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GRASSMAN MANIFOLDS AS SUBSETS OF EUCLIDEAN SPACES
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FACULTY OF SCIENCES, UNIVERSITY OF LISBOA & CENTRO DE MATEMATICA E APLICA COES
FUNDAMENTAIS, AV. PROF. GAMA PINTO 2, 1049-008 LISBOA, PORTUGAL

1. INTRODUCTION

Let E be a Euclidean space. Following Palais, we identify each vector subspace F of E
with the orthogonal projection mp : E — F. In this way, the Grassman manifold G(FE)
of all vector subspaces of E appears as a submanifold of the Euclidean space L(E; E) of
all linear maps from F into E (with the Hilbert-Schmidt inner product). The aim of this
paper is to present some explicit formulas concerning the differential geometry of G(E)
as a submanifold of L(E; E). Most of these formulas extend naturally to the case where
FE is an infinite dimensional Hilbert space, although in this case there is no natural inner
product in L(FE; E).

2. NOTATION AND PRELIMINARIES

Let E and F' be finite or infinite dimensional Hilbert spaces. We will denote by L(E; F')
the vector space of all continuous linear maps from F into F. If £ € L(E; F), we will
denote by &* € L(F; E) its adjoint linear map, the one defined by the identity

(€(2),y) = (&, € (y))-

The following identities will be used quite often:
(2.1) " =& (mo&) =& on'; idy = idp.
A linear map £ € L(E; E) is self-adjoint if & = £. The map L(E; F) — L(F; E), £ — &,
is a real linear map (even if £ and F' are complex spaces, it is not a complex linear map)
and the set Ly, (E; E) of self-adjoint linear maps is a real vector subspace of L(E; F).

In case E or F is infinite dimensional, we will look on L(F; F') merely as a Banach

space (with the sup norm). In case E' and F are finite dimensional, we take in the finite
dimensional vector space L(F; F') the Hilbert-Schmidt inner product, defined by

(2.2) (Em) = D (&) nlzr),

1<k<n
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2 A. MACHADO, I. SALAVESSA

where x1, ..., x is an arbitrary orthonormal basis of . We will use the following identities
concerning these inner products,
(2.3) &m =W, (Apon) = (oA n) = {unoX).

The word “manifold” will always mean an embedded submanifold of some finite di-
mensional or Banach vector space B and the tangent vector spaces will be considered as
vector subspaces of the ambient vector space B. In fact, one can even define, for each
point a of an arbitrary subset M of B, a notion of tangent vector subspace T, (M), which
behaves well with respect to differentiability (see, for example, [2]). In the same spirit,
by vector bundle we will mean a vector sub-bundle of a constant one. A vector bundle
E with basis M will be a family (E,),cn, where each E, is a vector subspace of a fixed
finite dimensional or Banach vector space E, verifying the usual properties, and we will
use the same symbol E to denote the corresponding subset of M x E. It will be useful
to allow a vector bundle to have as basis an arbitrary subset M of a finite dimensional or
Banach vector space B.

If E = (E;)zenm is a vector bundle with E, C E, we identify a connection in E by its
second fundamental form at each point = € M, which is a bilinear map 6, : E, xT,(M) —
E such that

(2.4) (u, Oz (w,u)) € Tipw)(E).

For each smooth section W = (W,.),en of E, the covariant derivative VW, (u) is given
by the formula

(2.5) VW, (u) = DW,(u) — 0, (W, u).

If F is a Hilbert space, the metric connection of E is the one defined by the condition
that 6,(w,u) is orthogonal to the fibre E,; if 7, : E — E, is the orthogonal projection,
then © — 7, is a smooth map from M into L(E; E) and we have the following formula
for this connection,

(2.6) 0, (w, u) = Dy (u)(w).

We will use also the following characterization of the curvature tensor of a connection
0 in the vector bundle £ = (FE,)zenm, where M C B is a manifold and £, C E: assuming
that z — 6, is a smooth map from M into the space L(FE, B; E) of bilinear maps, such
that each 6, is a restriction of éz, the curvature tensor is the trilinear map

Ry : Tpo(M) x T,(M) x E, — E,
defined by
(277)  Ry(u,v,w) = DO, (u)(w,v) — DOy(v)(w,w) + 0,0, (w, u), v) — Oy (0,(w, v), u).

3. THE GRASSMAN MANIFOLDS

Let E be a finite or infinite dimensional real Hilbert space. For each closed vector
subspace ' C E, we will denote by mr the orthogonal projection from E onto F. We
have hence a natural bijective map between the set of closed vector subspaces of £ and
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the set of orthogonal projections. We will denote by G(F) the subset of L(E; E) whose
elements are the orthogonal projections onto closed subspaces, and we will call G(F) the
Grassman manifold of E. The fact that G(E) is indeed a manifold is proved in Akin [1],
who attributes this result to Palais (unpublished preprint), but we will sketch here an
independent proof.

The following characterization of the elements of G(E) is well known:

3.1. Alinear map £ € L(E; E) belongs to G(E) if and only if it is self-adjoint and verifies
gof=¢.

We can consider a morphism from the constant vector bundle Eg(gy, with basis G(E)
and fibre F, into itself, associating to each £ € G(F) the linear map & : E — E. The fact
that the image of an idempotent morphism is a vector bundle allows us to state:

3.2.  There exists a tautological vector bundle with basis G(FE), whose fibre in each 7p is
F.
Using formula (2.6) for the metric connection, we deduce:

3.3. The metric connection of the tautological vector bundle is defined by

Oc(w,n) = n(w),
for each £ € G(F), w € £(F) and n € T¢(G(E)).

As a corollary of the local constancy of the dimension of the fibres of a vector bundle,
we see that, for each n, the subset G, (FE) of G(E), whose elements are the 7 such that
F' is n-dimensional, is open in G(E).

Let F' C FE be a fixed closed vector subspace. It is a well known simple linear algebra
result that, for each closed vector subspace G C FE, the following two properties are
equivalent:

(a) E=FtoG (direct sum);
(b) 7F|c is an isomorphism from G onto F'

and that, if they are verified, the projection £ — G associated to the direct sum is
(mr|g) ' omp. To each a € L(F; F1) we associate its graphic G = {x + a(z)},er, which
is a closed vector subspace of E verifying the conditions above. Inversely, for each closed
vector subspace G C E verifying the conditions above, there exists one and only one
a € L(F; F+) whose graphic is G, namely o = 7p1 o (7r|g) .

We will use the preceding well-known considerations in the proof of the following result:

3.4. Let E be a real Hilbert space and let F C E be a closed vector subspace. Let
Ur C G(E) be the set of the orthogonal projections & € G(F) such that E = F* @ £(E).
Then U is an open subset in G(F), containing 7p, and there exists a diffeomorphism
Yr : Up — L(F; F'), defined by ¢p(£) = mp1 o (7p|er) ™", that verifies ¢p(mp) = 0.

Proof. The considerations before the statement show that g is a bijective map from Up
onto L(F; F1), whose inverse w;l . L(F; F+) — Up associates to each a the orthogonal
projection onto the closed vector subspace {x + a(x)}.cp. All we have to show is that
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Ur is open in G(FE) and that both ¥r and @D}l are smooth maps. For that, we consider
the morphism from the tautological vector bundle ({(£))¢cq (k) into the constant vector
bundle Fg gy whose value at § € G(E) is mplem) : £(£) — F; the fact that £ € Up if
and only if the "fibre” of the morphism at £ is an isomorphism implies that Ur is open in
G(E); taking the restrictions of the vector bundles to U, the fact that the inverse of a
(smooth) isomorphism is smooth implies that the map Uy — L(F; E), £ = (mplem)) " is
smooth, hence ¢ : Up — L(F; F1) is also smooth. Now, we have an injective morphism
from the constant vector bundle Fy,p p1) into the constant vector bundle Eyp 1y, whose
fibre at a € L(F,Ft) is the linear map F — E, © — x + a(r), hence the image of
this morphism is a vector bundle with basis L(F; F1) and this implies that the map
Yyt L(F, F*) — L(E; E) is smooth. O

As a corollary, we have:

3.5. If E is a real Hilbert space, then G(F) is a manifold in L(E;E). If E is N-
dimensional and F' C E is n-dimensional, then the dimension of G(E) at mp is n(N —n).

