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Martins for their insight, support and sharing of knowledge that has made this thesis possible.

Thanks to all my friends and colleagues that helped me grow as a person and were always there

for me during the good and bad times in my life. A special shoutout to Maria Pereira, Rui Nóbrega and
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Abstract

Dialog systems have been at the center of Natural Language Processing (NLP) since its inception. With

a wide range of applications, this type of system is particularly interesting as a user interface, creating

the possibility of a more natural and convenient user experience. In the context of Customer Support,

goal-oriented dialog systems are now widely used, helping users carry out specific tasks. Traditionally,

these systems were created by employing knowledge-based architectures. However, the growth of

Deep Learning and the increase in data availability facilitated the development of neural dialog systems,

which can be trained end-to-end. A well-known example of such a system is the “Transformer”, a self-

attentional model that has achieved state-of-the-art results in multiple NLP tasks. Notwithstanding, these

systems still present some shortcomings, particularly in terms of scalability. The need for large amounts

of data and considerable computing power can be an impediment, especially in situations where multiple

entities must be represented. In Goal-Oriented Dialog Systems, this becomes evident when considering

multi-brand Customer Support, since each brand must communicate differently with its users, meaning

one model must be developed and maintained for each brand. In Open-Domain System, an analogous

problem arises when considering settings where multiple characters must be impersonated.

In this work, we explore how we can create conversational agents that tackle this issue, in both

settings. To this end, we adapt and experiment with multiple state-of-the-art architectures together with

recent datasets.

Keywords

Adapter; Artificial Intelligence; Customer Support; Deep Learning; Dialog system; Natural Language

Processing; Transformer
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Resumo

Os Sistemas de Diálogo estão no centro do Natural Language Processing (NLP) desde a incepção. Com

enorme variedade de aplicações, este tipo de sistemas é particularmente interessante como interface,

dando a hipótese de uma experiência mais natural e conveniente ao utilizador. No contexto de Apoio

ao Cliente, sistemas de diálogo goal-oriented são amplamente usados, ajudando os utilizadores a com-

pletar tarefas especı́ficas. Tradicionalmente, estes sistemas eram criados a partir de de arquiteturas

knowledge-based. No entanto, o crescimento do Deep Learning e a disponibilidade de dados facilitou o

desenvolvimento de sistemas de diálogo neuronais, que podem ser treinados end-to-end. Um exemplo

deste tipo de sistemas é o Transformer, um modelo baseado em auto-atenção que atingiu resulta-

dos estado da arte em múltiplas tarefas de Processamento de Lı́ngua Natural. Apesar de tudo, estes

sistemas ainda apresentam algumas lacunas, particularmente em termos de escalabilidade. A necessi-

dade de grandes quantidades de dados e poder computacional considerável pode ser um impedimento,

especialmente em situações onde múltiplas entidades devem ser representadas. Em Sistemas Goal-

Oriented, esta limitação torna-se mais evidente, considerado Apoio ao Cliente multi-marca, visto que

cada marca deve comunicar de forma diferente com os seus utilizadores, o que significa que um modelo

deve ser desenvolvido e mantido para cada marca. Em sistemas Open-Domain, um problema análogo

surge quando são consideradas situações em que múltiplas personagens devem ser representadas.

Neste trabalho, exploramos de que forma podemos criar agentes conversacionais que enfrentam

este problema, em ambos os tipos de situações. Com este objetivo, experimentamos e adaptamos

várias arquiteturas estado da arte, juntamente com os datasets mais recentes.

Palavras Chave

Adapter; Apoio ao Cliente, Aprendizagem Profunda; Inteligência Artificial; Processamento de Linguagem

v



Natural; Sistema de Diálogo; Transformer
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The modeling of dialog systems is a fundamental problem in Natural Language Processing (NLP). In

essence, Dialog Systems reflect our ability to artificially generate human-level conversations, bringing us

closer to achieve one of the most ambitious long-term goals of AI since its advent, the Turing Test [Turing,

1950].

This type of system can have a wide range of applications, particularly as human-machine interfaces

[Lowe et al., 2015] [Serban et al., 2015]. One of the most prominent areas where this can be leveraged

is Customer Service Automation through the development of task-oriented dialog generation systems.

Task-oriented dialog systems or task-oriented chatbots are devised to help users carry out specific tasks,

such as booking plane tickets or making a reservation. This type of chatbot is typically restricted in the

range of tasks it can help the user with and is optimized to make the execution of the task as fast and

seamless as possible. This helps to create a more natural and convenient user experience.

Traditionally, the creation of such systems resorted to knowledge-based architectures [Weizenbaum,

1966] [Wallace, 2009]. Then, the advent of Deep Learning, coupled with the growing data abundance,

allowed the development of neural dialog systems. Contrarily to the traditional models, the latter can

be trained end-to-end [Chen et al., 2017]. Furthermore, sequence modeling methods can also be used

to train task-oriented dialog systems. These methods receive a sequence as an input and predict a

sequence as output. In Customer Support, for example, the input could be a query from a user, and the

predicted sequence could be the answer to that query. More recently, new architectures based solely

on attention mechanisms [Vaswani et al., 2017], neglecting recurrence and convolution, emerged as a

new paradigm for sequence modeling tasks. These models have achieved state-of-the-art performance

in multiple NLP tasks, such as Machine Translation [Vaswani et al., 2017]. Despite the encouraging

results, they pose some problems. Namely, they depend upon large amounts of data, have high model

complexity, and require considerable computing power [Kaplan et al., 2020]. These key factors render

their scaling burdensome.

This is a problem in both Open and Closed Domain settings. However, for Goal-Oriented systems

(Closed Domain setting), the described problems can be aggravated, considering multi-brand compa-

nies. Usually, the different brands employ a different Brand Communication Style and answer differently

to a given query. This means that, in order to leverage dialog systems, such companies need to develop

one model for each brand, significantly increasing the amount of data, storage space and computational

power required. In Open-Domain, the same is true for settings where multiple characters must be imper-

sonated by the system. Once again, to leverage dialog systems, one would need to develop one model

for each character, raising the same issues.

The problem however is not limited to the scale. How to ensure that a neural conversational agent

maintains a consistent and coherent communication style or represents truthfully a given character is

still an open problem and solving it will allow us to create more engaging conversational agents.

3



1.1 Objective

The objective of this work is to build a persona-aware model that can represent multiple personas,

when prompted to. As defined in [Li et al., 2016], a persona can be defined as “the character that an

artificial agent, as actor, plays or performs during conversational interactions.” This means a persona can

include different elements of identity such as background facts, language behaviour and even interaction

style. This persona can be a brand (for Customer Support) or a character (for chit-chat). The objective of

the agent is: take an input that includes the query and persona metadata, and responds as the persona

is expected to. By doing this, the costs associated with employing chatbots are drastically reduced in

these contexts, when employing the developed models.

