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a b s t r a c t 

In this paper, we address the thesis defence scheduling problem, a critical academic scheduling manage- 

ment process, which has been overshadowed in the literature by its counterparts, course timetabling and 

exam scheduling. Specifically, we address the single defence assignment type of thesis defence schedul- 

ing problems, where each committee is assigned to a single defence, scheduled for a specific day, hour 

and room. We formulate a multi-objective mixed-integer linear programming model, which aims to be 

applicable to a broader set of cases than other single defence assignment models present in the literature, 

which have a focus on the characteristics of their universities. For such a purpose, we introduce a dif- 

ferent decision variable, propose constraint formulations that are not regulation and policy specific, and 

cover and offer new takes on the more common objectives seen in the literature. We also include new 

objective functions based on our experience with the problem at our university and by applying knowl- 

edge from other academic scheduling problems. We also propose a two-stage solution approach. The first 

stage is employed to find the number of schedulable defences, enabling the optimisation of instances 

with unschedulable defences. The second stage is an implementation of the augmented ε-constraint 

method, which allows for the search of a set of different and non-dominated solutions while skipping 

redundant iterations. The methodology is tested for case-studies from our university, significantly outper- 

forming the solutions found by human schedulers. A novel instance generator for thesis scheduling prob- 

lems is presented. Its main benefit is the generation of the availability of committee members and rooms 

in availability and unavailability blocks, resembling their real-world counterparts. A set of 96 randomly 

generated instances of varying sizes is solved and analysed regarding their relative computational per- 

formance, the number of schedulable defences and the distribution of the considered types of iterations. 

The proposed method can find the optimal number of schedulable defences and present non-dominated 

solutions within the set time limits for every tested instance. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The scheduling of thesis defences is a fundamental problem in 

he academic world. Millions of students worldwide need to pre- 

are and defend their theses in what is often their greatest aca- 

emic challenge up to that point. Thus, considering the many re- 

ource allocation challenges it presents for colleges and universi- 

ies every year, where it is often assigned to a single person who 

ust solve it using e-mails, excel sheets, and other less-than-ideal 

ools, thesis defence scheduling is one of the most important aca- 

emic management problems. The literature has established the 
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roblem, focusing on each country and university’s regulations and 

ulture. Even so, it can be defined through the 6W’s question 

ramework: we want to know Who (the committee member) is to 

e assigned to Which examination committee, performing What 

ole, to Whom (students/thesis defences), When (day and hour) 

nd Where (the specific room). Ultimately, the association of these 

ssignments is called a schedule. 

A feasible schedule fulfils a particular set of constraints. For the- 

is defence scheduling those can be classified under three cate- 

ories: scheduling complete committees, fulfilling committee com- 

osition rules and ensuring committee member and room avail- 

bility. Moreover, a feasible schedule is not necessarily a “good”

ne. Likewise, two points of view assess the schedules: commit- 

ee assignment quality and schedule quality. These points of view 
under the CC BY-NC-ND license 
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re rendered operational by constructing several criteria or objec- 

ives to be maximised or minimised. Moreover, regarding commit- 

ee assignment quality, the criteria can go from fairly distributing 

ssignments between committee members to assessing their suit- 

bility to evaluate the thesis defences. Additionally, the schedule 

uality objectives might include, for example, promoting compact 

chedules, satisfying preferred time slot requests from committee 

embers or preventing room changes. 

Conversely, many problems may arise when such measures are 

ot considered or when a human scheduler cannot adequately 

eet them. To begin with, there is the perceived (or actual) bias 

f the scheduler in favour of some committee members, which 

ight lead to disagreements between the affected parts regarding 

airness and transparency considerations. Moreover, if the assigned 

ommittee is not knowledgeable enough in the necessary research 

ubjects to assess a thesis, this might lead to inaccurate evaluations 

f the student’s work. Furthermore, as most committee members 

ften have other tasks and are not available at all times, finding a 

chedule that is as small of an inconvenience for them as possible 

s not a simple task, which leads to committee members having 

ess available time to dedicate to their research, teaching, or any 

ther activity. Lastly, there is the problem of the scheduling pro- 

ess itself, which just burns too much time for the scheduler, who 

ould put it to more productive use. Likewise, several approaches 

or dealing with such problems have been considered in the liter- 

ture. 

Regarding a fair assignment distribution, Kochaniková & Rudová

2013) proposes a constructive heuristic that iteratively assigns de- 

ences to committees in such a manner that each committee is 

ppointed the same or at most one more defence than the other 

ommittee. Moreover, their improvement phase keeps this distri- 

ution intact. Pham et al. (2015) takes a different approach, min- 

mising the workload differences between the most and least bur- 

ened committee members. Conversely, Battistutta et al. (2019) is 

he first to impose an exponential penalty for the number of times 

 committee member is assigned to a different committee. Finally, 

hristopher & Wicaksana (2021) includes a maximum quota of as- 

ignments for each committee member. 

In terms of the methodologies used to assess committee suit- 

bility, there is minimal variance. Each consideration of this point 

f view aims to optimise the matching between expertise or re- 

earch areas of the committee members and the subject of the de- 

ences they are assigned to ( Battistutta et al., 2019; Christopher & 

icaksana, 2021; Huynh et al., 2012; Pham et al., 2015 ). Nonethe- 

ess, other aspects are also regarded in Christopher & Wicaksana 

2021) , specifically committee member academic level and previ- 

us experience moderating defences. 

As far as reducing the inconvenience caused for committee 

embers, the literature has considered different measures that 

etter suit their situation. Huynh et al. (2012) considers an ob- 

ective that minimises the total number of room changes. More- 

ver, the same work introduces a compactness measure where an 

ncreasing number of time slots between two consecutive assign- 

ents is penalised. In Battistutta et al. (2019) , it is stated that this

s a valuable objective. However, due to their structuring of thesis 

efences into sessions, it is automatically guaranteed. Concerns re- 

arding time slot preferences also arise in Huynh et al. (2012) and 

awakkal & Suyanto (2020) , with the latter including an objective 

pecifically regarding students. 

There are several types of defence scheduling problems, dis- 

inguished by the number of defences that a committee is as- 

igned to: (1) Single defence assignment - Each committee is as- 

igned to one defence, which will take place in one slot (day, hour 

nd room). This type of scheduling is addressed in Christopher 

 Wicaksana (2021) ; Huynh et al. (2012) ; Limanto et al. (2019) ;

ham et al. (2015) ; Tawakkal & Suyanto (2020) and our work; (2) 
93 
ession of defences assignment - Each committee is assigned to a 

roup of defences (session), which will take place in one slot (day, 

eriod and room). Evidently, the time slot cannot be just a par- 

icular hour in such instances. Instead, it represents an extended 

eriod, such as a morning, afternoon, or day. This type of schedul- 

ng is addressed in Battistutta et al. (2019) ; (3) Hybrid assignment - 

 committee is assigned to an extended period, like in the session 

f defences assignment type. However, single defences and other 

equired additional committee members are then assigned to an 

our within such a period. This type of scheduling is addressed in 

ochaniková & Rudová (2013) . 

Several different solution approaches have been applied to the 

hesis defence scheduling problem, specifically: Mixed-integer lin- 

ar programming ( Battistutta et al., 2019 ); Constraint programming 

 Battistutta et al., 2019 ); Greedy backtracking hybrid algorithm ( Su 

t al., 2020 ); Local search ( Battistutta et al., 2019; Kochaniková & 

udová, 2013; Pham et al., 2015; Tawakkal & Suyanto, 2020 ); Ge- 

etic algorithm ( Huynh et al., 2012; Limanto et al., 2019 ); and Par-

icle swarm optimisation ( Christopher & Wicaksana, 2021 ). 

In contrast with the most studied academic scheduling prob- 

ems, exam scheduling and course timetabling ( Chaudhuri & De, 

010 ); for a state-of-the-art review of those, we refer the reader to 

abaei et al. (2015) ; Ceschia et al. (2023) ; Chen et al. (2021) ; and

or how inefficient and time-consuming assigning and schedul- 

ng committees is for the unfortunate people to whom such tasks 

re delegated, thesis defence scheduling is remarkably underrep- 

esented in the literature. We propose a multi-objective mixed- 

nteger linear programming model, which, to the best of our 

nowledge, is the first formulation of its type for the single de- 

ence assignment type. Moreover, our approach aims to be appli- 

able to a broader range of instances and regulations than the ones 

ound in the single defence assignment literature. To achieve such 

 goal, our model includes the following novel characteristics, or- 

anised under three levels: 

1. Main decision variable - our fundamental decision variable, 

built from the 6W’s question framework, is the first to include 

the committee member’s role in each assignment. This is bene- 

ficial as it allows for a greater committee composition flexibility 

than the previous formulations; 

2. Constraints - instead of modelling our university’s regulations, 

we take advantage of the novel decision variable and input the 

eligible committee members for each role in each thesis de- 

fence as a parameter. Therefore, it can then be adapted to fit 

each instance’s needs. Moreover, we are the first to model the 

problem in a way that considers the possibility of not schedul- 

ing every defence, as not all of them might be schedulable, and 

presenting an @incomplete” schedule can still be valuable for 

the decision-maker; 

3. Objectives - to the best of our knowledge, we are the first to in- 

troduce an objective that minimises the number of days a com- 

mittee member is scheduled to attend a defence. Additionally, 

we also propose different formulations for several previously 

defined objectives. Specifically, we introduce a linearisation of 

an exponential penalty for the number of assignments, com- 

pactness, and room change objectives better suited for cases 

where a committee member is not available for every time slot 

and a differentiation mechanism for preferred time slots with 

multiple preference levels. 

As for the solution approach, we must be able to find how 

any thesis defences can be scheduled. Consequently, we propose 

 two-stage approach, with the first stage being an adaption of 

ur formulation, but with the objective of finding the number of 

chedulable thesis defences. That number will then be used as a 

arameter in our model. While new to thesis defence schedul- 

ng, similar two-stage approaches have been studied in academic 
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imetabling problems with mixed-integer based solution methods 

 Burke et al., 2010; Sørensen & Dahms, 2014; Vermuyten et al., 

016 ). Their primary motivation was to simplify the search space 

f an otherwise computationally difficult problem to solve with 

ixed-integer linear programming. This is not our primary goal, 

s, instead of using it to solve different objectives separately, we 

ant to find the value of a necessary parameter. Moreover, course 

imetabling works with heuristic solution methods have also ap- 

lied two-stage approaches. Similarly to our approach, in Bellio 

t al. (2021) ; Goh et al. (2017) , the first stage of the heuristic is

mployed to guarantee the feasibility of the solution. Conversely, 

ther works decompose their heuristics based on different ob- 

ectives ( Al-Yakoob & Sherali, 2015; Santiago-Mozos et al., 2005 ). 

astly, while most works regard multiple objectives, none propose 

pproaches that allow the search of the solution space for sev- 

ral solutions, commonly employed in other scheduling problems 

 Amiri & Farvaresh, 2023; Guo et al., 2023; Gülcü & Akkan, 2020; 

oziel & Pietrenko-Dabrowska, 2022; Urbani et al., 2023 ). Contrar- 

ly, we adapt the augmented ε-constraint method, introduced in 

avrotas (2009) and Mavrotas & Florios (2013) . The main benefits 

f such an implementation are the assurance that the found so- 

utions are non-dominated (or Pareto optimal) and the existence 

f mechanisms to foresee and skip some iterations that will not 

ield new solutions. Moreover, having better knowledge about the 

rade-offs between solutions can be valuable to the decision-maker 

 Mesquita-Cunha et al., 2022 ). 

The methodology is tested in case studies from different de- 

artments and outperforms the human schedulers. We also analyse 

ow our model should be parameterised to solve problems from 

he literature. 

We propose an instance generator for thesis defence scheduling. 

t generates the availability of committee members and rooms in 

vailability blocks, resembling their real-world counterparts. Com- 

utational experiments are conducted on a set of 96 instances. The 

ain conclusions are that the number of schedulable defences was 

lways relatively easy to optimally determine during the first stage 

nd that, even for the largest considered instances, some non- 

ominated solutions were found within the set time limits. 

The remainder of this paper is organised as follows. 

ection 2 introduces the multi-objective mixed-integer linear 

rogramming model and briefly describes its parameters, vari- 

bles, constraints, and objective functions. Section 3 is devoted 

o the approach for identifying non-dominated solutions of the 

odel presented in the previous section. Section 4 presents case 

tudies from two different departments and explains how the 

odel can be parameterised to fit different problems from the 

iterature. Section 5 addresses the instance generation method. 

ection 6 presents the computational experiments conducted to 

est the scalability of the approach and an analysis of the findings. 

astly, Section 7 includes concluding remarks and future research 

ath suggestions. 

. The multi-objective mixed integer linear programming 

odel 

This section presents the multi-objective mixed-integer linear 

rogramming model to schedule and assign committees to the- 

is defences. It introduces the indices of variables and parameters. 

hen it presents the necessary parameters and variables, followed 

y a general overview of the objectives and the definition of the 

onstraints. Lastly, the objectives will be revisited and appropri- 

tely defined. For a more detailed description of the mathematical 

ormulation, the reader is directed to Appendix A . 
94 
.1. Indices 

The necessary indices for the parameters and variables are pre- 

ented in this subsection. Let us note that, while they all start with 

, this value is never used to represent an object. Nonetheless, 

t is necessary to portray the absence of such objects in specific 

onstraints and objective functions. For example, while there is no 

ommittee member 0, we still need the ability to quantify 0 com- 

ittee members. 

1. i = 0 , . . . , n i , are the indices related to the master’s thesis de-

fence committee members; 

2. j = 0 , . . . , n j , are the indices related to the master’s thesis de-

fences; 

3. t = 0 , . . . , n t , are the indices related to the role of the commit-

tee members; 

4. k = 0 , . . . , n k , are the indices related to the days; 

5. � = 0 , . . . , n � , are the indices related to the available hour slots

in each day; 

6. p = 0 , . . . , n p , are the indices related to the available rooms; 

7. q = 0 , . . . , n q , are the indices related to research subjects. 

.2. Parameters 

The parameters for the model are presented in this subsection. 

hey have been divided into three groups, the first about individual 

ommittee members, the second regarding both committee mem- 

ers and rooms, and the last one related to thesis defences. 

1. Related to committee members. 

(a) e i jt ∈ { 0 , 1 } , is 1 if a committee member i is eligible to be

assigned to a certain role t in a designated defence j; and 0 

otherwise, for all i = 1 , . . . , n i , j = 1 , . . . , n j , t = 1 , . . . , n t ; 

(b) c i ∈ N , is the maximum number of committees a committee 

member i can be assigned to, for all i = 1 , . . . , n i ; 

(c) u i ∈ N , is the weight assigned to each committee member i , 

for all i = 1 , . . . , n i ; 

(d) l ik� ∈ N 0 , is the preference level that each committee mem- 

ber i holds for every time slot (day k and hour � ), 0 rep-

resents unavailability, for all i = 1 , . . . , n i , k = 1 , . . . , n k , � =
1 , . . . , n � ; 

(e) r iq ∈ { 0 , 1 } , is 1 if a committee member i has knowledge

regarding the research subject q ; and 0 otherwise, for all 

i = 1 , . . . , n i , q = 1 , . . . , n q ; 

2. Related to committee members and rooms. 

(a) b i ∈ { 0 , . . . , d − 1 } , is the number of hour slots following the

end of a defence in which a committee member i would 

consider the scheduling of a different one as compact, in 

our formulation we considered it as always being smaller 

than the duration d of a defence, for all i = 1 , . . . , n i ; 

(b) v i� ∈ { 0 , . . . , n v i } , is the weight given by a committee mem-

ber i to each hour slot � considered compact. A higher 

weight for an hour-slot represents a preferable assignment, 

for all i = 1 , . . . , n i , � = 0 , . . . b i ; 

(c) a i ∈ { 0 , . . . , d − 1 } , is the number of hour slots following the

end of a defence in which a committee member i would 

consider changing rooms problematic, for all i = 1 , . . . , n i ; 

(d) h i� ∈ { 0 , . . . , n h i } , is the penalty given by a committee mem-

ber i after a room change to each hour slot � considered 

problematic. A higher weight for an hour-slot represents a 

less desirable assignment, for all i = 1 , . . . , n i , � = 0 , . . . , a i ; 

(e) m k�p ∈ { 0 , 1 } , is 1 if a room p is available at a certain time

slot ( k , � ); and 0 otherwise, for all k = 1 , . . . , n k , � = 1 , . . . , n � ,

p = 1 , . . . , n p ; 

3. Related to thesis defences. 

(a) d ∈ N , is the length (duration) of a defence in hour slots; 
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(b) t jq ∈ { 0 , 1 } , is 1 if a defence j studies a certain research sub-

ject q ; and 0 otherwise, for all j = 1 , . . . , n j , q = 1 , . . . , n q ; 

(c) g ∈ { 0 , . . . , n j } , is the number of complete committees (the-

sis defences) to be scheduled. If one knows that all defences 

are schedulable, then g = n j . Otherwise, finding g becomes 

part of the problem itself. 

.3. Variables 

The definition of the decision and auxiliary variables is pre- 

ented in this subsection. The first is built from the 6W’s ques- 

ion framework and represents a committee member’s assignment 

o a role within a thesis defence, happening at a specific time and 

oom. The others are used to define concepts such as the num- 

er of scheduled days, workloads, defence research subject cover- 

ge by its committee, compactness and room change penalties, and 

ssigned roles within a committee. 

