross validation – The corpus is shuffled and split into N parts:

patterns are learned from the Q/A pairs of the N − 1 parts (the training set) and

3.4. EVALUATION 73

applied to answer the questions of the remaining part. In our experiments we used

N = 6, therefore in every portion of the corpus there are 240 questions.

Experiment 2: Yearly evolution – Since the TREC-QA 2002-2007 corpus is composed

of the corpora used in sequential editions of the TREC competition, we answer the

questions of the edition of year i using as training set the Q/A pairs from the years till

year i. In this way, we aim at knowing how many questions we would be able to answer

in one year if we used as training the questions and answers from the past.

In both experiments, we vary the number of passages asked to the search engine from

where to learn patterns (which we denote MAXpl) and the number of passages asked to

the search engine from where to extract answers (which we denote MAXae). We report the

number of correct answers extracted by Just.Ask and we make two important assumptions:

• the passage retrieval component only retrieves passages that contain at least one correct

answer for a given question; and,

• the answer selection step is flawless, that is, if Just.Ask is able to extract a correct

answer, it will return it.

Regarding the Just.Ask pipeline, we disabled the normalisation, clustering and filtering

phases in the final answer selection step (see Subsection 2.2.3.2). Only the candidate answer

aggregation step is performed and the list of final answers is ordered by decreasing frequency

of the answers. If no answer is found in the list of candidate answers the system’s behaviour

depends on whether the relaxation strategies are enabled or not: if so, the performance level

of the system worsens and system loosens its unification constraints; if not, the system leaves

the question unanswered.

3.4.2.2 Results

3.4.2.2.1 Experiment 1 – N-fold cross validation As previously stated, in this ex-

periment we split the TREC-QA 2002-2007 corpus in N even parts and used N−1 as training

74 CHAPTER 3. CANDIDATE ANSWER EXTRACTION

set and the remaining as test set (we set N = 6).

Regarding the system’s performance when varying MAXpl and MAXae, Table 3.2 shows

the number of correct questions according to different values of MAXpl and MAXae, when

the pattern-based approach is applied with (WRelax) and without (WoRelax) relaxation. It

also presents the number of patterns learned for each value of MAXpl.

MAXpl 5 10 25 50

MAXae 25 50 100 25 50 100 25 50 100 25 50 100

#Patterns 22,605 ± 212 41,951 ± 370 91,661 ± 932 163,492 ± 1,777

WoRelax 24 36 47 27 38 51 29 43 55 31 45 57
10% 15% 20% 11% 16% 21% 12% 18% 23% 13% 19% 24%

WRelax 64 83 98 70 90 106 75 96 113 80 101 118
26.8% 34.6% 40.8% 29.1% 37.3% 44.2% 31.2% 39.9% 46.9% 33.5% 41.9% 49.3%

Table 3.2: Number of correct questions and recall when varying the values of MAXpl and
MAXae in Experiment 1.

From the achieved results, we can see that:

• the system’s recall positively correlates with the number of passages from where to learn

patterns and with the number of passages from where to extract answers. However, the

system’s performance is much more dependent of the number of passages from where

to extract answers, than of the passages from where to learn patterns. These results

were also verified in previous experiments [Mendes et al., 2013a] where patterns were

learned and answers were extracted from a document collection, locally indexed; and,

• the system’s recall is higher if the relaxation strategies are used, as expected. In all the

cases, the use of relaxation doubles the system’s recall results.

It is natural that the use of more information, both in terms of patterns and passages

from where to extract answers, lead to an higher number of extracted candidates answers.

However, and although the system is able to extract more correct answers (as it is shown in

the tables), it can also signify an increase of the number of extracted incorrect answers, which

the system has to deal with in downstream components of the pipeline (the answer selection

component). Therefore, it is important to verify if there is a balance between correct and

3.4. EVALUATION 75

incorrect extracted answers or, at least, if the number of extracted incorrect answers does not

increase in a higher proportion when compared with the number of extracted correct answers,

leading to a drop of the system’s precision and MRR. The charts in Figures 3.6 and 3.7 allow

us to understand the variation of the system’s precision and MRR depending of the values

of MAXpl and MAXae and of the use (or not) of the relaxation strategies. The MRR is

calculated uniquely for the answered questions.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

MaxAE=25	 MaxAE=25	 MaxAE=50	 MaxAE=50	 MaxAE=100	 MaxAE=100	

WoRelax	 WRelax	 WoRelax	 WRelax	 WoRelax	 WRelax	

MaxPL=5	 MaxPL=10	
MaxPL=25	 MaxPL=50	

Figure 3.6: Precision when varying the values of MAXpl and MAXae, with and without
relaxation, in Experiment 1.

Regarding Just.Ask’s precision, the use of more patterns slightly prejudices the system’s

precision for fixed values of MAXae, when the relaxation strategies are not applied. However,

when the relaxation strategies are used, the precision increases for values of MAXpl higher

than 10. Moreover, the use of more passages from where to extract answers leads to an

increase of the precision: the best precision results are attained when MAXae has its higher

values.

The achieved precision results show that, although more answers (correct and incorrect)

are being extracted by the system, the ratio between correct and incorrect questions does not

vary with the use of more information in the pattern-based approach to candidate answer

extraction.

Results are similar regarding the system’s MRR for the answered questions. We can see

76 CHAPTER 3. CANDIDATE ANSWER EXTRACTION

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

MaxAE=25	 MaxAE=25	 MaxAE=50	 MaxAE=50	 MaxAE=100	 MaxAE=100	

WoRelax	 WRelax	 WoRelax	 WRelax	 WoRelax	 WRelax	

MaxPL=5	 MaxPL=10	

MaxPL=25	 MaxPL=50	

Figure 3.7: MRR when varying the values of MAXpl and MAXae, with and without relax-
ation, in Experiment 1.

that the MRR decreases with the increase of patterns for fixed values of MAXae, when no

relaxation is used. However, for equal values of MAXae and MAXpl, the use of relaxation

has a clear positive impact in the system’s MRR. Again, as it occurs with the precision, the

use of more passages from where to extract answers leads to an increase of the MRR, the best

results being attained for the higher value of MAXae and MAXpl.

The achieved MRR results suggest that the use of more information allows the system to

extract and to position the correct answers in higher ranks of the list of returned answers.

3.4.2.2.2 Experiment 2 – Yearly evolution In this experiment, we evaluate how the

system behaves when learning to answer using the available information from the past, by

testing three different configurations. In the following, we describe each of the configurations

and present the achieved results.

For a better analysis of the results, in Table 3.3 we present some statistics of the TREC-

QA 2002-2007 corpus, as well as some intermediate results achieved by Just.Ask. In partic-

ular, for each year, we show the number of test questions, the number of different question

categories and the number of questions with at least one positive passage retrieved by the

search engine. Regarding the question categories, and to evince the differences between the

3.4. EVALUATION 77

years, we show the number of categories shared by both years (in between parentheses).

TREC year 2002 2003 2004 2005 2006 2007

Questions 447 378 66 141 209 199

Categories 36 37 (23) 20 (16) 27 (11) 29 (9) 33 (15)
(cumulative) 36 43 43 44 46 47

% PosPassages 89.04% 83.60% 84.85% 80.85% 77.51% 84.93%

Table 3.3: Some statistics from the TREC-QA 2002-2007 corpus.

Configuration a) To answer questions of year i, only the Q/A pairs from year i−1 are

used as training set. Q/A pairs are built with each question and the respective first correct

answer.

Year 2003 2004 2005 2006 2007

MAXae 100 100 100 100 100

MAXpl 25 50 25 50 25 50 25 50 25 50

#Patterns 41,844 75,038 34,764 61,984 3,601 6,429 7,667 13,497 13,452 24,028

WoRelax 44 49 12 12 19 20 25 26 21 22
11.6% 13.0% 18.2% 18.2% 13.5% 14.2% 12.0% 12.4% 10.6% 11.1%

WRelax 122 127 25 27 35 35 46 43 44 47
32.3% 33.6% 37.9% 40.9% 24.8% 24.8% 20.6% 22.0% 22.1% 23.6

Table 3.4: Number of correct questions and achieved recall in Experiment 2, configuration
a).

Table 3.4 shows the number of correct questions and the recall achieved in Experiment

2, configuration a). For each year, it also shows the number of learned patterns that are

available for candidate answer extraction.

As it can be seen, if we were to compete in a TREC evaluation using uniquely our pattern-

based approach to candidate answer extraction with patterns learned from the previous year’s

questions, we would correctly answer, at most, 18.2% questions (without relaxation) and

40.9% (with relaxation). This would have happened in the year 2004, with training set from

year 2003. Year 2004 benefited from the large amount of patterns learned from the previous

year, as well as from a semantic similarity of the test questions in both years: 80% of the

question categories in year 2004 existed in year 2003, allowing the approach to learn patterns

applicable for the new questions (see Table 3.3).3

3Results would be lower, as the number of test questions was higher in the competition. These calculations
are based on the questions we have from that competition.

78 CHAPTER 3. CANDIDATE ANSWER EXTRACTION

From the table, one can observe two main phenomena:

• a high number of learned patterns does not necessarily signify a good recall result, if no

relaxation is used. This can be seen in the year of 2003, which had the highest number

of available patterns, however it scored 2nd worst in terms of recall results.

• a low number of learned patterns does not necessarily signify poor recall result. As it

can be seen, year 2005 has the lowest number of learned patterns, however it was the

year with the 2nd best results, when no relaxation was used.

Configuration b) To answer questions of year i, the questions from years i− j (1 <=

j < i) are used as training set. Q/A pairs are built using the questions and the first correct

answer. Q/A pairs are built with each question and the respective first correct answer.

Year 2003 2004 2005 2006 2007

MAXae 100 100 100 100 100

MAXpl 25 50 25 50 25 50 25 50 25 50

#Patterns 41,844 75,038 76,078 136,120 79,582 142,390 87,072 155,604 100,341 179,339

WoRelax 44 49 18 18 34 35 37 41 29 31
11.6% 13.0% 27.3% 27.3% 24.1% 24.8% 17.7% 19.6% 14.6% 15.6%

WRelax 122 127 28 30 63 65 67 73 77 80
32.3% 33.6% 42.4% 45.5% 44.7% 46.1% 32.1% 34.9% 38.7% 40.2%

Table 3.5: Number of correct questions and recall achieved in Experiment 2, configuration
b).

Table 3.5 shows the number of correct questions and the recall achieved in Experiment

2, configuration a). For each year, it also shows the number of learned patterns that are

available for candidate answer extraction.

If we were to compete in a TREC evaluation using uniquely our pattern-based approach to

candidate answer extraction with patterns learned from all previous years’ questions, we would

correctly answer, at most, 27.3% questions (without relaxation) and 46.1% (with relaxation).

This would have happened in the years 2004 and 2005, respectively.

Comparing with the results achieved in Experiment 2, configuration a), we can see that

all recall results improve. Learning from all the questions seen till year n increases the recall

3.4. EVALUATION 79

results in around 5% in average (when no relaxation is applied) and in more than 10% in

average (when relaxation is applied). However, we can also report an increase of the learned

patterns. This is due to a higher number of applicable patterns that were learned previously

in the patterns.

Configuration c) To answer questions of year i, the questions from years i− j (1 <=

j < i) are used as training set. Q/A pairs are built with each question and using the questions

and all the respective correct answers.

Year 2003 2004 2005 2006 2007

MAXae 100 100 100 100 100

MAXpl 25 50 25 50 25 50 25 50 25 50

#Patterns 76,102 135,555 131,812 234,672 138,784 246,860 152,041 270,177 171,217 304,180

WoRelax 50 55 18 19 38 38 39 42 30 33
13.2% 14.6% 27.3% 28.8% 27.0% 27.0% 18.7% 20.1% 15.1% 16.6%

WRelax 131 137 31 33 67 68 71 75 82 85
34.7% 36.2% 47.0% 50.0% 47.5% 48.2% 34.0% 35.9% 41.2% 42.7%

Table 3.6: Number of correct questions and recall achieved in Experiment 2, configuration c).

Table 3.6 shows the number of correct questions and the recall achieved in Experiment

2, configuration a). For each year, it also shows the number of learned patterns that are

available for candidate answer extraction.

If we were to compete in a TREC evaluation using uniquely our pattern-based approach

to candidate answer extraction with patterns learned from all previous years’ questions, we

would correctly answer, at most, 28.8% questions (without relaxation) and 50.00% (with

relaxation). This would have happened, again, in the year of 2004.

As it occurred in the previous experiment, all recall results improved due to existence of

more patterns. However, and as we have concluded from the results achieved in Experiment

1, recall does not seem to gain much with the increase in the number of passages from

where to learn patterns (MAXae): although the number of patterns increases dramatically,

carrying consequences in time and computational requirements, the number of extracted

correct answers increases marginally (in fact, for some years, the results remain unchanged).

80 CHAPTER 3. CANDIDATE ANSWER EXTRACTION

3.4.3 Influence in Just.Ask

This section is dedicated to the analysis of the influence of the pattern-based approach to

candidate answer extraction on the overall performance on Just.Ask, given that all the

NE-based strategies are enabled (see Section 2.2.3.1 for a description of the strategies).

In this experiment, we used the configuration b) of Experiment 2: that is, MAXae = 100,

the relaxation strategies are enabled and Q/A pairs are built using the questions and the

first correct answer. Although the best results of the pattern-based approach were achieved

in configuration c) of Experiment, where the Q/A pairs are built using the questions and

all their correct answers, we decided to use what is common in the literature [Ravichandran

and Hovy, 2002; Zhang and Lee, 2002; Schlaefer et al., 2006], where a seed is composed with

elements from the question and one correct answer.

Year 2003 2004 2005 2006 2007

MAXae 100 100 100 100 100

MAXpl 25 50 25 50 25 50 25 50 25 50

NE-based 193 36 80 115 100
(baseline) 51.1% 54.5% 56.7% 55.0% 50.3%

NE + Pattern 200 201 37 37 82 82 117 117 103 105
WoRelax 52.9% 53.2% 56.1% 56.1% 58.2% 58.2% 56.0% 56.0% 51.8% 52.8%

NE + Pattern 225 226 37 39 92 92 125 127 116 117
WRelax 64.7% 64.9% 56.1% 59.1% 65.2% 65.2% 59.8% 60.8% 58.3% 58.8%

Table 3.7: Number of correct questions and associated recall when using uniquely the NE-
based strategies and when using the NE-based strategies plus the Pattern-based strategy to
candidate answer extraction.

As it can be seen from Table 3.7, the usage of the pattern-based approach to candidate

answer extraction increases Just.Ask’s recall by from 1% to 2.5% (absolute values), when

no relaxation is used. Although this is a very marginal increase, in the cases where relaxation

is used, we see improvement of the recall augments in the order of 13.8% (absolute values).

3.5. DISCUSSION 81

3.5 Discussion

In this section we described our pattern-based approach to candidate answer extraction,

presented several experiments and the achieved results.

The differences between our and other pattern-based approaches to candidate answer

extraction can be summarized in the following:

Input seeds Our seeds are composed of questions and answers, and not two entities

[Ravichandran and Hovy, 2002; Bouma et al., 2011]. Moreover, instead of extract-

ing only the relevant terms from each question [Zhang and Lee, 2002; Schlaefer et al.,

2006], we use the entire question (except the wh-phrase) and manipulate it in order to

learn the maximum number of patterns;

Open-domain patterns Although applied to the extraction of short, fact based answers,

our approach is not restricted to particular question or pattern types (like in Zhang and

Lee [2002] and Schlaefer et al. [2006]);

Use of syntactic information Like in Shen et al. [2005] and Bouma et al. [2011], patterns

that convey syntactic information are learned. However, we use syntactic chunks instead

of dependencies. Moreover, our patterns are sequences of lexico-syntactic symbols, and

not trees.

A common denominator to all the presented experiments has to do with the system’s

results depending whether the relaxation strategies are employed or not. We could see im-

provements in the system’s recall of more that 20% when using relaxation compared with

when no relaxation was allowed. The variety of the natural language prevents many patterns

to unify with the sentences where the possible answers might lie, as the pattern-based ap-

proach to candidate answer extraction requires a literal match between the pattern and the

sentence content. To overcome this limitation, we apply a set of relaxation strategies which

proved to help to increase the system’s recall.

82 CHAPTER 3. CANDIDATE ANSWER EXTRACTION

Regarding the variation of MAXpl and MAXae, we could see that the system depends

more on the number of passages from where to extract answers, than on the number of

passages from where to learn patterns: the increase in MAXpl leads to a (much) higher

number of learned patterns, which often do not lead to a significant increase of the system’s

recall. We consider that a balance between these parameters should be achieved that considers

not only the number of correct questions and the system’s MRR and precision, but also

the computational power and the time required to learn patterns and unify them with the

sentences.

To motivate for the importance of a question classifier in a QA system pipeline we reported

that “a misclassified question can hinder the ability of the system to reach the right answer”

(Section 2.1) and when discussing the strengths and witnesses of Just.Ask, in particular

the system’s question classifier, we stated that “no question incorrectly classified is correctly

answered” (Section 2.6). If one has an extractor that forces the extracted answer to match

the semantics of the question, the previous considerations are certainly true. However, in

our pattern-based this constraint does not apply: we use the semantics of the question as a

mean to (semantically) group and index the learned patterns, but do not force an answer to

belong to a certain category. This is the reason why the pattern-based approach was useful in

the discovery of answers to misclassified questions. For instance, the question What prison is

Charles Manson at? expects a location as answer. However, since it is classified as requiring

the definition of something, the correct answer Corcoran State Prison is not extracted by the

NER strategies. Patterns were successful in this situation and also to find answers to questions

like What is the “Playboy” logo? and How did Malcolm X die?, for which Just.Ask does not

have a dedicated NE-based strategy.

The achieved results of the pattern-based approach strategy are still not comparable to the

best results achieved in QA (in TREC 2007 the best system achieved a recall of 70%4 [Dang

et al., 2007]). One reason that contributed to the system’s low recall results was the diversity

of the posed questions. The total 1440 questions belonged to 47 different semantic categories

4Note that, however, this is not a fair comparison, as the test corpora and the information sources are
different.

