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Abstract

The timetabling problem involves the scheduling of a set of entities (e.g., lectures, exams,
vehicles, or people) to a given set of resources in a limited number of time slots, while
satisfying a set of constraints. Many timetabling problems found in practice are NP-
complete decision problems. Hence, their approach using exact solution methods is only
adequate for instances of relatively small size.

Timetabling problems are usually solved offline, well in advance of the moment in
which they will be used. For example, in examination timetabling, timetables are con-
structed weeks before the beginning of the school period. This is done to allow students
to plan the course work during the period (semester, quarter, etc.). Decision makers are
usually interested in obtaining timetables with good solution quality, within a reasonable
computation time limit.

In this thesis, the examination timetabling problem is solved using metaheuristic
methods. The research begins with an investigation of local search approaches using the
Kempe chain neighbourhood operator. A solution construction algorithm based on the
saturation degree graph colouring heuristic, that can generate feasible solutions, is inves-
tigated. A study of the impact of local search intensity on the exam scheduling is made, al-
lowing for the development of accelerated versions of the studied local search algorithms.
An investigation of memetic algorithms seeks to find hybrid algorithms that achieve supe-
rior performance compared to evolutionary algorithms and local search alone. In addition,
a multi-objective memetic approach is also investigated for solving multi-objective ver-
sions of the examination timetabling problem. A real examination timetabling problem
(ISEL-DEETC benchmark) containing two examination epochs, emerged from practice,
is investigated.

The proposed approaches were tested on the public Toronto and ITC 2007 benchmark
sets and also on the proposed ISEL-DEETC benchmark set. Our techniques are able to
attain competitive results and new upper bounds on the Toronto and ITC 2007 benchmark
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sets. Regarding the ISEL-DEETC benchmark set, the developed approach was able to
attain a lower number of clash conflicts compared to the manual solution and in negligible
time.

Keywords: Examination timetabling, ITC 2007 benchmark set, Local search, Memetic
algorithms, Uncapacitated Toronto benchmark set.



Resumo

O problema de elaboração de horários envolve o agendamento de um conjunto de enti-
dades (por exemplo, aulas, exames, veículos ou pessoas), para um determinado conjunto
de recursos, num intervalo de tempo predefinido e satisfazendo um conjunto de restrições
de vários tipos. Muitos problemas de horários encontrados na prática são problemas de
decisão NP-completos. Portanto, a sua abordagem usando métodos exatos é adequada
apenas para instâncias de dimensão relativamente pequena.

Nos problemas de elaboração de horários, os horários são geralmente elaborados
com grande antecedência relativamente ao momento em que serão usados. Por exem-
plo, nos calendários de exames, os calendários são construídos semanas antes do início
do período escolar, de forma a permitir que os alunos planifiquem as suas atividades du-
rante o período (semestre, trimestre, etc.). Em geral, os decisores estão interessados em
obter horários/calendários com boa qualidade de solução, dentro de um limite razoável de
tempo de computação.

Na presente tese, o problema de elaboração de horários é resolvido usando métodos
meta-heurísticos. A investigação começa com um estudo de abordagens de procura local
usando o operador de vizinhança Kempe Chain. Segue-se a investigação dum algoritmo
de construção de soluções viáveis, baseado na heurística de coloração de grafos saturation

degree. É realizado um estudo do impacto da intensidade da procura local na organização
de exames no calendário, permitindo o desenvolvimento de versões aceleradas dos algo-
ritmos de procura local estudados. Da investigação de algoritmos meméticos, aplicados
ao problema estudado, resultou o desenvolvimento de algoritmos híbridos que alcançam
um desempenho superior em comparação com algoritmos evolutivos e procura local apli-
cados isoladamente. Além disso, uma abordagem memética multi-objetivo, para resolver
versões multi-objetivo do problema de elaboração de horários, é também investigada. Um
problema real de elaboração de calendários de exames (caso de teste ISEL-DEETC), con-
tendo duas épocas de exame, é investigado.
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As abordagens propostas foram testadas nos conjuntos de teste de referência Toronto e
ITC 2007 (International Timetabling Competition – 2007), e também no conjunto de teste
ISEL-DEETC. As técnicas desenvolvidas são capazes de alcançar resultados competitivos
e novos limites superiores nos conjuntos de teste Toronto e ITC 2007. Em relação ao
conjunto de teste ISEL-DEETC, a abordagem desenvolvida é capaz de atingir um número
menor de conflitos em comparação com a solução manual e em tempo reduzido.

Palavras-chave: Algoritmos Meméticos, Algoritmos de Procura Local, Conjunto de
Teste ITC 2007, Conjunto de Teste Toronto, Problema de Elaboração de Calendários de
Exames.
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4 Chapter 1 Introduction

1.1 The Timetabling Problem

Transportation companies, educational, health, and sport institutions, all have to solve
timetabling problems several times in a year. Due to its combinatorial nature, solving
timetabling problems for relatively large size institutions is a complex task. For this rea-
son, efficient tools for constructing feasible and optimal (or near-optimal) timetables au-
tomatically are asked for by decision makers.

A significant amount of research has been conducted covering several applications
of timetabling, e.g., sports timetabling (Trick, 2011), vehicle timetabling (de Oliveira
& Vasconcelos, 2010), employee timetabling (Meisels & Schaerf, 2003), educational
timetabling, which includes school timetabling (Avella, D’Auria, Salerno & Vasil’ev,
2007; Pillay, 2014), examination timetabling (Qu, Burke, McCollum, Merlot & Lee,
2009) and course timetabling (Abdullah, Burke & McCollum, 2005).

In timetabling, one has to schedule a set of events (lectures, exams, surgeries, sport
events, trips) using a set of resources (teachers, nurses and medical doctors, referees,
vehicles) over space (classrooms, examination rooms, operating rooms, sport fields), in
a given period of time. For instance, in examination timetabling (Qu et al., 2009), the
goal is to allocate exams and corresponding enrolled students to examination rooms over
time periods. Additionally, a set of hard and soft constraints are considered. The hard
constraints must be satisfied in order to have a feasible timetable; on the other hand, there
is no obligation to satisfy the soft constraints, and violations of these may occur. The
optimisation goal is usually the minimisation of the soft constraints violations.

Educational timetabling problem variants differ from each other, based on both the
type of institution (university or school) and the type of constraints. According to Schaerf
(1999), these problems are categorised into three categories, as defined in Table 1.1. In
all these groups a similar characteristic is present: the produced timetables should be
clash-free, i.e., students or teachers cannot attend more than one event (class or exam) at
the same time. School timetabling differs from course timetabling in the sense that, in
the former, students are organised in classes which receive lectures, usually in the same
room; in this way, it is the teacher who moves to teach each class. In course timetabling,
the students attend courses which are spread over the week; in this case, the students
have to travel to attend classes. In examination timetabling, students cannot attend one
or more examinations at the same time. Despite the similarity between examination and
course timetabling, there are significant differences, which rely mainly on the imposed
constraints. For instance, no student can attend more than a given number of examinations
per day, or some examinations must be scheduled on a given order, among others.

The focus of this thesis is the Examination Timetabling Problem (ETP). Examples of
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Table 1.1: Educational timetabling problem categories, as defined in (Schaerf, 1999).

Category Description

School timetabling The weekly scheduling of classes in a school, avoid-
ing teachers having two classes at the same time, as
well as the same class having two different lectures at
the same time.

Course timetabling The weekly scheduling of the lectures of a set of
university courses, avoiding overlapping lectures of
courses having common students.

Examination timetabling The scheduling of the exams of a set of university
courses, avoiding overlaps of exams of courses hav-
ing students in common, and spreading the students’
exams as much as possible.

hard constraints for the ETP include: schedule all exams (the timetable must be complete),
do not exceed room capacity, guarantee room exclusiveness for given exams, guarantee
that no students will attend more than one exam in the same time slot, guarantee exam or-
dering (e.g., examA should be placed after exam B), etc. (McCollum, McMullan, Parkes,
Burke & Qu, 2012). Real examination timetabling problems include the following soft
constraints: avoid students being enrolled in two exams the same day and in consecutive
periods, avoid students having examinations in distinct periods within a given gap (pe-
riod spread constraint), allocate exams with more students enrolled at the beginning of
the timetable to allow for exam grading and proofing, among others. The ETP is further
classified as uncapacitated ETP (if the room capacity is unlimited) or capacitated ETP
(if the room capacity is limited) (Qu et al., 2009).

The ETP can be modelled as a multi-objective problem since several objectives are
considered (reflecting the interests of the various stakeholders such as students, institution
decision makers, and teachers) (Burke, McCollum, McMullan & Parkes, 2008). However,
due to its computational complexity, the ETP has been addressed as a single-objective
problem (McCollum et al., 2012; Qu et al., 2009) or as a two-objective problem (Cheong
et al., 2009; Côté, Wong & Sabourin, 2004), where the first objective is the minimisation
of the soft constraint cost and the second objective is the minimisation of the timetable
length. In standard benchmarks, such as the Toronto and ITC 2007 sets, there are es-
sentially two goals, achieving feasibility, i.e. obtain a hard constraint cost of zero, and
minimising the soft constraint cost.

The ETP belongs to the NP-complete class of problems (de Werra, 1985,9). It has
been approached mainly by mathematical programming methods (for relatively small size
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instances), and by approximate methods such as Artificial Intelligence (Schaerf, 1999)
methods and metaheuristics (Qu et al., 2009).

Examination timetable optimisation is mainly conducted offline. In fact, in educa-
tional institutions, timetables are constructed weeks before the beginning of the school
period. This is done to allow students to plan the course work during the period (semester,
quarter, etc.). Due to the ETP computational complexity, execution times of algorithms
could last days in order to produce good quality timetables for a large instance. Hence,
there are usually two main indicators for assessing the overall performance: 1) solution
quality, and 2) algorithm time performance. These indicators are inversely proportional
to each other, in the sense that if one wants to achieve better results, a longer execution
time is needed in order to explore a larger set of solutions and vice versa.

1.2 Research Motivation

Decision makers are usually interested in obtaining timetables with good solution quality,
within a reasonable computation time limit. However, if the used algorithm, or another
algorithm, can produce a solution with better quality at the expense of more time, for in-
stance, a couple of days more, it is often an acceptable scenario when solving timetabling
problems. Algorithm performance improvement could be accomplished for example by
means of effective parallelisation, i.e., converting the algorithm to its parallel form and
executing it on parallel hardware.

Concerning the optimisation methods used to solve the ETP, these can be broadly di-
vided in exact approaches (e.g., mathematical programming methods Woumans, Boeck,
Beliën & Creemers (2016)) and approximate methods (e.g., heuristic algorithms). The use
of exact methods to real problems of relatively large size is still a challenging task, due to
the problem size and complexity imposed by the presence of a large number of constraints.
An alternative to exact approaches is the use of approximate methods, such as heuristic
algorithms, namely metaheuristics (Gendreau & Potvin, 2010; Glover & Kochenberger,
2003; Siarry, 2017) (e.g., local search and evolutionary algorithms). This class of algo-
rithms was the subject of many research works, which showed its efficiency in solving
educational timetabling problems.

Local search methods such as simulated annealing (SA) (Kirkpatrick, Gelatt & Vec-
chi, 1983), tabu search (TS) (Glover & Laguna, 1997), or great deluge (GD) (Dueck,
1993), comprise the bulk of successful methods applied to the ETP. However, the study
of the effect of local search intensity, the choice of neighbourhood, and the use of feasible
versus infeasible operators plus repairing, are still considered open research fields that
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require further research. One effective neighbourhood operator applied to the ETP is the
Kempe chain neighbourhood (Thompson & Dowsland, 1998). In this neighbourhood, a
solution exam, included in a Kempe chain, is perturbed in a feasible fashion. However, the
use of the Kempe chain neighbourhood operator to state-of-the-art benchmark problems
in ETP, such as the Second International Timetabling Competition (ITC 2007), has been
the target of only a few research works (e.g., the works of Gogos, Alefragis & Housos
(2012) and Rahman, Bargiela, Burke, Özcan, McCollum & McMullan (2014)).

Another aspect that has been investigated is the solution construction process for com-
plex instances such as the ITC 2007 benchmark instances, in terms of quality and feasi-
bility of the produced solutions (Gogos et al., 2012; Müller, 2009; Rahman et al., 2014).
The use of the saturation degree (SD) graph colouring heuristic have proved to be one
of the most efficient heuristics used in construction algorithms for the Toronto bench-
mark set (Cheong et al., 2009). However, its use on the ITC 2007 was the subject of few
research works (Abdul Rahman, 2012; Bykov & Petrovic, 2013; Gogos et al., 2012).

Regarding the examination timetabling problem instances solved, all the benchmarks
available (being the Toronto and the ITC 2007 benchmark sets the most used) encompass
a single examination epoch. However, in practical timetabling problems found in school
and universities, several examination epochs are carried out, typically two examination
epochs: a regular one and a special one for resit exams, with different durations.

1.2.1 Hybrid Metaheuristics

In the recent years, the use of hybrid metaheuristics in the field of optimisation has grown
considerably (Blum, Puchinger, Raidl & Roli, 2011; Blum & Raidl, 2016; Blum & Roli,
2003; Talbi, 2016). Hybrid algorithms have produced the best results for many optimi-
sation problems in science and industry. Typical hybridisations involve metaheuristics,
mathematical programming, constraint programming or machine learning (Talbi, 2016).

In the field of timetabling some hybrid metaheuristic algorithms were applied re-
cently. In Cambazard, Hebrard, O’Sullivan & Papadopoulos (2012), a hybridisation of
local search and constraint programming for the post enrolment-based course timetabling
problem is made. In the works of Burke, Newall & Weare (1996), Alkan & Özcan
(2003) and Abdullah, Turabieh, McCollum & McMullan (2010), Memetic Algorithms

(MA) (Moscato, 1999; Neri, Cotta & Moscato, 2012) are applied to the ETP. A memetic
algorithm is a hybrid algorithm where an Evolutionary Algorithm (EA) is combined with
other components, typically local search.

Exploration and exploitation are two competing goals that influence the design of a
metaheuristic. The exploration component is needed to ensure that the search space is
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sufficiently searched, in a global way, in order to provide a reliable estimate of the global
optimum (Talbi, 2013). Exploitation is used to further refine the obtained solution in or-
der to improve it. Population-based metaheuristics such as evolutionary algorithms, scat-
ter search, particle swarm, and ant colonies are good at exploring the search space, and
weak in exploiting the solutions found. On the other side, local search methods such as
simulated annealing and tabu search, are powerful in terms of exploiting the local neigh-
bourhood of a solution. The two classes of algorithms have complementary strengths and
weaknesses (Talbi, 2013). Memetic algorithms were designed in order to simultaneously
address the goals of exploration and exploitation in a hybrid algorithm.

1.3 Research Objective

Given the above described facts about the ETP along with the need to solve real-world
examination timetabling problems efficiently, we have identified the following set of re-
search objectives:

1. Solve the examination timetabling problem in a competitive way by exploring ap-
proaches based on single and multi-objective hybrid algorithms.

2. Formulation of a new benchmarking problem based in a real-world examination
timetabling problem.

3. Application and analysis of the proposed techniques to real-world problem in-
stances and to relevant public benchmarks.

4. Comparative analysis of the proposed approaches with state-of-the-art techniques.

The research begins with an investigation of local search approaches using the Kempe
chain neighbourhood operator. A solution construction algorithm based on the saturation
degree graph colouring heuristic, that can generate feasible solutions, is investigated. A
study of the impact of local search intensity on the exam scheduling is made. An in-
vestigation of memetic algorithms seeks to find hybrid algorithms that achieve superior
performance compared to evolutionary algorithms and local search alone. In addition, a
multi-objective memetic approach is also investigated for solving multi-objective versions
of the ETP. A real examination timetabling problem containing two examination epochs,
emerged from practice, is investigated.
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1.4 Research Contribution

The research reported in this thesis resulted in the following original research contribu-
tions:

1. Formulation of a new benchmarking problem, the ISEL–DEETC problem. The
ISEL–DEETC benchmark set derives from a real-world problem found at the Insti-
tuto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa. It is com-
prised of two examination epochs (a regular one and a special one for resit exams)
with different durations, corresponding to a scenario found in practice in typical
universities. The ISEL–DEETC formulation given comprises two parts: the single-
epoch problem and the two-epoch problem. A first contribution is the addition of
a real-world problem (the ISEL-DEETC single-epoch problem) to existing single-
epoch benchmark data (Toronto, ITC 2007, etc.). A second contribution is the
formulation of a new benchmark problem based on the ISEL–DEETC two-epoch
problem.

2. A new construction algorithm that is able to construct feasible solutions for the ITC
2007. The algorithm is based on the saturation degree graph colouring heuristic.

3. Two new feasible neighbourhood operators based on the Kempe chain heuristic for
the ITC 2007 benchmark set.

4. Development of new approaches and hybrids:

(a) New accelerated versions of the standard simulated annealing and standard
threshold acceptance local search algorithms. These algorithms use a newly
proposed acceptance criterion that is able to reduce the number of evaluations
carried out by the simulated annealing based algorithm, while not worsening
the solution cost in a significant way.

(b) Three new approaches based on single-objective memetic algorithms.

(c) A multi-objective algorithm for solving examination timetabling problems.

1.5 Publications

The research results described in this dissertation have been published in peer-reviewed
conferences and journals. The following is a list of papers and abstracts that resulted from
the investigation undertaken.
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Journal papers

• N. Leite, F. Melício, and A. C. Rosa. A Fast Simulated Annealing Algorithm
for the Examination Timetabling Problem. Expert Systems with Applications,
2019, vol. 122, pp. 137–151.
Reference: (Leite, Melício & Rosa, 2019).

• N. Leite, C. M. Fernandes, F. Melício, and A. C. Rosa. A Cellular Memetic
Algorithm for the Examination Timetabling Problem. Computers & Opera-

tions Research, 2018, vol. 94, pp. 118–138.
Reference: (Leite, Fernandes, Melício & Rosa, 2018).

Book chapters

• N. Leite, F. Melício, and A. C. Rosa. A Shuffled Complex Evolution Al-
gorithm for the Examination Timetabling Problem. Vol. 620 of Studies in

Computational Intelligence (IJCCI 2014 revised selected papers), Springer
International Publishing, 2016, pp. 151–168.
Reference: (Leite, Melício & Rosa, 2016a).

• N. Leite, F. Melício, and A. C. Rosa. A Hybrid Shuffled Frog-Leaping Al-
gorithm for the University Examination Timetabling Problem. Vol. 613 of
Studies in Computational Intelligence (IJCCI 2013 revised selected papers),
Springer International Publishing, 2016, pp. 173–188.
Reference: (Leite, Melício & Rosa, 2016c).

• N. Leite, R. F. Neves, N. Horta, F. Melício, and A. C. Rosa. Solving a Capaci-
tated Exam Timetabling Problem Instance Using a Bi-objective NSGA-II. Vol.
577 of Studies in Computational Intelligence (IJCCI 2012 revised selected pa-
pers), Springer International Publishing, 2015, 115–129.
Reference: (Leite, Neves, Horta, Melício & Rosa, 2015).

Conference papers

• N. Leite, F. Melício, and A. C. Rosa. A Shuffled Complex Evolution Based
Algorithm for Examination Timetabling - Benchmarks and a New Problem
Focusing Two Epochs. In Proceedings of the 6th International Conference

on Evolutionary Computation Theory and Applications (IJCCI-ECTA 2014),
112–124.
Reference: (Leite, Melício & Rosa, 2014).
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• N. Leite, F. Melício, and A. C. Rosa. Solving the Examination Timetabling
Problem with the Shuffled Frog-leaping Algorithm. In Proceedings of the 5th

International Conference on Evolutionary Computation Theory and Applica-

tions (IJCCI-ECTA 2013), 175–180.
Reference: (Leite, Melício & Rosa, 2013a).

• N. Leite, R. F. Neves, N. Horta, F. Melício, and A. C. Rosa. Solving an Un-
capacitated Exam Timetabling Problem Instance using a Hybrid NSGA-II. In
Proceedings of the 4th International Conference on Evolutionary Computation

Theory and Applications (IJCCI-ECTA 2012), 106–115.
Reference: (Leite, Neves, Horta, Melicio & Rosa, 2012).

Conference proceedings – abstracts

• N. Leite, F. Melício, A. C. Rosa. A Fast Threshold Acceptance Algorithm for
Solving Educational Timetabling Problems. Presented at the 21st Conference

of the International Federation of Operational Research Societies (IFORS

2017), 17–21 July 2017, Quebec, Canada (Leite, Melício & Rosa, 2017).

• N. Leite, F. Melício, and A. C. Rosa. A Hybrid Shuffled Complex Evolution
Algorithm for the Examination Timetabling Problem. Presented at the 28th

European Conference on Operational Research (EURO 2016), 4–6 July 2016,
Poznań, Poland (Leite, Melício & Rosa, 2016b).

Doctoral Consortium

• N. Leite, F. Melício, and A. C. Rosa. Multiobjective Memetic Algorithms
applied to University Timetabling Problems. 5th International Conference

on Evolutionary Computation Theory and Applications (IJCCI-ECTA 2013),
Doctoral Consortium.
Reference: (Leite, Melício & Rosa, 2013b).

1.6 Outline of the Thesis

In addition to this introduction, this dissertation is divided into seven additional chapters
and three appendices.

Chapter 2 describes the state of the art and related work in examination timetabling. It
starts by introducing background concepts on optimisation problems in general and on the
class of combinatorial optimisation problems in particular. Then, the family of heuristic
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algorithms is introduced. A survey of examination timetabling approaches related to our
work is then given. The Toronto and ITC 2007 public benchmark sets, widely used in the
timetabling community, are described at the end of this chapter.

In Chapter 3, a new benchmark timetabling problem, the ISEL–DEETC problem, is
presented. This problem differs from the Toronto and ITC 2007 problems in that two
examinations epochs are considered, instead of a single examination epoch.

Chapter 4 presents two local search approaches proposed for solving the examination
timetabling problem. The approaches are accelerated versions of the standard simulated

annealing and standard threshold acceptance local search algorithms.
In Chapters 5 and 6 three approaches based on single objective memetic algorithms

are described. In the proposed algorithms, populations are organised into subsets that
communicate with each other. Local search is then performed in each subset.

Chapter 7 presents a multi-objective memetic algorithm for solving the examination
timetabling problem. Local search is used to intensify the search after the variation oper-
ators.

The thesis conclusions and directions of future work are provided in Chapter 8.
Appendix A describes the obtained results’ statistical significance tests. Appendix B

describes the algorithms’ computation times. In Appendix C, the repositories containing
the developed software are summarised.
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This chapter introduces some background concepts on optimisation using heuristic
search, and overviews the state-of-the-art approaches for examination timetabling. In
Section 2.1, the formulation of a generic optimisation problem is given, as well as the for-
mulation of a Combinatorial Optimisation Problem (COP), from which the Examination

Timetabling Problem (ETP) is derived. Section 2.2 describes the class of heuristic search
algorithms used to solve combinatorial optimisation problems.

Section 2.3 provides a survey of some algorithmic approaches applied to solve the
ETP, focusing the seminal works in the area and the recent advances. Section 2.3 ends
with a summary of recent surveys concerning university timetabling.

In Section 2.4.1, the uncapacitated Toronto timetabling problem is formulated. Sec-
tion 2.4.2 provides a description of the capacitated Second International Timetabling

Competition (ITC 2007) benchmark set. A mathematical formulation of the ITC 2007
timetabling problem is given in McCollum et al. (2012).

2.1 Optimisation Problems

Let x be a solution, represented by a vector of n design variables .x1; x2; : : : ; xi ; : : : ; xn/.
Each of the design variable xi can take values from a domainDi (e.g., an interval ŒxL

i ; x
U
i �

if variables are continuous, or a certain discrete collection of values otherwise). The
Cartesian product of these domains for each design variable is called the decision space

D. Let f1; f2; : : : ; fm be a set of functions defined inD and returning real values. Under
these conditions, an optimisation problem can be generically formulated by (Neri et al.,
2012):

Maximise / Minimise fm m D 1; 2; : : : ;M

subject to gj .x/ � 0 j D 1; 2; : : : ; J

hk.x/ D 0 k D 1; 2; : : : ; K (2.1)

xL
i � x � x

U
i i D 1; 2; : : : ; n

where gj and hk are inequality and equality constraints, respectively.

From the definition above, if m D 1 then the problem is single-objective, while for
m > 1 the problem is multi-objective. The presence/absence of the functions gj and
hk make the problem more or less severely constrained. Finally, the continuous or com-
binatorial nature of the problem is given by the fact that D is a dense or discrete set,
respectively. The formulation of the examination timetabling problems (presented in Sec-
tion 2.4) approached in this thesis are derived from the general definition of (2.1).
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An element x 2 D is said to be a feasible solution if all the constraints gj .j D

1; 2; : : : ; J / and hk.k D 1; 2; : : : ; K/ are satisfied. In the context of single-objective
problems, an optimal solution is a feasible solution x for which the objective function
is maximised (considering a maximisation problem). If the problem is multi-objective,
the set of optimal solutions comprise the set of trade-off (non-dominated) solutions that
maximise the objective functions.

2.1.1 Combinatorial Optimisation Problems

The examination timetabling problem belongs to the class of NP–Complete combinatorial
optimisation problems de Werra (1985,9). As mentioned above, this class of problems
is characterised by discrete decision variables and a finite search space. The objective
function and constraints, however, may take any form such as non-linear, non-analytic,
black box, among others (Talbi, 2009).

2.2 Heuristic Search

Exact methods (such as backtracking algorithms and branch and bound (BB)) guarantee
finding of optimal solutions of a COP. However, in examination timetabling, real prob-
lems of large size cannot be solved in a practical way using these methods, due to its
combinatorial nature. Moreover, the decision maker is not usually interested in the opti-
mal solution but instead in a feasible solution that is “close to” optimal, and thus exploring
the entire state space tree may not be necessary.

In this thesis, the ETP is approached by using heuristic algorithms, a class of approx-
imate methods (usually randomised algorithms) in which heuristics are used to solve an
optimisation problem (Kreher & Stinson, 1999). In the context of heuristic algorithms, a
heuristic is a method that performs a minor modification or sequence of modifications to
a solution or partial solution, in order to obtain a different solution or partial solution. The
modifications that are done involve a neighbourhood search. A heuristic algorithm is a
method that iteratively applies one or more heuristics, following a certain design strategy.

2.2.1 Neighbourhood Function

To construct a heuristic, one first needs to define a neighbourhood function. Formally, a
neighbourhood function is defined as

N W D ! P.D/: (2.2)
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The function in (2.2) declares a neighbourhood onD by assigning the set of direct neigh-
bours to points in D. Note that P.D/ denotes the set of all subsets (or power set) of
D.

The neighbourhood of any element x in D is generally defined to be a subset of
elements that are “similar” or “close to” x in some sense. The neighbourhood N.x/ may
contain elements y that are not feasible (Kreher & Stinson, 1999).

2.2.2 Neighbourhood Search

Once a neighbourhood function is defined, one has to devise a method that tries to find a
feasible solution in the neighbourhood of a feasible solutionX . A neighbourhood search,
based on a neighbourhood function N , will be an algorithm (possibly a randomised algo-
rithm) that receives as input a feasible solution X 2 D, and produces as output a feasible
solution Y 2 N.X/ n fXg, or Fail (Kreher & Stinson, 1999). Since the neighbourhood
N.X/may contain solutions Y that are not feasible, the neighbourhood search must guar-
antee that the produced solution is indeed feasible.

2.3 Examination Timetabling Algorithmic Approaches

This section provides an overview of some techniques that are related to our work.

2.3.1 Integer Programming

Mathematical programming approaches for solving the ETP were proposed in the re-
search literature. In a recent work, Woumans et al. (2016) propose a column generation
approach for solving the examination timetabling problem. The authors apply two mathe-
matical models to solve the ETP at KU Leuven campus Brussels (Belgium), for the busi-
ness engineering degree program, and apply the models to the sta83 and yor83 instances
of the Toronto benchmark set from the literature. The reported results are good on smaller
data sets such as the ETP at KU Leuven. The results are also good for the Toronto data
set using one of the proposed models, obtaining new upper bounds on the sta83 and yor83
instances. However, on larger datasets such as the yor83 instance, the second model was
not able to obtain a feasible solution within the time limit of 400 hours. As demonstrated
by the conclusions of this research work, the use of exact methods to real problems of
relatively large size is still a challenging task, due to the problem size and complexity
imposed by the presence of a large number of constraints.
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2.3.2 Graph Colouring

Welsh & Powell (1967) establish a relation between graph colouring and timetabling. In
examination timetabling problems, the exams are represented by vertices in a graph, and
an edge connects any two vertices having common students. This basic framework only
enforces one hard constraint (the clash constraint), which guarantees that no student will
attend two or more exams in the same period. The additional soft and hard constraints
are considered separately and evaluated to obtain the solution fitness (Qu et al., 2009).
The graph colouring problem consists of assigning colours to vertices, so that no adja-
cent vertices have the same colour. In our context, it corresponds to assigning timeslots
to exams, while guaranteeing that the hard clash constraint is satisfied. Several graph
colouring heuristics proposed (e.g., the saturation degree (SD) heuristic (Brélaz, 1979))
were applied to the ETP (e.g., as in Carter (1986)).

The application of the SD heuristic to the ETP was also studied in Cheong et al.
(2009), among other graph colouring heuristics. The authors have concluded that the SD
heuristic was among the two best out of five tested heuristics (largest degree, color degree,
saturation degree, extended saturation degree, and random).

2.3.3 Local Search & Kempe Chain

The use of simulated annealing (SA) Kirkpatrick et al. (1983) for timetabling problems
dates back to the 1990s, with the proposals of Dowsland (1990) and Abramson (1991).
In a later investigation, Thompson & Dowsland (1996) use SA to solve a variant of the
ETP (a multi-objective formulation of the ETP). The same authors propose in Thompson
& Dowsland (1998) a SA approach to solve the ETP, comparing three neighbourhood
operators (standard – where the neighbourhood comprises the set of solutions produced
by modifying the colour of a single vertex, Kempe chains, and S-Chains) and conclude
that the operator based on Kempe chains is the most effective. The algorithm was tested
on eight ETP instances from different universities.

