
PyJL: A Source-to-Source Python Compiler to Julia

Miguel Alexandre da Costa Martins Marcelino

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisor: Prof. Dr. António Paulo Teles de Menezes Correia Leitão

Examination Committee

Chairperson: Prof. Pedro Miguel dos Santos Alves Madeira Adão
Supervisor: Prof. Dr. António Paulo Teles de Menezes Correia Leitão

Member of the Committee: Prof.José Faustino Fragoso Femenin dos Santos

October 2022

Agradecimentos

Agradeço...

Ao Prof. António Leitão, por me permitir fazer parte do grupo ADA de desenho algorı́tmico e pelos

seus conselhos eruditos, que me incentivaram a superar as minhas expectativas.

Aos meus pais e ao meu irmão, que me apoiaram durante estes 5 anos de formação superior,

permitindo-me alcançar os meus objetivos. Agradeço também os essenciais momentos de lazer e por

me aturarem nos meus momentos menos áureos.

À minha namorada, Rafaela, que me motivou e apoiou em cada passo do meu trabalho. Agradeço

também pelos passeios e pela paciência que teve comigo nestes tempos.

Ao Grupo de Arquitetura (Inês Pereira, João David, Inês Caetano, Renata Castelo Branco) pelos

seus imensuráveis conselhos em apresentações e artigos cientı́ficos.

À ”Equipa Maravilha” (Vasco Castro, David Pereira, Ana Sofia Fernandes, Samuel Ferreira, Andreia

Batista, Diogo Soares, João Preto), que me providenciou com momentos de procrastinação valiosos e

que me apoiou durante todo o processo académico.

À Fundação para a Ciência e Tecnologia (FCT) e ao INESC-ID pelo acolhimento num estágio en-

riquecedor e pelo financiamento no âmbito dos contratos PTDC/ART-DAQ/31061/2017 e UIDB/50021/2020.

Por fim, ao Instituto Superior Técnico, pela valiosa experiência que me providenciou e pela sua

cultura de determinação, que me fez enfrentar todos os meus desafios com rigor e exigência.

i

ii

Abstract

Many high-level programming languages have emerged in recent years. Julia is one of these languages,

claiming to offer the speed of C, the macro capabilities of Lisp, and the user-friendliness of Python. Julia’s

math-friendly syntax is one of its most prominent strengths, making it ideal for scientific and numerical

computing. Furthermore, Julia’s performance on modern hardware makes it an appealing alternative to

Python. However, Python has a considerable advantage over Julia: its extensive library set.

Python libraries can be made available to Julia through Foreign Function Interfaces (FFI’s) or man-

ual translation. Both of these approaches have their tradeoffs: FFI’s do not take advantage of Julia’s

performance, and manual translation is demanding and time-consuming. In this regard, transpilation

is a promising option. Transpilers translate between high-level programming languages, providing an

efficient alternative to manually porting software from one language to another.

To speedup the development of Julia libraries, we propose extending the Py2Many transpiler to

translate Python source code into human-readable and maintainable Julia source code. Our results

reveal that the generated code is capable of high performance and follows the pragmatics of Julia,

allowing Julia programmers to further optimize and maintain it.

Keywords

Source-to-source Compiler, Transpiler, Library Translation, Python, Julia

iii

Resumo

Recentemente têm emergido muitas linguagens de programação de alto nı́vel, sendo o Julia uma destas

linguagens, proclamando ter o mesmo desempenho que a linguagem C, as capacidades de processa-

mento de macros da linguagem LISP e ser tão fácil de usar como a linguagem Python. Para além disto,

o Julia é também uma linguagem apelativa para computação cientifica e numérica, devido à sua sintaxe

intuitiva para representar operações matemáticas. Estas capacidades, com o elevado desempenho em

hardware moderno, fazem do Julia uma alternativa à linguagem Python.

No entanto, o Python oferece um conjunto mais vasto de bibliotecas quando comparado com a

linguagem Julia. Atualmente, um programador que necessite de usar uma biblioteca Python pode

recorrer ao uso de Foreign Function Interfaces (FFIs) ou proceder à tradução manual dessa biblioteca

para Julia. Ambas as alternativas têm os seus aspetos negativos. Ao usar FFIs, um programador

não beneficia do elevado desempenho do Julia. No que toca a tradução manual, este é um processo

demorado. Este problema pode ser mitigado com um compilador source-to-source, que traduz código

entre duas linguagens de programação de alto nı́vel, sendo uma alternativa eficaz à tradução manual

entre linguagens.

Para acelerar o processo de tradução de bibliotecas, propomos estender o transpilador PyJL para

traduzir código Python para código legı́vel em Julia. Os resultados obtidos revelam que o desempenho

do código gerado pelo transpilador é elevada e que o código gerado é legı́vel, o que permite que

programadores Julia possam estender ou melhorar o código.

Palavras Chave

Compilador Source-to-source, Transpilador, Tradução de bibliotecas, Python, Julia

v

Contributions

Some of the work presented in this thesis has also been published in two papers and a conference,

namely:

• Transpiling Python to Julia using PyJL, published in the 15th European Lisp Symposium (ELS’22)

[1]

• Extending PyJL - Transpiling Python Libraries to Julia, published in the Symposium on Languages,

Applications and Technologies (SLATE’22) [2]

• Extending PyJL to Translate Python Libraries to Julia - JuliaCon 2022

vii

viii

Contents

1 Introduction 1

1.1 Language Conversions . 2

1.1.1 Language Mismatches . 3

1.2 Python . 4

1.3 Julia . 4

1.4 Objectives . 5

2 Related Work 7

2.1 LinJ . 8

2.2 Fortran-Python Transpiler . 8

2.3 JSweet . 9

2.4 Py2Many . 10

2.5 Clava . 10

2.6 Further Mentions . 11

2.7 Analysis . 11

3 Transpilation 15

3.1 The Py2Many Transpiler . 16

3.1.1 Scoping Mechanism . 18

3.1.2 Code Annotation Mechanism . 19

3.1.3 Parsing Mechanism . 19

3.2 Python to Julia Translation . 20

3.2.1 Augmented Assignments . 20

3.2.2 Boolean Operations . 21

3.2.3 Loops . 21

3.2.4 Indexing . 22

3.2.5 Generator Functions . 24

3.2.6 Arbitrary-Precision Arithmetic . 24

3.2.7 Simulating Python’s OO Implementation . 25

ix

3.2.8 Special Methods and Attributes . 29

3.2.9 Scoping Rules . 29

3.2.10 Keyword Arguments . 32

3.2.11 Other Incompatibilities . 32

3.3 Optimizations . 32

3.3.1 Removing Redundant Operations . 33

3.3.2 Optimizing Global Variables . 33

3.4 Validating Translations . 33

3.4.1 The unittest Framework . 34

3.4.2 Parameterized Unit Tests . 35

4 Type Inference 37

4.1 Py2Many’s Inference Mechanism . 38

4.1.1 Import Analysis . 39

4.1.2 Static Type-Checking . 39

4.1.3 Limitations . 40

4.2 External Type Inference Mechanism . 41

4.2.1 Advantages . 42

4.2.2 Limitations . 43

4.3 Why two Mechanisms? . 43

4.4 Alternative Solutions . 44

5 Dependencies 45

5.1 Python and Julia’s Import Mechanisms . 46

5.2 Importing Local Modules . 47

5.2.1 Module Dependencies . 48

5.3 Importing Registered Modules . 49

5.3.1 Simulating Package Calls . 49

5.3.2 Using PyCall . 51

5.4 Name Aliases . 53

5.5 Accessing Dynamic-Link Libraries . 53

5.5.1 Translation Methodology . 53

5.5.2 Additional Functionalities . 54

6 Evaluation 57

6.1 Evaluating Translation Correctness . 58

6.2 Performance . 58

6.2.1 N-Body-Problem . 59

x

6.2.2 Fasta . 60

6.2.3 Sieve . 61

6.2.4 Sieve Numpy . 62

6.2.5 Neural Network . 62

6.2.6 Binary Trees . 63

6.3 Library Translations . 64

6.3.1 The python-reprojector Library . 64

6.3.2 The pywin32-ctypes Library . 64

6.4 Evaluating Code Pragmatics . 65

6.5 Automatic vs Manual Translation . 67

6.6 Extensibility . 68

7 Conclusions 71

7.1 Coverage . 73

7.2 Future Work . 74

Bibliography 77

A Julia Classes using ObjectOriented.jl 83

B Performance Benchmarks 85

B.1 N-Body Julia Translation . 86

B.2 Fasta Julia Translation . 88

B.3 Binary Trees Julia Translation . 90

B.4 Neural Network . 91

xi

xii

List of Figures

3.1 Py2Many Architecture . 17

3.2 Inference tree-walk . 18

3.3 Annotation pipeline . 19

3.4 Annotation Example . 19

3.5 Class hierarchy . 28

4.1 Pytype inference . 42

5.1 Dependency Scenarios . 47

6.1 N-Body Benchmark . 60

6.2 Fasta Benchmark . 60

6.3 Sieve Translation . 62

6.4 Sieve NumPy Translation . 62

6.5 Binary Trees . 63

6.6 Neural Networks . 63

6.7 Python Experience of Participants . 65

6.8 Julia Experience of Participants . 65

6.9 Code Readability and Pragmatics Evaluation . 65

xiii

xiv

List of Tables

2.1 State-of-the-art Evaluation . 11

6.1 Time in minutes for manual translation . 68

7.1 Updated State-of-the-art Evaluation . 73

xv

xvi

Listings

3.1 Python Augmented Assignments . 20

3.2 Translation to Julia . 20

3.3 For-Else Python . 21

3.4 For-Else Julia Translation . 21

3.5 Python Combination Sort . 22

3.6 Julia Combination Sort . 22

3.7 Julia 1-Indexed Arrays . 23

3.8 Julia Offset Arrays . 23

3.9 Generator Functions . 24

3.10 Julia Channels . 24

3.11 Resumable Functions . 24

3.12 Python Class Hierarchy . 26

3.13 Julia Class Hierachy . 27

3.14 Julia Classes Package . 27

3.15 Python Multiple Inheritance . 28

3.16 Julia Multiple inheritance . 28

3.17 ObjectOriented External Functions . 29

3.18 ObjectOriented Nested Functions . 29

3.19 Dynamic Class Attributes in Julia . 30

3.20 Python Mandelbrot . 31

3.21 Julia Mandelbrot . 31

3.22 Python Indexing . 33

3.23 Julia Indexing . 33

3.24 Julia Optimized . 33

3.25 Python Unittest Excerpt . 35

3.26 Julia Unittest Excerpt . 35

3.27 Python Parameterized Test . 36

xvii

3.28 Julia Parameterized Test . 36

4.1 Bonacci Series Python . 40

4.2 Bonacci Series Julia . 40

4.3 Optional Return Types . 43

4.4 Generic Type Annotations . 43

5.1 Python Import . 48

5.2 Julia Import . 48

5.3 NumPy Array Representation . 50

5.4 Translation to Julia . 50

5.5 Sieve NumPy . 51

5.6 Sieve Julia Translation . 51

5.7 Python Module Import . 51

5.8 Julia PyCall Import . 51

5.9 Python reprojector excerpt . 52

5.10 Julia reprojector translation . 52

5.11 Levenshtein Module Python . 54

5.12 Levenshtein Module Julia . 54

5.13 Function Factory Python . 55

5.14 Function Factory Julia . 55

6.1 Combinations Function Python . 59

6.2 Combinations Function Julia . 59

6.3 Python Cumulative Probabilities . 60

6.4 Julia Cumulative Probabilities . 60

6.5 Python Sieve . 61

6.6 Julia Sieve . 61

6.7 Julia Offset Arrays . 61

6.8 Sigmoid Functions Python . 62

6.9 Sigmoid Functions Julia . 62

6.10 Binomial Coefficient Python . 66

6.11 Binomial Coefficient Julia . 66

xviii

Acronyms

AST Abstract Syntax Tree

OO Object Oriented

PyPI Python Package Index

FFI Foreign Function Interface

MRO Method Resolution Order

IDE Integrated Development Environment

DSL Domain Specific Language

DLL Dinamic Link Library

LCG Linear Congruential Generator

GC Garbage Collection

FST Full Syntax Tree

xix

xx

1
Introduction

Contents

1.1 Language Conversions . 2

1.2 Python . 4

1.3 Julia . 4

1.4 Objectives . 5

1

In recent years, we have seen the rise of many new high-level programming languages, such as

Rust, Go, TypeScript, and Julia. These programming languages offer inherent qualities that benefit

programmers. However, nowadays, the success of a programming language is more dependent on the

libraries it offers, which makes it critical to speedup the development of such libraries.

There are several reasons to translate a code base between two languages. On the one hand, trans-

lating between languages is a way to preserve software written in older languages while offering access

to modern functionalities. On the other hand, translating libraries from more established languages to

newer ones that do not yet offer equivalent functionalities speeds up language development. Therefore,

converting code between languages is essential to ensure its maintainability and increase language

functionalities. The following section discusses this topic and highlights the importance of automating

the translation process.

1.1 Language Conversions

Converting a program written in one language to an equivalent one written in another language is a chal-

lenging process. The most important aspect of the conversion process is to keep the external behaviour

of the original program [3]. Manually converting large code bases is a difficult task and requires substan-

tial resources. Furthermore, if the code base receives constant updates, manual translation becomes

almost impossible, requiring constant readjustments to the translated code. The solution is to automate

this process to reduce the time and complexity of translations.

A particular case of automatic language conversion occurs when translating between languages

with similar levels of abstraction. This process is called transpilation and is performed by a tool called a

transpiler. A transpiler is a tool that takes input source code written in a programming language, called

the input language, and produces output source code written in the same or in a different programming

language, called the output or target language. Each transpilation tool is built with a different goal.

DMS [4] is a tool that focuses on the Design Maintenance of large software solutions. Other tools in

the area of Safety-Critical Computing [5] use Source Code Manipulation to implement fault-tolerance

mechanisms. In the context of this research, we focus on the topic of Source-to-Source translation.

Throughout the years, transpilers have adapted to the changing programming language landscape.

The first transpiler was developed in 1978 to provide compatibility between an 8-bit and a 16-bit pro-

cessor. It was called CONV86 [6] and was developed by Intel to translate assembly source code from

the 8080/8085 to the 8086 processor. At the time, many other transpilers were developed with a sim-

ilar purpose, such as TRANS86 and XLT86 [7]. Nowadays, with programmers developing software in

higher-level programming languages, it makes sense to have transpilers operate at this level.

Regardless of the abstraction level a transpiler is working on, the goal is to automate the transla-

2

tion process, requiring as little programming intervention as possible. This becomes challenging when

the aim is to preserve the pragmatics of the target language, requiring the transpiler to, at least, use

appropriate language constructs and suitable code formatting.

The translation process becomes even more difficult if a transpiler has to translate between dynam-

ically and statically typed languages. In a statically typed language, such as Java, types are known

at compile time, while in a dynamically typed language, type-checking occurs at runtime. Converting

between these languages would likely require the use of type inference mechanisms. However, the

reliability of static type inference largely depends on the type information available at compile time.

Therefore, a transpiler might still impose restrictions regarding type information that must be available at

compile time.

1.1.1 Language Mismatches

Syntactic differences are simple to translate from an input to an output language. However, most lan-

guages have important semantic differences between them. Furthermore, if both the input and the out-

put languages support different constructs or paradigms, these must be simulated to achieve a similar

behaviour.

As an example, consider translating a C++ program that contains a switch statement to Julia, which

does not support it. Such cases can be simulated using other control-flow operators, such as if state-

ments. Alternatively, Julia also offers third-party packages, such as the Switch1 package, that can also

be used to simulate this functionality.

As another example, consider translating Python’s decorators to Julia. One possible solution would

be to develop macros that simulate Python’s decorators and offer similar functionality. However, we

need to account for the fact that Julia’s macros are expanded at macro-expansion time, which happens

at compile time, while Python decorators operate dynamically at runtime. Such differences could further

complicate the translation process.

Furthermore, the source and target languages might promote different programming paradigms,

making the translation process more challenging. As an example, consider translating a program written

in Java, to a language such as Rust, which does not fully support the Object Oriented (OO) paradigm.

A transpiler aiming to translate between these two languages would have to simulate inheritance us-

ing Rust’s language features, e.g., using the inheritance2 crate to simulate Java’s class inheritance

features.

Despite the usefulness of language conversions, many mismatches occur when aiming for a high

semantic equivalence between the input and the output language [3]. However, given the similarities

1Switch.jl - C-style switch statement for Julia: https://github.com/dcjones/Switch.jl (Retrieved September 8th, 2022)
2Rust inheritance crate: https://docs.rs/inheritance/0.0.1-alpha.2/inheritance/index.html (Retrieved October

25th, 2022)

3

https://github.com/dcjones/Switch.jl
https://docs.rs/inheritance/0.0.1-alpha.2/inheritance/index.html

of Python and Julia, it might be possible to create an automated translation tool between these two

languages. The following sections discuss the differences between Python and Julia and highlight their

relevance in the context of this work.

1.2 Python

The Python programming language is now more than 30 years old. Currently, it has the highest rating

of 12.5% on the TIOBE index [8], which measures the popularity of programming languages. Its rapid

ascent in popularity is partially motivated by its vast amount of libraries. The Python Package Index

(PyPI) [9], a package repository for Python, currently registers more than 400.000 projects. Furthermore,

in his Python guide to Lisp programmers, Peter Norvig commends Python for being a very pedagogical

language [10], making it ideal for students learning their first programming language.

It is important to mention that Python has several alternative implementations. Two of them are

Jython [11] and IronPython [12], both implemented by Jim Hugunin in 2000 and 2006, respectively. The

first approach compiles Python source code to Java bytecode that runs on the JVM, thus benefiting from

Java’s portability and performance. The latter was written in C# and compiles Python source code to IL

bytecode for the .NET platform, benefiting from the compatibility with .NET libraries. However, neither of

these implementations supports Python’s latest version.3

Regarding Python’s reference version, it is called CPython, since it is written in the C programming

language [13]. It was initially developed by Guido Van Rossum and is currently being maintained by the

Python Software Foundation (PSF).4 A noteworthy aspect is that CPython suffers from slow performance

on modern hardware due to Python’s implicit dynamism. Programmers who require highly efficient code

usually implement a prototype in Python and then convert the kernel parts to C. This is commonly

referred to as the two-language problem, which refers to the general rule that an easy to use language

is difficult for a computer to run and vice-versa.

1.3 Julia

The recently introduced Julia programming language has been proving to be a high-performance alter-

native to Python, aiming at solving the two-language problem. It is one of the four languages, along

with C, C++, and Fortran that belong to the petaFLOP Club, achieving over 1 petaFLOP per second.

Besides having good performance on modern hardware, it also offers a math-friendly syntax, which ben-

efits numerical computing. However, Julia’s popularity on TIOBE is 0.5%, which pales in comparison to

3As of October 2022, IronPython supports version 2.7.11 (version 3.4 is still an Alpha release) and Jython supports version
2.7.2

4Python Software Foundation (PSF): https://www.python.org/psf/

4

https://www.python.org/psf/

Python’s 12.5%. Julia’s general registry [14] currently holds 7400 registered packages, which is almost

two orders of magnitude smaller than Python.

To benefit from external libraries written in other languages, Julia provides a Foreign Function Inter-

face (FFI) that directly accesses libraries compiled from C or Fortran programs. Julia’s FFI is also critical

to support higher-level packages, such as PyCall [15], JavaCall [16] or RCall [17] that interoperate with

programs written in, Python, Java, and R, respectively. When using this approach, one must consider

that there is additional latency. If the language aims to provide type safety, additional type validation

processes can further impact the latency of calls.

Despite the usefulness of FFI’s for simple function calls, the benefits quickly diminish in more complex

scenarios. As an example, dealing with compound data types might require serialization/deserialization

of objects, which is cumbersome if it has to be performed manually. When dealing with callbacks,

one must also guarantee that any objects passed to foreign functions are not unexpectedly freed by a

Garbage Collection (GC) mechanism. This might require keeping track of object references to ensure

they remain available while in use. Additionally, programs that largely depend on FFI’s are less intelligible

than equivalent ones that use native language features [18]. This leads to reduced code usability and

maintainability.

1.4 Objectives

Having good quality libraries is a critical factor for the success of programming languages. This problem

was acknowledged in the context of Common Lisp [18], where absence of libraries and the difficult mech-

anisms used to integrate them contributed to its decreasing popularity over the years. Given Python’s

large library set when compared to Julia, having a tool capable of translating a subset of Python to Julia

could bring large benefits to the Julia community. On the other hand, programmers could potentially

benefit from improved performance due to Julia’s optimization techniques.

This brings us to our objective, which is to implement a transpiler that accepts a large subset of

Python and translates it to pragmatic and human-readable Julia source code. There are already tran-

spilers from Python to Julia, namely Py2JL [19], which converts a small subset of Python to human-

readable Julia source code. However, its development has been suspended in favour of the Py2Many

transpiler. Py2Many is a transpiler from Python to many C-like programming languages. Julia is amongst

the supported target languages, but only a small subset of Python’s features are supported. We chose

Py2Many as our base implementation, as its architecture offered a good range of flexibility and included

a regression test suite to ensure translation correctness.

Before starting the development of the transpiler, we established four goals that we intended to

accomplish. For each goal, we devised an evaluation method to assess the transpiler’s capabilities. The

5

following outlines our goals and evaluation methods:

1. Correctness: Translation correctness was tested by using Unit tests. The transpiler translated

Python’s testing methodology to an equivalent model in Julia. We evaluated correctness by ex-

tending Py2Many’s unit test suite and cover a subset of CPython’s unit tests.

2. Intelligibility and Pragmatics: Generating source code that respects the pragmatics of Julia is a

primary concern. The generated code should also be maintainable, allowing programmers to im-

prove it in future iterations. Code intelligibility was evaluated by experienced programmers through

an anonymous survey.

3. Performance: The runtime performance of the generated code should at least match that of

Python. We intend to select Python performance benchmarks and compare them to manually

written Julia implementations.

4. Dependencies: The transpiler should be capable of mapping Python’s imports to Julia. Further-

more, the translated Julia code should also be able to access shared libraries. The latter should

be evaluated by translating a library that accesses Dynamic Link Libraries (DLLs).

Our implementation of Py2Many is publicly available [20]. This implementation is currently being

integrated into the official repository. We decided to support Python 3, more specifically, version 3.9,

as the majority of Python users have now transitioned from Python 2 to this new version. For Julia, we

chose to use version 1.7.3.

