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Abstract 

 

Nowadays, richer 3D visual representation formats are emerging, notably light fields and point 

clouds. These formats enable new applications in many usage domains, notably virtual and 

augmented reality, geographical information systems, immersive communications, and cultural 

heritage. Recently, following major improvements in 3D visual data acquisition, there is an 

increasing interest in point-based visual representation, which models real-world objects as a cloud 

of sampled points on their surfaces. Point cloud is a 3D representation model where the real visual 

world is represented by a set of 3D coordinates (the geometry) over the objects with some 

additional attributes such as color and normals. With the advances in 3D acquisition systems, it is 

now possible to capture a realistic point cloud to represent a visual scene with a very high 

resolution. These point clouds may have up to billions of points and, thus, storing and transmitting 

them in a raw format would require an unbearable amount of memory and bandwidth. Therefore, 

the storage and transmission of large point clouds critically ask for the development of efficient 

point cloud coding solutions. In this context, to boost a wide adoption of this 3D visual 

representation model, it is also necessary to reliably measure the quality of experience offered to 

the end-users by measuring the point cloud quality. While objective quality assessment metrics 

aim to mathematically measure the quality of point clouds, notably decoded point clouds, ideally 

replicating the scores that would be given by human beings, the subjective quality assessment 

allows not only to perform more reliable assessment but also allows to assess the correlation of the 

available objective quality metrics with the users’ opinion scores. The design and identification of 

the most reliable objective quality metrics, notably for point clouds, requires subjective evaluation 

data obtained in meaningful and already proven methodology. 

In this context, the main objective of this Thesis is twofold: first, to perform appropriately designed 

subjective quality assessment experiments for decoded point clouds under different degradations 

and impacting factors like coding and rendering which allows to assess and benchmark the 

reliability of point cloud objective quality metrics; and second, to propose novel objective quality 

metrics with a higher correlation with the obtained subjective assessment scores. 

To achieve these objectives, three subjective quality assessment experiments have been performed 

considering different contents, degradations, and impact factors. Moreover, four objective quality 

metrics have been proposed, all outperforming the state-of-the-art objective quality metrics at the 

time they were developed. Due to the importance of geometry on point cloud perceived quality, 

and new challenges associated with geometry quality evaluation, most of the efforts in this Thesis 

were around geometry quality evaluation, notably for static point clouds. However, in the last 

chapter, a quality metric jointly considering geometry and color is proposed, which outperforms 

all available quality metrics in the literature for point clouds. 

 

 

 
Keywords: Point Cloud, Subjective Quality Assessment, Objective Quality Assessment, Geometry, 

Attributes, Coding, Rendering. 
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Resumo 

 

Hoje em dia, formatos mais ricos de representação visual 3D estão a surgir, nomeadamente campos 

de luz e nuvens de pontos. Estes formatos tornam possível oferecer novas aplicações em vários 

domínios, nomeadamente realidade virtual e aumentada, sistemas de informação geográfica, 

comunicações imersivas e aplicações culturais. Recentemente, no seguimento de vários avanços 

em termos da aquisição de informação visual 3D, cresceu o interesse em representações visuais 

que modelam os objectos do mundo real como uma nuvem de pontos amostrados sobre as suas 

superfícies. As nuvens de pontos são um modelo de representação 3D onde o mundo visual real é 

representado através de um conjunto de coordenadas 3D sobre os objectos (a geometria) com 

alguns atributos adicionais tais como cor e normais. Com os avanços nos sistemas de aquisição 

3D, é agora possível capturar nuvens de pontos realistas para representar uma cena visual com 

elevada resolução. Estas nuvens de pontos podem ter até alguns biliões de pontos e logo o seu 

armazenamento e transmissão no formato original requereria uma quantidade irrazoável de 

memória e débito de transmissão. Assim sendo, o armazenamento e transmissão de nuvens de 

pontos exige o desenvolvimento de soluções eficientes de codificação. 

Neste contexto, de forma a possibilitar a adopção em larga escala deste modelo de representação 

visual 3D, é também necessário medir de um modo fiável a qualidade de experiência oferecida aos 

utentes, medindo a qualidade das nuvens de pontos. Enquanto as métricas objectivas de avaliação 

de qualidade têm como finalidade medir a qualidade das nuvens de pontos de forma matemática, 

nomeadamente de nuvens de pontos descodificadas, idealmente replicando as classificações que 

seriam dadas por observadores humanos, a avaliação subjectiva de qualidade permite não só fazer 

uma avaliação mais fiável da qualidade mas também disponibilizar os dados necessários para 

avaliar a correlação das classificações objectivas de qualidade com as classificações subjectivas. 

O desenvolvimento e a identificação das métricas objetivas de qualidade mais fiáveis, 

especialmente para nuvens de pontos, necessita de dados de avaliação subjetivos obtidos com uma 

metodologia comprovada. 

Neste contexto, esta Tese tem dois objectivos principais: primeiro, realizar experiências de 

avaliação da qualidade subjectiva de nuvens de pontos descodificadas, com diferentes tipos de 

degradação e factores de impacto como a codificação e a renderização, o que permite avaliar e 

comparar a fiabilidade das métricas objectivas de avaliação de qualidade já disponíveis para 

nuvens de pontos; segundo, propor novas métricas objectivas de avaliação de qualidade para 

nuvens de pontos, nomeadamente com uma melhor correlação com as correspondentes avaliações 

subjectivas. 

Para alcançar estes objectivos, foram realizadas três experiências de avaliação subjectiva de 

qualidade considerando diferentes conteúdos, degradações e factores de impacto. Para além disso, 

foram propostas quatro métricas objectivas de avaliação de qualidade para nuvens de pontos, todas 

elas oferecendo um desempenho de correlação superior, às métricas de qualidade disponíveis no 

momento em que foram desenvolvidas. Devido à importância da geometria na qualidade 

perceptual das nuvens de pontos, a maioria do trabalho desenvolvido nesta Tese está focado na 

avaliação da qualidade da geometria, nomeadamente para nuvens de pontos estáticas. Contudo, no 



x 
 

último capítulo, é proposta uma métrica objectiva de qualidade que considera conjuntamente a 

geometria e a cor, apresentando um desempenho superior a todas as métricas objectivas de 

qualidade disponíveis na literatura para nuvens de pontos. 

Palavras-chave: Nuvem de Pontos, Avaliação Subjectiva de Qualidade, Avaliação Objectiva de 

Qualidade, Geometria, Atributos, Codificação, Renderização. 
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Chapter 1 
_ 

Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

1.1 Context and Motivation 

Nowadays, the emergence of new 3D visual representation models allows for more immersive 

experiences compared to the classical 2D images and videos. Moreover, recent advances in 3D 

acquisition have made these representation models increasingly popular. Point clouds are one of 

these immersive 3D representation models and allow offering many new visual-based applications 

such as geographical information systems, virtual and augmented reality, cultural heritage, and 

free viewpoint broadcasting. In this context, point clouds are becoming an important 3D visual 

representation format to capture the real visual world, easily and precisely, due to the availability 

of several novel acquisition devices, from range sensors to multi-camera arrays. 

A point cloud (PC) is an unordered set of 3D points represented by their (x, y, z) coordinates and 

associated attributes, such as color, normal and reflectance. Figure 1.1 shows an example of a point 

cloud with point coordinates and attributes. Point clouds can be classified with respect to their 

temporal evolution as static, dynamic, or progressive point clouds. While static point clouds 

correspond to a single time instant, dynamic point clouds correspond to a point cloud evolving 

along time, thus corresponding to a sequence of static point cloud frames. Moreover, progressive 

point clouds correspond to large-scale point clouds that are not consumed all at once and, thus, are 

made from complementary parts of a visual scene; these parts are basically complementary static 

point clouds which may even have been acquired at different times; however, unlike dynamic point 

clouds, there is no temporal redundancy between these parts. These point clouds are often used in 

autonomous driving. 
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Figure 1.1: Red and black PC: full point cloud, and zoomed region, and a point specified with its 

(x, y, z) coordinates, normal coordinates, and associated R, G, B color. 
 

The point cloud visual representation model is specifically relevant for multiple use cases such as 

immersive telecommunications, 3D sport replays broadcasting, Geographic Information Systems 

(GIS), cultural heritage, etc. [1]. Figure 1.2 shows some examples of point cloud applications. 

Figure 1.2: Point clouds associated to different applications such as sports replays, geographical 

information systems, cultural heritage, and immersive communications. 
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The major challenge associated to the point cloud representation model is the huge amount of data 

required for a visual scene with high fidelity, which may require several millions or even billions 

of points. Since this large amount of data needs to be efficiently stored and transmitted, point cloud 

coding solutions are essential to allow the deployment of point cloud-based applications involving 

the huge amounts of point cloud data produced by the point cloud acquisition devices and 

processes. As in the past for images and videos, the point cloud coding solutions must be efficient 

in the sense that a target fidelity/quality must be achieved at a much reduce rate compared to the 

raw, acquisition rate. To assess the rate-distortion (RD) performance of a point cloud coding 

solution, reliable point cloud quality assessment is required, notably to evaluate the fidelity/quality 

of the decoded point clouds for a specific rate. The reference way to reliably measure point cloud 

quality is through subjective quality assessment experiments where opinion scores are collected 

from several observers in a specially designed subjective testing framework. However, subjective 

quality assessment is expensive and time-consuming, and thus, reliable objective quality metrics 

are critical to effectively design efficient point cloud coding solutions. A reliable full-reference 

quality assessment metric can measure the quality of a decoded point cloud in comparison to the 

corresponding reference point cloud. Subjective quality experiments are performed not only to 

assess the point cloud quality more reliably, e.g., while developing a new codec, but also to provide 

ground truth subjective scores to assess the correlation performance of objective quality metrics 

with the quality perceived by humans. 

The most used point cloud objective quality metrics are the so-called D1-PSNR and D2-PSNR 

metrics, widely used by MPEG [2], notably for the development of the emerging MPEG point 

cloud Coding (PCC) standards, the Geometry-based Point Cloud Compression (G-PCC) [3] and 

the Video-based Point Cloud Compression (V-PCC) [4] standards. Recent advances in point cloud 

coding, notably adopting different coding approaches and, thus, involving different coding 

artefacts, including deep learning-based point cloud coding, have made the point cloud quality 

assessment task more challenging. Several objective quality metrics have been proposed to address 

these challenges and several subjective quality assessment studies in the literature have assessed 

the correlation of available objective quality metrics for different coding and rendering conditions. 

Although major advances have been made, all these efforts show that there is still much room to 

improve objective quality metrics for point clouds 

 

1.2 Objectives 

This Thesis focuses on subjective and objective point cloud quality assessment, notably studying 

the impact of several modules in the point cloud processing pipeline on the perceived quality, such 

as the coding and rendering processes, and proposing more reliable point cloud objective quality 

metrics. The main motivations for the work developed in this Thesis were: 

• There were not enough subjective quality assessment studies for point cloud quality, notably 

considering different contents, rendering and degradations. 



6 
 

 

 

 
 

• Most of the subjective quality assessment studies in the literature were considering pure octree 

pruning and Gaussian noise addition to create the test materials and not advanced coding 

solutions, such as the recent MPEG point cloud coding standards [5] [6] [7] [8]. 

• Objective quality metrics were not showing high correlation performance with subjective 

scores for the emerging point cloud coding solutions. 

In this context, the key objectives of this Thesis were: 

1. Study the impact of different types of distortions, notably coding artifacts, on the point cloud 

perceived quality. 

2. Study the impact of different rendering solutions on the perceived quality of point clouds. 

3. Benchmark the correlation performance of the state-of-the-art objective quality metrics for 

point clouds coded with state-of-the-art point cloud codecs for different coding conditions and 

rendering scenarios. 

4. Design more reliable objective quality metrics for point clouds, notably with a better 

correlation with the perceived quality as measured by Mean Opinion Scores (MOS) scores, 

considering various point cloud intrinsic characteristics as well as point cloud coding and 

rendering solutions 

 

1.3 Contributions 

The research developed in the context of this Thesis has been focusing on the evaluation of the 

available objective quality metrics and the proposal of novel metrics to assess the quality of 

decoded point clouds. Naturally, new metrics should offer better correlation with subjective scores 

as expressed through Mean Opinion Score (MOS) and, thus, several subjective assessment 

experiments were performed, which by themselves are also an important contribution. 

The subjective experiments and the objective quality metrics have considered different types of 

quality degradations resulting from different processes, notably coding, and rendering. Moreover, 

the subjective quality studies were performed considering different relevant factors that may 

impact the visibility of the degradations, such as the intrinsic point cloud characteristics, e.g., 

density. 

Following the main objectives defined above, the main contributions of this Thesis are illustrated 

in Figure 1.3. The contributions are organized based on the two main objectives, i.e., subjective 

quality assessment studies and novel objective quality assessment metrics. Although the focus of 

this Thesis is on coding artefacts, denoising algorithms were also studied. The novel contributions 

made will be presented in detail in Part II (Chapters 3, 4 and 5) and Part III (Chapters 6, 7, 8 and 

9), for subjective and objective quality assessment, respectively. 
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Figure 1.3: Structured representation of the novel contributions in this Thesis. 
 

Part II – Subjective Quality Assessment Studies (Chapters 3, 4, and 5) 

In the context of point cloud subjective quality assessment studies, this Thesis brings the following 

contributions: i) Subjective assessment methodology for point cloud denoising algorithms; ii) one 

of the first subjective studies on coding artifacts: iii) performance evaluation of the objective 

quality metrics available in the literature for different degradations; iv) one of the first subjective 

studies using the MPEG point cloud coding standards; and v) the only subjective study considering 

the impact of rendering on point cloud quality. A summary of the novel contributions is described 

in the following. 

Subjective and Objective Quality Evaluation of 3D Point Cloud Denoising Algorithms 

In this work, the impact of two different types of noise and denoising algorithms on the point cloud 

geometry quality was subjectively assessed. Then, the performance of available state-of-the art 

quality metrics for the evaluation of noisy and denoised point clouds was compared. This work 

offers two main novel contributions: 

• Subjective assessment methodology for point cloud denoising algorithms: This assessment 

assumed arbitrary and unstructured point clouds, without an underlying connectivity, what is 

rather important since point clouds are rendered before being displayed and the presence of 

noise can lead to annoying artifacts which lead to lower perceived quality. To perform this 

study, classical image denoising solutions, e.g., using Tikhonov and Total Variation 

regularization functions, were adapted to point clouds, inspired by the emerging graph-based 

signal processing field to either remove erroneous points or improve its positioning. 

• Study on the correlation of available objective quality metrics with user subjective scores: 

As reliable objective metrics, well correlated with human perception, are urgently needed, this 
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work performed subjective experiments with the aim to evaluate some selected point cloud 

objective quality metrics. As far as the authors know, this was the first study of this type made 

available in the literature and could have a key role on the future development not only of point 

cloud denoising algorithms but also other types of point cloud processing algorithms. This 

study considered two types of objective metrics, notably point-to-point and point-to-plane 

metrics. A Double-Stimulus Impairment Scale (DSIS) protocol has been used for the subjective 

assessment. 

This research work led to the following publication [9]: 

• A. Javaheri, C. Brites, F. Pereira, J. Ascenso, “Subjective and objective quality evaluation of 

3D point cloud denoising algorithms,” International Conference on Multimedia & Expo 

Workshops, Hong Kong, July 2017. 

Subjective and Objective Quality Evaluation of Decoded Point Clouds 

In this work, the impact of two different coding solutions on point cloud geometry quality was 

subjectively assessed and the performance of well-known objective quality metrics was studied. 

Two popular point cloud coding solutions were used to code point clouds with different 

approaches: octree-based coding and simple transform-based coding, notably designed using 

emerging graph-based signal processing; the color attribute was not coded. The main contributions 

are: 

• Subjective quality assessment of point clouds with coding artifacts: A DSIS protocol has 

been used for subjective assessment. For the first time, point clouds from the MPEG repository 

were used for a subjective study and two codecs were used to create test materials: an octree- 

based and a graph-based codec. 

• Objective quality metrics evaluation for point clouds with coding artifacts: Two types of 

objective quality metrics for the point cloud geometry were considered, notably point-to-point 

and point-to-plane metrics. To the best of our knowledge, this was the first study of the 

correlation performance of objective quality metrics with subjective scores for decoded point 

cloud data. Therefore, the conclusions of this paper could have an impact on the design of 

future point cloud codecs. 

This research work led to the following publication [10]: 

• A. Javaheri, C. Brites, F. Pereira, J. Ascenso, “Subjective and objective quality evaluation of 

compressed point clouds,” IEEE Workshop on Multimedia Signal Processing, Luton, UK, 

October 2017. 

Point Cloud Rendering after Coding: Impacts on Subjective and Objective Quality of 

Geometry 

The objective of this work was to study the impact of the different artifacts produced by state-of- 

the-art point cloud geometry codecs for different types of point cloud rendering by performing 
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subjective experiments and assessing objective quality metrics in several scenarios. This was the 

first time that the rendering and coding processes, which play a major role on the final perceived 

quality, were jointly evaluated in this case for static point clouds. In this context, the main 

contributions are: 

• Point cloud rendering after coding – subjective quality assessment: Study of the subjective 

quality impact of multiple rendering-coding combinations for relevant, lossy point cloud 

geometry coding and rendering solutions. Moreover, the visibility of the distortions associated 

to each codec under different rendering scenarios was analyzed. This first contribution is 

critical for the design of suitable point cloud subjective assessment methodologies, where a 

rendering solution must be chosen. 

• Point cloud rendering after coding – objective metrics assessment: Evaluation of the 

subjective correlation performance of available point cloud objective quality metrics for 

multiple rendering-coding combinations, i.e., for different types of rendering and coding 

artifacts. This should allow understanding the strengths and weaknesses of available point 

cloud geometry objective quality metrics as well as their scope of validity, i.e., for which 

conditions these metrics represent well enough the human perceived quality. This second 

contribution is critical for the design of more reliable point cloud objective quality metrics, 

notably for the evaluation of new point cloud geometry coding solutions as well as associated 

processing techniques. 

This research work led to the following publication [11]: 

• A. Javaheri, C. Brites, F. Pereira, J. Ascenso, “Point Cloud Rendering after Coding: Impacts 

on Subjective and Objective Quality,” IEEE Transactions on Multimedia, (Early access), 

November 2020. 

 
 

Part II – Proposed Objective Quality Assessment Metrics (Chapters 6, 7, 8, and 9) 

Regarding the objective quality assessment metrics, this Thesis proposes four different point cloud 

objective quality metrics, three of them evaluating only the geometry quality and the last one 

evaluating texture and geometry together. 

Generalized Hausdorff Distance PSNR-based Quality Metric (GH-PSNR) 

This work proposed a novel point cloud geometry quality assessment metric based on a 

generalization of the Hausdorff distance. To achieve this goal, the so-called generalized Hausdorff 

distance for multiple rankings is exploited to identify the best performing quality metric in terms 

of correlation with the MOS scores obtained from a subjective test campaign. The experimental 

results showed that the objective quality metric associated to the classical Hausdorff distance leads 

to low objective-subjective correlation and, thus, fails to accurately evaluate the quality of decoded 

point clouds for emerging codecs. However, the quality metric associated to the generalized 
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Hausdorff distance, with an appropriately selected ranking, outperforms the MPEG adopted point 

cloud geometry quality metrics when decoded point clouds with different types of coding 

distortions are considered. 

This research work led to the following publication [12]: 

• A. Javaheri, C. Brites, F. Pereira, J. Ascenso, “A generalized Hausdorff distance based quality 

metric for point cloud geometry,” IEEE International Conference on Quality of Multimedia 

Experience (QoMEX), Athlone, Ireland, May 2020. 

Resolution-adaptive PSNR-based Quality Metric (RA-PSNR) 

In this work, novel improved PSNR-based point cloud geometry quality metrics are proposed by 

exploiting the intrinsic point cloud characteristics and the rendering process that must occur before 

visualization. Point cloud s are rendered on 2D screens to be shown to the subjects. Due to the way 

point clouds are acquired and pre-processed (before coding), the intrinsic resolution, a measure of 

distance between points in the 3D space, plays an important role on the final perceived quality, not 

only to mitigate or highlight coding artifacts but also to measure the intrinsic point cloud quality 

(i.e., after acquisition). To achieve higher correlation with perceived quality, the proposed 

objective quality metric considers the point cloud intrinsic resolution as well as the rendering 

resolution. The rendering resolution corresponds to the resolution of the point cloud after 2D 

projection for rendering. The main contributions of this work are the following: 

• Resolution-adaptive PSNR: Proposal and evaluation of several novel point cloud geometry 

quality PSNR-based metrics that exploit the intrinsic characteristics of a point cloud. In this 

case, intrinsic resolution and precision were considered the most important intrinsic 

characteristics influencing the final point cloud quality. The main novelty regards the new 

intrinsic resolution estimators. 

• Rendered-resolution-adaptive PSNR: Proposal and evaluation of a novel point cloud 

geometry quality PSNR-based metric that exploits the way point clouds are typically rendered. 

In this case, the intrinsic resolution is also considered but after rendering. This allows to 

significantly increase the objective quality metric performance, i.e., to obtain higher correlation 

with human opinion scores. 

This research work led to the following publication [13]: 

• A. Javaheri, C. Brites, F. Pereira, J. Ascenso, “Improving PSNR-based quality metrics 

performance for point cloud geometry,” IEEE International Conference on Image Processing 

(ICIP), Abu Dhabi, UAE, October 2020. 

Mahalanobis-based Point-to-Distribution Metric for Point Cloud Geometry Quality 

Evaluation (P2D) 

To obtain an efficient quality metric, the underlying surface of the reference point cloud should be 

modelled and the distance of the decoded points to this surface measured. The MPEG D2 point- 
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to-plane metric models this surface as a plane centered on a point with orientation defined by its 

normal. However, this is a rather limited approach considering the unstructured nature of the point 

clouds, especially for points that are not well modelled by this plane. In this work, a novel objective 

quality metric is proposed which considers a point to distribution correspondence rather than a 

point-to-point correspondence between two point clouds. In this context, the Mahalanobis distance 

is adopted to compute the distance between a point and a set of points in the two point clouds under 

comparison. This metric takes benefit from the fact that several points have more statistical 

information about the underlying surface than a single point. Thus, the main contribution of this 

work is a novel point-to-distribution metric considering a new type of correspondence, namely 

between a point and a distribution of points corresponding to a small point cloud region. The idea 

behind this novel type of metric is to statistically characterize the point cloud local surface, using 

the covariance matrix of points within some local region. 

This research work led to the following publication [14]: 

A. Javaheri, C. Brites, F. Pereira, J. Ascenso, "Mahalanobis Based Point to Distribution Metric 

for Point Cloud Geometry Quality Evaluation," IEEE Signal Processing Letters, vol. 27, pp. 1350- 

1354, July 2020. 

A. Javaheri, C. Brites, F. Pereira, J. Ascenso, " A Point-to-Distribution Joint Geometry and Color 

Metric for Point Cloud Quality Assessment," Submitted to IEEE Workshop on Multimedia Signal 

Processing, Tampere, Finland, October 2021. 

Projection-based Point Cloud Quality Assessment Metric 

In the literature, a few works exploited the idea of measuring the point cloud quality by projecting 

the point cloud into one or more 2D images, i.e., by converting a 3D point cloud into several 2D 

images. These 2D images can be obtained by performing a projection for different viewpoints, i.e., 

using different projection centers. Then, powerful 2D quality metrics can be used, to assess the 

entire point cloud quality by assessing the quality of these projected views. However, the 

projection-based metrics available in the literature were not showing better correlation 

performance than point-to-point quality metrics, where correspondences are established in the 3D 

space and errors in the points position and color are accounted. 

In this work, a novel projection-based point cloud quality metric is proposed, which addresses the 

limitations of the state-of-the-art projection-based metrics and achieves high performance in terms 

of objective-subjective correlation. The main contributions associated to this quality metric are: 

• Geometry alignment: The idea is to compare the projected reference and degraded color 

images for two fixed levels of geometry, for both the reference and decoded point cloud 

geometry. The two scores obtained for both geometry levels are fused together, implying that 

the proposed approach implicitly considers geometry distortion as well as texture distortion. 

By comparing images with the same geometry, any misalignment is avoided, which is the main 
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responsible for the loss of performance in previous state-of-the-art projection-based quality 

metrics. 

• Padding: This novel quality metric can handle decoded point clouds with a larger or a smaller 

number of points with respect to the reference, by performing padding in the 2D domain, this 

means using interpolated color values instead of a fix background value or even skipping these 

additional points. 

This research work will be submitted to a journal. 

A. Javaheri, C. Brites, F. Pereira, J. Ascenso, “Projection-based Point Cloud Quality Assessment 

Metric,” Submitted to IEEE Transactions on Multimedia. 

Benchmark of the State-of-the-art Point Cloud Quality Metrics 

This thesis presents an exhaustive survey of all PC quality assessment studies and objective quality 

metrics available in the literature (Chapter 2) and therefore provide a deeper insight and analysis 

into the underlying principles and techniques used in the context of this Thesis. Also, it provides 

an assessment of relevant PC quality metrics literature and its performance, and therefore a good 

understanding of the overall landscape. The performance of the state-of-the-art metrics are 

benchmarked in Chapter 9. Point cloud objective quality metrics are also classified in different 

type of metrics and the performance of almost thirty different quality metrics are evaluated with a 

relevant dataset. 

 

1.4 Thesis Structure 

This Thesis reports the main technical contributions developed, notably three subjective quality 

assessment studies and four new objective quality metrics, each of them outperforming the state- 

of-the-art point cloud quality metrics in the literature at the time they were developed and 

published. Figure 1.4 shows the structure of this Thesis. 

 

Part I - Background 

This part introduces the context and objectives of this Thesis and reviews the relevant background 

work, notably on point cloud quality assessment; this part includes two chapters. 

Chapter 1 presents the context and motivation for this Thesis, followed by the objectives 

and main novel technical contributions. 

Chapter 2 reviews the background work for this Thesis by first reviewing the main 

available point cloud coding solutions and their associated artefacts; after, and more 

importantly, this chapter reviews the state-of-the-art on point cloud quality assessment. 

Part II - Subjective Quality Assessment and Associated Objective Metrics Assessment 

This part presents the contributions of this Thesis related to subjective quality assessment and 

includes three chapters. 
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Chapter 3 introduces the subjective and objective study performed to evaluate point 

cloud denoising algorithms and the performance of state-of-the-art objective metrics to 

assess the quality of denoised point clouds. 

Chapter 4 presents a similar study targeting coding artifacts. 

Finally, Chapter 5 studies the subjective impact of several rendering approaches on the 

quality of decoded point clouds. The performance of the state-of-the-art objective quality 

metrics in assessing point clouds coded with the MPEG point cloud coding standards, is 

also evaluated, and benchmarked in this chapter. 
 

 

Figure 1.4: Thesis structure. 

 

 
Part III - Objective Quality Assessment 

This part includes all the novel point cloud objective quality metrics proposed in this Thesis. 

Chapter 6 proposes a metric based on the Generalized Hausdorff distance, which 

performs well by filtering some of the larger errors. 

Chapter 7 proposes an improvement to the PSNR-based metrics (largely used in the 

MPEG and JPEG standardization groups) for point cloud geometry, which explicitly 

considers the point cloud precision and intrinsic resolution. 

Chapter 8 proposes a point-to-distribution quality metric, which considers a new type of 

correspondence to overcome the weaknesses of state-of-the-art quality metrics to evaluate 

decoded point clouds with a larger number of points than the reference point cloud. 
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Finally, Chapter 9 proposes an image-based metric where the point cloud is projected 

onto several 2D planes to jointly assess the geometry and color quality using 

conventional 2D image quality metrics. 

Finally, Chapter 10 closes this Thesis with a summary of the achievements, main conclusions, 

and some directions for future work. 
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Chapter 2 
_ 

Point Cloud Coding, Rendering and Quality 

Assessment: A Brief Review 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

2.1 Introduction 

With the recent progress in acquisition sensors and signal processing techniques, a high-resolution 

3D model of any object can be acquired in real-time, including animated objects. This visual 

representation format enables many emerging applications such as immersive communications, 

cultural heritage, autonomous driving, and virtual and augmented reality. The perceived quality of 

the obtained point clouds is highly affected by the acquisition method and sensor accuracy. Many 

applications such as cultural heritage and immersive communication require point clouds with high 

quality/fidelity comparing to the real-world model. Point clouds are easy to acquire and process; 

however, they typically contain a large number of points with their associated attributes such as 

color, reflectance and normal vectors. This large amount of data is expensive to store and transmit 

and will be a bottleneck for many storage and transmission systems. Naturally, point cloud coding 

solutions are used to reduce the bit rate while keeping the content quality/fidelity as much as 

possible. In this context, point cloud quality assessment is essential to design efficient coding 

solutions and eventually optimize some specific parts of the point cloud coding engine. At the 

client side, the decoded point clouds have to be rendered before being visualized using a specific 

type of visualization. Different types of rendering may create different impressions of quality and 

reality for the point cloud. For decoded point clouds, rendering has different impact on visibility 

of distortions associated depending on the used coding scheme. Finally, the way users interact with 

the rendered point clouds is also important for the perception of quality. A user watching a 

rendered 2D video of a point cloud has a different quality perception from a user who is free to 
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interact with the point cloud using a head-mounted VR headset. More importantly, in a point cloud 

communication system, it is rather important to monitor the point cloud quality offered to the users. 

The main objective of this chapter is to introduce the main concepts necessary to understand this 

Thesis and briefly review the state-of-the-art on the key technologies, especially point cloud 

coding, rendering and quality assessment. 

In this chapter, the point cloud processing pipeline is introduced in Section 2.2 to make clear which 

are the main modules in a typical point cloud application and which factors have a major impact 

on the perceived point cloud quality. Point cloud coding and point cloud rendering are reviewed 

in Sections 2.3 and 2.4, as two most important parts of the pipeline with focus in this Thesis. Then, 

the state-of-the-art on point cloud subjective and objective quality assessment is reviewed in 

sections 2.5 and 2.6. Finally, in Section 2.7, some final remarks for this chapter will be presented. 

 

2.2 Point Cloud Processing Pipeline 

A typical point cloud processing pipeline is shown in Figure 2.1, including acquisition, 

representation, encoding and decoding, rendering and visualization modules. It is important to 

highlight that every single module in the pipeline may affect the point cloud quality in different 

ways. In Figure 2.1, for better illustration, modules include some images inside them. 

Figure 2.1: Point cloud processing pipeline. 
 

The various modules in the point cloud processing pipeline are as follows: 

• Acquisition: The 3D representation of the objects in real world is captured with appropriate 

sensors, such as depth sensors, laser scanners (LIDAR), and arrays of cameras which can be 

arranged differently. This means that based on acquisition setup, point cloud data can be 

acquired directly as a set of 3D coordinates, using laser scanners or indirectly as a set of 2D 

images or depth maps, eventually with some associated texture information. The perceived 

quality of a point cloud strongly depends on the acquisition accuracy and reliability of the 

sensors, which can introduce errors and noise in the 3D coordinates. 

• Representation: While 3D data is acquired with a specific model, depending on the available 

sensors, it may happen that this is not the best representation model for the target application 

and some representation model conversion needs to be applied before coding. The most 
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common example is to perform the acquisition with array of 2D cameras images, basically a 

light field, and convert this data into a point cloud using appropriate signal processing 

techniques. 

• Encoding: The encoding module is essential to deal with large point clouds, notably with up 

to billions of point coordinates and their associated attributes. The way coding is performed 

has a strong impact on the perceived quality of point clouds. Moreover, it may lead to artefacts 

that are very different than the artefacts typical of 2D images. Due to its importance, the next 

section will briefly review the point cloud coding state-of-the-art, especially the recent MPEG 

standards on (lossy) point cloud coding. 

• Decoding: The bitstream at the client side is processed to obtain the decoded point clouds. The 

decoded point cloud is typically different from the reference point cloud in terms of the precise 

position of points as well as errors in the color components which are typically introduced in 

the quantization process. Moreover, the number of decoded points, their precision (or bit- 

depth) may not be the same. 

• Rendering: Based on the type of visualization intended and the application requirements, point 

clouds may be rendered in a different way. There are two main approaches for rendering: points 

may be rendered directly with a primitive, i.e., using some elementary structure, or some 

connectivity may be associated to the points to create a surface (e.g., a polygonal mesh) with 

the rendering performed with these surfaces. As expected, the rendering has a critical impact 

on the perceived quality of the decoded point clouds. Due to its importance, Section 2.4 briefly 

reviews point cloud rendering approaches, especially the most common ones, and discuss their 

advantages and disadvantages. 

• Visualization: Point clouds are rich 3D visual representations and thus can be visualized with 

different devices with (interactive) or without interaction with the users (passive). The simplest 

approach is to render point clouds on a 2D screen from some specific viewpoint (that can be 

changed by the user), but other devices are also possible, such as a stereoscopic display (two 

views) with passive glasses or auto-stereoscopic displays (tens or thousands of views). More 

importantly, virtual and augmented reality displays can also be used to display point clouds, 

eventually with other representations (e.g., meshes) or embedded in the physical word. In this 

last case, user interaction is more natural since it follows the head and/or body motion. 

From all processes applied to a point cloud, point cloud coding and rendering have the most 

significant impact on the perceived quality as it will be explained in more detail next. 

 

2.3 Point Cloud Coding 

Point clouds may have billions of points and their associated attributes; for this reason, coding is 

critical before storage and transmission. There are several coding approaches for point cloud 

coding in the literature. Considering the scope of this Thesis, the most relevant and representative 

point cloud coding solutions available in the literature, later used for subjective and objective 
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quality assessment, are reviewed in this section. Naturally, the MPEG G-PCC [3] and V-PCC [4] 

codecs, which were recently standardized, are the most relevant for this work as they are the most 

recent and efficient point cloud coding solutions available. These codecs are part of the MPEG-I 

set of standards, which aim to design key technologies for immersive media. The so-called Point 

Cloud Library (PCL) codec is the first point cloud coding scheme which became popular and 

adopts an octree-based coding approach. 

Since the PCL [15], MPEG G-PCC, and V-PCC codecs are often used in many parts of this Thesis, 

they will be reviewed here. These codecs represent the three most relevant approaches to structure 

point cloud data for coding purposes, namely based on tree, surface, and patch, respectively. A 

tree is a data structure used to organize the points in some hierarchical way, e.g., octrees, kd-trees; 

a surface is a data structure where the points are represented with a parametrized surface model 

(e.g., as a set of triangles); finally, a patch clusters points into groups with some size, which is 

suitable for 3D to 2D projections. In this Thesis, only coding of geometry and color of static point 

clouds is considered [16]. Naturally, these point cloud codecs produce different types of geometry 

artifacts, such as loss of geometric detail, geometric deformations, holes creation and other 

geometric distortions, e.g., when curved surfaces are represented by a small number of planes as 

well as color artifacts such as blocking artefacts, etc. 

 

2.3.1 Point Cloud Coding with Tree Structures 

The point cloud coding solution selected for this class is the popular point cloud codec, publicly 

available in the Point Cloud Library [15], a large scale, open project for 2D/3D image and point 

cloud processing. To facilitate the coding of geometry data, this codec represents the point cloud 

3D coordinates and its attributes with an octree structure [17]. The PCL point cloud codec is often 

used as performance benchmark since it can handle unorganized point clouds of arbitrary 

size/density which may be acquired with different types of sensors (e.g., LIDAR or stereo based 

cameras) and has low encoding and decoding complexity. Figure 2.2 illustrates the block diagram 

of the PCL codec. 
 

 

Figure 2.2: PCL Static point cloud encoding architecture [17]. 
 

The key modules of the PCL codec are: 
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• Octree Structure: In PCL, each octree node corresponds to a voxel in 3D space. The root 

node corresponds to a voxel that contains all points of the point cloud, the so-called point cloud 

bounding box. Then, starting from the root node, each voxel is divided iteratively into 8 voxels 

with the same size; however, a node is not divided if the corresponding voxel is not occupied. 

The occupancy of a node is represented with a single byte that signals the occupied child nodes. 

By traversing the octree in breadth-first order, a stream of occupancy bytes is created, thus 

allowing an efficient representation of the point cloud geometry. This process is called 

serialization. Figure 2.3 shows an example of the relationship between an octree and its byte 

stream, created via serialization. The decoded quality is determined by the octree depth, which 

indirectly specifies the minimum voxel size; when the octree does not have enough depth to 

represent the points with their precision, it corresponds to a pruned octree. When the point 

cloud is decoded, all the points inside an occupied voxel are represented with just one point at 

the voxel center. 
 
 

 

Figure 2.3: Overview of an octree structure and its serialization. 
 

• Point Detail Coding: This process aims to improve the point coordinates accuracy without 

further increasing the octree depth. In this step, all the points inside a voxel at a specific octree 

depth are differentially encoded with respect to the center of the voxel. If point detail coding 

is disabled, all points inside a voxel are represented by the voxel center point. This means that 

the number of decoded points is reduced compared to the reference. 

• Point Attribute Coding: Once an octree structure is generated, during the pruning, the color 

associated to the voxel center point is the average color of all the points in that voxel. In case 

point detail coding is enabled, the same approach used for geometry is also applied to the point 

cloud attributes and detail coefficients are calculated, which correspond to the difference 

between the voxel points average color and the reference color value of each point. 

• Entropy Coding: The statistics of the occupancy bytes are exploited by an entropy encoder 

that considers the specific (non-uniform) symbol frequencies to reduce the final bitrate. The 

entropy coder for this codec is a range coder [18] which is variant of an arithmetic coder. 
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2.3.2 Point Cloud Coding with Surface Models 

The point cloud coding solution selected to represent this coding approach is the MPEG G-PCC 

codec, which is capable of lossy and lossless coding of large point clouds, with spatial random 

access, view dependent processing, packetization, and scalability [19]. As the PCL octree-based 

codec, the G-PCC codec is also based on an octree decomposition to code the point cloud geometry 

but extends this coding approach with a parameterized surface model. As for PCL, a pruned octree 

is used but the geometry of the points at each leaf voxel is not represented by the voxel center; 

instead, a set of triangles is used to represent a surface formed by these points. Figure 2.4 shows 

the architecture of MPEG G-PCC encoder. 

 

 

Figure 2.4: MPEG G-PCC encoder architecture. 
 

The key modules of the G-PCC codec are: 

• Coordinate Transform and Voxelization: The points coordinates are first transformed to lie 

in the cube [0, 2𝑑 − 1]3, where d corresponds to the octree (full) depth parameter (defined a 

priori). Then, they are truncated so that each point is represented by the center of the voxel 

which is a non-negative integer (voxelization process). 

• Octree Coding: An octree structure is created for the point cloud data and then pruned from 

the root down to some specific octree level 𝑙, which must be smaller or equal than the octree 

depth; for lossless coding, the octree level must be equal to the octree depth. 
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• Surface Approximation: If 𝑙 is smaller than depth, a polygonal representation is used to 

represent the points, which is known as TriSoup, an amalgam for Triangle Soup. This means 

that the limited depth octree is complemented with additional geometry information within 

groups of voxels, called blocks; this additional geometry is represented by vertices, 

corresponding to the intersections of the surface with some edges of the block (in this case at 

most 12 vertices). This set of vertices is sufficient to reconstruct a surface, corresponding to a 

non-planar polygon passing through all the vertices. A bit vector determines which edges 

contain a vertex (i.e., intersection with the block edges) and which do not; then, for each edge 

containing a vertex, the position of the vertex along the edge is uniformly scalar quantized. 

The bit vector and the quantized positions are transmitted to the decoder side. 

• Geometry Reconstruction: Since color attributes must be coded and transmitted only for the 

decoded points, the geometry needs to be decoded; this needs to be performed before the 

coding of the color or other attributes and the same operation occurs at the decoder. In this 

module, the octree is decoded, and then a surface is reconstructed from the position of vertices 

and bit vector by surface approximation. A decoded point cloud is created with a similar 

resolution (number of points per volume) to the reference point cloud or more by sampling the 

reconstructed surface. 

• Color Transform: Color of points may have to be transformed from RGB to YCbCr color 

space. 

• Color Transfer (or Re-Coloring): For lossy geometry coding, the reconstructed points are 

recolored using the color information available for the reference point cloud. In G-PCC, each 

decoded point is assigned with the color of the closest reference point in terms of Euclidean 

distance. 

• Color Coding: There are three color coding modes in G-PCC, notably Region Adaptive 

Hierarchical Transform (RAHT) [20], Predicting Transform, and Lifting Transform [19]. 

These coding modes are explained next: 

o RAHT: Color data is spatially transformed using RAHT which is an adaptive form of 

the Haar wavelet transform, performed with respect to a hierarchy defined by the so- 

called Morton codes (i.e., indices) of the voxels. RAHT is recursively applied from the 

target depth (level) up to the octree root, to blocks of voxels grouped two by two at each 

level and along each of the three coordinates successively. 

o Predicting Transform (LoD Generation): The Predicting Transform is an 

interpolation-based hierarchical nearest-neighbor prediction scheme for attribute coding 

[19], implying that already encoded colors are used for prediction. It relies on a Level of 

Detail (LoD) representation that distributes the input points into sets of refinements 

levels (R) using a deterministic distance criterion. The attributes of each point are 

encoded by using a prediction determined by the LoD order. The maximum number of 
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prediction candidates can be specified, and the number of nearest neighbors is 

determined by the encoder for each point. 

o Lifting Transform: The Lifting Transform [19] is built on top of the Predicting 

Transform. It introduces an update (Lifting) operator and an adaptive quantization 

strategy. In the LoD prediction scheme, each point is associated with an influence 

weight. The prediction residuals are used to update the color/attribute values at each 

stage of the prediction and guide the quantization process. 

• Coefficients Quantization: Transformed color coefficients are quantized by a uniform 

quantizer. 

• Arithmetic Coding: Geometry symbols and quantized transform color coefficients are 

encoded using an arithmetic entropy coder, thus building the corresponding bitstream. 

At the decoder side, after arithmetic decoding, the octree is reconstructed, and surface 

reconstruction is performed using the decoded vertex information and bit vector. Then texture 

information is inverse transformed to obtain the color value for each decoded point. 

 

2.3.3 Point Cloud Coding with Patch-based Projection 

The point cloud coding solution selected for the patch-based coding approach is the MPEG V- 

PCC codec, which targets dynamic point cloud coding and performs a 3D to 2D mapping of both 

the geometry and color components [21]. Thus, depth and texture images are created which may 

be coded with any video codec, notably a High Efficiency Video Coding (HEVC) standard- 

compliant codec [22]. Figure 2.5 shows the architecture of the MPEG V-PCC encoder. 

Figure 2.5: MPEG V-PCC encoder architecture. 
 

The key modules of the V-PCC codec are: 
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• 3D Patch Generation: In the first step, the point cloud is decomposed into several patches 

with smooth boundaries, while minimizing the reconstruction error. Point cloud points are 

clustered according to the relation between their normal vectors and the normal directions of 

six predefined oriented planes (forming a 3D bounding box). Typically, this step includes 

several operations such as normal estimation, clustering according to the normal vectors and 

six pre-defined planes (xy, -xy, yz, -yz, xz, -xz) and a connected components algorithm. 

• Patch Packing: Patches are extracted from the clusters created in the previous module and 

mapped onto a 2D grid using a packing process which attempts to minimize the unused space. 

At the end, each N×N (e.g., 16×16) block in the grid is associated with a unique patch. 

• Geometry Image Generation: After the packing where geometry (depth) is mapped from 3D 

to 2D. The 3D point positions are represented in the gray-level (i.e., monochromatic) geometry 

images. Considering projection on the xy plane, while the 𝑥 and 𝑦 coordinates correspond to 

the position of the pixels within the frame, the remaining 𝑧 coordinate corresponds to the pixel 

intensity value, similarly to a depth map. To handle multiple points being projected on to the 

same pixel, each patch is projected onto two geometry images, referred to as the near layer 

(D0) and far layer (D1), containing points with the lowest and largest depth (𝑧) values, 

respectively. There are several approaches to code the D0 and D1 layers: i) D1 is coded 

differentially with respect to D0, thus describing the surface thickness; ii) using a single layer 

where D0 and D1 are interleaved across the rows or columns of the image; iii) D0 and D1 are 

sub-sampled and spatially interleaved; and iv) D1 is dropped and interpolated at decoder side. 

• Texture Image Generation: Since the decoded geometry may have a different number of 

points, texture image generation requires the decoded geometry to compute the colors 

associated to the decoded points. A recoloring process transfers the color information from the 

reference point cloud to the decoded geometry point cloud. The pixels in the texture images 

take the color values of the mapped points in a similar process to the previous step, thus texture 

images are created. 

• Smoothing: Patch boundaries and reconstructed geometry images are smoothened using some 

filters. For geometry, the idea is to avoid discontinuities that may appear at the patch 

boundaries. In this case, boundary points are moved to the centroid of their nearest neighbors. 

For color, adaptive filters based on the median, averaging, bilateral filter, order statistic filter 

can be used. The smoothing process is signaled to the decoder side. 

• Image Padding: The empty spaces between the patches packed inside the generated images 

are filled using a padding process to obtain a smoother image (easier and cheaper to code). 

This will enable an efficient image or video compression and minimize block artifacts. For 

geometry images, an adaptive padding strategy is performed at T × T block level: i) for a block 

with all occupied positions, nothing is done; ii) for a block with all non-occupied positions, the 

pixels in the block are filled with the values of the last block row/column; and iii) for a partially 

filled block, empty pixels are iteratively filled with average values of neighboring pixels. For 
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texture images, an optimization procedure finds the values of empty pixels such that the 

obtained padded image is as smooth as possible. 

• (HEVC) Video Coding: These above created maps are passed to some video encoder, e.g., an 

HEVC encoder, which exploits the spatial and temporal correlations in a very efficient way. 

This step is the core of encoding process for the V-PCC encoder. For this, the 10-bit HEVC 

profiles are preferred since they can improve the accuracy and compression efficiency. 

• Patch Sequence Coding: To reconstruct the 3D data from the 2D maps at the decoder side, 

for each patch, the index of the unique patch and the index of the projection plane associated 

to its normal vector direction is encoded, as well as its 2D bounding box and 3D location. For 

the case of a temporally consistent packing, this information can be differentially encoded 

using the values of the matching patches from a previous frame. 

• Occupancy Map Coding: An occupancy map is used to determine whether some 𝐵0 × 𝐵0 
block is occupied or not; this map is coded to determine which 3D points should be 

decoded/filled. This binary map can be lossy or lossless coded and 𝐵0 is a user-defined 

parameter which can control the trade-off between precision and rate. For lossless coding, this 

information is coded directly using binary arithmetic coding. For lossy coding, the occupancy 

map is coded as a video frame that may have a smaller spatial resolution than the geometry 

and texture frames. 

At the decoder side, four different coded streams are demultiplexed and decoded, namely the patch 

information, the occupancy map and the geometry images are decoded first and then the texture 

information is decoded to obtain the color attribute for each decoded point. 

 

2.4 Point Cloud Rendering 

Point cloud rendering is the process of producing a visual representation that can be consumed by 

the users using an available display, e.g., conventional 2D, stereo, auto-stereoscopic, head- 

mounted displays, etc. [23]. Since it effectively selects the information to be seen, the rendering 

process has a significant impact on the quality perceived by the user. In this section, the rendering 

solutions selected for the experiments reported in the Thesis are briefly described. 

Regarding point cloud rendering, there are two main approaches: the first, so-called point-based, 

directly uses the point cloud data while the second, so-called mesh-based, converts the point cloud 

data into another representation format, very commonly a surface such as a polygonal mesh. The 

decision on the rendering approach to adopt mostly depends on the application requirements which 

may be very different. 

The point cloud conversion to another more rendering friendly representation format may bring 

some loss of information and, in some cases, it may not even be possible due to the complexity of 

the visual scene in terms of geometry or the low point cloud density. By directly rendering point 

clouds, massive amounts of points can be visualized. Rather often, these point clouds do not fit 
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into the available memory and require special algorithms to stream, process and render only a 

small subset of the entire point cloud data. This is easier to perform with a point-based model due 

to the lower complexity associated to the rendering process in comparison to a polygonal mesh 

representation where surface reconstruction and interpolation are usually needed. In point-based 

rendering, the so-called rendering primitives, the simplest (atomic) elements, are combined to 

create the 3D impression of a surface in the final displayed content. 2D rendering primitives may 

be circles (splats), squares, quads, etc. and 3D rendering primitives are cubes, spheres, etc. 

Typically, large scale models for geographical information systems are usually rendered with a 

point-based representation while mesh-based representation may be preferred for immersive 

communications. 

Independently of the rendering approach, a geometry shader with some primitives is employed to 

construct the final image shown to the user. In this context, the geometry shader is responsible for 

the creation of appropriate levels of light, darkness, and color within a rendered image/view [24]. 

For point clouds only with geometry, the shading is commonly performed with a single color; 

otherwise, color attributes are used for each point or vertex. 

 

2.4.1 Point-based Rendering without Color Attributes 

Point-based rendering algorithms use a set of discrete points that may be irregularly distributed, 

simple rendering primitives and 3D/image space interpolation procedures to obtain a rendered 

view, i.e., a 2D image. The main advantage of this rendering approach, labelled here as RPoint, is 

that it can achieve high levels of realism and is adequate for complex objects, such as trees, 

feathers, smoke, water, etc. In addition, point-based rendering simplifies the rendering process and 

typically requires less memory and computational power due to the lack of connectivity 

information. 

