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GRASSMAN MANIFOLDS AS SUBSETS OF EUCLIDEAN SPACES
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1. Introduction

Let E be a Euclidean space. Following Palais, we identify each vector subspace F of E
with the orthogonal projection πF : E → F . In this way, the Grassman manifold G(E)
of all vector subspaces of E appears as a submanifold of the Euclidean space L(E;E) of
all linear maps from E into E (with the Hilbert-Schmidt inner product). The aim of this
paper is to present some explicit formulas concerning the differential geometry of G(E)
as a submanifold of L(E;E). Most of these formulas extend naturally to the case where
E is an infinite dimensional Hilbert space, although in this case there is no natural inner
product in L(E;E).

2. Notation and Preliminaries

Let E and F be finite or infinite dimensional Hilbert spaces. We will denote by L(E;F )
the vector space of all continuous linear maps from E into F . If ξ ∈ L(E;F ), we will
denote by ξ∗ ∈ L(F ;E) its adjoint linear map, the one defined by the identity

〈ξ(x), y〉 = 〈x, ξ∗(y)〉.
The following identities will be used quite often:

ξ∗∗ = ξ; (η ◦ ξ)∗ = ξ∗ ◦ η∗; id∗E = idE.(2.1)

A linear map ξ ∈ L(E;E) is self-adjoint if ξ∗ = ξ. The map L(E;F )→ L(F ;E), ξ → ξ∗,
is a real linear map (even if E and F are complex spaces, it is not a complex linear map)
and the set Lsa(E;E) of self-adjoint linear maps is a real vector subspace of L(E;F ).

In case E or F is infinite dimensional, we will look on L(E;F ) merely as a Banach
space (with the sup norm). In case E and F are finite dimensional, we take in the finite
dimensional vector space L(E;F ) the Hilbert-Schmidt inner product, defined by

〈ξ, η〉 =
∑

1≤k≤n

〈ξ(xk), η(xk)〉,(2.2)
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2 A. MACHADO, I. SALAVESSA

where x1, . . . , xk is an arbitrary orthonormal basis of E. We will use the following identities
concerning these inner products,

〈ξ, η〉 = 〈η∗, ξ∗〉; 〈λ, µ∗ ◦ η〉 = 〈µ ◦ λ, η〉 = 〈µ, η ◦ λ∗〉.(2.3)

The word “manifold” will always mean an embedded submanifold of some finite di-
mensional or Banach vector space B and the tangent vector spaces will be considered as
vector subspaces of the ambient vector space B. In fact, one can even define, for each
point a of an arbitrary subset M of B, a notion of tangent vector subspace Ta(M), which
behaves well with respect to differentiability (see, for example, [2]). In the same spirit,
by vector bundle we will mean a vector sub-bundle of a constant one. A vector bundle
E with basis M will be a family (Ex)x∈M , where each Ex is a vector subspace of a fixed
finite dimensional or Banach vector space E, verifying the usual properties, and we will
use the same symbol E to denote the corresponding subset of M × E. It will be useful
to allow a vector bundle to have as basis an arbitrary subset M of a finite dimensional or
Banach vector space B.

If E = (Ex)x∈M is a vector bundle with Ex ⊂ E, we identify a connection in E by its
second fundamental form at each point x ∈M , which is a bilinear map θx : Ex×Tx(M)→
E such that

(u, θx(w, u)) ∈ T(x,w)(E).(2.4)

For each smooth section W = (Wx)x∈M of E, the covariant derivative ∇Wx(u) is given
by the formula

∇Wx(u) = DWx(u)− θx(Wx, u).(2.5)

If E is a Hilbert space, the metric connection of E is the one defined by the condition
that θx(w, u) is orthogonal to the fibre Ex; if πx : E → Ex is the orthogonal projection,
then x → πx is a smooth map from M into L(E;E) and we have the following formula
for this connection,

θx(w, u) = Dπx(u)(w).(2.6)

We will use also the following characterization of the curvature tensor of a connection
θ in the vector bundle E = (Ex)x∈M , where M ⊂ B is a manifold and Ex ⊂ E: assuming

that x → θ̂x is a smooth map from M into the space L(E,B;E) of bilinear maps, such

that each θx is a restriction of θ̂x, the curvature tensor is the trilinear map

Rx : Tx(M)× Tx(M)× Ex → Ex

defined by

Rx(u, v, w) = Dθ̂x(u)(w, v)−Dθ̂x(v)(w, u) + θ̂x(θx(w, u), v)− θ̂x(θx(w, v), u).(2.7)

3. The Grassman Manifolds

Let E be a finite or infinite dimensional real Hilbert space. For each closed vector
subspace F ⊂ E, we will denote by πF the orthogonal projection from E onto F . We
have hence a natural bijective map between the set of closed vector subspaces of E and
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the set of orthogonal projections. We will denote by G(E) the subset of L(E;E) whose
elements are the orthogonal projections onto closed subspaces, and we will call G(E) the
Grassman manifold of E. The fact that G(E) is indeed a manifold is proved in Akin [1],
who attributes this result to Palais (unpublished preprint), but we will sketch here an
independent proof.