3.6. Let E be a real Hilbert space, F' C E be a closed vector subspace and ¢z : Up —
L(F, F*) be the diffeomorphism defined in 3.4. For each £ € Ur and n € T¢(G(E)), we
have

Dyp(€)(n) = no(telem)™ — (Trlem) ™ o mron o (Trlem) ™
In particular, DY r(§)(n) = n|F.

Proof. Let ¢p : Up — L(F; E) be the smooth map defined by ¢p(€) = (mrlerm)) " (see
the proof of 3.4). Let w € F arbitrary. Differentiating the identity mr(¢r(&)(w)) = w,
we obtain

mr(D¢r(&)(n)(w)) =0,
hence Dgr(€)(n)(w) € F*. On the other hand, we have a smooth section of the tautolog-
ical vector bundle (§(E))ccq(r) associating to each &, ¢p(€)(w); its covariant derivative
with respect to the metric connection, which, by (2.5) and 3.3, is equal to

Dor(€)(n)(w) —n(dr(&)(w)),
must hence belong to £(E). We can now conclude that Dor(€)(n)(w) is the projec-
tion of 7(¢r(€)(w)) onto F+ associated to the direct sum E = F* @ ¢(FE). The fact

that Gr(E)(w) = mp (Gr(€)(w)) shows that Dur(E)(n)(w) = mre (Dr(€)(w)), hence
Dypp(€)(n)(w) is also the projection of n(¢r(£)(w)) onto F- associated to the direct sum

E = F @ ¢(FE) and, by the considerations made before 3.4, this projection is equal to

N ((mrleey) ™ (w)) = (Telem) ™ (me((Trler) ™ (w)))) -

To show that Dyp(mr)(n) = n|r it will be enough to know that each n € T, .(G(E)) maps
F into F*. To see this, we differentiate the identity £of = ¢ and obtain norp+mpon = 1,
hence nonmp =n — mp on = mpL on and the proof is complete. UJ

We present now several equivalent characterizations of the tangent vector spaces to

G(E).
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3.7. Let E be a real Hilbert space and let F' C E be a closed vector subspace. The
tangent vector space T, (G(F)) is then contained in the vector space Ly, (E; E) of self
adjoint maps and, for each n € Ly, (E; E), the following conditions are equivalent:

(a) 1€ Tr (G(E));
b) n(F)c Ftand n(Ft) C F;

—
~— ~—— —  —

(¢c) nomp+mron=mn;
(d T]O’T('F:([d—ﬂ'F)OT];
e) no(ld—mp)=mpon;

—

f) no(2rp —I1d)=—2np —Id)on.

Proof. The fact that each T,(G(F)) is contained in Ly, (E; E) is a consequence of the
fact that G(E) C Ly (E; E). The equivalence between the four last conditions is trivial.
Assuming (a), we obtain (c¢) simply by differentiating the identity £ o £ = £ at 7p in the
direction of 1. Tt is readily seen that condition (d) implies that n(F) C F* and that
condition (e) implies that n(F+) C F (Id — mp = mp1). Let us prove now that condition
(b) implies condition (a). The fact that ¢r is a diffeomorphism from the open set Up in
G(E) onto L(F; F*+) implies that Dyp(nr) : Ty, (G(E)) — L(E; F1) is an isomorphism.
We can hence take ' € T,,.(G(F)) such that

nlr = DYe(mr)(n) =1'|F.

Then 7' is self-adjoint and verifies condition (b), hence 1|1 : F+ — F is the adjoint map
ton|p: F — F* and n|pL : F+ — F is the adjoint map to n|p : F — F*. We deduce
now that n/|z1 = n|zr, hence n =1’ and the proof is complete. O

Remark. To feel what is happening, assume that E is finite dimensional and take an
orthonormal basis z1,...,zy of E, whose first n vectors constitute a basis for F'. Then
the matrices of 7p, id — mp and 27mp — Id are respectively

Id 0O 0 0 Id 0

0 0 0 Id 0 —Id
and condition (b) says that the elements of Ty, (G(F)) are the linear maps whose matrix
has the form

0 A*
A 0 |
4. THE DIFFERENTIAL GEOMETRY OF GRASSMAN MANIFOLDS

4.1. Let F be a real Hilbert space and let I' C E be a closed vector subspace. For each
n € Ls(F; E) the following conditions are then equivalent:

(a) n(F)C F and n(F+) Cc F
(b) nomp=mpomn;
(¢) no(Ild—mp)=(Id—mFp)on.
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We will denote by T,.(G(E))* the set of self-adjoint linear maps n € Ly, (E; E) verifying
the preceding conditions.

Proof. The fact that (b) and (c) are equivalent is trivial. It is readily seen that (b)
implies n(F) C F and that (c) implies n(F+) C F*. Assuming (a), one sees that 7 o
7p(z) = n(z) = npon(z) for x € F and nomp(xr) = 0 = mp on(z) for x € F*, hence
nornp(x) =g on(x) for arbitrary x and (b) is proved. O

4.2. Let E be a real Hilbert space and let F' C E be a closed vector subspace. Then
L. (E; E) is the direct sum of the closed vector subspaces Ty, (G(FE)) and T, (G(E))*
and the projections @y, : Ly (E; E) = Tr, (G(E)) and Ty, : Ly(E; E) — Tr (G(E))*
associated to this direct sum are defined by

Tap(n) = (Id —7Tp)ononp +mrono (Id—7r),

7t (n) = (Id—7p)ono(Id—7p)+mronomp.

TF

Proof. Conditions (a) of 4.1 and (b) of 3.7 show that the intersection T, .(G(FE)) N
T..(G(E))* is {0}. It is readily seen that, for each n € Ly (E;E), Trp(n) applies F

into F+ and F* into F and 7, (1) applies F into F' and F* into F*, hence ., (1) €
Tr.(G(E)) and 7x (1) € Tr.(G(E))*. All we have to note now is that, for each 7,

T () + T (0) = 1. O

4.3. If F is a finite dimensional real Hilbert space and if we consider in Ly, (F; E) the
Hilbert-Schmidt inner product, then, for each vector subspace F' C FE, the subspaces
T, .(G(E)) and T, (G(E))* of Ly (E; E) are mutually orthogonal, hence each one is the
orthgonal complement of the other.

Proof. Assume n € T,,.(G(E)) and ' € T,,.(G(E))*. Choose an orthonormal basis

x1,...,ory of E such that the first n vectors constitute a basis of F' and the last N —n
vectors constitute a basis of F'+. Conditions (b) of 3.7 and (a) of 4.1 assure that, for each
1<k <N, (n(zg),n (xr)) =0, hence (n,n') =0 ( cf. (2.2)). O

The preceding result explains why we employ the notation T}, (G(E))* and 7.

If F is a finite or infinite dimensional real Hilbert space we will define the canonical
connection in the manifold G(FE) as the one that verifies the condition that 6, (n,«)
belongs to the kernel Ty, (G(E))* of the linear map 7, : Ly (E; E) — Ty, (G(E)), for
each n and « in T,,(G(FE)). In an analogous way to that used in the case of a metric
connection, it is easily seen that this connection is symmetric and also is defined by the
formula

(4.1) Or (1, @) = Dtz () (1)

This is the connection that we will always consider in the Grassman manifold G(E).
Of, course, in case F is finite dimensional, this connection is the metric connection with
respect to the Hilbert-Schmidt inner product.
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We can obtain a more explicit formula for the connection on G(E) by calculating the
derivative in (4.1), using the formula in 4.2, T¢(n) = (Id —&)ono&+Eono(Id—¢). This
gives
Oe(n,a) = —aonog+(Id—g) onoa+acnc(ld—§) —Eonoa,

(4.2) (Id—2¢)onoa+aono (ld—2¢).