1.2 Contributions

To achieve this, we make use of modern NLP methods and techniques that have showed encourag-

ing results in Dialog Generation and adapt them to our specific task, which, to the best of our knowl-

edge, has not been properly explored. We started by collecting/adapting two different datasets, one

for Open-Domain: the Friends Corpus [Zhou and Choi, 2018]; and one for Customer Support: Twitter

Customer Support Dataset 1. To facilitate the pre-processing of these datasets we also developed a tool

called “Piertotum”. This tool automates the setup of a preprocessing pipeline, speeding up the process

of adapting the same datasets to different models and of experimenting with different preprocessing

techniques. Then, we develop, train and test two different models: One based on the TransferTransfo

model [Wolf et al., 2019], and a second one similar to it but with a key architectural difference: the use

of Adapters [Houlsby et al., 2019]. Finally, to evaluate our work, we test our models, together with a

strong baseline, using untrained automatic metrics, machine-learned metrics and human-centric met-

rics, allowing to get an hollistic and complete comparison of the different methods employed on our

task.

1.3 Organization of the Document

This thesis is organized as follows: Chapter 2 presents the related work, clarifying its utility and how

each of the works is related to the present one. Chapter 3 presents the relevant datasets to our work.

Chapter 4 describes the methodology of our work and the proposed models. Chapter 5 explains how

the work is evaluated. Finally, Chapter 6 presents the main conclusions and possible future work.

1https://www.kaggle.com/thoughtvector/customer-support-on-twitter
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In this Chapter, we start by presenting the available corpora related to the context of our problem.

Then, we move on to presenting different works previously used to tackle similar problems. This includes

works related to Customer Support and Open-Domain dialog systems.

2.1 Dialog Systems

A dialog system, commonly referred to as Conversational Agent or Chatbot, is a computer system

intended to converse with a human in Natural Language. Depending on their application, according

to [Chen et al., 2017], they can be classified into two different paradigms :

• Goal-Oriented Systems: designed to assist users in carrying out specific tasks in concrete do-

mains, such as booking tickets or making reservations.

• Open-Domain Systems: also known as chit-chat bots, these systems are designed with the

intention of generating coherent and meaningful responses in an open-domain system, maximizing

user engagement.

2.2 Sequence Modeling Methods

When developing end-to-end dialog systems, sequence modeling methods are among the most popular.

These methods can be divided into recurrence-based, convolution-based, and self-attentional methods.

In recurrence-based methods, a Recurrent Neural Network (RNN) processes each word of the input

utterance in a sequential manner (Figure 2.1). At each timestep t, the input xt and the state vector

st−1 are used to compute the hidden state ht. The RNN can be trained using backpropagation to learn

optimizing W and b. In its most simple version, ht is used directly as the state vector st for the next input

xt+1. This can be formally defined as:

ht = g(xtW
x + st−1W

s + b)

st = ht
(2.1)

In equation 2.1, W represents the weight matrices that apply a linear transformation to xt and st−1.

The variable b represents the bias. The variable g represents a non-linear activation function (such as

tanh, sigmoid or Rectified Linear Unit (ReLU)).

The RNN is recurrent in nature since it applies the same function for every input. However, this

computation depends on the current input and the hidden state, making it applicable to tasks where the

inputs are not independent of each other.

7



Figure 2.1: Unrollment of a simple recurrent neural network. Taken from: http://tinyurl.com/q6dcybc

In some use cases, it is beneficial to not only learn the dependencies of an input from previous

inputs but also the dependencies from future inputs. This leads to the creation of the bidirectional RNN

[Goodfellow et al., 2016]. The RNN is, in theory, capable of encoding an entire sequence x of inputs in

the last hidden state. However, empirically they display a tendency for vanishing gradients. This happens

when the gradient values become too small and the model starts learning considerably slower, taking

too many iterations to improve. This prevents RNNs! to be able to model long-term dependencies in the

input sequence. To tackle this problem, [Hochreiter and Schmidhuber, 1997] proposed the Long Short-

Term Memory (Long Short-Term Memory (LSTM)) architecture (Figure 2.2). The LSTM is a modified

version of the RNN, that was designed to handle long-term dependencies. Like the RNN, it can be

trained using back-propagation. The LSTM uses 3 gates:

• Input Gate: selects which values from the input will affect the memory. A sigmoid function decides

which values are selected and a tanh function is used to weight the importance of the selected

values.

it = σ(Wi[ht−1;xt] + bi)

Ct = tanh(Wc [̇ht−1, xt] + bc)
(2.2)

• Forget Gate: selects which values from the cell state should be forgotten. To make this decision it

uses a sigmoid function:

ft = σ(Wf [ht−1;xt] + bf) (2.3)

• Output Gate: This gate decides the output. Similar to what happens at the Input Gate, a sigmoid

function decides which values are selected and a tanh function is used to weight the importance

of the selected values.

ot = σ(Wo[ht−1;xt] + bo)

ht = ht = otṫanh(Ct)
(2.4)

Despite its benefits, these models leveraging the RNN architecture still present a significant limi-

8
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Figure 2.2: Visual representation of the LSTM and its gates. Taken from: http://tinyurl.com/yy79zmxo

tation: the output length must be the same as the input length. To deal with this, [Sutskever et al.,

2014] proposed the Seq2Seq as a general framework that adapts the RNN (Figure 2.3). This type of

architecture has shown great results in multiple different tasks, including machine translation and dialog

systems. In a Seq2Seq architecture, the model consists of two RNNs!, the encoder, and the decoder.

The encoder reads an input and outputs a fixed-length vector, and the decoder reads that vector to

produce a variable-length output sequence. Both RNNs! are jointly trained using gradient descent to

maximize the conditional probability of the output sequence, given the input. This can be expressed as

minimizing the cost function:

Jσ = − 1

|Y |

n∑
i=1

log(P (yi|x1, ....xm, y1, ..., yi−1)) (2.5)

Figure 2.3: Visual representation of the Seq2Seq architecture. Taken from: https://tinyurl.com/he3neh5

Besides RNNs!, convolutional methods have also been applied. In this case, a Convolutional Neural

Network (Convolutional Neural Network (CNN)) architecture is used [LeCun et al., 1998]. Even though

9
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this type of model is mostly used for vision tasks, it has been successfully applied to sequential tasks. In

this case, the stacking of convolutional and pooling layers allows the model to capture complex depen-

dencies between the elements of the input [Gehring et al., 2017].

Finally, there are also self-attentional methods (Figure 2.4). These rely solely on attention mecha-

nisms. The attention mechanism, proposed in [Bahdanau et al., 2015], serves to allow the decoder to

focus on specific parts of the encoder’s output at each step. To do this, firstly a set of attention weights

are calculated, then these are multiplied by the encoder’s output to create a weighted combination. The

calculation of attention weights is done with a Feed-Forward Neural Network (Feed-Forward Neural Net-

work (FFNN)) layer that takes the decoder’s input and the current hidden state as inputs. The probability

of an output is now conditioned on a different context vector ci for each output word yi instead of the

original single context vector c. Each context vector ci is obtained by a weighted sum of the encoder

hidden states:

ci =

T∑
j=1

αijhj (2.6)

where αij is the attention score or alignment score, representing how relevant hj to generate the

next word of the output. The attention scores αij are typically obtained through a softmax function and

the attention layer is jointly trained with the remaining model.