In this approach, depending on the visualization device and type of rendering, simple and fast to 

render 3D or 2D primitives are selected, such as circles (splats), squares, quads for 2D rendering 

and spheres, and cubes for 3D rendering. Based on the point cloud density and distance to the 

virtual camera (zoom level), the size of the primitives can be manually or automatically adjusted 

to create the impression of a surface; in the automatic case, connectivity information between 

points is usually computed to determine the appropriate primitive size [25]. The definition of an 

appropriate size for the primitive is rather important to reduce the appearance of empty spaces 

(holes) between points (size too small) or aliasing artifacts (size too large). 

Regarding shading, color attributes are not used in this specific rendering approach; this may be 

useful to assess the impact of geometry distortions without the influence of any additional 

component if it exists. The human visual system can easily and accurately derive the 3D orientation 

of surfaces by using the variations on the image intensity alone [26]. 
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2.4.2 Point-based Rendering with Color Attributes 

The second rendering approach is still point-based but also uses the available color attributes and 

thus, for this reason, it will be labelled as RColor in the following. In RColor, the RPoint rendering 

method above is again applied but the point color attributes are used. This means that the surface 

is still represented with points and displayed with the same primitives but now rendered with the 

color data obtained during the point cloud acquisition process. While the color attributes 

correspond to the real color of the objects, they are still influenced by the specific light conditions 

that have occurred during their acquisition. For this reason, no shading applied to points. However, 

in the final rendered image, some colors may be interpolated, e.g., between points, to avoid 

aliasing. Moreover, since the captured color also conveys the object depth, it may mask some 

geometry distortions on the geometry/surface. On the contrary, distortions may be more visible at 

object boundaries, which are essential to give the user the shape perception of the objects in the 

visual scene. 

 

2.4.3 Mesh-based Rendering without Color Attributes 

The first step in the mesh-based rendering approach, hereafter labelled as RMesh, is to create 

polygonal meshes with a surface reconstruction algorithm, such as the Poisson Surface 

Reconstruction [27]. This means that rendering is performed with a set of vertices along with their 

connectivity to obtain a closed surface, very precisely defined. 

The advantage of this rendering approach is that, independently of the distance to the object (or 

scene) or the point cloud density, a seamless surface is obtained; this may not occur with point- 

based rendering since the quality depends on the number of points representing the surface and the 

distance between the viewer and the object. The key disadvantage of this rendering approach is 

that it requires surface reconstruction, which usually removes high frequency geometry details 

[28], i.e., smoother surfaces are obtained. It is important to note that surface reconstruction for 

complex surfaces is not always straightforward, i.e., it may not always be successful and can even 

require some user intervention. After surface reconstruction, the polygonal mesh needs to be 

rendered, usually with some shading algorithm [29] [30]. There are several mesh rendering 

techniques performing shading, reflection, refraction, and indirect illumination, and able to 

improve (when properly applied) the quality of the rendered data. 

 

2.5 Point Cloud Subjective Quality Assessment 

In this section, the most relevant subjective point cloud quality assessment concepts and related 

works will be reviewed. 

 

2.5.1 Background and Key Concepts 

In subjective point cloud quality assessment, the degraded point cloud quality is assessed with 

some well-defined procedures and opinion scores are collected from some observers; these opinion 

scores may also be used as reference to validate objective point cloud quality metrics. The design 
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of a subjective quality assessment test requires some basic components that must be selected 

depending on the application and aim of the test: 

• Test environment: Subjective tests can be performed in almost any environment. However, 

due to possible influence from outside conditions, it is typically advised to perform tests in a 

neutral environment, such as a dedicated laboratory room. Such a room may be sound-proofed, 

with walls painted in neutral grey, and using properly calibrated light sources. Several well- 

known recommendations specify these environment conditions [31] [32]. 

• Visualization device: The type of visualization device and its configuration should also be 

decided depending on the application and purpose of the test. For point clouds, different types 

of displays can be used, such as augmented or virtual reality displays, stereoscopic or auto- 

stereoscopic displays and still most commonly classical 2D displays. 

• Test materials: The test material is the content selected for the subjective experiment. 

Typically, reference point clouds with different characteristics are evaluated under different 

degradations, e. g. different coding rates, different noise levels, etc. 

• Test Methodology: The methodology used to perform the subjective experiment, this means 

how the stimuli are shown to the observers and how the opinion scores are collected, is very 

important and needs to be carefully selected depending on the application and purpose of the 

test. There are several test methodologies, many already defined in suitable standards [31] [32] 

[33]. The three most popular test methodologies for point cloud quality assessment are: 

1. Double Stimulus Impairment Scale (DSIS): Reference and degraded point clouds are 

shown side-by-side or consecutively in time to the users who must score the level of 

impairment for the degraded point cloud comparing to the reference point cloud, e.g., in 

five levels: "imperceptible", "perceptible but not annoying", "slightly annoying", 

"annoying", and "very annoying". Naturally, these point clouds are rendered with some 

technique and shown on a specific device. This type of methodology is often used to 

evaluate visual degradations due to compression, where the reference (or reference) stimuli 

are available, and the fidelity is the main aspect to be accounted and assessed. 

2. Absolute Category Rating (ACR): The ACR method, aka single stimulus method, 

displays one point cloud at a time and the observers assess the quality without a 

reference. Each of the point clouds is scored individually, e.g., with five levels: "excellent", 

"good", "fair", "poor", and "bad". However, the ACR method may be inappropriate since, 

without a reference, the observers may use their own internal reference and the scores may 

have some bias. This disadvantage can be mitigated by using the so-called ACR with 

hidden reference (ACR-HR) method where the reference point clouds are also assessed 

together with the degraded point clouds. 

3. Pairwise Comparison (PWC): Point clouds are shown side-by-side and observers must 

select the one with the highest quality (preferred), which is a rather simple and fast task. 
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Unlike the previous test methods/protocols, a psychometric scaling operation is required 

to convert the results to numerical subjective quality scores. Nowadays, this methodology 

is regarded as one of the most accurate subjective assessment methods. 

• Test Subjects: Test subjects must assess the quality and are also called observers. A minimum 

number of subjects is needed for a subjective assessment test to be statistically meaningful. 

While a larger number of subjects increases the reliability of the collected experimental data, 

notably by reducing the standard deviation of the averaged scores, it is usually difficult and 

even costly to attract participants to the subjective tests. The minimum number of subjects that 

are required for a subjective video quality study to be statistically meaningful is not very 

strictly defined. According to ITU-T [31], a minimum of 15 subjects should be used. However, 

fewer than 15 subjects are also possible for studies with very limited scope. Ideally, subjects 

should be non-experts, but experts can also be invited if their number is not too high. In any 

case, the level of expertise of the subjects should be reported. 

• Data Analysis: After collecting the subjective scores, outlier subjects must be rejected 

according to the procedures defined in Recommendation ITU-R BT 500.13 [31], notably: i) 

first, it is determined whether the distribution of scores for a test sequence is according to a 

normal distribution or not; if the kurtosis (fitness measure) of all subjects scores for each test 

stimulus/sequence is between 2 and 4, then the distribution can be considered as normal; ii) to 

reject a subject, a confidence interval is defined using the following procedure: if scores are 

distributed normally, for each score larger than two standard deviations (higher limit) above 

the mean score for that test stimulus/sequence, a counter 𝑃𝑖 is incremented. Also, for each score 

smaller than two standard deviations (lower limit) below the mean score, a counter 𝑄𝑖 is 

incremented. In case of non-normal distributions, the upper and lower limits are √20𝜎 from 

the mean to increment  𝑃𝑖  and 𝑄𝑖. For  a subject to be rejected, it is necessary to fulfill the 

following two conditions: 
  𝑃𝑖+𝑄𝑖  > 0.05 and | | < 0.3 𝑃𝑖−𝑄𝑖 

 

𝑁𝑚 𝑃𝑖+𝑄𝑖 
(2.1) 

where 𝑁𝑚 is the number of stimuli. 

After outlier removal, the average of all scores across the subjects are computed for each point 

cloud stimulus, thus obtaining the overall Mean Opinion Scores (MOS). The MOS for each point 

cloud stimulus/sequence 𝑐 will be: 
 

∑𝑁𝑠  𝑆𝑄𝑆(𝑖 , 𝑐) 
𝑀𝑂𝑆𝑐  =      𝑖=0  

𝑁𝑠 
(2.2) 

where 𝑁𝑠 is number of subjects in the test and 𝑆𝑄𝑆(𝑖 , 𝑐) is the subjective quality score given by 

subjects 𝑖 to the stimulus/sequence 𝑐; a stimulus typically corresponds to specific point, coded at a 

specific rate, with a specific codec. 
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2.5.2 Point Cloud Subjective Quality Assessment: State-of-the-Art Review 

This section will review the major advances in point cloud subjective quality assessment in recent 

years. 

In [34], Zhang et al. have designed a subjective test for point clouds rendered with RColor for 

different levels of degradation, both for geometry and color. The quality degradations have been 

introduced by down sampling the geometry and adding (synthetic) uniform noise to both color and 

geometry. The main conclusion was that human perception is more tolerant to color noise 

compared to geometry noise in point clouds. 

In [35], Mekuria et al. conduct a subjective assessment experiment using a point cloud codec based 

on geometry octree pruning and JPEG based attributes coding. The subjective evaluation was 

performed in a mixed reality system, combining coded point cloud data (acquired) rendered with 

RColor with shading and computer graphics generated 3D content rendered as RMesh with color. 

In the subjective test, the users could interact with the content by navigating a visual scene with 

an avatar. The system performance was globally assessed with a questionnaire addressing eight 

different quality aspects, among them realism, impressiveness, and color quality. Two objective 

quality metrics (mean squared error based) were introduced to assess both the geometry and color 

qualities. However, the correlation between objective metrics and subjective results was not 

assessed. 

In [36], the performance of the codec presented in [35] is subjectively evaluated again. Both static 

and dynamic point clouds are evaluated under several coding configurations such as lossy, lossless, 

all intra, etc. at different rates for dynamic and static point clouds. A passive subjective assessment 

approach was adopted, and video sequences of the point cloud models rendered with RColor were 

generated from predefined viewpoints. The point clouds were rendered using cubes of fixed size 

as primitive. 

In [5], Alexiou et al. perform a subjective quality assessment study of the point cloud geometry 

for two types of degradation, notably octree pruning and Gaussian noise, considering different 

quality levels and artifacts. An augmented reality (AR) headset was used to visualize simple point 

cloud objects without color (RPoint without shading) from different perspectives (user could move 

around the object). It was concluded that the objective quality metrics could perform well for 

Gaussian noise but underperformed for PCL-like compression artifacts. 

In [6] and [37], Alexiou et al. perform a subjective test with the same data as in [5] and the same 

distortion types but the content was visualized on a 30-inch 2D display. In both cases, RPoint 

without shading rendering was used, and user interaction was allowed; a simple rendering method 

with unit size points was selected. In [37], the impact of adopting two different subjective 

assessment methodologies, Absolute Category Rating (ACR) and Double Stimulus Impairment 

Scale (DSIS), was studied by comparing the results obtained. The DSIS protocol was found to be 

more consistent and with lower confidence intervals and, thus, it was used later in [6]. In [6]it was 

shown that state-of-the-art objective quality metrics perform well in the presence of Gaussian 
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noise. However, the performance for predicting the quality of octree-based codecs is content 

dependent and, therefore, metrics are not performing well for this type of distortion. 

In [8], Alexiou et al. perform a subjective study to evaluate the point cloud geometry quality using 

an octree pruning-based codec. Before rendering, a Poisson surface reconstruction algorithm was 

used to obtain a mesh from the decoded point clouds without color (RMesh). In this case, no 

interaction was allowed with the content and the subjective experiment also followed the DSIS 

protocol. It was found that most point cloud objective quality metrics have a low correlation with 

the subjective scores and the 3D surface reconstruction algorithm plays a crucial role on the quality 

scores obtained. 

In [38], Alexiou et al. perform two subjective tests to study the impact of visualization on the 

subjective quality assessment of point clouds. The first test used a 30-inch 2D display and the 

second an AR headset. As before, geometry artifacts associated to octree coding and Gaussian 

noise were studied and point clouds are rendered with RPoint without shading. The assessment 

protocol was DSIS and user interaction was not allowed. In any case, the correlation between the 

subjective scores obtained with different visualization devices was rather high, notably statistically 

equivalent for the two experiments with Gaussian noise. 

In [39], Dumic et al. investigate the impact of visualization on the point cloud perceived quality. 

Several point clouds from the JPEG repository [40] were used and two computer generated 

geometrical volumes: a cube and a torus. Some point clouds include color and some others only 

geometry. Reference point clouds rendered as RPoint, RColor and RMesh with and without color 

are used to evaluate the quality in a 2D display versus a stereoscopic 3D display. They follow a 

passive approach and use an ACR methodology to conduct the subjective tests in three different 

laboratories. They show that there is no preference for viewing point clouds in 3D displays over 

2D displays. 

In [41], Alexiou et al. conduct a subjective quality evaluation experiment to assess the quality of 

decoded point clouds rendered as RMesh in several types of 3D displays, from passive stereoscopic 

to auto-stereoscopic displays. Geometry degradations in the form of octree pruning were evaluated 

in the absence of color. The results obtained with 3D displays have a strong correlation with the 

results obtained with 2D displays for the same content. However, it was also found that the 

rendering method may play a significant role in this evaluation. 

Moreover, Alexiou et al. have benchmarked objective quality metrics for point cloud data 

represented by octree pruning and corrupted with Gaussian noise [42]. Both DSIS and ACR 

assessment protocols were used in separate sessions with point clouds rendered with RPoint 

without shading. It was found that the correlation between subjective and objective quality scores 

was low for distance-based objective metrics, for octree-based compression artifacts, but better 

correlation performance could be achieved with metrics considering the normal at each point. 

In [43], Christaki et al. perform a subjective study for simple point clouds, that were converted to 

meshes and coded with suitable open-source mesh codecs. While some of the test point clouds are 
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common with the point clouds often used in previous subjective quality evaluation studies (e.g., 

Bunny) others were obtained with a platform designed for 3D human capture (with multiple Kinect 

devices). In [43], a variant of the pairwise subjective assessment protocol was used for evaluation 

with three stimuli rendered with RMesh and presented simultaneously. Overall, three mesh codecs 

were considered, and content was displayed with a VR application on a head-mounted display. 

The key conclusions are that usual 3D mesh quality metrics have a low correlation performance in 

this scenario and the 3D mesh surface reconstruction method plays an important role. 

Torlig et al. [44] evaluate the visual quality of voxelized colored point clouds rendered with 

RColor in subjective experiments that were performed in two different laboratories. Point cloud 

voxelization is performed in real-time, and orthographic projections of both the reference and the 

distorted models are shown side-by-side to the subjects in a platform which allows user interaction. 

The projected images shown to the user are then used by conventional 2D quality metrics, which 

allows to measure the perceptual quality of the point clouds in an objective way. The subjective 

study was only used to assess the performance of the point cloud objective quality metrics. 

In [45], Alexiou and Ebrahimi use degraded models as in [44] and the point clouds are rendered 

with an RPoint approach using cubes as primitive geometric shapes. The point clouds are evaluated 

in an interactive renderer, where the users’ behavior is also recorded. The logged interactivity 

information is further analyzed and used to identify important viewing directions of the point 

clouds under assessment. The performance of projection-based quality metrics in [35] was 

improved by exploiting this interactivity data, by assigning weights to the images projected from 

different views based on the time that users had spent on each one. While one view is enough to 

achieve high performance, interactivity information can be used to further improve the 

performance of a projection-based metric. 

In [46], Dumic et al. review the state-of-the-art on point cloud subjective quality assessment and 

point cloud objective quality metrics. 

Most of the works above mentioned, study the subjective quality impact of point cloud 

degradations associated to octree pruning and Gaussian noise. More recently, in [47], Alexiou et 

al. perform a subjective evaluation of MPEG point cloud codecs (as well as the MPEG adopted 

objective metrics) considering both decoded geometry and color. They used three subjective test 

sessions all using RColor rendering; in the first, MPEG common test conditions were used to 

encode some test material and their quality was evaluated using a DSIS methodology. In this 

experiment, MOS scores are obtained by data processing which allows to evaluate the performance 

of the MPEG point cloud codecs and benchmark objective quality metrics. In the second session, 

as PWC method was used to determine the user preferences among different types of geometry 

artifacts associated to G-PCC coding configurations, namely between TriSoup and Octree. Finally, 

in the last session, a similar PWC test is done to assess which bit allocation is most efficient and 

visually pleasant between geometry and texture for some target bitrate. 
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In [48], Zerman et al. describe two subjective tests performed with two dynamic point clouds 

encoded with the V-PCC codec, one using a DSIS methodology to assess large differences in 

quality and another a PWC methodology to assess smaller quality differences. Point clouds in both 

sessions are rendered with RColor. Four different subsampled versions of the reference point 

clouds have been decoded with V-PCC and compared together. Experimental results show that the 

final quality is independent of the number of input points for their dataset. 

Zerman et al. in [49] have also conducted a subjective study to compare textured mesh and point 

cloud under different coding methods: G-PCC [3], V-PCC [4] for point clouds and Draco [50] for 

meshes. They built a dataset with eight dynamic point clouds from 8i [51] and point cloud and 

mesh data captured by the authors. These point clouds are coded with three codecs at six different 

rates, creating stimuli with 152 distorted contents. In this work, an ACR methodology is used, and 

the point clouds rendered with RColor and the meshes with RMesh with color. The rendered videos 

were created and shown on a 24” LCD display. They show that meshes provide better quality at 

higher rates, while point clouds perform better for lower bitrate scenarios. They also compare V- 

PCC and G-PCC compression efficiencies using BD-MOS to show that V-PCC always yields 

better performance. 

In [52], Wu et al. perform a subjective assessment study with 20 different point clouds from 

MPEG, JPEG and Sketchfab repositories. The V-PCC codec is used to code the point clouds for 

five different rate-distortion points. The DSIS methodology is used, and the subjects visualize 

meshes reconstructed from point clouds, rendered with RMesh with color interactively, with an 

HMD device. They show that in a VR environment, texture has a greater impact than geometry on 

the overall point cloud quality. 

In [53], Su et al. apply several types of degradation (Gaussian noise, octree coding, G-PCC, and 

V-PCC coding) on a large point cloud dataset with different types of content. Each point cloud 

was created using a 3D reconstruction method receiving as input several views of an object. Some 

video sequences are generated from point clouds rendered with RColor and the DSIS methodology 

is used for the subjective assessment. It is shown that the V-PCC codec outperforms the other 

codecs, especially at low rates. 

In [54], the subjective quality of dynamic encoded point clouds is assessed in an adaptive streaming 

scenario. Three point clouds are coded at five different rates using the V-PCC codec. The point 

clouds are rendered with RColor and visualized passively, using three different camera paths. 

Video sequences are shown to the users through an emulated network of three bandwidths, two 

different bit rate allocation schemes (view-focused and uniform) and two different viewport 

predictions (most recent and clairvoyant). It is shown that overall rating for volumetric video is 

lower than for traditional HD or 4K videos. Volumetric video is a 2D sequence of a dynamic point 

cloud. Regarding the objective-subjective correlation performance, they use 2D quality metrics for 

streamed sequences and they show that metrics need to be adjusted and scaled to properly match 

the human perception. They also show that viewport prediction leads to better results. 
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In [55], Subramanyam et al. perform a subjective study to evaluate the point cloud quality in 3- 

DoF and 6-DoF using a VR head-mounted device. Point clouds are encoded with MPEG V-PCC 

and the octree-based codec in [35] at four different rates. The subjective test follows an ACR 

methodology with Hidden Reference (HR) and the subjects could interact with the decoded point 

clouds rendered with RColor. Using the subjective study results, they show that V-PCC is 

significantly better than [35] for low rates while for higher rates the difference is statistically 

insignificant. 

In [56], Perry et al. perform a subjective study to evaluate the MPEG G-PCC and V-PCC Intra 

codecs using static point clouds. The subjective test is conducted in four different laboratories 

using RColor rendering and following a DSIS methodology; a passive approach is used where 

video sequences are generated for predefined paths. The main conclusions regard the performance 

of objective quality metrics that will be presented in the next section. 

This section presented a brief overview of the subjective quality assessment studies available in 

the literature. The summary of all these studies is presented in Table 2.1. The subjective studies 

conducted in this Thesis are also included in the table, highlighted in green. “Test Materials” 

regards the data that is used in the tests, “Test conditions” indicate the type of distortion addressed 

and the data used. Subjective test methodologies are listed under “Methodology”. “Rendering” 

regards the point cloud rendering approach, the rendering primitives and whether color is used for 

rendering or not. The visualization device and the type of subjects’ interaction with the point clouds 

are addressed in “Visualization” and “Interaction”. 

 

Table 2.1: Summary of the subjective point cloud quality assessment studies in the literature. 
 

 
 

Authors(s) 

 
 

Year 

Test Materials Test Condition 
 
 

Methodology 

Rendering 
 
 

Visualization 

 
 

Interaction  

Data 

 

Type 
Evaluation 

Domain 

 

Degradations 

 

Approach 

 

Primitives 

 
Zhang et al. [34] 

 
2014 

 
Objects 

 
Static 

Geometry 

Color 

Down-sampling 

Noise 

 
Unspecified 

 
RColor 

Min-size 

Square 

 
2D Monitor 

 
✓ 

 

Mekuria et al. [35] 

 

2017 

 

People 

 

Dynamic 

Geometry Octree Coding 
 

ACR 

RColor w 

shading 

RMesh w Color 

 
Min-size 

Square 

 

2D Monitor 

 

✓ 

Color JPEG Coding 

 
Mekuria et al. [36] 

 
2017 

 

People 

Objects 

Static 

Dynamic 

Geometry Octree Coding  
ACR 

 
RColor 

 

Fix-size 

Cube 

 
2D Monitor 

 
 

Color JPEG Coding 

 
Alexiou et al. [5] 

 
2017 

 
Objects 

 
Static 

 
Geometry 

Gaussian Noise 

Octree Coding 

 
DSIS 

RPoint wo 

Shading 

Min-size 

Square 

AR 

2D Phone 

 
✓ 

 
Alexiou et al. [6] 

 
2017 

 
Objects 

 
Static 

 
Geometry 

Gaussian Noise 

Octree Coding 

 
DSIS 

RPoint wo 

Shading 

Min-size 

Square 

 
2D Monitor 

 
✓ 

 
Alexiou et al. [37] 

 
2017 

 
Objects 

 
Static 

 
Geometry 

Gaussian Noise 

Octree Coding 

DSIS 

ACR 

RPoint wo 

Shading 

Min-size 

Square 

 
2D Monitor 

 
✓ 

Alexiou et al. [8] 2018 Objects Static Geometry Octree Coding DSIS RMesh - 2D Monitor  

 
 

Alexiou et al. [38] 

 
 

2018 

 
 

Objects 

 
 

Static 

Geometry 

Visualizatio 

n 

 
Gaussian Noise 

Octree Coding 

 
 

DSIS 

 
RPoint wo 

Shading 

 
Min-size 

Square 

2D Monitor 

2D Phone 

AR 

 
 

✓ 

 
 

Dumic et al. [39] 

 
 

2021 

 
People 

Objects 

 
 

Static 

 
Visualizatio 

n 

 
 

Not Distorted 

 
 

ACR 

RPoint 

RColor 

RMesh 

Min-size 

Square 

- 

 
2D Monitor 

3D Monitor 

 
 

 



34 
 

 

 

 

 
 
 

Authors(s) 

 
 

Year 

Test Materials Test Condition 
 
 

Methodology 

Rendering 
 
 

Visualization 

 
 

Interaction  

Data 

 

Type 
Evaluation 

Domain 

 

Degradations 

 

Approach 

 

Primitives 

       RMesh w Color    

Alexiou et al. [41] 2018 Objects Static Geometry Octree Coding DSIS RMesh - 2D Monitor  

 
Alexiou et al. [42] 

 
2018 

 
Objects 

 
Static 

 
Geometry 

Gaussian Noise 

Octree Coding 

DSIS 

ACR 

RPoint wo 

Shading 

Min-size 

Square 

 
2D Monitor 

 
✓ 

 
Torlig et al. [44] 

 
2018 

People 

Objects 

 
Static 

Geometry 

Color 

 
Octree Coding 

 
DSIS 

 
RColor 

Fixe-size 

Cube 

 
2D Monitor 

 
✓ 

 
Alexiou et al. [45] 

 
2019 

People 

Objects 

 
Static 

Geometry 

Color 

 
Octree Coding 

 
DSIS 

 
RColor 

Adaptive- 

size Cube 

 
2D Monitor 

 
✓ 

 

Christaki et al. [43] 
 

2019 
People 

Objects 

 

Static 
 

Geometry 
 

Mesh Coding 
Nonstandard 

Pairwise 

 

RMesh 
 

Mesh 
 

VR 
 

✓ 

 
Alexiou et al. [47] 

 
2019 

People 

Objects 

 
Static 

Geometry 

Color 

G-PCC 

V-PCC 

 
DSIS 

 
RColor 

Adaptive- 

size Quads 

 
2D Monitor 

 
✓ 

 
Zerman et al. [48] 

 
2019 

 
People 

 
Dynamic 

Geometry 

Color 

Down-sampling 

V-PCC 

DSIS 

PWC 

 
RColor 

Fix-size 

Splat 

 
2D Monitor 

 
 

 

 
Zerman et al. [49] 

 

 
2020 

 

 
People 

 

 
Dynamic 

 
Geometry 

Color 

G-PCC 

V-PCC 

 

 
DSIS 

 
RColor 

 

Fix-size 

Square 

- 

 

 
2D Monitor 

 

 
 

Draco RMesh w Color 

 
Wu et al. [52] 

 
2020 

People 

Objects 

 
Static 

Geometry 

Color 

 
V-PCC 

 
DSIS 

 
RMesh w Color 

 
Mesh 

 
VR 

 
✓ 

 

 

Su et al. [53] 

 

 

2019 

 

 

Objects 

 

 

Static 

 
 

Geometry 

Color 

Gaussian Noise 

Octree Coding 

G-PCC 

V-PCC 

 

 

DSIS 

 

 

RColor 

 

 

Min-size 

Square 

 

 

2D Monitor 

 

 

 

Van der hooft et al. 

[54] 

 
2020 

 
People 

 
Dynamic 

Geometry 

Color 

V-PCC 

Streaming 

 
ACR 

 
RColor 

Fix-size 

Quads 

 
2D Monitor 

 
 

Subramanyam et al. 

[55] 

 
2020 

 
People 

 
Dynamic 

Geometry 

Color 

V-PCC 

Codec in [35] 

 
ACR-HR 

 
RColor 

Fix-size 

Quads 

 
VR 

 
✓ 

 
Perry et al. [56] 

 
2020 

 
People 

 
Static 

Geometry 

Color 

 
V-PCC 

 
DSIS 

 
RColor 

Fix-size 

Square 

 
2D Monitor 

 
 

Javaheri in Chapter 

3, Impact of 

Denoising 

Algorithms 

 
 

2017 

 
 

Objects 

 
 

Static 

 
 

Geometry 

 
 

Gaussian Noise 

 
 

DSIS 

 
 

RMesh 

 
 

- 

 
 

2D Monitor 

 
 

 

Javaheri in Chapter 

4, Impact of Coding 

 
2017 

People 

Objects 

 
Static 

 
Geometry 

Octree Coding 

Graph-based 

 
DSIS 

 
RColor 

Adaptive- 

size Cube 

 
2D Monitor 

 
 

 

Javaheri in Chapter 

5, Impact of 

Rendering 

 
 

2019 

 
People 

Objects 

 
 

Static 

 
 

Geometry 

Octree Coding 

V-PCC 

G-PCC 

 
 

DSIS 

RColor 

RMesh 

RPoint 

Fix-size 

Square 

- 

 
 

2D Monitor 

 
 

 

 

2.6 Point Cloud Objective Quality Assessment 

This section will review the most relevant works in the literature on point cloud objective quality 

assessment after introducing some basic concepts. 

 

2.6.1 Background and Key Concepts 

As described in Chapter 1, objective quality assessment is essential for many point cloud 

applications. Point cloud quality metrics are much needed during the process of designing a point 

cloud codec, in the monitoring of the quality offered to users by point cloud communication 
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systems and for the optimization of modules in the point cloud pipeline shown in Section 2.2. 

Objective quality metrics can be classified into three categories: 

• Full reference (FR) quality metric: The quality score is computed by comparing the 

reference and degraded point clouds. 

• Reduced reference (RF) quality metrics: The quality score is computed by comparing some 

compact representation extracted from the reference and degraded point clouds. 

• No-reference (NR) quality metrics: The quality score is computed only from the degraded 

point cloud and does not require the reference point cloud. 

A point cloud is defined as a set of points, the geometry, with their associated attributes. Color (or 

luminance) information is the most important attribute, giving texture to the geometry, to create 

more realistic impressions of the object or visual scene. Both color and geometry may suffer 

degradations. In this context, point cloud quality metrics can be divided into two classes: 

• Point cloud geometry quality metrics: These metrics only consider differences between the 

geometries (3D point coordinates) of the reference and degraded point clouds. 

• Point cloud geometry and texture quality metrics: These metrics jointly evaluate the 

geometry and texture degradations. Note that attributes such as color can only exist associated 

to the points and thus these metrics consider the geometry in an implicit (only explicitly 

measuring texture distortions but using geometry along the process) or explicit (measuring 

geometry and texture distortions separately and performing some type of fusion) way. 

Reference and degraded point clouds may be compared in the 3D world or mapped to 2D planes 

and compared as images or video sequences (e.g., obtained from multiple views). Based on the 

type of error (or similarity) that is computed from the reference and degraded point clouds, 

objective metrics (geometry and texture) can be classified into three groups: 

• Point-based metrics: Compare the geometry or texture by establishing pointwise 

correspondences between the reference and degraded point clouds and measuring the distance 

(or positional error) between corresponding points. These quality metrics are usually computed 

in both directions (symmetric), i.e., between reference and degraded and vice-versa. Since 

point clouds are unordered, the corresponding point in the other point cloud is often computed 

based on nearest neighboring criterion. The D1-PSNR and D2-PSNR (defined later) are 

examples of these metrics and will be introduced in Section 0. 

• Feature-based metrics: Extract some geometry and/or attributes features from each point 

cloud in a global or local way and use this intermediate feature-based representation to compute 

the error (distortion) between the reference and degraded point clouds. These metrics often 

need to use geometry information to associate local features between the two point clouds. 

However, when global features are used, such as color attributes, no geometry information is 

required. 
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• Projection-based metrics: Map 3D points into 2D planes and the error (distortion) is obtained 

by comparing the resulting 2D images, typically using a 2D quality metric. These metrics can 

evaluate texture and geometry (implicitly) together since the projected color is highly 

influenced by the geometry deformations. 
 

2.6.2 Point Cloud Objective Quality Assessment: State-of-the-Art Review 

In this section, the state-of-the-art objective quality assessment metrics are reviewed, following 

the classification proposed in Section 2.6.1. 

Point-based Point Cloud Quality Metrics 

The most popular point-based quality metrics for geometry are the point-to-point (Po2Po) [57] and 

point-to-plane (Po2Pl) [58] metrics. For every point in a degraded/reference point cloud, the 

nearest neighbor is obtained in the reference/degraded point cloud and the Haussdorff distance or 

the mean squared error (MSE) based distance is computed over all pairs of points; this type of 

metrics is usually referred as Po2Po metrics. The main disadvantage of this type of metrics is that 

they do not consider the fact that point cloud points represent the surface of an object(s) in the 

visual scene. To solve this issue, Point-to-Plane (Po2Pl) metrics have been proposed by Tian et al. 

[58], which model the underlying surface at each point as a plane; this plane is perpendicular to 

the normal vector at that point. Again, the point-to-point distance from every point to its nearest 

neighbor in the other point cloud is computed, which is then projected along the corresponding 

normal vector. This type of metrics results into smaller errors for the points that are closer to the 

surface. Currently, the MPEG-adopted point cloud geometry quality metrics are Po2Po MSE (D1) 

and Po2Pl MSE (D2) distances and their associated PSNRs [2]. These metrics are presented in 

detail in the next section. 

The so-called Plane-to-Plane (Pl2Pl) metric proposed by Alexiou et al. [59], measures the 

similarity between the underlying surfaces associated to the points in the reference and degraded 

point clouds. In this case, tangent planes are estimated for both the reference and degraded points. 

As for Po2Pl metrics, tangent planes are used as a local linear approximation of the underlying 

object surface but, in this case, planes are estimated for both the reference and degraded point 

clouds. These metrics are affected by the difficulty to obtain reliable normal vectors for the 

decoded point clouds, especially when some types of compression artefacts are present (e.g., holes) 

or when the decoded point cloud is rather sparse [59]. This metric will be presented with more 

detail in the next section. 

Although less popular, another type of metrics is the Point-to-Surface (or Point-to-Mesh) metrics 

[60]. In this case, a polygonal mesh is created from the reference point cloud and then the distance 

of each decoded point to the surface at the corresponding reference point is computed, thus 

considering the underlying surface (not necessarily a plane anymore). Point-to-Surface metrics are 

very much dependent on the specific surface reconstruction process and are better suited for mesh 

quality assessment. 
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There are not many point-based metrics considering color. However, the Po2Po PSNR of color in 

the YCbCr color space is widely used by MPEG and in the literature to evaluate point cloud texture 

degradations. This metric works similar to Po2Po geometry metrics, but the error does not 

correspond to the distance of each point to its nearest neighbor. Instead, the difference between the 

color of the points in some correspondence is used, i.e., the error between the color of a point in 

one point cloud and the color of its nearest neighbor in another point cloud. This metric may also 

be computed only for the luminance (Y-PSNR) or chroma components (Cb/Cr-PSNR) individually, 

or as a weighted average of all color components. 

Feature-based Point Cloud Quality Metrics 

Most of the feature-based metrics, consider both the geometry and attributes, together. There is 

only one metric that only considers geometry features. In [61], Meynet et al. propose the PC- 

MSDM metric, a structural similarity-based point cloud geometry quality metric based on local 

curvature statistics. This metric computes the surface curvature associated to each point and then 

establishes point-based correspondences. The metric score corresponds to the Gaussian weighted 

curvature statistics for a set of local neighborhoods. Experiments show that this metric outperforms 

the Po2Po and Po2Pl MSE (D1 and D2) distance metrics for six point clouds in the subjective 

study presented in [37]. 

In [62], Viola et al. design a point cloud quality metric based on the histogram and correlogram of 

the luminance component. A correlogram allows to characterize the relationship between each pair 

of numeric variables in a dataset. Due to the unordered nature of point clouds, a specific color 

correlogram based on the k-nearest neighbor distance is proposed. The proposed point cloud 

quality metric shows better performance than Po2Po Y-PSNR Additionally, in this work, the 

proposed quality metric is fused with the Po2Pl MSE geometry metric (D2) using a linear model 

with a weighting parameter found using a grid search method. Experimental results show a 

significant improvement in the correlation performance of the final quality metric after fusion, 

compared to other point cloud quality metrics. 

In [63], Diniz et al. propose the so-called Geotex metric which is based on Local Binary Pattern 

(LBP) descriptors adapted to point clouds and applied to the luminance. LBP is an efficient texture 

operator which labels the pixels of an image by thresholding the neighborhood of each pixel and 

considering the resulting binary number as a good feature for that point. To apply it on point 

clouds, the descriptor is computed on a local neighborhood corresponding to the k-nearest 

neighbors of each point in the other point cloud. Histograms of the extracted feature maps are 

obtained for both the reference and the degraded point clouds to be compared using a distance 

metric such as f-divergence [64] to compute the final quality score. Experimental results show that 

Geotex has a competitive and consistent performance comparing to other state-of-the-art quality 

metrics, notably Po2Po, Po2Pl and Pl2Pl metrics. 

In [65], by Diniz et al. extend the Geotex metric by considering multiple distances, notably Po2Pl 

MSE for geometry and distance between LBP statistics from [63]. The quality score is the linear 
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combination of the Po2Pl MSE distance between points and their nearest neighbor in the other 

point cloud, Po2Po MSE distance between distance between LBP feature maps and the distance 

between the LBP feature map histograms, with the weights of this linear combination obtained 

using a least square error optimization. The results show that by including geometry distortions, 

the performance increases comparing to the original Geotex formulation. 

In [66], Diniz et al. propose another quality metric which computes Local Luminance Patterns 

(LLP) on the k-nearest neighbors of each point on the other point cloud. The proposed metric 

includes several steps, such as voxelization, LLP descriptor creation, histogram distance 

computation and regression. The LLP descriptor associates a label to each target voxel considering 

the voxel luminance and the luminance of neighboring voxels. After, label histograms are 

computed, which are then compared with the Euclidean distance and mapped to the final score 

using some regression algorithm. The experimental results show that the logistic regression results 

in better performance than other regression methods. They also show that the proposed metric 

outperforms state-of-the-art metrics including several Po2Po and Po2Pl distance metrics and 

projection-based metrics in [44] and [47] for two different datasets. 

In [67], Meynet et al. propose the Point Cloud Quality Metric (PCQM) metric, which combines 

the geometry features used in [61] with five color features related to lightness, chroma and hue. 

PCQM corresponds to the weighted average of the differences for geometry and color features 

between reference and decoded point clouds. The logistic regression is used to estimate the weights 

through cross-validation on a portion of the data. The metric is compared with D1-PSNR and D2- 

PSNR as well as Pl2Pl Mean Absolute Error (MAE) and outperforms these metrics significantly. 

In [68], Viola et al. propose a reduced reference quality metric that jointly evaluates color and 

geometry. A set of seven statistical features such as mean, standard deviation, etc. are extracted 

from the reference and degraded point clouds in the geometry, texture, and normal vector domain, 

in a total of 21 features. The quality score is computed as the weighted average of the differences 

for all these features between the reference and degraded point clouds, with the weights obtained 

through a linear optimization algorithm. These algorithms maximize the Pearson Linear 

Correlation Coefficient (PLCC) between the objective and subjective scores obtained from a 

subjective study. The performance of the proposed metric is evaluated for four publicly available 

datasets to show the impact of the proposed features and the high performance of the metric. 

Inspired by the SSIM quality metric for 2D images, Alexiou et al. proposes in [69] a quality metric 

using statistical local dispersion features. The features are extracted in a local neighborhood around 

each point in the reference and degraded point clouds considering four independent ‘attributes’, 

notably geometry, color (luminance), normal and curvature information. The metric is computed 

by pooling the differences of feature values between associated points in the reference and 

degraded point clouds, for each final feature corresponding to a combination of a dispersion feature 

and an ‘attribute’. The experimental results show that the best correlation happens considering 

only the variance of the luminance attribute, which outperforms all the state-of-the-art metrics. 
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Projection-based Point Cloud Quality Metrics 

The first projection-based point cloud quality metric was proposed by Queiroz et al. in [70]; this 

metric was not compared with the alternative state-of-the-art metrics since it was mainly targeting 

to be used to codec rate-distortion optimization. This metric projects the reference and decoded 

point clouds onto the six faces of a cube around the point cloud, concatenates the corresponding 

images and measure the 2D PSNR of the resulting decoded image (using as reference the reference 

image). 

In [44], Alexiou et al. designed a rendering software for visualization of point clouds on 2D 

screens, which was used to extract the orthographic projection of point clouds onto the six faces 

of a cube. A 2D quality metric is then applied to each image resulting from the projection and the 

final score is obtained with the average operator. In this way, the same content that is shown to 

subjective test subjects is also used for quality assessment by 2D quality metrics. Experimental 

results show that this metric outperforms Po2Po and Po2Pl MSE and Hausdorff as well as Pl2Pl 

MSE. 

In [45], Alexiou et al. study the impact of the number of projected 2D images (each corresponding 

to a specific view) on the correlation performance of projection-based quality metrics. In this work, 

it is shown that even a single view could be enough to achieve high performance. Moreover, a 

projection-based quality metric weighting the images according to the user interactions performed 

during the subjective test is proposed. Experimental results show that the interactivity information 

obtained from users can be beneficial since the metric prediction power is significantly increased. 

In [47], the quality metric proposed in [44] is benchmarked considering different number of views, 

different pooling functions, etc. The best performance of the projection-based metric is achieved 

when 2D quality metrics are applied on the projections from 42 different views and pooled with 

an l1-norm. However, the experimental results show that this projection-based metric cannot 

outperform the D1-PNSR and D2-PSNR geometry-only quality metrics. 

In [71], a 2D quality metric is proposed to assess the point cloud quality, assuming that some 3D 

to 2D mapping already available can be used. In this case, the orthographic projections of the 

texture and depth are obtained for 6 views corresponding to the faces of a cube surrounding the 

point cloud. RGB to Gaussian Color Model (GCM) conversion is performed to use a color space 

more aligned with the human visual system. The depth-edge map is aggregated upon texture 

similarity between the reference and degraded point cloud as a local feature. Jensen Shannon (JS) 

for luminance is mathematically derived as the global feature. The contribution of each of the six 

projected images in local and global feature is weighted through a linear regression process and 

used in the final quality index between reference and degraded point clouds. Experimental results 

show that the proposed 2D quality metric designed for projected point clouds, outperforms the ten 

state-of-the-art 2D metrics used in the experiments. 
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The point cloud objective quality assessment metrics available in the literature are listed in Table 

2.2 with their respective name, year, domain, and type. The quality metrics proposed in this Thesis 

are also included and highlighted in green for further comparison. 

 

Table 2.2: Summary of point cloud objective quality assessment metrics in the literature. 
 

Author(s) Metric Name Year Domain Type 

- Po2Po MSE - Geometry Point-based 

MPEG 3DGC [57] D1-PSNR 2018 Geometry Point-based 

Cignoni et al. [60] Point-to-Surface 1998 Geometry Point-based 

Tian et al. Po2Pl MSE 2017 Geometry Point-based 

MPEG 3DGC [57] D2-PSNR 2018 Geometry Point-based 

- Po2Po Hausdorff - Geometry Point-based 

Tian et al. [58] Po2Pl Hausdorff 2017 Geometry Point-based 

Alexiou et al. [59] Pl2Pl MSE 2018 Geometry Point-based 

Alexiou et al. [59] Pl2Pl RMSE 2018 Geometry Point-based 

Meynet et al. [61] PC-MSDM 2019 Geometry Feature-based 

Meynet et al. [67] PCQM 2020 
Geometry & 

Texture 
Feature-based 

Viola et al. [62] 𝐻𝑌 
𝐿2 2020 

Geometry & 

Texture 
Feature-based 

Viola et al. [62] 𝑑𝑔𝑐 2020 
Geometry & 

Texture 
Feature-based 

Viola et al. [68] PCMRR 2020 
Geometry & 

Texture 
Feature-based 

Alexiou et al. [69] Point SSIM 2020 
Geometry & 

Texture 
Feature-based 

Diniz et al. [63] Geotex 2020 
Geometry & 

Texture 
Feature-based 

Diniz et al. [66] - 2020 
Geometry & 

Texture 
Feature-based 

Queiroz et al. [70] - 2017 
Geometry & 

Texture 
Projection-based 

Torlig et al. [44] - 2018 
Geometry & 

Texture 
Projection-based 

Yang et al. [71] - 2020 
Geometry & 

Texture 
Projection-based 
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Author(s) Metric Name Year Domain Type 

Javaheri at 

Chapter 6, GH- 

PSNR 

 
GH-PSNR 

 
2019 

 
Geometry 

 
Point-based 

Javaheri at 

Chapter 7, RA- 

PSNR 

 
RA-PSNR 

 
2019 

 
Geometry 

 
Point-based 

Javaheri at 

Chapter 8, P2D 

Metric 

 
P2D-MMD 

 
2020 

 
Geometry 

 
Point-based 

Javaheri at 

Chapter 9, 

Projection-based 

Metric 

 

Pro 

 

2021 

 
Geometry & 

Texture 

 

Projection-based 

 

2.6.3 MPEG and JPEG Point Cloud Objective Quality Metrics 

Due to their importance in the point cloud objective quality assessment field, this section will 

review with more detail the metrics adopted in the MPEG and JPEG point cloud-related 

standardization activities. The Po2Po and Po2Pl PSNR metrics have been used in MPEG during 

the development of the G-PCC and V-PCC standard codecs and are known as D1-PSNR and D2- 

PSNR. Currently, JPEG also uses the Pl2Pl quality metric for its point cloud coding activities. 

These metrics serve often as the benchmarks for the novel, proposed metrics, thus somehow 

representing the state-of-the-art; due to their importance, they are explained in more detail in this 

section. 

D1-PSNR Quality Metric 

D1-PSNR is based on Po2Po MSE distance (called D1 in MPEG) which is computed, in a 

symmetric way, between the reference and degraded point clouds. In the following, the processes 

to compute the symmetric Po2Po MSE and Hausdorff metrics and after the D1-PSNR metric are 

presented. Po2Po objective quality metrics [57] establish point-wise correspondences in two 

directions, notably: 

1) Direct 𝑅 → 𝑇: For each point in the reference (or original) point cloud R, the nearest neighbor 

(NN) points in the degraded (as test) point cloud T are identified. 

2) Inverse 𝑇 → 𝑅: Correspondences are computed as for 1) but now in the opposite direction, thus, 

from point cloud T to point cloud R. 

Assuming 𝑒1(𝑟𝑖 , 𝑡𝑗 ) as an error vector between point 𝑟𝑖 in point cloud R and the 𝑟𝑖 nearest neighbor point 

𝑡𝑗 in point cloud 𝑇, the Po2Point error vector length, i.e., the distance 𝑑Po2Point between these 

two points is given by: 
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𝑑Po2Po(𝑖) = ‖𝑒   (𝑟 , 𝑡 )‖

2
 

R,T 1     𝑖    𝑗 2 
(2.1) 

This distance is computed for all the points in both directions, i.e., from reference to degraded 
point clouds, 𝑑Po2Point, and from degraded to reference point clouds, 𝑑Po2Po. There are three main 

R, T 

approaches to aggregate or pool all the computed errors: 

T, R 

• Mean Squared Error (MSE): Average of the squared distances between each point and their 

corresponding nearest neighbor in the other point cloud, for all points, as defined in: 
 

MSE𝑃𝑜2𝑃𝑜 = 
1 

∑ 𝑑Po2Po(𝑖) 
R,T 𝑁𝑅 

R, T 

∀𝑟𝑖 ∈R 

(2.2) 

where 𝑁𝑅 is the number of points in the reference point cloud, R. 

• Hausdorff (HAUS) distance: Maximum for all points of the MSE distances as defined in: 
 
 

 HAUS𝑃𝑜2𝑃𝑜 = max𝑟  ∈R{𝑑Po2Po (𝑖)} R,T 𝑖 R, T (2.3) 
 

• Geometric PSNR: Geometric PSNR metric defined as: 
 

3𝑃2 
PSNR𝑃𝑜2𝑃𝑜 = 10 log10 ( )  with 𝑃 = 2𝑝𝑟 − 1 

R,T MSE𝑃𝑜2𝑃𝑜 
R,T 

(2.4) 

where 𝑃 is the peak constant value and 𝑝𝑟 the point cloud coordinates precision. Since the metrics 

above are defined just for one direction (from point cloud R to point cloud T), the metric needs to 

be also computed in the other direction in order the final symmetric metric score can be computed 

by pooling the maximum distance or minimum PSNR value. D1-PSNR is the pooled minimum of 

Po2Po PSNR in the two directions: 
 

D1 = 𝑀𝑆𝐸𝑃𝑜2𝑃𝑜 = max (MSE𝑃𝑜2𝑃𝑜 , MSE𝑃𝑜2𝑃𝑜) 
R,T T,R (2.5) 

𝐻𝐴𝑈𝑆𝑃𝑜2𝑃𝑜 = max(HAUS𝑃𝑜2𝑃𝑜 , HAUS𝑃𝑜2𝑃𝑜 ) 
R,T T,R (2.6) 

D1-PSNR = min(PSNR𝑃𝑜2𝑃𝑜 , PSNR𝑃𝑜2𝑃𝑜) 
R,T T,R (2.7) 

D2-PSNR Quality Metric 

Po2Pl metrics [58] take into consideration the underlying object surface represented by a fitting 

plane to the local neighborhood of each point. Considering the 3D point locations and their 

associated surfaces, the normal for each point corresponds to the normal to the tangent plane at the 

surface. A point and the corresponding normal vector can, thus, determine the tangent plane for 

each point. As for Po2Po metrics, Po2Pl metrics are also symmetrically computed for both 

directions, i.e., from reference to degraded and from degraded to reference point clouds. However, 

Po2Pl metrics require the computation of normal vectors for the reference point cloud, which are 

used for the direct direction (𝑅 → 𝑇). For the opposite direction (𝑇 → 𝑅), the normal for each 
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point is estimated by averaging the normal vectors of the nearest neighbor points from the 

reference point cloud. 

The Po2Pl error distance between two points 𝑒2(𝑟𝑖 , 𝑡𝑗 ) in the reference and degraded point clouds is 

obtained by first computing the Po2Po error vector 𝑒1 which is then projected onto the normal 
�⃗⃗� �⃗⃗� . Thus, the Po2Pl distance 𝑑Po2Pl(𝑖) represents the error between a point and the corresponding 

𝑗 R, T 

plan/surface at the other point cloud as is given by: 
 

𝑑Po2Pl (𝑖) = ‖𝑒   (𝑟 , 𝑡 )‖
2  

= (𝑒   (𝑟 , 𝑡 ) ⋅ �⃗⃗� �⃗⃗� )2 
R, T 2     𝑖    𝑗 2 1 𝑖    𝑗 𝑗 

(2.8) 

MSE distance, Hausdorff distance and Geometric PSNR may then be computed with the projected 

error distances as for Po2Po metrics in equations 2.2 to 2.4 (where the error vector is not projected). 