1. Decision variables. 

(a) x i jtk�p ∈ { 0 , 1 } , which is equal to 1 if a committee mem-

ber i is assigned to thesis defence j, performing a role t , 

in day k , at hour slot � and in room p; and 0 otherwise,

for all i = 1 , . . . , n i , j = 1 , . . . , n j , t = 1 , . . . , n t , k = 1 , . . . , n k ,

� = 1 , . . . , n � , and p = 1 , . . . , n p ; 

2. Auxiliary variables. 

(a) y jk�p ∈ { 0 , 1 } , is 1 if the thesis defence j is scheduled for day

k , at hour � in room p; and 0 otherwise, for all j = 1 , . . . , n j ,

k = 1 , . . . , n k , � = 1 , . . . , n � , and p = 1 , . . . , n p ; 

(b) y ik�p ∈ { 0 , 1 } , is 1 if committee member i is assigned to any

defence on day k , hour � and room p; and 0 otherwise, for 

all i = 1 , . . . , n i , k = 1 , . . . , n k , � = 1 , . . . , n � , and p = 1 , . . . , n p ;

(c) ˆ y i jk ∈ { 0 , 1 } , is 1 if committee member i is assigned to j

defences on day k ; and 0 otherwise, for all i = 1 , . . . , n i ,

j = 0 , . . . , n j and k = 1 , . . . , n k ; 

(d) w i j ∈ { 0 , 1 } , is 1 if committee member i is assigned to j

thesis defences; and 0 otherwise, for all i = 1 , . . . , n i , and

j = 0 , . . . , n j ; 

(e) w ik ∈ { 0 , 1 } , is 1 if committee member i is assigned to thesis

defences in k days; and 0 otherwise, for all i = 1 , . . . , n i , and

k = 0 , . . . , n k ; 

(f) s i jq ∈ { 0 , 1 } , is 1 if i committee members of the committee

of defence j have q research subject in common with said 

defence; and 0 otherwise, for all i = 0 , . . . , n i , j = 1 , . . . , n j ,

and q = 1 , . . . , n q ; 

(g) s ik�p ∈ N 0 , is the compactness value for committee mem- 

ber i , scheduled to attend any defence at day k , hour � and

room p, for all i = 1 , . . . , n i , k = 1 , . . . , n k , � = 1 , . . . , n � , and

p = 1 , . . . , n p ; 

(h) ˆ s ik�p ∈ N 0 , is a room change penalty for committee mem- 

ber i , scheduled to attend any defence at day k , hour � and

room p, for all i = 1 , . . . , n i , k = 1 , . . . , n k , � = 1 , . . . , n � , and

p = 1 , . . . , n p ; 

.4. Objective functions 

The objective functions are presented in this subsection. Two 

oints of view are used to assess the assignment quality. The first 

ne, committee assignment quality, is related to both fair work- 

oad distribution and the matching between the expertise of the 

ommittee members and the defences they are assigned to, ac- 

ordingly, it impacts the quality of the defence assessment process 

y not having overburdened committees, and a good matching of 

embers to defences. The second one, schedule quality, is related 

o the assessment of the quality of the schedules of individual 

ommittee members, and aims to reduce the inconvenience caused 

y scheduling them to certain time-slots and rooms. The objec- 

ive functions used to render them operational are introduced here. 
95 
onetheless, further constraints and variables must be defined be- 

ore each objective’s mathematical expressions can be specified. In 

ection 2.6 we will return to the objective functions and properly 

efine them. Furthermore, the additional constraints are listed in 

ection 2.5 . 

1. Point of view of committee assignment quality. This point of view 

is operationalised by the following objectives. 

(a) Minimise workloads . The workload is the number of commit- 

tee assignments a committee member has. To ensure fair- 

ness, this number is squared. With this criterion, we want 

to achieve a balanced workload distribution between com- 

mittee members. 

(b) Maximise research subject coverage . Research subject cover- 

age is the percentage of research subjects in a defence its 

committee covers. With this criterion, we want to maximise 

such coverage and aim to ensure that every subject in a de- 

fence is covered by at least one of the committee members. 

(c) Maximise committee member suitability . Committee member 

suitability is defined as the number of research subjects 

each committee member has in common with their as- 

signed defences. With this criterion, we want to maximise 

such suitability and aim to ensure that each member is a 

specialist in as many of the defence’s subjects as possible. 

2. Point of view of schedule quality. This point of view is opera- 

tionalised by the following objectives. 

(a) Minimise non-consecutive assignments . Each assignment is 

given a compactness value. This value is based on the com- 

mittee member’s weight and the weight for the interval in 

which a defence is scheduled. The committee member de- 

fines the latter regarding their preferences over time inter- 

vals between defences. With this criterion, we want to pro- 

duce more compact schedules according to the committee 

members’ preferences. 

(b) Minimise the non-satisfaction of time slot preferences . A 

penalty is given whenever a committee member is assigned 

one of their stated undesirable time slots. With this crite- 

rion, we want to minimise the occurrence of such assign- 

ments. 

(c) Minimise committee days . Committee days are the number of 

days a committee member is scheduled to attend a defence. 

To ensure fairness, this number is squared. With this crite- 

rion, we want to minimise such a number. 

(d) Minimise room changes . Each committee member defines a 

time frame considered problematic for a room change be- 

tween defences, penalising such events. With this criterion, 

we want to promote room stability. 

.5. Constraints 

The necessary constraints to model the feasible region of the 

roblem are presented in this subsection. They fall under four cat- 

gories. The first concerns the scheduling of complete committees 

r thesis defences. The second regards the respect for committee 

ember assignment rules. The third guarantees that committee 

embers and rooms are available for their corresponding assign- 

ents. Finally, the fourth defines the values for several auxiliary 

ariables present in the objective functions. 

1. Scheduling complete committees. These constraints define a com- 

plete committee and ensure that every schedulable defence is 

assigned one. 

(a) Complete committee definition . A complete committee is a set 

of n t assignments for a defence, j, all with a different ap- 

pointed role, t , in the same slot, (day k , hour � , and room

p). Moreover, for a defence to occur, it must have such a 

committee assigned to it. This constraint ensures that either 
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a defence is assigned to a complete committee or no assign- 

ments for such a defence can occur. 

n i ∑ 

i =1 

x i jtk�p = y jk�p , j = 1 , . . . , n j , t = 1 , . . . , n t 

k = 1 , . . . , n k , � = 1 , . . . , n � , p = 1 , . . . , n p (1) 

(b) Single committee assignment . If a defence, j, can be sched- 

uled, it should only be assigned one committee and ap- 

pointed one slot, (day k , hour � , and room p). Thus, in this

constraint, we state that for a defence, j, the number of 

complete committees assigned to it is less or equal to 1. 

n k ∑ 

k =1 

n � ∑ 

� =1 

n p ∑ 

p=1 

y jk�p � 1 , j = 1 , . . . , n j (2) 

(c) Complete committees (thesis defences) to be scheduled . In each 

instance of the thesis defence scheduling problem, a defined 

number of committees (thesis defences) can be assigned 

and scheduled, denoted by g. If one knows that all the de- 

fences can be scheduled, then this number is the number 

of defences, i.e., g = n j . However, some defences may not 

be schedulable due to conflicting committee member avail- 

abilities, lack of enough eligible committee members, lack 

of rooms, or others. In such cases, finding the value for g

becomes an indispensable part of the problem. In this con- 

straint, assuming the value of g is already known, we en- 

force the number of assigned complete committees (thesis 

defences) as the number of schedulable complete commit- 

tees, g. 

n j ∑ 

j=1 

n k ∑ 

k =1 

n � ∑ 

� =1 

n p ∑ 

p=1 

y jk�p = g (3) 

2. Committee Composition. These constraints ensure the eligibility 

of the committee members to perform their assignments. 

(a) Committee member eligibility . Different universities and their 

departments have distinct regulations for the eligibility of 

committee members, i , to perform specific roles, t , within 

each committee for a defence, j. Thus, we do not attempt 

to include such rules within our model. Conversely, we ag- 

gregate them in a parameter, e i jt , which takes the value 1 if 

a committee member, i , is eligible to perform a role, t , in a 

defence, j, and 0 otherwise. In this constraint, we state that 

only eligible members can be assigned to a committee. 

n k ∑ 

k =1 

n � ∑ 

� =1 

n p ∑ 

p=1 

x i jtk�p � e i jt , i = 1 , . . . , n i , 

j = 1 , . . . , n j , t = 1 , . . . , n t (4) 

(b) Maximum number of committees assigned to a committee 

member . In this constraint, we ensure that the sum of the 

assignments, for a committee member, i , does not exceed 

the maximum allowed number of committees, c i , for that 

committee member. 

n j ∑ 

j=1 

n t ∑ 

t=1 

n k ∑ 

k =1 

n � ∑ 

� =1 

n p ∑ 

p=1 

x i jtk�p � c i , i = 1 , . . . , n i (5) 

3. Committee member and room availability . These constraints guar- 

antee that committee members and rooms are available for 

each assignment. 

(a) Committee member time slot availability . Committee mem- 

bers have different obligations other than attending thesis 

defences. Consequently, they are not available to be assigned 

to every time slot. This constraint ensures that members 
96 
are not assigned for defences occurring at their unavailable 

times. 

n j ∑ 

j=1 

n t ∑ 

t=1 

n p ∑ 

p=1 

x i jtk�p � l ik� , i = 1 , . . . , n i , 

k = 1 , . . . , n k , � = 1 , . . . , n � (6) 

(b) Committee member assignment juxtaposition . A committee 

member, cannot be assigned to more than one defence at 

the same time. Additionally, this constraint also ensures that 

a committee member is not assigned more than one role in 

a defence, as that would mean that said committee mem- 

ber would have two different assignments in the same time 

slot. 

n j ∑ 

j=1 

n t ∑ 

t=1 

� + d−1 ∑ 

� = � 

n p ∑ 

p=1 

x i jtk�p � 1 , i = 1 , . . . , n i , 

k = 1 , . . . , n k , � = 1 , . . . , n � − d + 1 (7) 

(c) Room time slot availability . A room’s purpose might not just 

be hosting thesis defences. Thus, it is natural that it happens 

to be booked for any other event at some point. Accord- 

ingly, whenever a room is unavailable, it cannot host any 

defence. 

n j ∑ 

j=1 

y jk�p � m k�p , k = 1 , . . . , n k , � 

= 1 , . . . , n � , p = 1 , . . . , n p (8) 

(d) Room capacity . In our formulation, we considered that a 

room could not hold more than one defence at a time. 

n j ∑ 

j=1 

� + d−1 ∑ 

� = � 
y jk�p � 1 , k = 1 , 

. . . , n k , � = 1 , . . . , n � − d + 1 , p = 1 , . . . , n p (9) 

4. Objective functions measures. These constraints define the values 

for the auxiliary variables necessary for some of the objective 

functions. 

(a) Research subject coverage definition. For a defence, j, research 

subject coverage is the percentage of its studied research 

subject covered by the areas of expertise of its committee 

members. To implement such an objective, we first need 

to define an auxiliary binary variable, s i jq , which takes the 

value 1 if a defence, j, which studies a research subject, q , 

that is, t jq = 1 , has a number, i , of committee members as- 

signed to its committee, who have said subject as one of 

their areas of expertise. 

n i ∑ 

i =0 

is i jq = 

n i ∑ 

i =1 

n t ∑ 

t=1 

n � ∑ 

� =1 

n p ∑ 

p=1 

r iq t jq x i jtk�p , 

j = 1 , . . . , n j , q = 1 , . . . , n q (10) 

n i ∑ 

i =0 

s i jq = 1 , j = 1 , . . . , n j , q = 1 , . . . , n q (11)

(b) Compactness value definition. We defined a compact assign- 

ment of a committee member, i , to a day, k , at an hour, � ,

as one that occurs within a specific time frame, b i , after the 

end of a different assignment for such a committee member. 

That is, if a committee member, i , is assigned to a defence, 

j, at a day, k , and an hour, � , this assignment is considered

compact on the condition that the same committee mem- 

ber is assigned to a different defence, j , in the same day, k , 

between hours � − d and � − d − b . Moreover, the parameter 
i 
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i =1 j=1 
v i� , distinguishes the hour slots within such a time frame, as 

they might have different perceived values for a committee 

member, i . Thus, the compactness value for an assignment, 

s ik� , is 0 if a committee member, i , does not have a different

assignment ending between hours � and � − b i , or v i � if he 

does have such an assignment ending at � hour slots before 

the start of the new assignment a different hour slot, � . 

y ik�p = 

n j ∑ 

j=1 

n t ∑ 

t=1 

x i jtk�p , i = 1 , . . . , n i , k = 1 , . . . , n k , 

� = 1 , . . . , n � , p = 1 , . . . , n p (12) 

s ik� � 0 , i = 1 , . . . , n i , k = 1 , . . . , n k , � = 1 , . . . , n � (13)

s ik� � n v i 

n p ∑ 

p=1 

y ik�p i = 1 , . . . , n i , 

k = 1 , . . . , n k , � = 1 , . . . , n � (14) 

s ik� � 

b i ∑ 

� =0 

n p ∑ 

p=1 

v i � y ik ̂ � p , i = 1 , . . . , n i , k = 1 , . . . , n k , 

� = d, . . . , n � , ˆ � = � − d − � (15) 

s ik� � 

b i ∑ 

� =0 

n p ∑ 

p=1 

v i � y ik ̂ � p − n v i 

( 

1 −
n p ∑ 

p=1 

y ik�p 

) 

, 

i = 1 , . . . , n i , k = 1 , . . . , n k , 

� = d, . . . , n � , ˆ � = � − d − � (16) 

(c) Workload definition. The workload for a committee member, 

i , is defined as the number, j, of committees they are as- 

signed to. It would be possible to represent it as an inte- 

ger variable. Still, in such a case, it would not be possible to 

consider its square in the objective function while keeping 

its linearity. However, the exponential penalty in the objec- 

tive function can be linearised by representing it through a 

variable, w i j , which takes the value 1 if a committee mem- 

ber, i , is assigned to a number, j, of committees, and 0 oth- 

erwise. 

c i ∑ 

j=0 

jw i j = 

n j ∑ 

j=1 

n t ∑ 

t=1 

n k ∑ 

k =1 

n � ∑ 

� =1 

n p ∑ 

p=1 

x i jtk�p , i = 1 , . . . , n i (17) 

c i ∑ 

j=0 

w i j = 1 , i = 1 , . . . , n i (18) 

(d) Committee days definition. A committee day is defined as a 

day when a committee member has a defence scheduled. To 

represent this concept, we introduce a variable, w ik , which 

takes the value 1 if a committee member, i , has defences 

scheduled on a number, k , of days, and 0 otherwise. 

c i ∑ 

j=0 

j ̂  y i jk = 

n j ∑ 

j=1 

n t ∑ 

t=1 

n � ∑ 

� =1 

n p ∑ 

p=1 

x i jtk�p , 

i = 1 , . . . , n i , k = 1 , . . . , n k (19) 

n j ∑ 

j=0 

ˆ y i jk = 1 , i = 1 , . . . , n i , k = 1 , . . . , n k (20)
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n k ∑ 

k =0 

k w ik = 

c i ∑ 

j=1 

n k ∑ 

k =1 

ˆ y i jk , i = 1 , . . . , n i (21) 

n k ∑ 

k =0 

w ik = 1 , i = 1 , . . . , n i (22) 

(e) Room change penalty definition. A room change is consid- 

ered problematic if a committee member, i , is not given a 

certain amount of time, a i , between the end of an assign- 

ment, j , and the beginning of another, j, which is scheduled 

for a different room, p , than the first one, p. Moreover, pa- 

rameter h i� distinguishes the hour slots within such a time- 

frame, as they might have different perceived penalties for 

a committee member, i . To assess this objective we define 

the room change variable, ˆ s ik�p , which represents the room 

change penalty that the assignment of a committee mem- 

ber, i , to a day, k , an hour, � and a room, p, would incur. 

ˆ s ik�p � 0 , i = 1 , . . . , n i , k = 1 , . . . , n k , 

� = 1 , . . . , n � , p = 1 , . . . , n p (23) 

ˆ s ik�p � n h i 
y ik�p i = 1 , . . . , n i , k = 1 , . . . , n k , 

� = 1 , . . . , n � , p = 1 , . . . , n p (24) 

ˆ s ik�p � 

a i ∑ 

� =0 

n p ∑ 

p =1 

h i � y ik ̂ � p , i = 1 , . . . , n i , 

k = 1 , . . . , n k , � = d, . . . , n � , 

ˆ � = � − d − � , p = 1 , . . . , n p , p � = p (25) 

ˆ s ik�p � 

a i ∑ 

� =0 

n p ∑ 

p =1 

h i � y ik ̂ � p − n h i 
(1 − y ik�p ) , 

i = 1 , . . . , n i , k = 1 , . . . , n k , 

� = d, . . . , n � , ˆ � = � − d − � , 

p = 1 , . . . , n p , p � = p (26) 

.6. Back to the objective functions 

In this subsection, now that we have defined all the necessary 

onstraints, the objective functions within the two points of view 

re revisited and adequately determined. 

1. Point of view of committee assignment quality . This point of view 

is operationalised by the following objectives. 

