
Autonomous Landing of an Aerial Robot on a Moving
Platform

Isabel Maria Pereira Castelo

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor(s): Dr. Meysam Basiri
Prof. Pedro Manuel Urbano de Almeida Lima

Examination Committee

Chairperson: Prof. João Fernando Cardoso Silva Sequeira
Supervisor(s): Dr. Meysam Basiri

Member of the Committee: Prof. Alberto Manuel Martinho Vale

December 2021

ii

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

iii

iv

Acknowledgments

There are many people whom I would like to thank for contributing, either directly or indirectly, to this

thesis. First I would like to thank my supervisors, Dr. Meysam Basiri and Professor Pedro Lima, without

their guidance and support the completion of this dissertation would not have been possible.

Second, I want to thank my family, for supporting and valuing my future by allowing me to move away

from home to pursue my dreams. A special thanks to my brother, for being a role model and showing

what a real engineer should look like.

And lastly but not least important, I would like to thank all of my friends and colleagues from university,

for turning this roller coaster experience into a pleasureful ride.

v

vi

Resumo

Veı́culos aéreos autónomos têm recebido um acréscimo de interesse devido à sua versatilidade e apli-

cabilidade, no entanto as suas baterias limitadas requerem constante recarregamento. Sistemas coop-

erativos entre vários robôs proporcionam uma solução que torna estes sistemas totalmente autónomos

ao utilizar um robô terrestre como uma plataforma de carregamento para os drones. Esta cooperação

entre robôs aéreos e terrestres permite-os resolver tarefas de alta complexidade e ultrapassar algumas

das suas limitações individuais.

Esta tese propõe uma solução baseada em processamento de imagem e visão que permita ao UAV

detetar o UGV, planear a sua trajectória e autonomamente aterrar no veı́culo. O algoritmo de deteção

por visão usa marcadores fiduciais, um tipo de marcador artificial com identificador único, mais especi-

ficamente ArUcO markers. De seguida, a aterragem é implementado a partir de uma máquina de esta-

dos, que efetua as tomadas de decisão de alto nı́vel do drone, e um controlador em cascata, constituido

por três controladores independentes para os comandos de atitude e altitude, que são posteriormente

enviados para o autopilot no controlador interno.

Esta implementação foi testada tanto no Simulador Gazebo 7 como no drone real. Em ambos os

sistemas, vários testes foram feitos, tal como teste de limitações do hardware, experiências de afinação

do controlador, testes de consistência, e vários testes de voo. As experiências feitas mostram todas o

robô a, bem sucedidamente, aterrar na plataforma de recarregamento.

Palavras-chave: UAV-UGV, Aterragem Autónoma, Aterragem por visão, Sistemas Coopera-

tivos de multi-robôs, ArUcO Marcadores, Pixhawk Autopiloto

vii

viii

Abstract

Unmanned Aerial Vehicles (UAVs) have had an increase of interest due to their versatility and variety

of applications, however their limited battery life requires constant manual recharging. Heterogeneous

multi-robot systems provide a solution to make these systems fully autonomous, by allowing an Un-

manned Ground Vehicle (UGV) to serve as a recharging station for the aerial vehicle. The cooperation

between aerial and ground robots allows them to solve high complexity tasks and overcome their indi-

vidual limitations.

This work proposes a vision-based approach that allows an aerial robot to detect a mobile charging

station, perform a trajectory planning and autonomously land on the vehicle. The vision-based detection

algorithm makes use of fiducial markers, a type of unique identifiable artificial marker, more specifi-

cally the ArUcO markers. Afterwards, the landing is implemented with the help of a state machine,

that overviews the high-level behaviour of the UAV, and a cascaded controller, with three independent

controllers for the Attitude and Altitude commands, which are then sent to the autopilot for inner-loop

control.

This implementation was tested both in the Simulator Gazebo 7 and on the real drone. On both

systems several tests were performed, such as testing the limitations of the hardware, controller tuning

experiments, tests for consistency, and a variety of flight tests. The range of test run show that the robot

successfully detected and landed on a charging pad.

Keywords: UAV-UGV, Autonomous landing, Vision-based landing, Cooperative Multi-robot Sys-

tems, ArUcO Markers, Pixhawk Autopilot

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xiii

List of Figures . xv

Nomenclature . xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Thesis Outline . 2

2 Background 4

2.1 UAV Controller . 4

2.1.1 Reference Frames . 4

2.1.2 Equations of Motion . 5

2.1.3 Linearized State Space Model . 7

2.1.4 Cascade Controller . 8

2.1.5 PID Controller . 9

2.2 Fiducial Markers . 10

2.3 Finite State Machine . 10

3 State of the Art 12

3.1 Artificial Landmarks . 12

3.2 Landing Pad Detection . 14

3.3 UAV Control . 15

3.4 Landing Strategies . 18

3.5 Detection without Landmarks . 21

3.6 Hardware . 24

3.7 Conclusion . 25

xi

4 Implementation 26

4.1 System Setup . 26

4.1.1 UAV . 26

4.1.2 UGV . 27

4.1.3 Simulation . 27

4.2 Quadrotor Controller . 29

4.2.1 Quadrotor Controller Design . 29

4.3 Vision-based UGV detection . 30

4.4 Implementation in ROS . 34

4.4.1 Mavros . 36

4.4.2 SMACH . 36

4.5 Implemented Code . 38

5 Simulation Results 41

5.1 Detection Range . 41

5.2 PID Tuning . 43

5.2.1 Stationary UGV . 44

5.2.2 Moving UGV . 45

5.2.3 Descent . 47

5.2.4 Consistency . 49

5.3 Simulation Experiments . 52

6 Real Drone Results 56

6.1 Motion Capture System . 56

6.2 Detection Range . 59

6.3 Flight Experiments . 60

6.3.1 Tuning . 60

6.3.2 Landing Experiments . 62

7 Conclusions 65

7.1 Future Work . 66

Bibliography 66

A Code Repositories A.1

A.1 GitHub Repositories . A.1

xii

List of Tables

3.1 Hardware . 24

3.2 State of art Conclusion . 25

5.1 Values tested for the X and Y tuning when the UGV is stationary. 45

5.2 Values tested for the X and Y tuning when the UGV is moving. 47

5.3 Values tested for the Z tuning. 49

5.4 UGV positions tested for stationary landing consistency. 51

6.1 Values tested for the X and Y tuning for the Real Experiment. 61

A.1 Code Repositories. A.1

xiii

xiv

List of Figures

2.1 Reference Frames. 4

2.2 Forces applied to the UAV. 5

2.3 Cascade controller. 9

2.4 PID controller. 9

2.5 Fiducial Landmarks. 10

3.1 Artificial Landmarks. 13

3.2 Baca et al. [3] State Machine. 18

3.3 Araar et al. [2] State Machine. 19

3.4 Ghommam and Saad [17] Petri Net. 20

3.5 Polvara et al. [32] State Machine. 21

3.6 Diagram of Rodriguez-Ramos et al. [33] reinforcement learning simulation framework. . . 22

3.7 System architecture of Backman et al. [4] to assist pilots in landing. 23

4.1 Quadrotor. 27

4.2 UGV - Jackal . 28

4.3 Gazebo simulation environment. 28

4.4 Inner and Outer-Loop UAV Controller. 29

4.5 Ardupilot Inner-loop UAV Controller [38]. 30

4.6 Image process for automatic marker detection. 31

4.7 Marker pattern. 33

4.8 Aruco Marker axis. 33

4.9 Real Drone Tranforms. 35

4.10 Communication using ROS. 35

4.11 Implemented State Machine by SMACH Viewer. 37

4.12 Code Flowchart. 40

5.1 Minimum and maximum detectable height. 42

5.2 Camera field of view at 6m height. 43

5.3 PID Tuning with UGV stationary. 46

5.4 PID Tuning with UGV moving. 48

5.5 PID Tuning for UAV descent. 50

xv

5.6 Consistency test when the UGV is stationary on the same position. 51

5.7 Consistency test when the UGV is stationary on different positions. 52

5.8 Consistency test when the UGV is moving. 53

5.9 Linear Trajectory at 2m/s velocity. 54

5.10 Diagonal Trajectory at 1m/s velocity. 54

5.11 Diagonal Trajectory at 2m/s velocity. 55

6.1 MoCap System Experiment 1. 58

6.2 MoCap System Experiment 2. 59

6.3 Minimum detectable height real experiment. 60

6.4 Real Drone tuning. 61

6.5 Real Drone Flights. 63

6.6 Real Drone Flights. 64

6.7 Real Drone Flights. 64

xvi

Nomenclature

CNN Convolutional Neural Network

DDPG Deep Deterministic Policy Gradients

DOF Degrees of Freedom

DQL Deep Q-Learning

DQN Deep Q-Networks

EKF Extended Kalman Filter

ENU East-North-Up

FLC Fuzzy Logic Control

LKF Linear Kalman Filter

LOS Line-of-Sight

LQR Linear Quadratic Regulator

MAV Micro Aerial Vehicle

MRS Multi-robot Systems

NEU North-East-Up

PID Proportional Integral Derivative

PN Proportional Navigation

ROS Robot Operating System

SLC Sliding Mode Control

SSH Secure Shell

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

UKF Unscented Kalman Filter

w.r.t with respect to

xvii

xviii

Chapter 1

Introduction

A fully autonomous robot needs to be able to adapt to all circumstances around it, in an unpredictable

environment this is harder to achieve with only one robot, leading to the formation of heterogeneous

multi-robot systems (MRS) [31] to complete a variety of tasks. These systems can be composed with

robots of various types and capabilities, such as Unmanned Aerial Vehicles (UAVs) and Unmanned

Ground Vehicles (UGVs). The robots are designed to cooperate with each other and humans, in order

to successfully accomplish high complexity tasks.

Further developing these cooperative heterogeneous MRS, brings advantages to several fields [37],

such as surveillance, rescue operations, environmental monitoring, security measurements, emergency

response systems and even household chores.

This introductory Chapter starts by placing the thesis in the context of this research topic. This is

followed by a topic overview and the objectives, where the goal of the thesis is clarified. The Chapter

ends with an outline of the thesis.

1.1 Motivation

The Durable project aspires to accelerate the deployment of renewable energies, in the Atlantic, area

through the use of aerospace technologies. Expanding the use of renewable energy is a crucial step

to be taken in the present, since it is a sustainable resource that does not run out. Renewable energy

solar plants require constant inspection of physical damage and electrical connections, and occasional

maintenance for the proper functioning of the system.

UAVs need to have a limited size and consequent small payload in order to be easy to operate

and maneuver, and to be versatile and applicable in different scenarios. However, this results in a

small power autonomy, which highly constrains UAV missions, resulting in short-range flights and a

consequent limited applicability. However, the advantages they bring to a variety of fields of work greatly

exceed their issues, such as being easier and cheaper to deploy than manned aircraft and providing

a safe reconnaissance and flight to areas of difficult access. UGVs [13], on the other hand, are able

to carry a large payload, hence have an extended battery life. A possible solution for this problem is

1

to employ an heterogeneous team of ground and aerial robots, where the ground robots can act as a

mobile charging station for the UAVs to use in between flight operations.

This leads to the necessity of the UAV to fully autonomously land on the UGV for recharging, so as to

make the UAV fleet more dependable, by flying autonomously and uninterrupted for long time periods.

By using UGVs as a recharging platform for the UAVs, this heterogeneous MRS provides a safe-

guard for the UAVs limitations, increasing/distributing the payload capacity and run time, and cooperat-

ing perception-wise to achieve a broader field of view for inspection, as well as using the UGVs for a

close up view and for repairing.

To achieve the landing, real-time vision-based localization and tracking during flights is a fundamental

step. Vision-based navigation has proven to be a promising research area for autonomous navigation

due to the rapid development of computer vision. First, the visual sensors can provide abundant real

time information of the surroundings; second, their anti-interference ability makes visual sensors highly

appropriate for perception of dynamic environments; third, it’s a lightweight sensor, which pairs well with

the UAV’s small capacity.

Successfully accomplishing a fully autonomous UAV landing, benefits not only the inspection and

recharging needed for the Durable project, but also other fields and applications. Such as a drone

based delivery service, or even a landing to transfer sensor data acquired during the flight.

1.2 Objectives

The main goal of this thesis is to design an onboard system for the UAVs to detect, reach and land on a

possibly moving UGV.

The plan, as previously mentioned, is to exploit and use a vision-based approach. The main objec-

tives are as follows:

1. Vision-based UGV detection - Obtain the UGV’s pose relative to the UAV by using an artificial

landmark;

2. State estimation (Relative Localization) - After obtaining the target’s relative pose, compute the

best angles to move towards the target;

3. Motion Control for landing - Define a high level control state machine that, depending on the current

state of the UAV, determines the next state.

1.3 Thesis Outline

Chapter 2 contains some fundamental concepts necessary to understand the remaining document and

implemented solution.

Chapter 3 analyses how other approaches addressed this issue in several topics, e.g. which land-

marks were used; how they were detected; how the UAV is controlled; what are the several states that

2

compose a landing; how the detection can be performed without landmarks; and what hardware was

used.

Chapter 4 contains a description of the hardware used, including the UAV, the UGV and some of their

parts. Then, focusing on the UAV, the several reference frames are analysed, followed by the equations

that allow the control of the quadrotor and the analysis of the controller implemented, together with

the autopilot’s controller. Afterwards, the computer vision method used to detect the UGV, the pattern

that goes on top of the UGV and the transforms necessary to obtain the accurate measurements, are

defined. Then, it is explained how this will be implemented in ROS, such as the packages used for

communicating with drones and the package used to implement the high level state machine. And

finally, a flowchart with a succinct overview of the implemented code is presented.

Chapter 5 contains the results of the experiments performed in the simulator Gazebo. On the sim-

ulation, first some limitations of the UAV and its camera are analysed to be taken into account for the

remaining tests. Then the entire tuning of the implemented controller is outlined along with its con-

sistency. Afterwards, different scenarios from the one used to tune the controller are tested to show

versatility of the implementation.

Chapter 6 shows the experiments performed on the real drone. First on the Motion Capture System;

and then in a real environment, the tuning performed and the landing tests.

Chapter 7 outlines the overall conclusion of this thesis, what was implemented and achieved with this

work, and then some future work.

Chapter A contains the GitHub repositories that were implemented during this thesis or for the overall

project and used in this thesis.

3

Chapter 2

Background

This section of the report will overview the fundamental concepts necessary to understand the method-

ology used to autonomously land a UAV on top of a moving target.