The following characterization of the elements of G(E) is well known:

3.1. A linear map ξ ∈ L(E;E) belongs to G(E) if and only if it is self-adjoint and verifies
ξ ◦ ξ = ξ.

We can consider a morphism from the constant vector bundle EG(E), with basis G(E)
and fibre E, into itself, associating to each ξ ∈ G(E) the linear map ξ : E → E. The fact
that the image of an idempotent morphism is a vector bundle allows us to state:

3.2. There exists a tautological vector bundle with basis G(E), whose fibre in each πF is
F .

Using formula (2.6) for the metric connection, we deduce:

3.3. The metric connection of the tautological vector bundle is defined by

θξ(w, n) = η(w),

for each ξ ∈ G(E), w ∈ ξ(E) and η ∈ Tξ(G(E)).

As a corollary of the local constancy of the dimension of the fibres of a vector bundle,
we see that, for each n, the subset Gn(E) of G(E), whose elements are the πF such that
F is n-dimensional, is open in G(E).

Let F ⊂ E be a fixed closed vector subspace. It is a well known simple linear algebra
result that, for each closed vector subspace G ⊂ E, the following two properties are
equivalent:

(a) E = F⊥ ⊕G (direct sum);

(b) πF |G is an isomorphism from G onto F ;

and that, if they are verified, the projection E → G associated to the direct sum is
(πF |G)−1 ◦ πF . To each α ∈ L(F ;F⊥) we associate its graphic G = {x+ α(x)}x∈F , which
is a closed vector subspace of E verifying the conditions above. Inversely, for each closed
vector subspace G ⊂ E verifying the conditions above, there exists one and only one
α ∈ L(F ;F⊥) whose graphic is G, namely α = πF⊥ ◦ (πF |G)−1.

We will use the preceding well-known considerations in the proof of the following result:

3.4. Let E be a real Hilbert space and let F ⊂ E be a closed vector subspace. Let
UF ⊂ G(E) be the set of the orthogonal projections ξ ∈ G(E) such that E = F⊥ ⊕ ξ(E).
Then UF is an open subset in G(E), containing πF , and there exists a diffeomorphism
ψF : UF → L(F ;F⊥), defined by ψF (ξ) = πF⊥ ◦ (πF |ξ(E))

−1, that verifies ψF (πF ) = 0.

Proof. The considerations before the statement show that ψF is a bijective map from UF
onto L(F ;F⊥), whose inverse ψ−1

F : L(F ;F⊥) → UF associates to each α the orthogonal
projection onto the closed vector subspace {x + α(x)}x∈F . All we have to show is that
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UF is open in G(E) and that both ψF and ψ−1
F are smooth maps. For that, we consider

the morphism from the tautological vector bundle (ξ(E))ξ∈G(E) into the constant vector
bundle FG(E) whose value at ξ ∈ G(E) is πF |ξ(E) : ξ(E) → F ; the fact that ξ ∈ UF if
and only if the ”fibre” of the morphism at ξ is an isomorphism implies that UF is open in
G(E); taking the restrictions of the vector bundles to UF , the fact that the inverse of a
(smooth) isomorphism is smooth implies that the map UF → L(F ;E), ξ → (πF |ξ(E))

−1 is
smooth, hence ψF : UF → L(F ;F⊥) is also smooth. Now, we have an injective morphism
from the constant vector bundle FL(F,F⊥) into the constant vector bundle EL(F,F⊥), whose

fibre at α ∈ L(F, F⊥) is the linear map F → E, x → x + α(x), hence the image of
this morphism is a vector bundle with basis L(F ;F⊥) and this implies that the map
ψ−1
F : L(F, F⊥)→ L(E;E) is smooth. �

As a corollary, we have:

3.5. If E is a real Hilbert space, then G(E) is a manifold in L(E;E). If E is N -
dimensional and F ⊂ E is n-dimensional, then the dimension of G(E) at πF is n(N −n).

3.6. Let E be a real Hilbert space, F ⊂ E be a closed vector subspace and ψF : UF →
L(F, F⊥) be the diffeomorphism defined in 3.4. For each ξ ∈ UF and η ∈ Tξ(G(E)), we
have

DψF (ξ)(η) = η ◦ (πF |ξ(E))
−1 − (πF |ξ(E))

−1 ◦ πF ◦ η ◦ (πF |ξ(E))
−1.

In particular, DψF (ξ)(η) = η|F .