(a) Minimise workloads . This criterion considers a product, 

u i j 
2 w i j . The variable, w i j , takes the value 1 if a committee

member, i , is assigned to a number, j, of defences, and 0 

otherwise. By multiplying it by j 2 , we can keep the linearity 

of the model while applying an exponential penalty repre- 

senting the square of the number of defences a committee 

member, i , is assigned to, promoting fairness in workload 

distribution. Moreover, the committee member’s weight, u i , 

is also considered. We want to promote a fair distribution of 

workloads between committee members by minimising this 

objective. 

min z 1 (w ) = 

n i ∑ 

n j ∑ 

u i j 
2 w i j (27) 
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(b) Maximise research subject coverage . The research subject cov- 

erage for a defence, j, is computed through a quotient be- 

tween the number of its research subjects, q , covered by its 

committee as the numerator and the sum of all of its re- 

search subjects as the denominator. Let us note that, sim- 

ilarly to Constraint (21) , while variable s i jq is defined for 

i = 0 , . . . , n i , the sum must start on i = 1 , as we do not want

to include the research subjects that are covered 0 times by 

the defence’s assigned committee. We want to maximise the 

sum of the coverages of all defences with this objective. 

max z 2 (s ) = 

( 

n j ∑ 

j=1 

n q ∑ 

q =1 

t jq 

) −1 
n i ∑ 

i =1 

n j ∑ 

j=1 

n q ∑ 

q =1 

s i jq (28) 

(c) Maximise committee member suitability . This criterion consid- 

ers a product, r iq t jq x i jtk�p , which will be 0 unless a commit- 

tee member, i , is assigned to a defence, j, that is x i jtk�p = 1 ,

and a research subject, q , is within the areas of expertise of 

a committee member, i , that is, r iq = 1 , and the subjects ad-

dressed in the defence, j, that is, t jq = 1 , in which case the

product will be 1. We want to maximise the sum of these 

products with this objective. 

max z 3 (x ) = 

n i ∑ 

i =1 

n q ∑ 

q =1 

n j ∑ 

j=1 

n t ∑ 

t=1 

n k ∑ 

k =1 

n � ∑ 

� =1 

n p ∑ 

p=1 

r iq t jq x i jtk�p (29) 

2. Point of view of schedule quality . This point of view is opera- 

tionalised by the following objectives. 

(a) Minimise non-consecutive assignments . The highest potential 

compactness value for an assignment for a committee mem- 

ber, i , is parameter n v i . Thus, for a committee member, i , 

the maximum potential sum of compactness values would 

be the product of said maximum value by the committee 

member’s number, j, of assignments minus one assignment, 

as, logically, the committee member’s first assignment can- 

not be scheduled within a certain time-frame after another 

has ended. Thus, and by weighting each assignment by the 

weight conferred to its committee member, the maximum 

sum of compactness values for the problem is represented 

by 
∑ n i 

i =1 

∑ n j 
j=1 

u i n v i ( j − 1) w i j . On the contrary, the effective 

sum of the compactness values, weighted by their corre- 

spondent committee member’s weight, is represented by ∑ n i 
i =1 

∑ n k 
k =1 

∑ n � 
� =1 

u i s ik� . This criterion considers the difference 

between the compactness value for an ideal schedule and 

the effective value for the proposed schedule. We want to 

minimise such differences with this objective. 

min z 4 (w, s ) = 

n i ∑ 

i =1 

n j ∑ 

j=1 

u i n v i ( j − 1) w i j −
n i ∑ 

i =1 

n k ∑ 

k =1 

n � ∑ 

� =1 

u i s ik� 

(30) 

(b) Minimise the non-satisfaction of time slot preferences . This cri- 

terion considers a product, u i (l ik� − 1) x i jtk�p , which repre- 

sents the penalty of assigning a committee member, i , to 

a day, k , at an hour, � , that is x i jtk�p = 1 . In this case, it

takes the value of the product of the committee member’s 

weight, u i , with the penalty level assigned by the committee 

member to the combination of day, k , at an hour, � , that is,

l ik� − 1 . The parameter, l ik� , can take the value 0 if a commit-

tee member, i , is unavailable at a day, k , and an hour, � , but

such an assignment would be infeasible, or a natural num- 

ber, with larger values representing lower preference levels. 

We want to minimise the sum of such penalties with this 
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objective. 

min z 5 (x ) = 

n i ∑ 

i =1 

n k ∑ 

k =1 

n � ∑ 

� = 1 

n j ∑ 

j=1 

n t ∑ 

t=1 

n p ∑ 

p=1 

u i (l ik� −1) x i jtk�p (31) 

(c) Minimise committee days . This criterion takes into account 

a product, u i k 
2 w ik . The variable, w ik , takes the value 1 if a 

committee member, i , is assigned to committees in a num- 

ber, k , of days, and 0 otherwise. By multiplying it by k 2 ,

we keep the model linear while applying an exponential 

penalty representing the square of the number of days a 

committee member, i , is assigned to, promoting fairness in 

the committee days distribution. Moreover, the committee 

member’s weight, u i , is also considered. We want a fair dis- 

tribution of committee days between committee members 

and to minimise the sum of such a product with this objec- 

tive. 

min z 6 ( w ) = 

n i ∑ 

i =1 

n k ∑ 

k =1 

u i k 
2 w ik (32) 

(d) Minimise room changes . The variable ˆ s ik�p is the assigned 

room change penalty for a committee member, i , who will 

change rooms within a problematic time frame due to be- 

ing assigned to any defence in a day, k , an hour, � , and

a room, p. The penalty is incurred on the condition that 

the committee member, i , is also assigned to another de- 

fence, in a different room, p , in the same day, k , which ends 

within a specific time-frame, between � and � − a i , with the 

parameter, a i , representing the number of hour slots be- 

fore an assignment where the committee member considers 

scheduling the end of another assignment as problematic for 

a room change. We want to minimise the sum of the prod- 

uct of such penalties by their incurring committee member’s 

weight with this objective. 

min z 7 ( ̂  s ) = 

n i ∑ 

i =1 

n j ∑ 

j=1 

u i ̂  s i j (33) 

.7. Summary 

In thesis defence scheduling, we want to know Who (the com- 

ittee member) is to be assigned to Which committee, performing 

hat role, to Whom (thesis defences), When (day and hour) and 

here (room). 

In every MOMILP problem, the feasible region of the decision 

pace is defined by a certain number of constraints. In our thesis 

efence scheduling model, we divided these constraints into three 

roups: 

1. Scheduling complete committees . These constraints define a com- 

plete committee and ensure that every schedulable defence is 

assigned one. 

2. Committee composition . These constraints ensure the eligibility 

of the committee members to perform their assignments. 

3. Committee member and room availability . These constraints guar- 

antee that committee members and rooms are available for 

each assignment. 

Nonetheless, not all feasible solutions are equivalent. To assess 

heir relative standing, we identified two points of view, rendered 

perational by specific criteria: 

1. Committee assignment quality . This point of view includes crite- 

ria related to the committees assigned to each defence. Accord- 

ingly, it impacts the quality of the defences and the workload 

distribution between committee members. 
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2. Schedule quality . This point of view includes criteria for min- 

imising the inconvenience the assignments generate for the 

committee members. 

. An approach to the MOMILP problem 

This section addresses the approach chosen to solve the 

OMILP problem introduced in the previous section. It starts by 

resenting some fundamental concepts and definitions, followed 

y the employed algorithm and, finally, the practical aspects re- 

arding the actual use of the algorithm. 

.1. Some fundamental concepts, their definitions, and notation 

Consider the following MOMILP problem, 

max z 1 (x ) , 

. . . 

max z i (x ) , 

. . . 

max z n z (x ) , 

subject to: 

x ∈ X (34) 

here x = (x 1 , . . . , x j , . . . , x n x ) is the vector of the decision vari-

bles, X is the feasible region in the decision space, and z i is the 

 − th linear objective function, for i = 1 , . . . , n z . The image of X ac-

ording to all the objective functions defines the feasible region, Z, 

n the criterion space. 

A fundamental concept in multi-objective optimisation is the 

otion of dominance . A solution or outcome vector z ′ in the objec- 

ive space dominates another solution z ′′ if and only if z ′ 
i 
� z ′′ 

i 
, for

ll i = 1 , . . . , n z , with at least one of these being a strict inequality,

.e., z ′ 
i 
> z ′′ 

i 
for some i . 

A feasible solution, z̄ ∈ Z, is said to be non-dominated if and only 

f there is no other feasible solution, z ∈ Z, such that z dominates z̄ .

he set of all non-dominated solutions is known in the literature 

s the Pareto front . The inverse image of a non-dominated solution, 

¯ = F −1 ( ̄z ) is called an efficient solution (in the decision space). 

Our objective is to identify a subset of the Pareto front, denoted 

y N. For this purpose, we will use a well-known scalarisation 

echnique based on the resolution of a sequence of ε-constraint 

roblems of the form: 

max z 1 (x ) , 

subject to: 

x ∈ X, 

z i (x ) � εi , i = 2 , . . . , n z (35) 

here only one of the objective functions, arbitrarily chosen here 

s z 1 (x ) , is being maximised. Whereas the others are instead in-

luded in constraints, which set lower bounds, εi , for each of the 

emaining objective functions, z i (x ) , for i = 2 , . . . , n z . Moreover, dif-

erent non-dominated solutions are found by setting different val- 

es for the lower bounds, εi . 

.2. Algorithmic framework 

This subsection addresses the multi-objective algorithmic 

ramework. It is divided into three sequential steps. The first is 

nding the number of schedulable defences, g, which is then set 

s a parameter for the subsequent steps. The second is computing 

he ideal, z id , and approximated nadir, z nad , points. These points are 

ecessary as in the next step a number of equally spaced bounds 
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etween z id and z nad is defined for each objective and used as the 

alues for ε. This methodology allows us to control the maximum 

umber of solutions we wish to obtain. Finally, the augmented ε- 

onstraint method itself. 

In fact, the proposed method adapts the augmented ε- 

onstraint method, introduced in Mavrotas (2009) and Mavrotas & 

lorios (2013) . Our adaption obtains a subset of the Pareto front 

y iteratively increasing the lower bounds, εi , for each objective, 

 = 2 , . . . , n z . However, in contrast with some ε-constraint meth- 

ds, this method guarantees that all solutions found are non- 

ominated. To achieve this, instead of just using the objective func- 

ion z 1 (x ) , a component related to the remaining objective func- 

ions is also included in the objective function with the help of 

urplus variables. 

.2.1. Computing the ideal and the approximate nadir points 

For each i = 1 , . . . , n z , the problem of Eq. (36) is solved. Each

bjective function is divided into two components. The first is an 

bjective function, z i (x ) , for i = 1 , . . . , n z . The second is the sum

f the remaining objective functions z j (x ) , for j = 1 , . . . , n z , j � = i ,

ultiplied by a suitable number 10 −E that ensures that, regard- 

ess of the value the second component takes, the value of the first 

omponent is the same as if we would instead maximise z i (x ) sep-

rately, i.e., max x ∈ X z i (x ) , i = 1 , . . . , n z . 

 

ρi ∗
i 

= max 
x ∈ X 

{ 

z i (x ) + 

(
10 

−E 
) n z ∑ 

j=1 , i � = j 
z j (x ) 

} 

, i = 1 , . . . , n z . (36) 

Let us denote the perturbation of the objective function, z i (x ) , 

n the previous equation by, 

i = 

(
10 

−E 
) n z ∑ 

j=1 , i � = j 
z j (x ) , i = 1 , . . . , n z , (37) 

here 0 � ρi < 1 , i.e., since z i (x ) ∈ Z , then ρi will not influence

he value of z i (x ) . We can now define, z ∗
i 

= z 
ρi ∗
i 

− ρi , for all i =
 , . . . , n z , and the ideal point, z id , can be defined as follows: 

 

id = 

(
z ∗1 , . . . , z 

∗
i , . . . , z 

∗
n z 

)
. (38) 

Let z i ∗
j 

, denote the value obtained for an objective function, 

 j (x ) , j = 1 , . . . , n z , when maximising z i (x ) , i = 1 , . . . , n z , i.e., when

olving the problem of Eq. (36) , for z i (x ) . Each scalar component,

 

nad 
i 

, of the approximate nadir vector, z nad , can be defined as fol-

ows: 

 

nad 
i = min 

j=1 , ... ,n z 

{
z j∗

i 

}
, i = 1 , . . . , n z . (39) 

Accordingly, the approximate nadir vector can be stated as fol- 

ows: 

 

nad = 

(
z nad 

1 , . . . , z nad 
i , . . . , z nad 

n z 

)
. (40) 

This process is represented in Algorithm 1 , denoting the prob- 

em of Eq. (36) , for each z i (x ) , as P z i . 

Algorithm 1. Compute z id and z nad . 
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.2.2. Augmented ε-constraint 

Finally, we can define the surplus variables, s i (x ) , for x ∈ X , and

or each objective, z i (x ) , for i = 2 , . . . , n z , as in Eq. (41) . These are

omputed as the ratio of the difference between the objective, 

 i (x ) , and its corresponding value in the nadir point, z nad 
i 

, and the

ifference between the optimum value for the objective, z ∗
i 
, and its 

orresponding value in the nadir point, z nad 
i 

. 

 i (x ) = 

z i (x ) − z nad 
i 

z ∗
i 
− z nad 

i 

, i = 2 , . . . , n z , x ∈ X. (41)

Now, to define the objective function used in the augmented ε- 

onstraint method, z ε , as in Equation Eq. (42) . This objective func- 

ion is divided into two components. The objective function z 1 (x ) 

nd a perturbation component, computed through the sum of the 

urplus variables, s i (x ) , employed to guarantee non-dominated so- 

utions, while ensuring that the value of the objective function 

 1 (x ) is the same as if we would instead maximise z 1 (x ) separately,

.e., max x ∈ X z 1 (x ) , while considering that the remaining objectives 

 j (x ) are subject to the lower bound vector ε, i.e., z j (x ) � ε j , for

j = 2 , . . . , n z . 

 

ε = max 
x ∈ X 

{ 

z 1 (x ) + (n z − 0 . 9) −1 
n z ∑ 

i =2 

s i (x ) 

} 

(42) 

Let us denote the perturbation of the objective function z 1 (x ) 

y 

= (n z − 0 . 9) −1 
n z ∑ 

i =2 

s i (x ) , (43) 

here, given that 0 � s i (x ) � 1 , it follows that 0 � φ < 1 , i.e., since

 1 (x ) ∈ Z , then φ will not influence the optimality of z 1 (x ) , con-

idering that the remaining objective functions, z j (x ) , are subject 

o the vector of lower bounds, ε. 

To iterate between the vector of lower bounds, ε, we first spec- 

fy a parameter, p i , subject to 1 
p i 

∈ N , which is the percentage of

he gap between the correspondent ideal, z ∗
i 
, and nadir, z nad 

i 
, scalar 

omponents, which is incremented between each iteration for an 

bjective, z i (x ) . Moreover, we also define a vector, v , of dimension

 z − 1 , such that each scalar component, v i , represents the number 

f times each lower bound, εi , is to be incremented by its corre- 

ponding percentage, p i , in the current iteration. Thus, Eq. (44) de- 

nes the lower bound, εi , for a given objective, z i (x ) , as the in-

rement of the scalar component, z nad 
i 

, by a percentage, v i p i , of

he difference between the scalar components, z ∗
i 

and z nad 
i 

. Note 

hat, while all other parameters are constants, v i , is updated be- 

ween each iteration. Moreover, the minimum value for the lower 

ound, εi , must be z nad 
i 

, and its maximum value z ∗
i 
, therefore v i ∈

 0 , . . . , 1 
p i 

} . 
i = z nad 

i + v i p i 
(
z ∗i − z nad 

i 

)
, i = 2 , . . . , n z (44) 

To update v between iterations, we use Algorithm 2 . As input, 

he algorithm receives the vector v , the vector of percentages, p, 

nd the variable stop, returning the updated values for v and stop

s output. The final iteration is reached and stop is set to true 

hen for all bounded objectives z i (x ) , v i = 

1 
p i 

, after which the main

lgorithm stops and the set of the obtained non-dominated solu- 

ions, N, is returned. Otherwise, following an ascending order of 

ndexes, i = 2 , . . . , n z , the first v i < 

1 
p i 

, is incremented by 1. Further-

ore, all v ˆ i , ˆ i < i , which necessarily are equal to 1 
p i 

, are reset to 0.

his ensures that every possible vector v is considered. 
100 
Algorithm 2. Update v . 

However, not all vectors of lower bounds, ε, generated by vec- 

ors v , have the potential to obtain new solutions. Accordingly, 

e use Algorithm 3 , which receives as input the vector of lower 

ounds, ε, and the set of already obtained solutions, N, and as- 

esses whether there is no already obtained solution, z ∈ N, that 

ominates the current lower bounds vector, ε. If there is such a 

olution, z, then the current lower bounds vector, ε, does not have 

he potential to generate a new solution, and the variable skip is 

et to true . If skip = true , the main algorithm skips the optimisa-

ion of the problem of Eq. (42) for the current ε (which we denote 

s P ε ), improving its overall efficiency. 

Algorithm 3. Skip obtained solutions: SkipSolutions () . 

Conversely, some combinations can be a priori proven to be in- 

easible. Similarly to the previous algorithm, Algorithm 4 tests if an 

teration has the potential to enrich the pool of solutions. Accord- 

ngly, it receives as input the vector of lower bounds, ε, and the set 

f lower bounds already identified as infeasible, I. If ε dominates 

ny lower bound combination in I it follows that the correspond- 

ng optimisation cannot find a feasible solution. Therefore, it can 

e skipped. Similarly to Algorithm 3 , the variable skip is set and 

eturned as the output. 

Algorithm 4. Skip infeasible models: SkipIn f Models () . 

Finally, we can design Algorithm 5 , which presents the overall 

ugmented ε-constraint method. As input, it receives the problem, 

 

ε , the percentages vector, p, to be considered, and the nadir, z nad ,

nd ideal, z ∗
i 
, points., As output, it returns the set of obtained non-

ominated solutions, N. 
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Algorithm 5. Augmented ε-constraint. 