2.1 UAV Controller

2.1.1 Reference Frames

There are 5 main reference frames in use to describe the dynamics of an aircraft, the frames in Figure

2.1 are the following:

Figure 2.1: Reference Frames.

4

• Inertial Frame [I] - Inertial fixed frame whose with an East-North-Up (ENU) frame w.r.t. to the World

frame;

• Body Frame [B] - Mobile frame whose dynamic behavior can be described relatively to the fixed

frame;

• World Frame [W] - Earth fixed frame with a North-East-Up (NEU) frame;

• Camera Frame [C] - Fixed to the Body Frame, therefore performs the same rotations and transla-

tions;

• Target Frame [T] - Body frame of the mobile platform. Origin at the center of gravity of the UGV,

NEU reference frame.

2.1.2 Equations of Motion

The orientation of the body frame relative to the World frame, can be obtained using the rotation matrix

in (2.1). Which is obtained from the product of the rotation matrices of the x, y and z axes, whose angles

are roll, pitch and yaw respectively.

Rx(φ) =


1 0 0

0 cosφ −senφ

0 senφ cosφ

 Ry(θ) =


cosθ 0 senθ

0 1 0

−senθ 0 cosθ

 Rz(ψ) =


cosψ −senψ 0

senψ cosψ 0

0 0 1


BRW = Rx(φ)Ry(θ)Rz(ψ) (2.1)

The forces acting upon a drone are the thrust/moment generated by the rotors, consequently lift and

drag arises as air moves past the UAV. Lift pushes the object upwards, whereas drag is a sort of air

resistance, slowing it down. And finally, the gravity.

Figure 2.2: Forces applied to the UAV.3

The total force on the UAV in the body frame is given as,

FB = FB
g + FB

T + FB
aero . (2.2)

5

Where Fg is the gravitational force, FT is the force of the thrust, and Faero is the force resulting of

the aerodynamic drag and lift coefficients, CD and CL.

The gravitational force is along the z axis of the world frame, therefore needs to be translated into

the body frame,

FB
g =B RgF

W
g =B Rg


0

0

−mg

 . (2.3)

When modeling the UAV, it is taken in consideration that it is a rigid body, so the Newton and Euler

equations are used to describe its dynamics. The force and moment equations are represented in (2.4a)

and (2.4b) respectively,

F =
∂

∂t
[mv]B + ω̇ × [mv]B , (2.4a)

M =
∂

∂t
[Iω̇]B + ω̇ × [Iω̇]B , (2.4b)

where v is the vector of linear velocities, ω the vector of angular velocities, and m is the mass of the

body. The inertia matrix I is represented in (2.5),

I =


Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

 . (2.5)

However, considering that the quadrotor is a rigid body symmetric about its xz and yz plane, and the

rotation axes coincide with the principal axes, then all the inertia values between different axes are zero,

and the final inertia matrix is composed of only its diagonal.

The matrix form of equation (2.4a) is represented as follows, where (u, v, w) and (p, q, r) are linear

and angular velocities respectively,


Fx

Fy

Fz

 = m


u̇

v̇

ω̇

+m


p

q

r

×

u

v

ω

 , (2.6)

and when equations (2.2) and (2.4a) in the matrix form are combined, and isolating for the accelerations

in the body frame, the following is obtained:

u̇ = rv − qω − gsenθ

v̇ = pω − ru− gcosθ + senφ

ω̇ = qu− pv − gcosθcosφ+
T

m

. (2.7)

For simplicity, the drag and lift coefficients were omitted and a drag-free system is considered.

6

For the moment, using Euler’s rotation equation in (2.4b),


Mx

My

Mz

 =


Ix 0 0

0 Iy 0

0 0 Iz



ṗ

q̇

ṙ

+


p

q

r

×

Ix 0 0

0 Iy 0

0 0 Iz



p

q

r

 , (2.8)

where Ix = Ixx, Iy = Iyy, Iz = Izz.

Leading to the angular rate equations (2.9),

ṗ = (Mx − (Iz − Iy)qr)/Ix

q̇ = (My − (Ix − Iz)pr)/Iy

ṙ = (Mz − (Iy − Ix)pq)/Iz

. (2.9)

Because of the xz and yz symmetry, Ix ≈ Iy. Which leads to simplifying equation (2.9),

ṙ =Mz/Iz .

2.1.3 Linearized State Space Model

It is often more convenient to consider the linear dynamics around the point of interest rather than the

entire nonlinear model when doing control design and analysis.

For a stable hover control simulation, it can be assumed that the UAV has very small φ (roll) and θ

(pitch) angle changes, and makes only ψ (yaw) motion in the x-y plane. The small angle approximations

are sin(x) ≈ x and cos(x) ≈ 1

Having this defined, and since (u, v, w) are linear velocities, it is safe to assume that ,


ẋ = u

ẏ = v

ż = ω


φ̇ = p

θ̇ = q

ψ̇ = r

. (2.10)

By applying this in equation (2.9):

φ̈ = (Mx − (Iz − Iy)θ̇ψ̇)/Ix ,

θ̈ = (My − (Ix − Iz)φ̇ψ̇)/Iy ,

ψ̈ =Mz/Iz .

(2.11)

It is necessary to solve equation (2.2) in the World frame to obtain the equations of motion. Combin-

ing with the acceleration in the inertial frame we get:

m


ẍ

ÿ

z̈

 = m


0

0

−mg

+B R−1
g


0

0

T

 , (2.12)

7


ẍ = T

m (senφsenψ + cosφcosψsenθ)

ÿ = T
m (cosφsenθsenψ − senφcosψ)

z̈ = T
mcosθcosφ− g


ẍ = T

m (φsenψ + θcosψ)

ÿ = T
m (θsenψ − φcosψ)

z̈ = T
m − g

. (2.13)

The state vector of the quadrotor, which is mapped to the DOF, is as follows:

X =
[
x y z φ θ ψ ẋ ẏ ż φ̇ θ̇ ψ̇

]T
. (2.14)

The state vector defines the quadrotor’s states, whereas a control input consists of four inputs

U =
[
U1 U2 U3 U4

]T
. (2.15)

Where U1 is the thrust, and (U2, U3, U4) represent the roll, pitch and yaw moments respectively,

U1 = T ,

U2 =Mx ,

U3 =My ,

U4 =Mz .

(2.16)

To conclude, without considering the air resistance and the lift, the dynamic model of the quadrotor

can be represented as:

F (X,U) =



ẋ

ẏ

ż

φ̇

ω̇

ψ̇

U1

m (φsenψ + θcosψ)

U1

m (θsenψ − φcosψ)

U1 − g

(U2 − (Iz − Iy)θ̇ψ̇)/Ix
(U3 − (Ix − Iz)φ̇ψ̇)/Iy

U4/Iz



. (2.17)

2.1.4 Cascade Controller

Cascade control involves the use of two controllers with the output of the first controller providing the

setpoint for the second controller [7]. The inner loop controller is nested inside the outer loop one, and

independently, the inner and outer loop are each a Feedback controller, since the output signal is being

passed to the input of the controller [23]. Such a system can give an improved response to disturbances.

8

Figure 2.3: Cascade controller.

When controlling a UAV [26], the Outer Loop represents Position controller. The Position controller

receives the current and desired attitude, and outputs the desired roll and pitch angles that will remove

the error between the two inputs. The same goes for the Altitude controller, that outputs the necessary

Z velocity that will remove the error between the UAV’s altitude and its target’s altitude.

On the other hand, the Inner Loop, or the Attitude and Altitude controller, receives the outputs of

the Outer Loop controller as its inputs, and computes the necessary motor commands to achieve the

desired inputs.

2.1.5 PID Controller

In a control loop, the controller receives a certain setpoint request, and compares it to a measured

feedback. The difference between these two is called the error ε, and the purpose of the controller is to

eliminate this error. In a PID controller [1], three constants are set to define the importance given to the

Proportional, Derivative, and Integral interpretation of the error, which can be seen in Figure 2.4.

Figure 2.4: PID controller.2

Proportional, refers to the error being multiplied directly by a proportion constant KP . The smaller

the value of this constant, the faster the controller stabilizes, but may stabilize while it still has error. The

larger it is, the smaller the steady-state error is, but the loop becomes more likely to become unstable.

Integral represents the sum of error over time. The larger the value of KI , the easier it is to reduce a

persistent steady-state error. However, this may lead to an overly oscillatory response. Derivative is the

rate of change during a given interval, which means, this controller corrects present error in comparison

with the previous error. Larger values of KD, diminish the effect of P and I. In conclusion, to have a

good PID controller, there must be an equilibrium between the three constants KP , KI and KD, in order

to obtain the desired response. Therefore, tuning of these constants needs to be performed [29] when

implementing the PID controller.
2https://en.wikipedia.org/wiki/File:PID-feedback-loop-v1.png

9

2.2 Fiducial Markers

Fiducial Markers are a type of artificial landmarks of known size and shape used to provide a point of

reference or measurement. Fiducial Marker Systems are computer vision algorithms created to identify

the fiducial markers in an environment. Applications for these markers range across various areas,

such as robotics or medical imaging, but where initially designed to be used in augmented reality. Most

markers are black and white due to being more detectable from higher distances and angles.

Most square markers are based on the ARToolkit library, an open-source computer tracking library

for creation of augmented reality applications that overlay virtual imagery on the real world. ARTag is

based on ARToolKit, but uses a different method to codify the internal id of the marker. AprilTag is an

improved version of ARTag. And ArUcO is another more recent combination of AprilTag and ARToolKit.

A study comparing the efficiency of different fiducial markers was conducted by [21], where the three

previously mentioned markers were considered, as well as a circular-shaped marker STag, as in Figure

2.5.

(a) ARTag (b) AprilTag (c) ArUcO (d) STag

Figure 2.5: Fiducial Landmarks.

When analysing the performance of these four algorithms regarding the distance to the marker,

AprilTag and ArUcO both showed consistency in gradually losing accuracy with higher distances, ARTag

on the other hand was affected by the presence of shadows in distances higher than 1.75m. As for

performance with different marker orientations, STag showed better accuracy, having ArUcO and ARTag

occasionally outperform it, however STag was also less stable in its measurements.

One of the most important factors to consider when choosing an algorithm for a small system is its

computational cost. In the evaluation performed by [21], AprilTag proved to be the most computationally

heavy out of the four, followed by STag. While ARTag and ArUcO had the least computational needs.

To conclude, all but ARTag showed high detection rates, STag had better performance when it comes

to position measurents, and AprilTag with orientation measurements. However, ArUcO was the most

consistent throughout all performance tests and a close second in both position and orientation.

2.3 Finite State Machine

A Finite State Machine (or Finite State Automata) [18] is defined by a tuple (
∑
, S, s0, δ, F), where:

•
∑

is a finite set of symbols representing events;

10

• S is a finite, non-empty, set of states, representing actions;

• s0 ∈ S is the initial state;

• δ is the state-transition function: δ : S ×
∑
−→ S;

• F is a, possibly empty, set of terminal states, a subset of S;

• O is a, possibly empty, set of outputs.

A Finite State Machine keeps track of the current state, and the list of valid state transitions from

and to each state. A Deterministic Finite State Machine, is one where there is only one transition for

any allowed input. For example, if a state outputs a certain letter ’x’, only one transition can possibly be

triggered, therefore there can only be one path leading out of a state for a certain output.

11

Chapter 3

State of the Art

This section of the report will overview the different techniques previously used to autonomously land a

UAV on top of a moving target.

3.1 Artificial Landmarks

An artificial landmark is a recognizable artificial feature used for navigation/localization. Vision-based

methods often prefer performing localization by placing a set of landmarks in known positions. By using

landmarks, the robot can obtain its position with respect to (w.r.t.) the landmark. Therefore simpli-

fying the localization process, and obtaining a better accuracy and stability than it would with natural

landmarks. To serve its purpose, the landmark has to be distinguishable from its environment. In this

research area, it is common to use landmarks to identify the UGV. This is done by placing the landmark

on top of the platform.

Both Baca et al. [3] and Falanga et al. [11] researches were to be implemented in the MBZIRC

competition. The landmark used for both was the same, as seen in Figure 3.1(a). In Polvara et al. [32],

the choice was very similar, as in Figure 3.1(b).

In Lange et al. [22], the landing pad is identified through the unique radius of each ring, which is

represented in Figure 3.1(c). In this research, as well as in others, the landmark is distinguishable from

a distance as well as when close, in this particular case, the radius of the rings gradually gets smaller

when closer to the center.

The currently most used type of artificial landmarks are the Fiducial Markers. In Araar et al. [2], this

unique landmark is used in a particular way, as in Figure 3.1(d). A set of markers are arranged gradually

smaller from the outside to the center of the landing pad, to allow the identification of the landmark both

from a great distance, as well as up close. Similarly to Araar et al. [2], de Souza et al. [10] uses a set

of larger and smaller ArUcO markers, as in Figure 3.1(e), again to allow the landing pad to be detected

from several distances.

As opposed to what was said above regarding the format of the landing pad, Hui et al. [19] uses a

white circle with 20cm of radius as a target, as in Figure 3.1(f). To find it, it has in consideration the area

12

and shape, since they are both previously known. This was proved to be very ineffective, since it is an

easily misrecognized shape and color in a natural environment.

A Convolutional Neural Network (CNN) is a Deep Learning algorithm which can take in an input

image, assign importance to various aspects/objects in the image and be able to differentiate one from

the other. The image pre-processing required in a CNN is much lower as compared to other classification

algorithms. They are formed by several layers, the main ones are the convolutional layer, which uses a

kernel or filter that reduces the image into an easier to process form by extracting high-level features; and

the pooling layer, which is responsible for reducing the spatial size of the previously convolved feature.

The layers on a CNN can have numerous architectures, some will be further mentioned on the next

section.

In Cabrera-Ponce and Martinez-Carranza [9], a vertical mexican flag is located near the H-shaped

landing pad. The drone first flies towards the flag, then observes the landing pad. The images that are

recognized by the CNN are in Figure 3.1(f).

In Lee et al. [24] the marker for landing is a red object, typically a red rectangle on top of the moving

ground vehicle.

(a) Baca et al. [3] and
Falanga et al. [11]

(b) Polvara et al. [32] (c) Lange et al. [22] (d) Araar et al. [2]

(e) de Souza et al. [10] (f) Hui et al. [19] (g) Cabrera-Ponce and
Martinez-Carranza [9]

(h) Nguyen et al. [28]

Figure 3.1: Artificial Landmarks.