Proof. Let φF : UF → L(F ;E) be the smooth map defined by φF (ξ) = (πF |ξ(E))
−1 (see

the proof of 3.4). Let w ∈ F arbitrary. Differentiating the identity πF (φF (ξ)(w)) = w,
we obtain

πF (DφF (ξ)(η)(w)) = 0,

hence DφF (ξ)(η)(w) ∈ F⊥. On the other hand, we have a smooth section of the tautolog-
ical vector bundle (ξ(E))ξ∈G(E) associating to each ξ, φF (ξ)(w); its covariant derivative
with respect to the metric connection, which, by (2.5) and 3.3, is equal to

DφF (ξ)(η)(w)− η(φF (ξ)(w)),

must hence belong to ξ(E). We can now conclude that DφF (ξ)(η)(w) is the projec-
tion of η(φF (ξ)(w)) onto F⊥ associated to the direct sum E = F⊥ ⊕ ξ(E). The fact
that ψF (ξ)(w) = πF⊥(φF (ξ)(w)) shows that DψF (ξ)(η)(w) = πF⊥(DφF (ξ)(w)), hence
DψF (ξ)(η)(w) is also the projection of η(φF (ξ)(w)) onto F⊥ associated to the direct sum
E = F⊥ ⊕ ξ(E) and, by the considerations made before 3.4, this projection is equal to

η
(
(πF |ξ(E))

−1(w)
)
− (πF |ξ(E))

−1
(
πF (η((πF |ξ(E))

−1(w)))
)
.

To show that DψF (πF )(η) = η|F it will be enough to know that each η ∈ TπF (G(E)) maps
F into F⊥. To see this, we differentiate the identity ξ◦ξ = ξ and obtain η◦πF +πF ◦η = η,
hence η ◦ πF = η − πF ◦ η = πF⊥ ◦ η and the proof is complete. �

We present now several equivalent characterizations of the tangent vector spaces to
G(E).



GRASSMAN MANIFOLDS AS SUBSETS OF EUCLIDEAN SPACES 5

3.7. Let E be a real Hilbert space and let F ⊂ E be a closed vector subspace. The
tangent vector space TπF (G(E)) is then contained in the vector space Lsa(E;E) of self
adjoint maps and, for each η ∈ Lsa(E;E), the following conditions are equivalent:

(a) η ∈ TπF (G(E));

(b) η(F ) ⊂ F⊥ and η(F⊥) ⊂ F ;

(c) η ◦ πF + πF ◦ η = η;

(d) η ◦ πF = (Id− πF ) ◦ η;

(e) η ◦ (Id− πF ) = πF ◦ η;

(f) η ◦ (2πF − Id) = −(2πF − Id) ◦ η.

Proof. The fact that each TπF (G(E)) is contained in Lsa(E;E) is a consequence of the
fact that G(E) ⊂ Lsa(E;E). The equivalence between the four last conditions is trivial.
Assuming (a), we obtain (c) simply by differentiating the identity ξ ◦ ξ = ξ at πF in the
direction of η. It is readily seen that condition (d) implies that η(F ) ⊂ F⊥ and that
condition (e) implies that η(F⊥) ⊂ F (Id− πF = πF⊥). Let us prove now that condition
(b) implies condition (a). The fact that ψF is a diffeomorphism from the open set UF in
G(E) onto L(F ;F⊥) implies that DψF (πF ) : TπF (G(E))→ L(E;F⊥) is an isomorphism.
We can hence take η′ ∈ TπF (G(E)) such that

η|F = DψF (πF )(η′) = η′|F .
Then η′ is self-adjoint and verifies condition (b), hence η′|F⊥ : F⊥ → F is the adjoint map
to η′|F : F → F⊥ and η|F⊥ : F⊥ → F is the adjoint map to η|F : F → F⊥. We deduce
now that η′|F⊥ = η|F⊥ , hence η = η′ and the proof is complete. �

Remark. To feel what is happening, assume that E is finite dimensional and take an
orthonormal basis x1, . . . , xN of E, whose first n vectors constitute a basis for F . Then
the matrices of πF , id− πF and 2πF − Id are respectively[

Id 0
0 0

] [
0 0
0 Id

] [
Id 0
0 −Id

]
and condition (b) says that the elements of TπF (G(E)) are the linear maps whose matrix
has the form[

0 A∗

A 0

]
.

4. The Differential Geometry of Grassman manifolds

4.1. Let E be a real Hilbert space and let F ⊂ E be a closed vector subspace. For each
η ∈ Lsa(E;E) the following conditions are then equivalent:

(a) η(F ) ⊂ F and η(F⊥) ⊂ F⊥;

(b) η ◦ πF = πF ◦ η;

(c) η ◦ (Id− πF ) = (Id− πF ) ◦ η.
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We will denote by TπF (G(E))⊥ the set of self-adjoint linear maps η ∈ Lsa(E;E) verifying
the preceding conditions.

