
Intelligent time-series forecasting and event prediction for
Predictive Maintenance in IT systems

Pedro Ribeiro Santiago Moreira

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Prof. João Paulo Baptista de Carvalho
Ricardo Carvalho

Examination Committee

Chairperson: Prof. Pedro Manuel Urbano de Almeida Lima
Supervisor: Prof. João Paulo Baptista de Carvalho

Member of the Committee: Prof. António Manuel Raminhos Cordeiro Grilo

May 2021

Declaration

I declare that this document is an original work of my own authorship and that it fulfils all the requirements

of the Code of Conduct and Good Practices of the Universidade de Lisboa.

ii

Abstract

Nowadays, most Information Technology systems already perform Condition-based Maintenance, which

provides an overview of a system’s condition in real-time and stores its behaviour (in the form of time-

series). A Predictive Maintenance approach can use this historical data to apply planning corrective

maintenance based on predictions about a system’s evolution. This work intends to provide useful re-

search in the scope of Predictive Maintenance through the study of the best approaches and algorithms

to perform time-series forecasting and event prediction within the Information Technology domain. The

state-of-the-art intelligent methods for time-series modelling were studied, as well as the most promising

methods developed for other domains with existent literature ahead of time-series (like Natural language

Processing). The main focus was on Machine Learning techniques - from the primary Feed-forward

Neural Networks all the way to the more recent and complex Transformers. For the time-series fore-

casting, none of the experimented models performed satisfactorily. However, it was notable that with the

increase of complexity and size of the model’s architectures, they learned to output “dummy” forecasts

like a naive approach or a constant value, which although not useful, minimise the evaluation metrics.

For the event prediction problems, a preprocessing step to detect oscillations in the input datasets sig-

nificantly boosted the algorithms’ performances. Furthermore, the results obtained were not ideal but

satisfactory enough to be useful, and the model that showed the best results was the Feed-forward

Neural Network. Finally, it is possible to adjust the predictions’ sensitivity with the tuning of a data

preprocessing factor.

Keywords

Predictive Maintenance; Information Technology systems; Time-series forecasting; Event prediction;

Computational Intelligence.

iii

Resumo

Hoje em dia a maioria dos sistemas de tecnologia da informação já executa uma monitorização que

permite observar o estado do sistema em tempo real e registar o seu comportamento (na forma de

séries temporais). Estes dados históricos podem ser usados para planear uma manutenção preventiva,

baseada em previsões da evolução futura do sistema. Neste trabalho foi fetio um estudo em busca das

melhores técnicas para modelar séries temporais e prever eventos, no âmbito da manutenção preditiva

na tecnologia da informação. Foram analisados os algoritmos inteligentes presentes na literatura para

estes problemas, bem como uma adaptação dos algoritmos desenvolvidos noutros domı́nios, como

processamento de linguagem natural, que têm tido mais avanços recentemente. O estudo focou-se

em algoritmos de aprendizagem automática – desde as redes neuronais mais simples, como as Feed-

forward, até aos modelos mais complexos como o Transformer. Para a previsão de séries temporais,

nenhum dos modelos testados teve resultados satisfatórios, mas pôde ver-se que com o aumento do

tamanho e complexidade das redes neuronais utilizadas, estas conseguiam aprender a produzir re-

sultados “cegos”, como a Naive approach, que apesar de inúteis reduziram os erros das métricas de

avaliação usadas. Para a previsão de eventos, uma técnica para detetar oscilações nos dados de en-

trada melhorou significativamente a performance dos modelos. A rede neuronal Feed-forward foi a que

apresentou melhores resultados que, apesar de não ideais, foram bons os suficiente para terem utili-

dade prática. Finalmente, conseguiu-se também ajustar a sensibilidade das previsões de eventos ao

regular um parâmetro no pré-processamento dos dados.

Palavras Chave

Manutenção Preditiva; Tecnologia da Informação; Séries Temporais; Previsão de Eventos; Inteligência

Computacional.

v

Contents

1 Introduction 1

1.1 Motivation and Problem description . 3

1.2 Topics Overview . 5

1.2.1 Time-series Forecasting . 5

1.2.2 Event Prediction . 7

1.3 Claim of contributions . 8

1.4 Thesis Outline . 8

2 State of the art 11

2.1 Time-series Forecasting . 13

2.1.1 Statistical models . 13

2.1.2 Computational Intelligence and Machine Learning models 14

2.1.2.A Artificial Neural Networks (ANN) . 15

2.1.2.B Recurrent Neural Networks (RNNs) . 16

2.1.2.C Sequence-to-sequence models . 17

2.2 Event Prediction . 19

3 Theoretical Background 21

3.1 ARIMA . 23

3.2 Artificial Neural Network . 24

3.2.1 Feed-forward Neural Network . 24

3.2.2 Recurrent Neural Network . 27

3.2.3 Long Short Term Memory . 29

3.2.3.A Forget Gate . 29

3.2.3.B Input Gate . 30

3.2.3.C Cell State . 30

3.2.3.D Output Gate . 30

3.2.4 Gated Recurrent Unit . 31

3.2.4.A Update gate . 31

vii

3.2.4.B Reset gate . 32

3.2.4.C Hidden state . 32

3.3 Sequence-to-sequence models . 32

3.3.1 Encoder-decoder . 33

3.3.2 Attention mechanism . 35

3.3.3 The Transformer . 36

3.3.3.A Positional Encoding . 38

3.3.3.B Scaled Dot-Product Attention . 39

3.3.3.C Multi-Head Attention . 40

3.3.3.D Adaption to time-series problems . 41

4 Implementations 43

4.1 Time-series Forecasting . 45

4.1.1 Available data . 45

4.1.2 Data Preprocessing . 46

4.1.2.A Normalization . 46

4.1.2.B Sliding Window . 47

4.1.3 Intelligent Methods Implementation . 48

4.1.3.A Hyperparameters . 48

4.1.3.B Cross-validation . 48

4.1.3.C Evaluation Metrics . 50

4.1.4 Period Reduction trial . 50

4.2 Event Prediction . 53

4.2.1 Available Data . 53

4.2.2 Data Preprocessing . 53

4.2.2.A Event to time-series . 53

4.2.2.B Normalization . 54

4.2.2.C Sliding Window . 54

4.2.2.D Oscillations detection . 55

4.2.2.E Minority Class Oversampling . 56

4.2.3 Intelligent Methods Implementation . 56

4.2.3.A Evaluation Metrics . 57

5 Results and Discussion 59

5.1 Time-series Forecasting . 61

5.1.1 Period Reduction Trial . 68

5.2 Event Prediction . 69

viii

6 Conclusion 73

6.1 Conclusions . 75

6.2 Future Work . 76

ix

x

List of Figures

1.1 Example of a time-series forecasting (taken from [1]). 6

3.1 Single layer perceptron (taken from [2]). 25

3.2 Feed-forward Neural Network example (taken from [3]). 26

3.3 Recurrent Neural Network graphical representation (taken from [4]). 27

3.4 Basic RNN cell (adapted from [4]). 28

3.5 Long Short Term Memory cell (taken from [4]). 29

3.6 Gated Recurrent Unit cell (taken from [4]). 31

3.7 Sequence-to-sequence basis architecture (taken from [5]). 33

3.8 RNN encoder-decoder model example (taken from [6]). 33

3.9 RNN encoder-decoder architecture (taken from [7]). 34

3.10 Encoder-decoder architecture with the attention mechanism (taken from [8]). 35

3.11 The Transformer – model architecture (taken from [9]). 37

3.12 Scaled Dot-Product Attention (taken from [9]). 39

3.13 Multi-head Attention (taken from [9]). 40

4.1 Sliding window approach. 47

4.2 Cross-validation with K = 5 folds. 49

4.3 Cross-validation for time-series with K = 5 folds. 49

4.4 CPU load comparison of the two different storage types: history vs trends; the item’s

collection period is one minute. 50

4.5 CPU load comparison of two different collection periods: 1 second vs 1 minute. 51

4.6 Sliding window for the period reduction trial. 52

4.7 Graphical representation of CPU load and free memory with event occurrences highlighted. 55

5.1 Sample of the time-series dataset used to evaluate the models. 61

5.2 Forecasts of the naive approach . 63

5.3 Forecasts of the FNN model with 3 layers of 35, 40 and 25 hidden nodes, respectively. . . 64

xi

5.4 Forecasts of the vanilla LSTM model with 50 hidden nodes and 1 single layer. 65

5.5 Forecasts of the vanilla LSTM model with 20 hidden nodes and 1 single layer. 66

5.6 Constant forecasts computed by the larger and more robust architectures. 67

5.7 Graphical comparison of the forecasts over different threshold values for the period re-

duction trial. 69

xii

List of Tables

1.1 UTS dataset example of CPU load [%]. 6

1.2 MTS dataset example. 6

1.3 Event dataset example. 8

4.1 Trend table example of CPU load [%]. 45

4.2 Time-series event dataset example. 54

5.1 Ranges of hyperparameters experimented for the forecasting models. 62

5.2 Best performing forecasting models and corresponding MSE evaluations. 62

5.3 Ranges of hyperparameters experimented for the event prediction models. 70

5.4 Best performing configurations for the event prediction models – with the corresponding

precision and recall. 70

5.5 Average evaluation of the models of Table 5.4 for the events S1 and S2. 71

5.6 Average evaluation of the models for the events S1 and S2, without the standard deviation

preprocessing for oscillation detection. 72

5.7 ROMC variations for event predictions with the FNN model of Table 5.4. 72

xiii

xiv

Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

AR Auto-regressive

ARMA Auto-regressive Moving Average

ARIMA Auto-regressive Integrated Moving Average

BCE Binary Cross Entropy

BRNN Bidirectional Recurrent Neural Network

CI Computational Intelligence

CBM Condition-based Maintenance

CPU Central Processing Unit

FNN Feed-forward Neural Network

GRU Gated Recurrent Unit

I Integration

IT Information Technology

LSTM Long Short Term Memory

MA Moving Average

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Square Error

MTS Multivariate Time-series

NLP Natural language processing

PdM Predictive Maintenance

RNN Recurrent Neural Network

xv

RUL Remaining Useful Lifetime

Tanh Hyperbolic Tangent

UTS Univariate Time-series

VARIMA Vector Auto-regressive Integrated Moving Average

xvi

1
Introduction

Contents

1.1 Motivation and Problem description . 3

1.2 Topics Overview . 5

1.3 Claim of contributions . 8

1.4 Thesis Outline . 8

1

2

1.1 Motivation and Problem description

For any subject of human study, as time goes by, larger amounts of historical data regarding that subject

become available – an article from 2018 published in Forbes [10] estimates that the world is producing

2.5 quintillion bytes (2.5 × 1018) of data every day. The availability of large amounts of historical data

makes the forecasting of future events based on the past a possibility and a powerful resource. How-

ever, as the data volume grows and the whole environment size and complexity increases, the human

brain’s capability to understand this data and make predictions upon it is starting to be more and more

insufficient. Accordingly, the automation of this process becomes a significant need.

Nowadays, most Information Technology (IT) systems are able to perform Condition-based Mainte-

nance (CBM), which means that they are capable of monitoring the condition of their components in

real-time and decide what maintenance is needed. The downside of CBM is that it only orders mainte-

nance actions when certain indicators show signs of decreasing performance or upcoming failure, which

means that problems might have already occurred – a problematic system is not reliable, and lack of

reliability is not a good sign for enterprise profitability. On the other hand, since IT systems implement

CBM, they are already capable of keeping track of their functioning and store their behaviour history.

This way, a helpful monitoring approach can make use of this information to predict possible failures in

time to avoid/soften them and predict components’ future behaviours to, timely, take appropriate pre-

cautions. This approach is known as Predictive Maintenance (PdM), which refers to planning corrective

maintenance based on predictions about the evolution of a system.

The design of PdM techniques aims to determine the condition of a system and its components

ahead of time. By looking forward and knowing what failures are likely to occur, it is possible to schedule

adjustments and repairs to apply them before assets fail and/or the system evolves to an unwanted state

– these preventive actions will provide a stable environment and an increased assets life. This way, a

useful PdM approach shall be capable of providing the means to improve productivity, product quality,

and overall effectiveness. Looking from an industry point of view, these improvements achieved by PdM

will lead to a vast range of benefits [11] that can both save money and maximize efficiency, such as:

• Reduction (if accurate enough, near elimination) of unscheduled equipment downtime caused by

equipment or system failure;

• Better asset management that results in an increased production capacity and labour utilisation;

• Timely routine repairs instead of fewer large-scale repairs;

• Increased equipment lifespan and more economical use of maintenance workers that significantly

reduces maintenance costs.

A private company’s monitoring software tool for IT systems and components integrated the PdM

3

algorithms developed in this thesis. The private company is - Identity - and this thesis engages in a

partnership with them. The monitoring platform performs CBM on metrics such as network utilisation,

Central Processing Unit (CPU) load, disk space consumption, etc. As most of IT monitoring platforms,

the collected data on these metrics is stored chronologically, with minimal extra computational effort.

When a monitoring tool is supposed to be integrated and run by the monitored system, which is the case

for most IT systems (and also for the one from Identity), it is imperative to try to keep the computational

load as low as possible. Once the goal is solely to provide information about the system in order for it

to be appropriately maintained, it should never interact with the systems’ actual functioning, or else it

will lose its meaning. As such, it is crucial to minimize any impacts of the monitoring platform on the

system that runs it. This concern will be addressed later in this dissertation and was taken into account

when defining the requirements of a monitoring platform in which the developed PdM techniques can

work with. Identity made available for this thesis historical data on hundreds of metrics dating back to

more than five years. This data came from a very distinct set of machines and users – be it for internal

production inside the company or for external clients/companies that work in different industries and

manage systems from very diverse environments. Having this panoply of data available, it is relevant to

state that the algorithms developed in this thesis were not tested merely for a single theoretical case and

generalised afterwards. Quite contrarily, they were implemented in a functional enterprise software and

tested against thousands of data collected from real-world use cases and from a vast range of different

scenarios. As requested by the company, this dissertation does not reveal some information such as

machine names.

From Wikipedia, [12] “A time series is a series of data points indexed (or listed or graphed) in time

order. Most commonly, a time series is a sequence taken at successive equally spaced points in time.

Thus it is a sequence of discrete-time data”. Since the historical data kept by monitoring platforms from

IT systems is often stored chronologically and with a timestamp attached to every collected metric, it

seems evident that this data can be looked at and analysed as time-series. Time-series analysis is one

of the areas with the biggest potential in PdM, and historical data, which is its feedstock, can be acquired

very easily by IT systems – most of them already perform this data collection with the implementation

of CBM. The use of Artificial Intelligence (AI) and other intelligent methods in PdM has been growing in

the past few years, but the majority of the companies did not adopt it yet [13]. This way, the research

on intelligent methods to analyse time-series in a PdM perspective can be not only a very recent and

interesting development, but it can also have a significant practical impact in the real-world environments.

There are several different approaches that one can take towards the development of a PdM solution.

After a PdM background study applied to modern IT systems needs, and a strategic fit with the Identity’s

monitoring software, this dissertation will tackle two separate problems in the PdM world that were found

to be the most convenient and advantageous to be integrated with the monitoring of IT systems:

4

Time-series forecasting – this solution will consist in the development of methods to predict the

future values of an IT system’s metric, based on its past values and the past values of multiple other

metrics (the system’s history), for example, predicting the CPU load for tomorrow at 2 pm.

Event prediction – this solution will consist in the development of methods to predict the occurrence

of sporadic events before they actually occur, based on the event’s previous occurrences, some

others events previous occurrences and the history of some system’s metrics, for example, issuing a

warning four hours before the system collapses due to lack of free memory.

After having these two functionalities implemented and working at trustworthy levels, a system could be

adequately maintained, operating at its maximum potential, durability, and providing a reliable service

given that one can now avoid unexpected problems ahead of time.

1.2 Topics Overview

1.2.1 Time-series Forecasting

A time-series is a sequential set of data points, usually measured over successive times and recorded

chronologically. Mathematically, it can be defined as a matrix X, where each of its elements xt ∈ Rm

and where xt, in practice, is an m-dimensional array that represents a set of m arbitrary points collected

over time t, xt = [xt1, x
t
2, ..., x

t
n]

T . Thus, matrix X can be described by

X =
[
x1,x2, ...,xn

]T
. (1.1)

For a formal definition of a time-series, one can consult [14].

Time-series analysis stands for the methods for analysing a time-series dataset so that, based on

the available data (the observations from the past), one can create a model, by extracting meaningful

statistics and other important characteristics, that correctly shape the series. Time-series analysis is

not a novelty. It is a topic with many research and many underlying areas, one of which is time-series

forecasting, which is the one with the biggest relevance and applicability for this study. Time-series

forecasting consists in the methods that allow the prediction of (unknown) future observations of a time-

series. An example of time-series forecasting is in Figure 1.1, where the red line represents the forecast

performed to the (pre-existing) time-series represented by the blue line.

One important discrimination while introducing time-series is the difference between Univariate Time-

series (UTS) and Multivariate Time-series (MTS).