On all the aforementioned papers, all the details regarding the shape of the artificial landmark were

previously known by the UAV. This reduces the errors due to misrecognition and consequent failure.

Amongst all the landmarks shown, the less computationally heavy ones to detect are those with Fiducial

type of markers. These have the big advantage of being automatically detected by an open-source al-

gorithm. The landmarks presented in Figures 3.1(a), (b), (c) and (f) were chosen due to being geometric

figures and symmetric, which provides an equal measurement from every side of the platform. In the

first two, by adding more than one geometric figure, the landmark becomes more easily distinguishable.

13

3.2 Landing Pad Detection

As could be observed in the previous section, all artificial landmarks had a big contrast in color and

used only black and/or white. The best way to filter an image with these characteristics is by applying

an adaptive threshold. This takes an image as input, and, in a generalized way, outputs a binary image

representing the segmentation. For each pixel in the image, a threshold has to be calculated. The

threshold is found for each single pixel by interpolating the results of subimages. An alternative is to

define a fixed threshold, which in certain cases can result in a faster method. The latter was applied in

Lange et al. [22]. Additionally, invariant moments, which are features of an image that are unchanged

when under transformations, are then used to perform pattern recognition to identify the landing pad.

The remaining works described in the literature followed the adaptive threshold approach. In Hui

et al. [19], this was followed by eroding away the boundaries of the circle with a median filter. Then a

Hough transformation is applied, to verify if the observed shape is according to the previously known

standards. Similarly, in Baca et al. [3] and in Falanga et al. [11], after performing the adaptive threshold,

since the algorithm knows the shapes of the landing pad, it detects the square, followed by the circle

and then the cross. Additionally, Falanga et al. [11] uses a Perspective-n-Point approach to estimate

the pose of the camera, in relation to the landing pad, given a set of n 3D points in the world and their

corresponding projections in the image. In Lee et al. [24] after the RGB raw image is resized, it is

passed through a Gaussian filter to reduce noise and transformed to HSV (Hue, Saturation, Value). The

transformation is necessary in order to analyse the red marker in any environment. Then, an adaptive

threshold is performed to obtain only the region of interest, and consequently a morphological filter is

used to reduce noise in a binary image. Finally, the center of mass is obtained from the contour of the

marker.

In Araar et al. [2], a marker based kind of landmark was picked. This allowed them to use a visual

fiducial system, AprilTag, which creates a target from an ordinary printer, and then computes the precise

3D position, orientation and distance of the tags relative to the camera. This method allows for a unique

identification of the landmark, which is less prone to errors. Since the landmarks were of the same type,

de Souza et al. [10] and Borowczyk et al. [8] also used an open source tag tracking, AR Track Alvar and

AprilTag, respectively. Also, in Borowczyk et al. [8], to avoid target loss, the gimbaled camera centers the

image onto the AprilTag as soon as visual detection is achieved, this is done by implementing a controller

for the Pitch θ and Yaw ψ angles of the Gimbal. When the Micro Aerial Vehicle (MAV) is close to the

landing pad yet too far to cut off the motor, the gimbaled camera cannot perceive the whole AprilTag, so

a fixed, wide-angle camera is used to provide measurements

YOLO is an object detection algorithm that requires only one forward propagation pass through the

CNN to make predictions. This means that a single neural network is applied to the full image. This

network divides the image into regions and predicts bounding boxes and probabilities for each region.

These bounding boxes are weighted by the predicted probabilities. YOLO v2 is a variant of YOLO, where

the bounding boxes are generated based on the trained ground truth. In Nguyen et al. [28], the latter is

used combined with a lightDenseNet, to allow the marker to be detected from a long and close distance

14

with real-time speed. The DenseNet architecture is used to solve the problem of vanishing information

in deep CNNs by adding simple connectivity pattern to ensure the maximum flow of information between

layers. In each dense block, the feature maps of the current layer are concatenated with feature maps

from previous layers as an additional channel. Since detecting a simple marker with a background is a

small dataset, only two dense blocks are necessary. Then the marker used in Nguyen et al. [28] and the

five bounding boxes to detect it can be seen in Figure 3.1(h).

Single Shot Detector (SSD) is a CNN that detects multiples objects through predictions of bounding

boxes around them with the capability to learn up to twenty classes of objects. In Cabrera-Ponce and

Martinez-Carranza [9], an SSD with 7 Convolutional and Pooling layers is used for the detection of the

landmark. The pictures are classified in comparison to the original images. With the bounding boxes, a

ratio of the intersected area over the union area is used to perform the proper detection. In the last layer,

a Non-maximum Suppression, a post processing step that selects the best bounding box for an object

by ”suppressing” all others, is applied, to clear the unnecessary bounding boxes, and remove duplicate

predictions.

During the landmark detection process, in Polvara et al. [32], only the xy-plane is considered, for

simplicity. Therefore this phase is performed at a fixed altitude. A CNN receives four grey-scale images,

they are then processed by three convolutional layers, for feature extraction, and two fully connected

layers.

Combining the variety of artificial landmarks analysed in the previous Section, fiducial landmarks are

chosen to be placed on top of the UGV and serve as a detection pattern due to their uniqueness and

fast detection. The comparison done in Section 2.2 also led to conclude the choice of the ArUcO library

for the marker detection.

3.3 UAV Control

A High-level controller computes complex high-level reasoning tasks, while the Low-level controller con-

tinuously computes low-level control processes. In Falanga et al. [11], a nonlinear control to drive the

quadrotor towards the desired trajectory is implemented using a High and Low level controller. The

high-level controller takes the difference between the desired and estimated position, velocity, accelera-

tion and jerk as input, and returns the desired collective thrust and body rotations. These rotations are

passed as input to the low-level controller, which computes the necessary torques to be applied to the

rigid body.

In Araar et al. [2] an EKF filter is used for sensor fusion to estimate the relative pose of the quadrotor

w.r.t. the landing pad. This pose is used as the control’s feedback to keep tracking the ground vehicle. To

regulate the quadrotor’s position and heading, 4 PID controllers are designed for the quadrotor’s position

and heading.

Similarly to the previous paper, a normal Kalman filter is used to combine the data from IMU, GPS

and visual measurements in Borowczyk et al. [8]. The Ground Vehicle has a mobile phone that has both

a GPS and an IMU, therefore sends the information regarding these two units to the MAV through a

15

wireless link. Two types of controllers are used in this reasearch. First a Proportional Navigation (PN),

which uses the fact that two vehicles are on a collision course when their direct Line-of-Sight (LOS) does

not change direction as the range closes. This controller provides acceleration commands perpendicular

and parallel to the LOS vector, however the acceleration in the z axis is disregarded due to this position

not changing. When the MAV is close to the Ground Vehicle, a more precise controller is needed, so

a Proportional Derivative (PD) controller is used. By using two controllers, it is necessary to switch

between them without disturbing the tracking of the AprilTag, so this is performed when the output of the

PD and PN controllers are similar and before the visual target acquisition.

In Hui et al. [19], when the quadrotor is hovering, the angles roll, pitch and yaw, respectively (φ, θ, ψ)

tend to approach zero. The nonlinear dynamics hence can be linearized, and the 6-Degrees of Free-

dom(DOF) pose of the UAV can be independently controlled. With the linearization and the decoupling,

autonomous stabilization flights are achieved by three independent PID controllers, one for each angle.

In Lange et al. [22], the distance measurements performed with the camera need to be corrected

for the current angles of the UAV. This is necessary because the camera is fixed on the frame of the

UAV and it is not tilt-compensated. Therefore, the control starts by receiving the values of (x, y, z) and

corrects these estimates using the current pitch and roll angles. The corrected position estimates are

then used as input for a PID controller that generates the necessary motion commands to keep the UAV

steady above the center of the landing pad.

An Underactuated system is one that cannot be commanded to follow arbitrary trajectories in config-

uration space. This is due to the system having a smaller number of actuators than degrees of freedom.

A fully actuated system is one where this number is equal. In Ghamry et al. [16], an Under-actuated

subsystem is used, composed of a Linear Quadratic Regulator (LQR), followed by a Sliding Mode Con-

trol (SMC). The states of the UAV are estimated with the aid of a 24 camera OptiTrack motion capture

system. A LQR is a method that provides optimally controlled feedback gains to enable the stability and

high performance of close-loop systems. A SMC is a non-linear control method that alters the dynamics

of a non-linear system by applying a discontinuous control signal. Forcing it to ”slide” along a cross

section of the system’s normal behaviour. In Ghamry et al. [16], the LQR is used to to obtain the desired

position in x and y, and the SMC to converge the actual values of the Euler angles φ and θ to their

desired values obtained from the LQR.

A Fully-actuated subsystem, contained of a SMC, is also used with the objective of minimizing the

error in the altitude and yaw angle, to lead them towards their desired values.

Baca et al. [3] uses a Pixhawk flight controller to obtain the data regarding the UAVs position, velocity

and orientation in the world frame. The positions obtained from this controller suffer heavy drifts in long

periods of time, therefore it is corrected by differential RTK GPS using a LKF for fusion, if GPS is

available. The vertical position is estimated from the PixHawk aswell, but it is corrected by not only the

differential RTK GPS, but also the TeraRanger rangefinder, and the landmark detector algorithm.

Model Predictive Control (MPC) is used to control a process under a set of constraints. In Baca et al.

[3], the MPC tracker is used since its predictive nature provides trajectory tracking optimizing actions

over the future, making it ideal for tracking moving targets. The MPC is used in two modes. A simple

16

low-level positioning mode, used mainly for short-distance position changes. And a high-level trajectory

planning mode that uses a precomputed path plan.

In Lee et al. [24], the flight control system of the quadrotor has an attitude controller, a velocity con-

troller and a position profile. The velocity commands are calculated using the relative distance between

the current position and the target position. To calculate the x and y position errors, the local image po-

sitions that were detected through the camera are used. So the destination position can be represented

with the result from the vision detection algorithm. Therefore, the control system needs to be connected

to the flight control system to receive the current position and then update it; and to the image processing

system to get information regarding the target.

Fuzzy Logic Control (FLC) is a controller whose output is determined by the fuzzy logic that exists

between the minimum and maximum damping states. Fuzzy logic works by executing rules that correlate

the controller inputs with the desired outputs. There are three steps that characterize this controller.

These steps are the fuzzification of the controller inputs, the execution of the rules of the controller, and

the defuzzification of the output to be implemented by the controller. In de Souza et al. [10] this type

of controller is used to drive the UAV towards the target. Receives as inputs the horizontal distance

between the UAV and the landing spot in the X and Y axis, dX and dY respectively. The output variables

adopted for the controller are linear velocity commands in the UAV frame (vx, vy, vz). The strategy

imposed by this controller is to reduce the variables dX and dY until the vehicle is near the landing pad,

and then the UAV begins the descent process, actuating in vz.

An Artificial Neural Network (ANN) was developed with the objective of learning the behaviour of the

FLC. By using the FLC to train the ANN, the steps required to classify the network become unnecessary.

The ANN works by receiving the position of the marker, recognizing its position error and returning 3D

velocity commands to the aircraft.

Reinforcement Learning is used when an agent learns which actions to take in a given state, by

taking actions and receiving rewards. Q-learning does not evaluate the value of being in each state

independently, but each state-action pair. This is denoted by Q(s, a), where s is the state, and a the

action. Q-learning introduces the Q-table, which calculates the expected future rewards for each action

in each state. Deep Q-Learning (DQL), introduced the use of Neural Networks with Deep Q-Networks

(DQN), instead of the Q-table, when the number of state action pairs was too big and made the Q-table

too computationally heavy. First, a state is fed to the Neural Network. Then, since all the past experience

is stored, the current prediction is compared to the previous ones. Neural networks work by updating

their weights, so a Loss function is created by taking the sum of the squared differences of the Q-values

and their targets. Finally, to choose which action is the best, the Q-values are passed through a softmax

function. This is a layer placed right before the output of the CNN that transforms each real value that it

receives into a values between 0 and 1 so it can be interpreted as a probability.

In Polvara et al. [32], the vector of parameters θ of the DQN needs to be adjusted for the UAV to align

with the landmark. So, as mentioned before, a Loss function is defined as Li(θi) = E(s,a,r,s′)∼U(D)[(Yi−

Q(s, a; θi))
2]. Where D is the dataset of experiences, E is used to uniformly sample a dataset at each

iteration i. The network Q(s, a; θi) is used to estimate actions at runtime, and Yi is the target. To perform

17

the vertical descent, an agent has to take the right action in order to progress through a sequence of N

states. However, it is extremely difficult to obtain positive reward because the target-zone is so small.

So, there was a need to partition the experiences, dividing the dataset in D+, D− and D˜ for positive,

negative and neutral experiences respectively. To avoid overestimation, the target is estimated through

double DQNs. The final Touchdown manoeuvre, in Polvara et al. [32], is performed with the aid of a PID

controller, as is shown in Section 3.4.

3.4 Landing Strategies

State Machines are a practical way of simulating sequential logic. In the particular case of the UAV land-

ing on a Moving Platform, several constraints need to be taken into account so the landing is successful.

Some researches followed this approach when defining their landing procedure.

One of the major applications of UAV-UGV cooperative systems is the monitorization, detection and

fighting of forest fires. In Ghamry et al. [16], the autonomous system is used for this purpose, where

the UGV acts as the leader, that commands a certain operation on the UAV, and then the latter follows

the UGV throughout the operation. Since the UAV always knows where the UGV will be, the whole

execution is facilitated by the UGV using a pure-pursuit controller to plan its path, which means that the

UAV knows at all times the path that the UGV is taking, therefore simplifying the whole tracking and

landing operation.

Figure 3.2: Baca et al. [3] State Machine.

In Baca et al. [3], the need to simplify the landing operation due to the competition in place (MBZIRC

18

2017, which they won first place), led to the UAV waiting for the UGV in the center of a previously known

track which the UGV follows in a repetitive way during its movement. Therefore, the following steps,

which can be observed in the diagram in Figure 3.2, are followed to perform the landing. Once the

quadrotor takes off, it moves towards the center of the track and waits for the ground vehicle to pass its

line of sight. Once it does, predicting its movement is facilitated due to knowing the shape of the track.

