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Resumo

Este trabalho foi desenvolvido num contexto de big data, grafos dinâmicos e
as diferentes arquiteturas e abordagens usadas para processar e armazenar grafos.
Apresenta-se uma visão de topo do estado-da-arte do processamento de grafos, re-
sultante de um estudo das técnicas e sistemas usados para representar grafos com-
putacionalmente, as diferentes arquiteturas de sistemas que os processam e de bases
de dados. Estes aspetos estão interligados entre si e relacionam-se com questões que
ganham forma em função de novas necessidades de processamento de grafos.

Dada a crescente dimensão dos dados representados como grafos em big data, que
equilı́brio será possı́vel entre cálculo exato e aproximado? Até que ponto se poderá gan-
har desempenho em troca de qualidade dos resultados no processamento distribuı́do
de grafos? Empregando sistemas distribuı́dos, como se poderá obter escalabilidade
horizontal em métodos de clustering (como exemplo de um relevante algoritmo em
grafos) para processar grafos de grande dimensão, aproveitando o poder computa-
cional de infraestruturas distribuı́das? Quão fácil será adotar soluções incrementais
para processamento de grafos dinâmicos? Será possı́vel atualizar resultados do proces-
samento, tendo como base somente o próprio resultado das mudanças do grafo?

Estas questões são abordadas em VEILGRAPH, um estudo e sistema de proces-
samento aproximado de grafos usando uma estrutura de sumarização para proces-
samento em stream. Avaliam-se diferentes parâmetros de aproximação executando a
lógica do sistema em ambiente cloud. Foi também estudado o potencial de melhorar sis-
temas distribuı́dos (community network micro-clouds) ao definir grupos computacionais e
eleição de lı́deres como problema de grafos. Os resultados são apresentados em GELLY-
SCHEDULING, estudando as propriedades das community network micro-clouds.

Um aspeto relevante no processamento de grafos é a representação computacional
dos mesmos. Como se poderão usar representações compactas de grafos para manipu-
lar grafos dinâmicos grandes? Esta questão está alinhada com as outras, pois a escolha
de representação do grafo tem influência no desempenho. É explorado este aspeto com
a implementação dinâmica da estrutura de dados k2-tree, desenvolvida no decorrer
deste trabalho. É uma estrutura compacta para representar grafos, para a qual se apre-
senta um estudo comparativo de diferentes implementações.

Amplamente, o processamento de grafos tornou-se uma interseção de múltiplas
perspetivas. Esta tese realça estas tendências e as suas relações através do estudo e
produção cientı́fica desenvolvidas na mesma.





Abstract

This work was pursued in context of big data, dynamic graphs and the different
architectures and approaches used to process and store graphs. Herein an overview is
provided of the state-of-the-art of the graph processing landscape as result of a survey
on the techniques and systems to computationally represent graphs, different architec-
tures of systems that process them and graph databases. These aspects of the landscape
are interconnected and relate to questions that emerge as different needs for graph pro-
cessing take form.

Given the increasing dimension of data sets represented as graphs in the advent of
big data, how far can one relax from exact to approximate computing? And to what
extent can performance be gained with a trade-off in accuracy in distributed system
graph-processing scenarios? Employing distributed systems, how may one scale-out
methods of graph clustering (as an example of a relevant graph algorithm) to process
large graphs while harnessing the computational power of distributed computing in-
frastructures? How easy is it to adopt incremental solutions for the processing of dy-
namic graphs? Could existing graph processing results be updated based solely on
previous results and a given change, or set of changes, in the graph?

These questions are approached with the VEILGRAPH contribution, a study and
system for approximate graph processing using a summary structure applied to the
case of stream processing. With it, different approximation parameters in a cloud com-
putational environment are evaluated. As part of this work, the focus was also cast
on the potential to improve distributed systems (community network micro-clouds) by
defining computational groups and leader election as a graph processing problem. Re-
sults inherent to this were obtained with the GELLY-SCHEDULING contribution, where
the properties of community network micro-clouds are studied.

A relevant aspect underlying these questions is the computational representation
of graphs. In what way may compact graph representations be used to manipulate big
dynamic graphs? The answer to this question is aligned with the others, as the choice of
graph representation has direct influence on performance. This aspect is explored with
a dynamic implementation of the k2-tree data structure to represent graphs, developed
throughout the research effort. It is a dynamic compact graph data structure, of which
a comparative performance study for different implementations is presented.

Overall, graph processing has become an intersection of multiple perspectives, all
interconnected. This thesis highlights these tendencies and their relations through the
developed research and contributions.
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1Introduction
Graphs are, and have been for many decades, a powerful mental artifice to model

many real-world problems. The inception of graph theory as a field of study was due
to Leonhard Euler and his work on the Seven Bridges of Königsberg problem of mathe-
matics (Euler 1956), performed in 1736. He is regarded in graph theory to be the one
that formally pioneered the field (Jones and Pevzner 2004). The problem he solved is
illustrated in Figure 1.1. As another example, consider the important algebra operation
of inverting a matrix: fifty years ago a proposal was made for an algorithm (Nathan
and Even 1967) which represents a matrix as a graph, in order to rapidly perform this
operation.

Data that benefits from graph-representations is found almost everywhere, with
examples emerging across decades such as bio-informatics data representation via de
Bruijn graphs (de Bruijn 1946) in metagenomics (Zerbino and Birney 2008; Li, Zhu,
Ruan, Qian, Fang, Shi, Li, Li, Shan, Kristiansen, Li, Yang, Wang, and Wang 2010; Pell,
Hintze, Canino-Koning, Howe, Tiedje, and Brown 2012; Muggli, Bowe, Noyes, Morley,
Belk, Raymond, Gagie, Puglisi, and Boucher 2017), atoms, covalent relationships and
other applications in chemistry (Balaban 1985; Ivanciuc 2013; Lim, Ryu, Park, Choe,
Ham, and Kim 2019), analysing the structure of the World Wide Web (Brin and Page
1998; Boldi and Vigna 2004b; Chung 2010; Meusel, Vigna, Lehmberg, and Bizer 2015),
massive parallel learning of tree ensembles (Panda, Herbach, Basu, and Bayardo 2009;
Krawczyk, Minku, Gama, Stefanowski, and Woźniak 2017), the structure of distributed
computation itself (Malewicz, Austern, Bik, Dehnert, Horn, Leiser, and Czajkowski
2010; Murray, McSherry, Isaacs, Isard, Barham, and Abadi 2013; Schelter, Palumbo,
Quinn, Marthi, and Musselman 2016) and parallel topic models (Smola and Narayana-
murthy 2010; Zhao, Zhou, Li, and Huang 2018; Jain, Arora, and Agrawal 2020). Aca-
demic research centres in collaboration with industry players like Facebook, Microsoft
and Google have rolled out their own graph processing systems, contributing to the
development of several open-source frameworks (Ching 2013; Xin, Gonzalez, Franklin,
and Stoica 2013; Carbone, Katsifodimos, Ewen, Markl, Haridi, and Tzoumas 2015; Mi-
crosoft 2017; Mariappan and Vora 2019). They need to deal with huge graphs, such
as the case of the Facebook graph with billions of vertices and hundreds of billions of
edges (Gordon Donnelly 2020). Graph theory is thus, in itself, both a means and an end
in many scenarios.



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Euler’s graph-based perspective on the Seven Bridges of Königsberg prob-
lem. It consisted in devising a walk through the city that would cross each of these
bridges exactly once.

1.1 Domains and Motivation

We list some of the domains of human activity that are best described by relations
between elements - graphs:

• Social networks. They make up a large portion of social interactions in the In-
ternet. We name some of the best-known ones: Facebook (2.50 billion monthly
active users as of December 2019 (Facebook 2020)), Twitter (330 million monthly
active users in Q1’19 (Twitter, Inc. 2020)) and LinkedIn (330 million monthly ac-
tive users as of December 2019 (LinkedIn Corporation 2020)). In these networks,
the vertices represent users and edges are used to represent friendship or fol-
lower relationships. Furthermore, they allow the users to send messages to each
other. This messaging functionality can be represented with graphs with asso-
ciated time properties. Other examples of social networks are WhatsApp (1.00
billion monthly active users as of early 2016 (WhatsApp Inc. 2016)) and Telegram
(300 million monthly active users (Securities and Exchange Commission 2019)).

• World Wide Web. Estimates point to the existence of over 1.7 billion websites as
of October 2019 (InternetLiveStats.com 2020), with the first one becoming live in
1991, hosted at CERN. Commercial, educational and recreational activities are just
some of the many facets of daily life that gave shape to the Internet we know to-
day. With the advent of business models built over the reachability and reputation
of websites (e.g. Google, Yahoo and Bing as search engines), the application of
graph theory as a tool to study the web structure has matured during the last two
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decades with techniques to enable the analysis of these massive networks (Boldi
and Vigna 2004a; Boldi and Vigna 2004b).

• Telecommunications. These networks have been used for decades to enable dis-
tant communication between people and their structural properties have been
studied using graph-based approaches (Baritchi, Cook, and Holder 2000; Bala-
sundaram and Butenko 2006). Though some of its activity may have transferred
to the applications identified above as social networks, they are still relevant. The
vertices in these networks represent user phones, whose study is relevant for
telecommunications companies wishing to assess closeness relationships between
subscribers, calculate churn rates, enact more efficient marketing strategies (Al-
Molhem, Rahal, and Dakkak 2019) and also to support foreign signals intelligence
(SIGINT) activities (Pfluke 2019).

• Recommendation systems. Graph-based approaches to recommendation sys-
tems have been heavily explored in the last decades (Grujić 2008; Gu, Zhou, and
Ding 2010; Silva, Tsang, Cavalcanti, and Tsang 2010). Companies such as Ama-
zon and eBay provide suggestions to users based on user profile similarity in
order to increase conversion rates from targeted advertising. The structures un-
derlying this analysis are graph-based (Beyene, Faloutsos, Chau, and Faloutsos
2008; Zhao, Yao, Li, Song, and Lee 2017; Yang and Toni 2018).

• Transports, smart cities and IoT. Graphs have been used to represent the layout
and flow of information in transport networks comprised of people circulating
in roads, trains and other means of transport (Euler 1956; Unsalan and Sirma-
cek 2012; Rathore, Ahmad, Paul, and Thikshaja 2016). The Internet-of-Things
(IoT) will continue to grow as more devices come into play and 5G proliferates.
The way IoT devices engage for collaborative purposes and implement security
frameworks can be represented as graphs (George and Thampi 2018).

• Epidemiology. The analysis of disease propagation and models of transition be-
tween states of health, infection, recovery and death are very important for public
health and for ensuring standards of practices between countries to protect trav-
ellers and countries’ populations (Colizza, Barrat, Barthélemy, and Vespignani
2007; Bajardi, Poletto, Ramasco, Tizzoni, Colizza, and Vespignani 2011; Brock-
mann and Helbing 2013; Chinazzi, Davis, Ajelli, Gioannini, Litvinova, Merler,
y Piontti, Mu, Rossi, Sun, et al. 2020). These are represented as graphs, which can
also be applied to localized health-related topics like reproductive health, sexual
networks and the transmission of infections (Liljeros, Edling, and Amaral 2003;
Bearman, Moody, and Stovel 2004). They have even been used to model epi-
demics in massively multiplayer online games such as World of Warcraft (Lofgren
and Fefferman 2007). Real-life epidemics are perhaps at the forefront of examples
of this application of graph theory for health preservation, with the most recent
example as COVID-19 (Surveillances 2020).
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Figure 1.2: Web graph edge counts for domain crawls since the year 2000 plus the size
of the Facebook graph (in log scale).

Other types of data represented as graphs can be found (Sedgewick and Wayne
2011). To illustrate the growing magnitude of graphs, we focus on web graph sizes of
different web domains in Figure 1.2, where we show the number of edges for web crawl
graph datasets made available by the Laboratory of Web Algorithmics (Labo-
ratory for Web Algorithmics 2020) and by Web Data Commons (Meusel, Vigna, Lehm-
berg, and Bizer 2015) and also the size of the Facebook graph. If one were to retrieve
insights on the structure of some of the largest graphs (for example at the magnitude of
trillions of edges), it would become immediately clear that a combination of computer
resources and specific software are necessary in order to process them. Such has already
occurred with different computational approaches across the years (Ching 2013; Ching,
Edunov, Kabiljo, Logothetis, and Muthukrishnan 2015; Maass, Min, Kashyap, Kang,
Kumar, and Kim 2017b), and the trend remains regarding the growth of graph-based
datasets.

1.2 Opening Questions

Our objective is to study the relations between these requirements and contribute
to state-of-the-art techniques. Before delving into the research vector of this thesis, we
present a set of research questions. While most of them have been studied in the litera-
ture, we consider they have tentative answers so far and present them as examples. We
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attribute this to the fact that any attempt at optimally answering them will be impacted
by how many of the questions are considered at the same time.

Given the increasing dimension of data sets represented as graphs in the advent
of big data, how far can one relax from exact to approximate computing? Naturally,
if all the time of the world is available to us, it suffices to mine the whole graph (no
matter how big it is) using one of the existing computational batch approaches (e.g.,
using a single machine with a lot of memory versus a cluster of distributed workers). If
temporal requirements are relaxed, one could also trigger a new computation over the
whole graph as soon as the previous one finishes and after integrating graph updates
(such as edge removal/addition operations from a data stream) for offline analysis.

For more common scenarios, time is critical. To reduce time in the face of increas-
ing data volumes, other approaches must be taken. Approximate results may open
the door for attaining desired speedups, but how may we reliably define and ensure
controlled error bounds given the volatility of graphs such as those representing so-
cial networks? We envision two practical approaches to this question. One could start
by applying techniques to discard non-essential processing tasks. This is one of many
approaches undertaken in distributed systems – consider the possibility of discarding
older straggling tasks that have not yet completed in a distributed execution and con-
sciously accumulating error (Goiri, Bianchini, Nagarakatte, and Nguyen 2015). A com-
plete execution may be necessary at a given point in time to restore result quality. An-
other approach could be aware of the data itself (graph structure and how it evolves)
in order to trim unnecessary computation (Vora, Gupta, and Xu 2017). Elements of the
graph may contribute to results in a non-significant way and thus be ignored.

Establishing a basis for solving these challenges would pave the way for greater
performance and resource-efficiency in the analysis of many graph-based big data sce-
narios. There exists a plethora of commercial and open-source distributed systems
(some are general-purpose with graph processing modules, others are dedicated to
graph processing) which may be used as a platform for conducting further studies.
This work aims to respond to two challenges: 1) to gain an understanding of the most
desirable system(s) for graph processing to use for further work; 2) exploring impor-
tant graph problems in the literature while considering the dimensions of incremental,
approximate and streaming computing as well as efficient graph representations.

1.3 Research Objectives and Contributions

This section enumerates our research objectives and our contributions towards
them in light of our research activity. Overall, they were developed under three con-
ceptual areas: graph processing, stream processing and distributed systems. Figure 1.3
showcases their overlap. While there are pairwise relations between them, our ultimate
objectives and effort lie in the overlap of the three. We aimed to produce novel solutions
to improve the processing of big evolving graphs in distributed systems.

The research efforts herein detailed, while they focus on what appear to be sepa-
rate topics in the broader scope of graph processing challenges, have important links
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Figure 1.3: Areas of multidisciplinary research effort.

between them, warranting additional context on their sequencing.
We have carried out and published a survey on the landscape of graph processing,

covering many different approaches to processing, computational representation and
storage. While this survey branches out into different components of the landscape,
it is of the utmost importance to highlight that such components have links between
them in context of each of our research initiatives, taking the form of different related
works.

In the scope of our work GELLY-SCHEDULING, focusing on distribution of com-
putation for the definition of communities and leader election, we performed an ini-
tial analysis of graph processing frameworks, having considered, from among others,
Apache Flink and Apache Spark as relevant candidates on which to execute our
experiments. Among other factors, Flink’s highly-active development community
led to choosing it. With GELLY-SCHEDULING, the target of community network micro-
clouds (CNMCs) and our novel approach to it was validated. However, additional
concerns were inherent to this work if the problem space was to be expanded. With an
increasing number of devices and dissemination of the Internet to the further reaches
of the world, the ability to maintain updated views over communities and leadership
assignment would become a key-element of the network’s management. Hence the
approach based on Gelly/Flink that leverages its horizontal scalability.

However, not all changes in these bigger settings represented with graphs would
have the same importance. Based on the fact that there exist different applications and
computational classes of connected nodes, changes taking place in bigger networks
(potentially greater in order of magnitude) would have different relevance with respect
to management.

We thus focused on this following problem of the need to be able to process in-
coming information, while ensuring the most relevant and potentially impactful graph
changes are taken into account when updating metrics, and also exploring the possi-
bilities of sacrificing result accuracy for faster execution times. As a consequence, we
explored this problem in the scope of stream processing with our work VEILGRAPH.
Due to the reason for expanding the ideas of GELLY-SCHEDULING (though with the po-
tential to apply VEILGRAPH not only to its problem) in this stream processing context,
we opted to continue building over Apache Flink.
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Apache Flink has become a very refined dataflow programming framework, of-
fering many libraries and the ability to harness distributed and parallel execution of
jobs. However, we faced some limitations (detailed in Chapter 7) when needing to
reuse the same data for separate Flink dataflow jobs executed in sequence. In the case
of Flink (and also Spark), such a reuse incurs growing costs associated with continu-
ously reading and writing the graph data to secondary storage.

But what if it was possible to lessen the impact of this I/O-heavy behaviour by
representing the graph data in a more compact form, perhaps allowing for redundancy
between cluster nodes, with each one able to represent the full dataset? Before explor-
ing the idea of incorporating such a structure into Flink (even though a preliminary
analysis was performed of its architecture for that purpose), we posited that the first
step in exploring such an idea would be to analyse different computational represen-
tations in the literature. Particularly, we focused on the k2-tree data structure, a recent
idea of which there was already a compact representation (thus supporting changes
to the graph, as an addition to enabling a space-efficient representation). To this end,
we contacted the authors of different k2-tree representations and also implemented our
own based on a technique different from existing implementations.

Orthogonally to this series of questions and research efforts, we continuously anal-
ysed alternative architectures, representations and systems relevant to each of our
work. We then structured all these observations and the many connected aspects of the
landscape of graph processing and included this structured review in our published
survey.

Ultimately, procuring these solutions led to these interrelated research initiatives:

• A survey on the field of graph processing and existing techniques and sys-
tems. Assessing the most relevant marks in the literature pertaining the land-
scape of graph processing. As part of the state-of-the-art presented in this docu-
ment, we provide an overview of existing computational graph representations,
usage of compression techniques, architectures of graph processing systems and
databases. This entails a detailed analysis of the intrinsic aspects of each of these
topics as well as their relationships. We present from simple to complex graph
representations used in the literature, spanning linked lists, adjacency matrices,
sparse vectors as well as more elaborate schemes which involve efficient com-
pression. From the conceptual perspective of expressing the computation and
processing of graphs, we present approaches which use different computational
units for processing graphs, such as for example their vertices, edges or sub-
graphs. All these innovations encompassed in the literature debuted as key im-
plementations and designs of systems and databases. Some produced changes
in paradigm, while others improved specific cases for existing ones. We go over
these dynamics and important milestones by presenting an exhaustive list of sys-
tems, respective features and their comparisons in Chapter 3, providing value
to both experienced researchers and developers as well as individuals grasping
how to approach graph-based data. This was done in the scope of our published
survey (Coimbra, Francisco, and Veiga 2021)
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• Studying trade-offs between result accuracy and execution speed when em-
ploying summarization techniques on graph stream processing scenarios. Ex-
ploring new approaches to processing evolving graphs by using approximate pro-
cessing methods. When a graph evolves due to a stream of updates, the impact
will vary depending on the type of data mined from the graph. For example, ver-
tex rank (such as PageRank) fluctuations will be barely noticeable if peripheral
network vertices are cut off. However, if high-degree vertices (topic of interest in
power-law graphs (Fortunato, Flammini, and Menczer 2006)) have their connec-
tions changed in a way that influences network topology, then the variation in
ranks may be noted much more.

There have been proposals of structures such as spanners, sparsifiers and sub-
graphs to represent properties of the graph in the context of update streams (Ahn,
Guha, and McGregor 2012). To efficiently update existing results of a graph algo-
rithm over an evolving graph, some structures and representations may be more
suitable than others. To research the benefits of innovative representations, it be-
came an objective to explore proper architectures to express graph processing un-
der these concerns. With the analysis of existing state-of-the-art contributions in
the literature, we elected the most suitable tools for distributed graph processing
in mind. These tools had a primary focus on distributing execution and working
with data streams. While they provide abstractions to manipulate graphs, they
treat as second-class citizens (or completely disregard) the graph-centric concerns
that are necessary when exploiting distributed systems and streams of data.

Chapter 4 presents our submission VEILGRAPH (Coimbra, Esteves, Francisco,
and Veiga 2021), which is the contribution of a model for approximate graph pro-
cessing which is evaluated using a summarization technique over PageRank. We
aimed to provide an API through which the model may easily be configured.
One could be interested in obtaining approximate results at a given time instead
of performing a full computation. We envision this work to branch out into dif-
ferent experiments. First, it would be desirable to perform further validation of
the model and API by testing with other graph algorithms. Second, it would be
interesting to implement an automated computation strategy through statistical
learning techniques to arm users with what would be an auto-pilot strategy.

• Exploring and analysing the application of graph processing techniques to
cloud community micro-clouds. The initiative was relevant because it served as a
motivator and a way to gain experience on graph processing techniques and chal-
lenges when implementing solutions. It was an innovative application of graph
processing for the task of leader election in community network micro-clouds.
Chapter 5 details our publication GELLY-SCHEDULING (Coimbra, Selimi, Fran-
cisco, Freitag, and Veiga 2018) on the application of graph processing techniques
to study service placement in community network micro-clouds. This work could
potentially be further developed with additional application scenarios to validate
our approach. An example of such a development would be execution in a pro-



1.4. LIST OF PUBLICATIONS 9

duction network environment.

• Analysing and improving compact graph representations. Studying smart
graph representations and their applications. Smart graphs are compact graph
representations, typically memory-efficient (taking up less space than adjacency
matrices, lists and sparse vectors) but allowing access and manipulation of the
graph, without requiring a full transformation of the smart graph into a non-
compact representation. As a first step in this direction, we have studied the
k2-tree compact graph data structure and compared different implementation
variants including our own to assess their efficiency, having published the re-
sults (Coimbra, Francisco, Russo, de Bernardo, Ladra, and Navarro 2020) (Chap-
ter 6).

1.4 List of Publications

In the course of our research, we produced different submissions which we list:

• An analysis of the graph processing landscape. Submission to Springer Open -
Journal of Big Data of a survey analysing the graph processing landscape (Coim-
bra, Francisco, and Veiga 2021), mainly-detailed in Chapter 3 (SCImago Journal
Q1)).

• VeilGraph: Streaming Graph Approximations. Submission to Springer Open -
Journal of Big Data of the VEILGRAPH framework (Coimbra, Esteves, Francisco,
and Veiga 2021) using summarization to explore performance and accuracy trade-
offs with approximations over streams, detailed in Chapter 4 (SCImago Journal
Q1)).

• Gelly-Scheduling: Distributed Graph Processing for Service Placement in
Community Networks. Publication to ACM Symposium on Applied Computing
2018 of the GELLY-SCHEDULING system (Coimbra, Selimi, Francisco, Freitag, and
Veiga 2018) which applies graph processing techniques to community network
micro-clouds, fully-addressed in Chapter 5 (CORE2018/2020 Rank: B).

• On dynamic succinct graph representations. Publication to the Data Compres-
sion Conference 2020 of an implementation and comparative study k2-tree data
structure implementations (Coimbra, Francisco, Russo, de Bernardo, Ladra, and
Navarro 2020), described in Chapter 6 (CORE2020 Rank: A*).

• A practical succinct dynamic graph representation. Submission to the Elsevier
Information and Computation Journal special issue of a library-based implemen-
tation of the k2-tree data structure, the implementation of popular graph algo-
rithms over it and a comparative analysis against other state-of-the-art imple-
mentations (Coimbra, Hrotkó, Francisco, Russo, de Bernardo, Ladra, and Navarro
2021) fully-addressed in Chapter 6 (SCImago Journal Q2)).
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1.5 Document Structure and Style

Chapter 2 details important graph problems in the literature. Chapter 3 describes
the multidisciplinary topics in the related work of this study. This pertains to the di-
mension of relevant graph algorithms (along with their distinctive aspects) and the
frameworks and tools with graph processing capabilities. Chapter 4 contains our re-
sults and experiments of approximate graph processing with VEILGRAPH. Chapter 5
presents our approach to community micro-clouds with GELLY-SCHEDULING. Chap-
ter 6 shows our comparative study of k2-tree implementations. Lastly, Chapter 7 sum-
marizes our contributions and proposes future vectors of research.



2Background
This chapter begins in Section 2.1 with a brief introduction to the common nota-

tion and concepts inherent to the representation of graphs, both computational and in
manuscripts. This chapter then presents an overview of important problems in the liter-
ature of graph theory in Section 2.2. They partake in the formal definition of algorithms
in the literature which were created over the years to provide answers to problems in
graph theory.

2.1 An Introduction to Graphs

Here we detail terms and concepts which are known in graph theory. We include
preliminary notions that serve as a basis to familiarize the reader with the language
used in scientific documents on graph applications, processing systems and novel tech-
niques. In the literature (Newman 2010), a graph G is written as G = (V,E) – it is
usually defined by a set of vertices V of size n = |V | and a set of edges E of size
m = |E|. Vertices are sometimes referred to as nodes and edges as links. Along this doc-
ument we will use the terms vertex/vertices and edge/edges when referring to elements of
the graph. An undirected graph G is a pair (V,E) of sets such that E ⊆ V × V is a set
of unordered pairs. If E is a set of ordered pairs, then we say that G is a directed graph.
Between the same two vertices there is usually at most one edge; if there are more, then
the graph is called a multigraph (note: an ordered graph in which a pair of vertices share
two edges in opposite direction is not necessarily a multigraph). Multigraphs are more
common when looking at the applications and use-cases for graph databases such as
Neo4j (Miller 2013), where one may model more than one relation type between the
same vertices.

Additionally, given a graph G = (V,E), the set of vertices of G may also be writ-
ten as V (G) and the set of edges as E(G). In the literature of the graph processing
landscape, we find V and E to denote the vertex and edge sets respectively. The
concept of a vertex’s surrounding is important for specifying traversals (relevant when
considering graph query languages (Holzschuher and Peinl 2013)) and also defining
scopes and units of computation in graph processing (Malewicz, Austern, Bik, Dehn-
ert, Horn, Leiser, and Czajkowski 2010; Roy, Mihailovic, and Zwaenepoel 2013; Tian,
Balmin, Corsten, Tatikonda, and McPherson 2013). Two vertices u, v ∈ V are con-
sidered adjacent or neighbours if (u, v) is an edge, that is, (u, v) ∈ E. Given a ver-
tex v ∈ V (G), its set of neighbours is denoted by NG(v) or succinctly by N(v) when
clearing G from the context. The set of edges with v as a source or target is writ-
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ten as E(v) = {(u, u′) ∈ E(G) | v = u or v = u′}. More generally, for two ver-
tex sets X,Y ⊆ V , we denote E(X) as the set of edges with at least one end in X :
E(X) = {(u, v) ∈ E | u ∈ X or v ∈ X} and denote as E(X,Y ) the set of edges whose
sources are in X and targets are in Y or vice-versa: E(X,Y ) = {(u, v) ∈ G | either
u ∈ X and v ∈ Y , or v ∈ X and u ∈ Y }. Furthermore, the degree of a vertex is used
to indicate its number of neighbours. For a graph G = (V,E) and a vertex v ∈ V , the
degree of v may simply be commonly written as dG(v) or d(v), with d(v) = |N(v)|. If
G is a directed graph, we find in the literature to be written as din(v) and dout(v) the
number of incoming and outgoing neighbours of v respectively.

These notations are the basic building blocks for graph theory and a mandatory
learning topic for those who come from backgrounds such as Mathematics, Computer
Science and many other fields. We note that across decades, the field of graph theory
has matured and refined the notations and systematization of how we research and ap-
proach problems represented as graphs. These advancements have been accompanied
with an even faster rhythm of technological progress. In tune, so has evolved the way
these notations and representations are translated to concrete actionable computational
tasks and data. The last decades have seen the introduction of query languages and
models to represent graphs from the perspective of managing computational resources
and solving graph-oriented problems.

There are different ways by which to computationally represent the edge set E of a
graph. They may be represented as an adjacency list, or perhaps an adjacency matrix.
For the later case, the following matrix A is an example:

A =



0 1 0 0 1 0

1 0 1 1 0 0

0 1 0 1 1 1

0 1 1 0 0 0

1 0 1 0 0 0

0 0 1 0 0 0


(2.1)

In this example, the first row of A represents the outgoing edges of vertex 1, which
is connected to vertices 2 and 5. It is common in the literature (Cormen, Leiserson,
Rivest, and Stein 2009, Chapter 22) to use the subscript notation Ai,j to refer to the
presence of a specific edge in matrix A (the notation is relevant for theoretical purposes
even if using another type of representation) linking vertex i to vertex j:

Ai,j =

{
1 if there is an edge from i to j,
0 otherwise.

(2.2)

We can thus write A1,5 = 1 to state there is an edge from vertex 1 to vertex 5. Ma-
trix A also takes on a particular configuration depending on the graph being directed
or undirected. In the later case, there is no explicit sense of source or target of an edge,
leading to symmetry in matrix A. There are pros and cons to using these representa-
tions. Traditionally, the edge list would be more appropriate to represent a low-density
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12
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(a) Sample graph G

0 1 0 0 0 0

1 0 0 1 0 0

1 1 0 0 0 0

0 0 1 0 0 1

0 0 0 0 0 1

1 0 0 0 1 0




(b) Adjacency matrix A

1 2

2 1 4

3 1 2

4 3 6

5 6

6 1 5

(c) Adjacency list[
1 0 3 0 1 2 5 5 0 4

] [
0 1 3 5 7 8 10

]
(d) Compressed sparse row

Figure 2.1: Simple computational representations of sample directed graph G shown in
(a).

(sparse) graph (m << n) where most vertices are not connected. In the context of a
sparse graph, the absence of an edge in the graph is represented by its omission from
the edge list (or a value of zero in the corresponding position of an adjacency matrix
A in case that is the chosen representation). It would be wasteful of storage space to
explicitly represent information indicating the non-existence of elements. However, if a
graph is dense (m ∼ n(n−1)

2 ), then most vertices are connected and it is more efficient to
represent E with an adjacency matrix A. This is not merely a trade-off in space. Matri-
ces and lists, as data structures, have different computational complexities pertaining
the time for certain operations (such as accessing a vertex – it is done by indexes in a
matrix in O(1) but it may take longer on a list due to traversals). This means that it is
not mandatory to use one specific type of representation depending exclusively on the
density of a graph.

Additionally, there are more complex data structures to represent E if the use-case
calls for it. An instance of such a structure is the compressed sparse row (CSR) or
column (CSC) representation, where a matrix A may be represented as a sequence of
sequences. Each of the sequences contains only the non-zero elements, with each ele-
ment stored as a pair – the actual value of the element and the index in the row of the
matrix in the CSR representation (or column, in the case of CSC).

2.1.1 Computational Representations

We show in Figure 2.1 an example of different representations for the same graph.
Figure 2.1a shows a sample graph G, for which the adjacency matrix is shown in Fig-
ure 2.1b and the corresponding adjacency list in Figure 2.1c. The first row of the adja-
cency matrix A represents the outgoing edges of vertex 1, which is connected to vertex
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2. Matrix A also takes on a particular configuration depending on the graph being di-
rected or undirected. In the later case, there is no explicit sense of source or target of an
edge, leading to symmetry in matrix A. Implementations of graph processing systems
often represent undirected graphs as directed graphs such that the undirected edge
between a pair of vertices is represented by two directed edges in opposite directions
between the vertices of the pair.

There are more space-efficient ways to represent a graph, and they become a neces-
sity when exploring the realm of big graphs. The choice between an adjacency list or
matrix is bound to the density of the graph. But to justify other representation types,
factors such as graph size, storage limitations and performance requirements need spe-
cial focus. The compressed sparse row (CSR), also known as the Yale format, is able
to represent a matrix using three arrays: one containing non-zero values; the second
containing the extents of rows; the third storing column indices. Figure 2.1d shows a
representation in this format (we omit the array containing the non-zero values as they
are all one in this case).

Let us consider that indices are zero-based. The array [1 | 0 3 | 0 1 | 2 5 | 5 | 0 4]
on the left side is the column index array, where the pipe character | separates groups
which belong to each row ofA. The second row (with index 1) of matrixA has elements
at position indexes 0 and 3 in A. Therefore, the second group of the column index array
has elements [0, 3]. The array [0 1 3 5 7 8 10] on the right is the row index array which
has one element per row in matrix A and an element which is the count of non-zero
elements (|E|) of A at the end of the array (there are variations without this count). For
a given row i, it encodes the start index of the row group in the column index array (on
the left in Figure 2.1d). This way, for example, the second row of matrix A (Figure 2.1b)
has row index 1 in A. Then, looking at the row index array (the one on the right), as
the second row of matrix A has row index 1, we access the elements with indices [1, 2]
in the row index array, which returns the pair (1, 3), indicating that the second row
(index one) of A is represented in the column index array starting (inclusive) at index 1
and ending at index 3 (exclusive). If we look at the column index array and check the
elements from index 1 (inclusive) to 3 (exclusive), we get the set of values {0, 3}. And
if we look at the second row in A, column index 0 and column index 3 are exactly the
positions of the edges in A for that row. Generally, for a matrix M ’s row index i, we
access indices [i, i+ 1] in the row index array, and the returned pair dictates the starting
(inclusive) and ending (exclusive) index interval in the column index array. The set of
elements in that interval in the column index array contains the indices of the columns
with value 1 for row index i in M . We point the reader to (Buluç, Fineman, Frigo,
Gilbert, and Leiserson 2009) for details on its representation and construction. There is
also the compressed sparse column (CSC), which is similar but focused on the columns,
as the name suggests.

2.1.2 Advanced Compression Techniques

Other approaches take advantage of domain-specific properties of graphs. Such is
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the case of WebGraph (Boldi and Vigna 2004b), which exploits certain properties of web
graphs to represent them with increased compression. An important property they ex-
ploit is locality, as many links stay within the same domain, that is, if the web graph
is lexicographically ordered, most links point close by. Another property is similarity:
pages that are close by in the lexicographical order are likely to have sets of neigh-
bours that are similar. The study performed with WebGraph also highlighted, among
other facts, the following: similarity was found to be much more concentrated than
previously thought; consecutivity is common regarding web graphs. The properties of
ordering (and different techniques to produce orderings) have also been exploited by
the same authors to obtain compression with social networks. WebGraph was used in
an extensive analysis of many different data sets, which were made available online
by the Laboratory for Web Algorithmics (Boldi, Codenotti, Santini, and Vigna
2004; Boldi and Vigna 2004b; Boldi, Rosa, Santini, and Vigna 2011; Boldi, Marino, San-
tini, and Vigna 2014; Laboratory for Web Algorithmics 2020).

The k2-tree is another data structure employed to represent and efficiently store
graphs (Brisaboa, Ladra, and Navarro 2014). It may be used to represent static graphs
and binary relations in general, such as web graphs, social networks and RDF data sets
by internally using compressed bit vectors. It is a data structure that also efficiently
matches the properties of sparseness and clustering of web graphs. A dynamic ver-
sion of the k2-tree structure was proposed for this purpose (Brisaboa, Cerdeira-Pena,
de Bernardo, and Navarro 2017). Using compact representations of dynamic bit vec-
tors to implement this data structure, the k2-tree was used to provide a compact rep-
resentation for dynamic graphs. However, this representation with dynamic compact
bit vectors suffers from a known bottleneck in compressed dynamic indexing (Navarro
2016). It suffers a logarithmic slowdown from adopting dynamic bit vectors. A recent
comparative study on the graph operations supported by different k2-tree implementa-
tions has also been performed as part of this research effort (Coimbra, Francisco, Russo,
de Bernardo, Ladra, and Navarro 2020). This work also presented an innovative take
on implementing dynamic graphs by employing the k2-tree data structure with a tech-
nique that confers dynamic properties to a document collection (Munro, Nekrich, and
Vitter 2015), avoiding the bottleneck in compressed dynamic indexing.

To construct the k2-tree data structure, conceptually, we recursively subdivide each
block of a graph’s adjacency matrix A until we reach the level of individual cells of the
matrix. The idea is to divide (following an MX-Quadtree strategy (Samet 2006, Section
1.4.2.1)) the matrix in blocks and then assign 0 to the block if it only contains zeros (no
edges) or 1 if it contains at least an edge. We show in Figure 2.2 a sample adjacency
matrix on the left and the corresponding k2-tree representation of the decomposition.
This representation of the adjacency matrix is actually a k2-tree of height h = dlogk ne,
where n = |V | and each node contains a single bit of data. It is 1 for internal nodes and
0 for leaves, except for the last level, in which all nodes are leaves representing values
from the adjacency matrix.

Another proposal, Log(Graph) (Besta, Stanojevic, Zivic, Singh, Hoerold, and
Hoefler 2018) is a graph representation that combines high compression ratios with low
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1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




(a) Decomposition (k = 2)

1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1

1 0 0 1 1 1 0 0

1 0 0 1

(b) k2-tree (h = dlogk ne = dlog2 8e = 3)

Figure 2.2: A sample adjacency matrix (n = |V | = 8) and corresponding k2-tree repre-
sentation.

overhead to enable competitive processing performance while making use of compres-
sion. It achieved compression ratios similar to WebGraph while reaching speedups of
more than 2x. The authors achieve results by applying logarithm-based approaches to
different graph elements. They describe its application on fine elements of the adjacency
array (the basis of Log(Graph): vertex IDs, offsets and edge weights. From infor-
mation theory, the authors note that a simple storage lower bound can be the number
of possible instances of an entity, meaning the number of bits required to distinguish
them. Using this type of awareness on the different elements that represent an adja-
cency array and by incorporating bit vectors, the authors present a C++ library for the
development, analysis and comparison of graph representations composed of the many
schemes described in their work.

Relevant techniques for graph compression have been proposed in the literature
across decades (Feder and Motwani 1995; Buehrer and Chellapilla 2008; Apostolico
and Drovandi 2009; Kang and Faloutsos 2011; Fan, Li, Wang, and Wu 2012; Lim,
Kang, and Faloutsos 2014), with the WebGraph framework (Boldi and Vigna 2004a;
Boldi and Vigna 2004b) as one of the most well-known, and more recently the k2-tree
structure (Hernández and Navarro 2014; Brisaboa, Ladra, and Navarro 2014; Brisaboa,
de Bernardo, Gutiérrez, Ladra, Penabad, and Troncoso 2015; Gagie, González-Nova,
Ladra, Navarro, and Seco 2015). Only in the more recent years was the focus cast on
being able to represent big graphs with compression while allowing for updates. Fur-
thermore, if we add the possibility of dynamism of the data (the graph is no longer a
static object that one wishes to analyse) to the factors guiding representation choice,
then it makes sense to think about how to represent a big graph in common hardware
not only for storage purposes but also for efficient access with mutability.

2.1.3 Classifying Graphs

We may classify graphs according to many characteristics. A graph is considered
dense if its number of edges is close to the maximum possible number. As an example,
for simple graphs, we may write their density D as:
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Undirected graph:

D =
2|E|

|V |(|V | − 1)
(2.3)

Directed graph:

D =
|E|

|V |(|V | − 1)
(2.4)

Graphs also have other properties which vary depending on the topology and con-
figuration of the network:

• Diameter, which is the greatest length out of all the pair-wise shortest paths in a
graph.

• Girth, the length of the shortest cycle which exists in the graph.

• Betweenness centrality, a measure of centrality which is based on shortest paths.
This measure, for each vertex, is the number of shortest paths passing through it.

• Modularity, a measure of the decomposition of the graph into groups.

• Clustering coefficient, a measure of the way vertices tend to form clusters.

Delving deeper into finding groups within graphs, we may further detail the concept
of modularity and the relation between it and clustering. In a network represented
with a graph, one may define a community as a dense group of interconnected vertices
where the group is only connected sparsely to the rest of the network. Each community
may have different values for the previously-mentioned properties compared to the
average network. Community detection is an example of finding groups in a graph,
focusing on high average degree subgraphs. This is an instance of clustering, which
by itself encompasses a broader range of methods (further detailed in Section 2.2.3).
Both modularity and clustering coefficient are formulations of the measure of clustering
in the graph. Modularity considers edge densities in clusters compared against edge
densities between the clusters, while the clustering coefficient is the fraction of paths of
length two in the network that are closed (Newman 2010).

2.2 Known Graph Problems

In this section, an overview of known graph problems is provided. For some of the
problems, different algorithms or approaches are shown. The graph problems herein
described are well-known and studied in the literature (Cormen, Leiserson, Rivest, and
Stein 2009). Section 2.2.2 highlights the importance of establishing an order among the
vertices of a graph by means of ranking. Measures of centrality are covered and then
the focus is cast on the famous case of PageRank (Page, Brin, Motwani, and Winograd
1999), which we used as a use-case algorithm for our research on approximate graph
processing, presented in Chapter 4. Section 2.2.3 analyses the problem of community
detection and graph clustering. We applied one technique for community detection to
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the task of leader placement in cloud network micro-clouds. This application is detailed
in Chapter 5 and highlights the potential made possible by considering existing prob-
lems in graph-oriented perspectives. Instances of these classic problem’s algorithms
were used to evaluate our proposal of the dynamic k2-tree graph representation, which
is described in Chapter 6.