3.6. SUMMARY 83

(from [Li and Roth, 2002]) and, for many categories, there were not enough questions to serve

as seeds to pattern learning.

3.6 Summary

In this section we presented an approach to candidate answer extraction based on (three types

of) patterns learned from pairs composed of a question and its answer. For that purpose we

use a minimally supervised learning strategy to pattern learning, which we also described

in this chapter. To extract candidate answers to questions, patterns are unified against the

sentences retrieved as relevant by the Passage Retrieval module. Given that the variability of

the natural language often precludes a strict pattern/sentence unification, we adopted a series

of linguistic relaxation strategies, which were also described. We evaluated this approach in

several experiments where, for instance, we answered the questions of a certain year of TREC

using patterns learned from the questions (and answers) of past editions of the competition.

When compared to the results achieved by the NER-based strategies to Answer Extraction,

the performance of the pattern-based approach is much inferior. However, the conducted

evaluation allowed us to conclude that the pattern-based approach allows to extract correct

answers to two different types of questions that Just.Ask was not able to solve before:

misclassified questions and questions for which there is no appropriate NER strategy.

84 CHAPTER 3. CANDIDATE ANSWER EXTRACTION

4
Final Answer Selection

based on Semantic

Relations

The task of choosing the final answer(s) from a pool of candidate answers is known as final

answer selection. In Just.Ask this task is accomplished through a sequence of sub-tasks,

where the frequency of each answer plays a determinant role. One of the downsides of this

approach is that the candidate answers are seen as competitors and the semantic relations

between them are not considered. In this chapter we show how these relations can contribute

for a better final answer selection, using an approach that we published in an international

conference [Mendes and Coheur, 2011].

The present chapter is dedicated to the task of final answer selection. It starts with a

review of related work, followed by a description of our approach to answer selection based

on semantic relations. Afterwards the evaluation is presented along with the achieved results,

including the impact of the approach in Just.Ask. Lastly, we make a brief discussion of the

results and finish with a short summary.

4.1 Related Work

4.1.1 Techniques for final answer selection

Literature on QA shows examples of several different techniques for final answer selection. In

the following we divide these techniques into two major groups:

Filtering/validation of candidate answers: A first group of techniques to answer selec-

tion aims at discarding (or filtering) the wrong candidate answers, while keeping (or

validating) the correct ones.1

1In QA these two tasks – filtering and validating candidate answers – are often viewed as similar; however,

86 CHAPTER 4. FINAL ANSWER SELECTION

When it comes to filtering, many techniques are built on the assumption that candidate

answers that agree with certain constraints (inferred from the analysis of the question)

are possibly correct, while those that do not agree with the constraints are certainly

wrong. These constraints lie at different linguistic levels:

Lexical The Aranea system [Lin, 2007] used a set of heuristic rules to filter out n-

grams that are ‘obviously wrong’ answers. For instance, only n-grams with a

numerical component are allowed to questions that start with the phrases How far

or How tall ; to questions that start with Who or Where a capitalised n-gram is

required. All the other candidate answers are rejected. Other constraints imposed

by Aranea at the lexical level are related to the information overlap between the

posed question and candidate answer: if the latter is contained in the former, it is

also discarded.

Syntactic The system of Cardie et al. [2000] only considered noun phrases as candidate

answers, while all the other syntactic constituents are excluded from being final

answers, which lead to a slight improvement on the achieved results.

Semantic Schlobach et al. [2007] presented an extensive work on semantic filtering of

candidate answers, by using different knowledge-(and redundancy-)based methods.

Filtering based on semantics usually presupposes a question classification step,

where the question is annotated with information about the expected answer type

(see Section 2.1 for some details on question classification).

Regarding answer validation, Harabagiu and Maiorano [1999] define it as an inference

process that considers an answer to a question to be valid if an explanation for it can

be found. Moldovan et al. [2003a] introduced COGEX, a logic prover that aims at

understanding the relations between the question and each candidate answer through

linguistic and world knowledge axioms, and performs logical inference to validate the

candidate answers. The use of COGEX for answer validation led to an increase of

each concept carries a distinct semantic meaning that is important to mention. While filtering is associated
with ruling out the wrong answers, validation is typically related with retaining the correct ones.

4.1. RELATED WORK 87

performance of 30% on the achieved results. In this perspective, answer validation is

a highly knowledge-dependent task; however, in open-domain QA systems that search

for answers in large-scale information sources, knowledge intensive strategies for an-

swer validation are deemed impracticable, due to the need of intensive computational

processing (besides the need of a very large-scale knowledge repository).

A solution to tackle the problem of answer validation in open-domain QA is again to

take advantage of the statistical properties of large amounts of data. For instance,

Magnini et al. [2002] see answer validation from a data-driven point of view and assume

that a candidate answer to a question is valid if the question and the answer often

co-occur. First, several keywords are extracted from the answer and question and, with

those, a reformulation pattern is created, which is afterwards submitted to the Web. The

answer validity score is calculated based on the number of retrieved documents. Another

example is the work of Ko et al. [2007], who formalize the task of answer validation as

the estimation of the probability P (correct(Ai)|Q,A1, ..., An) of a candidate answer Ai

being correct given the posed question Q and the similarity between Ai and the other

candidate answers. These authors use logistic regression and four types of features

(knowledge-based, data-driven, string distances and synonyms) and report more than

100% of average improvement in results to 1760 questions collected from TREC, when

compared to the baseline where the top scored answer is retrieved.

The importance of answer validation in a QA system motivated the creation of the

Answer Validation Exercise (AVE) [Peñas et al., 2008] in CLEF. The AVE exhorts

systems to automatically verify the correctness of an answer to a question, given the

snippet that supports it. Most participating systems follow an approach based on

textual entailment, where an hypothesis is built with the question and answer, and

afterwards tested against the snippet.2 To decide about the correctness of the answer,

the competing systems use a large variety of approaches that can be roughly split into

two categories:

2In 2006, the hypothesis was given instead of the pair question/answer. In the following years, each system
was given a triple (question, answer, snippet).

88 CHAPTER 4. FINAL ANSWER SELECTION

• based on lexico-syntactic information – relying on the analysis of syntactic depen-

dencies and/or overlapping of lexical or syntactic information between the text

and the hypothesis. For instance, Iftene and Balahur [2009] compute a fitness

value based on the matching between the named entities on the hypothesis and

the entities of the supporting text.

• based on machine learning – using a training corpus and a set of features, such as

the Levenshtein distance or the size of the longest common subsequence between

the hypothesis and the supporting snippet [Téllez-Valero et al., 2008; Kozareva

et al., 2006].

Re-ranking of candidate answers: A second group of techniques to answer selection aims

at ranking candidate answers. This is done by attributing to each candidate a score that

depends on its relevance to the given question. The best scored candidate answer(s)

are ranked higher in the list of candidate answers and considered more likely to be the

correct answer(s) to the question.

Thes score are calculated by taking into account several features extracted from the

posed question, the candidate answer and, eventually, the sentence where it was found.

Examples of features are the frequency of the candidate answer, the information overlap

between the candidate answer and the question, and the rank of the sentence in the

total number of relevant sentences. Some systems, like [Moldovan et al., 2000], heuris-

tically combine these features, attributing a manually tuned weight to each of them.

Other systems adopt machine learning-based strategies to automatically learn the fea-

ture weights. For instance, Ittycheriah et al. [2001] used a maximum entropy model to

combine features and their weights; the features include query expansion features, focus

features, named entity features and dependency relation features.

To conclude, we can say that selecting the final answer(s) boils down to distinguishing

between correct and incorrect candidate answers. In this perspective, answer selection can

be cast to a binary classification problem, where the system classifies each candidate answer

as positive (correct) or negative (incorrect). If answer selection is seen as a filtering task,

4.1. RELATED WORK 89

the candidate answers that do not agree with the constraints are the negative examples; in

candidate answer ranking, the classification depends on the answers’ score against a threshold

value: if the score is greater than the threshold, the candidate answer is a positive example,

classified as correct; in candidate answer validation, the positive examples are the candidate

answers that can be verified and justified by the system.

4.1.2 Relating answers

An approach to final answer selection in QA relies on choosing the most frequent candidate

answer as final. This common, simple and successful approach is based on two important

assumptions:

1. many instances of the correct answer exist in the information sources (although they

can be stated in different formats); and,

2. candidate answers are unrelated and, therefore, competitors.

The work of Dalmas and Webber [2007] changed this perspective: they used relations

between the answers to deal with the possible lack of redundancy of the information sources.

In particular, they detected equivalences and inclusions between candidate answers to where

questions, and organised the candidate answers in graphs. The computation of several features

– like the semantic field, specificity and redundancy – allowed to rank the candidates.

Relating candidate answers can also be applied with the goal of comparing and integrating

information chunks originated from different and heterogeneous sources. In this context, nor-

malization is a step that typically proceeds the detection of relations. For instance, Moriceau

[2005, 2006] compares and integrates answers of categories date and number, and Chu-

Carroll et al. [2003] uses named entity normalization on the candidates retrieved from two

answering agents.

Buchholz and Daelemans [2001] also considered relations in the context of the presentation

of complex answers (answers composed of two or more simple answers). The authors identified

90 CHAPTER 4. FINAL ANSWER SELECTION

several situations where system’s answer can be built by combining candidate answers through

the relations they hold. For instance, given that Sirius and Dog Star refer to the same entity,

to answer the question What is the brightest stater? the system should choose and show

the user a supporting sentence that contains both. In fact, Buchholz and Daelemans [2001]

reported that often the success of the system can pass by the recognition of the relations

between candidate answers: for instance, if the answer cars is considered a more useful answer

than the pepper grinder which the company patented last century to the question What does

the Peugeot company manufacture?, the relations would allow a system to output a more

appropriate answer to the question. The authors mentioned simple strategies that benefit

from the existence of the relations, like, for example, selecting as final answer the one that

includes most of the others.

4.1.3 A typology of relations

Webber et al. [2003] originally introduced a set of four relations between answers, which were

later presented by Moriceau [2005].3 Both consider the relations between correct answers,

assuming a preceding filtering phase where the incorrect ones are discarded. On the contrary,

and as we will see, in our work we deal with relations between (correct and incorrect) candidate

answers and discuss how they influence the selection of the correct answer.

According to Webber et al. [2003] and Moriceau [2007], relations between answers can be

of:

Equivalence – if answers are consistent and entail mutually. Equivalence exists between

lexicographically different answers that represent the same entity, namely:

• answers with notational variations. For instance, Oct. 14, 1947 and 14th October,

1947 are equivalent answers for When did the test pilot Chuck Yeager break the

sound barrier? ;

3In her Ph.D. thesis, Moriceau [2007] also refers to the relation of complementarity. The author introduces
this relation as requiring the implementation of deeper inference mechanisms. For example, there is a relation
of complementary between the candidate answers a litter of water weighs 1 kg and for oil, the relative density
of water is equal to 0.9 to the question What is the weight of 30 litters of oil?.

4.1. RELATED WORK 91

• answers that rephrase others, like synonyms or paraphrases. For example, the

question How did Jack Unterweger die? can be answered with committed suicide

or killed himself.

Inclusion – if answers are consistent and differ in specificity, one entailing the other. In-

clusion occurs between two candidates that represent different entities, in which one

includes or subsumes the other, through:

• hypernymy, that is, the answers are in a is-a relation. For example, What animal

is Kermit? can be answered with frog or amphibian;

• meronymy, that is, the answers are in a part-of relation. For example, Where did

Ayrton Senna have the accident that caused his death?, in which Imola, Italy, and

Europe are possible answers;

• membership, that is, the answers are in a instance-of relation. For example, Edvard

Munch is a member of a Norwegian Symbolist painter, both possible answers to

Who painted the “Scream”?.

Aggregation – if answers are consistent, but not mutually entailing. In aggregation, all

candidate answers are potentially correct and can be integrated in the form of a con-

junction. For example, the question What is Kermit? can be answered with frog or

muppet, or a conjunction of both: frog and muppet ;

Alternative – if answers are not consistent or not mutually entailing. In the case of questions

with unique answers, only one can be correct. For example, the question How is the

Pope? can be answered with ill or healthy, but not with both. In the case of questions

with multiple answers, all the alternatives may be distinct answers. For example, twenty-

eight and twenty-nine are alternative answers to How many days are in February?.

Table 4.1 shows the existing relations between candidate answers, as presented by Dalmas

and Webber [2007]. A parallel is also made with the work by Buchholz and Daelemans [2001],

who focused on relations in the context of the presentation of complex answers (answers

composed of two or more simple answers).

92 CHAPTER 4. FINAL ANSWER SELECTION

Moriceau [2005] Webber et al. [2003] Buchholz and Daelemans [2001]

Equivalence Answers determined to be
equivalent (mutually entailing)

Different measures
Different designations
Time dependency

Inclusion Answers that differ in specificity
(one-way entailing)

Granularity

Aggregation Answers that are mutually consistent
but not entailing

Collective answers

Alternative Answers that are inconsistent Many answers
Ambiguity in the question
Different beliefs

Table 4.1: Relations between candidate answers.

4.2 Final Answer Selection based on Semantic Relations

The simplest approach to final answer selection in QA relies on the frequency of occurrence

of each candidate answer and considers the most frequent candidate as the final answer to

the posed question. Just.Ask also follows this type of redundancy-based approach, with a

component dedicated to final answer selection that is mainly dependent on the number of

times an answer was found in the relevant passages retrieved to a question (details can be

found in Section 2.2.3.2).

In this section we study how the view of candidate answers as allies contribute to the task

of final answer selection, by extending a pure redundancy-based approach with the information

about the semantic relations existing between candidate answers. In order to do so, we part

from the extracted candidate answers and follow the next four different sequential steps:

1. Candidate answers are normalized to a canonical format, which allows a better com-

parison between them: Date answers are set to the form D01 M01 Y1900 and numbers

(written in alphabetic and/or numeric characters) are reduced to their respective nu-

meric version with one decimal place (1 hundred is converted to 100.0);

2. Every two answers are compared (in a case insensitive comparison). If they are equal

we assume them to be the same entity and the score of each answer is increased by one.

Here, the score of each answer is its frequency of occurrence;

4.2. FINAL ANSWER SELECTION BASED ON SEMANTIC RELATIONS 93

3. The relations that exist between every pair of candidate answers are established. Again,

we compare every pair of candidate answers and detect if a relation exists. Their scores

are updated depending on their relations with other candidates;

4. The list of final answers is ordered by decreasing score. If two answers have equal score,

the one that holds more relations is preferred over the other.

Note that the first two steps refer to the normalization and aggregation steps in

Just.Ask’s architecture, respectively.

Regarding the relations, we use the typology presented by Moriceau [2005] and focus on

equivalence and inclusion. In the following, we describe the used techniques for detecting the

relations between two candidate answers and how they interfere with the redundancy-based

approach to select the final answer in a group of candidate answers.

4.2.1 Detecting equivalence and inclusion

One of the main concerns in redundancy-based QA is to recognize equivalence between

answers despite of their surface form, for instance, that July 3rd, 1983 is equal to 07-03-

1983. As previously mentioned, this notion of equivalence goes from notational variations or

reference resolution to the more complex concept of paraphrase, and it is an open issue in QA

research. The score attributed to a certain answer is tightly coupled with its frequency and

of its equivalents, and ignores other types of relations. However, it should be clear that, for

instance, in the question Where did Ayrton Senna have the accident that caused his death?,

the existence of the candidate answer Imola should boost the score of the candidate Italy,

since they are connected though a relation of meronymy.

Depending on their semantics, we use different techniques to recognize if two answers are

related by equivalence or inclusion, namely:

94 CHAPTER 4. FINAL ANSWER SELECTION

• We manually created regular expressions to detect equivalent candidate answers

that refer to persons names. For instance, if a candidate A1 is a string of

alphabetic characters, we test if candidate A2 matches the regular expression:

“(Mrs?\.?)|(Dr\.)|(Mister)|(Madame) A1”. To cope with misspelled answers, we

calculate the Levenshtein distance between every two answers and, if it is lower that a

certain threshold, we assume the answers to be equivalent.

• In numeric answers, to deal with variation in numeric values, we assume that if the two

answers differ by less than a threshold, then they are equivalent. Inclusion is detected

with recourse to rules that test if a number is contained in an interval: for instance,

78.5 is included in over 78.0.

• When it comes to dates, we recognize inclusion by testing if one answer string contains

the other. For instance, 1 January 2011 includes 1 January, January 2011 and 2011.

• Regarding locations, we use a set of regular expressions to detect equivalence and in-

clusion. For example, Republic of X is equivalent to X and University of Y is included

in Y .

• For other types of answer, we benefit from the knowledge present in WordNet. For

each pair of lemmatized candidate answers, we query this lexical database for their

most common sense. Afterwards, we navigate the tree of hypernyms (and meronyms)

of each candidate’s sense and check whether the other candidate is its ancestor. If so, a

relation of inclusion exists. For example, this allows us to detect the relation of inclusion

between candidate answers (animal, sheep) and (body, arm), since in WordNet the first

argument of each pair is an ancestor of the respective second argument: a sheep is-a

animal (hypermyny) and arm is-part-of body (meronymy). Moreover, we assume that

equal lemmatized answers are equivalent.

After detecting the relations, one can built a directed graph of candidate answers, in

which the answers are the nodes and the relations between them the edges. This approach

was explored by Dalmas and Webber [2007], however their graph also contained information

4.2. FINAL ANSWER SELECTION BASED ON SEMANTIC RELATIONS 95

to represent entities extracted from the question. Our representation of candidate answers is

independent from the input question, since we only take into account the answers. Figure 4.1

depicts the graph of candidate answers, achieved after the detection of equivalence and inclu-

sion relations. Straight lines represent relations of equivalence and arrows represent relations

of inclusion, in which the answer at the start of the arrow includes the answer at the end of

the arrow.4

more than
70.0 percent

77.5 percent

50.0 percent

over
78.0 percent

78.4 percent 78.5 percent 90 percent

Figure 4.1: Relations between numeric candidate answers.