Kempe Chain Neighbourhood

In the Kempe chain neighbourhood (Thompson & Dowsland, 1998), a solution exam,
included in a Kempe chain, is perturbed in a feasible fashion. As mentioned earlier,
focusing only on exams and conflicts, each timetabling problem instance can be seen as a
graph G where nodes are exams and edges connect exams with students in common. In
a feasible timetable, a Kempe chain is the set of nodes that form a connected component
in the subgraph of G induced by the nodes that belong to two periods Lü & Hao (2008).
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The Kempe chain heuristic produces a new feasible assignment by swapping the period
labels assigned to the conflicting exams, located in two distinct periods, belonging to a
specified Kempe chain.

Figure 2.1 illustrates the use of the Kempe chain operator for the Toronto benchmark
set. In Figure 2.1 (left), there are four Kempe chains: K1 D fe1; e3; e4; e6; e7; e8g, K2 D

fe2g, K3 D fe5g, and K4 D fe9g.
The pseudo-code of the Kempe chain move is given in Algorithm 1.

e1

e2

e3

e4

e5

ti
before

e6

e7

e8

e9

tj

e2

e5

e6

e7

e8

ti
after

e1

e3

e4

e9

tj

Figure 2.1: An example of the Kempe chain heuristic (Adapted from Demeester et al.
(2012).) Moving exam e1 from period ti to period tj while maintaining feasibility implies
moving the conflicting exams (e6, e7, and e8) from period tj to period ti . In turn, con-
flicting exams remaining in ti (e3 and e4) also have to be moved to period tj . In the worst
case, when all exams in time slots ti and tj have conflicts, a swap of the exams between
the two time slots is carried out.

Algorithm 1 Pseudo-code of the Kempe chain based heuristic.
1: function KEMPECHAIN

2: Inputs: Two time slots ti and tj (randomly selected); let K be a Kempe chain in
the subgraph with respect to periods ti and tj . Note that exams of K in ti have hard
conflicts with exams of K belonging to tj .

3: The Kempe chain heuristic produces an assignment by replacing ti with .ti nK/[
.tj \K/ and tj with .tj nK/ [ .ti \K/.

4: Output: Updated time slots ti and tj
5: end function

For the example shown in Figure 2.1, let us consider the Kempe chain K1, given
by K1 D fe1; e3; e4; e6; e7; e8g. Initially, we have ti D fe1; e2; e3; e4; e5g and tj D
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fe6; e7; e8; e9g. Then, after applying the Kempe chain heuristic (see Algorithm 1) ti be-
comes .ti nK1/[ .tj \K1/ D fe2; e5; e6; e7; e8g and tj becomes .tj nK1/[ .ti \K1/ D

fe1; e3; e4; e9g. Using the Kempe chain neighbourhood, the move operator always pro-
duces feasible solutions for the Toronto data set.

In terms of implementation, Kempe chain-based operators are typically implemented
in order to allow for solutions to be evaluated incrementally. In incremental (also called
delta) evaluation (Corne, Ross & Fang, 1994), only the exam edges that are updated by the
operator are evaluated, allowing for a substantial increase in the operator’s performance.

Mühlenthaler (2015) investigates the structure of the course timetabling search space
and establishes sufficient conditions for the connectedness of clash-free timetables under
the Kempe-exchange operation. The SA metaheuristic was applied to the high school
timetabling problem by Melício, Caldeira & Rosa (2000). The authors claim that any SA
algorithm depends on how the structural elements are defined (i.e., solution space, gener-
ation of new solutions, cost function) and present a comparison for several parameters of
the algorithm. In a later work (Melício, Caldeira & Rosa, 2004), the same authors anal-
yse two well-known neighbourhood operators adapted to the school timetabling problem.
The authors demonstrate that, for the studied problem, the double move intra-class neigh-
bourhood always showed a better performance than the single move neighbourhood, even
if the latter is improved with a heuristic method. The tests were made using real data from
three different Portuguese schools. The SA metaheuristic was also applied to other edu-
cational timetabling problems (school and course timetabling) by Zhang, Liu, M’Hallah
& Leung (2010), and Bellio, Ceschia, Gaspero, Schaerf & Urli (2016).

Burke & Bykov (2008) employ a variant of hill climbing (HC) to include a so-called
late-acceptance (LA) strategy, which accepts a neighbouring solution evaluated several
iterations before. Burke, Eckersley, McCollum, Petrovic & Qu (2010) investigate the use
of hybrid variable neighbourhood approaches to university exam timetabling.

2.3.4 Evolutionary Algorithms

Colorni, Dorigo & Maniezzo (1991) investigate the application of a Genetic Algorithm

(GA) to the timetable case. The application of a GA to timetabling and scheduling is
also studied in Fang (1994). Wong, Côté & Gely (2002) apply a GA to solve the ETP.
They present an exam timetable automation tool based on a genetic algorithm. A repair
mechanism is developed in order to repair infeasible solutions that result from the appli-
cation of the variation operators. The developed system was tested at the École de Tech-
nologie Supérieure of Université du Québec. Caldeira & Rosa (1997) approach the high
school timetabling problem using genetic search. In their algorithm, the authors adopt a
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problem specific chromosome representation and use a repair algorithm after the genetic
operators, in order to avoid searching through non-feasible timetables. The authors also
explore different fitness functions. Fernandes, Caldeira, Melício & Rosa (1999a,9) also
employ evolutionary algorithms to solve the high school timetabling problem. Pillay &
Banzhaf (2010) apply a two-phase approach to the ETP problem. In the first phase, fea-
sible timetables are produced, while improvements are made to these timetables in the
second phase to reduce the soft constraint costs. Domain specific knowledge in the form
of heuristics is used to guide the evolutionary process. For the variation operators, only
a mutation operator was used. Beligiannis, Moschopoulos, Kaperonis & Likothanassis
(2008) apply an evolutionary algorithm to the related problem of school timetabling. As
in the previous work, no crossover operator is used in the algorithm. The authors state
that using mutation is enough to generate new good solutions.

Soria-Alcaraz, Carpio, Puga & Sotelo-Figueroa (2012) investigate the use of a paral-
lel model in a metaheuristic algorithm for solving the course timetabling problem. The
developed parallel approach uses a so-called Methodology of design model for solving the
timetabling problem. The parallel model implemented is the cellular evolutionary algo-

rithm (cEA) (Alba & Dorronsoro, 2005). The performance of a parallel cEA is compared
with a sequential Evolutionary Algorithm (EA) on problem instances available from the
ITC 2002 and ITC 2007 International Timetable Competitions. In the solution optimi-
sation, only the hard constraints are considered. It is shown that cEA outperforms the
sequential EA.

2.3.5 Memetic Algorithms

The class of Memetic Algorithms (MA) Moscato (1999); Neri et al. (2012) comprise a type
of metaheuristics which combine population-based algorithms with other components in
the form of heuristics, approximation algorithms, local search techniques, among other
ways Moscato (1999). MA were first applied to the ETP in Burke et al. (1996). Alkan &
Özcan (2003) apply MA to timetabling. Burke & Landa Silva (2005) present MA design
guidelines for scheduling and timetabling problems. In Abdullah et al. (2010), a tabu-
based memetic approach for examination timetabling problems is presented, where the
Toronto benchmark problem is solved. Fonseca & Santos (2013) apply MA to the High
School Timetabling Problem.

Recent memetic approaches such as the shuffled frog-leaping algorithm (SFLA) Eu-
suff, Lansey & Pasha (2006) were applied to the ETP as in Wang, Pan & Ji (2009) (in
chinese). The authors propose a Discrete SFLA (DSFLA) where solutions are encoded
using a time permutation scheme suited to be manipulated by the DSFLA. As the original



2.3 Examination Timetabling Algorithmic Approaches 21

SFLA is only suitable for continuous optimisation problems, a specific update operator
was defined for the discrete case of ETP. The algorithm manipulates both feasible and
infeasible solutions, being these last ones penalised to avoid further exploring them. The
DSFLA is evaluated on four datasets of the capacitated Toronto benchmark set (Toronto
variant c in (Qu et al., 2009)).

2.3.6 Multi-Objective Approaches

Côté et al. (2004) investigate a bi-objective evolutionary algorithm with the objectives of
minimising timetable length and spacing out conflicting exams. Two local search opera-
tors (instead of recombination operators) are used to deal with hard and soft constraints.
Cheong et al. (2009) also investigate a bi-objective EA with the same objectives than
those used in Côté et al. (2004). A day crossover operator is introduced which exchanges
parent chromosome days (represented by three timeslots) to generate the offspring. They
apply their approach to the capacitated Toronto instances and the Nottingham benchmark.

2.3.7 Approaches for the ITC 2007 Benchmark Set

In the following, we review some of the approaches proposed for the ITC 2007 benchmark
instances. The five finalists in this competition were:

• 1st Place - Tomáš Müller.

• 2nd Place - Christos Gogos.

• 3rd Place - Mitsunori Atsuta, Koji Nonobe, and Toshihide Ibaraki.

• 4th Place - Geoffrey De Smet.

• 5th Place - Nelishia Pillay.

Müller (2009) solved all three tracks of the ITC 2007 (see Section 2.4.2). A hybrid,
two-phase, algorithm was proposed. In the first phase, the iterative forward search (IFS)
algorithm is used to obtain feasible solutions, coupled with conflict-based statistics (CBS)
to prevent IFS from looping. The second phase applies multiple metaheuristics, namely,
HC, GD and (optionally) SA. Müller’s solution generation procedure has some similari-
ties with a previously proposed method, the “Squeaky Wheel” optimisation (SWO) (Joslin
& Clements, 1999). In SWO, a greedy algorithm is used to construct a solution which is
then analysed to find the trouble spots, i.e., those elements, that, if improved, are likely
to improve the objective function score. The results of the analysis are used to generate
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new priorities that determine the order in which the greedy algorithm constructs the next
solution.

Gogos, Alefragis & Housos (2008) also applied a two-phase algorithm. After a pre-
processing stage, a feasible solution is constructed with the greedy randomized adap-

tive search procedure (GRASP) metaheuristic. In the second phase, several optimisation
methods are applied in this order: HC, SA, Integer Programming (IP) (using the Branch &

Bound procedure); it ends with the so-called Shaking Stage, where the current solution is
restarted/reheated and given to the SA again. In a later work, Gogos et al. (2012) present
an improved version of their algorithm. The authors claim that the improved behaviour
can be attributed to the more sophisticated process flow, early detection of plateaus, added
heuristics and optimised data structures that make possible the exploration of a much
larger number of Kempe Chain moves.

The approach of Atsuta et al. McCollum, Schaerf, Paechter, McMullan, Lewis, Parkes,
Gaspero, Qu & Burke (2010) consists of applying a constraint satisfaction problem solver
adopting a hybridisation of tabu search (TS) and iterated local search (ILS).

De Smet’s approach McCollum et al. (2010) employ a rule engine software (coined
Drool’s rule engine) for obtaining a feasible solution. Then, the TS metaheuristic is used
to improve the solution.

Pillay McCollum et al. (2010) proposes a two-phase algorithm variant, using a De-

velopmental Approach based on Cell Biology, whose goal is to form a well-developed
organism by creating a cell and then proceeding with cell division, cell interaction, and
cell migration. In this approach, each cell represents a time slot. The first phase includes
the creation of the first cell, cell division and cell interaction. The second phase realizes
the cell migration process.

McCollum, McMullan, Parkes, Burke & Abdullah (2009) apply an adaptive ordering
heuristic for constructing solutions, followed by the application of an extended version of
the great deluge (GD) metaheuristic.

Demeester et al. (2012) employ a hyper-heuristic (HH) based approach to solve three
timetabling problems: the Toronto and ITC 2007 problems, as well as the KAHO Sint-
Lieven (Ghent, Belgium) timetabling problem. They apply a construction and improve-
ment approach. The construction algorithm used for the ITC 2007 benchmark set does
not guarantee the generation of feasible solutions. In the case that no feasible solution
is found, the algorithm still goes on with the improvement phase, and extra correcting
actions are carried out in order to remove any violation of hard constraints.

In Alzaqebah & Abdullah (2014), the authors propose an adaptive artificial bee colony
algorithm (Karaboga, 2005) combined with a late-acceptance hill-climbing algorithm for
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examination timetabling. The proposed method is applied to the Toronto and ITC 2007
benchmark sets. In a recent study (Alzaqebah & Abdullah, 2015), the same authors report
a hybrid bee colony optimisation for solving examination timetabling problems.

In a recent work, (Battistutta, Schaerf & Urli, 2017) propose a single-stage procedure
based on the SA approach for the ITC 2007 examination timetabling problem. In the
proposed method, non-feasible solutions are included in the search space and are dealt
with appropriate penalties. A statistically-principled experimental analysis is performed
in order to understand the effect of parameter selection. Then, a feature-based parameter
tuning is carried out. The authors conclude that their properly tuned SA approach is able
to compete with state-of-the-art solvers.

2.3.8 Previous Surveys on Examination Timetabling

The examination timetabling problem is studied by the scientific community since the
1960s. The surveys from Carter & Laporte (1996a) and Schaerf (1999) provide a review
of the early approaches to solve the ETP. Some surveys about educational timetabling
were published recently. Qu et al. (2009) present a detailed survey of algorithmic strate-
gies applied to the ETP. Kristiansen & Stidsen (2013), Johnes (2015), and Teoh, Wibowo
& Ngadiman (2015) survey the application of operations research and metaheuristic ap-
proaches to academic scheduling problems. Pillay (2016) presents a review of hyper-
heuristics for educational timetabling.

2.4 Public Benchmark Sets

In the following sections, the Toronto and ITC 2007 benchmark sets are described.

2.4.1 Uncapacitated Toronto Data Set

The uncapacitated ETP formulation provided here was adapted from Abdullah, Turabieh
& McCollum (2009) and Burke, Bykov, Newall & Petrovic (2004). The following terms
are defined:

• E D fe1; : : : ; eng is the set of exams.

• P D fp1; : : : ; pkg is the set of timeslots (or periods).

• C D .cij /jE j�jE j (called the conflict matrix), is a symmetric matrix of size jEj
where each element, denoted by cij .i; j 2 f1; : : : ; jEjg/, represents the number of
students attending both exams i and j .
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• M , is the total number of students.

• tk .tk 2 P / denotes the assigned timeslot for exam ek (ek 2 E).

This ETP has one soft constraint which forbids a student to take two exams in neigh-
bour periods (periods that are one to five timeslots apart). This soft constraint is repre-
sented by the function fc , defined in (2.3). The problem formulation is:

minimise fc D
1

M
�

jE j�1X
iD1

jE jX
jDiC1

cij � prox.i; j / (2.3)

where

prox.i; j / D

(
25�jti�tj j; if 1 � jti � tj j � 5

0; otherwise
(2.4)

subject to
jE j�1X
iD1

jE jX
jDiC1

cij � ıti ;tj D 0; ıti ;tj D

(
0; ti ¤ tj

1; ti D tj
: (2.5)

Equation (2.4) gives the penalty incurred by scheduling exams ei and ej in timeslots ti
and tj , respectively. The penalty weighting factor is 16, 8, 4, 2, and 1, for exams that
are, one, two, three, four, and five timeslots apart, respectively. For exams that are more
than five timeslots apart, the weighting factor is set to zero. Equation (2.5) represents the
single hard constraint, requiring that there can be no conflicts between exams scheduled
in the same time slot.

In this thesis, the Toronto benchmark set, Version I (Table 2.1), is used. This public
data set is available at: ftp://ftp.mie.utoronto.ca/pub/carter/testprob.

2.4.2 The ITC 2007 Data Set

A recent benchmark set The Second International Timetabling Competition (ITC 2007)
(2007) was also used in the experiments conducted in this thesis. The ITC 2007 set
consists of three tracks, each one related to a type of educational timetabling problem:

• Track 1 – examination timetabling;

• Track 2 – post enrolment based course timetabling;

• Track 3 – curriculum based course timetabling.

The examination timetabling track is made of 12 instances with different characteris-
tics, and contains various constraint types, similar to those encountered in practice. The

ftp://ftp.mie.utoronto.ca/pub/carter/testprob
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Table 2.1: Specifications of the uncapacitated Toronto benchmark set (version I). The
conflict matrix density is the ratio between the number of non-zero elements in the conflict
matrix and the total number of elements.

# # # conflict # time
exams students enrolments matrix slots

density

car91 682 16 925 56 877 0:13 35
car92 543 18 419 55 522 0:14 32
ear83 190 1125 8109 0:27 24
hec92 81 2823 10 632 0:42 18
kfu93 461 5349 25 113 0:06 20
lse91 381 2726 10 918 0:06 18
pur93 2419 30 029 120 681 0:03 42
rye93 486 11 483 45 051 0:08 23
sta83 139 611 5751 0:14 13
tre92 261 4360 14 901 0:18 23
uta92 622 21 266 58 979 0:13 35
ute92 184 2749 11 793 0:08 10
yor83 181 941 6034 0:29 21

characteristics of the ITC 2007 instances are described in Table 2.2. The examination
timetabling problem introduced in the ITC 2007 Competition extends the problem de-
fined in the Toronto benchmark set by considering additional types of new hard and soft
constraints.

Table 2.2: Specifications of the 12 instances of the ITC 2007 benchmark set.

# # # conflict # time
students exams rooms matrix slots

density

Instance 1 7891 607 7 0:05 54
Instance 2 12 743 870 49 0:01 40
Instance 3 16 439 934 48 0:03 36
Instance 4 5045 273 1 0:15 21
Instance 5 9253 1018 3 0:009 42
Instance 6 7909 242 8 0:06 16
Instance 7 14 676 1096 15 0:02 80
Instance 8 7718 598 8 0:05 80
Instance 9 655 169 3 0:08 25
Instance 10 1577 214 48 0:05 32
Instance 11 16 439 934 40 0:03 26
Instance 12 1653 78 50 0:18 12
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The resulting extended set of hard constraints are as follows (McCollum et al., 2012):

• No Conflicts – Conflicting exams cannot be scheduled in the same period.

• Room Occupancy – For each room and period, do not allocate more seats than those
available in that room.

• Period Utilisation – There is no exam, assigned to a given period, that requires more
time than what is available for that period.

• Period Related – A set of time-ordering requirements between pairs of exams must
be fulfilled. In particular, for any pair (e1, e2) of exams, the following constraints
are specified:

– After Constraint – e1 must take place strictly after e2,

– Exam Coincidence – e1 must take place at the same time than e2,

– Period Exclusion – e1 must not take place at the same time than e2.

• Room Related – The following room requirement was specified:

– Room Exclusive – Exam e1 must be held in an exclusive room.

Additionally, all exams must be scheduled (complete solution), and the exams cannot
be split between periods or rooms. A feasible solution satisfies all the hard constraints.

The problem also includes the following soft constraints:

• Two Exams in a Row – Its aim is to minimise the number of occurrences of two
exams being scheduled consecutively for any given student.

• Two Exams in a Day – Its aim is to minimise the number of occurrences of two
exams being scheduled the same day (while not being directly adjacent) for any
given student.

• Period Spread – This soft constraint requires to spread the set of exams taken by
each student over a fixed number of time slots.

• Mixed Durations – A penalty is incurred whenever there exist exams in the same
room and period with different durations.

• Front Load – This soft constraint forces exams with the largest number of students
to be carried out at the beginning of the examination session.
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• Room and Period Penalties – This penalty for some rooms or periods is aimed at
minimising their use in the timetable.

A complete description of the ITC 2007 ETP, including a mathematical formulation
of the related optimisation problem, is available in McCollum et al. (2012).
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3.1 Introduction

The actual programme curricula seen at universities are designed to offer a great degree
of diversity and flexibility to students, letting them choose a considerable number of free
or optional courses. In order to make this possible with the available teachers, university
employees and resources (rooms, equipment, among others), courses are being offered in
multiple related programmes (e.g., Computer Science, Electrical Engineering, and Mul-
timedia Engineering programmes). This growing number of combined courses imposes
extra difficulties in solving the Examination Timetabling Problem (ETP). For instance,
the first semester’s Algebra course is usually offered simultaneously to a given set of
programmes, resulting in a more constrained problem. Moreover, real problems found
in practice have several examination periods or epochs, e.g. normal exam epoch, sec-
ond exam epoch, and special exam epoch (taken by working students, or in other special
cases). Until now, examination timetabling benchmarks introduced in the literature have
only addressed a single examination epoch.

In this chapter, the two-epoch ETP is introduced and a real-world problem instance,
named ISEL–DEETC data set, is described. Section 3.2 describes the ISEL–DEETC
data set. In the remaining sections, three formulations of the ISEL–DEETC benchmark
set are introduced. These different formulations are used in the approaches described in
subsequent chapters. In Sections 3.3.2 and 3.3.3, the single and two-epoch timetabling
problems are specified, respectively, both considering a single objective and uncapacitated
problem. In Section 3.4, the ISEL–DEETC problem is modelled as a multi-objective and
capacitated problem.

3.2 The ISEL–DEETC Data Set

The ISEL–DEETC examination timetabling problem is a real-world problem instance
comprising two examination epochs, with different number of time slots allocated for
each epoch. This problem has emerged in the Electrical, Telecommunications and Com-
puter Engineering Department (DEETC) at the Instituto Superior de Engenharia de Lisboa
(ISEL) – Instituto Politécnico de Lisboa. The problem instance described is the ISEL–
DEETC timetable of the 2009/2010 academic year, winter semester (Leite et al., 2014,1).

The ISEL–DEETC timetable comprises five programmes: three B.Sc. programmes
(named LEETC, LEIC and LERCM) and two M.Sc. programmes (named MEIC and
MEET). The B.Sc. and M.Sc. programmes have six and four semesters duration, respec-
tively. The ISEL–DEETC data set characteristics are listed in Table 3.1.
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The number of exams per programme is listed in Table 3.2. To get an idea of the num-
ber of students involved in each semester, we present in Table 3.3 the number of classes
proposed for the winter semester for each programme. For the B.Sc. programmes, each
class of 1st and 2nd semesters has, on average, 35 students and the remaining semesters
have approximately 22 students per class, on average. For the M.Sc. programmes, each
class has on average 12 students.

Table 3.4 presents the courses shared among the five programmes offered in DEETC.
The number of shared courses is 34 (out of 80 courses that have exams). The first five
columns of Table 3.4 contain the semesters where a given course is offered. Semesters in
M.Sc. programmes are numbered 7 to 10 (four semester master programme).

Table 3.1: Characteristics of the ISEL–DEETC data set.

Parameter Value

Number of exams 80
Number of students 1238
Number of enrolments 4548

Conflict matrix density
1st epoch 0.32
2nd epoch 0.31

Number of time slots
1st epoch 18
2nd epoch 12

Table 3.2: Number of exams per programme in DEETC.

LEETC LEIC LERCM MEIC MEET

32 30 29 19 25

Table 3.3: Number of classes proposed for the winter semester for each programme.

Semester LEIC LEETC LERCM MEIC MEET

1st 5 5 3 2 2

2nd 3 3 1 – –

3rd 3 3 2 2 2

4th 2 2 1 – –

5th 3 3 1

6th – – –

Total: 16 16 8 4 4
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Table 3.4: Courses shared among the five programmes offered in the DEETC.

MEIC MEET LERCM LEIC LEETC Course Acronym

1 1 1 Linear Algebra ALGA

1 1 Mathematical Analysis I AM1

1 1 1 Programming Pg

1 2 Logic and Digital Systems LSD

2 2 Mathematical Analysis II AM2

2 2 2 Object Oriented Prog. POO

2 2 3 Probability and Statistics PE

2 3 Computer Architecture ACp

3 and 5 Computer Graphics CG

3 and 5 Computation and Logic LC

3 and 5 Functional Programming PF

3 3 4 Imperative Prog. in C/C++ PICC/CPg

7 3 5 Digital Comm. Syst. SCDig

4 4 4 Computer Networks RCp

7 4 5 Virtual Execution Systems AVE

8 4 Multimedia Signal Codific. CSM

4 5 Operating Systems SOt

7 5 Unsupervised Learning AA

8 5 Database Systems BD

8 5 6 Internet Programming PI

8 5 6 Distributed Comput. Syst. SCDist

7 7 5 5 5 Internet Networks RI

7 5 Compilers Cpl

7 5 Control Ctrl

7 5 Radio Communications RCom

7 5 Security Informatics SI

7 5 Telecommunication Systems ST

7 7 5 5 Embedded Systems I SE1

7 7 6 Multim. Comm. Networks RSCM

7 6 Distributed Systems SD

7 6 Software Engineering ES

7 to 9 8 6 3 to 6 6 Project Management EGP

7 to 9 8 6 3 to 6 6 Enterprise Management OGE

7 to 9 8 6 3 to 6 6 Management Systems SG
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The ISEL–DEETC is a relatively complex problem, due mainly to two reasons: 1)
high degree of course sharing in different programmes and different semesters (e.g. the
LSD course is offered in the 1st and 2nd semesters of LEIC and LEETC programmes,
respectively, see Table 3.4); 2) the courses of the even semesters (taken in the summer
semester) are also being lectured in the winter semester, thus increasing the timetable
complexity, because there are students attending courses in the even and odd semesters.
The manual solution of the ISEL–DEETC timetable took one week to be constructed from
scratch by a two-person team.

3.2.1 Room specification

The list of rooms used in the DEETC department is listed in Table 3.5. The room desig-
nation has the following meaning: <Building>.<Floor number>.<Room number>. The
largest exam, ALGA, has 489 students enrolled.

The room assignment was made by an human planner.

Table 3.5: Rooms designation and capacity.

Designation Capacity Designation Capacity

A.2.03 50 G.0.14 30
A.2.08–A.2.09 40+40 G.0.15 30
A.2.10–A.2.11 40+40 G.0.16 50
A.2.12–A.2.13 40+40 G.0.24 81
A.2.16–A.2.18 45+45 G.1.03 50

C.2.14 47 G.1.04 45
C.2.21 16 G.1.13 45
C.2.22 47 G.1.15 79
C.2.23 48 G.1.18 40
C.3.07 75 G.2.06 50
C.3.14 36 G.2.07 50
C.3.15 40 G.2.08 50
C.3.16 40 G.2.09 50
G.0.08 30 G.2.10 45
G.0.13 30 G.2.21 48

Sum of rooms seating capacity = 1532

3.3 Single-objective Problem Formulation

In this section, we describe the single and two epoch examination timetabling problems.
In single-epoch problems, there exists a single examination epoch comprised of a fixed
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number of time slots. The Toronto and ITC 2007 problems belong to this category. The
two-epoch problem is an extension of the single-epoch problem where two examination
epochs of different lengths are considered. The ISEL–DEETC is a two-epoch problem.
However, in this work we also model the ISEL–DEETC as a single-epoch problem, by
considering just the first examination session.

3.3.1 Constraints

Table 3.6 describes the hard and soft constraints of the ISEL–DEETC problem.

Table 3.6: Hard and Soft constraints of the ISEL–DEETC ETP.

Constraint and Type Explanation

H1 (Hard) There cannot exist students sitting for more than one exam si-
multaneously.

H2 (Hard) A minimum distance between two course’s exams must be ob-
served.

H3 (Hard) The total number of students in the examination room should
not exceed the room capacity.

S1 (Soft) Exams should be spread out evenly through the timetable.

Constraints H1 and S1 are typical constraints found in uncapacitated problems (e.g.,
the Toronto specification). H2 is a new constraint introduced in the ISEL–DEETC’s two-
epoch formulation. This constraint requires that a minimum number of time slots between
the first and second exams of a given course exists. This exam spacing out is required to
allow that enough time exists for studying between examination sessions, and for exam
correction and proofing. The hard constraintH3 applies to the capacitated problem. In this
work, the ISEL–DEETC is solved both as an uncapacitated and as a capacitated problem.

3.3.2 The Single-Epoch Problem

The problem formulation presented in this section was adapted from the one proposed
in Côté et al. (2004). The new formulation is equivalent to the earlier formulation intro-
duced in Section 2.4.1 for the Toronto benchmark set, but is more suited than the previous
one for the two-epoch extension elaborated in this section. The formulation is as follows.
Given a set of exams E D fe1; e2; : : : ; ejEjg and a set of time slots T D f1; 2; : : : ; jT jg,
the optimisation goal is to find the optimal timetable represented by the set h of ordered
pairs .t; e/ where t 2 T and e 2 E . The obtained timetable is called feasible if it satisfies
all hard constraints. Otherwise, the timetable is said to be unfeasible.

The following additional symbols are defined:
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• C D .cij /jEj�jEj (Conflict matrix), is a symmetric matrix of size jE j where each
element, denoted by cij .i; j 2 f1; : : : ; jE jg/, represents the number of students
attending exams ei and ej . The diagonal elements ci i denote the total of students
enrolled in exam ei ;

• Ns, is the total number of students;

• tk .tk 2 T / denotes the assigned time slot for exam ek .ek 2 E/.

In practical timetabling one should allow students to have some free time between
exams. In the Exam Proximity Problem (EPP) (Côté et al., 2004), the objective is to find
a feasible timetable while minimising the number of students having to take consecutive
exams. Equation (3.1) is a variant of the EPP model where q is the number of timeslots
per day, N � 0 is the number of free time slots between exams and K is a constant
representing the maximum timetable length.

minimise u2 D
1

2

jT j�.NC1/X
kD1

jEjX
iD1

jEjX
jD1

cij "ik"jkC.NC1/;8k where k mod q ¤ 0;

subject to
jT jX

kD1

jEjX
iD1

jEjX
jD1

cij "ik"jk D 0; jT j � K: (3.1)

The above model represents an Uncapacitated Exam Proximity problem (UEPP) be-
cause the classroom seating capacity is not considered. The model allows the differen-
tiation between consecutive exam periods within the same day, versus overnight. For
example, setting q D 3 and K D 30 corresponds to a ten day examination session with
three time slots per day. In (3.1), the overnight gap is accounted for and no penalty exists
between conflicting exams scheduled in the last time slot of a day and in the first time slot
of the next day, respectively.