Figure 2.4: Visual representation of the attention mechanism on a Seq2Seq architecture. Taken from: https:

//tinyurl.com/yxu89jjf

Self-attentional methods represent a new paradigm for sequential modeling since their architecture

is designed relying solely on self-attention mechanisms for both the encoder and the decoder. The

Transformer, proposed in [Vaswani et al., 2017], is possibly the most famous self-attentional model and

has been on the core of various models that achieved state-of-the-art results in a myriad of different tasks

(Figure 2.5). In the Transformer, the encoding component is a stack of structurally identical encoders and

the decoding component is a stack (of the same size) of structurally identical decoders. Each encoder is
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comprised of a self-attention layer and an FFNN. The decoder is similar, but between these two layers,

there is an attention layer that helps the decoder focusing on the most important parts of the input at

each step. In the encoder, the self-attention layer allows the Transformer to understand what other parts

of the input are relevant for the encoding of each word. To calculate the output of this layer, we must

start by creating three vectors for each of the input words: Query vector, and Key vector, both of

dimension dk, and Value vector of dimensions dv. These are obtained by multiplying the embedding of

each word and the weights WQ, WK , and WV respectively. These weights are learned during training.

The second step is to calculate the self-attention score. This score is obtained through the dot product

of the query vector and the key vector of each word. Then, these scores are divided by the square root

of the dimension of the key vector:
√
dk and passed through a softmax function that normalizes these

scores. This score will represent how much each word is expressed at each position. Finally, we multiply

each value vector by the softmax score obtained and sum the results. This produces the output of the

self-attention layer for each position. The resulting vector is then passed to the FFNN. The output of

each encoder is passed on to the next encoder on the stack until it reaches the last one. In order to

account for the position of the words in the input sequence, the Transformer adds a positional embedding

to each input embedding. The output of the last encoder is mapped into a set of attention vectors K and

V . These are then used by the decoder in its attention layer to focus on the most relevant parts of the

input sequence. The output of the encoding stack, at each timestep, is passed on to the first decoder

in the next timestep, which will process it and pass it along the stack (similarly to what happened in the

encoding phase). This process is repeated until a special symbol is reached indicating the transformer

decoder has completed its output. However, a key difference in the decoder is that the self-attention

layer can only take into consideration earlier positions in the output sequence, which is done by masking

future positions. Finally, the model has a Linear layer and a Softmax layer. These are responsible for

converting the final embeddings into actual words to produce the output.

Figure 2.5: Visual representation of a transformer with 2 encoders and 2 decoders. Taken from: https://tinyurl.
com/y4gtcmwu
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2.3 Persona-Based Dialog Systems

In open-domain, dialog systems have seen incredible advances since the first system of this kind,

Eliza [Weizenbaum, 1966], was created. Nowadays, with large volumes of human-to-human interaction

data available, a lot of end-to-end trained models have achieved great success in this type of setting.

However, a conversation with one of these models quickly reveals some of its shortcomings. Namely,

their tendency for vague answers, and, when not vague, often revealing their inability to maintain a co-

herent persona (as defined in [Li et al., 2016]). Endowing dialog systems with a coherent persona allows

us to better model human behavior, leading to more realistic and natural conversations. Furthermore,

this problem is also interesting in the context of Customer Support since we can see this persona as the

archetype of the Customer Support agent for a brand. Then, by endowing a dialog system with such a

persona, we can deliver an agent that better corresponds to the expectations of both the company and

the customer. In [Wolf et al., 2019], a new approach to data-driven dialog systems called TransferTransfo

is introduced. This new dialog system is based on a multi-layer Transformer architecture [Radford, 2018]

(Figure 2.6). It uses a 12-layer decoder-only transformer with masked self-attention heads (768 dimen-

sional states and 12 attention heads). Following the work in [Radford, 2018], the model is pre-trained

on the BooksCorpus dataset [Zhu et al., 2015], containing more than 7 000 unpublished books (close

to 800M words). This dataset was chosen to take advantage of long contiguous sequences, giving

the model the opportunity to learn long-range dependencies. Then, the model was fine-tuned on the

Persona-Chat dataset. In this step, the model receives as input a single sequence that is manipulated

to include information about the speaker’s personality and the context of the conversation. In order

to include these elements, these segments are prepended to the corresponding utterance. In order

to help the model understand that these segments have different meanings, delimiter tokens and seg-

ment embeddings are introduced. The delimiter tokens are used to separate the different segments:

speaker personality, context, and utterance. The segment embedding has different values for each of

the segments and is added to the word embeddings. The speaker personality and context tokens will

be masked, meaning that the model will not learn to predict words from those segments. However, it

will facilitate the generation of the reply word by word by taking these segments into consideration. The

fine-tuning is done in a multi-task setting, trying to minimize the two distinct losses:

• Language modeling: the final hidden state is passed to a softmax layer, resulting in a probability

distribution over the vocabulary.

• Next-sentence prediction: the hidden-state of the last token is passed through a linear layer to

get a score and apply a cross-entropy loss to classify correctly a gold answer among distractors.

These distractors are utterances randomly selected from the dataset (excluding the gold reply).

The total loss is given by the weighted sum of these two.

12



Figure 2.6: Visual representation of the TransferTransfo architecture. Taken from: https://tinyurl.com/ryehjbt

This architecture proved to be successful in building a dialog system that is able, to some extent, to

enact a persona described in a few persona sentences. Therefore, it might be a great starting point for

a brand-aware Customer Support dialog system.
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Some of the corpora presented below are not directly applicable to the problem we are trying to

tackle. Notwithstanding, they can be very interesting in terms of developing baselines or pre-training

models that can then be fine-tuned for our objective.

3.1 Open WebText Corpus

The Open WebText Corpus [Radford et al., 2019] contains around 40GB of high-quality text from over

8 million documents. To create it, all outbound links from Reddit (an american social platform), that

received at least 3 karma, were scraped. This criterion was used as a heuristic indicator for whether

the other users found the posted link interesting. All Wikipedia documents were removed from WebText

since it is a common data source and that could skew its analysis in evaluation tasks. The resulting

corpus includes text from 45 million such links.

3.2 BookCorpus Dataset

The BookCorpus Dataset [Zhu et al., 2015] is a corpus composed by 11 038 unpublished books pub-

lically available on the web. All the books in the dataset have more than 20 000 to avoid noisier short

narratives. It includes a wide variety of books, including 16 different genres, such as Fantasy, Romance,

Science Fiction, and others.