In this way, D2 and D2-PSNR come as: 
 

D2 = 𝑀𝑆𝐸𝑃𝑜2𝑃𝑙 = max (MSE𝑃𝑜2𝑃𝑙 , MSE𝑃𝑜2𝑃𝑙 ) 
R,T T,R (2.9) 

𝐻𝐴𝑈𝑆𝑃𝑜2𝑃𝑙 = max(HAUS𝑃𝑜2𝑃𝑙 , HAUS𝑃𝑜2𝑃𝑙 ) 
R,T T,R (2.10) 

D2-PSNR = min(PSNR𝑃𝑜2𝑃𝑙 , PSNR𝑃𝑜2𝑃𝑙) 
R,T T,R (2.11) 

In this way, the degraded point cloud points that are closer to the reference surface have smaller 

projected distances even though they are farther away from the corresponding point in the 

reference point cloud. 

Pl2Pl Quality Metric: 

This type of point cloud objective quality metric estimates the similarity of surfaces in the 

reference and degraded point clouds [59]. In this case, tangent planes are estimated for both the 

reference and degraded points. As for Po2Pl metrics, tangent planes are used as a local linear 

approximation of the underlying object surface but, in this case, planes are estimated for both the 

reference and degraded point clouds. 

Again, to compute Pl2Pl metrics, the nearest neighbor correspondences are computed in both 

directions. The Pl2Pl metrics depend on the angular similarity (or dissimilarity) between the 

planes, i.e., the angular difference between the local planes associated to the points in a 

correspondence. In this case, the so-called cosine similarity measure, 𝐶𝑆, measuring the cosine of 

the angle between two vectors is used. Here the two vectors correspond to the normal vectors 

(perpendicular to the tangent planes) for the two points in correspondence in the point clouds R 

and T, thus obtaining: 
 

�⃗⃗� ⃗⃗𝑟  ⋅ 𝑛⃗⃗𝑡 
𝐶𝑆(𝑖) = cos(𝜃 ) = 

𝑖 𝑗
 𝑖 

‖�⃗⃗⃗� �⃗⃗� ‖  ‖�⃗⃗� �⃗⃗� ‖ 
𝑖     2 𝑗 

2
 

 

(2.12) 

where �⃗⃗� ⃗⃗𝑟  and 𝑛⃗⃗𝑡 are normals for points 𝑟 and 𝑡 in point clouds R and T, respectively. To compute 
𝑖 𝑗 𝑖 𝑗 

the angular difference (or distance), 𝑑Pl2Pl, the inverse cosine is used as follows: 
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𝑑Pl2Plane(𝑖) = 1 − 
2arccos(|𝑐𝑠(𝑖)|) 

𝐑,𝐓 𝜋 (2.13) 

After computing the angular difference for all the points in the reference point cloud, different 

strategies may be used for pooling, i.e., for aggregating the angular differences obtained for all 

points. In this case, three pooling strategies were defined: 
 

1 
MADR,T = ∑  𝑑Pl2Pl (𝑖) 

𝑁𝑅 
R,T 

∀𝑟𝑖 ∈R 

(2.14) 

1 2 
MSADR,T = ∑  (𝑑Pl2Pl (𝑖)) 

𝑁𝑅 
R,T 

∀𝑟𝑖 ∈R 

 

(2.15) 

RMSADR,T = √MSADR,T (2.16) 

MAD stands for mean angular difference, MSAD for mean squared angular difference and 

RMSAD for the square root of MSAD. As for the other types of metrics, (2.14) - (2.16) are 

performed symmetrically, this means in both the direct and inverse directions, and the minimum 

value is selected as the final (similarity) quality score. 

 

2.7 Final Remarks 

This chapter introduced the point cloud processing pipeline and reviewed the impact of each key 

module on the perceived quality of a point cloud. The most relevant point cloud coding and 

rendering approaches that are going to be frequently used in this Thesis were presented in detail. 

Finally, point cloud quality assessment was reviewed both in terms of subjective quality 

assessment studies and point cloud objective quality assessment metrics since these are the 

benchmarks for the reference developments to be proposed in this Thesis. 
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Chapter 3 
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Impact of Denoising Algorithms on Point 

Cloud Perceived Quality 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

3.1 Context and Objectives 

Acquisition or creation is the first step of the point cloud processing pipeline shown in Section 2.2. 

Typically, point clouds represent the external surface of real or artificial objects. For real objects 

and visual scenes, point cloud data is directly or indirectly acquired by some sensors or is 

computationally created, e.g., via synthetic mesh-based models. There are nowadays several 

practical ways to acquire a point cloud, e.g., using an array of standard 2D cameras and some 3D 

reconstruction technique or, alternatively, some depth sensing devices such as Light Detection and 

Ranging (LiDAR) and Time-of-Flight Cameras. A rather popular consumer device is the Kinect 

sensor but, recently, also several LiDAR sensors are employed in autonomous cars to capture the 

surrounding environment as a point cloud. Both the point clouds generated from multiple images 

using 3D reconstruction techniques and those obtained with depth sensors, like the Kinect 

structured infrared light approach, are often rather noisy [72]. The noise in point clouds poses great 

challenges at the coding stage but also at the subsequent rendering (or surface reconstruction) stage 

[73]. Thus, point cloud denoising is an essential step to enable a more faithful rendering of the 

visual scene and the efficient compression of the point cloud data. In fact, in many application 

scenarios, point cloud noise may lead to significant bitrate costs and lower the quality of experience 

for the final users. Considering the increasing importance of the point cloud data 3D representation 

model, research around point cloud denoising is becoming increasingly important in order better 

experiences are offered to the users. 

In this context, the reliable quality assessment of point cloud data is fundamental to evaluate the 

performance of the several steps in a point cloud processing pipeline, notably acquisition, 
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denoising, coding, streaming and so on. However, because subjective quality assessment cannot 

be performed too often, the reliable quality assessment of the point cloud data quality asks for 

appropriate objective quality metrics as they can provide critical useful guidance for the design of 

point cloud-based systems. In this context, this chapter addresses two main objectives: 

• Design of a subjective assessment methodology for point cloud geometry denoising 

algorithms assuming arbitrary and unstructured point clouds, without any underlying 

connectivity. This type of methodology is rather important since point clouds are rendered 

before being displayed and thus the presence of noise can lead to annoying artifacts, which 

lead to lower perceived quality. To achieve this objective, classical denoising solutions were 

adapted to either remove erroneous points or improve its positioning. 

• Study of the correlation performance of available objective quality metrics to evaluate 

the quality of denoised point cloud geometries. Since reliable objective quality metrics are 

critically needed, this study targets evaluating the objective-subjective correlation of available 

objective quality metrics for point clouds which have been denoised. It is important to keep in 

mind that the perceived quality of a (point cloud) surface is mostly related to the positioning 

of the points in relation to the original surface, even if their position is changed. 

To reach these objectives, this chapter is organized as follows. Section 3.2 describes the point 

cloud denoising approaches used in this chapter. Section 3.3 describes the subjective assessment 

study performed and used in correlation performance studies. Section 3.4 presents the 

experimental results and their analysis. Section 3.4.1 evaluates the point cloud denoising 

algorithms while Section 3.4.2 brings the correlation performance of the state-of-the-art metrics at 

time of this work. Finally, Section 3.5 concludes this study on impact of denoising algorithms on 

perceived quality of the point cloud. 

 

3.2 Point Cloud Denoising Approaches 

In practice, there are two distinct ways to generate the point cloud geometry data: by direct 

acquisition, where the geometry is obtained using sensors which measure the distance to the 

objects/scene, and by indirect acquisition, where the geometry is obtained by means of 3D 

reconstruction from a set of different perspectives (views) from the scene. In both cases, several 

errors can occur, and point clouds are usually noisy. In the first case, sensors usually have 

limitations and make measurement errors due to environmental issues such as illumination, 

materials reflectance, and imperfect optics. In the second case, the wrong estimation of disparity 

(feature correspondences), imprecise depth triangulation, and inaccurate camera parameters, can 

lead to significant geometry errors. The geometry errors corrupting a point cloud can be classified 

in two types: outlier errors and positioning errors. The outlier errors occur when there are some 

points which are far away from the underlying object surface that should be represented. These 

errors are very common in the indirect acquisition case when the disparity estimation between 

views fails. The positioning errors occur when the points are only slightly out of their correct 
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position. This typically occurs when there are imprecisions in the depth estimation (e.g., 3D 

triangulation for indirect acquisition) and due to sensor noise (direct acquisition). Typically, 

position errors are modelled with white Gaussian noise while the outlier errors are better modelled 

with impulse noise. 

The denoising of point clouds is a difficult problem since there is not any connectivity information 

between points and therefore surface topology is not directly represented. Most of the point cloud 

denoising algorithms estimate the underlying surface, which is naturally more difficult or less 

accurate when outliers are present. Thus, the first step is to identify and remove outliers before the 

point cloud data is further processed since outliers do not contain relevant information about the 

underlying surface and can reduce the performance of any position denoising algorithm. The next 

sections review outlier removal and graph-based positioning denoising algorithms. 

 

3.2.1 Outlier Removal Algorithms 

The first step in point cloud denoising is to remove the points which are very far from the 

underlying surface, which they should represent. Most of the outlier removal algorithms perform, 

for each point, a statistical analysis using a set of its neighboring points and apply some criteria to 

decide if the point under test is an outlier or not. The following two solutions for outlier removal 

are described as examples: 

• Radius outlier removal [74]: This algorithm exploits the fact that outlier points are typically 

far away from its neighbors. Thus, in this method, every point is connected to its neighbors in 

a small ε radius using a small graph. The points corresponding to outliers have a significantly 

smaller number of neighbors than the other points, i.e., the number of graph nodes is smaller. 

The outliers can be identified by establishing a threshold τ on the minimum number of 

neighbors in the ε radius neighborhood. 

• Sparse outlier removal [75]: This algorithm also exploits the distance from each point to the 

set of its neighboring points. In this case, it is assumed that the distribution of the distance 

between each point and its neighboring points is a normal distribution. For each point, the 

mean distance, 𝑢, and the standard deviation, 𝜎, to all its neighbors are calculated. All the 

points that are out of a confidence interval 𝑢 ± 𝛼𝜎, defined from this distribution, are 

considered as outliers. The parameter α should depend on the size of the analyzed 

neighborhood. 

Naturally, the points detected as outliers are removed from the point cloud. It is assumed that the 

number of outliers is not typically large as otherwise this process may create holes or insufficient 

number of points in some regions and, thus, reduce the point cloud quality. The two outlier removal 

methods presented above are available in the popular Point Cloud Library (PCL) [15]. 
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3.2.2 Position Denoising Algorithms 

To After outlier removal, the remaining ‘wrong’ positions should be corrected using some local 

regularization criteria. In this case, the distribution of the point positions has usually a certain 

degree of smoothness or regularity since these positions describe a 3D object/surface in space. To 

perform position denoising, a K-NN graph 𝐺 is constructed to represent the underlying object 

surface; here the spatial coordinates are considered as signals residing on each node of this graph. 

The creation of a K-NN graph is a simple procedure, where each point is connected to its K nearest 

neighbors and then any duplicated connections are removed. Each connection established is 

regarded as an edge and the Euclidean distance is used to measure the distance between points. 

Since the graph represents the geometric structure defining the shape of an object, it is now only 

necessary to associate the 3D coordinates of each point to each graph vertex. 

At this stage, to perform denoising, graph-based equivalents of classical denoising algorithms [74] 

can be applied. This means the signal denoising problem on a graph may be addressed as a convex 

optimization problem with the constraint that the denoised signal must be smooth on the graph as 

for ordinary signals [76]. There are in practice several ways to regularize the signals on the graphs, 

in this case the 3D positions, notably: 

• Tikhonov regularization - The most straightforward method is to apply a Tikhonov (TK) 

regularization term using the 𝐿2 norm where the graph denoising corresponds to solving the 

following optimization problem: 
 

�̇�  = arg min‖𝑥 − 𝑓‖2 + 𝛾‖∇𝐺𝑥‖2 
𝑥 2 2 (3.1) 

where �̇� is the estimation of the denoised signal, f is the noisy signal, 𝛾 is the regularization 

parameter and ∇𝐺𝑥 is the gradient of the signal on graph G [74] [77]; however, other regularization 

terms may be applied. 

• Total variation regularization - When a Total variation (TV) regularization term is used, the 

following optimization problem must be solved: 
 

�̇�  = arg 𝑚𝑖𝑛‖𝑥 − 𝑓‖2 + 𝛾‖𝛻𝐺 𝑥‖1 
𝑥 

2 (3.2) 

These two optimization problems can be solved using the Alternating Direction Method of 

Multipliers (ADMM) [78]. The denoising algorithms were implemented with GSPBox [79] for 

graph signal processing and UNLocBoX [80] for convex optimization. 

 

3.3 Subjective Assessment Framework 

In this section, the subjective assessment setup and the creation of the video content for the 

subjective test are described. 
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3.3.1 From Point Clouds to Video Sequence 

The Bunny, Armadillo, Dragon and Happy Buddha point clouds from the Stanford 3D scanning 

repository [81] were selected; renderings of these PCs are shown in Figure 3.1. At the time of this 

work, voxelized point clouds were not available and, thus, the point clouds in this dataset have 

floating point precision. To perform a fair comparison, the point cloud coordinates have been 

normalized to a dynamic range between [0,1] and sub-sampled to have a similar number of points, 

in this case around 50000; this should allow the point clouds to have rather similar density. The 

voxel grid down-sampling method from the PCL library was used to sub-sample the point clouds 

to the target resolution. High-quality point clouds have been selected for this experiment in order 

a ground truth without noise is available. After, the same type and amount of noise is added to all 

point clouds to achieve an equivalent subjective quality degradation. The noisy point clouds are 

then processed by the outlier removal and position denoising algorithms described in Section 3.2. 

For the outlier removal algorithm, the radius was set to 0.01 and the threshold τ to 3. The 

regularization parameters for the position denoising algorithms were experimentally defined as 
2 

𝑛𝑜𝑖𝑠𝑒 

 

 

Figure 3.1: Stanford repository point clouds selected for the denoising quality study: Armadillo, 

Bunny, Dragon, and Happy Buddha, rendered as a mesh with mid gray color. 
 

After, the denoised point clouds are further processed to create a rendered video to be visualized 

by the final user, in this case in a standard 2D display. This processing should allow the test 

subjects to evaluate the point cloud quality in a rather realistic way, notably observing the 

impairments on the object surface from multiple viewing directions. The processing of the 

denoised point clouds towards the subject visualization involves the following steps: 

1. Poisson surface reconstruction [82] is used to create a 3D surface of the object; this process 

was performed using the Cloud Compare software [83]. 

2. To allow the users to visualize the denoised point clouds from multiple perspectives, a set of 

relevant viewpoints is defined and a video with smooth transitions between viewpoints is 

created, i.e., the motion of a virtual camera following a pre-defined path between viewpoints 
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is simulated. In this case, the point cloud is first rotated around a vertical axis and after 

rotated around a horizontal axis. 

The final sequence with all viewpoints is stored as a high-quality video sequence encoded in a 

visually lossless way, with a 1600×800 spatial resolution, 25 fps, with a total duration of 10 

seconds. 

 

3.3.2 Subjective Assessment Methodology 

The DSIS assessment methodology was adopted to obtain the subjective scores from the subjects 

in this experiment. All the subjects were selected from Instituto Superior Técnico (IST) professors 

and MSc and PhD students, including 4 females and 17 males; only 4 subjects were familiar with 

the field of point cloud or mesh representation. The goal of the experiment was initially briefly 

explained to the subjects, and they were asked to participate in a short training session just before 

the test session. The point cloud reference and rendered videos were viewed and scored by each 

subject in a test session lasting around 30 minutes where the play of each new point cloud video 

sequence was controlled by the subjects as they had to explicitly press ‘Play’. All rendered video 

sequences were organized into 9 rounds with each round including a video sequence for each test 

point cloud; the order of the point clouds was random within each round. Each round proceeded 

according to BT-500.13 recommendation [31] with the subjects watching first the reference 

rendered point cloud sequence (without noise degradation) and after the impaired/denoised video 

sequence for each point cloud pair. After, the second video impairment was scored with respect to 

the reference video in a 1-5 scale associated to five quality levels, notably ‘very annoying’, 

‘annoying’, ‘slightly annoying’, ‘perceptible but not annoying’ and ‘imperceptible’ from 1 to 5. A 

so-called IST Point Cloud Subjective Assessment Application has been designed and developed 

using MATLAB and fulfilling the BT-500.13 specifications. Figure 3.2 shows the viewing and 

scoring panels from the used quality assessment application. 
 

 

Figure 3.2: IST Point Cloud Subjective Assessment Application: scoring panel is shown only 

after viewing both the reference and degraded point cloud rendered videos pair. 
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The point cloud rendered video sequences were visualized on a 23-inch ASUS VH238 monitor 

with 1920×1080 resolution. An i7 workstation with the Intel HD 530 graphic card and 128MB 

video memory was used to play the test sequences at the correct frame rate without any delays. 

 

3.3.3 Subjective Scores Processing 

The same outlier removal process as described in Chapter 2 was deployed before further processing 

the subjective scores. In our study, none of the subjects was rejected. After outlier removal, the 

average of all scores across the subjects were computed for each point cloud stimulus, thus 

obtaining the overall MOS. 

 

3.4 Performance Evaluation 

This section focuses on the evaluation of the point cloud denoising algorithms with subjective and 

objective quality scores, as well as on the assessment on the correlation between the obtained 

objective and subjective scores. First, Section 3.4.1 reports the subjective performance of the 

outlier removal and position denoising algorithms. Then, Section 3.4.2 presents the subjective- 

objective correlation for various objective quality metrics, notably the most used metrics at the 

time this work was developed. 

 

3.4.1 Denoising Algorithms Assessment 

To study the impact of denoising algorithms on the point cloud perceived quality, first the outlier 

removal algorithms are objectively assessed, and the best performing outlier removal algorithm is 

selected. After, the subjective performance of the positioning denoising algorithms is assessed 

(after outlier removal). 

 

Outlier Removal Algorithms: Objective Assessment 

The outlier removal algorithms were first objectively evaluated to select the best one. In this case, 

Po2Po objective quality metrics were employed since it is difficult to reliably estimate the normal 

vectors for Po2Pl metrics when outliers are present. To simulate the presence of outliers, 5, 10 and 

15 percent of the points in the reference point clouds for the four test point clouds were affected 

by impulse noise and were after denoised using the two algorithms presented in Section 3.2.2. The 

final degraded point clouds were after obtained by randomly selecting 5, 10, and 15 percent of 

their points and adding impulse noise to them. Impulse noise corresponds here to Gaussian noise, 

with zero mean and a respective large variance (𝜎2 = 1 in experiments of this Thesis where 

contents are normalized between 0 and 1). The average results for the four test point clouds are 

shown in Table 3.1 for the Root Mean Squared Distance (RMSD) and Hausdorff distance Po2Po 

objective quality metrics; thus corresponds, in practice, to two types of data pooling from the same 

Po2Po distances, the average and the maximum. 

The results in Table 3.1 show that the radius outlier removal algorithm can remove the outliers 

more efficiently in comparison with the sparse outlier removal algorithm, considering the RMSD 
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and Hausdorff quality metrics (except for 10% noise level). The Hausdorff metric seems to be less 

stable for this case, very likely because it is a maximum distance and, thus, a single outlier can 

lead to significant quality variations. Based on these results, it was decided to use the radius outlier 

removal algorithm for the rest of the experiments, i.e., as an outlier removal pre-processing step 

for the two position denoising algorithms. 

 

Table 3.1: Objective quality assessment results for outlier removal algorithms. 
 

  

Noise Level (%) 
Po2Po Metrics 

RMSD Hausdorff 

 

Noisy Point Cloud 

5 19.47 426.578 

10 27.73 447.874 

15 33.85 548.341 

 

Denoised Point Cloud after Radius Outlier Removal 

5 0.818 19.477 

10 1.063 34.837 

15 1.271 31.795 

 

Denoised Point Cloud after Sparse Outlier Removal 

5 1.364 23.505 

10 2.618 29.140 

15 3.867 53.414 

 

Position Denoising Algorithms: Subjective Assessment 

The performance of the position denoising algorithms was subjectively evaluated for three 

different levels of Gaussian noise and four point clouds. Impulse noise was added as in the previous 

section and the remaining points were impaired by zero mean Gaussian noise with three different 

powers representing ‘small’ (𝜎2 = 0.003), ‘medium’ (𝜎2 = 0.007) and ‘high’ (𝜎2 = 0.01) levels of noise. In 

this subjective assessment, the noisy point clouds were also included. In Figure 3.3, MOS values 

and the corresponding confidence intervals (defined as in [84]) are shown. The subjective results 

show that, for all the point clouds and both position denoising algorithms, the point cloud quality 

is improved with respect to the noisy versions. Naturally, the quality improvements are larger for 

the medium and high amounts of noise. Also, the improvements are larger for the simpler Bunny 

and Armadillo point clouds and lower for the more complex Dragon and Happy Buddha point 

clouds, thus suggesting that the shape and surface cloud regularities play an important role in the 

denoising process. 

The TK and TV regularization functions lead to similar results with advantage for the latter in the 

Armadillo and Happy Buddha point clouds. However, TK has managed to outperform TV in some 

cases, despite the smoothness of the solution, i.e., even when some high frequency components 

are removed from the point cloud. 
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Figure 3.3: Mean opinion scores for the noisy and denoised point clouds for three different 

levels of noise: a) Bunny; b) Armadillo; c) Dragon; d) Happy Buddha. 
 

3.4.2 Objective Quality Metrics Correlation Assessment 

The subjective-objective correlation performance of the four selected objective quality metrics 

(Po2Po RMSD, Po2Po Hausdorff and Po2Pl RMSD, Po2Pl Hausdorff) has been evaluated using: 

i) Pearson Linear Correlation Coefficient (PLCC) as a measure of the linear dependence between 

the MOS and the corresponding objective metric scores; ii) Spearman Rank Order Correlation 

Coefficient (SROCC) as a measure of the strength and direction of monotonicity between the MOS 

and the corresponding objective metric scores; and iii) Root Mean Square Error (RMSE) as the 

average error between corresponding objective and subjective scores. 

Before performance assessment, a nonlinear logistic function was applied on the objective quality 

scores to map them to the subjective score scale, as recommended in [32], thus obtaining the 

predicted subjective scores. Let 𝑄𝑖 be a specific objective quality score for video 𝑖 and 𝛽𝑘 the 

logistic function parameters. According to [32], the objective quality score 𝑄𝑖 for a specific 

objective metric is used to obtain a predicted subjective score 𝑀𝑂𝑆 𝑖 for video 𝑖 according to: 
 

𝑀𝑂𝑆 𝑖  = 𝛽  + 
𝛽1 − 𝛽2

 
𝑝 2 

−  
 𝑄𝑖−𝛽3)

 ( 
1 + 𝑒 𝛽4 

(3.4) 

The logistic function parameters, 𝛽1, 𝛽2 and 𝛽3, were estimated by performing a non-linear 

regression of the objective metric scores over the corresponding MOS scores. This allows fitting 
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the objective metric scores to the MOS scores. In this case, the initial estimates for the parameters 

in (3.4) were defined following the suggestions in [32] and the fitting was performed using the 

MATLAB function for non-linear regression. Figure 3.4 shows the predicted subjective scores 

(based on objective scores) versus the obtained MOS for all the point cloud test set used in this 

experiment. 
 

 

 

a) Po2Po RMSD b) Po2Pl RMSD 
 

 

c) Po2Po Hausdorff d) Po2Pl Hausdorff 

Figure 3.4: MOSp (predicted subjective scores) vs. MOS (real subjective scores) for the noisy 

and denoised versions of all point clouds. 
 

The Po2Pl RMSD points are closer to the red line where 𝑀𝑂𝑆 = 𝑀𝑂𝑆𝑝, corresponding to the 

optimal performance for an objective quality metric. However, for all the objective quality metrics, 

many points are still far away from the optimal correlation performance, clearly suggesting that 

there is still room for improved objective quality metrics, at least for this type of quality assessment 

task. Table 3.2 shows the correlation performance for the four selected objective quality metrics 

in terms of PLCC, SROCC and RMSE for the noisy, denoised and all (noisy + denoised) point 

clouds considering the four point clouds selected; the best correlation behaviors are highlighted in 

bold. 
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Correlation performance (PLCC, SROCC, and RMSE) for the three selected objective quality 

metrics. 

 

Table 3.2: Correlation performance (PLCC, SROCC, and RMSE) for the three selected 

objective quality metrics. 
 

 PLCC SROCC RMSE 

Objective metrics Noisy Denoised All Noisy Denoised All Noisy Denoised All 

 

RMSD 
Po2Po 0.87 0.58 0.64 0.78 0.51 0.55 0.55 0.72 0.82 

Po2Pl 0.89 0.81 0.73 0.85 0.79 0.72 0.51 0.51 0.73 

 

Hausdorff 
Po2Po 0.53 0.33 0.48 0.45 0.34 0.47 0.95 0.83 0.94 

Po2Pl 0.57 0.44 0.51 0.46 0.47 0.51 0.93 0.79 0.91 

From the obtained subjective-objective correlation results, the following conclusions can be 

drawn: 

• Po2Po vs Po2Pl objective quality metrics: For the denoised point clouds, the Po2Pl metrics 

have higher correlation with the subjective scores since these metrics model the underlying 

point cloud surface. Note that the typical distortions for the denoised point clouds correspond 

to slight displacements in the underlying surface, which may lead to significant errors for the 

Po2Po metrics, without a corresponding significant perceptual impact after rendering. Figure 

3.5 shows the Bunny point cloud with high noise on the left and the corresponding denoised 

result after TK regularization on the right; in red, aligned with the reference point cloud in 

black. Interestingly, the Po2Po RMSD score for the noisy point cloud (0.0077) is lower than 

for the denoised point cloud (0.0080), which shows a cleaner surface; at the same time, Po2Pl 

RMSD is 0.0068 and 0.0058 for the noisy and denoised point clouds, respectively, which better 

expresses the associated perceptual quality. 
 

 

 

Figure 3.5: Noisy point cloud (left) and TK denoised point cloud (right) with the reference point 

cloud in black and the processed point cloud in red. 
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• RMSD vs. Hausdorff distance-based objective quality metrics: The Hausdorff-based 

metrics correlate poorly with the subjective scores both for the Po2Po and Po2Pl metric types. 

As the Hausdorff-based metric captures the maximum distance, it cannot capture well the 

perceptual distortion occurring in a full point cloud, especially for cases where there is a rather 

local high distortion. This result also seems to imply that some localized distortions are 

subjectively better tolerated. On the other hand, Po2Pl RMSD has the best correlation 

performance for noisy, denoised and all data, thus showing the power of error average pooling 

(and not maximum) in a similar way to traditional 2D image/video metrics. 

• Noisy vs. denoised point clouds: For noisy point clouds, the Po2Po and Po2Pl metrics 

performances are rather similar, since the computation of normal vectors for Po2Pl metrics is 

less reliable and, thus, some errors may be introduced, reducing the positive impact of Po2Pl 

metrics. However, for the denoised point clouds, points are closer to the true object surface 

and, thus, the Po2Pl metrics correlation increases. 

 

3.5 Final Remarks 

The main objective of this chapter is to reliably assess point cloud position denoising algorithms 

through subjective tests as well as the subjective-objective correlation performance of the point 

cloud objective quality metrics that were available at the time of this work when applied in a 

denoising context. Experimental results show that Po2Pl metrics have better correlation with 

human perception when evaluating distortions from point cloud denoising algorithms. The RMSD 

is also much better correlated with human perception than the Hausdorff distance where localized 

distortions have a much higher impact. As future work, the objective quality metrics will be 

evaluated for decoded point cloud, where different types of distortions are present. This issue will 

be addressed in Chapter 4 and Chapter 5 along with the rendering impact. 

The work presented in this chapter has been included in a conference paper published at Hot3D - 

IEEE International Conference on Multimedia & Expo Workshops: 

A. Javaheri, C. Brites, F. Pereira, J. Ascenso, “Subjective and objective quality evaluation of 3D 

point cloud denoising algorithms,” International Conference on Multimedia & Expo Workshops, 

Hong Kong, July 2017. 
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4.1 Context and Motivation 

As mentioned in Chapter 1, efficient coding is essential to store and transmit point clouds; 

however, to reach higher compression factors and potentiate more applications, lossy coding is 

typically used, thus implying that some degradation is associated to the geometry and color of the 

decoded point cloud. To evaluate the point cloud quality after coding, objective quality metrics are 

typically used, since subjective quality assessment is rather time consuming and expensive. 

However, very few subjective quality assessment experiments with decoded point clouds had been 

performed at the time this work was performed. The only subjective quality assessment study on 

decoded point clouds only addressed the quality of decoded geometry using an octree-based point 

cloud codec [85]. For example, the assessment of the objective-subjective correlation of point 

cloud quality metrics was missing, despite its importance for the design and optimization of 

efficient point clouds codecs for the transmission and storage of point cloud data, namely 

considering the quality degradations introduced by recent coding schemes. 

In this context, it was urgent to perform a solid assessment of the correlation performance of point 

cloud quality metrics while considering the most recent point cloud codecs and associated 

artefacts. To compare different point cloud geometry codecs, the coding rate and the decoded 

geometric quality/distortion need to be reliably evaluated. A reliable objective quality metric can 

help to find the best RD performance trade-off while designing a coding scheme for any type of 

media, thus improving the final Quality of Experience (QoE) for the end-users. In this context, the 

main objective of this work was: 
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• To study the objective-subjective correlation of available point cloud objective quality 

metrics for geometry and thus, evaluate their performance in assessing the geometry quality 

of decoded point clouds. 

In this work, two popular point cloud coding solutions were used to code two point cloud datasets 

with rather different characteristics. Moreover, two types of objective quality metrics for the 

geometry component of point clouds were considered, notably Po2Po and Po2Pl metrics. A DSIS 

methodology was used for the subjective assessment. The subjective experiments conducted at 

Instituto Superior Técnico (IST) were designed with the aim to evaluate the selected objective 

point cloud geometry quality metrics. To the best of our knowledge, this was the first study on the 

performance of objective quality metrics with decoded geometry point cloud data. Therefore, the 

conclusions of this work were very important for the design of future point cloud codecs. 

The rest of this chapter is organized as following: Section 4.2 describes the selected point cloud 

coding solutions. Section 4.3 describes the adopted subjective assessment framework. Next, 

Section 4.4 presents the experimental results obtained for the objective quality metrics correlation 

assessment and the associated key conclusions of this study. Finally, Section 4.5 summarizes and 

concludes this chapter. 

 

4.2 Point Cloud Coding Approaches 

Efficient coding is crucial for many applications that require storage on a limited capacity device 

or transmission through a network with a limited bandwidth; this is especially true for point cloud 

data which uncompressed size may be huge [86], [85], [87], and [88] . In this chapter, the key 

objective is to study the performance of full-reference objective quality metrics to measure the 

quality of decoded point cloud geometry with respect to the original point clouds geometry. 

Although, point cloud coding methods may be lossless or lossy, to transmit point clouds in 

resource-constrained networks (e.g., via wireless channels), it is critical to employ lossy coding to 

reduce the coding rate more effectively. In this chapter, two lossy geometry coding methods are 

selected to encode the points 3D locations and, therefore, to obtain decoded point clouds which 

are impaired by some coding artifacts. In this work, the objective is to assess the correlation 

performance of objective quality metrics just for point cloud geometry; in this context, attribute 

data such as the color of each point is left uncoded even if it may be used for rendering. 

The first selected point cloud geometry coding solution is rather popular and based on the 

organization of all points in an octree structure, which nodes are after scanned to extract their 

occupancy. The popular point cloud octree-based codec that is available in the so-called Point 

Cloud Library (PCL) [89] was selected since it was a very popular codec at the time of this work, 

also considered by MPEG for the future developments of point cloud coding standards. The second 

selected point cloud geometry coding solution was designed and developed by the author of this 

Thesis and organizes all points in a graph structure, using the nearest neighbors to apply a graph 

transform. These two point cloud geometry coding solutions introduce different types of artifacts: 

while the octree-based coding solution creates some type of down-sampling effect in the decoded 
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point cloud geometry, the graph-based coding solution introduces blocking artifacts which are also 

typical in frequency-domain DCT-based image codecs. 

 

4.2.1 Octree-based Geometry Coding 

This  coding  solution  exploits  the  octree  structure  to  encode  the  (𝑥 , 𝑦 , 𝑧)  3D  coordinates  data 

(Chapter 2, Section 2.3.1). In an octree, each node is referred as a voxel and represents a cube in 

the 3D space. The root node is a cube containing all points of the point cloud (also referred as 

bounding box). Then, starting from the root node, this cube is divided into 8 cubes with the same 

size, which correspond to each root node child. These cubes correspond to the voxels. This process 

is repeated for every single child node, iteratively, which are again divided into 8 nodes. Naturally, 

a tree node is not divided if there is no point occupying the corresponding voxel. The decoded 

quality is determined by the number of times this process occurs, i.e., by specifying the octree 

depth and, therefore, indirectly limiting the minimum voxel size; another possibility is to directly 

define the minimum voxel size. When the point cloud is decoded, all the points inside a voxel (that 

is occupied with 1 or more points) are represented with just one point at the center of the voxel. 

The occupancy of a node can be represented with a single occupancy byte, indicating which child 

nodes (leaf voxels) are occupied, and which are not. By traversing the tree in breadth-first order 

and outputting the corresponding occupancy byte for each voxel, the point cloud geometry can be 

efficiently compressed. Figure 4.1 illustrates this process. 

Figure 4.1: Octree structure and corresponding voxels in 3D space. 
 

Regarding the color attribute, the average color of all the points belonging to a leaf voxel is 

computed and coded. In this work, since only geometry quality metrics and codecs are considered, 

this average color value is not encoded. 

 

4.2.2 Graph-based Geometry Coding 

It is well-known that the human visual system cannot perceive many high frequency details of a 

visual signal. This fact is used to design transform-based coding schemes, e.g., the point cloud 

geometry can be efficiently encoded by discarding some high frequency information. The main 

idea here is to assume that point coordinates in the 3D space are signals on a graph and obtain a 

frequency domain representation of the signal (3D locations) using a graph-based transform. This 

coding solution considers several steps: 
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1. Point cloud clustering: A clustering algorithm such as K-means is used to divide the reference 

point clouds into K clusters based on the geometry data. The main objective is that the size of 

the transform is small to be computationally tractable and also local as when a DCT transform 

is applied to fixed size blocks in 2D images. 

 

2. Graph creation: Then, the graph structure is created, i.e., the edges of the graph are defined 

by connecting nearby points in each cluster. For each of the edges, a weight is assigned 

expressing the similarity between the corresponding signal values, in this case the 3D point 

coordinates according to a distance metric [90]. Thus, each point is connected to its K nearest 

neighbors and then any duplicated edges are pruned. When a sufficient number of neighboring 

connections is allowed, all points of a cluster belong to a single graph and, therefore, it is 

possible to obtain an efficient frequency representation. 

 

3. Graph transform [90]: After obtaining a graph-based representation with the edges, vertices 

and associated weights, it is possible to compute the graph transform coefficients. The graph 

transform starts by computing an adjacency matrix A, which is populated with non-zero 

weights for every pair of connected points, i.e., for the pairs of points adjacent in the graph. 

Then, a graph Laplacian matrix Q is computed based on the weights and the eigenvector matrix 

of Q is applied as a transform to the 3D geometry coordinates. This transform is applied 

independently for the x, y, and z coordinates. Since the graph transform is based on the 

adjacency matrix A, the output is a set of DC and AC coefficients. When all the points in the 

cluster are connected directly or indirectly through another point, a single DC coefficient is 

obtained. 

 

4. Uniform quantization: Uniform quantization with dead-zone is applied to the graph transform 

coefficients obtained from the graph transform applied to each cluster. The dead-zone is twice 

as large as the step size selected by the user. This quantization is responsible for the loss of 

quality and the appearance of compression artifacts at the decoder side, but also for the reduced 

rate. 

Naturally, at the decoder, it is necessary to perform the inverse set of operations with respect to 

the encoder. Therefore, inverse quantization is performed as well as inverse graph transform. In 

the octree coding solution, the decoded point cloud does not have the same number of points as 

the reference point and, thus, spacing between points may be visible after rendering; moreover, the 

rendering primitive used (point, cube, or sphere) may also be visible, especially at low bitrates. On 

the other hand, for graph-based coding solutions, the number of decoded points is always the same 

as in the reference point cloud; however, due to the clustering process, some blocking artifacts 

may appear in the rendered point cloud as well as some holes between clusters. 
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4.3 Subjective Assessment Framework 

In this section, the subjective test setup, and the creation of the video content for the subjective 

assessment are described. 

 

4.3.1 From Point Clouds to Video Sequences 

Three point clouds from the inanimate object dataset, notably Statue Klimt, Shiva and Egyptian 

Mask, and three point clouds from people object dataset, notably Loot, Long dress and Red and 

Black, were selected from the MPEG repository [91]. These point clouds are shown in Figure 4.2. 

These two datasets have rather different characteristics due to the way its acquisition was made. 

While the first dataset has some missing points (holes) in localized regions and acquisition noise, 

the second dataset is cleaner without visible artefacts. Noisy point clouds may impact the subjects’ 

quality opinion, and this applies for both the reference and decoded point clouds, thus making the 

reference already annoying in terms of quality. All point clouds are static and have been coded 

using the two selected geometry coding solutions to obtain decoded point clouds with low, 

medium, and high quality. After, each point cloud was rendered to obtain a format suitable for 

visualization by the final user. In this case, both the reference and decoded point clouds were 

processed by the Technicolor renderer, currently known as Interdigital renderer [92]. 

 
Figure 4.2: PCs selected for subjective assessment. From left to right: Loot, Red and Black, 

Long Dress, Shiva, Statue Klimt, and Egyptian Mask. 

To render a point cloud into a video sequence it was first necessary to define a virtual camera path 

for the user visualization of the object. Considering that the selected point clouds correspond to 

individual objects, it was considered appropriate to define a spiral camera path around the object, 

starting from a full object view and going to a closer look, with 512 views, i.e., around 17 seconds. 

Figure 4.3 shows the camera positioning from two different angles. 
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Figure 4.3: Camera path used for the point cloud rendering process. 

A key parameter of the point cloud rendering process is the type of rendering primitive for each 

point; the most used primitives are the cube, point and splats. After some experiments, the cube 

primitive was selected. Cubes are similar to pixels in images and create better quality images by 

better filing the area between points. The size of the cube primitive for each point is also an 

important parameter; while using a smaller size may create holes, thus making the object surface 

less smooth, using larger sizes may lead to lack of detail. Therefore, the following method was 

adopted to determine the point size for the octree-based codec: 

1. Each point cloud was normalized and scaled to its bounding box. 

2. The mean distance of each point to its 10 nearest neighbors was computed. 

3. The average distance over the full point cloud was selected as the point size for rendering. 

This method does not work well for point clouds encoded with the graph transform-based codec 

because of the larger distances around the clusters’ boundaries. The average nearest neighbor 

distance is a good estimation of point distance in a point cloud. However, this distance cannot be 

used since the distance among clusters which are created due to graph transform coding is rather 

different (usually it is much larger), i.e., it does not follow the same distribution. Therefore, for the 

graph transform-based codec, the point size obtained from the above process (i.e., for octree 

coding) needs to be mapped to a suitable point size for graph-based coding. In this case, it was 

found that using the following curve expressed by the division of two polynomials leads to good 

results: 
 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 
𝑓(𝑥) = 

𝑥 + 𝑑 
(4.1) 
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The parameters a, b, c, and d were found experimentally using a set of point sizes considered 

optimal in a subjective way in a short, small informal subjective test, thus obtaining the values: 

a=3.7, b=6.7, c=3.8 and d=-0.8. After setting the primitive and point size, point clouds and their 

associated colors (color was not coded) were rendered to a raw RGB video sequence with 800×600 

spatial resolution at 30 fps, leading to a duration of 17 s using the predefined spiral camera path. 

 

4.3.2 Subjective Assessment Methodology 

Since the two selected point cloud datasets have rather distinct characteristics, the subjective 

assessment was organized in two separate sessions. For both sessions, the DSIS methodology was 

adopted to obtain the subjective scores. Subjects included 4 females and 18 males. The goal of the 

experiment was briefly explained to the subjects, and they were asked to participate in a short 

training session just before each one of the test sessions. For the training sessions, the Head and 

Queen point clouds were used [91]. The point cloud reference and impaired rendered videos were 

viewed one after the other and scored by each subject with the play of each new video sequence 

controlled by the subjects as they had to press ‘Play’ to see a new sequence. The duration of the 

whole test was around 30 minutes (≈ 8 minutes of train and ≈ 22 minutes of test sessions). All 

rendered point clouds were organized into 9 scoring rounds within each session; each round 

included all point clouds with a random level of quality. According to Recommendation BT- 

500.13 [31], the subjects visualized first the reference/original rendered point cloud and after the 

corresponding geometry impaired/decoded point cloud (always using the original color); the 

impairments were scored in a 1-5 scale associated to five quality levels, notably ‘very annoying’, 

‘annoying’, ‘slightly annoying’, ‘perceptible but not annoying’ and ‘imperceptible’. The IST Point 

Cloud Subjective Assessment Framework developed in [93] was used to perform the visualization 

for the test sessions. Figure 4.4 shows an example of one of the point clouds in the IST Point Cloud 

Subjective Assessment Framework. 

 

Figure 4.4: IST Point Cloud Subjective Assessment Framework: the scoring panel is shown only 

after viewing both the reference and decoded videos. 
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The rendered point clouds were visualized on a 23-inch ASUS VH238 monitor with 1920×1080 

spatial resolution. An i7 workstation with the Intel HD 530 graphic card and 128MB video memory 

was used to play the test sequences at the correct frame rate. 

Subjective Scores Processing 

The same outlier removal process as described in Chapter 2 was deployed before further processing 

the subjective scores. In this study, one of the subjects was rejected. After the outlier removal 

procedure, the average of all scores across the subjects was calculated for each test sequence, for 

each coding rate; this corresponds to the MOS for each (sequence, rate) pair. 

 

4.4 Performance Evaluation 

This section focuses on the evaluation of the objective-subjective correlation of the selected point 

cloud geometry objective quality metrics for the selected point cloud geometry codecs, thus 

considering the artefacts present in the decoded point clouds. First, Section 4.4.1 presents the 

coding parameters used for the experiments; next, Section 4.4.2 presents the objective- subjective 

correlation scores for the most popular objective quality metrics at the time. 

 

4.4.1 Coding Conditions 

The reference and decoded point clouds used in the subjective quality assessment tests have 

different dynamic range and point densities. Therefore, the coding parameters had to be adjusted 

for each point cloud to create three clearly distinguishable qualities. For the graph transform-based 

codec, each object was divided into 1000 clusters. Table 4.1 shows the coding parameter values 

used to create the decoded point clouds for the subjective assessment experiment, notably the 

quantization parameter for the graph transform-based (GT) codec (𝑄𝑃) and the voxel size (𝑣𝑠) for 

the octree-based codec. Since point clouds have different number of points, densities and other 

characteristics, these coding parameters where manually identified to obtain a wide range of 

qualities. 

 

4.4.2 Objective Quality Metrics Evaluation 

In this chapter, the same correlation performance metrics as in Chapter 3 are used to evaluate the 

correlation performance for the objective quality, notably PLCC, SROCC and RMSE. Since at the 

time of this work, point clouds had floating point precision (and were not voxelized), they were 

normalized before computing the RMSD and Hausdorff distances in order to compute the 

distortion on a similar scale for the set of point clouds under evaluation. 

To have the same scale for the objective quality metrics and MOS values, a nonlinear logistic 

function was applied to the objective quality scores, as recommended in [32]. Let 𝑄𝑖 be a specific 

objective quality score for video 𝑖 and 𝛽𝑘 the logistic function parameters. Based on [32], the 
predicted subjective score 𝑀𝑂𝑆 𝑖   for the video sequence i is computed from the quality score 𝑄 

𝑝 𝑖 

of some objective quality metric according to: 
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𝑀𝑂𝑆 𝑖  = 𝛽  + 
𝛽1 − 𝛽2

 
𝑝 2 

−  
 𝑄𝑖−𝛽3)

 ( 
1 + 𝑒 𝛽4 

(4.3) 

To estimate the 𝛽1, 𝛽2 and 𝛽3 logistic function parameters, a non-linear regression of the objective 

quality metric scores over the MOS was performed. This allows fitting the objective quality metric 

scores to the MOS values. This fitting was performed using the MATLAB non-linear regression 

function, with initial parameter estimates as suggested in [32]. Figure 4.5 shows the predicted 

subjective scores (based on the objective scores) versus the real MOS values for all the decoded 

point clouds (with the two selected codecs) in this experiment. Since there were two test sessions, 

one for the people dataset and another for the inanimate dataset, with different characteristics, the 

two cases are treated, first independently, and later jointly. 
 

Table 4.1: Point cloud geometry coding parameters. 
 

Dataset Point Cloud No. Original Points Quality 𝑸𝑷 𝒗𝒔 

 

 

 

 

 

People 

 

Loot 

 

~782,000 

High 10 11 

Med. 30 21 

Low 60 35 

 

Red and Black 

 

~700,000 

High 2 13 

Med. 10 23 

Low 20 40 

 

Long Dress 

 

~800,000 

High 1 12 

Med. 10 19 

Low 30 35 

 

 

 

 

 
Inanimate 

objects 

 

Statue Klimt 

 

499,886 

High 0.05 0.05 

Med. 0.15 0.13 

Low 0.35 0.25 

 

Egyptian Mask 

 

272,689 

High 0.05 0.08 

Med. 0.15 0.14 

Low 0.25 0.4 

 

Shiva 

 

1,010,591 

High 0.01 0.04 

Med. 0.05 0.05 

Low 1 0.1 
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Figure 4.5: MOSp (predicted objective scores) vs. MOS (actual values). 
 

Table 4.2: PLCC, SROCC and RMSE results for all objective quality metrics and point cloud 

datasets. 
 

 PLCC SROCC RMSE 

Codec: Octree GT ALL Octree GT ALL Octree GT ALL 

 

 

 
Inanimate 

 
RMSD 

Po2Po 0.92 0.82 0.75 0.88 0.61 0.70 0.52 0.58 0.79 

Po2Pl 0.91 0.82 0.74 0.88 0.77 0.67 0.56 0.58 0.81 

 
Hausdorff 

Po2Po 0.89 0.90 0.65 0.85 0.80 0.52 0.60 0.44 0.91 

Po2Pl 0.90 0.90 0.67 0.85 0.80 0.64 0.58 0.45 0.89 

Number of Points - 0.78 - - 0.73 - - 0.83 - - 

 

 

 
People 

 
RMSD 

Po2Po 0.99 0.97 0.89 0.98 0.92 0.87 0.15 0.31 0.57 

Po2Pl 0.98 0.97 0.93 0.98 0.93 0.93 0.22 0.33 0.46 

 
Hausdorff 

Po2Po 0.98 0.99 0.92 0.94 0.93 0.91 0.24 0.18 0.50 

Po2Pl 0.97 0.99 0.94 0.94 0.97 0.94 0.25 0.20 0.43 

Number of Points - 0.91 - - 0.82 - - 0.45 - - 

 

 

 
All 

 
RMSD 

Po2Po 0.85 0.64 0.67 0.82 0.50 0.65 0.67 0.90 0.92 

Po2Pl 0.85 0.64 0.71 0.82 0.57 0.70 0.67 0.90 0.87 

 
Hausdorff 

Po2Po 0.81 0.67 0.72 0.79 0.58 0.66 0.74 0.87 0.85 

Po2Pl 0.82 0.66 0.73 0.79 0.61 0.70 0.72 0.88 0.84 

Number of Points - 0.80 - - 0.80 - - 0.76 - - 
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Table 4.2 shows the objective-subjective correlation performance for the four selected objective 

quality metrics (the same as for Chapter 3 and described in Section 2.6.3) in terms of PLCC, 

SROCC and RMSE, for the two codecs and the two and full datasets; the best correlation 

performance values (for the ALL column) are highlighted in bold for the inanimate, people and all 

datasets. From the results, the following conclusions may be derived: 

• Graph-based transform vs. octree codecs: Both the Po2Po and Po2Pl quality metrics 

perform rather well when fitting is performed, if the MOS values for each codec are 

independently considered. For the graph transform-based codec, the objective-subjective 

correlation is poorer than for the octree codec due to the blocking artifacts at the cluster 

borders. However, since ideally a quality metric must be agnostic to the type of artifacts 

introduced, the key results are the correlation values for the two codecs together (ALL 

column); as shown, this correlation decreases significantly (up to 0.25 points in PLCC) when 

compared to the separate codecs performance. This also means that there is still room to 

improve the point cloud objective quality metrics. 

• Po2Po vs Po2Pl metrics: The objective-subjective correlation results show that the Po2Po and 

Po2Pl quality metrics have similar performance for the same distance metric. Note that while 

the objective quality scores for these metrics are different, their correlation with the MOS 

values is similar. This also means that, for the distortions caused by the types of coding 

solutions tested, modelling the point cloud surface as a plane and measuring the distance to 

this plane does not bring many improvements; this is rather true when the nearest point is in 

the direction of the normal of the vector, as it occurs for some coding artifacts. This may change 

if other codecs and coding artifacts are considered as in the future MPEG G-PCC and V-PCC 

codecs. 

