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Resumo

Um pêndulo de Furuta é um pêndulo de rotação actuado na sua base por um motor de corrente contı́nua

com desmultiplicação. Dois problemas estão associados a estes dispositivos 1) o processo de inversão

do pêndulo desde o seu equilı́brio estável, em que o pêndulo se encontra abaixo do seu eixo, até à

posição invertida e 2) manter o equilı́brio na posição invertida. Ambos os problemas são resolvidos

com controlo óptimo a partir do princı́pio de mı́nimo de Pontryagin. No caso da inversão o problema é

não linear e um método numérico é usado para encontrar a solução. Este baseia-se na integração das

equações do estado e do coestado e da otimizacao da Hamiltoniana em função da variável manipulada.

Já no caso do controlo no equilı́brio é usado um controlador LQG, ativado numa região do espaço

de estados próxima da posição invertida, com velocidade nula. Procede-se a um estudo da região de

atração deste controlador na presença de limitações da potência do motor. Apresentam-se os resulta-

dos de simulações efectuadas com o modelo identificado do sistema, bem como dados experimentais

e os sistemas de controlo e algoritmos desenvolvidos e utilizados.

Palavras-chave: Controlo óptimo, Pêndulo de Furuta, Controlo não linear, princı́pio de

mı́nimo de Pontryagin.
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Abstract

The Furuta pendulum is a rotational pendulum that is actuated at its basis by a direct current motor with

a gear. Two control problems associated to it consist of swinging-up the pendulum, in order to move it

from the downwards up to the upwards position, and then to equilibrate the pendulum in the unstable,

upwards position. In both cases, optimal control methods are used. The swing-up problem is solved

by formulating it as an optimal control problem with a convenient cost, that is then solved by using a

numerical method to approximate the Pontryagin’s necessary conditions. The numerical method relies

on the iterative solution of the state equation (forwards), of the adjoint equation (backwards), and on the

optimization of the Hamiltonian function with respect to the manipulated variable in a grid of time points.

Different aspects related to this problem are considered, that include the selection of an appropriate

cost and numerical procedure details. The equilibration problem is solved with a standard LQG controller

that is activated within a region of the state-space that is close to the upwards, zero velocity, state. A

numerical study of the attraction region of the LQG equilibrating controller is performed, in order to

show that this controller will fulfil its objective, even in the presence of a saturation non-linearity in the

actuator. The algorithms and control systems developed and used are described, as well as simulation

and experimental results.

Keywords: Optimal control, Furuta Pendulum, Nonlinear control, Pontyagin’s minimum princi-

ple.
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Nomenclature

Greek symbols

α Angle of the joint between the base and the horizontal arm, FP.

β Angle of the joint between the horizontal arm and pendulum, FP.

Roman symbols

Ixx1 Moment of inertia component at the centre of mass along the x axis of the horizontal arm, FP.

Ixx2 Moment of inertia component at the centre of mass along the x axis of the pendulum, FP.

J0 Moment of inertia at the base joint of the horizontal arm and pendulum, FP.

J2 Moment of inertia at the joint of the pendulum, FP.

Kf Torque produced by the motor per current unit, FP.

Kt Counter-electromotive force term, coupling the angular speed and current of the motor, FP.

Ka1 Friction coeficient between base and the horizontal arm, FP.

Ka2 Friction coeficient between the horizontal arm and the pendulum, FP.

Lb Electric impendance of the motor (imaginary part), FP.

Lcm1 Distance from axis of rotation to centre of mass of the horizontal arm, FP.

Lcm2 Distance from axis of rotation to centre of mass of the pendulum, FP.

Le1 Lenght of the horizontal arm, FP.

Le2 Lenght of the pendulum, FP.

m1 Mass of the horizontal arm, FP.

m2 Mass of the pendulum, FP.

R Electric internal resistance of the motor, FP.
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Chapter 1

Introduction

The aim of this thesis is to develop a control strategy for the nonlinear problem of swinging-up and

balancing a Furuta Pendulum (FP) at its upwards, unstable equilibrium position. Although this can be

seen as an academic problem, this device is illustrative of a wide set of dynamic systems with real-life

applications, as discussed in 1.1.

A precise definition of the problem is presented in 1.2, followed by a review of the literature available

on the subject in 1.3, the main original contributions of this work in 1.4 and a general outline of this

document in 1.5.

1.1 Motivation

Physics has been successful in modelling nature phenomena in a surprising number of orders of mag-

nitude. Although in most cases one can only aspire to observe, in a small, but important, subset, it is

possible to actively modify the behaviour of the system. This can be achieved by incorporating compu-

tational components that interact with the physical system. These Cyber-Physical systems (CPSs) are

an emerging area of research, in which this thesis is integrated.

However, it is not trivial to determine the inputs of a system such that a desired performance is

achieved. Apart from open-loop instability, limitations are often posed in the number of variables that

can be actuated, and on the state information available. Additionally, a complete, high precision model

of the system may not be feasible.

Control theory addresses the above challenges, using feedback, a concept that is also present in

natural phenomena, ubiquitous in biology, and a powerful tool in the design of CPSs.

This work deals with systems that can be modelled by a finite number of coupled first-order differential

equations [1] for a set of variables that define the state of a system i.e., a set of variables that, if known

at an instant of time, and together with knowledge about future excitations, fully determines the future

behaviour of the system. A particular case are linear systems, for which powerful analytical tools are

available, mostly sustained by the superposition principle.

In the case of nonlinear systems, significant progress has been made in recent decades supported
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by the increasing computational power available as well as by major advances in theoretical knowledge.

They are found in a growing number of state-of-the-art applications, therefore the field is an active area

of research. Examples include aerospace, industrial, and medical applications [1, 2].

One of the simplest examples of a nonlinear system is the rotary pendulum (also known as the

FP), that is commonly used to illustrate emerging ideas in the field of nonlinear control [3]. It is also

a prototype of plants with practical importance, such as robot arms with cylindrical geometry, rotary

cranes, or even transport systems of tall objects like large dimension rockets. It is both simple enough

for educational purposes and useful for testing the design of modern control techniques [4]. As such,

both the swing-up and balancing around the unstable equilibrium position are a well studied control

problem.

However, to the author’s knowledge, the nonlinear problem of swinging-up the pendulum has never

been addressed using optimal control. With this technique the control problem is elegantly formulated

as the minimization of a convenient cost, subject to restrictions. The cost function reflects the application

requirements, and may yield solutions of minimum time, energy or any other quantity [5].

By studying this system one shall be acquainted with the state-of-the-art control techniques devel-

oped, their usefulness in similarly structured problems and to deploy a control technique suitable for this

class of devices.

1.2 Objectives

The main objective of this thesis is to design a controller based on Optimal Control methods to swing-up

a FP and keep it balanced in the vertical upward position, both in simulation and with a real system. This

problem can be subdivided into two main parts:

1. Swing-up the pendulum from the downward to the upward position;

2. Equilibrate the pendulum in the upward position.

While the second objective can be addressed using a linear controller, swinging-up the pendulum is

an inherently nonlinear problem. Additionally, a supervising unit must select between the controllers, the

one that, at each time, is to remain active at different phases of operation.

The switching between controllers points out the importance of considering stability issues. Indeed,

not only the inverted pendulum is open-loop unstable, but switching between different controllers may

imply instability if proper care is not taken, even if each controller stabilizes the plant inside the operating

region for which it is designed.

The system to be used is the Inverted Pendulum Experiment mounted on a Rotary Servo Base Unit

(figure 1.1), both manufactured by Quanser [6]. It consists of

• base: a geared servo-mechanism. Comprises an electric motor coupled to a gearbox in a solid

aluminium frame. Sensors are available for measuring the position (potentiometer and optical

encoder) and speed (tachometer) of the output shaft.
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Figure 1.1: Furuta Pendulum experimental apparatus with legends: an Inverted Pendulum Experiment
mounted on a Rotary Servo Base Unit, both manufactured by Quanser

• horizontal arm: a flat solid aluminium link, mounted on the output shaft of the base with a pivot,

and terminating on a metal shaft, whose position is measured by a sensor (digital encoder).

• pendulum: a cylindrical aluminium link, mounted on the metal shaft of the horizontal arm.

It is stressed that the control algorithms developed in this thesis are tested not only in simulation but

in the actual physical system as well.
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1.3 State-of-the-art

This section provides a brief overview of the most relevant methods to perform linear and nonlinear

feedback control. The FP is used as case study, since the literature on inverted pendulums control is rich

and comprises different types of problems and pendulum structures, including for example simple and

multiple planar pendulums with an actuator in the base joint [7], mounted on top of a moving cart [4, 8],

and rotating pendulums with several geometric variations. Each of the problems of equilibrating and

swinging up the rotating pendulum are addressed.

For a brief history of feedback control see [9, pp. 9-15].

1.3.1 Modelling

Models are a key component to controller design. In addition, they allow to simulate the system and test

control approaches in a preliminary phase. In some cases, such as nonlinear Model based Predictive

Control (MPC), the control algorithm requires a plant model to be embedded in the decision taken in real

time about the value of the manipulated variable. To evaluate global performance, the models needed

to simulate the system may be build from first principles – basic laws of mechanics and the geometry

of the system, and hence are nonlinear. Although simulation models can be obtained by applying the

principles of Newtonian mechanics, it is simpler and much more systematic to use an Euler-Lagrange

approach. Furthermore, this approach paves the way to variational methods such as optimal control or

to design methods that rely solely on energy shaping.

For controller design, different model types are required, depending on the approach followed. Some

methods such as energy shaping, optimal control or nonlinear MPC require nonlinear models. In the

swing-up problem the system follows a trajectory in state-space that passes through several operating

regions with different dynamics. Indeed, while in the downwards vertical position the pendulum is close

to an asymptotically stable equilibrium, the upwards position corresponds to a saddle point. Hence, a

model able to tackle the representation of large excursion signal is needed.

In opposition, equilibrating the pendulum in the vertical upwards position requires only a controller

that is able to work in a local region, and therefore attaining this objective requires only a linear model.

Linear models that are valid around an operation region can be obtained by two ways:

• By Jacobian linearization of the nonlinear model obtained from first principles;

• By identification techniques, in which the linear model parameters are estimated from plant data.

In the present situation, the use of identification techniques is complicated by the fact that the up-

wards position is open-loop unstable. Hence, if a small disturbance is applied to the input, the output

does not respond with small changes, but instead the output signal will grow without bound. To avoid

such a problem, one must collect data with a stabilizing controller applied to the plant, and a disturbance

signal applied to the manipulated variable.

The above methods fall in the realm of closed-loop identification [10], for which there is a very rich

literature, developed mainly in the end of the 1960’s, beginning of 1970’s, but with significant advances,
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such as sub-space identification and sparse identification, obtained more recently. The main difficulty

is the fact that the Input/Output (I/O) plant data to be used for identification is contaminated by sensor

noise that is reinjected in the manipulated variable by the stabilizing controller. To tackle this difficulty

one may remove most of this noise with an instrumental variable like method [11]. However, if the noise

level is low, no special data pre-processing is needed and a parameter estimation method as Maximum

Likelihood or even Least Squares may be used.

Concerning models, one must also refer nonparametric models like neural networks (NN) [12] and

Gaussian Processes (GP) [13]. These methods allow the approximation of nonlinear I/O relations (in-

cluding dynamic relations in the sense that the present sample of the output depends from past samples)

from plant data. NNs do this approximation by a combination of sigmoidal functions. GPs rely on gaus-

sian kernels that specify the auto-correlation function of gaussian stochastic processes.

Non-parametric models can be used in situations where there is few knowledge about the stucture

of the problem. However, they have serious drawbacks when considering the control of fast open-loop

unstable processes like the inverted pendulum. These drawbacks come from the fact that these mo-

dels imply a heavy computational load, while training them is difficult for open-loop unstable processes.

Nevertheless, a significant literature is available concerning their use in control applications, see e.g. [14]

and references therein.