The first step is to set up the initial maximisation, which con- 

iders εi = z nad 
i 

, i = 2 , . . . , n z . Additionally, the obtained solutions

et, N, and the known infeasible lower bound combinations set, I, 

ust also be defined. Necessarily, the first iteration always pro- 

uces a feasible solution to be saved in the set of already ob- 

ained solutions, N. Nonetheless, thereupon, before every iteration, 

lgorithms 3 and 4 assess if the vector of lower bounds, ε, gener- 

ted by vector v , has the potential to find a new solution. If it does,

roblem P ε is optimised, considering the current vector of lower 

ounds, ε, in which case, if a new solution, z, is found, it is kept in

he solutions set, N, otherwise, the lower bounds vector, ε, is saved 

s infeasible in set I. Regardless of the present optimisation being 

kipped or not, Algorithm 2 determines if the last iteration has al- 

eady been reached, in which case Algorithm 5 stops and returns 

he obtained solutions set, N. Otherwise, Algorithm 2 updates v for 

he next iteration. 

.2.3. Finding the number of schedulable defences 

Before computing z id , z nad , and initialising Algorithm 5 , we need 

o set the value for the number of defences that can be sched- 

led in any given instance, g. For such a purpose, we solve the al- 

ernative problem of Eq. (45) , which is similar to Problem P ε , but

ithout considering Constraint (3) , which sets the number of de- 

ences that are to be scheduled, Constraints (10) –(26) , which define 

he values for the objectives, and lastly, the objectives themselves 

27) –(33) . 

Conversely, we instead include the objective function of 

q. (45) , which maximises the number of scheduled complete 

ommittees (thesis defences), computed as the sum of a variable, 

 jk�p , which takes the value 1 if a defence, j, is scheduled at a day,

 , an hour, � , and a room, p. 

 = max z g (y ) = 

n j ∑ 

j=1 

n k ∑ 

k =1 

n � ∑ 

� =1 

n p ∑ 

p=1 

y jk�p (45) 

To sum up, the first stage of the procedure is to find the maxi- 

um number of thesis defences that can be scheduled for a given 

nstance and set that value as a parameter in the following steps. 

or the second stage, we compute the ideal point, z id , and the 

pproximate nadir point, z nad through Algorithm 1 . Finally, we 
101 
ave all the necessary parameters to initialise the augmented ε- 

onstraint method, Algorithm 5 . A schematic representation of the 

hole two-stage procedure is presented in Fig. 1 . 

Fig. 1. Full procedure diagram. 

. Case studies 

This section addresses adaptions of our model to different the- 

is scheduling case studies, classified as single defence assignment 

roblems. The first two case studies are adapted from different de- 

artments within our university. The third and fourth case stud- 

es are taken from the literature and demonstrate how flexible our 

odel is while being applied to problems of different character- 

stics. They are taken from Huynh et al. (2012) and Tawakkal & 

uyanto (2020) , respectively. For each, a summary of the problem 

nd an explanation of the parameterisation is presented. For the 

ase studies from our university, the computational results are pre- 

ented and discussed. 

Regarding both hardware and software characteristics for the 

omputational experiments: (1) CPU: Intel(R) Core(TM) i7-8565U 

PU @ 1.80 gigahertz 1.99 gigahertz; (2) RAM: 8 gigabyte; (3) Im- 

lementation of the algorithms: Python 3.11; (4) Solver: Gurobi 

0.0.0. 

.1. Engineering and management department 

In this subsection, the case study of the Engineering and Man- 

gement Department (DEG) of the Instituto Superior Técnico (IST) 

f the University of Lisbon is addressed. 

.1.1. Summary of the problem 

Following IST’s policy, the committees are composed of three 

embers, the supervisor, a president, and another member. More- 

ver, the president must be part of DEG’s scientific committee. 

Two main concerns have been voiced by the professors of the 

epartment regarding the quality of their schedules. Quite often, 

ome of them end up being assigned to a large number of commit- 

ees. This added workload disturbs their other responsibilities, such 

s teaching, supervising, and doing their own research. Moreover, 

he thesis defences of this department are conducted in a campus 

utside of Lisbon. Therefore, most professors have to make addi- 

ional trips to be present for a defence. Thus, they would prefer 
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f their defences would be scheduled in as few days as possible. 

ccordingly, the objectives considered for this case study are pro- 

oting a fair workload distribution and minimising the scheduled 

ays. 

.1.2. Model parameterisation 

For this case study, there are 47 committee members, n i , 37 

hesis defences, n j , 3 roles, n t , 16 days, n k , 31 hours slots in each

ay, n � , and 2 available rooms, n p . Each defence lasts 1 hour, d,

quivalent to 4 hours slots. 

The rooms, p, can be considered to be available for every time- 

lot, ( k, � ), i.e., m k�p = 1 . The member availability, l ik� , was gathered

y the department’s secretary, who was responsible for coordinat- 

ng the scheduling process with the different committees and en- 

uring the feasibility of the schedules. 

As for the committee eligibility, e i jt , four scenarios are consid- 

red. The first considers that the appointed committees are fixed 

nd equal to the ones which were effectively assigned by the 

ecision-makers. The second considers that the president of each 

efence can be chosen from a set of 11 members of the scientific 

ommittee. The third considers that the other member can be cho- 

en from all the available members. The final scenario considers 

hat both the president and the other member can be chosen, re- 

pecting the aforementioned rules. 

No differentiation was considered between different members, 

.e. , the individual weight, u i , was set to 1. The omitted parameters

an be disregarded, as they are only necessary for objectives which 

re not analysed in this case study. 

.1.3. Results discussion 

No time limit was set for each iteration. The objective functions 

re fair workload distribution, z 1 , and minimisation of committee 

ays, z 6 . The number of equally spaced bounds between, and in- 

luding, z nad 
6 

and z ∗
6 
, was 20. Thus, at most, 20 solutions can be

ound for each scenario. 

The results for the four scenarios tested with the model are pre- 

ented in Table 1 . This table includes information about the com- 

utational time and the number of solutions. 

Naturally, in the scenario with a fixed committee, only one non- 

ominated solution can be found, as the workload objective is only 

ffected by the composition of the committees, which is fixed. The 

cenarios which allow for more committee combinations invariably 

ad more non-dominated solutions but took more time to solve. 

Moreover, the number of solutions and computational times are 

ot only affected by the number of roles to be assigned by the 

odel but also by the number of members available to fill these 

oles. This is evident when comparing the results for the scenarios 

here only the presidents and the other members are assigned. In 

oth, the committees have 2 fixed positions, but only 11 members 

an be chosen as presidents, and 47 can be chosen as other mem- 

ers, leading to a larger variety of possible combinations. 

The performance of each solution of the different scenarios re- 

arding the workload objective, z 1 , and the committee days objec- 

ive, z 6 , is presented in Fig. 2 . 

able 1 

epartment of engineering and management computational results. 

Scenario Solutions CPU(s) 

Fixed committees 1 1 

President 5 20 

Other member 14 193 

President & other member 15 3530 
102 
ig. 2. Performance of each solution found for the four scenarios and the solution 

ound by the decision-makers. 

Regarding the workload objective, the solution found by the 

ecision-makers is competitive with some solutions found by the 

odel. Nonetheless, if we consider the performance of the com- 

ittee days objective, the usefulness of using a model becomes 

vident. 

While a better-performing solution is found for the scenario 

ith fixed committees, the difference in performance is some- 

hat small. Nonetheless, we hypothesize that if the member avail- 

bility had been gathered differently, there would have been a 

reater discrepancy. The data for each committee was obtained 

hrough doodles where the supervisor and other member would 

ote on a couple of different dates suggested by the president. 

his is a method which facilitates the work of a human sched- 

ler as only a couple of options are considered, but the model 

s able to handle larger amounts of information and find better 

olutions. 

Nonetheless, the major benefit comes from allowing different 

ommittee combinations. It was expected that the workload ob- 

ective could be greatly improved in this case. However, what is 

hown is that it is possible to find much better solutions re- 

arding the committee days objective by assigning members with 

etter-matching availability to the same committees. For exam- 

le, in the scenario where the other member is being assigned, 

he best-performing solution regarding the committee days objec- 

ive has a value of z 6 = 123 . Comparatively, for the scenario where

oth the president and other member are assigned, the worst- 

erforming solution for this objective is only slightly worse, at 

 6 = 125 . 

For a clearer understanding of the trade-offs and meaning of 

ach objective, we now look with more detail into the solution 

ound by the human schedulers ( z 1 = 408 , z 6 = 283 ) and three

olutions of the scenario where the president and other mem- 

er are assigned. Specifically, the solution with the best work- 

oad performance ( z 1 = 338 , z 6 = 125 ), an intermediate solution 

 z 1 = 354 , z 2 = 92 ), and the solution with the best committee days

erformance ( z 1 = 488 , z 6 = 61 ). Fig. 3 presents the percentage of

embers who participate in a certain number of committees, and 

ig. 4 presents the percentage of members with a certain number 

f scheduled days. 
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Fig. 3. Percentage of committee m

Fig. 4. Percentage of committee me

The solution with the fairest workload distribution favours the 

ttribution of 2 committees to most members. Moreover, only the 

ember who was supervising 6 students participated in 6 or more 

ommittees. Comparatively, in the solution obtained by the human 

chedulers, 10% of professors participated in 6 or more committees 

nd in the solution with the best committee days, 19% of profes- 

ors participated in 6 or more committees. 

Regarding the scheduled days, the poor performance of the hu- 

an schedulers is evident. The best solution regarding this objec- 

ive considered that only 19% of members had to be present on 2 

ifferent days in Taguspark campus for a defence. Comparatively, in 

he schedule found by the decision-makers, 43% of professors had 

o be present for more than 2 days. Moreover, even in the solution 

hich had the best workload distribution, only 36% of members 

ad defences scheduled for more than 2 days. 

There is a clear trade-off between these objectives. On the one 

and, solutions which distribute the workload more fairly have to 

ely on scheduling members for more days to accommodate the 

ore varied committees. On the other hand, the solutions which 

chedule fewer committee days, distribute more defences to mem- 

ers with matching availability, who can then evaluate them all on 

 smaller number of days. 

.2. Informatics engineering department 

In this subsection, the case study of the Informatics Engineering 

epartment (DEI) of the Instituto Superior Técnico of the Univer- 

ity of Lisbon is addressed. 

.2.1. Summary of the problem 

DEI also follows IST’s standard committee composition, includ- 

ng a president, the supervisor and another member. However, 

his department’s thesis scheduling process has some fundamental 

ifferences when com pared to DEG’s. DEI operates in two differ- 

nt campi . Accordingly, some students defend their theses in the 
103 
rs with a number of committees. 

 with a number of committee days. 

lameda campus , in Lisbon, and others in the Taguspark campus , 

here DEG’s defences also take place. 

Participating in a committee in the Alameda campus is usually 

ot as disruptive to the members. Nonetheless, DEI has a consid- 

rably larger number of defences occurring in this campus when 

ompared to DEG in Taguspark. This results in an increased work- 

oad for the presidents. To improve the schedules for members in 

oth campi , four objectives are regarded. Specifically, promoting 

 fair workload distribution, compact schedules, minimising the 

ommittee days, and avoiding room changes. 

.2.2. Model parameterisation 

In the Alameda campus case-study there are 161 members, n i , 

10 defences, 13 days, n k , and 4 rooms, n p . In the Taguspark cam-

us case-study there are 89 members, n i , 49 defences, 10 days, n k ,

nd 2 rooms, n p . Both consider 3 different roles, n t , 6 hours slots

here a defence can be scheduled, and 2 of mandatory breaks, i.e., 

 � = 8 . The break hour slots could have been disregarded if not for

he compactness objective. Each defence lasts for a single hour slot, 

. 

The rooms, p, can be considered to be available for every time- 

lot, ( k, � ), i.e., m k�p = 1 . We had access to the president’s availabil-

ty, but not for the remaining members. Thus, for the availability 

arameter, l ik� , three scenarios were randomly generated consider- 

ng the time-slot availability percentage of supervisors and other 

embers: 20% availability, 30% availability, 40% availability. 

As for the committee eligibility, e i jt , the supervisors and other 

embers are already pre-assigned, and the model can only choose 

he president of each defence. In the Alameda campus case-study 

here are 14 members who can be presidents, and in Taguspark 

here are 9. 

Since the presidents are the most affected, the remaining mem- 

ers were assigned an individual weight, u i = 0 , in the Alameda 

ampus . This means that they are not regarded in the computation 

f the objectives’ values, but their availability is still taken into ac- 
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ount. Contrarily, in the Taguspark campus , only members with a 

ingle defence pre-assigned were disregarded. 

Considering that the hour slots represent 1.5 hours periods, it 

as considered that any free time between defences should be 

enalised, i.e., for all members, b i = 0 , and v i 0 = 1 . For the same

eason, the number of hour slots following the end of a defence 

n which a committee member, i , would consider changing rooms 

roblematic, a i , is also 0 for all members, and h i 0 = 1 . 

.2.3. Results discussion 

No time limit was set for each iteration. The objective functions 

re fair workload distribution, z 1 , minimisation of non-consecutive 

ssignments, z 4 , minimisation of committee days, z 6 , and minimi- 

ation of room changes z 7 . Regarding objective z 7 , for every so- 

ution found, its value was 0, which means that no member had 

o change rooms within consecutive time slots. The number of 

qually spaced bounds between, and including, z nad 
4 

and z ∗
4 
, and 

 

nad 
6 

and z ∗6 , was 5. Thus, at most, 25 solutions can be found for

ach scenario. 

The results for the case-studies from both campi and consider- 

ng the three availability scenarios are presented in Table 2 . This 

able includes information about the number of solutions, the per- 

entage of defences that can be scheduled in each of them, and the 

omputational time. 

able 2 

epartment of informatics engineering results . 

Campus Availability Solutions Scheduled defences CPU (seconds) 

Alameda 20% 7 90% 20 

Alameda 30% 4 100% 210 

Alameda 40% 5 100% 405 

Taguspark 20% 3 84% 6 

Taguspark 30% 9 100% 20 

Taguspark 40% 5 100% 25 

Let us note that for both campi it stopped being possible to 

chedule all defences after the availability percentage was dropped 

o 20%. Accordingly, we can assume that the real percentage would 

ave been higher than that and that the other two scenarios can 

rovide a fair benchmark for analysis of the results which would 

e achievable through our methodology. 

The performance of the schedules obtained by the decision- 

akers and those obtained by our model for the scenarios were 

ll the defences are scheduled are presented in Fig. 5 . 

Fig. 5. Performance of each solution found for 
104 
In DEG’s case study, we found that while the human schedulers 

ould find workload distributions, z 1 , that were somewhat compet- 

tive with some non-dominated solutions, the same was not true 

or the committee days objective, z 6 . In the Taguspark case study, 

he same conclusion can be taken. The values for z 1 in the non- 

ominated solutions vary from 366 to 386, and the solution found 

y the schedulers had a performance of 380. Moreover, the value 

or the committee days objective, z 6 , was 130, whereas the solution 

hich performs the worst in this objective had z 6 = 106 . 

However, the same cannot be said for the Alameda case study. 

erhaps due to this being a larger problem than the other two, 

ith more than double the number of defences to be scheduled, 

he human schedulers performed worse in all objectives than the 

on-dominated solutions found by the 

odel. 

As for the consecutiveness objective, z 4 , in both campi , the so- 

ution found by the human schedulers performed worse than any 

olution found by the model. Let us note that since all the weights 

hat can influence this objective, u i and v i� , are set to 1 or 0, the

ifferences in the performance of two solutions translate the differ- 

nce in the number of times a member had a defence start without 

aving had another defence scheduled in the previous time-slot. 

his objective does not vary too much between the non-dominated 

olutions of the same scenario, with the largest difference being 

nly 3. Nonetheless, for both campi , the human scheduler found 

olutions which performed worse than any non-dominated solu- 

ion. Specifically, in the Alameda case study, the solution found 

y the human schedulers had a difference of 15 to the worst- 

erforming non-dominated solution. For the smaller campus , the 

ifference was only 3. 

.3. Huynh et al. (2012) ’s case study 

This work addresses the thesis scheduling problem at the 

chool of Information and Communication Technology, Hanoi Uni- 

ersity of Science and Technology. 

.3.1. Summary of the problem 

Following the policy of most Vietnamese universities ( Huynh 

t al., 2012 ), the committees are composed of five members. More- 

ver, while the thesis supervisors cannot be included, they ap- 

oint two reviewers who must enter the committee. Addition- 

lly, two committee members must be external professors and all 

ommittee members must have expertise in the research subject 

f the thesis. This problem regards all time slots as available for 
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oth committee members and rooms. However, some should be 

voided. 

Four objectives are considered. Specifically, minimising commit- 

ee member assignments in time-slots which should be avoided, 

aximising committee member suitability regarding the research 

ubject of the thesis, maximising consecutive assignments for com- 

ittee members, and minimising room changes. 

.3.2. Model parameterisation 

The definition of parameters such as the number of defences, 

 j , number of members, n i , duration of the defences, d, research 

ubjects of a committee member, r iq , etc., is simple and we will 

ot explain it here. Moreover, we will not analyse the definition 

f parameters that reflect the decision-maker’s preferences, such 

s the weight assigned to different members, u i , or the hour slots 

fter the end of a defence that would be considered inconvenient 

or a room change, a i . In fact, only three parameters require some 

evel of attention in this specific case study. 

There is no reference to a limit to the number of committees a 

ommittee member can be a part of. Hence, the maximum number 

f defences to be assigned to a committee member, c i , should be 

qual to the number of thesis defences, n j . 