Proof. The fact that (b) and (c) are equivalent is trivial. It is readily seen that (b)
implies η(F ) ⊂ F and that (c) implies η(F⊥) ⊂ F⊥. Assuming (a), one sees that η ◦
πF (x) = η(x) = πF ◦ η(x) for x ∈ F and η ◦ πF (x) = 0 = πF ◦ η(x) for x ∈ F⊥, hence
η ◦ πF (x) = πF ◦ η(x) for arbitrary x and (b) is proved. �

4.2. Let E be a real Hilbert space and let F ⊂ E be a closed vector subspace. Then
Lsa(E;E) is the direct sum of the closed vector subspaces TπF (G(E)) and TπF (G(E))⊥

and the projections π̄πF : Lsa(E;E) → TπF (G(E)) and π̄⊥πF : Lsa(E;E) → TπF (G(E))⊥

associated to this direct sum are defined by

π̄πF (η) = (Id− πF ) ◦ η ◦ πF + πF ◦ η ◦ (Id− πF ),

π̄⊥πF (η) = (Id− πF ) ◦ η ◦ (Id− πF ) + πF ◦ η ◦ πF .
.

Proof. Conditions (a) of 4.1 and (b) of 3.7 show that the intersection TπF (G(E)) ∩
TπF (G(E))⊥ is {0}. It is readily seen that, for each η ∈ Lsa(E;E), π̄πF (η) applies F
into F⊥ and F⊥ into F and π̄⊥πF (η) applies F into F and F⊥ into F⊥, hence π̄πF (η) ∈
TπF (G(E)) and π̄⊥πF (η) ∈ TπF (G(E))⊥. All we have to note now is that, for each η,

π̄πF (η) + π̄⊥πF (η) = η. �

4.3. If E is a finite dimensional real Hilbert space and if we consider in Lsa(E;E) the
Hilbert-Schmidt inner product, then, for each vector subspace F ⊂ E, the subspaces
TπF (G(E)) and TπF (G(E))⊥ of Lsa(E;E) are mutually orthogonal, hence each one is the
orthgonal complement of the other.

Proof. Assume η ∈ TπF (G(E)) and η′ ∈ TπF (G(E))⊥. Choose an orthonormal basis
x1, . . . , xN of E such that the first n vectors constitute a basis of F and the last N − n
vectors constitute a basis of F⊥. Conditions (b) of 3.7 and (a) of 4.1 assure that, for each
1 ≤ k ≤ N , 〈η(xk), η

′(xk)〉 = 0, hence 〈η, η′〉 = 0 ( cf. (2.2)). �

The preceding result explains why we employ the notation TπF (G(E))⊥ and π̄πF .

If E is a finite or infinite dimensional real Hilbert space we will define the canonical
connection in the manifold G(E) as the one that verifies the condition that θπF (η, α)
belongs to the kernel TπF (G(E))⊥ of the linear map π̄πF : Lsa(E;E) → TπF (G(E)), for
each η and α in TπF (G(E)). In an analogous way to that used in the case of a metric
connection, it is easily seen that this connection is symmetric and also is defined by the
formula

θπF (η, α) = Dπ̄πF (α)(η).(4.1)

This is the connection that we will always consider in the Grassman manifold G(E).
Of, course, in case E is finite dimensional, this connection is the metric connection with
respect to the Hilbert-Schmidt inner product.
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We can obtain a more explicit formula for the connection on G(E) by calculating the
derivative in (4.1), using the formula in 4.2, π̄ξ(η) = (Id− ξ) ◦ η ◦ ξ+ ξ ◦ η ◦ (Id− ξ). This
gives

θξ(η, α) = −α ◦ η ◦ ξ + (Id− ξ) ◦ η ◦ α + α ◦ η ◦ (Id− ξ)− ξ ◦ η ◦ α,
= (Id− 2ξ) ◦ η ◦ α + α ◦ η ◦ (Id− 2ξ).

(4.2)

Let us now obtain, using (2.7), two formulas for the curvature, the first for the metric
connection of the tautological vector bundle, and the second for the canonical connection
of the Grassman manifold. In the first case, we take θ̂ξ(w, η) = η(w) for each w ∈ E and
η ∈ L(E;E) (cf. 3.3) obtaining

Rξ(α, β, w) = β(α(w))− α(β(w))(4.3)

for each α and β in Tξ(G(E)) and w ∈ ξ(E). In the second case, we take θ̂ξ(η, α) =
(Id− 2ξ) ◦ η ◦α+α ◦ η ◦ (Id− 2ξ) and obtain, noting that (Id− 2ξ) ◦ (Id− 2ξ) = Id and
that, by 3.7(f), Id− 2ξ commutes with the composite of any two elements of Tξ(G(E)),

Rξ(α, β, η) = η ◦ α ◦ β − η ◦ β ◦ α + β ◦ α ◦ η − α ◦ β ◦ η.(4.4)

Assuming that E is finite dimensional, we obtain, for the sectional curvatures:

Riemξ(α, β) = 〈Rξ(α, β, α), β〉 = 2〈α ◦ β, α ◦ β〉 − 2〈α ◦ β, β ◦ α〉.(4.5)

To prove it, all we have to do is to apply the formulas in (2.3), remembering that α and
β are self-adjoint. The fact that (α ◦ β)∗ = β ◦ α implies that α ◦ β and β ◦ α have the
same norm and we can hence apply Cauchy-Schwartz to conclude that Riemξ(α, β) ≥ 0
and Riemξ(α, β) = 0 if and only if α ◦ β = β ◦ α.