2.2.1 Research Context

Notations and computational representations for graphs are essential to describe
the logic operating on them. However, pertaining to graph problems and algorithms
themselves, additional motivational context is warranted.

Vertex centrality, whose more well-known algorithms we explore in Section 2.2.2,
is relevant to the techniques proposed in GELLY-SCHEDULING. In it, we use different
heuristics of network nodes for leader election within communities through a graph-
oriented approach. Multiple nodes compete for the position of leader, and ultimately
we compute an ordering of the nodes (their importance) from these heuristics. It is a
concept that drew inspiration from known vertex centrality algorithms such as PageR-
ank, which itself builds on more primitive forms of centrality measurement.

Exploring approximate graph processing techniques, and due to the synergy and
applicability that the topic has with GELLY-SCHEDULING, we focused on a new tech-
nique to explore performance and accuracy trade-offs for vertex centrality algorithms
in VEILGRAPH. As part of this work, and delving into lower-level implementation de-
tails, an analysis of vertex centrality algorithms and how they function becomes even
more important. Due to these reasons, and for completeness, as these algorithms pro-
vide insight into how we developed GELLY-SCHEDULING and VEILGRAPH, we expand
on them in Section 2.2.2.

We also detail clustering and community detection algorithms in Section 2.2.3.
These are relevant as we use such algorithms in the community definition phase of
GELLY-SCHEDULING as well as specific evaluation algorithms to assess the perfor-
mance of our k2-tree compact graph representation. Furthermore, as part of our state-
of-the-art analysis on techniques to maintain graph representations in stream process-
ing, we found path-related contributions to be relevant (Kalavri, Simas, and Logothetis
2016).

The third type of problem we detail is that of pathfinding. We employ different
pathfinding algorithms in the evaluation of our k2-tree compact graph representation.
This research contribution included a diverse set of algorithms for the benchmarking
of the graph algorithm library we developed, and due to this reason we detail them in
Section 2.2.4.

2.2.2 Vertex Ranking

Establishing relative importance between vertices in a graph is a problem that has
drawn much attention. There are applications of graph theory to real-world scenarios
where it is desired to know the most important vertices. But the definition of impor-
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tance will vary depending on the context. For example, in social network analysis,
there may be interest in knowing which users are able to propagate information with
maximum visibility (so the most important users are potentially those with the bigger
audiences). Depending on the problem and data exploration needs, the criteria may
vary, but the desire remains to place the users (vertices) on an axis, typically from most
to least important.

This implies the attribution of an individual score to each vertex, according to some
reasoning of criteria. Such a task has been explored in the past, taking the form of ver-
tex centrality algorithms, or ranking of vertices. Scoring schemes known as centrality
measures exist with different levels of refinement. One may directly attribute the score
of a vertex to its degree (degree centrality). More refined methods of measuring the
score of a vertex account for its number of incoming edges and the weights of their
respective sources. Eigen centrality (Newman 2010) and Katz centrality (Katz 1953) are
important approaches. In the literature, one may find these and other centrality mea-
sures (Koschützki, Lehmann, Peeters, Richter, Tenfelde-Podehl, and Zlotowski 2005; Qi,
Fuller, Wu, Wu, and Zhang 2012), with variations in both their definitions and targeted
applications such as electrical power grid analysis (Wang, Scaglione, and Thomas 2010)
and influence in social networks (Grando, Noble, and Lamb 2016), as well as the algo-
rithms employed to compute them. Perhaps the most well-known measure is PageR-
ank (Newman 2010), of which there are many applications and refinements (Berkhin
2005).

The original PageRank algorithm (Page, Brin, Motwani, and Winograd 1999) ini-
tializes all vertices with the same value. In this document, we focus on a vertex-centric
(an approach to define computation over graphs and detailed in Chapter 3) implemen-
tation of PageRank, having used it as a case-study, where for each iteration, each vertex
u sends its value (divided by its outgoing degree) to each outgoing edge. A vertex v
defines its score as the sum of values received from its incoming edges, multiplied by
a constant factor β and then summed with a constant value (1 − β) with 0 ≤ β ≤ 1.
PageRank, based on the random surfer model (Blum, Chan, and Rwebangira 2006),
uses β as a dampening factor. If the PageRank of a vertex represents the probability that
a web surfer would visit the page, then the β factor represents the chances of the surfer
switching to another random page. This process terminates when a maximum number
of iterations has been reached, or when the values have converged within a predefined
limit (David and Jon 2010). Chapter 4 analyses details related to how PageRank may
be implemented and how we evaluated it under our approximate processing model in
VEILGRAPH.

2.2.3 Clustering and Community Detection

Graph clustering is a problem which arises in several domains, with the goal of
finding groups that are homogeneous (in the sense that the vertices contained in a graph
cluster probably share common properties) and under certain separation criteria. Al-
gorithms for this may try to optimize for a specific set of parameters or try to apply
knowledge about the underlying data. Clustering may vary depending on whether soft
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or hard clustering is considered. This is usually formalized by defining a quality mea-
sure which may differ with the problem domain. When analysing graph community
structure, an attempt is made to evaluate the separation of sparsely connected dense
subgraphs from each other. Formally, let G = (V,E) be an undirected graph. A non-
overlapping clustering or partition P of G is a collection of sets {V1, ..., Vk}, with k ∈ N,
such that Vi 6= ∅ for 1 ≤ i ≤ k, Vi ∩ Vj = ∅ for 1 ≤ i < j ≤ k, and

⋃
1≤i≤k Vi = V .

Ideally, a system would be able to compute the changes impacting the graph with
enough speed, that is, so that the human end-users of the system do not suffer a negative
experience (typically manifested by their awareness of the computational delay). Like-
wise, the clients of these computations (performed in Software-as-a-Service infrastruc-
tures for example) could be automated software components which must have their
data queries solved under strict time constraints. Furthermore, if the graph represents
a social network, such as Facebook with its vast user base and colossal amount of edges
and graph properties (Ching, Edunov, Kabiljo, Logothetis, and Muthukrishnan 2015), it
is highly unrealistic to assume that graph operations occur sequentially, which means
that an operation will have consequences in terms of both the amount of data affected
and the way different agents interact in the graph. The degree to which hardware
resources can be employed for parallel processing in graph clustering algorithms de-
pends heavily on the nature of the computation performed (and is further discussed in
Chapter 3). This section presents some of the most relevant graph clustering methods
in the literature:

• Louvain Method. A greedy optimization method, able to identify communi-
ties (again, a subset of clustering variants) in large networks. For an undirected
graph G = (V,E), this technique has an apparent 1 computational complexity of
O(|V | log |V |); it requires effort almost linear in the |V | number of vertices of the
graph. It is not unusual to encounter the term Louvain Modularity in the literature.
That is the name of the metric which the Louvain Method attempts to optimize (Blon-
del, loup Guillaume, Lambiotte, and Lefebvre 2008). It has been used to explore the
problem of partitioning social networks onto different machines and to identify dy-
namic communities in dynamic social networks (inherent in mobile networks). The
modularity of a partition is defined as a scalar value in the interval [−1, 1], mea-
suring the amount of edges contained inside communities versus the edges across
communities. Modularity in fact measures the fraction of edges in the network that
connect within-community edges minus the expected value of the same quantity in a
graph network with the same community divisions, but random vertex connections.
If the number of edges connecting same-community vertices is much lower than that
of the random network, modularity can become negative. However, most methods
that calculate modularity typically do not produce values lower than those obtained
when each vertex is its own community (and that scenario would yield a negative
value). Values are usually between the value of that scenario and the upper bound

1No formal proof exists in the literature, this is based on experimental results by researchers.
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of 1. In the literature one may find a definition such as the following:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj) (2.5)

In it, m and ki are defined as:

m =
1

2

∑
ij

Aij ki =
∑
j

Aij (2.6)

Where A is a weight matrix with element Aij representing the weight of an edge be-
tween a vertex i and a vertex j, m is half of the sum of all elements of A and ki is the
sum of the weights of the edges attached to vertex i (the sum of row i of matrix A). δ
is the Dirac delta function. Modularity Q has been used as both a quality assessment
of partitioning methods and also as an optimization problem in itself. The method
works by iterating until no further increases in modularity occur. Initially, each ver-
tex is its own community. For every vertex i, the potential gain in the modularity
from moving a vertex out of its own community (thus acting as an isolated vertex)
and into each of its neighbours’ communities is calculated through a similar formula.
In the literature, this main method of operation is said to be using a heuristic called
local moving heuristic (Waltman and van Eck 2013). Essentially, if vertex i is moved
into 2 a community C, the change in modularity may be obtained with the following
expression:

∆ Q =

[∑
in +ki,in
2m

−
(∑

tot +ki
2m

)2]
−
[∑

in

2m
−
(∑

tot

2m

)2

−
(
ki
2m

)2]
(2.7)

For this expression,
∑

in is the sum of the weights of the edges in community C and∑
tot is the sum of the weights of the edges incident to vertices in C and ki,in is the

sum of the weights of edges between vertex i and vertices of community C. Other
symbols retain the previous meaning. Phase two consists in building a new network
where vertices are new communities found during the previous phase. Weights of
edges between new vertices (which are the communities established during phase
one) are the sum of weight of edges between vertices in the two corresponding com-
munities.

As shown in Figure 2.3, a visual notion of hierarchy emerges as the algorithm pro-
gresses. This algorithm is unsupervised and it is considered fast; albeit proof of
linearity is missing, simulations on large ad hoc modular networks suggest its com-
plexity is linear on typical and sparse data (Blondel, loup Guillaume, Lambiotte, and
Lefebvre 2008).

The aforementioned method, as a modularity optimization technique, incurs res-
olution limitations regarding the size of communities, as noted in (Fortunato and

2The removal of a vertex i from a community C also has a similar formula.
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G0 : Q0 G1 : Q0 < Q1 < Q2 G2 : Q2

Figure 2.3: Repetition of the Louvain Method for the 30-clique example shown
in Blondel, loup Guillaume, Lambiotte, and Lefebvre (2008). After the first pas-
sage of the two phases of the algorithm, there is graph G1 with thirty communities.
Executing one more phase leads to even bigger vertices in graph G2. Visually, it-
eration of the method occurs from left to right, with ever-increasing modularity:
Q0 < Q1 < Q2.

Barthélemy 2007; Fortunato and Hric 2016). However, it is important to retain that
this method yields different community resolution levels as iterations progress. As
such, and as its authors suggest, the sequence of iterations produces heterogeneous
community configurations, depending on the execution step. This could allow end-
users to zoom in the network and observe it with a specific resolution, depending on
how much the two phases are iterated.

• Label Propagation. Label propagation algorithms do not on their own involve mod-
ularity optimization. Their application for community detection is therefore scale-
independent and not affected by the previously mentioned community size resolu-
tion limit. Label propagation typically starts with each vertex being associated to
a unique label. In every iteration, the label of each vertex is updated by choosing
the label that most of its neighbours have (maximal label). Tie-breaking between
multiple maximal labels can be done with random label picking. An example of a
basic label propagation algorithm proposal can be found in (Leung, Hui, Liò, and
Crowcroft 2009).

In more elaborate variants of label propagation, score measures may be employed to
account for the weights of the edges (Raghavan, Albert, and Kumara 2007). Scoring
was incorporated to deal with epidemic labels (covering for example over 50% of the
vertex count), which override smaller communities lacking strong-enough edges.

A variant of label propagation is the Layered Label Propagation (LLP) method (Boldi,
Rosa, Santini, and Vigna 2011), devised to tackle the problem of resolution limits. It
verified the hypothesis posed by the authors of the Louvain Method – they suggested
the generation of different community resolution hierarchy levels, depending on the
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execution step. LLP is a parameter-free scalable clustering algorithm that can reorder
large graphs, with vertex count |V | in the order of billions. Originally, it was devised
whilst exploring ways to improve graph compression (this work was a ramification
of prior research on web graph compression) by harnessing graph ordering. A parti-
tion induces an ordering, and the appropriateness of the partition may be measured
by comparing an original order with the possible refinements brought about by the
induced ordering. For a given graph G = (V,E) and a partitioning U , the entropy
as a function of the partition (please refer to (Boldi, Rosa, Santini, and Vigna 2011)
for additional in-depth detail on mathematical clarity) is defined as:

H(U ) = −
R∑
i=0

|Ui|
|V |

log

(
|Ui|
|V |

)
(2.8)

Each sub-component of the partition is identified by Ui and R is the number of sub-
components. The contextual basis of Layered Label Propagation was the web graph,
in which vertices represent web pages (URLs). Considering that, it was found in pre-
vious work (Boldi and Vigna 2004b) that lexicographical ordering of vertices (based
on the URLs) yielded better compression capabilities. In that regard, and to assess the
power of Layered Label Propagation (and other methods which produce orderings),
the authors make use of another statistical artifice, the variation of information be-
tween a given intrinsic partition H and a respective refinement based on an ordering
π (which translates into a partition represented as H|π). After some manipulations,
they arrive at the following formula:

VI(H ,H|π) = H(H|π)−H(H ) (2.9)

The core principle of this heuristic is that a lower variation of information implies
that the ordering is more desirable or of better quality. The major fact pertaining this
method is that initially it was motivated by the study of web graphs, but it was also
applied to social network data sets. Making use of the previous formulations, and
based on generic label propagation algorithms in the literature, the Layered Label
Propagation algorithm was implemented. It is an iterative algorithm that produces
a sequence of vertex orderings. For each iteration, the Absolute Potts Model (APM)
algorithm (Ronhovde and Nussinov 2010) is executed. APM has a resolution param-
eter γ which describes a specific community resolution of the graph. Intuitively, as
observed by the authors, optimality as a notion does not apply to γ: different values
for it simply produce descriptions of the graph at various resolution levels. Lower
values of γ showcase a coarser graph structure with sparser and bigger clusters, and
increasing the value produces smaller and denser clusters, uncovering a finer struc-
ture. The algorithm is such that it produces an order of the graph keeping vertices
with the same label close to one another in the ordering. For K iterations, each itera-
tion iwill be subjected to a chosen γi. In line with the previous note on the (lacklustre)
merit of optimizing γ, rather than trying to find an optimal value for each iteration,
γi is instead uniformly drafted at random from the set {0} ∪ {2−i, i = 0, ...,K}. This
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conclusion was reached through experimental results; optimizing γ on each iteration
was not computationally efficient.

• K-means clustering. Another variant of clustering, rooted in signal processing,
which has the objective of partitioning n observations into k clusters, such that each
observation belongs to the graph cluster with the nearest mean. The k-means is a
point-assignment type of family of clustering algorithms (a heuristic-based variant
is Lloyd’s algorithm). It works under the assumption that the number of clusters k
is known a priori and execution occurs in the context of an Euclidean space. De-
spite this, methods exist which entail a trial-and-error approach to determining k. A
high-level conceptual description of the algorithm is presented.

Basic k-means pseudo-code
INPUT: Graph G = (V,E)
OUTPUT: Collection of sets {P1, P2, ..., Pk} : P = P1 ∪ P2 ∪ ... ∪ Pk = V , as per
Sec. 2.2.3
1: L ←− CHOOSE(V, k)
2: P ←− DEFINE-CLUSTERS(L, V )
3: for each point w ∈ V \ L:
4: index ←− FIND-CLOSEST-CENTROID(P,L,w)
5: Pindex ←− Pindex ∪ w (Expectation)
6: UPDATE-CENTROID(Pindex) (Maximization)

It is suggested (Chapter 7 of (Leskovec, Rajaraman, and Ullman 2014)) that k-means
should be executed with increasing values of k = 1, 2, 4, 8, .... The formulation be-
hind the suggestion is that eventually, a value v will be found such that, for varia-
tions of k ∈ [v, 2v], there will be little change in the measure of graph cluster cohe-
sion used. Lines five and six of the presented pseudo-code should receive particular
attention: in reality, the k-means algorithm iteration cycle can be described as hav-
ing an expectation step (line five) followed by a maximization step (line six). This
constitutes an incarnation of the expectation-maximization algorithm (EM for short).
In (Murphy 2012), the expectation-maximization introduction defines the following
equation, which is the expected complete data log likelihood:

Q(θ, θt−1) = E[lc(θ)|D, θt−1] (2.10)

In this equation, θ represents the unknown state of nature, D the observed data, t is
the current iteration number and Q is called the auxiliary function. 3 It makes use of
the complete data log likelihood lc, defined as:

lc(θ) ,
N∑
i=1

log p(xi, zi|θ) (2.11)

3Concretely, what is calculated in the expectation step are the fixed data-dependent parameters of the
function Q.
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The missing data is zi, in this case representing the assignment of vertices to commu-
nities. Here zi represents {q}, the model’s parameters {π} are implicit and there is a
direct mapping to the amount of clusters {k}. K-nearest neighbours is a supervised
learning method for classification.

• Nearest neighbours clustering. Delving further into clustering, it may be inter-
preted as a general baseline algorithm for minimizing arbitrary clustering objective
functions. It is in fact a single-link clustering technique: an agglomerative (bottom-
up hierarchical clustering) method. For each step, the closest pair of clusters (pair
of elements in the data set in the first iteration) are chosen, with the clusters being
merged. Naive versions of this algorithm have a computational complexity rang-
ing from O(|V |2) to O(|V |3) which, coupled with its greedy (without making use of
backtracking mechanisms) nature, constitute relative drawbacks. The algorithm be-
gins with every vertex v as its own graph cluster. After |V |−1 iterations have ensued,
a single graph cluster (binary tree) remains. It should then be cut at a parametrized
depth to produce a specific partitioning (the result of clustering may be seen using a
representation such as a dendrogram). A visual example of such a distance-specific
hierarchy is displayed in Figure 2.4. A major configuration of this algorithm resides
in the choice of distance function between clusters. 4 This graph cluster distance may
be mathematically written as:

D(A,B) = min
a∈A,b∈B

d(a, b) (2.12)

Where A and B are any two clusters and d(a, b) represents the distance between two
elements a and b of each graph cluster. The description provided so far is a naive ver-
sion, sharing many similarities with Kruskal’s (Kruskal 1956) minimum spanning
tree algorithm. Improved methods exist: in particular, it has been pointed out in
the literature that better results may be achieved by running Prim’s algorithm (Prim
1957) for spanning trees before Kruskal’s. The idea is to use Prim’s algorithm with-
out priority queues, using O(|V |) space and O(|V |2) execution time. This results in a
minimum spanning tree of the elements and distances (this tree is actually a sparse
graph). Afterwards, Kruskal’s algorithm may be put to use over the edges of the
minimum spanning tree, finally producing the clustering; additional space require-
ments of O(|V |) and O(|V | log |V |) ensue. Ultimately, this variant has a temporal
complexity improvement, ensuring its bound is O(|V |2).

2.2.4 Pathfinding

The task of finding a path is of utmost importance, whether it serves the purpose
of generating an efficient path when we wish to travel, by car or foot, from a starting
point to a target destination or to find paths of minimum length between vertices. We
list here some of the most well-known variants.

4Variants exist depending on the definition of graph cluster distance: single-link or minimum distance,
complete-link or maximum distance, average distance and mean distance.
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Figure 2.4: A dendrogram distance-based cut example which was handed a graph clus-
ter at iteration number |V | − 1. As the cutting distance d is changed, one operates with
different degrees of clustering resolution.

• Breadth-first Search (BFS). A type of graph search algorithm which, starting from
a specific source vertex s in a graph G, will systematically explore edges to find
vertices that are accessible from s. This algorithm calculates the smallest distance
from s to each vertex reachable from it. Its process of reaching vertices is based on
finding all vertices within a perimeter k of s before exploring perimeter k+1. The
worst-case running time complexity for BFS is O(|V |+ |E|) and space complexity
is O(|V |).

• Depth-first Search (DFS). Similar to the previous one, but instead of exploring
all vertices for a specific perimeter size k before increasing the perimeter, depth is
explored as far as possible (the priority is depth rather than breadth). That is, with
the process starting from a source vertex s, edges of the most recently reached
vertex v are explored first. When the algorithm has explored all of the vertices of
v, the search moves to the parent of v to process the parent’s unexplored edges.
This process continues until all of the vertices have been discovered. The worst-
case running time complexity for DFS is O(|V | + |E|) and space complexity is
O(|V |). Time and space complexities are the same as BFS.

• Dijkstra’s algorithm. An algorithm to solve the single-source shortest-paths
problem on weighted, directed graphs (with non-negative weights). It maintains
a set S of vertices for which the weights of the shortest paths from the source
s have been determined already. This algorithm repeatedly selects the vertex
v ∈ V − S which has the minimum shortest-path estimate and then relaxes its
edges (updating estimates of the out-neighbours of v).



3State-of-the-Art:

Survey

This chapter incorporates our findings, detailed in our submission (Coimbra, Fran-
cisco, and Veiga 2021), from studying the landscape of graph processing. We firstly
reference contributions providing insights on the profile of users and developers in-
terested in graph processing. This is followed by an analysis of different approaches
to defining computation over graphs - should operations be conceptually applied to
edges, vertices or parts of the graph? How should systems be designed to enable
parallel and distributed processing of graphs? We detail approaches on the nature
of workloads found in graph processing and definitions of dynamism - what does it
mean to process a dynamic graph, or what is implied by having to keep the result of
computations up-to-date in the advent of the graph changing due to topological up-
dates? Herein we explore approaches in the literature to such questions and then pro-
vide an exhaustive list of graph processing and storage architectures, with works from
academia and industry grouped by architecture types.

Our survey on the landscape of graph processing was written to provide specific
insight for experienced researchers and developers facing a more complex use-case, as
well as awareness of important aspects of graph processing for novices. Most of these
systems were analysed as part of related work of our publications and contributions.

3.1 Motivation

The recent years have seen a positive tendency in the field of all things related
to graph processing. As its aspects are further explored and optimized, with new
paradigms proposed, there has been a proliferation of multiple surveys (Malicevic,
Roy, and Zwaenepoel 2014; Han, Daudjee, Ammar, Özsu, Wang, and Jin 2014; Kalavri,
Ewen, Tzoumas, Vlassov, Markl, and Haridi 2014; Kalavri, Vlassov, and Haridi 2017;
Heidari, Simmhan, Calheiros, and Buyya 2018; Sahu, Mhedhbi, Salihoglu, Lin, and
Özsu 2017; Soudani, Fatemi, and Nematbakhsh 2019). They have made great contribu-
tions in systematizing the field of graph processing, by working towards a consensus of
terminology and offering discussion on how to present or establish hierarchies of con-
cepts inherent to the field. Effectively, we have seen vast contributions capturing the
maturity of different challenges of graph processing and the corresponding responses
developed by academia and industry.

This review of the literature highlights recent contributions in computational graph
representations and systems addressing graph processing, targeting algorithms such
as community detection and vertex centrality. The study was conducted as part of a
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larger context of big data, dynamic graphs and the emerging roles of approximate and
incremental computing.

Herein we perform an exhaustive analysis of existing solutions for graph process-
ing and storage. To provide context, we detail in Section 3.2 an analysis of the profiles
of individuals interested in graph-oriented data solutions and their use-cases (Sahu,
Mhedhbi, Salihoglu, Lin, and Özsu 2017). In Section 3.3 we go over known conceptual
models and query languages to represent graphs from the perspective of performing
queries over the semantics of the graph (e.g. querying the graph of a social network to find
all users who live in England and have three degrees of separation from the football coach José
Mourinho but no less than five from Her Majesty).

In Section 3.4 we present the different levels of granularity used in graph process-
ing solutions to represent elements of computation and in Section 3.5 we delve into the
problem of graph partitioning and its connection to enabling parallel and distributed
computing. Section 3.6 gathers and explains different definitions associated to the idea
of dynamism in graphs and in Section 3.7 we show two relevant workload types regard-
ing graph processing. Afterwards we present and compare existing solutions for graph
processing grouped by architectures such as single-machine solutions (Section 3.8),
high-performance computing (Section 3.9) and distributed systems (Section 3.10), as
well as graph databases (Section 3.11). Lastly we provide remarks on recent trends in
the graph processing landscape (Section 3.12).

3.2 Profile of Developers and Researchers

There has been a previous study on the profile of practitioners in both academia
and industry (Sahu, Mhedhbi, Salihoglu, Lin, and Özsu 2017). To our knowledge, it
has been the first one to identify the profile of users and the types of computational
tasks they need to process over graphs. Specifically, this is the result of an online survey
aiming to establish: 1) the types of graph data used; 2) the computations users run on
their graphs; 3) the softwares used to perform computations; 4) the major challenges
faced by users when processing the graph data.

The authors share five main findings as a result of their online survey, namely that:
there is variety in the data represented with graphs; very large graphs are present from
small to large enterprises; the ability to process very large graphs efficiently is still
the biggest limitation of existing software; the second most desired ability is visualiza-
tion, related to challenges in graph query languages; relational database management
systems (RDBMSes) are still relevant in managing and processing graphs.

This survey (Sahu, Mhedhbi, Salihoglu, Lin, and Özsu 2017) was important as it
highlighted that graphs falling in the realm of big data are still the top priority for
innovative solutions, thus further motivating the importance of concisely defining the
landscape of graph processing and different ways in which the need to process big
graphs manifests. The processing of a graph can take place from different perspectives
such as vertices, edges or parts of the graph. These perspectives can more naturally
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Figure 3.1: Illustration of the property graph model, inspired by the memory of Profes-
sor Paul Erdős.

represent one type of graph computation than other.

3.3 Property Model and Query Languages

In this section we detail languages, models and subsequent standards for querying
graph-based data. The property graph model defines the organization of interrelated
data as nodes (vertices), relationships (edges) and the properties of both types of ele-
ments (Neo4j 2020b). Instances of this model are usually found coupled to the design
of graph databases and at the level of graph query languages (Rodriguez 2015a; van
Rest, Hong, Kim, Meng, and Chafi 2016; Angles 2018; Green, Junghanns, Kießling, Lin-
daaker, Plantikow, and Selmer 2018). Figure 3.1 shows a depiction of the properties that
may be associated to vertices and edges in the context of the property graph model.

The ISO SQL Committee has accepted on September 2019 the Graph Query Lan-
guage project proposal (JCC Consulting 2020), to enable SQL users to use property
graph style queries on top of SQL tables. This will promote the interoperability between
SQL databases and graph databases and constitutes an important mark in the approx-
imation between graph-structured data and the databases that support it, an area that
has been studied for decades (Sheng, Ozsoyoglu, and Ozsoyoglu 1999; He and Singh
2008). The language standards engineering team of Neo4j identify the following cor-
nerstones regarding the growing popularity of the property graph model (Plantikow
2019):

1. An intuitive model geared for application developers.

2. Ability of rapid prototyping with schema-optionality.

3. Availability of native graph databases.
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4. Declarative query languages focusing on ease of use with graph pattern matching
and visual syntax, top-down linear statement order and language composability.

3.3.1 Graph Query Languages

The access to elements offered by graph databases is performed by means of spe-
cific query languages. There are even projects focused on analytics which offer the
ability to explore datasets using graph query languages without actually running a
graph database, such as GRADOOP (Junghanns, Kießling, Teichmann, Gómez, Peter-
mann, and Rahm 2018) and GraphFrames (Mishra and Raman 2019). Languages such
as Cypher even support queries on graphs which produce new graphs (for example
to represent specific entities and relationships of the original graph) upon which to run
further queries. Here we list some of the most relevant graph query languages (and
proposals in the scope of graph query languages), projects that structure the access to
graph-based data as well as open-source constructs that form their basis.

• Cypher. An evolving graph query language (Francis, Green, Guagliardo, Libkin,
Lindaaker, Marsault, Plantikow, Rydberg, Selmer, and Taylor 2018) which de-
buted with Neo4j’s entrance in the field of graph databases. There have been
efforts to adopt and develop the language in an open-source approach (Green,
Junghanns, Kießling, Lindaaker, Plantikow, and Selmer 2018). Cypher has been
an open and evolving language as part of the openCypher project (Horn and Ry-
dberg 2020). The project has members involved in aspects such as synergy of en-
gineering efforts with Apache Spark (Zaharia, Chowdhury, Franklin, Shenker,
and Stoica 2010), a language group and even interoperability features for systems
that use Gremlin. This graph query language heavily influenced the ISO project
for creating a standard graph query language (Neo4j 2018) and has a syntax fa-
miliar to developers with knowledge of SQL. Cypher queries may be run on the
following databases: Neo4j, Graphflow (Kankanamge, Sahu, Mhedbhi, Chen,
and Salihoglu 2017), RedisGraph (Cailliau, Davis, Gadepally, Kepner, Lipman,
Lovitz, and Ouaknine 2019), SAP Hana Graph (Rudolf, Paradies, Bornhövd,
and Lehner 2013) and all databases where Gremlin is supported (Neo4j 2019).
This language is also used to express computation in GRADOOP (Junghanns,
Kießling, Averbuch, Petermann, and Rahm 2017) and the Python Ruruki (Op-
tiver 2016) lightweight in-memory graph database.

• Gremlin. A graph traversal machine and language, developed in scope of the
Apache TinkerPop project (Foundation 2019b). This project’s development
and growth was promoted by the now-defunct Titan graph database (Aure-
lius 2015) which was forked into the open-source JanusGraph database (Janus-
Graph Authors 2017) and the commercial DataStax Enterprise Graph so-
lution. The traversal machine of Gremlin is defined as a set of three compo-
nents (Rodriguez 2015a): the data represented by a graph G, a traversal Ψ (in-
structions) which consists of a tree of functions called steps; a set of traversers T
(read/write heads). With this composition, Gremlin and its traversal machine
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enable the exploration of multi-dimensional structures that model a heterogeneous
set of “things” related to each other in a heterogeneous set of ways as detailed in (Ro-
driguez 2015a; Rodriguez 2015b). A traversal evaluated against a graph may gen-
erate billions of traversers, even on small graphs, due to the exponential growth
of the number of paths that exist with each step the traversers take. Databases
supporting Gremlin include OrientDB (Tesoriero 2013), Neo4j (Webber 2012),
DataStax Enterprise (DataStax, Inc. 2016), InfiniteGraph (Objectiv-
ity 2016), JanusGraph (JanusGraph Authors 2017), Azure Cosmos DB (Paz
2018) and Amazon Neptune (Bebee, Choi, Gupta, Gutmans, Khandelwal, Ki-
ran, Mallidi, McGaughy, Personick, Rajan, et al. 2018), while the graph process-
ing systems that allow its use are Apache Giraph (Ching 2013) and Apache
Spark (Armbrust, Xin, Lian, Huai, Liu, Bradley, Meng, Kaftan, Franklin, Ghodsi,
and Zaharia 2015).

• SPARQL. The standard query language for RDF data (triplets), also known as the
query language for the semantic web. We mention it due to its graph pattern
matching capability (Pérez, Arenas, and Gutierrez 2009) and scalability potential
of querying large RDF graphs (Huang, Abadi, and Ren 2011). As RDF is a di-
rect labelled graph data format, SPARQL becomes a language for graph-matching.
Its queries have three components: a pattern matching part allowing for pattern
unions, nesting, filtering values of matchings and choosing the data source to
match by a pattern; a solution modifier to allow modifications to the computed
output of the pattern, such as applying operators as projections, orderings, lim-
its and distinct; the output, which can be binary answers, selections of values
for variables that matched the patterns, construction of new RDF data from the
values or descriptions of resources. While graph databases may not necessar-
ily be triplet stores, the graph query languages they support may allow for ex-
ample that the RDF-specific semantics of a SPARQL query may be translated to
Cypher, Gremlin or another language. SPARQL is also supported (analytics)
over GraphX (Schätzle, Przyjaciel-Zablocki, Berberich, and Lausen 2015) and the
higher-level graph analytics tool GraphFrames (Bahrami, Gulati, and Abulaish
2017). Among the graph databases that support this language we have Amazon
Neptune (Bebee, Choi, Gupta, Gutmans, Khandelwal, Kiran, Mallidi, McGaughy,
Personick, Rajan, et al. 2018) and AllegroGraph (Inc. 1984) (the later two more
oriented to the purpose of RDF).

• GraphQL. A framework developed and internally used at Facebook for years
before its reference implementation was released as open-source (Facebook, Inc.
2016). It introduced a new type of web-based interface for data access. As a
framework, one of its core components is a query language for expressing data
retrieval requests sent to web servers that are GraphQL-aware. The queries
are syntactically similar to JavaScript Object Notation (JSON). The
GraphQL specification implicitly assumes a logical data model implemented
as a virtual, graph-based view over an underlying database management sys-
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tem (Hartig and Pérez 2017). It has been studied with the semantics of its queries
formalized as a labelled-graph data model and the total size of a GraphQL
response shown to be computable in polynomial time (Hartig and Pérez 2018).
GraphQL is more than a query language - it defines a contract between the back-
end and front-end over an agreed-upon type system, forming an application data
model as a graph. It is useful as it proposes a decoupling between the back-end
and front-end, allowing each component to be changed independently of the
other. For example, to serve queries in the graph, the data in the back-end could
come from databases (e.g. Neo4j as the back-end serving GraphQL queries
received at a web endpoint (Neo4j 2020a)), in-memory representations or other
APIs.

• PGQL. The Property Graph Query Language, based on the paradigm of
graph pattern matching (van Rest, Hong, Kim, Meng, and Chafi 2016). It closely
follows the syntactic structures of SQL, providing regular path queries with con-
ditions on labels and properties to enable reachability and path finding queries.
The data types it defines are the intrinsic vertex, edge, path and also an intrinsic
graph type, allowing for graph construction and query composition. It was moti-
vated by the fact that SPARQL is the RDF standard query language, thus imposing
that graphs be represented as a set of triples (or edges), and by Cypher’s lack of
support for regular path queries and graph construction as fundamental graph
querying functionalities. PGQL also provides tabular output, allowing its queries
to be naturally nested inside SQL queries, allowing for easy integration into exist-
ing database technology. It is used in Oracle’s products.

• G-Log. A declarative query language on graphs which was designed to combine
the expressiveness of logic, the modelling of complex objects with identity and
the representations enabled by graphs (Paredaens, Peelman, and Tanca 1995). The
authors describe it as a deductive language for complex objects with identity, with a
data model that captures the modelling capabilities of object-oriented languages,
although lacking their typical data abstraction features which are related to sys-
tem dynamism. They claim G-Log may be seen as a graph-based symbolism for
first-order logic and they prove that all sentences of first-order logic may be writ-
ten in G-Log. Secondly, they define the semantics of the language for database
query evaluation. Lastly, the authors state that due to being a very powerful lan-
guage, its computation could be unnecessarily inefficient in the most general case.
We mention G-Log as it is historically relevant due to highlighting the importance
and expressiveness of graph-based data models in manipulating the relationships
between data.

A study on these aspects inherent to graph-structured data has been performed
using different data models (RDF, property graph and relational model) and a sam-
ple of systems (RDF: Virtuoso (Erling 2012), TripleRush (Stutz, Verman, Fischer,
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and Bernstein 2013); graph databases: Neo4j, Sparksee (Martinez-Bazan, Gomez-
Villamor, and Escale-Claveras 2011); relational database: Virtuoso) that offer the
models (Gubichev and Then 2014). These systems were compared using LUBM, a well-
known and used synthetic RDF benchmark (Guo, Pan, and Heflin 2005).

The authors observe there is greater verbosity when implementing queries in
Sparksee due to its design of delegating the execution plan implementation to the
developer, as opposed to using declarative languages like Cypher. They also reiterate
the importance of cost-based query optimization within query engines. Query patterns
used in the literature fall in the following categories (van Rest, Hong, Kim, Meng, and
Chafi 2016; Gubichev and Then 2014): single triple patterns satisfying a given condi-
tion; matches on the vertices that are adjacent and edges that are incident to a given
vertex; triangles, which look for three vertices adjacent to each other; paths of fixed or
variable length.

Query languages for graphs are not a recent concept. This section presents an
overview of the most relevant ones found in the literature to illustrate the existing de-
sire for high-level tools to describe the manipulation of graphs. In our literature review,
we go over many systems for the processing and storage of graphs. We note that many
such systems offer developers methods to operate on graphs through APIs in popular
programming languages.

However, we point out that there are systems which have added support for graph
query languages in some form or another (such as the aforementioned GRADOOP and
GraphFrames) to facilitate their use by more analysts and developers. From low-
level implementations, to using APIs all the way to high-level query languages, there
is progress to be made in enabling interoperability between these levels, whether to
enable an existing system to be used by those who only know a graph query language,
or to build a common API over low-level functions to allow developers to more easily
switch components in a system.

3.4 Graph Processing: Computational Units and
Models

Here we detail the most relevant paradigms and computational units used to ex-
press computation in graph processing systems. Programming models for graph pro-
cessing have been studied and documented in the literature (Kalavri, Vlassov, and
Haridi 2017; Heidari, Simmhan, Calheiros, and Buyya 2018). They define properties
such as the granularity of the unit of computation, how to distribute it across the clus-
ter and how communication is performed to synchronize computational state across
machines.

3.4.1 Unit: Vertex-Centric (TLAV)

The vertex-centric paradigm, also known as think-like-a-vertex (TLAV), debuted
with Google’s Pregel system (Malewicz, Austern, Bik, Dehnert, Horn, Leiser, and
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Czajkowski 2010). An open-source implementation of this model known as Apache
Giraph (Ching 2013) was then offered to the public. Other example systems that were
created using that model are GraphLab (Low, Gonzalez, Kyrola, Bickson, Guestrin,
and Hellerstein 2014b), PowerGraph (Gonzalez, Low, Gu, Bickson, and Guestrin 2012),
PowerLyra (Chen, Shi, Chen, and Chen 2015). As the unit of computation is the vertex
itself, the user algorithm logic is expressed from the perspective of vertices. The idea is
that a vertex-local function will receive information from the vertex’s incoming neigh-
bours, perform some computation, potentially update the vertex state and then send
messages through the outgoing edges of the vertex. A vertex is the unit of paralleliza-
tion and a vertex program receives a directed graph and a vertex function as input. It
was then extended to the concept of vertex scope, which includes the adjacent edges of
the vertex. The order of these steps will vary depending on the type of vertex-centric
model used (scatter-gather, gather-apply-scatter).

3.4.2 Model: Superstep Paradigm

In a superstep S, a user-supplied function is executed for each vertex v (this can be
done in parallel) that has a status of active. When S terminates, all vertices may send
messages which can be processed by user-defined functions at step S + 1.

3.4.3 Model: Scatter-Gather

Scatter-gather shares the same idea behind vertex-centric but separates message
sending from message collecting and update application (Stutz, Bernstein, and Cohen
2010). In the scatter phase, vertices execute a user-defined function that sends messages
along outgoing edges. In the gather phase, each vertex collects received messages and
applies a user-defined function to update vertex state.

3.4.4 Model: Gather-Apply-Scatter

Gather-Sum-Apply-Scatter (GAS) was introduced by PowerGraph (Gonzalez,
Low, Gu, Bickson, and Guestrin 2012) and was aimed at solving the limitations en-
countered by vertex-centric or scatter-gather when operating on power-law graphs.
The discrepancy between the ratios of high-degree and low-degree vertices leads to
imbalanced computational loads during a superstep, with high-degree vertices being
more computationally-heavy and becoming stragglers. GAS consists of decomposing
the vertex program in several phases, such that computation is more evenly distributed
across the cluster. This is achieved by parallelizing the computation over the edges of
the graph. In the gather phase, a user-defined function is applied to each of the adjacent
edges of each vertex in parallel.

3.4.5 Unit: Edge-Centric (TLEV)

The edge-centric approach, also referred as think-like-an-edge (TLEV), was pop-
ularized by systems like X-Stream (Roy, Mihailovic, and Zwaenepoel 2013) and
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Chaos (Roy, Bindschaedler, Malicevic, and Zwaenepoel 2015) which specify the com-
putation from the point-of-view of edges. These systems made of use of this paradigm
to optimize the usage of secondary storage and network communication with cloud-
based machines to process large graphs.

3.4.6 Unit: Sub-Graph-Centric (TLAG)

The previous models are subjected to higher communication overheads due to be-
ing fine-grained. It is possible to use sub-graph structure to reduce these overheads
(also known as component-centric (Heidari, Simmhan, Calheiros, and Buyya 2018)). In
this category, the work of (Kalavri, Vlassov, and Haridi 2017) denotes two sub-graph-
centric approaches: partition-centric and neighbourhood-centric. Partition-centric instead
of focusing on a collection of non-associated vertices, considers sub-graphs of the orig-
inal graph. Information from any vertex can be freely propagated within its physical
partition, as opposed to the vertex-centric approach where a vertex only accesses the
information of its most immediate neighbours. This allows for reduction in communi-
cation overheads. Ultimately, the partition becomes the unit of parallel execution, with
each sub-graph being exposed to a user function. This sub-graph-centric approach
is also known as think-like-a-graph (Tian, Balmin, Corsten, Tatikonda, and McPherson
2013) (TLAG). Neighbourhood-centric, on the other hand, allows for a physical partition
to contain more than one sub-graph. Shared state updates exchange information be-
tween sub-graphs of the same partition, with replicas and messages for sharing be-
tween sub-graphs that aren’t in the same partition. For completion, we refer the reader
to an analysis of distributed algorithms on sub-graph centric graph platforms (Kakwani
and Simmhan 2019).