• RMSD vs. Hausdorff distances: The difference between the RMSD and Hausdorff distances 

correlation performances is not significant for the people dataset, which includes rather dense 

and regular point clouds. However, for the inanimate dataset, the difference is more significant 

since the holes present may influence the maximum distance and may lower the correlation of 

the Hausdorff-based metric with the MOS. 

• Dataset influence: Point clouds in the people dataset have higher perceptual quality after 

rendering, due to their higher density and lack of acquisition noise, in comparison with the 

inanimate dataset (even for the reference point clous). Therefore, higher objective-subjective 

correlation is obtained for the people dataset when all codecs are considered. This is mainly 

due to the fact that the noisy surfaces with many holes after rendering of the inanimate dataset 

objects may make the scoring more challenging for the subjects. Note that the objective quality 

scores do not consider the intrinsic quality of the reference point clouds and 3D rendering since 

a DSIS methodology has been adopted. 

As a curiosity, Table 4.2 also assesses the correlation performance of the number of decoded points 

if it is taken as an objective quality metric. This could be a rather good metric to assess the quality 

of decoded point clouds with the octree codec for which quality is dependent on the number of 
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points. However, it only works well in this specific case because the rate and, therefore, the quality 

in octree-based coding are directly associated with point reduction, i.e., lower rates lead to lower 

number of points. For the graph-based codec (and all codecs for which this relation does not apply), 

this metric would not be useful since the number of decoded points is always the same for this 

specific codec. 

 

4.5 Final Remarks 

This chapter targets the objective-subjective correlation evaluation of the geometry point cloud 

quality metrics available at the time this study was performed, namely Po2Po and Po2Pl RMSD 

and Hausdorff distances. To assess the correlation performance of these quality metrics, two point 

cloud codecs were selected based on two different coding approaches: the organization of the 

points in an octree structure and the spectral representation of a graph connecting nearby points. 

Experimental results have shown that the correlation between objective and subjective scores is 

similar, although with a slight advantage to the Po2Pl metrics when the two codecs and different 

datasets are considered. RMSD as a metric is slightly better than Hausdorff distance when all data 

and both codecs are considered. 

The work in this chapter let to a conference publication, notably: 

A. Javaheri, C. Brites, F. Pereira, J. Ascenso, “Subjective and objective quality evaluation of 

compressed point clouds,” IEEE Workshop on Multimedia Signal Processing, Luton, UK, October 

2017. 
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Chapter 5 
_ 

 

Impact of Rendering on Perceived Quality of 

Point Clouds 

 

 

 

 

 
 

5.1 Context and Objectives 

Point clouds can be visualized on a variety of devices, such as 2D displays, head-mounted displays 

(HMDs), augmented reality devices and even on stereoscopic or multi-stereoscopic displays. 

However, independently of the type of display, point clouds cannot be directly visualized and 

require a rendering technique to create the data that may be visualized; this may be seen as a post- 

processing step after decoding. Nowadays, there are several point cloud rendering approaches [94] 

[95] that may significantly impact the perceived point cloud quality in different ways. Often, the 

subjective and objective quality assessment studies available in the literature do not use the same 

type of coding and rendering solutions as well as test conditions and thus, reach different 

conclusions and are difficult to compare. Therefore, it is critical to study the impact of different 

rendering approaches on the subjective and objective quality of decoded point clouds under 

meaningful and representative test conditions. 

On the other hand, many relevant works on subjective and objective quality assessment [96] - [97], 

[98], [99] and [100] rely on rather simple coding solutions such as octree pruning, which are 

inefficient compared to the state-of-the-art and produce a rather distinctive type of artefacts. 

However, more sophisticated, and more efficient lossy point cloud geometry coding solutions 

(some already standardized) are now available, which produce decoded point clouds with very 

different characteristics and artefacts. As an example, some point cloud geometry codecs 

significantly increase the number of decoded points to hide coding artefacts, thus achieving a better 

perceived quality. This makes the subjective and objective quality assessment of point clouds more 

complex, especially when more efficient coding and rendering solutions are considered. 
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While point clouds have commonly two major components, geometry, and color (or texture), this 

work focuses on the perceived quality impacts of degradations on the geometry component of the 

point cloud representation. Geometry artefacts are very important for the final perceived quality 

since this type of degradations may reduce the realism of the decoded geometry, e.g., due to the 

appearance of holes, and deformed and noisy surfaces, consequently leading to poorer user 

immersion. Figure 5.1 shows an example of geometry artefacts, in this case associated to the 

MPEG G-PCC codec (original texture was used for recoloring), which results in a rather low 

perceived quality, very much depending on the color masking effect. Despite its impact on the 

perceived quality, geometry degradations have not been much addressed in the literature. Besides, 

while the geometry is an essential component of the point cloud representation, the color attributes 

(which are optional) may not be available due to limitations in the acquisition process, e.g., point 

clouds acquired by LIDAR only devices. However, as will be seen later in this chapter, when 

present, color has an important masking effect regarding the geometry artefacts. 

Figure 5.1: Arco Valentino point cloud: left) reference point cloud; and right) MPEG G-PCC 

decoded point cloud with lowest rate. Reference texture used for recoloring. 
 

In this context, the main objectives of this work are: 

• Point cloud rendering after coding – subjective quality assessment: Study of the subjective 

quality impact of multiple coding and rendering combinations for relevant, lossy point cloud 

coding and rendering solutions. Moreover, the visibility of the distortions associated to each 

point cloud geometry codec under different rendering scenarios will be analysed. This first 

goal is critical for the design of a suitable point cloud visualization solution as a practical, 

effective rendering solution must be chosen. 

• Point cloud rendering after coding – objective quality metrics assessment: Evaluation of 

the correlation performance of available point cloud objective quality metrics for multiple 

coding and rendering combinations, i.e., for different types of rendering and coding artefacts. 

This should allow understanding the strengths and weaknesses of available objective quality 

metrics as well as their scope of validity, i.e., for which conditions these metrics represent well 

enough the human perceived quality. This second goal is critical for the design of more reliable 
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point cloud objective quality metrics, notably for the evaluation of new point cloud geometry 

coding solutions as well as associated techniques. 

• Rendered point cloud quality assessment dataset: Provision of the first public dataset of 

mean opinion scores (MOS) and corresponding decoded point clouds using relevant, lossy 

point cloud geometry coding solutions. These point cloud geometry codecs produce a 

distinctive set of artefacts that were not considered when the most popular point cloud 

geometry objective quality metrics were designed. This third goal is particularly important for 

the point cloud quality assessment community, since not many subjective quality studies are 

available at the time this work was performed and, from those available, none allowed to assess 

the impact of the rendering process that is always performed after decoding. 

This was the first work where the coding and rendering processes, which play a major role on the 

final perceived quality, were jointly evaluated, in this case for static point clouds and geometry 

coding. To be able to isolate and, thus, directly assess the impact of the geometry artefacts on the 

final perceived quality, no color attributes coding was considered in this work although the original 

color may be used for rendering after recoloring. 

This chapter is organized as follows. Section 5.2 describes the point cloud rendering solutions used 

in the subjective experiments of this chapter. Section 5.3 introduces the codec used in the 

experiments of this chapter and describes the artefacts associated with three selected point cloud 

geometry coding solutions and illustrates them when three point cloud rendering solutions are 

used. Section 5.4 presents the subjective test framework that is used for further studies in this 

chapter. Section 5.5 describes the subjective quality evaluation study along with some key 

conclusions and Section 5.6 describes to the correlation evaluation for the most relevant point 

cloud objective quality metrics. Finally, Section 5.7 reports the main conclusions and final 

remarks. 

 

5.2 Point Cloud Rendering Solutions 

In this chapter, the impact of rendering on the perceived quality of a point cloud is studied. In this 

context, for the experiments of this Chapter it was used one solution for each of the three types of 

rendering approaches explained in Section 2.4, namely, RPoint, RColor and RMesh. In the 

following, important information about the representative solution (not previously described) for 

each of these rendering approaches, are presented. 

 

5.2.1 RPoint Rendering 

For this point cloud rendering solution, the selected rendering primitive was a square because they 

are the smallest element of a 2D image (pixels); the point size was set to the minimum value able 

to fill the 3D space between points completely, thus avoiding holes, leading to a so-called 

watertight rendering. 
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Regarding shading, color attributes are not used in this specific rendering approach, in order the 

impact of geometry distortions may be assessed without any additional component if it exists. To 

obtain the normal vectors, a (best fitting) plane was used as the local surface model and an 

automatic estimation for the neighborhood radius was used, as suggested in [14]. This automatic 

estimation helps to find a suitable radius as a too small radius may result in some points having an 

invalid normal and a too large radius may result into smoothed edges. By fitting a local surface, 

only the direction of the normal can be computed and, thus, the orientation of the normal was 

determined with the minimum spanning tree algorithm [15]. 

 

5.2.2 RColor Rendering 

For this point cloud rendering solution, to isolate the impact of geometric distortions, the color 

attributes are not coded and, thus, the original color is used to recolor the decoded point cloud 

geometry. The recoloring process occurs when the number of points in the decoded point cloud is 

different (or the same) from the original number of points. The recoloring procedure uses the 

original color and performs a mapping of the original colors in the original positions to the decoded 

points positions. In this case, the vertex attribute transfer method available in MeshLab [101] was 

used for the recoloring process. Since the color information already consists of lighting 

information from the acquisition setup, we did not shade points in this approach to preserve as 

much as possible the color fidelity of the point cloud representation. 

 

5.2.3 RMesh Rendering 

For this point cloud rendering solution, the procedure to reconstruct the surface proposed in [97] 

was followed. The Poisson Surface Reconstruction algorithm, available in the popular 

CloudCompare [83] software, was selected with default parameters. The estimation of the normal 

vectors was performed as for the RPoint solution; no color attributes were used to be able to 

directly assess the subjective impact of the geometric artefacts. 

 

5.3 Point Cloud Coding Artefacts after Rendering 

This section describes the artefacts associated with each of the selected point cloud geometry 

coding solutions after rendering since this is what the users see. Three point cloud geometry coding 

solutions were selected for the studies performed in this chapter, namely the octree-based coding 

solution from the PCL Library [89], the MPEG G-PCC standard [102] and the Intra mode of the 

MPEG V-PCC standard [103]. A detailed explanation of these codecs can be found in Section 2.3. 

A characterization of the coding artefacts is important to understand the perceptual impact in the 

subjective tests and the limitations of the available objective quality metrics. With this purpose in 

mind, some frames were extracted from the videos rendered for the subjective test sessions 

described in Section 5.4.2. To study the impact of rendering, the videos created for the subjective 

test sessions were obtained with the three rendering approaches presented in Section 2.4 labelled 

as RPoint, RColor, and RMesh. To better assess the coding artefacts, the geometry of all point 
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clouds was coded using the lowest rate test conditions as described in Section 5.4.1. The selected 

point cloud examples try to show as much as possible the most impacting visual artefacts found 

during this study. 

 

5.3.1 PCL Codec Artefacts 

For the PCL codec, as the target bitrate decreases (leading to a lower octree depth), the number of 

decoded points also decreases since all points inside a voxel are represented by just one point at 

the voxel center. The consequence is an increase of the distance between decoded points and thus 

lack of detail. When PCL decoded point clouds are rendered, for any rendering solution, the lack 

of detail (i.e., points) results into a pixelated (or overly sub-sampled) decoded point cloud. An 

example of the artefacts produced with PCL coding at low rate is illustrated in Figure 5.2, for three 

point clouds and all rendering solutions. As shown, the rendered point clouds are rather pixelated 

(RPoint and RColor) or lack detail (RMesh). 

 

5.3.2 MPEG G-PCC Codec Artefacts 

The MPEG G-PCC codec prunes the octree at some specific depth and creates after a so-called 

Trisoup surface, representing the points at that depth with more precision. The rendering artefacts 

produced are very different from the PCL codec, since the number of decoded points is no longer 

reduced. An example of the artefacts produced by G-PCC at low rate is illustrated in Figure 5.3 

for three point clouds and all rendering solutions. The geometry artefacts essentially come from 

the TriSoup process which may create false edges at the block boundaries or triangles; for low 

rates, these triangles may be very visible even with texture masking. Moreover, when the point 

cloud is sparse in some region, the TriSoup process may cause artificial holes (with polygonal 

shapes) or even an increase of the size of the holes already present in the reference point clouds. 

 

5.3.3 MPEG V-PCC Codec Artefacts 

For MPEG V-PCC in Intra mode, point cloud data is first 2D mapped and after coded with 

traditional Intra prediction and 2D transform tools. The more visible rendering artefacts correspond 

to blockiness and false edges, often associated to the directional Intra prediction modes. An 

example of the rendering artefacts produced by V-PCC is illustrated in Figure 5.4 for three point 

clouds and all rendering solutions. While false edges are visible, mostly for RPoint rendering, V- 

PCC distortions are not very visible for RColor rendering, notably due to the texture masking 

effect. For RMesh, the entire decoded point cloud is smoother compared to RPoint. However, some 

details are lost, which may cause lower perceived quality. 
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rendering with RPoint, RColor and RMesh. 
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Figure 5.2: PCL coding artefacts: a) Loot; b) Egyptian Mask: and c) House without a Roof, when 
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Figure 5.3: G-PCC coding artefacts: a) Loot; b) Egyptian Mask; and c) House without a Roof, 

when rendering with RPoint, RColor and RMesh. 
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Figure 5.4: V-PCC coding artefacts: a) Loot; b) Egyptian Mask; and c) House without a Roof, 

when rendering with RPoint, RColor and RMesh. 
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5.4 Subjective Assessment Framework 

In this section, the creation of the visual content for the subjective experiments is described along 

with the test setup and conditions, in summary the subjective assessment framework. 

 

5.4.1 Test Conditions 

Six static point clouds have been selected from the MPEG content repository [104] , notably 

Egyptian Mask and Frog, from the inanimate objects class, Facade9 and House without a Roof, 

from the buildings and facades class, and Longdress and Loot, from the people class. This selection 

includes point clouds with different levels of complexity (as defined by MPEG in [104]), notably 

with four point clouds from class A (lowest complexity) and two point clouds from class B (highest 

complexity for static point clouds). These six selected point clouds have rather different 

characteristics in terms of content, geometry, and color. The most important factors for the point 

clouds selection process were: i) the point cloud density, i.e., sparse, and dense point clouds; ii) the 

(semantic) type of content, i.e. (point clouds from inanimate objects, facades and buildings and 

people classes; iii) the point cloud geometry structure, i.e., point clouds with holes and with flat 

surfaces; and iv) the color characteristics, i.e., (point clouds with small or large color gamut. Table 

5.1 shows the point cloud characteristics, notably name, number of points, coordinates precision 

and category while Figure 5.5 shows RColor rendered views from the reference point clouds. 

 

Table 5.1: Test point clouds and associated characteristics. 
 

Point Cloud Name No. Points Precision Category 

Egyptian Mask 272,684 12-bit Inanimate objects 

Facade9 1,596,085 12-bit Facades and buildings 

Frog 3,614,251 12-bit Inanimate objects 

House without a roof 4,848,745 12-bit Facades and buildings 

Loot 805,285 10-bit People 

Longdress 857,966 10-bit People 

 

Figure 5.5: Test materials with RColor rendering. From left to right: Egyptian Mask, House 

without a Roof, Frog, Facade9, Longdress, and Loot. 
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The selected point clouds were coded with the three selected point cloud codecs, at three different 

rates, to obtain decoded point clouds with three different perceptual qualities, labelled as Low (L), 

Medium (M) and High (H). The selected codecs represent three different coding approaches, 

notably PCL for octree structures, MPEG G-PCC for surface models and MPEG V-PCC for 

projection-based coding. For each of the MPEG point cloud geometry codecs, three different rate 

points have been selected following the suggested coding parameters in the MPEG Common Test 

Conditions (CTC) [104] for lossy coding. These rate points resulted into three distinguishable 

qualities, ranging from low to high. For PCL, the octree depth parameter was controlled in a way 

to obtain a similar range of qualities compared to V-PCC. Table 5.2 shows the coding parameters 

used for the PCL and MPEG G-PCC codecs. For G-PCC, the octree depth establishes the point 

cloud precision (after the voxelization step). The level parameter corresponds to some octree layer 

after which the Trisoup polygonal/surface representation is used. For PCL, the octree depth (OD) 

is set indirectly, using the PCL Octree Resolution (OR) parameter, which corresponds to the size of 

the voxel computed as 𝑂𝑅 =  2(𝑃−𝑂𝐷), with P corresponding to the point cloud precision (defined in 

Table 5.1). 

 

Table 5.2: Octree depth and level for PCL and G-PCC, for three different rates: Low, Medium, 

and High. 
 

 

Point Cloud Name 

PCL G-PCC 

Octree Depth Octree Depth Octree Level 

L M H L/M/H L M H 

Egyptian Mask 7 8 9 9 5 6 7 

Frog 8 9 10 11 7 8 9 

House without a Roof 8 9 10 11 7 8 9 

Facade9 8 9 10 11 7 8 9 

Loot 7 8 9 10 6 7 8 

Longdress 7 8 9 10 6 7 8 

Table 5.3 shows the MPEG V-PCC HEVC quantization parameter (QP) used for depth map coding 

(note that no color coding was performed) and B0 is the occupancy map precision. For V-PCC, all 

the test materials were voxelized to 10-bit precision. 

 

Table 5.3: Quantization Parameter (QP) and Occupancy Map Precision (B0) for V-PCC codec 

for Low, Medium and High Qualities. 
 

Quality Low Medium High 

QP 32 24 16 

B0 4 4 4 
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5.4.2 Test Sessions 

The subjective quality assessment was performed in three test sessions, each corresponding to a 

different point cloud rendering approach. Following Section 5.2 from Chapter 2, the test sessions 

have been labelled as: 

1. RPoint session: point clouds rendered with point-based rendering with point shading and no 

color attributes. 

2. RColor session: point clouds rendered with point-based rendering with the original color (after 

recoloring) and no shading. 

3. RMesh session: point clouds rendered with mesh-based rendering with surface shading and no 

color attributes. 

From Point Clouds to Video Sequences 

The point clouds were visualized in a non-interactive way, which means the reference and decoded 

point clouds were rendered to standard video sequences and shown on a 2D display, thus implying 

no user interaction. The advantage of such approach is that all subjects in the subjective test see the 

same parts of the decoded point clouds, exactly in the same way, thus obtaining more reliable 

subjective assessment scores, assuming the rendering path is appropriate. The CloudCompare point 

cloud processing software was used for rendering with the point size, normal estimation and surface 

reconstruction performed as described in Section 5.2. The lighting conditions, which influence the 

shading process in RPoint and RMesh, correspond to the default conditions, this means ambient 

light source (sun light) and no spotlight. A simple camera path rotation around the object was used 

to create the 2D rendered videos; this path was found to allow a rather complete visualization of the 

point clouds and, most importantly, the coding artefacts under evaluation. For some point clouds 

(e.g., Facade9), no geometry was acquired for the back side and, thus, the rotation path was 

restricted to the frontal part of the object. The virtual distance between the point cloud and the 

camera did not change, similarly to standard image and video subjective test methodologies where 

the distance between the subject and the display is typically fixed. 

The rendered videos have a spatial resolution of 1600×800, a temporal resolution of 25 frames per 

second (fps). Based on the number of stimuli and number of sessions, the duration of rendered 

videos is 10 seconds. Total duration of each session was almost 35 minutes. For all the three test 

sessions, the rendered videos were visualized on a 23-inch ASUS VH238 monitor with 1920×1080 

resolution. An i7 workstation with the Intel HD 530 graphic card and 128MB video memory was 

used to play the rendered videos at the correct frame rate. 

 

5.4.3 Subjective Quality Assessment Methodology 

The point clouds selected for the subjective study have rather different characteristics. Due to the 

acquisition process, some reference point clouds may be rather noisy, e.g., MPEG cultural heritage 

and buildings sub-category may have holes, outliers or even positioning errors. Also, the density 
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(number of points per unit of volume) of the reference point cloud may have a significant impact 

on the perceived quality of the reference rendered point cloud. These two factors may affect the 

subjective scores given by the subjects. Since these issues affect both the reference and decoded 

point clouds, the DSIS subjective test methodology was selected for all the test sessions of this 

subjective study. Thus, subjects visualize first the reference and after the decoded rendered point 

clouds and score the impairment of the decoded point cloud relatively to the reference point cloud, 

which allows to mitigate the impact of acquisition artefacts and other reference point cloud 

characteristics since they are already present in the reference point cloud. 

There were 20 subjects participating in each test session with 18 people participating in all the three 

sessions and four people in one or two sessions. At the beginning of each session, the goal of the 

subjective assessment experiment was explained to the subjects, and they were asked to participate 

in a short training session to become familiar with the application interface. For the training 

sessions, the Statue Klimt point cloud from the same MPEG repository was used. 

The full set of rendered point cloud videos was organized into six rounds per session with each 

round including all point clouds with one of the three levels of quality. Since there were six point 

clouds coded with three different codecs for three rate points, 6 × 3 × 3 = 54 stimuli were 

assessed in each session. According to Recommendation BT-500.13 [31], the subjects saw first the 

reference rendered point clouds and after the impaired (this means decoded) rendered point cloud 

and scored the later in a 1-5 scale associated to five impairment levels, notably ‘very annoying’, 

‘annoying’, ‘slightly annoying’, ‘perceptible but not annoying’ and ‘imperceptible’. The display of 

each new rendered video was controlled by the subjects by pressing ‘Play’. The subjects had the 

option to replay both video sequences (reference followed by impaired point clouds) before giving 

the subjective score. This option allowed to reduce the cognitive load of the subjects and, thus, 

obtaining more reliable scores. Each session had a duration of approximately 28 minutes, 

considering the training and scoring times. To avoid that the results of one session influenced the 

results of another session, a minimum of 48h between test sessions was respected. 

For each session, outlier subjects were identified based on the collected scores, following the 

procedure in Recommendation BT.500-13 [31]; only one outlier was identified in the RMesh 

session. After, the average of all scores across the subjects were computed for each test point cloud, 

thus obtaining a MOS for each point cloud under evaluation. The subjective scores for the three test 

sessions along with the reference and decoded rendered point clouds are publicly available at [105] 

and, thus, may be used by the research community. 

 

5.5 Subjective Quality Assessment 

The focus of this section is on the study of the impact of different point cloud rendering solutions 

on the user perceived quality for decoded point clouds with different coding artefacts. The obtained 

subjective scores are analyzed to assess the visibility of the different coding artefacts. The 

subjective scores obtained for the three test sessions will be the basis for this study; in this case, 
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the MOS values represent the similarity between the reference and decoded point clouds and not 

the intrinsic point cloud quality for which many other factors play a role. 

 

5.5.1 Impact of Rendering on Perceived Point Cloud Quality 

This section studies the impact of the three rendering solutions on the perceived point cloud 

quality. Note that, within each session, the rendering methods were not mixed and, thus, the 

subjects evaluated decoded point cloud videos for each rendering solution independently. 

Figure 5.6 shows a chart with the 54 MOS for all point clouds within each test session (each 

associated to a rendering solution). In Figure 5.6, the MOS are sorted in ascending order, i.e. from 

lower to higher scores, each score is labelled with a rendered point cloud index and corresponds 

to a coding condition, i.e. a combination of a point cloud with a codec and a rate. To identify which 

are the most frequent MOS per session (data not shown in Figure 5.6), Figure 5.7 shows the MOS 

distributions (number of votes for each score) given by the subjects in the three rendering sessions. 

 

 

          
 

 

Figure 5.6: Sorted MOS for all test point clouds for the three test/rendering sessions. 
 
 

 
 

Figure 5.7: MOS histograms for the three test/rendering sessions. 
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Figure 5.6 shows that the scores are well distributed over the full range, from low (close to 1) to 

high (close to 5). The RColor session (blue curve) shows the highest MOS, followed by the RMesh 

session and, finally, the RPoint session. Based on the results, the following conclusions about 

impact of rendering, considering different rendering approaches, can be derived: 

• RPoint rendering: The geometry coding distortions are more visible for RPoint rendering 

since RMesh and RColor have mechanisms to mitigate the visual impact of the coding artefacts, 

e.g., filtering or masking. This can be clearly observed in Figure 5.6 where the coding artefacts 

are more visible for the curve with lower MOS and, thus, as shown in Figure 5.7, more ‘1’, ‘2’ 

and ‘3’ votes are obtained for RPoint compared to RMesh and RColor. 

• RMesh rendering: As shown in Figure 5.7, RMesh rendering has higher MOS (and less low 

MOS) than RPoint rendering. This can be explained by the fact that RMesh rendering includes 

a surface reconstruction process (polygonal mesh creation) which smooths the point cloud and 

makes the coding distortions less visible, somehow behaving as a denoising filter. However, it 

should be emphasized that point cloud edges and details are also smoothed with this type of 

rendering and, thus, RMesh is not able to outperform a point-based rendering solution with 

color (RColor), where the points are simply rendered with a basic primitive. It also requires 

the extra processing step of surface reconstruction before rendering, which may be difficult to 

apply in some application scenarios due to the scene complexity or the point cloud size 

(number of points). 

• RColor rendering: For RColor rendering, the original texture contains natural shading 

information, acquired from the light reflected by the object surface. This contrasts with the 

RPoint and RMesh renderings, which use a single color with synthetic shading and the final 

rendering result depends on the accuracy of the (extracted) normal vectors (geometry only). 

However, the original color captured during the acquisition can effectively mask many of the 

geometry distortions, changing the perceived surface of the objects. Also, the texture details 

can hide geometry distortions since the human visual system is less sensible to high 

frequencies; this will cause the subjects to perceive less distorted shapes and, thus, better scores 

are given in the RColor session. In fact, in this session, most of the scores are ‘4’ and ‘5’ as 

shown in Figure 5.7, which means that most of the decoded point clouds were considered to 

have low impairment regarding the reference point clouds. In this case, the most visible 

geometry distortions are limited to the object boundaries. 

In summary, rendering with high quality color attributes masks the geometric distortions and 

results in higher perceived point cloud quality. However, color attributes may not be available, and 

some applications may require high geometry fidelity. For example, geographical information 

systems and cultural heritage applications typically only tolerate imperceptible geometry 

deformations; in such cases, RPoint rendering could be an appropriate choice to avoid the influence 

of color masking and geometry filtering. On the other hand, if color is not available and geometry 

degradations are tolerable if not visible, RMesh rendering should be used, since it allows to 
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mitigate the impact of some coding artefacts, e.g., holes and false edges, compared to RPoint, thus 

leading to higher perceived point cloud quality. 

 

5.5.2 Impact of Rendering on the Coding Artefacts Visibility 

This section studies the impact of the three rendering solutions on the visibility of the coding 

artefacts associated to the three selected codecs. With this purpose in mind, the MOS for the three 

point cloud codecs and the three rendering solutions are shown in Figure 5.8. 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Figure 5.8: Sorted MOS for all point clouds for the three test/rendering sessions, separated for 

each codec. 
 

This point cloud codec-based presentation of the MOS scores, thus more granular than Figure 5.6, 

allows comparing the impact of the rendering solution on the final perceived visibility when 

different coding artefacts are present. Figure 5.8 shows that the MOS distribution for each 

rendering approach is not similar for all codecs. The main conclusion is that the different types of 

coding artefacts are not equally visible for all rendering approaches. Based on the results, the 

following conclusions about the sensibility of the several rendering solutions to the point cloud 

codecs considered, and thus type of coding artefacts, may be derived: 

• PCL Coding: PCL distortions are visible regardless of the rendering solution and, thus, MOS 

are rather well distributed in the 1-5 range. This is mainly because a pure octree point cloud 

coding solution controls the decoded quality by limiting its maximum depth and, thus, decoded 

point clouds have a lower number of points than the reference point clouds, sometimes 

significantly lower. Thus, larger point sizes for RPoint and RColor rendering are needed, thus 

creating a pixelated effect (perceptually unpleasant). Although a surface is reconstructed with 
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RMesh rendering, when the number of points is reduced, details are lost, and some meshes 

even show geometry distortions due to the surface reconstruction process. 

• G-PCC Coding: G-PCC distortions are less visible for RColor rendering compared to RPoint 

and RMesh, since the color masks the surface distortions. However, false edges, holes and 

geometry distortions at boundaries are still visible for severe distortion cases. RPoint and 

RMesh follow a similar trend, with slightly better scores for RMesh, since it mitigates the 

impact of some coding artefacts (e.g., holes and false edges), thus offering a more visually 

appealing surface. 

• V-PCC Coding: V-PCC distortions are not very visible for RColor rendering since they are 

not large enough to create strong deformations and the color masks most of the geometry 

distortions. Due to the V-PCC projection onto 2D maps (texture and depth) and the efficient 

HEVC coding process, most of the surfaces are consistently represented, although with some 

error regarding the original surface. V-PCC distortions are also less visible for RMesh than for 

RPoint rendering due to the impact of surface reconstruction-based rendering on the perceived 

quality. 

 

5.5.3 Statistical Significance Analysis of Subjective Assessment Scores 

This section presents a statistical significance analysis of the subjective quality assessment scores. 

The goal is to evaluate if the differences between the MOS for the three rendering approaches 

(RPoint, RColor and RMesh) are statistically significant at a given confidence level. Based on 

procedures suggested in previous works [106] [107] [108], three statistical tests were applied: 

• Welch ANOVA Significance Test compares two means to see if they are equal. It is an 

alternative to the Classic ANOVA and can be used even if your data violates the assumption 

of homogeneity of variances (i.e., equal variances). If there are more than two groups of data, 

it can only show if the difference between group means is statically different or not. However, 

cannot identify which differences between group means are statistically significant. The null 

hypothesis in this test is that the groups of data are drawn from a distribution with the same 

mean. 

• Games-Howell Post-hoc Test is applied after the ANOVA test and is used to compare all 

possible combinations of group differences when the assumption of homogeneity of variances 

is violated. However, it still requires the groups to follow a normal distribution. The null 

hypothesis in this test is that two groups of data in the pairwise comparison are drawn from a 

distribution with the same mean. 

• Wilcoxon Signed-Rank Test is a non-parametric statistical hypothesis which is used to 

compare all possible combinations of group differences when normality of populations is 

violated in the groups of data. The null hypothesis in this test is that the groups of data are 

drawn from a non-parametric distribution with the same mean. 
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In null hypothesis significance testing, the p-value is the probability of the null hypothesis being 

correct. In all tests above, for α percent significance level, if the p-value is smaller than α, the null 

hypothesis is rejected. 

To test if a group of data follows a normal distribution, Shapiro-Wilk statistical test is applied and 

to see if two (or more) groups of data have homogeneous variances, Levene’s test is used in this 

section. 

For all tests, the full set of obtained subjective scores was divided in three groups, one group of 

scores for each point cloud rendering approach, since the results being tested for statistical 

significance (sections 5.5.1 and 5.5.2) evaluate the impact of rendering. The selection of these 

statistical tests was motivated by the fact that for V-PCC data, the variance homogeneity test fails 

according to a Levene’s test while the distribution of data is not normal for the ‘All’ case according 

to the Shapiro-Wilk normality test. 

Welch ANOVA significance test: To evaluate if the dependency of MOS values on the rendering 

method is statistically significant, the Welch ANOVA significance test was applied, thus 

comparing groups of MOS values, one group for each rendering method. This test measures the 

difference between the mean values of each group with a 5% significance level, without requiring 

homogeneity of variances. The null hypothesis assumes that MOS values for the various groups 

(rendering methods) are drawn from a population with equal means. Table 5.4 shows the p-values 

and associated MOS averages when considering all possible groups of scores for each codec 

(‘PCL’, ‘G-PCC’ and ‘V-PCC’ columns) and for all the codecs together (‘All’ column). When the 

p-value is lower than 0.05 (significance level), the separation between these rendering approaches 

is statistically significant. 

 

 
Table 5.4: P-values for the Welch ANOVA significance test and MOS averages for each 

rendering session, i.e., RPoint, RColor, RMesh. 
 PCL G-PCC V-PCC All 

p-value 0.98 0.019 0.0 0.002 

Average MOS 3.0,3.0,3.1 2.8,3.8,3.2 3.1,4.2,3.5 3.0,3.7,3.2 

 
Games-Howell post-hoc and Wilcoxon signed-rank tests: To compare the several possible pairs 

of rendering methods, a multiple-comparison statistical test must be used. In this case, the Games- 

Howell post-hoc test was selected since it also does not require the homogeneity of variances, 

again with a 5% significance level. Table 5.5 shows the p-values obtained for this post-hoc test for 

all possible rendering pairs. Moreover, since the obtained MOS values do not follow a normal 

distribution (i.e., normality does not hold) for the ‘ALL’ case, the p-values obtained for the 

Wilcoxon signed-rank test (5% significance level) are shown in Table 5.6. The Wilcoxon signed- 

rank test assesses whether the group mean ranks differ. This test is more suitable for this case since 
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it is a non-parametric test, i.e., it does not assume any data distribution. For the Games-Howell 

post-hoc and Wilcoxon signed-rank tests, when the p-value is lower than 0.05 (significance level), 

there is statistical significance between groups of MOS. This means that MOS for those sessions 

can be considered different, regardless of MOS for each stimulus or even average of stimuli. e.g., 

MOS between V-PCC decoded point clouds is statistically different between RPoint and RColor, 

which in this case confirms that MOS in RColor is higher than RPoint (based on values). 

 

Table 5.5: P-values for the Games-Howell post-hoc test for all rendering pairs (pair order is 

irrelevant). 
 PCL G-PCC V-PCC All 

RPoint↔RColor 0.998 0.011 0.000 0.002 

RPoint↔RMesh 0.973 0.586 0.144 0.300 

RColor↔RMesh 0.988 0.162 0.000 0.085 

 

Table 5.6: P-values for the Wilcoxon test for the ‘All’ case. 
 

 RPoint↔RColor RPoint↔RMesh RColor↔RMesh 

p-value 0.0 0.023 0.003 

 
From the analysis of the results in Table 5.4 and Table 5.5, i.e., Welch ANOVA significance and 

Games-Howell post-hoc tests, respectively, the analysis of Section 5.5.2 can be confirmed and 

new conclusions may be derived: 

• PCL: The difference between the MOS for the three rendering approaches is not statistically 

significant and thus, any rendering can be used. This was expected since PCL distortions are 

visible regardless of the rendering solutions and, thus, similar subjective scores were obtained 

for all rendering approaches. 

• G-PCC: RColor is better than RPoint and, thus, if color is available, it should be used in point- 

based rendering solutions. There is no statistical difference between RPoint and RMesh and 

RColor and RMesh, meaning that there is no advantage in using mesh-based rendering (which 

may even require complex surface reconstruction methods). 

• V-PCC: RColor is better than RPoint and RMesh and, thus, color effectively masks the 

geometric distortions associated to the V-PCC coding artefacts. For the 2nd best rendering 

method, there is no statistical difference between RPoint and RMesh and thus, this means that 

any of these two approaches may be used. 

Finally, from the analysis of the results in Table 5.6 above, i.e., Wilcoxon signed-rank test results, 

statistical significance was obtained for all rendering pairs (i.e., RPoint↔RColor, 

RPoint↔RMesh, and RColor↔RMesh) for the ‘All’ case, meaning that a ranking order of the 

rendering methods is established. The results for this test show that RColor is statistically better 
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than RMesh and RMesh is statistically better than RPoint. This confirms the intuitive ordering 

shown in Figure 5.6 and the conclusions in Section 5.5.1. 

 

5.6 Objective Quality Metrics Evaluation 

In this section, the selected objective quality metrics performance will be presented and analyzed 

using the subjective scores obtained in the three test sessions, thus for different rendering 

approaches. As recommended in [31] [32], before assessing the objective quality metrics 

correlation performance, a nonlinear logistic fitting similar to Chapter 3 has been applied to the 

objective scores to map them to the subjective scores scale. To assess the objective quality metrics 

performance, the Pearson Linear Correlation Coefficient (PLCC) is computed as a measure of the 

linear dependence between the objective metric scores and the corresponding MOS. 

Table 5.7 and Table 5.8 shows the PLCC and SROCC values for the 9 objective quality metrics 

described in detail in Chapter 2, section 2.6.3, for each rendering approach, independently 

computed for each point cloud codec and also considering all codecs simultaneously (column 

‘All’). With these correlation results, the performance of each metric can be assessed for each of 

the three test/rendering sessions described in Section 5.4.2. A detailed analysis of the results in 

Table 5.7 is presented in the following. First, from the perspective of the point cloud codec and 

coding distortions, next from the perspective of the rendering solution and, finally, assessing which 

objective quality metric performs the best and under which conditions. 

 

Table 5.7: PLCC (%) between objective geometry quality metrics and MOS scores for the three 

selected rendering approaches. In bold, the best PLCC values and all the other PLCC values that 

do not deviate more than 0.02 from the best PLCC value. 
 

 
Type 

 
Metric 

RPoint Session RColor Session RMesh Session 

PCL G-PCC V-PCC All PCL G-PCC V-PCC All PCL G-PCC V-PCC All 

 

 
Point-to-Point 

D1 84.5 53.7 26.3 51.9 84.1 85.5 44.1 64.3 90.5 32.7 7.5 39.0 

Hausdorff 90.5 45.6 34.2 23.7 87.1 59.2 57.8 18.6 88.3 49.4 31.2 32.5 

D1-PSNR 87.4 86.5 55.0 66.9 89.8 71.1 72.3 78.3 91.6 51.7 18.3 68.8 

 

 
Point-to-Plane 

D2 84.4 50.2 32.8 46.9 84.7 80.6 18.3 60.2 88.5 37.1 12.4 34.5 

Hausdorff 90.1 55.1 29.8 30.1 87.0 67.1 69.0 21.1 87.7 45.9 26.9 28.9 

D2-PSNR 90.1 82.4 52.1 69.7 90.3 54.6 61.4 78.2 91.0 63.2 28.0 72.1 

 

 
Plane-to-Plane 

MSE 72.4 55.5 54.1 51.8 55.7 68.3 74.5 24.7 40.0 28.0 28.7 30.3 

RMS 72.4 55.4 52.6 51.8 55.7 68.3 74.5 24.6 40.0 27.9 27.1 30.5 

MEAN 71.7 55.6 51.8 51.5 55.0 68.0 72.9 24.7 39.8 26.2 30.4 31.1 

- No. Points 65.2 21.8 27.9 12.3 69.0 27.1 60.6 43.1 68.6 33.1 28.9 2.3 
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Table 5.8: SROCC (%) between objective geometry quality metrics and MOS scores for the 

three selected rendering approaches. In bold, the best SROCC values and all the other SROCC 

values that do not deviate more than 0.02 from the best SROCC value. 
 

 
Type 

 
Metric 

RPoint Session RColor Session RMesh Session 

PCL G-PCC V-PCC All PCL G-PCC V-PCC All PCL G-PCC V-PCC All 

 

 
Point-to-Point 

D1 73.1 65.9 32.7 61.8 76.2 91.0 59.1 74.2 84.5 -1.5 2.5 43.3 

Hausdorff 84.4 36.3 37.7 25.2 79.6 60.8 55.5 -2.9 80.0 33.2 22.3 6.1 

D1-PSNR 73.7 86.4 60.1 63.5 80.8 65.6 71.7 71.7 87.3 39.6 23.1 50.7 

 

 
Point-to-Plane 

D2 81.9 64.8 27.2 58.4 81.0 90.1 -40.1 73.3 77.3 -5.2 7.7 41.1 

Hausdorff 84.2 51.9 25.7 33.1 79.3 62.5 69.4 0.6 78.1 20.5 20.1 -0.6 

D2-PSNR 79.2 84.0 46.7 64.2 86.5 51.9 61.4 69.4 81.8 53.9 20.5 55.1 

 

 
Plane-to-Plane 

MSE 72.0 42.8 57.9 45.4 53.0 65.5 77.4 36.0 33.1 22.4 23.1 29.6 

RMS 72.0 42.8 48.7 45.4 53.0 65.5 77.4 35.9 33.1 21.7 24.0 28.5 

MEAN 69.6 45.3 43.4 45.0 49.3 65.8 76.4 36.3 29.4 19.8 31.1 29.9 

- No. Points 55.8 -11.4 17.9 18.2 59.9 38.2 55.2 55.3 63.4 -28.4 8.8 13.1 

 

5.6.1 Impact of Coding on the Point Cloud Quality Metric Correlation Performance 

In the following impact of different characteristics of coding approaches (most importantly the 

number of decoded points) on state-of-the-art metrics, specifically Po2Po, Po2Pl and Pl2Pl metrics 

are investigated. 

• PCL Coding: For PCL coded data, although D2-PSNR is the best performing metric, the 

Po2Po metrics have the best performance with high PLCC and SROCC for all rendering 

approaches, as shown in Table 5.7 and Table 5.8. As PCL controls the rate by reducing the 

number of decoded points, large objective errors and perceived distortions are visible for all 

renderings. This was expected since, when the compression ratio increases (lower rates), more 

and more points are discarded (due to octree pruning) and the remaining points are represented 

farther away from the original surface. PCL artefacts are strong enough to be visible even after 

the RMesh surface reconstruction. 

• G-PCC & V-PCC Coding: As shown in Table 5.7 and Table 5.8, the objective quality metrics 

correlation performance for G-PCC is slightly lower (4 to 5% PLCC and SROCC for the best 

case) compared to PCL and shows the highest performance for Po2Po metrics (only for the 

RPoint and RColor sessions). The best performing metric for G-PCC is D1-PSNR for RPoint 

and D2-PSNR for RColor and RMesh. Moreover, none of the selected objective quality metrics 

performs well for V-PCC coded data. The selected metrics underestimate the similarity 

between the reference and decoded point clouds, especially for RPoint and RMesh renderings 

where the geometry errors are less visible, e.g., compared to RColor. Since both the G-PCC 

and V-PCC codecs tend to add points with respect to the reference point cloud (see Figure 5.9), 
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the density of points is increased and, thus, the perceived quality is higher (higher MOS). 

However, the objective quality metrics are not able to account for this effect and, thus, 

underperform for G-PCC and V-PCC codecs. In addition, since a wide range of values is 

obtained for the ratio of decoded over original number of points, notably depending on the 

codec (and also coding parameters), it is rather difficult to map errors to a perceptually 

meaningful metric; this makes the task of designing reliable objective quality metrics harder, 

especially when different types of codecs, with different coding artefacts, are jointly assessed 

(‘All’ column in Table 5.7 and Table 5.8). The objective quality metrics correlation 

performance for V-PCC is much lower compared to G-PCC (cf. Table 5.7 and Table 5.8). The 

projection-based V-PCC codec causes slight distortions on the geometry which are not very 

visible even for the lower bitrates. On the other hand, G-PCC artefacts are more visible, 

especially when the surface estimation (triangulation) process performs poorly. 
 

 

  

Figure 5.9: Average ratio of decoded over original number of points (1 means the reference and 

decoded number of points are the same). 
 

Figure 5.10 shows the histogram of the square root of Po2Po for all the points in Facade and 

Egyptian Mask point clouds coded with G-PCC and V-PCC for which the same overall D1-PSNR 

(60 dB) was obtained. As shown, although the final D1-PSNR is the same, the error distribution is 

very different between G-PCC and V-PCC. V-PCC errors are closer to zero which makes them 

less perceptually visible while G-PCC errors have larger magnitudes and, thus, are more visible. 

This implies that G-PCC has a lower subjective similarity (MOS of 1.1) than V-PCC (MOS of 

3.15) even when the D1-PSNR objective metric computes the same score (in this case 60 dB). This 

observation happens also for other objective quality metrics, such as D2-PSNR. 
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Figure 5.10: Po2Po error histograms for G-PCC and V-PCC codecs. 
 

In summary, the objective quality metrics correlation performance highly depends on the coding 

distortions introduced, being satisfactory when point clouds are coded with PCL and G-PCC and 

performing poorly for V-PCC. Naturally, no objective quality metric performs well for all codecs 

together, a real problem when comparing the RD performance of very different coding paradigms. 

 

5.6.2 Impact of Rendering on the Point Cloud Metrics Correlation Assessment 

As previously concluded, rendering can significantly influence the visibility of coding artefacts 

(i.e., the perceived similarity/impairment between reference and decoded point clouds) and, thus, 

it is important to analyze the objective quality metrics correlation performance for different 

rendering solutions. The PLCC and SROCC value over all data for all sessions is rather low (less 

than 78.4% and 71.8% respectively) because the objective quality metrics cannot measure with 

accuracy all different types of distortions. However, as shown in Table 5.7 and Table 5.8, the best 

PLCC and SROCC values both occur for RColor rendering, for which higher MOS values were 

obtained. Thus, geometry quality metrics measure the perceived similarity better when color 

attributes are used. 

The main reason is because subjects were able to better perceive degradations for medium and 

high quality ranges (which occur often with RColor, cf. Section 5.4.2) compared to low and 

medium quality ranges (which occur more often with RPoint and RMesh, cf. Section 5.4.2). For 

RMesh rendering, PLCC values are rather low comparing to the other rendering approaches, 

especially for the G-PCC and V-PCC codecs. For RMesh, point cloud data is converted to a 

polygonal mesh (surface reconstruction) for rendering and most the objective quality metrics have 

low correlation performance for this type of representation. 

In summary, objective quality metrics account better for distortion artefacts and are more reliable 

when point-based rendering (with and without color, RPoint and RColor) is used to process the 

decoded point clouds before visualization. 
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5.6.3 Point Cloud Objective Metrics Correlation Assessment 

In this section, correlation performance of the different metrics, sorted by their type, is evaluated 

for all stimuli in the subjective tests of this chapter and also for decoded point clouds of each codec 

individually: 

Po2Po metrics: Po2Po metrics have a high PLCC performance for many cases but are especially 

better than others for the PCL and G-PCC codecs (RColor and RPoint). This is because PCL and 

G-PCC (to some extent) are octree-based point cloud codecs and, thus, some distortions still come 

from the positioning error related to the 3D partitioning of space into voxels, the target of this type 

of quality metrics. The Po2Po and Po2Pl Hausdorff metrics can also reach high PLCC values, 

especially for PCL data and the RPoint session (90.07). However, Hausdorff is not a very reliable 

quality metric when different types of coding distortions (all data and G-PCC/V-PCC) are 

considered together. The main reason is that only the maximum error is accounted and, thus, this 

type of metric is too sensible to outliers; this problem has been already observed in our previous 

work reported in Chapter 3. 

Po2Pl metrics: Regarding Po2Pl metrics, the performance is very similar to Po2Po metrics, 

although slightly better for some cases since it considers the underlying surface from which the 

3D point locations were sampled. Moreover, the D2-PSNR metric as a Po2Pl metric excels, being 

rather reliable and consistent for many cases, outperforming the corresponding D2 metric. The 

main reason is that the peak used (computed from the geometry coordinate precision) to convert 

MSE to PSNR values acts as an important normalizer. 

Pl2Pl metrics: Pl2Pl metrics have, in general, worst PLCC performance when compared to Po2Po 

and Po2Pl metrics. This is mainly because it is rather difficult to obtain reliable normal vectors for 

the decoded point cloud, especially when some types of coding artefacts are present (e.g., holes) 

or the decoded point cloud is rather sparse [109]. However, these quality metrics seem to be the 

best choice for the V-PCC codec (for RColor and RMesh renderings) where geometry errors 

mainly come from coding artefacts in the 2D geometry maps and, thus, are more consistent among 

different parts of the point cloud. 

As a curiosity, the number of decoded points could also be used as an objective quality metric, see 

last line of Table 5.7 and Table 5.8. As expected, this metric performs very poorly, especially for 

V-PCC data where the number of decoded points is typically larger than the number of original 

points and critically depends on some coding parameters, e.g., B0 for the V-PCC occupancy maps. 

 

5.6.4 Statistical Significance Analysis of Objective Metrics Performance 

Besides the usual PLCC correlation evaluation, the difference in the performance of one objective 

quality metric with respect to another was assessed for statistically significance, using the 

procedure suggested in [110]. For that purpose, the so-called prediction residuals were first 

calculated by subtracting the subjective scores from the predicted subjective values, obtained by 

applying a nonlinear logistic fitting to the objective quality scores. These prediction residuals were 
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obtained for every point cloud objective quality metric. Then, the one-tailed F-test was applied to 

the prediction residuals, to assess if the difference in PLCC performance between any two given 

point cloud objective quality metrics is statistically significant at some significance level. In 

general, the significance level should be set based on the sample size (cardinality) being evaluated 

for an increased power of the test (i.e., probability of rejecting the null hypothesis when it is not 

true) [111]; since the cardinality of the prediction residuals is 18 for a single point cloud codec 

(PCL, G-PCC and V-PCC), a 0.2 significance level was used [111]. The F-test assumes that the 

samples are normally distributed, and thus the kurtosis test was used to verify whether all 

prediction residuals followed a Gaussian distribution, which was the case for all the objective 

metrics, except the No. Points, which is recognized as a very poor quality metric. 

In this work, the F-test null hypothesis is that the prediction residuals for the two objective quality 

metrics being compared are obtained from normal distributions with the same variance, which 

means that the pair of objective metrics under evaluation is statistically similar. The alternative 

hypothesis is that the prediction residuals for the two objective quality metrics being compared are 

obtained from normal distributions with different variances, which means that the pair of objective 

metrics under evaluation are statistically different. By computing the ratio between the variances 

of the two prediction residuals, the test statistic, F, was obtained, which was then compared to the 

F-test critical value, Fcritical; the F-test critical value depends on the significance level and the 

sample sizes. When F is larger than Fcritical, then the null hypothesis can be rejected, which means 

that the objective quality metrics under evaluation are statistically different; otherwise, the null 

hypothesis cannot be rejected, meaning that the objective metrics under evaluation are statistically 

indistinguishable. Since the test statistic F is always computed with the objective quality metric 

with larger prediction residual variance in the numerator, the objective quality metric in the 

denominator corresponds to the metric with the best performance whenever the null hypothesis is 

rejected. 