One can also establish easily the following formula for the Ricci curvature:

Ricciξ(α, β) =
N − 2

2
〈α, β〉(4.6)

where N is the dimension of E.
Grassman manifolds (or, more precisely, their connected components) are sometimes

represented as homogeneous spaces of the orthogonal group. The following considerations
will compare this approach with the one we are using.

Let E be a real Hilbert space and let O(E) ⊂ L(E;E) be the orthogonal group, i.e. the
set of the toplinear isomorphisms ξ : E → E such that ξ∗ = ξ−1. It is well known that
O(E) is a manifold (a Lie group) and that, for each ξ ∈ O(E) and α ∈ L(E;E), we have

α ∈ Tξ(O(E)) if and only if α∗ ◦ ξ + ξ∗ ◦ α = 0.(4.7)

In the case where E is finite dimensional, the Riemann structure in O(E) induced
by the Hilbert-Schmidt inner product is readily seen to be bi-invariant. The orthogonal
projections πξ : L(E;E)→ Tξ(O(E)) are defined by

πξ(λ) =
1

2
(λ− ξ ◦ λ∗ ◦ ξ).(4.8)
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Even in the case E is infinite dimensional, we define projection maps πξ : L(E;E) →
Tξ(O(E)) by formula (4.8) and we have an associated symmetric connection in O(E)
defined by the bilinear maps θξ : Tξ(O(E))× Tξ(O(E))→ L(E;E),

θξ(α, β) = Dπξ(β)(α) = −1

2
(β ◦ α∗ ◦ ξ + ξ ◦ α∗ ◦ β) .(4.9)

Of course, in the finite dimensional case, this will be the metric connection.
Now assume that E is a finite or infinite dimensional real Hilbert space and H ⊂ E is a

fixed closed vector subspace. We can define a smooth map Φ : O(E)→ G(E) associating
to each ξ ∈ O(E) the orthogonal projection onto ξ(H); denoting by π : E → H the
orthogonal projection, it is easy to see that we have

Φ(ξ) = ξ ◦ π ◦ ξ∗.(4.10)

Although Φ is not a totally geodesic map, we can nevertheless state:

4.4. Φ : O(E)→ O(E) has totally geodesic fibres and, in case E is finite dimensional, is
a Riemannian submersion.

Proof. The derivative linear map DΦξ : Tξ(O(E))→ TΦ(ξ)(O(E)) is defined by

DΦξ(α) = α ◦ π ◦ ξ∗ + ξ ◦ π ◦ α∗.
Given α ∈ Tξ(O(E)) and β ∈ TΦ(ξ)(O(G(E)) arbitrary, we obtain, using (4.7), 3.7(c)

and (2.3),

〈DΦξ(α), β〉 = 〈α ◦ π ◦ ξ∗, β〉+ 〈ξ ◦ π ◦ α∗, β〉
= 〈α ◦ π ◦ ξ∗, β〉+ 〈−ξ ◦ π ◦ ξ∗ ◦ α ◦ ξ∗, β〉
= 〈α, β ◦ ξ ◦ π〉+ 〈α,−ξ ◦ π ◦ ξ∗ ◦ β ◦ ξ〉
= 〈α, β ◦ ξ ◦ π − β ◦ ξ + β ◦ ξ ◦ π〉 = 〈α, 2β ◦ ξ ◦ π − β ◦ ξ〉,

where, using (4.7), we can see that 2β ◦ ξ ◦π−β ◦ ξ ∈ Tξ(O(E)). Hence, the adjoint linear
map DΦ∗ξ : TΦ(ξ)(O(E))→ Tξ(O(E)) is defined by

DΦ∗ξ(β) = 2β ◦ ξ ◦ π − β ◦ ξ.
It is not difficult to verify now that

DΦξ(DΦ∗ξ(β)) = β,

which means precisely that Φ is a Riemannian submersion.
Let ξ ∈ O(E) and let Oo(E) be the fibre of Φ over Φ(ξ). To prove that Oo(E) is a totally

geodesic submanifold of O(E), all we have to see is that, for each α and β in Tξ(Oo(E)),
we have (β, θξ(α, β)) ∈ T(ξ,α)(T (Oo(E))), where θξ is the connection on O(E). Using the
formula for DΦξ, we see that the fact that α and β are in Tξ(Oo(E)) is equivalent to

α ◦ π ◦ ξ∗ + ξ ◦ π ◦ α∗ = 0, β ◦ π ◦ ξ∗ + ξ ◦ π ◦ β∗ = 0

and, using the same formula, one concludes easily that, if (β, λ) ∈ T(ξ,α)(T (O(E))), then
(β, λ) ∈ T(ξ,α)(T (Oo(E))) if and only if