UTS, as the name implies, is a time-series dataset with a single time-dependent variable. Therefore,

for each period, there will be a one-dimensional value. An example of a UTS dataset of a CPU load

percentage along time, with a period of one minute per sample, can be seen in Table 1.1.

5

Figure 1.1: Example of a time-series forecasting (taken from [1]).

Table 1.1: UTS dataset example of CPU load [%].

Time CPU load [%]
15h 03min 00s 15.32
15h 04min 00s 18.01
15h 05min 00s 15.44
15h 06min 00s 23.26
15h 07min 00s 30.98
15h 08min 00s 20.05

MTS, as the name also implies, is a time-series dataset with multiple time-dependent variables, N .

Therefore, for each period, there will be N values, or a N -dimensional sample. An example of an MTS

dataset, with N = 3, and a period of one minute, can be seen in Table 1.2. Notably, Table 1.2 is an

extension of Table 1.1 where, beyond the CPU load percentage, it is also collected simultaneously: free

memory percentage, and the number of active processes.

Table 1.2: MTS dataset example.

Time CPU load [%] Free memory [%] Number of processes
15h 03min 00s 15.32 63.35 163
15h 04min 00s 18.01 71.27 205
15h 05min 00s 15.44 54.20 209
15h 06min 00s 23.26 63.99 234
15h 07min 00s 30.98 65.83 210
15h 08min 00s 20.05 66.24 266

When asked to forecast the CPU load percentage for the next (unknown) periods, an MTS analysis

approach will not only take into account the past values of the forecasting variable but also the other

metrics that were collected alongside. Such a method would try to learn the dependency of the other

metrics on the CPU load percentage and forecast it accordingly.

6

It is also worth mentioning that while the methods studied and developed in this dissertation focused

on MTS, research on the state-of-the-art UTS approaches also took part. However, the experiments

comprising these methods (after contracting the datasets to UTS) never led to superior results. Hence,

the results do not include them.

1.2.2 Event Prediction

An event is a real-world incident that takes place at a particular time and can be objectively discriminated

(somehow labelled or described). Different types of events can range from large-scale (like a natural

disaster) to small-scale ones (like blowing up a tire), as well as vary from more conceptual (like a software

bug) to more practical occurrences (like an electrical short circuit). Defining an event mathematically can

be messy and is hardly intuitive, but for a scientific definition of an event one can consult [15].

Event analytics is a broad area with applications in a plenitude of different domains. One of these

applications is event prediction, which is the one that this study will focus on. Event prediction targets the

identification of future events before they actually happen, based on historical information from the past.

Event prediction is not a concept as well established as time-series forecasting, so its understanding

might differ slightly from different sources: (a) some define it as a matter of if/when – foreseeing when a

particular event is going to take place (or if it will never take place at all); (b) some define it as a matter of

what – what event(s) will occur at a specific time in the future; (c) some define it as a matter of where –

predicting the location of a certain event (or set of events) that will occur at a specific time in the future;

(d) and some may define it as other variants or as the union of the several ones. In this dissertation, the

first definition will be the one used when referring to event prediction.

The event prediction problems tackled in this dissertation are referent to problems triggered in the

monitored IT systems. Every distinct problem is identifiable and labelled to an event – when an event

occurs, it means that a problem was triggered. Similarly to the time series datasets, every event occur-

rence will come with a timestamp attached stating when the event occurred. However, instead of having

periodically collected samples and thus, one value for every period, there are only values when an event

occurs, which is supposedly random and without any respect for periods. In order to have these datasets

interpreted and analysed as time-series, they need some data preprocessing – those procedures will be

explained later in Chapter 4. Events datasets will be in the form of Table 1.3 where, when a problem is

triggered (event occurrence), a the platform stores a value of 1 with its correspondent timestamp; when

the problem is solved (or stopped existing), it stores a value of 0 with its correspondent timestamp as

well.

In event analytics is often hard to have a reliable representation of events characteristics represented

by plots; on the other hand, tables usually provide a better visual understanding of events behaviours

and occurrences.

7

Table 1.3: Event dataset example.

Timestamp Event
2020-01-05 01:00:03 1
2020-01-05 01:07:29 0
2020-01-08 04:10:12 1
2020-01-08 08:05:17 0
2020-01-09 22:43:08 1
2020-01-10 01:13:05 0

1.3 Claim of contributions

One can look at the work developed in this dissertation as two separate sections – time-series forecast-

ing and event prediction – and independently analyse its contributions and results. This way, for each of

the sections, this thesis has the following contributions:

Time-series forecasting – the study of the most promising methods present in the literature for this

type of problem; even though this work did not find any approach with satisfactory results in this

section, it was possible to gather some learning characteristics of each of the intelligent models and

understand what they try to learn from the input data.

Event prediction – the study of the most promising methods and adaptation techniques present in

the literature for this type of problem; despite the non-ideal performances, the event prediction ex-

periments showed results that can already have a practical use. A data preprocessing technique sig-

nificantly improved the performances, and one of the studied intelligent algorithms stood out among

the others with better results consistently. Moreover, a data-tuning technique is capable of projecting

a deliberate bias in the predictions of the events.

1.4 Thesis Outline

After introducing the relevance of PdM in IT systems and its applicability in the industry, this chapter -

Chapter 1 - provides a presentation of the two topics tackled in this dissertation, namely: (a) time-series

forecasting; (b) event prediction using time-series .

Chapter 2 reports the technologies and related studies reviewed in order to investigate the best suited

state-of-the-art methods for the covered topics.

Chapter 3 provides a theoretical background of the state-of-the-art intelligent methods that promise,

according to Chapter 2, to be the most promising in solving the two tackled problems.

Having explained the architectures of the intelligent methods experiment, Chapter 4 describes in

detail their implementations and the experiments conducted in this work.

Chapter 5 illustrates the results obtained with the experiments explored in this dissertation and dis-

cusses the possible interpretations that one can take from them.

8

Finally, Chapter 6 aims to wrap-up this dissertation by summarizing the problems tackled and a

broader view of its conclusions. It suggests the future work that one can embrace to continue the work

developed in this dissertation and objectively improve it.

9

10

2
State of the art

Contents

2.1 Time-series Forecasting . 13

2.2 Event Prediction . 19

11

12

2.1 Time-series Forecasting

Time-series analysis and forecasting is not a new concept, it is a broad topic with a long history of re-

search and investigation. However, for a long time, the classical forecasting methods (classical is the

term commonly used to refer to the statistical and linear approaches) took over this domain. According

to [16,17], up until the late 1970s, classical approaches such as Auto-regressive Integrated Moving Aver-

age (ARIMA) were the undisputed state-of-the-art technologies in time-series forecasting. As time went

by, it became clear that these classical models were not thoroughly capable of adapting to many real-

world situations. In order to solve this incapacity and to develop better forecasting models, approaches

based on Computational Intelligence (CI) – covering methods like Artificial Neural Network (ANN), Fuzzy

Systems and Evolutionary Computation – are being more studied in recent decades [18–20] and have

proven to be more effective in several domains, as concluded in [21]. However, an acknowledged con-

clusion in all the literature reviewed for this dissertation, regarding time-series forecasting, is that there

is no approach proven to be better than all others for every scenario or use case. Thus, the classical

methods are always worth being tested and evaluated. As illustrated in a recent overview across the

existing statistical forecasting methods for time-series forecasting [22], the method that revealed to be

the most accurate across more domains and datasets (by a large margin) was ARIMA or slight exten-

sions of it. This way, and as this thesis dug deeply over Machine Learning (ML) models, making them its

main research focus, the only statistical model tested in this work was ARIMA. Further research on this

work could include other state-of-the-art statistical methods to be compared with ARIMA (and the other

non-statistical methods), or possibly replace as a module of a broader architecture.

2.1.1 Statistical models

An advantage usually stated in favour of some statistical models, such as ARIMA, is that beyond having

a high accuracy in many study cases, it is relatively robust and straightforward when compared to more

complex CI methods like ANN. Consequently, it might be easier to understand its results and tune

the models accordingly. Furthermore, many users without the required expertise to develop and adapt

complex CI models will also opt for ARIMA.

One clear benefit of the classical (and simpler) linear methods is that they are able to perform well

when the data volumes are slim [23] since when comparing to most CI methods the number of param-

eters to estimate is utterly low. On the other hand, with a low number of parameters to learn from a

time-series, it may not be able to model complex datasets and perform complex forecasts. Accordingly,

a significant liability pointed to ARIMA in [17, 22] is that while it can show good performances for UTS

datasets, it does not scale well to MTS and its accuracy can suffer significantly. To overcome this dif-

ficulty, vector-generalised approaches of the statistical methods, like Vector Auto-regressive Integrated

13

Moving Average (VARIMA) were proposed, and revealed better results [24]. However, none of these

vector-generalised techniques is suited to capture nonlinearities in the datasets and will probably not

succeed when modelling more complex behaviours. This is due to the fact that these techniques only

take into account the inherent features of one series (each time-dependent variable of the dataset) at a

time, and thus are not well suited to capture cross-series relations. Beyond that, since these methods

build one model for each series, frequent retraining is often required and can become computationally

too expensive for large databases. For these reasons, significant effort has been (and is still being) put

into non-linear models like regime-switching [25]. The remaining problem of these alternatives is that

they require the application of predetermined nonlinearities and tend to fail for different MTS datasets

(where the nonlinearities will most likely differ). Since for PdM purposes (and for the datasets used in

this work), the algorithms require learning capabilities from several different metrics, this limitation is a

major drawback.

Another limitation pointed to ARIMA, is their inability of maintaining good performances when fore-

casting several time-steps ahead (multistep-ahead forecasting) [26, 27]. CI methods tend to be the

unanimous choice for this type of problems.

2.1.2 Computational Intelligence and Machine Learning models

ML models have been proposed in academic literature as heavier alternatives to the statistical ones,

with the aim of being more accurate and with the ability to learn more complex patterns. However, the

research over unbiased comparisons between ML and statistical methods is very scant. In [28, 29],

such comparisons can be seen but, despite being very recent (2018 and 202, respectively), in both is

clearly stated that the experimental data on this topic is yet scarce and needs more investigation to be

conclusive.

Regarding the comparisons of the different ML algorithms themselves, again the academic literature

is often not conclusive. The objective comparisons available between ML methods tend to be either too

old, like in [30, 31] (and plenty of new ML methods have come out and become popular since then), or

too limited to a specific domain, as in [32,33] which will lead to misleading outcome expectations when

tested in different environments and different datasets. Furthermore, rarely these specific domains are

IT related, which is precisely the focus of this dissertation.

Another limitation found in this work’s academic literature investigation was the lack of research on

forecasting IT systems metrics. While some other fields already have an extensive study of a vast range

of ANN models and some benchmarks and base results defined, for example, the energy sector [34–36]

and financial instruments like stock prices [37,38]. Contrarily, for IT systems in particular, there is still a

long way to go. As it can be seen in the few existing papers on this topic like [39], the “Literature Review”

section bases its findings on work conducted in other fields and environments, to afterwards generalise

14

it for IT systems. For the same reasons, most of the related work reviewed in for dissertation covers

datasets outside of the IT domain.

2.1.2.A Artificial Neural Networks (ANN)

As the size and complexity of the available data increased in recent years, the ANN have become more

popular and, arguably, the most dominant methods for prediction tasks [16]. The most basic type of ANN

is the Feed-forward Neural Network (FNN). Contrarily to other ANN models, like the Recurrent Neural

Network (RNN) which integrate feedback loops, the FNN only comprises forward connections among

its neurons, being this way the simpler and computationally lighter type of ANN. Given its popularity for

decades, there is a vast abundance of research available studying the behaviour and characteristics of

FNN in forecasting applications. Such an example can be seen in [40]. The authors only refer to ANN

in their work, however, at the time, the existent ANN architectures were far less, so it was reasonable to

generalise the conclusions from FNN experiments. Nevertheless, all the ANN architectures studied are

somehow based on the ANN and thus, maintain their properties. Back to [40], the authors acknowledge

that ANN hold many learning attributes that make them the obvious candidates to replace and compete

with the classical techniques for time-series forecasting – the ANN are designed to model any pattern

from a dataset without the need of predetermined parameters; the ANN are universal approximators,

which implies that they are capable of learning every pattern and relation possibly present in a dataset,

particularly the non-linear relationships [41] which are the hardest drawback of the classical methods.

In [42], the authors place ANN against ARIMA over forecasting tasks and conclude that the first

becomes significantly superior as the forecasting horizon increases. The authors also state that the

benefits of the ANN become clear when learning from time-series of different complexities – “We have

found that for time series of different complexities there are optimal neural network topologies and pa-

rameters that enable them to learn more efficiently” – this conclusion inherently brings the downside of

having to find the best topology and parameters (the ANN architecture and the numbers of layers and

neurons) for a learning task. To obtain maximal accuracies from ANN, it is also important to tune the

best training procedure. Another critical decision is the choice of the input variables (features) to feed

the models, as highlighted in [43] where it is exemplified how the right choice of input-variables can affect

the model’s performance.

In [44], the authors proposed an ANN model for electric load forecasting, combined with the “similar

days approach” – this technique is based on searching historical data of days of one, two or three years

having the similar characteristics to the day of forecast. The characteristics include similar weather

conditions, similar day of the week or date. This data arrangement presented very promising results in

the cited paper. However, this method requires quite some manual intervention and would hardly be

integrated with a product and perform in a fully automated way. The methods studied in this dissertation

15

were designed and integrated into a monitoring platform that required them to be fully automated since

they are intended to act on a vast range of different IT metrics.

The introduction of ANN models in the forecasting literature has not overtaken the classical methods

because they both have their pros and cons, as already stated. Accordingly, hybrid approaches have

emerged. In [45], the authors proposed a hybrid model for forecasting, which combines an ANN with

ARIMA with the intent of leveraging both of their virtues. While he ARIMA model was used to capture

the linear components of the time-series, the ANN modelled the so-called “residual” components of the

series, which stands for the nonlinearities. This approach has been found to be very efficient in reducing

biases in forecasts.

To feed ANN with time-series datasets, the most common method is to split the data in chunks of

sequential and consecutive windows with the length of the ANN input layer. The ANN is then usually

trained to predict the following window (multistep-ahead forecasting) or the single data point immediately

after the input window (onestep-ahead forecasting). The limitation of the basic ANN, the FNN, is that by

only having forward connections, every new input is considered in isolation. So the network cannot take

into account the temporal order of the inputs. The RNN architecture came to solve this problem.

2.1.2.B Recurrent Neural Networks (RNNs)

By integrating feedback loops in the network design, the RNN is specialized to take into account the

order and temporal patterns of data. For this reason, the RNN is the most widely used ANN for sequence

prediction tasks. In [46], it is well proved and explained how the RNN succeeds in capturing the order

patterns of a sequence. Every RNN comprises multiple cells, usually, each one accountable for each

input of one input sequence. By far, the most popular cells are the following three: (a) Elman RNN cell,

introduced by J. L. Elman [47] and usually referred to as the default RNN cell; (b) the Long Short Term

Memory (LSTM) cell, introduced by S. Hochreiter and J. Schmidhuber [48]; (c) and the Gated Recurrent

Unit (GRU) cell, introduced by K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.

Schwenk, and Y. Bengio [49]. The theoretical differences and are described in chapter 3. Other cells

have been proposed and tested over time, like in [50] but have not shown functional improvements.

Nonetheless, rarely these proposed cells have been tested with time-series in particular. Regarding

comparisons of the three popular cell types, the literature is extensive and complete. In [51], those

three models and two others (Echo State Networks and the Nonlinear Auto-regressive Network with

Exogenous inputs) are compared in a short-term load forecasting problem. The authors concluded that

both LSTM and GRU showed similar performances across all the tests. There is no hard evidence to

believe one is going to outperform the other without prior testing. The Elamn RNN cell is considerably

faster to train and has a similar performance in many datasets. On the other hand, for datasets where

the temporal dependencies are highly nonlinear and abrupt, it shows a notable drop in performance

16

when compared with other two. Moreover, the authors indicated that all the RNN models (all the three

cell types) show significantly longer training times when comparing to other architectures. This is due

to the backpropagation through time (needed to train the feedback loops) which is very time-consuming

and computationally expensive.

Several RNN based architectures have been developed in recent years, and even though almost

all were developed for Natural language processing (NLP) problems, many have been experimented

with time-series datasets and revealed promising results. The state-of-the-art study conducted in this

work found that the most frequent RNN architecture for time-series forecasting problems is the staked

architecture, which basically stacks up multiple layers of RNN on top of each other. A recent work [23]

used this architecture for time-series forecasting problems and revealed good results in the CIF 2016

and NN5 forecasting competitions. Due to the vanishing gradient disadvantage that occurs with the

Elamn RNN cells (explained in chapter 3), the authors used LSTM cells.

Since [52], several Bidirectional Recurrent Neural Network (BRNN) based approaches have been

proposed and tested over time and with promising results in domains like NLP. These techniques

connect two hidden layers of opposite directions and have the advantage of having every cell processing

its respective input, taking into account not only information from the previous inputs but also from the

future ones. The literature of BRNN models applied to time-series is minimal, but mainly because

the additional benefit of these architectures over the classical RNN (which is taking into account the

future inputs) does have the same impact on time-dependent variables. For NLP tasks, it is intuitive to

state that, by looking at a sentence, the last words can affect the meaning of the previous ones. This

way, having a model that processes each word of a sentence taking into account all the rest can bring

considerable advantages to the model performance. On the other hand, in a time-series data set, such

mechanisms do not apply anymore, and thus there are not many reasons to believe that BRNN would

improve the performance of the models over simple RNN.