After establishing the goals and evaluation methods, we can now describe the development of the

transpiler and discuss the results obtained. We assume that the reader is familiar with the basics of

Python and Julia. There will be detailed explanations for the more complex functionalities of both lan-

guages.

In Chapter 2, we will discuss alternative transpiler solutions. Chapter 3 discusses our implementation

and how we mapped the most notable language mismatches. Chapter 4 discusses the inference mech-

anism. Chapter 5 discusses the supported dependency scenarios, including the translation of Python

source code that interfaces with DLLs. Chapter 6 evaluates the results obtained from the translations.

Lastly, chapter 7 discusses the future work and presents our conclusions on the topic.

6

2
Related Work

Contents

2.1 LinJ . 8

2.2 Fortran-Python Transpiler . 8

2.3 JSweet . 9

2.4 Py2Many . 10

2.5 Clava . 10

2.6 Further Mentions . 11

2.7 Analysis . 11

7

There are many transpilation tools translating between high-level programming languages and some

offer novel methods that were particularly useful in the context of this research. This section presents a

selection of the current state-of-the-art transpilation tools.

2.1 LinJ

Introduced in 2007, LinJ [21] is a transpiler that generates Java code from Common Lisp code. It uses

the host Common Lisp implementation to parse the code in three steps [21]:

1. The Common Lisp reader deals with readmacro expansions and builds a low-level AST.

2. LinJ reparses the AST using a Java-inspired grammar, producing a higher-level AST.

3. LinJ walks the high-level AST recursively to generate Java code.

During this process, the Linj translator performs several transformations to the AST. As an example,

since Java does not support shadowing of local variables, variables declared in an inner scope bearing

the same name as variables in an outer scope are renamed [21]. Other important changes include

analysing control-flow paths to determine where to include return statements in the Java code and

performing the necessary unboxing/boxing and cast operations [21].

Another aspect to consider are type annotations, that are optional in Common Lisp but mandatory

in Java. This is solved through a type inference mechanism that computes a definition-use set, relating

parameters with their respective uses in method bodies while finding the most specific type that satisfies

them.

The goal of Linj was to generate human-readable code. To test code readability, industrial projects

were translated from Common Lisp to Java and their quality was assessed by Java programmers, which

also proved the effectiveness of the tool with large codebases. The end results showed that Linj was able

to generate human-readable code, in some cases being interchangeable with human written code [21].

Code pragmatics is crucial for our tool, as we intend for programmers to use the generated code as if it

was written by seasoned programmers. As such, the choice of what constructs to use becomes crucial,

as it can severely affect the generated code’s readability and pragmatics.

2.2 Fortran-Python Transpiler

The Fortran-Python transpiler [22], which was introduced in 2016, converts Legacy Fortran source code

to Python source code and vice-versa, leveraging the type hints mechanism introduced in Python 3.5.

This transpiler does not aim at fully automating the process of translation, intentionally requiring manual

8

intervention in some cases. The proposed solution supports two use cases, both leveraging just-in-time

compilation [22]:

1. Migrating high-performance Fortran source code to Python.

2. Enhance the performance of existing Python source code.

The first solution starts by translating the Fortran source code to Python. Then, both solutions require

the user to mark any computing kernels in the Python source code, which trigger a translation to Fortran

at runtime. Calls made to Python functions identified as computing kernels are wrapped by a new

interface, which transfers them to the generated Fortran functions. When their execution finishes, the

return values are forwarded back to Python. This strategy allows the core of the application logic to run

in Fortran, while the remaining code runs in Python [22].

Similarly to Jnil, this work presents valuable insight into the translation of a dynamically typed to

a statically typed language. Furthermore, this tool imposes several restrictions during the translation

process. For instance, the transpiler is unable to translate Python’s dynamic behaviour, which allows

variables to be assigned with values of different types. Such aspects are less relevant when translat-

ing between dynamically typed languages, but present challenges for static analysis mechanisms [23].

Therefore, some restrictions implemented in the Fortran-Python transpiler, such as requiring program-

mers to annotate function definitions, might be required for our work, as it might not be possible to infer

a function’s return type or its argument types at compile time.

2.3 JSweet

JSweet [24] transpiles Java to JavaScript using a two-step process:

1. Transpiles the Java code to TypeScript.

2. Uses tsc [25, Ch 10] to transpile TypeScript into JavaScript.

JSweet also translates TypeScript definition files to JSweet libraries, making them available to Java

programmers. These are taken from the DefinitelyTyped1 repository and are updated before starting the

transpilation process.

The output of transpilation is the generated JavaScript source code and the source map files. The

latter are auxiliary files mapping element positions between the generated JavaScript code and the Java

code. This is important for debugging, as JavaScript is compacted into a much shorter file, losing its

original structure.

1DefinitelyTyped repository: https://github.com/DefinitelyTyped/DefinitelyTyped (Online, Retrieved 26th July, 2022)

9

https://github.com/DefinitelyTyped/DefinitelyTyped

Besides bridging the gap between Java’s Integrated Development Environments (IDEs) and modern

web development, JSweet allows access to JavaScript libraries, as they provide important functionalities

required by programmers. This emphasizes the idea that libraries are a crucial aspect of languages.

Being able to interface with existing libraries is the main focus of JSweet, which also translates to our

work, with regard to accessing Python’s libraries from Julia.

2.4 Py2Many

The Py2Many transpilation framework is a tool written in Python that is aimed at translating Python

source code into C-like programming languages. Its development began with a transpiler that translates

Python to C++, but was then expanded to include several other programming languages, such as Rust,

Dart, Go, Kotlin, Nim, V, and Julia, with different degrees of correctness and completeness.

Each language is supported through an extension. PyRS is currently the most developed transpila-

tion extension, which transpiles Python to Rust. It is still an experimental solution that, in some cases,

requires manual intervention to generate running Rust source code. PyRS was used in an approach [26]

that explores Rust as an intermediate source code step to compile Python to a low-level target language.

The runtime performance of the generated Rust source code was superior to Python’s while using less

memory.

For our research, we were particularly interested in PyJL, which is an extension to Py2Many’s frame-

work that translates Python source code to Julia. Unfortunately, PyJL was only capable of transpiling

simple Python examples, failing to translate non-trivial cases. Additionally, crucial functionality was miss-

ing, such as the ability to properly translate Python’s classes to Julia.

2.5 Clava

Clava is a source-to-source compiler whose development started in 2016 [27] and allows developers to

perform software refactoring. It uses the LARA Domain Specific Language (DSL) to specify strategies

for efficient code generation. Clava’s source code processing has the following stages [27]:

1. A C/C++ Frontend parses the input source code, which is comprised of two components:

(a) The Clava AST Dumper uses Clang2 to create a dump containing syntactic and semantic

information from the input source code.

(b) The Clava AST Loader parses the dump and builds an instance of a Clava AST.

2Clang compiler for the C language family https://clang.llvm.org/ (Retrieved October 16th, 2022)

10

https://clang.llvm.org/

Input
Language

Target
Language Intelligible Coverage Upkeep Performance

Linj Common Lisp Java ✓✓✓ ✓✓ ✓ 5− 6×
Fortran-Python Python Fortran ✓✓ ✓✓ ✓ 6− 10×

JSweet Java JavaScript ✓✓ ✓✓ ✓✓✓ ✗
Py2Many/PyJL Python Julia ✓ ✓ ✓✓✓ ✗

Table 2.1: State-of-the-art Evaluation

2. The LARA engine interprets and parses LARA strategies that contain instructions to generate the

modified program.

3. The Clava Weaver Engine maintains an updated representation of the source code by communi-

cating with the two previous components. It receives the AST from the frontend and applies the

strategies from the LARA engine to the AST.

What is particularly interesting in this research is the concept of strategies, which are used to perform

source code modifications [27]. The ability to modify source code through external specification files is

crucial when developing a transpiler capable of translating libraries, since it allows programmers to

separate annotations from the source code and future-proof translations.

2.6 Further Mentions

In this section, we briefly mention other noteworthy projects that have been developed in this area:

Babel [28] transpiles Smalltalk into CLOS and is focused on automatic translation; and prometeo [29]

transpiles Python source code to high-performance C source code, using libraries such as BLASFEO3

to speedup linear algebra calculations.

2.7 Analysis

In this section, we briefly differentiate each of the approaches we have previously discussed and highlight

some features that are important in the context of this research. Table 2.1 compares the presented

transpilers in four main categories: (1) Intelligibility, which covers the ability for humans to read and

understand the generated source code, (2) Coverage, which evaluates the subset supported by each

transpiler, (3) Upkeep, which evaluates how well maintained the transpilers are, and (4) Performance,

which evaluates the performance difference between the input and the generated source code. The

comparison has a rating scheme, where ✓✓✓ is the highest rating and ✓ is the lowest. An invalid

category for a given tool is represented with ✗.
3Basic Linear Algebra Subroutines for Embedded Optimization (BLASFEO): https://github.com/giaf/blasfeo (Retrieved

July 16th 2022)

11

https://github.com/giaf/blasfeo

For this evaluation process, we will not consider Clava, as it is a software refactoring tool. The most

relevant functionalities for our project are Clava’s processing pipeline and annotation mechanism, which

will be discussed in section 3.1.2.

Regarding code intelligibility, JSweet presents examples on its website that are human-readable.4

The authors of the Fortran-Python transpiler also ensure that code is maintainable [22], although we

could not evaluate this with larger examples since they were not available. LinJ goes to great lengths

to ensure that the generated code is human-readable and maintainable, even ensuring the appropriate

translation of source code comments [21]. PyJL was only able to generate pragmatic source code with

very simple examples. During our evaluation, we observed that the code generated by PyJL was not

pragmatic, even in simple translation scenarios. For instance, when translating Python’s 0-indexed lists

to Julia’s 1-indexed arrays, the transpiler simply added the literal 1 to each indexing operation, which

created redundant operations if the indexing values are literals. Furthermore, this also reduced the

readability of the generated code.

Another aspect to consider is coverage. The LinJ, Fortran-Python and JSweet transpilers target a

considerable subset of their input language. On the other hand, PyJL covers only a very small subset of

Python’s constructs and built-in functions, which limits its applicability scenarios.

Furthermore, transpilers also need to be updated to support new versions of their input and output

languages. Both Clava5 and JSweet6 show recent activity in their official repositories. As Py2Many

transpiles to many C-Like programming languages, it should be harder to maintain. Still, it shows recent

changes for most of the supported target languages.

When comparing the runtime performance of the generated code, we were not able to find any

performance results for the JSweet transpiler, although its intent was never to produce high-performance

code but to provide interoperability between two platforms. The source code generated by Linj is, on

average, 5− 6× faster than Common Lisp. This includes the results of the Boyer benchmark, commonly

used to compare different Lisp implementations, and a cellular automaton benchmark, where LinJ was

only outperformed by C and a manually optimized version of a Java program [21]. The code generated

by the Fortran-Python transpiler for the Miranda IO benchmarking application is around 6× faster than

Python [22]. When using the DGEMM library, used to perform matrix calculations, the generated code

is around 10× faster [22]. Regarding PyJL, we found that the Julia source code produced had errors

in many cases, which prevented us from translating benchmarks and provide meaningful performance

measurements. The performance of PyJL will be revisited after applying our improvements.

Besides these three main aspects, other individual aspects of each transpiler were considered im-

portant in the context of this research. The need for type hints, demonstrated by the Fortran-Python

4JSweet Website: https://www.JSweet.org/ (Retrieved July 26th, 2022)
5Clava Repository: https://github.com/specs-feup/clava
6JSweet repository: https://github.com/cincheo/JSweet (Retrieved September 8th, 2022)

12

https://www.JSweet.org/
https://github.com/specs-feup/clava
https://github.com/cincheo/JSweet

transpiler, might also be necessary for our work, as they largely benefit static analysis mechanisms.

Furthermore, as Julia’s type system benefits from type annotations [30], using Python’s type hints could

have a large impact on the performance of the generated code. Additionally, the importance of choosing

the right constructs, demonstrated by the Linj transpiler, can have a large impact on the maintainability

and pragmatics of the generated source code, an aspect that is crucial for our project. Lastly, having the

ability to support external annotations is crucial, as separating annotations from the input source code

ensures that they can be used for subsequent translations. This was inspired by the Clava software

refactoring tool, which supports external code annotations to generate new versions of the input source

code [27]. These aspects have influenced the development of PyJL and have also resulted in changes

to Py2Many’s architecture, which will be discussed in the following chapter.

13

14

3
Transpilation

Contents

3.1 The Py2Many Transpiler . 16

3.2 Python to Julia Translation . 20

3.3 Optimizations . 32

3.4 Validating Translations . 33

15

As discussed in Chapter 1, there are several mismatches that make automatic translation between

languages a challenging process. However, as Python and Julia offer similar functionalities, automated

translation becomes a feasible approach. This chapter presents our implementation of Py2Many and the

PyJL extension, which we developed to translate Python to human-readable and pragmatic Julia source

code. Furthermore, it discusses the most notable scenarios encountered during the translation process.

3.1 The Py2Many Transpiler

The Py2Many [31] transpiler transpiles Python to many C-like programming languages. It provides a

modular framework, where the support for each language is added as an extension. As an example,

there is the PyRS extension for Rust, the PyCPP extension for C++ etc. Most notably for this research,

we have the PyJL extension, which adds functionalities to translate Python to Julia.

We chose Py2Many as our starting point, as it offers a flexible architecture and shows recent de-

velopment. Its architecture was adapted to accommodate essential features required by our solution.

Figure 3.1 shows the updated architecture. Py2Many receives Python source code as input and uses

Python’s ast1 module to parse the source code and build an Abstract Syntax Tree (AST). The AST

is modified using intermediate phases that handle language incompatibilities. Lastly, a code generator

parses the AST to produce the output source code in the chosen language. A brief description of each

transpilation phase follows:

1. Configuration Rewriters is a language-independent phase that supports configuration files in JSON

and YAML format. These can contain type-annotations and specific decorators, that allow program-

mers to choose a preferred translation method.

2. Rewriters can be language-specific or -independent. They modify or add new nodes to the AST

to make it compatible with the target language. As an example, consider a rewriter that translates

Python’s classes to Julia.

3. Core Transformers are language-independent transformers that modify the AST by adding relevant

information for the translation process. The added information includes:

(a) Variable Context: Adds an attribute to each scope, containing a dictionary of locally defined

variables.

(b) Scope Context: Adds a scopes attribute to each node in the AST, which includes a list of all

its parent scopes.

(c) Assignment Context: Distinguishes if a node is on the left-hand side of an assignment, i.e.,

represents the target variable of an assignment.
1Abstract Syntax Tree - Python 3.10: https://docs.python.org/3/library/ast.html (Retrieved on July 12th, 2022)

16

https://docs.python.org/3/library/ast.html

Figure 3.1: Py2Many Architecture

(d) List call information: Adds all list transformation operations to the scope of the variable refer-

encing the list.

(e) Variable Mutability: Adds a list of all mutable variables to function scopes.

(f) Nesting levels: Annotates nodes with the respective nesting levels. This is important for

languages sensitive to white space.

(g) Annotation flags: Adds flags to annotations and differentiates type annotations from container

types.

(h) Import Parsing: Adds an attribute to each scope, containing a list of local imports.

4. Type inference executes Py2Many’s type inference mechanism. Transpilers can also extend this

mechanism to add more specific inference rules.

5. Transformers add complementary information to specific nodes of the AST. As an example, con-

sider performing an analysis step that detects whether using broadcasting is necessary in Julia.

6. Post Rewriters are functionally identical to Rewriters, but have dependencies on previous interme-

diary phases, such as the Inference phase.

7. Optimization Rewriters optimize the syntax and performance of the generated code.

8. Target Code Generation is a language-specific phase that translates language syntax and seman-

tics, converting the AST to a string representation in the target language.

In the pipeline, the Core Transformers phase executes at two different stages. The first makes nec-

essary information available for the intermediary transformation phases, while the second guarantees

that core changes are applied to any newly introduced nodes.

17

Figure 3.2: Inference tree-walk

Before focusing on the features of PyJL and the translation from Python to Julia, it is important to

discuss some noteworthy features included in Py2Many. Some of these were improved or added to

Py2Many to complement the translation process. We will briefly describe them in the following sections.

3.1.1 Scoping Mechanism

Py2Many includes some functionalities that aid the translation process. To facilitate tree walks, the

Scope Context phase adds a scopes attribute to each node in the AST, which contains a reference to

a node’s parent scopes. To cover the scoping rules of all supported languages, Py2Many defines an

extended list of constructs that introduce scope blocks, which include the module, function, class, for,

while, if, with, and try blocks. Each of these scope blocks holds a dictionary of all the locally defined

variables, which is added by the Variable Context phase to speedup variable type lookups. Control flow

statements and expressions have a separate dictionary for each execution branch, which ensures that

variables with the same name defined in separate branches do not override each other.

Furthermore, Py2Many also includes a find function to search for variables by their names. Given

the enclosing scope of the current node, it finds the first instance matching that variable’s name, by

walking the scopes in reverse order. Starting the search from the enclosing scope is an important

aspect, as it ensures that Py2Many always finds the appropriate definition of the variable, even when

variable shadowing occurs. The find function starts by searching the variable dictionaries of each

scope, which largely speeds up searches. If the variable is not found in the dictionaries, it searches the

body of each scope.

However, Py2Many’s mechanism was not complete, as it did not allow class methods to access infor-

mation about class variables defined in constructors. To demonstrate this use-case, let us consider the

example shown in figure 3.2. Notice that the Rectangle class defines the height and width parameters

in the init method. With Py2Many’s mechanism, it was impossible to access the information of

the height and width variables by searching the enclosing scopes of the is square method. With our

contribution, the current mechanism gathers all class variable assignments in the corresponding class

nodes, shown on the right of figure 3.2, which ensures they are accessible by all class methods.

18

Figure 3.3: Annotation pipeline Figure 3.4: Annotation Example

3.1.2 Code Annotation Mechanism

There are scenarios where more than one translation method is supported. Therefore, we added support

for three complementary approaches through which programmers can choose their preferred translation

method: (1) manually annotating the Python source code, (2) using JSON or YAML annotation files,

supported by the Configuration Rewriters phase, or (3) using flags to make global changes to source

code generation. The first approach offers a simple mechanism for programmers to test the different

translation methods. The second and third approaches separate annotations from the input source

code, which ensures that annotations can be used for subsequent translations. This is especially useful

if the code-base one is trying to translate is updated.

To demonstrate the use of the Configuration Rewriters phase, figure 3.3 contains a high-level overview

of the processing pipeline. It parses the provided YAML/JSON files and adds the information to the AST.

The current supported features are adding decorators to functions and classes, and adding type-hints

to function definitions. An example of code annotations can be seen in figure 3.4. In this example, the

user supplies a YAML file containing the type annotations that should be considered for the parameters

of the repeat str function. These annotations are subsequently merged with the source code before

proceeding to the next transpilation phases.

3.1.3 Parsing Mechanism

As previously mentioned, Py2Many uses Python’s ast module, which syntactically analyses and tok-

enizes the input source code and generates an AST. However, there are some limitations with the

current parsing mechanism. The most notable missing feature is the translation of source code com-

ments, which are not included in the AST. This limitation could be avoided by switching to a Full Syntax

Tree (FST). There is a Python library called baron,2 which produces an FST from Python source code.

However, at the time of writing, there is no guaranteed future support. Future releases of Py2Many

should support the parsing of comments, as this is crucial for code documentation.

Another notable aspect is that Python’s ast module might not preserve the data representation of

the Python source code. This is the case when parsing binary, octal, and hexadecimal literals, which

2baron: Full Syntax Tree (FST) library for Python: https://github.com/PyCQA/baron

19

https://github.com/PyCQA/baron

Listing 3.1: Python Augmented Assignments

1 x = [1,2]

2 y = x

3 x += [3,4]

4 x[1:2] *= 2

5 y[1:2] += [1]

Listing 3.2: Translation to Julia

1 x = [1,2]

2 y = x

3 append!(x, [3,4])

4 splice!(x, 2:2, repeat(x[2:2], 2))

5 splice!(y, 3:2, [1])

lose their original representation. As an example, the Python binary literal 0b10110 will be converted to

the number 22. In such cases, PyJL supports custom type aliases, which can be used by programmers

to identify literal types. Binary literals can be annotated with BLiteral, octal literals with OLiteral and

hexadecimal literals with HLiteral. These type aliases inform PyJL that the values must be converted

to their original representation.

After discussing the noteworthy functionalities of the current pipeline and detailing our contributions,

we now discuss the translation process of Python to Julia. The following section’s will focus on newly

implemented features for PyJL and discuss the most notable translation aspects.

3.2 Python to Julia Translation

When translating Python to Julia, a transpiler has to deal with the syntactic and the semantic differences

between the two languages. The following sections discuss newly implemented features that focus on

translating the most notable Python functionalities to Julia. These were implemented for PyJL, if not

specifically noted otherwise.

3.2.1 Augmented Assignments

Augmented assignments combine binary operations with assignment statements. These are supported

by both Python and Julia, but given Python’s dynamic operations, not all augmented assignments can

be translated directly to Julia.

As an example, consider the Python code excerpt and its translation to Julia shown in listings 3.1

and 3.2 respectively. Notice that the Python augmented assignment on line 3 changes when translated

to Julia. In Python, the addition operator concatenates the list x with the list [3,4], producing the result

[1,2,3,4], while in Julia, it performs an element-wise addition of both arrays, yielding the result [4,6].

As augmented assignments performed on mutable objects use in-place operations in Python, PyJL uses

Julia’s append! function, which performs an in-place concatenation of elements to the list x.

Translating slice operations is another aspect to consider. Lines 4 and 5 of listing 3.2 represent that

scenario. PyJL uses the splice! function, which replaces or inserts new elements in a list. Notice that

the second call to splice! uses the form n:n-1, which inserts a new element in the list [30, Ch. 42].

20

Listing 3.3: For-Else Python

1 def find_factors(n):

2 for i in range(2, n):

3 for j in range(2, i):

4 if i % j == 0:

5 print(i, 'equals', j, '*', i/j)

6 break

7 else:

8 print(i, 'is a prime number')

Listing 3.4: For-Else Julia Translation

1 function find_factors(n)

2 for i in 2:n-1

3 has_break = false

4 for j = 2:i-1

5 if (i % j) == 0

6 println("$(i) equals $(j) * $(i / j)")

7 has_break = true

8 break

9 end

10 end

11 if !has_break

12 println("$(i) is a prime number")

13 end

14 end

15 end

3.2.2 Boolean Operations

Most boolean expressions are equivalent in both Python and Julia. However, when used in control flow

statements or in the context of boolean operations, some Python values are interpreted as false. These

include False, None, the numeric value zero, empty strings, and empty containers. In contrast, Julia’s

control flow statements and boolean operations only accept expressions that evaluate to the values true

or false.