Since all time-slots are considered as available, the committee 

ember, l ik� , and room, m k�p , availability parameters cannot take 

he value 0, as this represents unavailability. 

The last parameter, e i jt , represents committee member eligibil- 

ty. It takes the value 1 if a committee member, i , is eligible to per-

orm a role, t , in a certain defence, j, and 0 otherwise. For the two

ommittee members that are appointed by the supervisor there 

ust be two fixed roles, i.e., two roles with only one eligible mem- 

er. For example, if committee member i = 1 is appointed by the 

upervisor for thesis defence j = 2 to perform role t = 3 , then it

ollows that e 123 = 1 and 

∑ n i 
i =1 

e i 23 = 1 . Regardless of which roles

re fixed, there are two roles that are reserved for external mem- 

ers, meaning that all internal members would be ineligible, i.e., 

or these roles if a committee member, i , is part of the university 

taff and a role, t , is reserved for external members, then e i jt = 0 .

nd vice-versa for the three internal roles. 

As for the objective functions, while we do not follow the same 

ormulation, a comparable version of each of them is present in 

ur model. Thus, to adapt our approach to this problem, one could 

ust disregard the objectives that are not considered in this specific 

ase study. 

.4. Tawakkal & Suyanto (2020) ’s case study 

This work addresses the thesis scheduling problem at the Fac- 

lty of Informatics, Telkom University. 

.4.1. Summary of the problem 

The committees are composed of three members. Moreover, 

hey include the supervisor and two examiners, who are lecturers 

t the Faculty of Informatics. To avoid conflicts with their lectures, 

he committee members must be regarded as unavailable for cer- 

ain time-slots. However, the rooms are available at all times. 

A single objective is considered. Specifically, students who will 

efend their theses can state their own preferences regarding the 

ime-slots in which they would prefer to do so. 

.4.2. Model parameterisation 

Similarly to the previous case study, we will not analyse param- 

ters whose definition is straightforward. Moreover, there is also 

o limit to the number of committees a committee member can 

e a part of. Therefore, the definition of the parameter, c i , follows 

he same rule as the previous case study. 
105 
While the committees are composed of three members, the stu- 

ents must also be considered as part of the committee, so that 

heir preferences can be included as an objective. Thus, the num- 

er of committee roles, n t , is 4. Accordingly, the number of com- 

ittee members, n i , must also include the students. 

The definition of the committee member time-slot availabil- 

ty and preference parameter, l ik� , is different between lecturers 

nd students. For a lecturer, i , the parameter can take the value 

, if they are not available, or 1 if they are. For students, i , who

re available for all time-slots, the parameter must never take the 

alue 0. Moreover, their preference requests are to be considered. 

ence, the parameter should take the value 1, for their preferred 

ime-slots, and a larger value for their non-preferred ones. This dif- 

erentiation impacts the penalty of choosing a certain time-slot for 

 defence. 

Out of the four roles, t , in these committees, the supervisor and 

tudent roles are fixed. Suitably, the committee eligibility parame- 

er, e i jt , follows the rules explained for fixed roles in the previous 

ase study. For the examiner roles, any lecturer that is not the su- 

ervisor can be selected. Thus, the parameter takes the value 1 for 

hese lecturers, and 0 for the supervisor and the students. 

For the objective function, the time-slot preference objective is 

he only one which should be regarded. 

. Designing an instance generator for thesis defence 

cheduling 

This section addresses the design of the instance generator for 

hesis defence scheduling problems that we propose. It starts by 

resenting the different types of instances that were considered 

nd references the different additional necessary inputs. Moreover, 

he specific procedures for the random instance generation are 

lso presented, with a focus on the availability parameters, defined 

ased on conditional probabilities. 

.1. Types of instances and other inputs 

To test the proposed method (see Section 6 ), a set of 96 in-

tances, denoted by p( n i .n j .n t .n k .n � .n p .n q ) , was generated. Let us 

oint out that the following parameters are identical for all of 

hese instances: 

1. n t = 3 , which is the defined number of roles; 

2. n k = 15 , which is the defined number of days; 

3. n � = 16 , which is the defined number of hour slots in a day. In

these instances each hour slot represents 30 minutes; 

4. n q = 15 , which is the defined number of research subjects. 

Moreover, the instances were divided into six different types by 

arying the number of committee members, n i , the number of de- 

ences, n j , and the number of rooms, n p : 

1. Instances of type, p( 25 . 20 . 3 . 15 . 16 . 3 . 15 ) : These instances con- 

sider 25 committee members ( n i = 25 ), 20 defences ( n j = 20 )

and 3 rooms ( n p = 3 ), instances (1)–(16). 

2. Instances of type, p( 25 . 20 . 3 . 15 . 16 . 4 . 15 ) : These instances con- 

sider 25 committee members ( n i = 25 ), 20 defences ( n j = 20 )

and 4 rooms ( n p = 4 ), instances (17)–(32). 

3. Instances of type, p( 38 . 30 . 3 . 15 . 16 . 3 . 15 ) : These instances con- 

sider 38 committee members ( n i = 38 ), 30 defences ( n j = 30 )

and 3 rooms ( n p = 3 ), instances (33)–(48). 

4. Instances of type, p( 38 . 30 . 3 . 15 . 16 . 4 . 15 ) : These instances con- 

sider 38 committee members ( n i = 38 ), 30 defences ( n j = 30 )

and 4 rooms ( n p = 4 ), instances (49)–(64). 

5. Instances of type, p( 50 . 40 . 3 . 15 . 16 . 3 . 15 ) : These instances con- 

sider 50 committee members ( n i = 50 ), 40 defences ( n j = 40 )

and 3 rooms ( n p = 3 ), instances (65)–(80). 
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6. Instances of type, p( 50 . 40 . 3 . 15 . 16 . 4 . 15 ) : These instances con- 

sider 50 committee members ( n i = 50 ), 40 defences ( n j = 40 )

and 4 rooms ( n p = 4 ), instances (81)–(96). 

As for the remaining parameters, some were considered the 

ame for every instance, specifically: 

1. d = 2 , which is the duration of a thesis defence, in the number

of time slots; 

2. p(u i = 1) = 0 . 7 , p(u i = 2) = 0 . 3 , which are the probabilities of

a committee member i to be assigned to a certain individual 

weight u i ; 

3. c i = 0 . 5 n i , which is the maximum number of allowed defences

per committee member i ; 

4. 
∑ n q 

q =1 
r iq = 3 , which is the number of research subjects q for 

committee members i ; 

5. 
∑ n q 

q =1 
t jq = 3 , which is the number of research subjects q for de- 

fences j. 

Additionally, for each type of instance, we generated sixteen 

ifferent randomised instances while varying some data inputs cor- 

esponding to the remaining parameters of our model: 

1. t = 1 and t = 2 , or t = 2 : These are the fixed roles in e i jt . If a

role, t , is fixed, it means that, for each defence, j, there is only 

one eligible committee member, i , it can be assigned to. Regard- 

less of a role being fixed, there is an overall set of committee 

members that can be assigned to that role. 

2. p(l ik� = 0) = 0 . 78 , p(l ik� = 0) = 0 . 82 , or p(l ik� = 0) = 0 . 86 :

These are the unavailability percentages, p(l ik� = 0) , for the 

committee member time slot preference and availability pa- 

rameter, l ik� , which are defined as the percentage of l ik� = 0 .

The percentages for the instances with 2 fixed roles were 

0.78 or 0.82. Conversely, for the instances with a single fixed 

role, they were 0.82 or 0.86. This differentiation between in- 

stances with 1 or 2 fixed roles was necessary due to increased 

computational complexity. 

3. p(m k�p = 0) = 0 . 8 or p(m k�p = 0) = 0 . 86 , for m k�p : These are

the unavailability percentages, p(m k�p = 0) , for the room avail- 

ability parameter, m k�p , which are defined as the percentage of 

m k�p = 0 . 

4. p(v i� = [1]) = 0 . 7 , p(v i� = [2 , 1]) = 0 . 3 or p(v i� = [1]) =
0 . 8 , p(v i� = [2 , 1]) = 0 . 2 : These are the probabilities of a

committee member, i , being assigned values [1] or [2,1] for the 

compactness preference parameter, v i� , which will affect the 

big- M upper bounds, n v i . 

5. p(h i� = [1]) = 0 . 7 , p(h i� = [2 , 1]) = 0 . 3 or p(h i� = [1]) =
0 . 8 , p(h i� = [2 , 1]) = 0 . 2 : These are the probabilities of a

committee member, i , being assigned values [1] or [2,1] for 

the room change penalty parameter, h i� , which will affect the 

big- M upper bounds, n h i . 

A diagram summarising this instance generation procedure is 

resented in Fig. 6 . 

The generation of most parameters is done through simple 

robability-based random choices. Thus, we do not explain them 

n detail. However, the availability parameters follow some addi- 

ional rules, which are explained in the next subsection. 

.2. Availability parameters generation for committee members and 

ooms 

In real-world thesis defence scheduling applications, the avail- 

bility periods for committee members and rooms usually occur in 

locks, between lectures, before the first lecture of a given day, or 

fter all the daily assignments. Algorithm 6 was designed to repli- 

ate such behaviour. The algorithm can be described as a Markov 

hain, which will help estimate the probability distributions of the 
106 
ifferent possible values for the availability parameters, l ik� and 

 k�p . For simplification, when we refer to an individual τ , it can 

epresent a committee member or a room. 

To generate the availability parameters in a manner which rep- 

esents their real-world behaviour, we defined the probability of 

n individual, τ , to have a certain availability status, α, at any day, 

 , and hour, � , (time slot ( k, � )), as conditional on its status, α, in

 previous time slot, ( k, � ), for � = � − 1 . Let us note that, when we

ention a conditional probability, p(α| α) , what we are referring to 

s the probability of having l ik� = α or m k�p = α, given that l ik � = α
r m k � p = α. 

Algorithm 6 receives the following notable inputs: 

1. �: This is the duration of the initial warm-up period for each 

day, k , within which the generated parameters will be disre- 

garded. This is important as it will allow the Markov chain to 

reach a steady state. 

2. p(α| α) : These are the probabilities of an l ik� = α or m k�p = α to

remain unchanged between � and � , � = � + 1 . 

3. p(α| α) : These are the probabilities of an l ik� = α or m k�p =
α changing from a state, α, to another, α, between � and 
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� , � = � + 1 . This is not an input per se , but computed through

Eq. (46) , based on the input values, p(α| α) . 

Computing the remaining probabilities, p(α| α) , through 

q. (46) promotes the proportionality between p(α| α) and all 

ther p( ̂  α| α) , based on their conditional probabilities, p(α| α) . 

oreover, this equation also guarantees that the sum of these 

robabilities is always equal to 1. 

p(α| α) = p(α| α) 

( 

n α∑ 

ˆ α=0 

p( ̂  α| ̂  α) 

) −1 

( 1 − p ( α| α) ) , α, ˆ α � = α (46) 

For the committee member availability parameter, l ik� , three 

alues were considered for assignment, l ik� = 0 , representing un- 

vailability, l ik� = 1 , representing preferred time slots, and, l ik� = 2 ,

epresenting less preferred time slots. The room availability pa- 

ameter, m k�p , was defined as binary, hence, the possible values 

re, m k�p = 0 , representing unavailability, and, m k�p = 1 , represent- 

ng availability. The inputs, p(α| α) , per each defined unavailabil- 

ty percentage, are presented in Table 3 for the committee mem- 

er availability parameter, p(l ik� = 0) , and in Table 4 for the room

vailability parameter, p(m k�p = 0) . 

The first step of the algorithm is to define how the values for 

he first hour slot, � = 1 , for an individual, τ , and day, k , l ik 1 and

 k 1 p , are generated. We determined that, for each parameter re- 

arding � = 1 , the conditional probabilities of it being assigned a 

tatus α, p(α| α) , are to consider l ik 0 = 0 or m k 0 p = 0 , i.e., α = 0 .

onetheless, this creates a biased availability distribution for the 

rst hour slots for each day. However, we want to ensure that the 

robability, p(α) , of an hour slot, � , being assigned availability sta- 

us, α, is independent of the hour slot, � . Thus, for every committee 

ember or room, and day, we generate an excess of parameter val- 

es to uniformise their distribution. Then we disregard the initial 

xcess values, i.e., we consider a warm-up period, �. In our exper- 

ments, we used a � = 40 per committee member or room, and 

ay, which proved sufficient to eliminate the initial value’s effect. 

Then, we generate each availability parameter value in sequen- 

ial order, based on the presented conditional probabilities. 

Nonetheless, there is an exception where these input probabili- 

ies do not apply. It occurs after an individual, τ , which was avail- 
able 3 

onditional probabilities p(α| α) per generated unavailability percentage p(l ik� = 0) 

or parameter l ik� . 

p(l ik� = 0) 

p(α| α) 0.78 0.82 0.86 

p(0 | 0) 0.95 0.95 0.95 

p(1 | 1) 0.7 0.63 0.55 

p(2 | 2) 0.7 0.63 0.55 

able 4 

onditional probabilities p(α| α) per generated unavailability percentage p(m k�p = 

) for parameter m k�p . 

p(m k�p = 0) 

p(α| α) 0.8 0.86 

p(0 | 0) 0.95 0.95 

p(1 | 1) 0.7 0.8 

2
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Fig. 7. Committee member time slot preference and availa

107 
ble to start an assignment in a time slot, ( k, � ), stops being avail-

ble to do so at the next time slot, ( k, � ), for � = � + 1 . Let us note

hat for an individual τ to be able to start an assignment at time 

lot ( k, � ), its effective available time must extend up until ( k, ̂  � ), for
ˆ 
 = � + d, as, otherwise, the individual, τ , could not be present for 

he whole duration, d, of a defence. Thus, we defined that when 

 change from availability to unavailability occurs, the individual, 

, must be unavailable for at least a long enough time, such that 

f they were scheduled for their last available time slot before the 

navailability block, and for the first available one after its occur- 

ence, the individual, τ , would have at least one time slot of effec- 

ively unassigned time. Therefore, whenever such a change occurs, 

 − 1 unavailable time slots are automatically added, ensuring the 

ule above is respected. 

An illustrative example of the time slot preference and avail- 

bility generated by this method is presented in Fig. 7 . Let us note

hat, since we considered d = 2 , the exceptional addition was of 

 single time slot (i.e., d − 1 ). For example, if we had used d = 4

nstead, 3 time slots would have been added. 

For additional theoretical background on the concept of Markov 

hains and an explanation of how they can be used to predict the 

vailability percentages the reader is directed to Appendix B . 

. Computational experiments, results, and some comments 

This section addresses the computational experiments made on 

he generated instances. It starts by specifying some essential prac- 

ical aspects, and then the analysis of the results of the computa- 

ional experiments is presented. 

.1. Practical aspects 

There are several practical aspects we need to consider regard- 

ng hardware and software, iteration time limits, parameters of the 

ugmented ε-constraint method, and the display of the computa- 

ional experiments. 

.1.1. Hardware and software 

Regarding both hardware and software characteristics: (1) 

PU: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40 gigahertz 

.42 gigahertz; (2) RAM: 15.8 gigabyte;(3) Implementation of the 

lgorithms: Python 3.10; (4) Solver: Gurobi 9.5.0. 

.1.2. Time limits 

Regarding the time limits set for each step of the procedure: (1) 

inding parameter g: 30 minutes; (2) Algorithm 1 : 2 hours, equally 

ivided between the seven objectives; (3) Algorithm 5 : For each 

teration, 12 hours minus the time used for the previous steps and 

terations in the procedure, divided by the remaining number of 

terations. 

.1.3. Parameters of the algorithms 

Regarding the parameters of the augmented ε-constraint 

ethod and other algorithms: (1) Objective to be fully considered 

n z ε : z 1 ; (2) Bounded objectives: z 3 , z 4 ; (3) Number of equally

paced bounds between, and including, z nad 
i 

and z ∗
i 
: 10; (4) Con- 

inuous objective z 2 : While z 2 is defined as continuous, it was 

ounded up to the nearest integer, as, otherwise, Algorithm 1 could 

ot be used to assess its optimum accurately. 
bility parameter l ik� generation illustrative diagram. 
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.1.4. Computational experiments display 

Regarding the computational experiments, displayed in the Ap- 

endix, in Tables C.1 , C.2 and C.3 , for small ( n j = 20 ), medium

 n j = 30 ) and large ( n j = 40 ) instances, respectively: 

1. Table row: Presents the number of the instance, the identifica- 

tion of the type of instance, the corresponding input data and 

the outputs. 

2. Types of output: Presents the number of non-dominated so- 

lutions found, | N| , the number of infeasible iterations, | I| , the 

number of skipped non-dominated solutions, skip N , the number 

of skipped infeasible solutions, skip I , the number of solutions 

found that were not proven as non-dominated due to a time 

limit being reached, time N , the number of iterations that were 

stopped before a solution was found due to a time limit being 

reached, time I , the number of defences that can be scheduled, 

g, and the CPU time required. 

.2. Computational experiments 

This subsection addresses the analysis of the computational ex- 

eriments. For such a purpose, several aspects must be taken into 

ccount. Specifically, the computational performance, number of 

chedulable defences, and the type of iteration distribution. More- 

ver, some concluding comments are also made. 