A common proximity metric has also been defined for benchmark sets (e.g., Toronto
data set), and it is also used in the ISEL–DEETC benchmark set. This proximity metric is
a weighted version of (3.1) with 0 < N � 4 (counting the number of students having 0–
4 free time slots between exams). The single-epoch uncapacitated optimisation problem
using this proximity metric is expressed using (3.1) as follows:

minimise f D
1

Ns

4X
xD0

wxC1 u2jqDjT j;NDx (3.2)
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where

u2jqDjT j;NDx D
1

2

jT j�.xC1/X
kD1

jEjX
iD1

jEjX
jD1

cij "ik"jkC.xC1/; (3.3)

8k where k mod jT j ¤ 0;

subject to
jT jX

kD1

jEjX
iD1

jEjX
jD1

cij "ik"jk D 0; (3.4)

jT j � K: (3.5)

Equation (3.2) represents the standard soft constraint S1 Carter, Laporte & Lee (1996)
(see Table 3.6). Function f computes the average proximity cost per student as the sum
of the number of students having 0–4 free time slots between exams, divided by the total
number of students. Conflicting exams that are closer to each other are more penalised.
The weighting factors are w1 D 16, w2 D 8, w3 D 4, w4 D 2, and w5 D 1 (see
Section 2.4.1).

In (3.3), u2jqDjT j;NDx means computing the number of students having N D x free
timeslots between exams. The value of q D jT j means that the timeslots are numbered
contiguously with no overnight gap. "jk 2 f0; 1g is a binary quantity with "jk D 1 if
exam ej is assigned to time slot k. Otherwise, "jk D 0.

Equation (3.4) represents the hard constraint H1 (Table 3.6).

3.3.3 The Two-Epoch Problem

In the two-epoch problem formulation, the following terms were added to the single-
epoch problem formulation:

• set of time slots of the second examination epoch, L D fjT jC1; jT jC2; : : : ; jT jC
jLjg;

• Crelax D .crelaxij /jEj�jEj (Relaxed conflict matrix), is a relaxed version of the con-
flict matrix C . This matrix is used in the generation of the second examination
epoch. Further details are given below;

• vk .vk 2 L/ denotes the assigned time slot for exam ek .ek 2 E/ in the second
examination epoch.

As mentioned earlier in this chapter, a new hard constraint is needed in the two-epoch
formulation in order to guarantee that a minimum number of time slots between the first
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and second exams of a given course exists. For this purpose, the hard constraint H2

(Table 3.6) was defined. H2 can be specified by:

vk � tk � Lmin; (3.6)

where Lmin is the minimum time slot distance between the first and second epoch exams
of a given course. vk and tk denote the assigned time slots for exam ek in the second and
in the first examination epochs, respectively. For example, if the Algebra course (ek D

Algebra) first epoch’s exam is in time slot 3 (tk = 3) and the second epoch’s exam is in
time slot 19 (vk = 19), and the minimum distance is Lmin D 10, then H2 is satisfied
since 19 � 3 � 10; on the other hand, if tk = 17 for the same vk value, then H2 is not
satisfied since 19�17 < 10. Examples of two-epoch timetables can be seen in Chapter 5,
in Tables 5.10 and 5.11.

Some details concerning the conflict matrix (Crelax) used in the generation of the
second epoch timetable are now given. In the ISEL–DEETC data set, the second epoch
is more constrained than the first epoch because it has fewer time slots (the second epoch
has 12 time slots, whereas the first epoch has 18 time slots). In order to be possible
to generate feasible initial solutions for the second epoch, some entries (with very few
students enrolled) were set to zero, resulting in a relaxed conflict matrix. It is to be noted
that, in general, this pre-processing is only performed if needed, depending on the data
set characteristics.

3.3.4 Optimisation Problem

We now describe the two-epoch optimisation problem and the related algorithmic steps. In
short, the devised algorithm for solving the two-epoch case divides the problem into two
related single-epoch problems. Then, it proceeds to generate the second epoch timetable
and ends with the generation of the first epoch timetable. In detail, the algorithm executes
the following steps:

1. Solve the two-epoch problem by dividing it into two single-epoch problems. Solve
the second epoch problem independently by considering the single-epoch formula-
tion presented in Section 3.3.2, but using the relaxed conflict matrix, Crelax.

2. Then, solve the first epoch problem using a variation (denoted as two-epoch exam

proximity problem) of the formulation given in Section 3.3.2, in order to be able to
spread out the first epoch exams from conflicting exams in the second epoch. In
addition, constraintH2 is also included in the extended formulation. It is noted that
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the generation of the first epoch timetable depends on the timetable of the second
epoch. Thus, these two sub-timetables are passed as a parameter to the optimisation
algorithm.

3. At the end of the optimisation step, join the two timetables forming the two-epoch
timetable that satisfies both constraints H1 and H2 (uncapacitated problem). The
cost of the two-epoch timetable is the sum of the costs of the individual timetables.

The Two-Epoch Exam Proximity Problem

The UEPP model presented earlier in equations (3.1) and (3.2)–(3.5) is now extended in
order to relate the first epoch exams with the second epoch exams. The UEPP model
shown in (3.1) is augmented with a third parameter, M :

minimise u2extended D
1

2

jT j�.NC1/CMX
kD1

jEjX
iD1

jEjX
jD1

cij "ik"jkC.NC1/;

8k where k mod q ¤ 0;

subject to
jT jX

kD1

jEjX
iD1

jEjX
jD1

cij "ik"jk D 0; jT j � K: (3.7)

Using (3.7), the extended UEPP is as follows:

minimise fepoch1 D
1

Ns

4X
xD0

wxC1 u2extended jqDjT jC1;NDx;MDxC1 (3.8)

where u2extended jqDjT jC1;NDx;MDxC1 D
1

2

jT jX
kD1

jEjX
iD1

jEjX
jD1

cij "ik"jkC.xC1/; (3.9)

8k where k mod jT j C 1 ¤ 0;

subject to
jT jX

kD1

jEjX
iD1

jEjX
jD1

cij "ik"jk D 0; (3.10)

jT j � K; (3.11)
jEjX

kD1

jT jX
iD1

jLjX
jD1

�ki � �kj � dist.j � i; Lmin/ D jE j; (3.12)

where dist.l; m/ D

(
1; l � m

0; l < m
(3.13)

Equation (3.8) represents the extended proximity cost function, that computes the
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average number of conflicts per student of the first epoch timetable taking into account the
exams already scheduled in the second epoch. ParameterM added to u2extended in (3.9) is
used to modify the first sum, allowing for the comparison between first and second epoch
exams.

Equations (3.12) and (3.13) specify theH2 constraint. �ki 2 f0; 1g is a binary quantity
with �ki D 1 if exam ek is assigned to time slot i in the first epoch. Otherwise, �ki D 0.
Similarly, �kj 2 f0; 1g is a binary quantity with �kj D 1 if exam ek is assigned to time
slot j in the second epoch. Otherwise, �kj D 0.

Figure 3.1 illustrates how the proximity cost function represented by (3.8) is com-
puted.

Course 1 · · · 14 15 16 17 18 19 20 21 22 23 · · · 30

Mon · · · Tue Wed Thu Fri Sat Mon Tue Wed Thu Fri · · · Sat

ALGA x · · · x · · ·

Pg · · · x · · · x

AM1 · · · · · ·

FAE · · · x . .
.

· · ·

ACir · · · x · · ·

First epoch Second epoch

Figure 3.1: Exam proximity cost computation for the two-epoch problem. When comput-
ing the first epoch proximity cost, an extended version of the chromosome is considered,
having more five periods from the second epoch, marked in greyscale. The goal of using
this extended model is to spread away first epoch exams that conflict with exams in the
second epoch in a neighbourhood of zero to four time slots away.

3.4 Multi-objective Problem Formulation

In this section, the ETP is modelled as a multi-objective problem and considering a single
examination epoch. We consider an instance of the ETP that was first formulated in Burke
et al. (1996). In their formulation, if a student is scheduled to take two exams in any one
day there should be a free period between the two exams. Violation of this constraint is
referred to as a clash.

The ISEL–DEETC is solved in Chapter 7 using a multi-objective evolutionary algo-
rithm, considering both capacitated and uncapacitated problems. The capacitated multi-
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objective ETP formulation used in this thesis was first formulated by Cheong et al. (2009),
and is as follows:

minimise f1 D

jE j�1X
iD1

jE jX
jDiC1

jP j�1X
pD1

aip aj.pC1/ cij (3.14)

f2 DjP j (3.15)

subject to
jE j�1X
iD1

jE jX
jDiC1

jP jX
pD1

aip ajp cij D 0; (3.16)

jE jX
iD1

aip si � S; 8p 2 P; (3.17)

jP jX
pD1

aip D 1; 8i 2 f1; : : : jEjg; (3.18)

where:

• E D fe1; e2; : : : ; ejE jg is the set of exams to be scheduled,

• P D f1; 2; : : : ; jP jg is the set of periods,

• S is the total seating capacity in a given period,

• aip is one if exam ei is allocated to period p, and is zero otherwise,

• cij is the number of students registered for exams ei and ej . Matrix c is termed the
Conflict matrix,

• si is the number of students registered for exam ei .

Equations (3.14) and (3.15) are the two objectives of minimising the number of clashes
and timetable length, respectively. The constraint specified by (3.16) is the hard constraint
that no student is to be scheduled to take two exams in the same period. Equation (3.17)
states the capacity constraint that the total number of students sitting in the same room
and in the same timeslot, for all exams scheduled at that timeslot, must be less than or
equal to the total seating capacity S . In (3.18), a constraint is specified indicating that
every exam can only be scheduled once in any timetable.

In the uncapacitated problem variant, the constraint specified by (3.17) is not consid-
ered.
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This chapter describes the local search approaches developed for solving the Exam-

ination Timetabling Problem (ETP). Section 4.1 presents two approaches, based on the
standard simulated annealing (SA) Kirkpatrick et al. (1983) and threshold acceptance

(TA) Dueck & Scheuer (1990) metaheuristics, developed for the ETP. The application of
the proposed algorithms is shown for the public Toronto and ITC 2007 benchmark sets.
The impact of the local search cooling schedule on the optimisation is analysed in Sec-
tion 4.2. An accelerated version of the SA, named fast simulated annealing (FastSA), is
proposed in Section 4.3. Section 4.4 reports the experimental results on the ITC 2007
benchmark set and compare the FastSA’s results with the ones in the literature. Finally,
concluding remarks are provided in Section 4.5.

4.1 Local Search Approaches

This section describes the proposed approaches based on the SA metaheuristic. In Sec-
tion 4.1.1, the standard SA is presented, whereas in Section 4.1.2 a description of the
standard TA is provided. Sections 4.1.3 and 4.1.4 describe the algorithm components for
the Toronto benchmark (uncapacitated problem) and ITC 2007 benchmark (capacitated
problem) sets.

4.1.1 SA Algorithm

The SA metaheuristic is detailed next. Let f be the objective function to be minimised on
a setX of feasible solutions, and denote byN.s/ the neighbourhood for each solution s in
X . Let L be the state-space graph induced by X and by the definition of N.s/. The SA is
an iterative algorithm that starts from an initial solution and attempts to reach an optimal
solution by moving step by step in L. In each step, a neighbour solution s0 of the current
solution s is generated; if the move improves the cost function then the algorithm moves
s to the neighbour solution s0; otherwise, the solution s0 is selected with a probability
that depends on the current temperature and the amount of degradation of the objective
function (Talbi, 2009). The temperature is reduced gradually according to a defined cool-
ing schedule. Algorithm 2 describes the template of the SA algorithm (Kirkpatrick et al.,
1983).

The temperature T is updated by simulating the exponentially-decreasing temperature
over time, as used in the metal annealing process. This is achieved by the function T .t/:

T .t/ D Tmax � exp.�r � t /; (4.1)
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Algorithm 2 Template of the simulated annealing algorithm.
Input: Cooling schedule.

1: s  s0 F Generation of the initial solution
2: T  Tmax F Starting temperature
3: repeat
4: repeat F At a fixed temperature
5: Generate a random neighbour s0 2 N.s/
6: �E  f .s0/ � f .s/

7: if �E � 0 then s  s0 F Accept the neighbour solution
8: else Accept s0 with a probability e

��E
T �f.s/

9: end if
10: until Equilibrium condition F e.g., a given number of itera-

tions executed at each temper-
ature T

11: T  g.T / F Temperature update
12: until Stopping criteria satisfied F e.g., T < Tmin

13: Output: Best solution found.

where r is the temperature decreasing rate and Tmax is the initial temperature (Tmax

should have a large value as compared to r).

4.1.2 TA Algorithm

The TA is similar to the SA metaheuristic but, instead of using a probabilistic acceptance
criterion, a deterministic one is used. After generating the neighbour solution, s0, of the
current solution s, the TA moves to the neighbour solution s0, even if f .s0/ > f .s/,
as long as f .s0/ � f .s/ is less than or equal to the current threshold Q. The threshold
is reduced gradually in a similar way as in the SA, according to a predefined cooling
schedule. The steps of the TA metaheuristic are described in Algorithm 3.

The threshold Q is updated using (4.1) but replacing Tmax with Qmax (the initial
threshold).

4.1.3 Application to the Toronto Benchmark Set

Solution Representation and Fitness Function

The adopted solution representation for the Toronto benchmark set is illustrated in Fig-
ure 4.1. Each solution is represented by an array of periods where each period contains
the list of the scheduled exams in that period. For example, the exams allocated in time
slot t1 are e2, e14, e10, e3, and e16, whereas the exams allocated in time slot t2 are e1, e11,
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Algorithm 3 Template of the threshold acceptance algorithm.
Input: Threshold annealing Qmax

1: s  s0 F Generation of the initial solution
2: Q Qmax F Starting threshold
3: repeat
4: repeat F At a fixed threshold
5: Generate a random neighbour s0 2 N.s/
6: E  f .s0/ � f .s/

7: if E � Q then s  s0

8: end if F Accept the neighbour solution
9: until Equilibrium condition F e.g., a given number of itera-

tions executed at each thresh-
old Q

10: Q g.Q/ F Threshold update
11: until Stopping criteria satisfied F e.g., Q � Qmin

12: Output: Best solution found.

t1 t2 · · · tT
e2 e1 e8

e14 e11 e12

e10 e4 · · · e15

e3 e17

e16

Figure 4.1: Solution representation for the Toronto benchmark set (uncapacitated prob-
lem).

and e4 (see Figure 4.1). The exams allocated to a given period must satisfy the hard clash
constraint.

In terms of software implementation, the solution is encoded as an array, say V , of
column vectors, having the period index as the first index (column) and the exam index
as the second index (row). Vj i is for period j and exam i and is 1 if exam i is assigned to
that period, otherwise it is 0. This implementation provides for nuclear operations (exam
allocation to period, exam’s period change) to be performed in constant time. Also, there
is no need to manage the exam list size in each period as the exam list is always of fixed
size (a column vector). This comes at the expense of more memory being used for the
exams indices.

The fitness function used is given by Equation (2.3) in Section 2.4.1.
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Construction of Initial Feasible Timetables

The initial solution for the Toronto instance is constructed using the saturation degree

(SD) graph colouring heuristic (Brélaz, 1979). Initially, all exams are eligible for insertion
in the timetable. An exam is randomly selected and assigned to a random period. The
remaining exams are sorted in non-decreasing order of the number of available periods.
Then, one of the exams with the lowest number of available periods is removed from the
exams’ queue and assigned to a random period. The process is repeated until all exams
are inserted into the timetable. If, at a given time, a feasible time slot cannot be found
for a candidate exam, the process fails to succeed and no attempt is done to repair the
timetable. The process is simply repeated from the beginning until a feasible solution is
found, fulfilling the timetable fixed length constraint. According to the tests conducted,
less than five cycles (on average) are needed to find a feasible solution. As a consequence,
no further investigation on a repair mechanism was carried out.

Neighbourhood Operator

The Kempe chain neighbourhood was used for the Toronto benchmark set, as described
in Section 2.3.3. In the implemented operator, the solution is evaluated in an incremental
way, in order to improve the operator’s performance.

4.1.4 Application to the ITC 2007 Benchmark Set

Solution Representation and Fitness Function

t1 t2 · · · tT
r1 e3 e6 e9, e22

r2 e2, e5 e19, e10

· · · ·
· · · · · · ·
· · · ·

rR-1 · · ·
rR e4 e7

Figure 4.2: Solution representation for the ITC 2007 benchmark set (capacitated prob-
lem).

Since the ITC benchmark set is capacitated, we have to consider examination rooms
in the solution. The generic representation of a solution in this case is given in Figure 4.2.
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A given solution encodes a complete and feasible timetable. In the figure, for example,
exam e3 is allocated in time slot t1 and room r1, and exams e2 and e5 are allocated in
time slot t2 and room r2. Time slots may have different lengths, in order to be possible to
schedule examinations with different durations.

In terms of software implementation, the solution was implemented differently than
what is shown in Figure 4.2. The solution is encoded as a matrix, say A, having in the
row index the exam index, and in the column index the period number. Aij is for exam i

and period j and contains the room index if it is assigned to that period, otherwise it is
-1. This implementation provides for nuclear operations (exam allocation to period and
room, room change, period change) to be performed in constant time.

As mentioned in Section 2.4.2, the fitness function is the same as the one used in Mc-
Collum et al. (2012).

Construction of Initial Feasible Timetables

For the ITC 2007 case, the initial solution is constructed using a variant of the SD graph
colouring heuristic. In our approach, for performance reasons, the number of available
periods for each exam is computed by considering only the No Conflicts (or clash) hard
constraint, instead of considering all hard constraints. The remaining hard constraints are
satisfied when the exam is scheduled.

In order to schedule the more constrained exams first, we initially sort the exams by
their number of After hard constraints. The exams that must take place before others
(involved in an After constraint) have fewer available periods, and are thus more difficult
to schedule. The other types of period related hard constraints (Exam Coincidence and
Period Exclusion) are not considered in the initial exam sorting.

We start by setting the initial priority (number of available periods) of each exam
equal to the total number of periods. Then, all the exams that must be scheduled before
another exam have their number of feasible periods decremented by one. This is done for
each After hard constraint in which they are involved. For instance, if an exam ei must be
scheduled before exam ej (an After constraint exists between ej and ei ), then the number
of available periods for ei is equal to the total number of periods minus one.

The construction algorithm proceeds in two phases:

Phase 1 Extract an exam from the exam priority queue and, if all hard constraints are
met, schedule the exam in the selected period and room, and update the priorities
(number of available periods) of exams in the queue, considering only the No Con-

flicts hard constraint. Then, repeat the same process for the next maximum priority
exam in the queue. If a given exam cannot be scheduled, then go to Phase 2.
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Phase 2 If a selected exam cannot be assigned due to violations of hard constraints, the
conflicting exams are unscheduled and the selected exam is scheduled. The con-
flicting exams are again inserted in the exam priority queue. The priority of each
exam in the queue is recomputed according to the SD heuristic. Then, go to Phase
1. The construction phase ends when all exams are scheduled.

In order to prevent repetitive assignments of variables (exams) to the same values
(period and room), the conflict-based statistics (CBS) Müller (2009) data structure
is used. CBS stores hard conflicts which have occurred during the search, together
with their frequency, and the assignments that caused them. In the (period, room)
value selection, the value which corresponds to the lowest sum over weighted hard
conflicts is chosen. Each hard conflict is weighted by its frequency, i.e., by the
number of times the conflicting variable was unassigned due to the selected assign-
ment Müller (2009).

Neighbourhood Operators

In solving the ITC 2007 timetabling problem instance, two neighbourhood operators,
based on the Kempe chain neighbourhood, were implemented:

Slot-Room move – A random exam is scheduled in a different period and room, both
chosen randomly.

Room move – An exam, chosen randomly, is scheduled in a different room for the same
period. The destination room is chosen in a random fashion.

Figure 4.3 illustrates the use of the Slot-Room move operator on an example ITC 2007
solution. In this example, exam e2 is to be moved from time slot t2 and room r2 to time slot
t5 and room r1. The Kempe chain involving e2 is given by K1 D fe2; e3; e4; e5; e7; e9g

(Algorithm 1). Time slots ti and tj in Algorithm 1 are set to t2 and t5, respectively,
with initial contents given by t2 D fe2; e3; e4; e5; e6g and t5 D fe1; e7; e9; e10; e19; e22g.
Then, t2 is updated with .t2 n K1/ [ .t5 \ K1/ D fe6; e7; e9g and t5 is updated with
.t5 nK1/ [ .t2 \K1/ D fe1; e2; e3; e4; e5; e10; e19; e22g.

The Room and Slot-Room move operators may yield infeasible neighbour solutions
for the ITC 2007 data set. If it is not possible to apply the move, then the move is set
to be infeasible and ignored by the local search neighbourhood move operator. In this
case, the solution is not evaluated and the local search move acceptance rule (lines 6–9 in
Algorithm 2) is skipped. Hence, the generated infeasible neighbour is not accepted.

In the Slot-Room move, the After and Period Utilisation hard constraints are only
tested after the move is completed. These hard constraints are checked for the exams
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RE

e6

t1 t2 t3 t4 t5 t6

r1

r2

r3

r4

e22

e1

e7

e19
e10

e5
EC

e2

e3

RE

e4

e9

(a) before moving exam e2 from time slot t2 and room r2 to
time slot t5 and room r1

RE

e6

t1 t2 t3 t4 t5 t6

r1

r2

r3

r4

e22

e2

e1

e7

e19
e10

e5
EC

e9

e3

RE

e4

(b) after moving exam e2

Figure 4.3: An example of the Kempe chain heuristic. There are two Kempe chains in
the figure, with lines connecting conflicting exams. In the first Kempe chain, a move of
exam e2 from time slot t2 and room r2 to time slot t5 and room r1 requires repair moves
to maintain feasibility. Exam e9 has to be moved to time slot t2 and room r2, and exam
e5 (due to the Exam Coincidence (EC) constraint), e3, and e4, have to be moved to time
slot t5 and rooms r1, r3, and r4, respectively. Consequently, exam e7 has to be moved
from time slot t5 and room r4 to time slot t2 and room r4 due to the Room Exclusion (RE)
constraint.

scheduled in the affected time slots ti and tj , and the neighbour solution is set to be
infeasible if they are violated. The presented Kempe chain operators also implemented
solution’s incremental evaluation.

A final remark about the implemented operators is given. Although the Slot-Room

move also changes an exam’s room, the Room move operator was included for two rea-
sons. First, for completeness, i.e., it is desirable to have a set of operators that could
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move an exam to any place (period and room), and the Slot-Room move always changes
the period and room. Hence, there is a need for an operator that only changes the exam
room. The second reason was justified by the need to have an operator that could be
used to minimise the room specific soft constraints (Mixed Durations and Room Penalty)
violations.

4.2 Effect of the Local Search Cooling Schedule

In this section, we study the impact of the cooling schedule on the algorithm performance.
Using a more intensive local search, one can achieve better results than using a light local
search Dowsland & Thompson (2012). But some relevant questions can be asked: what
is the effect of local search on the organisation of exams in the timetable? How are the
exams moved as the temperature varies in SA based algorithms? The study undertaken
here provides some answers to those questions. In addition, some important properties of
the local search operator are identified. These properties served as the basis for the devel-
opment of an accelerated version of the local search algorithm (described in Section 4.3).

The presented study involves both the Toronto and ITC 2007 benchmark sets and the
SA and TA algorithms. The section’s text is organised as follows. In Section 4.2.1 the
parameter settings used in the experiments are described. Sections 4.2.2 and Section 4.2.3
present the studies made for the Toronto and ITC 2007 benchmark sets, respectively.

4.2.1 Parameter Settings

Table 4.1: Parameter settings. Legend: Tmax – initial temperature/threshold, r – de-
creasing rate, k – # iterations at each temperature/threshold, and Tmin – final tempera-
ture/threshold.

Data set Algorithm Cooling schedule

Tmax r k Tmin Type # Evaluations

Toronto TA
0.1 1�10−3 5 2�10−5 light 42 590
0.1 1�10−6 5 2�10−5 intensive 42 585 970

ITC 2007 SA
0.1 1�10−4 5 1�10−7 light 690 780
0.1 1�10−5 5 1�10−7 intensive 6 907 760

The parameter settings are specified in Table 4.1. The TA metaheuristic was used
when solving the Toronto instances, whereas the SA was used in the ITC 2007 case. Two
different cooling schedules were used in both algorithms: a light and an intensive cooling
schedules.
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4.2.2 Toronto Data Set

Figures 4.4, 4.5, and 4.6 illustrate the evolution of accepted exam movements (using the
Kempe chain neighbourhood) as the TA threshold varies. In these figures, the x-axis
value range is divided into ten threshold bins. A threshold bin corresponds to a threshold
interval and is represented by vertical grid lines in the figures. The threshold bins were
calculated in order to have 1/10 of the total number of evaluations in each bin. The colour
codes for each bin, and for each exam on the y-axis, represent the number of accepted
movements for the corresponding exam. The total number of exams’ accepted moves
per bin is generally lower than the number of evaluations performed in that bin, because
not all exams are part of an accepted move in each local search move. Some exams
do not move because the fitness difference violates the TA acceptance criterion, or are
not selected by the neighbourhood operator. The exams are ordered decreasingly by the
number of conflicts they have with other events (largest degree heuristic).

It can be observed that the more difficult exams (the ones with lower indexes) only
move (i.e. the move is accepted by the TA) when higher thresholds are applied, being
gradually fixed at their definitive place. As can be seen from the top and bottom plots of
Figures 4.4 and 4.5, it is essential that the difficult exams be well placed, in an optimal
or near optimal position, for the easier exams to be placed in an optimal or near optimal
position. If a light cooling schedule is used, the algorithm cannot find the best places
for the difficult exams and so the easier exams are also placed in a suboptimal way. Fig-
ure 4.6 provides a detailed view of the movement count of the top-100 high degree exams
represented in Figure 4.5. In Figure 4.6, we can observe that the use of the intensive
cooling (Figure 4.6(b)) allows the top-100 high degree exams to move more, as compared
to the light cooling schedule (Figure 4.6(a)). This is supported by the numbers shown
in the colour bar (right of the figure) which are much larger for the intensive cooling
(Figure 4.6(b)) than for the light cooling schedule (Figure 4.6(a)).

4.2.3 ITC 2007 Data Set

We now repeat the experiments made before but now considering the SA metaheuristic
and the ITC 2007 data set. Figures 4.7 and 4.8 illustrate the evolution of the number
of accepted exam movements as the SA temperature varies, for two example ITC 2007
instances.

We can observe the same behaviour as for the TA/Toronto configuration set: the use of
the intensive cooling schedule yields better solutions as a greater number of evaluations
is made.
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(a) car92 instance optimised with the light cooling schedule. Ob-
tained cost: 4:57
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(b) car92 instance optimised with the intensive cooling schedule. Ob-
tained cost: 3:77

Figure 4.4: Study of the effect of applying light and intensive cooling schedules in the
TA algorithm. Each figure above shows the evolution of the number of accepted exam
moves, for each exam in the y-axis and for each threshold bin in the x-axis. The exams in
the y-axis are ordered decreasingly by the number of conflicts they have with other events
(largest degree heuristic). The x-axis value range is divided into ten threshold bins, each
with an equal number of evaluations. The long ticks along the x-axis represent the bins’
limits.

4.3 Accelerated SA for the ETP

In this section, the FastSA search method for solving the ETP is explained.
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(a) yor83 instance optimised with the light cooling schedule. Ob-
tained cost: 39:41
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(b) yor83 instance optimised with the intensive cooling schedule. Ob-
tained cost: 35:35

Figure 4.5: Study of the effect of applying light and intensive cooling schedules in the TA
algorithm (continued).

4.3.1 FastSA Search Method for the ETP

As it can be observed from Figures 4.4–4.8, several of the more difficult exams are going
to be fixed (or have few moves) as lower temperatures are reached. In the algorithm, if it
were decided not to move (and not evaluate the corresponding movement) an exam having
zero or few movements in the previous temperature bin, it would produce a faster SA al-
gorithm. The faster execution comes at the expense of a degradation of the results, if there
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(a) yor83 instance optimised with the light cooling schedule. The
number of accepted exams’ movements for the 100 most difficult ex-
ams of Figure 4.5(a) is shown.
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(b) yor83 instance optimised with the intensive cooling schedule. The
number of accepted exams’ movements for the 100 most difficult exams
of Figure 4.5(b) is shown.

Figure 4.6: Study of the effect of applying light and intensive cooling schedules in the
TA algorithm for the yor83 instance. The figures show the number of accepted exams’
movements for the 100 most difficult exams of Figures 4.5(a) and 4.5(b), respectively.

exist bins with exam movements followed or interleaved with bins with no movements,
because the algorithm stops evaluating moves for a given exam when a bin with zero
moves is found. This faster SA variant was implemented in this work, and was named
FastSA. The template of the FastSA algorithm is given in Algorithm 4.
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(a) dataset4 instance optimised with the light cooling schedule. Ob-
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(b) dataset4 instance optimised with the intensive cooling schedule.
Obtained cost: 12 528

Figure 4.7: Study of the effect of applying light and intensive cooling schedules in the
SA algorithm, for ITC 2007 instances 4 and 9. Each figure shows the evolution of the
number of accepted exam moves, for each exam in the y-axis, per each temperature bin.
The exams in the y-axis are sorted by decreasing order of number of conflicts with other
exams (largest degree heuristic). The marked x-axis long ticks represent the temperature
intervals.
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(a) dataset9 instance optimised with the light cooling schedule. Ob-
tained cost: 1243
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(b) dataset9 instance optimised with the intensive cooling schedule.
Obtained cost: 1024

Figure 4.8: (continuation).
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Algorithm 4 Template of the fast simulated annealing algorithm.
Input: Cooling schedule.