2.1.2.C Sequence-to-sequence models

Recently introduced by [53], the sequence to sequence models have also been growing a lot in popularity

and are, arguably, the latest state-of-the-art technology for sequence prediction tasks. This contempo-

rary ML technique classically comprises an encoder and a decoder, both acting as independent RNN

architectures. For a detailed explanation of these methods refer to chapter 3. It is relevant to state

that, just as most part of the newly developed ML methods, the sequence-to-sequence models were

designed for NLP purposes, namely, applications like language translation, image captioning, conver-

sational models and text summarization. As such, the vast majority of the literature is applied to these

purposes and the available studies comprising these models and time-series datasets is scarce and not

broad enough to be conclusive.

17

In [54], a sequence-to-sequence model using LSTM cells in both the encoder and decoder was

tested for a time-series dataset of a cloud server workload – precisely the type of problems targeted in

this dissertation. This novel approach was compared with vanilla RNN models (with the three popular

cell types) and with the state-of-the-art statistical methods and outperformed them in the two datasets

tested (the Google clusters dataset and the Dinda dataset from Unix systems).

The most popular add-on to the sequence-to-sequence models is the attention mechanism. Two

different examples of attention mechanisms were proposed in [55, 56]. This approach was designed to

overcome a liability of the vanilla sequence-to-sequence models – the encoder encodes the whole input

sequence into one vector, which is later decoded by the decoder. In [57], the authors prove how this

encoding leads to information and context losses. This way, the attention mechanism aims to identify the

encoded vector’s context and set the decoder to “pay attention” to the relevant parts of it. Furthermore,

the attention mechanism uses a softmax distribution in the decoder to assign how much relevance should

be given to each part of the encoder’s outputs. However, for long sequences, the softmax outputs may

not be sparse enough. In [58] another activation function was proposed – sparsemax – to solve this

problem, and revealed significant improvements for multi-label classification problems. The attention

mechanism, as well as the discussed distributions, are covered in chapter 3.

In the three cited papers [55–57], and several others, this add-on has been empirically proven to

improve the results in NLP tasks. The same can not be stated for time-series forecasting problems, as

the experiments on this field are scarce. Nonetheless, there is no reason to believe that the improvement

given by the textual context in NLP tasks cannot translate to time-series components like seasonality and

thus, such alternatives should be tested.

Since the traditional sequence-to-sequence models with the attention layer require training RNNs

plus the attention weights for the whole sequence at each time step, it ends up being computation-

ally very expensive. With the intent to solve this, “a new simple network architecture, the Transformer,

based solely on attention mechanisms, dispensing with recurrence and convolutions entirely” was pro-

posed. The famous work “Attention is all you need” [9], proposes this (self-attention based) Transformer

architecture for sequence modelling and has achieved great successes since it was launched. The

Transformer’s architecture is covered in chapter 3. Many different works already came out applying

this model to several tasks like music modelling [59], image generation [60], speech recognition [61],

etc. Analogously to the other sequence-to-sequence models, the Transformer has yet not been covered

properly for time-series problems, but it has significant potential to succeed in it. However, it must be

noted that the space complexity of the self-attention mechanism grows quadratically with the sequence

length of the inputs. This complexity can become computationally challenging if the time-series dataset

holds relevant long-term dependencies, because it would mean that the input sequence would as well

have to be long enough to comprise all the information required to catch those dependencies.

18

2.2 Event Prediction

Event prediction problems take part in a vast range of classical problems such as anomaly detection,

Remaining Useful Lifetime (RUL) prediction and many others that have become popular, and over which

the available literature is considerable. However, it must be taken into account that these classical

problems might comprise broader perspectives of which event prediction is only a module, or need

adjustments to become applicable to the event prediction engaged in this dissertation. For example,

the anomaly detection study conducted in [62] proposes a model to predict an earthquake occurrence.

This process could be divided into two segments: (a) determine the geographical location of the future

earthquake (b) and predict if/when it was going to be triggered. The relevant process to retain for this

work would only be the second. Another example can be given after [63], where the authors proposed

a RNN with LSTM cells to predict how much longer lithium-ion batteries would last. Here the event is

well defined, but a binary prediction of yes or no is not clear, as the predicted value will be a number (of

days). This problem could be adapted though; if instead of “how much time”, the computed prediction

meant to say, at every time-step, if the battery would fail. If such a change of perspective is possible, [63]

is now aligned with this dissertation’s event prediction problems. One last example is the anomaly

detection study conducted in [64], where, instead of forecasting a specific error or event, the aim is to

detect anomalies, as any out of the ordinary behaviours, in continuous variables. Consequently, [64] is

a different type of study, with no visible applications to this dissertation’s goals.

Contrarily to forecasting problems, in the event prediction domain (for time-series datasets), the linear

statistical methods have been practically outdated since the appearance of ML methods, especially for

binary event predictions. Given that the outcome (one or zero) can not be seen as a continuation

or combination of the input variables, it makes sense that the linear approaches might not be very

successful.

Given that the intelligent methods that aim to perform event predictions will also attempt to model the

input dataset to take meaningful conclusions out of it, it makes sense that most of the review covered

for time-series forecasting can also be, to some extent, extrapolated for event prediction approaches

that learn from time-series (which is the approach tackled in the dissertation). For example, stating that

FNN does not take into account the temporal order of the inputs or that the LSTM cells overcome the

vanishing gradient problem seen in the vanilla Elman RNN cells, are conclusions that also applicable if

the desired output is the prediction of an event and not the forecasting of one of the input variables.

Furthermore, this extrapolation of domain would be no novelty. In [65], the authors performed a com-

parison of the most popular time-series forecasting methods in the tasks of event prediction and RUL.

Evidently, some learning procedures adaptations we necessary like changing the loss functions and

tuning the activation functions of the ML models, as well as changing evaluation metrics (for example,

instead of measuring accuracy, measure the precision and recall).

19

In the recent work [66], is conducted a systematic survey over event prediction existent techniques

over its several domains and datasets, including time-series. It can be seen that for time-series problems

in particular, the evolution of the state-of-the-art ML algorithms is very similar to the one in the study

conducted for time-series forecasting in Section 2.1 – starting from FNN, all the way to encoder-decoder

RNN architectures with attention mechanisms. The authors also emphasized the importance of the right

approach towards the input data, in alignment with the type of problem and type of dataset. One of

the examples covered, applicable to this dissertation, is the prediction of “rare events” in the anomaly

detection domain. Rare events problems often lead to highly imbalanced datasets, which require either a

specialized data approach to normalize the dataset or some tuning on the network’s learning methods.

For these problems, the authors [66] concluded that the anomaly detection techniques such as one-

classification, like the model proposed in [67] and hypothesis testing [68, 69], were the most common.

However, for time-series datasets that will feed ML model, the most common approach to deal with highly

imbalanced datasets (and the one that has proven to lead to better results) is by artificially oversampling

the minority class occurrences of the dataset (or undersampling the majority class occurrences) [70].

20

3
Theoretical Background

Contents

3.1 ARIMA . 23

3.2 Artificial Neural Network . 24

3.3 Sequence-to-sequence models . 32

21

22

3.1 ARIMA

The ARIMA is a linear process; as such, it models the past observations of a given time-series variable

with a linear function and forecasts its future values using that function. This way, the variables supplied

to the ARIMA algorithm are presumed to be linear. The ARIMA model is based on the Box-Jenkins

methodology and it comprises both an Auto-regressive (AR) and a Moving Average (MA) models.

The AR model defines the present/future time-series observations as a linear combination of its past

observations, taking into account a noise term. This way, the AR function of order p, AR(p), can be

mathematically described by

Yt =

p∑
j=1

βjYt−j + εt, (3.1)

where p is a non-negative integer, β = {β1, β2, ..., βp} is the vector holding the AR model coefficients

and εt is the forecast error (the noise term). Yt is predicted value for time t, that only depends on its own

lags {Yt−1, Yt−1, ..., Yt−p}.

The MA model works by analysing how wrong the AR predictions performed in predicting previous

time-periods and estimates an adjustment to work as a correction for the current time-periods. Essen-

tially, the MA model uses lagged values of the forecasting error to improve the current forecast. This

way, the MA function of order q, MA(q), can be mathematically described by

Yt = εt −
q∑

j=1

θjεt−j , (3.2)

where ε follows a normally distributed sequence of random white noise with a null mean and a constant

variance: ε ∼ N(0, σ2) and θ is the vector holding the MA model coefficients: θ = {θ1, θ2, ..., θp}. Now,

Yt only depends on its own lagged forecast errors {εt−1, εt−1, ..., εt−q}.

The AR and MA models can be combined together to form the Auto-regressive Moving Average

(ARMA) model. This way, the ARMA function of order p and q, ARMA(p, q), can be described by

Yt =

p∑
j=1

βjYt−j + εt −
q∑

j=1

θjεt−j . (3.3)

The limitation of the ARMA process is that it assumes that the time-series to model is stationary, i.e.

the mean and the variance are constant over time (seasonality does not exist). As such, stationarity

is a must to take advantage of this model. For non-stationary time-series a transformation procedure

is required to eliminate the non-stationary components before applying the ARMA models. The most

common transformation is a differencing procedure that computes the difference between consecutive

23

time-steps, as mathematically described by

Y
′

t = Yt+1 − Yt. (3.4)

Differencing stabilizes the mean of the time-series by removing the changes in the level of the series,

eliminating the trend and seasonality components. But one differencing might not be sufficient, it can

necessary to repeat the procedure d times, where d will be the order of differencing:

Y
′

t = Yt+1 − Yt, d = 1

Y
′′

t = Y
′

t+1 − Y
′

t , d = 2

Y
′′′

t = Y
′′

t+1 − Y
′′

t , d = 3

...

(3.5)

In the ARIMA model, d represents the Integration (I) order. Therefore, the ARIMA model can be

written as ARIMA(p, d, q), where p represents the AR process order, d represents the order of the I

process (or the stationarity order), and q represents the order of the MA process.

3.2 Artificial Neural Network

3.2.1 Feed-forward Neural Network

Also knows as Multilayer Perceptron (MLP), the FNN was the first ANN architecture to come out and,

as the name implies (feed-forward), the information flows all the way through the network with only one

direction, starting from the input nodes, passing through the hidden nodes (if any) and finishing at the

output nodes. There are no cycles or feedback loops.

The so-called nodes that compose the network – artificial neurons (or single layer perceptrons) –

receive a set of inputs that is passed through a respective set of weights (which are the trainable param-

eters of the network). The resultant set is summed up and passed through an activation function. The

mathematical function of an artificial neuron is defined by

a = σ

(
n∑

i=1

wi · xi

)
, (3.6)

where x = {x1, x2, ..., xn} is the input vector, w = {w1, w2, ..., w3} is the trainable vector of weights, σ is

the activation function and a is the resultant output of the perceptron. A schematic representation of the

typical artificial neuron is represented in Figure 3.1.

It must be noted that a bias term is usually added to the network, which consists of a unitary value

appended to the inputs and with respective a fixed weight representing the bias value. In Equation (3.6),

24

Figure 3.1: Single layer perceptron (taken from [2]).

this bias term would consist in an extra term for i = 0 with the input x0 = 1 and the respective weight

w0 = bias.

Now, a FNN architecture comprises several of these artificial neurons organized in layers and, typ-

ically, every neuron is connected to all the neurons of its adjacent direct layers. A three-layered FNN

example can be mathematically described by

y = a(3)
(
a(2)

(
a(1)

))
, (3.7)

where y is the output of the network and a(l) represents the outputs of the activation functions of the

artificial neurons that compose layer l. A schematic representation of the such a model is represented

in Figure 3.2, which can also be generalized to represent the classical FNN architecture.

In practical terms, the goal of a ANN is to find the set of weights w for the function of Equation (3.7)

that will have it replicating as best as possible a particular real-world function. This is achieved by training

the weights based on a set of input-output sample pairs – a training dataset that should tell the ANN

what should be outputted given a certain input. This type of training is defined as Supervised Learning

and it applies to all the ANN architectures presented in this work.

The activation functions of the artificial neurons that compose a ANN introduce nonlinearities in the

model. These elements are necessary to have the network capable of approximating every possible

function, specifically the nonlinear ones. The activation functions used in this work were four of the most

common in this domain:

25

Figure 3.2: Feed-forward Neural Network example (taken from [3]).

• Linear unit – mathematically described by

f(x) = x; (3.8)

• Rectified Linear unit (ReLu) – mathematically described by

f(x) = max(0, x); (3.9)

• Sigmoid unit – mathematically described by

f(x) =
1

1 + e−x
; (3.10)

• Hyperbolic Tangent – mathematically described by

f(x) = tanh(x) =
ex − e−x

ex + e−x
. (3.11)

26

3.2.2 Recurrent Neural Network

One limitation pointed to the FNN architecture is its intrinsic incapability of processing sequential data.

Given that the aforementioned network “treats” equally all of its inputs, it does not take proper advantage

of their order.

Specifically designed for sequential data, the RNN is a type of ANN that puts the connections be-

tween its nodes to form a directed graph along a temporal sequence, which results in a temporal dynamic

behaviour. Derived from the FNN, the RNN is a type of network that incorporates an internal state (that

acts as a memory), which is the component that empowers its capability of processing sequences of

inputs. A graphical representation of a general RNN architecture is present in Figure 3.3. The internal

state of a cell, denominated hidden state, is represented by ht.

Figure 3.3: Recurrent Neural Network graphical representation (taken from [4]).

Every RNN cell computes a hidden state ht for each input xt, at each time-step t. The hidden state

ht is then passed to the next cell, which will process it with the input xt+1 and compute the next hidden

state ht+1. The process repeats itself until the network reaches its end. Moreover, there are three

matrices that parametrize a RNN model – U , W and V – which are, for every cell, responsible for a

linear transformation of the inputs, states and outputs, respectively. The most basic type of RNN cell –

the Elman RNN cell – introduced by [47], can be mathematically described by

ht = σ (Uxt + V ht−1 + b) (3.12)

and

ot =Wht + c. (3.13)

Where the trainable weights are the ones that compose the matrices – U , W and V –, ht−1 is the

hidden state passed from the previous cell, σ is an activation function (nonlinear) that is used to calculate

the cell state ht, xt is the cell input and b is a bias term. For the output of the cell ot, a bias term c is also

27

added to the computed cell state ht, after parameterized by V . A schematic representation of a basic

RNN cell, as the one just described, can be seen in Figure 3.4 where Hyperbolic Tangent (Tanh) is used

as the activation function.

Figure 3.4: Basic RNN cell (adapted from [4]).

One limitation of the RNN architectures, is that they only flow information from the past, i.e. every cell

of the network only receives information calculated by the cells behind it – it does not take into account

the future cell states nor the future inputs of the input sequence. An upgraded architecture – BRNN –

came to solve this problem. However, for the reasons pointed in chapter 2, regarding the application

of BRNN to time-series problems (which are the focus of this dissertation), this architecture will not be

covered.

Two problems observed by the basic RNN cells are the so-called vanishing gradient and explod-

ing gradient. The training method of the RNN architecture is based on backpropagation through time,

where the gradients accumulate from the output of the last cell all the way back through the entire net-

work. Consequently, the gradients can either explode, turning the training process unstable or, become

vanishingly small and get to a point where the weight values are so small that they can not decrease

anymore and the training process stagnates. Therefore, the basic RNN cells are not well suited to learn

long-term dependencies. The exploding gradient can be fixed with a gradient clipping approach, which

basically limits any gradient from having norm greater than a defined threshold and thus, the gradients

are “clipped”. On the other hand, the vanishing gradient problem would require structural modifications

to be overcome. The two most commnon alternatives to the basic RNN cell that were designed to solve

the vanishing gradient are the LSTM cell and the GRU cell.

28

3.2.3 Long Short Term Memory

The LSTM cell – proposed by [48] – was specially designed to overcome the vanishing gradient problem

and learn long-term dependencies in RNN architectures. The architecture of the LSTM cell is schemati-

cally represented in Figure 3.5 where σ represents a sigmoid function.

Figure 3.5: Long Short Term Memory cell (taken from [4]).

The core idea behind the LSTM is the cell state ct and its various gates – the forget gate Ft, the input

gate It and the output gate Ot of Figure 3.5. The cell state is capable of carrying relevant information

throughout the processing of an entire input sequence. This way, in the LSTM architecture the cell states

are responsible for the long-term memory of the network while the hidden states are responsible for the

short-term memory.

While the cell state passes on from LSTM cell to LSTM cell, information is added or removed from it

by the gates. The gates are like neural networks themselves that decide which is information is allowed

in the cell. As such, they are entitled of their own weight matrices – U and W for each gate – and bias

terms b. With the training, the gates can learn what information is relevant to keep or forget.