From another point of view, a model can be classified accordingly to the time domain in which they

operate as

• Continuous time

• Discrete time with constant sampling rate

• Discrete time with time varying sampling rate

Continuous time models are directly obtained from the application of basic physical principles, and

amount to a set of ordinary differential equations that can be converted to first order with the structure

of the state model

ẋ = f(x, u), (1.1)

where x ∈ Rn is the state vector, u ∈ R is the manipulated variable.

1.3.2 Nonlinear control

Energy control

One of the most common methods to perform the swing-up of an inverted pendulum is energy control. In

this case the energy of the system is controlled instead of controlling directly its position and velocity [3].

At the end of the procedure the system converges to a homoclinic orbit that drives the state to the

unstable equilibrium position [7]. Dissipative forces are generally not considered.
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Energy Shaping and passivity based control

Energy shaping concerns with balances of energy, and is on the essence of passivity based control

(PBC). It aims to make the closed-loop system passive, with adequate dissipation, using damping injec-

tion [15]. An energy function of the closed loop system is constructed in such a way that it exhibits a

minimum at the goal state.

This technique has been used to perform the swing-up of the FP [16], in which feedback is used to

transform the dynamics of the FP into the ones of a planar pendulum on a cart plus a gyroscopic force.

In this work the proposed control law for the swing-up is tested in simulation and with the real device.

Feedback linearisation

With feedback linearisation the non-linearities of a system are compensated by an appropriate feedback

law and state variable transformation [17, 18]. The transformation is required to be a diffeomorfism,

ensuring that the transformed and original systems are equivalent. The I/O response of the transformed

system is equivalent to the one of a linear system, and can thus be controlled with any of the usual

techniques used in linear control.

The transformation of a nonlinear into a equivalent linear system has clear advantages. However,

there are also some drawbacks to this approach. Not all systems can be feedback linearised, although

it often still possible to perform a partial linearisation. In some cases unstable zero dynamics may arise

from the transformation, i.e. the existence of states that are not observable, and that may grow without

bound. In such an event the control becomes unusable. Additionally, Feedback linearisation requires an

accurate model of the system in order to control it, which may not be be feasible.

Control Lyapunov functions

Aleksandr Lyapunov published his work [19] in 1892, which has been applied to the control context by

Kalman and Bertram in 1960 [9], and where the direct and indirect (see 2.3.4) Lyapunov’s methods are

presented to assert the stability of a dynamic system.

Lyapunov direct method states that if there is a function V (x) : x ∈ Rn → R positive definite, and

continuously differentiable in a neighbourhood of x = 0, and if V̇ (x) ≤ 0, then the system is locally stable

(locally assimptotically stable if V̇ (x) < 0).

On systems with control inputs, the existence of a control Lyapunov function implies that exists a

control input u(x, t) able to take the system from any x 6= 0 to the origin. In that case

∀ x 6= 0, ∃ u : V̇ (x, u) = ∇V (x) · f(x, u) < 0, (1.2)

and a control law can be designed such that at every instant V (x) decreases [20]. For example, by

choosing u that minimizes V̇ (x, u).

Finding a Lyapunov function relies on ingenuity and luck, as there is no general rule to its construc-

tion.
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Model Predictive Control

Model predictive control (MPC) uses a model of the system to make predictions of future outputs

(see [21] and references therein). The finite horizon of discrete predictions is optimized in respect to

some objective function i.e., the control input is calculated for k future time instants such that the objec-

tive function is minimized. Usually only the first control input is applied, before repeating the optimization

in the next iteration, a process known as receding horizon. This allows the measurements produced by

sensors to be taken into account. A data fusion algorithm produces an estimate of the current state of the

system, which is fed to the optimization process, as the initial condition. As initial guess for the control

inputs, the previous result, shifted in time, can be used, which allows a more efficient computation.

MPC has historically been used in processes where the sampling rate is slow enough to allow the

computations in real time, for example in some chemical processes, and with simple linear models. The

outputs of the method were usually the set point for other controllers, such as PID’s. The recent growth

in computational power has made its use possible in more complex systems, with high sampling rates.

This technique has been used to perform the swing-up of the FP [22].

Other methods

The list of methods presented above is not exhaustive, several other techniques have been used to per-

form control on this classes of devices. Other examples are minimum attention control, which explores

what is the least computational power needed to perform control, and non-parametric methods, which

rely on a statistical description of the system. It is also possible to design a nonlinear controller with a

global atraction point at the desired value.

1.3.3 Trajectory planning

It is often convenient to design trajectories offline, i.e. to define the path in state space that the system

shall perform beforehand. In this situation one is not restrained by the time or computational power

required to do such calculations during the process itself, which is particularly useful in complex systems

with fast dynamics. The trajectories are designed using a model of the system, by analysing its response

to the available inputs. This strategy is used extensively in robotics, where there is the need to plan

the motion of mobile robots in confined spaces. Examples include artificial potential fields, Roadmap

methods, and Dubbins path [23].

1.3.4 Optimal control

Optimal control deals with the problem of a determining the inputs of a dynamic system that optimize,

i.e. minimize or maximize, a specified performance index [24]. With an appropriate choice of this cost

function, trajectories and control laws can be determined such that they satisfy the design requirements.

The brachystochrone problem proposed in 1697 by Johann Bernoulli is considered to be the corner-

stone of optimal control [25]. The brachystochrone is the curve of fastest descent of a body between
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two points at different heights and subject to a uniform gravitational field. The work of Euler, a student

of Bernoulli, and Langrange, eventually led to the development of general techniques and the calculus

of variations.

In 1962 Lev Pontryagin published [26] an extension of the calculus of variations subject to inequality

constrains, known as Pontryagin’s minimum principle (see 3.2). This theory gives necessary conditions

for optimality with piecewise, continuous solutions, and led to the development of the field of optimal

control.

The linear control case has well known solutions (see 4.1).

1.3.5 Numerical methods in optimal control

The solution of most real-life nonlinear optimal control problems relies on numerical methods. A wide

variety of methods have been proposed (see [24] and the references therein for an extensive survey,

and [27] for example applications and issues), that can be divided in two major classes – indirect and

direct methods. Both share the need to integrate the equations that model the system, but perform the

optimization process in two distinct ways.

Direct methods transform the optimal control problem into a nonlinear programming (NLP) problem.

A general NLP solver is then employed to find the optimal control.

Indirect methods, in which this work focus, rely on Pontryagin’s minimum principle. This approach

leads to a multiple-point boundary value problem, whose solutions are extremals, a necessary condition

for optimality.

In the realm of indirect methods, forward-backward sweep (FBS) provides a straightforward manner

of finding optimal solutions. It relies on the forward integration of the state equations. The terminal

conditions of the integration are used to find the initial conditions for the time backwards integration of

the costate equations. Repeating this procedure leads to an approximate solution for certain problems.

In this work, FBS was found to be unsuited for solving the problem at hand, and a modification of the

method is proposed (see 3.3).

With shooting methods a guess is made for the unknown boundary conditions. The equations are

then integrated, either forward or backward in time. The boundary values found with the integration

are compared with the initial guesses and used to correct them. The successive application of this

methodology leads to an increasingly accurate solution for the problem. An useful analogy to understand

this method is the firing of a cannon. A first shot is performed with a initial guess for the tilt angle of the

cannon. Not having hit the target, the angle is corrected taking into account the observed error. To

overcome difficulties when the time domain is long in comparison with the dynamics of the system,

multi-shooting methods have been developed, where the time interval is divided in subintervals. In this

case the boundary conditions between each subinterval are set such that the solution is continuous.

Pseudo-spectral methods are a strategy to perform global orthogonal collocation. While local col-

location methods maintain the degree of the polynomial and vary the number of time segments, with

pseudo-spectral methods the number of time segments is kept fixed, and the degree of the polynomial
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is allowed to vary. The state is approximated by a projection on an orthogonal base, such a Lagrange

polynomials.

1.3.6 Linear control

Linear control is a well established subject, with several technologies available that can be employed

on the design of controllers and analysis of the resultant system. A classical proportional–integral–der-

ivative controller (PID) is generally the simplest solution, and the most commonly used in industrial

applications. However it does not yield the best possible results and, in some cases, it may not even be

able to stabilize the plant. A state space representation, often used in modern control theory, offers more

versatility to the design. Both pole placement and a linear quadratic regulator use this methodology.

Linear controllers are often used in a cascade control configuration, where they follow a set point,

provided by higher level controller.

PID controller

The PID controller consists of three terms, that take the error e(t) = r(t)− y(t) as an input, and produce

the control input to the plant

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
. (1.3)

The proportional term (P) compensates for the current error, and outputs a response proportional to

it. The integral term (I) takes into account the past errors, and is useful to compensate for steady state

errors. Finally, the differential (D) term produces an anticipatory response, based on the current rate of

change of the output [9].

Not all the three terms are required to perform control, and often a P, PI or PD is enough to honour

the performance requirements of the controller. The design of the weights can be made manually or with

more systematic techniques, such as Ziegler–Nichols’s method [28] or other rules that lead to a smaller

overshoot.

PID controllers do not rely on a model of the system to be controlled, but only on the measured

process variable. Thus, although they are able to control a wide variety of processes with satisfactory

results, they are sub-optimal and fail to control systems with large time delays, high order dynamics or

strong nonlinearities.

An important aspect is that (1.3) only describes the general structure of the PID. For a pratical appli-

cation a number of features, some of which are common to other linear controllers, have to be included.

These features comprise

• anti-reset of the integral effect, in the presence of actuator limits,

• bumpless control transfer when switching between manual control and automatic control,

• low-pass filtering of the derivative effect
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Pole placement and root-locus

For a linear system, the position of the roots (poles and zeros) of its characteristic equation determine

its frequency response. A feedback gain alters the position of the roots of the closed-loop characteristic

polynomial, and can be calculated such that they are positioned appropriately. Root locus can be used

to calculate the effect of loop gain variations in the position of the roots of the closed loop system [9].

Linear Quadratic Gaussian controller

The LQG controller has been applied in this work to the FP (see 4.1 for further detail).

1.3.7 Estimation of asymptotic stability regions

An important consideration with linearised control is the region in which the system is stabilized. Theo-

retical results allow to compute estimates of the boundaries to the region of convergence [29].

1.3.8 Trajectory control

Different techniques can be used to perform the following of a reference in a non-linear system.

Gain Scheduling

With gain scheduling different controllers are used at different regions of state space, selected by

scheduling variables [30]. Designing a gain shelling controller requires linear models of the system,

obtained for example with Jacobian linearisation of the non-linear model at different points of operation,

or Linear-Parameter Varying (LPV), where the linear model changes with an indicator variable. A family

of controllers is designed for the set of linear models, and scheduled to operate when appropriate.

1.4 Original Contributions

This work focuses on the application of optimal control to the problem of making a FP, a nonlinear

dynamic system, perform transitions between operating points, and also to maintain the system working

at an unstable operating point.

A complete model of the FP is developed. It incorporates the characteristic of the electric motor. The

parameters of the model are identified form experimental data, with a modified version of least squares

that takes into account known information about the values of the parameters of the system.

A numerical method is dreveloped as a modification of the steepest descent method. This method

yields the optimal nonlinear control for the transition between operation points, with improved conver-

gence over the simple forward-backward integration. The method is tested in simulation and experimen-

tally with a real FP, and in simulation with two other devices.
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A technique is developed to find convex sets of points in state space in which a controller is able to

stabilize a device. This method is applied to the linear controller used in the upwards position of the FP,

described by the nonlinear model developed previously.

A custom made printed circuit board and software has been designed to control the FP. In comparison

with the previously available hardware at the laboratory it has an overall cost 2 orders of magnitude

below, and improved sensing capabilities. This board provides 4 times more precise readings from the

measurements taken by the optical encoders, direct measurement of the motor current and angular

speeds. It also comprises a standardized interface over a USB port, making it compatible with any

modern computer.

1.5 Thesis Outline

In 2 a accurate model of the system is derived and its parameters identified from experimental data. With

Jacobian linearisation, continuous and discrete models of the system are found for several operation

points.

Trajectories to perform the swing-up of the pendulum are designed in 3, with both ad hoc methods

and optimal control. Trajectory following is detailed in 4, where the design of the linear controllers is

presented.

In 5, the design of a custom made board for the control of the FP is designed, and compared with

the previously available commercial solution, available at the laboratory.