1: prevBin nil F Array containing # accepted moves in the previous bin, initially
nil

2: currBin createArray(numExams) F Array containing # accepted moves in the
current bin, initialised with zeros

3: s  s0 F Generation of the initial solution
4: T  Tmax F Starting temperature
5: repeat
6: repeat F At a fixed temperature
7: Generate a random neighbour s0 2 N.s/
8: examToMove  selectExamFromSolution.s0/
9: if prevBin D nil or (prevBin <> nil and prevBin ŒexamToMove� > 0)

then F Evaluate neighbour solution
10: �E  f .s0/ � f .s/

11: if �E � 0 then s  s0 F Accept the neighbour solution
12: else Accept s0 with a probability e

��E
T �f.s/

13: end if
14: if s0 was accepted then
15: currBin ŒexamToMove� currBin ŒexamToMove�C 1

16: end if
17: end if
18: until Equilibrium condition F e.g., a given number of iterations executed at each

temperature T
19: T  g.T / F temperature update
20: prevBin updateBin.T; currBin/ F If T is in the next bin, make

prevBin currBin and zero currBin
21: until Stopping criteria satisfied F e.g., T < Tmin

22: Output: Best solution found.

The lines marked in bold are lines that were added to the original SA algorithm (Al-
gorithm 2). The FastSA keeps a record of all successful neighbourhood movements taken
in a given bin. When performing a neighbourhood movement, a random exam is selected,
and the algorithm first checks if there were any movements, for the exam to be moved, in
the previous bin. If there was no previous movement for the candidate exam, then the cur-
rent movement is not performed and not evaluated. With this strategy, the FastSA could
attain a reduced number of evaluations compared to the original SA. The cost degradation
attained by the FastSA compared to the SA is not significant, as shown in the experimental
evaluation carried out in Section 4.4.

Example 4.3.1 illustrates a simple example of the bin structure used by the FastSA.

Example 4.3.1 This example uses synthetic data to show the bin structure used by the
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FastSA. Six examinations and four bins were considered. Figure 4.9(a) illustrates the

number of times each exam is selected in each bin. Figure 4.9(b) give a graphical repre-

sentation of the same data using a colour map.

When the FastSA is run using this data, the following behaviour is registered. Because

exam e1 was never selected in bin b2, e1 remains fixed (a move involving this exam is not

evaluated) from bin b2 on, even if it had a positive number of selections in the bins b3 and

b4. Using the same reasoning, exams e2, e3, and e4, remain fixed from bin b3 on. Note

the case of exam e4 which was selected in bin b4 (marked in shaded grey). As e4 has been

fixed already (in the previous bin), this exam remains fixed until the end, and all further

selections are not evaluated, yielding a faster algorithm.

e1 3 0 0 0

e2 4 2 0 0

e3 3 1 0 0

e4 10 5 0 3

e5 15 13 10 5

e6 25 24 18 8

b1 b2 b3 b4

(a)
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Figure 4.9: Different representations of the bin structure used by the FastSA. Six exami-
nations and four bins were considered: (a) number of times each exam is selected in each
bin, (b) graphical representation of the data in (a) using a colour map.

4.4 Experimental Results and Discussion

This section presents the experimental simulations conducted to test the proposed method
in addressing the examination timetabling problem. Section 4.4.1 describes the param-
eter settings of the algorithm. Section 4.4.2 presents a comparison between three al-
gorithms: two FastSA variants, named FastSA100 and FastSA80, and the standard SA.
The FastSA100 variant is further compared with the state-of-the-art approaches in Sec-
tion 4.4.3.
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4.4.1 Settings

The developed algorithms were programmed in the C++ language using the ParadisEO
framework (Talbi, 2009). The hardware and software specifications are: Intel Core i7-
2630QM, CPU @ 2.00 GHz � 8, with 8 GB RAM; OS: Ubuntu 16.10, 64 bit; Compiler
used: GCC v. 4.8.2. The algorithm execution time was set to 276 seconds, as measured
by the provided benchmarking tool from the ITC 2007 site (The Second International
Timetabling Competition (ITC 2007), 2007). Table 4.2 summarises the cooling schedule
parameters used by the tested algorithms. The parameter values were chosen using as ref-
erence the FastSA100 algorithm (described in the next section). Specifically, the cooling
schedule values were adapted empirically for each dataset instance, while guaranteeing
that the FastSA100 execution time was within the ITC 2007 time limit constraint. The
neighbourhood operators, the Room and Slot-Room moves, were selected with equal prob-
ability. To obtain our simulation results, each algorithm was run ten times on each instance
with different random seeds. In the experiments, all the statistical tests were performed
with a 95% confidence level. The developed source code, the resulting solution files for
each instance/run, and the produced statistics, are publicly available on the following Git
repository: https://github.com/nunocsleite/FastSA-ETP-ITC2007.

Table 4.2: Cooling schedules used to solve the different ITC 2007 instances. The value
presented in the bottom row, rightmost column, corresponds to the sum of the # evalu-
ations. The cooling schedule values were adapted empirically for each dataset instance
using as reference the FastSA100 algorithm.

Inst. Tmax rate k Tmin # evaluations

1 0:01 0:000 003 5 1:00�10�6 15 350 571
2 0:01 0:000 004 5 1:00�10�6 11 512 931
3 0:01 0:000 005 4 1:00�10�6 7 368 277
4 0:1 0:000 005 6 1:00�10�6 13 815 517
5 0:01 0:000 007 6 1:00�10�6 7 894 579
6 0:002 0:000 003 5 1:00�10�6 12 668 176
7 0:001 0:000 003 5 1:00�10�6 11 512 931
8 0:001 0:000 001 5 5 1:00�10�6 23 025 856
9 0:01 0:000 001 5 1:00�10�6 46 051 706

10 0:01 0:000 001 5 5:00�10�6 38 004 516
11 0:01 0:000 009 5 1:00�10�6 5 116 861
12 0:01 0:000 001 3 5 1:00�10�6 35 424 391P

227 746 312

https://github.com/nunocsleite/FastSA-ETP-ITC2007
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4.4.2 Comparison between SA and FastSA Approaches

In this section, three algorithms, described as follows, were compared:

1. SA – The original SA metaheuristic as described in Algorithm 2.

2. FastSA100 – The basic FastSA algorithm as described in Algorithm 4. In this
approach, the exam movements in each bin are registered, and if, for a selected
exam, the number of movements in the previous bin is zero, that exam is fixed

until the end of the optimisation phase. This means that the current and future
movements of this exam are not considered and thus not evaluated.

3. FastSA80 – In this variant, the behaviour is similar to the FastSA100 but the se-
lected exam is fixed only if two conditions hold: the number of movements in the
previous bin is zero and the exam belongs to the set comprising 80% of the exams

with the highest degree. Observing again Figures 4.7 and 4.8, we can see that the
highest degree exams are those having the lower indices (top indices in the y-axis);
on the other side, the lowest degree exams are the ones having the higher indices
(the bottom ones in the y-axis). For the mentioned set of largest degree exams,
the behaviour is the same as described for the FastSA100; for the remaining 20%
of the exams, the method behaves like the original SA, that is, the selected exam
is never fixed and its move is always evaluated. The reasoning behind this variant
is the following: because the lowest degree exams have a low number of conflicts
with other exams, their moves imply a small change in the objective function; this,
in turn, imply that they are likely to move more often than the higher degree ex-
ams, because small changes in the objective function are often accepted by the SA
acceptance criterion, even at low temperatures. Hence, in the scenario that a lowest
degree exam has no accepted moves in a previous bin, it is likely that it will have
accepted moves in the future. With the FastSA80, the moves of the set comprising
20% of the exams with the smallest degree are always evaluated, despite having
some bins with zero counts.

Tables 4.3, 4.4, and 4.5, show, respectively, the obtained costs, the corresponding
number of evaluations done, and the corresponding execution times in seconds for the
FastSA100, FastSA80, and SA algorithms, for the twelve instances of the ITC 2007
benchmark set. For each algorithm the minimum and average values, and the standard
deviation of ten runs are shown.
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Table 4.3: Solution costs obtained on the ITC 2007 benchmark set by the FastSA100, FastSA80, and SA algorithms. For the Fast SA
variants, the percentage of evaluations not done (marked in column ‘% less evals’) is shown.

Inst- FastSA100 FastSA80 SA

ance % less evals fmin favg � % less evals fmin favg � fmin favg �

1 34 4872 5054:7 111:3 30 4916 5026:9 73:9 4855 4953.9 100:5
2 1 395 408:5 7:1 1 400 413:0 10:3 395 407.5 8:3
3 5 9607 9945.6 258:6 5 9749 10 141:7 239:6 9737 10 079:9 277:3
4 41 12 076 12 825:8 407:7 38 12 073 12 667.2 420:0 12 268 12 783:5 407:8
5 6 3058 3378.2 194:6 6 3052 3431:6 345:7 3188 3666:1 512:1
6 14 25 515 25 960.5 213:8 12 25 790 26 166:0 292:1 25 870 26 139:5 180:1
7 7 4291 4533:9 120:6 7 4306 4446:8 104:5 4182 4426.6 159:3
8 25 7226 7532:2 168:8 24 7471 7569:9 97:6 7287 7515.7 147:4
9 28 983 1025:8 33:1 29 970 1027:8 33:3 991 1017.3 23:8

10 8 13 400 13 662:3 214:5 8 13 412 13 656:9 145:2 13 351 13 511.7 104:0
11 9 30 090 31 520.8 1027:9 9 29 860 31 886:8 1375:8 29 800 31 930:9 1156:8
12 19 5137 5200:6 46:8 20 5143 5191:4 56:2 5109 5179.1 51:8

Avg.: 17 16
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Table 4.4: Number of evaluations performed by the proposed algorithms. The acronym ‘LE’ stands for ‘Less evaluations’. The column
‘% LE’ reports the percentage of the number of evaluations not performed, on average, by the respective FastSA compared to the SA,
and computed as .1 � .FastSAeavg=SA#eval// � 100, rounded to the nearest integer. The row marked with ‘# LE:’ reports the difference
between the SA and respective FastSA favg # evaluations’ sums.

Inst- FastSA100 FastSA80 SA

ance % LE emin eavg � % LE emin eavg � # eval.

1 34 9 980 873 10 198 009.6 178 424:4 30 10 384 549 10 701 045:7 171 364:4 15 350 571
2 1 11 340 700 11 395 324:5 38 536:8 1 11 318 777 11 377 261.4 45 800:7 11 512 931
3 5 6 866 754 6 969 666.3 58 551:8 5 6 911 407 7 003 992:1 38 556:1 7 368 277
4 41 7 857 028 8 148 037.6 195 561:7 38 8 302 759 8 543 151:7 177 125:8 13 815 517
5 6 7 237 700 7 409 559.1 91 615:2 6 7 292 084 7 422 571:9 87 851:4 7 894 579
6 14 10 424 248 10 883 293.4 296 014:2 12 10 865 907 11 179 400:3 293 235:7 12 668 176
7 7 10 599 677 10 657 882.6 52 611:8 7 10 607 738 10 678 176:9 42 537:6 11 512 931
8 25 16 879 540 17 275 934.8 303 030:0 24 17 227 232 17 573 194:9 251 960:2 23 025 856
9 28 31 718 395 33 005 694:9 1 003 862:4 29 31 737 041 32 872 225.8 1 123 363:1 46 051 706

10 8 34 223 507 34 915 395.0 353 838:2 8 34 449 437 34 960 059:1 389 610:7 38 004 516
11 9 4 606 347 4 649 939:4 31 193:4 9 4 581 774 4 648 839.5 43 663:4 5 116 861
12 19 26 917 968 28 700 008:5 908 071:6 20 26 504 157 28 276 194.8 1 104 050:8 35 424 391P

178 652 737 184 208 745.7 180 182 862 185 236 114:1 227 746 312
# LE: 43 537 566:3 42 510 197:9
Avg.: 17 16
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Table 4.5: Execution times (in seconds) on the ITC 2007 benchmark set for the
FastSA100, FastSA80, and SA algorithms.

Inst- FastSA100 FastSA80 SA

ance tmin tavg � tmin tavg � tmin tavg �

1 224 234.70 6:80 232 236:30 2:58 369 377:20 6:11
2 227 233:70 4:32 225 229.70 3:53 249 258:00 8:03
3 193 197:90 4:33 190 197.60 5:23 206 219:95 9:06
4 236 244.90 4:36 245 255:70 5:60 428 442:60 8:85
5 198 211:00 7:13 204 209.00 2:62 236 257:70 14:84
6 172 192:41 10:82 174 188.90 9:00 217 226:20 5:47
7 228 234:40 3:92 217 229.18 8:33 260 277:80 15:13
8 227 234:80 4:71 221 232.10 6:08 305 314:26 10:04
9 217 238:90 11:64 226 236.70 10:04 327 342:50 11:65

10 232 242:70 5:60 234 240.40 3:92 253 258:20 2:53
11 208 209.90 1:97 204 210:40 5:21 231 238:80 5:51
12 210 220:70 6:06 214 219.20 6:09 269 274:20 4:24

Discussion

Analysing the results in terms of solution cost (Table 4.3), it can be observed that the
FastSA100 has results that compete with the SA, obtaining the best average fitness in four
of twelve instances, while requiring less evaluations. In terms of the performed number
of evaluations (Table 4.4), the FastSA100 and FastSA80 execute, respectively, 17% and
16% less evaluations, on average, compared to the SA algorithm.

For the FastSA100, on more than half of the datasets, the number of neighbours not
evaluated varies from 10% to 41% while not degrading the fitness value significantly,
which is a significant number. From Table 4.5 results, we can conclude that the presented
FastSA approaches are globally faster than the SA approach.

Concerning the execution times, we can observe that a lower average execution time
on a given instance time does not necessary mean a lower average number of evaluations.
If we compare, for example, instance 6 solved by FastSA100 and FastSA80 (Tables 4.3,
4.4, and 4.5), we observe that the FastSA100 performs 14% less evaluations, whereas
FastSA80 performs 12% less evaluations. Despite executing a lower number of eval-
uations, the FastSA100 obtains a better cost and spends more time. This behaviour is
justified by the several factors influencing the execution of the algorithm, namely: the
stochastic nature of the construction algorithm and of the FastSA algorithm itself, and the
existence of two move operators (room and slot-room moves), with different execution
times. The slot-room move is more complex than the room operator thus taking more
time to execute. It should be noted that the times of the SA algorithm are not within the
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time limit imposed by ITC 2007. Using as criteria the average percentage of the number
of evaluations not performed, and also the execution time within the ITC 2007 rules, the
FastSA100 is the best method. In the next section, the FastSA100 is compared with the
state-of-the-art approaches.

4.4.3 Comparison with State-of-the-art Approaches

In this section we perform a comparison between the FastSA100 approach and other state-
of-the-art methodologies. In the following tables, the compared approaches are identified
by an acronym of the first author’s name and year of the publication.

The compared authors are: Gog08 – Gogos et al. (2008) (Gogos et al., 2008), Ats08 –
Atsuta et al. (2008) (McCollum et al., 2010), Sme08 – De Smet (2008) (McCollum et al.,
2010), Pil08 – Pillay (2008) (McCollum et al., 2010), Mul09 – Müller (2009) (Müller,
2009), Col09 – McCollum et al. (2009) (McCollum et al., 2009), Dem12 – Demeester et
al. (2012) (Demeester et al., 2012), Gog12 – Gogos et al. (2012) (Gogos et al., 2012),
Byk13 – Bykov and Petrovic (2013) (Bykov & Petrovic, 2013), Ham13 – Hamilton-
Bryce et al. (2013) (Hamilton-Bryce, McMullan & McCollum, 2013), Alz14 – Alzaqebah
and Abdullah (2014) (Alzaqebah & Abdullah, 2014), Alz15 – Alzaqebah and Abdullah
(2015) (Alzaqebah & Abdullah, 2015), and Bat17 – Battistuta et al. (2017) (Battistutta
et al., 2017). Table 4.6 presents a comparison between the ITC 2007’s five finalists and
the FastSA, considering the solutions’ minimum fitness. In Table 4.7, the average results
obtained by state-of-the-art approaches and by the FastSA are compared. The last col-
umn reports the standard deviation of the FastSA over ten runs. The results included in
Table 4.7 are from approaches whose evaluation is compliant with the ITC 2007 rules, as
mentioned in the original papers.

Statistical Analysis

We now present a statistical analysis of the obtained average results (Table 4.7) for the
complete ITC 2007 benchmark set (12 instances). We assessed the statistical significance
of our results using Friedman’s test, as suggested by García & Herrera (2008). The results
of the statistical tests were produced using the Java tool made available by the same
authors.

Table A.1 summarises the rank obtained by the Friedman test. The p-value computed
by the Friedman test is 3:93�10�6, which is below the significance interval of 95% (˛ D
0:05), confirming that there is a significant difference among the observed results. Byk13
is the best performing algorithm.
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Table 4.6: Minimum fitness obtained by the ITC 2007 finalists’ approaches and by the
FastSA. The best solutions are indicated in bold. “–” indicates that the corresponding
instance is not tested or a feasible solution was not obtained.

Inst- Müller, Gogos et Atsuta et De Smet, Pillay, FastSA
ance (2009) al. (2008) al. (2008) (2008) (2008)

1 4370 5905 8006 6670 12 035 4872
2 400 1008 3470 623 2886 395
3 10 049 13 771 17 669 – 15 917 9607
4 18 141 18 674 22 559 – 23 582 12 076
5 2988 4139 4638 3847 6860 3058
6 26 585 27 640 29 155 27 815 32 250 25 515
7 4213 6572 10 473 5420 17 666 4291
8 7742 10 521 14 317 – 15 592 7226
9 1030 1159 1737 1288 2055 983

10 16 682 – 15 085 14 778 17 724 13 400
11 34 129 43 888 – – 40 535 30 090
12 5535 – 5264 – 6310 5137

Table A.2 shows the adjusted p-values obtained by the post-hoc Holm and Hochberg’s
tests considering Byk13 as the control algorithm. These tests confirm that Byk13 is better
than all algorithms except Bat17, with ˛ D 0:05 (3/4 algorithms).

Table A.3 present adjusted p-values for the same studied scenario, obtained by Ne-
menyi, Holm, Shaffer, and Bergmann procedures, and showing pairwise comparisons.
There exist significant differences for the cases (i D 1; : : : ; 4) using all procedures.

Discussion

Analysing the results, we observe that the FastSA is able to compete with the ITC 2007
finalists (Table 4.6), being superior on all instances except three. With respect to average
results (Table 4.7), the FastSA is also able to compete with the state-of-the-art approaches
obtaining the best result on one instance.

The employed statistical tests on the average results support our observations: the
FastSA is ranked in third position among five algorithms (Table A.1), where Byk13 is
considered the best approach; Table A.2, containing the adjusted p-values obtained by
Holm’s and Hochberg’s tests comparing the control algorithm with the remaining algo-
rithms (1 � N comparison), allows to ascertain that Byk13 is better than all methods ex-
cept Bat17. Finally, analysing the results of the multiple algorithm comparison (N � N )
from Table A.3, we can confirm the same conclusions of Table A.2 and also ascertain that
Bat17 is better than Ham13. From these tables, we can say that only Byk13 is better than
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Table 4.7: Comparison of the average results obtained by the FastSA algorithm with state-of-the-art approaches for the ITC 2007 bench-
mark set. The best solutions are indicated in bold. “–” indicates that the corresponding instance was not tested or a feasible solution was
not obtained.

Inst- Col09 Dem12 Gog12 Byk13 Ham13 Alz14 Alz15 Bat17 FastSA
ance

1 4799 6330:20 5032 4008 5469 5517:30 5227:81 3926.96 5054:70 . 111:34/
2 425 612:50 404 404 450 537:90 457:55 407:72 408:50 .7:09/
3 9251 23 580:00 9484 8012 10 444 10 324:90 10 421:64 8849:46 9945:60 . 258:60/
4 15 821 – 19 607 13 312 20 241 16 589:10 16 108:27 15 617:82 12 825.80 . 407:72/
5 3072 5323:00 3158 2582 3185 3631:90 3443:72 2849:00 3378:20 . 194:58/
6 25 935 28 578:13 26 310 25 448 26 150 26 275:00 26 247:27 26 081:35 25 960:50 . 213:79/
7 4187 6250:00 4352 3893 4568 4592:40 4415:00 3661.64 4533:90 . 120:61/
8 7599 9260:90 8098 6944 8081 8328:80 8225:81 7729:46 7532:20 . 168:82/
9 1071 1255:90 – 949 1061 – – 991:57 1025:80 .33:06/

10 14 552 16 113:33 – 12 985 15 294 – – 13 999:56 13 662:30 . 214:54/
11 29 358 – – 25 194 44 820 – – 27 781:50 31 520:80 .1 027:87/
12 5699 5829:14 – 5181 5464 – – 5550:20 5200:60 .46:84/
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FastSA. These results have statistical significance.

4.5 Conclusion

In this work, a novel approach for solving examination timetabling problems is described.
The proposed metaheuristic algorithm uses a graph colouring heuristic for solution initial-
isation and the SA metaheuristic for solution optimisation. Two optimisation algorithms
were proposed. The first one is the original SA algorithm. The second one, named FastSA,
is based on the SA algorithm but uses a modified acceptance criterion, which fixes the se-
lected exam as soon as the exam’s number of accepted moves in the previous bin is zero.

The developed SA and FastSA approaches were tested on the public ITC 2007 data
set. Compared to the SA, the FastSA uses 17% less evaluations, on average. In terms of
solution cost, the FastSA is competitive with the SA algorithm attaining the best average
value in four out of twelve instances. Compared with the state-of-the-art approaches, the
FastSA improves on one out of twelve instances, and ranks third out of five algorithms.
An algorithm comparison was carried out confirming that only one algorithm, Byk13, is
better than the FastSA. These results have statistical significance.

Future work will focus on three research lines. The first will encompass the use of
the FastSA metaheuristic to the remaining ITC 2007 tracks (course timetabling and post-
enrolment course timetabling tracks), and also to other optimisation problems. The sec-
ond one will involve the study and design of other neighbourhood movements and its
combination with the presented ones. The third research direction will involve the study
and application of the proposed framework to other simulated annealing variants such as
the threshold acceptance algorithm.
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In this chapter, two approaches based on the shuffled complex evolution (SCE) algo-
rithm are proposed for solving the Examination Timetabling Problem (ETP). The chapter
starts by introducing, in Section 5.1, the SCE algorithm and the related shuffled frog-

leaping algorithm (SFLA).

In Section 5.2, the proposed SFLA memetic algorithm for the ETP is presented.
Section 5.3 addresses the proposed SCE memetic algorithm for the ETP. The chapter
ends with the experimental evaluation of the solution methods on the Toronto and ISEL–
DEETC benchmark sets, with a discussion of the obtained results.

5.1 Shuffled Complex Evolution Based Algorithms

The SCE is a population-based global optimisation algorithm proposed by Duan, Gupta &
Sorooshian (1993). A related algorithm, the SFLA, was proposed later in 2003 by Eusuff
et al. (2006); Eusuff & Lansey (2003). In SCE and SFLA, global search is managed as
a process of natural evolution. The sample points form a population that is partitioned in
distinct groups called complexes and memeplexes in SCE and SFLA, respectively. Each of
the complexes (memeplexes) evolve independently, by searching the space into different
directions. After completing a certain number of generations the complexes are com-
bined, and new complexes are formed through the process of shuffling. These procedures
enhance survivability by a sharing of information about the search space, constructed in-
dependently by each complex (Duan et al., 1993). Figure 5.1 illustrates the SCE and
SFLA algorithms steps.

The approaches proposed in this chapter are based on the SFLA, which is described
in more detail in the next section.

5.1.1 Shuffled Frog-Leaping Algorithm

In SFLA, the set of complexes represent a population of F frogs, denoted U.i/; i D
1; : : : ; F , with identical structure, but different adaptation to the environment. The F
frogs are divided in m substructures (complexes/memeplexes), where they “search for
food” (they are optimised, in the algorithm sense) and meanwhile, exchange information
(exchange memes) with other frogs, trying to reach the food localisation (global opti-
mum). Each memeplex is comprised of n frogs, so that F D mn. After searching locally
in their memeplex, the frogs are ranked and shuffled in order to go, eventually, to a dif-
ferent memeplex and exchange their memes with the frogs located there. The ranking
consists in sorting the frogs in descending order of performance.
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Shuffle the m memeplexes Determine the best solution

End

No
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Figure 5.1: SCE and SFLA algorithms steps. (Adapted from (Amiri et al., 2009).)

The partition of frogs is done as follows. The first frog (the frog with the best fitness)
in the sorted list is allocated to memeplex 1; the second frog is allocated to memeplex 2,
and so on, so that frog m will go to memeplex m; then, the frog in the m C 1 position
will go to memeplex 1, the frog in themC 2 position frog will go to memeplex 2, and the
process continues in this fashion for the remaining frogs.

In the original SFLA, in order to prevent the algorithm getting stuck in a local opti-
mum, a submemeplex of size q < n is constructed in each memeplex (Eusuff et al., 2006).
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The individual frogs in the memeplex are selected to form a submemeplex according to
their fitness. The selection strategy is to give higher weights to frogs that have higher
performance values and less weight to those with lower performance values.

Local Search Step

The SFLA’s local search is now detailed. This process is known as Frog-Leaping local

search and is illustrated in Figure 5.2.

In each submemeplex, the Pb and Pw vectors denote, respectively, the best and the
worst frog. A global best frog is also maintained in the algorithm, denoted as Pg . At the
end of each iteration of the Frog-Leaping local search, the worst frog in the submemeplex
is updated according to the following rule (Eusuff et al., 2006):

S D

(
min fint Œrand � .Pb � Pw/� ; Smaxg ; for a positive step
max fint Œrand � .Pb � Pw/� ;�Smaxg ; for a negative step

(5.1)

U.q/ D Pw C S (5.2)

where S denotes the update step size, rand represents a random number between .0; 1/
and Smax is defined as the maximum step size that any frog can take. U.q/ is the frog
placed in the last position in the memeplex (the previous worst frog) and that will be
replaced according to (5.2). The resulting frog could be worse, equal or better than the
previous worst frog. After each loop, the memeplex is reordered. The idea of this step is
to update the worst frog position towards the direction of the best frog in the memeplex.

5.2 Hybrid SFLA for the ETP

In this section, we describe a memetic algorithm for solving the ETP that uses the SFLA
working principles. The proposed hybrid heuristic algorithm, named hybrid shuffled frog-

leaping algorithm (HSFLA), incorporates features from the standard SFLA and simulated

annealing (SA) (Kirkpatrick et al., 1983) metaheuristics. The algorithm flow is illustrated
in Figure 5.3. It starts by generating a population of feasible solutions which is then
optimised by the HSFLA. The SA metaheuristic has the following known features:

• SA local search can lead to near optimal solutions if a slow annealing process is
conducted, at the cost of a longer execution time.

• The quality of the optimised solution depends not only on the SA parameters but
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Figure 5.2: Shuffled Frog-Leaping Algorithm local search. (Adapted from (Amiri et al.,
2009).)

also on the initial solution. If the initial solution is not very optimised, the improve-
ment attained could be considerable; on the other way, when we rerun SA on an
optimised solution, we could obtain a worse solution or a better solution, but in the
last case the improvement is marginal.

The HSFLA was designed taking these points into consideration. It works like a multi-
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Initialisation
procedure

Feasible
solutions

...

Hybrid SFLA Memeplexes

... ......... ...
Global best
frog (Pg)

Memeplex's
best frog (Pb)

Memeplex's
worst frog (Pw)

Based on the best and worst frogs,
generate a new frog which is improved 
using SA. This new frog will replace
the worst frog.

Figure 5.3: Flow of the hybrid heuristic algorithm. A set of feasible solutions is obtained
using the Saturation Degree graph colouring heuristic. Next, these solutions are organ-
ised in memeplexes and optimised using the hybrid SFLA. In the SFLA local search, the
memeplex’s worst frog is replaced by a new frog which results from the combination of
the memeplex’s best and worst frogs followed by application of the SA metaheuristic.

start SA optimising different initial solutions. It maintains elitism by keeping the global
best frog. After shuffling the memeplexes, the SA is executed again on solutions of a
given memeplex, and the process is repeated for all the memeplexes for a given number
of time loops (Figure 5.1).

In the next section, we describe the HSFLA’s application to the Toronto benchmark
set. The following algorithm components are described: i) solution representation, ii) ini-
tialisation procedure, iii) neighbourhood structure, and iv) SFLA’s worst frog improve-
ment and random frog generation.

5.2.1 Application to the Toronto Benchmark Set

Solution Representation

Each individual frog (solution) is represented by an array of dimension equal to the num-
ber of time slots, where each position contains an array of exams scheduled at that time
slot. The adopted representation is the same as the one described in Section 4.1.3 and
illustrated in Figure 4.1. In our method, only feasible solutions are manipulated as all the
operators produce feasible timetables. The fitness of a solution is the value of the prox-
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imity cost function to be minimised, which is a measure of the soft constraints violations
(given by Equation (2.3) in Section 2.4.1).

Initialisation Procedure

The initial frog population is created using a construction algorithm that is based on the
saturation degree (SD) graph colouring heuristic as described in Section 4.1.3.

Neighbourhood Structure

Local search methods like SA start from an initial solution and explore other candidate
solutions in the neighbourhood. The neighbourhood comprises a set of solutions that
are reached from the initial one by applying a move. The search progresses by moving
to a candidate solution (which, in the case of SA, may or may not improve the previous
solution) and repeating the process until a given stopping criterion is met (see Section 4.1).
In our approach we use two neighbourhoods, PeriodSwap and KempeChain, published in
the literature. The neighbourhoods are denoted N1 and N2, respectively, and are defined
as follows.

Neighbourhood N1: exchange exams in time slot ti with exams in time slot tj , where ti
and tj are two randomly chosen time slots. This neighbourhood was introduced in (Burke
& Bykov, 2008). It maintains the solution feasibility since all exams in a time slot are
swapped.