To solve this mismatch, PyJL starts by analysing the return type of expressions used in control flow

statements and boolean operations. If it detects that the result of such expressions is not a boolean

value, it creates a comparison between the corresponding types that Python interprets as false. As, this

relies on the inference mechanism to analyse the types of expressions, there might be cases where the

types are not available at compile time. Therefore, as a fallback when types are not inferrable, PyJL

creates an expression that performs these checks at runtime. Despite not being the most pragmatical

solution, it ensures that the result is equivalent on both languages. The only functionality that is currently

unsupported is calling Python’s bool method for user-defined objects.

3.2.3 Loops

Python offers two looping constructs, namely for and while. The most notable aspect is that both of

these constructs support an else clause, which executes when the loop’s condition becomes false. The

only exception is if the loop iteration halts through a break statement or if an exception is raised.

As none of the target languages in Py2Many offer support for this feature, we implemented a generic

translation approach that maps for-else and while-else expressions. As a possible translation sce-

nario, consider the find factors function from listing 3.3, which outputs a list of factors and prime

numbers up to n.

The generated Julia source code can be seen in listing 3.4. Notice that a new assignment to a

21

Listing 3.5: Python Combination Sort

1 def comb_sort(

2 seq: List[int]) -> List[int]:

3 gap = len(seq)

4 swap = True

5 while gap > 1 or swap:

6 gap = max(1, floor(gap / 1.25))

7 swap = False

8 for i in range(len(seq) - gap):

9 if seq[i] > seq[i + gap]:

10 seq[i], seq[i + gap] = \

11 seq[i + gap], seq[i]

12 swap = True

13 return seq

Listing 3.6: Julia Combination Sort

1 function comb_sort(

2 seq::Vector{Int})::Vector{Int}

3 gap = length(seq)

4 swap = true

5 while gap > 1 || swap

6 gap = max(1, floor(Int, gap / 1.25))

7 swap = false

8 for i in 0:length(seq) - gap - 1

9 if seq[i + 1] > seq[i + gap + 1]

10 seq[i + 1], seq[i + gap + 1] =

11 (seq[i + gap + 1], seq[i + 1])

12 swap = true

13 end

14 end

15 end

16 return seq

17 end

variable called has break was created, which initially sets it to false. It only gets set to true when a

break statement is executed. After the loop, a conditional expression verifies if the value of this variable

is false and only executes the if-statement’s block if this condition is verified.

3.2.4 Indexing

In Python and Julia, a subscript is used to perform indexing and slicing on sequences and key lookups

on mapping types. The translation of indexing becomes particularly challenging when trying to generate

pragmatic code. This section analyses PyJL’s indexing translation mechanisms.

Indexing is used to look up a particular position in a sequence, i.e., tuples, lists, strings, etc. The

main difference between indexing in Python and Julia, is that Python uses 0-indexed lists while Julia

uses 1-indexed arrays. Indexing can be performed using integer literals or generic expressions. Integer

literals can be easily incremented to match Julia’s 1-indexed arrays, but non-literal expressions require

creating a new binary expression to increment its value, which can reduce the readability of the code

generated by PyJL. Nevertheless, because most indexing is performed in loops, we can optimize the

entire scenario instead.

For instance, consider the Python implementation of the combination sort algorithm from listing 3.5.

The simplest translation, shown in listing 3.6, is to preserve the ranges and adjust the indexing op-

erations. However, this generates redundant binary operations that decrease the code’s readability.

Therefore, we provide two optimization methods that the programmer can use to improve the quality of

the generated code:

1. Determine if loop variables are only used for indexing, and increment loop ranges.

2. Use the OffsetArrays package [32] to define custom index ranges for sequences.

22

Listing 3.7: Julia 1-Indexed Arrays

1 function comb_sort(

2 seq::Vector{Int})::Vector{Int}

3 gap = length(seq)

4 swap = true

5 while gap > 1 || swap

6 gap = max(1, floor(Int, gap / 1.25))

7 swap = false

8 for i in 1:length(seq) - gap

9 if seq[i] > seq[i + gap]

10 seq[i], seq[i + gap] =

11 (seq[i + gap], seq[i])

12 swap = true

13 end

14 end

15 end

16 return seq

17 end

Listing 3.8: Julia Offset Arrays

1 function comb_sort(

2 seq::Vector{Int})::Vector{Int}

3 let seq = OffsetArray(seq, -1)

4 gap = length(seq)

5 swap = true

6 while gap > 1 || swap

7 gap = max(1, floor(Int, gap / 1.25))

8 swap = false

9 for i in 0:length(seq) - gap - 1

10 if seq[i] > seq[i + gap]

11 seq[i], seq[i + gap] =

12 (seq[i + gap], seq[i])

13 swap = true

14 end

15 end

16 end

17 end

18 return seq

19 end

For the first approach, PyJL uses a heuristic to verify if the loops variables are only used for indexing.

This ensures that there are no side-effects and that changing the loop’s ranges does not change the

external behaviour of the generated code. We transpiled the Python combination sort implementation

using this translation method. The transpilation result, shown in listing 3.7, respects the pragmatics of

Julia and better resembles what a Julia programmer would write.

The second translation method uses OffsetArrays to create arrays with the same index ranges as

Python. The code generated by PyJL can be seen in listing 3.8. The call to OffsetArray creates a

wrapper around the array seq and decreases its indexing value by 1, which is equivalent to performing

0-based indexing. Notice that the array seq is modified and returned by the function. Therefore, PyJL

used a let-block to restrict the wrapping of the input vector seq to the block’s scope and encapsulate the

use of OffsetArrays within the function.

Both alternatives have tradeoffs. The first is arguably more pragmatic in this particular example, but

changes the algorithm’s implementation to use 1-based indexing. The second preserves the program’s

original indexing, but also changes its layout. The applicability of these implementations is, therefore,

dependent on each translation scenario, which is why we opted to allow programmers to select their

preferred code generation method.

A key factor to consider is that Python allows programmers to use negative indexing to index lists

in reverse order. If indexing is performed outside loops, PyJL only supports negative indexing if the

indexing value is a literal. However, if indexing is performed within a loop and uses the loop’s variables,

then this will depend on the ability to statically determine the range of the loop. Currently, PyJL can

determine if indexing is performed with negative values when loops use Python’s range function.

23

Listing 3.9: Generator Functions

1 def fib():

2 a = 0

3 b = 1

4 while True:

5 yield a

6 a, b = b, a + b

Listing 3.10: Julia Channels

1 function fib()

2 Channel() do ch

3 a = 0

4 b = 1

5 while true

6 put!(ch, a)

7 a, b = b, a + b

8 end

9 end

10 end

Listing 3.11: Resumable Functions

1 @resumable function fib()

2 a = 0

3 b = 1

4 while true

5 @yield a

6 a, b = b, a + b

7 end

8 end

3.2.5 Generator Functions

Python’s generator functions return a lazy iterator and implement the producer/consumer pattern. The

producer generates a new value whenever yield is called and saves its execution state. When the

consumer requests a value, the generator resumes its execution from the saved state. In Python, this

is implemented using a Finite State Machine. To demonstrate the translation of generator functions, we

present an implementation of the Fibonacci sequence that returns an infinite iterator, which can be seen

in listing 3.9

To transpile generator functions to Julia, PyJL offers two alternatives. One alternative is to use

channels, which also implement the producer/consumer pattern. The producer uses the put! function

to add values to the channel while the consumer uses the take! function to retrieve them. We include a

possible implementation in listing 3.10. Despite the syntactic similarities, there is an important difference.

Even with the use of unbuffered channels, the execution will only block at the first call to put!, allowing

side effects in the producer to be executed before the consumer requests the first value.

Another alternative that preserves Python’s behaviour is the third-party package ResumableFunctions

[33]. This package defines a resumable macro, which simulates generator functions in Julia. A yield

macro is used to replace Python’s yield keyword. Similarly to Python, this implementation uses a Finite

State Machine to save the execution state and resume it in subsequent calls. An equivalent implemen-

tation of the Fibonacci sequence using this package can be seen in listing 3.11. Besides preserving

Python’s behaviour, this approach also maps more directly to its equivalent Python implementation.

Furthermore, it also achieves much higher performance when compared to channels. Section 6.2.2

compares these two alternatives in greater detail. Nonetheless, PyJL offers the possibility to use both

methods, as each has their applicability scenarios.

3.2.6 Arbitrary-Precision Arithmetic

Another mismatch occurs with the precision used for arithmetic operations. A programming language

can either use arbitrary-precision arithmetic, where the digits of precision are only limited by the available

24

memory in an operating system, or fixed-precision arithmetic, which only allows up to a fixed amount of

digits. The latter has the benefit of providing faster performance, as arithmetic operations have native

hardware support.

In Python, arbitrary-precision arithmetic is used on all operations. Julia, on the other hand, always

uses fixed-precision arithmetic, but offers specific types to support arbitrary precision floating point num-

bers and integers. PyJL provides a mechanism that converts all operations to arbitrary precision. It

attempts to analyse variable types and wraps any assignments to integers and floating-point values

using Julia’s BigInt and BigFloat types. A programmer can supply a flag to choose this translation

approach.

As an alternative, PyJL supports the type aliases BigInt and BigFloat, which allow programmers

to manually annotate variables that require the use of arbitrary-precision arithmetic. These variables will

be wrapped into calls to Julia’s BigInt and BigFloat types, respectively.

3.2.7 Simulating Python’s OO Implementation

Python is an imperative OO language. Julia, on the other hand, is mostly a functional programming

language that does not fully support the OO paradigm. If a transpiler from Python to Julia has to translate

Python’s classes, it must simulate OO mechanisms, such as inheritance. This section discusses PyJL’s

translation process of Python’s OO implementation.

Before discussing our translation approach, one must consider the difference between inheritance,

subtyping and composition. Inheritance refers to the reuse of functionality, subtyping models associa-

tions between data types by following the concept of substitutability, and composition refers to defining

an object as the sum of its parts. Python supports all three concepts through its classes. Furthermore,

it also supports multiple inheritance, where one class can extend multiple parent classes. On the other

hand, Julia only supports subtyping and composition. Subtyping is supported through Julia’s abstract

types that can have at most one supertype. A Julia function that is written to work for a supertype will

also work for any subtypes, following the concept of substitutability.

Another important difference occurs in the dispatch mechanisms of Python and Julia. Whereas

Python uses single dispatch, which selects a method given the type of its first argument, Julia uses

multiple dispatch, which selects the appropriate method according to the types of all its arguments. One

can use multiple dispatch in Python through the multimethod3 module, but this is not officially supported

by the language.

When translating Python’s classes, we separated single and multiple inheritance, as the translation

approaches to Julia are inherently different. We start by discussing single inheritance and, to that end,

we have created a class inheritance example, which can be seen in listing 3.12. It defines three classes,

3multimethod module: https://pypi.org/project/multimethod/0.5/ (Retrieved July 25th, 2022)

25

https://pypi.org/project/multimethod/0.5/

Listing 3.12: Python Class Hierarchy

1 class Person:

2 def __init__(self, name:str):

3 self.name = name

4

5 def get_id(self) -> str:

6 return self.name

7

8 class Student(Person):

9 def __init__(self, name: str, student_number: int, domain: str = "school.student.pt"):

10 self.name = name

11 self.student_number = student_number

12 self.domain = domain

13

14 def get_id(self):

15 return f"{self.name} - {self.student_number}"

16

17 class Worker(Person):

18 def __init__(self, name: str, company_name: str, hours_per_week: int):

19 self.name = name

20 self.company_name = company_name

21 self.hours_per_week = hours_per_week

namely the Person, Student and Worker classes. Both Student and Worker are subclasses of the

Person class, where Student adds the student num field and a new definition of the get id method, and

Worker adds a company name and an hours per week argument. We considered two different translation

approaches for classes that use single inheritance:

1. Using Julia’s native constructs to create a class hierarchy.

2. Using a third-party package called Classes [34]

In both of these approaches, PyJL must translate Python’s init method, which is called after an

object has been created to initialize its fields. To map this method, PyJL uses Julia’s constructors, which

have a similar purpose. The remaining aspects change depending on the chosen translation approach.

When using the first approach, PyJL generates the code seen in listing 3.13. For each class, it

creates a mutable struct to hold the class fields and an abstract type that can be used for subtyping.

Notice that the self parameter of each function extends the abstract type mapped to the corresponding

struct, allowing each function to be used by any subtypes in the hierarchy.

The second approach uses the aforementioned Classes package. This package contains a class

macro, which defines a hierarchy of abstract types and creates a constructor function for each type.

The main advantage is that structs annotated with the class macro do not have to repeat the fields of

its supertypes, which removes duplicate code. In the previous example, we chose the names of the

abstract types to match the abstract type names used by the Classes package. Listing 3.14 shows an

equivalent translation using this package. Notice that PyJL no longer repeats the fields of its parent

types when declaring an object. For instance, the Student struct only defines the fields student number

and domain, and omits the name field, as it is defined in the parent type.

26

Listing 3.13: Julia Class Hierachy

1 abstract type AbstractPerson end

2 abstract type AbstractStudent <:

3 AbstractPerson end

4 abstract type AbstractWorker <:

5 AbstractPerson end

6

7 mutable struct Person <: AbstractPerson

8 name::String

9 end

10 function get_id(self::AbstractPerson)::String

11 return self.name

12 end

13

14 mutable struct Student <: AbstractStudent

15 name::String

16 student_number::Int

17 domain::String

18

19 Student(name::String,

20 student_number::Int,

21 domain::String = "school.student.pt") =

22 begin

23 new(name, student_number, domain)

24 end

25 end

26 function get_id(self::AbstractStudent)

27 return "$(self.name) - $(self.student_number)"

28 end

29

30 mutable struct Worker <: AbstractWorker

31 name::String

32 company_name::String

33 hours_per_week::Int

34 end

Listing 3.14: Julia Classes Package

1 using Classes

2

3 @class mutable Person begin

4 name::String

5 end

6 function get_id(self::AbstractPerson)

7 return self.name

8 end

9

10 @class mutable Student <: Person begin

11 student_number::Int

12 domain::String

13 Student(name::String,

14 student_number::Int64,

15 domain::String = "school.student.pt") =

16 new(name, student_number, domain)

17 end

18 function get_id(self::AbstractStudent)

19 return "$(self.name) -

20 $(self.student_number)"

21 end

22

23 @class mutable Worker <: Person begin

24 company_name::String

25 hours_per_week::Int

26 end

Despite the Classes package offering some advantages to the first method, it still discloses some

parts of the underlying Julia implementation. For instance, notice how both get id functions extend

the types AbstractPerson and AbstractStudent to work in a class hierarchy. Still, this implementation

hides the creation of the abstract types and structs that hold object fields.

The examples above covered single inheritance. However, if we want to fully map Python’s classes to

Julia, we also need to handle multiple inheritance. Let us extend our previous example by introducing a

new StudentWorker class, seen in listing 3.15. With this new class, the hierarchy becomes an instance

of the diamond problem, where the class Person is the parent of both the Student and Worker classes,

and the class StudentWorker is a subclass of Student and Worker. We include a visual representation

of the class hierarchy in figure 3.5.

To support multiple inheritance, PyJL uses a package called ObjectOriented that has similar se-

mantics to Python. The code segment in listing 3.16 shows the translation of the StudentWorker class

when using the ObjectOriented package. The remaining code is available in Appendix A. Notice that

this translation uses two macros. The oodef macro is used to annotate structs and support Python-like

features, such as allowing structs to have their own methods, while the mk macro is used to initialize

27

Listing 3.15: Python Multiple Inheritance

1 class StudentWorker(Student, Worker):

2 def __init__(self,

3 name: str,

4 student_number: int,

5 domain: str,

6 company_name: str,

7 hours_per_week: int,

8 schedule_conflicts:bool):

9 Student.__init__(self, name,

10 student_number, domain)

11 Worker.__init__(self, name,

12 company_name, hours_per_week)

13 self.schedule_conflicts = schedule_conflicts

Listing 3.16: Julia Multiple inheritance

1 @oodef mutable struct StudentWorker <:

2 {Student, Worker}

3 schedule_conflicts::Bool

4

5 function new(

6 name::String,

7 student_number::Int,

8 domain::String,

9 company_name::String,

10 hours_per_week::Int,

11 schedule_conflicts::Bool,

12)

13 @mk begin

14 Student(name, student_number, domain)

15 Worker(name, company_name, hours_per_week)

16 schedule_conflicts = schedule_conflicts

17 end

18 end

19 end

Figure 3.5: Class hierarchy

struct values. Besides creating the class hierarchy, this package also implements the C3 linearization

for Method Resolution Order (MRO) [35], which, combined with the ability to overload constructors and

methods, and use Python-style properties, offers the current closest mapping of Python’s classes to

Julia.

An important aspect of this package is that it has two different mechanisms for relating functions to

structs: (1) It provides a like macro, which performs dispatching based on a structs type, allowing any

of its subtypes to use the functions, and (2) allows oodef structs to have their own functions similarly

to how Python’s classes can have their own methods. PyJL currently has support for both translation

methods. We will compare these two mechanisms by translating the Person class.

In listing 3.17, we used the first translation method, where the functions are defined outside the body

of the struct. The like macro allows any subtype of Person to extend the get id function. Alternatively,

one can use the second code generation method, which can be seen in listing 3.18. Notice how the

get id function is now defined inside the struct’s body. Using this method no longer requires the like

macro. As nested functions are considered attributes of the class, they are accessed identically to how

28

Listing 3.17: ObjectOriented External Functions

1 @oodef mutable struct Person

2 name::String

3

4 function new(name::String)

5 @mk begin

6 name = name

7 end

8 end

9 end

10

11 function get_id(self::@like(Person))::String

12 return self.name

13 end

Listing 3.18: ObjectOriented Nested Functions

1 @oodef mutable struct Person

2 name::String

3

4 function new(name::String)

5 @mk begin

6 name = name

7 end

8 end

9

10 function get_id(self)::String

11 return self.name

12 end

13 end

class methods are in Python, that is, akin to accessing object attributes.

3.2.8 Special Methods and Attributes

A Python class can define special methods, which are called implicitly by Python when performing

certain operations on objects. These can be extended by any Python class to define custom behaviour,

and are identified by names that start and end with double underscores.

Regarding the translation of Python’s special methods, we have already discussed the mapping of

Python’s init special method, which initializes an object’s fields. Furthermore, PyJL also supports

Python’s dataclass special methods. As some methods require objects to be compared for equality,

PyJL uses a key function that returns a tuple containing an object’s field values. This is used in

methods, such as eq or lt , to compare struct instances.

Besides Python’s special methods, one must also consider Python’s special class attributes. Python

objects store their attributes in a dictionary, which can dynamically change throughout the execution of

the program. Every class defines a dict attribute, which exposes its attributes. As Julia does not

allow structs to change their fields, PyJL extends them with a dictionary, allowing properties to be added

at runtime. A heuristic is used to detect this dynamic behaviour. For our example, we will consider the

Person class that was defined in section 3.2.7. We excluded the get id method, as it was redundant in

this scenario. If PyJL detects any calls adding attributes to classes, it generates the code seen in listing

3.19. It adds a new dict attribute, which is used to add new attributes to the struct at runtime. It

also defines a Base.getproperty function, which is implicitly called when retrieving a struct’s properties.

This approach separates any properties added at runtime from properties that are statically available.

3.2.9 Scoping Rules

Another mismatch is related to scoping rules, which define the behaviour of assigning names to values

and solve possible conflicts. Both Python and Julia use lexical scoping, which determines, at compile-

29

Listing 3.19: Dynamic Class Attributes in Julia

1 mutable struct Person

2 name::String

3 __dict__::Dict{Symbol,Any}

4 Person(name::String, __dict__::Dict{Symbol,Any} = Dict{Symbol,Any}()) =

5 new(name, __dict__)

6 end

7

8 function Base.getproperty(x::Person, property::Symbol)

9 __dict__ = getfield(x, :__dict__)

10 if haskey(__dict__, property)

11 return __dict__[property]

12 end

13 return getfield(x, property)

14 end

time, the section in the source code where a name is bound to a value. However, they differ in the

scoping rules they apply.

In Python, scopes are defined according to the LEGB rule [36, Ch. 16], which stands for Local,

Enclosing, Global, and Built-in scopes. Local scopes define the scope of a Python function or lambda

expression. Enclosing scopes define the outer scope of a nested scope. The Global scope is the

top scope of a Python module. Lastly, the Built-in scope contains automatically loaded special name

bindings, such as built-in functions, exceptions, etc. In Python, this rule is used when searching for an

unqualified name. The search for a name reference starts on the local scope, following the LEGB order,

and stops at the first encounter of that name.

On the other hand, in Julia, scopes can either be global or local. Furthermore, Julia’s local scopes are

divided into hard and soft scopes [30, Ch. 10]. To explain this concept, we now consider that a variable

named a is defined in the global scope. If a variable assignment to a occurs in a local hard scope, then

a new local variable will be created and will shadow the global variable. If a variable assignment to a

occurs in a local soft scope and all its enclosing scopes are soft scopes, the behaviour changes when

used in non-interactive or interactive (REPL) contexts. In non-interactive contexts, the new assignment

shadows the global variable similarly to the hard scope, the only difference is that it emits a warning when

shadowing occurs. In interactive contexts, the global variable is assigned. Constructs that introduce

global scopes include modules and baremodules. Local soft scopes are created by struct, for, while

and try blocks, while local hard scopes are created by macro, function, do, let, comprehension, and

generator blocks.

To demonstrate the scoping mismatches between Python and Julia, let us consider an example that

uses control flow operators. As previously mentioned, both for and while constructs introduce new

scopes in Julia, but not in Python. Therefore, translating Python’s loops to Julia could potentially result

in errors if loop target variables are used outside its body. To detect these cases, PyJL analyses the

enclosing scope using a heuristic to find any assignments that have the same variable name as any

30

Listing 3.20: Python Mandelbrot

1 def mandelbrot(limit, c) -> int:

2 z = 0 + 0j

3 for i in range(limit + 1):

4 if abs(z) > 2:

5 return i

6 z = z * z + c

7 return i + 1

Listing 3.21: Julia Mandelbrot

1 function mandelbrot(limit, c)::Int

2 z = 0 + 0im

3 i = 0

4 for _i = 0:limit

5 i = _i

6 if abs(z) > 2

7 return i

8 end

9 z = z * z + c

10 end

11 return i + 1

12 end

of the loop target variables. If this condition is verified and a fix scope bounds flag is supplied by

a programmer, PyJL creates a new variable in the enclosing scope and updates it in every iteration

of the loop. The flag is used to allow programmers to control the code generation method, avoiding

unexpected code changes. Alternatively, programmers can supply a scope warning flag that instructs

PyJL to emit warning messages when variables defined in Julia’s local scopes are used in enclosing

scopes. The messages include Python’s module names and the corresponding line numbers, which is

useful if programmers prefer to manually optimize the code.