Let us now obtain, using (2.7), two formulas for the curvature, the first for the metric
connection of the tautological vector bundle, and the second for the canonical connection

of the Grassman manifold. In the first case, we take ¢ (w,n) = n(w) for each w € E and
n € L(E; E) (cf. 3.3) obtaining

(43) R§<057 67 U}) = ﬁ(&(w» - a(ﬂ(w))

for each @ and § in T¢(G(E)) and w € &(E). In the second case, we take éf(n,a) =
(Id—2&)onoa+aono(Ild—2£) and obtain, noting that (Id —2¢) o (Id —2¢) = Id and
that, by 3.7(f), Id — 2§ commutes with the composite of any two elements of T¢(G(E)),

(4.4) Re(a, B,m) =nmoaof—nofoa+foaon—aocfon.
Assuming that E is finite dimensional, we obtain, for the sectional curvatures:
(4.5) Riem(, 8) = (Re(a, B, ), B) = 2(ao B, a0 f) — 2{ao B, B0 ).

To prove it, all we have to do is to apply the formulas in (2.3), remembering that o and
g are self-adjoint. The fact that (a o §)* = o a implies that ao § and o a have the
same norm and we can hence apply Cauchy-Schwartz to conclude that Riemg(a, 5) > 0
and Riemg (o, ) =0 if and only if o f = foa.

One can also establish easily the following formula for the Ricci curvature:

N -2
{0, f)

(4.6) Riccig(a, B) =

where N is the dimension of E.

Grassman manifolds (or, more precisely, their connected components) are sometimes
represented as homogeneous spaces of the orthogonal group. The following considerations
will compare this approach with the one we are using.

Let E be a real Hilbert space and let O(E) C L(E; E) be the orthogonal group, i.e. the
set of the toplinear isomorphisms ¢ : £ — E such that £* = ¢!, It is well known that
O(F) is a manifold (a Lie group) and that, for each £ € O(E) and a € L(E; E), we have

(4.7) a € T(O(F)) if and only if a*0&+ & oa =0.

In the case where E is finite dimensional, the Riemann structure in O(F) induced
by the Hilbert-Schmidt inner product is readily seen to be bi-invariant. The orthogonal
projections m¢ : L(E; E) — T¢(O(E)) are defined by

(4.8) () = %(A—go)\*og).
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Even in the case E is infinite dimensional, we define projection maps ¢ : L(E; E) —
Te(O(E)) by formula (4.8) and we have an associated symmetric connection in O(E)
defined by the bilinear maps 0 : T¢(O(E)) x T¢(O(E)) — L(E; E),

1 * *
(4.9) e (v, B) :Dﬁg(ﬁ)(a):—é (Boa*o&+Eoaof).

Of course, in the finite dimensional case, this will be the metric connection.

Now assume that E is a finite or infinite dimensional real Hilbert space and H C FE is a
fixed closed vector subspace. We can define a smooth map ¢ : O(E) — G(E) associating
to each £ € O(F) the orthogonal projection onto {(H); denoting by = : E — H the
orthogonal projection, it is easy to see that we have
(4.10) () =fomog"

Although ® is not a totally geodesic map, we can nevertheless state:

44. ®:0(F)— O(F) has totally geodesic fibres and, in case E is finite dimensional, is
a Riemannian submersion.

Proof. The derivative linear map D®; : T¢(O(F)) — To)(O(E)) is defined by
D®¢(a) =aomol  +Eomoal.
Given o € T¢(O(FE)) and 8 € Toe)(O(G(E)) arbitrary, we obtain, using (4.7), 3.7(c)
and (2.3),
(D&¢(a),B) = (womof,f)+ ({omoa’,f)
= <OZO7TO£*76>+<_§OWO€*OQO§*76>
(a,Bofom) +{a,—{omo ofok)
= (a,fofom—pBof+fofom = (a280fom—[of),
where, using (4.7), we can see that 20ofom— o0& € T¢(O(E)). Hence, the adjoint linear
map D®f : Ty(e)(O(E)) — Te(O(E)) is defined by
D@Z(ﬁ) =2Bo0fom— ok
It is not difficult to verify now that
Do(D(B)) = B,
which means precisely that ® is a Riemannian submersion.
Let £ € O(F) and let O,(E) be the fibre of ® over ®(£). To prove that O,(F) is a totally
geodesic submanifold of O(E), all we have to see is that, for each a and § in T¢(O,(E)),

we have (3, 0¢(c, 8)) € Ti¢,a)(T(O,(E))), where 6 is the connection on O(F). Using the
formula for D®;, we see that the fact that o and 8 are in T¢(O,(E)) is equivalent to

aomol +€omoa™=0, Pfomol +fomof =0

and, using the same formula, one concludes easily that, if (8,\) € Ti¢ o)(T(O(E))), then
(5, 3) € Tieoy (T(Oo(E)) i and only if

aomofff+fomoa" "+ ool +Eomo N =0.
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Now, using formula (4.9) for 0¢(c, f) and the characterization of T¢(O(E))given in 4.7,
we obtain

aomoff 4+ fomoa’+b0c(a,B)omol  +Eomobe(a, )"
= aomof*+fBomoa”
1 1
_5(5004*of+5oa*oa*oﬁ)o7ro§*—ifoW(f*oaoﬁ*—{—ﬁ*oaof*)
1 1
= aowoﬁ*+5o7roa*—|—Eﬁog*oaowo§*+§aof*oﬁo7ro§*
1 1
+§§o7rooz*o§oﬁ*—|—550705*050@*
= aomof 4+ fomoa —§ﬂo7roa —iaO’]TOﬂ —5a07roﬁ —EﬁoWoa
= O’
and the proof is complete. O

We are going now to present a formula for the geodesics in G(FE) with arbitrary initial
conditions. Let E be a real Hilbert space.

4.5. For each £ € G(E) and n € T¢(G(E)), there exists a smooth map f : R — G(E)
defined by

Ft) = %(Id + (2 — Id) o cos(2tn) + sin(2tn))
and f is a geodesic of G(F) that verifies f(0) = £ and f/(0) =n.

Proof. We note first that, from 3.7(f), we conclude that (2§ — Id) commutes with cos(2tn)
and anti-commutes with sin(2¢n). It is now trivial that f(¢) is self-adjoint and, noting
that (2§ — Id) o (26 — Id) = Id and
cos(2tn) o cos(2tn) + sin(2tn) o sin(2tn) = Id,
we obtain
1
ft)o f(t) = Z<Id + (2 — Id) o cos(2tn) + sin(2tn)  + (26 — Id) o cos(2tn)
+(2€ — Id) o cos(2tn) o (2§ — Id) o cos(2tn) + (2§ — Id) o cos(2tn) o sin(2tn)

+sin(2tn) + sin(2tn) o (26 — Id) o cos(2tn) + sin(2tn) o Sin@m))
- i (7 + (26 — 1d) o cos(2tn) + sin(2tn) + (2€ — Id) o cos(2tn)

+ cos(2tn) o cos(2tn) + sin(2tn) + sin(2tn) o sin(2tn)> = f(t),
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whence we conclude that f(t) € G(E). Next we see that

f'@) = %( — 2(2¢ — Id) o sin(2tn) o n + 2 cos(2tn) o 77)

— (cos(2tn) — (2¢ — Id) osin(2tn)) o,

in particular f’(0) = 7. Next we obtain

() = ( — 2sin(2tn) — 2(2¢ — Id) o cos(2t77)) on?
On the other side, remembering 3.7(f), we have

f'(t)o f'(t) = cos(2tn)? on® — cos(2tn) ono (2 — Id) osin(2tn) on
—(2¢ — Id) o sin(2tn) on o cos(2tn) on
+(2€ — Id) o sin(2tn) oy o (2§ — Id) o sin(2tn) on
= cos(2tn)? o n* + (2¢ — Id) o cos(2tn) o sin(2tn) o n?
—(2¢ — Id) o sin(2tn) o cos(2tn) o n?
(26 — 1d) o (26 — Id) o sin(2tn)? o 1
= (cos(2t7])2 + sin(2tn)2) on® = 1%

and, using (4.2), we have now

Oy (f'(2), [ (1)
= (Id=2f(t)) o f/(t) o f'(t) + f'(t) o f'(t) o (Id — 2f(t))
= ( — (2 — Id) o cos(2tn) — sin(2tn)) on?
+n? o (= (26 — Id) o cos(2tn) —sin(2tn)) = f'(1),

whence we conclude that f is indeed a geodesic. 0

4.6. Let E be a real Hilbert space. G(FE) is then a symmetric space and, for each
7 € G(E), the symmetry Sym : G(E) — G(E) with respect to 7 is defined by