3.4.7 Model: MEGA

The MEGA model was introduced by Tux2 (Xiao, Xue, Miao, Li, Chen, Wu, Li,
and Zhou 2017), a system designed for graph computations in machine learning. The
model is composed of four functions defined by the user: an exchange function which
is applied to each edge and can change the value of the edge and adjacent vertices;
an apply function to synchronize the value of vertices with their replicas; a global sync
function to perform shared computations and update values shared among partitions; a
mini-batch function to indicate the execution sequence of other functions in each round.

There are graph processing systems that offer more than one type of model. To
achieve parallelism and harness multiple machines in clusters, it is necessary to define
how to break down the graph - we provide a high-level overview of methods employed
in most well-known graph processing solutions

3.4.8 Units and Models: Notes

This section presented different models for graph processing and the granular com-
putational units that enable them. Think-like-a-vertex (TLAV), known as the vertex-
centric paradigm, emerged as far as we know as part of the first proposed model for
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distributed graph processing with Pregel. This paradigm was then extended with
variations on the order of data processing and state updating with works such as
PowerGraph.

The other type of granular element of the graph, the edge, has also been explored
as a computational unit, manifesting as the edge-centric think-like-an-edge (TLEV) ap-
proach with X-Stream and Chaos. Reducing the level of granularity, one may find
coarser units such as the variants of the sub-graph-centric model like partition-centric
and neighbourhood-centric.

An awareness of the multiple models, even if not of the systems that presented
them, is relevant and helpful for developers. It enables the implementation of graph
processing logic in a more performance-oriented way. If using existing systems, know-
ing these models and sub-models is important as more than one may be offered by a
given framework. If building a completely new system, knowing existing approaches
will contribute to more informed design decisions.

3.5 Dimension: Partitioning

Graph partitioning is an important problem in graph processing, and this impor-
tance manifests in two formats. The first, is out of a user’s domain application with the
goal of splitting the graph in parts which provide a relevant view of the data. The sec-
ond, is when partitioning may be considered as a hyper-algorithm, that is, it is employed
to divide the parts of the graph across a computational infrastructure, typically within
the distributed systems’ coordination layer, or across processing units or cores within
machines. Machine loads in distributed graph processing systems depend on the way
computational units are distributed across workers. The communication between them
then depends on the number of units that are replicated. We observe that partition-
ing has a cyclical nature to itself in the scope of distributed processing: one may wish
to execute graph partitioning over a distributed system as part of a domain-specific
problem; however, before that graph algorithm can execute, the graph data also incurs
partitioning followed by distribution in the underlying (distributed) computational in-
frastructure. While the study of graph partitioning is not recent, it gained additional
depth in the last decade as the number of factors guiding optimization of partitioning
increased with the complexity of graph processing systems. We explore partitioning as
a relevant dimension to classify these systems as they must approach it in order to en-
able parallel computation over graphs. The way it is approached becomes a distinctive
feature between the systems.

Graph partitioning aims to divide the vertices of the graph into mutually-exclusive
groups and to minimize the edges between partitions. This is effectively a grouping
of the vertex set of the graph, which can represent a minimization of communication
between partitions, with each partition for example assigned to a specific worker in a
distributed system. Partitioning is a task that produces groups of vertices, but group-
ing vertices is not only achieved with partitioning. We note that other terms exist in
the literature such as clustering and community detection. They are not interchange-
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able, for if a clustering algorithm breaks down the graph into three clusters, it does not
necessarily hold true that each cluster represents its own community. As an example,
executing a clustering algorithm over a social network graph will result in a number
of clusters. If each cluster represents for example a different continent, that does not
necessarily mean each cluster represents one single community. Community detection
algorithms, on the other hand, consider properties such as the density and interconnec-
tions within communities. While clustering and community detection aim to identify
similarities between vertices, their underlying assumptions of the graph are not equal,
even though proposals have been made to map between these two tasks (Guidotti and
Coscia 2017). Graph clustering shares similarities with graph partitioning in the sense
that both produce groups of vertices. However, the objective functions they use are
defined differently and subject to different constraints. Graph partitioning, on which
we focus, for example, requires that the number of groups (partitions) is known before-
hand and is typically subject to more constraints.

An earlier work on balanced graph partitioning (Andreev and Racke 2006) defines
the problem as (k, v)-balanced partitioning: to divide the vertices of the graph into k
components of almost equal size, with each of size less than c · nk for a given constant
c > 1. It is a balanced k-way partitioning problem which has been studied in the
literature (Buluç, Meyerhenke, Safro, Sanders, and Schulz 2016). To consider the parti-
tioning problem as a challenge to enabling distributed processing, it is necessary to ask
if the goal is to distribute the vertices (edge cut model - EC) or the edges (vertex cut
model - V C) of the graph across machines in order perform it. We provide detail into
these problem formulations with an example of vertex-cut and edge-cut in Figure 3.2.
Furthermore, different combinations between computational unit and cut model are
possible: vertex-cut can be used to process in a vertex-centric (Mofrad, Melhem, and
Hammoud 2018) or edge-centric (Gonzalez, Low, Gu, Bickson, and Guestrin 2012) way,
and the same is possible using edge-cut used to partition a graph where computation
is vertex-specific (Bao and Suzumura 2013; Martella, Logothetis, Loukas, and Siganos
2017) or edge-specific.

3.5.1 Edge-Cut (EC)

Balanced k-way partitioning may be defined for edge-cut partitioning, which is
associated to vertex-centric (TLAV) systems, the most common computational model
in graph processing systems (Malewicz, Austern, Bik, Dehnert, Horn, Leiser, and
Czajkowski 2010; Gonzalez, Xin, Dave, Crankshaw, Franklin, and Stoica 2014; Sakr,
Orakzai, Abdelaziz, and Khayyat 2016). We reproduce the definition of (Soudani,
Fatemi, and Nematbakhsh 2019, Section 2) for this case, where for a given graph
G = (V,E), we wish to find a set of partitions P = {P1, P2, . . . , Pk}. These partitions
must be pairwise disjoint and their union is equal to V while following these condi-
tions (Soudani, Fatemi, and Nematbakhsh 2019):

min
P
|{e|e = (vi, vj) ∈ E, vi ∈ Px, vj ∈ Py, x 6= y}| (3.1)
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s.t.
maxi |Pi|

1

k

∑k
i=1 |Pi|

≤ ε (3.2)

Depending on the application objective for which this partitioning type will be per-
formed, Equation 3.2 should be adapted. For example, in the case of machines having
different characteristics, it should be considered that the load of any machine will be
less than the maximum computing power. Or if the graph structure is stored in sec-
ondary memory, the interest is on having balanced size partitions with high speed se-
quential storage access and decreasing the number of cut edges is no longer a focus.

3.5.2 Vertex-Cut (VC)

In the vertex-cut model, the goal is to distribute edges across partitions. They are
placed in different partitions, with vertices being copied in partitions which have their
adjacent edges. Care must be taken to balance the number of edges per partition (its
measure of size) and to minimize the number of vertex copies. This objective may be
formulated as such (Soudani, Fatemi, and Nematbakhsh 2019):

min
P

1

|V |
∑
v∈V
|P (v)| (3.3)

s.t.max
pi
|{e ∈ E|P (e) = pi}| ≤ ε

|E|
k

(3.4)

Vertex-cut achieves better performance than edge-cut for natural graphs such as
those representing web structure and social networks (Soudani, Fatemi, and Nemat-
bakhsh 2019).

3.5.3 Hybrid-Cut (HC)

Hybrid strategies can be employed to perform the cuts. They can for example be
guided with heuristics such as vertex degree in order to decide what to do with them.
The PowerLyra (Chen, Shi, Chen, and Chen 2015) system for example allocates the
incoming edges of vertices with low degree in a worker. It uses edge-cut for vertices of
low-degree and vertex-cut for high-degree vertices.

3.5.4 Stream-based partitioning

In these methods of partitioning, vertices or edges in the graph are analysed in suc-
cession in a stream. Placement decisions are made online, that is, when the vertices or
edges appear in the stream, and the decisions are based on the location of previous ele-
ments. This is done under the assumption that there will be no information on the edges
or vertices that will arrive in the flow of the stream. This type of method can rely on
edge-cut partitioning (e.g. Random heuristic and the Linear Deterministic
Greedy (Stanton and Kliot 2012), Gemini which uses chunk-based assuming adja-
cency list model (Zhu, Chen, Zheng, and Ma 2016), Fennel (Tsourakakis, Gkantsidis,
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Figure 3.2: Depiction of vertex-cut and edge-cut over the sample graph G.

Radunovic, and Vojnovic 2014)), vertex-cut partitioning (e.g. Grid heuristic (Jain,
Liao, and Willke 2013), PowerGraph greedy heuristic (Gonzalez, Low, Gu, Bickson,
and Guestrin 2012), Graphbuilder (Jain, Liao, and Willke 2013) placing the edge in
the smallest partition, HDRF (Petroni, Querzoni, Daudjee, Kamali, and Iacoboni 2015)
method which takes into consideration vertex degrees) and there are aspects of these
methods that will have different approaches regarding how this is achieved with par-
allel and distributed execution. Stream-based partitioning is also used as a good choice
for loading the graph as it does not have to be fully loaded in memory for partitioning.

3.5.5 Distributed Partitioning

Many distributed partitioning algorithms are based on label propagation algo-
rithms (Zhu and Ghahramani 2002; Gregory 2010; Liu and Murata 2010; Boldi, Rosa,
Santini, and Vigna 2011), with variations such as how the specific labelling of a vertex
should be influenced by its neighbours, if it should also be influenced by the label’s
global representation in the graph and also constraints on the minimum and maximum
sizes required for partitions. For example, Revolver, which performs vertex-centric
graph partitioning with reinforcement learning, assigns an agent to each vertex, with
agents assigning vertices to partitions based on their probability distribution (these are
then refined based on feedbacks (Mofrad, Melhem, and Hammoud 2018)). The authors
of (Soudani, Fatemi, and Nematbakhsh 2019) note that other approaches consider the
partitioning problem as a multi-objective and multi-constraint problem, achieving bet-
ter results compared to one-phase methods (Slota, Madduri, and Rajamanickam 2014).
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Distributed partitioning systems are good for when partitioning is performed once and
then calculations are repeatedly performed.

3.5.6 Dynamic Graph Partitioning

When the graph is no longer static, vertex and edges may be added or removed as
time passes - this is especially true in social networks. This implies that for graphs from
which we need to perform computations as they evolve, the original partitioning may
become inefficient. With predictable algorithm runtime characteristics, it becomes feasi-
ble to keep close the vertices which will be used together in the same supersteps, using
for example graph traversal algorithms. But when this is not the case, systems can be
designed for example to monitor the load and communication of the machines and mi-
grate vertices as appropriate, with different techniques having been proposed for that
purpose (among others, xDGP (Vaquero, Cuadrado, Logothetis, and Martella 2013) to
repartition massive graphs to adapt to structural changes, GPS (Salihoglu and Widom
2013b) which reassigns vertices based on communication patterns, X-Pregel (Bao and
Suzumura 2013) with reduction of message exchanges and dynamic repartitioning).
Dynamic partitioning methods have the advantage of outputting very good load bal-
ancing and communication cost reductions due to considering heterogeneous hardware
and runtime characteristics.

3.5.7 Partitioning: Summary

Employed graph partitioning strategies vary, with different systems offering dif-
ferent solutions. Among performance-impacting factors (Soudani, Fatemi, and Nemat-
bakhsh 2019), we have the number of active vertices and edges influencing machine
load. At the same time, communication will be more expensive depending on how
replication of edges and vertices is performed. Partitioning must balance communi-
cation and machine loads. The partitioning challenge in vertex-centric systems is rel-
evant due to how widespread this model is. The authors of (Soudani, Fatemi, and
Nematbakhsh 2019) note three major approaches for big graph partitioning: a) parti-
tioning the graph serially in a single pass and permanently assigning the partition on
the first time an edge or vertex is assigned (stream-based); b); methods that partition in
a distributed way; c) dynamic methods that adapt the partitions based on monitoring
the load and communication of machines during algorithm execution. For an in-depth
analysis of partitioning methods, vertex cut models and their relation to the dynamic
nature of data, we invite the reader to read (Soudani, Fatemi, and Nematbakhsh 2019).

Being able to decompose the graph is a cornerstone for efficient and distributed
computation of graphs. An equally-important aspect that determines how we must
approach the computation is the possible dynamism of the graph. A static graph over
which we want to perform analytics is a scenario different from maintaining a large
graph available for separate queries and susceptible to updates.
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3.6 Dimension: Dynamism

We include and consider dynamism a relevant dimension of graph processing due
to there existing different meanings associated to it in the literature and for which dif-
ferent systems can be attributed. While one may consider static graphs to be com-
pletely unrelated to dynamism, there is in fact a relation to it due to what is known as
stream processing. For example, a graph processing system may ingest an unbounded
stream of edges and update statistics over the stream (e.g., keeping a triangle count
updated (Ahmed, Duffield, Willke, and Rossi 2017)), but stream processing may also
take place in static graph processing. This is the case with approaches that process
a static graph but process its elements from a stream perspective (e.g., Chaos (Roy,
Bindschaedler, Malicevic, and Zwaenepoel 2015) and X-Stream (Roy, Mihailovic, and
Zwaenepoel 2013) with their edge-centric approach). Considering if a system targets
graphs that change or are immutable (static) is an obvious way to separate graph pro-
cessing systems when classifying them. However, this dimension is actually a spectrum
between the immutable (e.g. stream-based perspectives to process static graphs) and
the changing - for example, is the whole graph structure kept in memory (or secondary
storage) in a single machine (or across cluster computing nodes), or is it discarded by
proxy of some criteria (and thus one simply updates mathematical properties of the
graph using only recent information from the stream)? For this spectrum, the authors
of (Besta, Fischer, Kalavri, Kapralov, and Hoefler 2019) cover definitions found in the
literature:

• Temporal graphs. These are, in essence, static graphs which have annotated tem-
poral information which allows for recreating the domain represented by the
graph at any given point in time. It is not structurally-changed while doing
so; it means that for a given time range or event, only the elements with valid
timestamps under required constraints are considered for computation. The work
of (Kostakos 2009) introduces the temporal graph as a representation encoding
temporal data into the graph while retaining the temporal information of the orig-
inal data. They present metrics that can be used to study temporal graphs and use
the representation to explore dynamic temporal properties of data using graph
algorithms without requiring data-driven simulations. ImmortalGraph (Miao,
Han, Li, Wu, Yang, Zhou, Prabhakaran, Chen, and Chen 2015) is a storage and ex-
ecution engine designed with temporal graphs in mind, having achieved greater
efficiency than database solutions for graph queries. ImmortalGraph schedules
common bulk operations in a way to maximize the benefit of in-memory data lo-
cality. It explores the relation between locality, parallelism and incremental com-
putation while enabling mining tasks on temporal graphs. For more information
and reach on the topic of temporal graphs, we direct the reader to (Michail 2016).

• Streaming graph algorithms (Feigenbaum, Kannan, McGregor, Suri, and Zhang
2005). With these, the common scenario starts from an empty graph without
edges (and a fixed set of vertices). For each algorithm step, a new edge is in-
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serted into the graph or an edge is removed. It is desired that these algorithms
are developed to minimize parameters such as graph data structure storage, the
time to process an edge or the time to recover the final solution. There exist sev-
eral systems which process streaming graph computations - we note also for the
reader a recent framework for comparing the systems aimed at this type of dy-
namism (Erb, Meißner, Kargl, Steer, Cuadrado, Margan, and Pietzuch 2018). The
STINGER data structure has been used for streaming graphs as well (Ediger, Mc-
Coll, Riedy, and Bader 2012).

• Sketching and dynamic graph streams. Sketching techniques (Ahn, Guha, and
McGregor 2012) may be applied to the edge incidence matrix of the input graph
to approximate cut structure and connectivity. The idea is to consume a stream of
events in order to generate a probabilistic data structure representing properties
of the graph.

• Multi-pass streaming graph algorithms. In this type of algorithm, all updates are
streamed more than once in order to approximate the computation quality of the
solution. Additional complexity can emerge on how the streaming model behaves
- it can for example allow for the stream to be manipulated across passes (Aggar-
wal, Datar, Rajagopalan, and Ruhl 2004) or to stream sorting passes (Demetrescu,
Finocchi, and Ribichini 2009).

• Dynamic graph algorithms. For these types, the focus is cast on being able
to approximate combinatorial properties of the graph (Besta, Fischer, Kalavri,
Kapralov, and Hoefler 2019) (e.g., connectivity, shortest path distance, cuts, spec-
tral properties) while processing insertions and deletions. The objective with this
type of algorithm is to quickly integrate graph updates. Ringo (Perez, Sosič,
Banerjee, Puttagunta, Raison, Shah, and Leskovec 2015) is a single-machine ana-
lytics system that supports dynamic graphs.

While partitioning and dynamism are relevant aspects, the scope of graph pro-
cessing solutions in both industry and academia was shaped by the type of executed
workloads.

3.7 Dimension: Workload

The type of workload performed by a graph processing system also plays an impor-
tant role in classifying them. The type of task performed by graph databases is differ-
ent from the systems that run global algorithms over them. The concept of analysing a
graph takes on different contexts depending on user needs. We note that when a graph
is to be processed, the scope of its data analysis usually falls in these two categories:

(a) To retrieve instances of domain-specific relations in the graph (e.g. pattern match-
ing, multi-hop queries). These are usually found in graph databases, with an em-
phasis on optimization of data query and storage for online transaction process-
ing scenarios. This is often accompanied with the use of graph query languages
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(GQLs) to execute queries that return a view on the graph and also potentially
producing effects on it.

(b) To execute an algorithm over the whole graph (e.g. PageRank, connected compo-
nents, detecting communities, finding shortest paths). The solutions for this task,
performance-wise, aim to achieve high-performance computational throughput,
whether using distributed systems or a single-machine setup. It is a focus leaning
on the data analytics aspect.

The former (a) is a common scenario in graph databases such as Neo4j (Webber
2012) and JanusGraph (JanusGraph Authors 2017), among others. These databases
offer graph query languages (usually even allowing interchangeability between lan-
guages) such as Cypher or Gremlin (Holzschuher and Peinl 2013). They are built
to store the graph, some with sharding (horizontal scaling) to distribute the graph
across the storage/computational infrastructure (some outsource the storage medium
to database technologies such as HBase (George 2011) or Cassandra (Lakshman and
Malik 2010)), others in a centralized server (but allowing cluster computing nodes for
the specific purpose of redundancy). They employ schemes to store the graph effi-
ciently while offering transaction mechanisms to operate over the graph and to perform
queries.

The latter type (b) is seen in big (graph) data processing systems like Spark
(GraphX library) (Xin, Gonzalez, Franklin, and Stoica 2013) and Flink (Gelly
library) (Carbone, Katsifodimos, Ewen, Markl, Haridi, and Tzoumas 2015). The
mentioned names are all distributed processing frameworks that can take advantage of
multi-core machines and clusters. These systems and their libraries allow for expres-
sive computation over graphs in few lines of code. Many of the systems come with
their sets of graph algorithms, allowing for the composition of workflows while ab-
stracting away many details from the programmer (regarding distributed computation
orchestration and the internal implementation of the graph algorithms).

It is important to consider two definitions regarding the nature of computational
tasks: online analytical processing (OLAP) and online transaction processing (OLTP).
OLAP is an approach to enable answering multi-dimensional analytical queries quickly.
Among its instances we may find tasks such as business reporting for sales, manage-
ment reporting, business process management (Benisis 2010), financial reporting and
others. OLTP, on the other hand, refers to systems that enable and manage transaction-
oriented applications, with transaction meaning in a computational context the atomic
state changes that take place in database systems. OLTP examples include retails
sales and financial transaction systems, and applications of this type tend to be high-
throughput and update/insertion-intensive in order to provide availability, speed, re-
coverability and concurrency (Corporation 1999).

The earlier type a) of graph processing task may be associated to OLTP systems
as the goal is to store representations of graphs by quickly ingesting new information,
efficiently representing it regarding space consumption and access speed, and being
able to execute updates under ACID properties (or a subset of those). For this type
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of task a), one may find numerous graph databases to match the description, such as
those for designed for semantic (RDF) representations (Inc. 1984; Stutz, Verman, Fis-
cher, and Bernstein 2013; Tesoriero 2013; Ontotext 2020), or for property graph mod-
els (Martinez-Bazan, Gomez-Villamor, and Escale-Claveras 2011; Miller 2013; Rudolf,
Paradies, Bornhövd, and Lehner 2013; Aurelius 2015; DataStax, Inc. 2016; Dubey, Hill,
Escriva, and Sirer 2016; JanusGraph Authors 2017; Kankanamge, Sahu, Mhedbhi, Chen,
and Salihoglu 2017; Microsoft 2017; Paz 2018; Hwang 2018; Cailliau, Davis, Gadepally,
Kepner, Lipman, Lovitz, and Ouaknine 2019; Thomas Schmidts 2020), both (Bebee,
Choi, Gupta, Gutmans, Khandelwal, Kiran, Mallidi, McGaughy, Personick, Rajan, et al.
2018) and also other specific purposes (Google 2017). The latter type of task b) may
be associated to OLAP, where there is a focus on extracting value from the data and
the nature of the task is typically read-only. We include graph processing systems (not
databases) in this group of OLAP-type tasks, even the systems which support mutability
in graphs due to supporting dynamism in any form.

There is a considerable overlap between OLTP-type tasks and graph databases, and
there is also an overlap between OLAP-type tasks and graph processing systems. While
the distinction between OLAP and OLTP task types is not a dimension that perfectly di-
vides systems in the graph processing landscape, we note that such a distinction holds
value in guiding future taxonomies of the graph processing system landscape, and for
that reason we include it as a dimension.

The way these three dimensions are accounted for influence the design of graph
processing systems. Many different architectures exist, for which we share an exhaus-
tive list of specific solutions, from single-machine systems to parallel processing in clus-
ters and storage in tailor-made graph databases.

In Table 3.1 we summarize distinguishing features and licenses for the graph pro-
cessing systems detailed in this section. The last reference in front of every system
name is its open-source code repository, when available. The second group from the
top (PBGL, CombBLAS and HavoqGT) contains systems which use multiple machines
for computation but not in the typical cluster scenario. Instead, they are characterized
by using specific machines for high-performance computing.



3.7. DIMENSION: WORKLOAD 45

System

M
ul

ti-
co

re
G

PU
C

lu
st

er

Languages License Notes

GraphLab (2010, 2014a) C++ AL 2.0 N/A
GRACE (2013) C++ Unavailable N/A
Ligra (2013, 2020) C++ MIT N/A
Ringo (2015, 2016) C++, Python BSD N/A
Polymer (2015, 2018) C++ AL 2.0 N/A
GraphMat (2015, 2017) C++ Custom N/A
Mosaic (2017b, 2017a) C++ MIT Fast storage

PBGL (2005, 2018) C++ Custom Hardware
CombBLAS (2011b, 2011a) C++ Custom Hardware
HavoqGT (2013, 2019) C++ GNU LGPL 2.1 Hardware

Apache Giraph (2013, 2019a) Java AL 2.0 N/A
Naiad (2013, 2018) C# AL 2.0 N/A
Apache Flink (2015, 2020a) Java, Python, Scala AL 2.0 N/A
Apache Spark (2010, 2020b) Java, Python, Scala AL 2.0 N/A
GraphTau (2016) Java, Scala Unavailable N/A
Tink (2018, 2019) Java, Scala AL 2.0 N/A

X-Stream (2013, 2015) C++ AL 2.0 N/A
Chaos (2015, 2016) C++ AL 2.0 N/A

PowerLyra (2015, 2018) C++ AL 2.0 N/A
Kineograph (2012, 2020) Unknown Unavailable N/A
Tornado (2016) Unknown Unavailable N/A
KickStarter (2017) C++ MIT N/A
Pixie (2018) Unknown Unavailable N/A
FlowGraph (2019) Unknown Unavailable N/A
GPS (2013b, 2013a) Java BSD N/A
GoFFish (2014, 2017) Java Unknown Copyright
FBSGraph (2017) Unknown Unavailable N/A
GrapH (2018, 2016) Java Unknown Copyright
Julienne (2017) C++ Unavailable N/A
GraphD (2017) Unknown Unavailable N/A
TurboGraph++ (2018) Unknown Unavailable N/A
GraphIn (2016) C++ Unavailable N/A

MapGraph (2014, 2016) C++ AL 2.0 Discontinued
CuSha (2014, 2015) C++ MIT N/A
Gunrock (2016, 2017, 2020) C AL 2.0 N/A
Lux (2017, 2018) C++ AL 2.0 N/A
Frog (2017, 2018) C GPL 2.0 N/A
Gluon (2018, 2020b) C++ 3C BSD N/A
GraphCage (2019) Unknown Unavailable N/A

FlashGraph (2015, 2014) C++ AL 2.0 SSDs
GraphSSD (2019) Unknown Unavailable SSDs

Table 3.1: Summary of graph system distinctive features. Circle on the Multi-
core, GPU and Cluster columns indicate that option is supported. Languages lists
the programming languages the systems were written in. License lists the licenses
of the open-source project or of the free edition of a commercial product: AL 2.0
is Apache License 2.0, CC 1.0 is Commons Clause 1.0, (GPL) v3 is GNU
General Public License (GPL) v3. Notes covers additional information, with
Copyright meaning that it may be illegal to reuse the source code.
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3.8 Single-Machine and Shared-Memory Parallel Ap-
proaches

• GraphLab (Low, Gonzalez, Kyrola, Bickson, Guestrin, and Hellerstein 2010) was
published as a framework (implemented in C++) for parallel machine learning
and later extended to support distributed settings while retaining strong data
consistency guarantees (Low, Gonzalez, Kyrola, Bickson, Guestrin, and Heller-
stein 2014b). The authors evaluate it on Amazon EC2, outperforming equiva-
lent MapReduce implementations by over 20X and match the performance of
specifically-crafted MPI implementations. GraphLab requires the whole graph
and program state to reside in RAM. It uses a chromatic engine so that no adja-
cent vertices have the same colour and to enable the efficient use of network band-
width and processor time. The authors evaluate it for applications such as Netflix
movie recommendation, video co-segmentation and named entity recognition. It
is open-source (Low, Gonzalez, Kyrola, Bickson, Guestrin, and Hellerstein 2014a)
under the Apache License 2.0.

• GRACE (Wang, Xie, Demers, and Gehrke 2013) is a synchronous iterative graph
programming model, with separation of application logic and execution policies.
Its design includes the implementation (C++) of a parallel execution engine for
both synchronous and user-specified asynchronous execution policies. GRACE
stores directed graphs, and in its model and the computation is expressed and
performed in a way similar to Pregel. It provides additional flexibility, by allow-
ing the user to relax synchronization of computation. This is achieved with user-
defined functions which allow updating the scheduling priority of vertices that
receive messages (the vertex order in which computation will take place within
an iteration). GRACE’s design targets both shared-memory and distributed sys-
tem scenarios, but the initial prototype focuses on shared-memory. We did not
find the source code available.

• Ligra (Shun and Blelloch 2013) is a C++ lightweight graph processing frame-
work targeting shared-memory parallel/multi-core machines, easing the writing
of graph traversal algorithms. This framework offers two map primitives to op-
erate a given logic on vertices (VertexMap) and edges (EdgeMap) and supports
two data types: the traditional graphG = (V,E) as we described in an earlier sec-
tion, and another one to represent subsets of vertices. The interface is designed
to enable the processing of edges in different orders depending on the situation
(as opposed to Pregel or Giraph). The code of Ligra represents in-edges and
out-edges as arrays, with in-edges for all vertices being partitioned by their target
vertex and storing the source vertices, and the out-edges are in an array parti-
tioned by source vertices and storing the target vertices. While the authors claim
to have achieved good performance results, they mention Ligra does not sup-
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port algorithms based on modifying the input graph. It is available (Shun and
Blelloch 2020) under the MIT License.

• Ringo (Perez, Sosič, Banerjee, Puttagunta, Raison, Shah, and Leskovec 2015)
is an approach for multi-core single-machine big-memory setups. It is a high-
performance interactive analytics system using a Python front-end on a scalable
parallel C++ back-end, representing the graph as a hash table of vertices. It sup-
ports fast execution times with exploratory and interactive use, offering graph
algorithms in a high-level language and rich support for transformations of in-
put data into graphs. Ringo is open-source and available (Perez, Sosič, Banerjee,
Puttagunta, Raison, Shah, and Leskovec 2016) under the BSD License.

• Polymer (Zhang, Chen, and Chen 2015) is a NUMA-aware graph analytics sys-
tem on multi-core machines that is open-source (Zhang, Chen, and Chen 2018)
under the Apache License 2.0 and implemented in C++. It innovated by
differentially allocating and placing topology data, application-defined data and
mutable run-time graph system states according to access patterns to minimize
remote accesses. Polymer also deals with random accesses by converting the
random ones into sequential remote accesses using lightweight vertex replication
across the computational NUMA nodes. It was built with a hierarchical barrier
for increased parallelism and locality. The design also includes edge-oriented bal-
anced partitioning for skewed graphs and adaptive data structures in function of
the fraction of active vertices. It was compared to Ligra, X-Stream and Galois
on an 80-core Intel machine (no hyper-threading) and on a 64-core AMD machine.
For different algorithms across several data sets, Polymer consistently almost al-
ways achieved the lowest execution time.

• GraphMat (Sundaram, Satish, Patwary, Dulloor, Vadlamudi, Das, and Dubey
2015) is a framework written in C++ aimed at bridging the user-friendly graph
analytics and native hand-optimized code. It presents itself as a vertex-centric
framework without sacrificing performance, as it takes vertex programs and
maps them to exclusively use sparse matrix high-performance back-end oper-
ations. GraphMat takes graph algorithms expressed as vertex programs and
performs generalized sparse matrix vector multiplication on them. It achieved
greater performance than other frameworks such as 5-7X faster than GraphLab,
Galois and ComBLAS. It also achieved multi-core scalability, being over 10X
faster than single-threaded implementation on a 24-core machine. It is open-
source and available (Sundaram, Satish, Patwary, Dulloor, Vadlamudi, Das, and
Dubey 2017) under specific conditions by Intel.

• Mosaic (Maass, Min, Kashyap, Kang, Kumar, and Kim 2017b) is a system for sin-
gle heterogeneous machines with fast storage media (e.g., NVMe and SSDs) and
massively-parallel co-processors (e.g., Xeon Phi) developed to enable the process-
ing of trillion-edge graphs. The system is designed explicitly separating graph
processing engine components into scale-up and scale-out goals. It is written in
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C++ uses a compact representation of the graph using Hilbert-ordered tiles for
locality, load balancing and compression and uses a hybrid computation model
that uses both vertex-centric operations (on host processors) and edge-centric op-
erations (on co-processors). Mosaic is open-source (Maass, Min, Kashyap, Kang,
Kumar, and Kim 2017a) under the MIT License.

3.9 High-Performance Computing

These systems are hallmarks of high-performance computing solutions applied to
graph processing. Their merits encompass algebraic decomposition of the major graph
operations, implementing them and translating them across different homogeneous
layers of parallelism (across cores, across CPUs). Here we mention what are, to the
best of our knowledge, the most relevant works:

• Parallel Boost Graph Library (PBGL) (Gregor and Lumsdaine 2005) . It
is an extension (C++) of Boost’s graph library. It is a distributed graph com-
putation library, also offering abstractions over the communication medium (e.g.
MPI). The graph is represented as an adjacency list that is distributed across mul-
tiple processors. In PBGL, vertices are divided among the processors, and each
vertex’s outgoing edges are stored on the processor storing that vertex. PBGL was
evaluated on a system composed of 128 compute nodes connected via Infiniband.
It is available (Gregor and Lumsdaine 2018) under a custom Boost Software
License 1.0.

• CombBLAS (Buluç and Gilbert 2011b). A parallel graph distributed-memory li-
brary in C++ offering linear algebra primitives based on sparse arrays for graph
analytics. This system considers the adjacency matrix of the graph as a sparse
matrix data structure. CombBLAS is edge-based in the sense that each element of
the matrix represents an edge and the computation is defined over it. It decou-
ples the parallel logic from the sequential parts of the computation and makes
use of MPI. However, its MPI implementation does not take advantage of flex-
ible shared-memory operations. Its authors targeted hierarchical parallelism of
supercomputers for future work. It is available (Buluç and Gilbert 2011a) under a
custom license.

• HavoqGT (Pearce, Gokhale, and Amato 2013) is a C++ system with techniques for
processing scale-free graphs using distributed memory. To handle the scale-free
properties of the graph, it uses edge list partitioning to deal with high-degree
vertices (hubs) and dummy vertices to represent them to reduce communica-
tion hot spots. HavoqGT allows algorithm designers to define vertex-centric pro-
cedures in a distributed asynchronous visitor queue. This queue is part of an
asynchronous visitor pattern designed to tackle load imbalance and memory la-
tencies. HavoqGT targets supercomputers and clusters with local NVRAM. It is
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available (Pearce, Gokhale, and Amato 2019) under the GNU Lesser General
Public License 2.1.

3.10 Distributed Graph Processing Systems

While the previous systems we detailed performed analytics and enabled the ex-
ecution of graph algorithms, they did so with a focus on specific hardware and dis-
tributed memory. We list here some of the most relevant state-of-the-art systems used
for graph processing in the scope of analytics (OLAP). Their use of different architectures
(from using local commodity clusters to cloud-based execution) and greater flexibility
of deployment scenarios differentiate them from those of the previous section.

The following systems are relevant names in the literature, with Giraph being
the first open-source implementation of the Pregel approach to graph processing,
and Spark and Flink being open-source general distributed processing systems with
graph processing APIs:

• Apache Giraph (Ching 2013) is an open-source Java implementation of Pre-
gel (Malewicz, Austern, Bik, Dehnert, Horn, Leiser, and Czajkowski 2010), tailor-
made for graph algorithms, supporting the GAS model and licensed (Founda-
tion 2019a) under the Apache License 2.0. It was created as an efficient and
scalable fault-tolerant implementation on clusters with thousands of commod-
ity hardware, hiding implementation details underneath abstractions. Work has
been done to extend Giraph from the think-like-a-vertex (TLAV) model to think-
like-a-graph (TLAG) (Tian, Balmin, Corsten, Tatikonda, and McPherson 2013). It
uses Hadoop’s MapReduce implementation to process graphs. Giraph (Founda-
tion 2019a) allows for master computation, sharded aggregators (relevant when
computing a final result comprised of intermediate data from computational
nodes), has edge-oriented input, and also uses out-of-core computation – limited
partitions in memory. Partitions are stored in local disks, and for cluster com-
puting settings, the out-of-core partitions are spread out across all disks. Giraph
attempts to keep vertices and edges in memory and uses only the network for
the transfer of messages. Improving Giraph’s performance by optimizing its
messaging overhead has also been studied (Liu, Zhou, Gao, and Fan 2016). It
is interesting to note that single-machine large-memory systems such as Ringo
highlight the message overhead as one of the major reasons to avoid a distributed
processing scheme.

• Naiad is an open-source (Research 2018) (Apache License 2.0) dataflow pro-
cessing system (Murray, McSherry, Isaacs, Isard, Barham, and Abadi 2013) of-
fering different levels of complexity and abstractions to programmers. It allows
programmers to implement graph algorithms such as weakly connected compo-
nents, approximate shortest paths and others while achieving better performance
than other systems. Naiad is implemented in C# and allows programmers to
use common high-level APIs to express algorithm logic and also offers a low-
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level API for performance. Its concepts are important and other systems could
benefit from offering tiered programming abstraction levels as in Naiad. Its low-
level primitives allow for the combination of dataflow primitives (similar to those
VEILGRAPH uses from Flink) with finer-grained control on iterative computa-
tions. An extension to Flink’s architecture to offer this detailed control would
enrich the abilities that our framework is able to offer to users.

• Apache Flink (Carbone, Katsifodimos, Ewen, Markl, Haridi, and Tzoumas
2015), formerly known as Stratosphere (Alexandrov, Bergmann, Ewen, Frey-
tag, Hueske, Heise, Kao, Leich, Leser, Markl, Naumann, Peters, Rheinländer,
Sax, Schelter, Höger, Tzoumas, and Warneke 2014), it is a framework which
supports built-in iterations (Carbone, Katsifodimos, Ewen, Markl, Haridi, and
Tzoumas 2015) (and delta iterations) to efficiently aid in graph processing and
machine learning algorithms. It is licensed (Foundation 2020a) under the Apache
License 2.0 and has a graph processing API called Gelly, which comes pack-
aged with algorithms such as PageRank, single-source shortest paths and com-
munity detection, among others. Flink supports Java, Python and Scala.
It explicitly supports three vertex-based programming models: think-like-a-vertex
(TLAV) described as the most generic model, supporting arbitrary computation
and messaging for each vertex; Scatter-Gather, which separates the logic of mes-
sage production from the logic of updating vertex values, which may typically
make these programs have lower memory requirements (concurrent access to the
inbox and outbox of a vertex is not required) while at the same time potentially
leading to non-intuitive computation patterns; Gather-Sum-Apply-Scatter (GAS),
which is similar to Scatter-Gather but the Gather phase parallelizes the compu-
tation over the edges, the messaging phase distributes the computation over the
vertices and vertices work exclusively on neighbourhood, where in the previous
two models a vertex can send a message to any vertex provided it knows its iden-
tification. It supports all Hadoop file systems as well as Amazon S3 and Google
Cloud storage, among others. Delta iterations are also possible with Flink,
which is quite relevant as they take advantage of computational dependencies
to improve performance. It also has flexible windowing mechanisms to operate
on incoming data (the windowing mechanism can also be based on user-specific
logic). Researchers have also looked into extending its DataStream constructs
and its streaming engine to deal with applications where the incoming flow of
data is graph-based (Kalavri, Carbone, Bali, and Abbas 2019).

• Apache Spark (Zaharia, Chowdhury, Franklin, Shenker, and Stoica 2010) and
its GraphX (Xin, Gonzalez, Franklin, and Stoica 2013) graph processing library,
licensed (Foundation 2020b) under the Apache License 2.0. It is a graph pro-
cessing framework built on top of Spark (a framework supporting Java, Python
and Scala), enabling low-cost fault-tolerance. The authors target graph process-
ing by expressing graph-specific optimizations as distributed join optimizations
and graph views’ maintenance. In GraphX, the property graph is reduced to a
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pair of collections. This way, the authors are able to compose graphs with other
collections in a distributed dataflow framework. Operations such as adding addi-
tional vertex properties are then naturally expressed as joins against the collection
of vertex properties. Graph computations and comparisons are thus an exercise
in analysing and joining collections.

• GraphTau (Iyer, Li, Das, and Stoica 2016) is a time-evolving graph processing
framework on top of Spark (Java, Scala). It represents computations on time
evolving graphs as a stream of consistent and resilient graph snapshots and a
small set of operators that manipulate such streams. GraphTau builds fault-
tolerant graph snapshots as each small batch of new data arrives. It is also able
to periodically load data from graph databases and reuses many operators from
GraphX and Spark Streaming. For algorithms (based on label propagation)
that are not resilient to graph changes, GraphTau introduced an online rectifica-
tion model, where errors caused by underlying graph modifications are corrected
in online fashion with minimal state. Its API frees programmers from having
to implement graph snapshot generation, windowing operators and differential
computation mechanisms. We did not find its source code available.

• Tink (Lightenberg, Pei, Fletcher, and Pechenizkiy 2018) is a library for distributed
temporal graph analytics. It is built on Flink (Java, Scala) and focuses on
interval graphs, where each edge has an associated starting time and ending time.
The author created different graphs with information provided by Facebook and
Wikipedia in order to evaluate the framework. Tink defines a temporal property
graph model. It is available online (Lightenberg, Pei, Fletcher, and Pechenizkiy
2019), although we did not find information pertaining licensing.

To the best of our knowledge, currently both Flink and Spark are the most
widely-known distributed processing frameworks (we note GraphTau, although its
code is not available, is built over Spark) based on dataflow programming. While the
use of dataflows grants flexibility to program implementation and execution by decou-
pling the program logic from how it is translated to the workers of a cluster, the graph
libraries of these systems do not allow in an efficient way for a graph to be updated
using stream-processing semantics while also maintaining the graph structure during
computation. It is possible to update graphs using these systems, but they make use
of batch processing APIs for which the dataflow graphs must not become excessively
big (or else dataflow plan optimizers may be locked in the phase of exploring the opti-
mization space of the execution plan) and the graphs must be periodically written to
secondary storage (as a solution to avoid having progressively bigger execution plans).

Flink’s Gelly library has been used in GRADOOP, which is an open-
source (Kevin Gómez 2020) (Apache License 2.0) distributed graph analytics re-
search framework (Junghanns, Kießling, Teichmann, Gómez, Petermann, and Rahm
2018) under active development and providing higher-level operations. GRADOOP ex-
tends Gelly with additional specialized operators such as a graph pattern matching
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operator (which abstracts a cost-based query engine) and a graph grouping opera-
tor (implemented as a composition of map, filter, group and join transformations on
Flink’s DataSet). GRADOOP also adopts the Cypher query language (typically found
in graph databases like Neo4j) to express logic that is translated to the relational alge-
bra that underlies Flink’s DataSet (Junghanns, Kießling, Averbuch, Petermann, and
Rahm 2017).