3.3 Twitter Customer Support Dataset

This dataset was developed to “aid innovation in natural language understanding and conversational

models, and for the study of modern customer support practices and impact” 1. With 2 811 774 tweets

from customers and Customer Support agents from 20 major brands from different business areas,

including Apple, Amazon, Uber, Delta, Spotify, Tesco, and others. This is one of the largest publicly

available real Customer Support datasets and therefore, a great starting point to our study.

3.4 MultiWOZ

One of the main challenges in the Customer Support setting has to do with data scarcity. To tackle this

problem, the MultiDomain Wizard-of-Oz dataset (MultiWOZ) was created [Budzianowski et al., 2018].

This dataset contains a fully-labeled collection of human conversation regarding a myriad of topics. With

over 10k dialogs, it is one of the largest annotated task-oriented corpora. Because of its dimension, the

1https://www.kaggle.com/thoughtvector/customer-support-on-twitter
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corpus can be used for end-to-end modeling experiments, making it extremely relevant for the task at

hand.

3.5 Persona-Chat Dataset

The Persona-Chat dataset [Zhang et al., 2018] consists of 162 064 utterances distributed over more than

10 000 dialogs (Figure 3.1). The dataset was created by crowdsourcing “persona sentences” and then,

randomly pairing another set of crowd workers. Each crowd worker of the second set was randomly

assigned a persona (a small subset of the “persona sentences”) and asked to chat naturally while trying

to get to know their pair during the conversation. This setup allows the creation of engaging conver-

sations that allow models to learn the relation between the “persona sentences” and the utterances of

that persona. Even though the utterances in this dataset are representative of a chit-chat scenario, the

idea of imbuing an agent with a persona can be closely related to making the agent brand-aware in the

context of Customer Support and, therefore, this can be extremely useful in our work.

Figure 3.1: Example of an entry of the Persona-Chat Dataset. Taken from [Zhang et al., 2018]

3.6 Friends Corpus

The Friends Corpus [Zhou and Choi, 2018] is collection of all the conversation occurring over the 10

seasons of Friends (the popular America TV sitcom from the 1990s). The series have a total of 236

episodes, with 3 107 conversations, 67 373 utterance and 700 characters. Even though this corpus was
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created with a different task in mind (Character Identification), the speaker-level and utterance level

metadata make it ideal for the development of our model in a Open-Domain environment.

19



20



4
Data Tool & Developed Models

Contents

4.1 Piertotum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Developed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

21



22



The first step to develop our models was to create ”Piertotum”, a data preprocessing tool that allowed

us preprocess our datasets in a quick and programmatic way. Then, following the most recent works

presented in Chapter 2, we explored different Transformer-based language models that have success-

fully been employed to solve tasks in both Open-Domain and Goal-Oriented settings. As a baseline, we

developed a dialog system based on the DialoGPT. To improve on its results, we develop a two models

still based on DialoGPT. The first one has newly trained embeddings that allow the usage of special

tokens in our vocabulary to represent delimiters and segment indicator. This allows us to feed, as input

to the model, not only the conversation history, but also some meta-data about the persona. The second

one, leverages the use of adapters [Houlsby et al., 2019], a set of newly introduced weights within the

layers of the initial model. This provides an alternative method to fine-tune the model to each persona.

4.1 Piertotum

In order to adapt the ”Customer Support on Twitter” dataset and ”Friends Corpus” dataset, we decided

to develop a tool that would allow us to do it programmatically. To this end we developed “Piertotum”.

The tool includes three main modules:

• GetMetadata;

• Preprocess;

• Personify.

The GetMetadata module allows us to retrieve metadata related to the dataset. This includes number

of utterances, number of conversations, number of brands, size of the dataset and others. The “Prepro-

cess” module allows us to preprocess the dataset by applying specific steps that can be controlled

through the use of its options:

• emojis: a Boolean that if True, removes all the emojis from the dataset. These can be useful for

tasks like sentiment analysis. However, in this scenario, it is better to remove them (since we want

to generate text). The default value is True;

• emoticons: a Boolean that if True, removes all the emoticons from the dataset. Similar to emojis,

for our goal, it is better to remove them. The default value is True;

• urls: a Boolean that if True, tags urls in the dataset as ’(URL)’. Often, the agent directs the user to

an url in order to assist him. Since the specific url is not relevant, in this case, we decided to mask

it as the token ’(URL)’. The default value is True;
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• html tags: a Boolean that if True, removes all the html tags from the dataset. The default value is

True;

• acronyms: a Boolean that if True, converts acronyms to their meaning. E.g: ”SMH” is converted

to ”So Much Hate”. In Twitter, the use of specific abbreviations is extremely common. For the

purpose of fine-tuning the model, it may be beneficial to substitute them for their meaning. To do

this, we created a list of the most common abbreviations and their meaning that the tool uses to

convert. The default value is True;

• spelling: a Boolean that if True, spell checks the dataset. This can be an extremely useful feature

since there are a lot of spelling errors present in the dataset. However, since the operation of spell

checking all utterances is very time-consuming, we decided to not do it at this stage. The default

value is False;

• usernames: a Boolean that if True, tags usernames as ”USER” and ”AGENT” for users and agents,

respectively. The default value is False.

Finally, the “Personify” module allows us to format the preprocessed dataset as the Persona-Chat

dataset. Instead of a speaker personality, each brand has in this field either its name or a short descrip-

tion of the brand characteristics. It includes the options:

• brand: a String that represents the name of a brand. If not null, the tool will only adapt the

conversations with agents representing that specific brand. If the value is null, it adapts the whole

dataset. The default value is Null;

• limit: an Integer that indicates how many conversations we want to adapt. This option can be

useful in scenarios where we have limited computational resources. If the value is -1, it uses the

whole dataset. The default value is -1.

Besides the main modules, the tool includes a list of the most common acronyms used on Twitter,

and a dictionary with all the emojis and emoticons with their name, representation, and meaning. This

can be useful if, in the future we want to substitute the emojis for their meaning instead of erasing them

from the utterance.

In order to interact with the different modules we developed a Command Line Interface (CLI). A CLI

is a text-based user interface, that allows us to interact with the scripts through the command line. In

this case, our CLI allows us to choose the module we want to use and specify its options. To run it we

can write on the terminal:

1 $ python cli.py [module name] [--option]*
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The complete tool, with its description and instructions on how to install and run it can be found in

public repository on Github 1.

4.2 Developed Models

4.2.1 Baseline

The first model developed and used as a baseline is a multi-layer Transformer decoder based on the work

described in [Radford, 2018]. Architecturally, it inherits from GPT-2, a 12 layer decoder-only transformer

with 12 masked self-attention heads and 768 dimensional states. As explained in Chapter 2, the masked

attention mechanism works a constraint on self-attention, making it so every token can only attend to the

tokens on its left (left context).This mechanism is what gives it the name of “Transformer decoder” since

it identical to the decoder of the original encoder-decoder Transformer [Vaswani et al., 2017]. Similarly

to the models in [Radford, 2018] and [Devlin et al., 2018], the model leverages positional embeddings

with a maximum sequence size of 512 tokens. It also preprocesses and tokenizes the input sequences

using Byte Pair Encoding (BPE) with Vocabulary size of 40.000 words [Sennrich et al., 2016].