4.2.2 Selecting the final answer

In the answer selection approach based uniquely on frequency, candidates are scored indepen-

dently and, for that reason, considered as autonomous. Here, the more popular an answer is,

the more chances it has to be chosen as the final answer.

In the extended answer selection approach, candidate answers are scored according to the

relations they hold with others, besides their frequency. The underlying assumption is that

the correctness of an answer is influenced by the presence of the other answers with which it

is related. Here, and recalling the graph representation of the candidate answers, the more

connections an answer has, the more chances to be chosen as the final answer. Being so, we

implemented a scoring system, which updates the score of an answer A according to its type

and frequency, to the number of answers equivalent to A, to the number of answers which

4For simplicity reasons, we omitted transitive inclusions.

96 CHAPTER 4. FINAL ANSWER SELECTION

include A and to the number of answers that are included by A. The strategy boils down

to navigating the graph of candidate answers and adding to the score of each node a weight

that depends on the number and type of edges that leave from and arrive to it. Like in the

frequency based approach, a list is built from the graph, ordered by decreasing value of score,

and the topmost is chosen as final.

4.3 Evaluation

4.3.1 Experiments

The focus of our experiments is on answers to questions of categories Entity, Location, Nu-

meric:Count, Numeric:Date and Human:Individual. Thus, in all of the following, the

questions were first classified according to Li and Roth’s two-layer question type taxonomy [Li

and Roth, 2002], using Just.Ask’s question classifier. Afterwards, we discarded all answers

of coarse-grained categories Abbreviation and Description of the unwanted fine-grained

categories (including, Human:Description, Human:Group and Human:Title).

We conducted two main experiments, which allow us to compare the impact of a final

answer selection based on relations when the extracted answers are originated from a single

source or multiple sources (systems). The details follow:

Experiment 1 – Multi-stream question-answering In a first experiment we tested our

approach in a setting where a large number of candidate answers to factoid questions

exist, as well as their respective judgements as correct or incorrect.5 To deal with the

difficulties in gathering such corpus from one unique system, we again decided to use the

freely available data from the TREC QA tracks. It contains not only the test questions,

but also the answers given by the competing systems and judged as correct or incorrect

by the human assessors of TREC. Being so, all our answers are originated in actual

QA systems that used the same information sources to solve every question and their

5In [Mendes and Coheur, 2011] we show the results of a similar experiment.

4.3. EVALUATION 97

evaluation is trustworthy. We consider this to be a reliable and consistent corpus, that

allows to mimic the behavior of a real system, in line with a recent trend in QA –

multi-stream QA – in which the output of several and different systems (streams) are

combined to improve the answer accuracy [Téllez-Valero et al., 2010].

In this experiment, we tested two different settings where we varied the number of

questions of the evaluation corpus: on the first one, we use all the questions from the

TREC competition, years 2002 to 2007; on the second setting, we use corpus employed

in Just.Ask’s evaluation described in Section 2.5.2.6. Moreover, and since we aim

at evaluating if the approach is able to better position the correct answer in the list

of final answers, we only use those questions for which Just.Ask extracts at least one

correct answer. This second setting allow us to make a comparison between the achieved

results in multi- and single-stream QA, specifically those achieved by Just.Ask. In the

following, we detail these two settings:

Setting a) We dealt with a total of 46,068 answers, from which 10,198 (22.14%) were

judged as correct and 34,756 (77.86%) as incorrect.7 These answers belong to

1,642 different questions collected from the TREC QA tracks of the years of 2002

to 2007, which had at least one correct answer. Roughly, there is an average of

28 candidate answers per question, and only 1 in every 5 is correct. Details of the

corpus according to the category are presented in Table 4.2.8

Setting b) We used the questions from TREC-QA 2002-2007 corpus (for which

Just.Ask extracted at least one correct answer). The answers are those returned

by the competing systems of TREC.

We dealt with a total of 19,053 answers, from which 5,872 (30,82%) were judged as

6Recall that this corpus is composed of a subset of the questions of the TREC competition, years 2002 to
2007. Particularly, this corpus only contains factoid, non-anaphoric questions; their answers are short-sized,
returned by the competing systems of the competition and judged as correct or unsupported. Section 2.3.2
further details the creation of this corpus.

7In order to have a larger amount of correct answers, inexact and unsupported answers are also considered
as being correct.

8Although in Li and Roth’s taxonomy the fine-grained category Date belongs to the coarse-grained cate-
gory Numeric, we separate them to differentiate the results achieved for dates or numbers. Being so, where we
have Numeric, it should be understood as all questions/answers classified as Numeric except Numeric:Date

98 CHAPTER 4. FINAL ANSWER SELECTION

Questions # Answers
Category All Correct Incorrect All

Human:Individual 371 2,499 (23.19%) 8,278 10,777
Entity 270 1,175 (15.82%) 6,414 7,589
Location 400 3,675 (31.57%) 7,964 11,639
Numeric:Count 204 1,114 (19.82%) 4,507 5,621
Numeric:Date 397 2,849 (27.28%) 7,593 10,442

Total 1,642 10,198 (22.14%) 34,756 46,068

Table 4.2: Details of the corpus used in Experiment 1, setting a).

correct9 and 13,181 (69.18%) as incorrect. These answers belong to 693 different

questions. Roughly, there is an average of 27 candidate answers per question, and

roughly 1 in every 3 answers is correct. Details of the corpus according to the

category are presented in Table 4.3.

Questions # Answers
Category All Correct Incorrect All

Human:Individual 144 1,030 (24.95%) 3,128 4,158
Entity 29 166 (21.25%) 615 781
Location 235 2,441 (36.50%) 4,246 6,687
Numeric:Count 72 492 (26.28%) 1,380 1,872
Numeric:Date 213 1,743 (31.38%) 3,812 5,555

Total 693 5,872 (30,82%) 13,181 19,053

Table 4.3: Details of the corpus used in Experiment 1, setting b).

Experiment 2 – Single-stream question-answering In a second experiment, we used

the questions from the TREC-QA 2002-2007 corpus and the candidate answers ex-

tracted by Just.Ask (again, we only use those questions for which the system extracts

at least one correct candidate answer).

Since the TREC-QA 2002-2007 corpus does not contain all the variations of the correct

answers, we do not have the actual judgement to every answer extracted by Just.Ask.

Our way to circumvent this issue was to assume that all answers that are normalized

to the same format as of a correct answer are correct. In this way, we dealt with a total

of 76,708 answers, from which 34.64% are correct. The ratio of correct answers per

category is somewhat similar to that in the previous experiments, the exceptions are

9Unsupported answers are considered correct. Inexact are considered incorrect.

4.3. EVALUATION 99

categories Entity and Numeric:Date, where the number of correct answers is around

14% higher. Roughly, there is an average of 110 candidate answers per question, and 1

in every 3 is correct. Details of this corpus are presented in Table 4.4.

Questions # Answers
Category All Correct Incorrect All

Human:Individual 144 4,250 (25.83%) 12,204 16,454
Entity 29 1,153 (35.89%) 2,060 3,213
Location 235 14,378 (36.52%) 24,987 39,365
Numeric:Count 72 1,579 (26.60%) 4,367 5,936
Numeric:Date 213 5,219 (44.45%) 6,521 11,740

Total 693 26,579 (34.64%) 50,136 76,708

Table 4.4: Details of the corpus used in Experiment 2.

Scoring

In all the experiments, the answers are selected by decreasing order of score. In this section,

the results of the conducted experiments are shown according to the following:

Frequency The baseline consists in selecting the most frequent candidate answer, without

any other processing, and the respective results are those in column Frequency. There-

fore, the score of an answer ai equals its frequency;

Frequency+Normalization The results of the impact of answer normalization in the base-

line are shown in column Frequency+Normalization. Therefore, the score of an answer

ai equals its frequency after normalization;

Frequency+Normalization+Relations In column Frequency+Normalization+Relations

we show the results of selecting the candidate answers based on the number of rela-

tions established with the other candidates. Here, the score of an answer ai equals its

frequency after normalization. If two answers have the same score, they are ordered

according to the number of relations.

Frequency+Normalization+Relations+Scoring The performance of the answer selec-

tion approach based on semantic relations (which involves candidate answer normal-

100 CHAPTER 4. FINAL ANSWER SELECTION

ization, scoring and selection based on the relations) is presented in column Fre-

quency+Normalization+Relations+Scoring. Here, the score of an answer ai equals its

frequency after normalization plus the score associated with the relations it holds with

others. If two answers have the same score, they are ordered according to the number

of relations.

In case there is still a tie between two answers, the selection is based on alphabetical order.

For clarity, consider as an example the following candidate answers: July 1983, July,

07/1983, July 3rd,1983, 1983, August, August 1983, August 1983. In Table 4.5 they are

ranked by decreasing score (which is also presented).

Frequency Frequency Frequency Frequency
+Normalization +Normalization +Normalization

+Relations +Relations
+Scoring

August 1983 ⇒ 2 August 1983 ⇒ 2 July 1983 ⇒ 2 July 1983 ⇒ 4
07/1983 ⇒ 1 July 1983 ⇒ 2 August 1983 ⇒ 2 July 3rd, 1983 ⇒ 4

1983 ⇒ 1 1983 ⇒ 1 1983 ⇒ 1 August 1983 ⇒ 4
August ⇒ 1 August ⇒ 1 July 3rd, 1983 ⇒ 1 1983 ⇒ 1

July ⇒ 1 July ⇒ 1 August ⇒ 1 July ⇒ 1
July 1983 ⇒ 1 July, 3rd 1983 ⇒ 1 July ⇒ 1 August ⇒ 1

July 3rd, 1983 ⇒ 1

(a) (b) (c) (d)

Table 4.5: Example of the final answer selection as presented in this section.

Regarding the notes in the last row of the table, note that:

(a) there are two candidate answers August 1983, therefore it will be scored 2. The score of

the remaining others is 1;

(b) both July 1983 and 07/1983 normalize to M07 Y1983, therefore they are aggregated

with score 2. The score of the remaining is kept unchanged;

(c) July 1983 is related to 3 answers (1983, July and July 3rd, 1983), whereas August 1983

only to two (1983 and August), therefore they will be swapped in the list (with July

1983 ranking higher than August 1983). The same logic applies to the other candidate

answers;

4.3. EVALUATION 101

(d) Assuming that, in a relation of inclusion, the score of the candidate answer that is

included is increased by one:

• the score of July 3rd, 1983 is increased by 3, since it is included by 1983, July 1983

and July ;

• the score of July 1983 and August 1983 are increased by 2 since they are included

by 1983 and July, and 1983 and 1983, respectively.

Furthermore, since July 3rd, 1983 and July 1983 are related to 3 other candidate an-

swers, while August 1983 to only 2, they are ranked higher than the latter candidate

answer and according to their alphabetical order. Again, the same logic applies to the

remaining candidate answers.

Finally, the scores to each relation were fixed and do not take into consideration the posed

question; however, and for example, different questions might expect different answer gran-

ularities. In these experiments we report the upper bound of accuracy when using relations

for the purpose of answer selection, considering that the system can identify the best values

for the scores in order to maximize its MRR.

4.3.2 Results

4.3.2.1 Experiment 1 – Multi-stream question-answering

Setting a) Detailed results achieved in setting a) of experiment 1 – Multi-stream question-

answering – are shown in Table 4.6.

The baseline accuracy is of 56.52% for the 1,642 questions. Results are pushed down

mostly because of the performance in the categories Entity and Numeric:Count, both

achieving accuracies at the first answer below 50%. We can see that the system fails in the

answer selection task as the number of correct answers at position 3 is much higher than that

of position 1.

102 CHAPTER 4. FINAL ANSWER SELECTION

Frequency Frequency Frequency Frequency
+Normalization +Normalization +Normalization

+Relations +Relations
+Scoring

Acc #Correct Acc #Correct Acc #Correct Acc #Correct
Cat @1 @1 @3 @1 @1 @3 @1 @1 @3 @1 @1 @3

H:Ind 54.18% 201 280 54.18% 201 280 57.41% 213 291 59.78% 220 296
Ent 47.03% 127 175 47.03% 127 175 49.25% 133 188 49.25% 133 183
Loc 69.75% 279 347 69.75% 279 347 70.50% 282 351 73.50% 294 350
N:Cou 42.16% 86 135 53.43% 109 165 54.41% 111 162 56.83% 113 164
N:Dat 59.19% 235 319 64.99% 258 327 66.25% 263 331 68.77% 273 331

Overall 56.52% 928 1,256 59.32% 974 1,294 61.08% 1,002 1,323 63.15% 1,033 1,324
Relative change 4.96% 3.03% 2.88% 2.16% 3.09% 0.08%

Table 4.6: Results achieved in experiment 1 – Multi-stream Question-Answering, setting a).

After normalizing the questions pertaining to categories Numeric:Count and Nu-

meric:Date (recall that the others are not normalized), the overall results increase nearly

3% (in absolute values) when compared to the baseline. A total of more 46 questions are now

correct at rank 1. Considering the top 3 ranked answers, results improve and are again better

than those achieved by the baseline: 38 more questions have correct answer within the top 3.

The selection of answers based on the number of relations established with other candidate

answers allows an absolute increase of more than 1.5% in the accuracy@1 of the entire dataset,

with 28 more questions being correctly put in the first position of the list of final answers.

The highest improvements are seen in answers to questions of categories Human:Individual,

and Entity and Numeric:Date, with an increase of accuracy@1 around 3% and 2%.

Finally, scoring candidate answers based on the relations results on an increase of

around 7%, 4% and 2% (in absolute values), when compared to using only Frequency, Fre-

quency+Normalization and Frequency+Normalization+Relations, respectively. The top an-

swers are correct for a total of 1,033 questions; the difference is of 105 and 68 questions at

top 1 and 3, comparing with the baseline. Results suggest that the approach that takes the

semantic relations into account better groups the correct answers in the top positions of the

list of scored candidate answers.

Regarding the number of relations between answers, we detected a total of 12,987 re-

4.3. EVALUATION 103

lations (6,474 equivalences and 6,504 inclusions), which particularly benefitted categories

Human:Individual, Location and Numeric:Date. To assess the correctness of the de-

tected relations, we collected and manually evaluated a random sample of 100 relations for

each category. The results are shown in Table 4.7.

All Equivalence Inclusion
Cat #Correct Precision #Correct (Total) Precision #Correct (Total) Precision

H:Ind 72 72.00% 72 (100) 72.00% – –
Ent 53 53.00% 8 (28) 28.57% 45 (72) 62.50%
Loc 93 93.00% 29 (29) 100.00% 64 (71) 90.14%
N:Cou 92 92.00% 51 (57) 89.47% 41 (43) 95.35%
N:Dat 95 95.00% – – 95 (100) 95.00%

Overall 405 81.00% 160 (214) 74.77% 245 (286) 85.66%

Table 4.7: Evaluation results of the relations detected in setting a) of experiment 1 – Multi-
stream question-answering.

The worst precision result was verified on category Entity. An explanation to this result

is that many answers were snippets of text, often composed of several entities (or no entities

at all), instead of one unique entity whose semantics agree with the question category. For

example, Racing Online Series, totally nascar, White House dealt and Regiment one of were

candidate answers to questions of category Entity. A similar issue occurred with category

Human:Individual, which yielded the second lowest results, as many candidates were not

names of individuals. For example, classic works, short form music video or Atlantic Ocean.

Given that our strategies to detect relations expect answers of a certain semantics, these

situation led to relations being wrongly established between candidate answers. The results

for the remaining categories were higher than 90%, leading to an overall precision result of

81.00%.

Setting b) Table 4.8 presents the detailed results obtained in setting b) of experiment 1 –

Multi-stream question-answering.

The accuracy results of the baseline are of around 71%. This value increases to a maximum

of 79.07%, achieved when normalization is applied and the relations are used to select and

score the answers (a difference of more than 8% when compared to the baseline). The existence

of the relations are responsible for more 51 correct answers at rank 1 and 34 at rank 3. These

104 CHAPTER 4. FINAL ANSWER SELECTION

Frequency Frequency Frequency Frequency
+Normalization +Normalization +Normalization

+Relations +Relations
+Scoring

Acc #Correct Acc #Correct Acc #Correct Acc #Correct
Cat @1 @1 @3 @1 @1 @3 @1 @1 @3 @1 @1 @3

H:Ind 61.11% 88 115 61.11% 88 115 64.68% 93 118 68.75% 99 123
Ent 72.41% 21 24 72.41% 21 24 72.41% 21 27 79.31% 23 28
Loc 80.85% 190 222 80.85% 190 222 81.28% 191 224 87.50% 198 223
N:Cou 61.11% 44 59 73.61% 53 69 75.00% 54 68 76.39% 55 68
N:Dat 69.01% 147 186 73.24% 156 194 75.59% 161 196 77.93% 166 198

Overall 70.70% 490 606 73.30% 508 624 75.04% 520 633 79.07% 541 640
Relative change 3.68% 2.97% 2.36% 1.44% 4.04% 1.11%

Table 4.8: Results achieved in experiment 1 – Multi-stream question-answering, setting b).

results are consistent with the ones achieved in the setting a) of this experiment.

We detected a total of 4,064 relations (2,146 equivalences and 1,918 inclusions), and

their impact in the accuracy results was mostly seen in categories Human:Individual and

Numeric:Date, which gained 21 and 19 correct questions at rank 1, respectively. Categories

Location and Numeric:Count also benefitted from the relations, however in a smaller

amount (more 8 and 11 correct answers in each category, respectively).

4.3.2.2 Experiment 2 – Single-stream question-answering

Detailed results achieved in experiment 2 – Single-stream question-answering – are shown in

Table 4.9.

Although the best accuracy is achieved when applying normalization and using the re-

lations between answers (60.61%), the difference to the baseline is not that expressive as it

was in the previous experiments: less than 3% improvement was seen in this experiment,

representing 18 more correct questions at rank 1. The number of correct questions until rank

3 also increases by 22.