In a similar way, Spark has its graph processing library GraphX which was built
over the system’s batch processing API, like the case of Flink’s Gelly and also suffer-
ing from the same previously mentioned limitations. A higher-level API was designed
to extend the functionalities of GraphXwhile harnessing Spark’s DataFrameAPI. For
this, the GraphFrames open-source (UC Berkeley, MIT, and Databricks 2020) (Apache
License 2.0) library was created (Dave, Jindal, Li, Xin, Gonzalez, and Zaharia 2016).
A look at its implementation reveals that it has less high-level operations than Gelly.
Effectively, without simulating some of Gelly’s API, equivalent programs in GraphX
lend themselves to more conceptual verbosity due to the lack of syntactic sugar.

Figure 3.3: Contrast of the Flink and Spark distributed dataflow ecosystems for
graph processing.

We display in Figure 3.3 parallels between Flink, Spark and the graph process-
ing ecosystems built on top of them. Gelly’s equivalent in Spark is GraphX, imple-
mented in Scala. Vertices and edges are manipulated by using Spark’s Resilient
Distributed Datasets (RDDs), which can be viewed as a conceptual precursor to
Flink’s DataSet. Spark also offers the DataFrame API to enable tabular manipu-
lation of data. GraphFrames is another graph processing library for Spark. While
it has interoperability and a certain overlap with the functionality offered in GraphX,
it integrates the tabular perspective supported by Spark’s DataFrame API and also
supports performing traversal-like queries of the graph via SparkSQL. In this way,
GraphFrames provides graph analytics capabilities in Spark much the same way
GRADOOP does in Flink.

The next two examples, X-Stream and Chaos are grouped together as they
brought relevance to the edge-centric (TLAE) model and employed it to explore novel
ways to balance network latencies and use of SSDs to increase performance:

• X-Stream (Roy, Mihailovic, and Zwaenepoel 2013). A system that provided an
alternative view to the traditional vertex-centric approach. It is based on consid-
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ering computation from the perspective of edges instead of vertices and experi-
ments optimized the use of storage I/O both locally and on the cloud. X-Stream
is an open-source system written in C++ which introduced the concept of edge-
centric graph processing via streaming partitions. X-Stream exposes an edge-
centric scatter-gather programming model that was motivated by the lack of ac-
cess locality when traversing edges, which makes it difficult to obtain good per-
formance. State is maintained in vertices. This tool uses the streaming partition,
which works well with RAM and secondary (SSD and Magnetic Disk) storage
types. It does not provide any way by which to iterate over the edges or updates
of a vertex. A sequential access to vertices leads to random access of edges which
decreases performance. X-Stream is innovative in the sense that it enforces se-
quential processing of edges (edge-centric) in order to improve performance. It is
available (Roy, Mihailovic, and Zwaenepoel 2015) under the Apache License
2.0.

• Chaos (Roy, Bindschaedler, Malicevic, and Zwaenepoel 2015). A system written
in C++ which had its foundations on XStream. On top of the secondary stor-
age studies performed in the past, graph processing in Chaos achieves scalability
with multiple machines in a cluster computing system. It is based on different
functionalities: load balancing, randomized work stealing, sequential access to
storage and an adaptation of X-Stream’s streaming partitions to enable paral-
lel execution. Chaos is composed of a storage sub-system and a computation
sub-system. The former exists concretely as a storage engine in each machine.
Its concern is that of providing edges, vertices and updates to the computation
sub-system. Previous work on X-Stream highlighted that the primary resource
bottleneck is the storage device bandwidth. In Chaos, the storage and computa-
tion engines’ communication is designed in a way that storage devices are busy
all the time – thus optimizing for the bandwidth bottleneck. It was released (Roy,
Bindschaedler, Malicevic, and Zwaenepoel 2016) under the Apache License
2.0.

The following graph processing systems were grouped together because each of
the improvements they proposed are important concerns to be aware of in designing
graph processing systems.

• PowerLyra (Chen, Shi, Chen, and Chen 2015) is a graph computation engine
written in C++ which adopts different partitioning and computing strategies de-
pending on vertex types. The authors note that most systems use a one-size-fits-
all approach. They note that Pregel and GraphLab focus in hiding latency
by evenly distributing vertices to machines, making resources locally accessible.
This may result in imbalanced computation and communication for vertices with
higher degrees (frequent in scale-free graphs). Another provided design example
is that of PowerGraph and GraphX which focus on evenly parallelizing the com-
putation by partitioning edges among machines, incurring communication costs
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on vertices, even those with low degrees. PowerLyra was released under the
Apache License 2.0 (Chen, Shi, Chen, and Chen 2018).

• Kineograph (Cheng, Hong, Kyrola, Miao, Weng, Wu, Yang, Zhou, Zhao, and
Chen 2012) is a system which combines snapshots allowing full processing in the
background and explicit alternative/custom functions that, besides assessing up-
dates’ impact, also apply them incrementally, propagating their outcome across
the graph. It is a distributed system to capture the relations in incoming data
feeds, built to maintain timely updates against a continuous flow of new data. Its
architecture uses two types of computational node, ingest nodes to register graph
update operations as identifiable transactions, which are then distributed to graph
nodes. Nodes of the latter type form a distributed in-memory key/value store.
Kineograph performs computation on static snapshots, simplifying algorithm
design. We did not find its source code online.

• Tornado (Shi, Cui, Shao, and Tong 2016) is a system for real-time iterative anal-
ysis over evolving data. It was implemented over Apache Storm and provides
an asynchronous bounded iteration model, offering fine-grained updates while
ensuring correctness. It is based on the observations that: 1) loops starting from
good enough guesses usually converge quickly; 2) for many iterative methods, the
running time is closely related to the approximation error. From this, an exe-
cution model was built where a main loop continuously gathers incoming data
and instantly approximates the results. Whenever a result request is received, the
model creates a branch loop from the main loop. This branch loop uses the most
recent approximations as a guess for the algorithm. We did not find its source
code online.

• KickStarter (Vora, Gupta, and Xu 2017) is a system that debuted a runtime
technique for trimming approximation values for subsets of vertices impacted
by edge deletions. The removal of edges may invalidate the convergence of ap-
proximate values pertaining monotonic algorithms. KickStarter deals with
this by identifying values impacted by edge deletions and adapting the network
impacts before the following computation, achieving good results on real-world
use-cases. Despite this, by focusing on monotonic graph algorithms, its scope is
narrowed to selection-based algorithms. For this class, updating a vertex value
implies choosing a neighbour under some criteria. KickStarter is now known
as GraphBolt, a recent work (Mariappan and Vora 2019) licensed under the MIT
License (Mariappan and Vora 2020) which offers a generalized incremental pro-
gramming model enabling development of incremental versions of complex ag-
gregations. Both were written in C++.

• Pixie (Eksombatchai, Jindal, Liu, Liu, Sharma, Sugnet, Ulrich, and Leskovec
2018) is a graph-based scalable real-time recommendation system used at Pinter-
est. Using a set of user-specific pins (in Pinterest, users have boards in which they
store pins, where each pin is a combination of image and text), Pixie chooses
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in real-time the pins that are most related to the query, out of billions of candi-
dates. With this system, Pinterest was able to execute a custom (Pixie Random
Walk) algorithm on an object graph of 3 billion vertices and 17 billion edges. On
a single server, they were able to serve around 1200 recommendation requests
per seconds with 60 millisecond latency. The authors note that the deployment
of Pixie benefited from large RAM machines, using a cluster of Amazon AWS
r3.8xlarge machines with 244GB RAM. They fitted the pruned Pinterest graph (3
billion vertices, 17 billion edges) in around 120GB of RAM, in a setup that yielded
the following advantages: random walk not forced to cross machines, which in-
creases performance; multiple walks can be executed on the graph in parallel;
the system can be parallelized and scaled by adding more machines to the cluster.
This system is a relevant case study (of applying graph theory to recommendation
systems at scale) as a scalable system for processing on large graphs a biased ran-
dom walk algorithm (with user-specific preferences) while using graph pruning
techniques to disregard large boards that are too diverse and diffuse the random
walk (the non-pruned graph has 7 billion vertices and 100 billion edges). We did
not find the source code available online.

• FlowGraph (Chaudhry 2019) is a system that proposes a syntax for a language to
detect temporal patterns in large-scale graphs and introduces a novel data struc-
ture to efficiently store results of graph computations. This system is a unification
of graph data with stream processing considering the changes of the graph as a
stream to be processed and offering an API to satisfy temporal patterns. We did
not find its source code available.

• GPS (Salihoglu and Widom 2013b) is an open-source (BSD License) scalable
graph processing system written in Java and allowing fault-tolerant and easy-
to-program algorithm execution on very large graphs. It adopts Pregel’s vertex-
centric API and extends it with: features to make global computations easier to
express and more efficient; dynamic repartitioning scheme to reassign vertices to
different workers during computation based on messaging patterns; distribution
of high-degree vertex adjacency lists across all computer nodes to improve per-
formance (something that PowerGraph and PowerLyra later adopted). It was
designed to run on a cluster of machines such as Amazon EC2, over which the au-
thors tested their work. GPS’s initial version was run on up to 100 Amazon EC2
large instances and on graphs of up to 250 million vertices and 10 billion edges.
It is open-source and available under the BSD License (Salihoglu and Widom
2013a).

• GoFFish (Simmhan, Kumbhare, Wickramaarachchi, Nagarkar, Ravi, Raghaven-
dra, and Prasanna 2014) is a sub-graph centric programming abstraction and
framework co-designed with a distributed persistent graph storage for large
scale graph analytics on commodity clusters, aiming to combine the scalability of
the vertex-centric (TLAV) approach with flexibility of shared-memory sub-graph
computation (TLAG). It is written in Java. GoFFish states that two sub-graphs
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many not share the same vertex, but they can have remote edges that connect
their vertices, provided that the sub-graphs are on different partitions. If two sub-
graphs in the same partition share an edge, by definition they are merged into a
single-sub-graph. It was evaluated with a cluster of 12 nodes each with 8-core
Intel Xeon CPUs, 16 GB RAM and 1 TB SATA HDD. The authors compare the
execution of GoFFish (one worker per computational node) with Giraph (de-
fault two workers per computational node), achieving faster execution times for
algorithms such as PageRank, connected components and single-source shortest-
paths. Its source code is available though we did not find any information per-
taining licensing. While its source code is available (Simmhan, Kumbhare, Wick-
ramaarachchi, Nagarkar, Ravi, Raghavendra, and Prasanna 2017), we did not find
information regarding licensing.

• FBSGraph (Zhang, Liao, Jin, Gu, and Zhou 2017) presents a forward and
backward sweeping execution method to accelerate state propagation for asyn-
chronous graph processing. In asynchronous graph processing, each vertex main-
tains a state which can be asynchronously updated in an iterative fashion. The
method presented in FBSGraph relies on the observation that state can be prop-
agated faster by processing vertices sequentially along the graph path in each
round. They achieve greater execution speed when analysing several graph algo-
rithms across a set of datasets, comparing against systems such as PowerGraph
and GraphLab. We did not find its source available.

• GrapH (Mayer, Tariq, Mayer, and Rothermel 2018) is a graph processing system
written in Java that uses vertex-cut graph partitioning that takes into considera-
tion the diversity of vertex traffic and the heterogeneous costs of the network. It
relies on a strategy of adaptive edge migration to reduce the frequency of com-
munication across expensive network links. For this work, the authors focused on
vertex-cut as it has better partitioning properties for real-world graphs that have
power-law degree distributions. GrapH has two partitioning techniques, H-load
which is used for the initial partitioning of the graph so that each cluster worker
can load it into local memory, and H-adapt, a distributed edge migration algorithm
to address the dynamic heterogeneity-aware partitioning problem. In evaluation,
GrapH outperformed PowerGraph’s vertex-cut partitioning algorithm with re-
spect to communication costs. While its source code is available (Mayer, Tariq,
Mayer, and Rothermel 2016), we found no information on licensing.

• Julienne (Dhulipala, Blelloch, and Shun 2017) is built over Ligra (C++) and
provides an interface to maintain a collection of buckets under vertex inser-
tions and bucket deletions. They evaluated under bucketing algorithms such
as weighted breadth-first search, k-core and approximate set cover. The authors
describe as bucketing-based algorithms those that maintain vertices in a set of un-
ordered buckets - and in each round, the algorithm extracts the vertices contained
in the lowest (or highest) bucket to perform computation on them. Then, it can
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update the buckets containing the extracted vertices or their neighbours. For ex-
ample, weighted breadth-first search processes vertices level by level, where level
i contains all vertices at distance i from the source vertex. The system was tested
in a multi-core machine with 72 cores (4 CPUs at 2.4GHz) and 1TB of main mem-
ory, achieving performance improvements on several data sets when compared
to systems such as base Ligra and Galois. We did not find its source code
available.

• GraphD (Yan, Huang, Liu, Chen, Cheng, Wu, and Zhang 2017) is an out-of-core
system inspired by Pregel and targeting efficient big graph processing using a
small cluster of commodity machines connected by Gigabit Ethernet, contrasting
with other out-of-core works that focus on specialized hardware. The authors fo-
cus on a setting that sees vertex-centric programs being data-intensive, as the CPU
cost of computing a message is small when compared to the network transmission
cost. GraphD masks disk I/O overhead with message transmission though paral-
lelism of computation and communication. It eliminates the need for (expensive)
external-memory join or group-by operations, which are required in other sys-
tems such as Chaos. It was evaluated on PageRank, single-source shortest-paths
and connected components. GraphD was evaluated against distributed out-of-
core systems Pregelix, HaLoop and Chaos, against single-machine systems
GraphChi and X-Stream and representative in-memory systems Pregel and
Giraph, achieving better performance in some scenarios. We did not find its
source available.

• TurboGraph++ (Ko and Han 2018) is a graph analytics system that exploits ex-
ternal memory for scale-up without compromising efficiency. It introduced an
abstraction called nested windowed streaming to achieve scalability and increase
efficiency in processing neighbourhood-centric analytics (in which the total size
of neighbourhoods around vertices can exceed the available memory budget).
This streaming model regards a sequence of vertex values and an adjacency list
stream. The goal is to efficiently support the k-walk neighbourhood query (a class
of graph queries defined by the authors, where walks are enumerated and then
computation is done for each one) with fixed size memory. In the model, dur-
ing user computation, they define an update stream as the sequence of updates
generated to the ending vertex of each walk, with each update represented as a
pair of target vertex ID and update value. TurboGraph++ has the goal of bal-
ancing the workloads across machines, which requires balancing the number of
edges and the number of high-degree and low-degree vertices among machines.
It also focuses on balancing the number of vertices on each machine so that each
one requires the same memory budget. We did not find its source code available
online.

• GraphIn (Sengupta, Sundaram, Zhu, Willke, Young, Wolf, and Schwan 2016) is a
dynamic graph analytics framework proposed to handle the scale and evolution
of real-world graphs. It aimed to improve over approaches to processing dynamic
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graphs which repeatedly run static graph analytics on stored snapshots. GraphIn
proposes an adaptation of gather-apply-scatter (GAS) called I-GAS which enables
the implementation of incremental graph processing algorithms across multiple
CPU cores. It also introduces an optimization heuristic to choose between static or
dynamic execution based on built-in and user-defined graph properties. Native
and benchmarking code were implemented in C++ and for experimental evalu-
ation it was compared to GraphMat and STINGER. The heuristic-base computa-
tion made GraphIn faster than systems using fixed strategies. We did not find its
source code available.

The following works focus on specific techniques such as using specific hardware
such as SSDs or GPUs. We first list frameworks and systems that were proposed in the
last years to use the single-instruction multiple-data (SIMD) capabilities of GPUs for
graph processing:

• MapGraph (Fu, Personick, and Thompson 2014) is a high-performance parallel
graph programming framework, able to achieve up to 3 billion traversed edges
per second using a GPU. It represents the graph with a compressed sparse row
(CSR) data structure and chooses different scheduling strategies depending on
the size of the frontier (the set of vertices that are active in a given iteration). It en-
capsulates the complexity of the GPU architecture while enabling dynamic run-
time decisions among several optimization strategies. Users need only to write
sequential C++ code to use the framework. The early MapGraph work was first
available as an open-source project (Fu, Personick, and Thompson 2016) licensed
under the Apache License 2.0, but it has been integrated in the former line
of products of Blazegraph, also available online (Systap 2020).

• CuSha (Khorasani, Vora, Gupta, and Bhuyan 2014) is a CUDA-based graph pro-
cessing framework written in C++ which was motivated by the negative im-
pact that irregular memory accesses have on the compressed sparse row graph
(CSR) representation. CuSha overcomes this by: 1) organizing the graph into au-
tonomous sets of ordered edges called shards (a representation they call G-Shards)
unto which GPU hardware resources are mapped for fully coalesced memory ac-
cesses; 2) accounting for input graph properties such as sparsity (the sparser the
graph, the smaller the computation windows) to avoid GPU under-utilization
(Concatenated Windows, or CW). This framework allows users to define vertex-
centric algorithms to process large graphs on GPU. It is open-source (Khorasani,
Vora, Gupta, and Bhuyan 2015) and available under the MIT License.

• Gunrock (Wang, Davidson, Pan, Wu, Riffel, and Owens 2016; Wang, Pan,
Davidson, Wu, Yang, Wang, Osama, Yuan, Liu, Riffel, et al. 2017) is an open-
source (Wang, Davidson, Pan, Wu, Riffel, and Owens 2020) (Apache License
2.0) CUDA library for graph processing targeting the GPU and written in C. It
implements a data-centric abstraction focused on operations on a vertex or edge
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frontier. For different graph algorithms, it achieved at least an order of magni-
tude speedup over PowerGraph and better performance than any other high-
level GPU graph library at the time. Its operations are bulk-synchronous and
manipulate a frontier, which is a subset of the edges or vertices within the graph
that is relevant at a given moment in the computation. Gunrock couples high-
performance GPU computing primitives and optimization strategies with a high-
level programming model to quickly develop new graph primitives. It was eval-
uated using breadth-first search, depth-first search, single-source shortest paths,
connected components and PageRank.

• Lux (Jia, Kwon, Shipman, McCormick, Erez, and Aiken 2017) is a distributed
multi-GPU system written in C++ for fast graph processing by exploiting aggre-
gate memory bandwidth of multiple GPUs and the locality of the memory hierar-
chy of multi-GPU clusters. It proposes a dynamic graph repartitioning strategy to
enable well-balanced distribution of workload with minimal overhead (improv-
ing performance by up to 50%), as well as a performance model providing in-
sight on how to choose the optimal number of computational nodes and GPUs
to optimize performance. Lux is aimed at graph programs that can be written
with iterative computations. Vertex properties are read-only in each iteration,
with updates becoming visible at the end of an iteration. It offers two execution
models: pull which optimizes run-time performance of GPUs (enables optimiza-
tions like caching and locally aggregating updates in GPU shared memory); and
push, which optimizes algorithmic efficiency (maintains a frontier queue and only
performs computation over the out-edges of vertices in the frontier). Its source
code is available (Jia, Kwon, Shipman, McCormick, Erez, and Aiken 2018) under
Apache License 2.0.

• Frog (Shi, Luo, Liang, Zhao, Di, He, and Jin 2017) is a light-weight asynchronous
processing framework written in C. The authors note that common colouring al-
gorithms may suffer from low parallelism due to a large number of colours being
needed to process large graphs with billions of vertices. Frog separates vertex
processing based on colour distribution. They propose an efficient hybrid graph
colouring algorithm, relying on a relaxed pre-partition method to solve vertex
classification with a lower number of colours, without forcing all adjacent ver-
tices to be assigned different colours. The execution engine of Frog scans the
graph by colour, and all vertices under the same colour are updated in parallel in
the GPU. For large graphs, when processing each partition, the data transfers are
overlapped with GPU kernel function executions, minimizing PCIe data trans-
fer overhead. It is open-source (Shi, Luo, Liang, Zhao, Di, He, and Jin 2018) and
licensed under the GNU General Public License 2.0.

• Aspen (Dhulipala, Blelloch, and Shun 2019) is a graph-streaming extension of the
Ligra interface, supporting graph updates. To support this, the authors devel-
oped and presented the C-tree data structure which achieves good cache locality,
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lowers space use and has operations which are efficient from a theoretical per-
spective. It applies a chunking scheme over the tree, storing multiple elements in
a tree-node. The scheme takes the ordered set of elements that are represented.
More relevant elements are stored in tree nodes, while the remaining ones are
associated in tails of the tree nodes. It employs compression and supports paral-
lelism. The authors evaluate it with the largest publicly-available graph, which
has more than two hundred billion edges on a multi-core server with 1 TB mem-
ory. Source code is available online (Dhulipala, Blelloch, and Shun 2020) albeit no
license information was provided.

• Gluon (Dathathri, Gill, Hoang, Dang, Brooks, Dryden, Snir, and Pingali 2018)
was introduced as a new approach to create distributed-memory graph analytics
systems able to use heterogeneity in partitioning policies, processor types (GPU
and CPU) and programming models. To use Gluon, programmers implement ap-
plications in shared-memory programming systems of their choice and then inter-
face the applications with Gluon to enable execution on heterogeneous clusters.
Gluon optimizes communication by taking advantage of temporal and structural
invariants of graph partitioning policies. It runs on shared-memory NUMA plat-
forms and NVIDIA GPUs. Its programming model offers a small number of pro-
gramming patterns implemented in C++, its library offers concurrent data struc-
tures, schedulers and memory allocators and the runtime executes programs in
parallel, using parallelization strategies as optimistic and round-based execution.
Gluon is available (Dathathri, Gill, Hoang, Dang, Brooks, Dryden, Snir, and Pin-
gali 2020b) under the 3-Clause BSD License.

• Hornet (Busato, Green, Bombieri, and Bader 2018) is a data structure for ef-
ficient computation of dynamic sparse graphs and matrices using GPUs. It is
platform-independent and implements its own memory allocation operation in-
stead of standard function calls. The implementation uses an internal data man-
ager which makes use of block arrays to store adjacency lists, a bit tree for finding
and reclaiming empty memory blocks and B+ trees to manage them. It was eval-
uated using an NVIDIA Tesla GPU and experiments targeted the update rates it
supports, algorithms such as breadth-first search (BFS) and sparse matrix-vector
multiplication. Hornet is available (Busato, Green, Bombieri, and Bader 2020)
under the 3-Clause BSD License.

• faimGraph (Winter, Mlakar, Zayer, Seidel, and Steinberger 2018) introduced a
fully-dynamic graph data structure performing autonomous memory manage-
ment on the GPU. It enables complete reuse of memory and reduces memory
requirements and fragmentation. The implementation has a vertex-centric up-
date scheme that allows for edge updating in a lock-free way. It reuses free
vertex indices to achieve efficient vertex insertion and deletion, and does not re-
quire restarting as a result of a large number of edge updates. faimGraph was
benchmarked against Hornet on an NVIDIA GeForce GTX Titan Xp GPU us-
ing algorithms such as PageRank and triangle counting. Source code is available
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online (Dathathri, Gill, Hoang, Dang, Brooks, Dryden, Snir, and Pingali 2020a)
without a specified license.

• GraphCage (Chen 2019) is a cache-centric optimization framework to enable
highly efficient graph processing on GPUs. It was motivated by the random
memory accesses which are generated by sparse graph data structures, which in-
crease memory access latency. The authors note that conventional cache-blocking
suffers from repeated accesses when processing large graphs on GPUs, and pro-
pose a throughput-oriented cache blocking scheme (TOCAB). GraphCage applies
the scheme to both push and pull directions and coordinates with load balanc-
ing strategies by considering sparsity of sub-graphs. This technique is applied
to traversal-based algorithms by considering the benefit and overhead in differ-
ent iterations with working sets of different sizes. In its evaluation, GraphCage
achieved in average lower execution times for one PageRank iteration compared
to both Gunrock and CuSha. We did not find its source code available.

For more information on GPU use cases for graph processing approaches, we point
the readers to (Shi, Zheng, Zhou, Jin, He, Liu, and Hua 2018).

• FlashGraph (Zheng, Mhembere, Burns, Vogelstein, Priebe, and Szalay 2015) is
a graph processing engine implemented in C++ over a user-space SSD file sys-
tem designed for high IOS and very high levels of parallelism. Vertex state is
stored in memory while edge lists are on SSDs. Latency is hidden by overlapping
computation with I/O, a concept similar to X-Stream and Chaos, and edges
lists are only accessed if requested by applications from SSDs. FlashGraph
has a vertex-centric (TLAV) interface, its designed to reduce CPU overhead and
increase throughput by conservatively merging I/O requests, and the authors
demonstrate that FlashGraph in semi-external memory executes many algo-
rithms with a performance of up to 80% of the in-memory implementation and
It also outperformed PowerGraph. It is open-source (Zheng, Da and Mhembere,
Disa and Burns, Randal and Vogelstein, Joshua and Priebe, Carey E and Szalay,
Alexander S 2014) under the Apache License 2.0.

• GraphSSD (Matam, Koo, Zha, Tseng, and Annavaram 2019) is a semantic-aware
SSD framework and full system solution to store, access and execute graph analyt-
ics. Instead of considering storage as a set of blocks, it accounts for graph struc-
ture while choosing graph layout, access and update mechanisms. GraphSSD
innovates by considering a vertex-to-page mapping scheme and uses advanced
knowledge of flash properties to reduce page accesses. It offers a simple API to
ease development of applications accessing graphs as native data and its evalu-
ation showcased average performance gains for basic graph data fetch functions
on breadth-first search, connected components, random-walk, maximal indepen-
dent set and PageRank. We did not find its source available.
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3.10.1 Distributed Graph Processing: Notes

This section presents many distributed graph processing systems, divided by type
of system architecture and including high-level extensions when available.

The first group presented in this section, that of vertex-centric systems, follows a
common theme of further expanding on this model’s concepts. It includes Giraph,
which is the first open-source implementation of the Pregel model. Other mentioned
systems are Naiad, which provided dataflow programming APIs that were used to
implement graph algorithms, followed by Flink and Spark, more recent frameworks
offering dataflow-based distributed graph processing through specific libraries (Gelly
in Flink and GraphX in Spark). These systems were used to build time-oriented
logic, with Tink built over Flink and GraphTau over Spark. Enhanced graph ana-
lytics were also implemented, with GRADOOP on Flink and GraphFrames on Spark.
Overall, Flink and Spark are two actively-developed frameworks with supporting
communities and are being used to enable graph processing use-cases as well as plat-
forms to research new functionalities.

Edge-centric systems were placed in their own group, as we found the offering
of this model not as widespread as vertex-centric, thus warranting its own focus.
X-Stream showcased a competitive implementation of this model, with its extension
Chaos highlighting how can it be applied to improve the use of I/O-bound resources.

Relevant graph processing design concerns are highlighted with PowerLyra
which casts focus on the impact of vertex degree (especially regarding scale-free prop-
erties), Kineograph which explores incremental processing capabilities, Tornado
which produces approximate results, KickStarter which explores trimming approx-
imation values and incremental processing as well and Pixie, a scalable graph pro-
cessing system used for real-time recommendations.

To this group of relevant graph processing design concerns we add other names
such as FlowGraph which presents a language syntax to detect temporal patterns,
GPS which adopts the Pregel model with expressivity of global computations and
awareness of high-degree vertices, GoFFish which explores both vertex-centric (scala-
bility) and sub-graph computation (flexibility), FBSGraph which explores ordered ver-
tex processing to hasten state propagation, GrapH which explores partitioning tech-
niques while considering heterogeneous network costs and vertex traffic, Julienne
which focuses on bucketing algorithms, GraphD which explores out-of-core processing
on clusters of commodity machines, TurboGraph++ which achieves scale-up with ex-
ternal memory and GraphIn which adapts gather-apply-scatter to enable incremental
graph processing algorithms across CPU cores.

The ability to harness GPUs and SIMD capabilities is relevant, and among such
systems we note MapGraph, CuSha, Gunrock, Lux, Frog, Aspen, Gluon, Hornet,
faimGraph, GraphCage. These systems were included for the different approaches
they had to the use this type of hardware. It is not a trivial task to design systems that
are both generic as well as capable of making use of special-purpose hardware such
as GPUs. They were thus grouped for this use of a hardware type that is essential to
machine learning, blockchain technologies and other activities. We believe it would
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also be interesting to see frameworks such as Flink and Spark that offer many high-
level functionalities incorporate GPU-oriented processing capabilities.

The role of I/O plays a relevant role in other systems, but it is further brought to
the forefront with FlashGraph which stores vertex state in main memory and edge
lists on SSDs, and GraphSSD which considers a vertex-to-page mapping scheme and
special use of flash properties to reduce page accesses.

3.11 Graph Databases

Here we list and describe different graph databases which we group together ac-
cording to their type of supported graph model (e.g., property graph model, RDF, hy-
brid). Upon developing this list, we observe regarding graph query languages that
they either implement their own custom language (neglecting interoperability even
though there may be automatic converters developed by third parties), or they use
those that have been improved, standardized and adopted by many projects (e.g.,
Cypher, Gremlin, SPARQL). The list includes both open-source and commercial prod-
ucts, as well as database systems implemented to explore novel techniques as part of
research activities.

We showcase these different graph database solutions in Table 3.2, in which we
present relevant properties for assessing them: the circle on the ACID, Visual and Scale
(updating a graph that is distributed) columns indicate they are present. Models lists the
supported data models: property graph model (PG), RDF, multi-model (MM) or others
(O). Languages lists the programming languages that interface with the database, either
directly or by being supported by the underlying interfaces (e.g., TinkerPop drivers).
GQLs lists only directly supported graph query languages (and shown in italic if they
are not standard) - those supported using compatibility tools as seen previously are
not included. License lists the licenses of the open-source project or of the free edi-
tion of a commercial product: AL 2.0 is Apache License 2.0, CC 1.0 is Commons
Clause 1.0, aGPL v3 is the Affero General Public License 3, (GPL) v3 is
GNU General Public License (GPL) v3. Limits covers free version limitations
in commercial products (N/A if it does not apply). If a database has Custom license and
limits are not N/A, it means it has a non-standard free license.

We consider these properties to be outstanding features that are important for de-
velopers and users to assess their suitability for their use-cases. They provide informa-
tion on guarantees of graph data storage, parallelism of computation and supported
graph sizes, visualization capabilities and the ability to use them freely (regarding both
open-source as well as free versions of commercial products):

• Is it ACID compliant (ACID)?

• Does the specific graph database ecosystem offer analytics capabilities (e.g., first-
party, third-party, none) to complement the OLTP focus of the graph database
itself (Visual)?
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• Does it offer scale-out/horizontal scalability (e.g., Neo4j is very well-known but
it does not support sharding, only replication when using multiple machines) to
improve performance and support bigger graphs (Scale)?

• What graph models does it support, is it for example RDF, property graph or
others (Models)?

• What languages can be used to program functionality that uses the database prod-
uct, for example Go, Java, .NET, Python or others (Languages)?

• What graph query languages (e.g., Cypher, Gremlin, SPARQL, custom) does it
support (GQLs)?

• What license (or types of licenses) is it subjected to - for example, is it a common
license type or other (License)?

• For database products that have both free and commercial/proprietary editions,
what are the features missing from the free versions - the focus here is not on
marketing-speech such as five-nines availability, but features that are easy to im-
plement but are clearly missing from the free version to stimulate purchases (Lim-
its)?
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Database
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Models Languages GQLs License Limits

Alibaba GDB (2020) PG Go, Java, .NET, Node.js, Python Gremlin Paid N/A
ChronoGraph(2017)(2020) PG Java Gremlin aGPL v3 N/A
DSE (2016) PG Java Gremlin Paid N/A
Dgraph (2020a, 2020b) PG Java, JavaScript, Python GraphQL AL 2.0 Admin
Graphflow (2017)(2019) PG Java Cypher AL 2.0 N/A

JanusGraph (2017, 2020) PG
Elixir, Go, Java, .NET, PHP,

Python, Ruby, Scala Gremlin AL 2.0 N/A

Nebula Graph (2020) PG Go, Java, Python nGQL AL 2.0
CC 1.0

N/A

Neo4j (2012, 2020) PG
C/C++, Clojure, Go, Haskell,
Java, JavaScript, .NET, Perl,

PHP, Python, R, Ruby
Cypher GPL v3 Size

RedisGraph (2019, 2020) PG
Elixir, Go, Java, JavaScript,

PHP, Python, Ruby, Rust Cypher Custom N/A

Hana (2013, 2018, 2018) PG N/A Cypher Paid N/A

Sparksee (2011, 2015) PG
C++, .NET, Java,

Objective-C, Python N/A Custom Size

TigerGraph (2019, 2020) PG N/A GSQL Custom Scale
Weaver (2016, 2016) PG C++, Python N/A Custom N/A

AllegroGraph (1984) RDF
C#, C, Common Lisp, Clojure,

Java, Perl, Python SPARQL EPL v1 Size

BlazeGraph (2020) PG, RDF, O .NET, Python Gremlin,
SPARQL

GPL v2 N/A

BrightstarDB (2015) RDF .NET SPARQL MIT N/A
Cray Graph
Engine (2018)

RDF Java, Python SPARQL Paid N/A

Ontotext GraphDB
(2020)

RDF Java, JavaScript SPARQL Custom Scale

Neptune (2018, 2020) PG,RDF Managed Gremlin,
SPARQL

Paid N/A

AnzoGraph DB (2020) PG,RDF Java,C++ Gremlin,
SPARQL

Custom Scale

ArangoDB (2020) PG Go, Java, JavaScript, PHP AQL AL 2.0 Admin
IBM System G (2015) PG, RDF Managed Gremlin Paid N/A

OrientDB (2013, 2020) PG, O
Clojure, Go, Java,

JavaScript,.NET, Node.js, PHP,
Python, R, Ruby, Scala

6 AL 2.0 Visual

OSG (2020) PG, RDF Java
PGQL,
SPARQL

Paid N/A

Stardog (2020) RDF
Clojure, Groovy, Java,

JavaScript, .NET

GraphQL,
Gremlin,
SPARQL

Paid Trial

Virtuoso (2012, 2020) PG, O
C/C++, C#, Java, JavaScript,

.NET, PHP, Python,
Ruby, Visual Basic

SPARQL GPL v2 Admin

Cosmos DB (2018, 2019) MM Gremlin Managed Paid N/A

FaunaDB (2020) MM
Android, C#, Go, Java,

JavaScript, Python, Ruby,
Scala, Swift

FQL Custom Quota

Cayley (2017, 2010) RDF N/A Gizmo,
GraphQL

AL 2.0 N/A

HyperGraphDB (2010) HG Java N/A AL 2.0 N/A
Objectivity/DB (2016) O C++, C#, Java, Python N/A Paid N/A

Table 3.2: Summary of graph database distinctive features.
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For further information on the evolution of graph databases, we point the reader
to (Angles and Gutierrez 2008; Pokornỳ 2015), which covers, among other aspects, data
models and query languages. The following graph databases we list are focused on the
property graph model. Their information describes the use of this model; we found no
graph query languages for RDF in their features, even if these databases are described
as multi-model:

• Alibaba Graph Database (GD) (Cloud 2020) is a cloud-oriented (thus sup-
porting horizontal scalability) graph database service supporting ACID trans-
actions and the TinkerPop stack. It supports the property graph model, the
Gremlin query language and there are programming interfaces for Go, Java,
.NET, Node.js and Python. We did not find references to visualization capabil-
ities (visual feedback to query construction and execution).

• ChronoGraph (Haeusler, Trojer, Kessler, Farwick, Nowakowski, and Breu 2017)
is a TinkerPop-compliant (offering Gremlin to query the data in property
graph model) graph database supporting ACID transactions, system-time con-
tent versioning and analysis. It is implemented as a key-value store enhanced
with temporal information, using a B-tree data structure. The project is available
online (Haeusler, Trojer, Kessler, Farwick, Nowakowski, and Breu 2020) under
the aGPL v3 (open-source and academic purposes) and commercial licenses are
available on demand. We did not find visualization functionalities accompanying
it.

• DataStax Enterprise Graph (DSE) (DataStax, Inc. 2016) is a proprietary
fork of Titan, licensed under the Apache License 2.0 and supporting
Java. It integrates with the Cassandra (Lakshman and Malik 2010) distributed
database (over which it provides graph data models) and supports TinkerPop
(property graph with Gremlin). It is complemented by the DataStax Studio,
which allows for interactive querying and visualization of graph data similarly to
Neo4j and SAP Hana Graph.

• Dgraph (Dgraph Labs, Inc. 2020a; Dgraph Labs, Inc. 2020b) was written in Go
and it is a distributed graph database offering horizontal scaling and ACID prop-
erties. It is built to reduce disk seeks and minimize network usage footprint in
cluster scenarios. Dgraph is licensed under two licenses: the Apache License
2.0 and a Dgraph Community License. It automatically moves data to rebal-
ance cluster shards. It uses a simplified version of the GraphQL query language.
Support for Gremlin or Cypher has been mentioned for the future but will de-
pend on community efforts. Dgraph has a scalability advantage over Neo4j as
the latter may have multiple servers but they are merely replicas, while the for-
mer can grow horizontally (vertical scaling is expensive). There is a proprietary
enterprise version (conditions specified under a custom Dgraph Community
License) with advanced features for backups and encryption. Official clients
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include Java, JavaScript and Python. To the best of our knowledge Dgraph
does not offer visualization and global analytics functionalities.

• Graphflow (Kankanamge, Sahu, Mhedbhi, Chen, and Salihoglu 2017; Mhedhbi
and Salihoglu 2019; Mhedhbi, Gupta, Khaliq, and Salihoglu 2020) was released
as a prototype active graph database. It is an in-memory graph store support-
ing the property graph model and supports one-time as well as continuous sub-
graph queries. Graphflow supports this using a one-time query processor called
Generic Join and a Delta Join which enables the continuous sub-graph queries. It
extends the openCypher language with triggers to perform actions upon cer-
tain conditions. We did not find information regarding its direct use beyond aca-
demic purposes nor about supporting ACID transactions. Its code is available
online (Kankanamge, Chathura and Sahu, Siddhartha and Mhedbhi, Amine and
Chen, Jeremy and Salihoglu, Semih 2017) under the Apache License 2.0.

• JanusGraph (JanusGraph Authors 2017) is an open-source project licensed (Au-
thors 2020) under the Apache License 2.0. A database optimized for stor-
ing (in adjacency list format) and querying large graphs with (billions of) edges
and vertices distributed across a multi-machine cluster with ACID transactions.
JanusGraph, which debuted in 2017, is based on the source Java code base of
the Titan graph database project and is supported by the likes of Google, IBM
and the Linux Foundation, to name a few. Like Titan, it supports Cassandra,
HBase and BerkeleyDB. It was designed with a focus on scalability and it is
in fact a transactional database aimed at handling many concurrent users, com-
plex traversals and analytic queries. JanusGraph can integrate platforms such
as Spark, Giraph and Hadoop. It also natively integrates with the TinkerPop
graph stack, supporting Gremlin applications, the query language and its graph
server, with graphs in the property graph model. Due to supporting TinkerPop,
one may use one of its drivers to use Gremlin from Elixir, Go, Java, .NET,
PHP, Python, Ruby and Scala. It supports global analytics using Spark inte-
gration as well.

• Nebula Graph is an open-source graph database (available online (VESoft
Inc. 2020)) licensed under Apache License 2.0, provides a custom Nebula
Graph Query Language (nGQL) with syntax close to SQL and Cypher sup-
port is planned. It supports the property graph model, ACID transactions and is
implemented with a separation of storage and computation, being able to scale
horizontally. It supports multiple storage engines like HBase (George 2011) (im-
plementing the graph logic over these key-value stores) and RocksDB (Facebook
Database Engineering Team 2012) and has clients in Go, Java and Python. It also
has the complementing Nebula Graph Studio for interactive visual querying
and analytics.

• Neo4j (Webber 2012) is a graph database with multiple editions (Neo4j Inc.
2020): a community edition licensed under the free GNU General Public
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License (GPL) v3, a commercial one and also an advanced edition licensed
under AGPLv3. It supports different programming languages C/C++, Clojure,
Go, Haskell, Java, JavaScript, .NET, Perl, PHP, Python, R and Ruby.
Neo4j is optimized for highly-connected data. It relies on methods of data access
for graphs without considering data locality. Neo4j’s graph processing consists
of mostly random data access. For large graphs which require out-of-memory
processing, the major performance bottleneck becomes the random access to sec-
ondary storage. The authors created a system which supports ACID transactions,
high availability, with operations that modify data occurring within transactions
to guarantee consistency. It uses the query language Cypher and data is stored on
disk as fixed-size records in linked lists. Neo4j has a library offering many differ-
ent graph algorithms. As far as we know, Neo4j’s scale-out capabilities are only
true for read operations. All writes are directed to the Neo4j cluster master, an ar-
chitecture which has its limitations. Among other uses, Neo4j has also been em-
ployed for building applications using the GRANDstack framework (Lyon 2020).
Neo4j also has an interactive graph explorer to query and update specific ele-
ments of the graph.