We chose this model as baseline because the text generated by GPT-2 is extremely coherent and it

has had recent success in several NLP tasks demonstrates that Transformer Language Models (LMs)

are able to portray natural language to a fine level of detail. To bootstrap our work, we based the

implementation of our model on the Pytorch adaption of GPT-2 published by Huggingface. 2

4.2.2 TransferTransfo

Architecturally, this model is identical to the baseline. However, its training, particularly the fine-tuning

phase is fundamentally different, as described in chapter 5 the second model is trained following the

methodology described in [Wolf et al., 2019], leading to contrasting results. For that reason and for the

sake of clarity, we will be treating them as different models.

4.2.3 Adapter

The third and last developed model has the same base as the previous models. However, it has a key

architectural difference: the introduction of domain adapters. As described in chapter 2, instead of fine-

tuning the model as a whole, the use of adapters allow us to only fine-tune a small set of task-specific

parameters. The remaining weights are kept fix. This brings advantages in terms of size, modularity and

composability without sacrificing the quality of the results. The applied adapters are based on the work

1https://github.com/HLT-MAIA/twcs2PersonaChat
2https://github.com/huggingface/pytorch-openai-transformer-lm
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described in [Houlsby et al., 2019], where the adapters are applied to NLP by fine-tuning them to learn

representations for specific downstream tasks (sentiment analysis, question answering and others). In

our work, we use them as persona-adapters, where instead of different downstream tasks, the adapters

learn representations for each of the personas in the dataset. The implementation of adapters present

multiple architectural choices that allows the developer to control the concrete structure of its modules

and their location in the layers of the Transformer. Previous works suggest that simple designs attain

good performance, with empirical results on par with more complex counter-parties [Houlsby et al.,

2019, Pfeiffer et al., 2020, Stickland and Murray, 2019]. Besides that, our task seems, a priori, simpler

than the tasks adapter are usually used for. For these reasons, we implemented a fairly simple adapter

design, following [Houlsby et al., 2019,Pfeiffer et al., 2021]: On each Decoder unit, we insert two adapter

components, one after the multi-head attention and one after the feed-forward layers. Each of these

components is comprised of a two-layer feed-forward neural network with a bottleneck and a nonlinear

activation function between the projection layers.
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5.1 Data Preparation

For the training of our models we use two datasets, one for Customer Support (Goal-Oriented) and one

for Open-Domain. In the first setting, the dataset used for fine-tuning the models is based on the “Twitter

Customer Support Dataset” (3.3). However, the dataset must first be adapted to our end goal. To do

this, the following preprocessing steps are required:

First, we must preprocess each utterance. This includes lowercasing, removing emojis/emoticons,

and anonymizing IDs. Besides this, we also must remove all HTML tags and substitute all URLs for

an URL token. Finally, we must also convert commonly used acronyms for their meaning (e.g.:“afk” is

substituted by “away from keyboard”). We also need to eliminate all non-English utterances. After having

the utterances preprocessed, we rebuild the sequence of the conversation between each customer and

the respective Customer Support agent. To rebuild these conversations, we start by identifying the tweet

that begin a conversation (usually initiated by a customer) and then trace the following tweets in that

thread using their IDs. Thanks to the utterances’ preprocessing, some of these conversations will have

non-valid utterances (e.g.: utterances consisting only of emojis will become empty). For this reason,

before returning the final conversations, we must eliminate all the conversations that have non-valid

utterances. In the end, each conversation includes a list of objects composed by:

• an utterance;

• its context with all the prior utterances in that conversation;

• the speaker (customer or agent);

• the brand name or a short description of the brand characteristics.

The final dataset is composed of all the remaining utterances after preprocessing and organized into

conversations (Figure 5.1). To build this final dataset, we will leverage the tool we created, “Piertotum”

(4.1), which allows the selection of different preprocessing steps and the addition of various metadata to

each conversation.

Figure 5.1: Visual representation of the preprocessing pipeline.
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For the Friends Corpus [Zhou and Choi, 2018], the preprocessing is similar but far simpler. In

this dataset we can skip the anonimization step, removal of non-textual elements and expansion of

acronyms. The remaining steps are identical.

5.2 Training

Since we want to test the same approaches both in Open-Domain and Goal-Oriented settings, we must

train the models twice (one for each of these settings). For each of these settings, the training is identical

except for the used dataset. For Open-Domain, we use the “Friends Corpus” and for Goal-Oriented we

use the “Twitter Customer Support Dataset”. As such, the methods described in this section were applied

twice (once for each dataset).

5.2.1 Baseline

Our baseline, is based on the architecture of DialoGPT, an extension of GPT-2 designed to address the

challenges of conversational response generation.

5.2.1.A Pre-Training

Following previous works ( [Radford, 2018, Wolf et al., 2019]), the pretraining of the model is done

employing the BookCorpus Dataset (described in Section 3.2). The rational behind this choice has to do

with the fact that this is a document-level corpus and not a shuffled sentence-level corpus. By exposing

the architecture to long contiguous texts, it can better learn how to model long-term dependencies. That

would not be the case with a shuffled sentence-level corpus. The model uses a vocabulary of 50 257. A

Noam learning rate scheduler with 16000 warm-up steps was used for the pre-training. This corresponds

to increasing the learning rate linearly during the first ”warmup steps”, and then, decreasing it thereafter

proportionally to the inverse square root of the step number, as described in [Vaswani et al., 2017].

5.2.1.B Fine-Tuning

After having the model pre-trained we now must choose a loss to fine-tune the model on. Following the

work of [Wolf et al., 2019], we use a combination of two different losses: language modelling loss, and

next-utterance loss.

The first is a simple cross-entropy loss. The softmax function is applied to the content of the last

hidden state of the last decoder unit. This will return the next token probabilities. The target values are

used as labels and, based on that we calculate the Negative Log Likelihood (NLL).
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To calculate the other loss we need add an extra layer to our model. A linear layer is appended after

the last decoder. This layer works as a classifier. The classifier is trained to identify the correct next

sentence among a group of distractors (these are a group of 2-6 randomly sampled sentences from the

training dataset). As an input, the model takes the an element composed by the last hidden state and

the next sentence/distractor. Then, a score is calculated for each if these elements and these scores

are passed to a softmax function to obtain the probabilities associated with each of them. This classifier

is jointly trained with the model fine-tuning.