An example that shows the scoping mismatches between Python and Julia is the mandelbrot func-

tion shown in listing 3.20 that tests if a complex number c belongs to the Mandelbrot set by computing

the number of iterations required (up to a given limit) to get a value greater than 2. Notice how the

loop variable i is used outside the scope of the loop. This is valid in Python, as the loop does not

define its own scope, but cannot be translated directly to Julia. By using code analysis and applying

the fix scope bounds flag, PyJL generates the code shown in listing 3.21, which now produces the

expected result in Julia.

Another mismatch occurs when using nested constructs, as Julia imposes scoping restrictions. For

instance, one of Julia’s scoping restrictions is that structs can only be defined in the global scope. One

instance where PyJL uses structs is when translating classes from Python. However, while Python’s

classes can be defined in local scopes, Julia’s structs can only be defined in the global scope. Automat-

ically changing the scope of structs could potentially result in name clashes. In addition, this might not

match the programmer’s intent. Therefore, PyJL supports a remove nested Python decorator that the

programmer can use to annotate the classes that should be moved to the global scope.

This problem also affects the resumable macro, which is used by PyJL to simulate Python’s gener-

ators in Julia. This macro defines a Finite State Machine to simulate Python’s generator functions and

creates a struct to save its state, restricting its use to the global scope. To account for such cases, we

added support for an optional argument field remove nested in the resumable decorator, which instructs

PyJL to move the resumable function to the global scope.

31

3.2.10 Keyword Arguments

Another aspect of translation is the mapping of Python’s keyword arguments to Julia. Whereas Python

allows the use of keyword arguments for all parameters in a function, Julia explicitly requires program-

mers to distinguish keyword arguments in function definitions. A transpiler mapping Python’s functions

to Julia must simulate this functionality.

It is important to distinguish two different translation scenarios. The first is regarding keyword-based

class constructors. As Python’s classes are translated to Julia’s structs, which was detailed in section

3.2.7, PyJL can use Julia’s kwdef macro. This macro analyses which struct parameters have default

values and creates a keyword-based constructor for each type. A programmer can annotate a Python

class with the parameterized macro, which is subsequently translated by PyJL using the kwdef macro.

Unfortunately, a limiting factor of kwdef, is that it can only be used to annotate structs. Therefore,

PyJL provides a parameterized func macro to annotate Python functions. For all annotated functions,

PyJL creates separate Julia methods that each support a keyword argument combination. This approach

extends the previous functionalities to all translated functions, simulating the behaviour of Python.

3.2.11 Other Incompatibilities

Besides the above-mentioned incompatibilities, several others were translated to Julia. This is the

case of Python’s context managers. PyJL currently supports Python’s with statement, which is trans-

lated using Julia’s do-block syntax. Both simplify resource management without requiring a program-

mer to explicitly close resources. A common use case is file operations, where files are automati-

cally closed when leaving the scope of the opening statement. Alternatively, Python also provides the

contextlib.contextmanager decorator, which defines factories that create context managers. This was

mapped using Julia’s DataTypesBasic package, which offers similar functionality.

Python’s del statement, which is used to delete objects, was also mapped to Julia, but only for a

small subset of operations. For instance, deleting an element of a dictionary is equivalent to calling the

function delete! in Julia. However, calling del with a variable name in Python will remove the binding

between the variable’s name and its value, which is not supported in Julia.

3.3 Optimizations

After dealing with the language dissimilarities, we turn to code optimizations. The end goal is to translate

language syntax and semantics as programmers would, which is challenging when attempting to perform

it automatically. Furthermore, the translated code should achieve similar runtime performance to the

original Python source code. In this section, we briefly describe some optimizations performed by PyJL.

32

Listing 3.22: Python Indexing

1 def newman_conway(n: int):

2 f = [0, 1, 1]

3 for i in range(3, n + 1):

4 r = f[f[i-1]] + \

5 f[i-f[i-1]]

6 f.append(r)

7 return r

Listing 3.23: Julia Indexing

1 function newman_conway(n::Int)

2 f = [0, 1, 1]

3 for i in 3:n+1-1

4 r = f[f[i-1+1]+1] +

5 f[i-f[i-1+1]+1]

6 push!(f, r)

7 end

8 return r

9 end

Listing 3.24: Julia Optimized

1 function newman_conway(n::Int)

2 f = [0, 1, 1]

3 for i in 3:n

4 r = f[f[i]+1] +

5 f[i-f[i]+1]

6 push!(f, r)

7 end

8 return r

9 end

3.3.1 Removing Redundant Operations

The first important aspect is to remove any redundant code that is produced by the Rewriters and Post

Rewriters phases. In listing 3.22, we have an implementation of the Newman-Conway sequence written

in Python. If we attempt to translate this implementation to Julia without any code optimizations, we get

the result shown in listing 3.23. Notice that simply adding the literal 1 to every indexing operation would

result in the generation of redundant operations. PyJL’s Optimization Rewriters phase removes the

redundant code generated by the intermediate phases to optimize code generation. This optimization

can be observed in listing 3.24, which produces code that is much closer to what a Julia programmer

would write.

3.3.2 Optimizing Global Variables

Global variables in Julia have significant overheads. As their values and corresponding types may

change, Julia cannot optimize memory allocations. Code that relies heavily on global variables is almost

guaranteed to run slower. One workaround is to pass global variables as function arguments, which re-

sults in considerable speedups due to Julia’s function-level optimizations. However, this is not a solution

for a transpiler, as adding new arguments to functions can be regarded as an unwanted behaviour.

As an alternative, PyJL uses Julia’s const keyword when global variables hold constant values. To

choose this translation approach, the programmer can supply a use global constants flag. PyJL also

uses a heuristic to verify if the variable is not redefined throughout the program and will only apply the

optimization if this condition is verified.

3.4 Validating Translations

Validating the generated code is crucial to determine that its external behaviour is identical to that of

the input source code. Unit testing is commonly used to verify the correctness of source code and to

guarantee that it has the expected behaviour. Testing provides a method to assert relative correctness,

where the correctness of software is tested relative to its specification. Therefore, testing identifies

33

the most valuable behaviours set by programmers, providing a method to test corner cases and detect

possible errors. This is a crucial aspect for unit test translation, as translated tests provide a method to

assert that the behaviour of the code has not changed after the translation process.

Fortunately, the majority of Python’s tests use assertion methods that check for errors and report any

test failures. Identifying and translating unit-tests is therefore simple and allows for the verification of

translated code. Furthermore, some Python test frameworks also allow parameterizing test functions,

which executes tests with different input values. It would be beneficial to support this approach, as it

promotes test reuse. This section discusses our translation approaches.

3.4.1 The unittest Framework

The unittest [37] framework is the most commonly used framework for unit testing in Python. It follows

an OO approach and supports 4 concepts for test creation [37]:

1. Test fixtures perform the necessary set-up and clean-up of resources and execute before and after

running one or more unit tests, respectively.

2. Test cases are individual units of testing, which are represented as Python classes that extend the

unittest.TestCase base class.

3. Test suites aggregate multiple test cases or test suites.

4. Test runners manage the execution of unit-tests and output the final test results.

Besides the above terms, Python also differentiates test modules from the remaining Python mod-

ules. Modules that contain unit tests are commonly called test scripts and can contain multiple test

cases.

As Py2Many translates Python to many C-like programming languages and does not currently sup-

port the translation of unit-tests, it would be beneficial to create a generic translation mechanism that

supports all the output languages. Our generic translation approach translates a subset of the unittest

framework and is compatible with all the supported languages, further contributing to Py2Many’s devel-

opment. The only aspect that is language-dependent is the mapping of Python’s assertion functions,

such as assertIs or assertEqual, which have to be translated into corresponding functions or checks

for each target language. In the case of Julia, PyJL uses the test macro from Julia’s Test module,

which tests if a given expression evaluates to true.

To demonstrate our translation approach, we chose an excerpt from the test script test augassign,

which is from CPython’s test suite. Listings 3.25 and 3.26 show the Python and the generated Julia

source code, respectively. The AugAssignTest test case contains several test methods, which use the

prefix test. This prefix is used by the test runner to identify test methods. In this case, we have the

34

Listing 3.25: Python Unittest Excerpt

1 class AugAssignTest(unittest.TestCase):

2 def testSequences(self):

3 x = [1, 2]

4 x += [3, 4]

5 x *= 2

6 self.assertEqual(x, [1, 2, 3, 4, 1, 2, 3, 4])

7 x = [1, 2, 3]

8 y = x

9 x[1:2] *= 2

10 y[1:2] += [1]

11 self.assertEqual(x, [1, 2, 1, 2, 3])

12 self.assertTrue(x is y)

13

14 if __name__ == "__main__":

15 unittest.main()

Listing 3.26: Julia Unittest Excerpt

1 abstract type AbstractAugAssignTest end

2 mutable struct AugAssignTest <:

3 AbstractAugAssignTest end

4

5 function testSequences(self::AbstractAugAssignTest)

6 x = [1, 2]

7 append!(x, [3, 4])

8 append!(x, repeat(x, 1))

9 @test (x == [1, 2, 3, 4, 1, 2, 3, 4])

10 x = [1, 2, 3]

11 y = x

12 splice!(x, 2:2, repeat(x[2:2], 2))

13 splice!(y, 3:2, [1])

14 @test (x == [1, 2, 1, 2, 3])

15 @test x === y

16 end

17

18 if abspath(PROGRAM_FILE) == @__FILE__

19 aug_assign_test = AugAssignTest()

20 testSequences(aug_assign_test)

21 end

test sequences method, which tests augmented assignment operations with container types. Notice

that the Python module calls unittest.main, which runs the tests contained in the current test script.

Py2Many replaces this call by creating a new instance of each test case, represented as Julia structs,

and calling its respective test methods, simulating the use of a test runner.

Furthermore, our translation approach also supports the translation of test case fixtures, which set-

up test cases and clean-up the resources when these finish. In Python, these are represented by the

methods setUp and tearDown, which are implicitly called by the unittest module prior and after running

all the test methods, respectively. In such cases, Py2Many will explicitly call the functions before and

after running all the tests to ensure that resources are properly handled.

3.4.2 Parameterized Unit Tests

As an additional functionality, we also support parameterized unit tests, as these largely benefit the re-

use of test methods. Python has support for this functionality thought the pytest testing framework. This

contribution was made specifically for PyJL and is not a generic translation approach, as was the case

of the unittest module. The main reason for this decision, is that Julia has the ParameterTests package

that offers a much more pragmatic solution to the translation of parameterized tests.

To demonstrate the translation process, we selected a simple test case, which can be seen in list-

ing 3.27. Listing 3.28 shows the code generated by PyJL. Notice that the test palindrome detector

function was replaced for a new parameterized test created using the paramtest macro. Internally, it

uses Julia’s testset macro to group a set of tests and output a test summary showing all the successful

and failed tests. The test statistics are created by analysing the results of the individual unit tests. The

35

Listing 3.27: Python Parameterized Test

1 import pytest

2

3 def palindrome_detector(s: str):

4 s = s.lower().replace(' ', '')

5 return s == s[::-1]

6

7 @pytest.mark.parametrize("input,expected", [

8 ("madam", True),

9 ("false", False)])

10 def test_palindrome_detector(input, expected):

11 assert palindrome_detector(input) == expected

Listing 3.28: Julia Parameterized Test

1 using ParameterTests

2 using Test

3

4 function palindrome_detector(s::String)::Bool

5 s = replace(lowercase(s), " " => "")

6 return s == s[end:-1:begin]

7 end

8

9 @paramtest "test_palindrome_detector" begin

10 @given (input, expected) ∈ [

11 ("madam", true),

12 ("false", false)

13]

14 @test(palindrome_detector(input) == expected)

15 end

assertion on line 11 in listing 3.27 was also replaced by a call to Julia’s test macro (line 14 of listing

3.28). Whereas Python’s assertions are used for test statistics, this is not the case in Julia, requiring the

use of the test macro. This ensures that the behaviour is similar to Python.

36

4
Type Inference

Contents

4.1 Py2Many’s Inference Mechanism . 38

4.2 External Type Inference Mechanism . 41

4.3 Why two Mechanisms? . 43

4.4 Alternative Solutions . 44

37

Dynamically typed programming languages, such as Python, have become increasingly popular in

the past years, as they are easy to use and allow for fast development. However, with that ease of use,

several problems emerged, such as the difficulty to perform early error checking or to use static analysis

techniques [23].

One particular case of static analysis is static type inference, which relies on static information to

infer types at compile time. Static type inference mechanisms can infer the types of expressions, but

only with sufficient static constraints. For instance, by analysing the expression x = 2, a static type

inference mechanism can infer that x has the type int. However, as Python is a dynamically typed

language, inferring the type of most expressions is difficult, as these do not have predetermined types.

This is opposed to Hindley-Milner languages, such as Haskell, where the types of expressions can be

deduced with little or no annotations. As an example, consider the Python expression x = y + z. In

this scenario, it is impossible to statically infer the type of x if the types of y and z are unknown, as

Python uses overloading and determines the appropriate operation depending on the runtime types

of operands. Furthermore, expressions requiring dynamic evaluation, such as Python’s eval, are, in

general, not type-inferrable.

As an attempt to solve these problems, Python introduced PEP484 [38], which added optional type

hints. Despite the importance of type hints for static analysis, many Python code bases do not use

them [39]. Given the complexity and size of modern code bases, requiring programmers to manually add

type hints before transpilation could take an enormous amount of time. As such, it would be beneficial

to have a type inference mechanism that requires little programmer input.

Py2Many already offers a basic type inference mechanism for Python. However, this mechanism did

not provide sufficiently precise types, even after our extensive revisions and corrections. Therefore, we

integrated an external type inference mechanism to increase the available type information at transpi-

lation time and reduce the time required to manually annotate the Python source code. This chapter

describes the current solution and discusses its limitations.

4.1 Py2Many’s Inference Mechanism

The inference mechanism in Py2Many is implemented using a definition-use chain. This mechanism

recursively walks the AST and aggregates type information from node assignments for each scope. It

works with the mechanism defined in section 3.1.1, by using the variable dictionaries to search for any

variable types.

We extended Py2Many’s inference rules to cover a broader subset of Python. The new inference

rules cover for and while nodes, generator expressions, and support type propagation for different

execution branches. Furthermore, we added inference support for list and dictionary comprehensions,

38

as well as binary operations. The latter required extensive changes, most notably, differentiating the left

and right operands to support Python’s operator overloading.

As Python modules typically have many dependencies on external modules or libraries, it is important

to determine the return types of imported functions. The following section discusses this topic.

4.1.1 Import Analysis

Type inference in Python is particularly challenging, given Python’s heavy dependence on external APIs.

Most static type inference mechanisms rely on analysing a program’s data flow, starting from values for

which types are known at compile time. The lack of type information for imported functions can result

in an incomplete data-flow analysis. Furthermore, it is critical to analyse the data-flow dependencies

between Python modules.

Therefore, we consider two different import scenarios:

1. Importing from Python’s standard library or from distributed packages listed on PyPI [9].

2. Importing local Python modules.

To solve the first scenario, we mapped a subset Python’s built-in functions to their corresponding

return types. It is important to note that the return type of some functions is dependent on the argument

types. This is the case of the built-in max and min functions, which return the maximum and the minimum

value of iterables, respectively. In such cases, the inference mechanism analyses the argument types to

determine the corresponding return type of the function.

Regarding imports from local modules, Py2Many merges the type information from imported func-

tions with the importing module. As an example, if Py2Many detects that a module A imports a func-

tion from module B, then it searches module B for that function and adds an annotation attribute

that matches the one in module A. We completed this mechanism by adding new rules for Python’s

import-from statement. This method also requires all the modules to be sorted according to their im-

port dependencies, as the type information from imported modules has to be available to any modules

importing them. This will be discussed in more detail in section 5.2.1.

4.1.2 Static Type-Checking

We extended Py2Many’s inference mechanism to create static type constraints from the provided type

hints. The current mechanism creates bindings between variables and their provided type hints. Any

future assignments within the variable’s scope will be checked for incompatible value types. To illustrate

this mechanism, consider the following assignment operations in Python:

39

Listing 4.1: Bonacci Series Python

1 def bonacciseries(n: int, m: int):

2 a = [0] * m

3 a[n - 1] = 1

4 for i in range(n, m):

5 for j in range(i - n, i):

6 a[i] = a[i] + a[j]

7 return a

Listing 4.2: Bonacci Series Julia

1 function bonacciseries(n::Int, m::Int)::Vector

2 a = fill(0, m)

3 a[n] = 1

4 for i in n:m-1

5 for j = i-n:i-1

6 a[i+1] = a[i+1] + a[j+1]

7 end

8 end

9 return a

10 end

l: List[str] = ["a", "c", "g", "t"]
...
l = "acgt"

In this case, the mechanism rejects the second assignment to variable l, as the type of the value

being assigned to it does not match its previous type annotation. Alternatively, consider a scenario where

the value of the second assignment is another variable. In this case, the inference mechanism attempts

to search for the variable’s type. If the type does not match the previous annotation, the inference

mechanism rejects the assignment.

4.1.3 Limitations

A crucial aspect when translating Python to Julia, is that the translation of operators is influenced by the

types of their operands. To further demonstrate this scenario, let us consider the Python code excerpt

on the left and its corresponding translation to Julia on the right, which both concatenate two lists:

a = [1,2]
b = [3,4]
ab = a + b

a = [1,2]
b = [3,4]
ab = [a;b]

Notice that the last statement is different in both languages. While the addition of lists in Python

corresponds to their concatenation, in Julia it corresponds to the element-wise addition of list elements.

The translation of the addition operator is therefore dependent on the types of the variables a and b.

The fact that operator translations are dependent on the operand types implies that the transpiler

must be able to infer the types of operands. This was possible in the example above, as one can

statically infer the types of the variables a and b. However, this is not the case for all scenarios. Let us

consider the Python Bonacci Series implementation from listing 4.1. Notice how the first assignment to

variable a uses the multiplication operation between a list and an integer. In Python, this creates a new

list by repeating the elements of the original list m times. Without any type annotations, the inference

mechanism is not able to determine the type of variable m. However, if the function is annotated, the

40

transpiler can translate this operation as seen in listing 4.2, which uses Julia’s fill function to create an

array of size m with every location set to the repeated element.

Due to Python’s dynamic behaviour, Py2Many requires programmers to annotate function definitions

and can only generate correct source code if the appropriate type-hints are provided. This is a downside

of the current mechanism. Depending on the size of the code base one is trying to translate, the required

time to perform these annotations can quickly escalate, making transpilation less appealing. Therefore,

it would be beneficial to integrate an external type inference mechanism to increase the available type

information at transpilation time.

4.2 External Type Inference Mechanism

To complement Py2Many’s type inference mechanism and reduce the time required to annotate the

Python source code, we integrated an external type inference mechanism. Py2Many provides the option

of using the TYPPETE [40] type inference mechanism, which is based on the Z3 theorem prover [41]

that uses a MaxSMT solver to solve type constraints. However, the most recent version only supports

up to Python 3.6, which limits any future releases of Py2Many.

We also found an inference mechanism that uses probabilistic type inference [42]. This extracts

naming conventions from a code base and generates a set of constraints from variable names, attribute

accesses, and the data flow of the program. It subsequently uses the generated constraints to create a

probabilistic inference network and resolves the network to get probabilities of individual types for each

variable. Despite offering a promising solution, the implementation is only a prototype, which offers no

guarantees on future support.

The most promising static type inference tools were pyright [43] and pytype [44]. The first was

developed by Microsoft, whereas the latter was developed by Google. In contrast to the MyPy [45] static

type checker, which uses a gradual typing approach, both of these inference tools provide a lenient

approach to type inference, allowing operations that do not contradict annotations. As an example,

consider the following Python expressions:

l = ["1"]
l.append(2)

Whereas the second line would result in an error when using MyPy, both pyright and pytype allow

the expression, as it is correct at runtime.

A benefit of both tools is that they can export the inferred type information to Python stub files, sep-

arating them from the Python source code. Programmers can also supply external stub files containing

annotations, which largely speeds up the inference process. Furthermore, both pyright and pytype use

41

Figure 4.1: Pytype inference

typeshed,1 which provides library stubs for Python containing type annotations. These cover Python’s

standard library and a small subset of Python’s registered libraries listed on PyPI [9]. This resolves the

problem of incomplete data-flow analysis by providing a large data-set of annotated functions.

We decided to use pytype, as it supports useful tools for our project. This is the case of the merge-py

tool that merges the annotations in the stub files with the original source code. Since pytype’s an-

notations are exported as stub files, they only include annotations for functions and global variables.

Nonetheless, these annotations contribute to minimize the work required to manually annotate function

definitions.

The mechanism created to integrate pytype’s annotations can be seen in figure 4.1. The first time a

Python module is transpiled, the transpiler calls pytype, which creates a stub file containing the inferred

type declarations. Subsequently, the transpiler uses pytype’s merge-py tool that merges the stub file

with the Python module and creates an annotated version of the module, which will be used for the

remaining translation process. Separately, a log file is created, which contains the full path of each

transpiled Python module, along with a hash of its contents. In subsequent translations, the transpiler

checks the log file and compares the saved hash to the newly generated hash of the module being

transpiled. If the hashes differ, the transpiler calls pytype’s inference mechanism to re-generate the stub

files, and updates the log file with the new hash. Otherwise, the existing stub file is used.

4.2.1 Advantages

The integration of the pytype type-inference mechanism improves the type information available at com-

pile time. In particular, pytype’s control-flow analysis allows us to identify optional return types. As an

example, consider the function read file contents that retrieves the contents of a file given its path.

The function first verifies if the given path references a file. If it does, it returns the contents of the file.