The F-test results are presented in Table 5.9, 

 

 
Table 5.10 and Table 5.11 for each of the test sessions. for RPoint, RColor and RMesh rendering, 

respectively. Each table entry is the codeword that represents the F-test outcome for PCL, G-PCC, 

V-PCC and All codecs, respectively; a ‘‘1’’, ‘‘_’’, or ‘‘0’’ means that the performance of the 

objective metric in a given row (in terms of the correlation of its predictions with MOS) is better, 

similar, or worse than the performance of the objective metric in a given column, respectively. The 

results obtained confirm that Po2Po and Po2Pl metrics have the best overall performance for many 

coding scenarios (PCL, G-PCC and for ‘All’ codecs), especially the PSNR based metrics which 

are consistently better than D1 and Hausdorff based metrics. Between the D1 and D2 PSNR, there 

is no statistical difference, which means that both metrics achieve similar correlation performance. 

Moreover, Pl2Pl metrics have the best performance for V-PCC decoded data (for RColor 
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rendering). In summary, the statistical significance results allow confirming that the conclusions 

drawn in Sections 5.6.1 to 5.6.3 before, regarding the superiority of a quality metric are valid. 

 

Table 5.9: Statistical significance test results for the selected point cloud geometry objective 

quality metrics with RPoint rendering. Each entry is the codeword representing the best outcome 

for the PCL, G-PCC, V-PCC and ‘All’ codecs. 
 

  Po2Po Po2Pl Pl2Pl 

  D1 Hausdorff D1-PSNR D2 Hausdorff D2-PSNR MAD MSAD RMSAD 

 

Po2Po 

D1 ---- 1--1 00-0 ---- 1--- 00-0 ---- ---- ---- 

Hausdorff 0--0 ---- 00-0 0--- ---- 00-0 0--0 0--0 0--0 

D1-PSNR 11-1 11-1 ---- 11-1 11-1 ---- 11-1 11-1 11-1 

 

Po2Pl 

D2 ---- 1--- 00-0 ---- 1--- 00-0 ---- ---- ---- 

Hausdorff 0--- ---- 00-0 0--- ---- 00-0 0--- 0--- 0--- 

D2-PSNR 11-1 11-1 ---- 11-1 11-1 ---- 11-1 11-1 11-1 

 

Pl2Pl 

MAD ---- 1--1 00-0 ---- 1--- 00-0 ---- ---- ---- 

MSAD ---- 1--1 00-0 ---- 1--- 00-0 ---- ---- ---- 

RMSAD ---- 1--1 00-0 ---- 1--- 00-0 ---- ---- ---- 

 

 

 

 

 

 
 

Table 5.10: Statistical significance test results for the selected point cloud objective quality 

metrics with RColor rendering. Each entry is the codeword representing the best outcome for the 

PCL, G-PCC, V-PCC and ‘All’ codecs. 
 

  Po2Po Po2Pl Pl2Pl 

  D1 Hausdorff D1-PSNR D2 Hausdorff D2-PSNR MAD MSAD RMSAD 

 

Po2Po 

D1 ---- 11-1 01-0 ---- 1101 01-0 1101 1101 1101 

Hausdorff 00-0 ---- 0-10 00-0 ---- 0--0 --0- --0- --0- 

D1-PSNR 10-1 1-01 ---- 1--1 1-01 ---- 1-01 1-01 1-01 

 

Po2Pl 

D2 ---- 11-1 0--0 ---- 1-01 01-0 1-01 1-01 1-01 

Hausdorff 0010 ---- 0-10 0-10 ---- 0--0 ---- ---- ---- 

D2-PSNR 10-1 1--1 ---- 10-1 1--1 ---- 1-01 1-01 1-01 

 

Pl2Pl 

MAD 0010 --1- 0-10 0-10 ---- 0-10 ---- ---- ---- 

MSAD 0010 --1- 0-10 0-10 ---- 0-10 ---- ---- ---- 

RMSAD 0010 --1- 0-10 0-10 ---- 0-10 ---- ---- ---- 
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Table 5.11: Statistical significance test results for the selected point cloud objective quality 

metrics with RMesh rendering. Each entry is the codeword representing the best outcome for the 

PCL, G-PCC, V-PCC and ‘All’ codecs. 
 

  Po2Po Po2Pl Pl2Pl 

  D1 Hausdorff D1-PSNR D2 Hausdorff D2-PSNR MAD MSAD RMSAD 

 

Po2Po 

D1 ---- 10-- 00-0 ---- 10-- 00-0 1--- 1--- 1--- 

Hausdorff 01-- ---- 0--0 0--- ---- 0--0 ---- ---- ---- 

D1-PSNR 11-1 1--1 ---- 11-1 1--1 ---- 1--1 1--1 1--1 

 

Po2Pl 

D2 ---- 1--- 00-0 ---- ---- 00-0 ---- ---- ---- 

Hausdorff 01-- ---- 0--0 ---- ---- 0--0 ---- ---- ---- 

D2-PSNR 11-1 1--1 ---- 11-1 1--1 ---- 1--1 1--1 1--1 

 

Pl2Pl 

MAD 0--- ---- 0--0 ---- ---- 0--0 ---- ---- ---- 

MSAD 0--- ---- 0--0 ---- ---- 0--0 ---- ---- ---- 

RMSAD 0--- ---- 0--0 ---- ---- 0--0 ---- ---- ---- 

 
In summary, when all codecs and all renderings are considered, the D1 and D2 PSNR objective 

quality metrics have the highest correlation with subjective scores. These metrics correspond to 

the ones previously selected by MPEG for the PCC Call for Proposals and currently used in the 

MPEG Common Test Conditions [104]. To the best of the authors knowledge, this is the first time 

that the selection of these quality metrics has been validated with MOS obtained using a well- 

defined procedure. From the results presented in this work, there is still significant room for 

improvement, especially if the goal is to achieve the same level of correlation performance that 

image objective quality metrics (e.g., SSIM based) have achieved for 2D image and video coding. 

 

5.7 Final Remarks 

The main objectives of this chapter were to study the impact of the rendering process on the 

perceived quality of decoded point clouds and the correlation performance of available point cloud 

geometry objective metrics. To achieve these objectives, three representative point cloud coding 

solutions and three point cloud rendering solutions were selected as well as a wide set of objective 

quality metrics. The subjective experiments suggest that geometry coding distortions can be 

masked by using the color attributes and (to a less extent) by surface reconstruction methods. 

Moreover, point cloud codecs produce distinct coding artefacts that have different impacts in terms 

of the final perceived quality, e.g., for PCL decoded data, geometry distortions are clearly visible 

for all rendering methods. Regarding the objective quality metrics correlation evaluation, the 

results show that a careful selection of the objective metrics is necessary to have a reliable measure 

of the decoded point clouds quality. Also, for some codecs and rendering solutions, the current 

metrics are not very reliable, e.g., for V-PCC coded data; this is rather critical since V-PCC is 

expected to become the first coding standard to be deployed in the market. Moreover, some of the 
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objective quality metrics have a rather limited scope with significantly degraded accuracy, for 

some specific rendering solutions. For example, Hausdorff performance is only acceptable for PCL 

codec. 

The work in this chapter has led to a journal publication, notably: 

A. Javaheri, C. Brites, F. Pereira, J. Ascenso, “Point Cloud Rendering after Coding: Impacts on 

Subjective and Objective Quality,” IEEE Transactions on Multimedia, November 2020. 
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Part III. Objective Quality 

Assessment 
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Chapter 6 
_ 

 

Generalized Hausdorff Distance-based PSNR 

Quality Metric for Point Cloud Geometry 

 

 

 

 

 
 

6.1 Context and Objectives 

As mentioned in Chapter 4, the PSNR computed from the classical Hausdorff distance shows a 

high objective-subjective correlation performance for octree-based point cloud codecs [112] [25]. 

However, MPEG no longer uses this metric for point cloud geometry quality assessment due to its 

low reliability for the emerging MPEG point cloud coding standards, notably Geometry-based 

Point Cloud Compression (G-PCC) [113] and Video-based Point Cloud Compression (V-PCC) 

[103], which are based on other coding paradigms. In fact, the classical Hausdorff distance-based 

PSNR quality metric for point cloud geometry is very sensitive to outlier points in the decoded 

point cloud, which may not even be visible (or rendered), as the Hausdorff distance corresponds 

to the largest of all distances from a point in one point cloud to the closest point in the other point 

cloud (reference to decoded, and vice-versa). This extreme outlier sensitive behavior was the 

motivation to perform a statistical analysis of the distances’ distribution for point clouds coded 

with different codecs, to find a more reliable quality metric for point cloud geometry. In this 

context, the objective of this work was to design and evaluate a more reliable point cloud geometry 

quality metric, notably in terms of correlation performance, which is based on the so-called 

Generalized Hausdorff (GH) distance [114], an extension of the classical Hausdorff distance. 

The generalized Hausdorff distance measures the distance using the Kth ranked distance instead of 

the last ranked (i.e., maximum) distance; this is equivalent to the last ranked (maximum) distance 

in a (K-values) limited portion of the sorted distances. While it has been previously used for object 

matching in noisy images [115], the generalized Hausdorff distance has never been used for point 

cloud quality assessment. Since a small number of points with large errors/distances (i.e., outlier 
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points) dispersed in a decoded point cloud may not be even very visible, the generalized Hausdorff 

distance may be a better choice for point cloud geometry quality assessment since outlier points 

may be discarded, and their limited quality impact avoided. 

The rest of this chapter is organized as follows. Section 6.2 describes the proposed point cloud 

geometry quality metric. The experimental results are presented and analyzed in Section 06.3. 

Finally, a summary of the conclusions and final remarks are presented in Section 6.4. 

 

6.2 Proposed Point Cloud Geometry Quality Metric 

The classical Hausdorff distance is very sensitive to outliers, since one or more points with a large 

error magnitude will dominate the final quality score even for cases where these points are not 

much visible. The classical Hausdorff distance defined in Section 2.6.3 can be generalized to 

compute the distance over a subset of data/distances after ranking all the distance/error values. 

Instead of taking the maximum distance over all the distances as in the classical Hausdorff 

distance, the generalized Hausdorff distance for rank K is computed using only the K lowest 

distance values after ranking all the distances in ascending order. Thus, the Kth ranked generalized 

Hausdorff distance is defined as: 
 

𝑑𝐺𝐻−𝐾 (𝐴, 𝐵) = 𝑝𝑒𝑟𝐾 𝑡ℎ  𝑑(𝑎 , 𝐵) 
𝑎∈𝐴 (6.1) 

 

where  𝑝𝑒𝑟𝐾 𝑡ℎ
 is the Kth ranked distance such that (𝐾⁄𝑁𝐴) × 100 = 𝑝𝑒𝑟% and 𝑁𝐴  is the total 

number of points in point cloud A. For example, the 480th ranked distance in a point cloud with 

600 points is the maximum distance obtained from the per = (480 / 600) × 100 = 80% lowest 

distance values, after sorting all the distances in ascending order. Note that in this context, the 

𝑑 distance corresponds to the squared Euclidean distance from a point in one point cloud to the 

nearest neighbor on the other point cloud (Po2Po distance), which can be naturally extended to 

account for the normal vector at each point (Po2Pl distance). These distances are described in 

Section 2.6.3. 

In the experiments performed to design a better quality metric, 15 directed generalized Hausdorff 

distances (see below which ones) were obtained by assigning different values to per% in the 

generalized Hausdorff distance as defined in (6.1), where d100/Na and d100 are special cases 

corresponding to: 
 

100 
𝑑 100(𝐴, 𝐵) = min 𝑑(𝑎 , 𝐵) =  𝑁𝐴 𝐾 𝑡ℎ   𝑑(𝑎, 𝐵) 

𝑁 𝑎∈𝐴 𝑎∈𝐴 
𝑎 

(6.2) 

𝑑100(𝐴, 𝐵) = max 𝑑(𝑎 , 𝐵) =  100𝐾 𝑡ℎ  𝑑(𝑎 , 𝐵) 
𝑎∈𝐴 

𝑎∈𝐴 (6.3) 

Note that d100 corresponds to the classical Hausdorff distance mentioned before. Moreover, four 

different pooling functions are considered to compute the undirected distance (i.e., considering 

both directions, i.e., reference to decoded and vice-versa) between two point clouds, notably: 
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𝑝𝑜𝑜𝑙𝑚𝑖𝑛(𝑑(𝐴, 𝐵), 𝑑(𝐵 , 𝐴)) = min(𝑑(𝐴, 𝐵), 𝑑(𝐵 , 𝐴)) (6.4) 

𝑝𝑜𝑜𝑙𝑚𝑎𝑥 (𝑑(𝐴, 𝐵), 𝑑(𝐵 , 𝐴)) = max(𝑑(𝐴, 𝐵), 𝑑(𝐵 , 𝐴)) (6.5) 

𝑑(𝐴, 𝐵) + 𝑑(𝐵 , 𝐴) 
𝑝𝑜𝑜𝑙𝑎𝑣𝑔(𝑑(𝐴, 𝐵), 𝑑(𝐵 , 𝐴)) = 

2
 

 

(6.6) 

𝑁𝐴𝑑(𝐴, 𝐵) + 𝑁𝐵𝑑(𝐵 , 𝐴) 
𝑝𝑜𝑜𝑙𝑤𝑎𝑣𝑔 (𝑑(𝐴, 𝐵), 𝑑(𝐵, 𝐴)) = 

𝑁  + 𝑁
 

𝐴 𝐵 

(6.7) 

By combining the 15 directed distances with these four proposed undirected distance pooling 

functions, 60 undirected distances were obtained, labelled in the following as Dper,pool, which will 

be used to measure the distortion between two point clouds (reference and decoded). After, the 

corresponding PSNR quality metric was computed for all these undirected distances, using them 

as a substitute to 𝑑𝑀𝑆𝐸 equation (6.8) while using the same p. 
 

3𝑝2 
𝑃𝑆𝑁𝑅 = 10 log10 

𝑑
 

𝑀𝑆𝐸 

(6.8) 

3𝑝2 
𝑃𝑆𝑁𝑅𝑝𝑒𝑟,𝑝𝑜𝑜𝑙 = 10 log10 

𝐷
 

𝑝𝑒𝑟 ,𝑝𝑜𝑜𝑙 

 

(6.9) 

where 𝑝 is the precision of point cloud. The full list of these 60 PSNR quality metrics computed 

from the 60 undirected distances, D1 to D60, is shown in Table 6.1 where NA is the number of points 

in point cloud A. For example, PSNR65,wavg is obtained from the undirected distance D65,wavg, which 

results from applying the weighted average pooling function to pool the directed distances d65 for 

both directions associated to per = 65%; note that PSNR100,max corresponds to the classical 

Hausdorff distance-based PSNR. In the following, all these PSNR quality metrics will be assessed 

to identify the best performing ones. 

 

6.3 Performance Evaluation 

This section assesses the correlation performance of the proposed point cloud geometry quality 

metrics for different ranks and pooling functions. This assessment allows to find the best 

performing quality metric for point clouds with artifacts generated by the MPEG standard point 

cloud codecs described in Section 5.3. 

 

6.3.1 Subjective Evaluation Dataset 

In this Chapter, the MOS scores and corresponding point clouds available in the IST Rendered 

Point Cloud (IRPC) quality assessment dataset presented in Chapter 5 are used, since they 

correspond to very extensive and representative conditions. 

The reference and decoded point clouds were compared and evaluated by subjects using a DSIS 

subjective assessment protocol. The adopted point cloud dataset includes six point clouds from the 
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MPEG repository [104], notably Egyptian Mask and Frog from the inanimate objects category; 

Facade9 and House without roof from facades and buildings; and Loot and Longdress from people. 

The key characteristics of these point clouds are listed in Table 6.2. 

 

Table 6.1: Generalized Hausdorff distance-based PSNR metrics obtained from 60 undirected 

distances, derived from 15 directed distances (in rows) and 4 pooling functions (in columns). 
 

 per% in (8) poolmin poolmax poolavg poolwavg 

d1 100/NA PSNR100/NA,min PSNR100/NA,max PSNR100/NA,avg PSNR100/NA,wavg 

d50 50 PSNR50,min PSNR50,max PSNR50, avg PSNR50, wavg 

d60 60 PSNR60,min PSNR60,max PSNR60, avg PSNR60, wavg 

d65 65 PSNR65,min PSNR65,max PSNR65, avg PSNR65, wavg 

d70 70 PSNR70,min PSNR70,max PSNR70, avg PSNR70, wavg 

d75 75 PSNR75,min PSNR75,max PSNR75, avg PSNR75, wavg 

d80 80 PSNR80,min PSNR80,max PSNR80, avg PSNR80, wavg 

d85 85 PSNR85,min PSNR85,max PSNR85, avg PSNR85, wavg 

d90 90 PSNR90,min PSNR90,max PSNR90, avg PSNR90, wavg 

d95 95 PSNR95,min PSNR95,max PSNR95, avg PSNR95, wavg 

d96 96 PSNR96,min PSNR96,max PSNR96, avg PSNR96, wavg 

d97 97 PSNR97,min PSNR97,max PSNR97, avg PSNR97, wavg 

d98 98 PSNR98,min PSNR98,max PSNR98, avg PSNR98, wavg 

d99 99 PSNR99,min PSNR99,max PSNR99, avg PSNR99, wavg 

d100 100 PSNR100,min PSNR100,max PSNR100, avg PSNR100, wavg 

 

Table 6.2: Test materials and respective characteristics. 
 

Point Cloud Name No. Points Precision Category Signal Peak (p) 

Egyptian Mask 272,684 12-bit Inanimate Objects 4095 

Frog 3,614,251 12-bit Inanimate Objects 4095 

Facade9 1,596,085 12-bit Facades & Buildings 4095 

House without roof 4,848,745 12-bit Facades & Buildings 4095 

Loot 805,285 10-bit People 1023 

Longdress 857,966 10-bit People 1023 
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The selected point clouds have been coded with three rates/qualities using the following point 

cloud codecs: i) octree-based codec from PCL [89]; ii) MPEG G-PCC; and iii) MPEG V-PCC 

codec. The selected codecs represent three different coding paradigms, notably PCL for tree 

structures, MPEG G-PCC for surface models (when Trisoup is used) and MPEG V-PCC for 

projection-based coding (see Section 2.3 for details on these codecs). The bitrates for each codec 

were selected from the rates defined in the MPEG Common Test Conditions (CTC) [104], to have 

three distinguishable qualities for each point cloud. The coding parameters used for the PCL, 

MPEG G-PCC and V-PCC codecs are the same as in Chapter 5. 

The decoded point clouds have been subjectively assessed using a DSIS subjective assessment 

protocol in three sessions, each corresponding to a different rendering approach, notably RPoint 

(rendering using a point representation with uniform color and shading), RMesh (rendering using 

a mesh representation with uniform color and shading), and RColor (rendering using a point 

representation and original colors). Because there were no coloring and interpolation processes 

involved in RPoint rendering, geometry coding artifacts are less masked in this rendering approach 

(more details about this dataset are presented in Chapter 5). Since the proposed point cloud quality 

metrics defined in Section 6.2 only evaluate point cloud geometry, only the RPoint session MOS 

[105] will be used in the following. There were 20 subjects participating in each assessment session 

and no outliers were found for the RPoint session, whose MOS is used in the experiments presented 

next. 

 

6.3.2 Experimental Results 

As for previous chapters, the correlation performance of a quality metric is measured by computing 

the correlation of the metric scores with respect to human expressed MOS. For point cloud 

geometry quality assessment, this implies that, even when all points are not exactly in the same 

positions in the two point clouds A and B under comparison, as long as A and B look perceptually 

similar, a good metric should create an error close to zero or the maximum score. Thus, the 

proposed quality metric should discard distances/errors that are not visible, i.e., perceptually 

relevant, to approximate this thresholding effect of the human visual system. Moreover, to obtain 

reliable objective quality assessment metrics, the adopted distances need to discriminate well 

between different perceptual quality levels for point cloud geometry. 

Several experiments with decoded point clouds using the three previously selected point cloud 

codecs have shown D100/N,– and D50,– ( where - means any pooling) are 0 most of the time, 

especially for high qualities. Moreover, D60,min, D65,min and D70,min are also often 0 for V-PCC 

coding, clearly indicating that they do not have enough discriminatory power to evaluate V-PCC 

decoded point clouds. Thus, D100/N,– to D50,– are not further used in the following performance 

assessment exercise, which targets identifying the best performing (PSNR) quality metric and the 

corresponding generalized Hausdorff distance rank. 

To evaluate the objective-subjective correlation performance for the proposed point cloud 

geometry quality metrics and associated distances, non-linear cubic regression has been used to 
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map the computed objective quality scores (PSNR) into the MOS values available from the DSIS 

subjective test [105]. In this case, the following cubic function was used: 
 

𝑀𝑂𝑆𝑝 = 𝑎 + 𝑏𝑦 + 𝑐𝑦2 + 𝑑𝑦3 (6.8) 

where 𝑦 are the objective metric scores and 𝑎, …, 𝑑 are the regression model parameters [33]. 

PLCC, SROCC, and RMSE, were again selected as the correlation performance metrics as for 

previous chapters, to assess the objective-subjective correlation performance. 

Figure 6.1 shows the overall PLCC performance for the Po2Po and Po2Pl PSNR computed for the 

generalized Hausdorff distance using different ranks and pooling functions in comparison with the 

MPEG D1-PSNR and MPEG D2-PSNR metrics by considering the MOS scores from all selected 

codecs together. The results show that above per = 90% (d90), the generalized Hausdorff distance- 

based PSNR metric PLCC starts to outperform the MPEG D1-PSNR and D2-PSNR PLCC when 

the three selected point cloud codecs are considered together. There is also a significant drop in 

PLCC from the generalized Hausdorff-based PSNR to the classical Hausdorff-based PSNR 

(extreme right side of the charts), thus highlighting that a small number of dispersed large 

distances/errors (outliers) are not visible since they did not impact the MOS values in the same 

way; in fact, the PLCC charts show that their consideration on the objective quality metrics largely 

penalizes the objective-subjective correlation. The best PLCC performing Po2Po metric is 

PSNR98,avg, corresponding to D98,avg, which considers 98% of the data/distances; for Po2Pl metrics, 

the best performing metric is PSNR99,min, corresponding to D99,min, where 99% of data/distances are 

used. Although the experimental results do not show a significant PLCC difference between the 

various pooling functions, for Po2Po distances, the poolmin function is clearly the best for lower 

per% while the poolavg function is the best for higher per%. For Po2Pl distances, the opposite 

behavior can be observed. 

The PLCC results in Figure 6.1 for per = 100% (d100) clearly indicate the presence of outliers in 

the distances’ distribution, which strongly penalizes the correlation. Figure 6.2 shows the ranked 

distance for different percentage of data/distances (per in equation (6.1)), individually for the PCL, 

G-PCC and V-PCC codecs. The top row in Figure 6.2 shows the distances from reference to 

decoded point clouds while the bottom row shows the distances from decoded to reference point 

clouds. For G-PCC and V-PCC, there is a large and sudden increase of the maximum distance, 

close to per = 100% while, for PCL, the distances increase much slower. This behavior highlights 

that, for G-PCC and V-PCC, the decoded point clouds have a very small portion of distances/errors 

much larger than the average distance/error. This behavior also explains why the classical 

Hausdorff distance-based metrics performs well for PCL [112] [25] but not for G-PCC and V- 

PCC, thus justifying MPEG not adopting this quality metric anymore. 
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(a) 
 

 

            
 

 

(b) 

Figure 6.1: PLCC performance for (a) Po2Po and (b) Po2Pl generalized Hausdorff distance- 

based PSNR for different poolings as a function of the directed rank distance in comparison with 

the MPEG D1 PSNR and D2 PSNR quality metrics. 
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Figure 6.2: Maximum of directed squared distances from reference to decoded (top) and 

decoded to reference (bottom) for each selected percentage of data for the three geometry 

codecs: (a) PCL; (b) G-PCC; (c) V-PCC. 
 

To assess the proposed quality metrics correlation improvements regarding the MPEG metrics for 

each of the selected point cloud codecs, Figure 6.3 shows the PLCC between the MOS values and 

the Po2Po generalized Hausdorff-based PSNR metric with max pooling, before applying the fitting 

function in equation (6.8). 

For PCL, the generalized Hausdorff distance-based PSNR metric correlation performance with 

different percentages of data is similar to MPEG D1-PSNR, which considers all distances/errors. 

This means that the errors introduced by PCL coding do not include a significant number of 

outliers. However, for the other two codecs, by not considering some of the distances (i.e., 

outliers), large correlation performance improvements can be achieved, notably for d95 to d98. 
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Figure 6.3: PLCC performance for Po2Po generalized Hausdorff PSNR using maximum 

function pooling and D1 PSNR for the three selected point cloud codecs. 
 

Figure 6.4 shows the distribution of the coding errors for the Egyptian Mask point cloud coded 

with PCL, G-PCC and V-PCC. As it can be seen from Figure 6.4 considering that warmer colors 

show larger magnitude of error in the range of error vectors associated to decoded point clouds of 

each codec, the G-PCC and V-PCC decoded point clouds have a very small number of errors 

whose magnitude is much larger than the average error magnitude (being even invisible at naked 

eye) and those errors are dispersed over the decoded point cloud. Regarding the PCL decoded 

point cloud, most of the error magnitudes are around the average error magnitude, which, once 

more, indicates that the number of outliers (i.e., large errors) introduced by PCL coding is small. 

Figure 6.4: Distribution of coding errors throughout the decoded Egyptian Mask point cloud for 

PCL, G-PCC and V-PCC codecs. The tables show the number of error occurrences within a 

certain range, to which a specific color is assigned. 
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Table 6.3: PLCC, SROCC and RMSE performance for the best generalized Hausdorff distance- 

based PSNR quality metric for each point cloud codec individually and All codecs together. 
 

 Po2Po metrics Po2Pl metrics 

Quality metric PLCC SROCC RMSE Quality metric PLCC SROCC RMSE 

 

PCL 

Best GH PSNR100,max 89.5 79.9 0.5 PSNR85,max 90.5 86.7 0.5 

MPEG D1-PSNR 87.0 73.8 0.6 D2-PSNR 90.2 85.8 0.6 

Gain - 2.5 6.1 0.1 - 0.3 0.9 0.1 

 

G-PCC 

Best GH PSNR98,max 91.3 93.5 0.4 PSNR97,min 89.4 91.7 0.4 

MPEG D1-PSNR 86.9 87.4 0.5 D2-PSNR 89.1 93.0 0.5 

Gain - 4.4 6.1 0.1 - 0.3 -1.3 0.1 

 

V-PCC 

Best GH PSNR98,min 69.5 67.6 0.5 PSNR96,min 76.6 79.9 0.4 

MPEG D1-PSNR 53.1 62.0 0.6 D2-PSNR 51.4 49.6 0.6 

Gain - 16.4 5.6 0.1 - 25.2 30.3 0.2 

 

All Codecs 

Best GH PSNR98,avg 79.1 77.9 0.6 PSNR99,min 80.1 77.7 0.6 

MPEG D1-PSNR 67.3 64.7 0.7 D2-PSNR 68.9 65.1 0.7 

Gain - 11.8 13.2 0.1 - 11.2 12.6 0.1 

 
Finally, the PLCC and SROCC performances for the best performing generalized Hausdorff (GH) 

based PSNR quality metrics, considering each codec individually and altogether, are shown in 

Table 6.3. These results allow concluding: 

• PCL – For PCL, the Po2Po generalized Hausdorff-based PSNR with rank 100% (classical 

Hausdorff) outperforms MPEG D1-PSNR by 2.5%, 6.1% and 0.1 for PLCC, SROCC and 

RMSE, respectively; a similar behavior happens for the Po2Pl generalized Hausdorff with rank 

85% (PSNR85,max) with gains of 0.3%, 0.9% and 0.1 for PLCC, SROCC and RMSE, 

respectively, over MPEG D2 PSNR. 

• G-PCC – For G-PCC, the best performing quality metric is the Po2Po generalized Hausdorff- 

based with rank 98% PSNR metric (PSNR98,max) with gains of 4.4%, 6.1% and 0.1 for PLCC, 

SROCC and RMSE, respectively, over MPEG D1-PSNR. For Po2Pl, the generalized 

Hausdorff-based PSNR slightly outperforms MPEG D2-PSNR except for SROCC, where a 

small loss occurs. 

• V-PCC – For V-PCC, there are major correlation gains compared to the MPEG quality 

metrics. The best quality metric for V-PCC is the Po2Pl generalized Hausdorff-based with rank 

96% based PSNR metric (PSNR96,min) with gains of 25.2%, 30.3% and 0.2 for PLCC, SROCC 

and RMSE, respectively, over MPEG D2-PSNR. Large gains also occur for the Po2Po 
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generalized Hausdorff-based with rank 90% PSNR metric (PSNR98,min) over MPEG D1-PSNR. 

This allows to conclude that the filtering of outliers is more important for this point cloud 

codec, especially since a large number of points is added during the point cloud decoding 

process. 

• All codecs – As already shown in Figure 6.1, the generalized Hausdorff based PSNR with 

ranks from 90% to 99% outperform the MPEG quality metrics when decoded data from all 

codecs are considered together. More precisely, Table 6.3 shows that, considering all codecs, 

the best Po2Po metric is the generalized Hausdorff-based with rank 98% PSNR metric 

(PSNR98,avg) with gains of 11.8%, 13.2% and 0.1 for PLCC, SROCC and RMSE, respectively, 

over MPEG D1-PSNR; the best Po2Pl metric is the generalized Hausdorff-based with rank 

99% PSNR metric (PSNR99,min) with gains of 11.2%, 12.6% and 0.1 for PLCC, SROCC and 

RMSE, respectively, over MPEG D2 PSNR. 

As shown in Table 6.3, the generalized Hausdorff distance-based PSNR outperforms the MPEG 

D1 PSNR and D2 PSNR metrics, if the right rank (i.e. per%) is used. In general, for Po2Po 

distances, except for data coded with PCL, generalized Hausdorff with 98% of data (d98) has the 

best correlation performance. For Po2Pl metrics, the best generalized Hausdorff-based metric 

varies for each codec. Although not shown in Table 6.3, the PSNR associated with classical 

Hausdorff distance (PSNR100,max) shows poor correlation with MOS values, except for PCL. 
 

Table 6.4: Correlation performance for the best overall generalized Hausdorff distance-based 

PSNR quality metric. 
 

 Po2Po metrics Po2Pl metrics 

MPEG D1 

PSNR 
PSNR96,max Gain PSNR98,min Gain 

MPEG D2 

PSNR 
PSNR96,min Gain 

PCL 87.0 87.1 0.1 89.0 2.0 90.2 89.0 -1.2 

G-PCC 86.9 90.3 3.4 86.5 -0.4 89.1 89.2 0.1 

V-PCC 53.1 53.5 0.4 69.5 16.4 51.4 76.6 25.2 

All codecs 67.3 76.3 9.0 77.6 10.3 68.9 75.8 6.9 

Average 73.5 76.8 3.2 80.7 7.1 74.9 82.7 7.8 

 
Since it is not the best solution to use different quality metrics for different point cloud codecs, 

unless variations of a specific codec are being compared, the correlation performance results have 

been analyzed to identify the generalized Hausdorff distance PSNR-based quality metric which is 

globally reliable. Although not the optimum for all point cloud codecs, the Po2Po generalized 

Hausdorff PSNR96,max shows better correlation compared to the MPEG D1-PSNR metric as shown 

in Table 6.4 for all codecs individually and also altogether. However, there are other generalized 

Hausdorff-based PSNRs that, while not always outperforming the MPEG metrics, show very large 
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correlation gains for the codec typically exhibiting lower objective-subjective correlations when 

using the MPEG metrics, this means V-PCC; however, a small correlation loss may be observed 

for one of the remaining codecs. As shown in Table 6.4, this is the case for Po2Pl PSNR96,min and 

Po2Po PSNR98,min, which show rather large correlation gains (up to 25.2% and 16.4%, respectively) 

for V-PCC, the codec where correlation improvements are most needed. In summary, the Po2Pl 

PSNR96,min is a good metric to outperform the MPEG metrics for the emerging point cloud 

geometry coding solutions. 
 

6.4 Final Remarks 

This chapter shows that the proposed generalized Hausdorff-based PSNR quality metric 

outperforms the MPEG D1-PSNR and D2-PSNR point cloud geometry quality metrics for all 

considered codecs individually, and also altogether, if the appropriate rank (96%-99%) is selected. 

In this case, better objective-subjective correlation than the MPEG quality metrics is achieved for 

Po2Pl PSNR96,min, thus indicating that these metrics may be used with advantage for future point 

cloud geometry quality assessment. 

The work in this chapter led to a conference publication, notably: 

• A. Javaheri, C. Brites, F. Pereira, J. Ascenso, “A generalized Hausdorff distance based quality 

metric for point cloud geometry,” IEEE International Conference on Quality of Multimedia 

Experience (QoMEX), Athlone, Ireland, May 2020. 
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7.1 Context and Objectives 

In Chapter 4, the subjective-objective correlation study shows that MPEG D1-PSNR and D2- 

PSNR quality metrics do not perform well to assess the quality of decoded point clouds, when 

point clouds with different precision are available and also when they are encoded with different 

(non-normative) codecs, such as PCL. In Chapter 5, the correlation performance of these quality 

metrics was evaluated in assessing the quality of decoded point clouds for the new point cloud 

coding standards, i.e., MPEG G-PCC and MPEG V-PCC. The experimental results show that they 

are also not performing well for these emerging standard codecs, especially for V-PCC. 

D1-PNSR and D2-PSNR have shown low correlation performance in the literature, notably after 

the advent of the new point cloud geometry codecs, which tend to produce a very different number 

of decoded points in comparison to the number of reference points for a specific point cloud. Due 

to the way point clouds are acquired and pre-processed (before coding), their intrinsic resolution, 

a measure of the distance between points in the 3D space, plays an important role on the final 

perceived quality, not only to mitigate or highlight coding artefacts but also to measure the raw 

point cloud quality (i.e., after acquisition). The intrinsic characteristics of a point cloud that are 

going to be used in this chapter are as follows: 

• Precision: regards the bit-depth of the geometry information in a voxelized point cloud; 

coordinates in a voxelized point cloud are limited between 0 and 2Precision -1. 

• Intrinsic resolution: measure of distance between points in a point cloud in 3D space; intrinsic 

resolution depends on precision. 
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• Density: number of points for some defined volume; it is a function of precision and intrinsic 

resolution. 

These intrinsic characteristics have an impact on the perceived quality of point cloud after 

rendering. The distance between points is scaled after rendering to a target 2D size and resolution, 

and how they look depends on these intrinsic resolutions. Figure 7.1 shows Egyptian Mask with 

12 and 20-bit precision, alongside with Frog with 12-bit precision. The bounding box of these 

point clouds are all scaled to the same image size. The maximum coordinate for 20-bit point clouds 

is 2(20-12) = 265 times larger than for 12-bit point clouds; while 10-bit and 12-bit Egyptian Mask 

look exactly similar because they have the same number of points, Frog seems denser because it 

has almost four times more points. 

 

Figure 7.1: 12-bit Egyptian Mask, 20-bit Egyptian Mask and 12-bit Frog, their bounding boxes 

are scaled to the same size and rendered with the same 2D image size (from left to right). 
 

On the other hand, distances in 3D are different from distances after projection on a plane 

(regardless of the rendering parameters and image size). Planar distance of a point in a voxelized 

point cloud to all its neighbors is equal but their 3D distance might be different based on the value 

of depth in a specific view. In this context, distance between point after rendering on a 2D display 

is a more precise measure for the intrinsic resolution of the 2D rendered point cloud. In this context, 

rendering resolution is defined as: 

• Rendering resolution: measure of planar distance between points in a point cloud. 

In this context, the main objectives of this chapter are: 

• Propose and evaluate geometry PSNR-based quality metrics that exploit the intrinsic 

characteristics of a point cloud. In this case, the intrinsic resolution and precision are 

considered the most important intrinsic characteristics, influencing the final point cloud 

quality. For this purpose, the inhomogeneous distribution of points on the surface of the point 

cloud is considered to estimate the intrinsic resolution of a point cloud. 

• Propose and evaluate a PSNR-based metric exploiting the intrinsic or rendering 

resolution of a point cloud. In this case, the intrinsic resolution is considered before and after 
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projection, leading to the so-called rendering resolution. This allows to significantly increase 

the quality metric performance, i.e., to obtain higher correlation with subjective scores. 

The objective quality metrics to be proposed and evaluated in this chapter keep the simplicity of 

the state-of-the-art Po2Po and Po2Pl metrics and are based on the popular PSNR metrics currently 

used in the MPEG to evaluate the performance of the MPEG G-PCC and V-PCC codecs and new 

coding techniques. 

The rest of this chapter is organized as follows. Section 7.2 describes and discusses the state-of- 

the-art on PSNR-based point cloud geometry quality metrics. Sections 7.3 presents the proposed 

quality metrics. Experimental results are presented and analysed in Section 7.4 and Section 7.5 

concludes the chapter. 

 

7.2 PSNR-based Geometry Quality Metrics 

The state-of-the-art PSNR-based point cloud geometry quality metrics are presented in Chapter 2 

(Section 2.6.3) as currently defined and used by the MPEG group [104]; they assess the geometry 

quality for compressed point clouds, independently of the codec used, target quality and rendering 

solution. The MPEG PSNR-based quality metrics are the basis for the new point cloud geometry 

quality metrics to be proposed in this chapter. 

In the MPEG PSNR-based geometry quality metrics, the PSNR is obtained from a normalization 

factor and the mean squared error (MSE), as defined in equation (7.1), which is computed in two 

directions: from the decoded to the reference point cloud as well as in the opposite direction. The 

PSNRs for the two directions are then combined to obtain a single symmetric PSNR value using 

the maximum as the pooling function, as defined in equation (7.2). 
 

𝑝2 
PSNR = 10 log ( 

𝑠    
) 

𝐴 ,𝐵 10    𝑑𝑀𝑆𝐸 
𝐴 ,𝐵 

(7.1) 

PSNR = max (PSNR𝐴,𝐵 , PSNR𝐵,𝐴) (7.2) 

In equation (7.1), 𝑝𝑠 is the signal peak and 𝑑𝑀𝑆𝐸 is the mean squared error (i.e., MSE) of the 

distance, e.g., Euclidean distance, between all points in point cloud A and their corresponding 

nearest neighbor point in point cloud B. Point clouds A and B can be associated to reference and 

decoded point clouds, respectively. For more information on how MSE and MSE-PSNR are 

computed, please see Chapter 2. 

As explained in Chapter 2, MPEG defines two PSNR-based metrics, the so-called D1-PSNR and 

D2-PSNR, that only differ on the type of distances used to compute the MSE. For D1-PSNR, MSE 

is computed for the Po2Po distance between each point in point cloud A and its nearest neighbor 

in point cloud B. For D2-PSNR, MSE is still computed for the distance between each point to its 

nearest neighbor, but this distance is now measured as the projection of the Po2Po error vector 

along the normal vector of the underlying surface at each point, which is known as Po2Pl distance. 
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Thus, D1-PSNR and D2-PSNR may be obtained using Po2Po and Po2Pl MSE (D1 and D2), in 

equation (7.1). As far as the signal peak 𝑝𝑠 in equation (7.1) is concerned, it typically corresponds 

to the largest diagonal (LD) distance for the point cloud bounding box for non-voxelized data 

[116]: 
 

𝐿𝐷 = ‖(𝑥max , 𝑦max , 𝑧max) − (𝑥min , 𝑦min , 𝑧min )‖2 (7.3) 

where 𝑥, 𝑦 and 𝑧 are the three geometry position coordinates. When LD of the point cloud 

bounding box is used as peak in the PSNR computation, the point coordinates are normalized to 

the range [0,1], what is equivalent to having both reference and decoded point clouds fitted to a 

unit size bounding box. However, since two point clouds may have different sizes, they can be 

scaled differently; this scenario may occur when the decoded point cloud has errors with a large 

magnitude, which may lead to a bounding box of different size. 

If point clouds have been voxelized, the (point) coordinates lie on a regular 3D (integer) grid with 

some fixed, predefined precision, i.e., the coordinates bit-depth or point cloud precision. Thus, 

point coordinates are bounded between zero and a constant integer related to the point cloud 

precision. For voxelized point clouds, the peak for each coordinate represented with 𝑏 bit-depth 

precision is: 
 

𝑝𝑐 = 2𝑏 − 1 (7.4) 

By applying the peak for each coordinate in equation (7.3), the signal peak value corresponds to: 
 

𝑝𝑠 = √3𝑝𝑐 (7.5) 

By using equation (7.5) in equation (7.1), point clouds are scaled to the same precision and the 

PSNR for the distance in question is computed as follows: 
 

3𝑝2 
𝑃𝑆𝑁𝑅 = 10 log ( 

𝑐 
) 

𝐴 ,𝐵 10    𝑑𝑀𝑆𝐸 
𝐴 ,𝐵 

(7.6) 

Note that increasing the point cloud precision makes distances between points larger in the new 

scale; for example, a point cloud with 11-bit precision has twice larger distances between points 

compared to the same point cloud with 10-bit precision. The normalization of errors proposed in 

equation (7.6) makes the comparison of data in different precisions possible by compensating for 

that difference. However, none of the PSNR-based quality metrics that are currently used, account 

for differences in: 

1. The point cloud intrinsic resolution, since the perception of details depends on the sampling 

frequency. 

2. Viewing conditions, namely the important rendering process that influences the final point 

cloud quality and can mitigate or highlight some coding distortions [117]. 

In practice, independently of the coding artifacts, the subjective evaluation of a given point cloud 

varies when these factors vary. 
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7.3 Proposed Point Cloud Geometry Quality Metrics 

In this section, the proposed point cloud quality metrics for geometry are presented and explained. 

First, in Section 7.3.1, the intrinsic resolution of a point cloud is used to improve the objective- 

subjective correlation of the conventional, MPEG PSNR-based metrics, leading to the I-PSNR 

metrics. Then, in Section 7.3.2, the intrinsic resolution of a point cloud after rendering, so-called 

rendering resolution, is considered and used in the design of the resolution adaptive RA-PSNR 

metric. 

 

7.3.1 Intrinsic Resolution PSNR-based Quality Metrics 

In this section, besides the usual error to account for coding distortions, the point cloud intrinsic 

characteristics are also exploited to design improved point cloud geometry quality metrics. 

In [118], the intrinsic resolution is used to normalize the geometry errors in the PSNR computation, 

as described in the previous section. The intrinsic resolution is difficult to measure since a point 

cloud is unstructured and the neighborhood of a point is more complex to define than for a pixel 

in a 2D image. However, the point cloud intrinsic resolution concept is analogous to the spatial 

resolution of a 2D image and can be estimated from the distance of points to their neighbors [119]. 

This distance may not be uniform throughout the entire point cloud and requires the design of 

suitable estimators. Simple methods to estimate the point cloud intrinsic resolution have been 

already proposed in the past. For example, [118] suggests using the maximum nearest neighbor 

(𝑀𝑁𝑁) distance over all points in the point cloud. If 𝑑𝑖 is the distance from point 𝑖 to its nearest 

neighbor in the same point cloud O, then the intrinsic resolution can be estimated according to: 
 

𝑀𝑁𝑁 = max 𝑑𝑖 
∀𝑖∈𝑂 

(7.7) 

However, 𝑀𝑁𝑁 is very sensitive to holes and locally sparse areas, even if they are very small 

comparing to the point cloud size. 

In this context, the following two intrinsic resolution estimators are proposed in this chapter to 

overcome this problem. First, the average nearest neighbor (𝐴𝑁𝑁) is proposed, which attempts to 

solve the problem of localized sparse areas: 
 

1 2 

𝐴𝑁𝑁 = √𝑁 
∑ 𝑑𝑖 
𝑂  

𝑖∈𝑂 

(7.8) 

where 𝑁𝑂 is the number of points in the reference point cloud O. 

Second, ANN can be generalized if the average of 𝑘 > 1 nearest neighbors (𝐴𝑁𝑁𝑘) is used instead of 

only the closest nearest neighbor used in equation (7.2), which may not be very reliable due to 

acquisition noise. 𝐴𝑁𝑁𝑘 is defined as: 
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𝑘 
1 1 

𝐴𝑁𝑁𝑘 = √ ∑ ( ∑ 𝑑2 ) 
𝑁𝑂 𝑘 𝑖 ,𝑗 

𝑖∈𝑂 𝑗=1 

 
(7.9) 

 

In this context, the so-called Intrinsic resolution PSNR-based (I-PSNR) metric can be defined by 

using the intrinsic resolution estimators proposed above in equations (7.8) - (7.9) as normalizers 

to convert the mean squared errors to PSNR values. This means that the peak parameter, 𝑝𝑠, in 

equation (7.1) will correspond to one of the intrinsic resolution estimators computed over the 

reference point cloud using equations (7.7) - (7.9), instead of the largest diagonal distance of the 

bounding box (7.3) or the precision established in the D1-PSNR and D2-PSNR metrics (7.5). Thus, 

I-PSNR is defined as: 
 

 1  
∑ (

1 
∑𝑘 𝑑2 ) 

𝑁𝑂 
𝑖∈𝑂    𝑘 𝑗=1    𝑖 ,𝑗 

PSNR𝐴 ,𝐵 (𝐴𝑁𝑁𝑘 ) = 10 log10 ( 
𝑑𝑀𝑆𝐸 ) 

𝐴 ,𝐵 

 
(7.10) 

 
In this way, point clouds with different distances between points (i.e., sparser, or denser) will be 

normalized accordingly, i.e., all MSE errors will be scaled according to the estimated intrinsic 

resolution. However, all these metrics still do not consider the rendering process that needs to be 

applied after point cloud decoding for visualization purposes. 

 

7.3.2 Resolution-adaptive PSNR-based Quality Metrics 

Nowadays, point clouds are still typically rendered as images or videos from one or more 

viewpoints to be shown on a 2D (or 3D) display, this means considering that some virtual observer 

is at some location in the 3D world with some virtual camera setup that determines which parts of 

the point cloud are shown to the user. 

In this process, the distances between the points in a point cloud are scaled with respect to this 

viewing box and display resolution. The viewing box is defined by the virtual camera position, 

orientation, and characteristics (e.g., field of view) and the 3D to 2D projection (often a perspective 

projection is used). Since point clouds are always evaluated by the users after rendering, the final 

perceived quality does not only depend on the point cloud errors introduced by some processing 

step (in this case, coding) but also by the rendering process. In this section, a novel point cloud 

geometry quality metric is proposed based on the idea of estimating the intrinsic resolution after 

rendering, i.e., considering the distance of each point to its nearest neighbors on the image plane 

observable by the user. This is hereafter referred to as rendering resolution and a procedure to 

estimate it is proposed in the next section. 

 

7.3.2.1 Rendering Resolution Estimation 

The rendering resolution may vary for different parts of the point cloud due to several factors, e.g., 

orientation of the point cloud surfaces in the 3D world relative to the observer viewing location. 
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Since the viewing location and other rendering parameters, e.g., distance from the point cloud to 

the image plane, are not known when some geometry quality metric is computed, it is assumed 

that the point cloud is viewed from all possible directions at a fixed distance. This is a usual 

scenario in many applications (e.g., cultural heritage); however, further optimizations are possible 

such as using multiple distances (or scales) as other 2D quality metrics such as MS-SSIM do [120]. 

Consider that a unit normal vector �⃗⃗� 𝑖  is available for every point 𝑎𝑖  in the point cloud. Normal 

vectors, which are already used in Po2Pl point cloud quality metrics, can be quickly estimated 

using some state-of-the-art method. The rendering resolution estimation process is illustrated in 

Figure 7.2 and proceeds as follows: 

1. Define a local neighborhood 𝛾 around point 𝑎𝑖, including the closest (nearest neighbors) 𝑘 
points (represented by the six red dots in Figure 7.2). 

2. Define a local plane, tangent at point 𝑎𝑖. This plane is perpendicular to the normal vector �⃗⃗� 𝑖 

and represents the point cloud surface at this point. This plane can also be seen as the image 

plane for the rendering process if the viewing direction (usually defined as a vector) is 

symmetric to �⃗⃗� 𝑖 and the observer location lies along the viewing direction. 

3. Project all points in the 𝛾 neighborhood, represented by 𝑑  vectors in Figure 7.2, to the local 

plane tangent at point 𝑎𝑖 according to equation (7.11); in this equation, 𝑑 stands for the 

distance vector between point 𝑎𝑖 and its jth nearest neighbor. This step results in a vector for 

each projected point (represented by the red dashed arrows in Figure 7.2), called planar 

distance vector �⃗⃗⃗� �⃗⃗⃗� 𝑖 ,𝑗, whose origin is 𝑎𝑖. 
 