• RedisGraph (Cailliau, Davis, Gadepally, Kepner, Lipman, Lovitz, and Ouak-
nine 2019) is a property graph database which uses sparse matrices to represent
a graph’s adjacency matrix and uses linear algebra for graph queries. It uses
custom memory-efficient data structures stored in RAM, having on-disk persis-
tence and tabular result sets. Queries may be written in a subset of Cypher and
are internally translated into linear algebra expressions. It has a custom license
and client libraries for RedisGraph have been developed in Elixir, Go, Java,
JavaScript, PHP, Python, Ruby and Rust, complementing existing accesses
that Redis already supports. As far as we know, it only works in single-server
mode (bounded by the machine’s RAM) and it does not support ACID proper-
ties. It has a Community Edition under a custom license. source code available
online (Ltd. 2020) under a custom license.

• SAP Hana Graph (Rudolf, Paradies, Bornhövd, and Lehner 2013; Hwang 2018;
SAP SE 2018) is a column-oriented, in-memory relational database management
system. It performs different type of data analysis, among which graph data pro-
cessing with the property graph model and ACID transactions. This graph func-
tionality includes interpretation of Cypher and a visual graph manipulation tool.
Its graph processing capabilities have served use cases like fraud detection and
route planning. We did not find source code available online.

• Sparksee (Martinez-Bazan, Gomez-Villamor, and Escale-Claveras 2011; Sparsity
Technologies 2015) (formerly DEX) is a property graph database offering ACID
transactions and representing the graph using bitmap data structures with high
compression rates (with each bitmap partitioned into chunks that fit disk pages).
The graphs in Sparksee are labelled multigraphs and it has multiple licenses
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depending on the purpose, with free licenses for evaluation, research and devel-
opment. It offers APIs in C++, .NET, Java, Objective-C, Python and mobile
devices. We found no capabilities for data visualization in Sparksee, though it
is able to export data to formats supported by third-party software.

• TigerGraph (Deutsch, Xu, Wu, and Lee 2019; TigerGraph 2020) is a commercial
graph database (formerly GraphSQL) implemented in C++ and comes in three
versions: developer edition (supporting only single-machine, no distribution and
is only for non-production, research or educational purposes), cloud edition (as
a managed service) and enterprise edition (allowing for horizontal scalability -
distributed graphs). It supports ACID consistency, access through a REST API,
has a custom SQL-like query language (GSQL) and features a graphical user in-
terface named GraphStudio to perform interactive graph data analytics. The
TigerGraph model was designed to support graph vertices, edges and their at-
tributes to support an engine that performs massively-parallel processing to com-
pute queries and analytics. Each vertex and edge acts as both a unit of storage and
computation, integrating and extending both TLAV and TLEV paradigms. It sup-
ports the property graph model plus extensions to enable the massively-parallel
processing. We did not find available source code.

• Weaver (Dubey, Hill, Escriva, and Sirer 2016) is an open-source (Dubey 2016)
graph database (custom permissive license) for efficient, transactional graph an-
alytics. It introduced the concept of refinable timestamps. It is a mechanism to
obtain a rough ordering of distributed operations if that is sufficient, but also
fine-grained orderings when they become necessary. It is capable of distributing
a graph across multiple shards while supporting concurrency. Refinable times-
tamps allow for the existence of a multi-version graph: write operations use their
timestamps as a mark for vertices and edges. This allows for the existence of con-
sistent versions of the graph so that long-running analysis queries can operate on
a consistent version of the graph, as well as historical queries. Weaver is written
in C++, offering binding options for Python. We did not find any support for
popular graph query languages.

The following graph databases we list are focused on the RDF data model and
variations (including support for the property graph model by representing them as
RDF (Hartig 2014)):

• AllegroGraph (Inc. 1984) is a proprietary commercial graph database with
clients under Eclipse Public License v1 (EPL v1) which supports sev-
eral programming languages (C#, C, Common Lisp, Clojure, Java, Perl,
Python, Scala) that was purpose-built for RDF (triple-store). It supports
an array of mechanisms to access the information it stores, namely reasoning
with ontology (RDFS++ Reasoning), materialized reasoning (generating new
triples based on inference rules - OWL2 RL Materialized Reasoner, SPARQL
queries, Prolog and also low-level APIs.
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• BlazeGraph (Systap 2020) (formerly Bigdata) is an RDF database able to sup-
port up to billions of edges in a single machine and available under the GNU
General Public License v2.0 supporting SPARQL and the TinkerPop
Blueprints API. It has .NET and Python clients. One of its associated internal
projects is blazegraph-gremlin, which allows the storage of property graphs
internally in RDF format, which can then be queried with SPARQL. It essentially
has an alternative approach to RDF reification, giving labelled property graph ca-
pabilities to RDF graphs, with the ability to query the graphs in Gremlin as well.

• BrightstarDB is an open-source (BrightstarDB 2015) multi-threaded multi-
platform (including mobile) .NET RDF store, supporting SPARQL and binding
of RDF resources to .NET dynamic objects (it has tools to use .NET interfaces and
generate concrete classes to persist their data in BrightstarDB). It is licensed
under the MIT License and there is also an Enterprise version. BrightstarDB
supports single-threaded writes and multi-threaded reads, with ACID transac-
tions. It does not support horizontal scaling.

• Cray Graph Engine (CGE) (Rickett, Haus, Maltby, and Maschhoff 2018) is an
RDF triple database offering the SPARQL query language. As a commercial prod-
uct, it was designed while considering different architectures of proprietary sys-
tems (containing the Cray Aries interconnect (Alverson, Froese, Kaplan,
and Roweth 2012)) of the company behind CGE. It offers APIs for Java, Python
and Spark, having a number of pre-built graph algorithms. It is not open-source
and its back-end relies on internal queries written in C++ to work with a global
address space using multiple processes on multiple compute nodes to share data
and synchronize operations. This product being both proprietary and reliant on
custom hardware has the consequence of not being so widespread. However,
its results and special-purpose architecture make it a competitive platform which
harnessed innovation in design as a graph database.

• Ontotext GraphDB (Ontotext 2020) is a graph database focused on RDF data
and offering ACID transaction properties. It comes in three editions: free which
is used for smaller projects and for testing and is only able to execute at most two
concurrent queries; standard which can load and query statements at scale; en-
terprise edition which offers horizontal scalability and other features. It supports
SPARQL and offers a Java programming API. We did not find its source code
available.

The following support at least both the property graph model and/or RDF explic-
itly plus other data models (e.g., at least any of: document collections, relational model,
object model):

• Amazon Neptune (Bebee, Choi, Gupta, Gutmans, Khandelwal, Kiran, Mallidi,
McGaughy, Personick, Rajan, et al. 2018) is a managed proprietary service (free-
ing the user from having to focus on management tasks, provisioning, patch-
ing, etc.) that is ACID-compliant and focused on highly-connected datasets and
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among its use cases are recommendation engines, fraud detection and drug dis-
covery, among others. Its implementation language and internal graph represen-
tation have not been disclosed and it supports both the property graph and RDF
models, offering Gremlin and SPARQL to query them. As a full-fledged com-
mercial product, it also has many features related to backup, replicas, security
and management tasks, using product features such as Amazon’s S3, EC2 and
CloudWatch to offer scalability. Usage samples available online (Amazon 2020).

• AnzoGraph DB (Cambridge Semantics 2020) (previously SPARQLVerse) is a
proprietary database built to enable RDF with SPARQL and the property graph
with Cypher queries to analyse big graphs (trillions of relationships) and it has
Java and C++APIs to create functions, aggregates and services. It supports ACID
transactions and also supports an RDF+ inference engine following W3C stan-
dards and uses compressed in-memory and on disk storage of data. This database
is described as beyond a transaction-oriented database and as a Graph Online
Analytics Processing (GOLAP) database, enabling interactive view, analy-
sis and update of graph data, in a way similar to the interactive capabilities of the
Neo4j database. It comes as a single-machine (and memory usage limitations)
free edition and an enterprise edition which supports unlimited cluster size, both
supporting commercial and non-commercial use. It supports third-party visual-
ization tools. We did not find details on its internal data structures nor source
code online.

• ArangoDB is an open-source (Thomas Schmidts 2020) multi-threaded database
with support for graph storage (as well as key/value pairs and documents)
that is available in both a proprietary license and the Apache License 2.0.
It is written in JavaScript from the browser to the back-end and all data is
stored as JSON documents. ArangoDB provides a storage engine for mostly in-
memory operations and an alternative storage engine based on RocksDB, en-
abling datasets that are much bigger than RAM. It guarantees ACID transac-
tions for multi-document and multi-collection queries in a single instance and
for single-document operations in cluster mode. Replication and sharding are of-
fered, allowing users to set up the database in a master-slave configuration or to
spread bigger datasets across multiple servers. It exposes a Pregel-like API to
express graph algorithms (implying access to the stored data in the database), has
a custom SQL-like query language called AQL (ArangoDB Query Language)
and includes a built-in graph explorer.

• IBM System G (IBM System G Team 2015) more than a proprietary graph
database, is a complete suite of functionalities, able to support the property graph
(with Gremlin) as well as RDF (though we did not find comments on RDF-specific
query languages). It is comprised of proprietary components as well as open-
source and comes with visual query capabilities, providing visual feedback into
query building and result analysis to ease the debugging process. ACID transac-
tions are supported and the graph is represented in its native store with a data
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structure similar to compressed sparse vectors, using offsets to delimit, for each
graph element, the latest and earliest temporal information of the element.

• OrientDB (Tesoriero 2013) is a distributed (property model) graph database that
supports TinkerPop and functions both as a graph database and NoSQL doc-
ument database as well, with a Community Edition licensed (OrientDB LTD
2020) under Apache License 2.0 and a commercial edition. There are drivers
supporting OrientDB at least in the following languages: Clojure, Go, Java,
JavaScript, .NET, Node.js, PHP, Python, R, Ruby and Scala. It supports
sharding (horizontal scaling), has ACID support and offers an adapted SQL for
querying.

• Oracle Spatial and Graph (OSG) (Oracle 2020) is a long-standing com-
mercial product which has spatial and graph capabilities, among which the prop-
erty graph model using PGQL and the RDF model with SPARQL. It also supports
a feature-rich studio with notebook interpreters, shell user-interface and graph
visualization. There are different Java APIs, one for the Oracle Spatial
and Graph Property Graph, another for TinkerPop Blueprints and
Database Property Graph.

• Stardog (Stardog 2020) is a proprietary (with a limited-time free trial version and
a paid Enterprise license) knowledge graph database with a graph model based
on RDF and extensions to support the property graph model. It is horizontally-
scalable, supports ACID operations, GraphQL, Gremlin and SPARQL for query-
ing and introspection and may be programmed in Clojure, Groovy, Java,
JavaScript, .NET and Spring. For exploration, it features Stardog Studio.

• Virtuoso (Erling 2012) is a multi-model database management system that sup-
ports relational as well as property graphs and has an open-source (OpenLink
Software 2020) edition under the GPLv2 license as well as a proprietary enterprise
edition. At least the following programming languages are supported: C/C++,
C#, Java, JavaScript, .NET, PHP, Python, Ruby and Visual Basic. It sup-
ports horizontal scaling, has functionalities for interactive data exploration and
supports SPARQL.

We lastly note the following databases that have been used to represent graphs,
though not having an explicit description of supporting the property graph model or
RDF:

• Azure Cosmos DB (Paz 2018) is a commercial database solution that is multi-
model, globally-distributed, schema-agnostic, horizontally-scalable and fully
supports ACID. It is classified as a NoSQL database, but the multi-model API
is a relevant offering, for it can expose stored data for example as table rows
(Cassandra), collections (MongoDB) and most importantly as graphs (Gremlin).
It has connectors for Java, .NET, Python and Xamarin. It is also a fully-
managed service with scalability, freeing developer resources from topics such
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as data centre deployments, software upgrades and other operations. An online
repository of source code information is available (Corporation 2019).

• FaunaDB (Fauna 2020) is a distributed database platform targeting the mod-
ern cloud and container-centric environments. It has a custom Fauna Query
Language (FQL) which operates on schema types such as documents, collections,
indices, sets and databases. This language can be accessed through drivers in lan-
guages such as Android, C#, Go, Java, JavaScript, Python, Ruby, Scala
and Swift. FaunaDB supports concurrency, ACID transactions and offers a
RESTful HTTP API.

• Google Cayley is an open-source (Google 2017) database behind Google’s
Knowledge Graph, having been tested at least since 2014 (and it is the spiri-
tual successor to graphd (Meyer, Degener, Giannandrea, and Michener 2010)).
It is a community-driven database written in Go, including a REPL, a REST-
ful API, a query editor and visualizer. It supports Gizmo (query language in-
spired by Gremlin) and GraphQL. Cayley supports multiple storage back-end
such as LevelDB, Bolt, PostgreSQL, MongoDB (distributed stores) and also an
ephemeral in-memory storage. The ability to support ACID transactions is dele-
gated to the underlying storage back-end. Cayley being distributed depends on
the underlying storage being distributed as well. Also in active development as
of 2019.

• HyperGraphDB (Iordanov 2010) is as an open-source general purpose data stor-
age mechanism. It is used to store hypergraphs (a graph generalization where
an edge can join any number of vertices). The low-level storage is based on
BerkeleyDB and is implemented in Java. Despite the description on the web-
site mentioning distribution, the support for either distributed sharding or dis-
tributed replication is not supported in its current implementation (Iordanov
2020) and we did not find mentions of ACID transaction support.

• Objectivity/DB (Objectivity 2016) is the database technology powering the
massively scalable graph software platform ThingSpan (formerly known as
InfiniteGraph). It is a fully-distributed database (able to scale horizontally)
offering APIs in C++, C#, Java and Python. Objectivity/DB is described as a
distributed object database, supporting many data models (among which highly
complex and inter-related data). We did not find any information about it sup-
porting graph-specific query languages, and licensing is defined on a case-by-case
basis.

Other notable mentions include the OQGRAPH (MariaDB 2016) graph storage engine
of MariaDB, developed to handle hierarchies and vertices with many connections and
intended for retrieving hierarchical information such as graphs, routes and social rela-
tionships in SQL. We note the following resources for further deepening of the aspects
involved in the evolution of the study of graph databases (Jin, Bhowmick, Xiao, Cheng,
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and Choi 2010; Buerli and Obispo 2012; Shimpi and Chaudhari 2012; Robinson, Webber,
and Eifrem 2013; Kolomičenko, Svoboda, and Mlỳnková 2013; Vaikuntam and Perumal
2014; De Virgilio, Maccioni, and Torlone 2014; Henderson 2014; Robinson, Webber, and
Eifrem 2015), covering aspects such as the internal graph representations, experimental
comparisons, principles for querying and extracting information from the graph and
designing graph databases to make use of distributed infrastructures.

3.12 Analysis and Discussion

This survey initiative explores different aspects of the graph processing landscape
and highlights vectors of research. We cover dimensions that enable the classification
of graph processing systems according to the mutability of data (dynamism (Besta, Fis-
cher, Kalavri, Kapralov, and Hoefler 2019) and its modalities), the nature of the tasks
(workloads where the focus may be efficient storage (Corporation 1999) or swift com-
putation (Chen, Yan, Zhu, Han, and Yu 2008) over transient data) and how the data
is associated to different computing agents (e.g., distributed via partitioning (Soudani,
Fatemi, and Nematbakhsh 2019) to threads in a CPU, CPUs in a machine, machines in
a cluster). Each of these dimensions constitutes a different branch of the study of graph
processing, and herein we group their recent literature surveys and draw on their rela-
tionships.

On drawing a line between graph processing systems and those that also focus on
the storage, the graph databases, we found most commercial graph solutions to fall on
the category of graph database. Graph databases, along the last decade, have contin-
ued to refine their efficiency in executing traversals and global graph algorithms over
the graph representation stored in the database. We consider that a novel approach to
extracting value from graph-based data will include the use of graph-aware data com-
pression techniques on scalable distributed systems, potentially breaking the abstrac-
tion that these systems establish between the high-level graph data representations and
the lower-level data distribution and transmission. We observe that the architecture of
systems targeting graphs depend on how generic the graph processing is desired to
be. Generic dataflow processing systems offer abstractions over their basic computa-
tional primitives in order to represent and process graphs, but in exchange abdicate
from fine-tuning and graph-aware optimizations.

As part of our exhaustive analysis of existing contributions of different domains in
the state-of-the-art of graph processing and storage, we provide direct links to source
code repositories such as GitHub whenever they were available. Should the reader
wish to delve into the implementation of a given contribution, a link to the contribu-
tion’s source code repository is to be found as part of the bibliography. We provide
these so that other researchers and developers may look into them without need to
engage in error-prone searches looking for up-to-date documentation and source-code.

This systematic analysis fosters some additional comments regarding data process-
ing. Data is abundant, big and evolving, and paradigms such as edge computing and
the evolution of the Internet-of-Things come together to reshape our relationship with
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data. With an increase in smart devices and computational capabilities becoming more
ubiquitous for example in daily objects such as vehicles and smart homes, new graphs
of data mapping interaction and purpose become available. This implies a continuous
trend in the increasing size of data. At the same time, the dimension of dynamism
(spread across the types we enumerate in this document) gains renewed importance
as we move to a faster and ever-connected world. With the advent of 5G technologies
and the alternative possibilities of space internet (among the private initiatives we count
SpaceX’s Starlink, Jeff Bezos’ Blue Origin and the late Steve Jobs’ vision for an always-
connected smartphone) becoming a closer reality, the temporal aspect will become even
more granular.

One would not be wrong to speculate that we will have more devices which will
generate data more frequently. In such a world, the graph processing dimensions we
enumerate in this document will play a relevant role in building systems to handle
these changing scenarios.

3.12.1 Challenges in the Field

Our survey initiative enumerated many different systems, architectures, hardware
specializations and topics of graph processing. This effort was undertaken across the
development of our research contributions, gaining from each work’s respective related
state-of-the-art and providing a more complete background on their challenges.

The following chapters introduce certain challenges and our contributions in their
scope. Among them we explored:

• Approximate graph processing techniques in the scope of graphs receiving up-
dates from a stream. We focus on a specific summarization technique that we
implemented over Apache Flink as our work VEILGRAPH in Chapter 4. With
a graph summarization model and proposed parameters, we performed experi-
ments coordinating the relation between performance and result accuracy for the
vertex centrality algorithm PageRank. The topic of approximation as a tool to in-
crease speedups has remained relevant across the years, with approaches in the
literature ranging from incurring approximation by trimming certain computa-
tions, to fine-grained estimates of topological graph change and subsequent algo-
rithm value updates. Some of the systems detailed in the present chapter (such as
KickStarter) present these approaches.

• An application of a graph-based community detection approach as part of a tech-
nique to perform leader election for service placement in community networks,
presented as GELLY-SCHEDULING in Chapter 5. There exist approaches in the lit-
erature to the problem of leader election which consist for example of a series of
nested loops to search the solution space for the most efficient combination of pa-
rameters. This problem remains relevant today, not only for community networks
but also data centers and other forms of network. In the case of cloud community
micro-clouds, we aimed to capture the relevance of network topology as well as
the nodes’ properties.
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• Compressed graph formats exist and enable their analysis on off-the-shelf har-
ware to some degree. However, their scope is limited in the sense that they typ-
ically manage a static representation of the graph (such as WebGraph), thus not
supporting the many use-cases of graph processing with respect to updating the
graphs in some way. With compact (smart) graph data structures, changes to
the graph are possible without having to convert the compressed representation
into an uncompressed one (which would be prohibitive for many datasets unless
using extremely powerful hardware). We explore one particular compact repre-
sentation, the k2-tree, for which we present an implementation and benchmark
against other implementations in Chapter 6.



4VeilGraph: Streaming

Graph Approximations

Herein we present our submission (Coimbra, Esteves, Francisco, and Veiga 2021)
VEILGRAPH, an API implementing an innovative model for approximate graph pro-
cessing. This work highlights the contributions and achievements of VEILGRAPH in
the context of the PageRank power method algorithm. Our experiments show VEIL-
GRAPH can reduce computational time while achieving result quality above 95% when
compared to results of the traditional version of PageRank without any summarization
or approximation techniques.

In a context of maintaining an evolving graph (integrating updates from a stream)
and processing it, we research the trade-offs between result accuracy and the speedup
of approximate computation techniques. The relationships between the frequency of
graph algorithm execution, the update rate and the type of update play an important
role in applying these techniques. We showcase an innovative model for approximate
graph processing implemented in Apache Flink. We analyse our model and evaluate
it with the case study of the PageRank algorithm (Page, Brin, Motwani, and Winograd
1999), the most famous measure of vertex centrality used to rank websites in search
engine results. Our experiments show that VEILGRAPH can improve performance up
to 10X speedups, while achieving result quality above 95% when compared to results
of the traditional version of PageRank without any summarization or approximation
techniques.

4.1 Introduction

We introduce VEILGRAPH, a novel execution model that enables approximate com-
putations on general directed graph applications. Our model uses a summarized graph
representation which includes only the vertices most relevant to computation using a
set of heuristics over the topological changes in the graph. With this abstraction, we
build a representative graph summarization that solely comprises the subset of vertices
estimated as yielding a relevant impact to the accuracy of a given graph algorithm. This
way, VEILGRAPH is capable of delivering lower latencies in a resource-efficient man-
ner, while maintaining query result accuracy within acceptable limits. We integrated
VEILGRAPH with Apache Flink (Carbone, Katsifodimos, Ewen, Markl, Haridi, and
Tzoumas 2015; Katsifodimos and Schelter 2016), a modern distributed dataflow pro-
cessing framework. Experimental results indicate that our approximate computing
model can achieve half the latency of the base (exact) computing model, while not
degrading result accuracy by more than 5% (this was observed by comparing the com-
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plete and the approximate models with the same number of workers in the cluster).
Furthermore, our approximate (summarized) computation model is scalable, achiev-
ing speedups in the range of 10x-15x while using only 16 workers in our Google Cloud
Dataproc cluster experiments (we evaluated with 1, 2, 4, 8 and 16 worker counts in the
cluster).

We focus on a vertex-centric implementation of PageRank (Langville and Meyer
2011), where for each iteration, each vertex u sends its value (divided by its outgoing
degree) through each of its outgoing edges. A vertex v defines its score as the sum of
values received from its incoming edges, multiplied by a constant factor β and then
summed with a constant value (1−β) with 0 ≤ β ≤ 1. PageRank, based on the random
surfer model, uses β as a dampening factor. For our work, this means that whether one
considers one-time offline processing or online processing over a stream of graph up-
dates, the underlying computation of PageRank is an approximate numerical version
well known in the literature. This distinction is important, for when we state VEIL-
GRAPH enables approximate computing, we are considering a potential for applicabil-
ity to a scope of graph algorithms, such as algorithms for computing centrality (Katz
1953; Freeman 1977; Newman 2010), heat kernel (Vassilevich 2003) and optimization
algorithms for finding communities (Boldi, Rosa, Santini, and Vigna 2011; Chung and
Simpson 2015). Whether the specific graph algorithm itself incurs numerical approxi-
mations (such as the power method) or not, that is orthogonal to our model and may only
enable its benefits further.

This chapter is organized as follows. Section 4.2 describes our summarization
model and how it is built. An overview of the VEILGRAPH architecture is provided
in Section 4.3. In Section 4.4 we present the experimental evaluation, followed by an
analysis of improvements. Section 4.5 notes related systems and techniques. We sum-
marize our contribution and future research in Section 4.6.

4.2 Model: Big Vertex

When a window of graph updates (a batch of edge additions and deletions) is in-
corporated into the graph, vertices change in different ways. The importance of a vertex
with five thousand (5000) neighbours will not change much if five (5) new vertices con-
nect to it. But if the vertex only had five (5) neighbours, it now has ten (10), it is a 100%
increase and so the magnitude of its individual topological change is greater.

Our model considers a set K of hot vertices upon which computation of an algo-
rithm (e.g. PageRank) will be performed. The model resorts to a synthesis, unify-
ing techniques such as defining and determining a confidence threshold for error in
the calculation (Agarwal, Milner, Kleiner, Talwalkar, Jordan, Madden, Mozafari, and
Stoica 2014; Goiri, Bianchini, Nagarakatte, and Nguyen 2015), graph sampling (Bab-
cock, Datar, and Motwani 2002; Hu and Lau 2013; Ahmed, Duffield, Willke, and Rossi
2017) and sketching (Ahn, Guha, and McGregor 2012). The aim of this set is to reduce
the number of processed vertices as close as possible to O(|K|). For a given graph
G = (V,E), we build set K such that the vertices outside K assume the values they
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had (ranks) on the previous computation and are not updated in the current one. New
vertices which were just obtained from the update stream are immediately added to K
as they have no algorithm-specific (e.g. PageRank) value yet.

Performing updates to only a subsetK of the vertices implies that less data is prop-
agated across the graph. In this model there is an aggregating vertex B. We refer to B
as the big vertex – a single vertex representing all the vertices not contained in K (in this
model, the values are not updated for vertices represented by B). For the original graph
G = (V,E), upon the arrival of edge additions/deletions, we build vertex set K and
then define a summary graph G = (V, E), where V = K ∪ {B}. We define E = EK ∪EB,
where EK = {(u, v) ∈ E : u, v ∈ K}, which is the set of edges with both source and
target vertices contained in K and EB = {(w, z) ∈ E : w 6∈ K, z ∈ K} as the set of edges
with sources contained inside B and target in K.

Conceptually, this consists in replacing all vertices of G which are not in K by a
single big vertex B and representing the edges whose targets are hot vertices and whose
sources are now in B. The summary graph G does not contain vertices outside of K
(again, those are represented by B). By definition, B represents all vertices whose im-
pact is not expected to change significantly. The contribution of each vertex v 6∈ K (and
therefore represented by B) is constant between iterations (e.g., random walks), so it
can be registered initially before updating algorithm values (e.g., rankings) and used
afterwards during algorithm execution. As a consequence, the summary graph G does
not contain edges targeting vertices represented by B. However, their existence must
be recorded: even if the edges coming out of K and into B are irrelevant for the compu-
tation, they still matter for the vertex degree, which influences the emitted scores of the
vertices in K. Despite the fact those edges targeting B are being discarded when build-
ing the summary graph G, the summarized computation must occur as if vertex degrees
remained the same. To ensure correctness, for each edge (u, v) ∈ EK , we store and rep-
resent the weight of the edge as w(u, v) = 1/dout(u) with dout(u) as the out-degree of u
before discarding the outgoing edges of u targeting vertices in B.

It is also necessary to record the contribution of all the vertices fused together in B.
For each edge (u, v) whose source u is inside B and whose target v is in K, we store the
contribution that would originally be sent from u asw(u, v) = us/dout(u) where us is the
stored value of u (resulting from the computed graph algorithm) and the out-degree of
u is defined as dout(u). The contribution of B as a single vertex in G is then represented
as Bs and defined as:

Bs =
∑
u

w(u, v), (u, v) ∈ EB (4.1)

The fusion of vertices into B is performed while preserving the global influence that
vertices placed inside B have on vertices in K. Our model intuition is that vertices
receiving more updates have a greater probability of having their measured impact
change in between execution points. Their neighbouring vertices are also likely to incur
changes, but as we consider vertices further and further away fromK, contributions are
likely to remain the same (Chien, Dwork, Kumar, Simon, and Sivakumar 2003; Babcock,
Datar, Motwani, et al. 2003).



80 CHAPTER 4. VEILGRAPH: STREAMING GRAPH APPROXIMATIONS

To build the hot vertex set K after integrating a window of updates, we use three
parameters whose purpose we describe below:

1. Parameter: update ratio threshold r. This parameter defines the minimal amount
of change in vertex degree in order for it to be included in K. A vertex whose in-
degree changes r% or more is included inK immediately (e.g., a vertex that changed
in-degree from one to two changed by 50%).

We adopt the notation where the set of neighbours of vertex u in a directed graph at
measurement instance t is written asNt (u) = {v ∈ V : (u, v) ∈ Et}. We further write
the degree of vertex u in measurement instance t as dt (u) = |Nt (u) |. The function
d (u, v) represents the length (number of hops) of the minimum path between ver-
tices u and v and dt (u, v) represents the same concept at measurement instance t. It
is not required to maintain shortest paths between vertices (that would be a whole
different problem (Kalavri, Simas, and Logothetis 2016)). This model is based on a
vertex-centric breadth-first neighbourhood expansion. Let us define as Kr the set of
vertices which satisfy parameter r, where dt (u) is the degree of vertex u, t represents
the current measurement point and t− 1 is the previous measurement point:

Kr = {u : | dt (u)

dt−1 (u)
− 1| > r} (4.2)

New vertices are always included in Kr. The subtraction in the formula registers
the degree change ratio with respect to the previous value dt−1(u). This definition al-
lows us to mathematically express conditions such as keeping all vertices whose degree
changed at least 20%.

2. Parameter: neighbourhood diameter n. LetKr,n be the set of vertices obtained from
applying parameter n to Kr. We expand around the n-hop neighbourhoods of the
vertices added to Kr in step 1. Parameter n aims to capture the locality in graph
updates: those vertices neighbouring the ones beyond the threshold, and as such
still likely to suffer relevant modifications when the hot vertices’ values are updated
(attenuating as distance increases). On measurement point t, for each vertex u ∈
Kr, we will expand a neighbourhood of diameter n (number of hops), starting from
u and including every additional vertex v ∈ Vt \ Kr found in the neighbourhood
diameter expansion. The expansion is then defined as:

Kr,n = Kr ∪ {v : dt (u, v) ≤ n, u ∈ Kr, v ∈ Vt \Kr} (4.3)

Vt is the set of vertices of the graph at measurement point t. Parameter n = 0 may
be set to promote performance, while a greater value of n is expected to focus on
accuracy at the expense of performance.

3. Parameter: result-specific neighbourhood extension ∆. Let Kr,n,∆ be the set of
vertices obtained from expanding set Kr,n using parameter ∆. The final set K of
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hot vertices is defined as K = Kr,n,∆. Between computations, the values change. A
vertex u whose algorithm value (rank) changed at least ∆ between computations
may have a greater influence on its neighbours until the value of vertex u becomes
negligible after a given number of hops. We select these influenced neighbours based
on the formula:

K = Kr,n,∆ = Kr,n ∪ {v : d (u, v) ≤ f∆ (v) , u ∈ Kr,n, v ∈ Vt \Kr,n} (4.4)

where f∆ (v) is the ∆-expansion function:

f∆ (v) =
1

log d
log

(
d vs

∆ dt (v)

)
(4.5)

The symbols of Equation 4.5 are as follows: d is the average degree in the graph,
vs is the existing result on vertex v and d (v) is the out-degree of v. The intuition
underlying this parameter is the following: for a vertex u that will be expanded via
∆ from step 3, its impact will diminish as we hop further away from it (from u to
immediate neighbours, then to its neighbours’ neighbours and so on). The impact
of a vertex u on its i-hop neighbourhood will dilute as we further hop away from u
as i → ∞. Consider we perform a number i of hops away from u until we reach a
given vertex v. ∆ is used with this formula to assign a value to the number of hops.
With this, we account for vertices which change in an impacting way so that their
neighbourhoods are included in the computation as well.

The vertices outside K are aggregated into a big vertex B. To ensure correct-
ness, for each edge (u, v) ∈ EK , we store and represent the weight of the edge as
w(u, v) = 1/d(u) with d(u) as the out-degree of u before discarding the outgoing edges
of u targeting vertices in B. This is so the correct degree of the vertices in K is used
in the computation of scores, even though their outgoing edges (with targets in B) are
not used in the summarization. Thus, the vertices represented in B are assumed to not
change their value during the computation (which may lead to error accumulation – we
analyse and deal with it in Section 4.4). What is captured and preserved is their global
contribution to the vertices inK. We then have a summary graph written as G = (V, E),
where V = K ∪ {B}.

Equation 4.5 is based on the diminishing returns incurred by continuously expand-
ing the neighbourhood when buildingK∆. When the result of a vertex v (e.g., its PageR-
ank) is propagated to a 1st-order neighbour u of v, the score gets diluted by the amount
of out-edges of v. So if v has a result of vs, each of its immediate neighbouring vertices
will receive vs/dt(v) at measurement point t. If we were to further propagate to 2nd-
hop neighbours of v, we would expand from vertex u into a farther vertex w. The value
received by w would be vs/(dt(v)dt(u)). Expanding into an ith-hop neighbour would
accumulate an out-degree division for each vertex expanded. The impact of v’s result
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...v
vs
dt(v)

u
vs

dt(v)dt(u)

j
vs

dt(v)dt(u) . . . dt(j)

i

Figure 4.1: The contribution of vertex v diminishes as we expand further away from
it (Equation 4.7). Parameter ∆ dictates how far to expand around vertices until the
accumulated fraction drops below ∆. vs is the score of vertex v; dt(v) is the out-degree
of vertex v at measurement point t.

on a given i-th-hop vertex i would be defined as (x is the last expanded vertex):

vs
dt(v)dt(u) . . . dt(x)

(4.6)

To avoid fetching the out-degree of each vertex for each expansion (which would incur
additional overhead in a dataflow processing system such as Flink), we approximate
the degree of any vertex beyond v with d, which is the average degree of the accumu-
lated vertices with respect to the stream. We then have the approximation:

vs
dt(v)dt(u) . . . dt(x)

≈ vs

dt(v)(d)i−1
(4.7)

To ensure that we only continue expanding until we drop below a given ∆ threshold of
result impact (until the ith-hop vertex), we set it as a target of Equation 4.7:

vs

dt(v)(d)i−1
=

dvs

dt(v)(d)i
= ∆

dvs
∆ dt(v)

= (d)i

logd

(
dvs

∆ dt(v)

)
= i

1

log d
log

(
dvs

∆ dt(v)

)
= f∆(v) = i

Figure 4.1 provides a visual example of the dilution of the score of vertex v due to the
degree of the vertex at the end of each hop (u, then intermediate vertices represented
as ’. . . ’, followed by j until i is reached).

We then have a set of hot vertices K = Kr ∪ Kn ∪ K∆ which is used as part of a
graph summary model (deriving from techniques in iterative aggregation (Langville
and Meyer 2004)), written as G = (V, E).
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Figure 4.2: Building the big vertex, step-by-step.

An example of applying the updates and building the K set and the big vertex B is
shown in Figure 4.2 with r = 0.20, n = 1,∆ = 0.10: a) is the initial graph; b) shows five
new edges (dashed) and one edge deletion (red cross); c) new vertices are automatically
included in K for computation (blue); d) vertices 0 and 1 are also included in K (blue)
because their in-degree changed at least 20% (r = 0.20); e) the neighbourhood diameter
expansion of size n = 1 around current vertices in K includes vertex 2; f) vertices (3, 4,
5, 6) outside K are collapsed into the big vertex B. Impact of ∆ not depicted.

4.3 Architecture

The general distributed architecture and workflow of VEILGRAPH is illustrated in
Figure 4.3. The architecture was designed to take into account the relevant stages in the
graph processing as updates from a stream arrive. The VEILGRAPH module is primar-
ily responsible for continuously monitoring one or more streams of data and tracking
the updates to be applied to the graph. We use the term query to designate a request for
up-to-date graph algorithm results. The process started by a query follows the follow-
ing steps:

1. The VEILGRAPH module receives a query request.

2. The VEILGRAPH module submits a Flink job to integrate in the graph new in-
formation (edge additions/deletions) that arrived from the stream of updates.
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Figure 4.3: Diagram of VEILGRAPH workflow on Flink.

3. Flink executes the jobs, thus updating the graph by: integrating updates; build-
ing a summary graph representation if approximate processing is chosen; execut-
ing either the approximate version of the algorithm over the summary graph, or
the complete version over the updated graph.

4. VEILGRAPH then returns the update graph data to as a response to the request.

We designed VEILGRAPH to control the flow of data and submit jobs to a Flink
cluster when appropriate. The cluster may be running in locally-owned hardware, on
any cloud provider’s offerings (we evaluated with Google Cloud Dataproc) or even
with its components within the same large-memory machine. In our model, the stream
of updates consists of reading from a graph dataset file in adjacency list format. The up-
date windows consist of batches of edges read from the input file, with a fixed window
size set a priori. The windows taken from the stream are non-overlapping and con-
tiguous. We further detail this in Section 4.4. From our analysis of related works, we
consider the term incremental with respect to processing as meaning that new algorithm
results may be computed as a function of previous results and a change of the under-
lying data. With streaming, we refer to the fact information is coming as continuous
flow of data from any given source (even though we test VEILGRAPH in a controlled
scenario with fixed-size streams).

Among the many distributed systems detailed in Chapter 3, we found at times the
lack of a strong development community to be the strongest motivation to disqualify
candidates to implement VEILGRAPH. While it is true that there exist systems which
achieved high levels of performance, the pitfalls of exploring undocumented code bases
with potentially prohibitive and unforeseen flaws are risks that overwhelm the hypo-
thetical use one may make of them. With these criteria, we established Flink and
Spark as the most desirable candidates to implement VEILGRAPH.

Ultimately, two factors were crucial that led us to choosing Flink over Spark: we
found Flink’s Gelly graph processing library to be in more active development than
Spark’s, and Flink’s community of developers was also more active. The ability to
quickly iterate through problems with knowledge of those who directly develop the
tools is priceless, and impractical with less active projects. Dataflow programming sys-
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tems offer the advantage of the declarative specification of logic which is decoupled
from the executing infrastructure. As we wished to offer VEILGRAPH as big of an audi-
ence as possible, systems such as Flink allow less experienced developers to compute
over different infrastructures with abstractions.

VEILGRAPH was designed to allow programmers to define fine-grained logic for
the approximate computation when necessary. This is achieved through user-defined
functions defined in a specific base Java class GraphStreamHandler. The API of
VEILGRAPH uses them to define the execution logic that will guide the processing strat-
egy. They are key points in execution where important decisions should take place (e.g.,
how to apply updates, how to perform monitoring tasks). To employ our module, the
user can express the algorithm using Flink dataflow programming primitives.

Additional behaviour control is possible by customizing the model by implement-
ing user-defined functions (left as abstract methods of the class implementing the
architecture logic). Overall, this approach has the advantage of abstracting away the
API’s complexity, while still empowering users who wish to create fine-tuned policies.
VEILGRAPH’s architecture creates a separation between the graph model, the way the
graph processing is expressed (e.g. such as vertex-centric) and the function logic to ap-
ply on vertices. We employ Flink’s mechanism for efficient dataflow iterations (Car-
bone, Katsifodimos, Ewen, Markl, Haridi, and Tzoumas 2015) with intermediate result
usage, expressing computations over its Gelly graph library.1

VEILGRAPH will monitor the data stream and track the changes made to the graph.
When a graph algorithm is to be run (henceforth we call this occurrence a query), VEIL-
GRAPH will execute the request by submitting a job to a Flink cluster. In our ex-
periments, we trigger the incorporation of updates into the graph whenever a client
query arrives.2 To simplify implementation design, the client queries are also sent in
the stream of graph updates. Conceptually, these are the major elements involved in
the functioning of VEILGRAPH and are compatible with most graph processing frame-
works:

• Initial graph G. The original graph upon which updates and queries will be per-
formed.

• Stream of updates S. Our model of updates could be the removal e− or addition
e+ of edges and the same for vertices (v−, v+). We make as little assumptions as
possible regarding S: the data supplied needs not respect any defined order. In our
experiments we used both edge additions and removals, with vertices being added
or removed as part of the edges they belong to.

• Result R. Information produced by the system as an answer to the queries received
in S (e.g. vertex rankings). It is reused in the following computation when the next
1https://ci.apache.org/projects/flink/flink-docs-stable/dev/batch/

iterations.html#delta-iterate-operator
2While outside the scope of this work, a live scenario would have a more elaborate ingestion scheme,

possibly using dedicated ingestion nodes like in KineoGraph (Cheng, Hong, Kyrola, Miao, Weng, Wu,
Yang, Zhou, Zhao, and Chen 2012).

https://ci.apache.org/projects/flink/flink-docs-stable/dev/batch/iterations.html#delta-iterate-operator
https://ci.apache.org/projects/flink/flink-docs-stable/dev/batch/iterations.html#delta-iterate-operator
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Algorithm 1 VEILGRAPH Execution Skeleton: graph G, stream S
1: ONSTART(G, S) /* Initializations. */
2: graphUpdates ← ∅
3: updateStatistics ← ∅
4: repeat
5: msg ← TAKEMESSAGE(S)
6: if msg is Add then REGISTERADDEDGE(msg, graphUpdates, updateStatistics)
7: else if msg is Remove then REGISTERREMOVEEDGE(msg, graphUpdates,

updateStatistics)
8: else if msg is Query then
9: TneedToApplyUpdates? ← CHECKUPDATESTATE(graphUpdates, updateStatistics)
10: if needToApplyUpdates? then
11: G ← APPLYUPDATES(graphUpdates, updateStatistics)
12: end if
13: strategy ← DEFINEQUERYSTRATEGY(msg, G, updates, updateStatistics)
14: if strategy = Repeat-last-answer then
15: newResults ← previousResults
16: else if strategy = Compute-approximate then
17: newResults ← COMPUTEAPPROXIMATE(G, previousResults)
18: else if strategy = Compute-exact then
19: newResults ← COMPUTEEXACT(G)
20: end if
21: OUTPUTRESULTS(newResults)
22: ONQUERYRESULT(msg, G, newResults, jobStatistics) /* Extrapolate and store job

statistics. */
23: end if
24: until stopped
25: ONSTOP( ) /* Tear-down procedure. */

window of updates and query are received.