Sym(§) = (Id — 2w) o £ o (Id — 2m).
Proof. 1t is trivial that Sym/(&) is a self-adjoint map and the fact that (Id—2m)o(Id—27) =
Id shows that Sym(&) o Sym(§) = Sym(§), hence Sym(§) € G(F). It is trivial to see
that Sym(m) = m and that Sym(Sym(&)) = £. We have

DSyme¢(a) = (Id — 2m) oo (Id — 2m),
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hence, remembering (4.2),
VDSyme(a, §) = (Id — 21) 0 0¢(8, ) o (Id — 27) — Osymie)(DSyme(3), DSyme()
= (Id—2m)o(Id—28)ofoao(ld—2m)+ (Id—2m)oaofo(ld—2¢) o (Id—2m)
—(Id—2([d—27r)o§o(]d—27r))o(]d—27r)oﬁo(Id—27r)o(]d—27r)oao(]d—27r)
—(Id —27) oo (Id — 27) o (Id — 27) 0 B o (Id — 2) o (Id — 2(Id — 27) 0 £ o (Id — 2r))
= (Id—2m)ofoao(ld—2mr)—2(Id—2m)ofofoao (ld—2m)
+(Id —2m)oaofo(Id—2mw)—2(Id—2m)oao oo (Id—2m)
—(Id—2m)oPoao(ld—2m)+2(Id—2r)ofofowao(ld—2m)
—(Id—2m)oaofo(ld—2r)+2(Id—2r)oaofolo(ld—2m) = 0,
that is to say, Sym is a totally geodesic diffeomorphism. Now, if f : R — G(F) is a
geodesic with f(0) = 7w and f’(0) = 7, we have
1

f(t) = 5 (Id+ (2m — Id) o cos(2tn) + sin(2tn)) ,

hence

Sym(f(t) = %(Id “9m)o (Id+ (27 — Id) o cos(2tn) + sin(2en) ) o (Id — 27)

= %(Id + (Id — 27) o cos(2tn) — sin(2t77)) = f(=1),

and the proof is complete. O

5. THE COMPLEX GRASSMAN MANIFOLDS

Assume that F is a complex Hilbert space, whose inner product will always be denoted
by (,)c. Then E is also a real Hilbert space, with the inner product

(5.1) (x,y) = Re(x,y)c

and the following two facts are trivial:

5.1. If F C FE is a complex vector subspace, then the orthogonal projection 7 : £ — F
is the same when we consider in F either the complex or the real inner product.

5.2. If¢: E — FEis a complex linear map, then the adjoint map £* : E — E is the same
when we consider F to be either a complex or a real Hilbert space.

We will denote by L(E; E) the vector space of all continuous real linear maps and by
Lc(E; E) its vector subspace whose elements are the complex linear maps. In the case
where F is finite dimensional the Hilbert-Schmidt inner product that we will consider in
L(E; E) will be the one associated to the real structure of £ and we will consider in the
closed subspace L¢(E; E) the induced inner product.

If E is a complex Hilbert space, we will denote by G¢(E) the set of the orthogonal pro-
jections onto closed complex vector subspaces, and we call G¢(FE) the complez Grassman



12 A. MACHADO, I. SALAVESSA

manifold of E. G(FE) will denote the real Grassman manifold of F, i.e. the Grassman
manifold of £, when considered as a real Hilbert space. It is trivial to conclude that

(5.2) Ge(E) = G(E) N Le(E; E).

All that has been said in Section 3 applies mutatis mutandis to the complex Grassman
manifolds, but one must be aware that G¢(E) is only a real manifold within the complex
vector space L¢(E; E). The essential reason for this is the fact that the map £ — &* is
not C-linear, but it was natural to anticipate this because, in case F is finite dimensional,
Ge(F) (like G(F)) is compact (because it is closed and bounded) and it is well known
that there exists no compact nontrivial complex submanifold of a complex vector space.

For each closed complex vector subspace F' C E, we still have a diffeomorphism vp :
Ur — Le(F, F*), where Uy is open in G¢(E) and contains 7 (cf. 3.4), hence:

5.3. If F has complex dimension N and F' C E has complex dimension n, then the real
manifold G¢(F) has dimension 2n(N —n) in 7p.

The tangent vector space T;,.(Gc(E)) is contained in the real vector space Lesa(E; E),
whose elements are the self-adjoint complex linear maps and, for each n € Lcg(F; E),
the fact that n € T,.(Gc(F)) is equivalent to each of the conditions (b) to (f) of 3.7; in
other words:

(5:3) T (Ge(E)) = Trp (G(E)) N Le(E; B).
Although G¢(F) is only a real submanifold of L¢(F; E), it admits a complex structure:

5.4. Let E be a complex Hilbert space. Then the real manifold G¢(E) admits a complex
structure defined by the linear maps

Je : Te(Ge(E)) = Te(Ge(E)),  Je(n) =ino (2§ — Id).

For this structure the real diffeomorphisms ¢p : Up — L¢(F, F1) are in fact holomor-
phic.
Proof. To see that J¢ applies T¢(G¢(E)) into itself we use 3.7(f), remembering that (2£ —
Id) o (2§ — Id) = Id and noting that

(in o (26 — Id))* = —i(no (26 — Id))* = —i(26 — Id) o1 = in o (26 — Id).
It is also trivial that Je(Je(n)) = —n. The fact that this almost complex structure is indeed
a complex one comes from the fact that the real diffeomorphisms vp : Up — Le(F, FL)
are holomorphic; this is a simple consequence of the formula in 3.6,
Dp(&)(n) = no (telem) ™ — (Trlem) ™ o mr ono (mrlem)

the formula Dy (&) (Je(n)) = iDYr(€)(n) being a simple consequence of the fact that the
restriction of (26 — Id) to £(F) is the identity. O

Note that, in case F is finite dimensional, if we choose a complex orthonormal basis
x1,...,xx of E such that z1,...,z, is a basis of {(E), then, if n € T¢(Gc(£)) has matrix

0 A" . 0 —iA”
[A 0],J§(n)hasmatrlx{m I }
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The considerations in 4.1-4.3 and (4.1)-(4.5) apply mutatis mutandis to the complex
Grassman manifolds and we have in particular a canonical symmetric connection in G¢(E)

defined also by

(5.4) Oe(n, o) = (Id —2§) onoa+aono (Id— 2¢).

This implies in particular that:

5.5. Gc(F) is a totally geodesic submanifold of G(E). We see now that:

5.6. If E'is a complex Hilbert space, then the morphism J = (Jg), from the vector bundle
T(G¢(E)) into itself, is parallel.
Proof. From J¢(B) =i o (2§ — Id), we obtain
VJe(a)(B) = 2iBoa+ib(B,a)o (26 —Id) — ¢(if o (26 — Id), )
= 2ifoa+i(ld—2§)ofoao (26 —1d)+iaofo(Id—28) o (26 — Id)
—i(ld—2) oo (26 —Id)oa —iao o (26— 1Id)o (Id— 2§)
= 2ifoa—ifoa—ianof —ifoa+iaoS = 0.
O

In the case where the complex Hilbert space E' is finite dimensional, we note that the
Hilbert-Schmidt inner product in L(F; F) is the real part of the complex inner product
(the one defined by (2.2) with (, )¢ instead of (,)) and we see that

(Je(a), Je(B)) = (iao (26— Id),ifo (26 —1d)) = (o (26— Id),Bo (2 — Id))
= (ao(26—1Id)o (26— 1Id),5) = (a.p),
hence:
5.7. If E is a finite dimensional complex Hilbert space, then G¢(FE) is a Kahler manifold.