Neighbourhood N2: perturb, in a feasible fashion, an exam included in a Kempe chain

(see Section 4.1.3).

Neighbourhoods N1 and N2 are applied in the HSFLA’s worst frog improvement step,
described in detail next.

Worst Frog Improvement and Random Frog Generation

In the original SFLA, each solution (frog) is a vector, and the worst performance frog
within each submemeplex is updated towards the direction of the best frog, according to
Equations (5.1) and (5.2) (see Figure 5.2). In our adaptation of the SFLA for the ETP, we
update the worst frog by applying three operators, which are: crossover, mutation, and
local search based on the SA metaheuristic. These are specified in Algorithm 5 which
describes the worst frog improvement procedure.

In Step 1 of Algorithm 5, we combine the worst and best frogs in order to produce
the new candidate frog. In Step 2, we apply a mutation operator using neighbourhood
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Algorithm 5 Worst frog improvement procedure.
Input: Pb, Pw : Memeplex’s best and worst frogs.
Output: P

0

w : New candidate frog. It will replace Pw if it is better.
1: Set P

0

w D Pb.
2: Step 1: With probability pc make P

0

w D crossover.Pb; Pw/.
3: Step 2: With probability pm make P

0

w D mutationN1.P
0

w/.
4: Step 3: With probability pi make P

0

w D SAN2.P
0

w/.

N1 to the solution P
0

w obtained in Step 1. In Step 3, we apply the SA metaheuristic
with neighbourhood N2 to the solution P

0

w obtained in Step 2. The implemented SA is
described in Algorithm 2. Each step is executed with a given probability, so in the event
that no operator is applied, the new candidate frog P

0

w is equal to Pb.

Executing the steps of the SFLA local search (Figure 5.2), the new frog is going to
replace the worst frog if it is better than this last one. Otherwise, the procedure is repeated
but substituting Pb by the global best frog, Pg . If the new frog doesn’t still improve over
the worst frog U.q/, then a random solution is generated as the new U.q/, replacing the
worst frog. To generate a random frog, we use the construction method described above.

The crossover operator in Step 1 is described next.

Algorithm 6 Crossover operator for the Toronto benchmark set.
1: function CROSSOVEROPERATORTORONTO(P1,P2) F ‘P1’ and ‘P2’ are the parent

solutions
2: O1  P1 F Initialise offspring O1 as a copy of P1

3: k 0
4: while k < 3 do
5: Select random time slots ti and tj , from P1 and P2, respectively.
6: Insert (if possible) exams from time slot tj from P2 into time slot ti of O1.

Exams that generate hard constraint violations or that are already found in time slot
ti , are not inserted. The duplicated exams in the other time slots of O1 are removed
(Figure 5.4).

7: k k+1
8: end while
9: Output: Offspring individual O1

10: end function

Recombination Operator

The proposed recombination (crossover) operator, used in the case of the Toronto bench-
mark set, was adapted from the one reported in Abdullah et al. (2010); Sabar, Ayob,
Kendall & Qu (2012). The steps of the crossover operator are detailed in Algorithm 6.
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t1 t2 t3 t4 t5
e2 e1 e9 e6 e8

e14 e11 e20 e13 e12

e10 e4 e5 e7 e15

e3 e18 e17

e16 e19

(a) Solution P1

t1 t2 t3 t4 t5
e15 e9 e6 e5 e8

e20 e2 e1 e18 e14

e12 e17 e4 e11

e10 e13 e16 e3

e7 e19

(b) Solution P2

t1 t2 t3 t4 t5
e2 e1 e9 e6 e8

��e14 e11 e20 e13 e12

e10 e4 e5 e7 e15

��e3 ��e8 e18 e17

e16 e14 ��e19

��e11

e3

e19

(c) Offspring O1

Figure 5.4: Crossover between P1 and P2. The resulting solution O1 in (c) is the result
of combining solution P1 (a) with solution P2 (b). Initially, O1 is set to P1. The operator
inserts exams chosen from a random time slot of P2 (time slot t5 shown dark shaded in
(b)) in a random time slot t2 of O1 (shown dark shaded in (a) and (c)). Let the exams e8

and e1 be conflicting exams. When inserting exams from time slot t5 of P2 in time slot
t2 of O1 (shown light gray in (c)), some exams could be infeasible (the case of e8 in (c),
given the above assumption) or may already be found in that time slot (for example, e11

in (c)). These exams are not inserted. The duplicated exams in the other time slots are
removed.

This crossover operator generates feasible offspring solutions, so no special repair proce-
dure is needed. Figure 5.4 illustrates an excerpt of the crossover operation for generating
one of the two offspring, and using just a single crossover point (instead of using three
points, as it is done in the proposed operator).

The generic crossover illustrated in Figure 5.4 is applied in the HSFLA, in Step 1 of
Algorithm 5, using the rule: with probability pc make P

0

w D crossover.Pb; Pw/. Thus,
P1, and P2 correspond to Pb and Pw , respectively, and P

0

w corresponds toO1 (Figure 5.4)
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5.3 Hybrid SCE for the ETP

In this section we describe the hybrid SCE algorithm for solving the ETP. The proposed
memetic algorithm, named shuffled complex evolution algorithm (SCEA), integrates in
its local search step the great deluge (GD) metaheuristic. The SCEA main steps are
illustrated in Figure 5.1, whereas the SCEA local search step is illustrated in Figure 5.5.
The main loop of SCEA is identical to the SCE and SFLA main loop, where complexes
are formed by creating random initial solutions that span the search space. Here, instead
of points, the solutions correspond to complete and feasible timetables.

5.3.1 SCEA Local Search Step

Like the HSFLA presented in the previous section, the local search step of the SCEA,
presented in Figure 5.5, is based in the SFLA’s Frog-Leaping local search, but adapted
in order to operate with ETP solutions. Like the SFLA, we maintain the best and worst
solutions of the memeplex, denoted respectively as Pb and Pw , and elitism is achieved
by maintaining the best global solution, denoted as Pg . The local search step starts by
selecting, randomly, and according with crossover probability cp, two parent solutions,
P1 and P2, for recombination in order to produce a new offspring. P1 must be different
from the complex’s best solution. The solution P1 is recombined with solution P2 using
the crossover operation specified in Algorithm 6 (and illustrated in Figure 5.4), with the
exception that only a single iteration of the loop in Algorithm 6 is performed. The re-
sulting offspring replaces the parent P1 (Figure 5.5). After this, the complex is sorted in
order of increasing objective function value.

After the crossover, a solution in the complex is selected for improvement according to
an improvement probability, pi . The solution is improved by employing the local search
meta-heuristic GD (Dueck, 1993). The template of GD is presented in Algorithm 7.

The selection of the solution to improve is made on the group of the top t best solu-
tions. The exploitation using GD is done on a clone of the original solution, selected from
this group. If the optimised solution is better than the original, then it will replace the
complex’s worst solution. This updating step in conjunction with the crossover operator
guarantees a reasonable diversity, in an implicit fashion.

The GD (Algorithm 7) was integrated in the SCEA in the following fashion. We use
as the initial solution s0 the chosen solution to improve. The level LEVEL is set to the
fitness value of this initial solution s0. The search stops when the water level is equal to
the solution fitness.
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Figure 5.5: Shuffled Complex Evolution Algorithm local search step.

5.3.2 Application to the Toronto and ISEL–DEETC Benchmarks

Solution Representation and Construction

The solution representation and construction of the initial feasible solutions is the same
as for the HSFLA, and described in Section 5.2.1.
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Algorithm 7 Template of the Great Deluge Algorithm.
1: Input:
2: � s0 F Initial solution
3: � Initial water level LEVEL
4: � Rain speed UP F UP > 0

5: s  s0; F Generation of the initial solution
6: repeat
7: Generate a random neighbour s

0

8: If f .s
0

/ < LEVEL Then s  s
0

F Accept the neighbour solution
9: LEVEL LEVEL � UP F update the water level

10: until Stopping criteria satisfied
11: Output: Best solution found.

Neighbourhood Structure

In the local search with GD we employ the Kempe chain neighbourhood (Demeester et al.,
2012), which corresponds to Neighbourhood N2 of HSFLA presented in Section 5.2.1.

Two-epoch Feasibility

In order to be able to execute the SCEA on the ISEL–DEETC two-epoch problem, a
different version of the initialisation procedure, crossover and neighbourhood operators
had to be implemented. This was done in order for the algorithm to manage the hard
constraint H2 mentioned in Section 3.3.3. This modified version is executed in the first
epoch generation, while the original version is executed in the second epoch generation.

5.4 Experimental Results

5.4.1 Hybrid SFLA

The performance of the HSFLA was evaluated using the Toronto benchmark set (see
Section 2.4.1). The algorithm was programmed in the C++ language and was based on
the ParadisEO framework Cahon, Melab & Talbi (2004). The hardware and software
specifications are: Intel Core i7-2630QM, CPU @ 2.00 GHz � 8, with 8 GB RAM; OS:
Ubuntu 12.04, 32 bit; Compiler used: GCC v. 4.6.3. The parameters of HSFLA are:
Population size F D 50, Memeplex count m D 10, Memeplex and Submemeplex size
n D q D 5 (no submemeplexes were defined), and Number of time loops (convergence
criterion) L D 3. The SA parameters are: Tmax D 0:1, r D 0:00001, k D 5, and
Tmin D 0:0000001. For this cooling schedule the number of evaluations done in each SA
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is 6 907 760. The crossover, mutation and improvement probabilities, respectively, pc,
pm, and pi , were set to 0.1. The parameter values were chosen empirically, in a way
to achieve a reasonable balance between global and local exploration, and also establish
a satisfactory compromise between solution quality and execution time. To obtain our
computational results, the HSFLA was run five times on each instance with different
random seeds.

Comparative Results and Discussion

Tables 5.1, 5.2 and 5.3 show the best results of the HSFLA on the Toronto benchmark set
as well as a selection of the best results available in the literature. In the last two rows of
each table, the TP and TP (11) indicate the total penalty for the 13 instances and the total
penalty except the pur93 and rye92 instances, respectively.

Tables 5.4 and 5.5 compare HSFLA with the top seven best algorithms. For the HS-
FLA we present the lowest penalty value fmin, the average penalty value fave, and the
standard deviation � over five independent runs. For the reference algorithms we present
the best and average (where available) results. The authors analysed in Tables 5.4 and 5.5
mention computation times that are within several minutes – 1 hour, to several hours (12
hours maximum). Demeester et al. (2012) mention a maximum of 12 hours of computa-
tion time for all instances.

Table 5.6 compares the computation times of HSFLA and Demeester et al.’s algo-
rithms. For the largest instance, pur93, the stopping criterion was the completion of a
single run of the SA metaheuristic.

The best results obtained by HSFLA are comparable with the ones produced by state-
of-the-art algorithms, and HSFLA is able to produce some of the best average results. We
also observe that HSFLA obtains the lowest sum of average cost on the TP and TP (11)

quantities, for the Toronto set. For the larger instances, HSFLA attains longer computa-
tion times. However, good solutions are obtained soon after the first SA execution.

Further studies should focus on the HSFLA parameters optimisation in order to re-
duce computation time while not degrading the performance significantly. Future investi-
gations will rely on the use of other competitive metaheuristics, e.g., tabu search (TS) and
GD. In terms of implementation, incremental evaluation of the neighbourhood operator
should be carried out.

As future research, we intend to apply our solution method to the instances of the first
Track (Examination Timetabling) of the Second International Timetabling Competition

(ITC 2007), which contains more hard and soft constraints.
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Table 5.1: HSFLA results and comparison with a selection of the best algorithms from
literature. Values in bold represent the best results reported. “–” indicates that the corre-
sponding instance was not tested or a feasible solution was not obtained.

Data set Car96 Bur02 Mer03 Bur04 Bur04a Ken05

car91 7.10 4.65 5.10 5.00 4.80 5.37
car92 6.20 4.10 4.30 4.30 4.20 4.67
ear83 36.40 37.05 35.10 36.20 35.40 40.18
hec92 10.80 11.54 10.60 11.60 10.80 11.86
kfu93 14.00 13.90 13.50 15.00 13.70 15.84
lse91 10.50 10.82 10.50 11.00 10.40 –
pur93 3.90 – – – 4.80 –
rye92 7.30 – 8.40 – 8.90 –
sta83 161.50 168.73 157.30 161.90 159.10 157.38
tre92 9.60 8.35 8.40 8.40 8.30 8.39
uta92 3.50 3.20 3.50 3.40 3.40 –
ute92 25.80 25.83 25.10 27.40 25.70 27.60
yor83 41.70 37.28 37.40 40.80 36.70 –

TP (11) 327.10 325.45 310.80 325.00 312.50
TP 338.30 326.20

Table 5.2: HSFLA results and comparison with a selection of the best algorithms from
literature (continuation).

Data Set Yan05 Bur06 Bur08 Car08 Abd09 Sab09

car91 4.50 4.42 4.58 6.60 4.42 4.79
car92 3.93 3.74 3.81 6.00 3.76 3.90
ear83 33.71 32.76 32.65 29.30 32.12 34.69
hec92 10.83 10.15 10.06 9.20 9.73 10.66
kfu93 13.82 12.96 12.81 13.80 12.62 13.00
lse91 10.35 9.83 9.86 9.60 10.03 10.00
pur93 – – 4.53 3.70 – –
rye92 8.53 – 7.93 6.80 – 10.97
sta83 158.35 157.03 157.03 158.20 156.94 157.04
tre92 7.92 7.75 7.72 9.40 7.86 7.87
uta92 3.14 3.06 3.16 3.50 2.99 3.10
ute92 25.39 24.82 24.79 24.40 24.90 25.94
yor83 36.35 34.84 34.78 36.20 34.95 36.18

TP (11) 308.29 301.36 301.25 306.20 300.32 307.17
TP 313.71 316.70
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Table 5.3: HSFLA results and comparison with a selection of the best algorithms from
literature (continuation).

Data Set Bur10 Abd10 Tur11 Dem12 Abd13 HSFLA

car91 4.90 4.35 4.81 4.52 4.76 4.59
car92 4.10 3.82 4.11 3.78 3.94 3.86
ear83 33.20 33.76 36.10 32.49 33.61 32.72
hec92 10.30 10.29 10.95 10.03 10.56 10.08
kfu93 13.20 12.86 13.21 12.90 13.44 12.87
lse91 10.40 10.23 10.20 10.04 10.87 9.85
pur93 – – – 5.67 – 4.47
rye92 – – – 8.05 8.81 8.00
sta83 156.90 156.90 159.74 157.03 157.09 157.03
tre92 8.30 8.21 8.00 7.69 7.94 7.78
uta92 3.30 3.22 3.32 3.13 3.27 3.15
ute92 24.90 25.41 26.17 24.77 25.36 24.76
yor83 36.30 36.35 36.23 34.64 35.74 34.85

TP (11) 305.80 305.40 312.84 301.02 306.58 301.54
TP 314.74 314.01

Table 5.4: HSFLA results and comparison with the best algorithms from literature. Values
in bold represent the best results reported. “–” indicates that the corresponding instance
was not tested or a feasible solution was not obtained.

Data set HSFLA Bur06 Car08 Abd09

fmin fave � fmin fmin fmin fave

car91 4.59 4.62 0.03 4.42 6.60 4.42 4.81
car92 3.86 3.87 0.01 3.74 6.00 3.76 3.95
ear83 32.72 32.80 0.07 32.76 29.30 32.12 33.69
hec92 10.08 10.10 0.01 10.15 9.20 9.73 10.10
kfu93 12.87 12.91 0.03 12.96 13.80 12.62 12.97
lse91 9.85 9.90 0.06 9.83 9.60 10.03 10.34
pur93 4.47 4.49 0.03 – 3.70 – –
rye92 8.00 8.03 0.03 – 6.80 – –
sta83 157.03 157.03 0.00 157.03 158.20 156.94 157.30
tre92 7.78 7.84 0.05 7.75 9.40 7.86 8.20
uta92 3.15 3.18 0.02 3.06 3.50 2.99 3.32
ute92 24.76 24.80 0.02 24.82 24.40 24.90 25.41
yor83 34.85 35.00 0.09 34.84 36.20 34.95 36.27

TP (11) 301.54 302.05 301.36 306.20 300.32 306.36
TP 314.01 314.57 316.70
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Table 5.5: HSFLA results and comparison with the best algorithms from literature (con-
tinuation).

Data set Abd10 Bur10 Dem12 Bur08

fmin fmin fmin fave fmin fave

car91 4.35 4.90 4.52 4.64 4.58 4.68
car92 3.82 4.10 3.78 3.86 3.81 3.92
ear83 33.76 33.20 32.49 32.69 32.65 32.91
hec92 10.29 10.30 10.03 10.06 10.06 10.22
kfu93 12.86 13.20 12.90 13.24 12.81 13.02
lse91 10.23 10.40 10.04 10.21 9.86 10.14
pur93 – – 5.67 5.75 4.53 4.71
rye92 – – 8.05 8.20 7.93 8.06
sta83 156.90 156.90 157.03 157.05 157.03 157.05
tre92 8.21 8.30 7.69 7.79 7.72 7.89
uta92 3.22 3.30 3.13 3.17 3.16 3.26
ute92 25.41 24.90 24.77 24.88 24.79 24.82
yor83 36.35 36.30 34.64 34.83 34.78 35.16

TP (11) 305.40 305.80 301.02 302.42 301.25 303.07
TP 314.74 316.37 313.71 315.84

5.4.2 SCEA

The performance of the SCEA was evaluated using the Toronto benchmark set (Sec-
tion 2.4.1) and the ISEL–DEETC benchmark set (Section 3.2). The algorithm was pro-
grammed in C++ using the ParadisEO framework (Talbi, 2009). The hardware and soft-
ware specifications are: Intel Core i7-2630QM, CPU @ 2.00 GHz � 8, with 8 GB
RAM; OS: Ubuntu 14.04, 64 bit; Compiler used: GCC v. 4.8.2. The parameters of
SCEA are: Population size F D 24, Memeplex count m D 3, Memeplex size n D 8

(no sub-memeplexes were defined), and Number of time loops (convergence criterion)
L D 100 000 000. The number of best solutions to consider for selection on a complex is
given by t D n=4 D 2. The GD algorithm parameter, UP , was set to: UP D 1�10�7.
The crossover and improvement probabilities, cp and ip, were set equal to 0.2 and 1.0,
respectively. The parameter values were chosen empirically. To obtain the simulation
results, the SCEA was run five times on each instance with different random seeds. The
running time of the algorithm was limited to 24 hours to all instances except for the
Toronto’s pur93 instance. For this larger instance, the running time was limited to 48
hours.
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Table 5.6: Minimum and average fitness and standard deviation comparison. For the
pur93 instance, the HSFLA was stopped after executing one local search with SA.

Data HSFLA Demeester et al. (2012)

set Execution fmin fave � Stopping fmin fave �

time criterion

car91 27 h 4.59 4.62 0.03 4 h 4.68 4.75 0.05
12 h 4.52 4.64 0.05

car92 14 h 3.86 3.87 0.01 4 h 3.84 3.94 0.05
12 h 3.78 3.86 0.06

ear83 6 h 32.72 32.80 0.07 2 h 32.82 33.02 0.16
12 h 32.49 32.69 0.13

hec92 1 h 10.08 10.10 0.01 1 h 10.09 10.20 0.13
12 h 10.03 10.06 0.03

kfu93 17 h 12.87 12.91 0.03 2 h 13.06 13.45 0.31
12 h 12.90 13.24 0.20

lse91 10 h 9.85 9.90 0.06 2 h 10.06 10.38 0.19
12 h 10.04 10.21 0.13

pur93 15 h 4.47 4.49 0.03 4 h 6.45 6.57 0.07
12 h 5.67 5.75 0.05

rye92 17 h 8.00 8.03 0.03 4 h 8.18 8.31 0.10
12 h 8.05 8.20 0.12

sta83 4 h 157.03 157.03 0.00 1 h 157.03 157.05 0.01

tre92 8 h 7.78 7.84 0.05 2 h 7.73 7.91 0.06
12 h 7.69 7.79 0.07

uta92 30 h 3.15 3.18 0.02 2 h 3.32 3.37 0.03
12 h 3.13 3.17 0.03

ute92 3 h 24.76 24.80 0.02 2 h 24.83 24.99 0.24
12 h 24.77 24.88 0.17

yor83 5 h 34.85 35.00 0.09 2 h 34.79 35.06 0.25
12 h 34.64 34.83 0.14

Total �ave Total �ave

157 h 314.01 314.57 0.0346 32 h 316.88 319.00 0.13
145 h 314.74 316.37 0.0916

Results on the Toronto Benchmark Set

Tables 5.7 and 5.8 show the best results of SCEA on the Toronto benchmark set as well
as a selection of the best results available in the literature. The results of the approaches
of Car96 and Bur06 were validated in Qu et al. (2009). In the last two rows of each table,
the TP and TP (11) indicate, the total penalty for the 13 instances and the total penalty
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Table 5.7: Simulation results of SCEA and comparison with selection of best algorithms
from literature. Values in bold represent the best results reported. “–” indicates that the
corresponding instance was not tested or a feasible solution was not obtained.

Data set Car96 Bur06 Abd09 Bur10

fmin fmin fmin fave fmin

car91 7:10 4:42 4:42 4:81 4:90
car92 6:20 3.74 3:76 3:95 4:10
ear83 36:40 32:76 32.12 33:69 33:20
hec92 10:80 10:15 9.73 10:10 10:30
kfu93 14:00 12:96 12.62 12.97 13:20
lse91 10:50 9.83 10:03 10:34 10:40
pur93 3.90 – – – –
rye92 7.30 – – – –
sta83 161:50 157:03 156:94 157:30 156.90
tre92 9:60 7:75 7:86 8:20 8:30
uta92 3:50 3:06 2.99 3:32 3:30
ute92 25:80 24:82 24:90 25:41 24:90
yor83 41:70 34:84 34:95 36:27 36:30

TP (11) 327:10 301:36 300.32 306:36 305:80
TP 338:30 – – – –

Table 5.8: Simulation results of SCEA (continuation).

Data set Abd10 Dem12 SCEA

fmin fmin fave fmin fave �

car91 4.35 4:52 4:64 4:41 4.45 0:03
car92 3:82 3:78 3:86 3:75 3.77 0:01
ear83 33:76 32:49 32.69 32:62 32.69 0:07
hec92 10:29 10:03 10.06 10:03 10.06 0:03
kfu93 12:86 12:90 13:24 12:88 13:00 0:13
lse91 10:23 10:04 10:21 9:85 9.93 0:12
pur93 – 5:67 5:75 4:10 4.17 0:05
rye92 – 8:05 8:20 7:98 8.06 0:06
sta83 156.90 157:03 157:05 157:03 157.03 0:00
tre92 8:21 7.69 7.79 7:75 7:80 0:05
uta92 3:22 3:13 3:17 3:08 3.15 0:05
ute92 25:41 24.77 24:88 24:78 24.81 0:02
yor83 36:35 34:64 34:83 34.44 34.73 0:17

TP (11) 305:40 301:02 302:42 300:62 301.42
TP – 314:74 316:37 312.70 313.65
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except the pur93 and rye92 instances, respectively. For the SCEA we present the lowest
penalty value fmin, the average penalty value fave, and the standard deviation � over five
independent runs. For the reference algorithms we present the best and average (where
available) results. The computation times for the analysed algorithms range from several
minutes – 1 hour, to several hours (12 hours maximum).

The best results obtained by SCEA are competitive with the ones produced by state-
of-the-art algorithms. It attains a new lower bound on the yor83 instance. We also observe
that SCEA obtains the lowest sum of average cost on the TP and TP (11) quantities, and
the lowest sum of best costs on the TP quantity, for the Toronto instances. This demon-
strates that SCEA can optimise very different instances with good efficiency. A negative
aspect of SCEA is the time taken compared with other algorithms. The time taken is a
reflex of the exploration high diversity and the use of a low value for the decreasing rate
UP . A low UP value is needed in order for the GD be able to explore the best exam
movements. If the UP value is higher, the optimisation is faster but with worse results,
because the initial, larger-conflicting exams, are scheduled into sub-optimal time slots,
and thus the remaining exams, as the GD algorithm’s level decreases, are scheduled into
sub-optimal time slots as well.

The SCEA exploration diversity is now analysed. Figure 5.6 illustrates the SCEA
evolution on the yor83 instance. We can observe, in Figure 5.6(a), that the mean value
of the population fitness variance along time remains near 1.5, guaranteeing a diverse set
of solutions in the population. Figure 5.6(b) illustrates the best solution fitness evolution
along time. We can observe a fast decrease in the solution fitness value in the first time
loops, attaining a stationary value from that point on. Despite this, the algorithm is still
able to improve the cost further.

Results on the ISEL–DEETC Benchmark Set

For the ISEL–DEETC, we compare the automatic solution with a manual solution avail-
able from the ISEL academic services. The Lmin parameter (Section 3.3.3) was set to
Lmin D 10. With this Lmin value, the first and second epoch examinations of a given
course are 10 time slots apart.

Table 5.9 presents the costs for the manual and automatic solutions produced by the
SCEA. We mention that while the timetables were optimised using the fitness function
specified in Equations (3.8) and (3.2), for the first and second epochs, respectively, in
the collected results the fitness function defined by (3.14) was used instead. This latter
function is also used in the approach presented in Chapter 7 and considers conflicts from
two consecutive time slots, excluding conflicts on Saturdays. This measure is used in
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Figure 5.6: SCEA evolution on yor83 instance (a) Population fitness variance evolution
along time; (b) Best solution fitness evolution along time.

order to be able to compare SCEA with the method developed in Chapter 7.

The SCEA could generate timetables with lower cost compared with the manual so-
lution. We note that SCEA optimised the merged timetable comprising the five ISEL–
DEETC timetables and not the individual timetables, so, in some cases, the course pro-
grammes’ timetables have worse cost (e.g., MEIC, in the second epoch). The results
produced in the first epoch are comparable with the results obtained by the method devel-
oped in Chapter 7, in which the ISEL–DEETC single-epoch problem instance is solved
using a multi-objective evolutionary algorithm.

Tables 5.10 and 5.11 illustrate the manual and automatic solutions for the most diffi-
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Table 5.9: Number of clashes for the manual and automatic solutions of the ISEL–DEETC
benchmark set. For the automatic solution, the best cost out of five runs is presented.

Timetable Manual sol. Automatic sol.
1st ep. 2nd ep. 1st ep. 2nd ep.

LEETC 287 647 238 550

LEIC 197 442 171 418

LERCM 114 208 125 195

MEIC 33 63 23 66

MEET 50 144 23 124

Combined 549 1163 447 1060

Sum 1712 1507

cult timetable, the LEETC timetable, respectively.

Conclusions

We presented a memetic algorithm that combines features from the SCE and GD meta-
heuristics. The experimental evaluation of the SCEA shows that it is competitive with
state-of-the-art methods. In the set comprising the 13 instances of the Toronto benchmark
data, it attains the lowest cost on one instance, and the lowest sum of best and average
cost with a low standard deviation. The algorithm main disadvantage is the time taken on
the larger instances.

Further studies will address the diversity management in order to accelerate the algo-
rithm while maintaining a satisfactory diversity. As future research, we intend to apply
the SCEA to the instances of the first track (Examination Timetabling) of the ITC 2007,
which contains more hard and soft constraints.
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Table 5.10: Manual solution for the LEETC examination timetable. The courses marked in bold face are shared with other programs.
The number of clashes of this timetable is 287 and 647 for the first and second epochs, respectively.

Course First epoch Second epoch
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Mo Tu Wd Tr Fr Sa Mo Tu Wd Tr Fr Sa Mo Tu Wd Tr Fr Sa Mo Tu Wd Tr Fr Sa Mo Tu Wd Tr Fr Sa
ALGA x x

Pg x x
AM1 x x
FAE x x
ACir x x
POO x x
AM2 x x
LSD x x
E1 x x

MAT x x
PE x x

ACp x x
EA x x
E2 x x
SS x x

RCp x x
PICC/CPg x x

PR x x
FT x x

SEAD1 x x
ST x x

RCom x x
RI x x

SE1 x x
AVE x x

SCDig x x
SOt x x
PI x x

SCDist x x
EGP x x
OGE x x
SG x x
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Table 5.11: Automatic solution for the LEETC examination timetable. The courses marked in bold face are shared with other programs.
The number of clashes of this timetable is 238 and 550 for the first and second epochs, respectively. As can be observed, all first epoch
examinations respect the minimum distance (Lmin D 10) to the corresponding exam time slot in the second epoch.

Course First epoch Second epoch
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Mo Tu Wd Tr Fr Sa Mo Tu Wd Tr Fr Sa Mo Tu Wd Tr Fr Sa Mo Tu Wd Tr Fr Sa Mo Tu Wd Tr Fr Sa
ALGA x x

Pg x x
AM1 x x
FAE x x
ACir x x
POO x x
AM2 x x
LSD x x
E1 x x

MAT x x
PE x x

ACp x x
EA x x
E2 x x
SS x x

RCp x x
PICC/CPg x x

PR x x
FT x x

SEAD1 x x
ST x x

RCom x x
RI x x

SE1 x x
AVE x x

SCDig x x
SOt x x
PI x x

SCDist x x
EGP x x
OGE x x
SG x x
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This chapter describes the developed approach based on the cellular memetic algo-

rithm (cMA) for the Examination Timetabling Problem (ETP). The proposed memetic
algorithm comprises the hybridisation of the cellular evolutionary algorithm (cEA) with
the threshold acceptance (TA) algorithm. Section 6.1 describes the cMA structure. Sec-
tion 6.2 describes the cMA components (chromosome representation, construction of
initial solutions, crossover, mutation and local search operator) for the Toronto and the
Second International Timetabling Competition (ITC 2007) benchmark sets, respectively.
Section 6.3 is devoted to the experimental evaluation of cMA. Final remarks are given in
Section 6.4.