From the analysis of the table, we put in evidence three results, which mostly differed

from previous experiments:

4.3. EVALUATION 105

Frequency Frequency Frequency Frequency
+Normalization +Normalization +Normalization

+Relations +Relations
+Scoring

Acc #Correct Acc #Correct Acc #Correct Acc #Correct
Cat @1 @1 @3 @1 @1 @3 @1 @1 @3 @1 @1 @3

H:Ind 50.0% 72 111 33.8% 72 111 49.31% 71 114 50.69% 73 116
Ent 72.41% 21 27 72.41% 21 27 75.86% 22 29 75.86% 22 29
Loc 63.83% 150 194 63.83% 150 194 64.26% 151 194 64.26% 151 195
N:Cou 44.44% 32 52 50.00% 36 54 50.00% 36 55 51,39% 37 58
N:Dat 59.62% 127 169 61.03% 130 174 62.64% 133 178 64.31% 137 180

Overall 58.01% 402 553 59.02% 409 560 59.60% 413 570 60.61% 420 575
Relative change 1.74% 1.27% 1.79% 0.98% 1.69% 0.88%

Table 4.9: Results achieved in experiment 2 – Single-stream question-answering.

• The small increase in the accuracies achieved for categories Location and Hu-

man:Individual when using relations for selection and/or scoring. In previous ex-

periments, these categories largely benefitted from the usage of relations. We believe

that a possible reason for this is related with the enormous quantity of candidate an-

swers, which hide the impact on the relations in the results. Moreover, and regarding

category Location, there was also a relatively small number of discovered relations

between candidates: 418 relations for nearly 39,365 candidates (against previous exper-

iments where 570 and 324 relations were discovered for 11,639 and 6,687 candidates,

respectively).

• The highest increase in the accuracy reported for category Numeric:Date, which con-

sistently benefited from the relations throughout the experiments. Moreover, note that,

in this category, only relations of inclusion were detected.

• The relations between the answers seemed to have more impact in the results when they

were used for scoring, rather than for selecting between two equally scored candidate

answers.

In this setting, we detected a total of 16,191 relations (8,594 equivalences and 7,576

inclusions). The results of the manual evaluation performed to the detected relations is

shown in Table 4.10 (again, we collected a random sample of 100 relations for each category).

106 CHAPTER 4. FINAL ANSWER SELECTION

All Equivalence Inclusion
Cat #Correct Precision #Correct (Total) Precision #Correct (Total) Precision

H:Ind 96 96.00% 96 (100) 96.00% – –
Ent 77 77.00% 9 (11) 81.82% 68 (89) 76.40%
Loc 80 80.00% 6 (8) 75.00% 74 (92) 80.43%
N:Cou 96 96.00% 38 (38) 100.00% 58 (62) 93.55%
N:Dat 98 98.00% – – 98 (100) 98.00%

Overall 447 89.40% 149 (157) 94.90% 298 (343) 86.88%

Table 4.10: Evaluation results of the relations detected in experiment 2 – Single-stream
question-answering.

Like in the previous evaluation, the category Entity is the one that achieves the lowest

results, although significantly higher than before: 77.00% vs. 53.00%. Here in this evalu-

ation, however, the second lowest result is that of category Location (instead of category

Human:Individual). Again, the issue was mostly because several relations were estab-

lished between answers that were not locations, e.g.:, includes(Algeria,Flag of Algeria)

and includes(Britain,Emperor of Britain), due to the match of the implemented regular

expressions. In the remaining categories the results were above 90% of precision and the

overall results also higher than those achieved in the previous experiment.

4.3.2.3 Other results

In situations where a very large text corpus is available (ideally the Web), the approach to

QA based on the redundancy of the information sources is appealing: it achieves good results

while relying mostly on counting the number of occurrences of each candidate answer and on

the fact that the correct answer is typically the most frequent. In all previous experiments, we

assumed the redundancy of the information sources, since we allowed each candidate answer to

be repeated multiple times (like as if it was present several times in the information sources).

However, this is not often the case, specially when using closed corpora of small dimensions

as the source of information. In this experiment, we simulate the behavior of a system in

a situation of lower redundancy. We did so by considering that all the candidate answers

are unique, that is, there is only one instance of each candidate answer. In this case, the

selection of the answers is not dependent on their frequency, but on the relations with other

4.3. EVALUATION 107

answers. If all candidate answers are unique and have the same frequency (that is, 1), and if

no other information is available, a QA system would probably choose randomly amongst all

answers.10

The results achieved when using the approach to answer selection based on semantic

relations, while disregarding the frequency of the candidate answers, are the following:

Experiment 1, setting a) an accuracy@1 of 42.14% was achieved, with 692 questions cor-

rectly answered at the top 1 rank. 954 questions are correctly answered at top 3.

Experiment 1, setting b) an accuracy@1 of 53.54% was achieved, with 371 questions cor-

rectly answered at the top 1 rank. 497 questions are correctly answered at top 3.

Experiment 2 an accuracy@1 of 22.08% was achieved, with 153 questions correctly an-

swered at the top 1 rank. 268 questions are correctly answered at top 3.

Table 4.11 further details the results according to the selection method previously de-

scribed. Note that the difference to previous experiments is that here every candidate answer

is unique and its score is set to one.

Frequency (= 1) Frequency (= 1) Frequency (= 1) Frequency (= 1)
+Normalization +Normalization +Normalization

+Relations +Relations
+Scoring

Acc #Correct Acc #Correct Acc #Correct Acc #Correct
Experiment @1 @1 @3 @1 @1 @3 @1 @1 @3 @1 @1 @3

1 – a) 9.07% 149 483 23.45% 385 602 40.68% 668 1,006 42.14% 692 954
1 – b) 10.68% 74 243 29.44% 204 362 47.91% 332 487 53.54% 371 497
2 1.88% 13 63 10.97% 76 81 15.73% 109 209 22.08% 153 268

Table 4.11: Answer selection results when every candidate answer is unique.

As it can be seen, the use of the relations is determinant for the purpose of answer selection

in a scenario of low redundancy, which we simulated by assuming that all the candidate

10In order to allow comparisons between the experiments, instead of randomly ranking the answers, we used
their alphabetical order.

108 CHAPTER 4. FINAL ANSWER SELECTION

answers are unique. Regarding the results when the answers are ordered uniquely according

to their alphabetical order (Frequency (= 1)), we can see that experiment 2 has much smaller

values than those of experiments 1,a) and 1,b), which did not happen previously: we attribute

this to the much larger amount of unique candidate answers of the corpus used in experiment

2. The normalization applied to the candidates allowed the accuracy to be largely boosted in

every experiment, but the best overall results were attained when using the relations.

The achieved results show that, although answer redundancy is a good measure of the

correctness of an answer, when this property is not available, using normalization with the

semantic relations between answers seems to be a good substitute.

4.3.3 Influence in Just.Ask

Recall from Chapter 2 that answer selection in Just.Ask comprises the following sequential

steps: normalization, aggregation, clustering, filtering and selection. In order to accommodate

the new approach to answer selection based on semantic relations, Just.Ask was extended

in the following way:

• before clustering, the relations between the candidate answers are detected;

• the answers’ scores are updated according to the relations they hold with others. This

step also occurs before clustering.

• when clustering, we assume a distance between equivalent answers of 0.0. Therefore,

equivalent answers will belong to the same cluster.

Moreover, we did not perform any clustering on the answers to questions of category

Numeric:Date, as we have noted that applying the Levenshtein distance will make the

clusters to include totally diverse dates.

Results achieved in the previous single-stream QA scenario let anticipate a comparatively

small increase of performance. In fact, if one considers all the answers contained in the

4.4. DISCUSSION 109

returned clusters (as we did on the evaluation of the baseline in Section 2.5.2.4), we see

that there is a improvement of 4 and 10 more correct answers (clusters) at rank 1 and 3,

respectively.

Similar results are seen if we only consider the representative answer of each cluster, i.e.,

the answer that the system selects as final and will return to the user. In this case, there is

an increase of 4 correct answers at rank one (384 vs. 388 correct answers) and 9 at rank 3

(606 vs. 615 correct answers).

4.4 Discussion

Our approach to final answer selection is inspired on the research by Dalmas and Webber

[2007]. However, and contrary to these authors, we show the importance of the semantic

relations to a large spectrum of questions, not only where questions. Another difference to

the previous work is that our candidate answers are the output of real-world QA systems,

instead of being synthetically generated. In our work, we consider the relations as a way to

improve the results already achieved by redundancy, but we also report the results of using

relations to final answer selection when the candidate answers are not redundant.

We presented the performance of the answer selection approach based on semantic rela-

tions and, as it could be seen, results were different when using the answers retrieved from

several systems (in a multi-stream question-answering scenario) and when using the answers

retrieved by a unique system (in a single-stream question answering scenario). We believe

that the provenance of the answers played a major role in the achieved results. Indeed, dif-

ferent systems resort to different strategies (to question interpretation, passage retrieval and

answer extraction) and knowledge sources, which eventually lead to more diversity in the can-

didate answers. Moreover, the returned systems’ answers are already the result of a filtering

process, and are those that the systems have most confidence in being correct. This approach

is feasible under the circumstances where correct answers are similar enough (but not equal)

so that many relations can be established between them, and incorrect answers are diverse

110 CHAPTER 4. FINAL ANSWER SELECTION

enough so that no relation is recognized between them.

Regardless of the scenario and of the overall impact in the achieved results, the detection

and usage of the semantic relations between candidate answers for the purpose of answer

selection improved the accuracy achieved at ranks 1 and 3, suggesting the applicably of the

approach. Moreover, many other techniques could be used to relation detection, which we

did not explore (for example, based on georeference for answers to questions of category

Location) that can improve the results. The improvement of the current techniques, as well

as the implementation of others (for example, based on paraphrase recognition) is, therefore,

a future work direction to be considered in Just.Ask.

Another point that is worth mentioning is related with the score attributed to each an-

swer, which depends on the relations the answer has with others. In our approach, in every

experiment, we have fixed a score attributed to each relation and depending on the question’s

category. However, the scores ought to be adjusted according to finer-grained information, for

instance, to the posed question itself. Take the following two questions as examples: When did

Bob Marley die? and What day did Neil Armstrong land on the moon?, which, in Just.Ask,

are classified as Numeric:Date. While the former can be correctly answered with a year

or even a decade, the latter requires a more specific temporal point (a day). Therefore, in

the first one, more weight should be given to answers that include other candidate answers,

whereas in the second more weight should be given to answers that are included by others. In

this work, we only took in consideration the information from the candidate answers, but ac-

counting for other clues in the question to improve the selection of the best answer is certainly

another direction of future work.

4.5 Summary

We presented an approach to answer selection in QA that takes into account not only the

candidate answers’ frequency, but also the relations they hold with other candidate answers.

Using a limited set of heuristics, encoded mostly in the form of regular expressions, as well

4.5. SUMMARY 111

as linguistic knowledge from WordNet, we built a graph which we traverse to update the

score of every answer. With this approach that uses mostly information recovered from the

answer, we could boost the performance of the baseline in a multi-stream QA setting in more

than 7%. Results were inferior in a single-stream QA, where we could only reach nearly 3%

improvement. We presented a detailed evaluation and we discussed the impact of frequency,

normalization and the semantics relations for the purpose of ranking candidates and selecting

the final answer.

112 CHAPTER 4. FINAL ANSWER SELECTION

5
From Answered

Questions to Question

Answering

In a typical interaction with a QA system, a question is posed and its answer is returned.

Usually, after being presented to the user, the system’s answers are discarded from further

processing. However, there is much information conveyed by the correct answer to a question

that is simply lost in every interaction. For example, knowing that Dante correctly answers

the question Who wrote the Divine Comedy? and that it can be found in the sentence Dante

has written The Divine Comedy might be important to locate the correct answer to the similar

question Who painted The Birth of Venus?.

Just.Ask answers questions using several strategies that recognize and pinpoint named

entities from text, in combination with a pattern-based approach to candidate answer extrac-

tion, described in Chapter 3. In this chapter we propose the application of this approach

in a setting where the system learns to answer new questions based on previous successful

interactions.

The present chapter is dedicated to the process of learning to answer new questions based

on previous successful interactions, which was implemented in Just.Ask. It starts with a

revision of related work and, afterwards, our approach to learn to answer from answered

questions is described. The evaluation and its results are reported and the chapter ends with

the usual brief summary.

5.1 Related Work

Many works in the literature use questions and their correct answers in strategies for QA

(several of them take advantage of the datasets of questions and answers built in the context

114 CHAPTER 5. FROM ANSWERED QUESTIONS TO QUESTION ANSWERING

of evaluation fora, like the TREC or the CLEF). An example is our approach to candidate

answer extraction that uses pairs of questions and their answers to learn extraction patterns;

we have pointed to other approaches with the same goal in Section 3.1.

The use of Q/A pairs as training instances to (semi-)supervised learning machinery in QA

is however not limited to the task of building patterns to candidate answer extraction. Sun

et al. [2006] uses Q/A pairs to learn classifiers that identify the correct answers for a question

in a sentence. The first classifies a sentence as containing (or not) a correct answer to the

posed question; if the sentence is classified positively, the second classifies each word as correct

(or not). Moschitti and Quarteroni [2011] focus on the answer selection to definition questions,

and base their work on the cross-pair similarity model [Zanzotto and Moschitti, 2006] that

learns rewrite rules between two entailment pairs (Text T, Hypothesis H). They use questions

and their answers as training instances and study the improvements achieved when using

generalizations to syntactic/semantic structures and applying sequence/tree kernel technology

in a SVM. Lita and Carbonell [2004] represent questions as points in a multidimensional

space and group them in clusters according to their similarity, based on the idea that similar

questions are solved by similar strategies. Different models are learned from each cluster that

serve three different purposes: 1) estimate a distribution of the question’s semantic category;

2) include cluster-specific content in the queries submitted to the document retrieval module;

and, 3) identify if an answer is present in a text snippet. When a new question is posed, it is

represented in the same space and the models of the clusters in its neighborhood are used.

As we will show in the remainder of this chapter, our pattern-based approach to candidate

answer extraction allows Just.Ask to learn to answer new questions based on previous suc-

cessful interactions. For that, the system relies on the user feedback about the correctness of

the returned answer(s). When it comes to systems that use past interactions to answer new

questions, the approach of Harabagiu et al. [2001] is a rare example described in the litera-

ture: by using a caching mechanism, answers to previous similar questions are reused, which

avoids triggering the entire QA process. The similarity is measured in terms of the number

of (lexico and semantic) matches between content words of equal morphological category in

5.2. LEARNING TO ANSWER FROM ANSWERED QUESTIONS 115

both (current and cached) questions. Other works exist along the line of reusing answers

from past questions in recent questions, specially applied to Community Question-Answering

sites.1 Here, the goal is to reduce to amount of unanswered questions and the main challenge

is typically to identify the past question(s) that is(are) the most similar to the new question,

the one(s) that convey the same information need. For example, Shtok et al. [2012] use a two-

stage approach that, besides choosing the most appropriate past question through a ranking

mechanism, also identifies the best answer to the new question from the list of answers to

the top-ranked past questions. Finally, it should be mentioned that, although the direct user

feedback is rarely used in traditional QA, its application is explicit in this type of sites, where

answers are ranked based on several features, including the number of votes attributed by the

community members.

In Chapter 3 we presented several strategies to candidate answer extraction that use

patterns built from Q/A pairs, including ours. In this chapter we will describe how we use

our strategy to allow the system to learn from past interactions, making Just.Ask, to the

best of our knowledge, the first system that uses the correct answers to past questions to

learn to answer future questions which, contrary to the approaches we have referred to in this

section, do not necessarily convey the same information need.

5.2 Learning to Answer from Answered Questions

This section is dedicated to describe our method that uses previous information (questions

and their correct answers) to answer new questions. Moreover, we show how Just.Ask’s

architecture was modified in order to allow it to learn from past interactions.

1In these sites, questions and answers are given by humans. Examples of such sites are Yahoo! An-
swers (http://answers.yahoo.com/), StackOverflow (http://stackoverflow.com/) or Quora (http://www.
quora.com/).

http://answers.yahoo.com/
http://stackoverflow.com/
http://www.quora.com/
http://www.quora.com/

116 CHAPTER 5. FROM ANSWERED QUESTIONS TO QUESTION ANSWERING

5.2.1 Iterative learning to answer

In Chapter 3 we introduced our pattern-based approach to candidate answer extraction. The

assumption behind this approach is that, if two questions are similar in the sense that they

share some properties (the syntactic structure and semantic category), then there is a set of

patterns that can be used to extract answers to both of them. Given that the patterns are

learned from pairs of questions and their correct answers, we are able to use the patterns

learned from previous successful interactions (where the system correctly solved the posed

questions) to extract answers to unseen similar questions.

When a new question is posed, its classification and syntactic analysis (performed in

the Question Processing stage) allows to retrieve from the knowledge base all the applicable

patterns. Relevant passages are returned in the Passage Retrieval stage and, in the Answer

Extraction stage, there is a pattern/sentence unification to extract the candidate answers:

every sentence in the passages is analyzed and its parse tree is explored in a top-down,

left-to-right, depth-first search, unifying the obtained sentence tree components with the

lexico-syntactic information in the patterns.

Since the pattern-learning algorithm receives a question and its answer as input, if the

system is able to verify the correctness of its answers, the process to learn new patterns is

straightforward: the input question is the question posed by the user, while the input answer

is the system’s retrieved correct answer. Thus, if positive feedback is given, Just.Ask learns

new patterns with previously (and correctly) answered questions.

5.2.2 Just.Ask’s new architecture for answering questions

Just.Ask’s architecture was modified in order to accommodate the process of iterative learn-

ing. Figure 5.1 depicts the new architecture. The block labelled with number 2 depicts the

steps in Just.Ask dedicated to answering questions, while the block labelled with number

1 shows the steps in Just.Ask dedicated to learning patterns. The components responsible

for the Question Processing and Passage Retrieval steps are shared by both blocks, but for

5.2. LEARNING TO ANSWER FROM ANSWERED QUESTIONS 117

the sake of readability of the figure, we have drawn a separate instance of each component in

each block.

Question-Answering
Answer

Extraction

Question

Correct?