3.2.3.A Forget Gate

The forget gate is mathematically described by

ft = Sigmoid (Ufxt +Wfht−1 + bf) . (3.14)

The forget gate is designed to decide what information should be stored or forgotten. It receives the

information from the previous hidden state ht−1 and the input xt and passes them through a sigmoid

activation function. The sigmoid function computes values between zero and one, which is ideal for this

29

purpose. If the output is closer to zero, it means the information is to be forgotten and closer to one

means the information should be kept.

3.2.3.B Input Gate

The input gate is mathematically described by

it = Sigmoid (Uixt +Wiht−1 + bi) . (3.15)

The input gate is designed to update the cell state with new information. It also passes the previous

hidden state ht−1 and the input xt through a sigmoid activation function. The result will act as a filter to

decide which information of the cell state will be updated. For the same reason as in the forget gate,

the sigmoid is well suited for this purpose. The computation performed in Equation (3.17) is the same

performed by the basic RNN cells and results in a vector of new candidates to feed the cell state. The

difference is that now these candidates will be filtered by the input gate, and thus, the network has the

ability to choose which information is relevant to store in the cell state (long-term memory).

3.2.3.C Cell State

The cell state is updated every time-step t, as mathematically described in

ct = ft × ct−1 + it × ĉ, (3.16)

where

ĉt = tanh (Ucxt +Wcht−1 + bc) . (3.17)

First, it is selected what prevails from the previous cell state ct−1, according to the forget gate output

– the previous cell state is pointwise multiplied by the forget vector ft. Then, the relevant information of

ĉt is added up to the cell state. The input gate’s output it decides what is relevant form ĉt.

3.2.3.D Output Gate

The output gate is mathematically described by

ot = Sigmoid (Uoxt +Woht−1 + bo) , (3.18)

and the hidden state passed on to the next cell is computed with

ht = ot × tanh (ct) . (3.19)

30

The output gate controls what the hidden state ht passed to the next cell should be. Similarly to

the other gates, it receives the information from the previous hidden state ht−1 and the input xt and

passes them through a sigmoid activation function. Again, this output will act as a filter to decide what

information from the current cell state ct should be carried by the hidden state. Before passing through

the output gate, the new cell state is transformed by another Tanh activation function.

3.2.4 Gated Recurrent Unit

The GRU cell – proposed by [49] – is the most common variation of the LSTM cell which, beyond being

simpler (computationally cheaper), has proven to give similar results in many cases, as concluded in

Chapter 2. The GRU also comes as an alternative to the basic RNN cells to overcome the vanishing

gradient problem and learn long-term dependencies. The architecture of the GRU cell is schematically

represented in Figure 3.6 where σ represents a sigmoid function.

Figure 3.6: Gated Recurrent Unit cell (taken from [4]).

The main difference of the GRU cell when comparing to the LSTM is that the cell state is merged

with the hidden state and thus, the GRU only comprises one state ht. It now only has two gates – the

update gate Zt and the reset gate Rt of Figure 3.6.

3.2.4.A Update gate

The update gate is mathematically described by

zt = Sigmoid (Uzxt +Wzht−1 + bz) . (3.20)

31

The update gate acts similarly to both the input and forget gates of the LSTM – it decides what

information to throw away and what new information to add. It receives the information from the previous

hidden state ht−1 and the input xt and passes them through a sigmoid activation function. Again, if the

output is closer to zero, it means the hidden state information is to be forgotten. Consequently, the new

computed information will be added, as it will be passed through the filter (1− zt). And vice-versa when

the sigmoid’s output is closer to one.

3.2.4.B Reset gate

The reset gate is mathematically described by

rt = Sigmoid (Urxt +Wrht−1 + br) . (3.21)

The reset gate controls the information from the previous cell that will be used to calculate the new

state. The reset gate vector rt filters the previous input state ht−1 and forwards it to the calculation of

the new hidden state ht.

3.2.4.C Hidden state

The new hidden state ht of the GRU cell is calculated as mathematically described in

ht = (1− zt)× ĥt + zt × ht−1, (3.22)

where

ĥt = tanh (Uhxt +Wh (rt × ht−1) + bh) . (3.23)

The new hidden state is calculated, similarly to all RNN cells, by applying an activation function

(Tanh in this case) to the parameterized (by the weight matrices) input xt and previous hidden state

ht−1. However, in the GRU cell, this previous hidden state already comes filtered by the reset gate

rt. This process is defined in Equation (3.23). The previous hidden stated is then passed through the

update filter zt and added to the output of Tanh after being passed by the “inverted” update filter (1− zt).

This double usage of the update filter aims to add the same “amount” of the new state that it disposed

from the previous state.

3.3 Sequence-to-sequence models

Sequence-to-sequence models (also known as Seq2seq or S2S) – introduced by I. Sutskever, O.

Vinyals, and Q. V. Le [53] – are a family of Machine Learning approaches designed to turn one se-

32

quence into another sequence. As concluded in Chapter 2, most of these models were designed for NLP

tasks and thus, look at the inputs as words/sentences. However, they incorporate powerful properties

that may be advantageous when dealing with time-series, specifically for multistep-ahead predictions.

Vanilla RNN architectures compute an output as a solid unit – for multistep-ahead predictions, this unit

will be a vector that symbolizes the sequential set of outputs. On the other hand, sequence-to-sequence

models compute the outputs as an actual sequence, step by step, and are thus more adequate for these

types of problems. The first and most basic sequence-to-sequence model is the encoder-decoder, and

all the others are based on it.

Figure 3.7: Sequence-to-sequence basis architecture (taken from [5]).

3.3.1 Encoder-decoder

The encoder-decoder model comprises two separate full RNN architectures and, as the name implies,

one of them is meant to read the input data and encode it. The other is meant to decode this encoded

information and transform it into a meaningful sequence. In Figure 3.8 is an example of an encoder-

decoder architecture.

Figure 3.8: RNN encoder-decoder model example (taken from [6]).

Where the encoder is fed with a sequence of three inputs xt = {x1, x2, x3} with length T = 3, and

the decoder outputs the next two time-steps in the future, the sequence yt = {y1, y2} with length T ′ = 2.

The encoded vector is the hidden state computed at the last RNN cell from the encoder RNN model,

33

and it contains all the information retrieved from the input sequence. The encoded vector can also be

denominated by context vector, as ti carries the context of the past values needed to model the future

ones. Since the decoder is only operating in the “future domain”, its RNN cells can not be fed with input

occurrences/real values. A common approach to feed the decoder RNN cells is to “reuse” the output of

the previous cell, given that, if the predictions are accurate this value would be the actual occurrence

to input the cell. The generalized architecture of the encoder-decoder model can be schematically

represented by Figure 3.9.

Figure 3.9: RNN encoder-decoder architecture (taken from [7]).

Accordingly, the RNN encoder-decoder model can be described by

ht = fenc (ht−1, xt) (3.24)

and

yt = fdec (st−1, yt−1) , s0 = hT (3.25)

where fenc and fdec are the RNN cells functions of the encoder and decoder, respectively, covered by

Equation (3.12). xt is the input sequence of length T and ht is the hidden state of the encoder at time

t. Also st is the hidden state of the decoder RNN model, and the initial state s0 is the context vector

outputted by the encoder.

Now, given that all the information processed from the input sequence has to be compressed, by

the encoder, into one single vector (the context vector hT), some information might be lost, mainly

34

from the first elements of the sequence. This way, and in accordance with the conclusions taken in

Chapter 2 regarding this subject, as the input sequences grow in length, the performance of the encoder-

decoder models tends to degrade significantly. Despite less significant, the increased length of the

output sequence also degrades the model’s accuracy.

3.3.2 Attention mechanism

With the intent of solving the encoder-decoder liability with long sequences, the attention mechanism

was developed by D. Bahdanau, K. Cho, and Y. Bengio [56]. As the name implies, this mechanism aims

to give the decoder the capability to select from which outputs of the encoder RNN cells it wants to pay

more attention to (assign a higher weight to). With the attention mechanism, instead of compressing the

encoded inputs into a fixed-length vector, the encoder outputs a set of vectors (one for each RNN cell

computed hidden state), from which the decoder will “decide”, for every prediction step, which relevance

to give to each of them. In is a schematic representation of the attention mechanism, with an input

sequence and output sequence of lengths T = 3 and T ′ = 3, respectively. .

Figure 3.10: Encoder-decoder architecture with the attention mechanism (taken from [8]).

Having all the encoder RNN cells hidden states to learn from, the decoder will compute a softmax

distribution, for each decoder RNN cell, to decide how much weight will be attributed to each hidden

state came from the encoder. The softmax formula is mathematically described by

35

Softmax(z)i =
ezi∑|Z|
j=1 e

zj
, (3.26)

where Z = {z1, z2, ...} is a vector with |Z| elements, in this case each element referent to a RNN cell

from the decoder. The input values of the softmax function can be any real number – positive, negative

or zero. However, the softamx function will transform them into values from zero to one so that they

can be interpreted and probabilities. If one of the inputs is small (or more negative), the softmax will

transform it into a small probability and vice-versa for a large input. Given that the outputs are meant to

be interpreted as probabilities, all the outputs of softmax sum to one.

This way, during the network training, the decoder cells will learn a softmax distribution that dictates

how much relevance to give to each hidden state from the encoder, having this way one different context

vector for each decoder RNN cell, tuned accordingly to its needs.

In accordance with the conclusions taken in chapter 2, for long input sequences the ideal output

of the softmax distribution would be very sparse and possibly with zero values. Not only the softmax

function does not lead to a sparse output, but it can never output zero values. The sparsemax activation

function came as an alternative [58], which is similar to the softmax function, but able to output sparse

probabilities and zero values. With the sparsemax activation function the attention mechanism can be

more selective and compact.

3.3.3 The Transformer

All the previously covered RNN based architectures share a computational limitation – they are not

parallelizable. The recurrent mechanisms imply sequential computations, i.e. each RNN cell can only

perform its computations after the previous one finishes (and passes on the hidden state). This limitation

can result in having a model that is tremendously slow to train and computing predictions. To address

this weakness a new simple network architecture was proposed by [9] – the Transformer – based solely

on attention mechanisms but entirely without recurrence, which makes it highly parallelizable, boosting

significantly the computational speed of the model.

Again, as the vast majority of sequence-to-sequence models, the Transformer was designed for NLP

tasks, with a high focus on language translation problems. Therefore, the original architecture proposed

by [9] integrates some modules that were placed to deal with words or word embeddings and are not

applicable to time-series data. Accordingly, some posterior arrangements will be needed to have the

model suitable for time-series problems. Such modifications are addressed in Section 3.3.3.D, after

covering the original model for NLP. The architecture of the Transformer is represented in Figure 3.11.

The Transformer is a sequence-to-sequence model, and thus, its structure is also based on an

encoder-decoder architecture. In Figure 3.11, the encoder is the block on the left, and the decoder

36

Figure 3.11: The Transformer – model architecture (taken from [9]).

is the block on the right. Both the encoder and decoder are composed of modules that can be re-

peatedly stacked up on top of each other, N times (represented by the Nx in the figure). This way, the

encoder is formed by a set of encoding layers whose role is to map an input sequence X = {x1,2 , ..., xn}

to a sequence of continuous representations Z = {z1, z2, ..., zn}. These continuous representations Z

are meant to determine how much related is each input with the others. The decoder, on the other

hand, is composed of a set of decoding layers that, given Z, generates the intended output sequence

{y1, y2, ..., ym}, by computing one value at the time and integrating the already calculated values in the

next predictions computations.

Encoder – In the model proposed by [9], 6 stacked encoder layers were used, N = 6. Each layer

of the encoder comprises two sub-layers – a multi-head self-attention mechanism, followed by a fully

connected FNN, placed to learn more encoding information. The Multi-head self-attention mech-

anism is covered in Section 3.3.3.C. Moreover, after each sub-layer is placed a residual connec-

tion [71] followed by a layer normalization [72], which translates in

37

f(x) = LayerNorm(x+ Sublayer(x)), (3.27)

where Sublayer(x) is the sub-layer output.

The residual learning process essentially creates a shortcut connection between the outputs of the

sub-layer and its inputs with the intent of deciding if the sub-layer computation is beneficial to the

process and, if not, it will be skipped. The layer normalization function acts as a stabilizer of the

learning procedure.

Decoder – In the model proposed by [9], 6 stacked decoder layers were used, N = 6. Each layer

of the decoder also comprises a multi-head self-attention mechanism followed by a fully connected

FNN, similarly to the encoder, but it integrates a third sub-layer – the masked multi-head attention

– which essentially acts equally to the multi-head attention mechanism, but gets its inputs from the

outputs of the decoder, sequentially, as they are calculated (without considering future decoding

outputs). Moreover, the decoder’s multi-head attention module takes as input both the encoded

representations computed by the masked multi-head attention and the encoded representations Z

from the encoder. After each sub-layer, similarly to the encoder, there is a residual connection [71]

followed by a layer normalization – Equation (3.27).

3.3.3.A Positional Encoding

An important module of the Transformer architecture is the positional encoding of the input sequence,

present at the bottom of both the encoder and decoder stacks. Since there are no recurrent mechanisms

to explain the sequential nature of the input, the architecture needs an extra component to give some

sense of order to the inputs. To serve this purpose, the positional encoding module injects information

about the relative or absolute position of the different points in the sequence, i.e. it helps to determine

the distance between points and the position of the points overall in the sequence.

To compute the positional encoding vectors, several functions can be used [73]. However, in [9]

the authors tested the most common ones in the Transformer architecture and found similar results for

all of them. In the proposed model they used sine and cosine functions of different frequencies, as

mathematically described by

PE(pos,2i) = sin

(
pos

10000
2i

dmodel

)
(3.28)

and

PE(pos,2i+1) = cos

(
pos

10000
2i

dmodel

)
, (3.29)

where pos is the position of an element in the sequence, i is the dimension of the element, and dmodel is

38

the dimension of the outputs in the output sequence of the Transformer. This way, for every element in

the input sequence, there will be a positional encoding which will be different from all the others.

3.3.3.B Scaled Dot-Product Attention

The scaled dot-product attention is the central mechanism of the multi-head attention block, and thus,

should be covered first. First of all, every input of the input sequence will be transformed into three

vectors – query Q, key K and value V – which will be obtained by multiplying the inputs by the matrices

– WQ, WK and WV , respectively. These matrices are composed of parameters that will be learned

when training the model. The scaled dot-product attention is composed of the operations represented

in Figure 3.12.

Figure 3.12: Scaled Dot-Product Attention (taken from [9]).

Mathematically, the scaled dot-product attention mechanism can be described by

Attention(Q,K, V) = Softmax

(
QKT

√
dk

)
V. (3.30)

The scaled dot-product attention is used to encode each input of the input sequence, taking into

account all the other inputs and how much they are related. To do so, each query vector Q will be put

against every key vector K by performing a dot-product operation which will result in a score. This score

represents how much each key vector K is related to every query Q (how inputs are related to each

39

other). These scores are scaled1 by a factor of 1
dk

, where dk is the dimension of the key vectors (and

likewise the query vectors). A softmax function is then applied to the scores to ensure that they are

bounded.

All the value vectors V will then make use of the n computed scores to generate n new value vectors

V ′, by a matrix multiplication. These new value vectors will now dictate how much influenced each input

is by the other inputs – for example, if a certain input is not much relevant to another, the respective

score will be minimal, and consequently, the correspondent new value vector will be reduced.

At last, all the n multi-dimensional new value vectors V ′ will be grouped (according to the original

value vector V) and summed, which results in the output of the scaled dot-product attention mechanism.

3.3.3.C Multi-Head Attention

The multi-head attention of the Transformer is an expansion of the scaled dot-product attention mecha-

nism and it is represented in Figure 3.13.

Figure 3.13: Multi-head Attention (taken from [9]).

The multi-head attention modules brings two major enhancements to the model:

1The scaling 1
dk

is applied to reduce the magnitude of the dot products and stabilize gradients [74].

40

• The capability of having every point of the input sequence taking into account all the others (self-

attention), which improves the capture of context;

• The creation of different representations of each input from the input sequence, achieved by pro-

jecting them into different sets of sub-spaces.

The multi-head attention mechanism can be mathematically described by

MultiHead(Q,K, V) = Concat (head1, head2, ..., headh)W
O, (3.31)

where

headi = Attention
(
QWQ

i ,KW
K
i , V WV

i

)
. (3.32)

Fundamentally, the Transformer architecture comprises h parallel attention heads, with every each of

them performing scaled dot-product attention operations. All the attention head results are concatenated

and multiplied by another matrix WO, also composed of parameters that will be learned when training

the model and will, in essence, reduce the output to a single vector for each input of the input sequence.

From Figure 3.13, the matrix WO symbolizes the linear blocks – that lets the attention heads influence

each other. In [9] the number of parallel attention heads used is h = 8. The same value was used in the

implementation of the Transformer in this dissertation.

The multi-head attention blocks in the decoder still have some variants. The upper one uses the

weight matrices WK and WV from the encoder but has its own WQ weight matrix. For the bottom one

– masked multi-head attention –, the decoder must not attend to outputs that have not been generated

yet, and so, the multi-head attention block had to be modified in that regard. Otherwise, the decoder

would try to learn from outputs that had not been calculated yet, and thus, could not have any meaning.