Once the UAV is properly aligned with the car, descend state is activated and the height decreases to

4m, since this is the lowest height at which it is still possible to follow the car for this particular UAV and

camera. Subsequently, the next step is to land, therefore it is required that the UAV is horizontally aligned

within 0.3m of the center of the landmark. Additionally, it is mandatory that the current trajectory of the

UGV is straight. Afterwards an aggressive descent is performed once the UAV is at a 1.5m distance of

the landing platform. For all the steps in the state machine, if any parameter is not met, all consequent

steps are aborted and the UAV ascends and repeats them.

The team that won second place on the MBZIRC 2017 challenge was Falanga et al. [11], their

approach to this topic was different, where the path taken is not known neither is it constant.

In Araar et al. [2], regarding the automatic landing, the diagram that shows the steps taken can be

seen in Figure 3.3.

Figure 3.3: Araar et al. [2] State Machine.

19

First, when at least two markers in the landing pad have passed the check detection algorithm,

the state of the filter is initialised and the quadrotor starts tracking the ground vehicle. Afterwards, the

quadrotor navigates to the centre of the landing pad following a sequence of vertical waypoints. It keeps

hold of its current waypoint and moves to the next one if the vehicle is within a cylinder, of radius and

height, around the current waypoint. In order to reduce the impact of the ground effect, when a certain

minimum height is reached, it stops descending and lands if the tracking has been successful in a

consecutive sequence of frames. To perform the landing, the vehicle executes an aggressive descent by

turning off the motors. In a case where any of the above conditions fail, the UAV ascends and attempts

to repeat the process.

A Petri net, similar to a state machine, is also a five-tuple (P, T,A,w, x). Where P is the finite set of

places; T is the finite set of transitions; A is the set of arcs from/to places to/from transitions; w is the

weight function of the arcs; and x is a marking of the set of places.

Ghommam and Saad [17] follows three stages in order to perform the UAV’s landing. These are the

search, homing and landing phase represented in the Petri Net in Figure 3.4.

Figure 3.4: Ghommam and Saad [17] State Machine.

During the search phase, the UGV is not in the camera’s line of sight yet, therefore GPS is required.

Afterwards, since the distance between the two robots has become smaller, GPS becomes inaccurate,

hence the camera is used to provide relative pose measurements. In this homing phase, the goal is

to drive the quadrotor to match, with a certain accuracy, the position of the virtual target point directly

above the UGV. This virtual target is defined by a sphere with known radius l and whose center coincides

with the mobile platform’s center of gravity (CoG). The quadrotor homes on a virtual target point pt(t) =

20

[ptx, pty, ptz]
T that moves on the sphere. Then, the landing guidance control phase is activated after

a permission signal has been sent from the mobile platform to the quadrotor, and the quadrotor has

matched with the position and velocity of the UGV. Otherwise it will keep orbiting the UGV in order to

track it.

In Polvara et al. [32], a hierarchy of DQNs for addressing the different phases is used. The networks

are able to automatically call each other in specific portions of the state space, reducing the complexity

of the task. The overall landing problem is divided in three stages: landmark detection, descend ma-

noeuvre, and touchdown. The latter corresponds to gradually reducing the motors power in the last few

centimeters of landing.

Figure 3.5: Polvara et al. [32] State Machine.

As in Figure 3.5, the first DQN, responsible for performing marker detection, is trained to receive

a positive reward when the trigger action was enabled within a target area. A negative reward was

instead given if the trigger was activated outside the target area. The second network, responsible for

the vertical descent, is trained following the same concept. Only once the two networks have been

trained is possible to assemble the state-machine pipeline.

3.5 Detection without Landmarks

Deep Deterministic Policy Gradients (DDPG) is a policy-based deep reinforcement learning algorithm

designed to work with both continuous state and action spaces. The key to make the Loss function

converge, is to use a replay buffer, as in Polvara et al. [32], and to have a separate network to calculate

the target yt. Therefore they end up with a DDPG with two neural networks to approximate a greedy de-

terministic policy and the Q function. As previously stated, in reinforcement learning, an agent interacts

with an environment and tries to maximize the accumulated reward in each time step. In Rodriguez-

Ramos et al. [33], the communication channel between the agent and the environment is ROS, this

communication plan is represented in Figure 3.6. The position and velocity of both the UAV and UGV

are ground truth data. In the training phase, this data is obtained noiseless directly from the Gazebo

simulator. Whereas in the testing phase, noise is added. In the real flight testing phase, the UAV and

Mobile Platform position and velocity information is solely relied on and provided by an OptiTrack motion

capture system.

Reward shaping is a method for engineering a reward function in order to provide more frequent

21

Figure 3.6: Diagram of Rodriguez-Ramos et al. [33] reinforcement learning simulation framework.

feedback on appropriate behaviors. This is necessary in large domains, where reinforcement signals

may be few and far between. In Rodriguez-Ramos et al. [33], where the agent is meant to generate

continuous control actions, the reward is designed so that it rewards smooth actions with respect to

time:

shapingt = −100
√
p2x + p2y − 10

√
v2x + v2y −

√
a2x + a2y + 10C(1− |ax|) + 10C(1− |ay|) ,

and r = shapingt − shapingt−1 , where px and py are the position of the UAV w.r.t. the Moving

Platform; vx and vy are the velocities in the same condition; ax and ay are the action space, represent

the reference velocities, and each variable is weighted by a different coefficient depending on its level of

importance. The C coefficient rewards the agent as soon as the UAV lands on the UGV and the velocity

references are decreased to their absolute minimum. Using this shaping method allows speeding up the

reinforcement learning in general, and increases the speed of convergence.

In Ghommam and Saad [17], to locate the UGV, a sphere with known radius and whose center

coincides with the Center of Gravity (CoG) of the mobile platform, a ”virtual target”, is used to drive

the UAV towards it. To perform this, combines GPS with vision-based navigation. When using vision-

based navigation, the expressions for measurements are obtained by performing feature point extraction

techniques. Ghommam and Saad [17] considers linear and small velocities on the UGV, and that the

UAV never loses track of the target.

In Yang et al. [40], the UAV needs to land in an unknown environment. It starts by creating a 3D point

cloud map of the environment by using visual SLAM. Then, a two dimensional grid map is set up based

on the previous point cloud. The height of each grid, in the grid map, is computed by projecting the map

points of the graph into the corresponding grids. Then, a region segmentation is performed to smooth

the height of the grid map, based on the mean values. To choose the desired landing area, it computes

the area farthest from an object, and lands. This approach is very different from the others shown since it

is performed in an unknown area. All the altitude measurements are performed combining triangulation

of the motion of the camera and the atmospheric pressure measured by a barometer sensor. The

transformations between images are performed initially using homography and the fundamental matrix.

In Backman et al. [4], an assistive system for a pilot to land a UAV is designed. The pilot provides

target linear XYZ velocities for the on-board flight to follow. The approach is summarised in Figure 3.7, it

consists of learning a compressed latent representation of the environment to perceive the location and

22

structure of the landing platforms; and learning a policy network to provide control inputs to assist the

pilot in successful landing. The purpose of latent space learning, i.e. a compressed representation of

data, is to reduce the time required for the policy network to converge.

Figure 3.7: System architecture of Backman et al. [4] to assist pilots in landing.

A variational autoencoder is an autoencoder whose training is regularised to avoid overfitting and

ensure that the latent space has good properties that enable generative process. A Cross-modal Vari-

ational Auto-encoder (CM-VAE), trains the latent vector from multiple data sources. In Backman et al.

[4] this is used to reconstruct the RGB images. Receives a single input containing the RBG and depth

parameter xRGBD = [xRGB , xD], and outputs two separate parameters in the form of a depth map, and

a relative pose of the closest visible landing pad. This is performed with an encoder qRGBD, which is an

8-layer ResNet, i.e. a Neural Network with connections that allow skipping layers, and it is used to obtain

the Latent representation Z. Then, two decoders are used to divide Z into the two previously mentioned

outputs. The data used to train this network is generated by AirSim.

A Markov Chain is a stochastic process with discrete state space which satisfies the Markov property,

i.e. the evolution of the process only depends on the present state. By adding transition probabilities,

rewards associated to each state action pair, and a cost/performance function, a Markov Decision Pro-

cess (MDP) is obtained. A Partially Observable MDP (POMDP) is a generalization of the MDP where the

agent cannot directly observe the underlying state. In Backman et al. [4] this is applied by treating the

user’s landing goal as a hidden state that is only known by the user and must be inferred by the agent.

To obtain the closest optimal policy, as was done before in Polvara et al. [32], an actor-critic method with

double Q-learning is applied.

23

3.6 Hardware

In Table 3.1, the Hardware used in each research analysed is shown, namely the UAV and its parts.

Table 3.1: Hardware

Ref. Drone Flight controller Camera Extra Feature
Distance/

Range
Sensor

[22] Hummingbird X Axis 207MW wifi camera - -

[19] DJI F450 ARM Cortex-M4 down looking camera wide-angle lens Sonar

[3] DJI F550 hexacopter PixHawk MatrixVision mvBlueFOX Magnetic legs,
SuperFisheye lens

TeraRanger
Rangefinder

[16] Qball-X4 HiQ and Gumstix - 24 OptiTrack cameras -

[2] Parrot AR Drone 2.0 - integrated camera “Bluefox” USB camera -

[11] DJI F450 2 MatrixVision mvBlueFOX - TeraRanger
One

[24] DJI S500 FCC Cameleon3 USB camera Fish-eye -

[33] Parrot Bebop X RGB Pressure sensor (UGV)

[40] M100 UAV X ZENMUSE X3 - Barometer

[32] Parrot AR Drone 2.0 X down looking camera - -

[10] PX4 IRIS Pixhawk X - -

[28] DJI Phantom 4 X RGB camera Gimbal -

[25] Tarot T810
hexacopter DJI NAZA-M V2 Logitech C920 HD Gimbal Astech

LDS-30A

[8] DJI Matrice 100 DJI Guidance V2 (1) MatrixVision mvBlueFOX,
(2) Zenmuse X3

Sunex DSL224D
lens(1), Gimbal(2) -

[9] Bebop 2 X RGB camera - -

[4] X X RGB-D - -

24

3.7 Conclusion

To help visualize and divide the analysis of the papers in question, a table was created. This table con-

tains key methods that were implemented by the different approaches and divides the papers according

to the years they were published.

Table 3.2: State of art Conclusion

Years Artificial
Landmarks

Adaptive/Fixed
Threshold

Neural
Networks

Deep
Q-learning PID Controllers

2008 [22] [22] - - [22]

2013 [19] [19] - - [19]

2016 [24] [24] - - -

2017 [2] [11] [8] [11] - - [2] [8](PD)

2018 [32] [28] [25] [28] [5] [32] [28] [25] [32] [25] [32]

2019 [3] [10] [3] [33] [10] [33] -

2020 [9] [4] - [9] [4] [4]

25

Chapter 4

Implementation

The goal of this project is to achieve a fully autonomous UAV that is able to identify, locate, and land on

a moving UGV.

In this chapter, a description of the developed approach is presented. Section 4.1 starts with the

characteristics of the simulated world built in Gazebo and its elements, and then specifies the hardware

used, such as the UAV and the UGV, and some of their components. Section 4.2 starts by describing

the reference frames that will be analysed for our approach, then the forces applied on the drone are

analysed, and the consequent system of equations that describe the motion of the UAV. Finally, the

implemented controller and the inner autopilot are thoroughly outlined. Section 4.3 contains a detailed

explanation of the vision detection algorithm and the transforms necessary for this implementation. In

Section 4.4 the used ROS topics, communication protocol, and then state machine package and its

usability are presented. Finally, Section 4.5 contains an thorough explanation of the files that contain

the implementation and the purpose of each one.

4.1 System Setup

In this Section, the UAV and UGV provided for this research will be described along with their most

relevant parts, as well as the simulated versions.

4.1.1 UAV

The quadrotor provided for this project is shown in Figure 4.1. The UAV’s frame is DJI F450, which

weights 1.2 kg with a payload capability up to 0.3 kg.

A flight controller board is required to allow basic flight capability, hence the PixHawk 2.1 Autopilot is

used along with the Ardupilot, which is an open source autopilot system for copters. The open-source

firmware and its well-documented interface allows us to connect it to a high-level onboard computer

Jetson TX2. This computer is equipped with Ubuntu 16.04 and has all the ROS packaged necessary to

run and document everything onboard. An off-board computer is also necessary during flights to interact,

26

(a) Front view. (b) Back view.

Figure 4.1: Quadrotor.

through Secure Shell (SSH), a communication protocol between remote entities, with the companion

computer TX2.

The PixHawk contains sensors such as gyroscopes, accelerometers, an atmospheric pressure sen-

sor, a magnetometer, and GPS, and it produces a single position, velocity, and orientation estimates of

the UAV in the world frame by their measurements.

The quadrotor is also equipped with an Intel Realsense depth Camera. This camera has an optimal

range of up to 10m, a wide field of view, and a global shutter, meaning that all pixels of an image are

exposed simultaneously, allowing it to capture fast moving objects, making it ideal for robotic navigation

and object recognition.

In Figure 4.1(a), the compass, battery and camera of the drone are visible, whereas in Figure 4.1(b)

the computer and its ventilation is present, note that the rotors are not on these images.

4.1.2 UGV

The UGV provided for this research is Jackal as shown in Figure 4.2. This is a small, fast, entry-level

field robotics research platform. The Jackal is fully integrated, compact and waterproof. It has an

integrated PC with an Nvidia Jetson running Ubuntu 16.04 LTS and ROS Kinetic installed. Also contains

a Velodyne, GPS and IMU. A platform was installed on top of the robot, as can be seen in the figure, to

serve as a landing pad for the drone.

4.1.3 Simulation

Testing an incomplete algorithm directly in a robot is time consuming and can lead to harming the

robot. Therefore it is recommended to first perform all the necessary testing in simulation, and only after

implement it in a real scenario.

27

Figure 4.2: UGV - Jackal.

Gazebo is a well-known official robotics 3D simulator that allows to accurately simulate a variety of

robots in a complex realistic environment. However, it currently does not support Ardupilot, autopilot

integrated in the real UAV. The SITL(software in the loop) simulator, allows building the autopilot with a

C++ compiler, simulating the behavior of Ardupilot without any special hardware. Therefore, through an

added plugin, Gazebo is used as an external simulator for Ardupilot. The most common copter used to

simulate this autopilot in Gazebo is IRIS.

For the results in simulation to be reliable, it is of high importance that the simulated world is as close

to the real experiment as possible. Thus the chosen drone was the IRIS Copter, this drone contains

the same extras as the real drone, namely the camera and the autopilot, and even though the frame is

different, the two frames are relatively the same size and represent just the physical structure, therefore

do not alter the viability of the simulation.