Pattern-
based

Patterns
KB

NER-
based

Answer

Pattern Learning

Pa
ss

ag
e

R
et

rie
va

l

Q
ue

st
io

n
Pr

oc
es

si
ng

Yes

Q
ue

st
io

n
Pr

oc
es

si
ng

Pa
ss

ag
e

R
et

rie
va

l

Pa
tte

rn
 B

ui
ld

in
g

1

2

DocumentDocument

Document
Document

Document

Figure 5.1: Learning from answered questions: the new architecture of Just.Ask.

The data flow of Just.Ask now comprises the following steps:

1. A new question is posed to Just.Ask;

2. Question Processing – Interprets the question;

3. Passage Retrieval – Retrieves a set of relevant passages/documents for the question,

from the information sources;

4. Pattern Selection – Retrieves a set of patterns for the question from the knowledge

base of patterns.

118 CHAPTER 5. FROM ANSWERED QUESTIONS TO QUESTION ANSWERING

5. Answer Extraction – Candidate Answer Extraction

(a) Pattern Matching – If the number of retrieved patterns in Step 4 is higher than

zero, extracts candidate answers from the retrieved relevant passages/documents

using the retrieved linguistic patterns. This step was described in Chapter 3 of the

present document.

(b) Entity Recognition – Extracts candidate answers from the retrieved relevant

passages/documents using the available named entity recognizers.

6. Answer Extraction – Final Answer Selection – Selects the final answer.

7. Answer Presentation – Shows the answer to the user, accompanied by a supporting

passage. Asks the user if s/he believes the answer is correct.2 If the answer is wrong, the

user is prompted to teach the system and to provide it the correct answer (for example,

it might be the case that the correct answer is stated in the supporting passage, but

the system mistakenly extracted/selected a difference piece of information).

8. Pattern Learning – If the system has the correct answer to the user question, a new

Q/A pair is created with the user question and the answer. New patterns are learned

and stored in the knowledge base, associated with the interpreted question. This step

is described in Chapter 3 of the present document.

9. Waits for a new question. Go to Step 1.

5.3 Evaluation

5.3.1 Evaluation measures

To evaluate the performance of Just.Ask, we use the metrics presented in Chapter 2, Sec-

tion 2.4. However, since learning of patterns is involved and we aim at measuring the perfor-

mance of the system depending on the number of posed questions, results are calculated as a

2Note that in our automatic evaluations of Just.Ask this step is accomplished by verifying if the answer
exists in the reference corpus.

5.3. EVALUATION 119

function of the previous questions, which allow us to verify the evolution on the system’s per-

formance. Therefore, when evaluating the nth question, we calculate the recalln, precisionn,

F1-measuren and coveragen as follows:

Recalln = #Correctly answered questions till question n
n .

P recisionn = #Correctly answered questions till question n
#Answered questions till question n .

F1-measuren = 2×Precision×Recall
Precision+Recall .

Coveragen = #Answered questions till question n
n .

5.3.2 Experiments

We test our approach in four scenarios, where we vary the strategies employed to candidate

answer extraction:

1. NER: Just.Ask runs with the NER strategies; no (pattern) learning process is involved;

2. Patterns, with reference as fallback (P+RF): the pattern-based strategy is used. If a

correct answer is found, it is used (with the posed question) as input to a new pattern

learning cycle, where new patterns are learned. If no correct answer is found, one answer

from the reference corpus is chosen instead;3 by doing so, we mimic the behavior of a

tutor that explicitly provides the system the correct answer.

3. NER and Patterns (NER+P): combination of all implemented candidate answer ex-

traction strategies. If a correct answer is found, it is used (with the posed question) as

input to a new pattern learning cycle.

4. NER and Patterns, with reference as fallback (NER+P+RF): combination of all imple-

mented candidate answer extraction strategies. If a correct answer is found, it is used

(with the posed question) as input to a new pattern learning cycle. If no answer is

found, an answer from the reference corpus is used.3

3In this situation, the question is considered as unanswered.

120 CHAPTER 5. FROM ANSWERED QUESTIONS TO QUESTION ANSWERING

We conducted two different experiments:

Experiment 1 – Iterative learning to answer We assess the system’s performance as a

function of the number of posed questions in the four scenarios previously described,

with MAXpl = 50 and MAXae = 100 (recall, from Section 3.4.2, that MAXpl refers

to number of passages asked to the search engine from where to learn patterns and

MAXae refers to the number of passages asked to the search engine from where to

extract answers);

Experiment 2 – Revising past questions We allow Just.Ask to revise past wrong or

unanswered questions and to solve them using the recently acquired knowledge.

For that, we set several milestones in the corpus, at the (i × n)th questions (i =

{100, 250, 500}, n ∈ {1, ..., 10} and i ∗ n < 1440). When Just.Ask reaches a mile-

stone, it returns to the start and tries to answer all the wrong or unsolved questions till

that milestone, using all the learned patterns (except those learned using the question

under revision4). This process repeats for the subsequent milestones, until the end of

the corpus is reached.

As an example, and assuming i = 250, when the 250th question is reached, the system

goes back to the first question and, using all the learned patterns, it tries to answer all

questions until the next milestone (the 500th question), the point where it goes back

again to the first question.

Is also worth mentioning that, in our experiments, whenever the pattern-based approach

is used to candidate answer extraction (i.e., in scenarios 2, 3 and 4), we start with an empty

knowledge base of patterns.

4In this experiment, if no correct answer is found by Just.Ask, an answer from the corpus is used.
Therefore, patterns will always be learned for all questions. However, and since we keep track of the question
in the origin of each pattern, we do not use the patterns learned from a certain question to find answers to
that same question.

5.3. EVALUATION 121

5.3.3 Results

5.3.3.1 Experiment 1 – Iterative learning to answer

Table 5.1 presents the performance results of Just.Ask in all four scenarios. We show the

averaged results for the 5 runs and the respective standard deviation σ (when σ > 0.00). We

did not make use of the relaxation strategies. Moreover, recall that Just.Ask is not selecting

answers, since here our goal is to evaluate the system’s performance in terms of extracted

answers.

Scenario
1 (NER) 2 (P+RF) 3 (NER+P) 4 (NER+P+RF)

Recall1440 55.51% 19.58% ± 0.01 56.58% 57.94%
Precision1440 81.69% 61.68% ± 0.02 82.80% 81.21%
F1-measure1440 66.10% 29.73% ± 0.01 67.23% 67.63%
Coverage1440 67.96% 31.75% ± 0.01 68.33% 71.35%

Table 5.1: Performance of Just.Ask when varying the scenario.

As it can be seen, the success of the system is in large part determined by the use of the

NER strategies, which contribute, in average, to nearly 800 correct questions in the total of

1440. Just.Ask’s recall is much lower in scenario 2 (P+RF), when the patterns are used with

the reference corpus as fallback, with an average of only 282 questions correctly answered.

The use of the patterns in scenario 4 (NER+P+RF) allows an increase of more than 2% in the

recall results (around more 35 correct questions) achieved by the NER, when no relaxation

strategy is applied.

The graphs in Figure 5.2 allow to make the comparison between scenarios 1 (NER) and

2 (P+RF), by showing the evolution of Just.Ask’s performance with the number of posed

questions. In these graphs we compare the results in terms of coverage (number of questions

that the system tries to answer) and recall (number of questions correctly answered in the

total of questions).

While in the NER scenario both coverage and recall seem to converge to steady values

of around 68% and 55% respectively, one can see a clear upward tendency in the scenario

122 CHAPTER 5. FROM ANSWERED QUESTIONS TO QUESTION ANSWERING

Evolution of coverage with the number of posed questions
(scenario NER)

run 1 run 2 run 3 run 4 run 5

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500

Questions

0

10

20

30

40

50

60

70

80

90

100

%

(a) Evolution of coverage, scenario 1 (NER).

Evolution of recall with the number of posed questions
(scenario NER)

run 1 run 2 run 3 run 4 run 5

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500

Questions

0

10

20

30

40

50

60

70

80

90

100

%

(b) Evolution of recall, scenario 1 (NER).

Evolution of coverage with the number of posed questions
(scenario P+RF)

run 1 run 2 run 3 run 4 run 5

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500

Questions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

%

(c) Evolution of coverage, scenario 2 (P+RF).

Evolution of recall with the number of posed questions
(scenario P+RF)

run 1 run 2 run 3 run 4 run 5

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500

Questions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

%

(d) Evolution of recall, scenario 2 (P+RF).

Figure 5.2: Evolution of Just.Ask’s performance with the number of posed questions, in
scenarios 1 (NER) and 2 (P+RF) in the five different runs.

P+RF, regardless of the run, with the number of posed questions. This means that:

1. the system is learning more patterns;

2. the system tries to answer more questions; and,

3. the system is returning more correct answers.

As we can see, this approach is dependent on the order of how the questions appear. For

example, while on run 2 the first (correctly) answered question occurs in the 11th interaction

(which explains the “bump” in the first interactions in both graphs), on run 1 the first

answered question is that of the 45th interaction. Nevertheless, despite of when the system

5.3. EVALUATION 123

starts returning correct answers to the questions, results show a consistent increase in recall

after some interactions for every run.

Figure 5.3 shows the evolution of the system’s precision with the number of posed questions

in scenarios 1 (NER) and 2 (P+RF). We can see that, using only NER, the precision is more

concentrated near the mean of 80%, while in scenario 2 the precision values are more disperse

and tend to converge to a value around 60%.

Evolution of precision with the number of posed questions
(scenario NER)

run 1 run 2 run 3 run 4 run 5

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500

Questions

0

10

20

30

40

50

60

70

80

90

100

%

(a) Evolution of precision, scenario 1 (NER).

Evolution of precision with the number of posed questions
(scenario P+RF)

run 1 run 2 run 3 run 4 run 5

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500

Questions

0

10

20

30

40

50

60

70

80

90

100

%

(b) Evolution of precision, scenario 2 (P+RF).

Figure 5.3: Evolution of Just.Ask’s precision with the number of posed questions, in sce-
narios 1 (NER) and 2 (P+RF) in the five different runs.

In order to assess the impact of the relaxation strategies in the best scenario

(NER+P+RF), we also run Just.Ask with the relaxation strategies activated. In the end

of the test set, at question 1440, the system achieved an average recall of 62.82% ± 0.01 (vs.

57.94% without relaxation strategies), precision of 83.27% ± 0.01 (vs. 81.21%), F1-measure

of 71.61% ± 0.01 (vs. 67.63%), and coverage 75.44% (vs. 71.35%). Table 5.2 summarizes

these results.

With relaxation Without relaxation

Recall1440 62.82% ± 0.01 57.94%
Precision1440 83.27% ± 0.01 81.21%
F1-measure1440 71.61% ± 0.01 67.63%
Coverage1440 75.44% 71.35%

Table 5.2: Impact of the relaxation strategies in the best scenario NER+P+RF.

The graphs in Figure 5.4 allow to compare the results achieved in scenario 4 (NER+P+RF)

124 CHAPTER 5. FROM ANSWERED QUESTIONS TO QUESTION ANSWERING

with the number of posed questions, with and without relaxation in the pattern/sentence

unification. The main difference between both scenarios lies on the percentage around which

the results stabilize after the first 400 questions: recall and coverage are around 7% higher in

the scenario where relaxation is used (with an average of more 106 correct questions) than

the recall and coverage in the scenario without relaxation. There is also a very slight upward

tendency in the coverage when relaxation is applied, since the system tries to give answers to

an increasing number of questions.

Evolution of coverage with the number of posed questions
(scenario NER+P+RF)

run 1 run 2 run 3 run 4 run 5

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500

Questions

0

10

20

30

40

50

60

70

80

90

100

%

(a) Evolution of coverage, no relaxation.

Evolution of recall with the number of posed questions
(scenario NER+P+RF)

run 1 run 2 run 3 run 4 run 5

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500

Questions

0

10

20

30

40

50

60

70

80

90

100

%

(b) Evolution of recall, no relaxation.

Evolution of coverage with the number of posed questions
(scenario NER+P+RF_w)

run 1 run 2 run 3 run 4 run 5

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500

Questions

0

10

20

30

40

50

60

70

80

90

100

%

(c) Evolution of coverage, using relaxation.

Evolution of recall with the number of posed questions
(scenario NER+P+RF_w)

run 1 run 2 run 3 run 4 run 5

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500

Questions

0

10

20

30

40

50

60

70

80

90

100

%

(d) Evolution of recall, using relaxation.

Figure 5.4: Evolution of Just.Ask’s performance with the number of posed questions, in
scenario 4 (NER+P+RF) in the five different runs, with and without relaxation.

The evolution of the system’s precision in scenario 4 (NER+P+RF), with and without

relaxation, is presented in Figure 5.5. Here we can see that there is not too much difference

in the precision results with the number of posed questions. Results are slightly higher when

using relaxation, however this value is marginal.

5.3. EVALUATION 125

Evolution of precision with the number of posed questions
(scenario NER+P+RF)

run 1 run 2 run 3 run 4 run 5

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500

Questions

0

10

20

30

40

50

60

70

80

90

100

%

(a) Evolution of precision, no relaxation.

Evolution of precision with the number of posed questions
(scenario NER+P+RF_w)

run 1 run 2 run 3 run 4 run 5

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500

Questions

0

10

20

30

40

50

60

70

80

90

100

%

(b) Evolution of precision, no relaxation.

Figure 5.5: Evolution of Just.Ask’s precision with the number of posed questions, in scenario
4 (NER+P+RF) in the five different runs, with and without relaxation.

5.3.3.2 Experiment 2 – Revising past questions

Table 5.3 reports the system’s average results at the 1440th question when reiterating. It

shows the achieved recall, precision, F1 measure, coverage, and the number of correct answers

(between parentheses). Recall that, until the end of the corpus is reached, the system goes

back to the first question after (i× n) questions. Furthermore, the relaxation strategies were

not applied in this experiment.5

No i
Reiteration 100 250 500

Recall1440 19.58% (282) 23.07% (332) 22.56% (325) 21.89% (315)
Precision1440 61.68% 61.36% 60.89% 60.83%
F1-measure1440 29.73% 33.53% 32.93% 32.19%
Coverage1440 31.75% 37.60% 37.11% 35.99%

Table 5.3: Overall performance when reiterating. The system revises past questions at every
(i× n) interactions (n ∈ {1, ..., 10} and i ∗ n < 1440).

At it can be seen, Just.Ask’s recall increases when i decreases: the more backward loops,

the more correct answers are extracted. When i = 500 the system extracts correct answers

to 33 questions that it was not able to solve before. When i = 250 and i = 100, more 43 and

50 questions are solved.

5This decision was made due to time constraints since, for instance, when i = 100, in the worst case the
system has to answer a total 11,940 questions (= 100 + 200 + ... + 1440), due to the backward loops.

126 CHAPTER 5. FROM ANSWERED QUESTIONS TO QUESTION ANSWERING

This situation relates with the fact that our pattern-based approach to candidate answer

extraction depends on the order in which the questions are presented to the system: a question

qi that was not correctly answered in the past (because there were no appropriate patterns

in the knowledge base, or because the pattern/sentence unification was not successful) might

be answerable using the knowledge acquired in a later iteration, after the system has learned

patterns from a similar question qj and its answer (with j > i).

Although in this experiment we have tested this idea when only patterns are used for

candidate answer extraction, we certainly envision this approach to be applied in the search

for the correct answer to a previous question when the NER-based strategies are not successful.

5.3.3.3 Further analysis

Given the achieved results, we further analysed the learned patterns that unified with the

sentences. Table 5.4 shows a sample of the patterns, their types, and the questions they tried

to solve, as well as the patterns instantiated with the contents of the question (we use ... as

placeholder for the answer).

Question 1. How many children did Bob Marley have? Type of Pattern

Pattern (a) “np had cd? nns” Bob Marley had ... children weak

Pattern (b) “np had cd?” Bob Marley had ... weak

Pattern (c) “np also vdb np?” Bob Marley also had ... inflected

Question 2. What does DNA stand for? Type of Pattern

Pattern (a) “np vbz for np?” DNA stands for ... inflected

Pattern (b) “np stand pp np?” DNA stand for ... weak

Pattern (c) “np stands pp np?” DNA stands for ... weak

Pattern (d) “np? - np” ... - DNA weak

Question 3. How tall is the Washington Monument? Type of Pattern

Pattern (a) “np stands np?” the Washington Monument stands ... weak

Pattern (b) “np vbz about np?” the Washington Monument is about ... strong

Pattern (c) “np? tall, np” ... tall, the Washington Monument weak

5.3. EVALUATION 127

Pattern (d) “np is np?” the Washington Monument is ... weak

Question 4. How did Eva Peron die? Type of Pattern

Pattern (a) “np died pp?” Eva Peron died ... weak

Pattern (b) “np was vp?” Eva Peron was ... weak

Pattern (c) “np vbd of np?” Eva Peron died of ... inflected

Pattern (d) “np had np?” Eva Peron had ... weak

Question 5. When was Davy Crockett born? Type of Pattern

Pattern (a) “np2 vbd1 vp3 on np?” Davy Crockett was born on ... strong

Pattern (b) “np2 was born on np?” Davy Crockett was born on ... weak

Pattern (c) “np2 vbd3 in np?” Davy Crockett born in ... inflected

Pattern (d) “np? , np2 vbd1” ..., Davy Crockett was weak

Question 6. When was the U.S. capitol built? Type of Pattern

Pattern (a) “np vbd vp in np?” the U.S. capitol was built in ... strong

Pattern (b) “in? , when np” ..., when the U.S. capitol weak

Question 7. How many sonnets did Shakespeare write? Type of Pattern

Pattern (a) “np wrote cd?” Shakespeare wrote ... weak

Pattern (b) “np vbd over cd?” Shakespeare wrote over ...

Question 8. Where is WWE headquartered? Type of Pattern

Pattern (a) “np vbd vp in np?” WWE is headquartered in ... strong

Pattern (b) “np, np?” WWE, ... weak

Table 5.4: Examples of patterns that matched sentences for each given question.

The first thing that is visible is the fact that the pattern context is composed of a few

tokens: often only one, but sometimes two (6.(b)) or three (5.(b)).