3.3.3.D Adaption to time-series problems

The Transformer original architecture is designed for NLP tasks. Opposingly to NLP, time-series prob-

lems do not work with sequences of words or characters but rather with sequences of values. Addition-

ally, for forecasting purposes, an auto-regression process is needed and not a classification of words or

characters.

Firstly, the inputs already are numerical values, as such, there should be no embeddings. Addi-

tionally, word embeddings not only have the words mapped to vectors of real numbers, but they also

transform the inputs into another dimensional space. To maintain this property, a linear transformation

layer can be applied to the input sequence to transform it into to a n-dimensional space. Lastly, given

that, for forecasting problems, the outputs are real values and not probabilities, in the adaptation carried

41

in this work the softmax layer at the end of the encoder was removed.

42

4
Implementations

Contents

4.1 Time-series Forecasting . 45

4.2 Event Prediction . 53

43

44

4.1 Time-series Forecasting

4.1.1 Available data

A monitoring platform collected the datasets available for this dissertation from “up and running” real-

world IT systems. The platform defines each metric collection as an item, and an item is mainly (i.e.

relevant for this dissertation) characterized by two settings: (a) the actual metric, for example, the CPU

load of computer X; (b) the collection period, for example, five minutes (5min). Every collection is then

performed, for each period, only at the instant that the period clocks. For the given example, if one CPU

load value is collected at 14h 00min, the next value is going to be the CPU load at the instant 14h 05min,

and not the average load of the CPU between 14h 00min and 14h 05min.

The monitoring platform has two ways of storing the data regarding the items collected – history and

trend – each kept separately in the database:

• History – keeps each collected value for a pre-defined period of time (for example, data older than

one month will be discarded by a housekeeper). An example of a portion of an item’s history can

be seen in Table 1.1 (with a period of 1min).

• Trends – basically a historical data reduction mechanism which stores minimum, maximum, aver-

age and the total number of values per every hour for numeric data types. An example of a portion

of an item’s history can be seen in Table 4.1.

Table 4.1: Trend table example of CPU load [%].

Time Minimum Maximum Average Number of values
11h 00min 00s 15.32 63.35 21.33 20
12h 00min 00s 18.01 71.27 25.24 20
13h 00min 00s 15.44 54.20 20.05 20
14h 00min 00s 23.26 63.99 35.23 20
15h 00min 00s 30.98 65.83 50.50 20
16h 00min 00s 20.05 66.24 43.07 20

The idea is to keep the history as short as possible so that the database is not overloaded with lots

of historical data. Instead of keeping a long history, one can keep longer data of trends (keep history for

14 days and trends for 5 years), as trends are probably enough to shape data over long horizons.

Given that the time-series forecasting study carried out in this dissertation was conducted for predic-

tive maintenance purposes, the forecasting horizons have to be long enough so that timely preventive

measures can be taken effectively. For this reason, and after an agreement with Identity on the most

useful approach, the methods studied and fitted in this work were set to forecast the average value of

trends for time horizons of two hours and beyond.

45

This way, the input data used to compute the forecasts is prevenient from trends storage, not history.

Regardless, tests were also performed using data from history, but the results were always worst or

similar. Given that most of the items analysed had collection periods in between one and 5 minutes, the

number of steps-ahead that the intelligent models would have to predict would be too big, which could

explain the worst results.

4.1.2 Data Preprocessing

4.1.2.A Normalization

Data normalization (also known as feature scaling), is a data preprocessing mechanism that is rec-

ommended and often used with ML models, especially for multivariate datasets – since the different

variables/features can show very different scales, it might become hard to compare them. Since ANN

models are capable of modelling any shape or function, in theory, a data normalization preprocessing

step should not be required for these models to learn. However, after contracting all of the features to the

same scale and around the same origin, the networks’ learning parameters are less likely to explode or

vanish, which will result, at least, in an improved convergence speed of the training step. Furthermore,

the optimization methods used in the network’s learning process have empirically shown better results

with normalized data.

The most common two approaches for normalizing input datasets for ML algorithms are the stan-

dardization and the and the Min-Max scaling. The standardization method makes every variable of the

dataset having a null mean and a unit variance, and it can be mathematically described by

f(x) =
x− µ
σ

, (4.1)

where x is the variable to normalize, µ is the mean and σ is the variance.

The Min-Max scaling method compresses every variable of the dataset into the interval [0, 1], and it

can be mathematically described by

f(x) =
x− xmin

xmax − xmin
, (4.2)

where x is the variable to normalize, xmin is the minimum value of the subject variable and xmax the

maximum.

There is no clear winner when choosing the data normalization method (the normalization itself does

not even improve the performance that much). However, both standardization and Min-Max scaling were

tested in all cases but showed similar results. The results presented in Chapter 5 were obtained with the

Min-Max scaling normalization.

46

4.1.2.B Sliding Window

The intelligent methods studied and tested in this work are designed to receive a sequence of data

as an input and output another sequence of data. For time-series forecasting, the input sequence

X is composed of the last Nin most recent values X = {Xt−Nin
, Xt−Nin+1, ..., Xt−1, Xt}, where Xt

represents, for an IT system MTS dataset, a vector containing each metric (feature) collected at time

t. The output sequence Y = {Yt+1, Yt+2, ..., Yt+Nout−1, Yt+Nout} is composed of the future Nout values

after the last input, where Yt represents the forecasted value of the interest variable at time t.

To allow the intelligent methods to learn from historical data, they would need to be fed with a large

set of input-output pairs, of the format stated in the above paragraph.The most common approach to

transform a sequential time-series dataset into these input-output pairs, which is the same one used in

this work, is the sliding window. This method consists in fixating a window of length (Nin +Nout) in the

beginning of the dataset and slide it all the way until the end. Each slide constitutes one trading pair to

learn from (one input sequence and one output sequence). A schematic representation of the sliding

window approach is exemplified in Figure 4.1.

Figure 4.1: Sliding window approach.

In this example, the input sequence of length Nin = 4 is represented in green and the output se-

quence of length Nout = 2 is represented in red. Since the monitoring platform where the algorithms

were implemented would become more versatile with variable (user-defined) forecasting horizons, a

range of lengths within [2h, 24h] was tested in this work for the output sequences. A vast range of input

sequence lengths – [6h, 100h] – was also tested to scrutinize how many steps back were needed to

contain all the information necessary to perform the forecasts.

After testing all of the methods with different sequence lengths (input and output), the results showed

that input sequences longer than 24h did not improve any of the model’s performances and that for output

sequences of 6h, was length sufficient to illustrate how the models behave in multistep-ahead forecasts.

For output sequences until 6h, the forecasts did not lower the accuracy significantly. As such, the results

presented in Chapter 5 for time-series forecasting were conducted with Nin = 24;Nout = 6 .

47

4.1.3 Intelligent Methods Implementation

4.1.3.A Hyperparameters

The forecasting methods’ hyperparameters are the configurations that are “external” to the model in the

sense that they are unchangeable and defined before the training process. The ideal values change

from problem to problem, so there are no pre-established ones that are universally optimal. However, to

achieve a good performance with these intelligent methods, optimised hyperparameters can be crucial.

The hyperparameters optimised in the ML models applied in this are the following: (a) learning

rate, (b) loss function, (c) optimisation solver, (d) activation functions, (e) number of hidden nodes and

(f) number of stacked layers. For the ARIMA model, the hyperparameters to be predetermined are the

constants p, q and d described in Chapter 3 – ARIMA(p, q, d).

The optimal hyperparameters are frequently searched through basic approaches like brute-force or

simple trial and error [75]. Furthermore, beyond the optimisation solver and the activation functions,

there are automated techniques that can try to approximate the best hyperparameters, like grid search

or random search.However, they can lead to inferior results and are computationally heavy [76]. The

grid search was tested in this work with the ML algorithms, but the manual trial-and-error deduced

parameters led to superior results.

The optimisation solver was, as well, deduced by trial and error. For all the ANN tested in this work,

the optimisation solver is the one in charge of minimising the objective function of training. By far the

most common optimisation solvers are: (a) the sgdm [77], (b) the rmsprop [78] and (c) adam [79]. The

rmsprop and adam have the advantage of adapting to the used loss function. All these three optimisation

solvers were thoroughly tested across all the ML models, and the adam showed either equal or superior

behaviour in all tests. As such, the results of Chapter 5 were obtained with the adam optimisation

solver. The loss function used in all ANN for the time-series forecasting problems was the Mean Square

Error (MSE), which seems to be a common choice for this type of predictions. The loss function choice

usually does not have a notable impact on a model’s performance.

Finally, the learning rate used was lr = 0.05; tests with other values between [0.01, 0.1] were ex-

perimented but did not change the results. And for last, all of the activation functions described in

Section 3.2.1 were tested, one for each layer of each ANN (all combinations), but, except using only

linear units that showed worst results, the performances were similar and thus, this choice is irrelevant.

4.1.3.B Cross-validation

The goal of fitting a model to a training dataset is to have the model being able to generalise its knowl-

edge to new unknown data. However, feeding a dataset to an intelligent method to model it sometimes

leads to an excessive learning of the training dataset in particular. This event is defined as over-fitting,

48

and will result in a model that performs (excessively) well with the training dataset but will degrade

unreasonably when put against data outside of the training set.

Cross-validation is a training method designed to prevent an over-fitting occurrence. It consists of

splitting the dataset into K segments (folds), equal in size. Then, K − 1 folds will be used as the

training set for the model to learn from. The remaining fold will be used as the test set. This procedure

is repeated, using the same folds split, but always using a different fold for the test set until all the

possibilities are carried out. The iteration that showed better results with the underlying test set will

be the one from which the final model will be taken. This procedure is schematically represented in

Figure 4.2, with K = 5.

Figure 4.2: Cross-validation with K = 5 folds.

Furthermore, given the time ordering present in time-series, the Cross-validation method might ig-

nore the sequential nature of time. Namely, instead of just wanting the model to generalise to unseen

new data, for time-series forecasting, it is wanted that the model generalises for future data. This way,

the method used to secure that the model is only tested for a data latter in time than the training set, is

the one represented in Figure 4.3. It should also be noted that, for models that show weak accuracies

even for the training dataset, over-fitting is not a concern and methods like cross-validation might be

discarding data that would improve the models’ performance. This way, when such models are put into

production, these overfitting-preventive methods should be avoided.

Figure 4.3: Cross-validation for time-series with K = 5 folds.

49

4.1.3.C Evaluation Metrics

The metric chose in this work to evaluate the time-series forecasting models was the MSE, that is

mathematically decribed by

MSE =

∑N
i=1

(
yireal − yiforecast

)2
N

, (4.3)

where yreal are the true values – the ones present in the test set outputs –, yforecast and the values

forecasted by the model, and N is the length of the test set.

4.1.4 Period Reduction trial

This experiment was only tested with the ANN architectures.

Although the trend tables (one-hour averages) might be able to properly shape data over long hori-

zons, some spontaneous incidents that only happen momentarily could also compose valuable informa-

tion to compute the forecasts, as they might be related to meaningful events with long term impacts.

For example, several CPU spikes during a couple of minutes could indicate the start of several different

applications or services, that would increase the average CPU consumption over the next hours. In

Figure 4.4 is a visual example that illustrates how the trends storage misses irregularities in data that

are caught by the history storage.

(a) CPU load – history storage. (b) CPU load – trends storage.

Figure 4.4: CPU load comparison of the two different storage types: history vs trends; the item’s collection period
is one minute.

Moreover, given that the metrics collection is not continuous, using the minimum period possible will

increase catching spurious occurrences. To test this possibility, items were set to perform collections

with the minimum period allowed by the monitoring platform, 1sec. An example of a CPU load collection

comparison between a period of 1sec and a period of 1min is present in Figure 4.5.

50

(a) CPU load with a period collection of 1 second.

(b) CPU load with a period collection of 1 minute.

Figure 4.5: CPU load comparison of two different collection periods: 1 second vs 1 minute.

It can easily be noted that there are spikes present in Figure 4.5(a), that were not caught with a

period collection of one minute – Figure 4.5(b).

It must also be noted that this history storage usage is highly incompatible with the monitoring plat-

forms’ purpose. According to the platforms’ documentation, the history storage is kept as short as

possible given that it consumes much more disk space then the trends storage (which is precisely the

point of using trends), and thus keeping history for long periods of time, which would be needed to train

the intelligent forecasting models, could be unbearable. Furthermore, the collection of data at very short

periods (as one second), weights a significant burden in an IT system, as it needs to be continually

polling data from the monitored metrics. A monitoring platform is integrated into an IT system because

it can help to maintain it and to keep it reliable. Thus, if the monitoring tools used consume a lot of

resources, they will interfere with the system and might weaken it, instead of the opposite.

51

This way, the experiment described in this chapter was conducted to try to understand if eventual

forecasts with bad accuracies could be due to the loss of information inherent to the use of trends

storage or too large collection periods.

To try to make some meaning out of the spikes noted in datasets like Figure 4.5(a), an approach

that aims to count the number of spikes and feed it to the intelligent method was conducted. First of

all, given the lack of available history data with short collection periods to train the models, trend tables

of 10min averages were manually created to increase the number of time-steps. Using this “artificial”

trend table, the same number of time-steps were used for the input and output sequences – Nin = 24

and Nout = 6. Then, instead of just using the sliding window approach, described in Section 4.1.2.B,

to generate sequences to feed the model, K extra points will be added to the sequence, where K is

the number of input features. Each of the K points will be the total count of spikes, #spikes, of the

respective feature, during the whole input window time segment. Note that each input is referent to a

10min average, while the spikes count is performed in the whole history data (one value per second). As

such, for an input sequence of four time-steps, the input sequence timeline accounts for 4×10×60 = 2400

seconds, which is the number of points evaluated to count the spikes.

In Figure 4.6, is an example of the upgraded sliding window just described, but with Nin = 4 and

Nout = 2.

Figure 4.6: Sliding window for the period reduction trial.

The spikes count – #spikes – was calculated with a trial and error approach. Looking at each

feature’s graphical data, like Figure 4.5(a), define a threshold value, on top of the mean of the whole

sequence, above which a spike would be considered abnormal. For example, if the mean of an input

sequence is µ = 7 and defined threshold is T = 30, for each time that the metric’s collected value

crosses the value µ+T = 37 during the subject input sequence timeline, the spike count is incremented.

For metrics like free memory, where a lower value is the “problematic” and not the other way around (like

CPU load), the spike count is incremented when the line µ− T is crossed.

After several trial and error iterations, pick the threshold that led to better results and use it to the

52

final forecasting model.

4.2 Event Prediction

4.2.1 Available Data

The available data from the monitoring platform for the event prediction problems are of two types: trends

and events. The trend values are of the same type described in Section 4.1.1. The event data is directly

related to events, and it comes in the form described in Section 1.2.2 (not periodical like history and

trends). An example of an event table is also given in Table 1.3.

The events monitored in this work were related to problems in IT systems, in particular, services

shutting down unexpectedly or becoming unavailable. This way, when the system shuts down or be-

comes unavailable – the event/problem is triggered – and at that instant, a row in the respective event is

appended with a value of 1. When the system recovers from the problem, another row is appended with

a value of 0.

The available data from trends is related to metrics collected in the same machine/IT system where

the events occur.

4.2.2 Data Preprocessing

4.2.2.A Event to time-series

Given that the event points present in the datasets are not periodical, the intelligent methods studied

are not prepared to receive such data as input and compute predictions with it. To convert the original

event datasets to periodic sequences suitable for the ANN models, a preprocessing step that results in

a binary time-series was applied:

1. Round the timestamps of the events to the closest (past) hour (because the trends have values

per hour);

2. Generate a time-series with 0’s as values for the same timeline and with the same period (one

hour) of the trends metrics that will be used.

3. For the time between every event occurrence and its respective recovery, flip the values of the

time-series to values of 1.

After applying this technique, the original events from Table 1.3 would be transformed into the time-

series table in Table 4.2

53

Table 4.2: Time-series event dataset example.

Timestamp Event
2020-01-05 00:00:00 0
2020-01-05 01:00:00 1
2020-01-05 02:00:20 0
2020-01-05 03:00:20 0

... ...
2020-01-08 03:00:00 0
2020-01-08 04:00:00 1
2020-01-08 05:00:20 1
2020-01-08 06:00:20 1
2020-01-08 07:00:20 1
2020-01-08 08:00:00 0
2020-01-08 09:00:00 0

... ...
2020-01-09 21:00:00 0
2020-01-09 22:00:00 1
2020-01-09 23:00:00 1
2020-01-10 00:00:00 1
2020-01-10 01:13:05 0

Now that all of the data available (metrics and events) is in a time-series format, the events can also

be used as inputs, as if they are just another feature, and the ML can work just like for a time-series

forecasting procedure. To predict one event, simply choose as the feature to “forecast”, the respective

event time-series.

4.2.2.B Normalization

The same normalization described in Section 4.1.2.A was applied to the metrics as inputs used in the

event prediction. Given that the events time-series datasets already comprises values between [0, 1],

there is no need to normalize them.