Otherwise, it returns the value None. As the return type is the union of the types str and None, pytype

1typeshed: Collection of library stubs for Python, with static types: https://github.com/python/typeshed (Retrieved August
3rd, 2022)

42

https://github.com/python/typeshed

Listing 4.3: Optional Return Types

1 def read_file_contents(path: str)

2 -> Optional[str]:

3 if not isfile(path):

4 return None

5 res = []

6 with open(path, "r") as file:

7 res.append(file.readline())

8 return "\n".join(res)

9

10 def parse_file(path: str):

11 if file_contents := read_file_contents(path):

12 # Parse file contents

13 else:

14 raise Exception("The file was not found")

Listing 4.4: Generic Type Annotations

1 _T0 = TypeVar('_T0')

2

3 def bubble_sort(seq: _T0) -> _T0:

4 l = len(seq)

5 for _ in range(l):

6 for n in range(1, l):

7 if seq[n] < seq[n - 1]:

8 seq[n - 1], seq[n] =

9 seq[n], seq[n - 1]

10 return seq

annotates it as Optional[str].

Using the added information from pytype, Py2Many’s inference mechanism propagates the appropri-

ate variable types for each execution branch. Listing 4.3 includes an example that shows this scenario.

The function parse file contains a conditional expression that verifies the presence of the file con-

tents. Remember from section 3.2.2 that the value None is interpreted as false in the context of boolean

expressions. Therefore, the information provided by pytype allows Py2Many’s inference mechanism to

propagate the type of the variable file contents as a string for the first branch.

4.2.2 Limitations

However, there are limitations to what a static inference mechanism can do. Although pytype does not

explicitly require type annotations, we found cases where the static type information is not enough to

produce precise annotations.

As an example, consider the implementation of bubble sort from listing 4.4, which was annotated by

pytype. The function bubble sort receives a list seq and sorts it in-place. As pytype has no information

on the list’s type, it creates an alias for an unbound type T0, which can be anything. If the transpilation

requires more precise types, these must be judiciously added by programmers to the Python source

code.

4.3 Why two Mechanisms?

After introducing the pytype type inference mechanism, it seems redundant to also use Py2Many’s

inference mechanism. However, pytype exports the inferred type annotations in the form of Python

stub files, which only contain the annotations for function definitions and global variables. Py2Many

propagates these annotations throughout the remaining nodes in the AST. Most notably, Py2Many adds

43

an annotation attribute to each AST node, containing the inferred type information. The type information

added by Py2Many is crucial for static analysis and translating Python’s dynamic features.

There is a pytype tool called annotate-ast, which could avoid this two-part solution and allow us

to solely use pytype. This tool parses the Python source code and creates an annotated version of

Python’s AST. Annotations are added to the AST’s nodes using a resolved annotation attribute, which

contains the inferred type information. However, the development of this tool is still in-progress and the

support is very preliminary. The integration of such a tool would benefit Py2Many. To avoid breaking

the current implementation, one could create a wrapper around the returned annotated AST, changing

the resolved annotation attribute to the current annotation attribute. We plan to integrate this tool in

future releases.

4.4 Alternative Solutions

Since Python is a dynamically typed language, one could generate code in Julia that determines, at

runtime, the correct operations to apply. For instance, we could create a new py add function in Julia to

map Python’s addition operator, which would determine the appropriate operation to apply depending

on the runtime types of its arguments. One could create several Julia methods for each supported type

combination, which would benefit from Julia’s multiple dispatch. Although this is a valid approach, using

it extensively would generate convoluted code and negatively affect readability, pragmatics and perfor-

mance. Despite being a tradeoff, requiring function annotations not only ensures that the generated

source code is correct, but also allows the generation of pragmatic source code.

44

5
Dependencies

Contents

5.1 Python and Julia’s Import Mechanisms . 46

5.2 Importing Local Modules . 47

5.3 Importing Registered Modules . 49

5.4 Name Aliases . 53

5.5 Accessing Dynamic-Link Libraries . 53

45

A predominant aspect when translating Python to Julia is proper handling of module dependencies.

Python provides a sophisticated import machinery to allow a module to access functionalities defined in

external modules. This must be analysed in two different ways. The first is performing a local search for

a module that belongs to the same library or package, where PyJL must ensure that translated modules

can interact with each other in the same way as Python modules do. The second is importing a module

from Python’s standard library or a registered package. In such cases, PyJL maximizes the use of

existing Julia packages when these offer the same functionalities as Python libraries. If no equivalent

Julia packages are available, the generated Julia source code must use the FFI to access existing Python

libraries.

As an additional functionality, we also considered the translation of Python modules that access

DLLs. We chose to translate a subset of Python’s ctypes [46] module. To evaluate the chosen translation

method, we translated a Python library that uses ctypes to access shared libraries.

Figure 5.1 demonstrates the four scenarios we intend to support in PyJL. The first scenario will be

discussed in section 5.2, the second and third scenarios will be discussed in section 5.3, and the fourth

scenario will be discussed in section 5.5.

5.1 Python and Julia’s Import Mechanisms

Before discussing the mapping of Python’s imports to Julia, it is important to distinguish both import

mechanisms. Despite Python and Julia offering mechanisms that search and import functionalities from

external source files, they differ substantially.

An important difference is how both languages define modules and packages. Whereas Python

calls each source file a module, which has its own namespace, Julia’s modules are created separately

from files, where each module can spread over several files and each file may contain several modules.

Similarly to Python, each Julia module has its own namespace. Regarding packages, these are defined

in Python as modules that contain other submodules or sub-packages [47]. Furthermore, Python’s

packages are divided into two categories. Regular packages contain a Python module called init .py

that is executed implicitly when importing a regular package. A package without the init .py file is

called a namespace package, which can be split across multiple directories. PyJL currently supports

Python’s regular packages. On the other hand, in Julia, packages are defined as modules that wrap a

collection of submodules, i.e., they are modules that import submodules and make them accessible as a

single unit. This differs from Python, as Python’s packages can have a similar structure to a file system,

where each package can be represented as a folder.

To access the contents of other modules or packages in Python, one can use the import keyword or

the import-from statement. Both search for a module or package name and bind that result to a name

46

Figure 5.1: Dependency Scenarios

in the local scope of the importing module [48, Ch 5]. On the other hand, Julia offers two mechanisms

to import code from external source files. One can use inclusion through the include keyword, which

evaluates the contents of a source file in the global scope of the module importing it [30, Ch 16]. The

second method is used for loading packages and offers two different syntaxes [30, Ch 16]:

1. The import keyword operates on a single name at a time. It does not allow one to perform module

searches, but allows extending functions with new methods, if necessary.

2. The using keyword can operate on multiple modules, but does not allow extending imported func-

tions.

The main difference between code inclusion and package loading, is that the latter mechanism is

used to search packages in project environments listed in Julia’s LOAD PATH. A project environment

is created using a project file and an optional manifest file. The project file contains project-specific

information, such as its name, identifier, and external package dependencies. This is used to build a

roots map, which maps dependency names to their unique identifiers. The manifest file is used to build

a dependency graph of the project. Both ensure that import statements can find the correct module or

package, avoiding potential name clashes. Furthermore, project environments define a specific folder

structure, which differs from Python’s package structure.

After describing the differences of both mechanisms, we now focus on mapping Python’s imports to

Julia. The following sections discuss our translation approach.

5.2 Importing Local Modules

To access local modules, we considered both package loading and code inclusion. Package load-

ing would require creating a project environment to automatically add Julia source file paths to the

47

Listing 5.1: Python Import

1 # module1.py

2 from module2 import fib

3 fib(10)

1 # module2.py

2 def fib(i: int):

3 if i == 0 or i == 1:

4 return 1

5 return fib(i - 1) + fib(i - 2)

Listing 5.2: Julia Import

1 module module1

2 using FromFile: @from

3 @from "module2.jl" using module2: fib

4 fib(10)

5 end

1 module module2

2 function fib(i::Int)::Int

3 if i == 0 || i == 1

4 return 1

5 end

6 return fib(i - 1) + fib(i - 2)

7 end

8 end

LOAD PATH. Furthermore, Python’s packages are not equivalent to Julia’s projects. On the other hand,

code inclusion introduces code duplication, as inclusions re-evaluate the contents of source files in the

scope of the importing file. Therefore, we used the FromFile package, which evaluates files in total

isolation. Any time a file is loaded, a new binding is created in the current context. Upon loading a file

that has already been loaded in the current context, a binding to the previously loaded file is returned,

which avoids code duplication. Listings 5.1 and 5.2 show an example using Python’s import statement

and its translation to Julia using the FromFile package, respectively.

As Python modules define their own namespace, PyJL wraps the contents of each Julia source file

using the module keyword, which avoids any potential name clashes. However, as creating modules

for each source file is not mandatory, the transpiler offers a flag that removes this encapsulation. As

a safeguard, it includes a heuristic that detects potential module name clashes, in which case it uses

Julia’s modules independently of the flag’s value. This is particularly useful if the intent is to transpile

individual modules with no dependencies between them.

PyJL uses the base package’s file system directory to trace the paths to all local modules. Modules

are imported using a relative path from the importing to the imported module. An important aspect is that

Python’s imports commonly use fully qualified names to identify the imported modules, which include any

parent packages. In such cases, one can transpile the Python base package and all its subpackages,

which allows PyJL to trace the module paths from the root package’s file system directory. Alternatively,

if the goal is to transpile a subset of a package, PyJL offers an import basedir flag to manually set the

base directory.

5.2.1 Module Dependencies

When translating multiple modules, one must also account for the dependencies between them, as

these can affect the translation outcome. When importing variables or functions from external modules,

48

a transpiler should be capable of propagating the associated type information. As this is a language-

independent functionality, it is implemented for all transpilers in Py2Many.

As Python’s import system does not allow circular imports, we can use a sorting algorithm to sort

all the modules before analysing and transpiling them. There is already an implementation in Py2Many

that extracts the imports from modules and uses a topological sort algorithm to sort them according to

their import dependencies. Any modules that have dependencies on other modules will be analysed

last, allowing type information to be propagated across modules.

A noteworthy aspect is that this mechanism was incomplete. Most notably, Py2Many was not able to

analyse subpackage dependencies. Furthermore, package-relative imports were not supported, which

resulted in the lack of type propagation throughout modules. Solving this problem required extending

the mechanism to support Python’s import-from statements. Additionally, Py2Many did not propagate

types for init .py modules, which are implicitly executed when importing packages. By fixing these

incompatibilities, we completed the mechanism.

5.3 Importing Registered Modules

After analysing the dependencies between local modules, we now focus on imports to Python’s built-in

library or to distributed packages listed on PyPI [9]. We considered two alternative approaches, which

are represented as cases 2 and 3 of figure 5.1, respectively:

1. Translating Python’s module and library calls into calls to Julia packages that offer identical func-

tionalities.

2. Using Julia’s PyCall [15] package to call Python libraries.

PyJL uses the first approach whenever Julia offers libraries that have the same external behaviour

as Python libraries. This is an important aspect to reduce any dependencies from Python and benefit

from Julia’s native functionalities. Nonetheless, some Python functionalities might need to be simulated

to achieve a similar behaviour in Julia. The following section discusses this aspect in greater detail.

5.3.1 Simulating Package Calls

An FFI allows a program written in one language to access functions from foreign languages, providing

a mechanism to reuse existing functionalities. A transpiler translating Python to Julia could use this

mechanism to call Python’s existing libraries. However, this approach has several drawbacks. A notable

one is handling GC incompatibilities, which can lead to unpredictable program behaviour. Furthermore,

handling complex types tends to be rather cumbersome and usually requires explicit type conversions

49

Listing 5.3: NumPy Array Representation

1 a1 = np.array([1,2,3,4])

2 a2 = np.array([1,2,3,4])

3 np.dot(a1, a2)

4

5 a3 = np.array([[1,2], [3,4]])

6 a4 = np.array([[1,2], [3,4]])

7 np.dot(a3, a4)

8

9 a3 * a4

Listing 5.4: Translation to Julia

1 a1 = [1,2,3,4]

2 a2 = [1,2,3,4]

3 a · b

4

5 a3 = [1 2;3 4]

6 a4 = [1 2;3 4]

7 a3 * a4

8

9 a3 .* a4

in the source code, which can reduce its readability. To minimize these problems, PyJL attempts to use

existing Julia packages to simulate Python’s library calls.

The best-case scenario is when Julia already offers equivalent packages for Python’s libraries or

modules. This is the case of Python’s json module, which can be mapped to Julia’s JSON package. An

equally good scenario occurs with Python library calls that can be translated to Julia to achieve a similar

behaviour as Python. This is the case with Python’s linear algebra or mathematical libraries, for which

Julia offers equivalent functionalities. To test the feasibility of such translations, we chose to translate a

subset of the high-performance numeric library NumPy.

An important aspect when translating NumPy calls is to consider the internal representation of data.

Despite NumPy’s arrays being stored contiguously in memory, some NumPy functions create views

over the returned arrays, which affects indexing. Furthermore, one has to account for the fact that some

NumPy functions have a different behavior depending on their argument types. To demonstrate these

two mismatches, let us consider a simple example in NumPy from listing 5.3 and its corresponding

translation to Julia, which can be seen in listing 5.4. When using one-dimensional arrays, NumPy’s dot

function is translated to the dot (·) function in Julia. However, when used with multidimensional arrays,

NumPy’s dot function performs matrix multiplication, which must be translated using Julia’s multiplication

operation. A more interesting scenario occurs when using the standard multiplication operator with two

matrices. To preserve the semantics, this operation is translated to Julia using broadcasting, which

applies operations element-wise on array-like objects.

To further demonstrate the mapping of NumPy calls to Julia, we translated an implementation of the

Sieve of Eratosthenes shown in listing 5.5. The generated Julia source code can be seen in listing 5.6.

The first NumPy calls are trivial to translate to Julia. NumPy’s ones and sqrt functions get translated

to Julia’s trues and sqrt functions. The vectorized assignment on line 6, seen in listing 5.5, must use

broadcasting in Julia. Similarly to Python, it sets all the elements in the slice to false. Lastly, the function

flatnonzero is translated by PyJL into a list comprehension in Julia, that uses the function enumerate to

iterate through the array. Notice that PyJL decreases the return values by 1 to match Python’s 0-indexed

lists. We also validated the pragmatics of the generated code through user tests. The suggestions

allowed us to make several improvements to our NumPy translations. The results will be discussed in

50

Listing 5.5: Sieve NumPy

1 def sieve(n):

2 primes = np.ones(n, dtype=bool)

3 primes[0], primes[1] = False, False

4 for i in range(2, int(np.sqrt(n) + 1)):

5 if primes[i]:

6 primes[i*i::i] = False

7 return np.flatnonzero(primes)

Listing 5.6: Sieve Julia Translation

1 function sieve(n)

2 primes = trues(n)

3 (primes[1], primes[2]) = (false, false)

4 for i in 2:Int(floor(sqrt(n) + 1))-1

5 if primes[i+1]

6 primes[i*i+1:i:end] .= false

7 end

8 end

9 return [i-1 for (i,p) in

10 enumerate({vargs[0]}) if p != 0]

11 end

Listing 5.7: Python Module Import

1 import pyproj

2 x, y = pyproj.transform(

3 pyproj.Proj(4326), pyproj.Proj(3857),

4 45.0, 45.0

5)

Listing 5.8: Julia PyCall Import

1 using PyCall

2 pyproj = pyimport("pyproj")

3 (x, y) = pyproj.transform(

4 pyproj.Proj(4326), pyproj.Proj(3857),

5 45.0, 45.0

6)

section 6.4. The performance of the sieve implementation will be tested in section 6.2.4.

5.3.2 Using PyCall

As a fallback when equivalent Python modules or packages are not available in Julia, PyJL uses Julia’s

PyCall package, which provides a wrapper around Julia’s FFI to call Python functions. A noteworthy

aspect of PyCall is that some type conversions are performed automatically, such as the ones for nu-

meric or boolean values. The remaining types are wrapped in a generic PyObject type that represents

a reference to a Python object.

To demonstrate the translation process when using PyCall, we present an example shown in list-

ing 5.7, which uses Python’s pyproj library for coordinate transformations and cartographic projec-

tions. The corresponding translation to Julia can be seen in listing 5.8. The pyproj.transform func-

tion transforms points between two coordinate systems, represented as projections. In this case, it

translates latitude and longitude coordinates to the Web Mercator projection, commonly used by web-

based mapping tools. The pyproj module is imported through PyCall. Notice that the syntax used

to call the pyproj.transform function is identical in Python and in Julia. This is achieved through a

Base.getproperty function that PyCall defines for all PyObject wrappers, which retrieves the proper-

ties of Python’s objects.

When function calls return PyObjects, PyJL must adapt the generated code to support them. As an

example, we now consider the function get proj from parameter from the python-reprojector library,

which creates projections used for cartographic transformations. The Python code for this function and

51

Listing 5.9: Python reprojector excerpt

1 from pyproj import Proj

2

3 class InvalidFormatError(Error):

4 message: str

5

6 def get_proj_from_parameter(param):

7 msg = "Invalid projection definition"

8 if isinstance(param, Proj):

9 proj = param

10 elif isinstance(param, str) and

11 param.lower().startswith('epsg:'):

12 proj = Proj(projparams=int(param[5:]))

13 else:

14 try:

15 proj = Proj(projparams=param)

16 except RuntimeError:

17 raise InvalidFormatError(msg)

18 return proj

Listing 5.10: Julia reprojector translation

1 using PyCall

2 pyproj = pyimport("pyproj")

3

4 mutable struct InvalidFormatError <: Exception

5 message::String

6 end

7

8 function get_proj_from_parameter(param)

9 msg = "Invalid projection definition"

10 if pybuiltin(:isinstance)(param, pyproj.Proj)

11 proj = param

12 elseif isa(param, String) &&

13 startswith(lowercase(param), "epsg:")

14 proj = pyproj.Proj(

15 projparams = parse(Int, param[6:end])

16)

17 else

18 try

19 proj = pyproj.Proj(projparams = param)

20 catch exn

21 if exn isa PyCall.PyError &&

22 pybuiltin(:issubclass)(

23 exn.T, py"RuntimeError"

24)

25 throw(InvalidFormatError(msg))

26 end

27 end

28 end

29 return proj

30 end

the corresponding Julia code generated by PyJL can be seen in listings 5.9 and 5.10, respectively. The

class InvalidFormatError is a custom Exception created in the python-reprojector library and is

included for completeness.

Notice that the function starts by verifying if param is an instance of pyproj.Proj. As pyproj was im-

ported using PyCall, the result of calling pyproj.Proj will be a PyObject. Therefore, PyJL uses PyCall

to call Python’s built-in isinstance function, which verifies the instance of the returned object. Further-

more, PyJL also supports the handling of FFI exceptions. As PyCall wraps exceptions in a PyError

object, PyJL must unwrap the returned exceptions and check if it matches the handled exception. This

can be seen in listing 5.10 on lines 21 to 23. Notice that PyJL calls Python’s built-in issubclass function

to verify if the returned exception is a subclass of the expected exception, which simulates the behaviour

of Python’s exception handling.

A noteworthy aspect of this approach is that it is a temporary solution. Using PyCall creates de-

pendencies to Python’s libraries, making the generated code volatile if libraries are frequently changing.

Furthermore, as shown in listing 5.10, the code is more verbose than an equivalent native solution,

which reduces its overall readability. As more packages become available in Julia, these should be used

instead of the Python equivalents. This would not only minimize the dependencies to Python, but also

improve the pragmatics of the generated code.

52

5.4 Name Aliases

Both Python and Julia support aliases, which can be used to change the name of imported objects or

functions in the namespace of the module importing them. This can be used when importing external

modules and also when importing local modules using the FromFile package.

As an example, the statement import json as js is translated by PyJL to import JSON as js.

Additionally, consider changing the import from listing 5.1 to from module2 import fib as fibonacci,

which would get translated by PyJL to @from "module2.jl" using module2: fib as fibonacci.

5.5 Accessing Dynamic-Link Libraries

After translating the dependencies between modules, it is also important to consider the dependencies

to DLLs. This involves mapping Python’s FFI calls to equivalent Julia calls. For the purpose of this

research, we will focus on Python FFI’s that interact with the C programming language. In this regard,

the two most notable FFI interfaces are the cffi, which allows one to use native C syntax to call foreign

libraries, and ctypes, which exposes an API to call Foreign Library functions. One notable aspect of

the cffi interface, is that it can parse native C declarations and automatically infer the necessary data

types. Unfortunately, Julia does not currently provide a similar mechanism. We therefore focused on the

translation of ctypes.

The ctypes FFI includes special data types to interface with C. These are used to specify the argu-

ment and return types of function calls to external libraries. Furthermore, ctypes also supports several

calling conventions. On Linux, one can use the cdll module to load external libraries, which uses the

cdecl calling convention. On Windows, this is done through the windll module, which uses the stdcall

calling convention.

We can translate this functionality by mapping Python’s ctypes FFI calls to Julia. To load shared

libraries, Julia uses the Libdl.dlopen function, which returns a handle to the loaded library. To call

functions in foreign libraries, Julia provides the ccall function, which allows using both the cdecl and

stdcall calling conventions through an optional argument. Similarly to Python, Julia also offers special

types to interface with C, which are used to specify the argument and return types of foreign functions.

5.5.1 Translation Methodology

To demonstrate PyJL’s translation methodology, we chose an implementation of the Levenshtein distance

metric written in C.1 We will start by analysing the Python program seen in listing 5.11, which uses

1Implementation by Guillaume Androz: https://gist.github.com/gandroz/19b39b7240aec08bd92c7a06f2174107#

file-levenshtein_tab-c

53

https://gist.github.com/gandroz/19b39b7240aec08bd92c7a06f2174107#file-levenshtein_tab-c
https://gist.github.com/gandroz/19b39b7240aec08bd92c7a06f2174107#file-levenshtein_tab-c

Listing 5.11: Levenshtein Module Python

1 import ctypes, numpy as np

2

3 def load_module():

4 cmodule = ctypes.cdll.LoadLibrary(

5 "./levenshtein.so"

6)

7 cmodule.levenshtein.argtypes = [

8 ctypes.c_char_p,

9 ctypes.c_char_p,

10 ctypes.c_int,

11 ctypes.c_int,

12 ctypes.c_int,

13]

14 cmodule.levenshtein.restype = ctypes.c_int

15 return cmodule

16

17 if __name__ == "__main__":

18 cmodule = load_module()

19 res = cmodule.levenshtein(

20 "levenshtein".encode("utf-8"),

21 "levenstein".encode("utf-8"),

22 np.int32(1),

23 np.int32(1),

24 np.int32(2)

25)

26 print(f"Levenshtein distance between" +

27 f"'levenshtein' and 'levenstein': " +

28 f"{res}"

29)

Listing 5.12: Levenshtein Module Julia

1 using Libdl

2 using StringEncodings

3

4 function load_module()

5 cmodule = Libdl.dlopen("./levenshtein.so")

6 return cmodule

7 end

8

9 if abspath(PROGRAM_FILE) == @__FILE__

10 cmodule = load_module()

11 res = ccall(

12 Libdl.dlsym(cmodule, :levenshtein),

13 Cint,

14 (Ptr{Cchar}, Ptr{Cchar}, Cint, Cint, Cint),

15 encode("levenshtein", "utf-8"),

16 encode("levenstein", "utf-8"),

17 Int32(1),

18 Int32(1),

19 Int32(2),

20)

21 println("Levenshtein distance between" *

22 "\'levenshtein\' and \'levenstein\': " *

23 "$(res)")

24 end

ctypes to import the levenshtein function. The function load module loads the shared library and sets

the function’s field types and its return type using the argtypes and restype attributes, respectively.