We end with the remark that (4.7)-(4.10) and 4.4 work equally well in the complex
case, the usual notation for O¢(F) being U(FE) (the unitary group).
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A MACHADO & I SALAVESSA
Grassman manifolds as subsets of Euclidean
spaces

1. INTRODUCTION

Let E be a Euclidean space. Following Palais, we identify each vector sub-
space F of E with the orthogonal projection wF:E + F. In this way, the
Grassman manifold G(E) of all vector subspaces of E appears as a submanifold
of the Euclidean space L(E;E) of all linear maps from E into E (with the
Hilbert-Schmidt inner product). The aim of this paper is to present some
explicit formulas concerning the differential geometry of G(E) as a submani-
fold of L(E;E). Most of these formulas extend naturally to the case where E
is an infinite dimensional Hilbert space, although in this case there is no
natural inner product in L(E;E).

2. NOTATION AND PRELIMINARIES

Let E and F be finite or infinite dimensional Hilbert spaces. We will denote
by L(E;F) the vector space of all continuous linear maps from E into F. If

£ € L(E;F), we will denote by £* € L(F;E) its adjoint linear map, the one
defined by the identity

<E(x),y> = <x,e*(y)>.
The following identities will be used quite often:
E¥% = B (nek)® = eRerifs id X = d. . (2.1)

A linear map £ € L(E;E) is self-adjoint if £* = £. The map L(E;F) - L(F;E),
E > £*, is a real linear map (even if E and F are complex spaces, it is not
a complex linear map) and the set Lsa{E;E) of self-adjoint linear maps is a
real vector subspace of L(E;F).

In case E or F is infinite dimensional, we will look on L(E;F) merely as
a Banach space (with the sup norm). In case E and F are finite dimensional,
we take in the finite dimensional vector space L(E;F) the Hilbert-Schmidt
inner product, defined by
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where XpsenosXy is an arbitrary orthonormal basis of E. We will use the
following identities concerning these inner products:

E,m> = <n*,£%>; O,p¥end> = {uod,n> = <uyn oa*>. (2:3)

The word "manifold" will always mean an embedded submanifold of some
finite dimensional or Banach vector space B and the tangent vector spaces
will be considered as vector subspaces of the ambient vector space B. In
fact, one can even define, for each point a of an arbitrary subset M of B,

a notion of tangent vector subspace Ta{M}, which behaves well with respect to
differentiability (see, for example, g?]). In the same spirit, by vector
bundle we will mean a vector sub-bundfe of constant one. A vector bundle E
with basis M will be a family (Ex)xEM’
a fixed finite dimensional or Banach vector space E, verifying the usual

where each Ex is a vector subspace of

properties, and we will use the same symbol E to denote the corresponding

subset of M x E. It will be useful to allow a vector bundle to have as basis

an arbitrary subset M of a finite dimensional or Banach vector space B.
IfE= (Ex}xEM is a vector bundle with E < E, we identify a connection

in E by its second fundamental form at each point x € M, which is a bilinear

map ex:Ex x TX(M) + E such that

(u,0,(w,u)) € T{x,w)(E)' (2.4)

For each smooth section W = (W )

e of E, the covariant derivative vwx(u) is

given by the formula
v, (u) = OW (u) - e (W ,u). (2.5)

If E 1s a Hilbert space, the metric connection 0f E is the one defined by

the condition that Bx(w,u) is orthogonal to the fibre Ex; if 'ITx:E - Ex is the
orthogonal projection, then x -+ Ty is a smooth map from M into L(E;E) and we
have the following formula for this connection:

Bx{w,u) = an(u)(w). (2.6)

We will use also the following characterization of the curvature tensor of

a connection 8 in the vector bund]e_E =GE where M =« B is a manifold

x)xEM’
86
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and E, © E : assuming that x - ﬁx is a smooth map from M into the space
L(E,B;E) of bilinear maps, such that each 6, is a restriction of ﬁx, the
curvature tensor is the trilinear map

RX:T;((M) % TX(M) P EX > Ex
defined by

R, (u,v,w) = Dﬁx(u)(w,v}-Dﬁx(v)(w,u)+6x(ex(w,U),V)-ﬁx(ex(w,VJ,u).

(2.7)

3. THE GRASSMAN MANIFOLDS

Let E be a finite or infinite dimensional real Hilbert space. For each closed
vector subspace F < E, we will denote e the orthogonal projection from E
onto F. We have hence a natural bijective map between the set of closed
vector subspaces of E and the set of orthogonal projections. We will denote
by G(E) the subset of L(E;E) whose elements are the orthogonal projections
onto closed subspaces, and we will call G(E) the Grassman manifold of E.
The fact that G(E) is indeed a manifold is proved in Akin [1], who attributes
this result to Palais (unpublished preprint), but we will sketch here an
independent proof.

The following characterization of the elements of G(E) is well known:

3.1. A linear map £ € L(E;E) belongs to G(E) if and only if it is self-
adjoint and verifies £ o g = .

We can consider a morphism from the constant vector bundle EG(E)' with
basis G(E) and fibre E, into itself, associating to each £ € G(E) the linear
map £:E -~ E. The fact that the image of an idempotent morphism is a vector
bundle allows us to state:

3.2. There exists a tautological vector bundle with basis G(E), whose fibre
in each TE ETES
Using formula (2.6) for the metric connection, we deduce:

3.3 The metric connection of the tautological vector bundle is defined by

eg(w,n} = niw),
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for each £ € G(E), w € £(E) and n € TE[G(E)).

As a corollary of the local constancy of the dimension of the fibres of a
vector bundle, we see that, for each n, the subset GH(E) of G(E), whose
elements are the TE such that F is n-dimensional, is open in G(E).

Let F < E be a fixed closed vector subspace. It is a well known simple
linear algebra result that, for each closed vector subspace G c E, the
following two properties are equivalent:

(ads EossEoig (direct sum);

(b) is an isomorphism from G onto F;

F/G

and that, if they are verified, the projection E - G associated to the direct
sum is (nF/G)-1-vF. To each o € L(F;Fl) we associate its graphic
G = {x + a(x)}xeF, which is a closed vector subspace of E verifying the
conditions above. Inversely, for each closed vector subspace G = E verify-
ing the conditions above, there exists one and only one ¢ € L(F;Fl) whose
graphic is G, namely o = TeL © (ﬂFXG)_1

We will use the preceding well-known considerations in the proof of the
following result:

3.4, Let E be a real Hilbert space and let F = E be a closed vector sub-

F< G(E) be the set of the orthogonal projections £ € G(E) such
that £ = F- @ £(E). Then Ue is an open subset in G(E), containing TEs and
there exists a diffeomorphism Ypilp +—L(F;Fl), defined by wF(E)E“Fl°(“F/g(Eﬂq,
that verifies wF(ﬂF) = 0.

space. Let U

Proof The considerations before the statement show that Vg is a bijective
map from U. onto L(F;Fl), whose inverse ¢F'1:L(F;Fi) - U associates to each
o the orthogonal projection onto the closed vector subspace {x + “(XJ]xeF'
A1l we have to show is that U. is open in G(E) and that both g and

¢;1 are smooth maps. For that, we consider the morphism from the tauto-
logical vector bundle (E(E))EEG(E) into the constant vector bundle FG(E)
whose value at £ € G(E) is WF/g(E):g(E) + F; the fact that £ € uF if and
only if the "fibre" of the morphism at £ is an isomorphism implies that uF
is open in G(E); taking the restrictions of the vector bundles to UF’ the

fact that the inverse of a (smooth) isomorphism is smooth implies that the
map Ug + L(F3E), €~ (WF/E(E))-1 is smooth, hence yp:U. + L(FsFY) is also
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smooth, Now, we have an injective morphism from the constant vector bundle
FL(F;Fi) into the constant vector bundle EL(F;FL), whose fibre at o €I_(F;Fl}
is the linear map F - E, X ~ x + a(x), hence the image of this morphism is
a vector bundle with basis L(F;FL) and this implies that the map
¢;1:L(F;Fl) > L(E;E) is smooth.