4.2.2.C Sliding Window

The same sliding window approach described in Section 4.1.2.B was used with the addition of the event

time-series. Furthermore, since the monitoring platform where the prediction algorithms are imple-

mented would become more versatile with variable (user-defined) event prediction horizons, a range of

lengths within [2h, 24h] was tested in this work for the output sequences. A vast range of input sequence

lengths – [6h, 100h] – was also tested to scrutinize how many steps back were needed to contain all the

information necessary to perform the predictions.

After testing all of the ML architectures with the different lengths, the results showed that input se-

quences longer than 20h did not improve any of the model’s performances and that for output sequences

longer than 4h, the performance started to deteriorate notably. For output sequences until 4h, the fore-

54

casts did not lower the accuracy significantly. As such, the results presented in Chapter 5 for event

prediction were conducted with Nin = 20;Nout = 4 .

4.2.2.D Oscillations detection

(a) CPU load.

(b) Free memory.

Figure 4.7: Graphical representation of CPU load and free memory with event occurrences highlighted.

After looking at the available metrics with graphical representations and crossing them with the re-

spective event occurrences, it could be suggested that some of the metrics revealed destabilised be-

haviours in the times tightly close to an event occurrence. Such occasions are exemplified in Figure 4.7.

In an attempt to extract this information from the data and feed it directly to the network, an approach

using standard deviations to capture those irregularities was used (every feature separately): for each

point of each input sequence, compute the standard deviation of the last K values and use it as an

55

extra input to feed the network. This way, each point of the input sequence would now be a 2D vector

with (a) the actual value of the metric at the respective time-step and (b) the standard deviation of the

previous K time-steps of the subject metric.

This constant K used for the horizon of the standard deviation computations was deducted with a

trial and error manual approach. The value that revealed best results was k = 10 and thus, is the one

used for the results presented in chapter 5.

Several other methods were experimented in place of the standard deviation, like the harmonic mean

and a spike count similar to Section 4.1.4, but none of them led to superior results.

4.2.2.E Minority Class Oversampling

Given that the events evaluated in this work are derived from problems and failures, such occurrences

only happen sporadically. This way, as the prediction approach used computes, for the next Nout, if the

event will be triggered or not, for the vast majority of the times, the right prediction will be “no occurrence”.

If the two possible outputs (0 and 1) are labelled into two classes – the minority class and the majority

class –, the first would be for a prediction of 1 and the second for a prediction of 0.

The problem with such a small minority class (1) is that, if the model learns to “blindly” forecast the

majority class (0) regardless of the inputs – although useless –, it will end up with a very high accuracy

in the training set. This way, the model is encouraged by the data to learn this useless prediction.

To counter the majority class dominance, the minority class oversampling method was used. This

method identifies the minority class occurrences in the training set and replicates them until the two

classes are balanced enough for the model to learn to output both of the predictions. A value of 0.5 for

the minority class oversampling technique ratio, ROMC = 0.5, will result in a dataset where both classes

have the same number of occurrence. Is this number is less than 0.5, the majority class will dominate

by the correspondent ratio. If the oversampling ratio is more than 0.5, the (initially) minority class will

dominate the dataset, by the respective ratio ROMC .

4.2.3 Intelligent Methods Implementation

For the ML methods tested in the event prediction problems, the hyperparameter search was conducted

like described in Section 4.1.3.A as well. The optimisation solver’s conclusions were the same – the

adam optimisation solver showed either equal or superior behaviour in all tests. However, since this is

now a classification problem instead of a regression, the loss function used is the Binary Cross Entropy

(BCE), which also seems to be a common choice for this type of predictions.

Similarly to the forecasting study, for event prediction, after several learning rates experimented be-

tween [0.01, 0.1] ending up with the same results, the learning rate used in all final models was lr = 0.05.

The activation functions, on the other hand, took a slight difference from the forecasting models – the

56

output activation function (after the last layer) was always the sigmoid, which is the most common for

problems where the output should be between [0, 1]. For the other activation functions, all of the ones

presented in section 3.2.1 were tested, and again, the results were all very similar which makes this

choice irrelevant as well.

4.2.3.A Evaluation Metrics

Again, for this type of problems, accuracy is not a good indicator of performance. A method that never

predicts an event will probably have a high accuracy by merely predicting that the event never occurs.

This way, to evaluate the event prediction models, two measurements were used – precision and

recall. Precision and recall can be mathematically described by

Precision =
TP

TP + FP
× 100 (4.4)

and

Recall =
TP

TP + FN
× 100 (4.5)

where TP stands for true positives, FP stands for false negatives, and FN stands for false negatives.

In practical terms, the precision measures how accurate each positive event prediction is, i.e. how

trustworthy is the model when it predicts that a problem will be triggered. Moreover, the recall measures

how many event occurrences the model missed to predict – a model that never or too rarely predicts an

event occurrence will show a recall close to zero. Both the precision and recall measurements compute

values in between [0, 100]. The perfect model would score one at both.

57

58

5
Results and Discussion

Contents

5.1 Time-series Forecasting . 61

5.2 Event Prediction . 69

59

60

5.1 Time-series Forecasting

The algorithms developed in this dissertation were put into production environments and tested across

several different machines and with different metrics. For the results report, a set of data (collected from

the same machine) was chosen to illustrate the performance of the embraced algorithms. The forecasts

obtained with the chosen set of data are representative of the overall picture, in the sense that the

conclusions drawn from them also apply to most of the results obtained, and thus can be generalised.

A short sample of two months of data from the metrics used in this report for the time-series fore-

casting study is represented in Figure 5.1. The whole dataset accounts for three years of past data, and

for the results presented in this chapter, it was split into a training set and test set for 80% and 20%,

respectively.

Figure 5.1: Sample of the time-series dataset used to evaluate the models.

The first metric, represented in blue, is the free RAM memory of the machine, in percentage. The

second metric, represented in orange, is the CPU load of the machine, in percentage. The third metric,

represented in green, is the rate of bytes per second that are being read from disk. The fourth metric,

represented in red, is the free disk space, in GB. The fifth and last metric, is the download speed of the

machine, in Mbps. Out of the five metrics, the two that had more interest in being forecasted (product

61

wise) were the free RAM memory and the CPU load. The results obtained in both of the forecasts were

similar. This way, even though the free RAM memory (blue), will be the forecasted and evaluated metric

in this chapter, the conclusions also apply to CPU load forecasts.

All of the ANN models introduced in Chapter 3 were thoroughly tested for different numbers of hidden

nodes and stacked layers. The rest of the hyperparameters are already defined in Section 4.1. For the

ARIMA method, since the goal was to use it as the statistical reference to compare the ML models with,

rather than optimize it thoroughly, a python module auto arima() [76] was used to estimate the optimal

parameters.

A table with the range of hidden nodes and stacked up layers tested in each model is present in Ta-

ble 5.1. The iterative tests over the number of hidden nodes were carried with steps of 5 more nodes, i.e.

to test the hidden nodes between [15, 100], the total set of numbers tested is {15, 20, 25,, 90, 95, 100}.

Table 5.1: Ranges of hyperparameters experimented for the forecasting models.

Forecasting model Hidden nodes Stacked up layers
FNN [15, 100] [1, 10]

Vanilla RNN variants [15, 500] [1, 5]
Encoder-decoder variants [15, 150] [1, 5]

Attention Encoder-decoder variants [15, 150] [1, 5]
Transformer 8 [1, 15]

The variants are referent to the three RNN cells studied in this work – basic RNN, LSTM and GRU.

The Transformer hidden nodes are referent to the parallel attention heads used in the multi-head con-

catenation (the same number used in the original work [9] was used).

Unfortunately, none of the models achieved satisfactory performances, and none of them accom-

plished forecasts good enough to be worth being used in a monitoring platform to assist in PdM. How-

ever, the configuration of each architecture that performed better (least bad), in terms of MSE, are written

in Table 5.2.

Table 5.2: Best performing forecasting models and corresponding MSE evaluations.

Forecasting Model Hidden nodes Stacked up layers MSE (t) MSE (t+2) MSE (t+5)
ARIMA — — 58.33 63.27 61.68

FNN 35 — 40 — 25 3 64.27 46.65 38.35
Vanilla RNN 40 1 11.53 13.12 14.70
Vanilla LSTM 50 1 6.61 9.75 11.89
Vanilla GRU 40 1 9.12 12.34 13.31

Encoder-decoder RNN 20 1 13.38 13.92 14.37
Encoder-decoder LSTM 20 1 13.47 13.91 14.73
Encoder-decoder GRU 20 1 13.64 13.25 14.86

Attention Encoder-decoder RNN 20 1 13.36 13.42 14.69
Attention Encoder-decoder LSTM 20 1 13.18 13.22 13.93
Attention Encoder-decoder GRU 20 1 13.43 13.27 14.70

Transformer 8 3 13.53 13.63 14.56
Naive approach — — 3.61 9.74 14.51

62

In accordance with the implementation described in Section 4.1, the used input sequence is of 24

time-steps and the output sequence of 6 time-steps. As the datasets are from trend tables, their collec-

tion period is of 1 hour, and the outputted forecast has an horizon of 6 hours. This way, the first (t), the

middle (t+ 2) and the last (t+ 5) forecasts respective performances are present in Table 5.2.

Furthermore, for comparison purposes, an extra row is appended with the results of the naive ap-

proach. The naive approach is an estimating technique in which the last period’s values are used “blind-

lessly” as the next period’s forecast, without adjusting them or attempting to establish causal factors. For

multistep-ahead forecasts, the naive approach can be described by

yforecast(t+ P) = yreal(t− 1), (5.1)

where yforecast(t + P) is the “computed” forecast, yreal(t − 1) is the last observed value, and P is the

step count of the forecast. The naive approach will result in a delayed time shift (to the right) of the real

values. A graphical representation of the forecasts obtained for a sample of the test set is present in

Figure 5.2.

Figure 5.2: Forecasts of the naive approach

Despite the fact that, for real values that are more constant over time, the naive approach will output

63

many forecasts with a low MSE , these forecasts are of no practical use because they will not add more

information than the one already present in real-time monitoring. This way, for an intelligent model to be

considered useful in this problem, its forecasts would not only have to compute forecasts with an MSE

significantly below the naive approach but also detect abnormal behaviours before they occur.

Regardless of the bad results, some conclusions about what did the models learn from the data

could be taken from their behaviour and graphical representations.

The “simplest” networks – the FNN – have fewer parameters to learn from and thus, in theory, are

able to retain less information than the most robust ANN architectures. From their forecasts, it seems

that the FNN were simply not able to model the training dataset and, as such, performed very poorly.

However, it is notable that the last positions of the output sequence (the forecasts of further time-steps

in the future) are less oscillatory than the first ones, which can be seen in Figure 5.3. This is the reason

why in Table 5.2, the MSE of the forecast (t+ 5) is smaller than the one of (t+ 3).

Figure 5.3: Forecasts of the FNN model with 3 layers of 35, 40 and 25 hidden nodes, respectively.

The architecture that best performed in terms of MSE was the vanilla LSTM, and it did so because it

managed to learn something close to a naive approach, and not by “intelligently” computing forecasts. A

sample of the forecasts computed by the “winner” vanilla LSTM is graphically represented in Figure 5.4.

64

Figure 5.4: Forecasts of the vanilla LSTM model with 50 hidden nodes and 1 single layer.

It can be deducted from Figure 5.4 that the network learned to output a constant for most of the time

and that when it detects a steep oscillation, it reacts with a softened naive approach – softened in the

sense that, above a certain amplitude, it replicates the oscillation but with a less steep reaction.

For the same vanilla LSTM architecture with less hidden nodes (20), the forecasts are similar but

much closer to the naive approach. The oscillation reaction is not so softened, and the rest of the

forecast looks like a correct naive approach (but with an offset). A sample of the forecasts of this

network is present in Figure 5.5.

It is possible that the LSTM is able to learn that by applying a naive approach, it will achieve a

smaller MSE (which is the mathematical goal of the training process). Moreover, a LSTM network with

more nodes can learn more information and is able to learn that by outputting a constant value and

softening the oscillations reaction, the MSE can be even smaller.

Furthermore, the most oversized LSTM networks tested in this work went even further and learned

to just output a constant regardless of the input sequence. As an example, a forecast of a LSTM network

with 3 stacked up layers of 200, 500 and 50 hidden nodes, respectively, is represented in Figure 5.6(a).

Just like the biggest vanilla LSTM models, the larger and more complex architectures – Encoder-

Decoder, Encoder-Decoder with Attention and the Transformer – learned to forecast a constant output

65

Figure 5.5: Forecasts of the vanilla LSTM model with 20 hidden nodes and 1 single layer.

regardless of the inputs as well, even with one single layer and few nodes (20). When increasing the

number of hidden nodes and the number of stacked layers, these last models show the exact same

behaviour. Which probably means that the most information that can be taken out of the training data is

that a constant forecast is the one that will result in a lower MSE. As a representative example of these

models, in Figure 5.6(b) is a graphical representation of the forecasts computed by an encoder-decoder

LSTM model with 20 hidden nodes and 1 layer.

In terms of output shapes (oscillations, naive approaches and constant outputs), the RNN cells

of the three types studied all reveal similar results. This way, all of the graphical examples given for

architectures with LSTM cells can be generalised for the Elman RNN and the GRU.

Despite the fact that these conclusions might be useful to understand how the models learned to

compute the forecasts, they are not useful to production environments because these forecasts do not

add any value beyond the information that is already visible in the data from the past.

66

(a) Forecasts of the vanilla LSTM model with 3 layers of 200, 500 and 50 hidden nodes, respectively.

(b) Forecasts of the Encoder-decoder LSTM model with 20 hidden nodes and 1 single layer.

Figure 5.6: Constant forecasts computed by the larger and more robust architectures.

67

5.1.1 Period Reduction Trial

The period reduction trial experiment, described in Section 4.1.4, was also thoroughly tested with all

of the ANN architectures, but the results were not promising and were very unstable. Not only it did

not achieve satisfying forecasts, but also different training iterations with the same conditions – dataset,

architecture and hyperparameters – led to different results, making it hard even to take conclusions from

the bad results. The metrics used for this experiment were the same ones (present in Figure 5.1), but

the with specifications described in Section 4.1.4.

With the heavier architectures – Encoder-Decoder, Encoder-Decoder with Attention and the Trans-

former – for the most part of the (repeated) experiments, the models outputted constant values, similar

to the ones obtained in Figure 5.6(b). As such, either these models ignored the spikes count as an extra

feature, or what they learned from the spikes simply reinforced what had been learned from the plain

data – outputting a constant will likely minimize the loss function (MSE) across new datasets.

For the FNN and vanilla RNN variants, the period reduction trial revealed visible differences. Regard-

ing the evaluation metric used (MSE), for the RNN architectures some tests led to better results than

the ones in Table 5.2 and others did not, given that different training iterations constantly led to different

results. For the FNN however, with 2 hidden layers of 45 and 75 hidden nodes, respectively, the results

were slightly better (even considering the inconsistent repetitions) – with MSE values in between [20, 35]

for the last point of the output sequence (the 6th), for the free RAM memory forecast. Nonetheless, given

that the time-steps of the sequences in this experiment are 10min apart (as described in Section 4.1.4),

the last step predicted (t+5), is only 1 hour in the future instead of 6. This way, it is hard and inaccurate

to compare these values with the ones from Table 5.2. Experiments with longer sequences to match the

time-horizons of the results in Table 5.2 were not performed due to the lack of available data of metrics

collected with periods of 1 second. If such data was available, it is quite possible that the results would

degrade significantly given that they would have to perform a multistep-ahead forecast of 36 time-steps

in the future.

Moreover, it is notable that the FNN in this period reduction trial approach, reacts steeply to spikes

in data and, at times, is able to detect them ahead of time, although still with high MSE values overall.

Furthermore, it was evident that the threshold T defined to consider the spikes highly influences the

“sensitivity” towards spikes. In Figure 5.7 is a comparison of a FNN trained with a threshold T = 7 –

Figure 5.7(a); and the same FNN trained with T = 15 Figure 5.7(b). A lower threshold will count more

spikes, as it will require a lower amplitude to be considered and counted as a spike. And vice-versa for

a higher threshold.

From Figure 5.7(a) it is clear that the network was able to forecast steep oscillations (although not with

the correct amplitude). However, it also does forecast some oscillations shortly before time (for example,

around the time-step 230), and even some oscillations that did not take place at all (for example, around

68

(a) FNN model forecast of free RAM memory with a
spike detection threshold of T = 7.

(b) FNN model forecast of free RAM memory with a
spike detection threshold of T = 15.

Figure 5.7: Graphical comparison of the forecasts over different threshold values for the period reduction trial.

the time-step 190). In Figure 5.7(b), with a less sensitive threshold line, the model does not forecast

steep oscillations so easily and instead tries to follow the metric’s previous values. Although this second

one does not seem to add any valuable forecasting information, it does result in a lower MSE – 26.57,

which is significantly lower than 33.74 for Figure 5.7(a).

Despite the fact that, for the reasons explained in Section 4.1.4, this approach could not be put

into production, the goal of this trial was: trying to figure out if the data from the trend tables and with

large collection periods (>> 1 second) could have been losing important information from the metrics

continuous behaviour, and if such a loss would impede accurate forecasts from the intelligent models.