Many of the patterns are questions rewritings, either at the lexical (5.(b)) or syntactic

level (2.(b), 5.(a), 6.(a)), and typically their context is composed of a fairly small number of

tokens (less than five). On many patterns the context is composed uniquely by punctuation

128 CHAPTER 5. FROM ANSWERED QUESTIONS TO QUESTION ANSWERING

marks (2.(d), 5.(d), 8.(b)) or by a function word that does not carry any semantic meaning

(3.(b),7.(b))

Some patterns are applicable to questions that expect different answer types (and, there-

fore, are classified differently), for example, “np vbd vp in np?” (5.(c),8.(a)), unified with

the sentences retrieved to questions When was Davy Crockett born? and Where is WWE

headquartered?. This kind of patterns can lead to the extraction of answers of a wrong type.

Some patterns provide clues about the semantic type of the extracted candidate answer

through the use of adverbs (6.(b),7.(b)) or prepositions (5.(c),8.(a)); in others, the syntax

alone allows to fully identify the semantics of the answer (1.(a)); however, most of them

extract answers conveying different semantics (4.(d),8.(c)): these are mostly the patterns

whose context is composed uniquely by punctuation (2.(d),8.(b)), copular verbs (3.(d)) or the

verb to have (4.(d)).

The shown patterns capture the linguistic diversity of the different sentence chunks that

may contain the answer to the posed question. In this context, we can see that the patterns

vary in quality: from those that are too generic and often unify (2.(d),3.(d)) and which

can be a source of problems as they typically extract wrong answers (high recall and low

precision [Pantel and Pennacchiotti, 2006]) to those that are specific to the posed question

and are vey likely to extract the correct answer. These share some characteristics that make

them more likely to be successful:

• the pattern context is composed of a relatively small number of words (typically < 5);

• there is a token overlap between the question and the pattern context (5.(b));

• they are of types inflected or strong (5.(a));

• the pattern context contains the main verb of the question, or its inflection

(2.(b),2.(c),7.(a));

• the pattern or its context contain the headword of the question (1.(a),3.(c))

5.3. EVALUATION 129

Overall, patterns allow to discover correct answers to:

Misclassified questions For example, the pattern “np vbd vp in np?” extracts the correct

answer the liver to the question Where is the bile produced?, which was misclassified as

Location:Other instead of Entity:Body. Due to this error in the classification, the

NER-based strategies could only extract geography-related answers.

Questions for which there is no appropriate NER strategy For example, the pat-

tern “np? in np” extracts the correct answer American Girl Place to the question What

is the name of the American Girl store in New York?, classified as Location:Other.

Although the question is correctly classified, the used NE-based answer extractor does

not recognise American Girl Place as a named entity of type Location.

Previous wrong (or unsolved) questions For example, a pattern discovered for a ques-

tion qi can be used to extract the answer to a question qj (with j < i). This phenomenon

is not possible with the remaining strategies for candidate answer extraction, which are

not able to learn from previous interactions.

Moreover, Just.Ask best results are consistently achieved when the patterns are used in

combination with the NER-based strategies for candidate answer extraction.

5.3.4 New results – Just.Ask @TREC-QA 2002-2007

Throughout this thesis, several ideas were tested on Just.Ask, which allowed the system to

evolve and improve. We dedicate this section to an evaluation of the system using all the pos-

sible candidate answer extraction strategies, in an optimal way. Given our knowledge about

the implemented strategies (acquired from the evaluation results reported in Section 5.3.3.1

and analyzed in Section 5.3.3.3), our approach to candidate answer extraction is described

and motivated as follows:

• the NER-based strategies are applied to all questions: Just.Ask attains a fairly good

performance with the NER, which we want to maintain (and improve);

130 CHAPTER 5. FROM ANSWERED QUESTIONS TO QUESTION ANSWERING

• in the questions for which the NER-based strategies retrieve at least one candidate an-

swer, only the strong and Inflected patterns are used: the weak patterns unify

frequently, but are responsible for a large quantity of wrongly extracted candidate an-

swers. As we have mentioned, we wish to maintain Just.Ask’s results achieved with

the NER and we do not want to compromise the system’s recall by introducing more

noise in the answering pipeline (given that the final answer selection in Just.Ask still

requires improvements);

• all patterns types (strong, inflected and weak) are used in the questions for which

the NER did not retrieve any candidate answer: when the NER-based strategies are not

effective, we want to explore all the potential of the pattern-based approach to extract

candidate answers.

We do not apply relaxation to the patterns, which allows us to directly compare the results

with those achieved when the pattern-based approach is not used. Also, since from a previous

experiment we noted that a successful pattern/sentence unification depends on the number

of tokens in the pattern context (see Section 5.3.3.3), we only used patterns whose context is

composed of less than 5 tokens.6

The system follows the same pipeline as described on Chapter 2, however here we do

not perform clustering in the answers to questions of category Numeric, since in a previous

experiment we have seen that it was aggregating in the same cluster many incompatible

answers (for example, answers that referred to different years).

Table 5.5 presents Just.Ask’s results in the evaluation with the TREC-QA 2002-2007

corpus. Questions were posed to the system in the same order as in run 2 (chosen randomly).

In this table, precision, recall, F1-measure, MRR and accuracy@1 are measured and shown

for the top 3 answers (clusters) returned by the system. For comparison purposes, we show

6A set of previous experiments (although of smaller dimension) showed that the use of patterns with more
than 5 tokens in the context does not mean an increase of the number of extracted correct answers. Due to
time constraints, we decided to use this threshold in the experiments here described, thus discarding all the
patterns that do not agree with it.

5.3. EVALUATION 131

the results achieved when the pattern-based approach is not used between parentheses. We

have manually validated the returned answers.

Questions Correct Wrong Unanswered

1440 721 (685) 553 (503) 166 (252)

Precision Recall F1-measure MRR Accuracy@1

56.6% (57.7%) 50.1% (47.6%) 53.1% (52.1%) 0.43 (0.40) 37.3% (34.7%)

Table 5.5: Just.Ask best achieved results in the evaluation using the TREC-QA 2002-2007
corpus, after the iterative learning approach has been introduced.

In a total of 1440 questions, Just.Ask returned answers to nearly 89% (1274 questions).

From these, 721 were considered correct and 553 wrong. Therefore, the system’s recall was of

50.07%. Moreover, in 540 questions, the correct answer was the one in the highest position

of the list of returned answers. As we can see, there is an increment of nearly 5.3% in recall

relative to the results when the pattern-based approach to candidate answer extraction is not

used, 7.8% in accuracy@1 and 6.5% in MRR. The system returns an answer to many more

questions than it did before, but a large percentage of them was considered wrong. This

situation results in a drop of precision (compared to when the pattern-based approach is not

used) since the number of correct questions does not compensate for the number of questions

for which the system gives an answer. Nevertheless, the recall, accuracy@1 and MRR see

improvements, as Just.Ask is able to put more correct answers at the top of the list of

returned answers for each question.

In order to better see the contribution of the pattern-approach to candidate answer ex-

traction, in Table 5.6 we show Just.Ask results according to the different question categories.

Category Correct Incorrect Unanswered Accuracy

abbreviation 16 (16) 1 (1) 4 (4) 76.19% (76.19%)
description 20 (0) 35 (0) 45 (100) 20.00% (0.00%)

entity 42 (32) 93 (73) 69 (99) 20.59% (15.69%)
human 161 (160) 129 (130) 8 (8) 54.03% (53.69%)

location 203 (203) 90 (90) 0 (0) 69.28% (69.28%)
numeric 279 (274) 205 (209) 40 (41) 53.24% (52.29%)

Total 721 (685) 553 (503) 166 (252) 50.00% (47.50%)

Table 5.6: Just.Ask results according to the different question categories.

132 CHAPTER 5. FROM ANSWERED QUESTIONS TO QUESTION ANSWERING

As we can see, the pattern-based approach to candidate answer extraction brought im-

provements to the accuracy results achieved in almost all question categories. In particular,

in category Description, despite the fact that Just.Ask does not have any strategy ded-

icated to it. By using the correct answers from the reference, Just.Ask could learn how

to answer this category of questions. A further analysis to the results showed that some of

the Description questions were, in fact, misclassified: for example What part of the Sol-

diers’ anatomy reminded the Indians of the buffalo? and What is the lowest point on earth?,

preventing Just.Ask from extracting candidate answers using the appropriate NER-based

strategy. There are, however, two exceptions to the improvements achieved: in categories

Abbreviation and Location there was no change in the system’s performance.

Comparing with the baseline when only the NER-based strategies to candidate answer ex-

traction were used, the analysis of Just.Ask results allowed us to discover that: a) Just.Ask

does not correctly answer 14 questions that it did before, but b) is now successful in 50 ques-

tions (hence the difference of 36 correct questions between the two settings: 684 vs. 721).

Moreover, in those 14 incorrect questions, in 8 the correct answer was previously at the 3rd

(and last) position in the list of returned answers. Finally, the distribution of the now 14

incorrect questions according to the category is the following: Location:4, Human:5, Nu-

meric:5 while the distribution of the 50 now correct answers is Description:20, Entity:10,

Human:6, Location:4, Numeric:10.

With the use of the pattern-based approach, Just.Ask is now extracting more answers,

besides those extracted via the NER-based strategies. This means that, although the system

is extracting the correct answer from the information sources, in 14 questions the final answer

selection is no longer able of successfully choosing it for the top 3 (a result that we have

discussed previously: the performance of the final answer selection in Just.Ask degrades

with the number of extracted candidate answers).

A phenomena that could be seen in several questions resulted from the lack of a semantic

constraint imposed by the patterns to the extracted answers. For example, Just.Ask an-

swered When did Einstein die? with the very same date my father was born and extracted

5.4. DISCUSSION 133

Israel as candidate answer to When was the first Kibbutz founded?. In particular, regarding

this last example, we noted that this answer was extracted using a pattern that is applicable

to questions with the same syntactic structure, but with different semantic categories. These

patterns are often replicated in the system’s knowledge base, associated with Q/A seed pairs

of different semantics. For example, patterns “np2 vbd3 in np?” and “np2 vbd1 vbn3 in np?”

can extract a location or a date (or a noun phrase with any other semantics) and are asso-

ciated with Q/A seed pairs of categories Numeric:Date and Location:City (that is, the

patterns were learned from seed questions like Where/when did X die? and Where/when was

X born?, respectively).7

To deal with this issue, we believe that an extra filtering phase based on the semantics

of the extracted answer could be applied when answering questions using these patterns, in

order to assure that the answer agrees with the category of the posed question. On the other

hand, as we previously remarked in Section 5.3.3.3, the lack of a constraint on the answer’s

semantics in the learned patterns allowed our approach to cope with, and recover from, (some)

classification errors. Therefore, if existing, this filter must to be soft enough not to invalidate

the extracted (correct) answers to misclassified questions.

5.4 Discussion

Just.Ask’s new approach to QA is based on a bootstrapping process. The idea behind boot-

strapping is to use a set of examples to learn patterns that extract new examples, which in turn

are used to learn new patterns. This process continues iteratively, until a stopping condition

is reached, and oftentimes a (manual or automatic) validation of the new examples/patterns

is performed. Bootstrap is widely used for lexicon and relations induction [Brin, 1999; Pantel

and Pennacchiotti, 2006; Jijkoun et al., 2010]. In Just.Ask, a Q/A seed pair is used to learn

(lexico-syntactic) patterns that extract answers which, along with the question, create a new

seed that will be used to learn new patterns. This process continues while the system has

7Other examples of this type of patterns exist, like the pattern “np? is np2”, which is associated with
categories Location:City, Description:Definition, Human:Individual...,

134 CHAPTER 5. FROM ANSWERED QUESTIONS TO QUESTION ANSWERING

questions to answer. Moreover, and although we do not perform any validation of the learned

patterns, if the system returns as final any of extracted answers, they are validated by the

user8 and only the correct ones are used in the next learning cycle.

As mentioned, in Just.Ask the seeds to the pattern learning algorithm are pairs composed

of a question and its respective answer; therefore, in our approach to QA, we assume that

the system has a mean to generate correct answers that allows to initiate the bootstrapping

process, besides the pattern-based approach. This task can be accomplished through other

candidate answer extraction strategies (for example, as in Just.Ask, based on the extraction

of named entities from the relevant passages), used in combination with the pattern-based

approach. In the evaluation of Just.Ask, when testing the system with the NER-based

strategies disabled, we resorted to the reference corpus as a provider of the correct answers,

which can be viewed as the user explicitly giving the system’s the answers, besides asserting

the correctness of the automatic responses. As we have seen in the evaluation, by doing so

we are allowing the system to learn to answer questions for which it does not have a specific

candidate answer extraction strategy, and could not otherwise have answered.

To the best of our knowledge, Just.Ask is the first QA system that can use answers

returned to previous questions in order to (learn patterns to) answer new future questions.

Just.Ask does not require a training phase where patterns are learned to be afterwards

applied in extracting candidate answers. Instead, patterns are learned over time with the

number of correctly answered questions. In this context, as we saw in the evaluation, the

performance of our approach is affected by the sequence in which the questions are posed to

the system and by the answers the system chooses as correct. This situation closely relates

to the problem of seed initialization in bootstrapping settings [Uszkoreit et al., 2009].

Finally, as we previously mentioned, we envision our pattern-based strategy to Answer

Extraction to be applied in combination with others, following a common practice in QA to use

multiple and overlapping strategies and resources [Chu-Carroll et al., 2003; Lin, 2007; Ferrucci

et al., 2010]. Our approach has the advantage of learning and improving with previously

8Or by any automatic mechanism to be integrated in the system.

5.5. SUMMARY 135

successful interactions, while not requiring a training corpus and a preceding training phase.

Instead, the patterns are iteratively learned and the answering process is improved iteratively.

5.5 Summary

In this chapter we discussed our pattern-based approach to candidate answer extraction in a

setting where the QA system is itself the provider of the instances (question/answer) that feed

the pattern learning algorithm. After new patterns are learned, they are immediately available

to extract new answers. Here we introduced how the data flow in Just.Ask was changed

in order to accommodate the new approach and presented the new system performance.

Although most of the categories showed improvements, performance was hurt in questions of

category Numeric due to the use of ambiguous patterns. These results suggest that a new

semantic layer is necessary when applying patterns to extract answers to questions of certain

categories.

We envision a system that is able to receive feedback from the user and to use it to improve

its internal mechanisms to extract answers to unseen questions. To the best of our knowledge,

Just.Ask is the first system that iteratively learns from successfully answered questions and

revises and amends previous questions with newly acquired knowledge.

136 CHAPTER 5. FROM ANSWERED QUESTIONS TO QUESTION ANSWERING

6Conclusions and Future

Work

Considering the three scientific hypotheses that motivated this work (Chapter 1), three main

topics were addressed: candidate answer extraction, final answer selection and iterative QA.

In order to test these hypotheses, the first step was to build a QA system, Just.Ask, to

serve as baseline and to be used in our experiments (Chapter 2).

Regarding the candidate answer extraction task (Chapter 3), we proposed an approach

based on patterns learned from pairs composed of a question and its correct answer. We

described the pattern learning and matching algorithms, and the relaxation strategies ap-

plied to cope with the variability and diversity of natural language. We conducted several

experiments where we analyzed the impact of this answer extraction approach in Just.Ask.

Concerning the final answer selection (Chapter 4), we presented an approach that takes

into account not only the candidate answers’ frequency, but also the relations they hold with

other candidate answers. Using a limited set of heuristics, encoded mostly in the form of

regular expressions, as well as linguistic knowledge from WordNet, we updated the score of

every answer. We presented a detailed evaluation and we discussed the impact of frequency,

normalization and the semantics relations for the purpose of ranking candidates and selecting

the final answer.

Finally, we presented Just.Ask as being able to learn to answer new questions based on

previous answers (in Chapter 5), using the described pattern-based approach to candidate

answer extraction, in which the QA system is itself the provider of the instances (ques-

tion/answer) that feed the pattern learning algorithm. After new patterns are learned, they

are immediately available to extract new answers. We have presented the new data flow of

the system that now allows it to iteratively learn to answer. To the best of our knowledge,

138 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Just.Ask is the first system that iteratively learns from successfully answered questions and

revises and amends previous questions with newly acquired knowledge.

6.1 Contributions

One of the major contributions of this thesis is definitely Just.Ask, an open-domain QA

system, which was fully evaluated and is now freely available for the research community.

Besides the system, the test corpora was also made public, which allows Just.Ask to serve

as a baseline against which new QA strategies can be tested and benchmarked.

In order to empirically validate the three scientific hypotheses, a set of ideas were imple-

mented in Just.Ask. Results supported the validity of the hypotheses.

Besides the contributions stated in Chapter 1, the following list states the published

contributions during the course of these PhD studies:

Journal Papers

• Ana Cristina Mendes, Lúısa Coheur, João Silva and Hugo Rodrigues. 2013. Just.Ask –

A multi-pronged approach to question answering, in International Journal on Artificial

Intelligence Tools, Vol. 22, n. 1, pp. 1-34

• Ana Cristina Mendes and Lúısa Coheur. 2013. When the Answer comes into Ques-

tion in Question-Answering: Survey and open issues, in Journal of Natural Language

Engineering, Vol. 19, pp. 1-32

• Sérgio Curto, Ana Cristina Mendes, Lúısa Coheur. 2012. Question Generation based

on Lexico-Syntactic Patterns Learned from the Web, in Dialogue and Discourse, Special

Issue on Question Generation, Vol. 2, n. 2, pp. 147-175

• João Silva, Lúısa Coheur, Ana Cristina Mendes, Andreas Wichert. 2011. From symbolic

to sub-symbolic information in question classification, in Artificial Intelligence Review,

Vol. 35, pp. 137-154

6.1. CONTRIBUTIONS 139

Papers in International Conferences

• Pedro Fialho, Sérgio Curto, Ana Cristina Mendes and Lúısa Coheur. 2012. Extending

a wordnet framework for simplicity and scalability, in Proceedings of the Eight Interna-

tional Conference on Language Resources and Evaluation (LREC’12)

• Ângela Costa, Tiago Lúıs, Joana Ribeiro, Ana Cristina Mendes and Lúısa Coheur.