6.1 Cellular Memetic Algorithm

The cellular evolutionary algorithm used to solve the ETP relies on the cellular model.
In this model, the populations are organised in a special structure defined as a connected
graph, in which each vertex is a solution that communicates with its neighbours Alba &
Dorronsoro (2005). More specifically, individuals are set in a toroidal mesh and are only
allowed to recombine with the closest neighbours (Figure 6.1). The population structure
in cellular evolutionary algorithms, in addition to the inherent parallelism, promotes the
population genetic diversity Alba & Dorronsoro (2005), thus alleviating the premature
convergence observed in non-cellular evolutionary algorithms.

Recombination
+ Mutation

Improvement

Selection

Replacement

Figure 6.1: The cellular model for evolutionary algorithms. The figure illustrates the ap-
plication of the L5 neighbourhood type, also known as the von Neumann neighbourhood.

Algorithm 8 describes the proposed cellular memetic algorithm. The cMA uses a
tournament selection method of size two (binary tournament), as suggested in Alba &
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Dorronsoro (2008). The binary tournament has the property that any member of the pop-
ulation, besides the absolute worst, has a chance of getting to the next generation, but
better ones have a better chance. Thus, the binary tournament has a lower selective pres-
sure compared to other types of tournament.

Algorithm 8 Pseudo-code of the canonical cMA.
1: procedure CMA
2: Pop GenerateInitialPopulation
3: Evaluation(Pop)
4: while stopping condition is not true do
5: AuxPop ¿
6: for indiv = 1 to jPopj do
7: neighs GetNeighbours(indiv, Pop)
8: parents Selection(neighs)
9: offspring Recombination(parents)

10: offspring Mutation(offspring)
11: offspring LocalSearch(offspring)
12: Evaluation(offspring)
13: NewIndiv Best(indiv, offspring, Pop)
14: AuxPop AuxPop [ fNewIndivg
15: end for
16: Pop AuxPop
17: end while
18: end procedure

We now explain how the offspring are generated. For each generation (see Algo-
rithm 8), we obtain the neighbours of the individual i (i D 1; : : : ; �, where � is the
population size). In our implementation, we use the L5 neighbourhood (comprising the
immediate neighbours located in the north, south, west, and east positions). With this set
of neighbours, we perform a binary tournament, i.e., we choose randomly two parents
from the neighbourhood set and return the one with the best fitness as the first offspring.
The second offspring is simply individual i . Then, we perform recombination (crossover)
with probability Pc , mutation with probability Pm and local search with probability Pls

over these two offspring, and the best of the two is selected and compared with the orig-
inal individual i . The best between the offspring and individual i is finally kept for the
next generation.

There are two possible implementations of the cEA (Alba & Dorronsoro, 2008): syn-

chronous and asynchronous. If the cycle is applied to all the individuals simultaneously,
the cEA is said to be synchronous, since the individuals in the next generation are all
created concurrently. Otherwise, the cEA is said to be asynchronous. In this work, the
synchronous algorithm was implemented.
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6.2 Application to Benchmark Sets

In this section the cMA components (chromosome representation, construction of initial
solutions, crossover, mutation and local search operator) for the Toronto and ITC 2007
benchmark sets are presented. Most of cMA’s components are common to the ones intro-
duced in Chapter 4 (local search approaches) and in Chapter 5 (single-objective memetic
approaches).

6.2.1 Toronto Data Set

Chromosome Representation and Fitness Function

The adopted chromosome representation for the Toronto benchmark set is described in
Section 4.1.3.

Construction of Initial Feasible Timetables

The initial solution population for the Toronto benchmark set is constructed by applying
an initialisation procedure, that is based on the saturation degree (SD) graph colouring
heuristic, on each solution. The devised procedure is described in Section 4.1.3.

Neighbourhood Operator

The Kempe chain neighbourhood was used for the Toronto benchmark set, as described
in Section 4.1.3.

Recombination and Mutation Operators

The proposed recombination (crossover) operator, used in the case of the Toronto bench-
mark set, is described in Section 5.2.1.

Concerning the mutation operator, a randomly selected exam is moved to a different
feasible period using a Kempe chain-based neighbourhood operator, described in Sec-
tion 4.1.3.

6.2.2 ITC 2007 Data Set

Excepting the variation operators, all cMA components for the ITC 2007 case are the
same as the ones described previously in Chapter 4.
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Chromosome Representation and Fitness Function

The adopted chromosome representation for the ITC 2007 benchmark set is presented in
Section 4.1.4.

Construction of Initial Feasible Timetables

For the ITC 2007 case, the initial solution population is constructed also using an initial-
isation procedure based on the SD graph colouring heuristic. However, the construction
algorithm is more complex than that presented earlier for the Toronto set, due to the in-
creased complexity of the ITC 2007 hard constraints. The devised algorithm is similar to
the algorithm described in Section 4.1.4 for the fast simulated annealing (FastSA). The
difference relies in the algorithms’s Phase 2:

Phase 1 (The same steps as the FastSA’s Phase 1 construction algorithm are executed.)

Phase 2 If a selected exam cannot be assigned due to violations of hard constraints, the
conflicting exams are unscheduled and the selected exam is scheduled. The con-
flicting exams are again inserted in the exam priority queue, with priority equal to
zero (maximum priority). Then, we take the next exam from the queue and we
restart Phase 2. The construction phase ends when all exams are scheduled.

The initialisation algorithm of cMA was developed before the one used in FastSA.
In cMA, for simplicity, the priority of each unassigned exam in Phase 2 of the algorithm
is set to zero. In the FastSA algorithm, the same priority is computed as the number of
available periods in the timetable (SD heuristic). In addition, it is necessary to also update
the priority of the other exams remaining in the queue, in order to take into account the
exams removed from the timetable.

Recombination and Mutation Operators

Due to its implementation complexity, no recombination operator was implemented for
the ITC 2007 benchmark set. Concerning the mutation operator, a randomly selected
exam is moved to a different feasible period and room using the Slot-Room move, de-
scribed in Section 4.1.4.

6.3 Experimental Results and Discussion

This section presents the experiments conducted to test the proposed method on the exam-
ination timetabling problem. Section 6.3.1 describes the parameter settings of the algo-
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rithm. Section 6.3.2 presents a comparison between cEA (cellular evolutionary algorithm
without local search), TA (local search only), and cMA (hybrid algorithm). The cMA
comparison with the state-of-the-art approaches is done in Sections 6.3.3 and 6.3.4 for
the Toronto and ITC 2007 benchmark sets, respectively.

6.3.1 Settings

The algorithm was programmed in the C++ language and was based on the ParadisEO
framework Cahon et al. (2004). The experiments were conducted on an Intel Core i7-
2630QM (CPU @ 2.00 GHz with 8 GB RAM) PC running Ubuntu 14.04 LTS – 64 bit
OS. The Linux kernel used was 3.13.0-49-generic. The compiler used was the GCC v.
4.8.2. In the experiments, all the statistical tests were performed with a 95% confidence
level. For each algorithm configuration, ten executions were made on each Toronto and
ITC 2007 problem instance. We assessed the statistical significance of our results using
the Friedman test, as suggested in García & Herrera (2008). The results of the statistical
tests were produced using the Java tool in García & Herrera (2008).

Table 6.1: Parameter settings. Legend: G – Grid size, N – Neighbourhood type, Pc –
crossover probability, Pm – mutation probability, Pls – local search probability, Qmax –
initial threshold, r – decreasing rate, k – # iterations at each threshold, and Qmin – final
threshold. The parameter values in the second and third rows that differ from the first row
are underlined.

Data set G N Pc Pm Pls TA Cooling schedule

Qmax r k Qmin

Toronto 4 � 4 L5 0.4 0.1 0.1
0.1 1�10−3 5 2�10−5

0.1 1�10−6 5 2�10−5

ITC 2007 4 � 4 L5 0 0.1 0.1 10 1�10−3 5 2�10−4

The parameter settings are specified in Table 6.1. Two different cooling schedules
were used in the TA algorithm when solving the Toronto instances: a light cooling sched-
ule, with a decreasing rate r D 1�10�3, and an intensive cooling schedule, with a de-
creasing rate r D 1�10�6. With the light cooling schedule, each TA execution computes
42 590 solution fitness evaluations, whereas 42 585 970 evaluations are computed by each
TA execution with the intensive cooling schedule. The light cooling schedule was mostly
used in the experiments presented in Section 6.3.2, whereas the intensive cooling schedule
was used to generate the final timetables for the Toronto data set.

The parameter settings for the ITC 2007 instances were the same as the ones deter-
mined empirically for the Toronto set, with two differences: only the mutation operator
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was used (no crossover operator was implemented, as mentioned in Section 6.2.2) and the
cooling schedule was specifically tuned for the ITC 2007 case (particularly, the threshold
used, see Table 6.1). With this cooling schedule, a total of 54 100 evaluations were com-
puted by each TA execution. All executions of cMA were time limited. For the Toronto
benchmark set, the algorithm was stopped after 24 hours of computation for the smaller,
and after 48 hours for the largest instances (car92, car91, uta92, and pur93). These limits
were found to be adequate given our problem type.

For the ITC 2007 benchmark set, the algorithm was stopped after 276 seconds of
computation. The ITC 2007 rules enforce a limit on the computation time of the candidate
algorithms. This limit depends on the particular machine used and was determined by
running a benchmarking tool on our machine (available from the ITC 2007 site).

All obtained solutions were validated using Qu et al.’s validator tool Qu et al. (2009)
(for the Toronto benchmark set) and the ITC 2007’s online validator tool (for the ITC
2007 benchmark set).

For each examination timetabling benchmark set, the source code, the resulting solu-
tion files for each instance/run, and the produced statistics, are publicly available in the
following Git repositories:

� Toronto solver – https://github.com/nunocsleite/cMA-ETP-Toronto;

� ITC 2007 solver – https://github.com/nunocsleite/cMA-ETP-ITC2007.

cMA Parameter Values Selection Criterion

All parameter values were selected by following commonly used guidelines presented
in the literature, and then by performing empirical tuning studies, taking into account
a reasonable balance between solution quality and computation time. With respect to
the cEA parameters Grid size G D 4 � 4 and neighbourhood pattern N = L5, it is
reported in Alba & Dorronsoro (2005) that the square and rectangular grids show better
performance than narrow grids on some combinatorial optimisation problems, while the
use of smaller local neighbourhoods, such as L5, promotes a lower selection intensity,
thus increasing diversity in the population. Due to the relatively high computing cost
for generating feasible solutions, especially in the case of the more constrained ITC 2007
data sets, we chose a relatively small population of 16 individuals. The use of local search
served to intensify the search around promising regions.

Tested values for the mutation probability Pm and the crossover probability Pc were
selected from the sets f0:01; 0:05; 0:1g and f0:4; 0:6; 0:8g, respectively. It was found that
Pm D 0:1 and Pc D 0:4 led to the best results. For the local search probability, a low

https://github.com/nunocsleite/cMA-ETP-Toronto
https://github.com/nunocsleite/cMA-ETP-ITC2007
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value was chosen in order not to degrade diversity in the population and also to prevent
the algorithm from slowing down too much.

The cooling schedule values were chosen empirically in order to initially accept a
reasonable number of non-improving solutions and to have a reasonable exploitation in-
tensity. The justification is given in the next section.

Cooling Schedule Selection

The impact of the local search cooling schedule on the optimisation is analysed in Sec-
tion 4.2. It is known that the number of non-improving solutions is directly proportional
to the number of accepted exam moves, as a percentage of the accepted exams are non-
improving moves. Thus, we have selected an initial threshold value that allows for the
great majority of exams to be moved several times, in order to better explore the search
space. Graphically, we know that this effect is achieved by having the first threshold bin
practically filled in Figures 4.4 and 4.5. After several experiments we have determined
that the values Qmax D 0:1 and Qmax D 10 (see Table 6.1), for the Toronto and ITC
2007 benchmark sets, respectively, were reasonable values. The remaining parameters of
the cooling schedule (r , k, and Qmin) were set in order to have two distinct rates (pa-
rameter r), one light and one intensive, a low number of iterations at a fixed threshold
(parameter k) since the intensification is mainly controlled by the rate parameter, and a
sufficiently low threshold (Qmin parameter), that is, a value from which non-improving
moves are practically never accepted.

6.3.2 Comparison between cEA, TA, and cMA

This section presents three series of experiments, which are:

i. Study of the hybridisation in cMA. The cMA evolution is studied for two example
instances of the Toronto data set.

ii. Comparison between cEA, TA, and cMA, for the Toronto and ITC 2007 benchmark
sets.

iii. Sensitivity study. cMA and cEA using larger populations are studied for the complete
Toronto data set.

Study of the Combined Effect of the cMA

In this section, an investigation of the hybrid cMA is carried out. It is shown empirically
that cMA improves over TA alone. Two Toronto instances were used to illustrate the
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operation of the hybrid algorithm: car92 (a large size instance) and yor83 (a small size
instance). The light cooling schedule was used in the experiments. The other parameter
values reported in Table 6.1 were kept. Figure 6.2 illustrates the evolution of the timeslot
proximity cost (see Equation (2.3)) in the population, more precisely the maximum, av-
erage and minimum values. In this experiment, instead of limiting the computation time,
the number of generations was set based on two criteria: (a) the number of generations
should be larger than what is required for all individuals to reach the same baseline fit-
ness; in this way, it is possible to observe the evolution from that point on, and (b) the
number of generations should be set to a value that allows the memetic algorithm to reach
a stationary phase. After preliminary tests, the number of generations was set to 1000.

As observed in Figure 6.2, the evolution of the minimum cost in the population im-
proves with the number of generations. Due to the local search operator, a relatively good
minimum cost is achieved in the first generations, but this cost is further improved due to
the combined effect of crossover, mutation and local search. Indeed, crossover and muta-
tion are able to produce different starting points in the solution space that are optimised
by the local search operator. With the local search probability Pls D 0:1, at least ten
generations are needed in order for all the solutions to approach the same fitness baseline;
from this point on, the algorithm is able to improve the best fitness in the population be-
yond this baseline, even if the population diversity is very low. The same conclusion was
reached by running similar experiments on the other instances of the Toronto benchmark
set.

Comparison of cEA, TA, and cMA, on the Toronto and ITC 2007 Sets

In this section, the results of cEA, TA and cMA, for both the Toronto and ITC 2007
benchmark sets, are presented and compared. Statistical significance of the results is also
presented. The settings used in the experiments are the same as those found in Table 6.1.
The statistical analysis was carried out according to the methodology suggested in García
& Herrera (2008). For the statistical analysis, the Friedman test was first applied, fol-
lowed by the Holm and Hochberg’s tests as post-hoc methods (if significant differences
are detected) to obtain the adjusted p-values for each comparison between the control
algorithm (the best-performing one) and the other algorithms.

Table 6.2 presents the results of cEA, TA, and cMA on the Toronto benchmark set.
cEA and cMA were executed for a fixed time limit (Max time), determined empirically
as the time required for the algorithm to reach a stationary state. Then fmin is the best
solution value (minimum penalty) over ten executions, favg is the average and fmax the
worst solution value, while � is the standard deviation. Table A.4 in Appendix A sum-
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Figure 6.2: Evolution of the population maximum, average and minimum proximity cost
for (a) car92 and (b) yor83 instances using the light cooling schedule. The number of
generations was set to 1000.
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Table 6.2: Results of cEA, TA, and cMA on the Toronto benchmark set. The best values are shown in bold. The cEA and the cMA were
run for a fixed time limit.

cEA TA cMA

Inst. Max time fmin fmax favg � Avg. time (s) fmin fmax favg � Max time fmin fmax favg �

car91 20 s 7.39 7.81 7.65 0.12 9.00 5.65 6.05 5.84 0.13 1 h 10 min 5.31 5.57 5.46 0.07
car92 20 s 6.00 6.62 6.27 0.21 6.80 4.57 4.81 4.65 0.07 1 h 10 min 4.27 4.45 4.37 0.05
ear83 10 s 44.17 49.08 46.27 1.50 1.60 35.25 38.71 37.61 1.00 35 min 33.21 34.46 33.81 0.38
hec92 3 s 12.42 14.03 13.34 0.51 0.60 10.27 11.38 10.91 0.27 20 min 10.11 10.37 10.20 0.09
kfu93 20 s 19.87 21.05 20.64 0.42 2.00 13.79 14.97 14.40 0.37 40 min 13.34 13.54 13.42 0.06
lse91 10 s 15.14 18.19 16.65 0.83 1.90 10.63 12.06 11.45 0.38 25 min 10.22 10.82 10.45 0.22
pur93 3 min 8.88 9.11 8.97 0.06 32.50 6.38 6.58 6.46 0.06 5 h 6.17 6.30 6.24 0.05
rye92 30 s 14.60 16.07 15.62 0.50 3.60 8.95 9.59 9.25 0.21 30 min 8.65 8.79 8.72 0.05
sta83 5 s 158.12 161.34 159.42 1.14 0.50 157.03 157.43 157.16 0.11 1 min 20 s 157.03 157.03 157.03 0
tre92 10 s 10.48 11.22 10.94 0.23 2.20 8.70 9.21 8.89 0.16 30 min 8.30 8.43 8.36 0.04
uta92 30 s 4.78 4.98 4.87 0.08 8.10 3.69 3.88 3.78 0.07 1 h 15 min 3.59 3.70 3.64 0.03
ute92 10 s 32.50 34.49 33.44 0.62 1.10 25.01 26.24 25.41 0.45 17 min 24.84 24.93 24.87 0.03
yor83 10 s 43.93 46.09 45.35 0.60 2.00 37.46 40.02 39.08 0.78 30 min 35.49 37.33 36.38 0.49
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marises the ranks obtained by the Friedman test. The p-value computed by the Friedman
test is 2:26�10�6, which is below the significance interval of 95 % (˛ D 0:05). This
value indicates that there is a significant difference among the observed results. Table A.5
shows the adjusted p-values for the post-hoc Holm and Hochberg’s tests on the cMA al-
gorithm, revealing significant differences when using cMA as the control algorithm. Both
procedures confirm that cMA is better than TA and cEA with ˛ D 0:05.

Table 6.3 presents the results of cMA on the Toronto benchmark set using the light and
intensive cooling schedules. Table A.6 summarises the ranks obtained by the Friedman
test, with a p-value of 8:74�10�4 (which is below the significance interval of 95%).

Table A.7 shows the adjusted p-values obtained by the post-hoc Holm and Hochberg’s
tests on the cMA-intensive algorithm. These procedures reveal significant differences
when using cMA-intensive as the control algorithm, confirming that cMA-intensive is
better than cMA-light with ˛ D 0:05.

Table 6.4 presents the results of cEA, TA, and cMA on the ITC 2007 benchmark set.
cEA and cMA were executed for a fixed time limit which corresponds to the ITC 2007
time limit. Table A.8 summarises the ranks obtained with the Friedman test. The p-value
computed by the Friedman test is 8:84�10�5, which is below the significance interval of
95% (˛ D 0:05). Table A.9 shows the adjusted p-values obtained by the post-hoc Holm
and Hochberg’s tests on the cMA algorithm. Holm and Hochberg’s procedures reveal
significant differences when using cMA as the control algorithm, confirming that cMA is
better than TA and cEA with ˛ D 0:05.

Parameter Sensitivity Study

In this section, two experiments were conducted with the objective of testing different
parameter sets. In the first experiment, the performance of cMA with a larger population
(8� 8 instead of 4� 4), is studied for the Toronto data set. This experiment complements
the study undertaken earlier in this chapter, regarding the hybrid cMA. In the second
experiment, the performance of cEA is studied, also with a larger population (50 � 50).
Both studies are done using the Toronto data set.

In Table 6.5, results are reported for cMA using a squared cell grid of dimension 8�8
to structure the population. The light cooling schedule was used, while the other parame-
ters remained the same. The execution time limit was fixed a priori for each instance, as
specified in Table 6.5. Based on preliminary experiments, when the specified time limits
are reached, the algorithm stagnates and only a few improvements occur from this point
on.

In Table 6.6, the cEA results are reported, using a 50 � 50 squared cell grid in order
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Table 6.3: Comparison of two cMA approaches on the Toronto benchmark set using a light and an intensive cooling schedule. The best
results are shown in bold.

Light cooling schedule Intensive cooling schedule

Inst. Max time fmin fmax favg � Max time fmin fmax favg �

car91 1 h 10 min 5.31 5.57 5.46 0.07 48 h 4.31 4.42 4.39 0.03
car92 1 h 10 min 4.27 4.45 4.37 0.05 48 h 3.68 3.75 3.72 0.02
ear83 35 min 33.21 34.46 33.81 0.38 24 h 32.48 32.76 32.61 0.08
hec92 20 min 10.11 10.37 10.20 0.09 24 h 10.03 10.07 10.05 0.01
kfu93 40 min 13.34 13.54 13.42 0.06 24 h 12.81 12.85 12.83 0.01
lse91 25 min 10.22 10.82 10.45 0.22 24 h 9.78 9.84 9.81 0.02
pur93 5 h 6.17 6.30 6.24 0.05 48 h 4.14 4.21 4.18 0.02
rye92 30 min 8.65 8.79 8.72 0.05 24 h 7.89 7.97 7.93 0.03
sta83 1 min 20 s 157.03 157.03 157.03 0 24 h 157.03 157.03 157.03 0
tre92 30 min 8.30 8.43 8.36 0.04 24 h 7.66 7.75 7.70 0.03
uta92 1 h 15 min 3.59 3.70 3.64 0.03 48 h 3.01 3.05 3.04 0.01
ute92 17 min 24.84 24.93 24.87 0.03 24 h 24.80 24.85 24.83 0.02
yor83 30 min 35.49 37.33 36.38 0.49 24 h 34.45 34.74 34.63 0.08
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Table 6.4: Results of cEA, TA, and cMA on the ITC 2007 benchmark set. The best values are shown in bold. The time limit for cEA and
cMA corresponds to the ITC 2007 time limit.

cEA TA cMA

Inst. Max fmin fmax favg � Avg. fmin fmax favg � Max fmin fmax favg �

time time (s) time

1

276 s

7996 8698 8320.90 209.74 1.30 8234 8912 8663.40 228.41

276 s

6207 6617 6478.20 121.97
2 811 1139 942.10 90.05 1.10 814 1014 908.40 76.04 535 604 572.90 17.66
3 17 281 19 139 18 238.10 575.60 1.90 17 778 21 186 19 117.00 1184.32 13 022 14 180 13 680.50 423.68
4 17 092 19 856 18 619.80 991.90 1.80 16 653 21 115 18 409.40 1536.55 14 302 16 423 15 493.70 673.28
5 5853 10 498 6913.60 1332.09 2.40 5712 7955 6644.30 773.44 3829 4351 4155.60 170.25
6 27 905 29 665 28 539.50 673.78 0.90 28 245 29 905 29 055.00 489.26 26 710 27 230 26 873.00 183.38
7 10 086 10 960 10 664.20 299.37 1.40 8287 8938 8611.90 231.15 5508 6064 5844.40 178.62
8 11 519 11 974 11 711.80 138.98 0.80 11 470 12 071 11 791.40 185.99 8716 9106 8942.30 113.00
9 1338 1552 1395.30 66.31 0.40 1369 1608 1459.80 90.54 1030 1150 1080.30 42.72
10 15 678 19 793 16 562.00 1241.51 0.20 15 806 22 646 18 842.70 2641.72 13 894 14 625 14 208.70 211.16
11 48 931 57 581 52 332.50 2843.47 3.00 51 649 59 939 56 152.10 3141.53 39 783 48 061 43 585.80 2779.85
12 5484 5932 5668.20 150.37 0.50 5450 5899 5660.50 153.97 5142 5360 5249.00 81.08
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Table 6.5: cMA results on the Toronto benchmark set using a squared cell grid of dimen-
sion 8� 8 to structure the population. The crossover, mutation and local search probabili-
ties were set to 0.4, 0.1, and 0.1, respectively; the light cooling schedule was used. In the
last row, the total penalty – TP (sum of individual costs) for the complete set of instances
is indicated.

Initial solution Optimised solution
(fmin)

Instance Cost Time limit fmin favg � Time limit

car91 5.58 4 min. 5.30 5.36 0.04 7h00
car92 4.51 3 min. 4.30 4.32 0.02 7h00
ear83 36.74 1 min. 32.82 33.14 0.28 3h00
hec92 10.52 10 sec. 10.06 10.12 0.05 30 min.
kfu93 13.73 35 sec. 13.22 13.32 0.07 1h30
lse91 11.12 1 min. 10.22 10.32 0.07 2h00
pur93 6.27 10 min. 6.11 6.17 0.04 5h30
rye92 8.81 1 min. 8.54 8.59 0.04 2h00
sta83 157.03 10 sec. 157.03 157.03 0.00 5 min.
tre92 8.53 40 sec. 8.19 8.24 0.04 2h00
uta92 3.70 2 min. 3.58 3.62 0.02 3h00
ute92 25.07 15 sec. 24.81 24.85 0.02 1h30
yor83 37.23 20 sec. 34.85 35.32 0.47 5h30

TP – – 319.03 320.42 – –

to cope with the absence of local search, and to guarantee a reasonable diversity in the
population. cEA was able to attain results comparable to the cMA’s initial solution in Ta-
ble 6.5, but required a much longer time. A similar behaviour was verified experimentally
on the ITC 2007 benchmark set.

Discussion

In this subsection, a discussion of the results presented in the previous three subsections
is carried out. From the experimental results reported previously, the following key con-
clusions are drawn:

• algorithm’s components comparison – from Table 6.2 (cEA vs. TA vs. cMA on the
Toronto set) we can observe that cEA obtains poor results when compared to TA
and cMA; this behaviour can be attributed to the use of a small population and to the
power of the variation operators (crossover and mutation). With a small population,
cEA tends to stagnate faster.
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Table 6.6: cEA results on the Toronto benchmark set using a squared cell grid of dimen-
sion 50 � 50 to structure the population. The other cEA parameters from Table 6.1 (N ,
Pc , Pm) were kept unchanged. In the last row, the total penalty – TP (sum of individual
costs) for the complete set of instances is indicated.

Instance fmin favg � Time limit

car91 5:38 5:53 0:08 2 h 30 min
car92 4:29 4:46 0:08 2 h 30 min
ear83 35:07 36:26 0:72 10 min
hec92 10:49 10:87 0:20 2 min
kfu93 13:67 14:03 0:28 40 min
lse91 10:83 11:21 0:29 30 min
pur93 6:09 6:33 0:16 4 h
rye92 8:93 9:21 0:22 50 min
sta83 157:03 157:08 0:04 2 min
tre92 8:55 8:76 0:12 30 min
uta92 3:57 3:65 0:06 2 h
ute92 25:08 25:43 0:21 5 min
yor83 37:37 38:40 0:56 10 min

TP 326:35 331:22 – –

From Table 6.4 (cEA vs. TA vs. cMA on the ITC 2007 set) we can observe that
cEA obtains results that are competitive with TA but inferior to cMA; cEA did not
stagnate as fast on the ITC 2007 set as it did on the Toronto set due to the power of
the mutation operator and the nature of the ITC 2007 instances themselves. Even
if both mutation operators are based on the Kempe chain neighbourhood, they are
different and the operator used in the ITC 2007 is able to explore more efficiently
the solution space. This may be due to the variability of the ITC 2007 operator
which moves both exams and rooms.

From the analysis made earlier in this section, cMA is better than the cEA and the
TA algorithms for both the Toronto and ITC 2007 benchmark sets. Furthermore,
the reported results are statistically significant;

• light vs. intensive cooling schedule – Table 6.3 shows that for some instances,
e.g., hec92 and yor83 from the Toronto set, the light cooling schedule has a very
satisfactory performance. For other instances, however, e.g., car91, car92, pur93, or
uta92, a more intensive cooling schedule is needed in order to reach the best known
solutions. This choice is justified by the analysis made in Section 4.2. We also
demonstrate that the use of the intensive cooling schedule provides improvements
over the light cooling schedule. The reported results are statistically significant;
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• use of larger population size – when comparing cEA (4 � 4) in Table 6.2 with cEA
(50 � 50) in Table 6.6, we can observe that the latter obtains better results (at the
expense of more computation time). The same happens when we compare cMA
(4 � 4) in Table 6.2 with cMA (8 � 8) in Table 6.5. Thus, the use of a larger
population is beneficial. In the case of cEA, a large number of solutions needs to
be maintained in order to have satisfactory results. This is problematic for the ITC
2007 set, due to the large time required to construct a single solution. Hence, cEA
is not of practical use on this benchmark set.

6.3.3 Comparison with State-of-the-Art Approaches – Toronto Data
Set

In this section, results for the complete Toronto benchmark set are presented and analysed.
The parameter values are those shown in Table 6.1, and the intensive cooling schedule was
used. The existing solutions that are compared against our approach include:

Car96 (Carter et al. (1996)) The authors propose several graph heuristics with clique
initialisation and backtracking.

Yan05 (Yang & Petrovic (2005)) A hyperheuristic (HH) coupled with case-based rea-

soning is used to choose graph heuristics for constructing a feasible initial solution.
A GD algorithm is then employed to improve the solution. HH are generic optimi-
sation methods that explore the search space of heuristics instead of searching for
direct solutions.

Ele07 (Eley (2006)) Ant Colony algorithm Dorigo & Stützle (2010).

Car08 (Caramia, Dell’Olmo & Italiano (2008)) Local search-based approach.

Bur08 (Burke & Bykov (2008)) Hill-climbing with late-acceptance strategy (see Sec-
tion 2.3).

Bur10 (Burke et al. (2010)) Hybrid variable neighbourhood (see Section 2.3).

Pil10 (Pillay & Banzhaf (2010)) Genetic algorithm (see Section 2.3).

Dem12 (Demeester et al. (2012)) A HH is used to solve the Toronto and ITC 2007
benchmark sets, as well as a problem instance from KAHO Sint-Lieven (Ghent,
Belgium).