As a corollary, we have:

3.5. If E is a real Hilbert space, then G(E) is a manifold in L(E;E). If E
is N-dimensional and F = E is n-dimensional, then the dimension of G(E) at

e is n(N-n).

3.6, Let E be a real Hilbert space, F < E be a closed vector subspace and

¢F:uF +—L(F;FL) be the diffeomorphism defined in 3.4. For each g € uF and
n e TE(G(E))’ we have

-1 -1 &
D) (n) = molmep ()™ = Cmppp(py) emponelng e ggy)

In particular, DwF(nF)(n) = n/p

: ; ' 3 -1
Proof Let o il L(F;E) be the smooth map defined by @F(E) = ("F/g(E))

(see the proof of 3.4). Let w € F arbitrary. Differentiating the identity
HF(QF(E}(W}) = W, we obtain

wF(D¢F(£J(n)(w)) =0,

hence D@F(g)(n)(w) € F5. On the other hand, we have a smooth section of the
tautological vector bundle (E(E))EEG(E) associating to each &, @F(E)(w); its
covariant derivative with respect to the metric connection, which, by (2.5)
and 3.3, is equal to

DQF(E)(n)(W) 3 n(¢F(E)(W))s

must hence belong to £(E). We can now conclude that D@F(g)(n)(w} is the
projection of n(¢F(E](W)) onto F- associated to the direct sum E = F- @ £(E).
The fact that wF(g)(w) = nFL(éF(E](w}) shows that DwF(g)(q)(w) =

WFl(D¢ (£)(w)), hence DwF(g)(n)(w) is also the projection of n(¢F(£}(w))
i onto FE associated to the direct sum E = F ® £(E) and, by the considerations
made before 3.4, this projection is equal to
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= -1 g
(e gy)™ W) = (g (gy) ™ (rplnlng ) T ).

To show that DmF(wF)(n) = n/F it will be enough to know that each n € T1T (G(E))
F
maps F into FL. To see this, we differentiate the identity £ o £ = £ and

5N = MsiEE e n and the proof is

obtain nerE + M °n = M hence n o i F

complete.
We present now several equivalent characterizations of the tangent vector
spaces to G(E).

3.7. Let E be a real Hilbert space and let F = E be a closed vector sub-
space. The tangent vector space T. (G(E)) is then contained in the vector
F

space Lsa(E;E) of self adjoint maps and, for each n € Lsa(E;E), the following
conditions are eguivalent:
(a) ne T (G(E));
F
(b) n(F) e Ft and n(FY) < F;

fe) . s Te + Mo omn =mn3

o

() no m = (Idm) om

=Tk On;

(E) noe {Id"ﬁF) F

(f) N o (2m-1d) = -(2m.~Id)e n.

Proof The fact that each T, (G(E)) is contained in Lsa(E;E) is a consequence
of the fact that G(E) < Lsa(E;E). The equivalence between the four last
conditions is trivial. Assuming (a), we obtain (c) simply by differentiating
the identity £ o £ = € at e in the direction of n. It is readily seen that
condition (d) implies that n(F) < FL and that condition (e) implies that
H(Fl) e (Id—ﬂF = ﬂFl)' Let us prove now that condition (b) implies condi-
tion (a). The fact that Vg is a diffeomorphism from the open set Ue in G(E)
onto L(F;F) implies that DwF(ﬂF):T“F(G(E)) > L(E;FY) s an isomorphism. We

can hence take n' € oo (G(E)) such that
F

n/F . DwF(ﬂF)(n') = n'/F.

Then n' is self-adjoint and verifies condition (b), hence ”'/FL’Fl + F 18
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the adjoint map to ”I/F:F + FLoand n/FL:Fl'+ F is the adjoint map to n/F:F-+F%
We deduce now that ”I/Fl = ”/Fl , hence n = nn' and the proof is complete.

Remark. To feel what is happening, assume that E is finite dimensional and
take an orthonormal basis XpsenesXy of E, whose first n vectors constitute
a basis for F. Then the matrices of TEs Id—ﬁF and ZWF—Id are respectively

[1d 0] [o B] [Id u]

L 0 DJ |-U Id g =-Id
and condition (b) says that the elements of i (G(E)) are the linear maps
whose matrix has the form F

[U A*

A= "0 |

4. THE DIFFERENTIAL GEOMETRY OF GRASSMAN MANIFOLDS

4.1. Let E be a real Hilbert space and let F =« E be a closed vector subspace.
For each n € Lsa(E;E) the following conditions are then equivalent:

(a) n(F) < F and n(FY) c Fh

(b mom =m0 n;

() no (Id-mg) = (Id-rp) o m.

We will denote by T_ (G(E)) the set of self-adjoint linear maps nel,, (EE)
F

verifying the preceding conditions.

Proof The fact that (b) and (c) are equivalent is trivial. It is readily
seen that (b) implies n(F) = F and that (c) implies n(Fl) c Fh. Assuming (a),
one sees that n ° nF(x) = ri(x) = e © n(x) for x € F and n o nF(x} = ('

e © nlx) for x € FL, hence n ° wF(x} =g n(x) for arbitrary x and (b) is
proved.

4.2 Let E be a real Hilbert space and let F =« E be a closed vector subspace.
Then Lsa(E;E) is the direct sum of the closed vector subspaces T1T (G(E)) and

. ; -1 S
L (EE) TWF(G{E}) and 7+ L, (E3E)

15 (G(E))* and the projections 7
F

F

T (G(E)}l associated to this direct sum are defined by
F

iz
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=1
o

—
I

= (Id'"rrF) oS0 Fe S e °(Id'1TF]

1

(Id-7 ° °(Id-1TF} + T new

-1
T[TTF(ﬂ) F) F o F
Proof Conditions (a) of 4.1 and (b) of 3.7 show that the intersection

Tai (G(E)) i (G{E)) is {0}. It is readily seen that, for each
n E L (E E), W (n) applies F into FL and F- into F and ﬂ (n) applies F
F
into F and F- into F, hence m_ (ﬂ) € T. (G(E)) and T_ (n) € T (G(E))™.
F
A11 we have to note now is that for each n, ﬁ (n) + Wl (B) = h,
F e
4,3 If E is a finite dimensional real Hilbert space and if we consider in
L (E'E) the Hilbert-Schmidt inner product, then, for each vector subspace
F < E, the subspaces T_ (G(E)) and T_ (G(E))* of L ( ;E) are mutually
orthogonal, hence each gne is the ortﬁugona1 comp]ement of the other.

Proof Assume n € TWF(G(E)} and n' € THF(G{E})L. Choose an orthonormal
basis Xpseos XN of E such that the first n vectors constitute a basis of F
and the last N-n vectors constitute a basis of F'. Conditions (b) of 3.7
and (a) of 4.1 assure that, for each 1 £ k £ N, <n(xk, n (xk}> = 0, hence
a.n'> =0 (cf. (2.2)).

The preceding result explains why we employ the notation T (G(E))l
w“F' F

If E is a finite or infinite dimensional real Hilbert space we will define
the canonical connection in the manifold G{E) as the one that verifies the
condition that 6_ (n,o) belongs to the kernel TWF(G(E))l of the Tinear map
T :Lsa(E;E) + Twi(G(E)), for each n and o in T“F(G(E))' In an analogous way

F
to that used in the case of a metric connection, it is easily seen that this

connection is symmetric and also is defined by the formula

0, (n,0) = D7 (@)(n). (a.1)
F F

This is the connection that we will always consider in the Grassman mani-
fold G(E). Of, course, in case E is finite dimensional, this connection is
the metric connection with respect to the Hilbert-Schmidt inner product.