The simulated environment that will be used on this project can be observed in Figure 4.3. Figure (a)

demonstrates the simulation with the solar panel farm, Figure (b) contains the Iris Copter and the Jackal

without the solar panel farm, to improve the efficiency of the simulator.

(a) Solar Panel Farm. (b) Iris.

Figure 4.3: Gazebo simulation environment.

28

4.2 Quadrotor Controller

4.2.1 Quadrotor Controller Design

A Cascaded Controller is a common choice when it comes to UAV controllers due to its effectiveness

against disturbances [12]. By inserting an inner-loop, the undesirable effects of the disturbances are

rejected before entering the outer-loop, therefore the inner-loop needs to have a faster response, run at

a higher frequency, than the outer-loop, so that it can cope with the disturbances.

Three independent proportional integral (PI) controllers, on the outer-loop controller, were used to

control the three basic movements that define the positioning of the quadrotor.

Figure 4.4 illustrates the general structure of the cascaded controller. The distance measured by the

camera from the ArUcO markers is fed to the position controller, the target angles are then computed for

each axis according to the appropriate PI constants for each specific case, which will be further outlined

in Section 5.2.

Figure 4.4: Inner and Outer-Loop UAV Controller.

As mentioned before, Roll, Pitch and Yaw are the drone’s rotation angles about its X, Y and Z axis

respectively. Since a UAV is symmetrical about its Z axis, has no ”front” or ”back” and the camera

is pointing downward, it is not necessary to change the UAV’s yaw in order to lead it to its target.

Additionally, for this project in particular, any landing orientation is acceptable, therefore only the Roll

and Pitch angles require controlling.

When a certain distance is measured, the values are automatically converted to the camera frame.

However, this frame is different from the body frame, as could be seen in Figure 2.1. Hence it is nec-

essary to perform a transform from the Camera Frame to the Body Frame, this transformation will be

further explained in Section 4.3.

These two controls as well as the movement regarding the Altitude of the UAV constitute the Position

Controller, whose output is considered as velocity, which is connected as input to the Attitude loop,

29

generating the control commands for the motors.

The Autopilot’s part of the controller, the Inner-Loop Controller, in Figure 4.5 is made of an angle

controller, which takes in the target angle and the actual angle, and converts the error into a desired

rotation rate. Then, a rate controller follows and a PID converts the previous error into a high level motor

request, as represented in Equation 2.16. These high level motor commands are then converted into

individual motor outputs by the Flight Control Unit (FCU), a small computer that connects the various

parts of the multicopter together and is responsible for running the algorithms and calculations that keep

the multicopter flying correctly.

Figure 4.5: Ardupilot Inner-loop UAV Controller [38].

Both the Inner and the Outer Loop controllers need the information regarding the actual current state

of the UAV in order to measure the errors and perform the necessary correction, this is the Sensor

Data. This data comes from rate gyroscopes, accelerometer, compass, GPS, airspeed and barometric

pressure measures; and by using an Extended Kalman Filter (EKF), the vehicle’s position, velocity and

angular orientation are estimated.

Using an EKF to fuse measurements from several sensors is very important since it allows the

filtering of measurements that would lead to errors and therefore make the vehicle more prone to faults.

Ardupilot’s current best option for sensor fusion is EKF3, which provides more stable and accurate

filtering than its previous version, EKF2. This is due to this message containing, for each sensor the

difference between the value predicted using the IMU data before corrections are applied, and the value

measured by the sensor. Thus EKF3 is the sensor fusing method used in this implementation to feed

the curent state of the UAV to the controller.

4.3 Vision-based UGV detection

After analysing the variety of artificial landmarks referred in 3.1, fiducial landmarks were chosen to

detect the UGV due to their uniqueness and fast detection. After reviewing the comparison done by

[21] analysed in Section 2.2 and having in consideration that the ArUcO library is the most recent out of

the ARToolkit library variations, the ArUcO library was chosen for the implementation presented in this

thesis.

Originally, the ArUcO library was created by [14] to provide a 3D estimation of the position of the

30

camera towards each single marker. This library is based on OpenCV [34] [15]. The square markers

comprise a wide black border with an inner binary matrix that can go from 4x4 up to 7x7, and each

one having up to 1000 different markers. In this implementation, the 4x4 bit dictionary with up to 1000

markers was used.

The process of detecting the marker is mainly divided in detecting marker candidates, and in codifi-

cation. First, the original image, Figure 4.6(a) is converted to grayscale, and then to binary by using an

adaptive threshold, Figure 4.6(b). Then, a contour extraction is used in order to excluded non square

shapes, and keep only marker candidates, Figure 4.6(c) and (d).

In order to decodify the marker, first a perspective transform is used to align the image, Figure 4.6(e),

then a threshold is calculated, this time using Otsu’s algorithm [30] to obtain a more accurate separation

between the white and black sections. Finally, a bit by bit analysis is performed to obtain the binary code

of the marker, Figure 4.6(f), and compare it to the specified dictionary and get its id.

Figure 4.6: . Image process for automatic marker detection [14]. (a) Original image. (b) Result of
applying local thresholding. (c) Contour detection. (d) Polygonal approximation and removal of irrelevant
contours. (e) Example of marker after perspective transformation. (f) Bit assignment for each cell.

After obtaining the id of the marker, the solvePnP function of OpenCV is used for every corner of

the marker to find the rotation and translation vectors, this function is known as the n point projection.

Consequently, after solving equation (4.1) the 3D position is determined from the 2D image.

s


u

v

1

 =


fx γ cx

0 fy cy

0 0 1



r11 r12 r13 t1

r21 r22 r23 t2

r13 r32 r33 t3



XG

YG

ZG

1

 (4.1)

31

Where s is the desired scale factor; the first vector describes the coordinates of the pixel point

projected in the image plane; the second matrix are the camera matrix intrinsic parameters, which

is obtained in the camera calibration procedure from the camera info topic; then rij and ti are each

element of the rigid body rotation and translation matrix, respectively, between the camera and marker

plane; and XG, YG and ZG are the coordinates of the 3D points in the world coordinate system.

The ROS library has a package called fiducials [39] that implements the specified algorithm above.

For this package to function correctly, the following information is provided, the camera topics, such as

the info topic containing the intrinsic and extrinsic matrices of the camera, provided by the Realsense

ROS package [20] ; the image obtained by the camera, both raw and compressed, to perform the

detection; the dictionary that the markers in use belong to; and the size of the side of the markers to be

detected.

After various attempts, the pattern in Figure 4.7 was chosen to be used both in simulation and for the

real robot. The reasons for the choice of this specific pattern were the following:

• A large marker that can be seen from up to 20m height

• A very small marker that can be detected from just a few centimeters

• Intermediate sized markers for an accurate detection from all heights

• A white border around the markers for the algorithm’s corner detection

• A marker on every side of the pattern so the UGV is equally detectable from all angles

The pattern presented in Figure 4.7 has four markers, each with different, randomly chosen, IDs

and sizes. The lateral size of the markers, from smallest to biggest is 0.0599m, 0.0840m, 0.1470m and

0.2069m; and the IDs are 55, 168, 227 and 946, respectively.

Transforms

When dealing with a robot, it is crucial to keep track of all the coordinate frames within the robot in order

to guarantee its correct functioning. In ROS, the transforms [36] between every coordinate frame form

a tree, where every node corresponds to a coordinate frame, and every frame has one parent and an

unlimited number of children. This allows the user to transform points, vectors, etc., between any two

coordinate frames at any time.

Initially, the implemented algorithm did not consider the arrangement of the markers in a pattern,

therefore if only one marker was being seen at a time, then it would move towards the center of that

marker, instead of the center of the pattern. However, it was concluded that, knowing the arrangement

of the markers in the pattern was a better solution, since by knowing the distances of each marker to

the middle of the pattern, the center of the UGV would always be the landing target. This avoids errors,

such as landing on a border and risking the UAV tilting off.

To perform this translation from each marker to the center of the pattern, a static transform is pub-

lished by creating a translated child to every marker node with the translation matrices for each marker.

32

Figure 4.7: Marker pattern.

Figure 4.8: Aruco Marker axis.

These translations represent the distance from the center of each marker to the center of the pattern.

It must be taken into consideration that the axis of each marker is oriented as East-North-Up (ENU),

meaning that the x-axis is positive to the right, the y-axis is positive to the north, and the z-axis is posi-

tive to the front of the marker. In Figure 4.8 these axis can be better visualized, the orientation of the axis

is relevant here to perform the translation from each marker to the center, where every marker is oriented

33

as the one represented in Figure 4.8. The translations performed for each marker are the following:

T55 =


−0.06175

+0.06175

0

T168 =


−0.0738

+0.1367

0

T227 =


0.0735

+0.1053

0

T946 =


0

−0.10345

0

 (4.2)

Then, since the marker’s pose is with relation to the camera frame, another static transform needs

to be added to transform it to the body frame. Both in simulation as well as in with the real drone,

the camera is flipped (has a π rotation in the Z axis), and is in the front of the drone, instead of in the

center. The following transformation to correct the measurements is based on equation 2.1, where the

necessary transform is the rotation of the axis with the translation to the center of the drone. As can be

seen in Figure 2.1, in order to obtain the transform between the camera frame to the body frame, it is

necessary to first rotate 90 degrees about the Y axis, and then -90 degrees about the Z axis. After these

rotations are done, the Y axis is flipped, thus its symmetric is calculated by multiplying it with negative

one, as well as the symmetric of the Z axis, since Z positive is upwards, its symmetric is needed to

descend:


X

Y

Z


B

=


1

−1

−1

Ry

(π
2

)
Rz

(
−π
2

)
X

Y

Z


C

+


−0.07

0

0

 . (4.3)

Finally, after all the necessary transformations have been added, the transform frames between the

Body Frame, the Camera Frame and the Target Frame, where in this case the Target Frame is the

Fiducial’s Frame, is represented as in Figure 4.9. The frames highlighted with red are automatically

added by the realsense camera package, the ones in yellow are automatically added by the aruco

detection package, and the blue are manually added.

Where base link is the Body Frame, camera link is the Camera Frame and their connection is the

transformation in equation 4.3. Each fiducial transform is represented as fiducial XX, where XX is the

id of the marker, and this transform is automatically published by the ArUcO detection algorithm along

with its transform to the Camera Frame. The translation represented in equation 4.2 for each fiducial

to the center of the pattern, is represented as fiducial T XX. Thus, by performing the transform from

each fiducial T XX to the base link, the pose of the markers relative to the Body Frame is obtained.

4.4 Implementation in ROS

Robot Operating System (ROS) is an open-source, meta-operating system for robots. The main mech-

anism used by ROS to communicate is by sending and receiving messages. In order to send these

messages, nodes are used. These are software processes that perform a computation or task, but with

the capability to register with the ROS Master node, and therefore communicate with other nodes in the

system. These nodes can be scattered across multiple platforms, for example, between the robot’s com-

puter and a main computer, as long as connected to the same ROS Master node. To send messages,

34

Figure 4.9: Real Drone Tranforms.

a node needs to publish information. This information is called a topic. To receive information, the topic

needs to be subscribed by the node, and transmitted messages on that topic will be received by the

node. For example, in Figure 4.10, the node that will perform the Image recognition, needs to subscribe

to the Camera topic to obtain the said image. Whereas the node UAV Controller, needs to publish to the

topic that commands the linear and angular velocities of the UAV, to control it. Amongst other topics that

are also necessary.

Figure 4.10: Communication using ROS.

35

4.4.1 Mavros

The communication between the ROS Node UAV controller and the autopilot is done through MAVROS

[27]. The purpose of MAVROS is to handle messages between ROS and Ardupilot by converting ROS

Topics into MAVlink messages. MAVlink is messaging protocol suitable for micro aerial vehicles due

to being lightweight and low cost. This way, the autopilot can send the messages to the drone without

having to make any changes to its functioning.

The ROS Topic used to send the velocity commands to the UAV is cmd vel. This is a message of

type geometry msgs/Twist, which divides the velocity in linear and angular parts. Linear indicates the

velocity for the x, y and z axis, and angular is the rotation in the same axis.

4.4.2 SMACH

SMACH (State MACHine) [6] is a ROS Python library [35] to build hierarchical state machines. SMACH

is useful to execute high-level reasoning tasks where all states and transitions are explicitly defined,

therefore should not be used for low-level states that require high efficiency.

This library provides two main interfaces, States and Containers. States are executed until a certain

outcome is returned. Containers are a collection of one or more states. A Container can be interpreted

as a State when nested in another Container, creating Hierarchical State Machines.

The types of States and Containers used in this implementation were the following:

• Generic State - A generic state with customized inputs, outputs, returns and execution;

• CBState - A state that executes a callback to a certain ROS Topic when it is active;

• ServiceState - A state that executes a ROS Service when it is active;

• MonitorState - A state that monitors a certain ROS Topic and terminates when ’invalid’ is returned;

• StateMachine Container - A State Machine where each state is executed sequentially and only

one state is being executed at a time;

• Concurrence Container - A Container that executes more than one state simultaneously. In the

Concurrence outcome map, the outcomes are defined for when each child terminates, as well as

for when the concurrence terminates.

SMACH also provides a visualization interface (SMACH viewer) that maps the structure of the run-

ning code directly onto a graph, allowing the user to visualize the created state machine as well as to

identify errors in connections or execution.

In this implementation, the graph created as visualized by SMACH viewer is as in Figure 4.11.

SM ROOT symbolizes the begining of the State Machine. In this case, the UAV starts with GoHome,

a CBState that commands the UAV to a waypoint where the landing target is expected to be found,

which is its initial position, or home. Once this is finished, a MonitorState WaitAtHome is initialized to

monitor the marker’s topic. This is achieved by having a ”marker message is empty” condition, when this

36

Figure 4.11: Implemented State Machine by SMACH Viewer.

condition is false, this state is terminated by returning ’invalid’, thus starting the Concurrence Container

Landing Con.