In 6 the main results of this work are presented. Finnaly in 7 the conclusions are provided, as well

as a list of future work.
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Chapter 2

Model

This chapter presents the linear and non linear models developed for the FP, along with

parameter identification.

The non linear model of the FP is constructed from the geometry of the system using Lagrangian

mechanics [2.1]. Model parameters are identified from experimental data [2.2] with least squares method

using weighting and regularization. Continuous linear models valid around several operating points are

calculated by Taylor expansion of the nonlinear model [2.3]. These are then subject to discretisation,

with fixed time step [2.3.1]. Stability, controllability and observability are evaluated for each linear model.

2.1 Nonlinear model derivation using Lagrangian mechanics

The energy in the base frame of a N rigid body system can be written as the sum of its kinetic energy T

T =

N∑
i=1

(
1

2
Mi|vi|2 +

1

2
ωiIiω

T
i

)
, (2.1)

and potential energy V

V =

N∑
i=1

Miri · (−g), (2.2)

where, for each rigid body i, Mi is the mass, vi is the velocity of the centre of mass, Ii is the inertia

matrix, ωi is the angular velocity, ri is the position of the centre of mass, and g is the gravity acceleration.

To calculate explicitly (2.1) and (2.2) from the angles of the joints, a systematic approach from

robotics was used: a frame was assigned to each rigid body and transformation matrices T written

using the Denavit-Hartenberg (D-H) convention [31, p. 76].

i−1
i T = MDH(ai−1, αi−1, di, θi) =


cθi −sθi 0 ai−1

sθicαi−1
cθicαi−1

−sαi−1
−sαi−1

di

sθisαi−1
cθisαi−1

cαi−1
cαi−1

di

0 0 0 1

 , (2.3)
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Figure 2.1: Conventions used for angle and frame placement. The physical elements of the experimental
apparatus (a) are represented schematically in (b) where the horizontal arm is the red line segment that
goes form P0 to P1 and the pendulum the one that goes from P1 to P2. Angles α and β are the angles of
the joints; angle β is measured relative to the dashed vertical line segment that departs from P1.

where cx = cosx, sx = sinx, and ai−1,αi−1,di,θi are the D-H parameters. This matrix transforms points

in frame i to i− 1, has the structure of the general transformation

m
n T =


m
n R

mPn org

0 0 0 1

 , (2.4)

and can be inverted with

( mn T )−1 =


m
n R

T − m
n R

T mPn org

0 0 0 1

 = n
mT , (2.5)

where mPn org ∈ M3×1(R) describes the translation between frames (these are the coordinates of the

origin of frame n measured in frame m) and m
n R ∈M3×3(R) describes the transformation from frame n

to m due to the relative angle between them.

A point written in frame n can be rewritten in m as

mP = m
n T (θm, . . . , θn−1) nP =

(
n−1∏
k=m

k
k+1T (θk)

)
nP. (2.6)

In the particular case of the Furuta pendulum, frames were assigned as described in figure 2.1.
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Using (2.3)

0
1T (α) = MDH

(
0, 0, 0, α(t)− π

2

)
=


sα(t) cα(t) 0 0

−cα(t) sα(t) 0 0

0 0 1 0

0 0 0 1

 , (2.7)

1
2T (β) = MDH

(
0,−π

2
, Le1, β(t)

)
=


cβ(t) −sβ(t) 0 0

0 0 1 Le1

−sβ(t) −cβ(t) 0 0

0 0 0 1

 , (2.8)

with which points can be expressed in the base frame as

0P1 = 0
1T

1P1, (2.9)

0P2 = 0
1T

1
2T

2P2, (2.10)

and angular velocities can be written as

ω1 =


0

0

α̇

 , (2.11)

ω2 = 2
1R ω1 +


0

0

β̇

 =


α̇ sinβ

α̇ cosβ

β̇

 . (2.12)

Knowing the physical dimensions of the system one can use (2.9) and (2.10) to calculate the positions

and velocities of the centres of mass of the rigid bodies of the system. By replacing (2.9) to (2.12) in

(2.1) and (2.2) one gets the kinetic and potential energy of the system as a function of its joint angles

and angle time derivatives.

Both bodies were considered to have cylindrical symmetry around the y axis. This is consistent with

the geometry of the pendulum, and effective for the arm, since it performs only horizontal movements.

Due to the cylindrical symmetry and the axis alignment with the principal inertia axis, the inertia matrices

are diagonal and Ixx = Izz. Due to the high height to radius ratio, Iyy can be neglected, thus making for

i = {1, 2}

Ii =


Ixxi 0 0

0 0 0

0 0 Ixxi

 (2.13)

The Lagrangian L can readily be computed

L = T − V, (2.14)
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Table 2.1: State variables dictionary

State Variable Variable Definition

x1 α Horizontal arm angle
x2 α̇ Horizontal arm angular speed
x3 β Pendulum angle
x4 β̇ Pendulum angular speed
x5 i Motor Current

and the equations of motion of the system are calculated with the Euler-Lagrange equations

d

dt

(
∂L
∂α̇

)
− ∂L
∂α

= −Ka1 α̇+Kf i, (2.15a)

d

dt

(
∂L
∂β̇

)
− ∂L
∂β

= −Ka2 β̇, (2.15b)

where viscous dissipative forces are considered proportional to angular velocities. Explicitly,

α̈
(
J0 + J2 sin2 β

)
+ α̇β̇ J2 sin(2β) + β̇2 Lcm2Le1m2 sinβ − β̈ Lcm2Le1m2 cosβ = −α̇Ka1 + i Kf

−α̈ Lcm2Le1m2 cosβ − α̇2 1
2J2 sin(2β) + β̈ J2 = −β̇Ka2 + g Lcm2 m2 sinβ

,

(2.16)

where J0 = Ixx1 + L2
cm1m1 + L2

e1m2 and J2 = Ixx2 + L2
cm2m2.

The torque performed on the arm is set proportional to the current in the actuator, whose electric

characteristic is given by

Lb
di

dt
+Kt

dα

dt
+R i = u. (2.17)

In (3.4), second derivatives are found {α̈, β̈}. In order to construct a nonlinear state-space model of

the system in the form

ẋ = f(x, u), (2.18)

the variables are substituted with the rules defined on table 2.1,

where f(x, u) is a nonlinear function on R5 × R1 → R5.
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Explicitly 

ẋ1 = x2

ẋ2 =
{
− J2

[
Ka1x2 −Kfx5 + x4(Lcm2Le1m2x4 + 2J2x2 cosx3) sinx3

]
+Lcm2Le1m2 cosx3

[
−Ka2x4 + (gLcm2m2 + J2x

2
2 cosx3) sinx3

]}/
[
− L2

cm2L
2
e1m

2
2 cos2 x3 + J2(J0 + J2 sin2 x3)

]
ẋ3 = x4

ẋ4 =
{
Ka2x4 − gLcm2m2 sin(x3)(J0 + J2 sin2 x3)+

cosx3

[
(−J0J2x

2
2 + L2

cm2L
2
e1m

2
2x

2
4) sinx3−

J2
2x

2
2 sin3 x3 + Lcm2Le1m2(Ka1x2 −Kfx5 + J2x2x4 sin(2x3))

]}/
[
L2
cm2L

2
e1m

2
2 cos2 x3 − J2(J0 + J2 sin2 x3)

]
ẋ5 = (−Ktx2 −Rx5 + u)/Lb

. (2.19)

The above equations were found symbolically with the software Mathematica. The result was found

to be in agreement with [32].

2.1.1 Approximations and limitations

The following dynamic properties of the system were modeled in a simplified manner or ignored entirely:

1. Non-electric dissipative forces were modeled as viscous friction proportional to the angular speed

of the joints. Although this term describes the most effective dissipative forces, the addition of other

terms could allow a more precise description of this effects. For example, static friction, viscous

friction due to the air to body relative speed, and higher order terms of viscous friction could be

considered.

2. The system is build of mechanical parts linked by screws and gears. Although mechanical gaps

and backlash exist, the coupling between bodies was considered perfect. This features affect the

stability and precision of the control loop.

3. The inertia matrices of the system were simplified, as presented in (2.13).

4. In long experiments, the temperature of the actuator increases, changing its electrical characteris-

tic. This effect was not taken in to account.

5. Last, the model is of lumped parameters type. This choice implies to neglect wire capacitance

and indutance distributed over space, a reasonable assumption given the range of frequencies

considered. In the same vein, mechanical parts are considered to be perfectly rigid.

Although additional terms can be found to describe such effects, in practice they add complexity to an

already long model and were found to add significant computational effort to adjust the variables and

17



perform simulations. Since the model was found to comply with experimental data within the required

precision, these terms were discarded.

2.1.2 Auxiliary models

For the implementation of new algorithms or when performing certain analysis, it is useful to consider

similar but simpler problems that are used for preliminary tests or to gain intuition. As such, the following

were considered

Harmonic Oscillator

The harmonic oscillator is a system that, when displaced from equilibrium, is pulled back into it, by a

force proportional to the displacement. In the absence of friction, the equation of motion is

ẍ+ ω2
0x = u. (2.20)

This system is very common in nature. For example, it can be used to describe a mass-spring system

or a pendulum with small oscillations around its stable fixed point.

Simple inverted pendulum

A pendulum subject to wide movements may only be described by a nonlinear model. Taking the angle

reference to be the unstable fixed point, the equation of motion is

ẍ− ω2
0 sinx = u. (2.21)

These auxiliary problems provide a means to test the algorithms. They require reduced computa-

tional loads but provide insight into the more complicated, central problem.

2.2 Parameter estimation

Some of the parameters of the model may be readily measured, while others, such as the friction coeffi-

cients or inertia moments, might require disassembling the apparatus to enable a precise measurement.

Apart from using the manufacturer standard values for physical quantities, experimental data (from the

sensors available in the device) enables the estimation of all relevant parameters.

Parameter estimation from experimental data can be performed with a least squares method. How-

ever, due to the high number of free parameters in the model and numerical instabilities for certain sets

of parameters, it is convenient to take into account the known information provided by the manufacturer.

Let the model to be identified be written as

ẋ = f(x, u, θ), (2.22a)
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y = Cx, (2.22b)

where x ∈ Rn is the state, u ∈ R is the input, y ∈ Rnp×ny is the matrix of observations obtained from the

sensors with np points at each of the ny channel, and θ ∈ Rnθ is the vector of parameters to estimate.

Assuming that observations follow a normal distribution, the Bayesian estimate is obtained [33] by

minimizing JN with respect to θ:

JN (θ) =

nθ∑
i=1

(
1

σi
(θi − θ̄i)2

)
+

np∑
j=1

ny∑
k=1

(
1

σ2
jk

(yjk − ŷjk(θ))
2

)
, (2.23)

where the first term is a prior, that penalizes deviations of the parameters from the reference value. The

weights σi measure the confidence on the value of the prior estimate. The second term accounts for the

differences between the model output and the experimental data, for a set of np points with dimensions

ny. The weights σjk measures the confidence on the experimental point j of output channel k.

Note that the system is described by a set of differential equations in the form of a nonlinear model

(2.18) for which there is no known closed form solution. For that reason, the differential equation system

must be integrated at each iteration of the least squares with a suitable numerical integration method,

that provides the numerical values ŷj(θ) = Cx̂j(θ) for the same times tj as the experimental data yj .

2.2.1 Parameter estimation results

Data acquisition for the identification of the model parameters was performed in three sequential steps

1. The input variable was set to zero and the pendulum moved manually to the upwards, unstable

equilibrium position, corresponding to β = 0, from where it was allowed to move freely.

This data was first used to validate the model. Simulations performed with the manufacturer pa-

rameters were compared with experimental data. Although a qualitative agreement was found,

significant quantitative differences were also present. Next, a least squares fit was performed, but

making the motor parameters fixed.

2. A PRBS signal was applied to the input, resulting in movements around the stable equilibrium

position.

This experiment allowed for the identification of all parameters, including the motor ones. The pa-

rameters obtained from this fit were used to produce a linearised model, valid around the upwards,

unstable equilibrium position. A swing-up1 and a linear2 closed loop controllers were developed

for the system and tested in simulation.