For the fine-tuning step we use a batch size of 16 for 2 epochs. We used the Adam algorithm [Kingma

and Ba, 2015] as an optimizer, with learning rate 6.25e-5, an exponential decay rate for the first moment

(β1) of 0.9, an exponential decay rate for the second moment (β2) of 0.999, and L2 weight decay of 0.01.

Next we had to decide what are the relatives weights given to each loss. As in the referenced works, we

chose giving a weight of 75% to the language modelling loss and 25% to the cross entropy loss.

A dropout probability of 0.1 was given to all the layers and, following [Radford, 2018] we used ReLU

as activation function.

5.2.2 TransferTransfo

The training of the second was identical in all aspects to the training of the baseline. However, a change

was made to the input, based on the work described in [Wolf et al., 2019]. During the fine-tuning step on

this dataset, the name or a short description of the persona characteristics take the place of the speaker

personality on the original model. In the Open-domain setting this means the name of the character or

a description of their personality. In the Goal-Oriented domain this means the name of the brand or a

description of its characteristics. We experiment with these two variations since each one of them may

present different benefits. On one side, if the persona’s name coupled with the interactions is enough

for the model to learn how to impersonate it, adding new personas to our dialog system becomes trivial,

provided we had enough data. On the other hand, if providing a short description of the persona can be

used for the same end, the model may present a higher generalization capability, since it may be able

to simulate the communication style of personas that were not in the dataset, provided that they can be

described as a combination of the sentences used to describe personas that were.

Then, these persona sentences are used to generate an augmented input representation. An input

is generated by concatenating the persona sentence(s), the conversation history (clipped to prevent the

input to become too large). Additionally, extra tokens are created to separate the sequences. This input

is then used to generate the initial embeddings the model will consume. Besides the original word and

positional embeddings learned in the pretraining, a third set of segment embedding are used to indicate

to which segment of the input does each token belong to. This set of embeddings is trained during

the fine-tuning phase. The sequence passed to the initial decoder block is the sum of the three (word,
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positional and segment) embedding arrays.

5.2.3 Adapters

Once again, the pre-training of this model is the same as the previous ones. However, the fine-tuning

phase is fundamentally different. Instead of fine-tuning all the weights of the Transformer, only a small

subset of the weights are updated during the fine-tuning (the ones belonging to the adapter modules),

while the rest are kept fixed.

The initial Adapter weights are set with a near identity initialization, which is required for a stable

training of the model [Houlsby et al., 2019]. The training is done following the approach in [Devlin et al.,

2018]. To this end we use an initial learning rate of 0.0001 and optimize it with Adam algorithm [Kingma

and Ba, 2015]. We try them with reduction factors 16, 64.

5.3 Evaluation Metrics

According to [Celikyilmaz et al., 2020], Dialog System evaluation methods can be grouped into three cat-

egories: untrained automatic metrics, machine-learned metrics, and human-centered evaluation metrics.

Since Dialog Generation is, for the most part, an open-ended problem, the evaluation of Dialog Systems

can be extremely challenging. Many of the existing automated metrics were adopted from Machine

Translation and have been shown to be sub-optimal for the evaluation of Dialog Systems [Liu et al.,

2016a]. For this reason, human evaluation is still regarded as the gold standard for this type of task.

However, human evaluation can be considerably expensive and time-consuming, making it impractical

for quantifying day-to-day progress or for dealing with performance optimization matters.

With this in mind, we will use different metrics for different stages of development, leveraging the three

categories of evaluation methods, allowing to measure the models’ quality from different perspectives

and in the most efficient manner.

5.3.1 Untrained Automatic Metrics

This is the most commonly used type of metric. Untrained Automatic Metrics evaluate the system by

comparing the machine-generated texts to human-generated texts, for the same input. The difference

when compared to machine-learned metrics, is that the former compares these texts using simple rules,

such as n-gram matching or distribution similarity, making it considerably faster and less expensive

to calculate. For this reason this type of metrics is ideal to use in day-to-day development and for

performance optimization.
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Following the proposed evaluation in [Budzianowski and Vulic, 2019], we consider Bilingual Eval-

uation Understudy (BLEU) [Papineni et al., 2002] as the main metric to measure the fluency of the

generated answers. This metric analyses the overlapping of n-grams between the machine-generated

answer and a set references. Even though, it was developed with the task of Machine Translation in

mind, it is commonly used in other NLP tasks, particularly in dialog generation. sentences, regardless

of the word order.

5.3.2 Machine-Learned Metrics

These metrics usually leverage machine-learning models that will measure the semantic similarity be-

tween texts. These models try to simulate a human judge, offering a cheaper alternative to Human-

Centered Evaluation. One of the most famous machine-learned metrics is the BERTScore [Zhang

et al., 2019a]. Like BLEU, BERTScore calculates the similarity between the tokens of two sentences

(the machine-generated and the reference). However, this similarity is calculated using the sum of co-

sine similarities between the word embeddings for the elements of each sentence. This makes it more

context-aware and able to compare the sentences semantically, making more effective, especially in the

presence of paraphrases [Devlin et al., 2018].

5.3.3 Human-Centered Evaluation Metrics

These metrics present the most reliable way to evaluate the quality of machine-generated text. Typically,

human judges are asked to compare the texts generated by different systems, using single-turn pair-

wise evaluation or multi-turn Likert scores or to distinguish machine-generated texts using from human-

generated texts (Turing Test [Turing, 1950]). However these human judgement tests present some seri-

ous flaws. The Acute-Eval method [Li et al., 2019], proposes a novel procedure that involves comparing

two full dialogs (Figure 5.2). The human judge is asked to focus on only one speaker within each of the

dialogs and then make a pairwise judgement. Besides maximizing the robustness of judgement across

different humman judges, using this method also result in faster and cheaper human tests.

5.4 Results

With the evaluation metrics described in the previous section in mind., we proceeded to evaluate the

model. First, we compared the three models and their variations using automatic metrics, in both

datasets. Then, after selecting the best performing iterations of each model, we performed Human-

Centered evaluation for both datasets as well.
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Figure 5.2: Example of how the dialogs are presented in Acute-Eval. Taken from [Li et al., 2019]

5.4.1 Automatic Evaluation

Tables 5.1 and 5.2 present the obtained results, for the ”Friends Corpus” and ”Twitter Customer Support

Dataset” respectively. Since this is an answer generation task, the model’s answer is compared with the

ground truth (provided in the dataset) both in terms of word overlapping (for BLEU and METEOR) and

embeddings distance (for BERTscore).