Figure 4.4 illustrates different examples of update streams. In our stream sce-
nario, these are non-overlapping counting windows. In the top stream, we see that
each window of updates adds five edges and removes one. The greater the amount
of elements in the stream window, the more entropy each update would add to the
graph. The bottom-right shows a bigger window and the bottom-left shows the ex-
treme case where the element count in the window is one. The smaller the window
size, the more resources are consumed (by recalculating ranks completely more often),
and the greater the computational benefit, increased speedup and reduced latency of
applying our model, as there are practically no changes to the graph.

We present in Algorithm 1 these different UDFs and their coordination. The func-
tions are as follows: For simple rules, these functions do not need to be programmed, as
we supply the implementation with parameters for the simplest rules such as threshold
comparisons, fixed values, intervals and change ratios.

1. ONSTART. A preparatory function for setting up resources such as files, database
accesses or other initial tasks.

2. CHECKUPDATESTATE. Executed after a query q is received, but before graph up-
dates are applied. Its purpose is to enable programmers to choose how and when
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Figure 4.4: Example of different granularities edge addition/removal in streams.

to process the graph updates as a function of the magnitude of their impact. It ex-
poses the sequence of graph operations which were pending since the last query and
statistics such as the number of changed vertices and the total amount of vertices and
edges in the graph. Its returned value on line 9 will dictate if updates should be in-
tegrated into the graph according to some criteria, with line 11 invoking the actual
logic to update the graph with topological changes that arrived from the stream.

3. DEFINEQUERYSTRATEGY. Called every time a query q arrives. The query is served
after any processing that may have taken place in BEFOREUPDATES. This function is
defined in the API to return an action indicator dictating the query strategy to use.
It could be done be any of: a) by returning the last calculated result; b) performing
an approximation of the result and returning it; c) providing an exact answer after
a complete recalculation of the result.3 Line 13 is responsible for this call to define
the strategy that will be used. The chosen strategy is respective to the specific graph
algorithm in use. In our evaluation scenario, the algorithm whose results need to be
updated is PageRank.

4. ONQUERYRESULT. Invoked after q’s response has been processed. This UDF is
aware of the action indicator returned by DEFINEQUERYSTRATEGY. It has access
to the response’s results, execution statistics (such as total execution time, physical
space, network traffic, among others) and details specific to the approximation tech-
nique used.

5. ONSTOP. Symmetrical to ONSTART, it is responsible for (if necessary) proper re-
source clearing and post-processing.

It is relevant to note that

4.3.1 Implementation

VEILGRAPH was implemented on Apache, a framework built for distributed
3In our scenario we always used (b)) approximation
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stream processing.4 It has many different libraries, among which Gelly, its official
graph processing library. It features algorithms such as PageRank, Single-Source Short-
est Paths and Community Detection, among others. Overall, it empowers researchers
and engineers to express graph algorithms in familiar ways such as the gather-sum-
apply or the vertex-centric approach of Pregel (Malewicz, Austern, Bik, Dehnert, Horn,
Leiser, and Czajkowski 2010), while providing a powerful abstraction with respect to
the underlying scheme of distributed computation. We employ Flink’s mechanism
for efficient dataflow iterations (Kalavri, Ewen, Tzoumas, Vlassov, Markl, and Haridi
2014) with intermediate result usage. To employ our module, the user can express the
algorithm using Flink dataflow programming primitives. They will be fed the up-
dated graph and the processing infrastructure of Flink.

VEILGRAPH is implemented as a Java program which triggers Flink jobs to in-
gest graph updates, build summary graphs and execute algorithm updates as needed.
It does not modify Flink’s internals and aims to assess the scalability of the graph sum-
marization technique as more worker nodes are present in the Flink cluster, while of-
fering an API to define how update ingestion and approximations may be performed.
The stream of updates is implemented through a Python program (streamer) which
reads a graph input file and sends batches of updates to VEILGRAPH through a socket.
The streamer interleaves the batches of updates with a specific instruction to trigger the
processing in VEILGRAPH.

The source of VEILGRAPH is available online for the graph processing commu-
nity.5 We provide an API allowing programmers to implement their logic succinctly.
VEILGRAPH was evaluated with the PageRank power method algorithm (Page, Brin,
Motwani, and Winograd 1999). The PageRank logic is succinctly implemented as a
function as follows:

public static class PageRankFunction implements Function<MessageIterator<Double>,
Double>, Serializable {

private final Double dampening;

public PageRankFunction(Double dampening) {
this.dampening = dampening;

}

@Override
public Double apply(final MessageIterator<Double> inMessages) {

double rankSum = 0.0;
for (double msg : inMessages) {

rankSum += msg;
}
return (this.dampening * rankSum) + (1 - this.dampening);

}
}

This is then passed on to the underlying graph processing paradigm, as such:

4https://flink.apache.org/
5Access date: 2020-Feb-12: https://fenix.tecnico.ulisboa.pt/homepage/ist162460/

veilgraph

https://flink.apache.org/
https://fenix.tecnico.ulisboa.pt/homepage/ist162460/veilgraph
https://fenix.tecnico.ulisboa.pt/homepage/ist162460/veilgraph
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PageRankFunction prf = new PageRankFunction
(dampeningFactor);

GraphAlgorithm<Long, Double, Double, DataSet<Tuple2<Long, Double>>> algo = new
VertexCentricAlgorithm

(iterations, prf);

DataSet<Tuple2<Long, Double>> ranks = summaryGraph.run(algo);

While we focus our evaluation on PageRank, we note that other random walk
based algorithms can be expressed easily. In our PageRank implementation, all ver-
tices are initialized with the same value at the beginning.

4.4 Evaluation

Experimental setup. To realistically evaluate the effect that cluster execution has on
speedup, we evaluated our datasets in Google Cloud Dataproc6 clusters with different
worker counts (2, 4, 8, 16). Each machine was created with the custom-4-26368 flag
of the gcloud shell utility and runs an image based on Debian 4.9.168-1+deb9u5.
We used Flink 1.9.1 configured to use a parallelism of one within each worker. We
set the following configuration values for the Flink cluster components running on
Google’s Dataproc. This is similar to the actual Flink configuration file, though with
a Python call to retrieve the number of TaskManager instances from Dataproc (it is
set to be equal to the number of cluster workers). This logic is set in an adapted Python
script from its official GitHub repository 7 with the values below:

jobmanager.rpc.address: ${master hostname}

jobmanager.rpc.port: 6123

rest.address: ${master hostname}

rest.port: 8081

rest.idleness-timeout: 6000000

jobmanager.heap.size: 4096m

taskmanager.heap.size: 8192m

taskmanager.numberOfTaskSlots: 1

parallelism.default: $(python2 -c "print ${num taskmanagers} *
${flink taskmanager slots}")

taskmanager.network.numberOfBuffers: 2048

fs.hdfs.hadoopconf: /etc/hadoop/conf

env.log.dir: /usr/lib/flink/log

env.hadoop.conf.dir: /etc/hadoop/conf

6Access date: 2020-Feb-12: https://cloud.google.com/dataproc
7https://github.com/GoogleCloudDataproc/initialization-actions

https://cloud.google.com/dataproc
https://github.com/GoogleCloudDataproc/initialization-actions
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env.ssh.opts: -oStrictHostKeyChecking=no

query.server.ports: 30000-35000

query.proxy.ports: 35001-40000

taskmanager.rpc.port: 45001-50000

taskmanager.data.port: 50001

blob.server.port: 55001-60000

blob.client.socket.timeout: 6000000

akka.transport.heartbeat.pause: 6000s

akka.tcp.timeout: 60000s

akka.ask.timeout: 60000s

web.timeout: 600000

As this contribution researches the potential of the summary graph model and
its offering through an API, we did not implement and benchmark it against other
graph processing systems such as GraphTau, Kineograph and others. In our sce-
nario, PageRank is initially computed over the complete graph G and then we process
a stream S of windows of incoming edge updates. For each window received from the
stream we: 1) integrate the edge updates into the graph; 2) compute the summarized
graph G = (V, E) as described in Section 4.2 and execute PageRank over G. Thus, we
process a query when PageRank (summarized or complete) is executed after integrating
a window of updates.

Recall that smaller windows (towards continuous complete vertex rank updates
even if without relevant changes) would further amplify VEILGRAPH’s benefits.

4.4.1 Stream S size and configuration

We do not use a window of updates with size of 1, as that would favor our model’s
summary graph G when compared against the repetitive complete execution over the
whole graph G. To reduce variability, the stream S of edge updates was set up so
the number Q of queries for each dataset and parameter combination is always fixed:
fifty (Q = 50). Additionally, for each dataset, streams were generated by uniformly
sampling from the edges in the original dataset file. A stream size of |S| = 40000 was
used, implying |S|/Q = 800 edges are added before executing every query.

The number of stream queries Q and number of edge additions per query update
were chosen to favour (non-approximate) Flink for comparability in a sensible sce-
nario against summarized executions. For |S| = 40000, if we added 8 edges instead
of 800 before executing each query, we would have Q = 5000. This is a much longer
sequence of queries, where the graph barely changes between them, with VEILGRAPH

having near-zero execution times in most, where Flink would be 100-fold slower pro-
cessing the complete graph. To avoid that, we empirically chose the value of 800 edges
before each query (resulting in Q = 50).
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We test both edge additions and deletions. Every time we add edges, we remove
an amount equal to 20% of the number of edges added. The edges to remove are chosen
at random with equal probability. When additions and removals are applied before an
execution, the removal only targets remaining edges which already existed in the orig-
inal graph or that were added in an older update that preceded a previous execution:
in any update window, we do not add and remove new edges, as that would have no
effect.

For each dataset and stream S, each combination of parameters r, n,∆ is tested
against a replay of the same stream. Essentially, each execution (representing a unique
combination of parameters) will begin with a complete PageRank execution followed
by Q = 50 summarized PageRank executions. This initial computation represents the
real-world situation where the results have already been calculated for the whole graph
previously. In such a situation, one is focused on the new incoming updates. For each
dataset and stream S, we also execute a scenario which does not use the parameters:
it starts likewise with a complete execution of PageRank, but the complete PageRank
is always executed for all Q queries. This is required to obtain ground-truth results to
measure accuracy and performance of the summary model.

Many datasets such as web graphs are usually provided in an incidence
model (Boldi and Vigna 2004b; Boldi, Rosa, Santini, and Vigna 2011). In this model,
the out-edges of a vertex are provided together sequentially. This may lead to an unre-
alistically favourable scenario, as it is a property that will not necessarily hold in online
graphs and which may benefit performance measurements. To account for this fact, we
previously shuffle the stream S. A single shuffle was performed a priori for all datasets
so that the randomized stream is the same for different parameter r, n,∆ combinations
that were tested. This increases the entropy and allows us to validate our model under
fewer assumptions, and assess it to hold in general scenarios.

A relevant note must be made regarding terminology. We observed the term
“streaming” graph in the literature to refer to the processing of graph-based data (e.g.
a stream of edges) arriving into a system with the goal of maintaining graph statistics
updated (such as triangle counts) without actually maintaining a working represen-
tation of the full graph. With “dynamic graphs”, we refer to graphs whose structure
is maintained and updated - in VEILGRAPH, we integrate updates that arrive from a
stream into a maintained graph representation (which is then used to build the sum-
mary graph and so on).

Our simplified stream scenario was designed in such a way as to minimize the
amount of variability faced by VEILGRAPH, with the aim of first validating the accuracy
and scalability of the summarization model. Deepening VEILGRAPH in the future, it
would be relevant to evaluate with public graph datasets with timestamps such as the
Stanford SNAP repository and the Open Graph Benchmark.

4.4.2 Datasets

The datasets’ vertex and edge counts are shown in Table 4.1. We evaluate results
over two types of graphs: web graphs and social networks. They were obtained from
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Dataset |V | |E| #Pairs
d
max(din)
max(dout)

%Dang. C1 lG

eu-20051 0.862M 19M
87.01%
(±
0.789)

22.297
68 922
6 985

8.31%
752 725
(87.26%)

10.18
(±
0.037)

eu-2015-host1 11M 386M
57.60%
(±
0.119)

34.350
174 433
398 600

21.60%
6.512M
(57.82%)

5.83
(±
0.002)

amazon-20082 0.735M 5.158M
84.40%
(±
0.695)

7.015
1 076
10

12.04%
627 646
(85.36%)

12.06
(±
0.021)

hollywood-20112 2.181M 229M
76.56%
(±
0.757)

105.003
13 107
13 107

8.96%
1.917M
(87.91%)

3.926
(±
0.005)

Table 4.1: Datasets: Laboratory for Web Algorithmics. Web graphs are indi-
cated with 1 and social networks with 2.

the Laboratory for Web Algorithmics (Boldi and Vigna 2004b). These datasets were
used to evaluate the model against different types of real-world networks.

4.4.3 Assessment Metrics

We measure the results of our approach in terms of the ability to delay computa-
tion in light of result accuracy; obtained execution speedup with increasing number of
workers; reduction in number of processed edges. Accuracy in our case takes on spe-
cial importance and requires additional attention to detail. The PageRank score itself is
a measure of importance and we wish to compare rankings obtained on a summarized
execution against rankings obtained on the non-summarized graph. As such, what is
desired is a method to compare rankings.

Rank comparison can incur different pitfalls. If we order the list of PageRank re-
sults in decreasing order, only a set of top-vertices is relevant. After a given index in
the ranking, the centrality of the vertices is so low that they are not worth considering
for comparative purposes. But where to define the truncation? The decision to trun-
cate at a specific position of the rank is arbitrary and leads to the list being incomplete.
Furthermore, the contention between ranking positions is not constant. Competition
is much more intense between the first and second-ranked vertices than between the
two-hundredth and two-hundredth and first.

We employed Rank-Biased-Overlap (RBO) (Webber, Moffat, and Zobel 2010) as a
meaningful evaluation metric (representing relative accuracy) developed to deal with
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these inherent issues of rank comparison. RBO has useful properties such as weighting
higher ranks more heavily than lower ranks, which is a natural match for PageRank
as a vertex centrality measure. It can also handle rankings of different lengths. This
is in tune with the output of a centrality algorithm such as PageRank. The RBO value
obtained from two rank lists is a scalar in the interval [0, 1]. It is zero if the lists are
completely disjoint and one if they are completely equal. While more recent compar-
ison metrics have been proposed (Moffat 2018), they go beyond the scope of what is
required in our comparisons.

Performance-wise, we test values of r associated to different levels of sensitivity to
vertex degree change (the higher the number, the less expected objects to process per
query). With n = 0, we minimize the expansion around K and consider just the ver-
tices that passed the degree change of r%. For n = 1, we are taking a more conservative
approach regarding result accuracy. An overall tendency to expect is that the higher
the value of n is, the higher the RBO. The ∆ values were chosen to evaluate individual
different weight schemes applied to vertex score changes. The relation between param-
eters r and n has a greater impact in performance and accuracy than the relation of any
of these parameters with ∆. We tested with two sets of parameter combinations:

• RBO-oriented (r = 0.05, n = 2,∆ = 1.0), (r = 0.05, n = 2,∆ = 0.5), (r = 0.05, n =
6,∆ = 1.0), (r = 0.05, n = 6,∆ = 0.5). This has a very low threshold of sensitivity
to the ratio of vertex degree change (r = 0.05).

• Performance-oriented (r = 0.20, n = 0,∆ = 0.5), (r = 0.20, n = 0,∆ = 1.0),
(r = 0.20, n = 1,∆ = 0.5), (r = 0.20, n = 1,∆ = 1.0), (r = 0.20, n = 4,∆ = 1.0).
With r = 0.20, the goal is to be less sensitive pertaining degree change ratio.

For both of these combinations, we test with low and high values of n to examine how
expanding the neighbourhood of vertices complements the initial degree change ratio
filter. Using a higher number of ranks for the RBO evaluation favours a comparison
of calculated ranks which has greater resolution, as more vertices are being compared.
In our evaluation, the RBO of each execution is calculated using 10% of the complete
graph’s vertex count as the number of top ranks to compare. We address the aforemen-
tioned issue of truncation by making the number of truncated ranks specific to each
dataset by defining it as a percentage of the graph’s vertices. Considering the nature of
the rankings, we focus on comparing the top 10% of vertex ranks of the complete and
summarized execution scenarios using RBO, as it is in this top that the most relevant
ones are concentrated. Furthermore, every 10 executions, we calculate RBO using all
of the vertices of the graph to periodically ensure that no artefacts are masked in the
lower rank values.

4.4.4 Results

Parameters (r, n,∆) producing the best accuracy result are not necessarily the same
ones producing the best speedups. The horizontal axis represents the same (except for
the candle bar and regular bar plots) for all plots: it is the sequence of queries from
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1 up to Q = 50. Due to how the dynamics of parameter combinations and the struc-
ture of the data sets behave, some parameter combinations produced extremely similar
values, leading to almost overlapping plots. One needs to take into account this is a
challenging assessment context for VEILGRAPH. In fact, between each consecutive pair
of the 50 queries (i.e., on every of the 800 edge/vertex updates we are ingesting between
them), if the user prompted a query execution, VEILGRAPH could offer near-instant re-
sults against the previously summarized graph, contrary to a full graph execution (thus
yielding several 100-fold speedups each time), and still provide results with very high
RBO (in line with those from the preceding and successor of the pair of queries where
the update lied between). Speedup candle bar values were obtained by calculating the
average and standard deviation values of the computational time across the Q = 50
executions.

eu-2005: We show the best three and worst three RBO parameter combinations
in Figure 4.5 (top-left). Parameters r = 0.20, n = 0 captured the highest RBO values.
Investing purely on increasing n is not synonymous with achieving higher accuracy.
The bottom-left of Figure 4.5 shows that a value of r = 0.05 yielded a summary graph
G with a number of edges around 75% of the original graph G (a higher n also con-
tributes to increasing this value). The parameters with more conservative values (big-
ger n and lower r) led to the biggest summary graphs. Figure 4.6 shows the results
of isolating parameters r = 0.05, n = 2,∆ = 0.50 (a balanced combination leaning
towards better accuracy) to assess scalability with different worker counts. Speedups
of around 10 were achieved with 16 workers (see top-left), with (mainly) computation,
update integration and inherent I/O time benefiting from the increase in worker counts
(bottom-left).

amazon-2008: Figure 4.5 (top-right) shows accuracy (RBO) maximized with pa-
rameters r = 0.20, n = 0 and different values of ∆, with a combination of r = 0.05, n = 6
achieving slightly lower accuracy with a more accentuated error accumulation. We at-
tribute the observed behaviour of lower RBO with a much higher n to the impact of the
edge removal on the topology of the amazon-2008 dataset. The number of summary
graph edges as a fraction of the complete graph’s edges is in line with previous results:
greater values of n led to a bigger summary graph – see Figure 4.5 (bottom-right). Still,
there was a pattern with n = 6 where there was a tendency for RBO to decrease (green
diamond marker) coupled with a tendency for the summary graph edge fraction to de-
crease (brown + marker) too. Figure 4.6 (top-right) shows that the scalability was lower
than that of the eu-2005 dataset as the number of workers is increased. This differ-
ence can be explained by the fact that amazon-2008 has almost one fourth of the edges
present in eu-2005 (the former has more edges to process and hence to benefit from
our model). The way time is distributed between I/O, integration and computation
(bottom-right) is similar to eu-2005.

hollywood-2011: This social network has about 45x more edges than
amazon-2008 (around 229M edges). We evaluated this bigger dataset to focus on the
scalability of our model. Figure 4.7 shows (top-left) that the speedup of the computa-
tional time was close to linear. Like before, the obtained computational speedups do
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Figure 4.5: Left-side eu-2005, right-side amazon-2008. First row shows the RBO
values, second row shows the number of edges |E| used by the summary graph as a
percentage of the number of edges |E| of the original graph.
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Figure 4.6: Left-side eu-2005, right-side amazon-2008. First row shows the speedup
for different numbers of workers, second row shows how time was distributed between
computation and integration of the updates.
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Figure 4.7: Left-side hollywood-2011, right-side eu-2015-host. First row shows
the speedup for different numbers of workers, second row shows how time was dis-
tributed between computation and integration of the updates.

not include I/O and integration time as we are focused on highlighting that the scala-
bility of the model itself - the bigger the graph, the greater the benefit that our summary
graph model will have from more workers.

eu-2015-host: This web graph has around 386M edges and the obtained
speedups over the computation are show in Figure 4.7 (top-right). Similarly to
hollywood-2011, this dataset achieved high speedups, reinforcing the link between
the model’s increased efficiency and the greater-sized graphs.

Discussion. The speedups are indicative that as we test with larger datasets, exe-
cuting a graph algorithm over just VEILGRAPH’sK set instead of the complete graph is
beneficial to performance – the bigger the graph, the greater the benefits of our model.
VEILGRAPH is able to achieve faster execution while maintaining very competitive lev-
els of accuracy. such as the case of parameters (r = 0.20, n = 0,∆ = 0.50), achieving
over 50% faster computational time with an RBO above 90%. The evolution of RBO for
the larger datasets hollywood-2011 and eu-2015-host followed similar tendencies
as those illustrated in Figure 4.5, therefore here we focus solely on the performance as-
pect of these datasets to highlight the impact of executing on real clusters with greater
sizes.

We note that it would be interesting to further evaluate hollywood-2011 and
eu-2015-host with even bigger cluster sizes to analyse potentially-diminishing re-
turns in light of theoretical models for assessing scalability (Gustafson 2011). Despite
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this, our method has achieved a very good trade-off between result accuracy and reduc-
tion in total computation (be it in number of processed graph elements or direct time
comparison), bearing in mind the deliberate lower-bound performance context we are
assessing (recall: we are executing and comparing with the full processing of the graph
just on 50 instants, against doing it on every vertex/edge update).

Randomized edge removals were used to assess the robustness of the model. Re-
movals have an impact on graph topology which does not necessarily manifest as one
would expect. Extending the computational scope by using conservative parameters in
VEILGRAPH overall promoted a greater accuracy in our experiments, but special con-
sideration must be given to the cases where removals may lead to a cascading effect,
where extending the model to bound error propagation is an interesting challenge.

The visualization of separate computational times as shown in Figure 4.7 is re-
vealing of a bi-dimensional cost that is often overlooked in these distributed compu-
tational platforms. This cost manifests in the overheads of communication between
cluster elements and the writing/reading of data from distributed storage. Its second
dimension (also a trait in Apache Spark) is located in the runtime of Flink itself.
The user-logic (in our case written in Java) for the most part is able to abstract away
that the underlying execution will take place in a distributed system. However, unop-
timized, this incurs relevant communication costs which are not always obvious and
whose measurement requires breaking down this abstraction. This may be achieved by
directly measuring the metrics of operators executed as part of the optimized execution
plan produced by the Flink compiler and is something we plan to explore in future
work. Another interesting observation is that with more than 8 workers, for the smaller
eu-2005, amazon-2008, the speedups obtained by horizontally-scaling the cluster
diminished faster in the summary model than with using the complete computations.
This is due to the summary version processing much fewer elements and thus not lever-
aging extra workers so much. As we tested with the bigger datasets hollywood-2011
and eu-2015-host, the benefits of horizontal scaling on our model increased dramat-
ically.

4.5 Related Work

This multidisciplinary work encompasses paradigms to express graph computa-
tions, stream processing and approximation techniques. We reiterate and comment on
related state-of-the-art contributions shown in Chapter 3 that address these dimensions
and comment on how VEILGRAPH also addresses them with respect to each model.
While there may be some redundancy between the following information and the en-
tries of Chapter 3, we present it as such to comment directly on the specific features of
these systems:

• Kineograph is a distributed system designed to capture the relations in incom-
ing data feeds (Cheng, Hong, Kyrola, Miao, Weng, Wu, Yang, Zhou, Zhao, and
Chen 2012), built to maintain timely updates against a continuous flux of data.
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The architecture of Kineograph considers two types of working distributed sys-
tem nodes: ingest nodes which are responsible for registering graph update op-
erations as identifiable transactions, to be distributed to graph nodes. This latter
type of node forms a key/value store that is distributed in memory. Kineograph
performs computation on static snapshots, simplifying the design of algorithms.
The design of VEILGRAPH goes beyond this design by extending its concept to
give users the flexibility to design algorithms for either the complete graph or
summarized versions, with little difference. Users can incorporate the aware-
ness that the graph has changed, or opt to design an algorithm that considers
the current graph as a static version, like Kineograph. VEILGRAPH is imple-
mented over Flink, a generic dataflow programming framework with a graph
processing library, Gelly. Kineograph has an architecture which attributes im-
portance to the task of registering new graph information and the task of storing
it. Our architecture’s design provides more flexibility to programmers as it is im-
plemented over a generic programming model compared to Kineograph. How-
ever, as VEILGRAPH uses Flink which does not consider the explicit storage of
the graph and its ingestion in design of the workers in a cluster of machines, it
could benefit from implementing these concerns directly as a Flink module.

• Naiad is a dataflow processing system (Murray, McSherry, Isaacs, Isard, Barham,
and Abadi 2013) offering different levels of complexity and abstractions to pro-
grammers. Naiad allows programmers to use common high-level APIs to ex-
press algorithm logic and also offers a low-level API for performance. Its concepts
are important and other systems could benefit from offering tiered programming
abstraction levels as in Naiad. Its low-level primitives allow for the combination
of dataflow primitives (similar to those VEILGRAPH uses from Flink) with finer-
grained control on iterative computations. An extension to Flink’s architecture
to offer this detailed control would enrich the abilities that our framework is able
to offer to users.

• Tornado is a system with an asynchronous bounded iteration model, offering
fine-grained updates while ensuring correctness (Shi, Cui, Shao, and Tong 2016).
It is based on the observations that: 1) loops starting from good enough guesses
usually converge quickly; 2) for many iterative methods, the running time is
closely relative to the approximation error. Whenever a result request is received,
the model creates a branch loop from the main loop. This branch loop uses the
most recent approximations as a guess for the algorithm. It is a technique that
could benefit from applying VEILGRAPH’s summarization model, as Tornado ‘s
main loop could produce approximations faster, making the computation result
guesses readily available as queries arrive.

• KickStarter showcased a technique for trimming approximate values of ver-
tex subsets which were impacted by edge deletion (Vora, Gupta, and Xu 2017).
KickStarter deals with edge deletions by identifying values impacted by the
deletions and adapting the network impacts before the following computation,
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achieving good results on real-world use-cases. By focusing on monotonic graph
algorithms, its scope is narrowed to selection-based algorithms. We decouple in
VEILGRAPH the approximation technique, the summarization model and the al-
gorithm type. Thus, we are able to offer the big vertex model and provide a struc-
tured sequence of steps to integrate another model or approximation technique
(e.g. KickStarter’s own technique could be a candidate). Rather than the hard-
coded logic for bounding the approximation values specifically to monotonic al-
gorithms of KickStarter, we offer in VEILGRAPH a middleware layer which
offers additional customization capabilities to programmers who with, for exam-
ple to implement a different logic to bound approximations or to even implement
automated strategies based on statistical analyses and machine learning.

• GraphBolt (Mariappan and Vora 2019) is a recent work building on KickStar-
ter, offering a generalized incremental programming model enabling the devel-
opment of incremental versions of complex aggregations. They evaluate differ-
ent algorithms while defining different aggregation functions for each in order to
support the computation approximations. This system is relevant as their work
focuses on crafting functions for specific use-cases, though with a loss of control
for the programmer as there is no way to provide custom-defined logic for how
dependency tracking and error tolerance is defined.

• FlowGraph (Chaudhry 2019) is a system that proposes a syntax for a language to
detect temporal patterns in large-scale graphs and introduces a novel data struc-
ture to efficiently store results of graph computations. This system is a unifica-
tion of graph data with stream processing considering the changes of the graph
as a stream to be processed and offering an API to satisfy temporal patterns.
FlowGraph’s model for addressing the temporal evolution of the graph and
subsequent execution was innovative by formalizing the pattern detection with
its own language approach. Integrating this approach in the post-update pre-
execution stage of VEILGRAPH could provide a richer model for the programmer.

4.6 Remarks

We designed VEILGRAPH which provides a well-defined structure to incorporate
custom approximate processing strategies and to enable choosing between built-in be-
haviours. Our experiments in the context of random walk problems lead us to conclude
that the VEILGRAPH model, even when tested in a deliberately challenging context for
comparability, is a viable basis to enable faster, more efficient and configurable graph
processing on this type of problem in many real-world scenarios. The results we obtain
were produced under a stream scenario where graph updates are big enough so that the
changes to the graph do not explicitly benefit the summarization model we evaluated.

In our current design, we do not interleave updates with queries because we first
aimed to assess the scalability and potential of the summarization approach to the
case of vertex centrality as an initial validation of our idea. Extensions of this work



4.6. REMARKS 101

should take into account interleaving as an additional means of improving system per-
formance.

4.6.1 Bridging the Gap for OLAP systems

We have presented members of a rich graph processing landscape. Many of the
systems we discussed pioneered new approaches which were adopted by more popu-
lar ones. We see that Giraph as an instance of Pregel has some of its concepts present
in Flink and Spark. Systems such as KickStarter, Kineograph and Tornado, al-
though their source is not available as far as we know, validated approaches to dimen-
sions such as stream processing and expressing approximations over graphs. Notwith-
standing the importance of other graph processing systems (from a group one may
classify as OLAP as per Section 3.7), these are particularly interesting for potential devel-
opments due to their booming and active communities as well as higher-level libraries
they received (e.g., GRADOOP and GraphFrames).

Flink was designed from the start as a stream-processing engine with rich seman-
tics. It supports batch and stream processing respectively through its DataSet and
DataStream APIs. The internal implementation of these APIs is separate. In the case
of batch processing, it has libraries for machine learning and also for graph processing
(Gelly). Gelly is implemented in Java8 and expresses building-blocks of graph com-
putation in dataflow programming over Flink’s DataSet API.9 However, as Gelly
does not use the stream API, all the window semantics of the DataStreamAPI become
unusable. While Gelly has seen a recent freeze regarding new features (most algo-
rithms have been last changed one/two years ago, with the most recent updates dating
six months and touching on performance improvements), it has been used in GRADOOP,
which is an open-source distributed graph analytics research framework (Junghanns,
Kießling, Teichmann, Gómez, Petermann, and Rahm 2018) under active development.
GRADOOP provides an even higher-level of expressing graph manipulation.

Spark, was designed as the next-generation big data processing system of its time.
As stream processing gained additional attention, it was implemented as the Spark
Streaming library. Stream and batch processing have different APIs which were im-
plemented differently. It has its graph processing library GraphX which was built over
the system’s batch processing API, like the case of Flink’s Gelly and also suffering
from the same previously mentioned limitations. A higher-level API was designed to
extend the functionalities of GraphX while harnessing Spark’s DataFrame API. For
this, the GraphFrames library was created. It is relevant to mention that in GraphX,
there is a method to cache results of a dataflow computation for it to be reused. While
not a solution, it avoids the recalculation of results and allows the flow of execution to
skip intermediate I/O overheads, to a limited degree.

Overall, Spark and Flink are general-purpose dataflow processing systems with
graph libraries. Due to the size of their communities and their activity as open-source

8https://github.com/apache/flink/tree/master/flink-libraries/flink-gelly/
src/main/java/org/apache/flink/graph

9https://ci.apache.org/projects/flink/flink-docs-stable/dev/batch/

https://github.com/apache/flink/tree/master/flink-libraries/flink-gelly/src/main/java/org/apache/flink/graph
https://github.com/apache/flink/tree/master/flink-libraries/flink-gelly/src/main/java/org/apache/flink/graph
https://ci.apache.org/projects/flink/flink-docs-stable/dev/batch/
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projects, they become very interesting target candidates to incorporate the overlapping
concerns of stream semantics, graph evolution and maintenance across cluster mem-
ory. These concerns would have to be implemented across different components of the
systems, from the way dataflow jobs are broken down into tasks, to task-scheduling
itself, all the way to job execution status (Spark and Flink have state machines to
control the evolution of a job). Orthogonally to this, a new logic would be needed to
avoid triggering massive communication overheads when the topology of the main-
tained graph (in the cluster) changes due to the windows of arriving updates. When
it becomes apparent that a vertex in the graph is exhibiting scale-free properties (by
virtue of its degree growing), special strategies must be taken to ensure stability of the
graph maintained in the cluster. The results achieved in PowerLyra (Chen, Shi, Chen,
and Chen 2015) provide some preliminary insights on how to approach this challenge.

4.6.2 Bridging the Gap for OLTP systems

The decade of 2010 has seen the launch of many open-source and commercial graph
database technologies. They focus overall on aspects of efficient low-level graph repre-
sentation, with some offering only vertical scaling (Neo4j) while others provide hori-
zontal scaling (sharding with JanusGraph, Dgraph, ArangoDB and Cayley). Some
of these database technologies delegate the ability of sharding to an underlying in-
terchangeable storage technology: for example those derived from Titan can switch
between HBase and Cassandra.

The graph dynamism in these technologies is inherent to the fact transactions may
be applied to update the graph. However, as far as we know, the way the graph can
evolve and algorithm results may be updated does not consider stream semantics or
time-bounded conditions in any of the OLTP systems herein detailed. We envision
the possibility to enrich graph databases with such semantics (e.g. taking inspiration
from systems such as BlinkDB (Agarwal, Mozafari, Panda, Milner, Madden, and Sto-
ica 2013)).

To this end, under the OLTP category, we focus on systems with a high number of
algorithms (Neo4j), the ability to plug in different distributed back-ends to support the
graph database semantics (JanusGraph) and inherent sharding capabilities (e.g. the
open-source Dgraph). Neo4j’s biggest limitation is the lack of graph sharding. For
Cayley, we did not find any list of algorithms implemented over it. Still, it supports
sharding like JanusGraph by delegating that responsibility over the underlying stor-
age module. The ArangoDB website claims10 it automatically performs sharding of the
data. Together with its number of algorithms, it is also a valid candidate to develop
new approaches to what is discussed in this document. We do not focus on Weaver
due to it not being active. AllegroGraph is unsuitable as it is neither distributed nor
open-source. Dgraph is open-source, supports sharding and although it does not have
many graph algorithms, has an active open-source community.

Regarding Neo4j, while its most relevant capabilities are only available in the En-

10https://docs.arangodb.com/3.4/Manual/Scaling/

https://docs.arangodb.com/3.4/Manual/Scaling/
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terprise Edition (such as storing more than 34 billion vertices in a graph), its active
community and broadening scope of use cases make it interesting. If Neo4j’s develop-
ment is invested in scale-out capabilities for sharding a graph across multiple cluster
nodes (increasing write performance compared to read operations), it will be closer to
the possibility of offering a graph that is in fact maintained in a cluster. By using smart
caching mechanisms, even if some storage I/O is necessary, it could become a strong
candidate to bridge the best features of OLAP and OLTP systems. Access latency to
secondary storage in this scenario would be further mitigated due to the fact that the
Neo4j process in each worker node could be responsible for both distributed graph
processing and mediating I/O access.

Moving towards a system that supports executing over an evolving graph that
is quickly-accessible on OLTP-type systems would require some key-points: incorpo-
rating stream processing windowing semantics in the API; exploiting low-level graph
representation optimizations (as it happens on Neo4j); researching optimal strategies
of graph sharding coupled with caching mechanisms (JanusGraph, ArangoDB and
Dgraph already have sharding). Of the latter, JanusGraph and Dgraph already have
an active community, making them relevant targets for future research.

4.6.3 Summary

With the proposal, implementation and experimental evaluation of VEILGRAPH,
we analysed the impact of result approximation by use of graph summarization. We
observe it is productive to explore the relationship between result accuracy and compu-
tational performance. It is important to note that the analysis of result integrity which
relies on directly comparing summarized and non-summarized execution outputs is a
way to integrate awareness of domain-specific aspects of the results. We believe this
should be coupled with theoretical models for real-time analysis of error propagation.

Future directions for this work would encompass other graph algorithms like on-
line community detection and to further evaluate on bigger datasets. There is a chal-
lenge in the disruptive aspects of edge deletions over graph topology and how that may
speed up or slow down the propagation of approximation errors. To this end, differ-
ent approximation strategies based on statistical records, from manually implemented
policies to automated decisions on parameters would be interesting to explore. The sta-
tistical basis proposed by GraphBolt (Mariappan and Vora 2019) is another relevant
approach to define these decisions.

It must be mentioned that the summary graph model of VEILGRAPH had its eval-
uation focused on the number of edges in the summary as it targets vertex centrality
(manifested with PageRank). For the future, and coupled with other summarization
techniques, other aspects such as number of vertices may become relevant, depend-
ing on use-case. Extending the VEILGRAPH model, applying variants to other types
of graph algorithms and precisely evaluating performance and accuracy would make
our contribution a more robust approach to exploiting the relationship between these
two properties. The ideas explored in VEILGRAPH have synergy with the two phases
of our community network micro-cloud technique presented in Chapter 5, GELLY-
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SCHEDULING. That exploratory work has a community detection phase followed by a
leader election phase (both implemented as graph algorithms). Researching the appli-
cability of GELLY-SCHEDULING to other types of network that are dynamic and greater
in size could benefit from the techniques used by VEILGRAPH. The summarization and
approximate processing approach of VEILGRAPH have the potential to improve the ex-
ecution speed of both phases of GELLY-SCHEDULING without negatively impacting the
accuracy of elected leaders and therefore Quality-of-Service. This would be relevant to
explore even if through a different implementation not based on Flink.

VEILGRAPH may also benefit from the use of smart graph data structures. Com-
pact graph data structures, offering both compression of the graph and the ability to
change it (without converting the representation to an uncompressed format) could
improve resource efficiency of an underlying distributed system such as Flink. A rel-
evant exploratory work we envision is the application of a compact data structure such
as our contribution on k2-trees (Chapter 6) to the internal representation in Flink.
Sufficiently high compressions ratios could enable redundancy by fully representing
the graph within each node of the cluster, potentially enabling additional performance
gains.



5Gelly-Scheduling:

Service Placement

In this chapter, we present our initiative GELLY-SCHEDULING described in (Coim-
bra, Selimi, Francisco, Freitag, and Veiga 2018) and developed in collaboration with
the University of Cambridge and the Polytechnic University of Catalonia. Here we: i)
highlight the applicability of leader election heuristics which are important for service
placement in community networks and scheduler-dependent scenarios; ii) present a
parallel and distributed solution designed as a scalable alternative for the problem of
service placement, which has mostly seen computational approaches based on central-
ization and sequential execution.

5.1 Introduction

Community networks (CNs) are owned and managed by volunteers and offer var-
ious services to their members. Seamless computing and service sharing in CNs have
gained momentum due to the emerging technology of CN micro-clouds. CNs have seen
an increase in the last fifteen years. Their members contact nodes which operate Inter-
net proxies, web servers, user file storage and video streaming services, to name a few.
Detecting communities of nodes with properties (such as co-location) and assessing
node eligibility for service placement is thus a key-factor in optimizing the experience
of users. We present a novel solution for the problem of service placement as a two-
phase approach, based on: 1) community finding using a scalable graph label propaga-
tion technique and 2) a decentralized election procedure to address the multi-objective
challenge of optimizing service placement in CNs. One such network is guifi.net, lo-
cated in the Catalonia region of Spain. It is a successful example of this paradigm.
Guifi.net is defined as an open, free and neutral CN built by its members pooling re-
sources. Guifi.net was born in 2004, and until today, has grown into a network of
more than 34,000 operational nodes. Previous work on guifi.net classified services
into network-oriented and user-oriented. For these two types in the Catalonia region,
the three most prevalent occurrences were (Selimi, Khan, Dimogerontakis, Freitag, and
Centelles 2015): a) network-oriented services (558 in this region) – network graph-servers
(39.24%), DNS servers (35,48%) and NTP servers (17.20%); b) user-oriented services (514
in this region) – proxy servers for Internet access (53.50%), web pages (11.08%) and com-
munication applications such as VoIP, audio, video and instant messaging (9.33%).

Nodes in guifi.net are exclusive to specific geographical zones (there are no over-
lays) such as what is depicted in Figure 5.1. There are special-purpose nodes called
graph-servers, which are responsible for performing network measurements between
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Figure 5.1: Depiction of guifi.net’s Osona region.

nodes and have an API for querying node states (Selimi, Freitag, Cerdà-Alabern, and
Veiga 2016). These graph-servers comprise a distributed hierarchical monitoring sys-
tem which records the network’s link data traffic properties. Guifi.net is thus a relevant
test bed for developing and validating techniques to enhance service placement and
system scheduling by exploring their requirement of leader election. In turn, these may
be extrapolated to more complex scenarios, such as placement in P2P networks (typi-
cally irregular), industrial contexts and IoT scenarios. A simple web proxy would most
likely have node latency as its most relevant parameter. On the other hand, a mission-
critical quality-of-service proxy could place the focus on node availability. Heuristics
may encompass network features such as topology, as well as domain attributes (such
as availability and quality of specific resources). While one may intuitively define one
heuristic as absolute, this could produce scenarios which are locally optimal but glob-
ally undesirable. What if the node with the highest availability happens to be on the
outer rims of the network? Aspects of network topology are as relevant for system
efficiency as the service-level heuristics which traditionally guide leader election for
placements.