The results obtained are not conclusive enough to answer those questions, but a possibility to test this

hypothesis with more data should not be discarded.

5.2 Event Prediction

The work developed for the event prediction problems was also deployed in production environments and

tested across several different machines as well as with different input metrics and events. To illustrate

the behaviour and performance of the algorithms developed for event prediction, the set of input metrics

of Figure 5.1 was used alongside two different events S1 and S2 that the models learned do predict.

These events are related to problems in IT systems that are useful to be predicted in advance of the

actual occurrence. Both S1 and S2 are referent to services running on the same machine where the

metrics were collected, service 1 and service 2, respectively. Whenever service 1 crashes or is down,

69

the event S1 is triggered, and when it is back up and running, the event S1 is signalled and reverts the

trigger, producing this way a dataset of the form of Table 1.3. For service 2, the same mechanism is

used with the correspondent event S2. For the event prediction problems, the dataset split into training

set and test set was also of 80% and 20%, respectively. To have a clearer visualization of the occurrence

of events alongside IT systems, one can look at the example of Figure 4.7.

The ANN models introduced in Chapter 3 were also experimented for a vast range of hidden nodes

and stacked up layers, following the implementation techniques described in Section 4.2. In Table 5.3 is

a summary of the intervals tested for each architecture.

Table 5.3: Ranges of hyperparameters experimented for the event prediction models.

Event prediction model Hidden nodes Stacked up layers
FNN [15, 100] [1, 6]

Vanilla RNN variants [15, 500] [1, 3]
Encoder-decoder variants [15, 150] [1, 3]

Attention Encoder-decoder variants [15, 150] [1, 3]
Transformer 8 [1, 10]

Again, the variants are referent to the three RNN cells studied in this work – basic RNN, LSTM

and GRU. The iterative tests over the number of hidden nodes were carried with steps of 5 nodes per

iteration.

The best performing configurations for each model are present in Table 5.4, alongside the correspon-

dent evaluation metrics described in Section 4.2.3.A – precision and recall.

Table 5.4: Best performing configurations for the event prediction models – with the corresponding precision and
recall.

Event prediction Model Hidden nodes Stacked up layers
S1 S2

Precision Recall Precision Recall
FNN 45 — 60 2 48.55 55.95 47.75 58.94

Vanilla RNN 35 1 36.72 35.50 33.68 34.82
Vanilla LSTM 25 1 43.84 44.16 45.07 50.95
Vanilla GRU 30 1 39.95 41.59 44.83 44.38

Encoder-decoder RNN 25 1 33.57 35.29 31.33 35.41
Encoder-decoder LSTM 20 1 36.35 34.77 35.16 35.67
Encoder-decoder GRU 15 1 34.17 34.16 36.76 32.15

Attention Encoder-decoder RNN 30 1 37.19 32.86 34.11 34.46
Attention Encoder-decoder LSTM 25 1 41.84 32.89 38.23 37.57
Attention Encoder-decoder GRU 30 1 38.11 31.12 36.09 37.30

Transformer 8 6 45.28 40.70 48.34 40.96

In order to have a better visual understanding of how the models performed over the two events S1

and S2, Table 5.5 shows the average performance at the two services for each architecture.

The event prediction algorithms’ results are not ideal, but already provide useful outputs and show

that the algorithms were able to learn from the input data on how to predict events. The FNN is the

undisputed winner with the techniques developed for these problems, in both precision and recall mea-

70

Table 5.5: Average evaluation of the models of Table 5.4 for the events S1 and S2.

Model
(S1 + S2)/2

Precision Recall
FNN 48.15 57.45

Vanilla RNN 35.20 35.16
Vanilla LSTM 44.46 47.56
Vanilla GRU 42.39 42.99

Encoder-decoder RNN 32.45 35.35
Encoder-decoder LSTM 35.75 35.22
Encoder-decoder GRU 35.47 33.16

Attention Encoder-decoder RNN 35.65 33.67
Attention Encoder-decoder LSTM 40.03 35.23
Attention Encoder-decoder GRU 37.10 34.21

Transformer 46.81 40.83

surements. The vanilla LSTM and GRU networks also performed reasonably and, surprisingly, the

Transformer outperformed all of the other encoder-decoder models.

Given that the oscillation detections (described in Section 4.2) were the key for the models to learn

to predict the event occurrences, the FNN managed to take better advantage of them due to the fully

connected layers that compose its architecture (Section 3.2.1). The RNN variants, on the other hand,

process the inputs sequentially, which attenuates the presence of the spikes over the network. The

fact that the encoder-decoder architectures performed bellow the vanilla RNN only strengthens this

hypothesis, given that the inputs have to go through two entire RNNs. The attention mechanism still

caught up some information that faded through the encoder-decoder but still underperformed the vanilla

RNN models. For last, the Transformer does not have the feedback loop of all the RNN cells based

models and thus is able to better capture the oscillations information from the inputs. Nonetheless, it

still underperformed the integral fully connected layers of the FNN model, that are able to interpret the

oscillation detection inputs and directly forward it to predict the events.

The emphasis on the importance of the oscillation identification by the standard deviations must be

highlighted. Before the implementation of this feature, all of the methods had significantly worst results.

In Table 5.6 is the performance of the same studied architectures, but without this feature – the inputs

are solely sliding windows of the metrics datasets.

Moreover, the minority class oversampling technique used for all the above results was implemented

with a ratio of ROMC = 0.5. This parameter highly influences the outputs and might be important to

adjust it according to the programmer’s preferences and needs. If the ratio is increased, the model will

be fed with more event occurrences, which will result in a lower precision but a higher recall – if the model

is going to “risk” more often that an event will occur it will give false alerts more often (lower precision),

however, it will let fewer occurrences pass under the radar (higher recall). On the other hand, if the ratio

RMOC is decreased, the model will be fed with fewer event occurrences, which will result in the opposite

– higher precision and lower recall – if the model learns from positive occurrences fewer times, it will be

71

Table 5.6: Average evaluation of the models for the events S1 and S2, without the standard deviation preprocessing
for oscillation detection.

Model
(S1 + S2)/2

Precision Recall
FNN 12.66 8.54

Vanilla RNN 15.75 18.50
Vanilla LSTM 21.61 22.63
Vanilla GRU 19.98 20.47

Encoder-decoder RNN 16.47 19.02
Encoder-decoder LSTM 26.11 22.13
Encoder-decoder GRU 24.27 23.62

Attention Encoder-decoder RNN 17.71 16.14
Attention Encoder-decoder LSTM 27.43 22.22
Attention Encoder-decoder GRU 22.24 24.51

Transformer 20.10 21.14

more conservative in predicting occurrences, and will only do it when has a higher degree of confidence

(higher precision), but will let more event occurrences pass under the radar (lower recall). In Table 5.7

are illustrative results of experiments with difference ratio RMOC values by the best performing model –

FNN – for the event prediction problems.

Table 5.7: ROMC variations for event predictions with the FNN model of Table 5.4.

ROMC
(S1 + S2)/2

Precision Recall
0.25 69.19 38.41
0.5 48.15 57.45

0.75 37.08 73.21

The use of different ROMC values can be of great use because it allows directing the model to a

deliberated bias. If, for example, a particular event is linked to a failure that can cause severe damages,

one could increase the ROMC ratio to avoid not being alerted at all costs; if, on the other hand, an event

is not linked to severely harmful causes or if it is too demanding to protect/prevent, one could lower the

ROMC to only be alerted with a higher degree of certainty.

72

6
Conclusion

Contents

6.1 Conclusions . 75

6.2 Future Work . 76

73

74

6.1 Conclusions

The algorithms developed in this dissertation were focused on real-world use cases. They were deployed

in a production environment, where they acted on data prevenient from machines working in the IT

industry. The main goal of the developed work was to perform PdM – make predictions about the

monitored systems that could help take preventive actions to maintain them. For this purpose, a study

of practical interests was operated together with this dissertation’s partnership company - Identity -, two

different approaches were taken:

• Time-series forecasting – A deep background study was conducted to extract from the literature,

the most promising methods to perform this task. The most advanced techniques developed for

sequence modelling (of which time-series is part of) are the NLP models like encoder-decoders

and Transformers. Therefore, these methods were tested, upon the required modifications for

time-series problems. However, these advanced and complex models could not outperform the

vanilla RNN models, namely the LSTM which is the model that scored the lowest MSE in tests.

Unfortunately, none of the models tested in this work delivered encouraging results. The reason

could have either been that the algorithms were not suitable to model the data, or that the data

itself is not capable of establishing causal factors. Consequently, each in their own way, the models

ended up learning naive approaches or to just output a constant in order to minimize the loss

function, regardless of the “reasonless” outputs. Moreover, given the disappointing results in this

section, an alternative data preprocessing/rearrangement technique was employed (described in

Section 4.1.4), to try to make sense of spikes present in the data and maybe justify the bad results.

Moreover, this experiment was not intended to be put into production, as it was incompatible with

the monitoring platform where the algorithms were deployed. However, due to the scarce data

needed for this experiment, solid conclusions could not be taken. Nonetheless, the spikes counting

technique helped the FNNs to forecast steep oscillations in data, that could not have been done

before (even though these forecasts were unstable).

• Event Prediction using time-series – Given the similarities in the nature of data of this field, with

time-series forecasting problems, the state-of-the-art study for event prediction intelligent methods

shares most part of the algorithms with the forecasting field. So much so that, the literature shows

that not only there are already studies extrapolating the forecasting science to event prediction [65],

but also the evolution of the event prediction techniques over time [66] comprises more or less the

same evolution seen in time-series forecasting. This way, the same ML architectures tested in the

forecasting domain were employed in the event prediction study. Moreover, a visual data analysis

of the problem recognized that often event occurrences were surrounded by data oscillations on

the metrics collected on the same machine as the events. Accordingly, a method to detect these

75

oscillations (with standard deviation) and explicitly feed that information to the model was devel-

oped (described in Section 4.2.2.D). The oscillations detection approach significantly improved the

predictions, that before this treatment had very poor performances. As reported in Section 5.2, the

predictions are not ideal, but their outputs can be useful and are already capable of being inter-

preted. The FNN is the model that revealed the best performances, as it can take batter advantage

of the oscillation detection data thanks to the fully connected layers that composes its architecture.

The recurrent networks end up attenuating the oscillation detection inputs in their feedback loops,

resulting in worse results than the simpler FNN. The Transformer does not comprise any recurrent

mechanisms and thus is able to forward more easily the oscillation detection inputs to the outputs

of the network. Even though still behind the FNN, the Transformer outperformed the other methods

based in recurrent units. Lastly, the oversampling minority class technique can be manipulated, by

tuning the ratio ROMC as desired, which will result in projecting a deliberate bias in the predictions,

to either be riskier or more conservative (complete explanation in Section 5.2).

6.2 Future Work

To continue the work developed in this dissertation, some suggestions can be made that, if successful,

would add value to this study:

• Automation – An automated method to find out the best sets of metrics to perform the forecasts

and the event predictions and another automated approach to select the optimal sequence lengths

to feed the network.

• Forecast spikes – If a model that perform accurate forecasts is found, tune it to forecast spikes

optimally. In PdM it is much more valuable to forecast unexpected behaviours than just achieving

good accuracies when everything is normal and running as expected.

• Period reduction trial – Gather more historical data to try to make reliable conclusions out of this

experiment (described in Section 4.1.4).

• Event Prediction after forecasting – If a model that performs accurate forecasts is found, explore

the possibility of using the forecasts to predict events.

• Event Prediction explanation – Develop a mechanism that identifies which metrics unexpected

behaviours contribute to the prediction of an event.

76

Bibliography

[1] TIME SERIES ANALYSIS & FORECASTING – mathematica-city. [Online]. Available: http:

//mathematicacity.co.in/2020/08/time-series-analysis-forecasting-siddhartha/

[2] M. Deshp and e. (2020) Perceptrons: The first neural networks. Section: Machine Learning.

[Online]. Available: https://pythonmachinelearning.pro/perceptrons-the-first-neural-networks/

[3] L. Coelho Junior, J. Rezende, A. Batista, A. Mendonça, and W. Lacerda, “Use of artificial neural

networks for prognosis of charcoal prices in minas gerais,” 2013, journal Abbreviation: CERNE

Publication Title: CERNE Volume: 19.

[4] “Recurrent neural network,” page Version ID: 1000541866. [Online]. Available: https:

//en.wikipedia.org/w/index.php?title=Recurrent neural network&oldid=1000541866

[5] 9.6. encoder-decoder architecture — dive into deep learning 0.16.1 documentation. [Online].

Available: https://d2l.ai/chapter recurrent-modern/encoder-decoder.html

[6] S. Kostadinov. (2019) Understanding encoder-decoder sequence to sequence model. [On-

line]. Available: https://towardsdatascience.com/understanding-encoder-decoder-sequence-to-

sequence-model-679e04af4346

[7] (2019) Differentiable programming and its applications to dynamical systems. [Online].

Available: https://www.groundai.com/project/differentiable-programming-and-its-applications-to-

dynamical-systems/1

[8] (2019) Attention mechanism. [Online]. Available: https://blog.floydhub.com/attention-mechanism/

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin, “Attention is all you need,” 2017. [Online]. Available: http://arxiv.org/abs/1706.03762

[10] B. Marr. (2018) How much data do we create every day? the mind-

blowing stats everyone should read. Section: Enterprise & Cloud. [Online]. Avail-

able: https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-

day-the-mind-blowing-stats-everyone-should-read/

77

http://mathematicacity.co.in/2020/08/time-series-analysis-forecasting-siddhartha/
http://mathematicacity.co.in/2020/08/time-series-analysis-forecasting-siddhartha/
https://pythonmachinelearning.pro/perceptrons-the-first-neural-networks/
https://en.wikipedia.org/w/index.php?title=Recurrent_neural_network&oldid=1000541866
https://en.wikipedia.org/w/index.php?title=Recurrent_neural_network&oldid=1000541866
https://d2l.ai/chapter_recurrent-modern/encoder-decoder.html
https://towardsdatascience.com/understanding-encoder-decoder-sequence-to-sequence-model-679e04af4346
https://towardsdatascience.com/understanding-encoder-decoder-sequence-to-sequence-model-679e04af4346
https://www.groundai.com/project/differentiable-programming-and-its-applications-to-dynamical-systems/1
https://www.groundai.com/project/differentiable-programming-and-its-applications-to-dynamical-systems/1
https://blog.floydhub.com/attention-mechanism/
http://arxiv.org/abs/1706.03762
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/

[11] (2019) Importance and benefits of predictive and preventive maintenance. [Online]. Available:

https://www.eaglecmms.com/importance-and-benefits-of-predictive-and-preventive-maintenance/

[12] “Time series,” 2020, page Version ID: 993102431. [Online]. Available: https://en.wikipedia.org/w/

index.php?title=Time series&oldid=993102431

[13] (2018) State of deep learning: Industrial PdM | LinkedIn. [Online]. Available: https:

//www.linkedin.com/pulse/deep-learning-iiot-checklist-lothar-schubert/

[14] R. Adhikari and R. K. Agrawal, “An introductory study on time series modeling and forecasting,”

2013. [Online]. Available: http://arxiv.org/abs/1302.6613

[15] G. Weiss and H. Hirsh, “Learning to predict rare events in event sequences,” 1998.

[16] G. Bontempi, S. Ben Taieb, and Y.-A. Le Borgne, “Machine learning strategies for time series

forecasting,” in Business Intelligence, M.-A. Aufaure and E. Zimányi, Eds. Springer Berlin

Heidelberg, 2013, vol. 138, pp. 62–77, series Title: Lecture Notes in Business Information

Processing. [Online]. Available: http://link.springer.com/10.1007/978-3-642-36318-4 3

[17] J. G. De Gooijer and R. J. Hyndman, “25 years of time series forecasting,” vol. 22,

no. 3, pp. 443–473, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0169207006000021

[18] M. Bose and K. Mali, “Designing fuzzy time series forecasting models: A survey,” vol.

111, pp. 78–99, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0888613X18306376

[19] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep learning for

time series classification: a review,” vol. 33, no. 4, pp. 917–963, 2019. [Online]. Available:

https://doi.org/10.1007/s10618-019-00619-1

[20] V. Ravi, D. Pradeepkumar, and K. Deb, “Financial time series prediction using hybrids of chaos

theory, multi-layer perceptron and multi-objective evolutionary algorithms,” vol. 36, pp. 136–149,

2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2210650217300822

[21] M. Stepnicka, J. Peralta Donate, P. Cortez, L. Vavrikova, and G. Gutierrez, “Forecasting

seasonal time series with computational intelligence: contribution of a combination of

distinct methods.” in Proceedings of the 7th conference of the European Society for

Fuzzy Logic and Technology (EUSFLAT-2011). Atlantis Press, 2011. [Online]. Available:

http://www.atlantis-press.com/php/paper-details.php?id=2192

78

https://www.eaglecmms.com/importance-and-benefits-of-predictive-and-preventive-maintenance/
https://en.wikipedia.org/w/index.php?title=Time_series&oldid=993102431
https://en.wikipedia.org/w/index.php?title=Time_series&oldid=993102431
https://www.linkedin.com/pulse/deep-learning-iiot-checklist-lothar-schubert/
https://www.linkedin.com/pulse/deep-learning-iiot-checklist-lothar-schubert/
http://arxiv.org/abs/1302.6613
http://link.springer.com/10.1007/978-3-642-36318-4_3
http://www.sciencedirect.com/science/article/pii/S0169207006000021
http://www.sciencedirect.com/science/article/pii/S0169207006000021
http://www.sciencedirect.com/science/article/pii/S0888613X18306376
http://www.sciencedirect.com/science/article/pii/S0888613X18306376
https://doi.org/10.1007/s10618-019-00619-1
http://www.sciencedirect.com/science/article/pii/S2210650217300822
http://www.atlantis-press.com/php/paper-details.php?id=2192

[22] R. Majid and S. Mir, “Advances in statistical forecasting methods: An overview,” vol. 63, pp. 815–

831, 2018.