BLEU METEOR BERTscore Hits@1

DialoGPT m (baseline) 16.34 8.73 75.32 73.98
TTname (greedy) 18.02 9.51 79.21 78.83
TTname (beam) 20.38 10.02 82.07 81.75
TTname (top-k) 20.95 9.23 81.23 79.44
TTsent (greedy) 19.21 9.69 78.56 80.87
TTsent (beam) 22.07 11.44 82.41 82.27
TTsent (top-k) 22.19 10.74 83.99 82.90
Adapter (64) 20.44 9.93 77.01 79.83
Adapters (16) 21.48 10.62 82.19 81.70

Table 5.1: Evaluation results for the ”Friends Corpus”. The models named TTname and TTsent represent the
second model based on TransferTransfo with the different inputs (just name of the persona or persona
sentences) and different decoding strategies (greedy decoding, beam search, and top-k). The Adapters
represent the model using adapters with different reduction factors (64, 16)
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BLEU METEOR BERTscore Hits@1

DialoGPT m (baseline) 18.14 8.43 78.92 80.01
TTname (greedy) 18.73 9.54 79.61 81.28
TTname (beam) 22.78 10.99 84.25 82.96
TTname (top-k) 22.85 9.33 84.70 79.03
TTsent (greedy) 20.21 10.19 80.56 82.87
TTsent (beam) 23.74 11.35 87.28 84.94
TTsent (top-k) 22.50 9.42 83.24 81.89
Adapter (64) 20.55 10.90 77.09 78.56
Adapters (16) 23.14 11.04 86.46 79.88

Table 5.2: Evaluation results for the ”Twitter Customer Support Dataset”. The models named TTname and TTsent
represent the second model based on TransferTransfo with the different inputs (just name of the persona
or persona sentences) and different decoding strategies (greedy decoding, beam search, and top-k).
The Adapters represent the model using adapters with different reduction factors (64, 16)

By analyzing tables 5.1 and 5.2 the first observation that becomes evident is that, overall, the models

obtain a significant better performance in the ”Twitter Customer Support Dataset” than in the ”Friends

Dataset”. This is likely related to the fact that the first is composed by conversations in a closed domain

and the second by conversations in open-domain. In closed domain, the conversations will be more

similar, and for the same questions the expected answer will mostly be the same. This is not true for

conversations in open-domain, where the expected answer will be more dependent on the context of the

conversation, hence the observed difference.

Another interesting observation is that the ”TransferTransfo” is the best performing model for both

datasets, however the best decoding strategy is different for each case. Beam-search maintains a beam

of the multiple sequences that we can use to construct the answer, word by word. At the end, we

select the most likely sequence among the different beams. This is the standard decoding algorithm

for most language generation tasks [Kulikov et al., 2018]. However, recent works have shown that

beam-search is very sensitive to the length output, and furthermore, that it works best when the output

length can be predicted a priori [Murray and Chiang, 2018,Yang et al., 2018]. For that reason, it makes

sense that beam-search is a good decoding strategy in low entropy settings (like closed domain dialog

generation). However, in higher entropy settings, like Open-Domain dialog generation, where various

outputs with different lengths are equally valid for the same input, its performance decreases. For this

reason, in open-domain dialog generation, the decoding performance can be improved by leveraging

sampling techniques. In this case, we used top-k sampling, in which the model samples the next token

from the top-k most likely tokens, being k an hyperparameter. Similarly to previous works [Fan et al.,

2018,Radford et al., 2019], in our experiments, this has provided better results than beam searching.

A final observation to be made is that the best performing model is the ”TransferTransfo” model, using

persona sentences in the input. As expected, using the persona sentences leads to a more enriched

input than using simply the name (since it includes the name and more meta-information, like area of
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business, etc).

Trained params (%) BLEU METEOR BERTscore Hits@1

TTsent (top-k) 100 22.19 10.74 83.99 82.90
Adapters (16) 3.6 21.48 10.62 82.19 81.70

Delta (%) 96.4 3.20 1.12 2.14 1.45

Table 5.3: Comparison between the best overall model and best adapter model for the ”Friends Corpus”. Delta
represents the percentage difference of performance in the different evaluated metrics

Trained params (%) BLEU METEOR BERTscore Hits@1

TTsent (beam) 100 23.74 11.35 87.28 84.94
Adapters (16) 3.6 23.14 11.04 86.46 82.80

Delta (%) 96.4 2.52 2.73 0.94 2.52

Table 5.4: Comparison between the best overall model and best adapter model for the ”Twitter Customer Support
Dataset”. Delta represents the percentage difference of performance in the different evaluated metrics

Tables 5.3 and 5.4 provides a different insight. As expected, fine-tuning the full model provided the

best performance in both datasets. However, the use of adapters demonstrate their usefulness. By

training only 3.6% of the parameters (instead of fine-tuning the whole model), we can get a performance

that is very close to the best developed model.

5.4.2 Human-Centered Evaluation

The usage of automatic metrics allowed us to make an initial evaluation of the models and decide on dif-

ferent parameters. However, this evaluation can be insufficient. Previous works have shown that these

metrics do not have a clear correlation with human evaluation [Liu et al., 2016b,Lowe et al., 2017,Peng

et al., 2017]. On one side, semantically different phrases can be very similar, and on the other, for the

same prompt, multiple different answers may be correct, which makes the automatic evaluation much

more difficult, particularly in an Open Domain. For these reasons, after selecting the best models with

the automated metrics presented, we evaluated them using a Human-Centered method. The selected

method was the Acute-Eval method [Li et al., 2019], ”a novel procedure involving comparing two full

dialogues, where a human judge is asked to pay attention to only one speaker within each, and make

a pairwise judgment”. The setup is as follows: In each trial, the judge is presented with two previously

obtained conversations, one of model A interacting with a human, and one of model B also interacting

with the same human. The judge, reads both conversations and is then posed with a question (e.g.

”Which speaker represents Ross from the show Friends”, ”Which speaker represents a Customer Sup-

port Agent from Apple”). The judge must choose between model A and B to answer the question. We
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use 20 annotators, each presented with 5 trials for each pair of models and then use their answers to

decide which model wins. The results can be consulted in the tables 5.5 and 5.6.

Wins (%)

Original DialoGPT TransferTransfo Adapter

Original - 93 88 90
DialoGPT 7 - 24 35
TransferTransfo 12 76 - 61
Adapter 10 65 39 -

Table 5.5: Results of Acute-Eval for the question ”Which speaker do you think represents Ross from Friends?”.
The considered models are the baseline (DialoGPT), the TransferTransfo model with beam decoding
(TransferTransfo) and the Adapter model with reduction factor of 16 (Adapter). The values for ”Original”
are sampled conversations taken from the original dataset.

Wins (%)

Original DialoGPT TransferTransfo Adapter

Original - 91 85 90
DialoGPT 9 - 46 49
TransferTransfo 15 54 - 58
Adapter 10 51 42 -

Table 5.6: Results of Acute-Eval for the question ”Which speaker do you think represents a Customer Support
Agent from Apple?”. The considered models are the baseline (DialoGPT), the TransferTransfo model
with beam decoding (TransferTransfo) and the Adapter model with reduction factor of 16 (Adapter). The
values for ”Original” are sampled conversations taken from the original dataset.