.2.1. Computational performance 

Regarding computational performance, which can be assessed 

y the time an instance takes to solve and the number of iterations 

hat were stopped due to time limit conditions being reached, the 

ollowing remarks can be made: 

1. Increases in the size of the instance, for the considered instance 

types p(n i .n j .n t .n k .n � .n p .n q ) , invariably lead to an increase in

computational complexity; 

2. For the considered ranges, a decrease in the number of fixed 

roles in e i jt or in the unavailability percentages for the avail- 

ability parameters, l ik� and m k�p , also lead to notable increases 

in the CPU times; 

3. Conversely, the variation on the percentages for each big- M

upper bound, v i� and h i� , did not produce such a unidimen- 

sional variation in computational complexity, with some in- 

stance types being solved more efficiently when the smaller 

upper bound is more frequent, and other instances seemingly 

showing the opposite trend. 

For the first two points, the mentioned parameter variations in- 

rease the number of possible feasible variable combinations. Thus, 

aking the instances more challenging to solve. For the irregu- 

ar behaviour presented in the last remark, the explanation might 

e that, occasionally, the increase in the number of committee 

embers that are assigned the parameter values v i� = [2 , 1] and 

 i� = [2 , 1] , instead of v i� = [1] and h i� = [1] , is potentially reduc-

ng solution symmetries. This effect surpasses the impact of the 

eaker linear relaxations induced by larger big- M upper bounds. 

.2.2. Number of schedulable defences 

Regarding the number of schedulable defences, logically, in- 

reasing the number of committee members and defences leads 

o more defences being scheduled. Additionally, the following re- 

arks on the percentage of schedulable defences can be made: 

1. Increasing the number of available rooms improves the number 

of schedulable defences; 

2. Reducing the number of fixed roles in e i jt or the unavailability 

percentages for the availability parameters, l ik� and m k�p , pro- 
moted higher schedulability percentages. p

108 
These points show that these parameters, which are involved in 

he model, affect the probability that there is a suitable time slot 

or the scheduling of a given defence. Moreover, an increase in this 

robability improves the number of schedulable defences. Let us 

ote that the same parameters that positively affect the number 

f schedulable defences also negatively impact the time it takes to 

olve the respective instance. This is explained by the increase in 

he number of possible assignment combinations promoted by the 

ariation of these parameters. Conversely, the big- M upper bound 

istribution variation does not impact the number of schedulable 

efences, which might indicate why its effect on the computational 

fficiency is not as streamlined as it is for the other considered 

arameters. 

.2.3. Type of iteration distribution 

Regarding the type of iteration distribution, while it is harder 

o take conclusions considering the more computationally com- 

lex instances, which had iterations stop due to the set CPU time 

imit being reached, the following remarks can be made for the 

nstances where these time-related stop conditions were not met: 

1. The distribution of feasible and infeasible iterations, | N| + skip N 

and | I| + skip I , respectively, shows a slight variation, with most 

instances having between 75 and 85 feasible iterations out of 

100; 

2. Instances that had more effective iterations took longer to solve 

when compared to similarly-sized instances, which had more 

skipped iterations. Nonetheless, their time per effective itera- 

tion is not considerably different; 

3. The number of different non-dominated solutions shows a 

slight positive correlation with the percentage of schedulable 

defences. 

When looking at the results of the computational experiments, 

ome outlier instances occasionally pop out, which take longer to 

olve when compared to the instances that are most similar to 

hem. Nonetheless, these usually occur due to, for some reason, 

he outlier instances having a relatively high number of different 

on-dominated solutions. This leads to fewer skipped iterations 

nd, thus, longer CPU times. Nonetheless, this does not mean that 

ach iteration is harder to solve, just that there are more effec- 

ive iterations. Moreover, besides these occasional outlier instances, 

he apparent rule is that there are more different solutions in in- 

tances with a higher schedulability percentage. Accordingly, when 

here are more assignments, more committee members are in- 

olved. This seems to promote more possible trade-offs between 

he different considered objectives. 

.2.4. Concluding comments 

The proposed method showed a remarkable capacity for finding 

he number of schedulable defences, g, always reaching optimality 

n the first stage. This is a helpful step for real-world problems 

here the decision-makers are not a priori certain that all defences 

re schedulable. Furthermore, finding this parameter means that at 

east one feasible solution is always found. 

Moreover, for almost every instance with two fixed roles, the 

ethod could map the desired subset of the Pareto front without 

eaching any of the defined time limits. Conversely, the same can- 

ot be said for instances with a single fixed role, specifically for 

he medium and large instances, which had several iterations be- 

ng stopped due to time limits. Still, we must note that, even for 

hese instances, the method still returns several feasible solutions 

nd some non-dominated different ones. Thus, if applied to larger 

eal-world instances, several different options would still be pre- 

ented to the decision-maker, even if their optimality could not be 

roven. 
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The number of fixed roles was the parameter whose variation 

ad the highest impact on the computational performance and 

he number of schedulable defences. While there is no certainty 

hat this remark will hold for different parameter ranges, it can 

e seen as an indicator of the effect this scheduling decision can 

ave on the best thesis defence scheduling method to be employed 

y universities with different policies. For organisations where the 

cheduling process occurs synchronously with the assignment of 

he committees, hence having less fixed roles, it might be eas- 

er to schedule all the defences, but using deterministic methods 

ight not be suitable due to the increased computational com- 

lexity. Conversely, for organisations where the scheduling process 

ccurs separately from the assignment of the committees, hence 

aving more fixed roles, finding an available time slot for each de- 

ence might be more challenging. Still, it is easier for a determinis- 

ic solution to their instance to be found within a reasonable time 

rame. 

. Conclusions 

In this paper, we propose a MOMILP model for the single de- 

ence assignment class of the thesis defence scheduling problems. 

his problem consists of assigning a committee, time slot, and 

oom to each thesis defence. Moreover, it is subject to a set of con- 

traints that define the feasible region. Each of these constraints 

an be placed in one of three groups of constraints, specifically, 

cheduling complete committees, committee composition, or com- 

ittee member and room availability. Moreover, the quality of the 

chedules can be assessed under two points of view, rendered op- 

rational through several criteria, specifically, committee assign- 

ent and schedule quality. To tackle the multi-objective nature of 

he problem, we implement an adaptation of the augmented ε- 

onstraint method, which allows for the mapping of a subset of 

he Pareto front, presenting the decision-makers with a variable 

umber of different non-dominated solutions, while employing it- 

ration skipping mechanisms to improve the overall computational 

fficiency. 

The thesis defence scheduling literature has primarily been fo- 

used on solving the problem at the authors’ universities. Con- 

ersely, one of the main contributions of our work is that we for- 

alise the problem in a manner that is easier to adapt to insti- 

utions with different regulations. Furthermore, besides offering a 

ew take on the formulation of the most common objectives in 

hesis defence scheduling, we also regard some additional ones not 

reviously considered. We also account for the possibility that, in 

nstances where not all defences are schedulable, it can be valu- 

ble for the decision-makers to be presented with an “incomplete”

chedule so that they have access to more information and may 

etter assess how to proceed in solving the problem. 

With this work, we aim to promote the study of a fundamen- 

al academic scheduling problem, which is remarkably underrepre- 

ented in the literature for how impactful and time-consuming it 

an be. Thus, we also present a novel random instance generator 

hat can help to provide instances for future research. 

Two case studies based on instances from different departments 

ithin our university are presented. The model finds solutions 

hich dominate the solutions obtained by the human schedulers 

n every objective. Two case studies illustrating how our model can 

e parameterised for solving instances from literature are also ex- 

lored. 

The computational experiments proved that the first stage in- 

roduces a critical step for solving thesis defence scheduling in- 

tances where it is not known that every defence is schedula- 

le. Moreover, even for larger instances, the method was always 

eturned several solutions. Furthermore, for smaller instances or 
109 
hose with two fixed roles, the optimality of each returned solu- 

ion is practically always proven. 

While we attempt to include most concerns and policies ad- 

ressed in the literature and inclusively consider new ones, it is 

ntirely possible and expected that some additional regulations 

nd preferences not yet discussed but present in other universities 

ight not have been covered by our work. Moreover, unlike other 

cademic scheduling problems, the development and improvement 

f novel solution methods and algorithms are lacking for the thesis 

cheduling problem. Thus, we believe this to be a promising new 

eld for future research, and that new findings can help not only 

he optimisation of thesis scheduling in universities but also apply 

o other scheduling problems, such as course timetabling or exam 

cheduling. 
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ppendix A. Mathematical model detailed description 

1. Constraints 

The necessary constraints to model the feasible region of the 

roblem are presented in this subsection. They fall under four cat- 

gories. The first concerns the scheduling of complete committees 

r thesis defences. The second regards the respect for committee 

ember assignment rules. The third guarantees that committee 

embers and rooms are available for their corresponding assign- 

ents. Finally, the fourth defines the values for several auxiliary 

ariables present in the objective functions. 

1. Scheduling complete committees. These constraints define a com- 

plete committee and ensure that every schedulable defence is 

assigned one. 

(a) Complete committee definition . A complete committee is a set 

of n t assignments for a defence, j, all with a different ap- 

pointed role, t , in the same slot, (day k , hour � , and room p).

Moreover, for a defence to occur, it must have such a com- 

mittee assigned to it. Conversely, no assignment that is not 

incorporated into one can exist, as it would occupy a slot 

that is not being used. Likewise, this constraint defines the 

auxiliary variable y jk�p , which takes the value 1 if a defence, 

j, has a complete committee assigned to it and 0 otherwise. 

Thus, the left-hand-side of the equation can also only take 

binary values. The sum on the mentioned side represents 

the number of committee members, i , assigned to a defence, 

j, to perform a role, t , on a given slot, ( k, �, p). Consequently,

since this sum can be at most 1, each role, t , can only be 

filled once in a complete committee. Moreover, evidently, 

y jk�p can only take one value for a given defence, j, and slot, 

( k, �, p), ergo, the left-hand-side of the equality can also only 

take one value for the same defence, j, slot, ( k, �, p) and for
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every role, t = 1 , . . . , n t , meaning that for t � = t , the following

equality must be verified: 
∑ n i 

i =1 
x i jtk�p = 

∑ n i 
i =1 

x i j t k�p . Accord- 

ingly, if a role, t , is assigned to a defence, j, any other role, t ,

must also be assigned. Interchangeably, if any role, t , is not 

assigned, any other role, t , must also not be assigned. There- 

fore, either a defence is assigned to a complete committee 

or no assignments for such a defence can occur. 

n i ∑ 

i =1 

x i jtk�p = y jk�p , j = 1 , . . . , n j , t = 1 , . . . , n t 

k = 1 , . . . , n k , � = 1 , . . . , n � , p = 1 , . . . , n p (A.1) 

(b) Single committee assignment . If a defence, j, can be sched- 

uled, it should only be assigned one committee and ap- 

pointed one slot, (day k , hour � , and room p). Thus, in this

constraint, we state that for a defence, j, the number of 

complete committees assigned to it is less or equal to 1. 

n k ∑ 

k =1 

n � ∑ 

� =1 

n p ∑ 

p=1 

y jk�p � 1 , j = 1 , . . . , n j (A.2) 

(c) Complete committees (thesis defences) to be scheduled . In each 

instance of the thesis defence scheduling problem, a defined 

number of committees (thesis defences) can be assigned 

and scheduled, denoted by g. If one knows that all the de- 

fences can be scheduled, then this number is the number 

of defences, i.e., g = n j . However, some defences may not 

be schedulable due to conflicting committee member avail- 

abilities, lack of enough eligible committee members, lack 

of rooms, or others. In such cases, finding the value for g

becomes an indispensable part of the problem. In this con- 

straint, assuming the value of g is already known, we en- 

force the number of assigned complete committees (thesis 

defences) as the number of schedulable complete commit- 

tees, g. 

n j ∑ 

j=1 

n k ∑ 

k =1 

n � ∑ 

� =1 

n p ∑ 

p=1 

y jk�p = g (A.3) 

2. Committee Composition. These constraints ensure the eligibility 

of the committee members to perform their assignments. 

(a) Committee member eligibility . Different universities and their 

departments have distinct regulations for the eligibility of 

committee members, i , to perform specific roles, t , within 

each committee for a defence, j. Thus, we do not attempt 

to include such rules within our model. Conversely, we ag- 

gregate them in a parameter, e i jt , which takes the value 1 if 

a committee member, i , is eligible to perform a role, t , in a 

defence, j, and 0 otherwise. In this constraint, we state that 

if a given committee member, i , is non-eligible to perform a 

role, t , in the committee of a defence, j, that is, if e i jt = 0 ,

then no assignment that involves such a combination can 

occur, that is, the left-hand-side of the equation must also 

be 0. Contrarily, if such a combination is possible, that is, 

if e i jt = 1 , then the equality still holds, as, logically, a com- 

mittee member, i , can be assigned at most once to a given 

defence, j. 

n k ∑ 

k =1 

n � ∑ 

� =1 

n p ∑ 

p=1 

x i jtk�p � e i jt , 

i = 1 , . . . , n i , j = 1 , . . . , n j , t = 1 , . . . , n t (A.4) 

(b) Maximum number of committees assigned to a committee 

member . This committee member eligibility requirement 

cannot be represented by the eligibility parameter, e i jt . Thus, 

we included it as another constraint. In cases where there 

is no such regulation, the value for the maximum number 
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of committees assigned to a committee member, i , repre- 

sented by c i , is equal to the number of thesis defences, that 

is, c i = n j . In this constraint, we ensure that the sum of the

assignments, which occur when x i jtk�p = 1 , for a committee 

member, i , does not exceed the maximum allowed number 

of committees, c i , for that committee member. 

n j ∑ 

j=1 

n t ∑ 

t=1 

n k ∑ 

k =1 

n � ∑ 

� =1 

n p ∑ 

p=1 

x i jtk�p � c i , i = 1 , . . . , n i (A.5) 

3. Committee member and room availability . These constraints guar- 

antee that committee members and rooms are available for 

each assignment. 

(a) Committee member time slot availability . Committee mem- 

bers have different obligations other than attending thesis 

defences. Consequently, they are not available to be assigned 

to every time slot. The committee member availability pa- 

rameter, l ik� , takes a value greater than or equal to 1 if a 

committee member, i , is available to be assigned at a day, 

k , and an hour, � , and 0 if they are not. In this, we state

that if a given committee member, i , is not available at a 

day, k , and an hour, � , that is, if l ik� = 0 , then no assignment

that involves such a combination can occur, that is, the left- 

hand-side of the equation must also be 0. Contrarily, if such 

a combination is possible, that is, if l ik� � 1 , then the equal-

ity still holds, as, logically, a committee member, i , can only 

be given at most one assignment at a particular time slot, 

( k, � ). 

n j ∑ 

j=1 

n t ∑ 

t=1 

n p ∑ 

p=1 

x i jtk�p � l ik� , 

i = 1 , . . . , n i , k = 1 , . . . , n k , � = 1 , . . . , n � (A.6) 

(b) Committee member assignment juxtaposition . A committee 

member, i , cannot be assigned to more than one defence, j, 

starting at a day, k , and an hour, � . Moreover, that commit- 

tee member is also unavailable to attend any other defence 

that begins at any given point before the end of such a de- 

fence, j. In other words, until the hour � + d is reached on 

the same day, k . Thus, in this constraint, we ensure that if 

there is an assignment, x i jtk � p = 1 , for a committee member, 

i , in a day, k , at an hour, � , there cannot be any other as-

signment for the same committee member, in an hour that 

occurs before the end of the previous defence, that is, in 

any hour between and including � and � + d − 1 . Addition- 

ally, this constraint also ensures that a committee member 

is not assigned more than one role, t , in a defence, j, as that 

would mean that said committee member would have two 

different assignments in the same time slot, ( k, � ). 

n j ∑ 

j=1 

n t ∑ 

t=1 

� + d−1 ∑ 

� = � 

n p ∑ 

p=1 

x i jtk�p � 1 , i = 1 , . . . , n i , 

k = 1 , . . . , n k , � = 1 , . . . , n � − d + 1 (A.7) 

(c) Room time slot availability . A room’s purpose might not just 

be hosting thesis defences. Thus, it is natural that it happens 

to be booked for any other event at some point. The room 

availability parameter, m k�p , takes the value 1 if a room, 

p, is available to host a defence at a day, k , and an hour,

� , and 0 otherwise. In this constraint, we state that, for a 

given slot, ( k, �, p), the sum of its assigned complete com- 

mittees, y jk�p = 1 , always takes a value lower or equal to 

that of m k�p . Accordingly, whenever a room is unavailable, 

that is, m k�p = 0 , it cannot host any defence, and this sum 

is correctly set to 0. Moreover, if the room is available, that 
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is, m k�p = 1 , then, at most, one defence, j, can be assigned

such a slot, ( k, �, p). 

n j ∑ 

j=1 

y jk�p � m k�p , k = 1 , . . . , n k , 

� = 1 , . . . , n � , p = 1 , . . . , n p (A.8) 

(d) Room capacity . In our formulation, we considered that a 

room could not hold more than one defence at a time. Vari- 

able y jk�p takes the value 1 if a defence, j, is assigned to a

day, k , an hour, � , and a room, p. Consequently, for the same

day, room and between the start of defence j, at hour � , and

its end, at hour � + d, the point at which the room can be

scheduled again, there cannot be more than one y jk�p = 1 . In 

this constraint, this is achieved by stating that, for any day, 

k , hours between, and including, � to � + d − 1 , and a room,

p, the sum of the values of the variable y jk�p must be less 

or equal to 1. 

n j ∑ 

j=1 

� + d−1 ∑ 

� = � 
y jk�p � 1 , k = 1 , . . . , n k , � = 1 , . . . , n � 

− d + 1 , p = 1 , . . . , n p (A.9) 

4. Objective functions measures. These constraints define the values 

for the auxiliary variables necessary for some of the objective 

functions. 