3. The input was controlled by a swing-up and an equilibrium closed loop controllers, taking the

pendulum from the downwards to the upwards position.

This data acquisition setup provided a broader state-space working region then the two previous

steps, since in this case the pendulum travels from the downwards to the upwards equilibrium
1Swing-up was performed using the ad-hoc strategy proposed in [22] and described in 3.1.2
2Equilibrium around the upwards position was performed with a Linear-Quadratic-Gaussian controller, described in 4.1
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position while the input is composed by fast and slow changes. The fit performed with this data set

(figure 2.2) provides the vector of parameters used in the rest of this work (table 2.2).
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Figure 2.2: Model fitted to experimental data using least-squares method with weighting and regulariza-
tion, parameters presented in table 2.2. χ2

ndf = 8.7. Error bars omitted for readability: all experimental
points have 0.35 deg random errors. Swing-up of the FP using exponentiation 3.1.2, with n = 2.15,
kv = 0.665.

A useful tool to evaluate the quality of the fit is the χ2
ndf

χ2
ndf =

1

nynp − nθ

np∑
j=1

ny∑
k=1

(
yjk − ˆyjk
σjk

)2

, (2.24)

which is expected to have a value close to 1.

The value found for χ2
ndf = 8.7 show that 1) the fit exhibits, qualitatively, an agreement to experimental

data, and 2) the random errors considered (equal to the resolution of the optical encoders used) are not

sufficient to explain the differences observed, therefore there are effects not perfectly modelled, as has

been discussed in 2.1.1.
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Table 2.2: Identified parameters with least squares method

Parameter Value Unit

Le1 227± 1 mm
J0 86.98± 0.03 g ·m2

Ka1 1.0± 0.3 mN ·m · s
M2 309± 1 g
Lcm2 404± 1 mm
J2 28.37± 0.01 g ·m2

Ka2 0.136± 0.001 mN ·m · s
Lb 3.0± 0.1 mH
R 2.266± 0.002 Ω
Kt 0.696± 0.001 V · s
Kf 3.377± 0.002 V · s

2.3 Linearised Model

The non-linear system in the form of (2.18) can be linearised by taking the linear terms of the Taylor

series around an operation point (x̄, ū)

f(x, u) ≈ f(x̄, ū) + ∇xf |(x̄,ū) (x− x̄) +
∂f

∂u

∣∣∣∣
(x̄,ū)

(u− ū). (2.25)

Let A = ∇xf |(x̄,ū), B = ∂f
∂u

∣∣
(x̄,ū)

, ∆x = x− x̄, and ∆u = u− ū. The previous equation can be rewritten

as

ẋ ≈ A∆x +B∆u+ f(x̄, ū). (2.26)

Taking the set of parameters identified previously, the linearisation is performed for several x̄, result-

ing in a family of linear models, where each model is a convenient description of the system only at

a vicinity of the point of linearisation. The model used in the equilibrium controller is the linearisation

obtained at the state-space origin, i.e. the upwards equilibrium position, with zero input. Since at this

point f(x̄ = 0, u = 0) = 0, the linear model can be written in the form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

, (2.27)

where x, u, and y now denote deviations from the equilibrium, and

A =



0 1.0000 0 0 0

0 −0.0174 20.7861 −0.0023 57.5344

0 0 0 1.0000 0

0 −0.0174 63.8319 −0.0071 57.4388

0 −232.0252 0 0 −755.4250


B =



0

0

0

0

333.3367


C =

1 0 0 0 0

0 0 1 0 0

 D =

0

0


. (2.28)
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At other operating points, only the matrix A and f(x̄, ū) change. In particular at x̄ = (0, 0, π/2, 0, 0)

A =



0 1 0 0 0

0 −0.0089 −10.5782 0 29.2797

0 0 0 1 0

0 0 0 −0.0048 0

0 −232.0252 0 0 −755.4250


f(x̄, ū) =



0

0

0

43.0803

0


, (2.29)

and for x̄ = (0, 0, π, 0, 0), f(x̄, ū) = 0, and

A =


0 −0.0174 20.7861 0.0023 57.5344

0 0 0 1 0

0 0.0174 −63.8319 −0.0071 −57.4388

0 −232.0252 0 0 −755.425

 . (2.30)

2.3.1 Discretisation

It is useful to describe the system in discrete time since the control is performed by a digital computer.

The continuous linear system of (2.27) may be made discrete for a constant time interval h with

Φ = eAh, (2.31a)

Γ =

∫ h

0

eAτdτB, (2.31b)

with which the discrete linear model can be written as
x(tk+1) = Φx(tk) + Γu(tk)

y(tk) = Cx(tk) +Du(tk)

tk = t0 + hk

. (2.32)

Taking a fixed step size ∆t = 0.02s and rounding to the 4th decimal case yields

Φ =



1 0.0172 0.0038 0.0000 0.0012

0 0.7130 0.3591 0.0038 0.0559

0 −0.0028 1.0124 0.0200 0.0012

0 −0.2874 1.2247 1.0123 0.0563

0 −0.2244 −0.1040 −0.0010 −0.0176


Γ =



0.0041

0.4119

0.0041

0.4125

0.3226


C =

1 0 0 0 0

0 0 1 0 0

 D =

0

0


. (2.33)
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2.3.2 Controllability

A continuous linear system is said to be completely controllable if and only if (iff) from an initial state at

the origin, an input function u(t) with 0 < t ≤ tf and a finite horizon tf , an arbitrary x(tf ) = xf can be

achieved.

The linear system (2.27) is completely controllable if the controllability matrix

C[A,B] =
[
B AB A2B · · · An−1B

]
, (2.34)

has full rank n. An analogue test is valid in the discrete case, replacing {A,B} by {Φ,Γ}.

P0

x0

y0

z0

P1le1

τ1

α

F

P2

lcm2

τ2

β

Figure 2.3: Torque transmission in the FP. Conventions are the same as the ones used in figure 2.1b

It is of interest to investigate the physics behind the transmission of torque in this system. When a

voltage is applied to the motor, a current is created, and a torque τ 1 is produced at the centre of rotation

of the horizontal arm. At the metal shaft where the pendulum is attached, the force created by τ 1 over

the arm le1 is horizontal and perpendicular to both le1 and τ 1 (figure 2.3), accordingly to the general

formula

τ = r× F. (2.35)

The torque at the pendulum centre of mass is also given by the above formula, with which the

magnitude of τ 2 can be written, as a function of the angle β

τ2 = lcm2F cosβ, (2.36)

where r2 is the distance between the metal shaft and the centre of mass of the pendulum. From the

above equations it is clear that the input, the voltage applied to the motor, as a direct action on all

the state variables of the system – current of the motor, position and speed of the horizontal arm, and

position and speed of the pendulum. There is a clear exception for cosβ = 0, i.e. when the pendulum
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Table 2.3: Linearised models eigenvalues, asymptotic stability of the reduced system (X2, · · · , X5),
controllability and observability at 5 operating points, where all state variables are set to zero, except for
X3.

X3 Eigenvalues A. Stable Controllable Observable
1 2 3 4 5

0 −737.2 −19.4 +7.0 −5.8 0 No Yes Yes
π/4 −743.2 −11.8 −5.3 +5.0 0 – Yes Yes
π/2 −746.2 −9.1 −0.0 0 0 – No Yes
3π/4 −743.2 −12.4 +0.1 + 5.0i +0.1− 5.0i 0 – Yes Yes
π −737.2 −17.0 −0.5 + 6.8i −0.5− 6.8i 0 Yes Yes Yes

is horizontal. In this situation the position and the force vectors are parallel, and thus no torque can be

applied. Hence, the pendulum variables are not controllable at this point.

These conclusions are in agreement with the tests performed with (2.34) for five linear models (table

2.3).

2.3.3 Observability

A continuous system is said to be completely observable iff the knowledge of y(t) for 0 ≤ t ≤ t1, with t1

finite, is sufficient for determining the initial state condition x(0).

The linear system (2.27) is observable if the matrix

O(A,C) =



C

CA

CA2

...

C


, (2.37)

has full rank n. An analogue test is valid in the discrete case, replacing A by Φ.

2.3.4 Stability

A fixed point x̄ of a dynamic system is classified as Lyapunov stable if

∀ ε > 0, ∃ δ > 0 : ||x(0)− x̄|| < δ ∧ t > 0⇒ ||x(t)− x̄|| < ε, (2.38)

and is asymptotically stable if additionally

∃ ε > 0 : ||x(0)− x̄|| < ε⇒ lim
t→∞

x(t) = x̄. (2.39)

The asymptotic stability of a nonlinear system can be evaluated from the linearised systems obtained at

each fixed point with the Lyapunov indirect method. It is possible to conclude that, given the linearised

system in the form of (2.27):
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1. if all eigenvalues of A have negative real part, then the fixed point of the non linear system is

stable;

2. if at least one eigenvalue of A has positive real part, then the fixed point of the non linear system

is unstable;

3. if none of the above apply, i.e. if at least one eigenvalue is over the imaginary axis, and there are

no eigenvalues with positive real part, then nothing can be concluded.

Eigenvalues were computed for several operation points along with controllability and observability,

and asymptotic stability evaluated for the two fixed points of the system (table 2.3). The last eigenvalue is

associated with the eigenvector (1, 0, 0, 0, 0). As it is always zero, the dynamics on the state-variable X1

are neither stable or unstable. This is due to the fact that the system has cylindrical symmetry. Stability

analysis was done for the reduced system that excludes this variable.
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Chapter 3

Trajectory Planning

This chapter addresses the problem of finding the inputs that make a dynamic system exe-

cute a desirable trajectory in state-space, i.e. a trajectory that complies with the constraints

and, if possible, optimizes a specified quantity.

Consider as a simple conceptual example a car trip. In this case there are restriction on the initial

state and on some of the variables during the trip (speed limit and other traffic rules, vehicle power and

dynamics). Assume that the passenger wants to park as close as possible to his final destination but

also to minimize fuel consumption. The problem is to find the steering and acceleration inputs that make

a desirable trajectory.

Although several strategies can be used to design trajectories, the focus is given to optimal control.

This technique provides a clear framework for finding solutions for problems subject to constraints and

optimization goals.

The Furuta Pendulum is used as the case study, with the model developed in chapter 2, with which

different techniques, numerical methods and minimization goals are explored.

3.1 Ad hoc strategies

This section presents two control strategies developed specifically for the swing-up of a rotary pendulum.

They rely on a analysis of the sign of the input needed to add energy to the system, modulated by a

function of the state of the system.

3.1.1 Energy Control

In [22] a control law is proposed for the swing-up of the FP, based on energy control, given by

u = sat[kv (E − E0)] sign
(
β̇ cosβ

)
, (3.1)

where E is the current energy of the system, E0 is the energy of the goal state, kv is the gain of the

controller, and β is the angle of the pendulum. The first term defines the amplitude of the input (figure
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Figure 3.1: Characteristic of the energy control method for swing-up. (a) Amplitude of the input variable
as a function of the system energy. (b) Signal of the input variable, as a function of the pendulum angle
and angular speed

3.1a). It can be seen as a proportional controller, where the variable is the difference in energy from the

current state to the energy of the goal state, by convention set to zero. The amplitude is limited due to

physical constraints of the actuator.

The second term defines the sign of the control input, and assures that the input effect is to add

energy to the system (figure 3.1b). The term cosβ evaluates if the current position of the pendulum is

above or under the horizontal position. For cosβ = 0 the pendulum is horizontal, thus the system is not

controllable – no energy can be transmitted to the pendulum (see 2.34). With the additional term β̇ the

force is applied against the direction of motion of the pendulum when it is under horizontal position and

in the same direction when above.

Note that this control law has been designed specifically for the inverted pendulum system, thus

being not very general. Additionally it is limited to situations where the energy level of objective state

is not degenerate. Although the controller will drive the system to a state with the specified energy, if

there are several configurations with the same energy it is not possible to choose between them. This

is the case in the Furuta Pendulum, where the energy of the system does not depend on angle of the

horizontal arm α. Thus, with this technique there is no control over this variable during the swing-up.