2012. An English-Portuguese parallel corpus of questions: translation guidelines and

application in Statistical Machine Translation, in Proceedings of the Eight International

Conference on Language Resources and Evaluation (LREC’12)

• Catarina Moreira, Ana Cristina Mendes, Lúısa Coheur and Bruno Martins, 2011, To-

wards the rapid development of a natural language understanding module, in IVA’11

Proceedings of the 10th international conference on Intelligent virtual agents

• Sérgio Curto, Ana Cristina Mendes and Lúısa Coheur, 2011, A minimally supervised

approach for question generation: what can we learn from a single seed?, in EPIA2011

- 15th Portuguese Conference on Artificial Intelligence

• Sérgio Curto, Ana Cristina Mendes and Lúısa Coheur, 2011, Exploring linguistically-

rich patterns for question generation, in UCNLG+EVAL ’11 Proceedings of the UC-

NLG+Eval: Language Generation and Evaluation Workshop

• Ana Cristina Mendes, Lúısa Coheur. 2011. An approach to answer selection in Question

Answering based on semantic relations, in Proceedings of the Twenty-Second interna-

tional joint conference on Artificial Intelligence (IJCAI)

• Ana Cristina Mendes, Sérgio Curto, Lúısa Coheur. 2011. Bootstrapping Multiple-Choice

Tests with The-MENTOR, in CICLing’11 Proceedings of the 12th international confer-

ence on Computational linguistics and intelligent text processing

• Ana Cristina Mendes, Lúısa Coheur. 2011. IT’S ANSWER TIME, Taking the Next in

Question-Answering, in ICAART 2011 - Third International Conference on Agents and

Artificial Intelligence

140 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

• Ana Cristina Mendes, Lúısa Coheur, Paula Vaz Lobo. 2010. Named Entity Recognition

in Questions: Towards a Golden Collection, in Proceedings of the Seventh International

Conference on Language Resources and Evaluation (LREC’10)

• Ana Cristina Mendes, Cláudia Antunes. 2009. Pattern Mining with Natural Language

Processing: An exploratory approach. in MLDM ’09 Proceedings of the 6th International

Conference on Machine Learning and Data Mining in Pattern Recognition

• Ana Cristina Mendes, Rui Prada, Lúısa Coheur. 2009. Adapting a Virtual Agent to

Users Vocabulary and Needs, in IVA ’09 Proceedings of the 9th International Conference

on Intelligent Virtual Agents

All the publications, tools and resources resulting from this thesis are freely available and

can be found online at https://qa.l2f.inesc-id.pt/.

6.2 Final Discussion

The main advantages and limitations of the approaches followed in this work are summarized

in the following (a more detailed discussion can be found in the chapters where each approach

was introduced).

Regarding the candidate answer extraction based on patterns learned from ques-

tion/answer pairs using a minimally supervised approach, we see as advantages the fact

that it allows the system to learn to answer based on examples (i.e., question/answer pairs)

and that it can be used as an alternative/complement (although not yet sufficiently robust)

to traditional approaches to candidate answer extraction based on NER. However, on the

downside, this approach relies on the existence of a syntactic analyzer and it tends to over

generate (noisy) patterns that lead to the extraction of wrong answers, since some of them

are too generic (high recall, low precision). Also, some of the patterns are too specific, which

translates in low recall (but high precision) in the answer extraction process.

Concerning the final answer selection based on semantic relations, it has the advantage of

https://qa.l2f.inesc-id.pt/

6.3. FUTURE WORK 141

not considering the candidate answers as competitors, leveraging the relations between them

to better choose the final answer. As a drawback, it depends on regular expressions and on

a semantic network to establish relations between the answers. Moreover, it relies on the

assumption that the incorrect answers are not related among themselves, which might not be

the case.

Finally, the iterative question answering approach based on previous (correct) answers

enables a system to learn with its answers; however, it relies on (user) feedback in order to

bootstrap the learning process, which might not be straightforward to get.

Several suggestions to cope with some of the limitations of the developed work are made

in the next section, dedicated to future work directions.

6.3 Future Work

To conclude this thesis, several ideas for future work directions are proposed.

Detecting relations between answers Despite the fact that the approach to final answer

selection did not bring much improvements to the Just.Ask (the single-stream setting),

the results achieved in the multi-stream QA setting are encouraging. In this topic,

other techniques and resources should be explored and tested, for instance, related with

paraphrase recognition. Also, it should be important to learn the optimal weights to

update an answer’s score depending on the relations it holds with others.

Avoiding noisy patterns In the iterative learning to answer approach, the more questions

are correctly answered by the system, the more patterns exist to be unified against the

relevant sentences. While this increases the chances to extract correct answers to the

next questions, it also augments the system’s response time. In fact, a fair amount of

time used in the pattern-based approach to candidate answer extraction is spent on

attempting to unify patterns with the relevant sentences. Therefore, it is necessary to

envisage a way to reduce the amount of patterns that will be used in the process of

142 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

unification, avoiding to noisy ones. For example, while it is probable that the pattern

“np? [wrote] np” unifies with a relevant sentence retrieved for the question Who wrote

The Divine Comedy?, it is very unlikely that the pattern “np [was painted by] np?” will

do so.

A possible solution would be to resort to machine-learning as a mean to classify each

pattern as unifiable or not, and using it accordingly. In this context, Section 5.3.3.3

refers to several patterns that successfully unified with (at least) one relevant sentence,

and we also identified several characteristics that can motivate the creation of certain

features to be used in the classification process.

Promoting useful patterns The existence of too generic patterns, like “np? [,] np” are

a source of problems, as they often unify with the relevant sentences but typically

extract wrong answers (high recall and low precision [Pantel and Pennacchiotti, 2006]).

Therefore, it is required to differentiate between the patterns that (often) lead to correct

answers to those that introduce noise in the pipeline.

Since the pattern-based approach to candidate answer extraction relies on the user’s

feedback about the answer, that information should surely be used to score patterns

depending on their effectiveness in extracting correct answers. The goal is to award

those that lead to correct answers (the good patterns) while penalizing the ones that

lead to incorrect answers (the bad patterns). Note that this is a case where negative

feedback, stating that the answer was not correct, can be used by the system (as a

complement to what was discussed in this thesis, where only the positive feedback was

availed by the system for learning new patterns);

Promoting correct candidate answers Another fundamental direction that can be fol-

lowed has to do with differentiating between the correct extractions and the wrong

ones, bringing the former to the first positions of the list of final answers. For example,

since it is probable that a correct answer to the question What does ACLU stand for? 1

1The expansion of the acronym ACLU, and therefore one correct answer to the question, is American Civil
Liberties Union.

6.3. FUTURE WORK 143

is composed of capitalised words, it is necessary to better rank these, rather than the

ones composed only of digits.

Again, a possible solution could be to resort to classification or regression and identify

the probability of each answer being correct or not. Among others, the used features

could be related with: the answer itself; the strategy that led to the extraction of the

candidate answer; the relations it holds with other candidates.

Taking better advantage of the user feedback In this thesis we have maintained a dou-

ble perspective on the user of a QA system:

• on one hand, s/he is the one that has the information need, that poses questions

to fulfil that need, and to which the system has to answer the most accurately

possible;

• on the other hand, s/he is also the best possible evaluator of the system’s response,

provided that s/he is shown a snippet that supports that response.

In the iterative approach to answer questions, we used the user’s feedback to build

patterns to extract new answers. However, the application of the user’s feedback can

be taken even further in Just.Ask:

• it can be used to generate a confidence model of the system’s answers;

• it can be used to generate a user’s model, in order to allow the system to respond

with personalised answers (topic in which the first steps were given by [Quarteroni

and Manandhar, 2009]).

Reviewing the system’s beliefs Section 5.3.3.2 refers to an experiment in which the sys-

tem was able to revise previous wrong or unanswered questions. A future work direction

could be to use the new answered questions and the newly acquired knowledge (in terms

of the patterns learned) to review or consolidate the system’s previous beliefs.

There is certainly much work to be done and many research lines to be explored in QA.

In this thesis, several efforts were dedicated to the improvement of the answering task. We

144 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

hope to have contributed to a new approach in the field that integrates the user’s feedback

to learn to answer future questions.

Bibliography

Carlos Amaral, Adán Cassan, Helena Figueira, André Martins, Afonso Mendes, Pedro
Mendes, Cláudia Pinto, and Daniel Vidal. Priberam’s Question Answering System in
QA@CLEF 2007. In Advances in Multilingual and Multimodal Information Retrieval: 8th
Workshop of the Cross-Language Evaluation Forum, CLEF 2007, pages 364–371, Berlin,
Heidelberg, 2008. Springer-Verlag.

Ion Androutsopoulos, Graeme D. Ritchie, and Peter Thanisch. Natural Language Interfaces
to Databases - An Introduction. Natural Language Engineering, 1:29–81, 1995.

Ron Artstein. Error return plots. In 12th SIGdial Workshop on Discourse and Dialogue,
Portland, OR, June 2011.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, and Zachary Ives. DBpedia: A
Nucleus for a Web of Open Data. In The Semantic Web, Proc. 6th International Semantic
Web Conference, 2nd Asian Semantic Web Conference, ISWC’07/ASWC’07, pages 11–15.
Springer, 2007.

Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information Retrieval - the
concepts and technology behind search, Second edition. Pearson Education Ltd., Harlow,
England, 2011.

Marco Baroni, Francis Chantree, Adam Kilgarriff, and Serge Sharoff. Cleaneval: a competi-
tion for cleaning web pages. In Proc. 6th International Conference on Language Resources
and Evaluation (LREC’08). European Language Resources Association (ELRA), 2008.

Phil Blunsom, Krystle Kocik, and James R. Curran. Question Classification with Log-Linear
Models. In Proc. 29th annual international ACM SIGIR conference on Research and de-
velopment in information retrieval, SIGIR ’06, pages 615–616. ACM, 2006.

Gosse Bouma, Ismail Fahmi, and Jori Mur. Relation extraction for open and closed domain
question answering. In Interactive Multi-modal Question-Answering, Theory and Applica-
tions of Natural Language Processing, pages 171–197. Springer Berlin Heidelberg, 2011.
ISBN 978-3-642-17525-1.

Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais, and Andrew Ng. Data-Intensive Ques-
tion Answering. In Proc. 10th Text REtrieval Conference, pages 393–400, 2001.

Sergey Brin. Extracting patterns and relations from the world wide web. In Selected papers
from the International Workshop on The World Wide Web and Databases, WebDB ’98,
pages 172–183. Springer-Verlag, 1999. ISBN 3-540-65890-4.

S. Buchholz and W. Daelemans. Complex answers: a case study using a www question
answering system. Nat. Lang. Eng., 7:301–323, 2001. ISSN 1351-3249.

145

146 BIBLIOGRAPHY

Razvan Bunescu and Yunfeng Huang. Towards a general model of answer typing: Question
focus identification. In Proc. 11th International Conference on Intelligent Text Processing
and Computational Linguistics (CICLing 2010), pages 231–242, 2010.

Claire Cardie, Vincent Ng, David Pierce, and Chris Buckley. Examining the role of statistical
and linguistic knowledge sources in a general-knowledge question-answering system. In
Proc. 6th conference on Applied natural language processing, ANLC ’00, pages 180–187,
Stroudsburg, PA, USA, 2000. ACL.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Jennifer Chu-Carroll, Krzysztof Czuba, John Prager, and Abraham Ittycheriah. In Question
Answering, Two Heads Are Better Than One. In Proc. 2003 Conference of the North
American Chapter of the Association for Computational Linguistics on Human Language
Technology - Volume 1, NAACL ’03, pages 24–31. ACL, 2003.

Charles Clarke and Egidio Terra. Passage Retrieval vs. Document Retrieval for Factoid
Question Answering. In Proc. 26th annual international ACM SIGIR conference on research
and development in information retrieval (SIGIR ’03), pages 427–428. ACM, 2003.

Michael John Collins. Head-driven statistical models for natural language parsing. PhD thesis,
University of Pennsylvania, Philadelphia, PA, USA, 1999. Supervisor-Marcus, Mitchell P.

Sérgio Curto, Ana Cristina Mendes, and Lúısa Coheur. Exploring linguistically-rich pat-
terns for question generation. In UCNLG+Eval2011, EMNLP 2011 Workshop: Language
Generation and Evaluation, July 2011a.

Sérgio Curto, Ana Cristina Mendes, and Lúısa Coheur. A minimally supervised approach for
question generation: what can we learn from a single seed? In 15th Portuguese Conference
on Artificial Intelligence, pages 832–844, September 2011b.

Sérgio Curto, Ana Cristina Mendes, and Lúısa Coheur. Question Generation based on Lexico-
Syntactic Patterns Learned from the Web. Dialogue & Discourse, 3(2):147–175, March
2012.

Tiphaine Dalmas and Bonnie Webber. Answer comparison in automated question answering.
Journal of Applied Logic, 5(1):104–120, 2007.

Hoa Trang Dang, Jimmy J. Lin, and Diane Kelly. Overview of the TREC 2006 Question
Answering Track. In Proc. 15th Text REtrieval Conference (TREC 2006), pages 99–116,
2006.

Hoa Trang Dang, Diane Kelly, and Jimmy J. Lin. Overview of the TREC 2007 Question
Answering Track. In Proc. 16th Text REtrieval Conference (TREC 2007), 2007.

Yongping Du, Xuanjing Huang, Xin Li, and Lide Wu. A novel pattern learning method for
open domain question answering. In Proc 1st international joint conference on Natural
Language Processing, IJCNLP’04, pages 81–89. Springer-Verlag, 2005.

Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

BIBLIOGRAPHY 147

David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek, Aditya Kalyan-
pur, Adam Lally, William Murdock, Eric Nyberg, John Prager, Nico Schlaefer, and Christo-
pher Welty. Building Watson: An Overview of the DeepQA Project. AI Magazine, 31(3):
59–79, 2010.

Jenny Finkel, Trond Grenager, and Christopher Manning. Incorporating non-local informa-
tion into information extraction systems by Gibbs sampling. In Proc. 43rd Annual Meeting
on Association for Computational Linguistics, ACL ’05, pages 363–370. ACL, 2005.

André Gonçalves. A questão das respostas em sistemas de pergunta/resposta. Master’s thesis,
Instituto Superior Técnico, Technical University of Lisboa, 2012.

Brigitte Grau, Anne-Laure Ligozat, Isabelle Robba, Anne Vilnat, and Laura Monceaux.
FRASQUES: A Question Answering system in the EQueR evaluation campaign. In Lan-
guage Resources and Evaluation Conference, 2006.

Mark A. Greenwood and Robert Gaizauskas. Using a Named Entity Tagger to Generalise
Surface Matching Text Patterns for Question Answering. In Proc. Workshop on Natural
Language Processing for Question Answering (EACL03), pages 29–34, 2003.

Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Compu-
tational Biology. Cambridge University Press, 1997.

Sanda Harabagiu, Dan Moldovan, Marius Pasca, Rada Mihalcea, Mihai Surdeanu, Razvan
Bunsecu, Roxana Girju, Vasile Rus, and Paul Morarescu. The role of lexico-semantic
feedback in open-domain textual question-answering. In Proc. 39th Annual Meeting of the
Association for Computational Linguistics, pages 282–289. ACL, 2001.

Sanda M. Harabagiu and Steven J. Maiorano. Finding Answers in Large Collections of Texts:
Paragraph Indexing + Abductive Inference. In Proc. AAAI Fall Symposium on Question
Answering Systems, pages 63–71, 1999.

Ulf Hermjakob, Eduard Hovy, and Chin-Yew Lin. Automated question answering in we-
bclopedia: a demonstration. In Proc. 2nd international conference on Human Language
Technology Research, pages 370–371. Morgan Kaufmann Publishers Inc., 2002.

Andrew Hickl, John Williams, Jeremy Bensley, Kirk Roberts, Ying Shi, and Bryan Rink.
Question Answering with LCC’s CHAUCER at TREC 2006. In Proc. 15th Text REtrieval
Conference, TREC 2006. National Institute of Standards and Technology (NIST), 2006.

Lynette Hirschman and Robert Gaizauskas. Natural language question answering: the view
from here. Natural Language Engineering, 7(4):275–300, 2001.

Zhiheng Huang, Marcus Thint, and Zengchang Qin. Question classification using head words
and their hypernyms. In EMNLP, pages 927–936, 2008.

Adrian Iftene and Alexandra Balahur. Answer validation on English and Romanian lan-
guages. In Proc. 9th Cross-language evaluation forum conference on Evaluating systems for
multilingual and multimodal information access, CLEF’08, pages 448–451. Springer-Verlag,
2009.

148 BIBLIOGRAPHY

Abraham Ittycheriah, Martin Franz, Whei-Jing Zhu, A. Ratnaparkhi, and R. J. Mammone.
IBM’s Statistical Question Answering System. In Proc. 9th Text Retrieval Conference,
NIST, 2001.

Valentin Jijkoun, Maarten de Rijke, and Jori Mur. Information extraction for question answer-
ing: improving recall through syntactic patterns. In Proc. 20th Int. Conf. on Computational
Linguistics, COLING ’04. ACL, 2004.

Valentin Jijkoun, Maarten de Rijke, and Wouter Weerkamp. Generating Focused Topic-
specific Sentiment Lexicons. In Proc. 48th Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2010), pages 585–594, Uppsala, Sweden, 2010. ACL, ACL.

Bert F. Green Jr., Alice K. Wolf, Carol Chomsky, and Kenneth Laughery. Baseball: an
automatic question-answerer. In IRE-AIEE-ACM ’61 (Western): Papers presented at the
May 9-11, 1961, western joint IRE-AIEE-ACM computer conference, pages 219–224. ACM,
1961.

John Judge, Aoife Cahill, and Josef van Genabith. Questionbank: creating a corpus of parse-
annotated questions. In Proc. 21st International Conference on Computational Linguistics
and the 44th annual meeting of the Association for Computational Linguistics, ACL-44,
pages 497–504. ACL, 2006.