α ◦ π ◦ β∗ + β ◦ π ◦ α∗ + λ ◦ π ◦ ξ∗ + ξ ◦ π ◦ λ∗ = 0.
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Now, using formula (4.9) for θξ(α, β) and the characterization of Tξ(O(E))given in 4.7,
we obtain

α ◦ π ◦ β∗ + β ◦ π ◦ α∗ + θξ(α, β) ◦ π ◦ ξ∗ + ξ ◦ π ◦ θξ(α, β)∗

= α ◦ π ◦ β∗ + β ◦ π ◦ α∗

−1

2
(β ◦ α∗ ◦ ξ + ξ ◦ α∗ ◦ α∗ ◦ β) ◦ π ◦ ξ∗ − 1

2
ξ ◦ π (ξ∗ ◦ α ◦ β∗ + β∗ ◦ α ◦ ξ∗)

= α ◦ π ◦ β∗ + β ◦ π ◦ α∗ +
1

2
β ◦ ξ∗ ◦ α ◦ π ◦ ξ∗ +

1

2
α ◦ ξ∗ ◦ β ◦ π ◦ ξ∗

+
1

2
ξ ◦ π ◦ α∗ ◦ ξ ◦ β∗ +

1

2
ξ ◦ π ◦ β∗ ◦ ξ ◦ α∗

= α ◦ π ◦ β∗ + β ◦ π ◦ α∗ − 1

2
β ◦ π ◦ α∗ − 1

2
α ◦ π ◦ β∗ − 1

2
α ◦ π ◦ β∗ − 1

2
β ◦ π ◦ α∗

= 0,

and the proof is complete. �

We are going now to present a formula for the geodesics in G(E) with arbitrary initial
conditions. Let E be a real Hilbert space.

4.5. For each ξ ∈ G(E) and η ∈ Tξ(G(E)), there exists a smooth map f : R → G(E)
defined by

f(t) =
1

2
(Id+ (2ξ − Id) ◦ cos(2tη) + sin(2tη))

and f is a geodesic of G(E) that verifies f(0) = ξ and f ′(0) = η.

Proof. We note first that, from 3.7(f), we conclude that (2ξ−Id) commutes with cos(2tη)
and anti-commutes with sin(2tη). It is now trivial that f(t) is self-adjoint and, noting
that (2ξ − Id) ◦ (2ξ − Id) = Id and

cos(2tη) ◦ cos(2tη) + sin(2tη) ◦ sin(2tη) = Id,

we obtain

f(t) ◦ f(t) =
1

4
(Id+ (2ξ − Id) ◦ cos(2tη) + sin(2tη) + (2ξ − Id) ◦ cos(2tη)

+(2ξ − Id) ◦ cos(2tη) ◦ (2ξ − Id) ◦ cos(2tη) + (2ξ − Id) ◦ cos(2tη) ◦ sin(2tη)

+ sin(2tη) + sin(2tη) ◦ (2ξ − Id) ◦ cos(2tη) + sin(2tη) ◦ sin(2tη))

=
1

4
(Id+ (2ξ − Id) ◦ cos(2tη) + sin(2tη) + (2ξ − Id) ◦ cos(2tη)

+ cos(2tη) ◦ cos(2tη) + sin(2tη) + sin(2tη) ◦ sin(2tη)) = f(t),
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whence we conclude that f(t) ∈ G(E). Next we see that

f ′(t) =
1

2
(− 2(2ξ − Id) ◦ sin(2tη) ◦ η + 2 cos(2tη) ◦ η)

= ( cos(2tη)− (2ξ − Id) ◦ sin(2tη)) ◦ η,

in particular f ′(0) = η. Next we obtain

f ′′(t) = (− 2 sin(2tη)− 2(2ξ − Id) ◦ cos(2tη)) ◦ η2.

On the other side, remembering 3.7(f), we have

f ′(t) ◦ f ′(t) = cos(2tη)2 ◦ η2 − cos(2tη) ◦ η ◦ (2ξ − Id) ◦ sin(2tη) ◦ η
−(2ξ − Id) ◦ sin(2tη) ◦ η ◦ cos(2tη) ◦ η
+(2ξ − Id) ◦ sin(2tη) ◦ η ◦ (2ξ − Id) ◦ sin(2tη) ◦ η

= cos(2tη)2 ◦ η2 + (2ξ − Id) ◦ cos(2tη) ◦ sin(2tη) ◦ η2

−(2ξ − Id) ◦ sin(2tη) ◦ cos(2tη) ◦ η2

+(2ξ − Id) ◦ (2ξ − Id) ◦ sin(2tη)2 ◦ η2

= ( cos(2tη)2 + sin(2tη)2) ◦ η2 = η2,

and, using (4.2), we have now

θf(t)(f
′(t), f ′(t))

= (Id− 2f(t)) ◦ f ′(t) ◦ f ′(t) + f ′(t) ◦ f ′(t) ◦ (Id− 2f(t))

= (− (2ξ − Id) ◦ cos(2tη)− sin(2tη)) ◦ η2

+η2 ◦ (− (2ξ − Id) ◦ cos(2tη)− sin(2tη)) = f ′′(t),

whence we conclude that f is indeed a geodesic. �

4.6. Let E be a real Hilbert space. G(E) is then a symmetric space and, for each
π ∈ G(E), the symmetry Sym : G(E)→ G(E) with respect to π is defined by

Sym(ξ) = (Id− 2π) ◦ ξ ◦ (Id− 2π).