This control law was applied to the Furuta Pendulum in simulation (figure 3.2). It was found that the

trajectory is very sensitive to the gain, so the control is not robust to differences between the model and

the real device.

3.1.2 Exponentiation of the pendulum position

The control law defined in (3.1) requires calculating the energy of the system. A modified version of the

controller is proposed in [22] that takes into account only the state space variables

u = sat (kv |βn|) sign
(
β̇ cosβ

)
. (3.2)

In this case the first term is modified, now taking the angle between the current position and vertical.
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Figure 3.2: Swing-up performed in simulation with energy control, and equilibrium maintained with an
LQG controller, after t = 1.65s.

A exponent n is added to the expression, which makes the amplitude of the input greater when the

pendulum is far from the upwards position, but smaller when it is closer (figure 3.3a). The authors state

that with this law the transition between the nonlinear and stabilizing controller is smother. The second

term is unaltered (figure 3.3b).

This control law was applied to the Furuta Pendulum both in simulation and with the real device

(figure 2.2). It was found that this control has improved robustness over the energy control strategy,

providing a reliable method for performing the swing-up. This allowed for the adjustment of the control

parameters by trial and error in simulation, followed by the first successful swing-up manoeuvre achieved

with the real device, that allowed for the identification of the parameters using least-squares (see 2.2).
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3.1.3 Energy shaping

In [16] the following control is presented to perform the swing-up

u = k1 (x2 + k2 cos (x3)x4) , (3.3)

which has been tested successfully both in simulation and with the real device (see 6.2).

3.2 Optimal control (continuous case)

Let x(t) be the trajectory in state space of the dynamic system with equations of motion

ẋ = f [x(t), u(t)], (3.4)

with initial conditions

x(t0) = xi, (3.5)

and the cost function J [u(t)] be in the Bolza form

J [u(t)] = Ψ [x(T )] +

∫ T

t0

L [x(t), u(t)] dt, (3.6)

where x ∈ Rn is the state vector, u is the input variable, that takes values in the space of admissible

controls U , T is the terminal time, Ψ [x(T )] is the cost term on the terminal state, and L [x(t), u(t)] a

function that evaluates the cost during the transient, that is designated either as the Lagrangian or the

running cost.

The goal of the optimization process is to minimize the cost function while complying with the con-
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straints 

min J [u(t)] ,

s.t. ẋ = f [x(t), u(t)],

x(t0) = xi,

u(t) ∈ U ,

t ∈ [t0, T ],

(3.7)

where the constraints on the terminal state are not set.

Pontryagin’s minimum principle gives a necessary condition for the solution of (3.7). Let H be the

Hamiltonian, defined as

H [λ(t),x(t), u(t)] = λ′(t) f [x(t), u(t)] + L [x(t), u(t)] , (3.8)

where a co-state λ(t) ∈ Rn is introduced, and the Hamilton equations hold

dλ

dt
= −∂H

∂x
, (3.9a)

dx

dt
= +

∂H
∂λ

, (3.9b)

where (3.9b) is simply (3.4), and (3.9a) can be expressed as

− λ̇′ = λ′ fx [x(t), u(t)] + Lx [x(t), u(t)] , (3.10)

with the boundary condition

λ′(T ) = Ψx [x(T )] , (3.11)

where the subscript applied to a function represents the partial derivative with respect to the subscript

(Fx ≡ ∇xF), and the prime superscript designates the transpose (M′ ≡MT ). This notation is adopted

for simplicity of writing and to avoid confusion with T , the terminal time.

Pontryagin’s minimum principle states that the optimal control input u∗(t) minimizes the Hamiltonian

H at every instant t ∈ [t0, T ]. A formal statement of the theorem can be found in [34, p. 94].

Since the input variable is bounded, the minimum can occur in two situations, that have to be evalu-

ated separately

1. at a boundary of U ;

2. in the interior of U .

Let the cost function be of the particular form

J [u(t)] =
1

2
γ1 x′(T ) Q1 x(T ) +

∫ T

0

(
1

2
γ2 x′(t) Q2 x(t) +

1

p
γ3 |u(t)|p

)
dt, (3.12)

where γi ∈ R, and Qi ∈ Rn×n is by convention normalized. Although this form is not general, many
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problems can be written in this manner. It allows for the description of problems with a quadratic cost

on the terminal and transient states, and an arbitrary exponent to the control function. In this case the

following equations hold

Ψ [x(T )] =
1

2
γ1 x′(T ) Q1 x(T ), (3.13)

Ψx [x(T )] = γ1 x′(T ) Q1, (3.14)

L [x(t), u(t)] =
1

2
γ2 x′(t) Q2 x(t) +

1

p
γ3 |u(t)|p , (3.15)

Lx [x(t), u(t)] = γ2 x′(t) Q2. (3.16)

The problem is now a set of 2n first-order differential equations. There are n equations of motion in

a state-space form (3.4) where the boundary conditions apply at t = 0, and n co-state equations (3.10)

where the boundary conditions are set for t = T .

While for p = 2 and linear dynamics this problem has a well known solution, the LQR (see 4.1.1), in

general a suitable numerical method must be used to solve this problem.

The weights γi define the relative importance given to each component of the cost function. If

γ1 � γ2, γ3, the first term is dominant, and therefore the optimal trajectory will mostly optimize the

terminal state, eventually with a very costly control input and disregarding the transient states. This

situation reduces the stability of the numerical methods. On the contrary, the terms inside the integral

improve the stability of the numerical method, and result in smoother solutions. However, the distance

to the desired terminal state increases.

3.2.1 FP Optimization with L2 (p = 2)

When (3.12) has p = 2, the cost function is said to result from the L2 norm. The term on u2 has the

physical characteristics of power, and its integral of energy. Taking the model of the FP (2.19) and using

the software Mathematica to perform symbolic manipulation, the Hamiltonian can be evaluated from its

expression (3.8). For the computation of the optimal control only the terms dependent on u, H(u), are

of interest. These can be written as

H(u) =
λ5

Lb
u+

1

2
γ3u

2, (3.17)

which is a function in U → R. Pontryagin’s minimum principles requires H(u) to be minimum for every

time instant for u∗ to be optimal. If the minimum is in the interior of U , then it can be found with the zero

of the first partial derivative with respect to u (it is a minimum due to convexity of the function, as γ3 > 0)

∂H(u)

∂u
=
λ5

Lb
+ γ3u = 0, (3.18)

where Lb is a parameter of the model, the imaginary part of the motor impedance. This can be rewritten

in order to u

u∗(t) = −λ5(t)

γ3Lb
, (3.19)
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as the input variable is bounded, the minimum of H(u) can also occur at a boundary of U . In general

the value at each boundary must be evaluated to find the minimum. The minimum is found for each time

instant t ∈ [t0, T ], which could be done symbolically for simple problems, but is unfeasible in this case.

Hence, the time domain must be made discrete, and the optimization performed for each step (figure

3.4).
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Figure 3.4: Optimization performed for the FP with L2 norm, at iteration 1000 of the numerical method.
The red line shows the optimal value u∗(t), that corresponds to the minimum of H(u, t) for every time
instant.

The optimal control and trajectories, calculated with adequate weights, are approximated by a nu-

merical method (figure 3.5).

It is expected that along a optimal trajectory the Hamiltonian is constant in time. However, due to the

characteristics of the problem and the numerical approach for solving the problem, the Hamiltonian is

not constant (figure 3.9b). As expected, when the iteration number increases, the deviation decreases.

The shape of this function has been used as a qualitative measure of the optimality of the trajectory,

along with the evolution of the cost function (figure 3.10).
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Figure 3.5: Control function and trajectories generated with a L2 norm at different steps of the numerical
method.
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(a) (b) (c)

Figure 3.6: Hamiltonian terms dependent on u with L1 norm for γ3Lb < λ5 (a), −γ3Lb < λ5 < γ3Lb (b),
λ5 < −γ3Lb (c). The bold point marks the minimum of the function.

3.2.2 FP Optimization with L1 (p = 1)

When (3.12) has p = 1 the cost function is said to be of L1 norm. In this case the Hamiltonian terms

dependent on u, H(u) may be written as

H(u) =
λ5

Lb
u+ γ3 |u| . (3.20)

The analysis of this case is clearer in a graphical way (figure 3.6). The shape of the cost function at

every instant in time is the modulus function, to which a linear function is added. It can have a minimum

at the lower and upper bonds, and at zero. In the event where one of the sides of the function becomes

horizontal in a finite length of time, the cost function is said to have a singular arc. Note that Pontyagin

minimum principle gives only a necessary condition, thus in this situation some additional criteria should

be used to find the optimal control input. The expression for u∗ is

u∗ =


usat− , γ3Lb < λ5

0 , −γ3Lb ≤ λ5 ≤ γ3Lb

usat+ , λ5 < −γ3Lb

. (3.21)

The evolution of H in optimization procedures is shown in figures 3.7 and 3.8. For t ∈ [0.2, 0.4] the

Hamiltonian is horizontal, and a singular arc occurs. Thus the input variable does not converge to any of

the discrete levels defined by (3.21) in this time interval. This effect has been neglected, since the time

interval in which it occurs is relatively small.

3.2.3 SP Optimization with L2 (p = 2)

Consider a simple pendulum, actuated at its axis by a torque u(t). The equation of motion is

α̈(t) = ω2
0 sinα(t) + u(t), (3.22)
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Figure 3.7: Optimization performed for the FP with L1 norm, at iteration 2000 of the numerical method.
The red line shows the optimal value u∗(t), that corresponds to the minimum of H(u, t) for every time
instant.

where α = 0 at the upwards position. Rewriting in a state space form, with x1(t) = α(t) and x2(t) = ẋ1(t)

ẋ(t) = f [x(t), u(t)] =

 x2(t)

ω2
0 sinx1(t) + u(t)

 . (3.23)

The derivative in respect to the state space variables fx

fx [x(t), u(t)] =

 0 1

ω2
0 cosx1(t) 0

 . (3.24)

For p = 2, the Hamiltonianean terms on u, H(u) may be written as

H(u) = λ2u+ γ3 u
2, (3.25)

and the derivative in respect to u

∂H [λ(t),x(t), u(t)]

∂u
= λ2(t) + γ3 u(t), (3.26)

solving for u(t)
∂H
∂u

= 0⇔ u(t) = −λ2(t)

γ3
. (3.27)

3.2.4 SP Optimization with L1 (p = 1)

In this case the Hamiltonian terms on u, H(u) may be written as

H(u) = λ2u+ γ3 |u| . (3.28)
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Figure 3.8: Control function and trajectories generated with a L1 norm. Iteration number increases in
the direction of the arrow.

The analysis of this case is similar to the one performed in 3.2.2. The expression for u∗ is

u∗ =


usat− , γ3 < λ2

0 , −γ3 ≤ λ2 ≤ γ3

usat+ , λ2 < −γ3

. (3.29)
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3.3 Numerical Methods in optimal control

The application of Pontryagin minimum principle to a dynamic system described by a system of differ-

ential equations results in (3.9) with boundary conditions (3.5), and (3.11). Although there is, in general,

no closed form solution, a suitable numerical method can be used to find λ(t),x(t) that satisfy this

equations. In this section a indirect method is proposed.

3.3.1 Gradient descent

One of the most straightforward methods to find local minima of a function of multiple variables is the

gradient descent, also known as steepest descent. This is a first-order optimization algorithm where

steps are taken in the opposite direction of the gradient and proportionally to its magnitude. On optimal

control this method is used in the optimization of the Hamiltonian in respect to the input function. This

method is notably useful in cases where the minimum of H(u) is unknown.

The algorithm may be implemented as follows [35]:

1. An initial guess for the control function u(t) is taken, where the time interval [t0, tf ] is subdivided

into a set of N subintervals. For simplicity, each subinterval can be made of equal length. The

input variable u(t) is set to be piecewise-constant for each subinterval;

2. the equations of motion of the system are integrated forward in time;

3. the final value of the state-variables, x(T ), is used as initial condition for the backward integration

of the co-state;

4. the stopping criteria are evaluated;

5. updated values are set for the control function at t = tk, where k = 0, · · · , N and u(t) is a

piecewise-constant function:

u(i+1)(tk) = u(i)(tk)− τ ∇uH(tk); (3.30)

6. repeat from 2, until a stopping criteria is met.