When calling cmodule.levenshtein on lines 19-25, one must only supply the arguments, as their types

were specified earlier.

The code generated by PyJL can be seen in listing 5.12. Notice that the assignments from function

load module that were used to set the argument and return types have been removed, as Julia follows

a different approach to FFI calls. The type information is saved in PyJL using a dictionary, which maps

each library and function name combination to its corresponding types. Upon transpiling the call to the

levenshtein function, the information is retrieved from the dictionary and subsequently converted to

the equivalent types in Julia, which can be seen on lines 11-20 in listing 5.12. This translation method

was used, as the arguments for Julia’s ccall function must be literal values. To create a callable func-

tion pointer for the levenshtein function, PyJL used the Libdl.dlsym function, which looks up the

levenshtein symbol in the shared library handle returned by Libdl.dlopen.

5.5.2 Additional Functionalities

We demonstrated our translation approach using a simple scenario. Real-world scenarios are much

harder to translate due to the inherent differences between Python and Julia’s FFI implementations. The

54

Listing 5.13: Function Factory Python

1 def function_factory(

2 function, argument_types=None,

3 return_type=None, error_checking=None):

4 if argument_types is not None:

5 function.argtypes = argument_types

6 function.restype = return_type

7 if error_checking is not None:

8 function.errcheck = error_checking

9 return function

10

11 _GetTickCount = function_factory(

12 WinDLL("kernel32").GetTickCount,

13 None,

14 DWORD)

Listing 5.14: Function Factory Julia

1 _GetTickCount =

2 (a0) -> ccall(

3 Libdl.dlsym(dlls.kernel32, :GetTickCount),

4 Culong,

5 (Nothing,),

6 a0)

most notable limitation we found was related to Julia’s ccall function, as the argument and return types

must be literals. Despite Python allowing the use of expressions to define the types of foreign function

calls, there are scenarios that PyJL can identify and convert to Julia. During the translation of the

pywin32-ctypes library, further detailed in section 6.3.2, we found a use-case where a factory function

was used to set the necessary function arguments for FFI calls. Listing 5.13 shows the implementation

of this function in Python. Furthermore, we also present an example, where function factory is used

to call the GetTickCount function from the Win32 API, which returns the number of milliseconds since

the start of the system.

The Python function factory function sets the argument types, the return type, and, if provided,

assigns a callable function for error checking. To translate this code excerpt to Julia, PyJL has to identify

that the function being called is a factory function and replaces all calls to it. Listing 5.14 shows the equiv-

alent translation to Julia. As can be seen, PyJL creates a new lambda expression for GetTickCount that

uses Julia’s ccall function. As the function factory definition is no longer necessary, PyJL removes

it, saving only the information that it is a factory function. A limitation of this approach is that the types

must be statically available when calling the factory function.

Besides mapping dynamic library calls, PyJL also supports the translation of callback functions.

Currently, PyJL supports the translation of Python’s CFUNCTYPE and WINFUNCTYPE functions, which create

new C function pointers for Python functions that use the cdecl or the stdcall calling conventions,

respectively. These functions are replaced into calls to Julia’s cfunction macro, which generates a C-

compatible function pointer for a Julia function. A noteworthy aspect is that the arguments of cfunction

are evaluated in the global scope. Therefore, if the first argument corresponds to the name of a nested

Julia function, it must be prefixed with $, which informs Julia to create a runtime closure over the function.

This is done by wrapping the function using a CFunction struct.

Additionally, one must also consider how Python and Julia represent pointers. Whereas Python rep-

resents pointers as hexadecimal values, Julia uses the Ptr type to wrap pointer addresses. Therefore, if

55

pointers are used in any arithmetic operations or passed to functions expecting an integer, PyJL unwraps

the Ptr object to extract the memory address.

Despite the previously mentioned functionalities, there are still limitations to the current mechanism.

A broader evaluation can be found in section 6.3.2, where we discuss the obtained test coverage when

translating the pywin32-ctypes library.

56

6
Evaluation

Contents

6.1 Evaluating Translation Correctness . 58

6.2 Performance . 58

6.3 Library Translations . 64

6.4 Evaluating Code Pragmatics . 65

6.5 Automatic vs Manual Translation . 67

6.6 Extensibility . 68

57

In this chapter, we evaluate PyJL and discuss its limitations. We will focus on the most notable

translation scenarios. The remaining results are available in our repository [49] to allow for further

comparisons and analysis.

Section 6.1 discusses the methods used to evaluate translations. This is followed by an analysis of

the runtime performance of the generated code, comparing it to native Python and optimized implemen-

tations that use NumPy. As PyJL’s main goal is to translate libraries, section 6.3 evaluates the translation

of two libraries and tests the capabilities of PyJL with larger code bases. In section 6.4, we discuss the

results of our online survey, which evaluates the pragmatics of the generated code with experienced

Julia programmers. Lastly, section 6.6 discusses extensibility, as having an extensible and modular

architecture allows for easier modifications and is critical for future developments.

6.1 Evaluating Translation Correctness

When translating Python to Julia, it is important to guarantee that the generated code has the same ex-

ternal behaviour on both languages. To independently validate each supported functionality, Py2Many

already included a unit-test suite, which we extended to cover a broader subset of Python. Py2Many’s

test suite comprises 64 test scripts. Each test has an average of 25 LOC and only covers basic func-

tionalities. PyJL currently covers 83% of the entire test suite. The remaining 17% cover currently unsup-

ported functionalities, such as Python’s asyncio or NamedTempFile modules.

As the included test suite was quite scarce, we selected a subset of CPython’s official test suite,

comprised of 62 test scripts. CPython’s tests are more complete, with an average of 733 LOC. Currently,

we only support 10% of the chosen test scripts, as each test covers many Python functionalities. As an

example, CPython’s test augassign test script required mapping Python’s special functions, such as

add , radd , sub etc. Some modules also include dependencies on currently unsupported mod-

ules, such as functools or subprocess, which are harder to translate to Julia. Additionally, CPython’s

tests mostly test corner cases, which are only rarely found in library code.

The validation of library translations is performed using the provided unit tests. We discuss the

translation of two libraries and the obtained test coverage in section 6.3.

6.2 Performance

To test the runtime performance of the generated code, we chose a set of Python benchmarks that have

an implementation in Julia. As these implementations were manually optimized by Julia programmers,

we refer to them as reference versions. In some benchmarks, there is a large difference between the

performance of the generated Julia code and the Julia reference versions. This difference is related

58

Listing 6.1: Combinations Function Python

1 def combinations(l):

2 result = []

3 for x in range(len(l) - 1):

4 ls = l[x+1:]

5 for y in ls:

6 result.append((l[x],y))

7 return result

Listing 6.2: Combinations Function Julia

1 function combinations(l)::Vector

2 result = []

3 for x in (0:length(l)-1-1)

4 ls = l[(x+1+1):end]

5 for y in ls

6 push!(result, (l[x+1], y))

7 end

8 end

9 return result

10 end

to the optimizations applied to the reference versions, which allow the Julia compiler to produce more

efficient machine code. These versions therefore represent the best-case performance scenario on

Julia.

We measured the results using the bencher benchmarking tool [50] on a machine with an Intel(R)

Core(TM) i7 4790K @4.4GHz with 16GB of RAM running Linux. As some benchmarks are quite size-

able, we made them available in appendix B. This section discusses the obtained results.

6.2.1 N-Body-Problem

The first benchmark we present is an implementation of the N-Body problem that predicts the grav-

itational interactions of Jovian planets in the solar system. The performance results shown in figure

6.1 reveal that the initial translation is slower than Python and is orders of magnitude slower than the

reference Julia implementation.

After analysing the generated source code, we discovered that the slowdown was caused by insuffi-

cient type information. The Python function that caused the slowdown and the code generated by PyJL

can be seen in listings 6.1 and 6.2, respectively. Both listings show an implementation of a function

called combinations, which receives a list as its argument and generates combinations with the list’s

elements. It then adds those combinations to a new result list, which is returned by the function. The

main performance issue, is that the returned list was translated by PyJL to a generic vector in Julia,

which has considerable overheads as Julia cannot infer its element types.

After specifying the necessary type information, we obtained a speedup of 17.5×, making the trans-

lated Julia code 7.5× faster than the original Python code. This can be achieved in one of two ways, as

demonstrated below:

One can use the approach on the left and annotate the result array in Python with its corresponding

type. Alternatively, one can manually annotate the array in Julia using a more pragmatic approach, as

seen on the right. Both alternatives are identical in terms of performance.

Regarding the reference Julia implementation, it is relevant to mention that it is highly optimized and

takes advantage of Julia’s performance characteristics.

59

Python Ref. Julia
Translated

Julia w/ Fix Julia Ref.
0

200

400

600

800

336.77

776.40

44.65 2.85

S
ec

on
ds

Figure 6.1: N-Body Benchmark

Python Julia Ch. Julia
Resumables

Julia Opt. Julia Ref.
0

100

200

300

400

46.85

331.35

46.78 35.44
0.83

S
ec

on
ds

Figure 6.2: Fasta Benchmark

Listing 6.3: Python Cumulative Probabilities

1 def makeCumulative(

2 table::list[tuple[str, float]]

3):

4 P: list[float] = []

5 C: list[str] = []

6 prob = 0.

7 for char, p in table:

8 prob += p

9 P += [prob]

10 C += [char]

11 return (P, C)

Listing 6.4: Julia Cumulative Probabilities

1 function makeCumulative(

2 table::Vector{Tuple{String, Float64}}

3)

4 P::Vector{Float64} = []

5 C::Vector{String} = []

6 prob = 0.0

7 for (char, p) in table

8 prob += p

9 push!(P, prob)

10 push!(C, char)

11 end

12 return (P, C)

13 end

result: list[
tuple[
tuple[list[float], list[float], float],
tuple[list[float], list[float], float],

]
] = []

result = Tuple{eltype(l), eltype(l)}[]

6.2.2 Fasta

To test the runtime performance of generator functions, we chose an implementation of the Fasta bench-

mark, which generates Random DNA sequences by using a Linear Congruential Generator (LCG). As

discussed in section 3.2.5, PyJL offers two methods to translate Python’s generator functions. The first

uses Julia’s Channels and the second uses a package called Resumables. Figure 6.2 shows the re-

sults of translating this implementation of Fasta. Note that the performance of Channels is almost 7×

slower when compared to Python. When using Resumables, the performance results match the Python

implementation.

Similarly to the N-Body problem, we also found a case where Python’s generic lists were translated

to generic vectors in Julia. This occurred in the makeCumulative function, which calculates cumulative

probabilities from the predicted probabilities of choosing each nucleotide in a DNA sequence, repre-

sented by the table argument. A list P is used to store the cumulative probabilities, and a list C is used

60

Listing 6.5: Python Sieve

1 def sieve(n: int):

2 primes = [True] * (n)

3 primes[0], primes[1] = False, False

4 for i in range(2, int(math.sqrt(n) + 1)):

5 if primes[i]:

6 for j in range(i * i, n, i):

7 primes[j] = False

8 return list(filter(lambda j: primes[j], range(2, n)))

Listing 6.6: Julia Sieve

1 function sieve(n::Int)

2 primes = repeat([true], n)

3 (primes[1], primes[2]) = (false, false)

4 for i in 2:Int(floor(sqrt(n) + 1))-1

5 if primes[i+1]

6 for j in i*i:i:n-1

7 primes[j+1] = false

8 end

9 end

10 end

11 return collect(

12 filter((j) -> primes[j+1],

13 2:n-1))

14 end

Listing 6.7: Julia Offset Arrays

1 function sieve(n::Int)

2 primes = OffsetArray(repeat([true], n), -1)

3 primes[0], primes[1] = (false, false)

4 for i in 2:Int(floor(sqrt(n) + 1))-1

5 if primes[i]

6 for j in i*i:i:n-1

7 primes[j] = false

8 end

9 end

10 end

11 return collect(

12 filter((j) -> primes[j],

13 2:n-1))

14 end

to store the nucleotides. Listing 6.3 shows the annotated makeCumulative function. The annotations on

lines 2 and 3 for lists P and C solve the initial slowdown. The Julia source code produced by PyJL can

be seen in listing 6.4. As one can see from figure 6.2, the annotations resulted in a speedup of 1.3×,

resulting in a total execution time of 35 seconds.

Julia’s reference implementation is still faster, although it uses several optimizations to achieve that

performance. Most notably, it stores the nucleotides as a Vector of UInt8 values, which largely improves

indexing performance when compared to strings.

6.2.3 Sieve

To test the performance of OffsetArrays, discussed in section 3.2.4, we used an implementation of the

Sieve of Eratosthenes. Listing 6.5 shows the Python implementation and listing 6.6 shows the Julia code

generated by PyJL. Notice that PyJL did not apply any indexing optimizations, instead adding the literal 1

to every indexing operation. This is because it detected that the variable i is used to calculate the range

of the inner loop, which prevents the optimization from being applied. The OffsetArrays implementation

can be seen in listing 6.7, where PyJL wrapped the assignment to variable primes, creating a 0-indexed

vector. The indexing operations were also adjusted accordingly.

Figure 6.3 shows the obtained results. When using the approach seen on listing 6.6, we observed

that the runtime performance was 13.5× faster than the Python implementation. When using OffsetAr-

61

Listing 6.8: Sigmoid Functions Python

1 def sigmoid(z: np.ndarray) -> np.ndarray:

2 return 1.0 / (1.0 + np.exp(-z))

3

4 def sigmoid_prime(z: np.ndarray) -> np.ndarray:

5 return sigmoid(z) * (1 - sigmoid(z))

Listing 6.9: Sigmoid Functions Julia

1 function sigmoid(z::Matrix)::Matrix

2 return 1.0 ./ (1.0 .+ e .^ -z)

3 end

4

5 function sigmoid_prime(z::Matrix)::Matrix

6 return sigmoid(z) .* (1 .- sigmoid(z))

7 end

Python Julia Offset Arrays Julia Ref.
0

10

20
20.6

1.5 1.6 0.6

S
ec

on
ds

Figure 6.3: Sieve Translation

NumPy Julia Julia Ref.
0

0.5

1

1.5

1.0
1.3

0.6

S
ec

on
ds

Figure 6.4: Sieve NumPy Translation

rays, the results only differ by 6%, which shows that the overhead is minimal.

6.2.4 Sieve Numpy

To compare the performance difference of using NumPy to native Julia, we used a modified implementa-

tion of the Sieve of Eratosthenes from section 5.3.1. The results can be seen in figure 6.4. We included

the result of Julia’s reference version from figure 6.3 for comparison.

As one can see, the NumPy version of sieve is around 20× faster than the native Python implemen-

tation shown in section 6.2.3. NumPy is faster than Julia, but only by 1.3×. Julia’s reference version is

still the fastest implementation, managing a speedup of 2.2× and 1.7× when compared to the translated

and NumPy versions respectively.

6.2.5 Neural Network

To further test the supported NumPy subset, we chose a publicly available implementation [51, Ch 1] of

a neural network capable of identifying numbers from a MNIST dataset. The data consists of images of

handwritten digits and is represented as NumPy n-dimensional arrays. This section discusses the most

notable translation aspects and compares the performance of the generated code.

As explained in section 5.3.1, vectorized operations have to be translated using Julia’s broadcasting

operator. Listing 6.8 shows the Python implementation of the sigmoid and sigmoid prime functions,

and listing 6.9 shows the code generated by PyJL. Notice that the np.exp function receives a NumPy

multidimensional array as input. As such, it is translated by broadcasting the power operation with the

Euler constant. As the result of this operation is a NumPy multidimensional array, PyJL propagates

62

Python Julia Julia OO Classes.jl
0

500

1,000 970.17

15.33 16.71 17.89

S
ec

on
ds

Figure 6.5: Binary Trees

Python Julia
0

100

200

300 285.59

207.52

S
ec

on
ds

Figure 6.6: Neural Networks

the broadcasting to the outer binary operations. PyJL also supports broadcasting with function calls,

as demonstrated by the sigmoid prime function. One notable requirement is that functions must be

annotated with the appropriate return types.

In terms of performance, figure 6.6 shows the runtime performance results obtained from running the

neural network with 50000 training entries over 30 epochs. As one can see, the performance in Julia is

about 1.4× faster when compared to Python.

6.2.6 Binary Trees

To evaluate the performance difference of the supported class translation methods presented in section

3.2.7, we chose a benchmark that allocates and traverses short-lived trees. We modified a publicly

available Python benchmark1 by replacing the tuple data structure with a class implementation. Further-

more, we removed the use of Python’s multiprocessing module, as it is not supported by PyJL. This

new implementation was then translated using the various class translation approaches.

Figure 6.5 compares the different implementations. As can be observed, Python takes around 970

seconds to execute this benchmark, which is an order of magnitude slower than the Julia implemen-

tations. Regarding the Julia class implementations, one can notice that the performance difference is

minor across all three versions. The Classes package appears to have a slightly larger overhead when

compared to the other packages.

It is worth noting that PyJL currently translates Python’s classes using mutable structs, as Python’s

classes are considered mutable. However, as tree nodes are not modified throughout the program’s

execution, we could have used immutable structs. We found that this improved performance by 1.6−2×

on average. We plan to support this feature in the future.

1Binary-Trees: https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/binarytrees-python3-5.

html

63

https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/binarytrees-python3-5.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/binarytrees-python3-5.html

6.3 Library Translations

PyJL aims to translate Python libraries to Julia, allowing Julia developers to benefit from Python’s exten-

sive library set. In this regard, it is important to test its ability to translate larger code bases. Therefore,

we chose to translate two libraries to validate PyJL’s capabilities. The first is the python-reprojector

library, which performs coordinate transformations between projections. As some coordination transfor-

mation libraries are currently unavailable in Julia, we translated this library using the PyCall package.

The second is the pywin32-ctypes library, which is an implementation of the pywin32 library using the

ctypes FFI. This library was chosen to test the limitations of our translation mechanism, allowing us to

identify possible future mismatches. This section analyses the translation process and discusses the

current limitations.

6.3.1 The python-reprojector Library

The python-reprojector library [52] performs coordinate transformations between projections by using

Python’s pyproj2 library. It also uses Python’s shapely3 library to manipulate geometric coordinates.

Unfortunately, Julia does not yet have support for these libraries. Therefore, they had to be mapped

using PyCall.

After mapping the unsupported library calls, the remaining code was translated to Julia. This ap-

proach translates the main application logic to Julia, allowing for an incremental removal of Python

dependencies. As new Julia libraries emerge, programmers are only required to change call mappings

to use these libraries. Furthermore, one can use PyJL to translate future library releases, which largely

speeds up library updates.

During our evaluation of the library, we managed a 100% test coverage when converting the included

unit-tests to Julia. We also confirmed that the external behavior of the library was identical on both

languages.

6.3.2 The pywin32-ctypes Library

To further validate our ctypes translation, we decided to transpile the pywin32-ctypes [53] library. This

allowed us to compare the differences between Python and Julia’s FFIs and identify potential future

translation problems. The main goal of this translation, was to use Julia’s native features without re-

quiring the use of PyCall. The most notable functionalities added to the transpiler while translating this

library were discussed in section 5.5.2. This section focuses on the results obtained with our translation

approach.

2Python pyproj library: https://github.com/pyproj4/pyproj
3Python shapely library: https://github.com/shapely/shapely

64

https://github.com/pyproj4/pyproj
https://github.com/shapely/shapely

Figure 6.7: Python Experience of Participants

64.3%

14.3% 7.1%
7.1%

7.1%

>5 Years
4-5 Years
3-4 Years
2-3 Years
1-2 Years

Figure 6.8: Julia Experience of Participants

35.7%
14.3%

14.3%
28.6%

7.1%

>5 Years
3-4 Years
2-3 Years
1-2 Years
<1 Year

Figure 6.9: Code Readability and Pragmatics Evaluation

Fibonacci Newman
Conway

Bonacci
Series

Binomial
Coefficient

Bubble
Sort

Mandelbrot Sieve
NumPy

1

2

3

4

5

S
co

re

Class
Hierarchy

Classes.jl Object-
Oriented.jl

1-indexed
Arrays

OffsetArrays.jl Fasta Regex

1

2

3

4

5

S
co

re

Due to the language disparities, we did not fully translate this library to Julia. We used the inte-

grated unit-test suite to verify the correctness of our translation, of which PyJL currently covers 20%.

The current main issue is that some translations require the use of Julia’s unsafe functions, such as

unsafe convert, which do not guarantee that objects are kept alive by Julia’s GC mechanism during

foreign calls. This still requires a more careful analysis. We leave this as a topic for future studying.

6.4 Evaluating Code Pragmatics

To validate the pragmatics of the transpiled source code, we conducted an online survey, which was

published on Julia’s official forum. Participants were shown a sample of Python source code with its

corresponding Julia translation generated by PyJL and asked to rank the readability and pragmatics of

translations using a Likert scale ranging from 1-5. In total, we had 17 participants.

The vast majority of our participants were experienced programmers, with 80% having more than

5 years of experience. As one can see from figures 6.7 and 6.8, 64% of our participants have more

than 5 years of experience with Python, whereas 36% have more than 5 years of experience with Julia.

65

Listing 6.10: Binomial Coefficient Python

1 def binomial_coef(n: int, k: int):

2 C = [[0 for x in range(k + 1)]

3 for x in range(n + 1)]

4 for i in range(n + 1):

5 for j in range(min(i, k) + 1):

6 if j == 0 or j == i:

7 C[i][j] = 1

8 else:

9 C[i][j] = C[i - 1][j - 1]

10 + C[i - 1][j]

11 return C[n][k]

Listing 6.11: Binomial Coefficient Julia

1 function binomial_coef(n::Int, k::Int)

2 C = [[0 for x = 0:k] for x = 0:n]

3 for i in 0:n

4 for j in 0:min(i, k)

5 if j == 0 || j == i

6 C[i+1][j+1] = 1

7 else

8 C[i+1][j+1] = C[i][j] + C[i][j+1]

9 end

10 end

11 end

12 return C[n+1][k+1]

13 end

Additionally, 29% of participants use Python daily, whereas 62% use Julia daily. Regarding our target

audience, 50% have a Computer Science background, 20% have a mathematics background, and the

remaining 30% have experience in various fields, such as Architecture, Medical Imaging, Chemistry, and

Physics.