We can obtain a more explicit formula for the connection on G(E) by cal-
culating the derivative in (4.1), using the formula in 4.2,
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%E(n) = (Id-g) e n° &% £ ono (Id-E). This gives

—aen°g + (Id-g)ono q+ aone(ld-g) - £ ° n ° q,

GE(n,a)
: (4.2)
Bg(ﬂ,u) = (Id-2g)° n ° a * o ° n °(1d-28).
Let us now obtain, using (2.7), two formulas for the curvature, the first
for the metric connection of the tautological vector bundle, and the second
for the canonical connection of the Grassman manifold. In the first case,

we take ﬁg(w,n) = n(w) for each w € E and n € L(E;E) (cf. 3.3) obtaining

Re (o, 8,w) = Blalw)) - alp(w)), (4.3)
for each ¢ and g in T_(G(E)) and w € £(E). In the second case, we take
Qg{n,a} = (Id-2£) o n o a +a° n © (Id-2£) and obtain, noting that

(Id-2g) o (Id-2z) = Id and that, by 3.7(f), Id-2¢ commutes with the composite
of any two elements of TE(G(E}),

Rg(a,B,n) =nocoepneB°a*rfeacn=-ac°pomn. (4.4)

Assuming that E is finite dimensional, we obtain, for the sectional
curvatures:

Riemg(u,ﬂ) = <R_(o1sB50) s B> = 2<0a°B , aoB> - 2<0°B,Bo0 . (4.5)

3

To prove it, all we have to do is to apply the formulas in (2.3), remember-
ing that o and g are self-adjoint. The fact that (geg)* = 8 o o implies that
a o B and B o g have the same norm and we can hence apply Cauchy-Schwartz to
conclude that Rienléu,B} 2 0 and Riemg(a,B) = 0 if and only if @eB = Boa ,

One can also establish easily the following formula for the Ricci curvat-
ure:

Ricei (0,8) = E%E-<a,a>, (4.6)

where N is the dimension of E.

Grassman manifolds (or, more precisely, their connected components) are
sometimes represented as homogeneous spaces of the orthogonal group. The
following considerations will compare this approach with the one we are
using.

Let E be a real Hilbert space and let 0(E) = L(E;E) be the orthogonal
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group, i.e. the set of the toplinear isomorphisms £:E - E such that g* = 5_1.
It is well known that O(E) is a manifold (a Lie group) and that, for each
£ € (E) and o € L(E;E), we have

o € T,(0(E)) if and only if o* < £+ £% o o = 0. (4.7)

In the case where E is finite dimensional, the Riemann structure in 0(E)
induced by the Hilbert-Schmidt inner product is readily seen to be bi-invar-
iant. The orthogonal projections nE:L(E;EJ + TE(U(E}) are defined by

() =7 0= g e g) (4.8)

Even in the case E is infinite dimensional, we define projection maps
ﬂE:L(E;E) +*E(D(E)) by formula (4.8) and we have an associated symmetric

connection in 0(E) defined by the bilinear maps BE:T (0(E)) x TE(D(E))—+L(E;EL

2

8;(asB) = D (B)(a) = - %(Bca*o€+£°u*08). (4.9)

Of course, in the finite dimensional case, this will be the metric conn-
ection.

Now assume that E is a finite or infinite dimensional real Hilbert space
and H = E is a fixed closed vector subspace. We can define a smooth map
©:0(E) » G(E) associating to each £ € 0(E) the orthogonal projection onto
£(H); denoting by w:E - H the orthogonal projection, it is easy to see that
we have

o(g) = £ o m o £, (4.10)
Although ¢ is not a totally geodesic map, we can nevertheless state:

4.4, ¢:0(E) -~ G(E) has totally geodesic fibres and, in case E is finite
dimensional, is a Riemannian submersion.

Proof The derivative linear map Dﬁng(U(E)) - T¢(E1(G(E)) is defined by

Do (a) = omoE* + £ om o a*,

g

Given o € TE(D(E)] and BT
3.7(c) and (2.3),

¢(g)(G(E}} arbitrary, we obtain, using (4.7),
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1

DB (1) 8> = <aoTeL*,B> + <Eomonk 8>

<olemeE* B> + <-fomoE*eqeoL® B>

1}

Lo BoEom? + Loy~E°mOE*oBoE>

i

{oi,BoEom=BoE + Rofom> = {o,,2R°Eom=B°E>,

where, using (4.7), we can see that 2B°gem-Bef € Tg(G(E)). Hence, the

adjoint Tinear map D@E*:TQ(E)(G(E)] - TE(O(E)) is defined by

D@E*(B)=25°gon-s_ag.

It is not difficult to verify now that
D@E{D@g*(sl) = B,
which means precisely that ¢ is a Riemannian submersion.

Let £ € O(E) and let 0 (E) be the fibre of & over &(£). To prove that
GD(E}is.atota11y geodesic submanifold of 0(E), all we have to see is that,
for each o and B in Tg(oo(E))’ we have (B,Egtu,ﬁ)} € T(g,a)(T(Do(E)))’ where
eg is the connection of 0(E). Using the formula for D¢E’ we see that the
fact that o and B are 1n'TE(00(E}) is equivalent to

aemoE*+Eomoa*=0,Bomof*+Eoqopr=0

and, using the same formula, one concludes easily that, if (8,A) €
T(e o) (T(OCED)), then (8,3) € T(, ,(T(Q (E))) if and only if

o ° 0 RN B o s gk LA 6 s BN E Sam oo X =0,

Now, using formula (4.9) for 8_(a,B) and the characterization of TE{D(E))

£
given in 4.7, we obtain

demofB*+Bome a* +8 (a,B)ome E* + Eoqo SE(G,B)*

£
= °oTe B*q- BO-]TCI a*

- 1? (Bﬂﬂ*c£+£ua*oa*os)o»ﬂ-og* s %‘E“W“(E*QU‘-“B* + B*ogo E*)

=gomefl* + Bomoa*+ %’ BoE*opomoE* + %aog*oﬁnﬂoi* + -12£0Tr0u*°£°[3*
v %EcTrnB*OEOCC* = aoTof* + Bomon* - %Bawou*- %ﬂoﬂoﬁ* = %&01708*- %ﬂoﬂou‘*=ﬂ
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and the proof is complete.
We are going now to present a formula for the geodesics in G{E) with
arbitrary initial conditions. Let E be a real Hilbert space.

4,5, For each £ € G(E) and € Tg(G(E)J, there exists a smooth map
f:R -+ G(E) defined by

f(t) = %v(ld + (2&-1d)ecos(2tn) + sin(2tp))
and f is a geodesic of G(E) that verifies f(0) = g and f'(0) = n.

Proof We note first that, from 3,7(f), we conclude that 2£-I1d commutes
with cos(2tn) and anti-commutes with sin(2tn). It is now trivial that f(t)
is self-adjoint and, noting that (2z-Id)o(2z-1d) = Id and

cos(2tn)ocos(2tn) + sin(2tn)osin(2tn) = Id,

we obtain

f{t)yef{t) = %—(Id + (2e-1d)ecos(2tn) + sin(2tn) + (2e-1d)ocos(2tn)
+ (2£-1d)ecos(2tn)o(2&-1d)ecos(2tn)+(2£-1d)ocos(2tn)osin(2tn)

sin (2tn) + sin(2tn)o(2g-Id)ecos(2tn)+sin(2tn)esin(2tn))

E

%-(Id+(25—ld)ocos(2tn} + sin(2tn) + (2z-1d)ocos(2tn)

cos(2tn)ecos(2tn) + sin(2tn) + sin(2tn)esin(2tn)) = f(t),

+

whence we conclude that f(t) € G(E). Next, we see that
£1(t) = p{-2(2-Id)osin(2tn)e n+ 2 cos(2tn)en)
= (cos (2tn) - (2g-1d)-sin(2tn))on,
in particular f'(0) = n. Next, we obtain
£1(t) = (-2sin(2tn) - 2(2&-1d)cos(2tn)) o n°.
On the other side, remembering 3.7(f), we have
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fr{t)of'(t) cos(Ztn)zonz - c0s(2tn)on®(2z-1d)esin(2tn)en

]

(26-1d)esin(2tn)ono cos(2tn) o n

(2£-1d)esin(2tn) o n o (2£-1d)osin(2tn) o n

+

Joone ¥ (Ze-1d)veos(2tn)osin(2tn) & 2

cos(2tn

(Zg-ld)asin(Ztn)ocos(Ztn) ° r‘|2

(Zg-Id)o(Zg-Id)vsin(Ztn)z g nz

g

= (cos(Z'tn)2 + sin(th)z) o nZ = n2_

and, using (4.2), we have now

O (1) (F' (£),F (1))

= (Id=2f(t))of' (t)of' (L) + f'(t)of'(t)o(Id-2F(t))

= (-(2g-1d)ocos(2tn) - sin(2tn)) ° n2

2
+n °(-(2g-1d)ocos(2tn) - sin(2tn)) = F"(t),
whence we conclude that f is indeed a geodesic.