Our objective is to devise an efficient, scalable solution which is easy to fine-tune
regarding domain-specific attributes, and that provides seamless scalability for increas-
ing network size and number of services. For this, we propose a platform that enables
incremental processing in a scenario where information continuously arrives: changes
in network, node and service quality are continuously monitored. Our solution is a
two-phased approach which optimizes the definition of communities (Phase One) and
election of leaders (Phase Two) in a community communications network.
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The concept of scheduling influenced the name GELLY-SCHEDULING. The com-
munity definition and leader election procedure aims to produce the most appropriate
network configuration such that different Quality-of-Service constraints are optimized
for offered services. In particular, each elected leader would be in charge of deciding
resource allocation and job/task scheduling within each community. Our contribution
in this regard makes use of graph processing to provide an alternative approach to
defining this infrastructure where services are assigned to the most desirable nodes.

The chapter is organized as follows. Section 5.2 explains the two main phases of
our algorithm. Section 5.3 details our evaluation methodology and obtained results.
Section 5.4 highlights relevant studies on community networks and service placement.
Section 5.5 summarizes our contribution’s highlights.

5.2 Gelly-Scheduling Service Placement

The challenges inherent to service placement for large scale geo-distributed net-
works (such as community networks) are usually addressed in the literature with a
batch-oriented non-scalable approach. The typical approach consists of performing a
search (exhaustive or via heuristics) in a centralized computing unit. All the informa-
tion about network links and nodes is centrally and sequentially processed, in order
to determine the best network configurations as far as service placement is concerned.
While the unit responsible for this search may benefit from hardware improvements,
they are merely a form of vertical scaling (which is limited). This approach does not pri-
oritize reaction to changes in the network and its nodes, in order to make service place-
ment more dynamic in a context of continuous monitoring. It also doesn’t scale in the
context of larger networks. We present a novel method capable of both achieving scale-
out processing for optimizing community network topology as well as electing service
placement targets within communities in a decentralized approach. We employ com-
munity detection as a parallel technique which enables the partitioning of the problem
space to optimize node placement in communities. This allows for an efficient leader
election to execute concurrently (each community being responsible for its leader) and
in parallel within each community. This work aims to improve service placement for
networks in a way that users and processing tasks are balanced regarding bandwidth
restrictions and data sources.

Phase One: Community Finding. We use two definitions of community: default –
the zone-based node distributions, provided in the dataset as-is (insignificant prepro-
cessing is performed in this case); custom – a state-of-the-art label propagation tech-
nique (Raghavan, Albert, and Kumara 2007) applied for detecting communities. We
build an undirected graph G = (V,E) by defining a set of n nodes V and a set of m
edges E such that an edge e ∈ E will be created if and only if there is a correspond-
ing link element between two working devices (each belonging to a working node) in
the dataset. Single-leaf nodes were discarded as part of preprocessing. The goal of
this phase is to rapidly partition the problem space into a configuration that promotes
scalability of computation and efficient resource usage. We provide the pseudo-code
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for the most relevant actions of Phase One in Algorithm 2, where C is an upper bound
on the number of iterations to execute (a default limit of C = 10 iterations is common
in the literature for convergence (Boldi, Rosa, Santini, and Vigna 2011)). Phase One

Algorithm 2 Phase One: Community Finding

1: INPUT: G =(V,E), C = 10
2: OUTPUT: Z . Set of graphs representing communities
3: for all v ∈ V do
4: v.generateUniqueLabel()
5: end for
6: G′ ←− G.setUndirectedEdges()
7: i←− 1
8: for i < C do
9: for all v ∈ V do

10: M ←− v.getInboundMessages()
11: L←−M .getMostFrequentLabels()
12: v.updateLabel(L.filterHighestLabel())
13: end for
14: i←− i+ 1
15: if not G′.labelsChanged() then
16: break
17: end if
18: end for
19: return Z ←− G′.groupByLabels()

thus becomes an important instrument in efficiently defining groups of network nodes
by employing a state-of-the-art technique in community detection. These groups aid
the optimization process of service placement, effectively serving as a useful blueprint
for Phase Two of our algorithm. The two phases form a technique to harness current
platforms and infrastructures to tackle service placement. Conceptually, there is a top-
tier master node which is responsible for: 1) querying the graph-servers for all of the
network’s node information; 2) executing Phase One of our algorithm to obtain a def-
inition of communities; 3) informing each node of its community’s composition. This
is depicted in Figure 5.2, where in the middle there is a centralized entity consisting
of one or (potentially many) more computational workers. It initially queries graph-
servers (or whatever network visibility mechanisms are in place) to obtain a snapshot
of the network’s nodes. Then it executes Phase One of our algorithm, decomposing the
network into communities. A major computational advantage of Phase One is that this
master can be a single machine or a set of workers in a cluster, effectively scaling with
the computational capability available to this top-tier master. Each community member
is then informed of the elements of its own community: required to proceed to Phase
Two.

Phase Two: Leader Election. Phase Two receives a set of communities and elects
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Figure 5.2: The graph-servers on the left send the network heuristics to the master node;
the master node in the middle decides on the community configuration through Phase
One; communities concurrently elect an internal leader during Phase Two.

a leader for each one. This election phase is self-contained for each community, in the
sense that a distributed implementation of this phase can be carried out concurrently
with respect to communities and in parallel within each community with our graph-
based approach. The right-side of Figure 5.2 illustrates this. There may be more than
one connected component in geographical zones of guifi.net. Due to this, for every
community network G, only the nodes belonging to the largest connected component
of G are used to choose a leader for service placement. This election consists of Phase
Two of our algorithm and is detailed in Algorithm 3. This phase serves the purpose
of identifying the best node for service placement. Leadership is attributed through
a scoring, where the score si of each node i lies in defining a linear combination of
two sets of heuristics (described in Table 5.2). One set is based on system-centric val-
ues: availability β1 and latency β2 as defined by graph-servers (Cerdà-Alabern 2012),
as well as computational class β3 as per Table 5.1 and defined as part of this work; the
other is calculated as part of this algorithm and consists of betweenness α1 and close-
ness α2 centralities. We defined heuristic β3 as a score in three computational categories
for nodes: i) server-type nodes which typically have stronger computational power to
support more demanding services; ii) non-server nodes with more than one device; iii)
non-server nodes with a single device. Table 5.1 shows the representation of β3 for each
category for the data we analysed. The values we attribute to β3 were selected arbi-
trarily to represent computational power of a given node. This categorization serves
the purpose of approximating realistic tiers of computational capabilities for nodes in
the network – information which, as far as the authors know, is not readily-available in
the guifi.net CNML dataset. Thus, as an example, the initial score of a node i will be
defined as:

si = w1 α1 + w2 α2 + w3 β1 + w4 β2 + w5 β3 (5.1)

Table 5.2 details the specifics of each heuristic, namely their meaning and how they
are obtained. Notation-wise, i is the node to be scored while u and v represent arbitrary
nodes in the community graph G with n nodes, σu,v is the number shortest paths from
u to v, σu,v(i) is the number of those that pass through i, and d(i, v) is the geodesic
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Table 5.1: Frequency of per-node device count categories. The most frequent services
are Internet proxies, a consequence of guifi.net existing as an alternative to the standard
ISP model.

Class #Nodes = 23,468 Percentage β3

i) Strong 337 1.436% 1
ii) Medium 1666 7.099% 0.5
iii) Weak 21 465 91.465% 0.1

Algorithm 3 Phase Two: Leader Election

1: INPUT: G =(V,E),W (heuristic weights) . Heuristic weight array
2: OUTPUT: R . Decreasing-order ranks
3: α : Array ←−[ ], β : Array ←−[ ]
4: for all v ∈ V do
5: α[v] = [α1 α2]←− v.calculateAlphas()
6: β[v] = [β1 β2 β3]←− v.getBetas()
7: v.setScore(W ∗ [ α[v] β[v] ])
8: end for
9: R←− G.getVertices().orderByScore()

10: return R

distance between i and v. Phase Two was designed under two types of evaluation
based on configuration of heuristics: Absolute heuristics - in this case, leader selection
is guided exclusively by exactly one of the heuristics. We analyse the impact of each
individual heuristic, setting the weights of others to zero. Combined heuristics - we
consider a linear combination of two heuristics. We set unbalanced weights in order to
better determine the more significant contributions, in the sense that for two arbitrary
heuristics m1 and m2, we may define the node score to be vs = (1− f)m1 + fm2, or the
reverse. If for example one heuristic weights in for f = 60% of the score, the other will
account for the remaining 40%.

5.2.1 Implementation

Regarding our implementation over Flink, we implement our algorithms over
the Gelly graph processing library. We use its API and did not modify its internal
components.

Scores of heuristics α1 and α2 were obtained for each community G using the
Python NetworkX library, for use in Phase Two. Overall, the time to calculate them is
negligible when compared to the total amount of time required to compute Phase One
plus Phase Two. There are common aspects to generating samples for bandwidth and
round-trip time, but each was based on different statistical artifices.

Bandwidth. Let BW ˜ K(k, h, ξ, α) represent the empirical bandwidth distribution.
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Table 5.2: Algorithm’s heuristic symbols and meanings.

α1

Betweenness Centrality∑
u6=i 6=v

σuv(i)
σuv

, fraction of shortest paths from u to v, for all nodes u and v, pas-
sing through node i.

α2
Closeness Centrality (Newman 2010)
(n− 1)/

∑
v d(i, v), where d(v, i) is the geodesic distance from node i to node v.

β1

Availability
Percentage of ping responses received by a graph-server (%) over a specific time
period.

β2

Latency
Ping response timing, measured by a graph-server (ms) over a specific time pe-
riod.

β3
Computational Class
Defined by the number of devices handled by the node, as well as its role.

K stands for the four-parameter Kappa distribution (Hosking 1994), where k and h de-
note the shape of the distribution, ξ denotes its location and α is a scaling factor. These
four parameters were estimated using L-moment statistics, namely through the lmoms
function which computes the sample L-moments and the parkap function which es-
timates the four parameters of K based on the sample L-moments. Both functions
are part of the R lmomco library. The four-parameter Kappa distribution is used for
simulating additional samples based on the empirical distribution made by using the
rkappa4 function of the R FAdist library for random generation purposes.

Round-trip time. Let RTT ˜ GEV (µ, σ, ξ) represent the empirical round-trip time
distribution. GEV is the generalized extreme value distribution. It has four param-
eters: µ, which is the location of the distribution, σ which represents the scale and ξ
which represents the shape of GEV (influencing the behaviour of the distribution tail).
The previously-referenced lmoms function was used as well, with pargev now being
the function (also present in library lmomco) responsible for estimating the GEV pa-
rameters based on the sample L-moments. Additional round-trip time samples were
simulated using the rgev function. GEV exists as a family of continuous probability
distributions, stemming from extreme value theory (Coles, Bawa, Trenner, and Dorazio
2001).

The method of L-moments is used to understand insights of analysed data and to
estimate distributions (Hosking 1990; Hosking and Wallis 2005) using efficient tech-
niques (Hosking 2000). Figure 5.3 shows the log10 plot of the bandwidth, while Fig-
ure 5.4 shows the same for round-trip time.
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Figure 5.3: Bandwidth (B/W) in logarithmic scale.

5.3 Experimental Evaluation

There are 23,391 nodes identified as working and, for the whole guifi.net, there are
878 nodes defined as servers. This implies that, at most, 3.75% of the working nodes
could actually be sustaining full fledged services, which adds importance to how leader
election is performed to assign services. We believe guifi.net, while it is in fact an open
community network, has a type of topology which allows for extrapolating results into
other sorts of networks. This claim is made based on previous research work in the liter-
ature (Selimi, Freitag, Cerdà-Alabern, and Veiga 2016), which both analysed the impact
of prioritizing different heuristics on the computational and network resources avail-
able (Selimi, Vega, Freitag, and Veiga 2016) and studied practical issues with micro-
service architectures (Selimi, Cerdà-Alabern, Artigas, Freitag, and Veiga 2017). We used
available statistical processing tools to attempt to fit several distributions and compare
them. For the bandwidth, we present plots of the distribution fitting and Empirical
Cumulative Distribution Function in Figures 5.5 and 5.6. In the same order, we also
present the aforementioned plots for round-trip time in Figures 5.7 and 5.8. We then
modelled the ECDF of both network properties with the use of the lmomco and FAdist
libraries in R.
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Figure 5.4: Round-trip time (RTT) in logarithmic scale.

Network Characteristics. Part of guifi.net exists as an instance of the Quick Mesh
Project (QMP) 1, a system for easily deploying MESH/MANET networks using Wi-
Fi technology. QMP is an urban mesh network in Barcelona and it is a subset of the
guifi.net community network sometimes called Sants-UPC network. It was designed
for use in scenarios such as free community networks, of which guifi.net is a rich exam-
ple (Selimi, Cerdà-Alabern, Artigas, Freitag, and Veiga 2017). We use measurements of
round-trip time (RTT) and bandwidth (B/W) from the Sants-UPC wireless mesh QMP
instance to establish a model of these telecommunication heuristics for the remainder of
the network. It would be through a hierarchy of graph-server nodes that one would ac-
quire a view of all the nodes in the network. However, due to privacy and maintenance
issues, many of these graph-server types fail to provide any type of information about
queried nodes. Due to this, we employed a one-week snapshot of this seventy-node
QMP instance to establish ground-truth relevance for our work. The measurements
were taken for seven days from the 1st to the 8th of March 2017, with a snapshot taken
every hour (Cerdà-Alabern 2012). The measurement period and frequency produced
enough samples for evaluating guifi.net in light of the results of our method. We remark
that node links in QMP and guifi.net, in general, are not symmetrical: the bandwidth
and round-trip time from node u to node v isn’t necessarily the same from v to u.

Firstly, although QMP has a more uniform set of nodes compared to guifi.net, it

1Quick Mesh Project website. Access date: 28 Dec ’17. http://qmp.cat/

http://qmp.cat/
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Figure 5.5: Bandwidth (B/W) observation comparison and goodness-of-fit of different
candidate distributions. Lower goodness-of-fit is better.

Figure 5.6: Bandwidth (B/W) Top 3 Empirical Cumulative Distribution Function
(ECDF).
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Figure 5.7: Round-trip time (RTT) observation comparison and goodness-of-fit of dif-
ferent candidate distributions. Lower goodness-of-fit is better.

Figure 5.8: Round-trip time (RTT) Top 3 Empirical Cumulative Distribution Function
(ECDF).
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Figure 5.9: Plot of maximum and average degree distributions for each community. The
left image is the geographical configuration of node sets, while the right side is based
on Phase One of our algorithm.

Figure 5.10: Average number of hops-to-leader plotted against each community’s size.
The left image is the geographical configuration of node sets, while the right side is
based on Phase One of our algorithm.
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Figure 5.11: Average number of hops-to-leader plotted against a logarithmic scale of
each community’s size. The left image is the geographical configuration of node sets,
while the right side is based on Phase One of our algorithm.

is also subject to the same behavioural user factors which influence the whole net-
work (Vega, Cerdà-Alabern, Navarro, and Meseguer 2012). This means that it may be
considered as a representative sampling of guifi.net. Secondly, the obtained number of
samples is high enough to enable us to apply statistical techniques to define empirical
models of bandwidth and round-trip time. This allows us to fit different distributions
to the measurements and evaluate the resulting goodness-of-fit (GOF) values. Selecting
the most fitting distributions, we then synthesize their parameters in order to generate
functions to produce artificial observations. Qualitatively, these simulated values are
representative of the behaviour of the QMP network (and thus of guifi.net) and were
used to populate the bulk of our dataset (guifi.net snapshot of January, 2017) nodes,
which were missing data.

Phase One: Community Detection Impact. We present in Figure 5.9 the distribu-
tion of maximum and average degree versus the size of the communities. The left side
pertains guifi.net zone-based communities (from the dataset as-is), while the right side
is related to the configuration of network node groups obtained with Phase One of our
algorithm. We derive from this that our algorithm produces groupings with a tendency
for greater node inter-connectivity. Moving on, we further evaluate this derivation by
producing a visualization of the average number of hops-to-leader for each community
versus community size. Figure 5.10 presents this with respect to natural geographical
zones of guifi.net in the left, with our algorithm’s results on the right side. Our algo-
rithm led to an overall reduction in the number of hops, in particular for smaller and
more frequent communities. Figure 5.11 highlights interesting tendencies with regard
to the impact of absolute heuristic weights and their influence on the average number
of hops. In particular, we achieve this by isolating the range of community sizes to a
maximum size of 250 members. Plotting these ranges over a logarithmic scale, it can
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Figure 5.12: Average number of hops-to-leader against community in decreasing order
for the original geographical configuration.

Figure 5.13: Average number of hops-to-leader against community in decreasing order
for Phase One’s communities.
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be seen that the contained communities exhibit a lower number of hops. This tendency
is particularly manifested with heuristics α1 and β3 (betweenness centrality and com-
putational class of the node, respectively). We extrapolate from this finding that the
fixed-region geographical definition of guifi.net may be too rigid and that it may in fact
provide a user experience which is probably below-optimal regarding typical services
offered in CNMCs. Usage of the Phase One technique shows promise with respect to
optimizing the length of the path taken from each community’s node to the community
leader, a sure benefit for many services.

Phase Two: Leader Election Results. It is relevant to note that after Phase Two
of our algorithm, the application of heuristics over the propagation-based node sets
yielded more outliers than the geographical zones. While there were more outliers in
the results of Phase One of our algorithm, lower values were achieved when compared
to the geographical node groups. We presented obtained results evaluated under dif-
ferent criteria. Our focus is not on producing a one-size-fits-all hierarchy of heuristics:
other real-world scenarios upon which to test our algorithm will have specific objec-
tive functions, bound by application needs. The results are promising as they highlight
that our algorithm is a valid alternative to traditional computational approaches to op-
timizing responsibility assignment to network nodes. We present Figures 5.12 and 5.13,
which depict the number of average hops-to-leader in decreasing order. Orthogonally
to node group definitions, the tendencies in the influence of the heuristics remain valid,
with the same patterns appearing for each of the cases. It is interesting to note that, for
the right side (based on Phase One of our algorithm), heuristics α2 and β3 produced
greater differences between them. Accounting for the computational class of nodes in
the case of the right side led to a lower number of hops-to-leader compared to simply
electing leaders based on centrality.

SLA Assessment. We also evaluate the quality of leaders in the context of the
sampling performed for the QMP network. Namely, we modelled round-trip time
(RTT) in milliseconds and bandwidth B/W in Mbit/s distributions based on around
70,000 samples (of bandwidth and round-trip time) obtained from QMP in guifi.net
over a period of seven days. These two features are relevant to types of SLAs inherent
to services such as (RTT) web caching, web content requests, NoSQL cloud storage as
well as (B/W) streaming and file download services. For each community (or zone),
we compute the community’s RTT by summing the RTT of the path from each specific
node to the elected community leader and then computing an average to represent the
RTT of the community. For B/W, we perform a similar operation, but instead note for
each path (from a node to the community leader) the minimum B/W value, with the
community’s B/W consisting of the average value of the minimum B/W recorded for
each path in the community. From these two features, we modelled their distribution
and simulated their values for all of the guifi.net network snapshot mentioned earlier.
Figures 5.14, 5.15, 5.16, and 5.17 were produced using the Python statsmodel
package (Seabold and Perktold 2010), which has a set of utilities to automate statistical
processing tasks.
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Figure 5.14: Zone-based bandwidth ECDF.

Figure 5.15: Community-based bandwidth ECDF.
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Figure 5.16: Zone-based round-trip time ECDF.

Figures 5.14 and 5.15 show the empirical cumulative distribution function of the
bandwidth for the original guifi.net zones and for communities produced by Phase One
of our algorithm, respectively. Interestingly, the bandwidth interval for [10; 30] Mbit/s
in Figure 5.14 shows that Phase Two of our algorithm (the stage of leader election within
a community – in this test case there is a one-to-one mapping between guifi.net zones
and communities) fared better by using singular heuristics for electing the leader. That
is, heuristics β3 (computational class) and α1 (betweenness centrality) produced, on
average, more efficient bandwidth paths from a community’s nodes to their leader.
This tendency was also reproduced in the execution of Phase Two of our algorithm
after Phase One (custom communities generated by Algorithm 2 instead of one-to-one
mapping to guifi.net’s original zones), which can be seen in Figure 5.15.

For the round-trip time, the same two heuristic weights fared better than the others
as well. All combinations seemingly max out (in terms of cumulative distribution) at
around 125 milliseconds. However, up to about 100 milliseconds, heuristics β3 (compu-
tational class) and α1 (betweenness centrality) produced lower round-trip time. This oc-
curs for the zone-based communities in Figure 5.16 and also the communities resulting
from Phase One of our algorithm, as illustrated in Figure 5.17. Curiously, we observe, as
far as round-trip time is concerned, that the random leader election yielded practically
the same results as the combined usage of betweenness centrality α1 and latency β2 (al-
ternating between 0.4α1 + 0.6β2 and 0.6α1 + 0.4β2). We did not perform an exhaustive
analysis of all possible combinations of heuristics and their weights. The combinations
we present herein are relevant in terms of what the heuristics represent. Bandwidth
samples were modelled as a four-parameter Kappa distribution, while round-trip time
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Figure 5.17: Community-based round-trip time ECDF.

was modelled as a generalized extreme value (GEV) distribution. It is relevant to say
that the empirical distributions of these two metrics exhibited a considerable degree of
independence. In fact, corr(BW,R)= −0.134 for the sampled values, which means they
appear to be only slightly inversely related. We assumed them to be independent with
respect to results.

Summary. The method we present is inherently parallel and distributed, a break
from traditionally-centralized often exhaustive optimization-driven solutions, open-
ing possibilities for scalability. Phase Two of our algorithm was designed to be dis-
tributed with the purpose of executing concurrently among all communities. This im-
plies that the computational time of this phase has an upper bound associated to the
slowest-computing community. As far as the authors are aware, this work is the first
that attempts to optimize service placement by defining communities using an anal-
ysis based purely on network theory and distributed graph processing. The guifi.net
telecommunications network is one upon which different research projects have been
executed (Cerdà-Alabern 2012; Vega, Cerdà-Alabern, Navarro, and Meseguer 2012).

5.4 Related Work

Herein we go over alternative approaches to Phase One and Phase Two of our so-
lution as a whole. We note that our work is novel, as far as we know, in the sense that
it combines these two multidisciplinary phases, whose literature we analyse.

Community Networks. Different studies on guifi.net have drawn several insights:
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the network is not homogeneous – rural areas have topology properties different from
those of metropolitan areas, such as density; the topology observed in rural areas is
not scale-free (degree distribution does not fit a power law) due to the high number of
terminals connected to some nodes; removing terminal nodes (with degree one) from
the graphs in rural areas, however, reveals a scale-free core-network as in (Vega, Cerdà-
Alabern, Navarro, and Meseguer 2012). On the one hand, it is necessary to be aware
of the challenges inherent to service allocation in different types of networks in the
context of distributed systems. On the other hand, we highlight the existence of com-
munity detection techniques (as discussed in Chapter 2) as a novel approach to these
challenges. In recent years, metrics have been proposed for evaluating the quality of
calculated communities have emerged: the most notorious one being that of modular-
ity. However, focusing exclusively on modularity incurs community resolution penal-
ties with smaller communities often not being detected. Considering this and focusing
on scalability, other methods in the literature which do not use domain-specific heuris-
tics were devised, such as the class of label propagation algorithms (Leung, Hui, Liò,
and Crowcroft 2009; Raghavan, Albert, and Kumara 2007). These algorithms are inher-
ently parallel and work well in practice for real world networks (Boldi, Rosa, Santini,
and Vigna 2011).

Service Placement. Typically, by monitoring all the physical and virtual resources
on a system, service placement aims to balance load through the allocation, migra-
tion and replication of tasks. This can take place in cloud data-centres and in wireless
networks that power a significant part of CNs. Most of the work in the data centre
environment, including distributed data centres, is not applicable to our case because
we have a strong heterogeneity given by the limited capacity of nodes and links, as
well as asymmetric quality of wireless links. The authors in (Vega, Meseguer, Cabr-
era, and Marquès 2014) introduce a service allocation algorithm that provides near-
optimal overlay allocations without the need to verify the whole solution space. They
use static data from the network to identify node traits and minimize the coordination
and overlay cost along a network. The work in (Novotny, Urgaonkar, Wolf, and Ko
2015) analyses network topology and service dependencies, and combined with set of
system constraints determines the placement of services within the wireless network.
The authors use a multi-layer model to represent a service-based system embedded in
a network topology and then apply an optimization algorithm to this model to find
where best to place or reposition the services as the network topology and workload on
the services changes.

In distributed micro-cloud environment (i.e., similar to our case), the work
of (Tärneberg, Mehta, Wadbro, Tordsson, Eker, Kihl, and Elmroth 2017) takes into ac-
count rapid user mobility and resource cost when placing applications in Mobile Cloud
Networks (MCN). A recent work (Tantawi 2016) uses biased statistical sampling meth-
ods for cloud workload placement. Regarding the service placement through migra-
tion, the authors in (Wang, Urgaonkar, He, Chan, Zafer, and Leung 2017) study the dy-
namic service migration problem in mobile edge-clouds that host cloud-based services
at the network edge. They formulate a sequential decision making problem for service
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migration using the framework of Markov Decision Process (MDP) and illustrate the
effectiveness of their approach by simulation using real-world mobility traces of taxis
in San Francisco. As a whole, service placement approaches are predominantly based
on resource (CPU, memory) and node availability, and when they are network-aware,
they are able just to employ static network information or at most process historical net-
work data for availability predictions. Moreover, they are batch-oriented and execute
sequentially in centralized settings and therefore cannot scale to larger network sizes,
number of services, or greater network dynamism. Our approach is the first, to the best
of our knowledge, that is dynamic, parallel and distributed, and therefore able scale
seamlessly, by employing distributed graph processing systems, such as the Gelly li-
brary of Apache Flink. Thus, we are able to continually monitor service quality and
perform service placement decisions continually/incrementally based on data gathered
from the network (e.g., graph-servers in guifi.net).

5.5 Remarks

With this work, we presented a novel take on the processing steps that underlie ser-
vice placement, a multi-objective problem. Compared to traditional system techniques
(which, as far as we know, have not seen developments regarding parallel implemen-
tations and scalability with network size), our algorithm is expressed purely over state-
of-the-art graph techniques which have inherent parallelism, making our algorithm a
very competitive approach. While we evaluated GELLY-SCHEDULING with a static ver-
sion of the network data, this study could also be adapted to consider more realistic
dynamic scenarios, potentially making use of the techniques of VEILGRAPH.



6Dynamic Graph

Representations

The work on succinct graph representations presented in this chapter is an ex-
tended journal version submission (Coimbra, Hrotkó, Francisco, Russo, de Bernardo,
Ladra, and Navarro 2021) of a publication (Coimbra, Francisco, Russo, de Bernardo,
Ladra, and Navarro 2020) resulting from an international collaboration with: Centro
de Investigación de Galicia ”CITIC” (University of A Coruña); Enxenio SL.; the Millen-
nium Science Initiative Program (University of Chile).

We address the problem of representing dynamic graphs using k2-trees. The k2-
tree data structure is one of the succinct data structures proposed for representing static
graphs, and binary relations in general. It relies on compact representations of bit vec-
tors. Hence, by relying on compact representations of dynamic bit vectors, we can also
represent dynamic graphs. However, this approach suffers of a well known bottleneck
in compressed dynamic indexing. We present a k2-tree based implementation which
follows instead the ideas by (Munro, Nekrich, and Vitter 2015) (PODS 2015) to circum-
vent this bottleneck. We present two dynamic graph k2-tree implementations, one as
a stand-alone implementation and another as a C++ library. The library includes effi-
cient edge and neighbourhood iterators, as well as some illustrative algorithms. Our
experimental results show that these implementations are competitive in practice.

6.1 Introduction

Most succinct data structures for representing graphs are static (Boldi and Vigna
2004b; Brisaboa, Ladra, and Navarro 2014). Only recently, by relying on compact rep-
resentations of dynamic bit vectors, succinct representations for dynamic graphs were
presented (Brisaboa, Cerdeira-Pena, de Bernardo, and Navarro 2017). These represen-
tations suffer however from a well known bottleneck in compressed dynamic index-
ing (Munro, Nekrich, and Vitter 2015; Navarro 2016), namely that a slowdown is caused
by the need to decompress components of the representation in order to perform their
union. We adopt the ideas proposed by Munro et al. (Munro, Nekrich, and Vitter 2015)
to represent dynamic graphs through collections of static and compact graph represen-
tations.

A note must be made on the meaning of certain terms. With “succinct graph repre-
sentation” we are referring to one which, through compression techniques, enables the
computational representation of a graph, while requiring less space, in a lossless way.
The expression “summary graph” is used to describe an incomplete representation of the
graph. In VEILGRAPH we build a summary graph and even compute the importance
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of individual vertex scores and the contribution of their edges when defining the big
vertex. The summary graph is built in a one-way fashion, while our succinct graph
representation (k2-tree) can be converted to the original graph and vice-versa.

Our approach relies on k2-trees to represent static graphs, but it supports edge
insertions and removals. The edge insertion time is almost the same as the average
construction time per edge of static k2-trees. We describe the ideas behind our pre-
vious standalone implementation sdk2tree and compare it, together with several
other k2-tree implementations1, with our new sdk2sdsl implementation2 based on
the sdsl-lite data structure library.3

Section 6.2 provides an overview of the k2-tree data structure. In Section 6.3, we ex-
plain the technique (Munro, Nekrich, and Vitter 2015) employed to implement dynamic
graphs using collections of static k2-trees and the details of our library implementation
sdk2sdsl. We present extensive experimental analysis in Section 6.4 and final remarks
in Section 6.5.

6.2 The Static k2-tree

Let G = (V,E) be a graph where V is the set of vertices, of size n, and E ⊆ V × V
is the set of edges, of size m. The k2-tree data structure provides a static succinct repre-
sentation of G (Brisaboa, Ladra, and Navarro 2014). At a high level, this data structure
corresponds to an adjacency matrix representation, where a bit set to 1 indicates the
existence of an edge and a bit set to 0 its absence. To reduce the space requirements for
sparse graphs, a hierarchical decomposition of the matrix is used, where a sub-division
consisting only of zeros is represented by a single 0 bit.

More concretely, the k2-tree can be conceptually defined as a non-balanced k2-ary
tree that represents the recursive partition of the adjacency matrix into k × k sub-
matrices. The root node contains k2 children, each of them corresponding to one sub-
matrix and sorted following a Z-order. The nodes of the tree store just one bit indicating
if the sub-matrix is non-empty (1) or if it is all zeroes (0). Then, the non-empty sub-
matrices are subdivided again until reaching an empty sub-matrix, or until no more
subdivision is possible; thus, bits at last level of the tree correspond to cell values of the
original adjacency matrix. The resulting tree is thus of height dlogk2 n

2e = dlogk ne.
An example of this tree-shaped representation is shown in Figure 6.1. This concep-

tual tree is stored in one single bitmap following a level-wise traversal of the tree (i.e.,
concatenating the 4 bitmaps of the figure). Queries over the graph can be solved effi-
ciently by performing top-down traversals over the tree representation. Those traver-
sals are efficiently implemented thanks to the use of fast rank operations (Navarro 2016)
over the bitmap.

The maximum length of this bitmap is k2m(logk2
n2

m +O(1)). A sub-linear number
of extra bits are needed to enable constant-time rank operations on the bitmaps. Testing

1https://github.com/aplf/sdk2tree
2https://github.com/joo95h/dynamic_k2tree
3https://github.com/simongog/sdsl-lite

https://github.com/aplf/sdk2tree
https://github.com/joo95h/dynamic_k2tree
https://github.com/simongog/sdsl-lite
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Figure 6.1: Example of adjacency matrix (left) and its corresponding k2-tree with k = 2
(right).

the existence of an edge is done in O(logk n) time by traversing the k2 down to the
desired matrix cell, until an empty sub-matrix (a 0) is found or we reach the 1 of the cell
in the last level. Obtaining the neighbours of a node is done in O(n) worst-case time
by reaching all the cells in the corresponding matrix row, via entering all the children
of each node that intersect the row; the reverse neighbours are obtained similarly by
extracting the corresponding matrix column. In this paper, k is a fixed value across the
trees and remains constant along time.

6.3 From Static k2-trees to Dynamic Graphs

The main idea to represent G dynamically, supporting edge insertions and dele-
tions, as well as listing the neighbours of a given vertex v, is to use a collection of static
edge sets C = {E0, . . . , Er}. Each static edge set Ei is then represented using a static
k2-tree, except E0 which is represented as a dynamic and uncompressed adjacency list.
Figure 6.2 depicts a link query over the different Ei sets of the data structure.

Let mi be the number of edges in each set Ei. As discussed by Munro et al. (Munro,
Nekrich, and Vitter 2015), we must control both the number of edges mi in each set Ei
and the number r of such sets to achieve the optimal amortized cost for each operation.
The first set (E0) contains at most m/ log2 n elements. In general we require that mi

is at most m/ log2−iε n, for some constant ε > 0. We must also have that r ≤ 2/ε, so
when ε is a fixed constant so is r. For example when ε = 1/4 we get that r is at most
2/(1/4) = 8. Hence the maximum number of edges per static set follows a geometric
progression. Each set Ei is static (except for E0) and has a maximum allowed size
m/ log2−iε. Whenever we reach the maximum size for E0 (overflow), we find a set Ej ,
with i < j ≤ r such that

∑j
`=0m` ≤ m/ log2−jε n and (re)build Ej with all edges in it

and in the previous sets, and reset all previous sets to empty. By construction, Ej has a
maximum capacity enabling it to store the content of sets E0 through Ej−1. We detail
this process below.
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Figure 6.2: check link query going throughEi sets to find an edge (depicted in black).
The algorithm first checks the E0 structure which consists of a dynamic and uncom-
pressed adjacency list (represented by the square on the left side). If it does not find
the edge, the following static k2-tree data structures are iterated in order of growing
size: E1, E2, ..., Er until the edge is found. We represent this sequence of data structure
checks by the composition of boolean OR operations seen in the image.

6.3.1 Space

Let us analyse the required space to represent the data structure. The setE0 is repre-
sented in an uncompressed adjacency list coupled with a hash table to allow answering
queries on edge existence in constant expected time. This requires O(m0 log n) bits,
where m0 ≤ m/ log2 n is the number of edges in E0. Each set Ei, for 1 ≤ i ≤ r, is repre-
sented with a static k2-tree requiring k2mi

(
logk2(n2/mi) +O(1)

)
bits (plus sublinear-

order terms to support rank), where mi ≤ m/ log2−iε n. Hence, overall, the space re-
quired is

O(m0 log n) +

r∑
i=1

k2mi

(
logk2(n2/mi) +O(1)

)
(1 + o(1)) (6.1)

bits. The first term in Equation 6.1 is sublinear,O
(
(m/ log2 n) log n

)
= O (m/ log n). We

now bound the main part of second term as follows, exploiting the fact that the formula
is monotonic on every mi:

r∑
i=1

k2mi logk2
n2

mi
≤ k2

r∑
i=1

m

log2−iε n
logk2

(
n2

m
log2−iε n

)

=
k2m

log2 n

r∑
i=1

logiε n

(
logk2

n2

m
+ (2− iε) logk2 log n

)
. (6.2)
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We can set r = 2/ε because the sum is monotonic on r. Then, because

r∑
i=1

logiε n = logrε n
(
1 +O(log−ε n)

)
= log2 n

(
1 +O(log−ε n)

)
, and

r∑
i=1

i logiε n = r logrε n
(
1 +O(log−ε n)

)
= r log2 n

(
1 +O(log−ε n)

)
,

Equation (6.2) is

k2m

(
logk2

n2

m

(
1 +O(log−ε n)

)
+ (2− rε+O(log−ε n)) logk2 log n

)
= k2m logk2(n2/m)(1 + o(1)).

The whole Equation (6.1), since
∑r

i=1mi ≤ m, is then upper bounded by

k2m(logk2(n2/m) +O(1))(1 + o(1)),

which asymptotically coincides with the space of the static k2-tree representation, even
considering the sublinear extra space to support rank operations.

6.3.2 Insertion, Deletion and Queries

We rely on efficient set operations over k2-trees (Quijada-Fuentes, Penabad, Ladra,
and Gutiérrez 2019). Given C and C ′ represented as two k2-trees, we are able to com-
pute k2-trees representingC∪C ′, C∩C ′ andC \C ′ in linear time on the size |C| and |C ′|
of the representations. Moreover these operations are done without decompressing C
and C ′, with only some negligible extra space being used.

Insertion works as follows. Given a new edge (u, v), if |E0| < m0, then just add
(u, v) to E0 and we are done; otherwise, build a k2-tree for E0, find 0 < j ≤ r such
that

∑j
i=0mi ≤ m/ log2−jε n, and rebuild Ej with all edges in E0, . . . , Ej by successive

unions of k2-trees. Figure 6.3 illustrates the process.
If |E0| < m0, then insertion takes constant expected time since we are relying on an

adjacency list coupled with a hash table to maintain adjacencies, as described before.
Otherwise, we need to build a k2-tree to contain the edges inE0, which requires finding
some Ej to accommodate all previous collections Ei, for 0 ≤ i ≤ j. Note that the
construction of the k2-tree forE0 takesO(m0 logk n) time (Brisaboa, Ladra, and Navarro
2014), and the pairwise union of at most j k2-trees representing collections E0 . . . Ej−1

takes O(mj logk n) time, using only the required space to store a k2-tree representing
Ej . The amortized analysis of the insertion cost follows the argument presented by
Munro et al. (Munro, Nekrich, and Vitter 2015) for the general case. Either Ej is new
and m has at least doubled, in which case the amortized cost is O(logk n) per edge
insertion, or Ej is not new and we are adding to it all edges in collections E0, . . . , Ej−1.
In this last case the building cost can be charged to the new edges added to Ej , which
are at least m/ log2−(j−1)ε ≥ mj/ logε n. Therefore, the amortized cost of inserting an
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Figure 6.3: add link searching for j such that Ej has enough space to hold all edges
of sets Ei, i < j because E0 was full.

edge in Ej is O(logk n logε n) and, since each edge can be moved once to each Ej , with
0 < j ≤ r = b2/εc, the amortized cost of inserting an edge isO((1/ε) logk n logε n). This
is then the overall amortized cost of inserting an edge.

Deletion works as follows. Given an edge (u, v) ∈ E, if (u, v) ∈ E0, then just remove
it and we are done; otherwise, find 0 < j ≤ r such that (u, v) ∈ Ej and, if there is such j,
set the corresponding bit to zero in Ej k2-tree, update the number m′ of deleted edges,
and if m′ > m/ log logn, rebuild C.

Deleting an edge in E0 takes constant expected time. Checking and deleting an
edge in our collections takes O((logk n)/ε), since checking if an edge exists in a given
k2-tree takes O(logk n) (Brisaboa, Ladra, and Navarro 2014), and we might have to
look in each collection Ei, with 0 < i ≤ r = d2/εe. Once an edge is found, setting the
corresponding bit to 0 in the static k2-tree takes constant time. Note that there is a bit set
to 1 for each edge in a k2-tree. We are just exploiting that fact when we delete an edge
and, hence, we do not use extra space. This means in particular that the k2-tree data
structure remains the same, we are not updating it and any query for a deleted edge
will reach the corresponding leaf of the tree, which now is marked as 0. The full rebuild
after m/ log log n edges are deleted costs O(m logk n), i.e., it has an amortized cost of
O(logk n log logn) per deleted edge. Overall deleting an edge has then an amortized
cost of O((1/ε+ log log n) logk n).

Querying works just as in k2-trees with the difference that we need to query all sets
in the collection. Therefore, the querying cost increases by a factor of O(1/ε).

6.3.3 Graph Library

The library proposed in the context of this work exposes an API supporting also
edge and neighbourhood iterators. This API was built having in mind an easy and
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familiar interface, compared to other libraries such as: SNAP4, igraph (Csardi, Nepusz,
et al. 2006), among others. And the library was built after the sdk2tree project, but the
underlying k2-tree implementation is based on the sdsl-lite k2-tree implementation,
which uses static bit vectors, in C++.

The two types of iterators present a similar interface: edge begin, edge end for
edges and neighbour begin(x), neighbour end() for neighbours. The neighbour
iterator receives the node whose neighbourhood is desired. The iterators may be used
as other iterators in C++ and follow its iterator pattern. If there are no edges to iterate
then edge begin()=edge end(). The iterators do not return edges in any particular
order, since they first iterate over the E0 container and then over each Ei k2-tree.

6.3.3.1 Edge Iterator

As previously mentioned, the edge iterator iterates over the container E0 and then
over the k2-tree for each Ei. In the uncompressed container E0, it takes linear time
to retrieve all its edges. However, for each k2-tree, it relies on a k2-tree edge iterator
and it takes time proportional to the size of the k2-tree. This iterator is implemented
by saving in a queue all states where the search was still not finished in a depth-first
approach over the k2-tree. Thus, this queue has at most size O(blog(V )/ log(k)c) which
is the maximum level of the k2-tree. Iterating over edges in a k2-tree is performed then
by visiting internal nodes and, if there are any children, then we check in all the k2

children of that node; otherwise we backtrack. When we reach the last level, we check
if the bit position is 1, which means we have found an edge and we return it.

6.3.3.2 Neighbourhood Iterator

The neighbourhood iterator is very similar to the edge iterator in the sense that
we keep a queue of the states from where we last evaluated each node of the tree. If
there are neighbours of node x in the first container E0, it iterates over them first. Once
the uncompressed container is iterated, it goes to the k2-tree collections. Similarly to
the edge iterator, it follows a depth-first search keeping a queue with the incomplete
searched states. The neighbour iterator follows the same algorithm from the listing
neighbours operation from the k2-tree, however it saves the state from all the incom-
plete searched states. The running time for listing all neighbours of a given vertex is
the same of the listing neighbours operation.