Abd13 (Abdullah & Alzaqebah (2013)) Hybrid bee algorithm.
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Lei14 (Leite et al. (2016a)) This is our previous algorithm (Section 5.3). Both cMA and
Lei14 are memetic algorithms Neri et al. (2012). The algorithms have in common
the use of structured populations: in the Lei14 approach, the Shuffled Complex

Evolution (SCE) algorithm is used to organise the population into complexes Leite
et al. (2016a) which are sub-populations or islands where the local search is carried
out. After the local search step is executed in each complex (island), the solutions
are redistributed among the complexes in order to propagate the best solutions to
the other complexes, implementing an exploration step. The local search used in
the Lei14 algorithm is a variation of the great deluge (GD) algorithm. The cEA also
uses a structured population in which each cell corresponds to a complex. Each cell
is only allowed to communicate with close neighbours, whereas the complexes in
the SCE are groups of solutions that only communicate within that complex. The
two algorithms adopt the decentralised model Alba & Dorronsoro (2008).

Fon15 (Fong, Asmuni & McCollum (2015)) A hybrid swarm-based approach to uni-
versity timetabling is proposed. Both the examination timetabling (tested on the
Toronto benchmark set) and the course timetabling (tested on the Socha benchmark
set) problems are addressed.

Alz15 (Alzaqebah & Abdullah (2015)) In this study, a hybrid bee colony optimisation

(BCO) algorithm is introduced. Two hybridisations are presented: (1) BCO hy-
bridised with hill-climbing using the late acceptance strategy, (2) BCO hybridised
with SA. It is shown that the first hybrid attains the best results on the tested bench-
marks (Toronto and ITC 2007).

The above algorithms were chosen using the following criteria: (i) best fitness value
on some instances, (ii) solution validation, and (iii) approach heterogeneity. Pillay and
Banzhaf (identified as Pil10) were the only authors to publish the solutions referred to in
their paper. The results published by the authors Car96, Yan05, and Ele07, were validated
in Qu et al. (2009). Table 6.7 presents a comparison between cMA and the selection
of the best algorithms from the literature as listed above. In the columns that refer to the
analysed algorithms, the minimum solution value is shown for each considered algorithm.
For cMA, the minimum, average and standard deviation are shown over ten runs. In the
last two rows of Table 6.7, the total penalty (TP) and the total penalty excluding the

pur93 and rye92 instances (TP (11)) are presented. For each approach, the TP and TP
(11) values are computed by summing up the individual costs obtained by the algorithm
on all instances (TP) and on 11 instances (TP (11)).
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Table 6.7: Results of cMA and comparison with a selection of the best algorithms from the literature. The best results are shown in bold.
“–” indicates that the corresponding instance was not tested or no feasible solution was obtained.

Instance Car96 Yan05 Ele07 Car08 Bur08 Bur10 Pil10 Dem12 Abd13 Lei14 Fon15 Alz15 cMA

fmin fmin favg �

car91 7.10 4.50 5.20 6.60 4.58 4.90 4.92 4.52 4.76 4.41 4.79 4.38 4.31 4.39 0.03
car92 6.20 3.93 4.30 6.00 3.81 4.10 4.22 3.78 3.94 3.75 3.89 3.88 3.68 3.72 0.02
ear83 36.40 33.71 36.80 29.30 32.65 33.20 35.87 32.49 33.61 32.62 33.43 33.34 32.48 32.61 0.08
hec92 10.80 10.83 11.10 9.20 10.06 10.30 11.50 10.03 10.56 10.03 10.49 10.39 10.03 10.05 0.01
kfu93 14.00 13.82 14.50 13.80 12.81 13.20 14.37 12.90 13.44 12.88 13.72 13.23 12.81 12.83 0.01
lse91 10.50 10.35 11.30 9.60 9.86 10.40 10.89 10.04 10.87 9.85 10.29 10.52 9.78 9.81 0.02
pur93 3.90 – 4.60 3.70 4.53 – 4.65 5.67 – 4.10 – – 4.14 4.18 0.02
rye92 7.30 8.53 9.80 6.80 7.93 – 9.30 8.05 8.81 7.98 – 8.92 7.89 7.93 0.03
sta83 161.50 158.35 157.30 158.20 157.03 156.90 157.81 157.03 157.09 157.03 157.07 157.06 157.03 157.03 0.00
tre92 9.60 7.92 8.60 9.40 7.72 8.30 8.38 7.69 7.94 7.75 7.86 7.89 7.66 7.70 0.03
uta92 3.50 3.14 3.50 3.50 3.16 3.30 3.35 3.13 3.27 3.08 3.10 3.13 3.01 3.04 0.01
ute92 25.80 25.39 26.40 24.40 24.79 24.90 27.24 24.77 25.36 24.78 25.33 25.12 24.80 24.83 0.02
yor83 41.70 36.53 39.40 36.20 34.78 36.30 39.33 34.64 35.74 34.44 36.12 35.49 34.45 34.63 0.08

TP (11) 327.10 308.47 318.40 306.20 301.25 305.80 317.88 301.02 306.58 300.62 306.09 304.43 300.04 300.65 –
TP 338.30 – 332.80 316.70 313.71 – 331.83 314.74 – 312.70 – – 312.07 312.76 –
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From Table 6.7, one can verify that cMA attains competitive costs on the Toronto
benchmark set. It attains the lowest TP and TP (11) values, proving the cMA efficiency.

Average Relative Deviation to the Best Solution – Cost and Time Analysis

In this section, the average relative deviation of cMA to the best known solution is studied.
The time performance of the analysed algorithms is also detailed.

Table 6.8 presents the previous best known solutions and the cost of the best solutions
obtained by cMA. Table 6.9 presents the algorithms’ rankings based on their average and
best performance, for different number of instances solved (NIS). NIS is the number of
instances for which a feasible and optimised solution was obtained by all algorithms that
are compared.

The rankings are computed as in Demeester et al. (2012). The algorithm that produces
the best solution on a given instance gets the lowest value, while the worst algorithm gets
the highest value. The same procedure is applied to the average values obtained after 10
runs on each instance. The final overall ranking is based on the average of the rankings
over all instances. The algorithm with the overall lowest rank can be considered the best
performing algorithm. cMA is in first position in all rankings shown in Table 6.9.

For each algorithm, we calculate the relative deviation RD D 100�.MSF�BKS/=BKS
for each instance, where BKS is the best known solution and MSF is the minimum solution

found. BKS values were extracted from Table 6.8. ARD denotes the average relative
deviation over all instances.

Table 6.10 shows the NIS and the ARD for the cost and computation time for all al-
gorithms that are compared in Table 6.7. In order to present the information in a concise
way, we have included the highest NIS value available for each compared approach (ex-
cept cMA); for comparing cMA with the other techniques, we have included NIS values
equal to 11, 12, and 13. The running times of these algorithms are presented in Table B.1
in Appendix B. The two rightmost columns (cMA improvement) present the ARD reduc-
tion in cost and time obtained by cMA with respect to each competitor.

As reported in Table 6.10, the ARD for cMA is only 3.95% for the complete Toronto
benchmark set. We can also see under cMA improvement that the ARD reduction is
significant, yielding a large improvement in solution quality with respect to all other al-
gorithms. However, this improvement comes at a computational cost, as indicated by the
negative values in Table 6.10.
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Table 6.8: Previous best known solutions with corresponding authors and comparison
with cMA’s best solutions. Values in bold are equal or improved solutions produced by
cMA.

Inst. Previous best Authors cMA
known fmin Integer
solution cost

car91 4.38 Alzaqebah and Abdullah, 2015 4.311 078 72 965
car92 3.75 Leite et al., 2014 3.682 556 67 829
ear83 29.30 Caramia et al., 2008 32.483 556 36 544
hec92 9.20 Caramia et al., 2008 10.033 652 28 325
kfu93 12.81 Burke and Bykov, 2008 12.806 693 68 503
lse91 9.60 Caramia et al., 2008 9.782 832 26 668
pur93 3.70 Caramia et al., 2008 4.144 594 124 458
rye92 6.80 Caramia et al., 2008 7.887 834 90 576
sta83 156.90 Burke et al., 2010 157.032 733 95 947
tre92 7.69 Demeester et al., 2012 7.657 339 33 386
uta92 3.08 Leite et al., 2014 3.013 214 64 079
ute92 24.40 Caramia et al., 2008 24.803 929 68 186
yor83 34.44 Leite et al., 2014 34.454 835 32 422

Statistical Analysis

We now present a statistical analysis of the obtained average results for the Toronto bench-
mark set with NIS D 11, which involves a larger number of algorithms. Table A.10
summarises the ranks obtained by the Friedman test for this case. The p-value computed
with the Friedman test is 6:71�10�11, which is below the significance interval of 95%
(˛ D 0:05), confirming that there is a significant difference among the observed results
and that cMA is the best performing algorithm. Table A.11 shows the adjusted p-values
obtained by the post-hoc Holm and Hochberg’s tests when considering cMA as the con-
trol algorithm. Holm and Hochberg’s tests indicate that cMA is better than all algorithms
except Bur08, Dem12, and Lei14, with ˛ D 0:05.

Discussion

The algorithms’ ARD (Table 6.10) and rankings (Tables 6.9 and A.10) provide two differ-
ent points of view for the tested algorithms. We can see that cMA is the best performing
algorithm, but also the slowest. Lei14 is in second position. Regarding the analysis with
NIS D 11, Tables 6.9 and 6.10 give the same ordering for all algorithms (cMA, Fon15
and Bur10). When considering NIS D 13, the relative order of Bur08 and Dem12 is re-
versed in the rankings table. Also, Car96 appears before Pil10 and Ele07 in Table 6.9, but
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Table 6.9: Ranking of the analysed algorithms according to their average and best per-
formance on the complete Toronto data set (NIS D 13) and on the Toronto data set but
excluding the pur93 and rye92 instances (NIS D 11). The lower the rank, the better the
algorithm’s performance.

NIS

11 13

Min Avg Min Avg

Alg. Rk Alg. Rk Alg. Rk Alg. Rk

cMA 2:4 cMA 1:3 cMA 2:5 cMA 1:3
Lei14 2:9 Lei14 2:1 Lei14 2:9 Lei14 2:1
Dem12 3:3 Dem12 3:2 Dem12 3:5 Dem12 3:4
Bur08 4:1 Bur08 3:7 Bur08 3:7 Bur08 3:5
Alz15 6:0 Alz15 5:1 Car08 4:0 Pil10 5:2
Fon15 6:7 Fon15 6:2 Car96 6:2 Ele07 5:5
Bur10 7:0 Abd13 6:6 Pil10 6:3
Car08 7:4 Pil10 8:1 Ele07 6:8
Abd13 8:2 Ele07 8:7
Yan05 8:5
Pil10 11:1
Car96 11:7
Ele07 11:7

is last in Table 6.10. Dem12 has a slightly better rank than Bur08 (Dem12 obtains eight
better results compared to Bur08), but Bur08 has a lower TP penalty and also a lower
ARD. Car96 has also two good results on instances pur93 and rye92 which improve its
ranking. Regarding computation times (see columns ‘ARD (%) – Time’ and ‘cMA im-
provement – Time’ in Table 6.10), it is worth mentioning that computation times were
extracted from the authors’ papers and correspond to different programming languages
and hardware, with unknown levels of optimisation. We can observe that the evolutionary
approaches (cMA, Lei14, Fon15, Alz15, Pil10, and Ele07) are among the slowest algo-
rithms, although some of them attain top positions with regard to solution quality (cMA
– 1st, Lei14 – 2nd, Fon15 – 4th, Alz15 – 5th). Local search and graph based algorithms
(Bur08, Car08, and Car96) are the fastest algorithms. The fastest one, Car96, has a time
ARD of 217.01% (about four times slower than the best obtained times, on average), but
also has the largest cost ARD; cMA, on the other hand has a time ARD of 432 002:24%
(about 8640:44 times slower than the best obtained times, on average), but also has the
smallest cost ARD. cMA takes more time to execute but this additional computation time
warrants the improvement in the results by providing the lowest cost ARD. The extra
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Table 6.10: Cost and time average relative deviations.

Algorithm NIS ARD (%) cMA improvement

Cost Time Cost Time

Lei14 13 4:69 384 773:99 0:74 �47 248:25
Bur08 13 6:21 2487:30 2:26 �429 534:94
Fon15 11 6:70 83 749:29 4:56 �422 999:94
Alz15 12 7:58 8279:84 4:28 �457 824:88
Bur10 11 7:93 7738:26 5:79 �499 010:97
Dem12 13 8:54 138 450:84 4:58 �293 571:40
Yan05 12 8:66 5354:06 5:36 �460 750:66
Abd13 12 9:57 – 6:28 –
Car08 13 12:99 638:92 9:03 �431 383:32
Pil10 13 16:26 6720:17 12:31 �425 302:07
Ele07 13 18:04 30 635:71 14:08 �401 386:53
Car96 13 21:35 217:01 17:40 �431 805:23

cMA
13 3:95 432 022:24 – –
12 3:29 466 104:72 – –
11 2:14 506 749:23 – –

computation time is attributed to both the use of a population based algorithm and an in-
tensive local search cooling schedule (the effect of using the intensive cooling schedule
is analysed in Section 4.2). In general, single solution metaheuristics such as simulated
annealing, threshold acceptance, tabu search, etc., are faster than population-based algo-
rithms. The improvement in the results is attributed to the simultaneous use of a hybrid
algorithm (cMA) and the use of an intensive cooling schedule in the threshold acceptance
algorithm.

6.3.4 Comparison with State-of-the-Art Methods – ITC 2007 Data
Set

Table 6.11 presents the ITC 2007 results of the five finalists. The competition winner
was Müller (2009). Table 6.12 presents the comparison of cMA with state-of-the-art
approaches, while fulfilling the ITC 2007 rules. The reported comparison includes the
recent approaches of Col09 (McCollum et al., 2009), Dem12 (Demeester et al., 2012),
Gog12 (Gogos et al., 2012), Alz14 (Alzaqebah & Abdullah, 2014), and Alz15 (Alzaqe-
bah & Abdullah, 2015). cMA is able to obtain competitive results compared to the other
algorithms. We can observe that cMA attains the best performance on the smaller in-
stances (instances 4, 9, 10 and 12). More iterations are needed for the other instances, as
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Table 6.11: ITC 2007 results. The best solutions are indicated in bold. “–” indicates
that the corresponding instance was not tested or a feasible solution was not obtained.
The column ‘fmin’ indicates the minimum penalty value per instance obtained among the
compared algorithms.

Inst. Mul08 Gog07 Ats07 Sme07 Pil07 fmin

1 4370 5905 8006 6670 12 035 4370
2 400 1008 3470 623 2886 400
3 10 049 13 771 17 669 – 15 917 10 049
4 18 141 18 674 22 559 – 23 582 18 141
5 2988 4139 4638 3847 6860 2988
6 26 585 27 640 29 155 27 815 32 250 26 585
7 4213 6572 10 473 5420 17 666 4213
8 7742 10 521 14 317 – 15 592 7742
9 1030 1159 1737 1288 2055 1030

10 16 682 – 15 085 14 778 17 724 14 778
11 34 129 43 888 – – 40 535 34 129
12 5535 – 5264 – 6310 5264

well as a more intensive cooling schedule, thus requiring a longer execution time.

Average Relative Deviation to the Best Solution and Statistical Analysis

In this section, a further study of the cMA performance is carried out. Namely, the av-
erage relative deviation to the best known solution is studied, followed by the statistical
analysis of the average case. No runtime analysis is done for the ITC 2007 case because
all algorithms are run under the same time conditions, as specified by the ITC 2007 rules
(see Appendix B).

Table 6.13 reports the BKS for the analysed algorithms, which is compared with the
cMA results.

Table 6.14 presents the algorithms’ ranking for different NIS. The ranking procedure
is the same as the one used in Section 6.3.3. Table 6.15 reports the average relative
deviation to the BKS for the analysed algorithms.

We now present a statistical analysis of the obtained average results for the ITC 2007
benchmark set with NIS D 7, which involves a larger number of algorithms. Table A.12
summarises the ranks obtained by the Friedman test in this case. The p-value computed
with the Friedman test is 6:13�10�5, which is below the significance interval of 95%
(˛ D 0:05), confirming that there is a significant difference among the observed results.
Gog12 is the best performing algorithm. Table A.13 shows the adjusted p-values obtained
by the post-hoc Holm and Hochberg’s tests considering Gog12 as the control algorithm.
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Table 6.12: Comparison of the best results obtained by cMA with the best solutions from the literature for the ITC 2007 benchmark
set. The best solutions are indicated in bold. “–” indicates that the corresponding instance was not tested or a feasible solution was not
obtained.

Inst. ITC 2007 Col09 Dem12 Gog12 Alz14 Alz15 cMA
best

fmin fmin favg �

1 4370 4633 6060 4775 5328 5154 6207 6478:20 121:97
2 400 405 515 385 512 420 535 572:90 17:66
3 10 049 9064 23 580 8996 10 178 10 182 13 022 13 680:50 423:68
4 18 141 15 663 – 16 204 16 465 15 716 14 302 15 493:70 673:28
5 2988 3042 4855 2929 3624 3350 3829 4155:60 170:25
6 26 585 25 880 27 605 25 740 26 240 26 160 26 710 26 873:00 183:38
7 4213 4037 6065 4087 4562 4271 5508 5844:40 178:62
8 7742 7461 9038 7777 8043 7922 8716 8942:30 113:00
9 1030 1071 1184 – – – 1030 1080:30 42:72

10 14 778 14 374 15 561 – – – 13 894 14 208:70 211:16
11 34 129 29 180 – – – – 39 783 43 693:56 2926:24
12 5264 5693 5483 – – – 5142 5249:00 81:08
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Table 6.13: Previous best known solutions with corresponding authors and comparison
with cMA’s best solutions. Values in bold represent equal or new best solutions.

Inst. Previous best Authors cMA
known solution fmin

1 4370 Müller, 2009 6207
2 385 Gogos et al., 2012 535
3 8996 Gogos et al., 2012 13 022
4 15 663 McCollum et al., 2009 14 302
5 2929 Gogos et al., 2012 3829
6 25 740 Gogos et al., 2012 26 710
7 4037 McCollum et al., 2009 5508
8 7461 McCollum et al., 2009 8716
9 1030 Müller, 2009 1030
10 14 374 McCollum et al., 2009 13 894
11 29 180 McCollum et al., 2009 39 783
12 5264 Atsuta et al., 2007 5142

Table 6.14: Ranking of the analysed algorithms according to their average and best per-
formance on the ITC 2007 benchmark set for NIS D 7 (instances 4, and 9 to 12 were
excluded), NISD 8 (instances 9 to 12 were excluded), and NISD 12 (complete data set).
The lower the rank, the better the algorithm’s performance.

NIS

7 8 12

Min Avg Min Avg Min

Alg. Rk Alg. Rk Alg. Rk Alg. Rk Alg. Rk

Gog12 1:7 Gog12 1:3 Col09 2:0 Gog12 1:6 Col09 1:8
Col09 2:0 Alz15 2:0 Gog12 2:0 Alz15 2:0 Mul09 1:8
Mul09 2:6 Alz14 2:7 Mul09 3:0 Alz14 2:8 cMA 2:4
Alz15 4:0 cMA 4:1 Alz15 3:9 cMA 3:6 Pil07 4:0
Alz14 4:7 Dem12 4:9 Alz14 4:8
cMA 6:4 cMA 5:5
Gog07 7:4 Gog07 6:9
Dem12 7:6 Ats07 8:3
Ats07 9:0 Pil07 8:8
Pil07 9:6

Holm and Hochberg’s tests confirm that Gog12 is better than Dem12 and cMA with ˛ D
0:05.

Table A.14 presents adjusted p-values as obtained with the procedures of Nemenyi,
Holm, Shaffer and Bergmann, which are used to compare pairs of algorithms. The dif-
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Table 6.15: Average relative deviation to the BKS. Gog07 and Dem12 have both NIS
D 10 (but they solved different instances), thus two corresponding ARD values for cMA
were computed for comparison purposes. The NIS values are indicated as 10 and 10�.

Algorithm NIS ARD (%) cMA improvement

Gog12 8 3:51 �23:18
Col09 12 3:67 �17:15
Mul09 12 8:38 �12:44
Alz15 8 9:76 �16:93
Alz14 8 16:21 �10:48
Sme07 7 31:36 9:66
Dem12 10� 41:25 19:90
Gog07 10 49:60 24:62
Ats07 11 131:01 111:61
Pil07 12 146:80 125:98

cMA
12 20:82 –
11 19:41 –
10 24:98 –
10� 21:35 –
8 26:69 –
7 21:70 –

ference is significant with all procedures for the pairs i D 1; 2; 3 and with Bergmann’s
procedure only for the pairs i D 4; 5. These results are analysed in the next section.

Discussion

The key finding of these results are as follows. From the obtained ARD values and sta-
tistical ranking, cMA is positioned in the middle with an ARD between 19% and 27%
from the BKS, for NIS D 11 and NIS D 8, respectively. The other competitors with bet-
ter ARD are Gog12 (3.51), Col09 (3.67), Mul09 (8.38), Alz15 (9.76) and Alz14 (16.21).
Thus, the best algorithm is Gog12. From this statistical analysis, we can conclude, with
a significance level of 5%, that Gog12 is better than Dem12 and cMA, and that Alz15
is better than Dem12; under Bergmann’s procedure, we can also conclude that Alz14 is
better than Dem12 and that Alz15 is better than cMA. The statistical analysis confirms
some of the results obtained with the ranking (Table 6.14) and ARD (Table 6.15). Thus,
cMA can solve the small instances effectively, but additional time is required for the larger
instances, due to the use of an evolutionary algorithm.
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6.4 Conclusions

In this work, a novel evolutionary approach for solving timetabling problems is described.
The proposed algorithm is a cellular evolutionary algorithm (cMA) that promotes the
population diversity by means of a smooth update of solutions through the population.
The algorithm was augmented with variation and local search operators that maintain
solution feasibility and is controlled by threshold acceptance. Incremental evaluation was
implemented in order to improve the algorithm’s execution time. A study of the impact of
simulated annealing-based methods on the examination timetabling problem was carried
out. This study shows that a low threshold decreasing rate is needed to obtain the best
results, by assigning the difficult exams to better suited time slots, thus allowing the easy
exams to be placed in good time slots as well.

The performance of cMA was evaluated on the uncapacitated Toronto and capacitated
ITC 2007 benchmark sets, and compared with state-of-the-art approaches. On the Toronto
set, the presented solution method improves on four out of thirteen instances, and attains
the lowest average relative deviation to the best known solutions. In order to achieve these
results for the Toronto set, cMA requires more time than its competitors, about two to four
times more than the slowest approaches on the largest instances (car91, car92, pur93, and
uta92).

On the ITC 2007 set, our approach improves on three out of twelve instances, for
the same execution time than the competitors. In this benchmark set, cMA is in the mid
positions with respect to the average relative deviation to the best known solutions.

Future work will focus on two research lines. The first one will extend the use of
cMA to the remaining ITC 2007 tracks (course timetabling and post-enrolment course
timetabling tracks). The second line of research will focus on a parallel implementation
of cMA.
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In this chapter we propose a novel hybrid Multi-Objective Evolutionary Algorithm

(MOEA) and show its application on a real-world Examination Timetabling Problem

(ETP) instance. The considered problem instance is the examination timetable of the
Electrical, Telecommunications and Computer Engineering Department (DEETC) at the
Instituto Superior de Engenharia de Lisboa (ISEL) – Instituto Politécnico de Lisboa.
This real-world benchmark set is named ISEL–DEETC and is described in Chapter 3.
The proposed MOEA is based on the Elitist non-dominated sorting genetic algorithm-II

(NSGA-II) (Deb, Pratap, Agarwal & Meyarivan, 2002). The NSGA-II procedure is one of
the popularly used MOEA which attempts to find multiple Pareto-optimal solutions in a
multi-objective optimisation problem. Like the works of Cheong et al. (2009); Côté et al.
(2004); Mumford (2010); Wong, Côté & Sabourin (2004), we also consider two objec-
tives: one that maximises each student free time between exams, and a second objective
that considers the minimisation of the timetable length.

The chapter is organised as follows. Section 7.1 presents the algorithmic flow of the
proposed MOEA. Section 7.2 presents simulation results and analysis of the proposed
algorithm. Finally, conclusions and future work are presented in Section 7.3.

7.1 Hybrid Multi-objective Evolutionary Algorithm

As mentioned in the introduction, we solve the ISEL–DEETC ETP using a hybrid MOEA
based on the NSGA-II algorithm. The NSGA-II has the following features: (1) it uses an
elitist principle, (2) it uses an explicit diversity preserving mechanism, and (3) it empha-
sizes non-dominated solutions. The basic NSGA-II was further transformed to include a
step where a local search procedure is performed. The general steps of the hybrid algo-
rithm (named hybrid multi-objective evolutionary algorithm (HMOEA)) are enumerated
in Figure 7.1. In the following subsections, each block of the HMOEA is described in
detail.

7.1.1 Chromosome Encoding

The timetabling problem approached in this chapter is specified in Section 3.4. In order
to optimise for the second objective (see Equation (3.15)), each timetable is represented
by a variable-length chromosome as proposed by Cheong et al. (2009), and illustrated
in Figure 7.2. A chromosome encodes a complete and feasible timetable, and contain
the periods and exams scheduled in each period. Well-formed timetables should have a
number of periods belonging to a valid interval, initially given by the timetable planner.
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Procedure HMOEA
P .t/: parent population at iteration t
Q.t/: offspring population at iteration t
R.t/: combined population at iteration t
L: local search operator
OUTPUT
N .t/: archive of non-dominated timetables

Initialise P 0 and Q0 of size N with random timetables
For each iteration t  0; 1; : : : ; Imax � 1 do

(Step 1) Form the combined population, R.t/ D P .t/
S
Q.t/, of size 2N .

(Step 2) Classify R.t/ into different non-domination classes.
(Step 3) If t � 1, use local search procedure L to improve elements of R.t/.
(Step 4) Form the new population P .tC1/ with solutions of different

non-dominated fronts, sequentially, and use the crowding sort procedure
to choose the solutions of the last front that can be accommodated.

(Step 5) N .tC1/  NonDominated.P .tC1//. If t D Imax � 1 then Stop.
(Step 6) Create offspring population Q.tC1/ from P .tC1/ by using the crowded

tournament selection, crossover and mutation operators.
(Step 7) Repair infeasible timetables.

Figure 7.1: Hybrid NSGA-II procedure.

However, the operation of crossover and mutation can produce invalid timetables, because
of the extra periods added to the timetable as a result of these operations. Thus, a repairing
scheme must be applied in order to repair infeasible timetables. The adopted scheme is
explained in detail in Section 7.1.4.

7.1.2 Population Initialisation

It is known that the basic examination timetabling problem, in which one minimises the
number of slots considering the single hard constraint of not having students with over-
lapping exams, is equivalent to the graph colouring problem Côté et al. (2004). As such,
several heuristics of graph colouring have been applied to the ETP. These heuristics in-
fluence the order in which exams are inserted in the timetable. In this work, we use the
following two heuristics, in the initialisation and mutation processes:

• saturation degree (SD): Exams with the fewest valid periods, in terms of satisfying
the hard constraints, remaining in the timetable are reinserted first.

• extended saturation degree (ESD): Exams with the fewest valid periods, in terms of
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Figure 7.2: Variable length chromosome representation. A chromosome encodes a com-
plete and feasible timetable.

satisfying both hard and soft constraints, remaining in the timetable are reinserted
first.

The ESD heuristic is used in the population initialisation procedure, while the SD heuristic
is used in the reinsertion process of the mutation operator (detailed in Section 7.1.3).
These two procedures are similar to the procedures applied in Cheong et al. (2009). The
use of the SD heuristic in the initialisation process has been experimented but with worse
results than the ESD heuristic.

In the initialisation process, a timetable with a random (valid) length is generated
for each chromosome. Then, the unscheduled exams are ordered according to the ESD
heuristic and a candidate exam is selected randomly being then scheduled into a randomly
chosen period (chosen from the set of periods with available capacity while respecting the
feasibility constraint). If no such period exists, a new period is added to the end of the
timetable to accommodate the exam. In the ESD heuristic used, a candidate exam can
be scheduled in a period if it does not violate feasibility and if the number of clashes is
bellow or equal to 70. This process is repeated until all exams have been scheduled.

7.1.3 Selection, Crossover and Mutation

The offspring population is created from the parent population by using the crowded
tournament selection operator Deb et al. (2002). This operator compares two solutions
and returns as the winner of the tournament the one which has a better rank, or if the
solutions have the same rank, the one who has a better crowding distance (the one which
is more far apart from their direct neighbours).
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The crossover and mutation operations were adapted from the ones introduced in the
work of Cheong et al. (2009). In the crossover operator, termed Day-exchange crossover,
the best days, selected based on the crossover rate, are exchanged between chromosomes.
The best day of a chromosome consist of the day (a period, in our case) which has the
lowest number of clashes per student. This operation is illustrated in Figure 7.3. To
ensure feasibility after the crossover operation, the duplicated exams are deleted. Notice
that, as mentioned before, the result of inserting a new period in a chromosome can yield
a timetable with a number of periods larger than the valid upper limit. If this is the case,
a repair scheme is applied in order to compact the timetable.
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Figure 7.3: Illustration of the Day-exchange crossover based in Cheong et al. (2009).
The shaded periods represent the chromosomes best days. These are exchanged between
chromosomes, being inserted into randomly chosen periods. Duplicated exams are then
removed.

The mutation operator removes a number of exams, selected based on the reinsertion
rate, and reinserts them into other randomly selected periods while maintaining feasibility.
We use the SD graph colouring heuristic to reorder the exams, prior to reinserting them.
As in the case of the crossover operator, the mutation operator could also add extra periods
to the timetable, for the exams that could not be rescheduled without violating the hard
constraints.
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7.1.4 Repairing Scheme

The repair scheme adopted was based in the period control operator of Cheong et al.
(2009), consisting of the following two operations: (1) Period expansion, used when the
timetable has a number of periods below the lower limit, and (2) Period packing, used
when the timetable has a number of periods above the upper limit.