�⃗⃗⃗� �⃗⃗⃗� 𝑖  = 𝑃𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑒 (𝑑   ) = 𝑑 − 𝑃𝑟𝑜𝑗   (𝑑   ) 
𝑖,𝑗 𝑖 ,𝑗 �⃗⃗� 𝑖 𝑖 ,𝑗 (7.11) 

4. Estimate the rendering resolution as the average (planar) distance between point 𝑎𝑖 and their 

𝑘 local neighbors on the tangent plane. This is performed for all points 𝑎𝑖 to obtain a global 

estimation for the entire point cloud; in this case, averaging over all points resulted in a better 

estimation. Thus, the rendering resolution corresponds to the average over the entire 

reference point cloud of the average (planar) distance (APD) between point 𝑎𝑖 and the 𝑘 

nearest neighbors in 𝛾, 𝐴𝑃𝐷𝑘, as follows: 
 

𝑘 
1 1 2 

𝐴𝑃𝐷𝑘 = 
𝑁   

∑ (
𝑘 
∑‖�⃗⃗⃗� �⃗⃗⃗� 𝑖 ,𝑗 ‖2

) 
𝑂  

𝑖∈𝑂 𝑗=1 

 

(7.12) 

Since 𝐴𝑃𝐷𝑘 includes the distance between points considering that some projection was performed 

in the rendering process, it is expected that it better reflects the intrinsic perceived point cloud 

quality when used in a geometry quality metric. The proposed resolution adaptive PSNR (RA- 

PSNR) metric exploits this factor and is described in the next section. 
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Figure 7.2: Illustration of the proposed rendering resolution estimation process. 
 

7.3.2.2 RA-PSNR Point Cloud Quality Metric Design 

The proposed RA-PSNR point cloud geometry objective quality metric aims to assess the point 

cloud geometry quality more reliably by exploiting the rendering resolution as well as the precision 

used for the point cloud geometry coordinates. Ideally, the objective quality metric should 

compensate for any difference between point clouds in terms of these factors (e.g., precision), 

notably to avoid any undue influence on the estimated final perceived quality. For example, if the 

point cloud precision increases one bit without adding any new points, all the distances between 

points, used to calculate the intrinsic resolution, are now twice larger but the point cloud typically 

has a very similar perceived quality. To compensate for those factors, a density coefficient 𝐷 is 

defined as: 
 

𝑝𝑐 
𝐷 = 

𝑟𝑝𝑐 
(7.13) 

where 𝑝𝑐 is the coordinate peak (related to the precision) calculated with equation (7.4), i.e., the 

maximum possible distance, and 𝑟𝑝𝑐 is the point cloud resolution, which may be the intrinsic or 

rendering resolution. The proposed density coefficient corresponds to a normalization of the 

intrinsic or rendering resolution (which is typically defined as the inverse of density) according to 

the point cloud precision. 

Using the state-of-the-art D1-PSNR and D2-PSNR metrics [104] defined by equation (7.6), all the 

errors (which represent a distance between points in the reference and degraded point clouds) are 

normalized according to the precision. Therefore, the intrinsic or rendering resolution of the point 

clouds proposed before in Section 7.3.1 and 7.3.2.1, which are also distances between points 

should also be normalized accordingly. 
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The proposed resolution adaptive quality metric, RA-PSNR, is defined in equation (7.14) and 

corresponds to using the density coefficient 𝐷 to further scale the MSE, taking into account the 

intrinsic point cloud characteristics and the rendering process in the objective quality assessment. 
 

3𝑝2 
RA-PSNR = 10 𝑙𝑜𝑔 

𝑐
 

𝐴 ,𝐵 10 𝐷𝑑𝑀𝑆𝐸 
𝐴 ,𝐵 

(7.14) 

By applying equation (7.13) in equation (7.14), RA-PSNR comes as: 
 

3𝑟𝑝𝑐𝑝𝑐 

RA-PSNR𝐴,𝐵 = 10 log10  
𝑑𝑀𝑆𝐸 

𝐴 ,𝐵 

(7.15) 

The parameter 𝑟𝑝𝑐 can be the intrinsic resolution obtained from equations (7.7) to (7.9) or the 

rendering resolution obtained from equation (7.12), which are computed for the reference point 

cloud. 

7.4 Performance Evaluation 

This section evaluates the performance of the proposed point cloud quality metrics using point 

clouds coded with different codecs, notably the MPEG standard codecs. 

 

7.4.1 Subjective Evaluation Dataset 

In these experiments, the MOS obtained in a previous subjective test with DSIS methodology 

described in Chapter 5 are used. The MOS as well as the reference and decoded point clouds, 

referred as IST Rendering Point Cloud Dataset, are publicly available in [105]. The used point 

cloud dataset includes six point clouds from the MPEG repository [104], which have been coded 

with three rates/qualities using three rather different point cloud codecs: i) PCL octree-based 

codec; ii) MPEG G-PCC standard; and iii) MPEG V-PCC standard. 

The quality scores were obtained at a test session where the decoded point clouds were rendered 

with a popular point-based rendering approach with uniform color and shading (RPoint). Because 

there are no coloring and interpolation processes involved in this rendering, geometry coding 

artefacts are less masked. 

To evaluate the objective-subjective correlation performance for the proposed point cloud 

geometry quality metrics, a non-linear regression has been used to map the computed objective 

quality scores (PSNR) into the MOS scale. Thus, based on Recommendation ITU-T P.1401 [33], 

a monotonic cubic function was used to fit the objective scores to MOS and obtain predicted MOS 

values as: 
 

MOSp = 𝛽1 + 𝛽2𝑥 + 𝛽3𝑥2 + 𝛽4𝑥4 (7.16) 

where 𝑥 are the objective metric scores and 𝛽1 , … , 𝛽4 the regression model parameters. Then, the 

PLCC and SROCC are used to assess the objective-subjective correlation, similarly to the previous 

chapter. The following point cloud quality metrics were considered: 
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1. MPEG PSNR-based metrics: These benchmark metrics represent the state-of-the-art and 

were described in Section 7.2. Two variants are defined, notably using the precision (𝑃) and 

the largest diagonal (𝐿𝐷) distance of the bounding box as the signal peak. 

 

2. Proposed I-PSNR metrics: PSNR-based metrics where, 𝐴𝑁𝑁 and 𝐴𝑁𝑁𝑘, the two proposed 

intrinsic resolution estimators, described in Section 7.3.1, are used, alongside with 𝑀𝑁𝑁 which 

was used before in the literature. The intrinsic resolution is used as the signal peak for the 

MPEG PSNR-based metrics described in Section 7.2. 

 

3. Proposed RA-PSNR metrics: PSNR-based metrics where the proposed intrinsic and 

rendering resolution estimators 𝐴𝑁𝑁, 𝐴𝑁𝑁𝑘 and 𝐴𝑃𝐷𝑘 (variants) described in Section 7.3.1 and 

7.3.2.1 are used. The RA-PSNR metric corresponds to equation (7.15) as presented in 

Section 7.3.2.2. 

For the experimental results shown here, the 𝑘 parameter for 𝐴𝑁𝑁𝑘 and 𝐴𝑃𝐷𝑘 was set to 10; this was 

experimentally found as the value reaching the largest PLCC with MOS. For all quality metrics, 

the performance of all proposed normalization factors, i.e., 𝑃 , 𝐿𝐷 , 𝑀𝑁𝑁 , 𝐴𝑁𝑁 , 𝐴𝑁𝑁𝑘 and 

𝐴𝑃𝐷𝑘, is shown for the Po2Po and Po2Pl distances. 

7.4.2 Experimental Results 

Table 1 shows the objective quality metrics performance for each point cloud codec and 

considering all codecs’ data. Based on the correlation performance results presented in this table, 

the following conclusions can be made: 

• Proposed point cloud quality metrics vs benchmarks: The benchmark PSNR-based metrics 

are outperformed by the proposed RA-PSNR and I-PSNR metrics for all codecs individually 

and all codecs data together (‘All’ column). I-PSNR metrics can achieve higher performance 

than the D1-PSNR and D2-PSNR metrics for PCL and V-PCC while RA-PSNR is consistently 

better for all cases. The best overall correlation performance is achieved for RA-PSNR with 

the rendering resolution 𝐴𝑃𝐷𝑘 variant, which was expected since it considers the rendering 

process required for point cloud visualization. Moreover, for the ’All’ case, where different 

types of coding artefacts and point cloud characteristics are accounted, for Po2Po metric, 6.7% 

gain was achieved for RA-PSNR with the 𝐴𝑃𝐷𝑘 variant in both PLCC and SROCC comparing 

to MPEG D1-PSNR. For Po2Pl metric 5.3% gain in PLCC and 8.2% gain in SROCC were 

achieved comparing to MPEG D2-PSNR. 

• Quality metrics correlation performance for PCL and G-PCC codecs: For PCL and G- 

PCC decoded data, the RA-PSNR proposed metric with the 𝐴𝑃𝐷𝑘 variant can reach a very 

high correlation performance (95.2% and 94.0%, respectively for PCL and G-PCC), since it 

considers both the precision and rendering resolution, i.e., the point cloud density observed by 

the users. 
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• Quality metrics correlation performance for V-PCC codec: For V-PCC decoded data, the 

I-PSNR 𝐴𝑁𝑁𝑘 variant performs slightly better than RA-PSNR 𝐴𝑃𝐷𝑘, because all point clouds 

considered are coded in 10-bit with V-PCC and the intrinsic resolution is already a good 

estimator of the quality after rendering. Normalizing based on precision acts as a distractor and 

decreases the impact of intrinsic resolution. In a general way, the benchmark PSNR-based 

metrics are rather poor for V-PCC data and both the proposed I-PSNR and RA-PSNR metrics 

are able to increase the correlation performance significantly, with 28% and 26% gains 

respectively, compared to the Po2Pl PSNR metrics. 

 

Table 7.1: Correlation performance for the proposed and benchmark quality metrics. First two 

rows correspond to D1-PSNR and D2-PSNR. 
 

 

Metric 

 

Variant 

 

Type 
PCL G-PCC V-PCC All 

PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC 

 

 
PSNR 

 

P 
Po2Po 87.0 73.9 86.9 87.4 53.1 62.0 67.3 64.7 

Po2Pl 89.6 80.9 83.4 85.6 51.4 49.6 70.3 65.6 

 

LD 
Po2Po 83.3 82.3 86.0 89.3 48.9 54.1 70.4 68.6 

Po2Pl 86.7 85.9 75.6 71.9 59.9 58.9 71.4 67.2 

 

 

 
I- 

PSNR 

 

MNN 
Po2Po 68.7 65.0 40.8 33.3 45.6 14.3 49.7 42.2 

Po2Pl 69.6 66.7 44.1 39.7 49.8 25.4 52.1 43.4 

 

ANN 
Po2Po 92.2 89.0 79.3 76.3 66.6 61.0 64.7 52.5 

Po2Pl 92.3 84.5 86.6 79.0 76.2 69.1 66.4 55.6 

 

ANNk 

Po2Po 88.8 87.0 78.1 68.4 70.8 62.9 66.5 59.2 

Po2Pl 90.8 87.5 75.3 68.2 79.6 74.0 67.4 62.6 

 

 

 
RA- 

PSNR 

 

ANN 
Po2Po 92.8 86.8 84.9 82.5 49.2 45.6 68.9 64.0 

Po2Pl 93.4 86.7 88.5 85.8 67.9 63.0 71.0 67.1 

 

ANNk 

Po2Po 94.1 86.2 93.6 94.6 68.5 62.5 74.1 71.1 

Po2Pl 95.1 91.3 94.0 94.0 77.1 73.7 74.9 72.5 

 

APDk 

Po2Po 94.1 85.2 93.7 94.8 59.9 59.7 74.0 71.4 

Po2Pl 95.2 91.7 94.0 94.0 77.9 72.3 75.6 73.8 

 

7.5 Final Remarks 

D1-PSNR and D2-PSNR point cloud geometry quality assessment metrics generally perform 

poorly since they only consider point cloud precision and the impact of the intrinsic point cloud 

characteristics and the rendering process on the final perceived point cloud quality are not 

considered. In this chapter, the popular PSNR-based metrics are improved by including a 

normalization factor that accounts for changes in the intrinsic point cloud resolution after 
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rendering, as well as the point cloud precision. Experimental results show that the proposed quality 

metrics outperform the MPEG PSNR-based quality metrics by a significant margin. As future 

work, more characteristics of the rendering process could be included, notably the viewing position 

and the point cloud distance to the viewing plane. 

This work led to a conference publication, notably: 

A. Javaheri, C. Brites, F. Pereira, J. Ascenso, “Improving PSNR-based Quality Metrics 

Performance for Point Cloud Geometry,” IEEE International Conference on Image Processing 

(ICIP), Abu Dhabi, UAE, October 2020. 
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8.1 Context and Objectives 

At the time this work was developed, the state-of-the-art point cloud geometry quality metrics 

were the MPEG PSNR-based metrics [104], notably relying on distances computed from point-to- 

point correspondences between the degraded and reference point clouds. However, correlation 

performance evaluation studies [117] [121] have shown that these metrics underperform for data 

coded with the MPEG point cloud codecs. A key characteristic of these codecs is that the number 

of decoded points is often much larger than the number of points in the reference point cloud. 

When additional decoded points are obtained, and they follow the underlying point cloud surface, 

higher perceptual quality typically results. However, the MPEG (and others) point cloud quality 

metrics are not able to properly account for this effect, since distances (seen as errors) are 

computed based on pointwise correspondences. In fact, the additional decoded points typically 

have their closest neighbor in the reference point cloud far away, which leads to large errors being 

accounted in the final quality metric value. 

Since point clouds have their surface reconstructed during the rendering process before 

visualization, the objective quality metrics should properly model the underlying point cloud 

surface to achieve better objective-subjective correlation. In fact, the D2-PSNR metric follows this 

approach by parametrically modelling the underlying surface with a plane tangent at each point, 

defined by the point’s normal. However, this is still a rather limited approach considering the 

unstructured point cloud nature, especially for regions that are not planar and for points far away 

from the plane. In this context, the main objectives of this chapter are: 
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• Propose a better type of correspondence between point clouds, notably when the decoded 

point clouds have many more points than reference point clouds. 

• Propose a point cloud geometry quality metric that considers the underlying surface of 

points more efficiently than available point-based quality metrics. 

In this chapter, a novel so-called Mahalanobis-based point-to-distribution quality metric is 

proposed, which adopts a new type of correspondence between two point clouds, namely between 

a point in one point cloud and the distribution associated to a limited set of points (from a small 

region) in another point cloud. The idea underpinning this novel type of point cloud geometry 

quality metric is to statistically characterize the point cloud surface, notably through the covariance 

of points within some local region. Moreover, this novel quality metric is not unduly influenced 

by the number of decoded points (compared to reference points), but rather by a statistical 

characterization of the points location. In addition, it is still reliable when the degraded and 

reference point clouds have different characteristics in terms of precision, density, and structure. 

The rest of this chapter is organized as follows. Section 8.2 describes the proposed quality metric 

and Section 8.3 presents the experimental results along with their analysis. Finally, Section 8.4 

ends the chapter with conclusions and future work suggestions. 

 

8.2 Proposed Point Cloud Geometry Quality Metric 

The proposed class of point-to-distribution (P2D) quality metrics works by computing the distance 

between a point on the reference (or degraded) point cloud and a distribution of points on a small 

region of the degraded (or reference) point cloud. This novel proposed approach has the following 

characteristics: 

1. Scale invariant: can evaluate point clouds with different intrinsic characteristics in terms of 

precision (i.e., coordinates bit-depth) and resolution (i.e., average distance between 

neighboring points). 

2. Correlation aware: considers the correlation of points with their neighbors and weights 

distances in each coordinate accordingly. Points not following the distribution of the surface 

points will lead to larger distances. 

3. Normal computation-free: does not require the estimation of normal vectors to model the 

underlying surface, which is an error-prone and computationally complex process. 

These characteristics allow to achieve better objective-subjective correlation performance 

compared to the point-based metrics, either adopting a single point (no surface) or a tangent plane 

at a point, to characterize the point cloud. 

This work adopts the Mahalanobis distance to measure the distance between a point and a 

distribution. This distance, which has already several applications in the areas of anomaly detection 

[122] and classification [123], is multivariate and exploits correlations between the point 

coordinates. Moreover, it is more suitable compared to the Euclidean distance (used in the Po2Po 
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and Po2Pl metrics) when there is some spatial correlation in the data, which is the case for a local 

region of points in a point cloud. 

 

8.2.1 Directed Mahalanobis-based P2D Distance 

Figure 8.1(a) shows the proposed Mahalanobis-based directed P2D distance architecture while 

Figure 8.1(b) shows the final symmetric distance and PSNR-based metric variants’ architecture, 

respectively. 
 

 

 

(a) 
 

 

(b) 

Figure 8.1: Mahalanobis based P2D quality metric architecture: a) directed (point cloud A to 

point cloud B) P2D distance; b) symmetric P2D distance and PSNR-based quality metric 

variants. 
 

As Po2Po and Po2Pl metrics, this Mahalanobis-based distance is computed in both directions, i.e., 

reference to degraded (i.e., from point cloud A to B) and vice-versa. For point 𝑎 = (𝑥 , 𝑦, 𝑧)𝑇  in point 

cloud 𝐴, the directed P2D distance is computed as: 

1. Correspondences Definition: Find the set of points 𝐷𝑎 corresponding to the 𝐾 nearest 

neighbors of 𝑎 in point cloud B. This local set of points represents the support region for the 

metric in point cloud 𝐵. Naturally, the 𝐾 value is rather important to define the size of the local 

neighborhood; when 𝐾 is too small, spatial correlation between points may not be fully 

captured and, when K is too large, fine details may be missed. 
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2. Correspondences Characterization: Compute the mean 𝜇𝐷𝑎  
and covariance matrix Σ𝐷𝑎  

for 

the 𝐾 neighboring points in point cloud B. The mean vector (size 3) contains the arithmetic 

average of the points coordinates, while the covariance matrix expresses the (𝑥 , 𝑦, 𝑧) coordinates 

correlation. 
 

𝐾 
1 

𝜇𝐷𝑎  
=  

𝐾 
∑ 𝑝𝑖 

𝑖=1 

 

(8.1) 

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧 

Σ𝐷𝑎  = [𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑦𝑧] 
𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧 

 
(8.2) 

where 𝑝𝑖 is the 𝑖𝑡ℎ nearest neighbor of point 𝑎, 𝐾 is the number of nearest neighbors and 𝜎𝑃𝑄  is 

the covariance of variables 𝑃 and 𝑄 with 𝑃 , 𝑄 ∈ {𝑥 , 𝑦 , 𝑧}. While the mean vector represents the 

centroid, the covariance matrix represents the data dispersion for the selected set of points in 

point cloud B. 

3. Covariance Validity Check: Check if the covariance matrix is singular or ill-conditioned. 

While in the former case the Mahalanobis distance cannot be computed, in the latter case it 

may lead to very large Mahalanobis distances. Intuitively, this may occur when there is a linear 

dependence between the K-nearest neighbor points coordinates. The covariance matrix is 

singular when the determinant is equal to zero and ill-conditioned when the ratio of largest and 

smallest singular values in the singular value decomposition (condition number) is too large. 

Ill-conditioned covariance matrices can be found with the Cholesky decomposition or by 

thresholding on large condition numbers [124], which is the approach used here. Since in this 

case the covariance matrix is real and symmetric, the condition number is simply the ratio of 

the largest eigenvalue 𝜆MAX to the smallest 𝜆MIN eigenvalue of Σ𝐷𝑎and, thus, the covariance 

validity check comes as: 
 

𝐶 > 𝜖 , with   𝐶 =  𝜆MAX⁄𝜆MIN (8.3) 

where 𝝐 is the validity check threshold; experimentally, it was found that 𝝐 = 𝟏𝟎𝟔 identifies 
well the ill-conditioned cases. 

4. Mahalanobis Distance Computation: The Mahalanobis distance between point 𝑎 and 

distribution Da is: 
 

𝑑𝑃2𝐷 =  √(𝑎 − 𝜇𝐷  )𝑇Σ−1(𝑎 − 𝜇𝐷  ) 
𝑎 ,𝐵 𝑎 𝐷𝑎 𝑎 

(8.4) 
 

i.e., the distance between 𝑎 and 𝜇𝐷𝑎 = (𝜇𝑥 , 𝜇𝑦 , 𝜇𝑧 )𝑇, divided by the covariance Σ𝐷 . Thus, if 

the 𝐾 nearest neighbor points are correlated in one or more coordinates (e.g., planar surface), 

the covariance is high, which will reduce the distance between 𝑎 and 𝜇𝐷𝑎 . On the other hand,  

if points are not very correlated, the covariance is low, and this distance is not much reduced. 

𝑎 
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Moreover, if point 𝑎 is located at the mean of the distribution, the Mahalanobis distance is zero 

and increases as 𝑎 moves away from the mean. 

5. Euclidean Distance Computation: The Euclidean distance between point 𝑎 and its nearest 

neighbor in point cloud B is computed. This is equivalent to the Mahalanobis distance with an 

identity covariance matrix. 

6. Compensation: For the cases where the covariance matrix is ill-conditioned or singular (see 

Step 3), the Euclidean distance computed in Step 5 is used; otherwise, the Mahalanobis 

distance computed in Step 4 is used. 

The process above is applied to all points in point cloud 𝐴 to obtain the Mahalanobis or Euclidean 

distance. Finally, all the computed distances are integrated by performing: 

7. Pooling: Average pooling is used to aggregate the distances obtained for all points in point 

cloud 𝐴. Both the average of distances and squared distances may be used: 
 

𝑑MMD = 
1 

∑ 𝑑𝑃2𝐷 
𝐴 ,𝐵 𝑁𝐴 

𝑎 ,𝐵 

𝑎∈𝐴 

(8.5) 

𝑑MSMD  =   
1  

∑(𝑑𝑃2𝐷 )
2 

𝐴,𝐵 𝑁𝐴 
𝑎 ,𝐵 

𝑎∈𝐴 

 

(8.6) 

where MMD stands for mean Mahalanobis distance, MSMD for mean squared Mahalanobis 

distance and 𝑁𝐴 is the number of points in point cloud A. 

8.2.2 Symmetric Mahalanobis-based P2D Distance 

To obtain a symmetric distance, the directed distance described in the previous section is computed 

in the other direction, i.e., between every point 𝑏 in point cloud 𝐵 and the corresponding 

distribution in point cloud 𝐴. The symmetric distance is obtained as the maximum of the two 

directed distances: 
 

MMD = max (𝑑MMD , 𝑑MMD) 
𝐴,𝐵 𝐵 ,𝐴 (8.7) 

MSMD = max (𝑑MSMD , 𝑑MSMD) 
𝐴,𝐵 𝐵 ,𝐴 (8.8) 

where MMD/MSMD are the final distances. Both distances can represent the error between two 

point clouds, often a reference and a decoded point clouds, and thus can be directly used as point 

cloud quality metrics although this is not necessarily the best solution. 

 

8.2.3 PSNR-based Mahalanobis P2D Point Cloud Quality Metric 

The Mahalanobis distance is a unit-less and scale-invariant distance that allows to account for the 

point cloud spatial correlation. Since large distances are avoided by checking the ill-conditioning 

of the covariance matrix, MMD and MSMD never exceed the maximum Euclidean distance. For 

voxelized data, all coordinates are bounded between 0 and 𝑝𝑐 = 2𝑝𝑟 − 1 with 𝑝𝑟 as the point cloud 
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precision and 𝑝𝑐 the peak coordinate value. Thus, to compute the PSNR-based point cloud quality 

metric from the distances aforementioned, the maximum diagonal Euclidean distance (√3𝑝𝑐 ) is 

used  as  the  peak  for PSNR  computation.  The MMD  and  MSMD  PSNR-based  quality  metrics 

come: 
 

𝑃𝑆𝑁𝑅 = 10 log  (3𝑝2⁄ 
2
) MMD  10  𝑐 MMD (8.9) 

𝑃𝑆𝑁𝑅MSMD = 10 log10(3𝑝2⁄MSMD) 
𝑐 (8.10) 

The used point cloud precision corresponds to the maximum precision for all point cloud test 

materials (12-bit for the experimental results next). This fixed value assures that the same 

normalization is applied to all point clouds under evaluation, which allows to measure the 

correlation performance for point clouds with different precisions. 

 

8.3 Performance Evaluation 

In this section, the proposed quality metrics performance is assessed, notably in comparison with 

state-of-the-art metrics, using point clouds coded with different type of point cloud codecs. 

 

8.3.1 Subjective Evaluation Dataset 

To evaluate the proposed quality metrics defined by equations (8.7) - (8.10), the MOS and the 

reference and decoded point clouds from the IST Rendering Point Cloud Dataset, publicly 

available in [105], have been used. The dataset includes six point clouds from the MPEG repository 

[104], which have been coded with three rates/qualities using the following point cloud codecs: 1) 

PCL (octree-based); 2) MPEG G-PCC; and 3) MPEG V-PCC. All decoded point clouds were 

evaluated with a DSIS subjective assessment protocol. MOS for the point-based rendering session 

(RPoint, see Chapter 2) were used since geometry coding artefacts are more visible for this type 

of rendering, notably due to the absence of color attributes and mesh-based point cloud 

reconstruction. 

A monotonic cubic function has been adopted to fit the objective metric values to the MOS and 

obtain the predicted MOS scores according to Recommendation ITU-T P.1401 [33]: 
 

MOSp = 𝛽1 + 𝛽2𝑥 + 𝛽3𝑥2 + 𝛽4𝑥3 (8.3) 

where 𝑥 are objective metric values and 𝛽1 , … , 𝛽4  are the regression model parameters. However, the 

results are also presented without the fitting function since overfitting mat happen considering the 

reduced amount of data. Figure 8.2 shows the scatter plots of different metrics versus MOS 

with the fitted curve, used to obtain predicted MOS values. As expected, objective scores are more 

correlated with the corresponding MOS, for the proposed MMD and MSMD PSNR point cloud 

quality metrics. 
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Figure 8.2: Subjective vs objective results 
 

Similar to previous chapters, the objective-subjective correlation is assessed with the PLCC and 

SROCC. The proposed P2D Mahalanobis-based metrics are compared to the D1-PSNR and D2- 

PSNR quality metrics (both distance and PSNR variants) as well as to the Pl2Pl MSE (the best 

variant) [109] and the PC-MSDM [125] metrics. For the Pl2Pl quality metric, normal vectors were 

computed using the CloudCompare software [83] with default settings. 

 

8.3.2 Neighborhood Size Selection 

The correspondences definition step in the proposed Mahalanobis-based quality metrics requires 

the selection of an appropriate value for the 𝐾 parameter (number of nearest neighbors), since it 

has a major impact on the proposed metrics correlation performance. 

As long as the decoded points are sampled from the same distribution, increasing K should increase 

the quality metric reliability, and thus, larger K values should be preferred. However, if 𝐾 is 

increased too much, then the nearest neighbors set will include less correlated points, not following 

the same distribution, which lowers the metric performance. Figure 8.3 shows the PLCC 

correlation for the MMD and MSMD PSNR metrics (with no fitting) as a function of the 𝐾 

parameter. For all adopted point cloud codecs, increasing the neighborhood size increases the 

proposed metrics’ performance up to the point where the correlation performance stays somewhat 

stable, slightly increasing or decreasing for some specific codecs. 
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Figure 8.3: PLCC performance as a function of the nearest neighbor size (𝑲). 
 

For the proposed quality metrics, a fixed 𝐾 parameter is used to avoid overfitting. The 𝐾 
parameter is selected based on the rank of their PLCC and SROCC correlation measures. More 

precisely, for each 𝐾, PLCCk  and SROCCk  are computed and the rank 𝑅𝑘(𝑐 , 𝑚) determined for  

each  coding  configuration  𝑐 ,  with  𝑐 = {PCL, G-PCC, V-PCC, All},  for  both  correlation 

measures 𝑚, i.e., PLCC and SROCC. Then, the selected rank 𝐾𝑜𝑝𝑡 can be defined as 𝐾𝑜𝑝𝑡 = 
argmin{𝔼(𝑅𝑘 (𝑐 , 𝑚))}  (lower  ranks  correspond  to  higher  correlations),  for every  𝑐  and  𝑚. 

k 

𝐾𝑜𝑝𝑡 is 31 for MMD and 38 for MMSD, both for the distance and PSNR-based variants. 

Figure 8.4 shows the average percentage of points with an invalid covariance matrix using as 

reference the original point cloud and as degraded the decoded point cloud (and vice versa). 

This result follows the test conditions (codecs and bitrates) given in Section 8.3.1. As expected, 

the percentage of invalid covariance matrix decreases as 𝐾 increases and for the selected 𝐾 

parameter values, the average percentage of ill-conditioned or singular covariance matrices is 

less than 5 percent. 
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Figure 8.4: Percentage of points that their corresponding distribution has an invalid Mahalanobis 

distance for different values of nearest neighbor size in both directions: a) reference to degraded 

b) degraded to reference. 
 

8.3.3 Experimental results 

Table 8.1 shows the correlation performance for several quality metrics, for each individual point 

cloud codec and for ‘All’ codecs (i.e., all data jointly considered), before and after cubic fitting; 

The following conclusions may be taken: 

• No fitting vs cubic fitting: Two different cases can be identified: 1) for the proposed quality 

metrics, non-fit correlations are closer to cubic fitting correlations, thus showing that these 

metrics can generalize better; 2) for the Po2Po and Po2Pl metrics, the difference is much larger, 

thus showing that their correlation performance is more sensitive to the cubic interpolation 

parameters fitting. 

• MMD vs MSMD: PLCC and SROCC show that MMD metrics outperform MSMD metrics 

for each of the considered codecs individually, especially for the distance-based metrics; 

however, MSMD outperforms MMD when the data for ‘All’ codecs is considered together. 

Moreover, the MMD and MSMD PSNR-based variants have higher PLCC and, thus, express 

better the perceived quality in comparison to distance-based metrics, especially if no fitting is 

considered. 

• Proposed vs MPEG metrics: Almost for all cases, the proposed distance and PSNR-based 

metrics have higher PLCC and SROCC than the MPEG D1 and D2 metrics. The performance 

gain is the largest for PCL and V-PCC, with PLCC gains up to 5.9% and 31.9%, respectively, 

and SROCC gains up to 13% and 22.8%, respectively, when cubic fitting is applied, 

considering the best proposed (in bold) and MPEG metrics (bold red). 
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• V-PCC vs PCL vs G-PCC: Larger performance gains are obtained for the V-PCC codec (up 

to 31.9% PLCC), compared to other codecs (5.9% for PCL and 2.5% for G-PCC). This is 

because V-PCC adds more additional decoded points that follow the underlying point cloud 

surface [117] in comparison to other point cloud codecs. 
 

Table 8.1: PLCC and SROCC correlation performance for the proposed quality metrics in 

comparison to state-of-the-art metrics. 
 

  PLCC SROCC 

 
Type 

Quality 

Metric 

PCL G-PCC V-PCC All codecs PCL G-PCC V-PCC All codecs 

No Fit Cubic No Fit Cubic No Fit Cubic No Fit Cubic No Fit Cubic No Fit Cubic No Fit Cubic No Fit Cubic 

 
Po2Po 

D1 distance 29.3 83.7 50.8 52.5 6.9 23.8 33.6 52.1 74.3 72.2 65.4 64.9 32.3 37.8 62.4 62.2 

D1-PSNR 84.3 87.0 83.7 86.9 23.4 52.5 67.1 67.3 75.7 73.8 87.4 87.4 35.4 60.7 64.8 64.8 

 
Po2Pl 

D2 distance 29.8 83.6 47.6 48.8 26.2 30.0 29.6 47 81.7 81.0 63.3 63.7 26.1 30.8 59.1 58.8 

D2-PSNR 86.9 89.6 79.4 83.4 40.3 51.5 70.0 70.4 81.7 80.9 85.6 85.6 44.3 51.9 65.7 65.7 

Pl2Pl MSE [9] 71.8 72.5 48.6 55.0 35.6 52.7 45.1 51.0 73.4 73.4 40.1 40.1 36.8 58.6 45.0 45.0 

PC-MSDM [11] 68.5 69.9 0.7 68.4 29.7 80.9 24.6 31.6 65.5 65.5 28.9 74.2 45.7 77.4 18.2 16.4 

 

 

 

P2D 

MMD 89.6 93.9 80.8 88.6 60.6 84.4 66.5 70.0 92.7 92.7 85.3 85.6 75.9 83.5 65.7 65.7 

MMD 

PSNR 
93.4 94.2 86.1 87.8 68.9 84.2 70.0 70.0 92.7 92.7 85.1 85.1 75.9 80.5 65.7 65.7 

MSMD 82.8 95.5 72.3 89.4 43.4 80.2 65.2 73.1 92.7 94.0 82.2 84.3 75.2 78.2 69.4 68.3 

MSMD 

PSNR 
93.3 94.0 84.4 85.1 64.8 80.9 73.6 73.4 92.7 92.7 82.2 81.4 75.2 78.2 69.4 68.4 

 

Finally, the MMD PSNR metric has the best correlation performance since it outperforms MSMD 

PSNR for all individual codecs (in PLCC and SROCC), although not for ’All’ codecs case. This 

means that, for optimizing or monitoring the quality of a specific codec, the MMD PSNR is the 

best choice. Moreover, it outperforms Pl2Pl and the PC-MSDM metric, which were more 

emerging quality metrics at the time this work was developed. 

 

8.4 Final Remarks 

This paper proposes a novel type of point cloud quality metric where the distance is computed 

between a point and a set of points following some distribution. This allows to improve the 

objective-subjective correlation performance comparing to state-of-the-art point cloud geometry 

quality metrics, especially for point clouds with different characteristics in terms of precision, 

density, and structure. As future work, a point to distribution metric following the same approach 

but targeting point cloud attributes, notably color could be developed. 

This work led to a journal publication, notably: 
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A. Javaheri, C. Brites, F. Pereira, J. Ascenso, "Mahalanobis Based Point to Distribution Metric 

for Point Cloud Geometry Quality Evaluation," IEEE Signal Processing Letters, vol. 27, pp. 1350- 

1354, July 2020. 
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Chapter 9 
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Geometry Aligned Projection-based Quality 

Metric for Point Cloud 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

9.1 Context and Objectives 

As described in the literature review of Chapter 2, a few works explored the idea of estimating the 

point cloud quality by projecting the point cloud into one or more 2D images, i.e., by converting 

a 3D point cloud into several 2D images [126] [127] [121] [128], and then applying a 2D quality 

metric. In the field of point cloud compression, this type of approach was successfully exploited 

to achieve efficient compression, as demonstrated by the MPEG V-PCC standard. In the context 

of point cloud quality assessment, these 2D images can be obtained by performing projection from 

different viewpoints, i.e., using different projection centers. Then, recent, and powerful 2D quality 

metrics can be used, to assess the entire point cloud quality. However, current projection-based 

metrics available in the literature are not showing better correlation performance than Po2Po 

quality metrics, where correspondences are established in the 3D space and errors in position or 

color are accounted. 

One of the problems in projection-based metrics is that geometry distortions cause displacement 

errors between the projected reference and degraded images. However, 2D quality metrics do not 

handle well local displacement errors (or geometry errors) since comparisons are made pixel-wise 

(or region-wise). Typically, 2D objective quality metrics consider that these regions as high 

distortion when small or medium geometry errors are perceptually well tolerated when color is 

available (see Chapter 5). For example, small displacement errors are not perceived by humans 

but may lead to high distortions when conventional 2D quality metrics are used. Another issue 

arises when the number of points in reference and decoded point clouds is different. This often 

occurs, since some point cloud compression engines often use planar or other polygonal (e.g., 
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triangular) approximations of the point cloud surface and thus, more points may be recreated at 

the decoder side when these surfaces are sampled. This means that the degraded 2D images may 

have, for some positions, pixels occupied when this pixel is not filled in the 2D image. In some 

past work [127] [126], these positions are ignored, or an occupied position is compared with a non- 

occupied position (usually filled with some background color). However, neither of these solutions 

are acceptable, since for some cases, these pixels are visually important (and can contribute to a 

higher quality) and the quality score cannot depend on the selected background color. 

In this chapter, a novel projection-based point cloud quality metric is proposed, which addresses 

these limitations and achieve high performance in terms of objective-subjective correlation. The 

main ideas underpinning this quality metric is to compare the projected reference and degraded 

color images for two fixed levels of geometry, for the reference and decoded geometry. The two 

scores obtained for both geometry levels are fused together which means that the proposed 

approach implicitly considers geometry distortion as well as color distortions. By comparing 

images with the same geometry, any misalignment is avoided. Moreover, this novel quality metric 

can handle decoded point clouds with large or small number of points with respect to the reference, 

by performing padding in the 2D domain, this means using interpolated color values instead of a 

fixed background value or even skipping these additional points. In summary, the main objectives 

of this work are: 

• Propose a projection-based point cloud quality metric: The proposed metric can handle 

both geometry and texture coding degradations by leveraging the work of the past decades on 

perceptual 2D quality metrics, such as MS-SSIM. This means that the proposed solution does 

not require any especially designed 2D quality metric and can accommodate any 2D quality 

metrics that will be proposed in the future. 

• Performance evaluation of available point cloud quality metrics: The proposed metric is 

evaluated with a dataset that includes different types of coding degradations, that are created 

by different and relevant configurations of the recent standardized MPEG point cloud codecs. 

Moreover, its performance is evaluated in comparison to a large amount of state-of-the-art 

point cloud quality metrics, using different design approaches, but nevertheless achieves the 

top performance. 

The last objective is very relevant towards achieving the objectives of this Thesis, since it will end 

with a performance evaluation with all the metrics proposed in the previous Chapters along with 

the other relevant state-of-the-art point cloud quality metrics, under relevant and meaningful test 

conditions. 

The rest of this Chapter is organized as follows. Section 9.2 explains the proposed point cloud 

quality metric. Experimental results are presented and analyzed in Section 9.3.2 and finally, some 

final remarks are presented in Section 9.4. 
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9.2 Proposed Projection Based Point Cloud Quality Metric 

In this section, the architecture of the proposed quality metric is presented and then the most 

relevant techniques are explained with more detail. 

 

9.2.1 Architecture and Walkthrough 

Figure 9.1 shows the proposed point cloud projection-based quality assessment metric architecture. 

The degraded and reference point clouds are processed in two parallel branches, resulting in two 

different intermediate scores which are fused at the end. To avoid any misalignment errors, before 

applying the 3D to 2D projection, both reference and decoded point clouds are processed to have 

exactly the same geometry. In the top branch, the geometry of the reference point cloud is used 

while on the bottom branch the geometry of the degraded point cloud is used, only the color 

attributes assigned to the points will be different, reflecting the color with and without coding 

degradations. Thus, in the top branch, the reference point cloud geometry is recolored with the 

color of degraded point cloud and the point cloud obtained is compared with reference point cloud 

(naturally, including color). In the other branch, the degraded point cloud geometry is recolored 

with the color of the reference point cloud and the resulting point cloud is compared with degraded 

point cloud (naturally, including color). 
 

Figure 9.1: Block diagram of the proposed projection-based point cloud quality assessment 

metric. 
 

Before applying this metric, point clouds should be voxelized if they are in floating point precision 

to some fixed precision. This step is important to perform the 3D (voxels) to 2D (pixels) projection. 

Nowadays, most of the point cloud data available is already in fixed precision (and was previously 

voxelized) and thus this step is not shown in the projection-based point cloud quality assessment 

architecture. Also, both V-PCC and G-PCC codecs code fixed precision point clouds or perform 

voxelization as a pre-processing step before coding. The main modules of the proposed point cloud 

quality metric pipeline are explained in the following. 
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1. Recoloring: Due to lossy coding of geometry data, the positions of the points in the reference 

and degraded point clouds are not the same. This is not an issue for point-based and feature- 

based metrics which find their correspondence by searching the nearest neighbor of every 

decoded point in the reference point cloud (using 3D coordinates) and vice versa. However, 

when a projection is made the resulting reference and degraded 2D images have regions that 

are not aligned, even when the degraded point cloud has only slightly degradations in 

geometry. 2D quality metrics are not very robust to misalignments (or displacements) and often 

perform poorly since pixel-wise comparisons are typically involved. To align both reference 

and degraded 2D images after projection, a recoloring step is applied where the decoded (or 

reference) point cloud color attributes are mapped to the reference (or decoded) geometry. In 

this way, the degradation of the color attributes is measured directly for two geometry levels 

(reference and decoded), thus considering both color and geometry. This solution is also rather 

suitable since color (or texture) degradations have a higher perceptual impact than geometry 

degradations. More details about this module are presented in section 9.2.2. 

2. Orthographic Projection: The reference, degraded and the two recolored point clouds 

obtained from the previous step are orthographically projected on six faces of a cube to obtain 

six projected images for each, this means six different non-overlapping images for each point 

cloud. Although other projections could be used, the simplicity of this orthographic projection 

is enough to measure coding distortions, especially considering that the pairs of point clouds 

to compare have the same geometry. In this process, six occupancy maps are also obtained; an 

occupancy map is a binary map to indicate if a pixel corresponds to a point or not of the point 

cloud. The size of the projected texture and occupancy maps only depend on the precision 𝑝 

of the point cloud 2𝑝 × 2𝑝. More details about this module are presented in Section 9.2.29.2.3. 

3. Cropping: After projection, depending on the size and position of the point cloud, the 

background may have a large area comparing to the point cloud object area. These empty areas 

can act as a distractor for the 2D quality assessment since the same color value is assigned to 

all background pixels in all projected point cloud images. More details about this module are 

presented in section 9.2.2. 

4. Padding: A decoded point cloud may have a lower or higher number of points depending on 

the point cloud compression solution, e.g., when a point cloud is coded with octree pruning, a 

lower number of decoded points is obtained and when coded with V-PCC a higher number of 

points are typically obtained. When the number of points is different between the reference 

and degraded point clouds, the same pixel position may be occupied in one projected image 

while non-occupied in the other. In this situation, these pixel positions may significantly 

increase the error (i.e., account more distortion) when perceptually, this error is not visible. 

The padding process outputs a seamless image, where the background positions are filled with 

interpolated values, and thus closer to the image being shown after point cloud rendering. In 

this process, holes inside the point cloud are padded as well as any remaining empty space 

around objects. More details about this module are presented in section 9.2.2. 
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5. 2D Quality Assessment and Pooling: A 2D image quality metric is computed between six 

reference images and the corresponding degraded images of the same view. The output of this 

process is six objective scores, one for each pair of projected images, which must be pooled 

together. The performance of the quality metric for typical pooling functions (max, min, 

weighted average, etc.) was evaluated and it was found that the performance is similar for 

different pooling functions. Thus, the resulting objective scores are averaged together (average 

pooling) to obtain a single score for each branch of the proposed projection-based quality 

metric. 

6. Fusion: All modules previously described are applied to the two branches of the projection 

quality metric to obtain two intermediate scores. These two scores represent the distortion 

associated to the texture measured by a 2D quality metric, for two different geometry levels, 

i.e., for the reference geometry and for the degraded geometry and must be fused together to 

obtain the final metric. Although different fusion strategies are possible, even applying 

machine learning techniques, it was found that a simple linear regression was enough to obtain 

a high performance, without the risk of overfitting (in point clouds there is not many training 

data). More details about this process are presented in section 9.2.5. 

 

9.2.2 Recoloring 

The main challenge with projection-based metrics, is that geometry distortions may cause 

displacement errors between the projected reference and degraded 2D images after projection. 

However, 2D quality metrics do not handle well local displacement errors (or geometry errors) 

since pixel-wise comparisons are often made. When the same pixel location in the projected image 

is compared, the measured error may not reflect the perceived distortion since the color of different 

3D locations in the reference and degraded point clouds are used in the error computation. Figure 

9.2 shows frontal projection of Egyptian Mask before coding and after decoding with lowest 

geometry rate in G-PCC recolored with original color in (a) and (b) and their residual in c. Residual 

image is enhanced to better show the differences. Although color in both point clouds is equal and 

point clouds are visually similar, residual image is result of local displacement. 
 

   
a) b) c) 

Figure 9.2: Egyptian Mask projected from front view; a) Reference, b) Decoded (lowest 

geometry rate, G-PCC), c) Residual after image enhancement. Both reference and decoded point 

clouds have reference color. 
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Thus, the idea is to only use the reference or the degraded point cloud geometry and perform 

recoloring to assign the decoded color attributes to the reference geometry (top branch of the 

architecture) and the reference color attributes to the decoded geometry (bottom branch of the 

architecture). Using this approach, for each branch, the projected texture maps are aligned. To 

recolor point cloud A, with color of point cloud B, each point in point cloud A will have a color 

assigned using the color of one or more corresponding points in point cloud B. In proposed 

algorithm, the new color for each point of the point cloud A after recoloring is computed as follows: 

1. For each point in point cloud A, the nearest neighbor in point cloud B is found (𝑁𝑁𝐴) 

2. For each point in point cloud B, the nearest neighbor in point cloud A is found (𝑁𝑁𝐵) 

3. Then, for each point 𝑎 in point cloud A: 

a. If point 𝑎 is listed in the nearest neighbors of point cloud B (𝑎 ∈ 𝑁𝑁𝐵), the color is the 

average color of the points in point cloud B that have point 𝑎 as their nearest neighbor. 
 

∑𝑏∈𝐵 ,𝑁𝑁   (𝑏)=𝑎 𝐶
2
 

𝐶  = √  𝐵 𝑏  𝑎 ∑𝑏∈𝐵 ,𝑁𝑁   (𝑏)=𝑎 1 
𝐵 

(9.1) 

 
where 𝐶𝑎 and 𝐶𝑏 are colors at points a and b. 

4. Otherwise, the color is the color of its nearest neighbor listed in 𝑁𝑁𝐴. 

Figure 9.3(a) shows the Amphoriskos reference point cloud (reference color and geometry) on the 

left and the recolored point cloud (decoded color with reference geometry) on the right. Figure 

9.3(b) shows the Amphoriskos degraded point cloud (decoded color and geometry) on the left and 

the recolored point cloud (with reference color and decoded geometry) on the right. For both cases, 

the G-PCC codec with octree geometry coding mode and lifting color coding mode, in the lowest 

rate was used to obtain the degraded point cloud. A point-based rendering solution was used where 

point size in all point clouds is increased to fill empty spaces among points in decoded point cloud. 

Points are also represented with a cube. 
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(a) (b) 

 

Figure 9.3: Amphoriskos decoded with G-PCC in octree mode and lifting color mode in the 

lowest rate; a) point clouds obtained for reference geometry with the reference (left) and decoded 

color, after recoloring (right), b) point clouds obtained for decoded geometry with the decoded 

color (left) and reference color, after recoloring (right). 
 

9.2.3 Orthographic Projection 

This is the core module of the proposed projection-based metric where 3D point clouds are mapped 

on several 2D planes from different perspectives. The orthographic projection is used for the 

projection-based metric because it is a parallel projection that preserves shapes and sizes. The 

orthographic projection, projects each point cloud point to a pixel in 2D image. 

The proposed orthographic projection consists of two main steps: 

• Projection: in this step, the planar (or 2D) images are generated using the orthographic 

projection to the different sides (planes) of the bounding box surrounding the object. For 

some plane, a point of the point cloud is projected into the plane as long as the point is not 

occluded by another point closer to the plane. 

• Filtering: points that are projected to a plane but do not belong to the surface closer to the 

plane used for projection are removed. These points are projected when there is some 

empty space between points in the surface closer to the plane and therefore, points from 

other side of the object are projected from this plane. Since these points are not visible 

when rendering is performed, a filtering technique is used to remove these points. 

Figure 9.4 shows a Amphoriskos before removing point from the back on top and after removing 

them on bottom, from two different views. The point cloud is recolored with 4 colors to better 

show the front and back part of the vase object from each view. 



140 
 

 

 

 

 

 

 

Figure 9.4: Projected point clouds from two different views: on top before filtering back parts 

and on bottom after filtering. 
 

The orthographic projection algorithm projects every point that is visible from six planes around 

the object, if they are visible from that plane. If any point is closer to plane than an already 

projected point, it will overwrite that point. The proposed orthographic projection on six views 

proceeds as follows: 

1. Six images, each for one of the projection planes are initialized with a uniform background 

color (white). Background color can be any color since further in the process of the proposed 

metric it will be filled with interpolated values. Three planes pass from origin: {𝑥𝑦, 𝑥𝑧 , 𝑦𝑧}, and 

three pass from 2𝑝: {�́��́� , �́��́� , �́��́�}. Where 𝑝 is the precision of the point cloud. 
 

255 ⋯ 255 
𝐼𝑥𝑦  = 𝐼𝑥𝑧  = 𝐼𝑦𝑧  = 𝐼�́��́�  = 𝐼�́��́�  = 𝐼�́� �́�  = [   ⋮ ⋱ ⋮   ] 

255 ⋯ 255 2𝑝×2𝑝×3 

 

(9.2) 

2. Six binary images are also initialized with zero as occupancy map (ocm) for each projected 

image. 
 

0 ⋯ 0 
𝑜𝑐𝑚𝑥𝑦 = 𝑜𝑐𝑚𝑥𝑧 = 𝑜𝑐𝑚𝑦𝑧 = 𝑜𝑐𝑚�́��́�  = 𝑜𝑐𝑚𝑥́�́� = 𝑜𝑐𝑚�́��́� = [ ⋮ ⋱ ⋮ ] 

0 ⋯ 0 2𝑝×2𝑝 

 

(9.3) 

3. To keep track of the occluded points, for each of the coordinates two matrix with the same size 

as images are initialized, one with minimum projected depth (minDepth), which is 0 and the 
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other with maximum depth (maxDepth) which is 2𝑝. The minimum depth keeps the record of 

the depth of the last projected point on (�́��́� , �́��́� , �́��́�) images and the maximum depth keeps the record of 

the depth of the last projected point on (𝑥𝑦 , 𝑥𝑧 , 𝑦𝑧) images. 
 