6.3.4 Comparison with Other Constructions

Given a graph G, for a fixed ε, the presented data structure uses essentially the
same space as a static k2-tree, and supports insertions and deletions in O(logk n logε n)
and O(logk n log logn) amortized time, respectively. The implementation of dynamic
k2-trees using dynamic bit vectors (Brisaboa, Cerdeira-Pena, de Bernardo, and Navarro
2017) requires a small space overhead, and it supports insertions and deletions in

4http://snap.stanford.edu

http://snap.stanford.edu
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O(logk n log n) time, which implies a slowdown factor of Θ(log1−ε n) with respect to
the proposed data structure.

Edge queries over the proposed data structure take the same time as in static k2-
trees. Although dynamic k2-trees using dynamic bit vectors (Brisaboa, Cerdeira-Pena,
de Bernardo, and Navarro 2017) work similarly to static k2-trees, they run on dynamic
bit vectors, thereby having a slowdown of Ω(log n/ log logn) (Navarro 2016, Chapter
12).

We also compare our approach with a new representation, k2-tries, proposed re-
cently (Arroyuelo, de Bernardo, Gagie, and Navarro 2019). This data structure uses
O(m log(n2/m)+m log k) bits, and supports edge queries inO(logk n) time and updates
inO(logk n) amortized time. The implementation provided by the k2-tries authors sup-
ports only edge additions and queries, with slightly worse time complexities.

6.4 Experimental Analysis

In previous work (Coimbra, Francisco, Russo, de Bernardo, Ladra, and Navarro
2020), we presented sdk2tree, our dynamic k2-tree C implementation based on the
techniques proposed by Ian Munro et al. (Munro, Nekrich, and Vitter 2015). We
now also introduce a C++ library version named sdk2sdsl which is based on the
sdsl-lite data structure library. We present experimental analysis comparing dif-
ferent implementations: our new sdk2sdsl library version; our previous dynamic
graph sdk2tree implementation (Coimbra, Francisco, Russo, de Bernardo, Ladra, and
Navarro 2020); the dynamic graph dk2tree based on dynamic bit vectors (Brisaboa,
Cerdeira-Pena, de Bernardo, and Navarro 2017); two dynamic graph implementations
(differing only on the parametrization to trading compression for speed) k2trie{1,2}
based on dynamic tries (Arroyuelo, de Bernardo, Gagie, and Navarro 2019); the origi-
nal static bit vector implementation k2tree (Brisaboa, Ladra, and Navarro 2014). We
make available the source code for all implementations as well as usage instructions at
https://github.com/aplf/sdk2tree. Our new sdk2sdsl implementation was
written in C++ and the others are in C, with every implementation single-threaded and
compiled with gcc 7.5.0 using the -O3 optimization flag. Experiments were per-
formed on an 8-core AMD Ryzen 7 2700X Eight-Core Processor @ 2.04GHz machine
with 32K L1d cache, 64K L1i cache, 512KB L2 cache, 8192K L3 cache and system mem-
ory of 64 GB RAM. We implemented a common interface to test each implementation.
All dynamic data structures dk2tree, sdk2tree, sdk2sdsl and k2trie{1,2} are
initialized empty. The static k2tree is initialized by reading the whole graph from sec-
ondary storage. Once initialized, the interface starts a main loop which reads instruc-
tions from stdin representing all supported edge operations, with additions and dele-
tions not available in k2tree, and k2trie{1,2} supporting only edge additions and
queries. We also implemented and tested known graph algorithms on our sdk2sdsl
implementation: breadth-first search (BFS), depth-first search (DFS), global clustering
coefficient and variants of triangle counting.

https://github.com/aplf/sdk2tree
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Table 6.1: Bit/edge ratio (post-serialization) is presented for each data structure. First
four datasets were synthetically generated using a duplication model. Last four
datasets are real-world Web graphs made available by the Laboratory for Web Al-
gorithmics (LAW) (Boldi and Vigna 2004b; Boldi, Rosa, Santini, and Vigna 2011)
(uk-2007-05 is actually uk-2007-05-100000 in the LAW website).

Dataset |V |
(M)

|E|
(M)

k2tree
(bit⁄edge)

dk2tree
(bit⁄edge)

sdk2tree
(bit⁄edge)

sdk2sdsl
(bit⁄edge)

k2trie1
(bit⁄edge)

k2trie2
(bit⁄edge)

dm50K 0.05 1.11 21.10 23.64 21.26 25.26 43.16 298.99
dm100K 0.10 2.59 22.66 25.27 22.76 27.16 47.31 257.61
dm500K 0.50 11.98 27.87 30.85 27.97 33.31 57.92 187.91
dm1M 1.00 27.42 29.48 32.63 29.49 35.33 58.78 132.92

uk-2007-05 0.10 3.05 2.98 3.39 3.16 3.63 5.62 11.11
in-2004 1.38 16.92 2.99 3.40 3.14 3.64 3.90 6.97
uk-2014-host 4.77 50.83 9.47 10.55 9.58 11.42 13.07 21.88
indochina-2004 7.42 194.11 2.46 2.79 2.59 3.00 2.88 4.91
eu-2015-host 11.26 386.92 5.61 6.26 5.71 6.74 7.02 11.64

6.4.1 Datasets and Methodology

We use both real and synthetic datasets. In Table 6.1 we identify the datasets and
their properties. For each dataset, we present its vertex and edge counts written as |V |
and |E|, respectively, and bits per edge (after serialization) for each implementation.

Real-world graphs were obtained from the Laboratory of Web Algorithmics5 (Boldi
and Vigna 2004b; Boldi, Rosa, Santini, and Vigna 2011). Synthetic datasets were gen-
erated from the partial duplication model (Chung, Lu, Dewey, and Galas 2003). Al-
though the abstraction of real networks captured by the partial duplication model,
and other generalizations, is rather simple, the global statistical properties of, for in-
stance, biological networks and their topologies can be well represented by this kind
of model (Bhan, Galas, and Dewey 2002). We generated random graphs with selec-
tion probability p = 0.5, which is within the range of interesting selection probabil-
ities (Chung, Lu, Dewey, and Galas 2003). The number of edges for those graphs is
approximately 25 times the number of vertices.

We should note that bits per edge for real datasets in Table 6.1 are affected by the
natural order of vertices, given in that case by URL lexicographic order, which favours
Web graph compressibility. If ids were randomly assigned to vertices, then the bits per
edge would be similar to those observed for random synthetic graphs.

We consider four major operations: edge additions, removals, querying/checking
and vertex neighbourhood listing. Elapsed time was measured using the clock()
function6. Each time and memory result is the average of 5 individual executions. Al-
though the k2tree implementation does not support additions, we include it in the

5http://law.di.unimi.it/datasets.php
6http://man7.org/linux/man-pages/man3/clock.3.html

http://law.di.unimi.it/datasets.php
http://man7.org/linux/man-pages/man3/clock.3.html
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Figure 6.4: Average time taken for adding an edge in real Web graphs and in synthetic
graphs (generated from a duplication model), respectively.

comparison. For that we build a k2tree for each dataset and divide the time it takes
by the number of edges, obtaining the average construction time per edge. This allowed
us to evaluate the overhead introduced by dynamic data structures. The removal oper-
ation is compared between sdk2tree, sdk2sdsl and dk2tree. This operation was
evaluated by adding all edges and removing a sample of 50% of them. All implemen-
tations except the one based on dynamic tries were directly compared for the listing
operation. After adding all edges, we evaluated this operation by asking for the neigh-
bourhoods of a sample of 50% of the vertices. We measure for each implementation the
average time per individual operation, the maximum resident set size (memory peak
was obtained with GNU time7), and the disk space taken by the serialization of data
structures.

6.4.2 Cost Analysis

Let us analyse the cost of each operation over the different datasets and for the dif-
ferent implementations. Figure 6.4 shows the average running time for adding an edge.
As mentioned before, we include k2tree in this comparison to observe the slowdown
introduced by dynamic data structures. As expected, dynamic implementations take in
general more time per add operation than k2tree. As expected also from the theoret-
ical analysis, the add operation on sdk2tree is faster than on dk2tree, in particular
for real Web graphs. The library version sdk2sdsl is faster or as fast as sdk2tree for
this operation.

Figure 6.5 shows the average running time for removing an edge. For both dataset
types, dk2tree was slower than others. The sdk2tree and sdk2sdsl implementa-
tions achieved close execution times and similar behaviour among datasets, with the
library implementation sdk2sdsl being faster. We note that costs seem to correlate
well with the predicted bounds.

Figures 6.6 and 6.7 show the average running time for listing vertex neighbour-
hoods and querying/checking edges. Across all datasets, sdk2tree was faster than

7https://www.gnu.org/software/time/

https://www.gnu.org/software/time/
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Figure 6.5: Average time taken for deleting an edge in real Web graphs and in synthetic
graphs (generated from a duplication model), respectively.
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Figure 6.6: Average time taken for listing neighbours of random vertices in real Web
graphs and in synthetic graphs (generated from a duplication model), respectively.

dk2tree and on-par with k2tree and k2trie{1,2}. In the case of listing, we are
plotting againstO(

√
m), the average-case bound on the cost of listing vertex neighbour-

hoods with k2tree (Brisaboa, Ladra, and Navarro 2014). This bound is valid also for
sdk2tree and dk2tree as discussed previously in the theoretical analysis. dk2tree
(dynamic bit vectors) was slower than sdk2tree which was matched with the static
k2tree implementation. Our sdk2sdsl library version was consistently the fastest
for the listing operation. For the edge query operation, dk2tree was constantly the
slowest implementation, with the others coming very close.

Let us now analyse how much memory is used by each implementation. In this
analysis we consider resident memory while we are performing operations. For the
space that each data structure takes once serialized on secondary memory, we refer
the reader to Table 6.1. We note that our sdk2sdsl library implementation serialized
format has a higher (≈ 20%) bits/edge ratio compared to sdk2tree. This seems to be
related to using a 64-bit index for the data structures.

Figure 6.8 shows the maximum resident memory while adding edges in dy-
namic implementations. We can observe that sdk2tree requires more memory than
dk2tree, although the growth rate is similar. This can look unexpected given the theo-
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Figure 6.7: Average time taken for querying edges in real Web graphs and in synthetic
graphs (generated from a duplication model), respectively.
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Figure 6.8: Max. resident memory while adding edges in real Web graphs and in syn-
thetic graphs (generated from a duplication model), respectively.

retical bounds derived previously, but we must recall that we are periodically merging
together static collections in the sdk2tree implementation. The sdk2sdsl imple-
mentation followed the same pattern as sdk2tree, albeit consuming more memory
than sdk2tree. Note that we use 64 bit integers in sdk2sdsl and 32 bit integers in
sdk2tree.

Figure 6.9 shows the maximum resident memory while removing edges. Since we
are adding all edges before removing about 50% of them, the memory requirements for
sdk2tree are exactly the same as in Figure 6.8. This also means that the edge removal
operation does not increase the space requirements in this implementation. sdk2sdsl
consumed more memory than sdk2tree, with the memory requirements for dk2tree
being the lowest on this operation.

Figure 6.10 shows the maximum resident memory while adding edges and listing
vertex neighbourhoods. Since we are adding all edges as before, the memory require-
ments for sdk2tree, sdk2sdsl and dk2tree are identical to those observed in Fig-
ures 6.8 and 6.9. We include now also the static k2tree in our analysis. We should note
however that once constructed, k2tree requires much less space as shown in Table 6.1.
For instance, for the dataset dm100K, k2tree had a peak resident memory footprint of
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Figure 6.9: Max. resident memory while deleting edges in real Web graphs and in
synthetic graphs (generated from a duplication model), respectively.
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Figure 6.10: Max. resident memory while listing neighbours of random vertices in real
Web graphs and in synthetic graphs (generated from a duplication model), respectively.

around 503.11 MB during construction, while its k2-tree structure stored on disk uses
22.66 bits per edge, i.e, a total of 7.01 MB. Although we are using the exact same imple-
mentation of k2-trees for representing the static collections within our sdk2tree and
sdk2sdsl implementations, we do not observe such a high memory footprint while
adding edges in our implementations. This highlights the fact that we are merging
those collections without decompressing them as mentioned before.

6.4.3 Graph Library Performance

We implemented some well known graph algorithms over sdk2sdsl, for which
we compare consumed memory and execution time against expected theoretical re-
sults. For each algorithm, we present in Table 6.2 the running time and peak resident
memory usage. Each cell holds the ratio of observed value to corresponding theoretical
complexity. For example, the value of the cell of the first row and first column on the
top represents the execution time (nanoseconds) of the sdk2sdsl breadth-first search
algorithm (applied to dataset dm50K) divided by its theoretical temporal complexity
of O(n

√
m + m). We omit dataset indochina-2004 from the graph algorithm tests

for sdk2sdsl as its topology does not allow for an adequate assessment of algorithms
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Table 6.2: Ratios between observed values and corresponding theoretical graph algo-
rithm complexities. The top part is the execution time ratio (nanoseconds) and the
bottom part is the peak resident memory ratio (bytes).

Time ratio (ns) BFS
n
√
m + m

DFS
n
√
m + m

CC
m

√
m

CT (hash)
m

√
m

CT
(neighbour)

m
√

m logk n logm

dm50K 66.2884 67.3630 6.4365 0.0474 0.4566
dm100K 74.2812 73.8288 5.5574 0.0386 0.4350
dm500K 82.8276 84.9108 5.7892 0.0214 0.3033
dm1M 88.1807 91.0187 5.2030 0.0203 0.2773

uk-2007-05 5.0637 5.0362 0.8456 0.0173 N/A
in-2004 2.7018 2.6811 0.7807 0.0039 N/A
uk-2014-host 13.5329 13.2120 2.3418 0.0745 N/A
eu-2015-host 10.3745 10.1891 0.4817 0.0007 N/A

Memory ratio (B) BFS
n + m

DFS
n + m

CC
n + m

CT (hash)
n + m

CT
(neighbour)

n + m

dm50K 16.465 16.526 78.771 75.848 14.581
dm100K 11.015 11.017 74.837 72.110 9.231
dm500K 12.744 12.748 72.662 70.569 10.561
dm1M 11.112 11.113 70.923 68.940 10.813
uk-2007-05 4.715 4.149 69.023 67.497 N/A
in-2004 6.119 4.970 74.324 70.670 N/A
uk-2014-host 7.686 6.596 72.019 67.283 N/A
eu-2015-host 3.174 2.625 13.585 12.442 N/A

expected efficiency.
The first column of Table 6.2 shows the behaviour of breadth-first search (BFS). For

the time ratio, the implementation is such that the observed execution times increase by
small amounts compared to the growing dataset sizes, with the peak resident memory
values being more intimately connected to the topology of the datasets. Note the

√
m

due to the cost of listing of neighbourhoods.
The second column of Table 6.2 shows the behaviour of depth-first search (DFS). It

has a behaviour similar to BFS for all dataset graph types (for both time and memory),
as expected.

For the (global) clustering coefficient (CC), the observed time ratios highlight
the influence of graph density. This is shown with dataset uk-2014-host, whose
ratio of 2.3418 (ns) is around 3x greater than the time ratio of the smaller dataset
in-2004 and close to 5x greater than the time ratio of the bigger eu-2015-host. The
peak resident memory ratios for CC are more closely related to graph structure, with
eu-2015-host (biggest of the tested web graphs) achieving a memory ratio 5x lower
than uk-2007-05 (smallest of the tested web graphs).

Note that we use a classic algorithm for computing both the clustering coefficient
and counting triangles. This algorithm iterates over all edges (u, v) and, without loss
of generality, it iterates over the neighbourhood of u, checking if each neighbour w of u
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is such that an edge (w, v) exists in the graph, where edge existence is checked against
a hash table with all edges. Neglecting heavy hitters, i.e. vertices with more than

√
m,

neighbours which are uncommon for large scale-free networks, the expected running
time is O(m

√
m). We can observe in Table 6.2 the third (CC) and fourth (CT hash)

columns of the memory ratio section. Their memory ratio values are similar.
Since we can answer queries on edge existence with our proposed data structures

in O(log n logm) time, we implemented an algorithm for counting triangles using edge
queries directly against the data structure, without relying on a hash table. Note that
the expected running time becomes now O(m

√
m log n logm) since we can no longer

have edge queries in expected constant time. But now we need much less memory
since we do not need a hash table to track edges, with memory usage essentially being
the space required by the compact graph data structure. As observed in Table 6.2, the
time ratio for this implementation (fifth column, CT neighbour) is around an order of
magnitude greater than the the time ratio for CT hash.

6.4.4 Memory Allocation Analysis

Our implementation of the dynamic k2-tree is based on the technique presented
in (Munro, Nekrich, and Vitter 2015), whose authors claim additional space is nec-
essary to perform a union of two collections (which would be decompressed before
the union operation taking place). The implementation we present is able to per-
form the union operation without decompressing the collections, effectively avoiding
this pitfall. We show for dataset uk-2007-05, in Figure 6.11, a detailed analysis of
heap memory usage. The analysis was performed using valgrind, with parame-
ters --tool=massif --max-snapshots=200 --detailed-freq=5, and the vi-
sualizations using the massif-visualizer8.

It can be observed that during execution where edges are continuously added, there
are memory peaks associated with the union operation, temporarily increasing the heap
usage by a factor of at most 2. This explains also the difference in maximum resident
memory between sdk2tree and dk2tree observed before in Figures 6.8 and 6.9. The
number of rebuilds/unions performed for dataset uk-2007-05, and for each static set
in {E1, . . . , E8}, is respectively 508, 127, 63, 32, 17, 9, 4 and 1.

6.5 Remarks

We presented the sdk2tree implementation for representing dynamic graphs,
based on the k2-tree graph representation and relying on a collection of static k2-trees.
It is a dynamic data structure that supports edge additions and removals with compet-
itive performance, showing faster execution times than the dk2tree implementation,
a dynamic version of k2-trees based on dynamic bit vectors, and on par with k2-tries
with respect to additions and queries.

We also present a C++ implementation sdk2sdsl, a modular version which makes

8https://github.com/KDE/massif-visualizer

https://github.com/KDE/massif-visualizer
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Figure 6.11: valgrind heap allocation profile for dataset uk-2007-05. The label
time in i in the x axis denotes the number of instructions executed.

use of the succinct data structure library sdsl-lite. It achieves competitive perfor-
mance compared to the other implementations analysed in this document. sdk2sdsl
also provides efficient implementations of edge and neighbourhood iterators, and of
elementary graph algorithms, with empirical time and space complexity in tune with
theoretical bounds.

Implementations like those analysed in this paper, when implemented carefully,
are of crucial importance for the efficient analysis and storage of evolving graphs, while
drastically reducing the requirements of secondary storage compared to traditional dy-
namic graph representations. Hence, as future work, we envision further refinements
to these data structures to achieve greater efficiency, namely in what concerns listing
vertex neighbourhoods. sdk2sdsl is first step towards a reusable library for the anal-
yses of large evolving graphs. We are also aiming to research how these representations
may be used within distributed graph processing systems in order to reduce the mem-
ory pressure observed often in these systems.

While these have been studied extensively in the past (Boldi and Vigna
2004b), (Brisaboa, Ladra, and Navarro 2014), we did not find initiatives on their appli-
cation to distributed graph processing. Most distributed systems (such as those based
on dataflow programming) merely distribute the graph across the worker nodes in a
cluster. For skewed graphs, this is not an optimal strategy, and in fact work has been
done to address this (Chen, Shi, Chen, and Chen 2015). These compact representations
are typically used in single-machine execution environments and haven’t been applied
in distributed systems. If their memory-efficiency is that good, perhaps each worker
node in the cluster could have its own smart representation of the whole graph. In this
sense, it becomes relevant to ask: how would global performance evolve when we re-
duce network communication (as every node can observe the whole graph) at the cost
of the additional overhead of manipulating a smart graph representation? The synchro-
nization of data between cluster nodes and the usage of statistics to keep track of error
bounds will grow in importance in this scenario.



7Conclusion
We present the conclusions of our research, encompassing our observations on ex-

periments and on the field of graph processing as a whole. As it is an overreaching
field, our research vectors were motivated by both improvements to existing graph
processing solutions as well as their novel applications to existing problems. Focusing
on these two points of innovation, it followed that our analysis of the state-of-the-art
(Chapter 3) was not performed linearly. It was the result of a constant iterative analysis
of the state-of-the-art, in function of new perspectives that emerged in the literature
and those pertaining our own research development.

7.1 Graph Processing

7.1.1 VeilGraph Implementation, Flink Architecture

As we developed the ideas of VEILGRAPH, we stretched the architectural limita-
tions of batch processing in Apache Flink, while also gaining awareness of them
through direct communication with developers in the project’s mailing lists. This posed
a challenge for our research effort, as we only realized the limitations of the framework
after discovering them as we invested more development effort on it.

A number of technical difficulties emerged when the concept of a dynamic graph
was implemented over the batch API. To update a DataSet in Flink and use it in an-
other batch job execution, it is recommended to spill it to disk and then read it back in.
This becomes problematic for huge graphs due to the I/O latency. While it may appear
acceptable for a one-time execution, some of the experiments comprise the execution of
fifty (50) jobs, one job per chunk of updates received in the stream. As this cost adds
up, we experimented reusing the DataSet instances between job executions. Unfortu-
nately, this incurs the overhead of executing everything from start for every job. That is,
when execution of job i is triggered (consisting of applying update i to the graph and
executing the graph algorithm), the operators that were executed in job i−1 all the way
from the initial job are executed again, resulting in exponential execution time, which
is not a viable option.

When a Solution Becomes a Problem. Currently, as far as we know, there is no possible
way by which to reuse results which are already in memory (and potentially distributed
throughout a Flink cluster). Such a mechanism would be essential to efficiently imple-
ment VEILGRAPH over Flink using the appropriate stream processing semantics. A
caching operator could allow for this behaviour. During development of VEILGRAPH,
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active contributors of Flink were contacted to ascertain the feasibility of this task. As
programs are converted to dataflow operator graphs (Carbone, Katsifodimos, Ewen,
Markl, Haridi, and Tzoumas 2015), it would require an analysis over the execution plan
optimizer and graph builder. An attempt was also made to evaluate a controlled exper-
iment with a stream of updates represented as a simple Java collection. A set of ten-
thousand (10, 000) edge additions was divided into buckets of a hundred (100) edges,
each bucket representing an update. Between updates, the tested algorithm (PageR-
ank) was executed. Although it is theoretically possible to define these in a single exe-
cution plan, in practice there was another prohibitive limitation. To build the execution
dataflow graph, the plan optimizer has to consider a configuration space which can
easily become exponential in size as more operators are added.

Thus, the experiment to execute in a single execution plan is also prohibitive as it
would be stuck forever in the plan creation phase. The fact is that there is no concept
of a dynamic graph over updates represented in Flink’s streaming API. The closest
to such a concept that exists over Flink is an experimental API (Kalavri, Carbone,
Bali, and Abbas 2019) for single-pass graph streaming analytics also by the authors of
Gelly.

A part of the detection of these problems resulted from an analysis of open-source
project mailing lists. For example, we discovered that a caching operator feature would
also be relevant for projects such as the Apache Mahout machine learning platform.1

Reusing results while keeping them in memory is also relevant in a batch processing
context as it would enable the visualization of intermediate results.

Surpassing these technical difficulties would target not only the execution of the
described experiments. The caching mechanism would allow for an implementation
operating more similarly to real streams, opening up the scope of research validation
over real-world scenarios. Having said that, another possibility was to implement the
dataflow-based components of VEILGRAPH in Apache Spark. Spark supports ex-
plicit RDD caching in memory, which as far as we know, is the equivalent to this miss-
ing functionality of result reuse in Flink. While caching may be employed with this
framework, as far as we know it does not support incrementally adding or removing
edges and vertices. In our experiments with GraphX, we found the same growing ex-
ecution time problem that we encountered in Gelly. In Apache Flink the case of
maintaining data for iterative computation is offered in the batch processing DataSet
API, but manipulating data streams with rich logic with respect to the windowing and
data aggregation behaviours are exclusive to the DataStream API.

Analysis of mailing list discussions and ongoing brainstorms2 led us to the conclu-
sion that Flink, while offering stream and batch processing, if it does so in a unified
way at all, is only at a very low implementation level. The contract offered to program-
mers in the form of the aforementioned APIs establishes a clear separation between

1Apache Mahout use-case for the caching operator. Access date: 16 Dec ’17. https://issues.
apache.org/jira/browse/MAHOUT-1817

2Flink design proposal for unified stream and batch processing: https://docs.google.
com/document/d/1G0NUIaaNJvT6CMrNCP6dRXGv88xNhDQqZFrQEuJ0rVU/edit#heading=h.
ob9i0lcn7ulz

https://issues.apache.org/jira/browse/MAHOUT-1817
https://issues.apache.org/jira/browse/MAHOUT-1817
https://docs.google.com/document/d/1G0NUIaaNJvT6CMrNCP6dRXGv88xNhDQqZFrQEuJ0rVU/edit#heading=h.ob9i0lcn7ulz
https://docs.google.com/document/d/1G0NUIaaNJvT6CMrNCP6dRXGv88xNhDQqZFrQEuJ0rVU/edit#heading=h.ob9i0lcn7ulz
https://docs.google.com/document/d/1G0NUIaaNJvT6CMrNCP6dRXGv88xNhDQqZFrQEuJ0rVU/edit#heading=h.ob9i0lcn7ulz
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them. We see the lack of representativity of this use-case in the Flink API as another
indicator that this vector of research in graph processing systems is still in early devel-
opment. To stimulate the development of Flink in the direction of this use-case, we
proposed a feature request using the project’s open-source collaboration system, JIRA.3

Some initial positive feedback was received.

7.1.2 Gelly-Scheduling - Use Case

Effectively, GELLY-SCHEDULING (Coimbra, Selimi, Francisco, Freitag, and Veiga
2018) emerged as an innovative application of graph processing for the challenge of
leader placement in community network micro-clouds (CNMC). To pursue this pos-
sibility, a preliminary analysis of state-of-the-art graph processing systems was per-
formed, leading to experimentation with solutions such as Weaver (Dubey, Hill, Es-
criva, and Sirer 2016), Apache Flink (Carbone, Katsifodimos, Ewen, Markl, Haridi,
and Tzoumas 2015) and Apache Spark (Zaharia, Chowdhury, Franklin, Shenker, and
Stoica 2010). Weaver in particular was challenging to analyse as it was a system which
did not boast an active open-source community and required us to analyse its undoc-
umented source code, only to discover that many of its features were not complete.
We considered a multitude of available graph processing solutions, many published in
high-quality venues. Considering the potential pitfalls (devaluing research time) of en-
gaging the route of finely analysing their source code when confronted with apparent
malfunctioning features, we took note of systems with active and large communities,
of which Apache Flink and Apache Spark are prime examples.

As such, and with Apache Flink being originally designed with the stream
processing scenario in mind, we performed our initial experiments with this frame-
work. And it was through it that we explored the ideas validated in GELLY-
SCHEDULING (Coimbra, Selimi, Francisco, Freitag, and Veiga 2018). Apache Flink
is an open-source project, receiving contributions from distinct groups of people inter-
nationally. Many of its developments are implemented and validated in the realm of
scientific publications, and it also has user-friendly documentation with examples to
begin using it. Despite this, some aspects were only to be found in developers’ posts
in blogging platforms or software development online outlets. In original descriptions,
the case of batch processing was described as a special case of stream processing.

7.2 Graph Storage

In light of the observations we made throughout our research, experiments and
state-of-the-art analysis, the optimization of computational graph representations
gained prominence. Tolerating different trade-offs between storage economy at the ex-
pense of processing speed became an interesting area to explore, with the potential of
also applying its idea to the representations of graphs in existing tools. As part of an in-

3JIRA issue FLINK-10867: https://issues.apache.org/jira/browse/FLINK-10867?page=
com.atlassian.jira.plugin.system.issuetabpanels%3Aall-tabpanel

https://issues.apache.org/jira/browse/FLINK-10867?page=com.atlassian.jira.plugin.system.issuetabpanels%3Aall-tabpanel
https://issues.apache.org/jira/browse/FLINK-10867?page=com.atlassian.jira.plugin.system.issuetabpanels%3Aall-tabpanel
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ternship at the University of Chile, we researched different techniques for compressed
and compact graphs. From this work, we implemented and compared a dynamic ver-
sion of the k2-tree data structure, achieving competitive results (Coimbra, Francisco,
Russo, de Bernardo, Ladra, and Navarro 2020).

7.3 Future Work

This section identifies and proposes vectors of research activity. The first two con-
sist in further exploring the ideas of current contributions while the last aims to synthe-
size assumptions and different domains spanned by graph processing, as well as the
applicability of smart graph data structures to improve distributed system solutions.

Approximate graph processing. In Chapter 4, we presented VEILGRAPH, a pro-
posed model with an API for approximate graph processing over a stream of graph up-
dates. This work could benefit from certain technological developments which would
act as enablers of more performance improvements. VEILGRAPH was developed over
the Flink stream processing platform, and some of the platform’s limitations were
only understood during development. This project made use of the Gelly API, which
is the platform’s syntactic sugar for graph operations. However, it provides only ab-
stractions in the context of batch processing. Enriching the model with error manage-
ment findings from other contributions (e.g., (Mariappan and Vora 2019)) and imple-
menting it on other platforms (or updated versions of the already considered ones, in
the future) could pave the way for new validations and extensions of the model.

Scaling community network micro-clouds. We stated that our contribution de-
scribed in Chapter 5, GELLY-SCHEDULING, could be further evaluated in a production
network environment. Specifically, this evaluation as another use-case of our technique
could be achieved by real-time monitoring in the Quick Mesh Project (QMP) by installing
dedicated monitoring services in a set of nodes of the network. QMP is useful to per-
form additional model validations, as was done in (Selimi, Cerdà-Alabern, Artigas,
Freitag, and Veiga 2017). Furthermore, another dimension to explore in this topic of
community networks is to consider a need for increasing system size, higher frequency
of sensor data point output and the speed of adaptation of the service placement. As
these requirements become more complex, complete computation may be unable to
satisfy the required optimizations. This problem could potentially benefit from incor-
porating the techniques of VEILGRAPH into GELLY-SCHEDULING.

Algebraic formulation. A higher level direction which is worth exploring is the
algebraic definition of the operations performed over the graph, especially in the con-
text of VEILGRAPH. The creation and deletion of vertices and edges are elementary
operations over graphs. They are fine-grained building blocks of graph dynamism.
However, there may be complex operations built over these which could also be rele-
vant to various graph processing algorithms. Synthesizing a set of operations to use in
graph processing systems could aid in establishing further gains. We base this claim on
the inherent multidisciplinary nature of our work.

Exploring graph theory and the continuous study of graphs, we note that oper-
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ations over them have been formalized (Bollobás 1979), defining concepts which de-
scribe and name their transformations. Bridging towards the execution of operations
over graphs which are computationally represented, one will find in the literature the
application of matrix algebra to perform them (e.g., (Buluç and Gilbert 2011b)). How-
ever, ensuring efficient execution is far more complex if we consider different contexts
of execution: a) with parallelism and distributed systems (e.g., (Gregor and Lumsdaine
2005)); b) with different result accuracy criterion (e.g., (Mariappan and Vora 2019)); c)
streams of incoming data (e.g., (Shi, Cui, Shao, and Tong 2016; Eksombatchai, Jindal,
Liu, Liu, Sharma, Sugnet, Ulrich, and Leskovec 2018)). Throughout this study, we have
come to believe there is a need for an algebraic formulation over graph processing in
the context of stream processing and distributed systems in order to bring to the same
level of importance these different dimensions.

Applications of smart graph data structures. In this work we analysed different
computational graph representations, from the more primitive adjacency lists or matri-
ces to represent the adjacencies of a graph, to sparse vectors and more refined struc-
tures such as the WebGraph as well as the k2-tree data structure in Chapter 6, of which
we compared several implementations. These efficient structures enable analysis of
graphs on infrastructures which do not have unlimited storage. There is the potential
to apply them to other types of graph processing architectures. For example, different
distributed systems may represent graph data directly with graph-tailored structures,
or they may implement graph constructs over underlying generic data representations.
Topics such as redundancy, replication and distribution of graph data across workers
nodes are important to achieve performance and scalability.

It would be interesting to integrate state-of-the-art smart graph representations into
such systems and explore how the dynamics between these topics evolve. Consider that
a large graph may have to be distributed across the cluster nodes to be processed. If it
can be fully-represented in each worker, then all nodes have access to all of the graph.
This has the potential of reducing certain types of communication between workers in
order to improve performance, possibly raising the need to reinvent how conceptual
operations (graph theory) over the graph will ultimately translate to the underlying
(distributed) architecture.

Final remarks. As a field, graph theory has laid the foundations to structure the
reasoning over interlinked information and inherent problems (Gross and Yellen 2005).
However, processing large graphs using distributed systems adds another layer of con-
ceptual challenges. What is the best approach to split graph elements across workers
(or nodes) of a distributed computational infrastructure? How may we maximize per-
formance and reduce I/O bottlenecks? Several works in the literature have emerged
to address these questions, many of which we detailed in Chapter 3. Frameworks
like Apache Spark (Zaharia, Chowdhury, Franklin, Shenker, and Stoica 2010) and
Flink (Katsifodimos and Schelter 2016) were devised with general-purpose problem
domains in mind, but soon led to libraries to process graphs over these infrastructures
like GraphX (Xin, Gonzalez, Franklin, and Stoica 2013) and Gelly.

Other solutions were designed from the start to target graph-based data, enabling
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a direct association between graph-specific concerns and workload nature. For exam-
ple, providing a solution for a scenario where new volumes of data are arriving (e.g.
by having dedicated workers in clusters for data ingestion) and enabling their efficient
integration due to awareness of the graph structure of data (e.g., Tornado, Pixie,
GraphBolt). From these and other examples, we observe that elevating the awareness
of the graph-structured nature of data, as a primary concern, enables the design of more
efficient systems. This contrasts with the approach of building graph-tailored function-
alities over general-purpose frameworks, which face more limitations and abstraction
barriers to achieving the same levels of efficiency.

Our contributions herein presented have synergy between themselves. GELLY-
SCHEDULING, upon deployment in more complex scenarios, could benefit from the
concepts presented in VEILGRAPH in order to increase the speed with which commu-
nities are detected and leaders elected by tolerating a certain degree of approximation in
result accuracy. Upon the arrival of network topology changes, for example the big ver-
tex model could be constructed in order to update the desirability for impacted nodes to
play the role of leader within their communities. It would also be interesting to explore
how to create an adapted summary graph (different from the presented VEILGRAPH

summary model) in order to apply approximate community detection algorithms as
well.

The use of compact graph data structures such as the k2-tree would be imple-
mented in Flink’s internals in order to benefit VEILGRAPH. Such an effort would
comprise a careful analysis of Flink’s code base in order to explore how to offer pro-
grammers an option (as a configuration file entry in flink-conf.yaml or as a func-
tion to set its value) to activate this internal graph representation. The research and im-
plementation effort of integrating the k2-tree into Flink to benefit VEILGRAPH would
in our opinion be costly compared to the effort of applying VEILGRAPH techniques for
the purpose of GELLY-SCHEDULING.

There are aspects to take in consideration when undertaking this to maximize the
usability of the combined solution:

• Gelly’s powerful API should remain usable, thus ensuring all its graph algo-
rithms and functionalities remain functional (while benefiting from the compact
graph structure).

• It would be necessary to implement the logic in a way that intercepts the use
of Flink’s DataSet API when its methods are invoked through the Gelly li-
brary to then use the k2-tree as opposed to this Flink batch data representation.
This would require appropriate changes to the code that distributes records across
TaskManager instances. The conceptual change in data distribution would have
the underlying assumption of the ability to fully represent the graph in each of the
cluster’s nodes, achieving redundancy through the compact representation with
the aim of promoting distributed graph processing performance in Flink.

• To minimize the entropy in changing the code base of Flink, the offering of a k2-
tree implementation could perhaps be implemented using aspect-oriented pro-
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gramming to make a series of surgical changes to Flink’s flow of logic (data
shuffling, scheduling, operator semantics) to use the added logic of the k2-tree.
This could be perhaps offered as a Flink library, much like Gelly currently is.
To ensure this compact graph representation extension will remain in use, focus
must be kept on implementing this in a way that minimizes conflicts from the
advances in Flink’s own core code by the developer community.

• Our C/C++ k2-tree implementation uses low level bit operations. It would be
very useful to explore the code base of WebGraph, also written in Java to reuse
the low-level (bit) data manipulation functions to then produce a Java-based
implementation of the k2-tree to be incorporated with the previous points.

As the ventures of industry and academia began offering solutions for the reality of
big data, the evolution of information also gained relevance. Techniques for processing
incoming information have existed for over a decade now (Babcock, Datar, Motwani,
et al. 2003; Tatbul, Çetintemel, and Zdonik 2007), but the analysis of dynamic graphs
evolving through streams has been gaining traction as its own field (McGregor 2014;
Ahmed, Duffield, Willke, and Rossi 2017; Besta, Fischer, Kalavri, Kapralov, and Hoe-
fler 2019). Orthogonally, the tendency remains regarding the need to improve existing
systems (Kalavri, Vlassov, and Haridi 2017; Heidari, Simmhan, Calheiros, and Buyya
2018; Coimbra, Francisco, and Veiga 2021) and develop new ones to process the big
graphs of tomorrow (Sakr, Bonifati, Voigt, Iosup, Ammar, Angles, Aref, Arenas, Besta,
Boncz, et al. 2021). An awareness of these different multidisciplinary perspectives cou-
pled with a unifying theory of graph processing has the potential to enrich the current
approaches to graph processing.
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Coimbra, M. E., J. Hrotkó, A. P. Francisco, L. M. S. Russo, G. de Bernardo, S. Ladra,
and G. Navarro (2021). A practical succinct dynamic graph representation. Submission:
Information and Computation, Elsevier.



154 BIBLIOGRAPHY

Coimbra, M. E., M. Selimi, A. P. Francisco, F. Freitag, and L. Veiga (2018, April).
Gelly-Scheduling: Distributed Graph Processing for Service Placement in Community
Networks. pp. 151–160.

Coles, S., J. Bawa, L. Trenner, and P. Dorazio (2001). An introduction to statistical
modeling of extreme values, Volume 208. Springer.
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Pokornỳ, J. (2015). Graph databases: their power and limitations. In IFIP International
Conference on Computer Information Systems and Industrial Management, pp. 58–69. Springer.

Prim, R. C. (1957). Shortest Connection Networks And Some Generalizations. Bell
System Technical Journal 36(6), 1389–1401.

Qi, X., E. Fuller, Q. Wu, Y. Wu, and C.-Q. Zhang (2012). Laplacian centrality: A new
centrality measure for weighted networks. Information Sciences 194, 240–253.

Quijada-Fuentes, C., M. R. Penabad, S. Ladra, and G. Gutiérrez (2019). Set operations
over compressed binary relations. Information Systems 80, 76–90.

Raghavan, U. N., R. Albert, and S. Kumara (2007, Sep). Near linear time algorithm
to detect community structures in large-scale networks. Phys. Rev. E 76, 036106.

Rathore, M. M., A. Ahmad, A. Paul, and U. K. Thikshaja (2016). Exploiting real-
time big data to empower smart transportation using big graphs. In 2016 IEEE Region 10
Symposium (TENSYMP), pp. 135–139. IEEE.

Research, M. (2018). Naiad - Source Code. [Online, GitHub; accessed 24-April-2020].

Rickett, C. D., U.-U. Haus, J. Maltby, and K. J. Maschhoff (2018). Loading and query-
ing a trillion rdf triples with cray graph engine on the cray xc. Cray User Group.

Robinson, I., J. Webber, and E. Eifrem (2013). Graph Databases. O’Reilly Media, Inc.



166 BIBLIOGRAPHY

Robinson, I., J. Webber, and E. Eifrem (2015). Graph databases: new opportunities for
connected data. ” O’Reilly Media, Inc.”.

Rodriguez, M. A. (2015a). The gremlin graph traversal machine and language (in-
vited talk). In Proceedings of the 15th Symposium on Database Programming Languages, pp.
1–10.

Rodriguez, M. A. (2015b). The Gremlin Graph Traversal Machine and Language.
CoRR abs/1508.03843.

Ronhovde, P. and Z. Nussinov (2010, Apr). Local resolution-limit-free potts model
for community detection. Phys. Rev. E 81, 046114.

Roy, A., L. Bindschaedler, J. Malicevic, and W. Zwaenepoel (2015). Chaos: Scale-
out Graph Processing from Secondary Storage. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP ’15, New York, NY, USA, pp. 410–424. ACM.

Roy, A., L. Bindschaedler, J. Malicevic, and W. Zwaenepoel (2016). Chaos - Source
Code. [Online, GitHub; accessed 24-April-2020].

Roy, A., I. Mihailovic, and W. Zwaenepoel (2013). X-Stream: Edge-centric Graph Pro-
cessing Using Streaming Partitions. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, New York, NY, USA, pp. 472–488. ACM.

Roy, A., I. Mihailovic, and W. Zwaenepoel (2015). X-Stream - Source Code. [Online,
GitHub; accessed 24-April-2020].
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