Proof. It is trivial that Sym(ξ) is a self-adjoint map and the fact that (Id−2π)◦(Id−2π) =
Id shows that Sym(ξ) ◦ Sym(ξ) = Sym(ξ), hence Sym(ξ) ∈ G(E). It is trivial to see
that Sym(π) = π and that Sym(Sym(ξ)) = ξ. We have

DSymξ(α) = (Id− 2π) ◦ α ◦ (Id− 2π),
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hence, remembering (4.2),

∇DSymξ(α, β) = (Id− 2π) ◦ θξ(β, α) ◦ (Id− 2π)− θSym(ξ)(DSymξ(β), DSymξ(α))

= (Id− 2π) ◦ (Id− 2ξ) ◦ β ◦ α ◦ (Id− 2π) + (Id− 2π) ◦ α ◦ β ◦ (Id− 2ξ) ◦ (Id− 2π)

−(Id− 2(Id− 2π) ◦ ξ ◦ (Id− 2π)) ◦ (Id− 2π) ◦ β ◦ (Id− 2π) ◦ (Id− 2π) ◦ α ◦ (Id− 2π)

−(Id− 2π) ◦ α ◦ (Id− 2π) ◦ (Id− 2π) ◦ β ◦ (Id− 2π) ◦ (Id− 2(Id− 2π) ◦ ξ ◦ (Id− 2π))
= (Id− 2π) ◦ β ◦ α ◦ (Id− 2π)− 2(Id− 2π) ◦ ξ ◦ β ◦ α ◦ (Id− 2π)

+(Id− 2π) ◦ α ◦ β ◦ (Id− 2π)− 2(Id− 2π) ◦ α ◦ β ◦ ξ ◦ (Id− 2π)

−(Id− 2π) ◦ β ◦ α ◦ (Id− 2π) + 2(Id− 2π) ◦ ξ ◦ β ◦ α ◦ (Id− 2π)

−(Id− 2π) ◦ α ◦ β ◦ (Id− 2π) + 2(Id− 2π) ◦ α ◦ β ◦ ξ ◦ (Id− 2π) = 0,

that is to say, Sym is a totally geodesic diffeomorphism. Now, if f : R → G(E) is a
geodesic with f(0) = π and f ′(0) = η, we have

f(t) =
1

2
(Id+ (2π − Id) ◦ cos(2tη) + sin(2tη)) ,

hence

Sym(f(t)) =
1

2
(Id− 2π) ◦ (Id+ (2π − Id) ◦ cos(2tη) + sin(2tη)) ◦ (Id− 2π)

=
1

2
(Id+ (Id− 2π) ◦ cos(2tη)− sin(2tη)) = f(−t),

and the proof is complete. �

5. The complex Grassman manifolds

Assume that E is a complex Hilbert space, whose inner product will always be denoted
by 〈, 〉C. Then E is also a real Hilbert space, with the inner product

〈x, y〉 = Re〈x, y〉C(5.1)

and the following two facts are trivial:

5.1. If F ⊂ E is a complex vector subspace, then the orthogonal projection π : E → F
is the same when we consider in E either the complex or the real inner product.

5.2. If ξ : E → E is a complex linear map, then the adjoint map ξ∗ : E → E is the same
when we consider E to be either a complex or a real Hilbert space.

We will denote by L(E;E) the vector space of all continuous real linear maps and by
LC(E;E) its vector subspace whose elements are the complex linear maps. In the case
where E is finite dimensional the Hilbert-Schmidt inner product that we will consider in
L(E;E) will be the one associated to the real structure of E and we will consider in the
closed subspace LC(E;E) the induced inner product.

If E is a complex Hilbert space, we will denote by GC(E) the set of the orthogonal pro-
jections onto closed complex vector subspaces, and we call GC(E) the complex Grassman
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manifold of E. G(E) will denote the real Grassman manifold of E, i.e. the Grassman
manifold of E, when considered as a real Hilbert space. It is trivial to conclude that

GC(E) = G(E) ∩ LC(E;E).(5.2)

All that has been said in Section 3 applies mutatis mutandis to the complex Grassman
manifolds, but one must be aware that GC(E) is only a real manifold within the complex
vector space LC(E;E). The essential reason for this is the fact that the map ξ → ξ∗ is
not C-linear, but it was natural to anticipate this because, in case E is finite dimensional,
GC(E) (like G(E)) is compact (because it is closed and bounded) and it is well known
that there exists no compact nontrivial complex submanifold of a complex vector space.