From our testing, we observed that the average rating for each test was always above 3, indicating

that PyJL is capable of translating Python to human-readable and pragmatic Julia source code. The

results can be seen in figure 6.9, where the mean values are represented as dots. Simple examples,

such as implementations of the Fibonacci or Newman-Conway sequence, managed average scores that

were at or above 4. However, some translations still require optimizations. To demonstrate one such

scenario, we decided to evaluate an implementation that calculates the Binomial Coefficient, where we

observed the lowest average score of 3.3. Listing 6.10 shows the Python implementation and listing

6.11 shows the code generated by PyJL.

The most notable aspect that requires improving is the translation of Python’s multidimensional ar-

rays, shown on lines 2 and 3 of listing 6.11. Notice that the translated Julia source code uses nested

arrays as in Python, which has large overheads when compared to Julia’s matrices. Another important

factor to consider is the translation of 1-indexed arrays. In this scenario, PyJL was not able to apply any

optimizations to the loop’s range, as the variable j is compared against the literal value 0 in the inner

loop. We leave these optimizations as recommendations for future versions.

To compare the two indexing translation mechanisms, we chose the implementation of combination

sort discussed in section 3.2.4. Notice from figure 6.9 that the translation using 1-indexed arrays has a

higher average score of 4.6 compared to the 3.9 when using OffsetArrays. Improving the translation of

Python’s indexing would be beneficial, as we observed that over 90% of participants prefer this approach

over using OffsetArrays.

To evaluate PyJL’s class translation mechanisms, we chose the examples shown in section 3.2.7,

where we defined the Person, Student, Worker and StudentWorker classes. We evaluated the transla-

tion of single and multiple inheritance. Regarding the single inheritance results, using the abstract type

66

hierarchy yielded the highest average score of 4.2 compared to the average score of 3.9 when using the

Classes package. We also observed that over 60% of participants prefer using the abstract type hier-

archy over the Classes package. It is important to note that 20% of participants found both approaches

to be equally pragmatic. Regarding the translation of multiple inheritance when using the ObjectOri-

ented package, we observed an average score of 3.8, which is lower than the previous approaches.

This is likely due to the Python-like syntax used by the package, which can be less pragmatic for Julia

programmers.

Using the feedback received from the quiz, we also managed to improve the readability of our NumPy

translations. We performed several improvements to the NumPy Sieve implementation presented in

section 5.3.1. The suggestions reduced the verbosity of our previous solution, making the generated

code more idiomatic.

Lastly, we chose two larger code samples to test if code pragmatics were affected. The first is the

Fasta benchmark that was discussed in section 6.2.2 and the second is a regex benchmark, which we

modified by removing the use of Python’s multiprocessing module. The Fasta benchmark is available

in appendix B, while the Regex benchmark is available in our public repository [49]. Since these tests

were more extensive, we set them as optional. We got a total of 12 and 11 responses for the Fasta and

Regex benchmarks, respectively. The average result for the Fasta benchmark was 3.7. One of the most

prominent aspects noticed by the participants is the lack of annotations when translating Python’s lists to

Julia’s arrays, which results in slower performance, as discussed in section 6.2.2. Regarding the Regex

benchmark, we observed a result of 4.2. The higher score is most likely related to the fact that this test

focuses on string manipulation, which uses similar syntax in both languages.

6.5 Automatic vs Manual Translation

To evaluate the benefits of automatic over manual translation, we asked Julia programmers to manually

translate Python source code to Julia. We chose 5 participants that represent experienced and interme-

diate Julia programmers. Each participant was told to translate 5 code excerpts that stressed various

functionalities supported by the transpiler, such as the translation of data structures or classes. More

complex examples were also chosen, such as the implementation of Mandelbrot from section 3.2.9 that

demonstrates the different scoping rules of both languages. Participants were allowed to use the Ju-

lia documentation during the translation process. We registered the time taken by each participant to

translate individual code excerpts and the errors made during the translation process. Unit tests were

also supplied to allow participants to verify the translation’s correctness. Table 6.1 shows the total time

taken in minutes for participants to translate the individual code excerpt. Instances where the manually

translated code did not pass the provided unit tests are marked with *.

67

Participants Fibonacci Combination Sort Binomial Coefficient Classes Mandelbrot
1 0:55 3:33 2:17 3:42 2:12
2 0:28 2:25 2:17 3:04 2:38
3 1:21 6:40 3:00* 3:43* 1:42*
4 1:27 8:55 25:41 8:50 16:54
5 0:37 2:52 9:59 4:39 3:46

Table 6.1: Time in minutes for manual translation

The results obtained vary between the participants. This is not only due to the participants expe-

rience but also because each used a different translation approach. These results demonstrate how

inconsistent manual translations can be, as each programmer uses different implementation strategies.

In this regard, automatic translation took only 4 seconds on a machine with an Intel(R) Core(TM) i7

4790K @4.4GHz with 16GB of RAM running Linux. This includes not only code formatting but also the

translation of the provided unit tests, which allowed verifying the transpiled code.

Another noteworthy aspect were the errors registered during translations. Given the similarities be-

tween Python and Julia’s syntaxes, a common strategy we observed was that users copied the Python

code and changed only the necessary constructs and keywords to match Julia. However, this strategy

ended up creating bugs, which slowed down translation time. With the provided code excerpts, trans-

lation errors were trivial to find, requiring programmers little time to have a working implementation in

Julia. This scenario would likely change with the translation of larger code bases. Given the complexity

of large-scale software solutions, the time required to fix software bugs would render manual translation

as an unsuitable strategy.

6.6 Extensibility

The previous sections focused on the PyJL transpiler. However, when regarding extensibility, the whole

pipeline of Py2Many must be considered. As Python is frequently updated, Py2Many has to be able

to evolve as new language functionalities are added. Py2Many’s flexible architecture already allows

for some flexibility, namely when regarding the addition of new Rewriters or Transformers. Still, this

flexibility should be applicable to the mapping of function calls to external libraries. Our goal was to

create a modular approach to add call translation tables and facilitate transpiler updates.

Therefore, we developed an extension that allows programmers to include external Python translation

modules to house call translation tables. The mechanism searches for such modules in a predetermined

pyxx/external/modules directory, where pyxx is the name of the transpiler extension we intend to use,

such as pyjl. Furthermore, as type information is a key aspect for the translation process, we also allow

external modules to map Python functions to their respective return types.

Another concern is the differentiation of generic and language-specific rewriters or transformers.

68

Whenever possible, we used generic phases applicable for all transpilers. This includes the translation of

for-else and while-else constructs, described in section 3.2.3. Distinguishing generic transformation

phases from language-specific ones is crucial to save development time for other supported languages.

69

70

7
Conclusions

Contents

7.1 Coverage . 73

7.2 Future Work . 74

71

Automatic and reliable translation between programming languages offers the possibility to bridge the

gap between established languages, and newer and/or less developed ones. Furthermore, automatic

translation provides an almost risk-free code-base migration process. This research explored the use of

transpilers to translate existing code-bases from Python, a popular and well-established programming

language, to the newer Julia programming language, with the intent of speeding up its development and

growth.

The Py2Many transpiler translates Python source code to many C-like programming languages. It

provides a modular framework, where the support for each language is added as an extension. We

focused on developing the PyJL extension, which builds upon Py2Many’s framework to transpile Python

to human-readable and pragmatic Julia source code, allowing Julia programmers to further modify it.

As such, a predominant goal was to guarantee that the generated code was idiomatic, almost as if it

was written by seasoned Julia programmers. Furthermore, PyJL requires very little programmer input to

generate running Julia code. This was further improved with the addition of an external type inference

mechanism, which reduced the work required to manually annotate the Python source code.

Initially, we set 4 different goals, which were addressed throughout the research:

• Correctness: We tested the correctness of the generated code by using unit tests. Py2Many’s

test suite and a small subset of CPython’s official test suite were used to validate each supported

functionality. Furthermore, library unit-tests were also transpiled to Julia, to assert the correctness

of the translation.

• Intelligibility and Pragmatics: PyJL uses several techniques to improve the readability of the output

source. As PyJL’s main goal is to produce human-readable and pragmatically correct source code,

we validated these two aspects by conducting an online survey from a pool of experienced Julia

programmers. Despite still requiring some improvements to reach a human-like output, the results

show that the generated code is human-readable and respects the pragmatics of Julia.

• Performance: Despite performance not being a focus of PyJL, we observed large performance

increases when transpiling Python to Julia. Only one benchmark produced slower running times

when compared to Python. Still, this only required annotating one line of code to make it an order

of magnitude faster than the Python implementation. We also compared the performance of highly

optimized Python programs that used NumPy, where Julia either matches or outperforms Python.

• Dependencies: We have addressed three dependency scenarios. The first is handling depen-

dencies between multiple Python modules, where PyJL translates Python’s import mechanism to

Julia. Furthermore, it also propagates type information across modules for type inference.

The second scenario is importing Python registered packages. If Julia provides equivalent func-

tionalities, then PyJL translates Python package calls into calls to Julia’s equivalent libraries. Oth-

72

Input
Language

Target
Language Intelligible Coverage Upkeep Performance

Linj Common Lisp Java ✓✓✓ ✓✓ ✓ 5− 6×
Fortran-Python Python Fortran ✓✓ ✓✓ ✓ 6− 10×

JSweet Java JavaScript ✓✓ ✓✓ ✓✓✓ ✗
Py2Many/PyJL Python Julia ✓✓ ✓✓ ✓✓✓ 1.3− 17.5×

Table 7.1: Updated State-of-the-art Evaluation

erwise, PyJL uses PyCall to call Python’s libraries through the FFI.

The third scenario is translating accesses to DLLs. We translated a subset of the ctypes interface

to native Julia, allowing us to identify low-level incompatibilities between the two languages.

In section 2.7, we compared the different transpiler implementations. At the time, we had preliminary

results regarding performance and code readability. After our evaluation process, we now have more

accurate data to compare PyJL against other state-of-the-art solutions. Table 7.1 contains the new

results. We have increased the overall coverage of PyJL, not only for a subset of Python’s standard

library, but also for some external libraries, such as NumPy. Our new performance results show that the

generated Julia code is between 1.3× to 17.5× faster than Python. This is after judiciously annotating

the Python source code, requiring no other implementation changes. Furthermore, the optimizations

applied to the generated source code makes it more readable, while respecting the pragmatics of Julia.

7.1 Coverage

Python libraries commonly have many dependencies with external libraries. Some of these library calls

can be mapped to Julia’s equivalent libraries or simulated using Julia’s language features. However,

there is still a large subset of Python for which there are no equivalent functionalities in Julia. One

solution for such cases is to use the FFI to call Python’s libraries. PyJL uses the PyCall package, which

provides a wrapper around the FFI to call Python functions while offering several crucial functionalities,

such as automatic type conversion. Resorting to FFI’s provides a temporary solution to speedup these

translations by creating wrapper libraries around already existing Python libraries. As new Julia libraries

emerge, programmers can adapt PyJL and replace the FFI calls into calls to these libraries, eliminating

any dependencies to Python.

Nonetheless, some Python operations are impossible to map to Julia, as they are dependent on

Python’s execution environment. This is the case of the eval function, which parses and evaluates

Python expressions. In such cases, PyJL must resort to PyCall to evaluate the expressions. As an

example, the Python call eval("1+2") is translated by PyJL to py"1+2".

Despite PyJL’s successful translation of a large variety of Python features, the translation of large

73

legacy code bases is still a topic that requires more investigation. The main issue is that legacy code

typically relies on older language functionalities, which might not be supported by the transpiler. Ideally,

such code bases should be separated into multiple independent components and translated individually.

A noteworthy disadvantage is that this process requires knowledge about the existing code base and

awareness of potential translation restrictions, which is challenging given the complexity of large-scale

software solutions.

7.2 Future Work

When converting between programming languages, transpilers typically target the most common sce-

narios, focusing on the input language’s most used constructs. However, programmers commonly use

functionalities that cause inconsistencies when translated to the target language. This refers to the gen-

eral rule that ”any language construct that can be abused will be abused” [3]. As an example, consider

translating calls to Python’s locals() function, which returns a dictionary containing locally defined

symbols. Despite Julia providing a locals macro, which retrieves the symbols and values of all locally

defined variables, both Python and Julia define distinct scoping rules that affect the resulting dictionar-

ies. Such incompatibilities demonstrate the difficulty of translations when aiming for a high semantic

equivalence between the input and output languages [3].

Regarding module dependencies, the most notable aspect that still requires a more extensive study

is the mapping of Python’s package structure to Julia. PyJL currently offers a solution that uses Julia’s

FromFile package to map Python’s imports. Nonetheless, some of the functionalities of Python’s import

machinery are still unsupported. This is the case of Python’s importlib module, which can dynamically

add and remove meta path finders to load Python modules.

Exceptions are another issue, as there are Python exceptions that do not have a deterministic

corresponding exception in Julia. As an example, consider the Python calls to math.sqrt(-1) and

float("-") that both raise a ValueError exception. These can be translated to Julia as sqrt(-1)

and float("-") respectively, but the first call throws a DomainError exception and the second throws

an ArgumentError exception. Another problem is that there are some Python exceptions, such as the

ZeroDivisionError that is raised in Python when the quotient of a division operation is zero, that are

not considered exceptions in Julia. In Julia, a division by zero instead returns Inf, representing infinity.

This topic still requires further investigation.

Regarding performance, the translation of Python’s lists remains a challenge. When no annotations

are provided, inferring the types of lists is dependent on the ability to statically analyse all list concate-

nation operations. The inference of lists could further be improved by integrating pytype’s annotate-ast

tool, which already includes analysis mechanisms to infer list types. This would largely improve the

74

performance of the generated code.

Despite PyJL supporting the translation of Python’s unit tests and parameterized unit tests, it would

also be beneficial to map Python’s doctest module, which identifies comments in the form of interactive

Python sessions, converting them to tests. In this regard, Julia offers the Documenter1 package, which

parses Julia documentation strings and identifies doctests. As a subset of CPython’s unit tests are

written as doctests, this could increase the current unit test coverage.

Lastly, it is important to remember that Py2Many and the PyJL extension are written in Python. A

future goal is to create a Meta-Transpiler, where a transpiler translates itself to the target language.

This would further decrease any dependencies from Python. We are still far from achieving this goal, as

some modules are difficult to simulate in Julia. This is the case of Python’s functools module for higher-

order functions. In this regard, it is also relevant to consider the current parsing mechanism. Py2Many

currently uses Python’s default parsing mechanism included in the ast package. A custom parser could

enhance the available information at transpilation time. The improved translation capabilities could bring

us closer to the goal of building a Meta-transpiler, while offering improved library translation capabilities.

1Documenter - A documentation generator for Julia: https://github.com/JuliaDocs/Documenter.jl

75

https://github.com/JuliaDocs/Documenter.jl

76

Bibliography

[1] Transpiling Python to Julia using PyJL. Zenodo, Mar. 2022. [Online]. Available: https:

//doi.org/10.5281/zenodo.6332890

[2] M. Marcelino and A. M. Leitão, “Extending PyJL - Transpiling Python Libraries to Julia,” in 11th

Symposium on Languages, Applications and Technologies (SLATE 2022), ser. Open Access

Series in Informatics (OASIcs), J. a. Cordeiro, M. J. a. Pereira, N. F. Rodrigues, and S. a. Pais,

Eds., vol. 104. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, pp.

6:1–6:14. [Online]. Available: https://drops.dagstuhl.de/opus/volltexte/2022/16752

[3] A. Terekhov and C. Verhoef, “The realities of language conversions,” IEEE Software, vol. 17, no. 6,

pp. 111–124, 2000.

[4] I. D. Baxter, C. Pidgeon, and M. Mehlich, “DMS: Program Transformations for Practical Scalable

Software Evolution,” in ICSE ’04: Proceedings of the 26th International Conference on Software

Engineering. Edinburgh International Conference Centre, Scotland, UK: Semantic Designs, 2004,

pp. 625–634.

[5] M. Rebaudengo, M. S. Reorda, and M. T. Massimo, “A source-to-source compiler for generating

dependable software,” Workshop on Source Code Analysis and Manipulation (SCAM2001), Nov

2001.

[6] I. Corporation, “MCS-86 Assembly Language Converter Operating Instructions for ISIS-II Users,”

1979.

[7] R. Taylor and P. Lemmons, “Upward Migration Part 1: Translators Using translation programs to

move CP/M-86 programs to CP/M and MS-DOS,” BYTE Publications Inc., 1982.

[8] Tiobe, “TIOBE Index,” Jul 2022, [Online. Retrieved July 6th, 2022 from: https://www.tiobe.com/

tiobe-index/].

[9] Python Software Foundation, “Python Package Index,” March 2001, [Online. Retrieved July 6th,

2022 from: https://pypi.org/].

77

https://doi.org/10.5281/zenodo.6332890
https://doi.org/10.5281/zenodo.6332890
https://drops.dagstuhl.de/opus/volltexte/2022/16752
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://pypi.org/

[10] P. Norvig, “Python for Lisp Programmers,” [Online. Retrieved July 6th, 2022 from: http://norvig.com/

python-lisp.html].

[11] J. Hugunin, “Python and java: The best of both worlds,” in Proceedings of the 6th international

Python conference, vol. 9. Reston, VA: Citeseer, 1997, pp. 2–18.

[12] J. Hugunin, “IronPython Home Page,” 2013, [Online. Retrieved July 6th, 2022 from: https:

//ironpython.net/].

[13] G. Van Rossum and F. L. Drake Jr, “Python Reference Manual,” 1995.

[14] J. Community, “Julia Packages,” August 2017, [Online. Retrieved July 6th, 2022 from: https:

//julialang.org/packages/].

[15] JuliaPy, “PyCall - Package to call Python functions from the Julia language,” 2013.

[16] JuliaInterop, “JavaCall - Call Java from Julia,” 2013.

[17] ——, “RCall - Call R from Julia,” 2015.

[18] A. M. Leitão, “The next 700 programming libraries,” in Proceedings of the 2007 International Lisp

Conference, ser. ILC ’07. New York, NY, USA: Association for Computing Machinery, 2007.

[19] JuliaCN, “Py2Jl,” 2021, [Online. Retrieved October 19th, 2022 from: https://github.com/JuliaCN/

Py2Jl.jl].

[20] M. Marcelino and A. Menezes Leitão, “Pyjl implementation,” 2021, https://github.com/

MiguelMarcelino/py2many.

[21] A. M. Leitao, “Migration of Common Lisp Programs to the Java Platform - The Linj Approach,” in

11th European Conference on Software Maintenance and Reengineering (CSMR’07), 2007, pp.

243–251.

[22] M. Bysiek, A. Drozd, and S. Matsuoka, “Migrating Legacy Fortran to Python While Retaining

Fortran-Level Performance through Transpilation and Type Hints,” in 2016 6th Workshop on Python

for High-Performance and Scientific Computing (PyHPC), 2016, pp. 9–18.

[23] A. Aiken and B. Murphy, “Static type inference in a dynamically typed language,” in Proceedings

of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ser.

POPL ’91. New York, NY, USA: Association for Computing Machinery, 1991, p. 279–290. [Online].

Available: https://doi.org/10.1145/99583.99621

[24] Renaud Pawlak, “JSweet - A transpiler from Java to TypeScript/JavaScript,” 2015, retrieved October

25th, 2022 from: https://www.jsweet.org/.

78

http://norvig.com/python-lisp.html
http://norvig.com/python-lisp.html
https://ironpython.net/
https://ironpython.net/
https://julialang.org/packages/
https://julialang.org/packages/
https://github.com/JuliaCN/Py2Jl.jl
https://github.com/JuliaCN/Py2Jl.jl
https://github.com/MiguelMarcelino/py2many
https://github.com/MiguelMarcelino/py2many
https://doi.org/10.1145/99583.99621
https://www.jsweet.org/

[25] P. Japikse, K. Grossnicklaus, and B. Dewey, Building Web Applications with Visual Studio 2017.

Apress, 01 2017.

[26] H. Lunnikivi, K. Jylkkä, and T. Hämäläinen, “Transpiling Python to Rust for Optimized Performance,”

in Embedded Computer Systems: Architectures, Modeling, and Simulation, A. Orailoglu, M. Jung,

and M. Reichenbach, Eds. Cham: Springer International Publishing, 2020, pp. 127–138.

[27] J. Bispo and J. M. Cardoso, “Clava: C/C++ Source-to-Source Compilation using LARA,” SoftwareX,

vol. 12, 2020.

[28] I. Moore, M. Wolczko, and T. Hopkins, “Babel - A Translator From Smalltalk into CLOS,” 1994, sun

Microsystems Laboratories Inc.

[29] A. Zanelli, T. Sartor, P. Bowyer, and D. Moritz, “Prometeo - An experimental Python-to-C transpiler,”

2017, [Online. Retrieved 19th October, 2022 from: https://github.com/zanellia/prometeo].

[30] JuliaLang, “The julia language - 1.7.3,” May 2022.

[31] A. Sharma, L. Martinelli, J. Konchunas, and J. Vandenberg, “Py2many: Python to many clike

languages transpiler,” 2015, retrieved September 21st, 2022 from: https://github.com/adsharma/

py2many.

[32] JuliaArrays, “Offsetarrays.jl,” Jan 2014, retrieved June 11th, 2022 from: https://github.com/

JuliaArrays/OffsetArrays.jl.

[33] B. Lauwens, “Resumablefunctions.jl,” August 2017, retrieved September 29th, 2022 from: https:

//github.com/BenLauwens/ResumableFunctions.jl.

[34] R. Plevin, “Classes.jl: A simple, Julian approach to inheritance of structure and methods,” Novem-

ber 2021, retrieved August 22nd, 2022 from: https://github.com/rjplevin/Classes.jl.

[35] K. Barrett, B. Cassels, P. Haahr, D. A. Moon, K. Playford, and P. T. Withington, “A Monotonic

Superclass Linearization for Dylan,” in Proceedings of the 11th ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications, ser. OOPSLA ’96.

New York, NY, USA: Association for Computing Machinery, 1996, p. 69–82. [Online]. Available:

https://doi.org/10.1145/236337.236343

[36] M. Lutz, Learning Python - 3rd Edition. O’Reilly Media, Inc., 2007.