(a) Research subject coverage definition. For a defence, j, research 

subject coverage is the percentage of its studied research 

subject covered by the areas of expertise of its committee 

members. To implement such an objective, we first need 

to define an auxiliary binary variable, s i jq , which takes the 

value 1 if a defence, j, which studies a research subject, q , 

that is, t jq = 1 , has a number, i , of committee members as-

signed to its committee, who have said subject as one of 

their areas of expertise. Let us note that, whenever a com- 

mittee member, i , studies a research subject, q , then r iq = 1 .

The value for such a variable is defined in Constraint (10) by 

stating that the product of s i jq by the number, i , of commit- 

tee members assigned to that defence is equal to the sum 

of the assignments, x i jtk�p = 1 , where the research subject, 

q , is in both the studied subjects of the defence and the ar- 

eas of expertise of the committee member, that is r iq t jq = 1 . 

Furthermore, a defence, j, cannot be assigned to more than 

one number of committee members with a research subject, 

q , in common with it. Thus, with Constraint (11) , we ensure 

that this value is unique for each combination of defence, j, 

and research subject, q . 

n i ∑ 

i =0 

is i jq = 

n i ∑ 

i =1 

n t ∑ 

t=1 

n � ∑ 

� =1 

n p ∑ 

p=1 

r iq t jq x i jtk�p , 

j = 1 , . . . , n j , q = 1 , . . . , n q (A.10) 

n i ∑ 

i =0 

s i jq = 1 , j = 1 , . . . , n j , q = 1 , . . . , n q (A.11)

(b) Compactness value definition. We defined a compact assign- 

ment of a committee member, i , to a day, k , at an hour, � ,

as one that occurs within a specific time frame, b i , after the 

end of a different assignment for such a committee member. 

That is, if a committee member, i , is assigned to a defence, 

j, at a day, k , and an hour, � , this assignment is considered

compact on the condition that the same committee mem- 

ber is assigned to a different defence, j , in the same day, k , 

between hours � − d and � − d − b i . Moreover, the parameter 

v , distinguishes the hour slots within such a time frame, as 
i� 
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they might have different perceived values for a committee 

member, i . Thus, the compactness value for an assignment, 

s ik� , is 0 if a committee member, i , does not have a different

assignment ending between hours � and � − b i , or v i � if he 

does have such an assignment ending at � hour slots before 

the start of the new assignment a different hour slot, � . 

Before we define the compactness variable, s ik� , we define a 

different variable, y ik�p , which takes the value 1 if a com- 

mittee member, i , is assigned to any defence at a day, k , 

an hour, � and a room, p, and 0 otherwise. This is done in 

Constraint (12) . Moreover, we denote that the right-hand- 

side of the equality in the constraint above never takes a 

value greater than 1, as a committee member, i , cannot be 

assigned more than one defence or role in the same slot, 

( k, �, p). 

With this new variable, we can define the compactness 

variable, s ik� , as the product between the sums, 
∑ n p 

p=1 
y ik�p , 

and, 
∑ b i 

� =0 

∑ n p 
p=1 

v i � y ik ̂ � p , with 

ˆ � = � − d − � . Nonetheless, this 

would impair the linearity of the model. Thus, to linearise 

the aforementioned product, we opted for a big- M formula- 

tion, with M = n v i , which is the highest value the compact- 

ness variable, s ik� , can take for a committee member, i . This 

formulation is represented in the following constraints. 

y ik�p = 

n j ∑ 

j=1 

n t ∑ 

t=1 

x i jtk�p , i = 1 , . . . , n i , k = 1 , . . . , n k , 

� = 1 , . . . , n � , p = 1 , . . . , n p (A.12) 

s ik� � 0 , i = 1 , . . . , n i , k = 1 , . . . , n k , � = 1 , . . . , n � (A.13)

s ik� � n v i 

n p ∑ 

p=1 

y ik�p i = 1 , . . . , n i , k = 1 , . . . , n k , � = 1 , . . . , n � (A.14)

s ik� � 

b i ∑ 

� =0 

n p ∑ 

p=1 

v i � y ik ̂ � p , i = 1 , . . . , n i , 

k = 1 , . . . , n k , � = d, . . . , n � , ˆ � = � − d − � (A.15) 

s ik� � 

b i ∑ 

� =0 

n p ∑ 

p=1 

v i � y ik ̂ � p − n v i 

( 

1 −
n p ∑ 

p=1 

y ik�p 

) 

, 

i = 1 , . . . , n i , k = 1 , . . . , n k , 

� = d, . . . , n � , ˆ � = � − d − � (A.16) 

(c) Workload definition. The workload for a committee member, 

i , is defined as the number, j, of committees they are as- 

signed to. It would be possible to represent it as an inte- 

ger variable. Still, in such a case, it would not be possible to 

consider its square in the objective function while keeping 

its linearity. However, the exponential penalty in the objec- 

tive function can be linearised by representing it through a 

variable, w i j , which takes the value 1 if a committee mem- 

ber, i , is assigned to a number, j, of committees, and 0 oth- 

erwise. The value for such a variable is defined in Constraint 

(17) by stating that the product of w i j by the number, j, of 

defences assigned to a committee member, i , is equal to the 

sum of the assignments, x i jtk�p = 1 , for that same commit- 

tee member. Furthermore, a committee member, i , cannot 

be assigned to more than one number of defences, j. Thus, 

with Constraint (18) , we ensure that this value is unique for 

each one. 

c i ∑ 

j=0 

jw i j = 

n j ∑ 

j=1 

n t ∑ 

t=1 

n k ∑ 

k =1 

n � ∑ 

� =1 

n p ∑ 

p=1 

x i jtk�p , i = 1 , . . . , n i (A.17) 
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Fig. B.1. An example of a transition matrix T . 
c i ∑ 

j=0 

w i j = 1 , i = 1 , . . . , n i (A.18) 

(d) Committee days definition. A committee day is defined as a 

day when a committee member has a defence scheduled. To 

represent this concept, we introduce a variable, ˆ y i jk , which 

takes value 1 if a committee member, i , is assigned to a 

number, j, of committees in a day, k , and 0 otherwise. To 

define such a variable, in Constraint (19) , we define its value 

and in (20) we ensure its uniqueness for each combination 

of committee member, i , and day, k , similarly to the defini- 

tions of variables s i jq , in Constraints (10) and (11) , and w i j ,

in Constraints (17) and (18) . To institute fairness in the dis- 

tribution of committee days, an exponential penalty on the 

number for each committee member is included in their 

respective objective function. However, to keep the model 

linear, we still need another variable, w ik , which takes the 

value 1 if a committee member, i , has defences scheduled 

on a number, k , of days, and 0 otherwise. The value for such 

a variable is defined in Constraint (21) , and, in Constraint 

(22) , we ensure that this value is unique for each commit- 

tee member. Moreover, let us note that, while similar, the 

latter two constraints have a noteworthy difference when 

compared to the other constraints referenced in this point. 

Specifically, the right-hand-side of Constraint (21) , does not 

include a variation of the sum of the assignments, x i jtk�p = 1 , 

involving instead another variable, ˆ y i jk , moreover, while this 

variable, ˆ y i jk , is defined for a j = 0 , . . . , n j , the sum must

start in j = 1 , as we do not want to count the days, k , where

a committee member, i , has 0 defences assigned. 

c i ∑ 

j=0 

j ̂ y i jk = 

n j ∑ 

j=1 

n t ∑ 

t=1 

n � ∑ 

� =1 

n p ∑ 

p=1 

x i jtk�p , i = 1 , . . . , n i , k = 1 , . . . , n k (A.19)

n j ∑ 

j=0 

ˆ y i jk = 1 , i = 1 , . . . , n i , k = 1 , . . . , n k (A.20)

n k ∑ 

k =0 

k w ik = 

c i ∑ 

j=1 

n k ∑ 

k =1 

ˆ y i jk , i = 1 , . . . , n i (A.21) 

n k ∑ 

k =0 

w ik = 1 , i = 1 , . . . , n i (A.22) 

(e) Room change penalty definition. A room change is consid- 

ered problematic if a committee member, i , is not given a 

certain amount of time, a i , between the end of an assign- 

ment, j , and the beginning of another, j, which is scheduled 

for a different room, p , than the first one, p. Moreover, pa- 

rameter h i� distinguishes the hour slots within such a time- 

frame, as they might have different perceived penalties for 

a committee member, i . The room change variable, ˆ s ik�p , is 

the variable that represents the room change penalty that 

the assignment of a committee member, i , to a day, k , an

hour, � and a room, p, would incur. This variable can be 

defined as the product between the variable y ik�p , which 

takes the value 1 if a committee member, i , is assigned to 

any defence at a day, k , an hour, � , and a room, p, and the

sum 

∑ a i 
� =0 

∑ n p 
p =1 

h i � y ik ̂ � p , with 

ˆ � = � − d − � , which will take 

the value of parameter h i � if a committee member, i , is as- 

signed to a different defence, j , in the same day, k , in hour 

� − d − � , which is allocated a different room, p . However, 

this product would not be linear. Thus, we opted for a big- 

M formulation, with the big- M being bounded by the high- 

est value parameter h i� can take, that is, M = n h to linearise 

i 
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said product. This formulation is represented in the follow- 

ing constraints. 

ˆ s ik�p � 0 , i = 1 , . . . , n i , k = 1 , . . . , n k , 

� = 1 , . . . , n � , p = 1 , . . . , n p (A.23) 

ˆ s ik�p � n h i 
y ik�p i = 1 , . . . , n i , k = 1 , . . . , n k , 

� = 1 , . . . , n � , p = 1 , . . . , n p (A.24) 

ˆ s ik�p � 

a i ∑ 

� =0 

n p ∑ 

p =1 

h i � y ik ̂ � p , 

i = 1 , . . . , n i , k = 1 , . . . , n k , � = d, . . . , n � , 

ˆ � = � − d − � , p = 1 , . . . , n p , p � = p (A.25) 

ˆ s ik�p � 

a i ∑ 

� =0 

n p ∑ 

p =1 

h i � y ik ̂ � p − n h i 
(1 − y ik�p ) , 

i = 1 , . . . , n i , k = 1 , . . . , n k , 

� = d, . . . , n � , ˆ � = � − d − � , 

p = 1 , . . . , n p , p � = p (A.26) 

ppendix B. Markov chains and availability estimation 

1. Some fundamental concepts regarding Markov chains 

Our availability generation algorithm can be defined as a 

arkov chain. Nonetheless, some fundamental concepts must be 

larified before this representation can be addressed. 

A Markov chain is a type of stochastic process, with the distin- 

uishing characteristic that each of its states, α, is part of a set of 

iscrete events and that the probability of each state, α, to occur 

t time � , depends only on the previous state, α, occurring at time 

 − 1 . 

A square transition matrix T i × j can also represent such a sys- 

em. Each entry of transition matrix T represents the probability 

p(α j | αi ) of the next state being α j given that the previous state 

as αi . Moreover, each entry must be within 0 and 1, as they rep- 

esent probabilities, and the sum of each row must be 1, to cor- 

ectly represent the total probability of a given set. An example of 

uch a matrix T is displayed in Fig. B.1 . 

Accordingly, the power T � computes the probability of each 

tate, α j , to occur after � repetitions, given that the initial state 

as αi . Moreover, a transition matrix, T , is said to be regular if, af-

er a certain number of repetitions, each of its columns stabilises 

t a certain value. Thus, if a transition matrix, T , is regular, there 

s a vector, V , such that, after a sufficiently large number of exper- 

ments, � , and for any probability vector, ˆ p , the following condition 

s verified, 

ˆ p · T � ≈ V. 

This suggests that after a certain number of experiments, re- 

ardless of the initial conditions, a regular Markov chain converges 
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Fig. B.2. Markov chain representation of the availability generation algorithm. 

 

1  

t

a

s

o a steady-state, with each possible state, α, occurring at a certain 

robability V α . Furthermore, a transition matrix, T , is known to be 

egular, if, after any number of repetitions, � , there is a T � such

hat p(α j | αi ) > 0 , for all j = 1 , . . . , n j , i = 1 . . . , n i . 

2. Representation of algorithm 6 as a Markov chain and probability 

istribution estimation 

Our availability generation algorithm can be described as a 

arkov chain with n α + d possible states, where n α is the number 

f different availability states and d is the duration of the defences. 

For an availability state, α = 1 , . . . , n α , occurring at time � −
 , the following state, i.e., the one occurring at time � , can re-

ain unchanged, with a probability p(α| α) , it can change to 

nother availability state, α = 1 , . . . , n α, α � = α, with probability

p( α| α) or it can start an unavailability block, with probability 

p(0 | α) . 

When an unavailability block starts, we know that at least 

zeros are to be added. Nonetheless, in a Markov chain, the 

robabilities must only depend on the previous state. Thus, be- 

ore we have the unavailability state, α = 0 , there must be 

 − 1 different states, 0 e ˆ i 
, ˆ i = 1 , . . . , d − 1 , that lead to the gen-

ration of a 0, with probability 1, i.e., for ˆ i = 1 , . . . , d − 2 ,

he only probability is p(0 e ˆ i +1 
| 0 e ˆ i ) = 1 and for ˆ i = d − 1 it is

p(0 | 0 e d−1 
) = 1 . 

Finally, when the last exceptional 0 is added, the state α = 0 

unctions similarly to the availability states. Specifically, it can re- 

eat itself, with probability p(0 | 0) , or it can generate an availabil-

ty state, α = 1 , . . . , n α , with probability p(α| 0) . Let us note that,

nlike the availability states, the unavailability state, α = 0 , cannot 

e followed by a state 0 e 1 . 

The Markov chain that represents the availability generation al- 

orithm is displayed in Fig. B.2 . 

Accordingly, we can use the properties of each corresponding 

ransition matrix, T , to estimate the probability distribution of the 

arameters generated through this method, l ik� and m k�p . 

Considering the warm-up period, � = 40 , and, as an example, 

he generation of l ik� with an unavailability percentage p(l ik� = 

) = 0 . 78 : 

The transition matrix, T , is: 

p(α j | αi ) 0 e 1 0 1 2 

0 e 1 0 1 0 0 

0 0 0.95 0.025 0.025 

1 0.1728 0 0.7 0.1272 

2 0.1728 0 0.1272 0.7 
113 
The transition matrix, following 39 repetitions, T 39 , is: 

p(α j | αi ) 0 e 1 0 1 2 

0 e 1 0.0373 0.7466 0.1080 0.1080 

0 0.0373 0.7466 0.1080 0.1080 

1 0.0373 0.7466 0.1080 0.1080 

2 0.0373 0.7466 0.1080 0.1080 

And the transition matrix, following 40 repetitions, T 40 , is: 

p(α j | αi ) 0 e 1 0 1 2 

0 e 1 0.0373 0.7466 0.1080 0.1080 

0 0.0373 0.7466 0.1080 0.1080 

1 0.0373 0.7466 0.1080 0.1080 

2 0.0373 0.7466 0.1080 0.1080 

Consequently, p(l ik� = 0) = 0 . 0373 + 0 . 7466 ≈ 0 . 78 and p(l ik� =
) = p(l ik� = 2) ≈ 0 . 11 . Let us note that, at a � = � = 40 , the ma-

rixes were not yet fully stationary, with differences between T 39 

nd T 40 of order 10 −5 . Nonetheless, we considered these to be 

mall enough to conduct our computational experiments. 
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ppendix C. Computational results 

able C.1 

omputational experiments - small instances ( n i = 25 , n j = 20 ). 

Instance Data 

N p(n i .n j .n t .n k .n � .n p .n q ) d u i e i jt c i l ik� m k�p 

1 p(25 . 20 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 13 [0.82, 0.09, 0.09] [0.86, 0.14]

2 p(25 . 20 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 13 [0.82, 0.09, 0.09] [0.86, 0.14]

3 p(25 . 20 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 13 [0.82, 0.09, 0.09] [0.8, 0.2] 

4 p(25 . 20 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 13 [0.82, 0.09, 0.09] [0.8, 0.2] 

5 p(25 . 20 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 13 [0.78, 0.11, 0.11] [0.86, 0.14]

6 p(25 . 20 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 13 [0.78, 0.11, 0.11] [0.86, 0.14]

7 p(25 . 20 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 13 [0.78, 0.11, 0.11] [0.8, 0.2] 

8 p(25 . 20 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 13 [0.78, 0.11, 0.11] [0.8, 0.2] 

9 p(25 . 20 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 13 [0.86, 0.07, 0.07] [0.86, 0.14]

10 p(25 . 20 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 13 [0.86, 0.07, 0.07] [0.86, 0.14]

11 p(25 . 20 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 13 [0.86, 0.07, 0.07] [0.8, 0.2] 

12 p(25 . 20 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 13 [0.86, 0.07, 0.07] [0.8, 0.2] 

13 p(25 . 20 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 13 [0.82, 0.09, 0.09] [0.86, 0.14]

14 p(25 . 20 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 13 [0.82, 0.09, 0.09] [0.86, 0.14]

15 p(25 . 20 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 13 [0.82, 0.09, 0.09] [0.8, 0.2] 

16 p(25 . 20 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 13 [0.82, 0.09, 0.09] [0.8, 0.2] 

17 p(25 . 20 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 13 [0.82, 0.09, 0.09] [0.86, 0.14]

18 p(25 . 20 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 13 [0.82, 0.09, 0.09] [0.86, 0.14]

19 p(25 . 20 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 13 [0.82, 0.09, 0.09] [0.8, 0.2] 

20 p(25 . 20 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 13 [0.82, 0.09, 0.09] [0.8, 0.2] 

21 p(25 . 20 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 13 [0.78, 0.11, 0.11] [0.86, 0.14]

22 p(25 . 20 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 13 [0.78, 0.11, 0.11] [0.86, 0.14]

23 p(25 . 20 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 13 [0.78, 0.11, 0.11] [0.8, 0.2] 

24 p(25 . 20 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 13 [0.78, 0.11, 0.11] [0.8, 0.2] 

25 p(25 . 20 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 13 [0.86, 0.07, 0.07] [0.86, 0.14]

26 p(25 . 20 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 13 [0.86, 0.07, 0.07] [0.86, 0.14]

27 p(25 . 20 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 13 [0.86, 0.07, 0.07] [0.8, 0.2] 

28 p(25 . 20 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 13 [0.86, 0.07, 0.07] [0.8, 0.2] 

29 p(25 . 20 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 13 [0.82, 0.09, 0.09] [0.86, 0.14]

30 p(25 . 20 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 13 [0.82, 0.09, 0.09] [0.86, 0.14]

31 p(25 . 20 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 13 [0.82, 0.09, 0.09] [0.8, 0.2] 

32 p(25 . 20 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 13 [0.82, 0.09, 0.09] [0.8, 0.2] 
able C.2 

omputational experiments - medium instances ( n i = 38 , n j = 30 ). 