[23] K. Bandara, C. Bergmeir, and S. Smyl, “Forecasting across time series databases using recurrent

neural networks on groups of similar series: A clustering approach,” 2018. [Online]. Available:

http://arxiv.org/abs/1710.03222

[24] Y. Zhang, C. Cheng, R. Cao, G. Li, J. Shen, and X. Wu, “Multivariate probabilistic forecasting and

its performance’s impacts on long-term dispatch of hydro-wind hybrid systems,” p. 116243, 2020.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0306261920316378

[25] F. Ma, M. I. M. Wahab, D. Huang, and W. Xu, “Forecasting the realized volatility of the oil

futures market: A regime switching approach,” vol. 67, pp. 136–145, 2017. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0140988317302608

[26] L. Poulos, A. Kvanli, and R. Pavur, “A comparison of the accuracy of the box-jenkins method

with that of automated forecasting methods,” vol. 3, no. 2, pp. 261–267, 1987. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/0169207087900070

[27] P. A. Texter and J. K. Ord, “Forecasting using automatic identification procedures: A

comparative analysis,” vol. 5, no. 2, pp. 209–215, 1989. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/0169207089900885

[28] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and machine learning forecasting

methods: Concerns and ways forward,” vol. 13, no. 3, 2018.

[29] 2020, title = Comparison of statistical and machine learning methods for daily SKU demand fore-

casting, doi = 10.1007/s12351-020-00605-2, abstract = Daily SKU demand forecasting is a chal-

lenging task as it usually involves predicting irregular series that are characterized by intermittency

and erraticness. This is particularly true when forecasting at low cross-sectional levels, such as at

a store or warehouse level, or dealing with slow-moving items. Yet, accurate forecasts are nec-

essary for supporting inventory holding and replenishment decisions. This task is typically ad-

dressed by utilizing well-established statistical methods, such as the Croston’s method and its

variants. More recently, Machine Learning (ML) methods have been proposed as an alternative

to statistical ones, but their superiority remains under question. This paper sheds some light in

that direction by comparing the forecasting performance of various ML methods, trained both in

a series-by-series and a cross-learning fashion, to that of statistical methods using a large set of

real daily SKU demand data. Our results indicate that some ML methods do provide better fore-

casts, both in terms of accuracy and bias. Cross-learning across multiple SKUs has also proven

to be beneficial for some of the ML methods. © 2020, Springer-Verlag GmbH Germany, part

79

http://arxiv.org/abs/1710.03222
http://www.sciencedirect.com/science/article/pii/S0306261920316378
http://www.sciencedirect.com/science/article/pii/S0140988317302608
http://www.sciencedirect.com/science/article/pii/0169207087900070
http://www.sciencedirect.com/science/article/pii/0169207089900885
http://www.sciencedirect.com/science/article/pii/0169207089900885

of Springer Nature., journaltitle = Operational Research, author = Spiliotis, E. and Makridakis,

S. and Semenoglou, A.-A. and Assimakopoulos, V., date = 2020, keywords = Cross-learning,

Forecasting accuracy, Neural networks, Regression trees, SKU demand, file = SCOPUS Snap-

shot:/home/pedromoreira/Zotero/storage/5Q45BY33/display.html:text/html,.

[30] N. K. Ahmed, A. F. Atiya, N. E. Gayar, and H. El-Shishiny, “An empirical comparison of machine

learning models for time series forecasting,” vol. 29, no. 5, pp. 594–621, 2010. [Online]. Available:

http://www.tandfonline.com/doi/abs/10.1080/07474938.2010.481556

[31] G. Bontempi, S. Ben Taieb, and Y.-A. Le Borgne, “Machine learning strategies for time series fore-

casting,” in Lecture Notes in Business Information Processing, 2013, vol. 138, journal Abbreviation:

Lecture Notes in Business Information Processing.

[32] S. S. Kathait, D. A. Kaur, S. Tiwari, and A. Varshney, “Integrating neural networks with time series

forecasting: Improving sales,” vol. 04, no. 1, p. 3, 2020. [Online]. Available: https://valiancesolutions.

com/whitepapers/integrating-sales-forecastingtime-series-using-neural-networks/

[33] R. Nagarajan, “Deciphering dynamical nonlinearities in short time series using recurrent neural

networks,” vol. 9, no. 1, p. 14158, 2019. [Online]. Available: http://www.nature.com/articles/s41598-

019-50625-y

[34] D. Niu, H. Shi, J. Li, and Y. Wei, “Research on short-term power load time series forecasting model

based on BP neural network,” in 2010 2nd International Conference on Advanced Computer Con-

trol, vol. 4, 2010, pp. 509–512.

[35] M. Ghofrani, D. Carson, and M. Ghayekhloo, “Hybrid clustering-time series-bayesian neural network

short-term load forecasting method,” in 2016 North American Power Symposium (NAPS), 2016, pp.

1–5.

[36] Q. Huang, Y. Li, S. Liu, and P. Liu, “Hourly load forecasting model based on real-time meteorological

analysis,” in 2016 8th International Conference on Computational Intelligence and Communication

Networks (CICN), 2016, pp. 488–492, ISSN: 2472-7555.

[37] X. Guo, X. Liang, and X. Li, “A stock pattern recognition algorithm based on neural networks,” in

Third International Conference on Natural Computation (ICNC 2007), vol. 2, 2007, pp. 518–522,

ISSN: 2157-9563.

[38] R. M. K. T. Rathnayaka, D. M. K. N. Seneviratna, W. Jianguo, and H. I. Arumawadu, “A hybrid statis-

tical approach for stock market forecasting based on artificial neural network and ARIMA time series

models,” in 2015 International Conference on Behavioral, Economic and Socio-cultural Computing

(BESC), 2015, pp. 54–60.

80

http://www.tandfonline.com/doi/abs/10.1080/07474938.2010.481556
https://valiancesolutions.com/whitepapers/integrating-sales-forecastingtime-series-using-neural-networks/
https://valiancesolutions.com/whitepapers/integrating-sales-forecastingtime-series-using-neural-networks/
http://www.nature.com/articles/s41598-019-50625-y
http://www.nature.com/articles/s41598-019-50625-y

[39] N. S. Khan, S. Ghani, and S. Haider, “Real-time analysis of a sensor’s data for automated

decision making in an IoT-based smart home,” vol. 18, no. 6, 2018. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022067/

[40] P. Zhang, E. Patuwo, and M. Hu, “Forecasting with artificial neural networks: The state of the art,”

vol. 14, pp. 35–62, 1998.

[41] G. P. Zhang, B. E. Patuwo, and M. Y. Hu, “A simulation study of arti”cial neural networks for nonlinear

time-series forecasting,” p. 16, 2001.

[42] Z. Tang, C. de Almeida, and P. A. Fishwick, “Time series forecasting using neural networks vs.

box- jenkins methodology,” vol. 57, no. 5, pp. 303–310, 1991, publisher: SAGE Publications Ltd

STM. [Online]. Available: https://doi.org/10.1177/003754979105700508

[43] P. Zhang and D. Kline, “Quarterly time-series forecasting with neural networks,” vol. 18, pp. 1800–

1814, 2007.

[44] P. Mandal, T. Senjyu, N. Urasaki, and T. Funabashi, “A neural network based several-hour-ahead

electric load forecasting using similar days approach,” vol. 28, pp. 367–373, 2006.

[45] P. Zhang, “Zhang, g.p.: Time series forecasting using a hybrid ARIMA and neural network model.

neurocomputing 50, 159-175,” vol. 50, pp. 159–175, 2003.

[46] A. Schäfer and H. Zimmermann, Recurrent neural networks are universal approximators, 2006,

pages: 640.

[47] J. L. Elman, “Finding structure in time,” vol. 14, no. 2, pp. 179–211, 1990. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/036402139090002E

[48] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” vol. 9, pp. 1735–80, 1997.

[49] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio,

“Learning phrase representations using RNN encoder-decoder for statistical machine translation,”

2014. [Online]. Available: http://arxiv.org/abs/1406.1078

[50] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of recurrent network archi-

tectures,” p. 9, 2015.

[51] F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and R. Jenssen, “An overview and

comparative analysis of recurrent neural networks for short term load forecasting,” 2018. [Online].

Available: http://arxiv.org/abs/1705.04378

[52] M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,” vol. 45, pp. 2673–2681, 1997.

81

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022067/
https://doi.org/10.1177/003754979105700508
http://www.sciencedirect.com/science/article/pii/036402139090002E
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1705.04378

[53] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,”

2014. [Online]. Available: http://arxiv.org/abs/1409.3215

[54] Y. Zhu, W. Zhang, Y. Chen, and H. Gao, “A novel approach to workload prediction using

attention-based LSTM encoder-decoder network in cloud environment,” vol. 2019, no. 1, p. 274,

2019. [Online]. Available: https://doi.org/10.1186/s13638-019-1605-z

[55] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neural machine

translation,” in Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing. Association for Computational Linguistics, 2015, pp. 1412–1421. [Online]. Available:

https://www.aclweb.org/anthology/D15-1166

[56] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and

translate,” 2016. [Online]. Available: http://arxiv.org/abs/1409.0473

[57] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. Cottrell, “A dual-stage

attention-based recurrent neural network for time series prediction,” 2017. [Online]. Available:

http://arxiv.org/abs/1704.02971

[58] A. F. T. Martins and R. F. Astudillo, “From softmax to sparsemax: A sparse model of attention and

multi-label classification,” 2016. [Online]. Available: http://arxiv.org/abs/1602.02068

[59] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer, I. Simon, C. Hawthorne, A. M. Dai,

M. D. Hoffman, M. Dinculescu, and D. Eck, “Music transformer,” 2018. [Online]. Available:

http://arxiv.org/abs/1809.04281

[60] N. Parmar, A. Vaswani, J. Uszkoreit, Ł. Kaiser, N. Shazeer, A. Ku, and D. Tran, “Image transformer,”

2018. [Online]. Available: http://arxiv.org/abs/1802.05751

[61] M. Di Gangi, M. Negri, R. Cattoni, R. Dessi, and M. Turchi, Enhancing Transformer for End-to-end

Speech-to-Text Translation, 2019.

[62] M. R. Saradjian and M. Akhoondzadeh, “Thermal anomalies detection before strong earthquakes

(m > 6.0) using interquartile, wavelet and kalman filter methods,” vol. 11, pp. 1099–1108, 2011.

[63] Y. Zhang, R. Xiong, H. He, and M. G. Pecht, “Long short-term memory recurrent neural network for

remaining useful life prediction of lithium-ion batteries,” IEEE Transactions on Vehicular Technology,

vol. 67, no. 7, pp. 5695–5705, 2018.

[64] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term memory networks for anomaly

detection in time series,” p. 6, 2015.

82

http://arxiv.org/abs/1409.3215
https://doi.org/10.1186/s13638-019-1605-z
https://www.aclweb.org/anthology/D15-1166
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1704.02971
http://arxiv.org/abs/1602.02068
http://arxiv.org/abs/1809.04281
http://arxiv.org/abs/1802.05751

[65] N. A. Boukary, “A comparison of time series forecasting learning algorithms on the task of predicting

event timing une comparaison des algorithms,” p. 97, 2016.

[66] L. Zhao, “Event prediction in the big data era: A systematic survey,” 2020. [Online]. Available:

http://arxiv.org/abs/2007.09815

[67] S. Shin and H.-j. Kim, Autoencoder-based One-class Classification Technique for Event Prediction,

2019, journal Abbreviation: CCIOT 2019: Proceedings of the 2019 4th International Conference on

Cloud Computing and Internet of Things Pages: 58 Publication Title: CCIOT 2019: Proceedings of

the 2019 4th International Conference on Cloud Computing and Internet of Things.

[68] G. Hughes, J. Murray, K. Kreutz-Delgado, and C. Elkan, “Improved disk-drive failure warnings,”

vol. 51, pp. 350–357, 2002.

[69] M. Shao, J. Li, F. Chen, H. Huang, S. Zhang, and X. Chen, An Efficient Approach to Event Detection

and Forecasting in Dynamic Multivariate Social Media Networks, 2017, pages: 1639.

[70] B. W. Yap, K. A. Rani, H. A. A. Rahman, S. Fong, Z. Khairudin, and N. N. Abdullah, “An applica-

tion of oversampling, undersampling, bagging and boosting in handling imbalanced datasets,” in

Proceedings of the First International Conference on Advanced Data and Information Engineer-

ing (DaEng-2013), ser. Lecture Notes in Electrical Engineering, T. Herawan, M. M. Deris, and

J. Abawajy, Eds. Springer, 2014, pp. 13–22.

[71] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2015.

[Online]. Available: http://arxiv.org/abs/1512.03385

[72] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016. [Online]. Available:

http://arxiv.org/abs/1607.06450

[73] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolutional sequence to

sequence learning,” 2017. [Online]. Available: http://arxiv.org/abs/1705.03122

[74] D. Britz, A. Goldie, M.-T. Luong, and Q. Le, “Massive exploration of neural machine translation

architectures,” 2017. [Online]. Available: http://arxiv.org/abs/1703.03906

[75] J. Snoek, H. Larochelle, and R. Adams, “Practical bayesian optimization of machine learning algo-

rithms,” vol. 4, 2012.

[76] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” p. 25, 2012.

[77] N. Qian, “On the momentum term in gradient descent learning algorithms,” vol. 12,

no. 1, pp. 145–151, 1999. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0893608098001166

83

http://arxiv.org/abs/2007.09815
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1705.03122
http://arxiv.org/abs/1703.03906
https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://www.sciencedirect.com/science/article/pii/S0893608098001166

[78] Neural networks and deep learning. [Online]. Available: https://www.coursera.org/learn/neural-

networks-deep-learning

[79] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017. [Online]. Available:

http://arxiv.org/abs/1412.6980

84

https://www.coursera.org/learn/neural-networks-deep-learning
https://www.coursera.org/learn/neural-networks-deep-learning
http://arxiv.org/abs/1412.6980

	Titlepage
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Motivation and Problem description
	1.2 Topics Overview
	1.2.1 Time-series Forecasting
	1.2.2 Event Prediction

	1.3 Claim of contributions
	1.4 Thesis Outline

	2 State of the art
	2.1 Time-series Forecasting
	2.1.1 Statistical models
	2.1.2 Computational Intelligence and Machine Learning models
	2.1.2.A Artificial Neural Networks (ANN)
	2.1.2.B Recurrent Neural Networks (RNNs)
	2.1.2.C Sequence-to-sequence models

	2.2 Event Prediction

	3 Theoretical Background
	3.1 ARIMA
	3.2 Artificial Neural Network
	3.2.1 Feed-forward Neural Network
	3.2.2 Recurrent Neural Network
	3.2.3 Long Short Term Memory
	3.2.3.A Forget Gate
	3.2.3.B Input Gate
	3.2.3.C Cell State
	3.2.3.D Output Gate

	3.2.4 Gated Recurrent Unit
	3.2.4.A Update gate
	3.2.4.B Reset gate
	3.2.4.C Hidden state

	3.3 Sequence-to-sequence models
	3.3.1 Encoder-decoder
	3.3.2 Attention mechanism
	3.3.3 The Transformer
	3.3.3.A Positional Encoding
	3.3.3.B Scaled Dot-Product Attention
	3.3.3.C Multi-Head Attention
	3.3.3.D Adaption to time-series problems

	4 Implementations
	4.1 Time-series Forecasting
	4.1.1 Available data
	4.1.2 Data Preprocessing
	4.1.2.A Normalization
	4.1.2.B Sliding Window

	4.1.3 Intelligent Methods Implementation
	4.1.3.A Hyperparameters
	4.1.3.B Cross-validation
	4.1.3.C Evaluation Metrics

	4.1.4 Period Reduction trial

	4.2 Event Prediction
	4.2.1 Available Data
	4.2.2 Data Preprocessing
	4.2.2.A Event to time-series
	4.2.2.B Normalization
	4.2.2.C Sliding Window
	4.2.2.D Oscillations detection
	4.2.2.E Minority Class Oversampling

	4.2.3 Intelligent Methods Implementation
	4.2.3.A Evaluation Metrics

	5 Results and Discussion
	5.1 Time-series Forecasting
	5.1.1 Period Reduction Trial

	5.2 Event Prediction

	6 Conclusion
	6.1 Conclusions
	6.2 Future Work

	Bibliography