0 ⋯ 0 
𝑚𝑖𝑛𝐷𝑒𝑝𝑡ℎ𝑥𝑦 = 𝑚𝑖𝑛𝐷𝑒𝑝𝑡ℎ𝑥𝑧 = 𝑚𝑖𝑛𝐷𝑒𝑝𝑡ℎ𝑦𝑧 = [ ⋮ ⋱ ⋮ ] 

0 ⋯ 0 2𝑝×2𝑝 

 

(9.4) 

2𝑝 ⋯ 2𝑝 
𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ𝑥́�́� = 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ𝑥́𝑧́ = 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ�́�𝑧́ = [ ⋮ ⋱ ⋮ ] 

2𝑝 ⋯ 2𝑝 
2𝑝×2𝑝 

 
(9.5) 

4. For each point 𝑃𝑖 = (𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧 ) of the point cloud with color 𝐶𝑝: 

5.   For each plane 𝐾 ∈ {(𝑥𝑦, �́��́�), (𝑥𝑧 , �́��́�), (𝑦𝑧, �́��́�)} : 

i. Find the depth of point P, 𝑃𝑑 where d is the perpendicular axis to both planes in 𝐾. 

ii. If depth of point 𝑃, 𝑃𝑑 is less than or equal to the maximum depth at position (𝑃�́� , 𝑃𝑣́ ) of  

the  plane  𝐾,  then  the  point  is  projected  on  position  (𝑃�́� , 𝑃�́� )  of  the  image  𝐼𝐾 ,1, 

corresponding pixel in occupancy map is also set to one and maximum depth is updated 

to the depth of 𝑃𝑑. 
 

if 𝑃𝑑 ≤ 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ𝐾 ,1(𝑃�́� , 𝑃�́� ) then (9.6) 

𝐼𝐾 ,1(𝑃�́� , 𝑃�́� ) = 𝐶𝑝 and  𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ𝐾 ,1(𝑃�́� , 𝑃�́� ) = 𝑃𝑑 and 𝑜𝑐𝑚𝐾 ,1(𝑃�́� , 𝑃�́�   )  = 1 (9.7) 

iii. If depth of point 𝑃, 𝑃𝑑 is larger than or equal to the minimum depth at position (𝑃𝑢 , 𝑃𝑣 ) of  

the  plane  𝐾,  then  the  point  is  projected  on  position  (𝑃𝑢 , 𝑃𝑣 )  of  the  image  𝐼𝐾 ,2, 

corresponding pixel in occupancy map is also set to one and minimum depth is updated 

to the depth of 𝑃𝑑. 
 

if 𝑃𝑑 ≥ 𝑚𝑖𝑛𝐷𝑒𝑝𝑡ℎ𝐾 ,2(𝑃𝑢 , 𝑃𝑣 ) then (9.8) 

𝐼𝐾 ,2(𝑃𝑢 , 𝑃𝑣 ) = 𝐶𝑝 and  𝑚𝑖𝑛𝐷𝑒𝑝𝑡ℎ𝐾 ,2(𝑃𝑢 , 𝑃𝑣 ) = 𝑃𝑑 and 𝑜𝑐𝑚𝐾 ,2(𝑃𝑢 , 𝑃𝑣 ) = 1 (9.9) 

At this stage, every point that is not occluded will be projected. In this case, a point that belongs 

to the surface farther to the projection plane is always occluded by at least one point closer to the 

surface. These points are filtered out by comparing their depth to the depth of their neighboring 

pixels in a window 𝑤. The algorithm for filtering the points from back part of the point cloud is as 

follows: 

1. For each occupied pixel (𝑎 , 𝑏) in the projected image on planes 𝐾 ∈ {𝑥𝑦, 𝑥𝑧 , 𝑦𝑧}, compare the 

minDepth with average of minDepth of the neighbors in a window of size 𝑤 × 𝑤 and if it was 

smaller more than a threshold, that point is removed by resetting occupancy map and changing 

the value to background value. 
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∑ 𝑚𝑖𝑛𝐷𝑒𝑝𝑡ℎ𝐾(𝑖,𝑗) 

if 𝑚𝑖𝑛𝐷𝑒𝑝𝑡ℎ  (𝑎, 𝑏) ≤   (𝑖,𝑗)∈𝑤 − 𝜏 then 
𝐾 ∑(𝑖,𝑗)∈𝑤 𝑜𝑐𝑚𝐾(𝑖 ,𝑗) 

(9.10) 

𝐼𝐾 (𝑎 , 𝑏) = 255 and 𝑜𝑐𝑚𝐾 (𝑎 , 𝑏) = 0 (9.11) 
 

2. For each occupied pixel (𝑎 , 𝑏) in the projected image on planes �́�  ∈ {�́��́�, �́��́�, �́�𝑧́}, compare the maxDepth 

with average of maxDepth of the neighbors in a window of size 𝑤 and if it was larger more 

than a threshold, that point is removed by resetting occupancy map and changing the value to 

background value. 
 

∑ 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ�́� (𝑖 ,𝑗) 
if 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ  (𝑎, 𝑏) ≥   (𝑖,𝑗)∈𝑤 + 𝜏 then 

�́� ∑(𝑖,𝑗)∈𝑤 𝑜𝑐𝑚 ́ (𝑖 ,𝑗) 
𝐾 

(9.12) 

𝐼�́� (𝑎 , 𝑏) = 255 and 𝑜𝑐𝑚�́� (𝑎, 𝑏) = 0 (9.13) 

This is a proximity filtering algorithm that depends on the value of a threshold. This threshold 

Thus, it may also filter out a few of the points that belong to the front surface, but those points are 

later compensated in padding process described in the next section. 

 

9.2.4 Cropping and Padding 

After projecting a voxelized point cloud with precision of 𝑝, six images of size 2𝑝 × 2𝑝 are 

obtained. Based on the size and shape of the object, these images contain a significant amount of 

background data, which comes from the empty spaces around the object. There might be also some 

amount of background pixels among the object region based on the density of the point cloud. In 

this work, the first group is removed by cropping out the Region of Interest (ROI), which is a box 

surrounding the object in that specific view and then the rest of empty spaces are filled by 

interpolated pixels obtained by the image inpainting technique. 

To extract the ROI, the occupancy map for each projected image is used. More precisely, the 

position of the first and last occupied pixel in each occupancy map is used to define the bounding 

box for each object in the projected map. 

To fill the holes and background pixels inside the projected object as well as the remaining 

backgrounds around the object, an image inpainting technique called Navier-Strokes [129] is used. 

Occupancy maps that are acquired during projection are used as a mask to guaranty that the 

occupied pixels will not change. Figure 9.5 shows an example of removing background process. 

Longdress is projected with a gray background to better show the image boundaries in Figure 9.5( 

a) shows the bounding box in green. This image is 1024×1024 since Longdress is 10-bit. In Figure 

9.5b, the cropped ROI and in Figure 9.5 c, the padded image is shown. 
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(a) (b) (c) 

 

Figure 9.5: Longdress decoded with G-PCC in octree mode and RAHT color coding mode at a 

medium rate, projected from frontal view: a) full size image including all voxels in 10-bit 

precision, with ROI in green; b) cropped ROI; c) padded image. 
 

9.2.5 Fusion 

As explained in Section 9.2.1, the proposed projection-based quality metric computes two different 

intermediate scores in two parallel branches. To combine two intermediate scores, the following 

linear model is used: 
 

𝑀𝐹 = 𝛼𝑀𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + 𝛽𝑀𝐷𝑒𝑔𝑟𝑎𝑑𝑒𝑑 (9.14) 

The 𝛼 and 𝛽 parameters were estimated by an ordinary least squares linear regression procedure 

that minimizes the residual sum of squares between the objective scores predicted by the linear 

approximation and the mean opinion scores (MOS) available in some dataset. Although other 

complex models are possible to apply, they require more parameters and the risk of overfitting for 

the dataset to be used, this is rather critical since there are not many datasets with subjective scores 

and representative geometry and color degradations, especially compared to standard image and 

video subjective datasets. 

Even for this linear model, to check that overfitting does not occur, data is randomly split to 75% 

training data and 25% test data for 100 times. For each iteration, 𝛼 and 𝛽 values are estimated from 

the training data split and used to compute the final metric score on the test data split. The 

corresponding performance measured through the Pearson linear correlation coefficient (PLCC) is 

calculated for each iteration for the training data and is shown in Figure 9.6 (𝑀𝐹). The average 

performance in all iterations (i.e., for different splits) is computed as the average PLCC over all 

iterations and also shown in Figure 9.6 (Average 𝑀𝐹). The PLCC performance calculated using 

all data for training and testing is also shown in Figure 9.6 (Final 𝑀𝐹). The final 𝑀𝐹 is very close 
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to the average 𝑀𝐹, which shows that the improvement in metric after fusion is not due to 

overfitting. 
 
 

 

  
 

  
 

  

 
Figure 9.6: Proposed projection metric performance measured with the PLCC for every test set, 

average PLCC over all iterations and the PLCC using all data for training and testing. The PLCC 

is computed for different 2D quality metrics: a) SSIM, b) MS-SSIM, c) FSIM, d) PSNR. 
 

9.3 Performance Evaluation 

In this section, the proposed quality metrics performance is assessed, notably in comparison with 

state-of-the-art metrics, using point clouds coded with different type of point cloud codecs. 

Previous chapters were compared mostly with popular state-of-the-art quality metrics MPEG D1 

and D2. Recently, many high-performance point cloud quality metrics are proposed in the 

literature. In this chapter, the projection quality metric is compared with all previous proposed 

metrics in this Thesis and also other relevant state-of-the-art point cloud quality metrics. 

 

9.3.1 Subjective Evaluation Dataset 

To perform this evaluation, the MPEG Point Cloud Compression Dataset (M-PCCD), publicly 

available in [130], have been used. This recent dataset includes 232 stimuli where color and 

geometry are both encoded, which is rather suitable for the experiments of this Chapter. The 

dataset includes both the MOS values as well as the reference and decoded point clouds. 

The test material of this dataset corresponds to nine point clouds, including four objects and five 

human figures. Longdress, Loot, Redandblack, Soldier, The20smaria and Head from MPEG 

repository [104], Romanoillamp and Biplane from JPEG repository [131] and Amphoriskos from 

Sketchfab [132] as shown in Figure 9.7. Redandback is also used for training in this dataset. 

Characteristics of these point clouds are also listed in Table 9.1. 
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(a) (b)  (c)  (d) 

  

 

 

 

 

 

(e) (f) (g) (h)  (i) 
 

Figure 9.7: Test materials in M-PCCD. From top lef: a) Amphoriskos, b) Biplane, c) Head, d) 

Romanoillamp, e) Longdress, f) Loot, g) Redandblack, h) Soldier, i) The20smaria. 
 

Table 9.1: Test point clouds in M-PCCD and associated characteristic. 
 

Name Type Repository Precision No. Points 

Amphoriskos Objects Sketchfab 10-bit 814.474 

Romanoillamp Objects JPEG repository 10-bit 636.127 

Biplane Objects JPEG repository 10-bit 1.181.016 

Head Objects MPEG repository 9-bit 938.112 

Longdress People MPEG repository 10-bit 857.966 

Loot People MPEG repository 10-bit 805.285 

Redandblack People MPEG repository 10-bit 757.691 

Soldier People MPEG repository 10-bit 1.089.091 

The20smaria People MPEG repository 10-bit 1.553.937 



146 
 

 

 

 
 

The point clouds have been coded in six rates with MPEG G-PCC with octree geometry encoding 

module and RAHT color coding module, six rates with MPEG G-PCC with octree geometry 

encoding module and Lifting color coding module, with MPEG G-PCC with TriSoup geometry 

encoding module and RAHT color coding module, six rates with MPEG G-PCC with TriSoup 

geometry encoding module and Lifting color coding module and finally in five rates with MPEG 

V-PCC codec. The rates were selected based on the suggestion on MPEG CTC [104]. 

 

TABLE 9.2: Quantization parameters for geometry and color for both codec, and octree level for 

G-PCC octree and trisoup 
 

 G-PCC  
 

V-PCC  TriSoup TriSoup Octree Octree 

Rate  RAHT Lifting RAHT Lifting 

 

 
R6 

Color QP 8 8 8 8 - 

Position 

QP 
15/16 15/16 15/16 15/16 - 

level Depth Depth Depth Depth - 

 

 
R5 

Color QP 16 16 16 16 22 

Position 

QP 
7/8 7/8 7/8 7/8 16 

level Depth-2 Depth-2 Depth-2 Depth-2 - 

 

 
R4 

Color QP 32 32 32 32 27 

Position 
QP 

3/4 3/4 3/4 3/4 20 

level Depth-3 Depth-3 Depth-3 Depth-3 - 

 

 
R3 

Color QP 64 64 64 64 32 

Position 

QP 
1/2 1/2 1/2 1/2 24 

level Depth-3 Depth-3 Depth-3 Depth-3 - 

 

 
R2 

Color QP 128 128 128 128 37 

Position 
QP 

1/4 1/4 1/4 1/4 28 

level Depth-3 Depth-3 Depth-3 Depth-3 - 

 

 
R1 

Color QP 256 256 256 256 42 

Position 
QP 

1/8 1/8 1/8 1/8 32 

level Depth-4 Depth-4 Depth-4 Depth-4 - 

 
A subjective study with DSIS methodology in performed in two separate labs each with 20 

subjects. Point clouds are rendered with RPoint, and point clouds were shown side-by-side in an 

interactive evaluation protocol allowing subjects to modify their viewpoint. 

The outlier detection algorithm described in the ITU-R Recommendation BT.500-13 [31] was 

issued separately for each laboratory, in order to exclude subjects whose ratings deviated 
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drastically from the rest of the scores. As a result, no outliers were identified, thus, leading to 20 

ratings per stimulus at each lab. Then MOS is computer by averaging scores between all subjective 

for each content. 

 

9.3.2 Experimental Results and Analysis 

In this section, objective-subjective correlation performance of the proposed metric is evaluated 

and compared with some benchmarks, as defined in previous Chapters and in the literature. 

However, before evaluating the point cloud quality metrics performance, nonlinear fitting is 

applied on the objective scores, namely three different regressors: a monotonic cubic function 

(9.15), a logistic function (9.16) and a quadratic function (9.17). 
 

MOSp = 𝛽1 + 𝛽2𝑥 + 𝛽3𝑥2 + 𝛽4𝑥3 (9.15) 

𝛽1 − 𝛽2 
𝑀𝑂𝑆𝑝 = 𝛽2 + 

 𝑄𝑖−𝛽3
 

−( ) 
1 + 𝑒 𝛽4 

 
(9.16) 

MOSp = 𝛽1 + 𝛽2𝑥 + 𝛽3𝑥2 + 𝛽4𝑥3 (9.17) 

where  𝑥 are  objective  metric  values  and  𝛽1 , … , 𝛽4  are  the  regression  model  parameters.  This 

approach allows to fit the objective metric values to the perceptual (MOS) scale and thus, obtain 

the predicted MOS scores. To assess the performance of any point cloud quality metric, the PLCC, 

SROCC and RMSE are used. When the values of PLCC and SROCC are close to one, the predicted 

objective scores are highly correlated and have a monotonic relationship with the ground-truth 

MOS values. Moreover, SROCC does not depend on the selected fitting function since it is a 

measure of monotonicity. 

Benchmarks 

List of the metrics that we have compared proposed metric with them are as follows: 

• D1 and D1-PSNR [104]: Po2Po MSE error and PSNR associated to this error. 

• D2 and D2-PSNR [104]: Po2Pl MSE error and PSNR associated to this error. 

• Hausdorff distance and PSNR [133]: Po2Po and Po2Pl Hausdorff distance and PSNR 

associated to this error. 

• Y-MSE and Y-PSNR [104]: mean square error between luminance of points and their nearest 

neighbor and PSNR associated to this error. 

• Pl2Pl MSE [109]: mean squared of angular (cosine) similarity between underlying surfaces at 

each point and its nearest neighbor. 

• PCQM [134]: three geometry features related to curvature are combined with five color 

features related to lightness, chroma and hue. PCQM corresponds to the weighted average of 

the differences for geometry and color features between reference and decoded point clouds. 
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• Point SSIM [135]: The features are extracted in a local neighborhood around each point in the 

reference and degraded point clouds considering four independent ‘attributes’, notably 

geometry, color (luminance), normal and curvature information. Results for the best variant is 

used which is considering only color features, neighborhood size (k) of 12, original voxel depth 

and using variance as statistical dispersion measure. 

• 𝑯𝒀 [136]: A point cloud quality metric based on the histogram and correlogram of the 

luminance component. Raw scores published by the Author are used in this Thesis. 

• 𝒅𝒈𝒄 [136]: A linear combination of Po2Pl MSE with 𝐻𝑌 . Raw scores published by the Author 

are used in this Thesis. 

• PCMRR [137]: A reduced reference quality metric that jointly evaluates color and geometry. 

A set of seven statistical features such as mean, standard deviation, etc. are extracted from the 

reference and degraded point clouds in the geometry, texture, and normal vector domain, in a 

total of 21 features. The quality score is computed as the weighted average of the differences 

for all these features between the reference and degraded point clouds, with the weights 

obtained through a linear optimization algorithm. Raw scores of the best variant published by 

the Author are used in this Thesis. 

• Geotex [138]: A metric based on Local Binary Pattern (LBP) descriptors adapted to point 

clouds and applied to the luminance. Histograms of the extracted feature maps are obtained for 

both the reference and the degraded point clouds to be compared using a distance metric such 

as f-divergence. Scores published on the article is used in this Thesis. 

• Projection-based metric [126]: point clouds are projected on six faces of a cube. Six images 

are concatenated without any pre-processing and PSNR of luminance and RGB-PSNR are used 

as quality metric. 

• Projection-based metric [121]: The same rendered point clouds from 42 views that are shown 

to the subjects in subjective evaluation are evaluated by different 2D metrics. The final value 

of metric is pooled using l1-norm. 

And also, all proposed metrics in this Thesis as follows: 

• GH-PSNR: The generalized Hausdorff distance-based PSNR proposed in Chapter 6, 

considering 98% of the distances, using maximum pooling function (PSNR98,max). Both Po2Po 

and Po2Pl distances are used 

• RA-PSNR: Resolution-adaptive PSNR proposed in Chapter 7. The rendering resolution of 10 

nearest neighbors is used for the experiments of this Chapter (APD10). This metric considers 

intrinsic resolution (considering the rendering impact) of points as well as precision. 
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• P2D MMD-PSNR: point-to-distribution metric proposed in Chapter 8, using only the PSNR 

of Mean Mahalanobis Distances (MMD). This metric finds the distance between a point a 

distribution of a point. 

In this section, the performance of the proposed metric is compared with the best performing 

projection-based metrics available in the literature [121], see Section 9.3.2.1. The overall 

subjective-objective correlation performance of the projection-based quality metric is compared 

with other state-of-the-art point cloud quality metrics, in section 9.3.2.2. An ablation study is 

performed to show the module-by-module performance of the projection-based quality metric, in 

section 9.3.2.5. 

 

9.3.2.1 Performance against State-of-the-Art Projection-based Metrics 

In this section, performance of the proposed metric is compared with the projection-based metrics 

proposed in [121], which were first proposed in [127]. The performance assessment of the 

proposed projection-based quality metric is done using the same 2D quality metric as those used 

in the benchmarks. 

 

Table 9.3: Objective-subjective correlation performance of the proposed metric compared with 

[121] and [70] for same 2D quality metric. 
 

 
METRIC 

 
SROCC 

Cubic Logistic Quadratic 

PLCC RMSE PLCC RMSE PLCC RMSE 

 

VIFP 

Proposed 85.5 83.0 0.760 83.0 0.760 83.0 0.850 

Alexiou et al. [121] 74.2 71.6 0.949 71.5 0.951 71.4 0.953 

Gain 11.3 11.4 0.189 11.5 0.191 11.6 0.103 

 

SSIM 

Proposed 81.3 80.6 0.800 80.9 0.800 79.6 0.810 

Alexiou et al. [121] 63.3 63.6 1.049 62.6 1.061 62.1 1.066 

Gain 18.0 17.0 0.249 18.3 0.261 17.5 0.256 

 

MS-SSIM 

Proposed 82.8 77.0 0.870 79.5 0.830 73.4 0.820 

Alexiou et al. [121] 75.2 70.1 0.970 70.9 0.959 68.8 0.987 

Gain 7.6 6.9 0.100 8.6 0.129 4.6 0.167 

 

 

 
Y-PSNR 

Proposed 79.1 77.1 0.870 77.1 0.870 77.1 0.790 

Alexiou et al. [121] 62.8 62.6 1.061 66.7 1.013 59.7 1.091 

Gain 16.3 14.5 0.191 10.4 0.143 17.4 0.301 

de Queiroz et al [126]. 33.1 43.5 1.225 43.0 1.228 38.8 1.254 

Gain 46.0 33.6 0.355 34.1 0.358 38.3 0.464 
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Table 9.3 clearly shows that proposed projection-based quality metric outperforms the projection- 

based metrics benchmarks significantly, for the same 2D quality metric. The minimum and 

maximum gains of the proposed projected quality metric are 18.3 for PLCC, 18.0 for SROCC and 

0.3 for RMSE, comparing to Alexiou et al. [121]:. These gains are rather high and consistent among 

quality metric performance measures (PLCC, SROCC and RMSE), especially considering that 

[37] uses 42 views, which is much higher (and also more complex) than the six views considered 

in the proposed metric. Other interesting conclusions is that in this limited study, the VIFP is the 

best 2D quality metric and there is no significant difference when different fitting functions are 

used, for VIFP and SSIM, while the differences for MS-SSIM and PSNR-Y are higher. 

 

9.3.2.2 Performance for 2D Quality Assessment Metrics 

As stated in Section 9.2, the proposed projection-based point cloud quality metric is flexible 

enough to accommodate any 2D quality metric. In this Section, the performance of the proposed 

projection-based quality metric is evaluated for different 2D quality metrics. This will allow to 

identify which 2D metric leads to the highest overall performance. In this case, the same 2D quality 

metric is used in both branches of the proposed metric architecture, especially because the fusion 

module works best when the quality range and scale is similar for both reference and degraded 

geometry branches. The 2D quality metric used can influence the performance of the projection- 

based metric significantly and thus a wide set of quality metrics were evaluated: 1) PSNR, 2) 

PSNR-HVS [139], 3) PSNR-HVS-M [140], 4) Structural Similarity Index Metric (SSIM) [141], 

4) Multi-Scale Structural Similarity Index Metric (MS-SSIM) [120], 5) Visual Information 

Fidelity Measure (VIFP) [142], 6) Feature Similarity Index (FSIM) [143], 7) Visual Saliency Index 

(VSI) [144], 8) Learned Perceptual Image Patch Similarity (LPIPS) [145], 9) Deep Image Structure 

and Texture Similarity (DISTS) [146], 11) Haar Perceptual Similarity Index (HaarPSI) [147]. 

Table 9.4 shows the correlation performance of the proposed projected-based quality metric for a 

large set of 2D quality metrics, considering all possible coding degradations (all data). DISTS has 

the best performance among all the 2D quality metrics while LPIPS, FSIM, and VSI come in the 

following positions. Both DISTS and LPIPS are very recent 2D quality metrics that use powerful 

deep-learning features to perform quality assessment. More specifically, DISTS includes both the 

texture similarity and structure similarity components, which are weighted to achieve a better 

correlation with perceived quality and to be invariant to small changes in texture patches 

(homogenous regions with repeated elements). LPIPS computes distances between features 

computed for both reference and degraded input images at different layers of a neural network. In 

both DISTS and LPIPS metrics, pixel-wise comparisons are not performed, and a feature 

perceptual space is used instead. Typically, these metrics weight more general appearance changes 

rather than small changes in textures, where their elements may have different location, size, color 

and orientation. This actually fits rather well the projected images obtained by the proposed metric 

where small texture changes may occur due to the recoloring process. The projection-based quality 
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metric with the best four 2D quality metrics will be used in the remaining experiments of this 

chapter. 

 

Table 9.4: Objective-subjective correlation performance of the proposed projection-based 

quality metric for different 2D quality metrics. 
 

 

2D Metric 

 

SROCC 
Cubic Logistic Quadratic 

PLCC RMSE PLCC RMSE PLCC RMSE 

DISTS 95.6 94.6 0.440 94.7 0.439 93.6 0.478 

LPIPS 93.2 92.2 0.525 92.3 0.523 92.2 0.527 

FSIM 90.1 87.6 0.655 88.2 0.640 85.4 0.708 

HaarPSI 87.7 84.7 0.723 84.8 0.721 84.4 0.729 

VSI 87.6 83.9 0.74 85.4 0.707 80.3 0.811 

VIPF 85.5 83.0 0.758 83.0 0.758 83.0 0.758 

MS-SSIM 82.8 77.0 0.869 79.5 0.825 73.4 0.923 

SSIM 81.3 80.6 0.805 80.9 0.800 79.6 0.823 

PSNR HVS M 81.3 78.3 0.846 78.7 0.840 78.0 0.852 

PSNR HVS 80.5 78.3 0.845 78.4 0.845 78.2 0.848 

Y-PSNR 79.1 77.1 0.866 77.1 0.866 77.1 0.866 

 

9.3.2.3 Performance against State-of-the-Art Point Cloud Quality Metrics 

In this section, the performance of the proposed projection-based quality metric is compared with, 

if not all, state-of-the-art metrics in the point cloud quality assessment literature. Table 9.5 shows 

the SROCC, PLCC and RMSE of several benchmark metrics in the literature, in the evaluation of 

the decoded point cloud quality, again considering all data. The following conclusions can be 

derived: 

• Overall performance: the proposed projection-based metric using DISTS is the best 

performing metric for point cloud quality assessment with the highest PLCC, SROCC and 

lowest RMSE values. This is consistent for the several fitting functions used in this evaluation. 

This result also confirms that by projecting a point cloud into several 2D images (which are 

close to what a user sees) and by exploiting the power of 2D quality metrics a top result can be 

achieved. The proposed projection-based quality metric with LPIPS and the point SSIM quality 

metrics also have a very high performance. 

• Proposed vs point-based point cloud quality metrics: The proposed projection-based metric 

significantly outperforms the point-based D1 and D2-PSNR and plane-to-plane quality metrics 

that are currently used by the MPEG and JPEG standardization groups. The gains are rather 
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significant, up to 11.8 points in SROCC and 19.5 points in PLCC. Moreover, comparing to the 

other point-based quality metrics a similar gain can be achieved. 

• Proposed vs feature-based point cloud quality metrics: The feature-based metrics, however, 

show better performance than point-based metrics and thus the gains are not so high considered 

the proposed 2D quality metric. The overall performance of the best proposed projection-based 

metric is almost 4% in SROCC and 2% in PLCC higher than the best feature-based metric. 

• Proposed vs previously presented Thesis metrics: Proposed projection-based metric shows 

the best performance comparing to all proposed metrics in this thesis. The next best proposed 

metrics are Po2Po RA-PSNR, P2D MMSD and GH-PSNR (98%). 
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Table 9.5: Objective-subjective correlation performance of the proposed metric, comparing with 

the point cloud quality assessment state-of-the-art. Cells with a dash (-) shows missing 

performance since some of these results were obtained from the corresponding paper. 
 

 
Type 

Evaluation 

Domain 

 
Metric Name 

 
SROCC 

Cubic Logistic Quadratic 

PLCC RMSE PLCC RMSE PLCC RMSE 

 

 

 

Point-based 
(Po2Po) 

Geometry D1 [104] 86.8 78.5 0.843 84.8 0.722 70.5 0.965 

Geometry D1-PSNR [104] 79.7 77.6 0.858 77.7 0.857 73.1 0.929 

Geometry Hausdorff [133] 37.0 19.3 1.335 1.4 1.360 14.2 1.347 

Geometry Hausdorff PSNR [133] 36.6 62.4 1.064 66.1 1.021 52.5 1.158 

Color + Geometry Y-MSE [104] 66.2 55.1 1.135 66.3 1.018 49.2 1.184 

Color + Geometry Y-PSNR [104] 66.2 67.0 1.010 67.1 1.009 67.0 1.010 

 

 
Point-based 

(Po2Pl) 

Geometry D2 [104] 88.4 75.0 0.899 85.9 0.695 68.9 0.986 

Geometry D2-PSNR [104] 83.8 80.3 0.810 80.5 0.808 75.1 0.899 

Geometry Hausdorff [133] 50.5 35.6 1.271 67.2 1.007 26.3 1.312 

Geometry Hausdorff PSNR [133] 49.3 59.6 1.092 56.3 1.124 56.0 1.127 

Point-based 

(Pl2Pl) 
Geometry MSE [109] 47.7 58.5 1.104 62.4 1.063 58.2 1.106 

 

 

 

Feature- 

based 

Geometry PCQM [134] 91.6 88.7 0.629 89.9 0.597 - - 

Geometry 𝑑𝑔𝑐 [136] 92.0 80.6 0.804 90.4 0.585 72.2 0.941 

Color + Geometry 𝐻𝑌 [136] 
𝐿2 88.4 82.0 0.78 85.3 0.710 74.7 0.905 

Color + Geometry PCMRR(MCCV) [137] 90.7 89.4 0.594 90.2 0.573 77.6 0.858 

Geometry, Color Point SSIM [135] 91.8 92.5 0.516 92.6 0.514 91.2 0.558 

Color + Geometry Geotex [138] 87.9 66.7 1.042 - - - - 

 
Projection- 

based 

Color + Geometry Y-MS-SSIM [121] 75.2 70.1 0.97 70.9 0.959 68.8 0.987 

Color + Geometry Y-VIFP [121] 74.2 71.6 0.949 71.5 0.951 71.4 0.953 

Color + Geometry Y-PSNR [126] 33.1 43.5 1.225 43.0 1.228 38.8 1.254 

 
Point-based 

(Po2Po) 

Geometry GH 98% PSNR (Ch. 6) 86.9 84.6 0.725 84.6 0.726 79.8 0.820 

 

Geometry 
RA-PSNR (APD10) 

(Ch. 7) 

 

90.2 

 

87.8 

 

0.651 

 

88.8 

 

0.626 

 

79.0 

 

0.833 

 
Point-based 

(Po2Pl) 

Geometry GH 98% PSNR (Ch. 6) 87.9 84.3 0.732 84.3 0.731 79.7 0.822 

 

Geometry 
RA-PSNR (APD10) 

(Ch. 7) 

 

89.9 

 

88.8 

 

0.625 

 

88.9 

 

0.622 

 

80.7 

 

0.803 

Point-based 
(P2D) 

Geometry MMD (Ch. 9) 88.7 86.0 0.695 86.9 0.672 80.5 0.807 

Geometry MMD-PSNR (Ch. 9) 88.7 86.7 0.679 86.9 0.673 86.7 0.679 

 

 
Projection- 

based 

Color + Geometry ProjQm-FSIM (Ch. 10) 90.1 87.6 0.66 88.2 0.64 85.4 0.89 

Color + Geometry ProjQm-VSI (Ch. 10) 87.6 83.9 0.74 85.4 0.707 80.3 0.811 

Color + Geometry ProjQm-LPIPS (Ch. 10) 93.2 92.2 0.525 92.3 0.523 92.2 0.527 

Color + Geometry ProjQm-DISTS (Ch. 10) 95.6 94.6 0.44 94.7 0.439 93.6 0.478 
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9.3.2.4 Coding Approach Impact on the Proposed Projection-based Quality Metric 

The performance of the projection-based quality metric can be significantly influenced by the type 

of coding artifacts, which are generated by some specific type of point cloud coding, e.g., an octree 

codec typically produces very distinct artifacts such as pixelization or blocking artifacts, which 

can be easily identified. Therefore, the dataset has been split into two identifiable sets 

• MPEG G-PCC: the point clouds that are decoded with G-PCC in six rates for TriSoup 

geometry coding mode and RAHT and Predicting color coding modes and six rates for 

Octree geometry coding mode with the same two color coding modes. G-PCC decoded 

point clouds for each test material is 24 rates in total. 

• MPEG V-PCC: the point clouds that are decoded with G-PCC in six rates. 

From this set, the decoded point clouds of MPEG V-PCC codec have always been challenging to 

point cloud quality assessment metrics. Table 9.6 shows the objective-subjective correlation 

performance of the proposed projection-based quality metric compared with the state-of-the-art 

point cloud quality metrics for V-PCC decoded point clouds. The proposed ProjQM-DISTS is the 

best performing metric for V-PCC decoded data with 85.3% of SROCC and more than 86% of 

PLCC. The point-based metrics and projection-based metrics in the state-of-the-art are failing to 

reliable assess the V-PCC decoded quality. Proposed metric using DISTS outperforms the best 

projection-based metric in the literature (Y-VIFP) by 49.7% SROCC and 41.3% PLCC. These 

numbers are 16.5% and 26.1 for point-based metrics (D2). For feature-based metrics that are the 

best metrics in the literature the proposed metric’s gains is 0.8% SROCC and 3.4% PLCC 

comparing with the best metric (PointSSIM). However, proposed projection-based metric using 

DISTS 2D metric and PointSSIM from feature-based metrics are showing significantly better 

results comparing to other metrics. 

The objective-subjective correlation performance results for G-PCC codec are presented in Table 

9.7. The proposed projection-based metric using DISTS is the best performing metric for G-PCC 

decoded data with 96% of SROCC and more than 95.8% of PLCC. Feature-based and point-based 

metrics (except for Pl2Pl) are showing acceptable performance assessing the G-PCC decoded data. 

However, proposed projection-based metric using DISTS outperforms the best point-based metric 

(D2) by 5.4% SROCC and 7.9% PLCC. The correlation gains against the best feature-based metric 

(𝑑𝑔𝑐) are 2.1% SROCC and 3.3% PLCC. State-of-the-art projection-based metric does not show 

an acceptable performance evaluating G-PCC decoded point clouds. 
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Table 9.6: Objective-subjective correlation performance of the proposed projection-based 

metric, comparing with the point cloud quality assessment state-of-the-art, for V-PCC. Cells with 

a dash (-) shows missing performance since some of these results were obtained from the 

corresponding paper. 
 

 
Type 

Evaluation 

Domain 

 
Metric Name 

 
SROCC 

Cubic Logistic Quadratic 

PLCC RMSE PLCC RMSE PLCC RMSE 

 

 

 

Point-based 
(Po2Po) 

Geometry D1 [104] 42.0 42.0 0.950 46.3 0.928 41.6 0.952 

Geometry D1-PSNR [104] 28.2 35.0 0.981 30.4 0.997 30.3 0.998 

Geometry Hausdorff [133] -17.5 21.2 1.023 14.7 1.047 20.6 1.024 

Geometry Hausdorff PSNR [133] -14.9 37 0.973 27.1 1.008 15.8 1.034 

Color + Geometry Y-MSE [104] 33.3 49.5 0.909 37.9 0.969 19.0 1.028 

Color + Geometry Y-PSNR [104] 33.3 39.1 0.964 37.6 0.97 34.9 0.981 

 

 
Point-based 

(Po2Pl) 

Geometry D2 [104] 68.8 71.3 0.734 73.5 0.71 71.0 0.737 

Geometry D2-PSNR [104] 55.3 53.9 0.882 60.3 0.835 53.9 0.882 

Geometry Hausdorff [133] 12.8 20.5 1.025 23.8 1.017 16.6 1.032 

Geometry Hausdorff PSNR [133] 13.5 16.2 1.033 28.6 1.003 16.2 1.033 

Point-based 

(Pl2Pl) 
Geometry MSE [109] 34.1 54.4 0.879 51.6 0.897 48.5 0.916 

 

 

 

Feature- 

based 

Geometry PCQM [134] - - - - - - - 

Geometry 𝑑𝑔𝑐 [136] 74.0 74.9 0.694 75.3 0.689 74.4 0.700 

Color + Geometry 𝐻𝑌 [136] 
𝐿2 68.3 65.9 0.787 65.7 0.789 65.3 0.793 

Color + Geometry PCMRR(MCCV) [137] 64.8 71.9 0.727 71.6 0.731 67.3 0.774 

Geometry, Color Point SSIM [135] 84.5 83.0 0.584 83.0 0.584 82.8 0.587 

Color + Geometry Geotex [138] - - - - - - - 

 
Projection- 

based 

Color + Geometry Y-MS-SSIM [121] 35.4 45.5 0.932 31.9 0.992 31.1 0.995 

Color + Geometry Y-VIFP [121] 35.6 34.8 0.982 43.7 0.942 34.5 0.983 

Color + Geometry Y-PSNR [126] -10.1 31.9 0.992 29.7 1.000 21.4 1.024 

 
Point-based 

(Po2Po) 

Geometry GH 98% PSNR (Ch. 6) 57.3 59.3 0.843 57.8 0.854 53.4 0.885 

 
Geometry 

RA-PSNR (APD10) 

(Ch. 7) 

 
67.3 

 
70.1 

 
0.747 

 
68.9 

 
0.759 

 
63.3 

 
0.810 

 
Point-based 

(Po2Pl) 

Geometry GH 98% PSNR (Ch. 6) 71.2 75.4 0.687 75.1 0.691 75.0 0.693 

 

Geometry 
RA-PSNR (APD10) 

(Ch. 7) 

 

76.9 

 

80.3 

 

0.625 

 

79.9 

 

0.629 

 

77.0 

 

0.668 

Point-based 
(P2D) 

Geometry MMD (Ch. 9) 69.0 72.1 0.725 71.8 0.729 70.9 0.738 

Geometry MMD-PSNR (Ch. 9) 69.0 72.4 0.722 71.9 0.728 70.1 0.747 

 

 
Projection- 

based 

Color + Geometry ProjQm-FSIM (Ch. 10) 72.1 71.3 0.734 71.0 0.737 71.2 0.737 

Color + Geometry ProjQm-VSI (Ch. 10) 63.9 64.2 0.802 64.5 0.800 64.2 0.802 

Color + Geometry ProjQm-LPIPS (Ch. 10) 79.5 80.5 0.621 80.7 0.618 79.9 0.630 

Color + Geometry ProjQm-DISTS (Ch. 10) 85.3 86.2 0.532 86.4 0.526 85.7 0.540 
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Table 9.7: Objective-subjective correlation performance of the proposed projection-based 

metric, comparing with the point cloud quality assessment state-of-the-art, for G-PCC. Cells with 

a dash (-) shows missing performance since some of these results were obtained from the 

corresponding paper. 
 

 
Type 

Evaluation 

Domain 

 
Metric Name 

 
SROCC 

Cubic Logistic Quadratic 

PLCC RMSE PLCC RMSE PLCC RMSE 

 

 

 

Point-based 
(Po2Po) 

Geometry D1 [104] 90.0 81.5 0.814 88.6 0.651 73.0 0.960 

Geometry D1-PSNR [104] 83.9 82.1 0.801 82.5 0.794 76.1 0.911 

Geometry Hausdorff [133] 54.4 29.3 1.343 5.3 1.404 22.1 1.369 

Geometry Hausdorff PSNR [133] 53.3 73.8 0.948 76 0.912 61 1.113 

Color + Geometry Y-MSE [104] 70.3 59.3 1.131 70.3 0.998 52.4 1.196 

Color + Geometry Y-PSNR [104] 70.3 71.3 0.985 71.4 0.984 71.3 0.985 

 

 
Point-based 

(Po2Pl) 

Geometry D2 [104] 90.6 76.2 0.910 87.9 0.669 69.9 1.004 

Geometry D2-PSNR [104] 87.3 83.2 0.779 83.4 0.774 77.3 0.891 

Geometry Hausdorff [133] 66.3 45.3 1.252 78.4 0.871 28.5 1.346 

Geometry Hausdorff PSNR [133] 65.3 72.7 0.964 68.7 1.02 65.7 1.059 

Point-based 

(Pl2Pl) 
Geometry MSE [109] 

55.0 64.7 1.071 69 1.016 64.6 1.072 

 

 

 

Feature- 

based 

Geometry PCQM [134] - - - - - - - 

Geometry 𝑑𝑔𝑐 [136] 93.9 81.7 0.811 92.5 0.533 73.0 0.960 

Color + Geometry 𝐻𝑌 [136] 
𝐿2 91.9 83.4 0.776 87.9 0.669 75.5 0.922 

Color + Geometry PCMRR(MCCV) [137] 91.0 86.7 0.699 89.2 0.636 79.0 0.862 

Geometry, Color Point SSIM [135] 92.9 94.4 0.465 94.4 0.462 92.8 0.522 

Color + Geometry Geotex [138] - - - - - - - 

 
Projection- 

based 

Color + Geometry Y-MS-SSIM [121] 50.1 74.4 0.938 75.3 0.924 72.5 0.967 

Color + Geometry Y-VIFP [121] 79.2 75.0 0.929 75.0 0.929 74.9 0.93 

Color + Geometry Y-PSNR [126] 35.7 46.6 1.242 47.7 1.234 43.7 1.263 

 
Point-based 

(Po2Po) 

Geometry GH 98% PSNR (Ch. 6) 89.9 88.6 0.651 88.5 0.653 82.7 0.790 

 
Geometry 

RA-PSNR (APD10) 

(Ch. 7) 

91.8 90.0 0.611 91.0 0.584 81.1 0.821 

 
Point-based 

(Po2Pl) 

Geometry GH 98% PSNR (Ch. 6) 91.0 87.8 0.672 87.5 0.68 82.3 0.798 

 

Geometry 
RA-PSNR (APD10) 

(Ch. 7) 

91.5 90.3 0.605 90.3 0.604 82.1 0.803 

Point-based 
(P2D) 

Geometry MMD (Ch. 9) 90.3 87.8 0.672 88.8 0.647 82.2 0.800 

Geometry MMD-PSNR (Ch. 9) 90.3 88.3 0.658 88.7 0.648 88.3 0.659 

 

 
Projection- 

based 

Color + Geometry ProjQm-FSIM (Ch. 10) 92.1 89.4 0.629 90.3 0.604 86.7 0.699 

Color + Geometry ProjQm-VSI (Ch. 10) 90.1 86.1 0.715 88.1 0.664 81.8 0.807 

Color + Geometry ProjQm-LPIPS (Ch. 10) 94.2 93.4 0.500 93.5 0.497 93.4 0.502 

Color + Geometry ProjQm-DISTS (Ch. 10) 96.0 95.8 0.404 95.8 0.402 94.4 0.461 
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9.3.2.5 Proposed Projection-based Quality Metric Ablation Study 

The proposed projection-based quality metric has many modules which have different impact on 

the overall performance. To assess individually each module of the proposed metric, different 

ablation studies are run on the entire dataset. More precisely, the quality metric is run for all stimuli 

included in the dataset, each time turning off one of the key modules while keeping the others: 

recoloring, cropping, and padding. Table 9.8 shows the PLCC and SROCC results for this ablation 

study. The non-linear fitting is not applied to the objective scores to eliminate any possible 

performance oscillations which could have an impact on the results and conclusions. The following 

conclusions can be derived: 

• Recoloring: The correlation performance results show the importance of recoloring for the 

proposed projection-based quality metric. The absence of recoloring for VSI and FSIM leads 

to losses of 10.3 to 8.6 for SROCC and 3.6 to 2.4 for PLCC. The performance loss after 

removing recoloring for DISTS and LPIPS is lower mainly because these two recent 2D quality 

metric are robust to geometry distortions and transformations. However, the performance gain 

of using recoloring for these two projection-based quality metrics is respectively, 1.5 and 2.5 

SROCC and 2.4 and 2.2 PLCC. 

• Cropping: The cropping operation improves the performance of a projection-based metric 

significantly by removing background pixels around objects that are in common between 

reference and degraded PCs. The background area works as a distractor for the 2D quality 

assessment metric and decreases its prediction power, even when background pixels are 

padded. The performance gains by using cropping module are up to 11.4 for SROCC and 14.0 

for PLCC. 

• Padding: The padding operation also improves the performance of the proposed metric. Most 

of the excessive background is removed by cropping but still some area around the object 

remains. Also, background pixels among objects which are the result of sparce areas are filled 

by padding. These background pixels inside objects results in comparison of background pixels 

with point cloud pixels due to different number of decoded points. 

Note that all of these performance gains for these modules may be significantly more using 2D 

image metrics with lower performance. 



158 
 

 

 

 
 

Table 9.8: Ablations studies of the proposed metric for 4 best 2D metrics on used dataset. 

Correlation results are obtained without fitting objective scores to MOS. 
 

   
Final Proposed Metric 

Removed Module 

Recoloring Cropping Padding 

 
ProjQM-DISTS 

PLCC 84.0 81.6 72.4 83.3 

SROCC 95.6 94.9 86.7 91.1 

 
ProjQM-LPIPS 

PLCC 88.0 85.8 73.9 76.5 

SROCC 93.2 90.7 81.8 80.8 

 
ProjQM-FSIM 

PLCC 74.3 71.9 63.8 73.6 

SROCC 90.1 81.5 83.7 89.6 

 
ProjQM-VSI 

PLCC 68.0 64.4 58.4 63.7 

SROCC 87.6 77.3 83.9 83.4 

 

9.4 Final Remarks 

This chapter proposes a novel projection-based point cloud quality metric that compares the point 

clouds in the 2D domain for the same geometry level (reference and degraded geometry). The 

projection-based quality metric obtains 2D project maps for six views of the point cloud which are 

processed (padding and cropping) before any 2D quality assessment. The performance results 

achieved confirm a very high performance, much better than other available state-of-the-art point 

cloud quality metrics. Other experimental results show, which 2D quality metric leads to the 

highest overall performance and which one of the modules of the proposed quality metric has a 

higher impact in the overall performance (ablation study). In this Chapter, the objective-subjective 

correlation results show that proposed metric outperforms all previous metrics proposed by the 

author during the development of this Thesis. 

This work is going to be submitted soon. 

A. Javaheri, C. Brites, F. Pereira, J. Ascenso, “Projection-based Point Cloud Quality Assessment 

Metric,” to be submitted. 
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Chapter 10 
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Summary and Future Work 
 

 

 

 

 

 

 

 

 

 

 

 

 

10.1 Conclusions 

This Thesis has addressed key challenges in the emerging field of point cloud quality assessment 

with a special focus on the quality assessment of decoded point clouds. The subjective quality 

assessment studies reported in this Thesis have started with the quality assessment of simple point 

clouds, without attributes, decoded with the only coding scheme available at the time to move after 

to more complex contents with color, decoded with emerging point cloud coding standards. 

Several subjective quality assessment studies have been performed to study and benchmark the 

impact of different factors on the perceived quality of point clouds e.g., rendering, coding, 

denoising etc. These studies were used later to evaluate the objective-subjective correlation 

performance of the proposed objective quality assessment metrics. In this context, several point 

cloud objective quality metrics have been proposed in this Thesis, trying to consider the key factor 

in the perceptual quality of decoded point clouds. 

The summary and conclusions of this Thesis are, naturally, related to the two major parts of this 

Thesis: i) Subjective quality assessment; and ii) Objective quality assessment, as follows: 

Part II. Subjective Quality Assessment 

• Impact of Denoising: A passive subjective assessment methodology has been proposed to 

assess the quality of point cloud geometry denoising algorithms. No color attribute was used 

in this subjective study. To perform this study, classical image denoising solutions, e.g., using 

Tikhonov and Total Variation regularization functions, were adapted for point clouds, inspired 

by the emerging graph-based signal processing field to either remove erroneous points or 

improve its positioning. Experimental results showed that denoising with a total variation 

regularization function improves the quality of point clouds slightly more than with a Tikhonov 
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regularization function. The objective-subjective correlation performance of the two types of 

distance metrics available at that time were compared to conclude that Po2Pl metrics perform 

better than Po2Po metrics in evaluating the quality of denoised point clouds. However, Po2Po 

and Po2Pl Hausdorff distances showed very poor performance to evaluate denoised point 

clouds. 

• Impact of Coding: A passive subjective assessment methodology has been proposed to assess 

the quality of decoded point clouds. Decoded point clouds with their reference color were used 

in the subjective tests. To perform this study, the PCL octree-based codec and a simple 

transform-based codec were used. The objective-subjective correlation performance of the 

distance-based metrics in the literature at that time, notably Po2Po/Po2Pl MSE and Hausdorff, 

were analysed to conclude that Po2Pl Hausdorff outperformed other quality metrics for point 

clouds decoded with both codecs. 

• Impact of Rendering: A subjective study was performed in three sessions to study the impact 

of frequently used rendering approaches on the perceptual quality of decoded point clouds. 

This was the first time that the rendering and coding processes, which play a major role on the 

final perceived quality, were jointly evaluated. It was also the first time that the emerging 

MPEG point cloud coding standards, G-PCC and V-PCC, were used in a subjective quality 

assessment test. Experimental results have shown that, in general, the visibility of compression 

artifacts is different for different rendering scenarios, e.g., color attributes mask the geometry 

distortions. However, rendering affects the distortions associated to different coding 

approaches differently, e.g., PCL distortions are mostly visible in all rendering approaches 

while color highly masks errors associated to V-PCC. The objective-subjective correlation 

performance of nine of the most adopted state-of-the-art quality metrics e.g., D1-PSNR and 

D2-PSNR, was also compared for different rendering approaches. It was shown that the 

perceived quality not only depends on the point cloud artifacts introduced by some processing 

step (in this case, coding) but also on the rendering approach. 
 

Part III. Objective Quality Assessment 

• GH-PSNR: A novel point cloud geometry quality assessment metric was proposed based on 

the generalized Hausdorff distance. The analysis of the error histograms associated to the G- 

PCC and V-PCC codecs has shown that there are a few points with very large error magnitude 

comparing to rest of the points. These errors are not perceptually very visible because they are 

outnumbered and scattered all over the point cloud. The proposed PSNR-based metric uses the 

generalized Hausdorff distance with different percentages to filter these errors out. 