Daniel Jurafsky and James H. Martin. Speech and Language Processing (2nd Edition) (Pren-
tice Hall Series in Artificial Intelligence). Prentice Hall, 2 edition, 2008.

Boris Katz. Using English for Indexing and Retrieving. Technical report, Massachusetts
Institute of Technology, 1988.

Boris Katz. Annotating the World Wide Web Using Natural Language. In Proc. 5th RIAO
Conference on Computer Assisted Information Searching on the Internet, RIAO ’97, 1997.

Mahboob Khalid and Suzan Verberne. Passage retrieval for question answering using slid-
ing windows. In Coling 2008: Proc. 2nd workshop on Information Retrieval for Question
Answering, IRQA ’08, pages 26–33. ACL, 2008.

Jeongwoo Ko, Luo Si, and Eric Nyberg. A Probabilistic Framework for Answer Selection
in Question Answering. In Proc. Human Language Technology Conference of the North
American Chapter of the Association of Computational Linguistics, HLT-NAACL, pages
524–531. ACL, 2007.

Leila Kosseim and Jamileh Yousefi. Improving the performance of question answering with
semantically equivalent answer patterns. Data & Knowledge Engineering, 66(1):53–67,
2008.

Leila Kosseim, Luc Plamondon, and Louis-Julien Guillemette. Answer formulation for
question-answering. In Proc. 16th Canadian society for computational studies of intelligence
conference on Advances in artificial intelligence, AI’03, pages 24–34. Springer-Verlag, 2003.

Zornitsa Kozareva, Sonia Vázquez, and Andrés Montoyo. Adaptation of a Machine-learning
Textual Entailment System to a Multilingual Answer Validation Exercise. In Working notes
of CLEF - ECDL 2006, AVE Workshop, 2006.

BIBLIOGRAPHY 149

Vijay Krishnan, Sujatha Das, and Soumen Chakrabarti. Enhanced answer type inference from
questions using sequential models. In Proc. conference on Human Language Technology and
Empirical Methods in Natural Language Processing, pages 315–322. ACL, 2005.

Dominique Laurent and Patrick Séguéla Sophie Nègre. QRISTAL, le QR à l’épreuve du
public. Traitement Automatique des Langues, 46:1–32, 2005.

Vladimir. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Rever-
sals. Soviet Physics Doklady, 10:707–710, 1966.

Xin Li and Dan Roth. Learning question classifiers. In Proc. 19th international conference
on Computational linguistics, pages 1–7. ACL, 2002.

Xin Li and Dan Roth. Learning question classifiers: the role of semantic information. Natural
Language Engineering, 12(3):229–249, 2006.

Jimmy Lin. An exploration of the principles underlying redundancy-based factoid question
answering. ACM Transactions on Information Systems, 25(2), 2007.

Lucian Lita and Jaime Carbonell. Instance-Based Question Answering: A Data-Driven Ap-
proach. In Proc. of the 2004 Conference on Empirical Methods in Natural Language Pro-
cessing , EMNLP 2004, A meeting of SIGDAT, a Special Interest Group of the ACL, held
in conjunction with ACL 2004, pages 396–403, 2004.

Lucian Lita, Warren Hunt, and Eric Nyberg. Resource analysis for question answering. In
Proc. ACL 2004 on Interactive poster and demonstration sessions, page 18. ACL, 2004.

Bernardo Magnini, Matteo Negri, Roberto Prevete, and Hristo Tanev. Is it the right an-
swer?: exploiting web redundancy for Answer Validation. In Proc. 40th Annual Meeting on
Association for Computational Linguistics, ACL ’02, pages 425–432. ACL, 2002.

Bernardo Magnini, Simone Romagnoli, Alessandro Vallin, Jesús Herrera, Anselmo Peñas,
Vı́ctor Peinado, Felisa Verdejo, and Maarten de Rijke. The Multiple Language Question
Answering Track at CLEF 2003. In Carol Peters, Julio Gonzalo, Martin Braschler, and
Michael Kluck, editors, CLEF, volume 3237 of Lecture Notes in Computer Science, pages
471–486. Springer, 2003a.

Bernardo Magnini, Simone Romagnoli, Alessandro Vallin, Jesus Herrera, Anselmo Penas,
Victor Peinado, Felisa Verdejo, Maarten de Rijke, and Ro Vallin. The multiple language
question answering track at clef 2003. In CLEF 2003. CLEF 2003 Workshop. Springer-
Verlag, 2003b.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Informa-
tion Retrieval. Cambridge University Press, New York, NY, USA, 2008. ISBN 0521865719,
9780521865715.

Ana Mendes, Luisa Coheur, Nuno Mamede, Ricardo Ribeiro, David Matos, and Fernando
Batista. QA@L2F, first steps at QA@CLEF. In Advances in Multilingual and Multimodal
Information Retrieval: 8th Workshop of the Cross-Language Evaluation Forum, CLEF
2007, volume 5152 of Lecture Notes in Computer Science. Springer-Verlag, 2008.

150 BIBLIOGRAPHY

Ana Cristina Mendes and Lúısa Coheur. An approach for answer selection in Question An-
swering based on semantic relations. In Proc. of the 22nd International Joint Conference
of Artificial Intelligence (IJCAI), pages 1852–1857. AAAI Press/International Joint Con-
ferences on Artificial Int, 2011.

Ana Cristina Mendes, Lúısa Coheu, and Sérgio Curto. From answered questions to Question-
Answering. submitted to Transactions on Speech and Language Processing, 2013a.

Ana Cristina Mendes, Lúısa Coheur, João Silva, and Hugo Rodrigues. Just.ask – a multi-
pronged approach to question answering. International Journal on Artificial Intelligence
Tools, 22(1), 2013b.

Dan Moldovan, Sanda Harabagiu, Marius Pasca, Rada Mihalcea, Roxana Girju, Richard
Goodrum, and Vasile Rus. The structure and performance of an open-domain question
answering system. In Proc. 38th Annual Meeting on Association for Computational Lin-
guistics, ACL ’00, pages 563–570. ACL, 2000.

Dan Moldovan, Christine Clark, Sanda Harabagiu, and Steve Maiorano. COGEX: a logic
prover for question answering. In Proc. 2003 Conference of the North American Chapter of
the Association for Computational Linguistics on Human Language Technology - Volume
1, NAACL ’03, pages 87–93, Stroudsburg, PA, USA, 2003a. ACL.

Dan Moldovan, Marius Paşca, Sanda Harabagiu, and Mihai Surdeanu. Performance issues
and error analysis in an open-domain question answering system. ACM Transactions on
Information Systems, 21(2):133–154, 2003b.

Diego Mollá. Learning of graph-based question answering rules. In Proc. 1st Workshop
on Graph Based Methods for Natural Language Processing, TextGraphs-1, pages 37–44,
Stroudsburg, PA, USA, 2006. ACL.

Diego Mollá and Mary Gardiner. Answerfinder: Question Answering by Combining Lexical,
Syntactic and Semantic Information. In Proc. Australasian Language Technology Workshop
2004, pages 9–16, 2004.

Christof Monz. From Document Retrieval to Question Answering. PhD thesis, University of
Amsterdam, 2003.

Véronique Moriceau. Answer Generation with Temporal Data Integration. In Proc. 10th

European Workshop Nat. Lang. Generation (ENLG-05), pages 197–202, 2005.

Véronique Moriceau. Numerical data integration for cooperative question-answering. In
Proc. Workshop KRAQ’06 on Knowledge and Reasoning for Language Processing, KRAQ
’06, pages 42–49. ACL, 2006.

Véronique Moriceau. Intégration de données dans un système question-réponse sur le Web.
PhD thesis, Université Paul Sabatier, 2007.

Alessandro Moschitti and Silvia Quarteroni. Linguistic kernels for answer re-ranking in ques-
tion answering. Information Processing and Management, 47(6):825 – 842, 2011.

BIBLIOGRAPHY 151

Alessandro Moschitti, Silvia Quarteroni, Roberto Basili, and Suresh Manandhar. Exploiting
Syntactic and Shallow Semantic Kernels for Question Answer Classification. In Proc. 45th

Annual Meeting of the Association of Computational Linguistics, pages 776–783. ACL,
2007.

Yan Pan, Yong Tang, Luxin Lin, and Yemin Luo. Question classification with semantic
tree kernel. In Pro. 31st annual international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’08, pages 837–838. ACM, 2008.

Patrick Pantel and Marco Pennacchiotti. Espresso: leveraging generic patterns for auto-
matically harvesting semantic relations. In Proc. 21st Int. Conference on Computational
Linguistics and the 44th annual meeting of the Association for Computational Linguistics,
ACL-44, pages 113–120. ACL, 2006.

Anselmo Peñas, Álvaro Rodrigo, Valent́ın Sama, and Felisa Verdejo. Testing the Reasoning
for Question Answering Validation. Journal of Logic and Computation, 18(3):459–474, June
2008. ISSN 0955-792X.

Slav Petrov and Dan Klein. Improved Inference for Unlexicalized Parsing. In Human Language
Technologies 2007: The Conference of the North American Chapter of the Association for
Computational Linguistics; Proc. of the Main Conference, pages 404–411. ACL, 2007.

Silvia Quarteroni and Suresh Manandhar. Designing an Interactive Open-domain Question
Answering System. Journal of Natural Language Engineering, 15(1):73–95, 2009.

Anand Rajaraman and Jeffrey Ullman. Mining of massive datasets. Cambridge University
Press, Cambridge, 2012.

Deepak Ravichandran and Eduard Hovy. Learning surface text patterns for a question an-
swering system. In ACL ’02: Proc. 40th Annual Meeting on Association for Computational
Linguistics, pages 41–47. ACL, 2002.

Dmitri Roussinov, Elena Filatova, Michael Chau, and Jose Robles-Flores. Building on Re-
dundancy: Factoid Question Answering, Robust Retrieval and the “Other”. In Proc. 14th

Text REtrieval Conference (TREC 2005), 2005.

Lúıs Sarmento and Eugénio Oliveira. Making RAPOSA (FOX) smarter. In Working Notes
for the CLEF 2007 Workshop, Berlin, Heidelberg, 2007.

Nico Schlaefer, Petra Gieselmann, and Thomas Schaaf. A pattern learning approach to ques-
tion answering within the ephyra framework. In Proc. 9th Int. Conf. on TEXT, SPEECH
and DIALOGUE, 2006.

Stefan Schlobach, David Ahn, Maarten de Rijke, and Valentin Jijkoun. Data-driven Type
Checking in Open Domain Question Answering. Journal of Applied Logic, 5(1):121–143,
2007.

Dan Shen, Dietrich Klakow, and Geert-Jan Kruijff. Exploring syntactic relation patterns for
question answering. In Proc. 2nd International Joint Conf. on Natural Language Processing.
Springer, 2005.

152 BIBLIOGRAPHY

Hideki Shima and Teruko Mitamura. Bootstrap pattern learning for open-domain clqa. In
Proc. NTCIR-8 Workshop, 2010.

Anna Shtok, Gideon Dror, Yoelle Maarek, and Idan Szpektor. Learning from the past: an-
swering new questions with past answers. In Proceedings of the 21st international conference
on World Wide Web, WWW ’12, pages 759–768. ACM, 2012.

João Silva. QA+ML@Wikipedia&Google. Master’s thesis, Instituto Superior Técnico, Tech-
nical University of Lisboa, 2009.

João Silva, Lúısa Coheur, Ana Mendes, and Andreas Wichert. From symbolic to sub-symbolic
information in question classification. Artificial Intelligence Review, 35:137–154, 2011.

Robert Simmons. Answering English questions by computer: a survey. Communications of
the ACM, 8(1):53–70, 1965.

M. M. Soubbotin. Patterns of potential answer expressions as clues to the right answers. In
Proc. 10th Text REtrieval Conference (TREC, pages 293–302, 2001.

Ang Sun, Minghu Jiang, and Yanjun Ma. A maximum entropy model based answer extraction
for chinese question answering. In Proc. 3rd international conference on Fuzzy Systems and
Knowledge Discovery, FSKD’06, pages 1239–1248. Springer-Verlag, 2006.

Stefanie Tellex, Boris Katz, Jimmy Lin, Aaron Fernandes, and Gregory Marton. Quantitative
evaluation of passage retrieval algorithms for question answering. In Proc. 26th annual in-
ternational ACM SIGIR conference on Research and development in information retrieval,
SIGIR ’03, pages 41–47. ACM, 2003.

Alberto Téllez-Valero, Antonio Juárez-González, Manuel Montes-y-Gómez, and Luis Vil-
laseñor Pineda. INAOE at QA@CLEF 2008: Evaluating Answer Validation in Spanish
Question Answering. In Working notes of CLEF2008, AVE Workshop, 2008.

Alberto Téllez-Valero, Manuel Montes-y-Gómez, Luis Villaseñor Pineda, and Anselmo Peñas.
Towards Multi-Stream Question Answering using Answer Validation. Informatica. Special
Issue on Computational Linguistics and its Applications, 34(1), 2010.

Jörg Tiedemann and Jori Mur. Simple is best: experiments with different document segmen-
tation strategies for passage retrieval. In Coling 2008: Proc. 2nd workshop on Information
Retrieval for Question Answering, IRQA ’08, pages 17–25. ACL, 2008.

Hans Uszkoreit, Feiyu Xu, and Hong Li. Analysis and Improvement of Minimally Supervised
Machine Learning for Relation Extraction. In Natural Language Processing and Information
Systems, 14th International Conference on Applications of Natural Language to Information
Systems, NLDB 2009. Springer, 2009.

Ellen M. Voorhees. The TREC-8 Question Answering Track Report. In Proc. 8th Text
REtrieval Conference (TREC-8), pages 77–82, 1999.

Ellen M. Voorhees. Overview of the TREC 2002 Question Answering Track. In Proc. 11th

Text REtrieval Conference (TREC 2002), 2002.

BIBLIOGRAPHY 153

Ellen M. Voorhees. Overview of TREC 2003. In Proc. 12th Text REtrieval Conference (TREC
2003), pages 1–13, 2003a.

Ellen M. Voorhees. Overview of the TREC 2003 Question Answering Track. In Proc. 12th

Text REtrieval Conference (TREC 2003), pages 54–68, 2003b.

Ellen M. Voorhees. Overview of the TREC 2004 Question Answering Track. In Proc. 13th

Text REtrieval Conference (TREC 2004), 2004.

Ellen M. Voorhees and Hoa Trang Dang. Overview of the TREC 2005 Question Answering
Track. In Proc. 14th Text REtrieval Conference (TREC 2005), 2005.

Bonnie Webber, Claire Gardent, and Johan Bos. Position statement: Inference in Question
Answering. In Proc. LREC Workshop on Question Answering: Strategy and Resources,
pages 19–25, 2003.

Bonnie Nash-Webber William Woods, Ron Kaplan. The Lunar Sciences Natural Language
Information System: Final Report. Technical report, Bolt Beranek and Newman Inc., 1972.

Fabio Zanzotto and Alessandro Moschitti. Automatic learning of textual entailments with
cross-pair similarities. In Proc. 21st International Conference on Computational Linguistics
and the 44th annual meeting of the Association for Computational Linguistics, ACL-44,
pages 401–408. ACL, 2006.

Dell Zhang and Wee Lee. Question classification using support vector machines. In Proc. 26th

annual international ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’03, pages 26–32. ACM, 2003.

Dell Zhang and Wee Sun Lee. Web Based Pattern Mining and Matching Approach to Question
Answering. In Proc. 11th Text REtrieval Conference (TREC 2002), 2002.

154 BIBLIOGRAPHY

	Introduction
	Thesis Statement
	Thesis Contributions
	Research Methodology
	Thesis Structure

	Just.Ask: A Multi-pronged Approach to Question-Answering
	Related Work
	Introducing Just.Ask
	Question processing in Just.Ask
	Passage retrieval in Just.Ask
	Information sources
	Query formulation

	Answering in Just.Ask
	Candidate answer extraction
	Final answer selection
	Normalization
	Aggregation
	Clustering
	Filtering
	Selection

	Evaluation Corpora
	GoldWebQA
	TREC-QA_2002-2007
	On the sources of unstructured information

	Evaluation Measures
	Baseline Evaluation
	Results – JustAsk@GoldWebQA
	Question processing results
	Non factoid-like questions
	Factoid-like questions
	Passage retrieval results
	Answer extraction results
	Overall results of the factoid-like questions

	Results – Just.Ask@TREC-QA_2002-2007
	Question processing results
	Passage retrieval results
	Answer extraction results
	Overall results

	Discussion
	Comparison with other systems
	Strengths and weaknesses of Just.Ask
	On the evaluation of question-answering systems

	Summary

	Candidate Answer Extraction based on Learned Patterns
	Related Work
	Pattern Learning via a Minimally Supervised Approach
	Question processing
	Passage retrieval
	(Lexico-syntactic) Pattern building
	Types of patterns

	Pattern-Based Answer Extraction
	Pattern/sentence unification
	Relaxing the unification

	Evaluation
	Pattern learning
	Pattern/sentence unification
	Experiments
	Results
	Experiment 1 – N-fold cross validation
	Experiment 2 – Yearly evolution

	Influence in Just.Ask

	Discussion
	Summary

	Final Answer Selection based on Semantic Relations
	Related Work
	Techniques for final answer selection
	Relating answers
	A typology of relations

	Final Answer Selection based on Semantic Relations
	Detecting equivalence and inclusion
	Selecting the final answer

	Evaluation
	Experiments
	Results
	Experiment 1 – Multi-stream question-answering
	Experiment 2 – Single-stream question-answering
	Other results

	Influence in Just.Ask

	Discussion
	Summary

	From Answered Questions to Question Answering
	Related Work
	Learning to Answer from Answered Questions
	Iterative learning to answer
	Just.Ask's new architecture for answering questions

	Evaluation
	Evaluation measures
	Experiments
	Results
	Experiment 1 – Iterative learning to answer
	Experiment 2 – Revising past questions
	Further analysis

	New results – Just.Ask @TREC-QA_2002-2007

	Discussion
	Summary

	Conclusions and Future Work
	Contributions
	Final Discussion
	Future Work

	Bibliography