3.3.2 Algebraic descent

A method was developed as a modification of the gradient descent method. The modification takes

advantage of the existence of a simple algebraic solution for the minimum of H(u).

A user oriented description of this method is given in appendix A.1, along with the application to a

wave energy converter.

The method comprises the same sequential steps as the gradient descent, except for the actualiza-

tion of the control function, where:
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5. for each time instant tk, k = 0, · · · , N the Hamiltonian is optimized, i.e. u is set to the value u∗ that

minimizes H(u) in a given moment tk

u(i+1)(tk) = u∗(tk). (3.31)

The update depends on the cost function in use.

Smoothing

The method described above yields rapid convergence for simple problems. However it becomes un-

stable in problems where there is a high weight on the terminal state, or when the terminal state is very

dependent on the input variable, as is the case of unstable systems.

The simplest problem that can illustrate the unstable behaviour is the harmonic oscillator, where the

input variable can have both positive and negative values, and the objective is to get the final value as

close as possible to zero. The reason for the instability is that altering the input variable at a certain

time changes the shape of the state-space trajectory in all following moments, but the optimization is

performed for all time intervals before proceeding with another forward-backward integration.

In order to improve stability a smoothing factor was imposed: instead of the full step for u that would

minimize H(u) in that specific time interval, a smaller step is taken in the same direction. In practice this

term slows the method, making it more stable.

The smoothing factor is evaluated dynamically. It is a monotonic decreasing function that is updated

whenever an iteration yields a higher cost that the record minimum, subject to a small tolerance.

u(i+1)(tk) = ηu∗(tk) + (1− η)u(i). (3.32)

Momentum

The addition of the smoothing term makes the algorithm more stable, but also slower. It may become so

slow that a stopping criteria is triggered before a convenient solution is found. To improve the converge

speed while maintaining stability, a momentum term is added to the method. For each time interval, if

two successive iterations are in the same direction, the step is increased as follows

u(i+1)(tk) = ηu∗(tk) + (1− η)u(i) + ∆u(i). (3.33)

Memory

In the event of an increase of the cost function the smoothing factor is updated and the values of the

state and co-state variables that provide the cost function record minimum are restored.

Stopping criteria

Three stopping criteria are defined:
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Figure 3.9: Hamiltonian as a function of time at three steps of the optimization process, for the (a) L1

norm and (b) L2 norm.

• If the smoothing factor becomes smaller than a certain value;

• If the state-variables have become very large (in which case the method has irremediable di-

verged);

• If the maximum number of iterations has been reached.
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Chapter 4

Trajectory Control

In this chapter optimal control theory is used to design linear controllers for a non linear

system. A brief explanation of the theoretical tools is presented, along with an analysis of

the effects of the controller parameters. Strategies for the transition between controllers are

proposed and tested both in simulation and with the real device.

Linear controllers are used in this work in two circumstances

1. to follow reference trajectories, as the ones created in chapter 3. The controller makes small

adjustments to the input function to compensate the differences in behaviour between the model

and the real system;

2. to regulate to a constant reference state, in order to keep the system at the desired point of oper-

ation, for example balanced around the vertical position. This can been seen as a particular case

of the previous item, where the input reference is set to zero.

Since each controller is valid on a limited region of state space, there is the need to design an ensemble

of controllers.

4.1 Continuous Linear Quadratic Gaussian Controller

The problem of designing a linear controller with optimal control where

1. the system is described by a linear state space model, either continuous or discrete, with sensors

available to measure the output variables,

2. both model and sensor information are subject to additive Gaussian noise,

3. the cost function is defined with a quadratic function on the state space variables and input,

is said to be Linear Quadratic Gaussian (LQG). This is one of the most fundamental problems in optimal

control, for which robust tools are available. In the conditions stated, the superposition theorem holds,
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therefore the design of the LQG controller can be made separately for the two parts which compose it –

regulator and estimator1.

4.1.1 Linear Quadratic Regulator

The goal of the Linear Quadratic Regulator (LQR) algorithm is to find the gain vector K of the state

space feedback law

u = −Kx, (4.1)

that applied to the continuous linear system, defined in 2.3,

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

, (2.27)

minimizes the cost function

J =

∫ ∞
0

(
xTQrx+ uTRru

)
, (4.2)

which is a particular case of (3.12), in this case with infinite horizon and quadratic cost. Matrices Qr and

Rr weight the relative importance given to the regulation of the state variables and the cost of the input,

and shall be selected taking into account the design goals of the system.

Applying Pontryagin’s minimum principle (see 3.2) to the LQR problem, and assuming that ∃ P ∈
Rn×n : λ = Px, yields the Algebraic Riccati equation

ATP + PA− PBR−1
r BTP +Qr = 0. (4.3)

from which P can be calculated. The feedback gain K of the controller (figure 4.1) can now be evaluated

with

K = R−1
r BP. (4.4)

+−
B 1

s C

A

K

r u ẋ x y

Figure 4.1: Block diagram of a state feedback controller, with D set to zero.

The LQR controller has severable desirable properties, for example, it maintains the order of the

1This section is not intended to be a comprehensive reference source, to complement the information on the design of a LQG
controller refer to [9], where it is addressed with further detail.
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system, as a phase margin of at least 60o and an infinite gain margin.

4.1.2 Linear Quadratic Estimator

A Linear Quadratic Estimator (LQE), also known as Kalman Filter, produces estimates for the state of

the system (figure 4.2), given the model and sensor measurements, both subject to uncertainties. It is

a form of data fusion, which yields more precise results than a single measurement and requires small

computing power. Additionally, it is the optimal estimator for Gaussian noise.

+−
B 1

s C

A

L
+

−

B 1
s C

A

K

w v

r u ẋ x

˙̂x x̂ ŷ

e

y

Plant

Observer

Figure 4.2: Block diagram of a state feedback controller with estimator, with D set to zero.

Let the modelling and the measurements be subject to Gaussian noise

ẋ = Ax+Bu+ w

y = Cx+Du+ v

, (4.5)

with covariances

Qe = E
[
wwT

]
, (4.6)

Re = E
[
vvT

]
. (4.7)

The optimal estimator for this problem is the Kalman filter with gains

L = ΣCTR−1
e , (4.8)
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where Σ is the solution of the Riccati equation

AΣ + ΣAT +Qe − ΣCTR−1
e CΣ = 0, (4.9)

and the state estimation x̂ is dynamically updated by integrating the differential equation

˙̂x = (A− LC)x̂+Bu+ Ly. (4.10)

4.1.3 Linear Quadratic Gaussian (LQG)

K
+−

Plant

K Observer

xref u y

x̂

Figure 4.3: Block diagram of a state feedback controller with estimator.

The superposition theorem allows the independent design of the controller and estimator. The LQG

problem is the simple combination of both LQR and LQE (figure 4.3). Therefore, substituting (4.1)

in (4.10) 
˙̂x = (A−BK − LC)x̂− Le

u = −Kx̂
, (4.11)

where e = r − y.

4.2 Controller design

From an engineering point of view, the LQG provides a complete methodology to design the controller.

Several parameters can be used to modify the behavior of the system and can be seen as “manual

adjusting knobs” (table 4.1). The designer shall select the set of parameters that best satisfies the

design requirements, which make the process iterative.

On the design of the LQG controller, the requirements were:

1. to equilibrate the Furuta pendulum from initial rest conditions for any angle β ∈ [−12, 12] deg;

2. to keep α ∈ [−180, 180], preventing the electric wire connections to wrap around the gears;

3. to have input signals in the nominal range u ∈ [−6, 6] V;

4. to maintain equilibrium indefinetly, even when subject to external perturbations.

The controller was designed in Matlab/Simulink. Two modes of operation may be selected: 1) the

system is simulated (figure 4.4) using the nonlinear model of 2.19 and 2) input is given to the real device
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Table 4.1: LQG controller parameters.

Parameter Description

Qr Cost function weight matrix on the state variables, gives relative importance
to the regularization of each variable

Rr Cost function weight matrix on the input function, accounts for the speed of
the system and thus the amplitude of the input function

Qe Covariance matrix of process noise, accounts for the relative cofidence in the
model predictions

Re Covariance matrix of measurement noise, accounts for the relative confidence
on the sensors measurements

and output obtained from the sensors available. Both blocks, which will be refered to as simulation

and experiment, respectively, are interchangeable. Simulation aims to behave as close as possible to

experiment, using, for example a zero-order hold in the input variable and sensor discretization.

4.3 Evaluation of the control quality

4.3.1 Stability region

The equilibrium maintained by the linear controller at the upwards position can be perturbed by external

forces. The region in which the equilibrium is kept is shown in figure 4.5 for several values of the

maximum input amplitude. In this figure the region of convergence is the state space limited by the

drawn boundary. Note that state space is of dimension 5, and the plot has dimension 2. Figure 4.7

shows the region of convergence for 3 variables. The initial values of the remaining variables are set to

zero, but allow to evolve in time during simulation.

Figures 4.5 and 4.6 show that the area in which the linear controller is able to stabilize the non linear

system increase as a function of the maximum input amplitude defined.

4.3.2 Numerical algorithm for determining the stability region

The linear controller valid around the upwards equilibrium points actuates on a non linear system. The

stability region is calculated with an original method based on the binary search algorithm, with the

assumption that the boundary of the stable region is globally continuous. The algorithm is as follows:

1. A point known to lie inside the stability region is taken as initial guess;

2. A binary search with n iterations is performed within a line segment of length (2− 2−(n−1))step. At

each iteration the point is tested to be stable or unstable. With this procedure the boundary of the

stability region is found with an error of ≤ step/2n;

3. Once the boundary of the stability region is found, a angular binary search with n iterations is

performed: points that lie on a circle defined with a convenient norm are tested to be stable or
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Figure 4.4: Time response of the LQG controller with initial conditions x = [0 0 − 0.1 0 0]. Results
obtained in simulation.

unstable, and the angle updated to provide the best estimate with the available information. The

method provides an angle estimate with error ≤ step/2n. The point found is set as the centre of

the next angular binary search procedure;

4. The method advances by recursively applying 3 until the boundary is defined in a 360o angle

around the initial point.

Testing the stability of a point involves simulating the time evolution of the closed loop system, for an

adequate amount of time, and to check if at the end it lies within a given tolerance of the set point. For

complex systems this may require a considerable amount of time: the plot of figure 4.5 requires about 5

hours of computation.
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Figure 4.5: FP initial conditions in which equilibrium is achieved, as a function of the allowed amplitude
for u, where the lines represent the boundary of the region of attraction. x1(0), x2(0) and x5(0) are
set to zero. Simulations are performed with the non linear model using Matlab/Simulink and the LQG
controller.

4.4 Transition between controllers

The transition between controllers is performed in two different modes of operation:

1. The control for swing-up is applied directly to the device. Only the linear controller around the

final point is activated. In the transition between the swing-up and equilibrium modes the control

function is made continuous. This approach is used when there is no reference trajectory, and the

swing-up is performed in closed loop, for example with the Ad hoc strategies described in 3.1.