4.6. Let E be a real Hilbert space. G(E) is then a symmetric space and,
for each m € G(E), the symmetry Sym:G(E) -~ G(E) with respect to w is defined
by

Sym(g) = (Id-2q) o g o (Id-27w).

Proof It is trivial that Sym(g) is a self-adjoint map and the fact that
(Id-21) o (Id-27) = Id shows that Sym(g) o Sym(z) = Sym(z), hence

sym(¢) € G(E). It is trivial to see that Sym(w) = 7 and that
Sym(Sym(£)) = £. We have

D Symgfcc) = (Id-27) © o © (Id-27),
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hence, remembering (4.2),

vD Symg(a,B} (Id-ZwJoag(B,a)c(Id-Zw)—eSym(E)(DSyma(B),DSymg(a))

n

(Id-27)e(1d-2£)°goqe(Id-2q)+(1d-27)oacpe(Id-22) o (1d-27)

(Id-2(1d-2)oze(Id-27))o(1d-2)°Re (Id-2y)o(Id-2m) °qo(Id-2r)

(1d-2m)oqe(Id-27)o(Id-21)°g°(1d-27) o (Id=2(Id=27)£o (Id-27))

(Id-27)ogeqo(1d-27)

2(Id-27)ogepene(1d-27)

2(Id-2w)oqepege(Id-2m)

+

(Id-27)egope (1d-27)

1

+

(Id-27)epege(Id-27) 2(1d-2w)°€__°5°a°(1d-21‘r)

(Id-27)egogo(ld-27) + 2(Id—2'H)°C!°B°EO(Id-2?T) =0,

that is to say, Sym 1is a totally geodesic diffeomorphism. Now, if
f:R » G(E) is a geodesic with f(0) = v and f'(0) = n, we have

£(t) = %-(Id + (2n-1d)scos(2tn) + sin(2tn)),
hence
Sym(f(t)) = % (1d-27)o(Id+(2n-1Id)ocos(2tn) + sin(2tn))e(Id-21)
=-% (Id+(2r-1d)ecos(2tn) - sin(2tn)) = f(-t)

and the proof is complete.

5. THE COMPLEX GRASSMAN MANIFOLDS

Assume that E is a complex Hilbert space, whose inner product will always
be denoted by < , >
product

T Then E is also a real Hilbert space,with the inner

{X,¥> = Re <x,y>m (5.1)

and the following two facts are trivial:
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5.1 If Fc E is a complex vector subspace, then the orthogonal projection
m:E - F is the same when we consider in E either the complex or the real
inner product.

5.2, If g:E » E is a complex linear map, then the adjoint map £*:E - E is
the same when we consider E to be either a complex or a real Hilbert space.

We will denote by L(E;E) the vector space of all continuous real linear
maps and by LE(E;E) its vector subspace whose elements are the complex linear
maps. In the case where E is finite dimensional the Hilbert-Schmidt inner
product that we will consider in L(E;E) will be the one associated to the
real structure of E and we will consider in the closed subspace LE(E;E) the
induced inner product.

If E is a complex Hilbert space, we will denote by Gp(E) the set of the
orthonormal projections onto closed complex vector subspaces, and we call
Gt(E) the complex Grassman manifold of E, G(E) will denote the real Grass-

man manifold of E, i.e. the Grassman manifold of E, when considered as a real
Hilbert space. It is trivial to conclude that

GE(E) = G(E) n LI[E;E]. (5.2)

A1l that has been said in Section 3 applies mutatis mutandis to the com-
plex Grassman manifolds, but one must be aware that GE(E) is only a real
manifold within the complex vector space LE(E;E). The essential reason for
this is the fact that the map £ -+ £* is not C-linear, but it was natural to
anticipate this because, in case E is finite dimensional, GE(E) (1ike G(E)) is
compact (because it is closed and bounded) and it is well known that there
exists no compact nontrivial complex submanifold of a complex vector space.

For each closed complex vector subsapce F = E, we still have a diffeo-
morphism Yp:le > LE(F;Fi), where Ue is open in GE{E) and contains w. (cf.
3.4), hence:

F

5.3. If E has complex dimension N and F « E has complex dimension n, then
the real manifold GE(E] has dimension 2n(N-n) in =

The tangent vector space TTr (GE(E)) is contained in the real vector space
B

Lmsa(E;E)’ whose elements are the self-adjoint complex linear maps and, for
each n € Lmsa(E;E)’ the fact that n € TﬂF(GE(E)) is equivalent to each of the
conditions (b) to (f) of 3.7; in other words:
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TNF(GE(E” = TTTF(G(E}) n LE(E;E). (5.3)

Although GE(E) is only a real submanifold of LE(E;E), it admits a complex
structure:

5.4. Let E be a complex Hilbert space. Then the real manifold GE(E) admits
a complex structure defined by the linear maps
T (6((E)) > T(6p(E)), J.(n) = in o (2¢-1d).
For this structure the real diffeomorphisms wF:uF - LE(F;FL} are in fact
holomorphic.

Proof To see that Jg applies T (GE(E)) into itself we use 3.7(f), remember-
ing that (2g-1d)e(2£-1d) = Id and noting that

(in°(2g-1d))* = -i(no(2g-1d))* = -i(2g-1d)en= in o(2z-1d).

It is also trivial that JE(J (n))= -n. The fact that this almost complex
structure is indeed a comp]ex one comes from the fact that the real diffeo-
morphisms V- UF = L( F,Fl) are holomorphic; this is a simple consequence of
the formula in 3.6,

=1 -1 =1
Dye(g)(n) = n o (o)) - (Mere(e)) oo (e ()

the formula DwF(E)(Jg(nJJ =g DwF(g)(n) being a simple consequence of the
fact that the restriction of (2g-1d) to £(E) is the identity.

Note that, in case E is finite dimensional, if we choose a complex ortho-
normal basis XpsenesXy of E such that XpsesesXy is a bas1s of £(E), then, if

*
neT (GE(E)) has matr1x {n D ] J (n) has matrix [. A EA i

The considerations in 4.1-4.3 and (4.1)-(4.5) apply mutatis mutandi to the
complex Grassman manifolds and we have in particular a canonical symmetric
connection in GE(E) defined also by

Bg(n,u) = (Id-26) enoag+qgo°one° (Id-2z). (5.4)

This implies in particular that:
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5.5. GI(E) is a totally geodesic submanifold of G(E). We see now that:

5.6, If E is a complex Hilbert space, then the morphism J = (JE), from the
vector bundle T(GE(E)J into itself, is parallel.

Proof From JE(B) = iBo (2g-1d), we obtain

?Jg(a)(ﬁ) 2iBo o + 1BE(B,G) o (2g-1d) - Bg(i geo (2g-1d),a)

n

2ige o + 1(I1d-2g) oBoa(2g-Id) + iacpe(ld-2£) o (2z-1d)

i(Id-28) o B o (2¢-1d) © & - i aopo(2&-1d) o (Id-2¢&)

2i Beae - 1R e -Ta°eBR -1T8°0+1ice B =0,

In the case where the complex Hilbert space E is finite dimensional, we
note that the Hilbert-Schmidt inner product in L(E;E) is the real part of a
complex inner product (the one defined by (2.2) with < , >¢ instead of <, >)
and we see that

Ciae(2E-1d), ige(2£-1d)>

<ao(28-1d), Bo(2£-1d)> = <wo(2£-1d)e(2z-1d),p>

]

<o, B>,

hence:

5.7. If E is a finite dimensional complex Hilbert space, then GE{E} is a
Kdhler manifold.

We end with the remark that (4.7)-(4.10) and 4.4 work equally well in the
complex case, the usual notation for DE(E) being U(E) (the unitary group).
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