In the period expansion operation, empty periods are first added to the end of the
timetable such that the timetable length is equal to a random number within the period
range. A clash list, comprising all exams involved in at least one clash, is maintained.
Then, all the exams in the clash list are swept in a random order and rescheduled into a
random period without causing any clashes while maintaining feasibility. Exams which
could not be moved are left intact.

The period packing operation proceeds as follows: first, the period with the smallest
number of students is selected; then the operation searches in order of available period
capacity, starting from the smallest, for a period which can contain exams from the former
while maintaining feasibility and without causing any clashes. The operation stops when
the timetable length is reduced to a random number in the desired range or when it goes
one cycle through all periods without rescheduling any exam.

7.1.5 Ranking Computation

The non-dominated sorting procedure employed in NSGA-II uses the evaluation of the
two objective functions to rank the solutions. We adopt a simple penalisation scheme in
order to penalize solutions with an invalid number of periods. The penalisation is enforced
according to the following pseudo-code:

If timetable length > max length Then

f Pen
1 D f1 C ˛1.timetable length � max length/

f Pen
2 D f2 C ˛2.timetable length � max length/

Else If timetable length < min length Then

f Pen
1 D f1 C ˛1.min length � timetable length/

f Pen
2 D f2 C ˛2.min length � timetable length/:

We set ˛1 D 1000 and ˛2 D 10 to introduce a high penalisation on the number of clashes
and number of periods, respectively.
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7.1.6 Local Exploitation

The local exploitation step was based in Cheong et al. (2009). It employs a local search
procedure to improve locally some elements of the population. First, 2N=4 groups of
fours are formed by randomly selecting into each group elements of the population R.t/.
Then, tournaments between elements of each group are taken. The chromosome which
has the lower rank (the one who belongs to the front with lower number) wins the tourna-
ment and is then scheduled for the improvement step. With this procedure, about N=2 of
the chromosomes of population R.t/ are selected for improvement. Also, it is guaranteed
that at least one element of the non-dominated front is selected for improvement.

The selected chromosomes are improved locally using a short iteration stochastic hill

climbing (SHC) procedure, with objective function f1 D minimization of the number of

clashes. We set a low temperature T in the SHC. In this way, our SHC works like a
standard hill climbing (HC) but with only one neighbour, instead of evaluating a whole
neighbourhood of solutions.

The random neighbour is selected according to the following operation. First, a clash
list for the selected chromosome is built. Then, the neighbour chromosome is the one
which results from applying the best move of a randomly chosen exam in the clash list
into a feasible period. The best move is the one that leads to the highest decrease in the
number of clashes.

7.1.7 Room Assignment Algorithm

The period seating capacity was set to S D 600. For room assignment, we use the
algorithm of Lotfi & Cerveny, described in Carter & Laporte (1996b).

7.2 Experimental Evaluation

In this section, we present the results of the HMOEA on the capacitated ISEL–DEETC
data set (specified in Section 3.4).

7.2.1 Settings

Table 7.1 presents the algorithmic parameters used in the experiments. The algorithm was
programmed in the Matlab language (version 7.9 (R2009b)), and run on a Windows 7.0,
i7-2630QM, 2.0 GHz, 8 GB RAM, computer.
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Table 7.1: HMOEA parameters.

Parameter Value

Population size 40
Number of iterations Imax D125
Crossover probability 1.0
Mutation probability 0.2
Reinsertion rate 0.02
SHC # iterations tmax D 5
SHC temperature T = 0.0001
Seating capacity 600

7.2.2 Results on the ISEL–DEETC Benchmark Set

First, we present the results on the performance of HMOEA, and then compare it with the
available manual solution. In the experiment made, the initial period range was set to the
interval Œ14; 22�, that is, four periods below and above the number of periods set in the
manual solution.

The performance of the HMOEA in terms of the evolution of the non-dominated front
is illustrated in Figure 7.4. We can observe that the algorithm converges rapidly as in
iteration 25 it has already a complete first front that is a good approximation of the final
Pareto front. After that iteration, the individual solutions are further optimised but to a
lesser extent. The running time for this experience (the best result out of five runs) was
411.75 seconds or� 7 minutes.

In Table 7.2 we compare the number of clashes per programme obtained by the manual
and automatic (considering the obtained solution with 18 periods) procedures. As we can
conclude from this table, the automatic solution gives improved results on the number of
clashes in all the individual programme timetables, which corresponds to a lower number
of clashes in the optimised merged timetable.

Tables 7.3 and 7.4 present the timetables, including room assignment, for the most
difficult programme: the LEETC programme. Table 7.3 shows the manual solution for
the LEETC examination timetable. The number of clashes of this timetable is 287. Ta-
ble 7.4 shows the automatic solution for the LEETC examination timetable. The number
of clashes of this timetable is 229. In the presented tables, the courses marked in bold
face are shared with other programmes, as shown in Table 3.4.

We can see that, qualitatively, the timetable produced by the automatic procedure has a
reasonable layout as the exams within the same semester are well distributed. Concerning
room assignment, the implemented algorithm doesn’t take into account room localisation,
so there are exams scheduled at multiple rooms localised far away from each other, which
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Figure 7.4: Evolution of the Pareto front.

Table 7.2: Timetable number of clashes per programme for the manual and automatic
solutions with 18 periods.

LEETC LEIC LERCM MEIC MEET Combined

Manual sol. 287 197 114 33 50 549
Automatic sol. 229 183 64 2 18 417

can be a problem if there are a small number of invigilators. Another aspect observed is
the number of rooms assigned for the larger exams (first semester). In the manual solution,
when the human planner allocated the exams’ rooms, it had available information of a
better approximation (indicated by teachers) of the real number of students that were
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Table 7.3: Manual solution for the LEETC examination timetable.
Sem. Room Course 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A.2.08-A.2.09-A.2.12- ALGA x
-A.2.13-A.2.16-A.2.18

A.2.12-A.2.13- Pg x
-A.2.16-A.2.18

1st A.2.03-A.2.08- AM1 x
-A.2.09-A.2.10

G.0.24-G.0.08-G.0.13 FAE x

G.0.24-G.0.08- ACir x
-G.0.13-G.0.14

C.3.07-C.3.14- POO x
-C.3.15-C.3.16

G.0.24-G.0.08 AM2 x

2nd A.2.12-A.2.13- LSD x
-A.2.16-A.2.18

G.0.24 E1 x

G.0.24 MAT x

G.0.24-G.0.08-G.0.13 PE x

G.2.09-G.2.10-G.2.21 ACp x

3rd G.0.24-G.1.15 EA x

G.1.15 E2 x

G.1.15 SS x

G.2.06-G.2.07-G.2.08 RCp x

A.2.12-A.2.13- PICC/ x
-A.2.16-A.2.18 CPg

4th G.1.15 PR x

G.2.06-G.2.07 FT x

G.0.08-G.0.13 SEAD1 x

G.1.03-G.1.04 ST x

G.2.06-G.2.07 RCom x

G.0.24-G.1.15 RI x

5th G.2.06-G.2.07 SE1 x

G.0.24-G.1.15 AVE x

G.2.06-G.2.07 SCDig x

A.2.08-A.2.09 SOt x

G.0.24 PI x

G.1.03-G.1.04 SCDist x

6th G.0.24 EGP x

G.0.13 OGE x

A.2.10-A.2.11 SG x
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Table 7.4: Automatic solution for the LEETC examination timetable.
Sem. Room Course 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A.2.16-A.2.18-G.0.24 ALGA x
-A.2.08-A.2.09-A.2.10
-A.2.11-A.2.12-A.2.13

-G.1.15

A.2.16-A.2.18-G.0.24 Pg x
-A.2.08-A.2.09-A.2.10
-A.2.11-A.2.12-A.2.13

-G.1.15

1st A.2.16-A.2.18-G.0.24 AM1 x
-A.2.08-A.2.09-G.2.21

A.2.16-A.2.18 FAE x
-G.0.24-C.2.21

A.2.16-A.2.18 ACir x
-G.0.24-C.3.14

A.2.16-A.2.18 POO x
-A.2.08-A.2.09

C.3.07-C.3.15 AM2 x

2nd A.2.16-A.2.18 LSD x
-G.0.24-C.3.07

G.1.15 E1 x

C.3.07 MAT x

G.1.15-G.0.24 PE x

G.0.24-C.2.21 ACp x

3rd C.3.07-G.1.15 EA x

C.3.07 E2 x

C.3.07 SS x

C.3.14-C.3.07-C.3.15 RCp x

G.1.18-G.1.15-G.1.13 PICC/CPg x

4th G.1.15 PR x

G.0.15-G.1.03 FT x

G.0.15-G.0.14 SEAD1 x

G.1.18-G.2.06 ST x

C.3.14-C.3.15 RCom x

C.3.14-C.3.07 RI x

5th C.2.21-C.3.07 SE1 x

G.1.15-G.2.21 AVE x

G.1.18-G.2.10 SCDig x

A.2.10-A.2.11 SOt x

C.3.07 PI x

G.2.06-G.2.07 SCDist x

6th G.0.24 EGP x

G.0.08 OGE x

A.2.08-A.2.09 SG x
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examined. In this way, the allocated room capacity is shorter than those in the automatic
solution, that rely solely on enrolment information.

7.2.3 Discussion

The instance considered (ISEL–DEETC) comprises five programmes with high degree
of course sharing between programmes, which difficults the manual construction of the
timetable. In the manual approach, there are actually five timetables optimised concur-
rently, one for each programme. The automatic algorithm solves this instance by opti-
mising the combined timetable. With the application of the proposed hybrid MOEA, the
present instance was solved effectively, with lower number of clash conflicts compared to
the manual solution and in negligible time. Moreover, in experiences made, we obtained
lower number of clashes than the actual results, but the optimisation in each timetable
was even worse balanced, as some timetables were more optimised than others. This is
explained by the intrinsic difficulty in optimising each timetable, e.g. the LEETC is more
difficult to optimise than the the LERCM timetable, because it has a greater number of
shared courses and more students registered on those courses.

7.3 Conclusions and Future Work

Several improvements can be made to the algorithm. Firstly, in order to prevent for the
algorithm to optimise in an unbalanced way, we could consider adding has an objec-
tive a measure of programme balance, in order to guide the algorithm to prefer solutions
where the number of clashes is minimised and the balance in programmes is achieved.
Secondly, we could update the room assignment algorithm for assigning exam rooms to
nearby locations. Finally, in order to evaluate the performance of HMOEA, we intend to
run the algorithm in the set of ETP benchmarks available – the Toronto and Nottingham
benchmarks (Qu et al., 2009), and the newer datasets that were proposed in the Second In-

ternational Timetabling Competition (ITC 2007) (McCollum et al., 2012) – and compare
with other approaches.
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This chapter concludes the main text of this thesis. Section 8.1 gives a summary of the
developed work. Some final remarks are also pointed in this section. Section 8.2 points
directions of future work.

8.1 Research Summary

In the research undertaken, the examination timetabling problem is solved using novel hy-
brid metaheuristics. Additionally, a new benchmark problem is introduced in this thesis,
the ISEL–DEETC benchmark.

The proposed methods comprise local search metaheuristics and single and multi-
objective memetic algorithms. Five methods, divided in three categories, were proposed:

• Local Search:

– Accelerated simulated annealing based approaches (fast simulated annealing

(FastSA) and fast threshold acceptance (FastTA) algorithms, see Chapter 4).
These techniques were applied to the ITC 2007 benchmark set;

• Single-objective Memetic Algorithms:

– Shuffled frog-leaping based algorithm hybridised with simulated annealing.
The algorithm, named hybrid shuffled frog-leaping algorithm (HSFLA), was
applied to the Toronto benchmark set (see Chapter 5);

– Shuffled complex evolution based algorithm hybridised with great deluge. The
algorithm, named shuffled complex evolution algorithm (SCEA), was applied
to the ISEL–DEETC (2-epochs) and Toronto benchmark sets (see Chapter 5);

– Cellular evolutionary algorithm hybridised with threshold acceptance. This
algorithm is named cellular memetic algorithm (cMA) and was tested on the
Toronto and ITC 2007 benchmark sets (see Chapter 6).

• Multi-objective Memetic Algorithm:

– Multi-objective evolutionary algorithm hybridised with stochastic hill climb-

ing. The algorithm, named hybrid multi-objective evolutionary algorithm

(HMOEA), was applied to the ISEL–DEETC (1-epoch) benchmark set (see
Chapter 7).

Some final remarks and conclusions on the conducted research are given next.
In Chapter 3, the ISEL–DEETC benchmark set is introduced, with the following key

results:
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• The ISEL–DEETC benchmark set is a real-world data set comprising five pro-
grammes with 80 courses, having a high degree of course sharing between pro-
grammes.

• It comprises an extension of the standard Examination Timetabling Problem (ETP)
in that two epochs are considered instead of a single one. An additional hard con-
straint is introduced in the ISEL–DEETC instance, to guarantee a minimum dis-
tance between the examinations of the first and second epoch for all courses. The
introduction of the two-epoch problem is a novel contribution in the field of exam-
ination timetabling.

From the research on Local Search methods, reported in Chapter 4, the following
remarks summarise our key contributions and findings:

• The proposed metaheuristic uses a novel construction algorithm based on the sat-
uration degree graph colouring heuristic. Conflict-based statistics is employed to
mitigate the looping effect on the algorithm. The devised construction algorithm
always constructs feasible solutions but it is relatively slow in some ITC 2007 in-
stances, namely on instance 11 of that data set.

• An accelerated version of the SA algorithm is proposed. This new algorithm, named
FastSA, uses a modified acceptance criterion, which fixes the selected exam as soon
as the exam’s number of accepted moves in the previous bin is zero. On the exper-
imental evaluation carried out with the ITC 2007 benchmark set, we conclude that
FastSA uses 17% less evaluations, on average, than the SA, while attaining com-
petitive results compared with the SA. In a comparison with the techniques from
the literature, the FastSA improves on one out of twelve instances, and ranks third
out of five algorithms.

Regarding the techniques HSFLA, SCEA and cMA, presented in Chapters 5 and 6,
respectively, and their key results, we draw the following conclusions:

• We conclude that the use of memetic algorithms, where hybridisation of evolu-
tionary algorithms and local search is employed, improves the results of the evo-
lutionary algorithm and local search alone. The experimental results obtained by
HSFLA, SCEA and cMA show that the proposed techniques are competitive with
state-of-the-art methods on the studied benchmark sets. HSFLA is able to produce
the best average results on seven instances of the Toronto benchmark set. SCEA and
cMA attain one and four new best results, respectively, on the Toronto benchmark
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set. SCEA was also tested on the ISEL–DEETC benchmark set, considering both
the single and the two-epoch problems. On both variants, SCEA attains improved
results compared to the manual solution made by the human planner.

One negative aspect of the proposed memetic algorithms is the larger computation
time taken compared with local search approaches. If time constraints apply, as
is the case of the ITC 2007, we concluded that memetic algorithms are suitable
to solve small and medium size instances. On the largest instances, more time is
required by the algorithm in order to attain optimisation results competitive with
the ones obtained by state-of-the-art algorithms.

• The memetic algorithms presented use structured populations which contribute to
improve the population diversity. The SFLA and SCEA use the parallel island
model for evolutionary algorithms, whereas the cMA uses the parallel cellular
model. The parallel model allows for the algorithms to be implemented in par-
allel form and run on parallel hardware, thus reducing the algorithm’s computation
time. In this thesis, he have only implemented sequential versions of the algorithms
and their parallelisation is a topic of future research.

With respect to HMOEA, described in Chapter 7, we conclude that:

• The use of a multi-objective approach to timetabling is of major importance in prac-
tice due to the inherent multi-objective nature of this problem. Several objectives,
representing the various stakeholders’ views, are asked for. Some of these include:

– the students’ view – who ask for examinations to be spread as much as possi-
ble;

– the teachers and invigilators’s view – who ask for exams to be spread as much
as possible in order to give time for marking and proofing. Another relevant
aspect is concerned with examinations rooms: if a given exam has several
rooms, teachers and invigilators usually ask for these rooms to be located
nearby;

– the manager view – who may want to know different solutions, e.g. timetables
with distinct timeslot duration and distinct costs, in order to decide which one
adapts better to the institution’s objectives in terms of quality of service, for
example.

• HMOEA was able to find a set of trade-off solutions with different number of time
slots, of the ISEL–DEETC benchmark set, considering the single-epoch problem.
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For this problem, and considering an examination epoch with 18 time slots (three
weeks including saturdays), the automatic solution attains a lower cost compared to
the manual solution created by the human planner, and in negligible time.

Finally, all implemented source code, produced results and statistics, and the ISEL–
DEETC benchmark set, are published in GitHub repositories (see Appendix C).

The software was implemented using the ParadisEO object-oriented framework (Ca-
hon et al., 2004). The published software was developed using an object-oriented design
in order to facilitate future extensions and is fully commented in order to facilitate its
understanding.

8.2 Thesis Future Work

Future work will focus on four research lines. The first one will extend the use of the
developed algorithms to the remaining ITC 2007 tracks (course timetabling and post-
enrolment course timetabling tracks).

The second line of research will focus on the development of other neighbourhood
operators. One hypothesis is to implement the operators proposed in Müller (2009):

• Room Change;

• Period Change;

• Period and Room Change;

• Room Swap;

• Period Swap.

These operators, due to its simplicity are faster than the Kempe chain based neighbour-
hood operator. It would be interesting to assess the effectiveness of a hybrid operator that
mixes these five operators and the Kempe chain operator.

The third line of research will focus on adapting some of the proposed algorithms in
order to deal with non-feasible solutions by searching in the search space comprising both
feasible and infeasible solutions. The investigation will involve the design of new con-
struction algorithms, neighbourhood operators, and new evaluation functions which will
include some penalisation term, in order to guide the algorithm to search in the feasible
space of solutions.

The last line of research will involve the design and implementation of parallel ver-
sions of the developed algorithms.
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Appendix A
Statistical Significance Tests

This appendix contains tables that summarise the average rankings (Friedman test) and
respective post-hoc tests, for multiple algorithm comparison performed on the Toronto
and ITC 2007 benchmark sets. All statistical tests were performed with a significance
level of 5%.

A.1 FastSA

Table A.1: Average ranking of Friedman’s test for the compared methods, considering the
complete data set (12 instances). The average values of the distributions were used in the
ranking computation. The p-value computed by the Friedman test is 3:93�10�6.

Algorithm Ranking

Byk13 1.25
Bat17 2.50
FastSA 3.08
Col09 3.50
Ham13 4.67

Table A.2: Adjusted p-values (Friedman) produced by running Holm’s and Hochberg’s
tests (Byk13 is the control algorithm) for the algorithms compared in Table A.1. Values
marked in boldface represent statistically significant values.

Byk13 vs. Unadjusted p pHolm pHoch

Ham13 1:20�10�7 4.81�10−7 4.81�10−7

Col09 0:000 491 0.001 47 0.001 47
FastSA 0:004 51 0.009 02 0.009 02
Bat17 0:0528 0:0528 0:0528
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Table A.3: Adjusted p-values (Friedman) of multiple algorithm comparison obtained
by Nemenyi (Neme), Holm, Shaffer (Shaf), and Bergmann (Berg) procedures. Values
marked in boldface represent statistically significant values.

i Hypothesis Unadjusted p pNeme pHolm pShaf pBerg

1 Byk13 vs. Ham13 1:20�10�7 1.20�10−6 1.20�10−6 1.20�10−6 1.20�10−6

2 Col09 vs. Byk13 0:000 491 0.004 91 0.004 42 0.002 95 0.002 95
3 Ham13 vs. Bat17 0:000 789 0.007 89 0.006 31 0.004 73 0.004 73
4 Byk13 vs. FastSA 0:004 51 0.0451 0.0316 0.0271 0.0180
5 Ham13 vs. FastSA 0:0142 0:142 0:0850 0:0850 0:0567
6 Byk13 vs. Bat17 0:0528 0:528 0:264 0:211 0:106
7 Col09 vs. Ham13 0:0707 0:707 0:283 0:283 0:141
8 Col09 vs. Bat17 0:121 1:21 0:364 0:364 0:364
9 Bat17 vs. FastSA 0:366 3:66 0:732 0:732 0:366

10 Col09 vs. FastSA 0:519 5:19 0:732 0:732 0:519

A.2 cMA

Table A.4: Average ranking (Friedman test) for the algorithms cEA, TA, and cMA, on
the Toronto set, for number of instances solved (NIS) equal to 13. The median values
of the distributions were used in the ranking computation. The p-value computed by the
Friedman test is 2:26�10�6.

Algorithm Ranking

cMA 1.00
TA 2.00
cEA 3.00

Table A.5: Adjusted p-values (Friedman) produced by running Holm and Hochberg’s
tests (cMA is the control algorithm) for the algorithms compared in Table A.4. Values
marked in boldface represent statistically significant values.

cMA Unadjusted p pHolm pHoch

cEA 3:41�10�7 6.83�10−7 6.83�10−7

TA 1:08�10�2 1.08�10−2 1.08�10−2
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Table A.6: Average ranking (Friedman test) for the algorithms cMA – light cooling sched-
ule and cMA – intensive cooling schedule, on the Toronto set, for NISD 13. The median
values of the distributions were used in the ranking computation. The p-value computed
by the Friedman test is 8:74�10�4.

Algorithm Ranking

cMA-intensive 1.04
cMA-light 1.96

Table A.7: Adjusted p-values (Friedman) produced by running Holm and Hochberg’s
tests (cMA-intensive is the control algorithm) for the algorithms compared in Table A.6.
Values marked in boldface represent statistically significant values.

cMA-intensive vs. Unadjusted p pHolm pHoch

cMA-light 8:74�10�4 8.74�10−4 8.74�10−4

Table A.8: Average ranking (Friedman test) for the algorithms cEA, TA, and cMA, on
the ITC 2007 set, for NIS D 12. The median values of the distributions were used in the
ranking computation. The p-value computed by the Friedman test is 8:84�10�5.

Algorithm Ranking

cMA 1.00
cEA 2.33
TA 2.67

Table A.9: Adjusted p-values (Friedman) produced by running Holm and Hochberg’s
tests (cMA is the control algorithm) for the algorithms compared in Table A.8. Values
marked in boldface represent statistically significant values.

cMA vs. Unadjusted p pHolm pHoch

TA 4:46�10�5 8.91�10−5 8.91�10−5

cEA 1:09�10�3 1.09�10−3 1.09�10−3
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Table A.10: Average ranking (Friedman test) for the cMA and state-of-the-art approaches
on the Toronto set, with NIS D 11. The average values of the distributions were used in
the ranking computation. The p-value computed by the Friedman test is 6:71�10�11.

Algorithm Ranking

cMA 1.23
Lei14 2.05
Dem12 3.23
Bur08 3.77
Alz15 5.09
Fon15 6.18
Abd13 6.64
Pil10 8.09
Ele07 8.73

Table A.11: Adjusted p-values (Friedman) on the Toronto benchmark set, for NIS = 11,
produced by running Holm and Hochberg’s tests (cMA is the control algorithm) for the
algorithms compared in Table A.10. Values marked in boldface represent statistically
significant values.

cMA vs. Unadjusted p pHolm pHoch

Ele07 1:34�10�10 1.07�10−9 1.07�10−9

Pil10 4:16�10�9 2.91�10−8 2.91�10−8

Abd13 3:62�10�6 2.17�10−5 2.17�10−5

Fon15 2:21�10�5 1.10�10−4 1.10�10−4

Alz15 9:38�10�4 3.75�10−3 3.75�10−3

Bur08 0:0293 0:0878 0:0878
Dem12 0:0868 0:174 0:174
Lei14 0:484 0:484 0:484

Table A.12: Average ranking (Friedman test) for the cMA and state-of-the-art approaches
on the ITC 2007 set, with NIS D 7. The average values of the distributions were used in
the ranking computation. The p-value computed by the Friedman test is 6:13�10�5.

Algorithm Ranking

Gog12 1.29
Alz15 2.00
Alz14 2.71
cMA 4.14
Dem12 4.86
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Table A.13: Adjusted p-values (Friedman) on the ITC 2007 benchmark set, for NIS =
7, produced by running Holm and Hochberg’s tests (Gog12 is the control algorithm) for
the algorithms compared in Table A.12. Values marked in boldface represent statistically
significant values.

Gog12 vs. Unadjusted p pHolm pHoch

Dem12 2:38�10�5 9.52�10−5 9.52�10−5

cMA 7:23�10�4 2.17�10−3 2.17�10−3

Alz14 0:0910 0:182 0:182
Alz15 0:398 0:398 0:398

Table A.14: Adjusted p-values (Friedman) on the ITC 2007 benchmark set, for NIS = 7,
obtained by Nemenyi (Neme), Holm, Shaffer (Shaf), and Bergmann (Berg) procedures.
Values marked in boldface represent statistically significant values.

i Hypothesis Unadjusted p pNeme pHolm pShaf pBerg

1 Dem12 vs. Gog12 2:38�10�5 2.38�10−4 2.38�10−4 2.38�10−4 2.38�10−4

2 Dem12 vs. Alz15 7:23�10�4 7.23�10−3 6.51�10−3 4.34�10−3 4.34�10−3

3 Gog12 vs. cMA 7:23�10�4 7.23�10−3 6.51�10−3 4.34�10−3 4.34�10−3

4 Dem12 vs. Alz14 0:0112 0:112 0:0786 0:0674 0.0449
5 Alz15 vs. cMA 0:0112 0:112 0:0786 0:0674 0.0449
6 Gog12 vs. Alz14 0:0910 0:910 0:455 0:364 0:364
7 Alz14 vs. cMA 0:0910 0:910 0:455 0:364 0:364
8 Dem12 vs. cMA 0:398 3:98 1:19 1:19 0:796
9 Alz14 vs. Alz15 0:398 3:98 1:19 1:19 0:796
10 Gog12 vs. Alz15 0:398 3:98 1:19 1:19 0:796
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Appendix B
Running times

In this section the algorithms’ running times for the Toronto and ITC 2007 benchmark
sets are reported. Table B.1 presents the running times of the algorithms compared to
cMA for the Toronto set. The numbers were taken from the corresponding papers, since
the codes were not available. Thus, running times refer to different platforms and sources
codes, with unknown levels of optimisation.

For the ITC 2007 benchmark set, a fixed time limit is enforced on the execution time of
the candidate algorithms, in accordance with the rules of the ITC 2007 competition. This
limit is determined by running on the host machine a benchmarking tool that is available
from the ITC 2007 site. Hence, all the compared algorithms are executed under similar
time limits, based on the hardware characteristics of the machine running the program.
For our computer, the time limit is 276 seconds.
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Table B.1: Running times for the Toronto benchmark set. In the column marked with .�/, the authors report execution times ranging
from 1–2 minutes (small instances) to 30–90 minutes for larger instances. In the column marked with .��/, the authors did not report the
algorithm execution time. In the column marked with .���/, the authors report execution times ranging from 10 minutes to 160 minutes.

Instance Car96 Yan05 Ele07 Car08 Bur08 Bur10 Pil10 Dem12 Abd13 Lei14 Fon15 Alz15 cMA

car91 20.7 s 46.22 min < 270 min 2.87 min 11.08 min � 1 h 38 min 12 h �� 24 h 9 h 12 min ��� 48 h
car92 47 s 25.3 min < 270 min 18.67 min 10.07 min 1 h 11 min 12 h 24 h 8 h 41 min 48 h
ear83 24.7 s 18.92 min < 270 min 5 min 7.5 min 12 min 31 s 12 h 24 h 6 h 31 min 24 h
hec92 7.4 s 18.23 min 0.3 min 0.8 min 9.83 min 7 min 28 s 12 h 24 h 3 h 51 min 24 h
kfu93 2 min 35.88 min < 270 min 5.33 min 14.7 min 52 min 48 s 12 h 24 h 6 h 5 min 24 h
lse91 48 s 28.82 min < 270 min 7.43 min 10.68 min 47 min 43 s 12 h 24 h 4 h 14 min 24 h
pur93 6 h 2 min 9 s – 270 min 200.7 min 12.45 min 31 h 36 min 12 h 48 h – 48 h
rye92 8.45 min 23.03 min < 270 min 7.53 min 15.02 min 1 h 12 min 12 h 24 h – 24 h
sta83 5.7 s 12.33 min < 270 min 0.5 min 9.78 min 7 min 49 s 1 h 24 h 2 h 58 min 24 h
tre92 1.79 min 30.27 min < 270 min 7.17 min 10.13 min 18 min 41 s 12 h 24 h 6 h 54 min 24 h
uta92 11.07 min 31.5 min < 270 min 34.1 min 13.42 min 1 h 39 s 12 h 24 h 9 h 48 min 48 h
ute92 9.1 s 12.43 min < 270 min 0.33 min 8.8 min 11 min 3 s 12 h 24 h 3 h 30 min 24 h
yor83 4.52 min 26.52 min < 270 min 7.53 min 8.37 min 9 min 12 s 12 h 24 h 7 h 24 h



Appendix C
Developed Software

For each examination timetabling benchmark set, the source code, the resulting solution
files for each instance/run, and the produced statistics, are publicly available in the Git 1

repositories presented in Table C.1.

Table C.1: Git repositories for the developed algorithms.

Algorithm Data set Language Repository

FastSA ITC 2007 C++ https://github.com/nunocsleite/FastSA-ETP-ITC2007

SFLA Toronto C++ https://github.com/nunocsleite/SFLA-ETP-Toronto

SCEA
DEETC C++
Toronto C++ https://github.com/nunocsleite/SCEA-ETP-DEETC-Toronto

cMA
Toronto C++ https://github.com/nunocsleite/cMA-ETP-Toronto

ITC 2007 C++ https://github.com/nunocsleite/cMA-ETP-ITC2007

HMOEA DEETC Matlab https://github.com/nunocsleite/NSGA-II---ISEL-DEETC-timetable

1Git is a free and open source distributed version control system designed to handle from small to very
large projects with speed and efficiency.
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