2. The reference control is applied to the device, which in turn has a closed loop ensemble of linear

controllers which stabilize the difference between the performed and reference trajectories. This is

known as a gain scheduling controller.
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4.4.1 Continuous transition between controllers

Consider the linear controller with equations


˙̂x = (A−BK − LC)x̂− Le

u = −Kx̂
, (4.12)

and initial state

x̂(0) = z. (4.13)

In order to make the transition between the swing-up and linear controllers smoother, the input is set

to be a continuous function on the transition. For that purpose, the initial estimate of the state of the

linear controller x̂(0) was selected as the vector that fulfils the following optimization problem:

min (x̂(0)− x(0))
2

s.t. Kx̂(0) + u∗ = 0

. (4.14)

Let u∗ be the last input given by the swing-up controller before the commutation

u∗ = −Kx̂(0) = −Kz, (4.15)

which may be rewritten by expanding the vector product as a summation over the components

min
∑n
i=1 (zi − xi(0))

2

s.t.
∑n
i=1Kix̂i(0) + u∗ = 0

. (4.16)

Using the method of Lagrange multipliers, with multiplier λ, this problem is equivalent to

min
z

max
λ
L(z, λ), (4.17)

where

L(z, λ) =

n∑
i=1

(zi − xi(0))
2

+ λ

(
n∑
i=1

Kizi + u∗

)
. (4.18)

Application of the method yields


∂
∂zi
L(z, λ) = 2(zi − xi(0)) + λKi = 0

∂
∂λL(z, λ) =

∑n
i=1Kizi + u∗ = 0

, (4.19)

solving the first equation for zi and replacing the result in the second

zi = xi(0)− 1
2λKi∑n

i=1Ki

(
xi(0)− 1

2λKi

)
+ u∗ = 0

. (4.20)
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Finally, the solution for the Lagrange multiplier and initial state estimative is found

λ = 2
∑n
i=1Kixi(0)+u∗∑n

i=1K
2
i

zj = xj(0)−
∑n
i=1Kixi(0)+u∗∑n

i=1K
2
i

Kj

. (4.21)

4.4.2 Gain Scheduling controller
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Figure 4.8: Gain scheduling controller regions of operation, as a function of the angle β (x3). The dots
mark the points where Jacobian linearisation is performed, and C1 to C6 the controller that operates at
that particular region. For example C1 operates for β ∈ [−18, 18]o, and is responsible for keeping the
pendulum equilibrated in the upwards position.

The gain scheduling controller implemented in the control of the FP selects one between 6 controllers

to be used accordingly to the current angle of the pendulum (figure 4.8). Note that they are disposed

symmetrically: the first of the Taylor series is identical for x3 = ±θ, and thus is the incremental model

as well. The estimate of the full state is provided by a global estimator, that filters sensor data. The

controller at the upwards position incorporates a dedicated LQE.

Each LQR controller, which is designed independently, corrects the value of the input variable in

order to approximate the behaviour of the real system to the one predicted in the reference trajectory

(figure 4.9).

-

−Ki

xref uref

xest e uplant

Figure 4.9: Gain scheduling controller architecture. The vector Ki, i ∈ {1, · · · , 6} is selected accordingly
to the current angle of the pendulum.
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Results show that the application of the corrections produced by the controller centred at 72 deg

are counterproductive, as the probability of a successful swing-up are greatly reduced. This is due to

the high gains that this controller exhibits, independently of the weights chosen. A qualitative analysis

suggests that the system is difficult to control in this region, and this is reflected on the gains obtained

with the LQR methodology. The output of this particular controller was chosen not to be applied to the

device.
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Chapter 5

Control Hardware

This chapter provides a description of the experimental implementation, including a compar-

ison between a commercial and a custom made apparatus used in the laboratory.

Two different control system are employed to test and apply the developed model

1. a commercial, off-the-shelf solution acquired from the manufacturer National Instruments. It is

composed by a personal computer (PC), running Matlab/Simulink, a PCI-6040E board (DAQ) con-

nected to the PC at a PCI port, and an analog amplifier. The sensors – optical quadrature encoders

(QE) – at the joints of the FP are connected to the DAQ directly. The actuator signal, produced

by a digital to analog converter (DAC) at the DAQ is first amplified by the external analog amplifier

before being applied to the motor.

2. a custom made board, designed and produced by the author, capable of controlling the device

without external components. It incorporates the functions of the DAC, PC, and analog amplifier

of the commercial solution, and provides additional functions such as current measurement and

analog filtering. The QE are connected to this board directly.

The PCI-6040E DAQ includes the following characteristics:

• 2 up/down counters/timers, 24bit, at a maximum 20MHz;

• 2 analog output channels, 12bit, sourcing < 5mA;

• 16 analog input channels, 12bit, at a maximum 250kS/s;

The motivation for the development of the control system derive from a number of shortcomings of

the commercial solution, when applied to the FP

• Encoder resolution – the DAQ does not have a native quadrature encoder interface, instead, the

up/down counters are used, which reduces the resolution of the sensors by a factor 4. Thus in

this configuration the reading of the sensors have 1024 levels per revolution, instead of the 4096

available if adequate hardware was used;
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• Unmeasured states – only 3 in 5 of the states variables can be measured directly: the angular posi-

tions of both links with quadrature encoders and the speed of the horizontal arm with a tachometer.

It is not possible to measure directly the speed of the pendulum, since the timers are already be-

ing used as counters, or the current of the motor, since the amplifier does not provide sensing

capabilities.

• Cost – the estimated cost of the control electronics is > 3000 EUR. To this price adds the licenses

for the proprietary software compatible with this DAQ;

• Deployment time – using Matlab/Simulink the time required to compile and deploy the program is

about 60 s;

• Reliability – as the control software grows in complexity, the development environment is subject

to frequent errors which often require the restart of the PC. It is clear that a system with this

configuration could not be used in a production environment.

In order to overcome the above constraints, the following minimum requirements were defined for a

custom made control system

• 2 QE interfaces;

• 2 timers;

• 1 Full H-bridge with current measurement;

• 2 channels of analog filtering with amplification, used for current measurements;

• Microcontroller with digital signal processing capabilities and configurable speed;

• Communication with a computer using a standard USB port, for data logging or interfacing with

external software.

5.1 Schematic

The components of the board were chosen to abbey to the defined requirements, but also to provide

versatility, while maintaining costs as low as possible. The circuit (see appendix B) has a modular

configuration, in which not all components must be soldered, if they are not to be used, or can be turned

off by an appropriate choice of the jumper configuration.

5.1.1 Microcontroller

The central component of the board is a dsPIC33FJ128MC804 (dsPIC) microcontroller manufactured

by microchip, which fulfils the minimum requirements defined. Moreover it has 16-bit architecture and

operates at a maximum 40 MIPS, allowing the selection of the necessary maximum speed once the
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code performance is assessed. The clock reference is provided by a quartz crystal running at 4 MHz,

with two load capacitors of 18 pF attached.

The dsPIC can be programmed with a PICKIT through the header J8. The circuit has been designed

to allow the programming by a Raspberry Pi computer (RPi), using its general purpose input/output (I/O)

pins, although this feature has not been tested. Reset can be induced using the press button SW1. An

input button SW2 is also available, as well as two Light Emiting Diodes (LEDs), connected to the I/O pins

of the dsPIC.

Three separate grounds exist in the board – digital, analog and power. They are connected through

inductors to minimize the transmission of noise. All digital integrated circuits (ICs) have 100 nF capacitors

connected between the supply voltage and digital ground to decouple digital noise.

5.1.2 Communications

The dsPIC communicates via RS232 protocol with TTL logic levels with the FT232R, at a maximum

baudrate of 3 Mbit/s. This IC handles the USB connection and is seen by a connected PC as a regular

serial port. Two LEDs signal data being received and transmitted. The µUSB port can be used to power

the board, either from a USB port of a PC, or a standard 5 V USB power supply. Another serial port is

connected to the RPi header, providing direct TTL communications with it through the USART.

The dsPIC is also connected to the MAX485 IC, which provides a RS485 serial port, if needed on

further developments.

The RPi or a standard computer can be used for human interface either remotely, through web

services, or locally, using a console or graphical user interface, for controlling the board operation.

5.1.3 Load driving

The Pulse Width Modulation (PWM) motor control pins of the dsPIC are connected to the DRV8844,

a quad half-bridge. This IC provides a maximum 2.5A per channel and allows for the driving of the

motor of the FP. The sense pins of this IC are connected to shunt resistors (R38 and R47), used for

current measurement, allowing a fast feedback overcharge protection and an indirect measurement of

the torque applied, by sensing the flux.

Also present in the board is a ULN2803, an 8-Darlington transistor array, useful for driving external

on/off loads such as lighting and relays.

5.1.4 Current measurement and analog filtering

The current across the shunt resistors creates a voltage, according to Ohm’s law. The signal is subject

to a low pass filter with cutoff frequency of about 330 Hz and amplified by a factor 22. It uses the voltage

reference of 2048 mV provided by the ADR380ARTZ IC.
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5.1.5 Raspberry Pi interface

The board is designed to have a shield such as a RPi, capable of handling web services and data-

logging, providing publishing and interface services for humans. The header connects the general pur-

pose I/O pins of the RPi to the board, enabling serial communication, programming of the dsPIC, and

power supply sharing.

5.1.6 Power supply

The circuit have been designed with a great flexibility for different power strategies, according to the

peripherals connected. Power may be supplied by 4 different means:

1. unregulated Vin ∈ [8, 50] V. This voltage is applied to the external loads of the DRV8844 and

ULN2805, but can is limited to Vin ∈ [6, 25] V if the LM1085 is used to provide 5 V to the board.

This input is protected with a diode to avoid incorrect polarity.

2. unregulated Vin ∈ [4.5, 5.5] V, if no external loads are used. This is applied to the input of the 3.3 V

regulator, LM3940;

3. regulated 5 V over µUSB port

4. regulated 3.3 V, applied directly to the dsPIC.

5.2 Printed Circuit Board

The Printed Circuit Board (PCB) (figure 5.1) was designed with separate zones and associated ground

planes according to their functionality: digital, analog and power. It comprises redundant connections:

screw terminals and male headers. The format is a standard 3U Eurocard with 100 mm× 160 mm, and

is fabricated in a double layer board. Components are mounted in the top layer, except for the female

headers that connect to the RPi, that populates the bottom layer.

5.2.1 Fabrication

The PCB was manufactured with the following sequential steps:

1. copper clad board selection and cleaning;

2. manufacturing of layers, through holes and vias with CNC machine;

3. manual drilling of higher diameter holes;

4. soldering of vias;

5. soldering of components;

6. testing.
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Figure 5.1: Custom made controller board with essential components soldered. The colours identify
each functional zone.

Future versions of the board are to be outsourced from steps 1 to 4. Minor errors were detected and

corrected for future production batches. The estimated cost per board, including components and PCB

fabrication is < 50 EUR.

5.3 Software

The software implements the algorithm for swing-up using exponentiation of the pendulum position (see

3.1.2) and equilibrium with a LQR controller (see 4.1.1). Note that a LQG was not implemented since

all states are measured directly, although the use of a estimator could improve the performance of the

control.

The control loop works at 4 KHz, as well as the digital readings from the QE. Analog measurements

are performed 5 times per control cycle, i.e. at 20 KHz. The samples are averaged which improves the

immunity to higher frequency noise. Data is transmitted over the serial port at 100 Hz.

The software developed shows that the developed hardware is capable of performing the swing-

up and maintain the FP equilibrated at its unstable, upward position. Experiments performed with the

previous apparatus were not repeated, as that would not contribute to a further understanding of the

system, but would require extensive porting of the control software developed in Matlab/Simulink.
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5.3.1 Shortcomings

The greatest disadvantage of the new control system is that it is not integrated in the Matlab/Simulink

development cycle, and thus changing from simulation to the real device is more difficult. However it

is still possible to use the serial port interface on Matlab/Simulink to control this board, although this

solution introduces additional time overhead to the control cycle.
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Chapter 6

Results

In this chapter the main results obtained experimentally are presented and compared with

the results of simulations.

6.1 Swing-up with optimal control

The optimal control calculated with the L2 norm in 3.2.1 is applied to the real device (figure 6.1). The

reference input is corrected by the gain scheduling controller, which accounts for the differences between

the reference and the output variables, and actuates on the input to approximate the behaviour of the

system to the one predicted in simulation. In a similar way, the reference produced with the L1 norm in

3.2.2, was applied to the real device (figure 6.2).

In both cases, after swing-up is completed, the reference was set to zero for both input and output

variables.