Landing Con has two concurrent states. Landing Sequence is a Generic State that starts the Pub-

lisher class in follow UGV.py, and terminates when the class itself returns ’landed’. This class has its

own inner low-level state machine to perform the following and landing. Since it requires high efficiency

it is not implemented directly in SMACH, but instead in a separate class. While the landing sequence

is occurring, a MonitorState CheckMarker is monitoring the marker’s topic and, if for a certain number

of consecutive iterations no marker reading is received, it returns ’invalid’ on termination. This Check-

Marker state is necessary because when the UGV is moving, the UAV might lose track of it at first and,

as was mentioned before, the attitude controller will keep working with the latest measurements taken,

and with these measurements it will only take the quadrotor a few seconds to reach its target, as will

be seen in Chapter 5. However, it is necessary to have this concurrent state so that if something goes

wrong, the UAV stops the controller and goes back Home.

In this Concurrent Container, only one state needs to terminate for the entire container to terminate,

meaning that, if CheckMarker returns ’invalid’ before Landing Sequence returns ’landed’, the overall con-

tainer returns ’lostMarker’ and goes back to the initial state. Whereas if Landing Sequence terminates

first, the container returns ’landed’.

Upon landing, the ServiceState Disarming Motors evoques the arming/disarming service in mavros,

disarming the motors and consequently shutting down the State Machine.

37

4.5 Implemented Code

The implemented solution is divided in 3 main python files.

fsm.py

This is the main file therefore contains the high level state machine thoroughly explained in 4.4.2. As

was said, when a marker is tracked, it starts performing the landing sequence, therefore moving on to

the file follow UGV.py, and only exiting it either when it stops tracking the marker, or when the file returns

’landed’.

follow UGV.py

For each iteration of the markers topic, all the measurements for the currently observed markers are

stored. Then, as was explained in Section 4.3, the translation of each marker to the center of the

pattern has been published, therefore it is necessary to compute the transformation of the translated

markers fiducials T XX to the Body Frame base link to obtain the pose of the center of the Target

Frame with relation to the Body Frame. By performing this translation and consequent transformation, it

is guaranteed that the UAV will always have as its target the center of the Landing Pad, independently

of which markers can be seen.

Afterwards, an average of the previously corrected measurements is performed since the controller

can only take one error as its input. While the real height of the UAV is higher than the top of the UGV,

these errors will be sent to the file PID.py and then the output of the controller is published to the velocity

command of the UAV.

PID.py

Three independent PI controllers were implemented for the movement on each axis, therefore, this class

starts by calculating the commands for X and Y independently. When computing these commands, it is

taken into account whether the UGV is moving or not, this is information is taken considering that both

robots can communicate. This is due to needing higher PID gains to reach and match the UGV’s velocity

when it is moving. However, higher constants would lead to an increase in oscillation when the UGV is

stationary. Thus these constants are lower when the UGV is not moving, and higher when it is. Further

explanation regarding the functionality of each constant and the tuning method is on Section 5.2.

From the moment a marker is seen up until the mission is completed or aborted, the X and Y con-

trollers are always attempting to follow the UGV, however, the Z controller will only attempt to descend

if a marker is currently being tracked. This is a safety measure implemented to prevent the UAV from

performing a wrong landing attempt, therefore, when the UGV is tracked, the Z controller is activated

and starts descending.

Two conditions regarding the limitations of the camera’s field of view need to be taken into account:

38

• UAV is bellow 20cm above the markers (measured value) - it will not be able to detect even the

smallest marker since it is too close to perform the detection;

• UAV is below 60cm above the markers (measured value) - the overall pattern exceeds the field of

view of the camera, hence not all markers are detectable.

Thus, having the previous statements in consideration, two safety measurements were implemented

to avoid the maximum amount of errors possible when descending. First, if the UAV is perfectly aligned

on top of the UGV, within a 10cm threshold to the center, and has descended up to 70cm above the

markers, then an aggressive descent will be performed, by providing a fixed velocity of 1.2 m/s. This is

a necessary measurement since otherwise it would stop descending below the 20cm due to not seeing

the markers, as well as to avoid the ground effect when the drone is very close to the ground. Secondly,

if the drone goes bellow the 70cm height above the UGV and the distance to the center if above the

10cm aligned threshold, the descent is stopped to allow the UAV to properly align with its target. To sum

up, the two applied measures are the following (measures in distance to the target):

1. UAV within 10cm horizontal and 70 cm vertical - Aggressive descent of 1.2m/s

2. UAV over 10 cm horizontal and within 70cm vertical - Disable Z controller and enable only attitude

controller.

39

Figure 4.12: Code Flowchart.

40

Chapter 5

Simulation Results

In this Chapter, all the results performed in the simulation from the implemented solution will be pre-

sented. From tests to guarantee the correct functioning of the experiment in Section 5.1; to the nec-

essary tuning of the controllers to ensure the best possible performance in Section 5.2; and to the

performed tests in simulation in Section 5.3.

For all the tests in simulation the following steps are performed to set-up the simulator:

• Launch the simulator - This includes launching Gazebo with the environment described in Section

4.1, the Transforms, the ArUcO detection algorithm and Mavros;

• Launch the ArduCopter console - A console to view the state of the drone, as well as its battery

and other modes;

• Change the Mode to Guided - Mode that allows the drone to be manually controlled, further ex-

plained in Chapter 6;

• Takeoff to 6m height;

• Position the UGV depending on the experiment in place;

• Run the implemented code.

These steps and the necessary files and packages to perform them are thoroughly explained in the

GitHubs available on Chapter A.

5.1 Detection Range

In order to perform a successful landing, it is necessary to make precise estimates of the UGV’s pose

with relation to the UAV. As was shown in section 4.3, ArUcO markers are a reliable choice when mea-

suring a 3D distance estimate, thus some tests were performed to guarantee and analyse how precise

these estimates are.

41

To provide some context, the measurements from detected ArUcO markers are passed through an

array. An unlimited amount of markers can be detected at this same time, as long as they fit the camera’s

field of view. The measures are then sent through the array and are distinguished by the ID and time

frame at which they were detected. At each iteration, all the measurements done on that iteration are

sent through the array.

Firstly, an analysis on the measured distance in the z axis was done in order to conclude the best

starting height for this experiment. In order to do this, the drone was set to takeoff to 0.5m height, with

the UAV placed directly underneath it. Then the UAV would be manually commanded to go up 1m or

0.5m at a time, until the markers stopped being detected. The markers, as was referred in Section 4.3,

are organized from smaller to bigger in size and respectively in ID, hence the smaller marker has ID 55

and the bigger had ID 946.

Figure 5.1: Minimum and maximum detectable height.

Figure 5.1 shows in the Y axis of the plot is the height, or distance in Z in meters, and the X axis of

the plot is the time frame, or iteration between each measurement. It can be seen that every marker has

an offset of ±0.28 between the measured and real value, this difference is the height of the UGV, since

the markers are placed on top of the ground robot. In the beginning of the experiment there was a gap

in the detection of marker 55, this was due to the marker momentarily going out of the field of view of the

drone’s camera. It is clear that larger markers can be seen from higher altitudes, however, the accuracy

of the measurements is increasingly lower. Marker 946 can be detected up until 20m altitude, but starts

increasingly losing accuracy from 10m height, the same happens to marker 227 from 7m altitude. Thus

it was considered best to start the state machine at a maximum of 7m above the ground. On the other

hand, markers 55 and 168 stop being consistently detected at around 5 and 6 meters height, therefore,

to increase accuracy while still maintaining a wide field of view in the X and Y axis, it was defined that the

takeoff altitude for the UAV would be 6m, which means that the state machine in Section 4.4.2, before

42

commencing the Landing Sequence, sets the altitude of the UAV to 6m height, and all the experiments

in the remainder of this Chapter already have this implemented.

Figure 5.2: Camera field of view at 6m height.

After defining the optimal height from which to start the Landing Sequence, it is important to verify

the maximum field of view of the camera from that height. As can be seen from Figure 5.2 and from

Figure 4.3(b), the camera has a funneled field of view with a rectangle shape. Figure 5.2 shows the

range of visibility of the camera when the UAV has 0 Yaw. To perform this experiment, both the UAV and

UGV were place at the same X and Y coordinates, with the UAV at 6m altitude. The red cross in Figure

5.2 represents the position of the drone in (X,Y) = (0,0), and the blue squares are the measurements

performed by the aruco detection algorithm estimating the UGV’s relative pose. Firstly, both robots were

at (X,Y) = (0,0), then, with the UAV always in the same position, the UGV was moved 0.5m at a time,

first forward in Y, until the UGV left the line of sight of the UAV. The UGV would then go back to the last

point where it could be detected, and moved manually on the opposite direction, still 0.5m at a time.

This process was repeated for front, backwards, left and right until all the edges of the field of view of

the camera were defined.

From this it can be concluded that, at 6 meters height, the limitations of the field of view of the camera

of the UAV are X ∈ [−3.5, 3.5] and Y ∈ [−2.0, 2.0]. This is important in order to know when the UGV

starts being detected at the desired height.

5.2 PID Tuning

When tuning a PID controller, there are some basic notions that need to be taken into account first.

The error that is received by the controller is the difference between the current state of the UAV, the

Process Variable (PV), and the state of its target, the SetPoint (SP). The Gain, also called proportional

43

gain, determines how much change the output will make due to a change in error, however, too much

gain can result in an unstable oscillatory system. The Reset, or integral gain, determines how the output

changes over time with the error, this determines how fast the output should move. The derivative action

corrects the rate of change in the error, this way it acts as a counteract to the rapid changes in the error,

however, when the error is noisy and contains small, random, rapid changes, it is a bad idea to use the

derivative control. Since derivative extrapolates the current slope of the error, it is very affected by noise.

To start the tuning of the PID, first the input of the controller was taken into account. When the input

error changes quickly, a large gain isn’t recommended since it will lead to a drastic response to every

change, hence a small gain is chosen to start with and then gradually increase it. The general tuning

steps used for the different scenarios were the following:

• Set integral and derivative terms to zero and increase the proportional gain until the output of the

control loop becomes faster without making the system visibly unstable, i.e. to the point where the

error does not stabilize and tend to zero;

• When the proportional response is fast enough, gradually increase the integral term so that it

reduces the error without overshooting;

• Once P and I have been set to a desired values with minimal error, the derivative gain is increased

to improve the reaction to the error while reducing overshoot.

Since the UAV needed to be more reactive when the UGV is moving rather than when it is stationary,

the tuning of the horizontal movement of the UAV was independent for each scenario.

5.2.1 Stationary UGV

To perform this tuning, the simulation was setup for each value tested, where the UGV would start at

coordinates (X,Y) = (2, 3), chosen due to being the edge of the field of view of the camera when the

UAV is at position (X,Y, Z) = (0, 0, 6), as was previously shown in Section 5.1. The UAV would then

start the state machine, and once it detects the UGV, the Landing Sequence is initiated.

To tune the X and Y controllers when the UGV is stationary many tests with different values were

performed, the values in Table 5.1 were considered most relevant to better visualize the optimal tuning

solution.

First, the proportional gain was gradually increased until it started creating too much overshooting

and leading to failure. As can be observed in Figure 5.3(a), the first two responses tested were effective

but too slow; between the last two values, the full tuning of the PID was tested for both 0.3 and 0.4,

however, the latter proved to be a bit more oscillatory and less reliable when it comes to consistency,

hence the KP was set to 0.3. Then, the integral gain is increased following the same school of thought,

as shown in Table 5.1, a finer tuning was required, since a large integral gain on a slow changing

target can lead to higher oscillations. The KI value that optimally decreased the oscillations, as can

be visualized in Figure 5.3(b), was 0.002. Finally it is necessary to tune the derivative gain in order

to achieve optimal response speed, while having minimal overshooting; in Figure 5.3(c), the constant

44

Table 5.1: Values tested for the X and Y tuning when the UGV is stationary.

KP KI KD

Tuning P

0.1 0 0
0.2 0 0
0.3 0 0
0.4 0 0

Tuning I

0.3 0.001 0
0.3 0.002 0
0.3 0.003 0
0.3 0.004 0
0.3 0.006 0

Tuning D

0.3 0.002 0.005
0.3 0.002 0.01
0.3 0.002 0.02

chosen as derivative gain for this scenario was 0.01 since it visibly anticipated certain changes, making

the overshooting less sharp, while still providing a fast response,

5.2.2 Moving UGV

To perform this tuning, the simulation was setup for each value tested, where the UGV would start at

coordinates (X,Y) = (−5, 0) and move in a linear trajectory with a velocity of 1m/s. The UAV would be

at its initially position with the state machine enabled with the ”WaitAtHome” state, and transition to the

Landing Sequence when the UGV passed underneath it.

When tuning the X and Y controllers for the scenario where the UGV is moving, the initial tuning

of the proportional gain response was skipped. This is due to the UAV not being able to attain the

velocity of the UGV only through a proportional gain, therefore the KP constants were chosen having in

consideration the previously tuned scenario. When the UGV is stationary, the value 0.3 was chosen due

to its fast response and reliability; with a moving UGV, the response however needs to be faster, so that

the UAV won’t lose track of the UGV. The following tuning was tested for a KP of 0.3 and 0.4, the former

proved to not be reactive enough to the fast changes a moving vehicle presents, thus the proportional

gain chosen for this PID was 0.4.

The integral gain is considered the most important part of the PID when the UGV is moving, since

the integral term increases its action with the accumulated error and the time for which this error has

persisted. This means that if the applied force hasn’t been enough to reduce the error to zero, this force

will be increased as time passes, enabling the UAV to achieve the same velocity as the UGV.

The tested gains for the tuning of this PID are shown in Table 5.2:

As can be seen in Figure 5.4(a), the first value wasn’t fluid in its response thus being slower, whereas

the last value tested was too oscillatory in the axis where the UGV isn’t moving therefore being unreliable.

The remainder of the tuning was performed for bothKI values of 0.04 and 0.05, both values were reliable

and non oscillatory, however 0.05 proved to be much more unstable when it comes to consistency and

different trajectories than the one tuned with, hence the optimal integral gain was concluded to be 0.04.

The purpose of the derivative gain is again to reduce the overshooting, its importance can be seen

45

(a) Tuning KP .

(b) Tuning KI .

(c) Tuning KD .

Figure 5.3: PID Tuning with UGV stationary.

46

Table 5.2: Values tested for the X and Y tuning when the UGV is moving.

KP KI KD

Tuning I

0.4 0.03 0
0.4 0.04 0
0.4 0.05 0
0.4 0.06 0

Tuning D
0.4 0.04 0
0.4 0.04 0.05
0.4 0.04 0.1

in Figure 5.4(b) since without the derivative part, dark blue line, there was a clear overshooting that

required correction. Very large KD values proved to be inefficient since they would make the response

too fast or too slow; thus the optimal value for this gain was achieved at 0.005.