[37] Python Software Foundation, “Python unittest module,” retrieved October 20th, 2022 from: https:

//docs.python.org/3/library/unittest.html.

79

https://github.com/zanellia/prometeo
https://github.com/adsharma/py2many
https://github.com/adsharma/py2many
https://github.com/JuliaArrays/OffsetArrays.jl
https://github.com/JuliaArrays/OffsetArrays.jl
https://github.com/BenLauwens/ResumableFunctions.jl
https://github.com/BenLauwens/ResumableFunctions.jl
https://github.com/rjplevin/Classes.jl
https://doi.org/10.1145/236337.236343
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html

[38] G. van Rossum, J. Lehtosalo, and L. Langa, September 2014, retrieved October 27th, 2022 from:

https://peps.python.org/pep-0484/.

[39] I. Rak-amnouykit, D. McCrevan, A. Milanova, M. Hirzel, and J. Dolby, “Python 3 types in the wild: A

tale of two type systems,” in Proceedings of the 16th ACM SIGPLAN International Symposium on

Dynamic Languages, ser. DLS 2020. New York, NY, USA: Association for Computing Machinery,

2020, p. 57–70. [Online]. Available: https://doi.org/10.1145/3426422.3426981

[40] M. Hassan, C. Urban, M. Eilers, and P. Müller, “Maxsmt-based type inference for python 3,” 2018.

[41] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in Tools and Algorithms for the Con-

struction and Analysis of Systems, C. R. Ramakrishnan and J. Rehof, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2008, pp. 337–340.

[42] Z. Xu, X. Zhang, L. Chen, K. Pei, and B. Xu, “Python Probabilistic Type Inference with

Natural Language Support,” in Proceedings of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, ser. FSE 2016. New York, NY,

USA: Association for Computing Machinery, 2016, p. 607–618. [Online]. Available: https:

//doi.org/10.1145/2950290.2950343

[43] Microsoft, “pyright: Static type checker for Python,” March 2015, [Online. Retrieved October 3rd,

2022 from: https://github.com/microsoft/pyright].

[44] Google, “Pytype: A static type analyzer for Python code,” March 2015, [Online. Retrieved October

3rd, 2022 from: https://github.com/google/pytype].

[45] Python Software Foundation, “MyPy: Optional static typing for Python,” 2012, [Online. Retrieved

October 3rd, 2022 from: https://github.com/python/mypy.

[46] ——, “Ctypes,” retrieved July 11th, 2022 from: https://docs.python.org/3/library/ctypes.html.

[47] ——, “Python Glossary,” retrieved October 11th, 2022 from: https://docs.python.org/3/glossary.

html.

[48] G. van Rossum and P. D. Team, The Python Language Reference - Release 3.9.7, August 2021,

[Online. Retrieved June 9th, 2022 from: https://docs.python.org/release/3.9.7/].

[49] M. Marcelino, “PyJL Translations Repository,” https://github.com/MiguelMarcelino/pyjl translations.

[50] I. Gouy, “The Computer Language Benchmarks Game,” 2007, retrieved September 13th, 2022

from: https://salsa.debian.org/benchmarksgame-team/benchmarksgame.

80

https://peps.python.org/pep-0484/
https://doi.org/10.1145/3426422.3426981
https://doi.org/10.1145/2950290.2950343
https://doi.org/10.1145/2950290.2950343
https://github.com/microsoft/pyright
https://github.com/google/pytype
https://github.com/python/mypy
https://docs.python.org/3/library/ctypes.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/release/3.9.7/
https://github.com/MiguelMarcelino/pyjl_translations
https://salsa.debian.org/benchmarksgame-team/benchmarksgame

[51] M. Nielsen, Neural Networks and Deep Learning. Determination Press, 2015. [Online]. Available:

https://books.google.pt/books?id=STDBswEACAAJ

[52] K. Deininger, “python-reprojector: Python library for coordinate transformation,” retrieved October

13th, 2022 from: https://gitlab.com/geo-bl-ch/python-reprojector/-/tree/master/.

[53] I. Enthought, “pywin32-ctypes,” retrieved October 13th, 2022 from: https://github.com/enthought/

pywin32-ctypes.

81

https://books.google.pt/books?id=STDBswEACAAJ
https://gitlab.com/geo-bl-ch/python-reprojector/-/tree/master/
https://github.com/enthought/pywin32-ctypes
https://github.com/enthought/pywin32-ctypes

82

A
Julia Classes using ObjectOriented.jl

83

1 @oodef mutable struct Person
2 name::String
3

4 function new(name::String)
5 @mk begin
6 name = name
7 end
8 end
9

10 function get_id(self::Person)::String
11 return self.name
12 end
13 end
14

15 @oodef mutable struct Student <: Person
16 name::String
17 student_number::Int64
18 domain::String
19

20 function new(name::String, student_number::Int64, domain::String = "school.student.pt")
21 @mk begin
22 name = name
23 student_number = student_number
24 domain = domain
25 end
26 end
27

28 function get_id(self)
29 return "$(self.name) - $(self.student_number)"
30 end
31 end
32

33 @oodef mutable struct Worker <: Person
34 name::String
35 company_name::String
36 hours_per_week::Int64
37

38 function new(name::String, company_name::String, hours_per_week::Int64)
39 @mk begin
40 name = name
41 company_name = company_name
42 hours_per_week = hours_per_week
43 end
44 end
45 end
46

47 @oodef mutable struct StudentWorker <: {Student, Worker}
48 schedule_conflicts::Bool
49

50 function new(
51 name::String,
52 student_number::Int64,
53 domain::String,
54 company_name::String,
55 hours_per_week::Int64,
56 schedule_conflicts::Bool)
57 @mk begin
58 Student(name, student_number, domain)
59 Worker(name, company_name, hours_per_week)
60 schedule_conflicts = schedule_conflicts
61 end
62 end
63 end

84

B
Performance Benchmarks

85

B.1 N-Body Julia Translation

1 using Printf
2

3 function combinations(l)::Vector
4 result = []
5 for x = 0:length(l)-2
6 ls = l[x+2:end]
7 for y in ls
8 push!(result, (l[x+1], y))
9 end

10 end
11 return result
12 end
13

14 PI = 3.141592653589793
15 SOLAR_MASS = 4 * PI * PI
16 DAYS_PER_YEAR = 365.24
17 BODIES = Dict(
18 "sun" => ([0.0, 0.0, 0.0], [0.0, 0.0, 0.0], SOLAR_MASS),
19 "jupiter" => (
20 [4.841431442464721, -1.1603200440274284, -0.10362204447112311],
21 [
22 0.001660076642744037 * DAYS_PER_YEAR,
23 0.007699011184197404 * DAYS_PER_YEAR,
24 -6.90460016972063e-05 * DAYS_PER_YEAR,
25],
26 0.0009547919384243266 * SOLAR_MASS,
27),
28 "saturn" => (
29 [8.34336671824458, 4.124798564124305, -0.4035234171143214],
30 [
31 -0.002767425107268624 * DAYS_PER_YEAR,
32 0.004998528012349172 * DAYS_PER_YEAR,
33 2.3041729757376393e-05 * DAYS_PER_YEAR,
34],
35 0.0002858859806661308 * SOLAR_MASS,
36),
37 "uranus" => (
38 [12.894369562139131, -15.111151401698631, -0.22330757889265573],
39 [
40 0.002964601375647616 * DAYS_PER_YEAR,
41 0.0023784717395948095 * DAYS_PER_YEAR,
42 -2.9658956854023756e-05 * DAYS_PER_YEAR,
43],
44 4.366244043351563e-05 * SOLAR_MASS,
45),
46 "neptune" => (
47 [15.379697114850917, -25.919314609987964, 0.17925877295037118],
48 [
49 0.0026806777249038932 * DAYS_PER_YEAR,
50 0.001628241700382423 * DAYS_PER_YEAR,
51 -9.515922545197159e-05 * DAYS_PER_YEAR,
52],
53 5.1513890204661145e-05 * SOLAR_MASS,
54),
55)
56 SYSTEM = collect(values(BODIES))
57 PAIRS = combinations(SYSTEM)
58 function advance(dt, n, bodies = SYSTEM, pairs = PAIRS)
59 for i = 0:n-1
60 for (((x1, y1, z1), v1, m1), ((x2, y2, z2), v2, m2)) in pairs

86

61 dx = x1 - x2
62 dy = y1 - y2
63 dz = z1 - z2
64 mag = dt * ((dx * dx + dy * dy) + dz * dz)^-1.5
65 b1m = m1 * mag
66 b2m = m2 * mag
67 v1[1] -= dx * b2m
68 v1[2] -= dy * b2m
69 v1[3] -= dz * b2m
70 v2[1] += dx * b1m
71 v2[2] += dy * b1m
72 v2[3] += dz * b1m
73 end
74 for (r, (vx, vy, vz), m) in bodies
75 r[1] += dt * vx
76 r[2] += dt * vy
77 r[3] += dt * vz
78 end
79 end
80 end
81

82 function report_energy(bodies = SYSTEM, pairs = PAIRS, e = 0.0)
83 for (((x1, y1, z1), v1, m1), ((x2, y2, z2), v2, m2)) in pairs
84 dx = x1 - x2
85 dy = y1 - y2
86 dz = z1 - z2
87 e -= m1 * m2 / ((dx * dx + dy * dy) + dz * dz)^0.5
88 end
89 for (r, (vx, vy, vz), m) in bodies
90 e += m * ((vx * vx + vy * vy) + vz * vz) / 2.0
91 end
92 @printf("%.9f\n", e)
93 end
94

95 function offset_momentum(ref, bodies = SYSTEM, px = 0.0, py = 0.0, pz = 0.0)
96 for (r, (vx, vy, vz), m) in bodies
97 px -= vx * m
98 py -= vy * m
99 pz -= vz * m

100 end
101 r, v, m = ref
102 v[1] = px / m
103 v[2] = py / m
104 v[3] = pz / m
105 end
106

107 function main(n, ref = "sun")
108 offset_momentum(BODIES[ref])
109 report_energy()
110 advance(0.01, n)
111 report_energy()
112 end
113

114 if abspath(PROGRAM_FILE) == @__FILE__
115 main(parse(Int, append!([PROGRAM_FILE], ARGS)[2]))
116 end

87

B.2 Fasta Julia Translation

1 using BisectPy
2 using ResumableFunctions
3

4 alu = "GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGC
5 GGGCGGATCACCTGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTGAAACCCCGT
6 CTCTACTAAAAATACAAAAATTAGCCGGGCGTGGTGGCGCGCGCCTGTAATCCCAGCTAC
7 TCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCCGA
8 GATCGCGCCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCCGTCTCAAAAA"
9 iub = collect(

10 zip(
11 ["a", "c", "g", "t", "B", "D", "H", "K", "M", "N", "R", "S", "V", "W", "Y"],
12 append!([0.27, 0.12, 0.12, 0.27], repeat([0.02], 11)),
13),
14)
15 homosapiens = [
16 ("a", 0.302954942668),
17 ("c", 0.1979883004921),
18 ("g", 0.1975473066391),
19 ("t", 0.3015094502008),
20]
21 @resumable function genRandom(ia = 3877, ic = 29573, im = 139968)
22 seed = 42
23 imf = float(im)
24 while true
25 seed = (seed * ia + ic) % im
26 @yield seed / imf
27 end
28 end
29

30 Random = genRandom()
31 function makeCumulative(table)::Tuple
32 P = []
33 C = []
34 prob = 0.0
35 for (char, p) in table
36 prob += p
37 push!(P, prob)
38 push!(C, char)
39 end
40 return (P, C)
41 end
42

43 function repeatFasta(src::String, n::Int64)
44 width = 60
45 r = length(src)
46 s = src * src * src[begin:n%r]
47 for j in (0:n÷width-1)
48 i = j * width % r
49 println(s[(i+1):i+width])
50 end
51 if (n % width) != 0
52 println(s[(length(s)-n%width+1):end])
53 end
54 end
55

56 function randomFasta(table, n::Int64)
57 width = 60
58 r = (0:width-1)
59 gR = Random
60 bb = bisect_right

88

61 jn = x -> join(x, "")
62 probs, chars = makeCumulative(table)
63 for j in (0:n÷width-1)
64 x = jn([chars[bb(probs, gR())] for i in r])
65 println(x)
66 end
67 if (n % width) != 0
68 println(jn([chars[bb(probs, gR())] for i in (0:n%width-1)]))
69 end
70 end
71

72 function main()
73 n = parse(Int, append!([PROGRAM_FILE], ARGS)[2])
74 println(">ONE Homo sapiens alu")
75 repeatFasta(alu, n * 2)
76 println(">TWO IUB ambiguity codes")
77 randomFasta(iub, n * 3)
78 println(">THREE Homo sapiens frequency")
79 randomFasta(homosapiens, n * 5)
80 end
81

82 main()

89

B.3 Binary Trees Julia Translation

1 function make_tree(depth::Int64)::Tuple
2 #= Trees or tuples, final leaves have None as values. =#
3 return depth == 0 ? ((nothing, nothing)) :
4 ((make_tree(depth - 1), make_tree(depth - 1)))
5 end
6

7 function check_node(left, right)::Int64
8 #=
9 Count 1 for each node found.

10 (Unpacking directly in the parameters is faster)
11 =#
12 return left === nothing ? (1) : ((1 + check_node(left...)) + check_node(right...))
13 end
14

15 function run(depth::Int64)::Int64
16 #=
17 Makes a tree then checks it (parse all nodes and count).
18 This function is global for multiprocessing purposes.
19 =#
20 return check_node(make_tree(depth)...)
21 end
22

23 function main(requested_max_depth, min_depth = 4)
24 max_depth = max(min_depth + 2, requested_max_depth)
25 stretch_depth = max_depth + 1
26 println("stretch tree of depth $(stretch_depth)\t check: $(run(stretch_depth))")
27 long_lived_tree = make_tree(max_depth)
28 mmd = max_depth + min_depth
29 for test_depth = min_depth:2:stretch_depth-1
30 tree_count = 2^(mmd - test_depth)
31 check_sum = sum(map(run, repeat([(test_depth,)...], tree_count)))
32 println("$(tree_count)\t trees of depth $(test_depth)\t check: $(check_sum)")
33 end
34 println(
35 "long lived tree of depth $(max_depth)\t check:

$(check_node(long_lived_tree...))",↪→

36)
37 end
38

39 if abspath(PROGRAM_FILE) == @__FILE__
40 main(parse(Int, append!([PROGRAM_FILE], ARGS)[2]))
41 end

90

B.4 Neural Network

1 #=
2 A module to implement the stochastic gradient descent learning
3 algorithm for a feedforward neural network. =#
4 using LinearAlgebra
5 using Random
6

7 abstract type AbstractNetwork end
8 mutable struct Network <: AbstractNetwork
9 sizes::Vector{Int64}

10 num_layers::Int64
11 biases
12 weights
13

14 Network(
15 sizes::Vector{Int64},
16 num_layers = length(sizes),
17 biases::Vector{Matrix} = [randn(y, 1) for y in sizes[2:end]],
18 weights::Vector{Matrix} =
19 [randn(y, x) for (x, y) in zip(sizes[begin:end-1], sizes[2:end])],
20) = begin
21 new(sizes, num_layers, biases, weights)
22 end
23 end
24

25 function feedforward(self::AbstractNetwork, a::Matrix)::Matrix
26 #= Return the output of the network if ``a`` is input. =#
27 for (b, w) in zip(self.biases, self.weights)
28 a = sigmoid((w * a) .+ b)
29 end
30 return a
31 end
32

33 function SGD(
34 self::AbstractNetwork,
35 training_data::Vector,
36 epochs::Int64,
37 mini_batch_size::Int64,
38 eta::Float64,
39 test_data::Union{Vector, Nothing} = nothing,
40)
41 #= Train the neural network using mini-batch stochastic gradient descent. =#
42 training_data = collect(training_data)
43 n = length(training_data)
44 if test_data !== nothing
45 test_data = collect(test_data)
46 n_test = length(test_data)
47 end
48 for j = 0:epochs-1
49 shuffle(training_data)
50 mini_batches = [training_data[k+1:k+mini_batch_size] for k = 0:mini_batch_size:n-1]
51 for mini_batch in mini_batches
52 update_mini_batch(self, mini_batch, eta)
53 end
54 if test_data !== nothing
55 println("Epoch $(j) : $(evaluate(self, test_data)) / $(n_test)")
56 else
57 println("Epoch $(j) complete")
58 end
59 end
60 end

91

61

62 function update_mini_batch(self::AbstractNetwork, mini_batch::Vector{Tuple},
63 eta::Float64)
64 #= Update the network's weights and biases by applying
65 gradient descent using backpropagation to a single mini batch. =#
66 nabla_b = [zeros(Float64, size(b)) for b in self.biases]
67 nabla_w = [zeros(Float64, size(w)) for w in self.weights]
68 for (x, y) in mini_batch
69 (delta_nabla_b, delta_nabla_w) = backprop(self, x, y)
70 nabla_b = [nb + dnb for (nb, dnb) in zip(nabla_b, delta_nabla_b)]
71 nabla_w = [nw + dnw for (nw, dnw) in zip(nabla_w, delta_nabla_w)]
72 end
73 self.weights =
74 [w - (eta / length(mini_batch)) * nw for (w, nw) in zip(self.weights, nabla_w)]
75 self.biases =
76 [b - (eta / length(mini_batch)) * nb for (b, nb) in zip(self.biases, nabla_b)]
77 end
78

79 function backprop(self::AbstractNetwork, x::Matrix, y::Matrix)::Tuple
80 #= Return a tuple ``(nabla_b, nabla_w)`` representing the
81 gradient for the cost function =#
82 nabla_b = [zeros(Float64, size(b)) for b in self.biases]
83 nabla_w = [zeros(Float64, size(w)) for w in self.weights]
84 activation::Matrix = x
85 activations::Vector{Matrix} = [x]
86 zs::Vector{Matrix} = []
87 for (b, w) in zip(self.biases, self.weights)
88 z = (w * activation) .+ b
89 push!(zs, z)
90 activation = sigmoid(z)
91 push!(activations, activation)
92 end
93 delta = cost_derivative(self, activations[end], y) .* sigmoid_prime(zs[end])
94 nabla_b[end] = delta
95 nabla_w[end] = (delta * LinearAlgebra.transpose(activations[end-1]))
96 for l = 2:self.num_layers-1
97 z = zs[end-l+1]
98 sp = sigmoid_prime(z)
99 delta = (LinearAlgebra.transpose(self.weights[end-l+2]) * delta) .* sp

100 nabla_b[end-l+1] = delta
101 nabla_w[end-l+1] = (delta * LinearAlgebra.transpose(activations[end-l]))
102 end
103 return (nabla_b, nabla_w)
104 end
105

106 function evaluate(self::AbstractNetwork, test_data::Vector)
107 #= Return the number of test inputs for which the neural
108 network outputs the correct result. =#
109 test_results = [(argmax(@view feedforward(self, x)[:]) - 1, y)
110 for (x, y) in test_data]
111 return sum((Int(x == y) for (x, y) in test_results))
112 end
113

114 function cost_derivative(
115 self::AbstractNetwork,
116 output_activations::Matrix,
117 y::Matrix,
118)::Matrix
119 #= Return the vector of partial derivatives for the output activations. =#
120 return output_activations .- y
121 end
122

123

92

124 function sigmoid(z::Matrix)::Matrix
125 #= The sigmoid function. =#
126 return 1.0 ./ (1.0 .+ e .^ -z)
127 end
128

129 function sigmoid_prime(z::Matrix)::Matrix
130 #= Derivative of the sigmoid function. =#
131 return sigmoid(z) .* (1 .- sigmoid(z))
132 end

93

	Agradecimentos
	Abstract
	Resumo
	Contributions
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Language Conversions
	1.1.1 Language Mismatches

	1.2 Python
	1.3 Julia
	1.4 Objectives

	2 Related Work
	2.1 LinJ
	2.2 Fortran-Python Transpiler
	2.3 JSweet
	2.4 Py2Many
	2.5 Clava
	2.6 Further Mentions
	2.7 Analysis

	3 Transpilation
	3.1 The Py2Many Transpiler
	3.1.1 Scoping Mechanism
	3.1.2 Code Annotation Mechanism
	3.1.3 Parsing Mechanism

	3.2 Python to Julia Translation
	3.2.1 Augmented Assignments
	3.2.2 Boolean Operations
	3.2.3 Loops
	3.2.4 Indexing
	3.2.5 Generator Functions
	3.2.6 Arbitrary-Precision Arithmetic
	3.2.7 Simulating Python's OO Implementation
	3.2.8 Special Methods and Attributes
	3.2.9 Scoping Rules
	3.2.10 Keyword Arguments
	3.2.11 Other Incompatibilities

	3.3 Optimizations
	3.3.1 Removing Redundant Operations
	3.3.2 Optimizing Global Variables

	3.4 Validating Translations
	3.4.1 The unittest Framework
	3.4.2 Parameterized Unit Tests

	4 Type Inference
	4.1 Py2Many's Inference Mechanism
	4.1.1 Import Analysis
	4.1.2 Static Type-Checking
	4.1.3 Limitations

	4.2 External Type Inference Mechanism
	4.2.1 Advantages
	4.2.2 Limitations

	4.3 Why two Mechanisms?
	4.4 Alternative Solutions

	5 Dependencies
	5.1 Python and Julia's Import Mechanisms
	5.2 Importing Local Modules
	5.2.1 Module Dependencies

	5.3 Importing Registered Modules
	5.3.1 Simulating Package Calls
	5.3.2 Using PyCall

	5.4 Name Aliases
	5.5 Accessing Dynamic-Link Libraries
	5.5.1 Translation Methodology
	5.5.2 Additional Functionalities

	6 Evaluation
	6.1 Evaluating Translation Correctness
	6.2 Performance
	6.2.1 N-Body-Problem
	6.2.2 Fasta
	6.2.3 Sieve
	6.2.4 Sieve Numpy
	6.2.5 Neural Network
	6.2.6 Binary Trees

	6.3 Library Translations
	6.3.1 The python-reprojector Library
	6.3.2 The pywin32-ctypes Library

	6.4 Evaluating Code Pragmatics
	6.5 Automatic vs Manual Translation
	6.6 Extensibility

	7 Conclusions
	7.1 Coverage
	7.2 Future Work

	Bibliography
	A Julia Classes using ObjectOriented.jl
	B Performance Benchmarks
	B.1 N-Body Julia Translation
	B.2 Fasta Julia Translation
	B.3 Binary Trees Julia Translation
	B.4 Neural Network