State variables are being estimated globally by a filter. Its transient response causes a visible spike

at the first 50ms in the input variable. Experimental data follows the reference trajectory with small

deviations for angles where the pendulum is on a downwards position. At the final swing, and when

the pendulum is above horizontal, the gain scheduling controller actuates more aggressively in order

to ensure that the pendulum can perform the swing-up manoeuvre. With the L2 norm this affects the

tracking of the reference of the angle of the horizontal arm.
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Figure 6.1: Swing-up performed with optimal control (L2 norm). Input applied from reference and cor-
rected with a gain scheduling controller. After t = 1.8s the references for the input and output are set to
zero. Sampling time 1ms.
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Figure 6.2: Swing-up performed with optimal control (L1 norm). Input applied from reference and cor-
rected with a gain scheduling controller. After t = 0.9s the references for the input and output are set to
zero. Sampling time 1ms.
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6.2 Swing-up with ad hoc strategies

The swing-up was performed experimentally with two ad hoc techniques: energy shaping and exponen-

tiation of the pendulum position. Figure 6.3 shows the results of using energy shaping, where experi-

mental results are compared to the ones obtained in simulation in two ways:
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Figure 6.3: Swing-up performed with energy shaping. The experimental data is compared with the
results of simulation. In open loop simulation, the input signal of the experimental data is applied to
a model of the device, and no feedback control is performed. In closed loop simulation, the control is
performed with energy shaping, by using the outputs of the simulated model. Sampling time 1ms.

1. by simulating the response of the closed loop system. The input is calculated with the state ob-

tained in simulation and the rule defined in 3.1;

2. by simulating the response of the input applied experimentally. This is referred to as open-loop

simulation, as the input is established a priori.
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The results are used to test the accuracy of the model. The closed loop simulation amplifies the small

deviations, and has a response stretched in time. However the open loop simulation is indistinguishable

from the response of the real system in the pendulum angle during swing-up, and only diverges after the

upwards equilibrium position is achieved.

With exponentiation of the pendulum position the swing-up was achieved with the commercial (figure

6.4) and the custom made (figure 6.5) control systems.
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Figure 6.4: Swing-up performed with exponentiation of the pendulum position. The experimental data
is compared with the results of simulation. In open loop simulation, the input signal of the experimental
data is applied to a model of the device, and no feedback control is performed. In closed loop simulation,
the control is performed with the exponentiation of the pendulum position, by using the outputs of the
simulated model. Sampling time 1ms.

The comparison of the experimental data with the open and closed loop simulations yield similar

results. In this case, however, simulations differ less than with the energy shaping swing-up. This is due
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Figure 6.5: Swing-up performed with exponentiation of the pendulum position using the custom made
board. Sampling time 10ms, control period 250µs.

to two reasons: 1) The time of swing-up with exponentiation is shorter (2 s) than with energy shaping

(5 s) and 2) the identification with least-squares has been performed with exponentiation, with similar

conditions, thus it is expected that parameters are especially well adjusted to the response that this

method generates, since the same frequencies are excited.

Results obtained for the swing-up with the custom made control system have similar characteristics

to the ones obtained with the commercial solution (figure 6.5). Equilibrium has also been achieved also

shows the equilibrium maintained with a LQR controller.
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Table 6.1: Normalized cost of different swing-up strategies

Method T (s) L1 L2

Energy shaping 3.4 359 557
Exponentiation 2.2 323 846
Energy control 2.5 360 1275
Optimal control L1 0.9 345 1441
Optimal control L2 1.8 213 452

6.3 Comparison of swing-up methods

Qualitatively, the swing-up performed with the L2 norm proved to be the smoothest and most reliable of

all methods used. The swing-up performed with the L1 norm was also very reliable, but fast changes of

the control result in an aggressive manoeuvre.

The different swing-up methods are compared in terms of cost, using the metrics of optimal control,

normalized in respect to the time of simulation (table 6.1).

Results show that the optimal trajectory calculated with Li, i ∈ 1, 2 norm, has a lower cost then

the remaining methods, when measured with that specific norm. The similarities of each method with

optimal control may be measured with this metric.

6.4 Equilibrium

Equilibrium was maintained with two different LQG controllers (see 4.1), one continuous (figure 6.6) and

one discrete (figure 6.7).

Results show that the equilibrium maintained with the discrete controller has smaller variance than

the one obtained with the continuous controller. The control is performed by a digital computer, therefore

it will always have a discrete nature. While using Matlbal/Simulink continuous blocks, the discretisation

is handled by the software. With the discrete controller the software only handles basic calculations, and

the discretisation is handled by the engineer.

Note that the parameters of each controller have been designed independently, and while the design

goals have been the same for both, there is no guarantee that better results could not be achieved with

a different choice of parameters.

The equilibrium achieved with the custom made control system (6.8) has lower variance when com-

pared with the control performed with the commercial solution. However, the angle of the horizontal arm

has a oscillatory characteristic with a period of about 8s.
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Experimental Data

Figure 6.6: Equilibrium maintained with a continuous LQG controller. The arrow indicates an external
perturbation applied to the pendulum. Sampling time 1ms.
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Figure 6.7: Equilibrium maintained with a discrete LQG controller. The arrow indicates an external
perturbation applied to the pendulum. Sampling time 1ms.
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Figure 6.8: Equilibrium maintained with a discrete LQR controller immediately after swing-up, using the
custom made control system. Sampling time 10ms, control period 250µs. This data set does not contain
external perturbations, besides the initial offset due to the end of the swing-up manoeuvre, which has
been omitted due to the different y-magnitudes involved.
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Chapter 7

Conclusion

Results show that optimal control is an effective method to calculate state space trajectories for the

FP, an under-actuated system with non linear dynamics. The characteristics of the control function

and trajectory generated can be altered by an appropriate choice of the cost function structure and

weights. Results also suggest that the method can be applied to a wide range of system with different

characteristics, if an appropriate numerical method is used.

Results also show that the gain scheduling controller is an effective way to have a nonlinear system

follow a reference trajectory. Transitions between controllers can be made smooth, although this requires

a trade-off with the speed of reaction.

Contrary to one could expect, when designing an equilibrium controller, it is more difficult to maintain

the angle of the horizontal arm within bounds than the pendulum at its upwards position.

7.1 Achievements

A complete model of the system is developed, which captures the dynamics of the FP and actuator. The

simulations performed with this model are in agreement with experimental data. The accuracy of the

model allows for the design of controllers in a simulated environment, and a hassle-free transition to the

real device. Both a global nonlinear and local linear models (continuous and discrete) are produced.

The numerical method for optimal control proposed in this work found solutions not only for the

problem of swinging-up the FP, but for other unrelated systems such a wave energy converter. It offers

improved stability over other methods such as FBS which failed to converge in both cases.

A technique is proposed and used to find the regions of attraction of a controller, but can also be

used in any dynamic system as long as it fulfils the sufficient condition of this region being convex.

Equilibrium is achieved reliably with the use of both a continuous and discrete LQG controllers. They

are able to stabilize the plant in the event of external perturbations. They are shown to be limited in their

region of attraction by the power of the actuator.The method used to evaluate this region is original and

general.

A custom made control system is developed and tested. Results show improved reliability when com-
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pared with the previously available commercial solution, which is 2 orders of magnitudes costlier. The

new system is more compact and flexible, providing sensing capabilities for all 5 state space variables.

The equilibrium achieved with this system has improved variance over the obtained with the commercial

solution. This board may be used in the future to control a wide range of devices without additional

external components, for example in a classroom environment.

7.2 Future Work

During the development of this work, several divergent lines of research or possible analysis were iden-

tified. However, given the time limitations for this thesis development, they have not been addressed:

• Other techniques can be used to model the system, which can be specially useful when there is

no information available about its structure, for example neural networks;

• There is a wide number of numerical methods available that allow the calculation of optimal tra-

jectories (and respective control inputs). Since the FP and related simplified systems proved to

be a useful test ground, it is of interest to compare the performance of each of this methods sys-

tematically, using the results of simulations and experiments with the real device. This comparison

could be done for several aspects, for example the cost as a function of the computational power

required, or the robustness of the method, and could be done for gradient, shooting, and pseudo-

spectral methods for example;

• With an appropriate cost function it should be possible to find minimum time trajectories, which are

of interest in many applications;

• The terminal state may be imposed, instead of contributing to the cost function;

• Optimal control can be performed in discrete time, it would be of interest to analyse the differences

to the continuous case;

• The numerical method proposed in this work could be applied to different systems, specially to

ones where other methods have difficulties;

• A systematic study of the effects of having sensors for all states in the performance of the controller

would be of interest.

• A study of the limits of performance of positioning, when equilibrating the pendulum;

• Use of MPC to perform control.
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Appendix A

Numerical method

A.1 User oriented description

This section provides a user oriented description of the numerical method proposed in this work.

Given a cost function in the Bolza form

J [u(t)] = Ψ [x(T )] +

∫ T

t0

L [x(t), u(t)] dt, (A.1)

1. An initial guess for the control function u(t) is taken, where the time interval [t0, tf ] is subdivided

into a set of N subintervals. For simplicity, each subinterval can be made of equal length. The

input variable u(t) is set to be piecewise-constant for each subinterval;

2. An initial value is defined for the smoothing factor (η ≤ 1). Values are defined for the momentum

term coeficient and actualization coefficient of the smoothing factor;

3. the equations of motion of the system are integrated forward in time

ẋ = f [x(t), u(t)], (A.2)

x(t0) = xi; (A.3)

4. the final value of the state-variables, x(T ), is used as initial condition for the backward integration

of the co-state;

λ′(T ) = Ψx [x(T )] , (A.4)

− λ̇′ = λ′ fx [x(t), u(t)] + Lx [x(t), u(t)] ; (A.5)

5. the method stops if any of the stopping criteria are met

• the smoothing factor is smaller than a certain value;

• the state-variables are very large (in which case the method has irremediable diverged);
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• the maximum number of iterations is reached;

6. updated values are set for the control function at t = tk, where k = 0, · · · , N and u(t) is a

piecewise-constant function

u(i+1)(tk) = ηu∗(tk) + (1− η)u(i)(tk) + ∆u(i)(tk). (A.6)

where

• u∗ is the optimal value of the control function, that optimizes H(u) in a given moment tk;

• η is the smoothing factor;

• ∆u is the momentum term. It is calculated as

∆u(i) = δ(u(i) − u(i−1)), (A.7)

with 0 ≤ δ ≤ 1. The momentum term is only applied at each element of the vector if the

function is evolving consistently in the same direction, i.e.

(u
(i+i)
k − u(i)

k −∆u
(i)
k ) ∗∆u

(i)
k > 0; (A.8)

7. The cost A.1 is calculated. If it has increased more than a given tolerance, the smoothing factor is

actualized

η = αη (A.9)

where 0 < α < 1;

8. repeat from 3.

A.2 Application to a wave energy converter

In [36] a simplified model of a wave energy converter is used. The numerical method proposed in this

work has been applied to this problem and yielded the optimal control.

The generator is modelled by a spring-mass-damper system, where a controllable latching system is

used to improve efficiency

mẍ(t) + cẋ(t) + kx(t) + V u(t)ẋ(t) = F (t), (A.10)

where m is the mass, c the damping coefficient due to the generator, k the stiffness of the spring,

that simulates hidrodinamic forces, and F (t) to the excitation force, due to the waves.

The following boundary conditions have been set

x(0) = 0, (A.11)

ẋ(0) = 0, (A.12)
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Equation (A.10) can be rewritten as

ẍ =
F − cẋ− kx− V uẋ

m
, (A.13)

which can be put in a state space form with the substitutions

x0 = ẋ, (A.14)

x1 = x, (A.15)

resulting in the system

ẋ0 =
F − cx0 − kx1 − V ux0

m
, (A.16)

ẋ1 = x0. (A.17)

The goal is to maximize the energy produced by the generator, i.e. to maximize the time integral of

power

J = E =

∫ Tf

0

cx2
0dt. (A.18)

By applying Pontryagin’s maximum principle, one obtains

H =
F − cx0 − kx1 − V ux0

m
λ0 + x0λ1 + cx2

0 (A.19)

and the costate equations

g0 =
c+ V u

m
λ0 − λ1 − 2cx0, (A.20)

g1 =
k

m
λ0. (A.21)

The application of the numerical method yields the results shown in figure A.1.
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Figure A.1: Optimal control and system response of a spring-mass-damper, a simplified model of a wave
energy converter. fext = 1

6 Hz, m = 0.1 Kg, c = 1 Kg s−1, k = 1 Kg s−2, V = 200 Kg s−1.
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