5.2.3 Descent

The controller for the altitude of the UAV needs to behave a little differently than the attitude controllers,

the latter has the purpose of quickly reducing the horizontal error between the drone and its target without

oscillating when reaching the target; whereas the former has some conditions that, if not fulfilled, would

lead to a false landing attempt:

• The drone should only attempt to land if it is currently seeing a marker, this will avoid unnecessary

descents when the attitude controller has not yet managed to match the velocity of the UGV;

• The descent should be slow at first to avoid aggressive movements that would lead to a very firm

and inconstant descent;

• The descent should be faster when close up to the target to allow a fluid descent even when the

the height is very small.

Having the above mentioned conditions in consideration, it can be clearly concluded that a simple

proportional controller would not meet the requirements since it would provide an unnecessarily fast de-

scent at high altitudes, and a very slow descent at low altitudes. On the other hand, an Integral controller

would be able to bring the error to zero, with a slow reaction at start, and a much faster response at small

heights. Hence, as can be seen in Table 5.4, for the altitude controller it was considered crucial to begin

the tuning with the integral gain.

It is very important that the altitude controller provides a smooth descent, to avoid descending at a

too fast rate and consequently having to stop descending due to losing the marker. The main goal is to

provide a linear trajectory from the point it starts descending until it lands, to achieve this, several KI

values were tested. Larger gains would lead to the aforementioned scenario, while smaller gains had

a slow response. The integral gain that proved to be effective while having a fast response was 0.008.

Note that even though the integral part is crucial for this landing, its values are still very small to avoid a

very aggressive manoeuvre.

47

(a) Tuning KI .

(b) Tuning KD .

Figure 5.4: PID Tuning with UGV moving.

The proportional gain provides an immediate response to a certain input. This part of the controller

is mostly relevant in the beginning of the descent to provide a small ”boost” before the integral controller

gradually increases its output. Having this in consideration, it can be seen in Figure 5.5(b) that a very

large constant leads to an aggressive response at a large height, and consequently to a delay in the

necessary time to start tracking the UGV. Thus, the proportional constant of 0.001 was chosen due to

providing a slightly faster response.

As was mentioned before, there can be different sets of PIDs for different purposes, in a scenario

48

Table 5.3: Values tested for the Z tuning.

KP KI KD

Tuning I

0 0.005 0
0 0.006 0
0 0.007 0
0 0.008 0
0 0.009 0
0 0.01 0
0 0.012 0

Tuning P

0 0.008 0
0.1 0.008 0
0.05 0.008 0
0.01 0.008 0

0.005 0.008 0
0.001 0.008 0

0.0005 0.008 0

Tuning D
0.001 0.008 0
0.001 0.008 0.01
0.001 0.008 0.005

with fast changing values and noise, a derivative controller is not advised. Therefore, since the descent

controller needs to act in a fast precise way, it was opted to exclude the derivative part of the descent

controller. Nevertheless, some derivative constants were tested along with the previously defined pro-

portional and integral controller, it was concluded that, no matter how small the constant, the derivative

part would only worsen the overall response of the controller.

5.2.4 Consistency

To guarantee that the implemented solution is reliable after being properly tuned, it is necessary to test

if the output is consistent, therefore always behaves in the same way. The best way to show this is by

providing the exact same scenario, and verifying if the same output is obtained. The consistency of this

implementation is tested both for when the UGV is stationary, as well as when it is moving at 1 m/s

velocity.

Stationary

The consistency of the implemented work was tested when the UGV is stationary at the position (x,y)=(2,3)

since, as was mentioned in Section 5.2, it is the limit of the field of view of the camera. The simulation

was run 10 times in a row for this exact scenario and the outputs were plot together to be compared,

and the outcome was Figure 5.6.

Afterwards, to further test this consistency, the UGV was placed in 9 different positions within the

field of view of the drone when at its initial point (x,y)=(0,0) with 6 meters height. The UGV positions

were the following:

The results from landing on a stationary target in different positions can be seen in Figure 5.7.

It can be clearly concluded from both Figures that the variations in the outputs were minimal and

49

(a) Tuning KI .

(b) Tuning KP .

Figure 5.5: PID Tuning for UAV descent.

the behaviour of the controller proved to be nearly identical on each iteration, independently on the

positioning of the target.

Moving

When analysing the consistency for the UGV moving at a 1m/s velocity, the UGV is initially positioned

behind the UAV at (x,y)=(-5,0), and when it starts moving it enters the field of view of the UAV which then

50

Figure 5.6: Consistency test when the UGV is stationary on the same position.

Table 5.4: UGV positions tested for stationary landing consistency.

X [m] Y [m]
2 3
-2 3
-2 -3
2 -3
1 1
-1 -1
2 0
0 -2
0 0

attempts to track and land on it. The simulation was again run 10 times in a row for the above mentioned

scenario and the outputs are represented in Figure 5.8.

Figure 5.8(a) shows a view of the lateral motion of the UAV. It can be viewed that eighth out of the ten

outcomes were very similar, following a nearly identical trajectory, diverging by only a few centimeters.

The remaining two experiments had an overshoot when attempting to land, which led to needing to

reattempt the landing. This difference only resulted in a delay of around 5 seconds in the landing time.

Thus it is concluded that all outcomes were in line with what was anticipated.

Figure 5.8(b) shows a frontal view of the trajectory, this image shows the oscillation of the controller

on the axis opposite to the direction of the movement. It can be observed that this oscillation is minimal

and it deviates at most 20cm from its target .

51

Figure 5.7: Consistency test when the UGV is stationary on different positions..

5.3 Simulation Experiments

After guaranteeing that the implemented controller functions correctly at the standard tuned velocity and

trajectory, it is necessary to check its versatility by experimenting other velocities and trajectories.

Linear Trajectory

In the first place, the same trajectory from the tuning was tested, where the UGV starts at (x,y) = (-5,0)

and moves only in the x axis, with an increased velocity of 2m/s. The outcome of this experiment is

represented in Figure 5.9. The average time to perform the landing at 1m/s velocity was between 10

and 15 seconds, whereas when the velocity is doubled, this time increases to 20 seconds.

It can be observed that the oscillation in the direction opposed to the movement becomes consider-

able for larger velocities. This is due to the integral part of the controller gradually increasing its output

to reduce the error. Even though these oscillations increase, they are still rather small in perspective,

since they reach no more than values of 50cm.

Diagonal Trajectory

In all the previous tests, the UGV would reach the drone from one side, meaning that the UAV would

only need to apply a large velocity in either X or Y in order to follow it. Since in this implementation it

was considered that the UAV does not need to change its yaw in order to land, if the UGV approaches

the UAV from a diagonal, then both X and Y will require high velocities to track the target. The result of

this experiment in Figure 5.10, where the UGV was initially at (x,y)=(-4,-4) with a 45º angle about its z

axis.

52

(a) Side view.

(b) Front view.

Figure 5.8: Consistency test when the UGV is moving.

This experiment, opposing to the previous ones, doesn’t show considerable oscillation since both

axis require high velocities. The overall landing proved to be smooth and has an average duration of the

same 10 seconds as the previously tested experiments for the linear trajectory at 1 m/s.

As was performed for the linear tuned trajectory, a higher velocity is also tested for this scenario. The

outcome of the diagonal trajectory at 2m/s velocity is as in Figure 5.11.

As can be recalled from the previously tested trajectory at 2m/s velocity, the time interval to perform

53

Figure 5.9: Linear Trajectory at 2m/s velocity.

Figure 5.10: Diagonal Trajectory at 1m/s velocity.

the landing was more or less 20 seconds. For this experiment, the landing took 19 seconds to be

completed.

Regarding the performed trajectory of the UAV, it can be observed that near the end and overshoot

occurred and it was necessary to realign the attitude before continuing the descent. Overshooting is

more prone to happen for higher velocities since the integrator takes longer to increase until it reaches

the velocity of the UGV; and when the drone reaches the UGV, its velocity is higher than its target, and

54

Figure 5.11: Diagonal Trajectory at 2m/s velocity.

the correction causes an overshoot. Overall the landing was performed at the expected time and without

any significant oscillations, showing that, in simulation, the controller was efficient, by performing the

landings in a very short time period, and precise, for accurately landing on its target.

55

Chapter 6

Real Drone Results

In this Chapter, all the results tested on the real drone will be presented. After concluding the ex-

periments in simulation and guaranteeing that everything worked correctly, it was time to move on to

implementing the solution on the real drone. First it was necessary to install the required packages on

the drone’s computer; then all the frames in the drone were analysed to guarantee correct transforms

between the markers and the frame of the drone. To test this last step, the Motion Capture System

available on the 8th Floor of ISR was used and its analysis is in Section 6.1; then the final step was to

move on to the flight tests with the real drone overviewed in Section 6.3.

For all the tests in the real drone, the following steps are performed to set-up the drone:

• Connect all the needed terminals to the drone through SSH;

• Run the launch file - This file includes the launch files for the Mavros node, the realsense node,

the aruco detection algorithm, and the necessary transforms;

If it is a flight test:

• Manually takeoff the drone

• Change the Mode to Guided - Mode that allows the drone to be manually controlled, further ex-

plained in Section 6.3;

• Run the implemented code.

These steps and the necessary files and packages to perform them are thoroughly explained in the

GitHubs available on Chapter A.

6.1 Motion Capture System

A Motion Capture System, also known as Mo-cap, is an environment composed of at least two cameras,

that when calibrated provide a the 3D position and orientation of a certain object. This is achieved

56

by attaching passive markers to the UAV, coated with retroreflective material, which is detected by the

cameras since it reflects the light in the lenses.

Before moving on to testing the implemented controller on the drone, it was first necessary to guaran-

tee that the distances measured to the marker and transforms were correct, thus the Mo-cap system was

used to compare the real and measured distance of the drone to the markers. First, a previously known

object was used to calibrate all the cameras; then the drone with the passive markers was placed on top

of the ArUcO marker pattern, which was previously taped to the floor. Then, the position of the ArUcOs

is set as the origin of the world, so to obtain the real pose of the UAV with relation to the center. Finally,

while having an external computer recording the logs for both the Mo-cap system as well as the ArUcO

detection program, different experiments were performed to verify the accuracy of the measurements.

On the first try-out, the drone was moved manually in X and Y at a fixed altitude, without tilting it

around its axis. The quadrotor would first be moved to the left until the markers left the field of view of

the camera, then back to the center, and the same would be performed for the other sides one at a time,

front, right and back. Then, at 180 seconds, a full rotation of yaw in the drone was performed.

Figure 6.1 is plotting both the values measured by the drone for each individual marker, and by the

Mocap system over time. By analysing Figure 6.1(a), it can be concluded that, under the aforementioned

circumstances, the distance measures performed by the vision detection algorithm were nearly perfect

and therefore reliable. Figure 6.1(b) shows the relative angles for all markers and the Mocap system. It

can be clearly seen here that the drone moves until the markers go out of bounds of the camera, since

the values for the markers are intermittent. The values measured for the Yaw are very consistent and

evidently show the full rotation in Yaw previously mentioned at 180 seconds, where the values descend

to minus Pi and switch to Pi going then back to the initial value. The Roll and Pitch values on the other

hand, even though they are similar to the mocap values, they show a clear offset, mainly on the smallest

and largest markers, 55 and 946. This can be due to being far away enough so that the smallest marker’s

measurements become inaccurate, or close enough that the largest markers measurements are still not

as accurate. But overall the relative angles are only fully reliable for the Yaw.

On the second try-out, the drone was moved manually in a circle in X and Y around the markers at a

fixed altitude, while maintaining it aggressively tilted to test the accuracy of the results for high Roll and

Pitch angles, and amidst the experiment at 110 seconds, the drone was rotated while tilted.

From Figure 6.2(a), it can be concluded that the distances are equally well measured, even with

extreme Roll and Pitch angles, meaning angles higher than the ones attained by a normal quadrotor

flight. In Figure 6.2(b), both the Roll and Pitch angles were accurately measured for all markers with

the exception of some outliers. It can be seen that both Roll and Pitch were tested for a range of [-1, 1]

radians, values that are hardly attainable in a flight run. Thus it can be concluded that, when flying the

drone, the Roll and Pitch angles will not disturb the measurements. When analysing the Yaw the same

can be concluded, since the 360º turn while keeping both Roll and Pitch with high angles did not alter

the reliability of the measured distances.

When comparing Figure 6.2 with the previous Figure 6.1, it can be seen that, at 70 seconds, when

initially increasing the altitude, the Roll and Pitch angles also show an offset, that gradually goes away

57

(a) Distance.

(b) Angles.

Figure 6.1: MoCap System Experiment 1.

when the altitude is increased.

The Mocap system allowed to reach the conclusion that the distance measurements were very reli-

able and thus it is safe to begin the flight tests for the controller.

58

(a) Distance.

(b) Angles.

Figure 6.2: MoCap System Experiment 2.

6.2 Detection Range

As was previously analysed for the simulation, it is required to test the limitations in the detection of the

markers. It is particularly important for the landing to verify the descent height at which the markers

stop being detected. To perform this test all the launch files were run on the drone, and then manually,

while aligned on top of the marker pattern, the drone was lifted until all the markers were being correctly

measured, and put back down.

59

Figure 6.3: Minimum detectable height real experiment.

From Figure 6.3 it can be seen that the largest marker, ID 946, only starts being accurately detected

at 0.78cm height, the next biggest with ID 227 at 0.53cm, ID 168 at 0.32cm and the smallest marker with

ID 55 at 0.23cm. This shows the importance of performing the Aggressive Descent, as was mentioned

in Section 4.5, at 70cm above the markers. The 70cm were defined in simulation as the distance in Z

at which the camera could still detect all the markers, thus being the optimal safest landing choice, to

avoid losing the markers. Therefore it is proven that the implemented state machine is coherent as well

for the real drone and it is safe to move on to testing it in real flight tests.

6.3 Flight Experiments

6.3.1 Tuning

The simulation in gazebo was set up with the closest possible features to the real drone to allow the

experiments to be realistic. However, the tuning of the controller may vary between the simulation

and a real environment, for reasons that go from hardware to weather issues. Thus, the first flight

test performed was with only the attitude controller enabled, while experimenting different values of the

proportional constant. The overall procedure of initiating and setting up the drone was as explained

in the beginning of this Chapter, for the tuning the implemented code would be run with the altitude

controller disabled, to verify the response of the attitude controller to different proportional gains.