Similarly to the results obtained with the automatic evaluation, the TransferTransfo model is the one

with best performance overall, followed by the Adapter and then the baseline. Another aspect to notice

is the fact that, even though all the models are still very far from being indistinguishable from the original

conversations, both developed models show a significantly better performance when tested against the

original conversations than the baseline. One final observation worth making is that the models are less

distinguishable in the Customer Support setting than in the Open Domain. This is due to the fact that

the conversations for Customer Support are much more similar and objective, making the conversations

with the different models harder to distinguish.
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The goal of this work was leverage the state of the art dialog systems that exist today and explore

how the can be adapted to represent personas in a scalable way. Solving this problem is not only crucial

to deliver a better customer support experience to clients but is also a crucial step to develop more

engaging and realistic chatbots, bringing us one step closer to pass the Turing test. This chapter con-

cludes this dissertation by presenting our main contributions in Section 6.1 and pointing out promising

directions to further develop this work in Section 6.2.

6.1 Contributions

The main contributions of our work are: (1) the development of Piertotum, a preprocessing tool that

allows to us to implement a data preprocessing pipeline to NLP datasets and modify their structure; (2)

the development of two models capable of incorporating a persona and weaving its traits into their gen-

erated answers; an extensive test and comparative analysis of this models and a competitive baseline.

Piertotum, the preprocessing tool can be used to apply different preprocessing steps to NLP datasets,

allowing users to test different preprocessing steps to the datasets and test them. Besides that, Pierto-

tum also allows the user to adapt the structure of a dataset to resemble the [Zhang et al., 2018], making

it easier to apply the TransferTransfo [Wolf et al., 2019] methodology to any dataset. With the developed

models we showed how the TransferTransfo methodology [Wolf et al., 2019] can be leveraged to help

Transformer architecture impersonate a predefined persona in Open-Domain and Customer Support

settings. The experiments done with this model also allowed us to optimize the use of this method, in-

cluding the decoding strategy and how to best use the persona sentences. The other developed model,

leveraging Adapters [Houlsby et al., 2019], uses this state of the art fine tuning technique in an origi-

nal way, creating persona adapters. The test results show that these persona adapter have a slightly

lower performance than the other models, with only a fraction of the trainable parameters, making it a

competitive and much more scalable approach.

6.2 Future Work

As future work, we would like to further explore persona adapters, utilizing the most recent developments

in this area, such as AdapterFusion [Pfeiffer et al., 2021] and Mad-X [Pfeiffer et al., 2020]. Due to

hardware limitations it was not possible to use the large version of the models to our development,

resulting in performance loss. It would also be interesting to test our models using the large version of

DialoGPT [Zhang et al., 2019b]. Finally, we would like to explore the usage of GPT-3 [Brown et al., 2020]

to solve the posed problem. The reason for this is that, currently, GPT-3 outperforms all other models

when it comes to performing of specific tasks without any fine tuning, making it a prime candidate.
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madan, O., and Gašić, M. (2018). MultiWOZ - a large-scale multi-domain Wizard-of-Oz dataset for

task-oriented dialogue modelling. In Proceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing, pages 5016–5026, Brussels, Belgium. Association for Computational

Linguistics.

[Celikyilmaz et al., 2020] Celikyilmaz, A., Clark, E., and Gao, J. (2020). Evaluation of text generation: A

survey.

[Chen et al., 2017] Chen, H., Liu, X., Yin, D., and Tang, J. (2017). A survey on dialogue systems: Recent

advances and new frontiers. SIGKDD Explor. Newsl., 19(2):25–35.

[Devlin et al., 2018] Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT: pre-training of

deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

[Fan et al., 2018] Fan, A., Lewis, M., and Dauphin, Y. (2018). Hierarchical neural story generation.

43



[Gehring et al., 2017] Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017). Convo-

lutional sequence to sequence learning. CoRR, abs/1705.03122.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

Book in preparation for MIT Press.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term mem-

ory. Neural Comput., 9(8):1735–1780.

[Houlsby et al., 2019] Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., de Laroussilhe, Q., Ges-

mundo, A., Attariyan, M., and Gelly, S. (2019). Parameter-efficient transfer learning for nlp. In ICML.

[Kaplan et al., 2020] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray,

S., Radford, A., Wu, J., and Amodei, D. (2020). Scaling laws for neural language models.

[Kingma and Ba, 2015] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization.

In Bengio, Y. and LeCun, Y., editors, 3rd International Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

[Kulikov et al., 2018] Kulikov, I., Miller, A. H., Cho, K., and Weston, J. (2018). Importance of a search

strategy in neural dialogue modelling. CoRR, abs/1811.00907.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition.

[Li et al., 2016] Li, J., Galley, M., Brockett, C., Spithourakis, G., Gao, J., and Dolan, B. (2016). A

persona-based neural conversation model. In Proceedings of the 54th Annual Meeting of the As-

sociation for Computational Linguistics (Volume 1: Long Papers), pages 994–1003, Berlin, Germany.

Association for Computational Linguistics.

[Li et al., 2019] Li, M., Weston, J., and Roller, S. (2019). ACUTE-EVAL: improved dialogue evaluation

with optimized questions and multi-turn comparisons. CoRR, abs/1909.03087.

[Liu et al., 2016a] Liu, C., Lowe, R., Serban, I. V., Noseworthy, M., Charlin, L., and Pineau, J. (2016a).

How NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics

for dialogue response generation. CoRR, abs/1603.08023.

[Liu et al., 2016b] Liu, C.-W., Lowe, R., Serban, I., Noseworthy, M., Charlin, L., and Pineau, J. (2016b).

How NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics

for dialogue response generation. In Proceedings of the 2016 Conference on Empirical Methods

in Natural Language Processing, pages 2122–2132, Austin, Texas. Association for Computational

Linguistics.

44



[Lowe et al., 2017] Lowe, R., Noseworthy, M., Serban, I., Angelard-Gontier, N., Bengio, Y., and Pineau,

J. (2017). Towards an automatic turing test: Learning to evaluate dialogue responses. ArXiv,

abs/1708.07149.

[Lowe et al., 2015] Lowe, R., Pow, N., Serban, I., and Pineau, J. (2015). The ubuntu dialogue corpus:

A large dataset for research in unstructured multi-turn dialogue systems. CoRR, abs/1506.08909.

[Murray and Chiang, 2018] Murray, K. and Chiang, D. (2018). Correcting length bias in neural machine

translation.

[Papineni et al., 2002] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for

automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Asso-

ciation for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA. Association

for Computational Linguistics.

[Peng et al., 2017] Peng, B., Li, X., Li, L., Gao, J., Celikyilmaz, A., Lee, S., and Wong, K.-F. (2017).

Composite task-completion dialogue policy learning via hierarchical deep reinforcement learning. Pro-

ceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.

[Pfeiffer et al., 2021] Pfeiffer, J., Kamath, A., Rücklé, A., Cho, K., and Gurevych, I. (2021). AdapterFu-
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