Experimental results have shown that the proposed metric outperforms the D1-PSNR and D2- 

PSNR metrics. 

• RA-PSNR: A novel point cloud geometry quality assessment metric was proposed by 

exploiting the intrinsic point cloud characteristics and the rendering process that must occur 

before visualization. The well-known D1-PSNR and D2-PSNR metrics were improved by 
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including a normalization factor that accounts for changes in the intrinsic point cloud resolution 

(after rendering), as well as the point cloud precision. Experimental results have shown that 

the proposed quality metrics outperform the MPEG PSNR-based quality metrics significantly. 

• P2D PCQM: A novel point cloud geometry quality assessment metric was proposed which 

establishes a new type of correspondence between a point and a distribution of points instead 

of the more usual point-to-point correspondence. When the decoded number of points is larger 

than the reference number of points in the reference point cloud, the point-to-point 

correspondence for the newly added points is not accurate. The quality metric extracts the 

statistics of a distribution of points and considers the underlying surface more effectively than 

available point-based quality metrics. Experimental results have shown a significant 

improvement comparing to the state-of-the-art quality metrics. 

• ProjQM: A novel projection-based point cloud quality metric was proposed which addresses 

the limitations of the state-of-the-art projection-based metrics, notably achieving a better 

objective-subjective correlation performance. The underlying idea is that even a slight 

misalignment between the geometry of the reference and degraded point clouds may not be 

perceptually visible but may result in comparing non-corresponding pixels after the projection. 

The proposed quality metric exploits the recoloring process to align the geometries. It also 

crops the background and fills the holes inside the projected point cloud in order to discard 

common parts that reduce the metric prediction power, notably by preventing to compare a 

projected point with a background pixel. Experimental results have shown that by adopting the 

suitable 2D metric, the proposed quality metric became the best performing quality metric in 

the point cloud quality assessment. 

 

In Chapter 9, all proposed objective quality metrics were compared using MOS scores and stimuli 

from a subjective quality assessment study with the M-PCCD dataset [121]. Table 10.1 shows the 

obtained quality metrics ranking in terms of objective-subjective correlation performance for the 

G-PCC and V-PCC codecs individually and both together. The best proposed metrics for all codecs 

together is projection-based metric proposed in Chapter 9. RA-PSNR (Chapter 7), P2D MMD 

(Chapter 8) and GH-PSNR (Chapter 6) are in the next rank. 
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Table 10.1: Ranking of the proposed objective quality metrics on their SROCC objective- 

subjective correlation performance for M-PCCD dataset. 
 

 
Rank 

G-PCC V-PCC All 

Quality 

Metric 
SROCC PLCC 

Quality 

Metric 
SROCC PLCC 

Quality 

Metric 
SROCC PLCC 

 
1 

ProjQm- 

DISTS 

 
96.0 

 
95.8 

GAI- 

PCQM 

(DISTS) 

 
85.3 

 
86.4 

ProjQm- 

DISTS 

 
95.6 

 
94.7 

 

2 

Po2Po 

RA- 

PSNR 

(APD10) 

 

91.8 

 

91.0 

Po2Pl 

RA- 

PSNR 

(APD10) 

 

76.9 

 

79.9 

Po2Po 

RA- 

PSNR 

(APD10) 

 

90.2 

 

88.8 

 

3 

Po2Pl 

GH- 

PSNR 

98% 

 

91.0 

 

87.5 

Po2Pl 

GH- 

PSNR 

98% 

 

71.2 

 

75.1 

P2D 

MMD 

PSNR 

 

88.7 

 

86.9 

 

4 

P2D 

MMD 

PSNR 

 

90.3 

 

88.3 

P2D 

MMD 

PSNR 

 

69.0 

 

71.9 

Po2Pl 

GH- 

PSNR 

98% 

 

87.9 

 

84.3 

 

10.2 Future Work 

The research conducted in this Thesis has resulted in several subjective quality assessment studies 

addressing different problems in point cloud quality as well as in four novel objective quality 

metrics which have shown promising performance for point cloud quality assessment. However, 

there is still plenty of room to improve the current point cloud objective quality metrics. There are 

also many impacting factors that are not yet considered in point cloud subjective assessment. 

In this context, the following topics may be considered for future research: 

• Using other visualization devices, such VR glasses as well as 2D displays, in point cloud 

subjective quality assessment test to assess their impact on the user experience, notably the 

different levels of interactivity they may offer. 

• Using more rendering approaches for point cloud subjective quality studies, notably spanning 

the requirements of more application scenarios. 

• Exploiting visual attention in virtual or augment reality scenarios, to see how people consume 

3D point clouds when they are free to interact with them. 

• Exploring deep learning-based metrics considering the promising results of feature-based 

metrics in point cloud quality assessment and deep learning methods in other computer science 

domains. 

• Exploiting point cloud statistics to propose a no-reference point cloud quality assessment. 
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• Evaluating dynamic point clouds using either subjective studies or by proposing objective 

quality metrics. 

Adopting a feature-based approach for the objective quality metrics which is already showing 

promising results in the literature. Feature of reference and degraded can be learned through a 

feature learning neural network and compared together. Deep neural networks have been used for 

image quality assessment [145] [146] and point cloud geometry similarity in registration validation 

used in robotic application [148]. Since features extracted by a deep neural network have never 

been used for point cloud quality assessment, this seems an interesting approach to pursue. 



164 
 

 

 



165 
 

 

 

 
 

References 
 

 

 

 

[1] C. Tulvan, R. Mekuria, Z. Li and S. Laserre, "Use cases for Point Cloud Compression (PCC)," in 

ISO/IEC JTC1/SC29/WG11 MPEG2015/ N16331, Geneva, Switzerland, June, 2016. 

[2] 3DG Group, "Common Test Conditions for Point Cloud Compression," ISO/IEC 

JTC1/SC29/WG11 Doc. N18474, Geneva, Switzerland, March, 2019. 

[3] 3DG Group, "Text of ISO/IEC CD 23090-9 Geometry-based Point Cloud Compression," ISO/IEC 

JTC1/SC29/WG11 Doc. N18478, Geneva, Switzerland, July, 2019. 

[4] 3DG Group, "Text of ISO/IEC CD 23090-5: Video-based Point Cloud Compression," ISO/IEC 

JTC1/SC29/WG11 Doc. N18030, Macau, China, October, 2018. 

[5] E. Alexiou, E. Upenik and T. Ebrahimi, "Towards subjective quality assessment of point cloud 

imaging in augmented reality," in Workshop on Multimedia Signal Processing, Luton, UK, October, 

2017. 

[6] E. Alexiou and T. Ebrahimi, "On subjective and objective quality evaluation of point cloud 

geometry," in International Conference on Quality of Multimedia Experience, Erfurt, Germany, 

May, 2017. 

[7] E. Alexiou and T. Ebrahimi, "On the performance of metrics to predict quality in point cloud 

representations," in Applications of Digital Image Processing XL (SPIE 10396), San Diego, CA, 

USA, September, 2017. 

[8] E. Alexiou, T. Ebrahimi, M. V. Bernardo, M. Pereira, A. Pinheiro, L. A. da Silva Cruz, C. Duarte, 

L. G. Dmitrovic, E. Dumic, D. Matkovics and A. Skodras, "Point cloud subjective evaluation 

methodology based on 2D rendering," in International Conference on Quality of Multimedia 

Experience, Sardinia, Italy, May, 2018. 



166 
 

 

 

 

 

 
 

[9] A. Javaheri, C. Brites, F. Pereira and J. Ascenso, "Subjective and objective quality evaluation of 3D 

point cloud denoising algorithms," in International Conference on Multimedia & Expo Workshops, 

Hong Kong, July, 2017. 

[10] A. Javaheri, C. Brites, F. Pereira and J. Ascenso, "Subjective and objective quality evaluation of 

compressed point clouds," in Workshop on Multimedia Signal Processing, Luton, UK, October, 

2017. 

[11] A. Javaheri, C. Brites, F. Pereira and J. Ascenso, "Point Cloud Rendering after Coding: Impacts on 

Subjective and Objective Quality," Transactions on Multimedia, 2020. 

[12] A. Javaheri, C. Brites, F. Pereira and J. Ascenso, "A generalized Hausdorff distance based quality 

metric for point cloud geometry," in International Conference on Quality of Multimedia Experience, 

Athlone, Ireland, May, 2020. 

[13] A. Javaheri, C. Brites, F. Pereira and J. Ascenso, "Improving PSNR-based quality metrics 

performance for point cloud geometry," in International Conference on Image Processing, Abu 

Dhai, UAE, October, 2020.. 

[14] A. Javaheri, C. Brites, F. Pereira and J. Ascenso, "Mahalanobis Based Point to Distribution Metric 

for Point Cloud Geometry Quality Evaluation," Signal Processing Letters, vol. 27, pp. 1350-1354, 

2020. 

[15] R. B. Rusu and A. Cousins, "3D is here: Point Cloud Library (PCL)," in IEEE International 

Conference on Robotics and Automation, Shanghai, China, May, 2011. 

[16] F. Pereira, A. Dricot, J. Ascenso and C. Brites, "Point cloud coding: A privileged view driven by a 

classification taxonomy," Signal Processing: Image Communication, vol. 85, no. 115862, July, 

2020. 

[17] J. Kammerl, N. Blodow, R. B. Rusu and S. Gedikli, "Real-time compression of point cloud streams," 

in International Conference on Robotics and Automation, Saint Paul, MN, USA, May, 2012. 



167 
 

 

 

 

 

 
 

[18] G. Nigel and N. Martin, "Range encoding: an algorithm for removing redundancy from a digitized 

message," in Video and Data Recording Conference, Southampton, UK, July, 1979. 

[19] 3DG Group, "G-PCC codec description v7," in ISO/IEC MPEG N19331, Online, April. 2020. 

[20] R. Queiroz and P. Chou, "Compression of 3D Point Clouds Using a Region-Adaptive Hierarchical 

Transform," IEEE Transaction on Image Processing, vol. 25, no. 8, pp. 3947 - 3956, August, 2016. 

[21] "V-PCC codec description," in ISO/IEC JTC 1/SC 29/WG 7 N00012, Virtual, October, 2020. 

[22] G. J. Sullivan, J. R. Ohm, W. Han and T. Wiegand, "Overview of the high efficiency video coding 

(HEVC) standard," IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 

12, pp. 1649-1668, September, 2012. 

[23] M. Pharr, W. Jakob and G. Humphreys, Physically based rendering: from theory to implementation,, 

Morgan Kaufmann, 2016. 

[24] T. Akenine-Moller, E. Haines and N. Hoffman, Real-time rendering, vol. 3rd edition, AK 

Peters/CRC Press, 2018. 

[25] A. Javaheri, C. Brites, F. Pereira and J. Ascenso, "Subjective and Objective Quality Evaluation of 

Compressed Point Clouds," in Workshop on Multimedia Signal Processing (MMSP), Luton, UK, 

October 2017. 

[26] V. S. Ramachandran, "Perception of Shape from Shading," Nature, vol. 331, no. 6152, pp. 163-166, 

January 1988. 

[27] M. Kazhdan, M. Bolitho and H. Hoppe, "Poisson Surface Reconstruction," in Eurographics Symp. 

on Geometry Processing, Sardinia, Italy, June 2006. 

[28] A. Khatamian and H. R. Arabnia, "Survey on 3D Surface Reconstruction," Journal of Information 

Processing Systems, vol. 12, no. 3, pp. 338-357, September 2016. 



168 
 

 

 

 

 

 
 

[29] R. Zhang, P. S. Tsai, J. E. Cryer and M. Shah, "Shape-from-shading: a survey," Transactions on 

Pattern Analysis and Machine Intelligence, vol. 2, no. 8, pp. 690-706, August 1999. 

[30] D. F. Fouhey, A. Gupta and A. Zisserman, "From Images to 3D Shape Attributes," IEEE 

Transaction on Pattern Analysis and Machine Intelligence, vol. 41, no. 1, pp. 93-106, December 

2017. 

[31] ITU-R Recommendation BT.500-13, "Methodology for the Subjective Assessment of the Quality 

of Television Pictures," in International Telecommunications Union, Geneva, Switzerland, 2012. 

[32] Tutorial, ITU-T, "Objective Perceptual Assessment of Video Quality: Full Reference Television," 

in ITU-T Telecommunication Standardization Bureau, 2005. 

[33] ITU-R Recommendation P.1401, "Methods, metrics and procedures for statistical evaluation, 

qualification and comparison of objective quality prediction models," Geneva, Switzerland, July 

2012. 

[34] J. Zhang, W. Huang, X. Zhu and J.-N. Hwang, "A subjective quality evaluation for 3D point cloud 

models," in International Conerance. on Audio, Language and Image Processing, Shanghai, China, 

July, 2014. 

[35] R. Mekuria, K. Blom and P. Cesar, "Design, implementation, and evaluation of a point cloud codec 

for tele-immersive video," Transactions on Circuits and Systems for Video Technology, vol. 27, no. 

4, pp. 828 - 842, April, 2017. 

[36] R. Mekuria, S. Laserre and C. Tulvan, "Performance assessment of point cloud compression," in 

Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, December, 2017. 

[37] E. Alexiou and T. Ebrahimi, "On the performance of metrics to predict quality in point cloud 

representations," in Applications of Digital Image Processing XL (SPIE 10396), San Diego, CA, 

USA, September, 2017. 



169 
 

 

 

 

 

 
 

[38] E. Alexiou and T. Ebrahimi, "Impact of visualization strategy for subjective quality assessment of 

point clouds," in International Conference on Multimedia & Expo Workshops, San Diego, CA, 

USA, July 2018. 

[39] E. Dumic, F. Battisti, m. Carli and L. A. da Silva, "Point Cloud Visualization Methods: a Study on 

Subjective Preferences," in European Signal Processing Conference (EUSIPCO), Amsterdam, 

Netherlands, January, 2021. 

[40] JPEG Committee, "JPEG Pleno database - University of Sao Paulo point clouds," [Online]. 

Available: http://plenodb.jpeg.org/. 

[41] E. Alexiou, A. M. G. Pinheiro, C. Duarte, D. Matković, E. Dumić and L. A. da Silva Cruz, "Point 

cloud subjective evaluation methodology based on reconstructed surfaces," in Applications of 

Digital Image Processing XL (SPIE 10752), San Diego, CA, USA, September, 2018. 

[42] E. Alexiou and T. Ebrahimi, "Benchmarking of objective quality metrics for colorless point clouds," 

in Picture Coding Symposium, San Francisco, CA, USA, June 2018. 

[43] K. Christaki, E. Christakis, P. Drakoulis, A. Doumanoglou, N. Zioulis, D. Zarpalas and P. Daras, 

"Subjective visual quality assessment of immersive 3D media compressed by open-source static 3D 

mesh codecs," in International Conference on Multimedia Modeling, Thessaloniki, Greece, 

January, 2019. 

[44] E. M. Torlig, E. Alexiou, T. A. Fonseca, R. L. de Queiroz and T. Ebrahimi, "A novel methodology 

for quality assessment of voxelized point clouds," in Applications of Digital Image Processing XLI, 

San Diego, CA, USA, September, 2018. 

[45] E. Alexiou and T. Ebrahimi, "Exploiting user interactivity in quality assessment of point cloud 

imaging," in IEEE International Conference on Quality of Multimedia Experience (QoMEX), 

Berlin, Germany, June, 2019. 

http://plenodb.jpeg.org/


170 
 

 

 

 

 

 
 

[46] E. Dumic, C. R. Duarte and L. A. da Silva Cruz, "Subjective evaluation and objective measures for 

point clouds — State-of-the-art," in International Colloquium on Smart Grid Metrology, Split, 

Croatia, May 2018. 

[47] E. Alexiou, I. Viola, T. . M. Borges, T. A. Fonseca and R. L. de Queiroz, "A comprehensive study 

of the rate-distortion performance in MPEG point cloud compression," APSIPA Transactions on 

Signal and Information Processing, vol. 8, no. 27, pp. 1-27, November, 2019. 

[48] E. Zerman, P. Gao, C. Ozcinar and A. Smolic, "Subjective and objective quality assessment for 

volumetric video compression," Image Quality and System Performance, vol. XVI, pp. 323-1-323- 

7, January, 2019. 

[49] E. Zerman, C. Ozcinar, P. Gao and A. Smolic, "Textured Mesh vs Coloured Point Cloud: A 

Subjective Study for Volumetric Video Compression," in International Conference on Quality of 

Multimedia Experience (QoMEX), Athlone, Ireland, May, 2020. 

[50] "Draco," Google, [Online]. Available: https://google.github.io/draco/. [Accessed 25 01 2020]. 

[51] 
 

E. d’Eon, B. Harrison, T. Myers and P. A. Chou, "8i voxelized full bodies, version 2 – A voxelized 

point cloud dataset," in ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document 

m40059/M74006, Geneva, Switzerland, January, 2017. 

[52] X. Wu, Y. Zhang, F. Chun-ling, J. Hou and S. Kwong, "Subjective Quality Study and Database of 

Compressed Point Clouds with 6DoF Head-mounted Display," arXiv: Image and Video Processing, 

2020. 

[53] H. Su, Z. Duanmu, W. Liu, Q. Liu and Z. Wang, "Perceptual Quality Assessment of 3d Point 

Clouds," in International Conference on Image Processing (ICIP), Taipei, Taiwan, September, 

2019. 

[54] J. van der Hooft, M. T. Vega, C. Timmerer, A. C. Begen, F. De Turck and R. Schatz, "Objective 

and Subjective QoE Evaluation for Adaptive Point Cloud Streaming," in International Conference 

on Quality of Multimedia Experience (QoMEX), Athlone, Ireland, May, 2020. 



171 
 

 

 

 

 

 
 

[55] S. Subramanyam, J. Li, I. Viola and P. Cesar, "Comparing the Quality of Highly Realistic Digital 

Humans in 3DoF and 6DoF: A Volumetric Video Case Study," in Conference on Virtual Reality 

and 3D User Interfaces (VR), Atlanta, GA, USA, March, 2020. 

[56] S. Perry, H. P. Cong, L. A. da Silva Cruz, J. Prazeres, M. Pereira, A. Pinheiro, E. Dumic, E. Alexiou 

and T. Ebrahimi, "Quality Evaluation Of Static Point Clouds Encoded Using MPEG Codecs," in 

International Conference on Image Processing (ICIP), Abu Dhabi, UAE, October, 2020. 

[57] R. Mekuria, Z. Li, C. Tulvan and P. Chou, "Evaluation criteria for PCC (Point Cloud 

Compression)," in ISO/IEC MPEG Doc. N16332, Geneva, Switzerland, June, 2016. 

[58] D. Tian, H. Ochimizu, C. Feng, R. Cohen and A. Vetro, "Geometric distortion metrics for point 

cloud compression," in IEEE International Conference on Image Processing (ICIP), Beijing, China, 

September, 2017. 

[59] E. Alexiou and T. Ebrahimi, "Point Cloud Quality Assessment Metric based on Angular Similarity," 

in IEEE International Conference on Multimedia & Expo Workshops, San Diego, CA, USA, July, 

2018. 

[60] P. Cignoni, C. Rochinni and R. Scopigno, "Metro: measuring errors on simplified surfaces," 

Computer Graphics Forum, vol. 17, no. 2, pp. 167-174, January, 1998. 

[61] G. Meynet, J. Digne and G. Lavoué , "PC-MSDM: A quality metric for 3D point clouds," in 

International Conference on Quality of Multimedia Experience, Berlin, Germany, June, 2019. 

[62] I. Viola, S. Subramanyam and P. Cesar, "A color-based objective quality metric for point cloud 

contents," in IEEE International Conference on Quality of Multimedia Experience, Athlone, 

Ireland, May, 2020. 

[63] R. Diniz, P. G. Freitas and M. Farias, "Towards a point cloud quality assessment model using local 

binary patterns," in IEEE International Conference on Quality of Multimedia Experience, Athlone, 

Ireland, May, 2020. 



172 
 

 

 

 

 

 
 

[64] I. Vadja, "On the F-Divergence and Singularity of Probability Measures," Periodica Mathematica 

Hungarica, vol. 2, no. 1-4, p. 223–234, March 1972. 

[65] R. Diniz, P. G. Freitas and M. C. Q. Farias, "Multi-Distance Point Cloud Quality Assessment," in 

IEEE International Conference on Image Processing (ICIP), Abu Dhabi, UAE, October, 2020. 

[66] R. Diniz, P. G. Freitas and M. C. Q. Farias, "Local Luminance Patterns for Point Cloud Quality 

Assessment," in IEEE International Workshop on Multimedia Signal Processing (MMSP), 

Tampere, Finland, September, 2020. 

[67] G. Meynet, Y. Nehmé, J. Digne and G. Lavoué, "PCQM: A Full-Reference Quality Metric for 

Colored 3D Point Clouds," in IEEE International Conference on Quality of Multimedia Experience 

(QoMEX), Athlone, Ireland, May, 2020. 

[68] I. Viola and P. Cesar, "A Reduced Reference Metric for Visual Quality Evaluation of Point Cloud 

Contents," IEEE Signal Processing Letters, vol. 27, pp. 1660-1664, 2020. 

[69] E. Alexiou and T. Ebrahimi, "Towards a Point Cloud Structural Similarity Metric," in IEEE 

International Conference on Multimedia & Expo Workshops (ICMEW), London, UK, July, 2020. 

[70] R. L. de Queiroz and P. A. Chou, "Motion-Compensated Compression of Dynamic Voxelized Point 

Clouds," IEEE Transactions on Image Processing, vol. 26, no. 8, pp. 3886-3895, 2017. 

[71] Q. Yang, H. Chen, Z. Ma, Y. Xu, R. Tang and J. Sun, "Predicting the Perceptual Quality of Point 

Cloud: A 3D-to-2D Projection-Based Exploration," IEEE Transactions on Multimedia (Early 

Access), 2020. 

[72] K. Wolff, C. Kim, H. Zimmer, C. Schroers, M. Botsch, O. Sorkine-Hornung and A. Sorkine- 

Hornung, "Point Cloud Noise and Outlier Removal for Image-Based 3D Reconstruction," in IEEE 

International Conference on 3D Vision (3DV), Stanford, CA, USA, October, 2016. 



173 
 

 

 

 

 

 
 

[73] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud, J. A. Levine, A. Sharf and 

C. T. Silva, "A Survey of Surface Reconstruction from Point Clouds," Computer Graphics Forum, 

vol. 36, no. 1, p. 301–329, January, 2017. 

[74] Y. Schoenenberger, J. Paratte and P. Vanderg, "Graph-based Denoising for Time-Varying Point 

Clouds," in 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video, 

Lisbon, Portugal, July, 2015. 

[75] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha and M. Beetz, "Towards 3D Point Cloud Based 

Object Maps for Household Environments," Robotics and Autonomous Systems, vol. 56, no. 11, pp. 

927-941, November, 2008. 

[76] L. I. Rudin, S. Osher and E. Fatemi, "Nonlinear Total Variation Based Noise Removal Algorithms," 

Physica D: Nonlinear Phenomena, vol. 60, no. 1-4, pp. 259-268, November, 1992. 

[77] D. I. Shuman, S. K. Narang and P. Frossard, "The Emerging Field of Signal Processing on Graphs: 

Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains," IEEE 

Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, April, 2013. 

[78] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, "Distributed Optimization and Statistical 

Learning via the Alternating Direction Method of Multipliers," Foundations and Trends in Machine 

Learning, vol. 3, no. 1, pp. 1-122, January, 2011. 

[79] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Vandergheynst and D. K. 

Hammond, "GSPBOX: A Toolbox for Signal Processing on Graphs," arXiv preprint 

arXiv:1408.5781, March, 2016. 

[80] N. Perraudin, V. Kalofolias, D. Shuman and P. Vandergheynst, "UNLocBoX A Matlab Convex 

Optimization Toolbox Using Proximal Splitting Methods," arXiv preprint arXiv:1402.0779, 

December, 2016. 

[81] M. Levoy, J. Gerth, B. Curless and K. Pull, "The Stanford 3D Scanning Repository," Stanford 

University, 2005. [Online]. Available: http://graphics.stanford.edu/data/3Dscanrep/. 

http://graphics.stanford.edu/data/3Dscanrep/


174 
 

 

 

 

 

 
 

[82] M. Kazhdan, M. Bolitho and H. Hoppe, "Poisson surface reconstruction," in Eurographics Symp. 

on Geometry Processing, Sardinia, Italy, June, 2006. 

[83] D. Girardeau-Montaut, "Cloud Compare—3D Point Cloud and Mesh Processing Software," 

[Online]. Available: http://www.cloudcompare.org/. 

[84] L. Goldmann, F. De Simone and T. Ebrahimi, "A Comprehensive Database and Subjective 

Evaluation Methodology for Quality of Experience in Stereoscopic Video,”," in Three-Dimensional 

Image Processing (3DIP) and Application, San Jose, CA, USA, February, 2010. 

[85] R. Mekuria, K. Blom and P. Cesar, "Design, Implementation, and Evaluation of a Point Cloud 

Codec for Tele-immersive Video," Transactions on Circuits and Systems for Video Technology, 

vol. 27, no. 4, pp. 828 - 842, April 2017. 

[86] J. Kammerl, N. Blodow, R. B. Rusu and S. Gedikli, "Real-time Compression of Point Cloud 

Streams," in International Conference on Robotics and Automation, Saint Paul, MN, USA, May 

2012. 

[87] D. Thanou, P. A. Chou and P. Frossard, "Graph-based Compression of Dynamic 3D Point Cloud 

Sequences," IEEE Transactions on Image Processing, vol. 25, no. 4, pp. 1765-1778, 2017. 

[88] R. A. Cohen, D. Tian and A. Vetro, "Point Cloud Attribute Compression using 3-D Intra Prediction 

and Shape-adaptive Transforms," in IEEE Data Compression Conference (DCC), Snowbird, UT, 

USA, March 2016. 

[89] R. B. Rusu and A. Cousins, "3D is here: Point Cloud Library (PCL)," in IEEE International 

Conference on Robotics and Automation, Shanghai, China, May 2011. 

[90] D. I. Shuman, S. K. Narang and P. Frossard, "The Emerging Field of Signal Processing on Graphs: 

Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains," IEEE 

Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, April 2013. 

http://www.cloudcompare.org/


175 
 

 

 

 

 

 
 

[91] "MPEG Point Cloud Datasets," [Online]. Available: http://mpegfs.int- 

evry.fr/MPEG/PCC/DataSets/pointCloud/CfP. 

[92] G. Guede, J. Ricard, S. Lasserre and J. Llach, "Technicolor Point Cloud Renderer," in ISO/IEC 

MPEG M40229, Hobart, Australia, April 2017. 

[93] A. Javaheri, C. Brites, F. Pereira and J. Ascenso, "Subjective and Objective Quality Evaluation of 

3D Point Cloud Denoising Algorithms," in International Conference on Multimedia & Expo 

Workshops, Hong Kong, July 2017. 

[94] M. Schütz and M. Wimmer, "High-quality point-based rendering using fast single-pass 

interpolation," in IEEE Digital Heritage, Granada, Spain, September 2015. 

[95] P. Rosenthal and L. Linsen, "Image-space point cloud rendering," in International Conference on 

Computer Graphics, Istanbul, Turkey, June 2008. 

[96] E. Alexiou, E. Upenik and T. Ebrahimi, "Towards Subjective Quality Assessment of Point Cloud 

Imaging in Augmented Reality," in Workshop on Multimedia Signal Processing, Luton, UK, 

October 2017. 

[97] E. Alexiou, T. Ebrahimi, M. V. Bernardo, M. Pereira, A. Pinheiro, L. A. da Silva Cruz, C. Duarte, 

L. G. Dmitrovic, E. Dumic, D. Matkovics and A. Skodras, "Point Cloud Subjective Evaluation 

Methodology based on 2D Rendering," in International Conference on Quality of Multimedia 

Experience, Sardinia, Italy, May 2018. 

[98] E. Alexiou and T. Ebrahimi, "Impact of Visualization Strategy for Subjective Quality Assessment 

of Point Clouds," in International Conference on Multimedia & Expo Workshops, San Diego, CA, 

USA, July 2018. 

[99] E. Alexiou, A. M. G. Pinheiro, C. Duarte, D. Matković, E. Dumić and L. A. da Silva Cruz, "Point 

Cloud Subjective Evaluation Methodology based on Reconstructed Surfaces," in Applications of 

Digital Image Processing XL (SPIE 10752), San Diego, CA, USA, September 2018. 

http://mpegfs.int-/


176 
 

 

 

 

 

 
 

[100] E. Alexiou and T. Ebrahimi, "Benchmarking of Objective Quality Metrics for Colorless Point 

Clouds," in Picture Coding Symposium, San Francisco, CA, USA, June 2018. 

[101] P. Cignoni, M. Callieri, M. Corsi, M. Dellepiane, F. Ganovelli and G. Ranzuglia, "Meshlab: an 

Open-Source Mesh Processing Tool," Eurographics Italian Chapter Conference , vol. 2008, pp. 

129-136, July 2008. 

[102] 3DG Group, "G-PCC codec description v7," in ISO/IEC MPEG N19331, Online, April 2020. 

[103] 
 

3DG Group, "Text of ISO/IEC CD 23090-5: Video-based Point Cloud Compression," ISO/IEC 

JTC1/SC29/WG11 Doc. N18030, Macau, China, October 2018. 

[104] 3DG Group, "Common Test Conditions for Point Cloud Compression," ISO/IEC 

JTC1/SC29/WG11 Doc. N18474, Geneva, Switzerland, March 2019. 

[105] A. Javaheri, "IST Rendering Point Cloud Dataset," 2019. [Online]. Available: 

https://github.com/AlirezaJav/IRPC-Dataset. [Accessed 23 April 2019]. 

[106] I. Viola and T. Ebrahimi, "An in-depth analysis of single-image subjective quality assessment of 

light field contents," in International Conference on Quality of Multimedia Experience, Berlin, 

Germany, June 2019. 

[107] R. K. Mantiuk, A. Tomaszewska and R. Mantiuk, "Comparison of four subjective methods for 

image quality assessment," Computer Graphics Forum, vol. 31, no. 8, pp. 2478-2491, December 

2012. 
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methods, with and without explicit reference, for quality assessment of 3D graphics," in ACM 

Symposium on Applied Perception, Barcelona, Spain, September 2019. 

[109] E. Alexiou and T. Ebrahimi, "Point Cloud Quality Assessment Metric based on Angular Similarity," 

in IEEE International Conference on Multimedia & Expo Workshops, San Diego, CA, USA, July 

2018. 



177 
 

 

 

 

 

 
 

[110] S. Athar and Z. Wang, "A comprehensive performance evaluation of image quality assessment 

algorithms," IEEE Access, vol. 7, pp. 140030-140070, September 2019. 

[111] J. H. Kim and L. Choi, "Choosing the level of significance: a decision-theoretic approach," Journal 

of Accounting, Finance and Business Studies, November 2019. 

[112] E. Alexiou and T. Ebrahimi, "On the Performance of Metrics to Predict Quality in Point Cloud 

Representations," in Applications of Digital Image Processing XL (SPIE 10396), San Diego, CA, 

USA, September 2017. 

[113] 3DG Group, "Text of ISO/IEC CD 23090-9 Geometry-based Point Cloud Compression," ISO/IEC 

JTC1/SC29/WG11 Doc. N18478, Geneva, Switzerland, July 2019. 

[114] D. P. Huttenlocher, G. A. Klanderman and W. J. Rucklidge, "Comparing images using the 

Hausdorff distance," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 

9, pp. 850-863, September 1993. 

[115] M. P. Dubuisson and A. K. Jain, "A modified Hausdorff distance for object matching," in 

International Conference on Pattern Recognition, Jerusalem, Israel, October 1994. 

[116] R. Mekuria, C. Tulvan and Z. Li, "Requirements for point cloud compression," in ISO/IEC MPEG 

N16330, Geneva, Switzerland., February 2016.. 

[117] A. Javaheri, C. Brites, F. Pereira and J. Ascenso, "Point Cloud Rendering after Coding: Impacts on 

Subjective and Objective Quality," Transactions on Multimedia, November 2020. 

[118] D. Tian, H. Ochimizu, C. Feng, R. Cohen and A. Vetro, "Geometric Distortion Metrics for Point 

Cloud Compression," in IEEE International Conference on Image Processing (ICIP), Beijing, 

China, September 2017. 

[119] C. Mineo, S. Gareth and P. R. Summan, "Novel algorithms for 3D surface point cloud boundary 

detection and edge reconstruction," Journal of Computational Design and Engineering, vol. 6, no. 

1, pp. 81-91, January 2019. 



178 
 

 

 

 

 

 
 

[120] Z. Wang, E. P. Simoncelli and A. C. Bovik, "Multiscale structural similarity for image quality 

assessment," in Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 

November 2003. 

[121] E. Alexiou, I. Viola, T. . M. Borges, T. A. Fonseca and R. L. de Queiroz, "A Comprehensive Study 

of the Rate-Distortion Performance in MPEG Point Cloud Compression," APSIPA Transactions on 

Signal and Information Processing, vol. 8, no. 27, pp. 1-27, November 2019. 

[122] Y. Zhang, B. Du, L. Zhang and S. Wang, "A low-rank and sparse matrix decomposition-based 

Mahalanobis distance method for hyperspectral anomaly detection," IEEE Transactions on 

Geoscience and Remote Sensing, vol. 54, no. 3, pp. 1376-1389, March 2016. 

[123] K. Q. Weinberger and L. K. Saul, "Distance metric learning for large margin nearest neighbor 

classification," Journal of Machine Learning Research, vol. 10, pp. 207-244, February 2009. 

[124] C. N. Haddad, "Cholesky factorization," in Encyclopedia of Optimization, 2nd ed., Boston, MA, 

USA, Springer, 2008, pp. 374-377. 

[125] G. Meynet, J. Digne and G. Lavoué , "PC-MSDM: A Quality Metric for 3D Point Clouds," in 

International Conference on Quality of Multimedia Experience, Berlin, Germany, June 2019. 

[126] R. L. de Queiroz and P. A. Chou, "Motion-Compensated Compression of Dynamic Voxelized Point 

Clouds," IEEE Transactions on Image Processing, vol. 26, no. 8, pp. 3886-3895, May 2017. 

[127] E. M. Torlig, E. Alexiou, T. A. Fonseca, R. L. de Queiroz and T. Ebrahimi, "A Novel Methodology 

for Quality Assessment of Voxelized Point Clouds," in Applications of Digital Image Processing 

XLI, San Diego, CA, USA, September 2018. 

[128] Q. Yang, H. Chen, Z. Ma, Y. Xu, R. Tang and J. Sun, "Predicting the Perceptual Quality of Point 

Cloud: A 3D-to-2D Projection-Based Exploration," IEEE Transactions on Multimedia (Early 

Access), October 2020. 



179 
 

 

 

 

 

 
 

[129] M. Bertalmio, A. L. Bertozzi and G. Sapiro, "Navier-stokes, fluid dynamics, and image and video 

inpainting," in IEEE Computer Society Conference on Computer Vision and Pattern Recognition 

(CVPR), Kauai, HI, USA, December 2001. 

[130] MMSPG, EPFL, "M-PCCD: MPEG Point Cloud Compression Dataset," [Online]. Available: 

https://www.epfl.ch/labs/mmspg/downloads/quality-assessment-for-point-cloud-compression/. 

[131] JPEG Committee, "JPEG Pleno Database - University of Sao Paulo Point Clouds," [Online]. 

Available: http://plenodb.jpeg.org/. 

[132] "Sketchfab," [Online]. Available: https://sketchfab.com/. 

[133] R. Mekuria, Z. Li, C. Tulvan and P. Chou, "Evaluation Criteria for PCC (Point Cloud 

Compression)," in ISO/IEC MPEG Doc. N16332, Geneva, Switzerland, June 2016. 

[134] G. Meynet, Y. Nehmé, J. Digne and G. Lavoué, "PCQM: A Full-Reference Quality Metric for 

Colored 3D Point Clouds," in IEEE International Conference on Quality of Multimedia Experience 

(QoMEX), Athlone, Ireland, May 2020. 

[135] E. Alexiou and T. Ebrahimi, "Towards a Point Cloud Structural Similarity Metric," in IEEE 

International Conference on Multimedia & Expo Workshops (ICMEW), London, UK, July 2020. 

[136] I. Viola, S. Subramanyam and P. Cesar, "A Color-based Objective Quality Metric for Point Cloud 

Contents," in IEEE International Conference on Quality of Multimedia Experience, Athlone, 

Ireland, May 2020. 

[137] I. Viola and P. Cesar, "A Reduced Reference Metric for Visual Quality Evaluation of Point Cloud 

Contents," IEEE Signal Processing Letters, vol. 27, pp. 1660-1664, September 2020. 

[138] R. Diniz, P. G. Freitas and M. Farias, "Towards a Point Cloud Quality Assessment Model Using 

Local Binary Patterns," in IEEE International Conference on Quality of Multimedia Experience, 

Athlone, Ireland, May 2020. 

http://www.epfl.ch/labs/mmspg/downloads/quality-assessment-for-point-cloud-compression/
http://plenodb.jpeg.org/


180 
 

 

 

 

 

 
 

[139] K. Egiazarian, J. Astola, N. Ponomarenko, V. Lukin, F. Battisti and M. Carli, "New full-reference 

quality metrics based on HVS," in Workshop on Video Processing and Quality Metrics for 

Consumer Electronics, Scottsdale, Arizona, USA, January 2006. 

[140] N. Ponomarenko, F. Silvestri, K. Egiaz, M. Carli, J. Astola and V. Lukin, "On between-Coefficient 

Contrast Masking," in International Workshop on Video Processing and Quality Metrics , 

Scottsdale, Arizona, USA, January 2007. 

[141] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image Quality Assessment: From Error 

Visibility to Structural Similarity," IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600- 

612, April 2004. 

[142] H. R. Sheikh and A. C. Bovik, "Image Information and Visual Quality," IEEE Transactions on 

Image Processing, vol. 15, no. 2, pp. 430-444, January 2006. 

[143] L. Zhang, L. Zhang, X. Mou and D. Zhang, "FSIM: A Feature SIMilarity Index for Image Quality 

Assessment," IEEE Transactions on Image Processing, vol. 20, no. 8, pp. 2378 - 2386, January 

2011. 

[144] L. Zhang, Y. Shen and H. Li, "VSI: A Visual Saliency-Induced Index for Perceptual Image Quality 

Assessment," IEEE Transactions on Image Processing, vol. 23, no. 10, pp. 4270 - 4281, August 

2014. 

[145] R. Zhang, P. Isola, A. A. Efros, E. Shechtman and O. Wang, "The Unreasonable Effectiveness of 

Deep Features as a Perceptual Metric," in IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), June, 2018. 

[146] K. Ding, K. Ma, S. Wang and E. P. Simoncell, "Image Quality Assessment: Unifying Structure and 

Texture Similarity," arXiv preprint arXiv:2004.07728, April 2020. 

[147] R. Reisenhofer, S. Bosse, G. Kutynio and T. Wiegand, "A Haar Wavelet-Based Perceptual 

Similarity Index for Image Quality Assessment," Signal Processing: Image Communication, vol. 

61, pp. 33-43, February 2018. 



181 
 

 

 

 

 

 
 

[148] J. Mazumder, M. Zand, S. Ziauddin and M. Greenspan, "ValidNet: A Deep Learning Network for 

Validation of Surface Registration," in International Conference on Computer Vision Theory and 

Applications, Valleta, Malta, February 2020. 

[149] "vsenseVVDB2," [Online]. Available: https://v-sense.scss.tcd.ie/research/6dof/quality-assessment- 

for-fvv-compression/. 

[150] T. Akenine-Moller, E. Haines and N. Hoffman, Real-time Rendering, vol. 3rd edition, AK 

Peters/CRC Press, 2018. 

[151] E. Alexiou and T. Ebrahimi, "Exploiting User Interactivity in Quality Assessment of Point Cloud 

Imaging," in IEEE International Conference on Quality of Multimedia Experience (QoMEX), 

Berlin, Germany, June 2019. 

[152] E. Alexiou and T. Ebrahimi, "On Subjective and Objective Quality Evaluation of Point Cloud 

Geometry," in International Conference on Quality of Multimedia Experience, Erfurt, Germany, 

May 2017. 

[153] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud, J. A. Levine, A. Sharf and 

C. T. Silva, "A Survey of Surface Reconstruction from Point Clouds," Computer Graphics Forum, 

vol. 36, no. 1, p. 301–329, January 2017. 

[154] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, "Distributed Optimization and Statistical 

Learning via the Alternating Direction Method of Multipliers," Foundations and Trends in Machine 

Learning, vol. 3, no. 1, pp. 1-122, January 2011. 

[155] K. Christaki, E. Christakis, P. Drakoulis, A. Doumanoglou, N. Zioulis, D. Zarpalas and P. Daras, 

"Subjective Visual Quality Assessment of Immersive 3D Media Compressed by Open-Source Static 

3D Mesh Codecs," in International Conference on Multimedia Modeling, Thessaloniki, Greece, 

January 2019. 

[156] P. Cignoni, C. Rochinni and R. Scopigno, "Metro: Measuring Errors on Simplified Surfaces," 

Computer Graphics Forum, vol. 17, no. 2, pp. 167-174, January 1998. 



182 
 

 

 

 

 

 
 

[157] E. d’Eon, B. Harrison, T. Myers and P. A. Chou, "8i Voxelized Full Bodies, Version 2 – A 

Voxelized Point Cloud Dataset," in ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input 

document m40059/M74006, Geneva, Switzerland, January 2017. 

[158] R. Diniz, P. G. Freitas and M. C. Q. Farias, "Local Luminance Patterns for Point Cloud Quality 

Assessment," in IEEE International Workshop on Multimedia Signal Processing (MMSP), 

Tampere, Finland, September 2020. 

[159] R. Diniz, P. G. Freitas and M. C. Q. Farias, "Multi-Distance Point Cloud Quality Assessment," in 

IEEE International Conference on Image Processing (ICIP), Abu Dhabi, UAE, October 2020. 

[160] E. Dumic, F. Battisti, m. Carli and L. A. da Silva, "Point Cloud Visualization Methods: a Study on 

Subjective Preferences," in European Signal Processing Conference (EUSIPCO), Amsterdam, 

Netherlands, January 2021. 

[161] E. Dumic, C. R. Duarte and L. A. da Silva Cruz, "Subjective Evaluation and Objective Measures 

for Point Clouds — State-of-the-art," in International Colloquium on Smart Grid Metrology, Split, 

Croatia, May 2018. 

[162] L. Goldmann, F. De Simone and T. Ebrahimi, "A Comprehensive Database and Subjective 

Evaluation Methodology for Quality of Experience in Stereoscopic Video,”," in Three-Dimensional 

Image Processing (3DIP) and Application, San Jose, CA, USA, February 2010. 

[163] R. L. Graham and P. Hell, "On the History of the Minimum Spanning Tree Problem," Annals of the 

History of Computing, vol. 7, no. 1, pp. 43-57, January-March 1985. 

[164] A. Javaheri, C. Brites, F. Pereira and J. Ascenso, "A Generalized Hausdorff Distance Based Quality 

Metric for Point Cloud Geometry," in International Conference on Quality of Multimedia 

Experience, Athlone, Ireland, May 2020. 

[165] A. Javaheri, C. Brites, F. Pereira and J. Ascenso, "Improving PSNR-based Quality Metrics 

Performance for Point Cloud Geometry," in International Conference on Image Processing, Abu 

Dhai, UAE, October 2020. 



183 
 

 

 

 

 

 
 

[166] A. Javaheri, C. Brites, F. Pereira and J. Ascenso, "Mahalanobis Based Point to Distribution Metric 

for Point Cloud Geometry Quality Evaluation," Signal Processing Letters, vol. 27, pp. 1350-1354, 

July 2020. 

[167] R. Mekuria, S. Laserre and C. Tulvan, "Performance Assessment of Point Cloud Compression," in 

Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, December 2017. 

[168] G. Nigel and N. Martin, "Range Encoding: An Algorithm for Removing Redundancy from a 

Digitized Message," in Video and Data Recording Conference, Southampton, UK, July 1979. 

[169] F. Pereira, A. Dricot, J. Ascenso and C. Brites, "Point Cloud Coding: A Privileged View Driven by 

a Classification Taxonomy," Signal Processing: Image Communication, vol. 85, no. 115862, July 

2020. 

[170] N. Perraudin, V. Kalofolias, D. Shuman and P. Vandergheynst, "UNLocBoX A Matlab Convex 

Optimization Toolbox Using Proximal Splitting Methods," arXiv preprint arXiv:1402.0779, 

December 2016. 

[171] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Vandergheynst and D. K. 

Hammond, "GSPBOX: A Toolbox for Signal Processing on Graphs," arXiv preprint 

arXiv:1408.5781, March 2016. 

[172] S. Perry, H. P. Cong, L. A. da Silva Cruz, J. Prazeres, M. Pereira, A. Pinheiro, E. Dumic, E. Alexiou 

and T. Ebrahimi, "Quality Evaluation Of Static Point Clouds Encoded Using MPEG Codecs," in 

International Conference on Image Processing (ICIP), Abu Dhabi, UAE, October 2020. 

[173] M. Pharr, W. Jakob and G. Humphreys, Physically Based Rendering: from Theory to 

Implementation,, Morgan Kaufmann, 2016. 

[174] R. Queiroz and P. Chou, "Compression of 3D Point Clouds Using a Region-Adaptive Hierarchical 

Transform," IEEE Transaction on Image Processing, vol. 25, no. 8, pp. 3947 - 3956, August 2016. 



184 
 

 

 

 

 

 
 

[175] L. I. Rudin, S. Osher and E. Fatemi, "Nonlinear Total Variation Based Noise Removal Algorithms," 

Physica D: Nonlinear Phenomena, vol. 60, no. 1-4, pp. 259-268, November 1992. 

[176] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha and M. Beetz, "Towards 3D Point Cloud Based 

Object Maps for Household Environments," Robotics and Autonomous Systems, vol. 56, no. 11, pp. 

927-941, November 2008. 

[177] Y. Schoenenberger, J. Paratte and P. Vanderg, "Graph-based Denoising for Time-Varying Point 

Clouds," in 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video, 

Lisbon, Portugal, July 2015. 

[178] H. Su, Z. Duanmu, W. Liu, Q. Liu and Z. Wang, "Perceptual Quality Assessment of 3d Point 

Clouds," in International Conference on Image Processing (ICIP), Taipei, Taiwan, September 

2019. 

[179] S. Subramanyam, J. Li, I. Viola and P. Cesar, "Comparing the Quality of Highly Realistic Digital 

Humans in 3DoF and 6DoF: A Volumetric Video Case Study," in Conference on Virtual Reality 

and 3D User Interfaces (VR), Atlanta, GA, USA, March 2020. 

[180] G. J. Sullivan, J. R. Ohm, W. Han and T. Wiegand, "Overview of the High Efficiency Video Coding 

(HEVC) Standard," IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 

12, pp. 1649-1668, September 2012. 

[181] J. van der Hooft, M. T. Vega, C. Timmerer, A. C. Begen, F. De Turck and R. Schatz, "Objective 

and Subjective QoE Evaluation for Adaptive Point Cloud Streaming," in International Conference 

on Quality of Multimedia Experience (QoMEX), Athlone, Ireland, May 2020. 

[182] G. K. Wallace, "The JPEG Still Picture Compression Standard," IEEE Transactions on Consumer 

Electronics, vol. 38, no. 1, pp. xviii-xxxiv, February 1992. 

[183] K. Wolff, C. Kim, H. Zimmer, C. Schroers, M. Botsch, O. Sorkine-Hornung and A. Sorkine- 

Hornung, "Point Cloud Noise and Outlier Removal for Image-Based 3D Reconstruction," in IEEE 

International Conference on 3D Vision (3DV), Stanford, CA, USA, October 2016. 



185 
 

 

 

 

 

 
 

[184] X. Wu, Y. Zhang, F. Chun-ling, J. Hou and S. Kwong, "Subjective Quality Study and Database of 

Compressed Point Clouds with 6DoF Head-mounted Display," arXiv: Image and Video Processing, 

August 2020. 

[185] E. Zerman, C. Ozcinar, P. Gao and A. Smolic, "Textured Mesh vs Coloured Point Cloud: A 

Subjective Study for Volumetric Video Compression," in International Conference on Quality of 

Multimedia Experience (QoMEX), Athlone, Ireland, May 2020. 

[186] J. Zhang, W. Huang, X. Zhu and J.-N. Hwang, "A Subjective Quality Evaluation for 3D Point Cloud 

Models," in International Conerance. on Audio, Language and Image Processing, Shanghai, China, 

July 2014. 

[187] MPEG 3DG, "Draft test conditions and complementary test material," in ISO/IEC MPEG N16716, 

Geneva, Switzerland, January 2017. 

[188] 3DGC Group, "Efficient Implementation of the Lifting Scheme in TMC13," in ISO/IEC 

JTC1/SC29/WG11 input document m43781, Ljubljana, Slovenia, July, 2018. 

[189] 3DG Group, "G-PCC Codec Description V7," in ISO/IEC MPEG N19331, Online, April 2020. 

[190] 
 

ITU-R Recommendation P.1401, "Methods, Metrics and Procedures for Statistical Evaluation, 

Qualification and Comparison of Objective Quality Prediction Models," Geneva, Switzerland, July 

2012. 

[191] "V-PCC Codec Description," in ISO/IEC JTC 1/SC 29/WG 7 N00012, Virtual, October 2020. 

 