Instance Data 

N p(n i .n j .n t .n k .n � .n p .n q ) d u i e i jt c i l ik� m k�p v i� 

33 p(38 . 30 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 19 [0.82, 0.09, 0.09] [0.86, 0.14] [0.8

34 p(38 . 30 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 19 [0.82, 0.09, 0.09] [0.86, 0.14] [0.7

35 p(38 . 30 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 19 [0.82, 0.09, 0.09] [0.8, 0.2] [0.8

36 p(38 . 30 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 19 [0.82, 0.09, 0.09] [0.8, 0.2] [0.7

37 p(38 . 30 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 19 [0.78, 0.11, 0.11] [0.86, 0.14] [0.8

38 p(38 . 30 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 19 [0.78, 0.11, 0.11] [0.86, 0.14] [0.7

39 p(38 . 30 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 19 [0.78, 0.11, 0.11] [0.8, 0.2] [0.8

40 p(38 . 30 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 19 [0.78, 0.11, 0.11] [0.8, 0.2] [0.7

41 p(38 . 30 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 19 [0.86, 0.07, 0.07] [0.86, 0.14] [0.8

42 p(38 . 30 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 19 [0.86, 0.07, 0.07] [0.86, 0.14] [0.7

43 p(38 . 30 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 19 [0.86, 0.07, 0.07] [0.8, 0.2] [0.8

44 p(38 . 30 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 19 [0.86, 0.07, 0.07] [0.8, 0.2] [0.7

45 p(38 . 30 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 19 [0.82, 0.09, 0.09] [0.86, 0.14] [0.8

46 p(38 . 30 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 19 [0.82, 0.09, 0.09] [0.86, 0.14] [0.7

47 p(38 . 30 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 19 [0.82, 0.09, 0.09] [0.8, 0.2] [0.8

48 p(38 . 30 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 19 [0.82, 0.09, 0.09] [0.8, 0.2] [0.7

49 p(38 . 30 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 19 [0.82, 0.09, 0.09] [0.86, 0.14] [0.8

50 p(38 . 30 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 19 [0.82, 0.09, 0.09] [0.86, 0.14] [0.7

51 p(38 . 30 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 19 [0.82, 0.09, 0.09] [0.8, 0.2] [0.8

52 p(38 . 30 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 19 [0.82, 0.09, 0.09] [0.8, 0.2] [0.7

53 p(38 . 30 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 19 [0.78, 0.11, 0.11] [0.86, 0.14] [0.8

54 p(38 . 30 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 19 [0.78, 0.11, 0.11] [0.86, 0.14] [0.7

55 p(38 . 30 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 19 [0.78, 0.11, 0.11] [0.8, 0.2] [0.8

56 p(38 . 30 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 19 [0.78, 0.11, 0.11] [0.8, 0.2] [0.7

57 p(38 . 30 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 19 [0.86, 0.07, 0.07] [0.86, 0.14] [0.8

58 p(38 . 30 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 19 [0.86, 0.07, 0.07] [0.86, 0.14] [0.7

59 p(38 . 30 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 19 [0.86, 0.07, 0.07] [0.8, 0.2] [0.8

60 p(38 . 30 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 19 [0.86, 0.07, 0.07] [0.8, 0.2] [0.7

61 p(38 . 30 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 19 [0.82, 0.09, 0.09] [0.86, 0.14] [0.8

62 p(38 . 30 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 19 [0.82, 0.09, 0.09] [0.86, 0.14] [0.7

63 p(38 . 30 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 19 [0.82, 0.09, 0.09] [0.8, 0.2] [0.8

64 p(38 . 30 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 19 [0.82, 0.09, 0.09] [0.8, 0.2] [0.7

114 
Output 

h i� r iq t iq | N| | I| skip N skip I time N time I g CPU(seconds) 

, 0.2] [0.8, 0.2] 3 3 21 3 65 11 0 0 10 230 

, 0.3] [0.7, 0.3] 3 3 26 5 53 16 0 0 18 289 

, 0.2] [0.8, 0.2] 3 3 25 4 64 7 0 0 17 550 

, 0.3] [0.7, 0.3] 3 3 11 1 86 2 0 0 14 267 

, 0.2] [0.8, 0.2] 3 3 48 5 30 17 0 0 20 542 

, 0.3] [0.7, 0.3] 3 3 51 5 27 17 0 0 18 1067 

, 0.2] [0.8, 0.2] 3 3 59 5 22 14 0 0 17 590 

, 0.3] [0.7, 0.3] 3 3 38 5 44 13 0 0 19 1135 

, 0.2] [0.8, 0.2] 3 3 47 5 32 16 0 0 18 513 

, 0.3] [0.7, 0.3] 3 3 25 6 49 20 0 0 14 298 

, 0.2] [0.8, 0.2] 3 3 44 5 33 18 0 0 20 1418 

, 0.3] [0.7, 0.3] 3 3 38 5 36 21 0 0 20 417 

, 0.2] [0.8, 0.2] 3 3 42 6 34 18 0 0 20 485 

, 0.3] [0.7, 0.3] 3 3 50 5 29 16 0 0 20 777 

, 0.2] [0.8, 0.2] 3 3 57 7 12 24 0 0 19 1140 

, 0.3] [0.7, 0.3] 3 3 47 6 27 20 0 0 20 10246 

, 0.2] [0.8, 0.2] 3 3 33 5 41 21 0 0 16 488 

, 0.3] [0.7, 0.3] 3 3 25 3 56 16 0 0 15 384 

, 0.2] [0.8, 0.2] 3 3 52 4 32 12 0 0 17 818 

, 0.3] [0.7, 0.3] 3 3 60 6 13 21 0 0 20 1053 

, 0.2] [0.8, 0.2] 3 3 51 6 21 22 0 0 20 750 

, 0.3] [0.7, 0.3] 3 3 24 5 55 16 0 0 13 369 

, 0.2] [0.8, 0.2] 3 3 61 5 21 13 0 0 20 991 

, 0.3] [0.7, 0.3] 3 3 60 4 24 12 0 0 20 2631 

, 0.2] [0.8, 0.2] 3 3 38 6 35 21 0 0 19 1217 

, 0.3] [0.7, 0.3] 3 3 45 5 32 18 0 0 20 1004 

, 0.2] [0.8, 0.2] 3 3 47 5 31 17 0 0 20 4364 

, 0.3] [0.7, 0.3] 3 3 53 6 19 22 0 0 20 1522 

, 0.2] [0.8, 0.2] 3 3 42 5 37 16 0 0 20 1221 

, 0.3] [0.7, 0.3] 3 3 38 6 37 19 0 0 20 709 

, 0.2] [0.8, 0.2] 3 3 40 6 32 22 0 0 20 12951 

, 0.3] [0.7, 0.3] 3 3 41 5 37 15 0 2 20 21175 
Output 

h i� r iq t iq | N| | I| skip N skip I time N time I g CPU(seconds) 

, 0.2] [0.8, 0.2] 3 3 37 6 37 20 0 0 26 973 

, 0.3] [0.7, 0.3] 3 3 29 2 68 1 0 0 20 698 

, 0.2] [0.8, 0.2] 3 3 39 5 41 15 0 0 24 1003 

, 0.3] [0.7, 0.3] 3 3 60 4 24 12 0 0 26 1484 

, 0.2] [0.8, 0.2] 3 3 30 5 48 17 0 0 22 788 

, 0.3] [0.7, 0.3] 3 3 51 5 28 16 0 0 22 1593 

, 0.2] [0.8, 0.2] 3 3 43 4 41 12 0 0 26 1169 

, 0.3] [0.7, 0.3] 3 3 41 5 38 16 0 0 28 10129 

, 0.2] [0.8, 0.2] 3 3 59 6 16 19 0 0 30 1951 

, 0.3] [0.7, 0.3] 3 3 39 5 38 18 0 0 29 1215 

, 0.2] [0.8, 0.2] 3 3 26 5 31 18 16 4 30 35358 

, 0.3] [0.7, 0.3] 3 3 39 5 38 18 0 0 30 20317 

, 0.2] [0.8, 0.2] 3 3 44 6 28 22 0 0 30 6579 

, 0.3] [0.7, 0.3] 3 3 42 4 25 12 13 4 30 34954 

, 0.2] [0.8, 0.2] 3 3 14 4 37 11 20 14 30 38044 

, 0.3] [0.7, 0.3] 3 3 46 5 27 17 2 3 30 21212 

, 0.2] [0.8, 0.2] 3 3 40 5 40 15 0 0 23 1589 

, 0.3] [0.7, 0.3] 3 3 40 3 47 10 0 0 28 1351 

, 0.2] [0.8, 0.2] 3 3 38 6 37 19 0 0 30 2984 

, 0.3] [0.7, 0.3] 3 3 32 3 58 7 0 0 23 1248 

, 0.2] [0.8, 0.2] 3 3 53 6 25 16 0 0 25 1862 

, 0.3] [0.7, 0.3] 3 3 51 5 32 12 0 0 24 1883 

, 0.2] [0.8, 0.2] 3 3 40 5 41 14 0 0 26 2218 

, 0.3] [0.7, 0.3] 3 3 32 5 49 14 0 0 24 2382 

, 0.2] [0.8, 0.2] 3 3 54 5 26 15 0 0 26 2028 

, 0.3] [0.7, 0.3] 3 3 57 5 26 12 0 0 30 2493 

, 0.2] [0.8, 0.2] 3 3 53 5 29 13 0 0 30 18086 

, 0.3] [0.7, 0.3] 3 3 15 4 31 14 22 14 30 37324 

, 0.2] [0.8, 0.2] 3 3 22 5 36 18 11 8 30 31803 

, 0.3] [0.7, 0.3] 3 3 15 4 30 10 24 17 30 39081 

, 0.2] [0.8, 0.2] 3 3 8 4 23 11 31 23 30 39821 

, 0.3] [0.7, 0.3] 3 3 11 4 19 14 36 16 30 38628 
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Table C.3 

Computational experiments - large instances ( n i = 50 , n j = 40 ). 

Instance Data Output 

N p(n i .n j .n t .n k .n � .n p .n q ) d u i e i jt c i l ik� m k�p v i� h i� r iq t iq | N| | I| skip N skip I time N time I g CPU (seconds) 

65 p(50 . 40 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 25 [0.82, 0.09, 0.09] [0.86, 0.14] [0.8, 0.2] [0.8, 0.2] 3 3 28 5 52 15 0 0 28 1366 

66 p(50 . 40 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 25 [0.82, 0.09, 0.09] [0.86, 0.14] [0.7, 0.3] [0.7, 0.3] 3 3 51 4 36 9 0 0 32 2633 

67 p(50 . 40 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 25 [0.82, 0.09, 0.09] [0.8, 0.2] [0.8, 0.2] [0.8, 0.2] 3 3 40 4 43 13 0 0 34 2744 

68 p(50 . 40 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 25 [0.82, 0.09, 0.09] [0.8, 0.2] [0.7, 0.3] [0.7, 0.3] 3 3 36 5 42 17 0 0 35 6862 

69 p(50 . 40 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 25 [0.78, 0.11, 0.11] [0.86, 0.14] [0.8, 0.2] [0.8, 0.2] 3 3 39 5 43 11 1 1 35 22050 

70 p(50 . 40 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 25 [0.78, 0.11, 0.11] [0.86, 0.14] [0.7, 0.3] [0.7, 0.3] 3 3 49 5 30 16 0 0 32 2719 

71 p(50 . 40 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 25 [0.78, 0.11, 0.11] [0.8, 0.2] [0.8, 0.2] [0.8, 0.2] 3 3 40 3 45 9 0 3 33 29643 

72 p(50 . 40 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 2 25 [0.78, 0.11, 0.11] [0.8, 0.2] [0.7, 0.3] [0.7, 0.3] 3 3 40 5 39 15 1 0 37 21446 

73 p(50 . 40 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 25 [0.86, 0.07, 0.07] [0.86, 0.14] [0.8, 0.2] [0.8, 0.2] 3 3 48 5 24 19 4 0 40 18000 

74 p(50 . 40 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 25 [0.86, 0.07, 0.07] [0.86, 0.14] [0.7, 0.3] [0.7, 0.3] 3 3 39 5 39 17 0 0 36 13145 

75 p(50 . 40 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 25 [0.86, 0.07, 0.07] [0.8, 0.2] [0.8, 0.2] [0.8, 0.2] 3 3 17 5 42 14 14 8 40 34408 

76 p(50 . 40 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 25 [0.86, 0.07, 0.07] [0.8, 0.2] [0.7, 0.3] [0.7, 0.3] 3 3 42 5 35 16 0 2 40 20341 

77 p(50 . 40 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 25 [0.82, 0.09, 0.09] [0.86, 0.14] [0.8, 0.2] [0.8, 0.2] 3 3 21 4 40 13 16 6 40 35309 

78 p(50 . 40 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 25 [0.82, 0.09, 0.09] [0.86, 0.14] [0.7, 0.3] [0.7, 0.3] 3 3 34 5 32 14 9 6 40 31078 

79 p(50 . 40 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 25 [0.82, 0.09, 0.09] [0.8, 0.2] [0.8, 0.2] [0.8, 0.2] 3 3 15 5 20 15 21 24 39 37261 

80 p(50 . 40 . 3 . 15 . 16 . 3 . 15) 2 [0.7, 0.3] 1 25 [0.82, 0.09, 0.09] [0.8, 0.2] [0.7, 0.3] [0.7, 0.3] 3 3 3 3 0 11 39 44 40 41412 

81 p(50 . 40 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 25 [0.82, 0.09, 0.09] [0.86, 0.14] [0.8, 0.2] [0.8, 0.2] 3 3 44 5 37 14 0 0 31 2840 

82 p(50 . 40 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 25 [0.82, 0.09, 0.09] [0.86, 0.14] [0.7, 0.3] [0.7, 0.3] 3 3 39 6 34 21 0 0 26 2726 

83 p(50 . 40 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 25 [0.82, 0.09, 0.09] [0.8, 0.2] [0.8, 0.2] [0.8, 0.2] 3 3 38 4 48 10 0 0 34 9626 

84 p(50 . 40 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 25 [0.82, 0.09, 0.09] [0.8, 0.2] [0.7, 0.3] [0.7, 0.3] 3 3 44 5 35 16 0 0 32 3543 

85 p(50 . 40 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 25 [0.78, 0.11, 0.11] [0.86, 0.14] [0.8, 0.2] [0.8, 0.2] 3 3 43 4 42 11 0 0 35 8356 

86 p(50 . 40 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 25 [0.78, 0.11, 0.11] [0.86, 0.14] [0.7, 0.3] [0.7, 0.3] 3 3 32 5 50 13 0 0 32 2459 

87 p(50 . 40 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 25 [0.78, 0.11, 0.11] [0.8, 0.2] [0.8, 0.2] [0.8, 0.2] 3 3 49 5 31 15 0 0 34 20443 

88 p(50 . 40 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 2 25 [0.78, 0.11, 0.11] [0.8, 0.2] [0.7, 0.3] [0.7, 0.3] 3 3 40 4 41 11 2 2 39 31311 

89 p (50 . 40 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 25 [0.86, 0.07, 0.07] [0.86, 0.14] [0.8, 0.2] [0.8, 0.2] 3 3 12 4 12 14 33 25 40 39083 

90 p(50 . 40 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 25 [0.86, 0.07, 0.07] [0.86, 0.14] [0.7, 0.3] [0.7, 0.3] 3 3 34 5 29 16 10 6 36 30877 

91 p(50 . 40 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 25 [0.86, 0.07, 0.07] [0.8, 0.2] [0.8, 0.2] [0.8, 0.2] 3 3 10 4 18 10 17 41 40 40127 

92 p(50 . 40 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 25 [0.86, 0.07, 0.07] [0.8, 0.2] [0.7, 0.3] [0.7, 0.3] 3 3 16 4 37 11 10 22 39 38514 

93 p(50 . 40 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 25 [0.82, 0.09, 0.09] [0.86, 0.14] [0.8, 0.2] [0.8, 0.2] 3 3 11 5 22 14 16 32 40 38139 

94 p(50 . 40 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 25 [0.82, 0.09, 0.09] [0.86, 0.14] [0.7, 0.3] [0.7, 0.3] 3 3 19 5 40 13 13 10 40 35060 

95 p(50 . 40 . 3 . 15 . 16 . 4 . 15) 2 [0.7, 0.3] 1 25 [0.82, 0.09, 0.09] [0.8, 0.2] [0.8, 0.2] [0.8, 0.2] 3 3 7 3 17 9 31 33 40 41043 
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