For each closed complex vector subspace F ⊂ E, we still have a diffeomorphism ψF :
UF → LC(F, F⊥), where UF is open in GC(E) and contains πF (cf. 3.4), hence:

5.3. If E has complex dimension N and F ⊂ E has complex dimension n, then the real
manifold GC(E) has dimension 2n(N − n) in πF .

The tangent vector space TπF (GC(E)) is contained in the real vector space LCsa(E;E),
whose elements are the self-adjoint complex linear maps and, for each η ∈ LCsa(E;E),
the fact that η ∈ TπF (GC(E)) is equivalent to each of the conditions (b) to (f) of 3.7; in
other words:

TπF (GC(E)) = TπF (G(E)) ∩ LC(E;E).(5.3)

Although GC(E) is only a real submanifold of LC(E;E), it admits a complex structure:

5.4. Let E be a complex Hilbert space. Then the real manifold GC(E) admits a complex
structure defined by the linear maps

Jξ : Tξ(GC(E))→ Tξ(GC(E)), Jξ(η) = iη ◦ (2ξ − Id).

For this structure the real diffeomorphisms ψF : UF → LC(F, F⊥) are in fact holomor-
phic.

Proof. To see that Jξ applies Tξ(GC(E)) into itself we use 3.7(f), remembering that (2ξ−
Id) ◦ (2ξ − Id) = Id and noting that

(iη ◦ (2ξ − Id))∗ = −i(η ◦ (2ξ − Id))∗ = −i(2ξ − Id) ◦ η = iη ◦ (2ξ − Id).

It is also trivial that Jξ(Jξ(η)) = −η. The fact that this almost complex structure is indeed
a complex one comes from the fact that the real diffeomorphisms ψF : UF → LC(F, F⊥)
are holomorphic; this is a simple consequence of the formula in 3.6,

DψF (ξ)(η) = η ◦ (πF |ξ(E))
−1 − (πF |ξ(E))

−1 ◦ πF ◦ η ◦ (πF |ξ(E))
−1,

the formula DψF (ξ)(Jξ(η)) = iDψF (ξ)(η) being a simple consequence of the fact that the
restriction of (2ξ − Id) to ξ(E) is the identity. �

Note that, in case E is finite dimensional, if we choose a complex orthonormal basis
x1, . . . , xN of E such that x1, . . . , xn is a basis of ξ(E), then, if η ∈ Tξ(GC(E)) has matrix[

0 A∗

A 0

]
, Jξ(η) has matrix

[
0 −iA∗

iA 0

]
.
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The considerations in 4.1-4.3 and (4.1)-(4.5) apply mutatis mutandis to the complex
Grassman manifolds and we have in particular a canonical symmetric connection in GC(E)
defined also by

θξ(η, α) = (Id− 2ξ) ◦ η ◦ α + α ◦ η ◦ (Id− 2ξ).(5.4)

This implies in particular that:

5.5. GC(E) is a totally geodesic submanifold of G(E). We see now that:

5.6. If E is a complex Hilbert space, then the morphism J = (Jξ), from the vector bundle
T (GC(E)) into itself, is parallel.

Proof. From Jξ(β) = iβ ◦ (2ξ − Id), we obtain

∇Jξ(α)(β) = 2iβ ◦ α + iθξ(β, α) ◦ (2ξ − Id)− θξ(iβ ◦ (2ξ − Id), α)

= 2iβ ◦ α + i(Id− 2ξ) ◦ β ◦ α ◦ (2ξ − Id) + iα ◦ β ◦ (Id− 2ξ) ◦ (2ξ − Id)

−i(Id− 2ξ) ◦ β ◦ (2ξ − Id) ◦ α− iα ◦ β ◦ (2ξ − Id) ◦ (Id− 2ξ)

= 2iβ ◦ α− iβ ◦ α− iα ◦ β − iβ ◦ α + iα ◦ β = 0.

�

In the case where the complex Hilbert space E is finite dimensional, we note that the
Hilbert-Schmidt inner product in L(E;E) is the real part of the complex inner product
(the one defined by (2.2) with 〈, 〉C instead of 〈, 〉) and we see that

〈Jξ(α), Jξ(β)〉 = 〈iα ◦ (2ξ − Id), iβ ◦ (2ξ − Id)〉 = 〈α ◦ (2ξ − Id), β ◦ (2ξ − Id)〉
= 〈α ◦ (2ξ − Id) ◦ (2ξ − Id), β〉 = 〈α, β〉,

hence:

5.7. If E is a finite dimensional complex Hilbert space, then GC(E) is a Kähler manifold.
We end with the remark that (4.7)-(4.10) and 4.4 work equally well in the complex

case, the usual notation for OC(E) being U(E) (the unitary group).
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