Since the tuning had already been performed for the simulation, there was a guideline for which

values were best to test. The tested values are as in the Table 6.1:

The first experiment was with KP of 0.3, which was the tuned value for the simulation, however this

value was too small and the UAV would react too slowly, as can be seen in Figure 6.4(a), where at

60

Table 6.1: Values tested for the X and Y tuning for the Real Experiment.

KP

Tuning P

0.3
0.35
0.4
0.5

first the movement was very slow and when the altitude was manually decreased so changes could be

visualized.

(a) KP = 0.3. (b) KP = 0.35.

(c) KP = 0.4. (d) KP = 0.5.

Figure 6.4: Real Drone tuning.

Afterwards a test was run with the proportional gain as 0.4. Initially, at 3 meters height, it can be

seen in Figure 6.4(c) that the drone performed a steady oscillation around its target, thus the altitude

was manually increased and it can be seen that the behaviour remained the same.

Even though this was a good result, 0.5 and 0.35 were still tested. Figure 6.4(d) shows that 0.5 was

too aggressive, overshooting up to 2m past its target. Whereas 0.35, as in Figure 6.4(b), still showed a

very slow and not reactive enough response.

Thus it is defined that the proportional gain set for the real drone is of 0.4 and all the remaining

61

experiments have this implemented.

6.3.2 Landing Experiments

To perform the landing experiments, the drone was manually taken off from the markers, after reaching

the optimal height of around 6 meters the mode on Mavros was switched to ”GUIDED”. Mavros has sev-

eral modes with different purposes, while the drone is being manually commanded, it does not respond

to other inputs, Guided mode allows the drone to be controlled internally through a running code. When

the mode is switched, manual commands stop being accepted and the drone is entirely controlled by

the implemented code. The following plots represent the marker position estimates from the point when

the mode was switched to Guided, hence when the controller started commanding the drone.

Figure 6.5 plots three very successful landings, where the drone can be seen initially hovering,

then, when the code is run, it initiates the Landing Sequence. It moves towards its target while slowly

descending and gradually decreases the oscillations in attitude until it lands. As can be seen by the green

square representing the position of the markers, the landing was always successful, demonstrating the

precision previously proven in simulation.

These experiments were three concurrent experiments taken in order to prove consistency by ob-

taining the same result on different runs.

62

(a) Test 1.

(b) Test 2.

(c) Test 3.

Figure 6.5: Real Drone Flights.

63

Afterwards, an experiment was done by starting the controller while further away from the target as

well as with a different yaw than from the previous experiments.

Figure 6.6: Real Drone Flights.

Since the drone was further away from its target, the first time the drone passed by the target led to

a bigger overshoot past the markers than the previous tests, however, it can be observed from Figure

6.6 that starting further away from the markers and rotating the drone did not change the end result and

the landing was still performed very fast and accurately.

While performing several experiments in a row, in one test it was possible to observe what happens

when the markers are lost and it is necessary to realign in X and Y before reattempting the landing.

Figure 6.7: Real Drone Flights.

Figure 6.7 shows this experiment where the UAV was descending and it reached a point where from

that height and distance it could not see a marker, therefore it immediately stopped, attempted to realign

from the previous stored measures and then proceeded to land.

From these experiments it can be concluded that the implemented solution performed well in a real

world situation proving to be viable and dependable when it comes to accurately and safely landing the

UAV.

64

Chapter 7

Conclusions

This thesis presented the development of a cooperative system constituted by an Unmanned Aerial Ve-

hicle and Ground Robot that, with the aid of vision, leads the quadrotor to fully autonomously detect and

land on a possibly moving ground robot. To achieve this, a State Machine was developed to perform the

high level decision tasks of the UAV. Then a cascaded controller was built, containing in its outer loop

three independent controllers for the attitude and altitude, and in its inner loop the angle and rate con-

trollers of the autopilot. The quadrotor for this project contained a Pixhawk 2.1 Autopilot with the Ardupilot

open-source autopilot system, which allowed this work to perform successful higher level tasks without

compromising the stability of the UAV. The vision-based detection of the target was performed with the

aid of fiducial markers, more specifically ArUcO marker, setup in a pattern with differently sized markers

that allowed the target to be detectable from up to 20m height, as well as up close. The behaviour of the

quadrotor under the proposed control is observed in a simulator, Gazebo 7, and afterwards in the real

drone, where the simulator was built with the same features as the provided drone. It was clear that the

vision-based detection algorithm proved to be a very reliable option, both in simulation as well as with

the real drone experiments, by providing accurate relative pose estimates under any circumstance. The

implemented controller, after proper manual tuning, confirmed its validity to accurately land on a moving

or stationary target, at a range of velocities, and from different trajectories of movement.

Thus, this thesis achieved, as was mentioned, successful landing on a stationary and moving target

with a simple controller, proving that for less complex scenarios a more complicated approach is not

necessary. Tested and proved the versatility of ArUcO markers and achieved a pattern constituted by

different sized markers that demonstrated to be reliable at a wide variety of heights. Accomplished a

system that is computationally light enough to allow to be run onboard with very fast reaction time. And

fulfilled the purpose with the aid of an open source autopilot which allows it to be implemented on other

systems besides the one tested.

65

7.1 Future Work

As of for future work, it would be advised to perform further tuning to the controller on the real drone, as

well as test it for a moving target.

Afterwards, a linear controller can be biased to the scenario to which it was tuned, therefore it should

be considered the implementation of a non-linear controller, for example a Model Predictive Control,

since it would provide a controller more robust and less susceptible to change.

Furthermore, the detection of the UGV could ideally be performed without the aid of any artificial

markers, and instead by detecting the UGV itself, either by using the RGBd camera to detect and land

on moving targets, or by the use of machine learning algorithms such as Neural Networks or Deep

Learning.

66

Bibliography

[1] K.-E. Åarzén. A simple event-based pid controller. IFAC Proceedings Volumes, 32(2):8687–8692,

1999.

[2] O. Araar, N. Aouf, and I. Vitanov. Vision based autonomous landing of multirotor uav on moving

platform. Journal of Intelligent & Robotic Systems, 85(2):369–384, 2017.

[3] T. Baca, P. Stepan, V. Spurny, D. Hert, R. Penicka, M. Saska, J. Thomas, G. Loianno, and V. Ku-

mar. Autonomous landing on a moving vehicle with an unmanned aerial vehicle. Journal of Field

Robotics, 36(5):874–891, 2019.

[4] K. Backman, D. Kulić, and H. Chung. Learning to assist drone landings. arXiv preprint

arXiv:2011.13146, 2020.

[5] Q. Bateux, E. Marchand, J. Leitner, F. Chaumette, and P. Corke. Training deep neural networks for

visual servoing. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages

1–8. IEEE, 2018.

[6] J. Bohren and S. Cousins. The smach high-level executive [ros news]. IEEE Robotics & Automation

Magazine, 17(4):18–20, 2010.

[7] W. Bolton. Instrumentation and control systems. Newnes, 2021.

[8] A. Borowczyk, D.-T. Nguyen, A. P.-V. Nguyen, D. Q. Nguyen, D. Saussié, and J. Le Ny. Autonomous

landing of a quadcopter on a high-speed ground vehicle. Journal of Guidance, Control, and Dy-

namics, 40(9):2378–2385, 2017.

[9] A. Cabrera-Ponce and J. Martinez-Carranza. Onboard cnn-based processing for target detection

and autonomous landing for mavs. In Mexican Conference on Pattern Recognition, pages 195–208.

Springer, 2020.

[10] J. P. C. de Souza, A. L. M. Marcato, E. P. de Aguiar, M. A. Jucá, and A. M. Teixeira. Autonomous

landing of uav based on artificial neural network supervised by fuzzy logic. Journal of Control,

Automation and Electrical Systems, 30(4):522–531, 2019.

[11] D. Falanga, A. Zanchettin, A. Simovic, J. Delmerico, and D. Scaramuzza. Vision-based autonomous

quadrotor landing on a moving platform. In 2017 IEEE International Symposium on Safety, Security

and Rescue Robotics (SSRR), pages 200–207. IEEE, 2017.

67

[12] H. C. T. E. Fernando, A. T. A. De Silva, M. D. C. De Zoysa, K. A. D. C. Dilshan, and S. R.

Munasinghe. Modelling, simulation and implementation of a quadrotor uav. In 2013 IEEE 8th

International Conference on Industrial and Information Systems, pages 207–212, 2013. doi:

10.1109/ICIInfS.2013.6731982.

[13] D. W. Gage. Ugv history 101: A brief history of unmanned ground vehicle (ugv) development

efforts. Technical report, NAVAL COMMAND CONTROL AND OCEAN SURVEILLANCE CENTER

RDT AND E DIV SAN DIEGO CA, 1995.

[14] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marı́n-Jiménez. Automatic

generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition,

47(6):2280–2292, 2014.

[15] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and R. Medina-Carnicer. Generation of

fiducial marker dictionaries using mixed integer linear programming. Pattern Recognition, 51, 10

2015. doi: 10.1016/j.patcog.2015.09.023.

[16] K. A. Ghamry, Y. Dong, M. A. Kamel, and Y. Zhang. Real-time autonomous take-off, tracking and

landing of uav on a moving ugv platform. In 2016 24th Mediterranean conference on control and

automation (MED), pages 1236–1241. IEEE, 2016.

[17] J. Ghommam and M. Saad. Autonomous landing of a quadrotor on a moving platform. IEEE

Transactions on Aerospace and Electronic Systems, 53(3):1504–1519, 2017.

[18] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata theory, languages, and

computation. Acm Sigact News, 32(1):60–65, 2001.

[19] C. Hui, C. Yousheng, L. Xiaokun, and W. W. Shing. Autonomous takeoff, tracking and landing of a

uav on a moving ugv using onboard monocular vision. In Proceedings of the 32nd Chinese Control

Conference, pages 5895–5901. IEEE, 2013.

[20] IntelRealSense. realsense-ros. https://github.com/IntelRealSense/realsense-ros, 2021.

[21] M. Kalaitzakis, S. Carroll, A. Ambrosi, C. Whitehead, and N. Vitzilaios. Experimental comparison

of fiducial markers for pose estimation. In 2020 International Conference on Unmanned Aircraft

Systems (ICUAS), pages 781–789. IEEE, 2020.

[22] S. Lange, N. Sünderhauf, and P. Protzel. Autonomous landing for a multirotor uav using vision. In In-

ternational conference on simulation, modeling, and programming for autonomous robots (SIMPAR

2008), pages 482–491, 2008.

[23] M. A. Laughton and M. G. Say. Electrical engineer’s reference book. Elsevier, 2013.

[24] H. Lee, S. Jung, and D. H. Shim. Vision-based uav landing on the moving vehicle. In 2016 Interna-

tional conference on unmanned aircraft systems (ICUAS), pages 1–7. IEEE, 2016.

68

https://github.com/IntelRealSense/realsense-ros

[25] S. Lee, T. Shim, S. Kim, J. Park, K. Hong, and H. Bang. Vision-based autonomous landing of a multi-

copter unmanned aerial vehicle using reinforcement learning. In 2018 International Conference on

Unmanned Aircraft Systems (ICUAS), pages 108–114. IEEE, 2018.

[26] R. Mahony, V. Kumar, and P. Corke. Multirotor aerial vehicles: Modeling, estimation, and control of

quadrotor. IEEE Robotics and Automation magazine, 19(3):20–32, 2012.

[27] mavlink. mavros. https://github.com/mavlink/mavros, 2021.

[28] P. H. Nguyen, M. Arsalan, J. H. Koo, R. A. Naqvi, N. Q. Truong, and K. R. Park. Lightdenseyolo:

A fast and accurate marker tracker for autonomous uav landing by visible light camera sensor on

drone. Sensors, 18(6):1703, 2018.

[29] A. O’dwyer. Handbook of PI and PID controller tuning rules. World Scientific, 2009.

[30] N. Otsu. A threshold selection method from gray-level histograms. IEEE transactions on systems,

man, and cybernetics, 9(1):62–66, 1979.

[31] L. E. Parker. Heterogeneous multi-robot cooperation. Technical report, Massachusetts Inst of Tech

Cambridge Artificial Intelligence Lab, 1994.

[32] R. Polvara, M. Patacchiola, S. Sharma, J. Wan, A. Manning, R. Sutton, and A. Cangelosi. Toward

end-to-end control for uav autonomous landing via deep reinforcement learning. In 2018 Interna-

tional Conference on Unmanned Aircraft Systems (ICUAS), pages 115–123. IEEE, 2018.

[33] A. Rodriguez-Ramos, C. Sampedro, H. Bavle, P. De La Puente, and P. Campoy. A deep reinforce-

ment learning strategy for uav autonomous landing on a moving platform. Journal of Intelligent &

Robotic Systems, 93(1-2):351–366, 2019.

[34] F. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer. Speeded up detection of squared

fiducial markers. Image and Vision Computing, 76, 06 2018. doi: 10.1016/j.imavis.2018.05.004.

[35] ROS. executive smach. https://github.com/ros/executive_smach/tree/indigo-devel, 2017.

[36] ROS. geometry. https://github.com/ros/geometry, 2021.

[37] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S. Othman,

A. Khreishah, and M. Guizani. Unmanned aerial vehicles (uavs): A survey on civil applications

and key research challenges. Ieee Access, 7:48572–48634, 2019.

[38] A. D. Team. Ardupilot. https://ardupilot.org/dev/index.html, 2021.

[39] UbiquityRobotics. fiducials. https://github.com/UbiquityRobotics/fiducials, 2021.

[40] T. Yang, P. Li, H. Zhang, J. Li, and Z. Li. Monocular vision slam-based uav autonomous landing in

emergencies and unknown environments. Electronics, 7(5):73, 2018.

69

https://github.com/mavlink/mavros
https://github.com/ros/executive_smach/tree/indigo-devel
https://github.com/ros/geometry
https://ardupilot.org/dev/index.html
https://github.com/UbiquityRobotics/fiducials

70

Appendix A

Code Repositories

The repositories to build the simulator as well as run the implemented code are available on GitHub.

A.1 GitHub Repositories

Table A.1: Code Repositories.

Description Link
Github containing the solution imple-
mented in this thesis and instructions
to test it

https://github.com/Saphira7544/IsabelCastelo_

MasterThesis

Github containing the Gazebo simula-
tor used throughout the entire thesis

https://github.com/durable-ist/Multi_Robot_

Simulation

A.1

https://github.com/Saphira7544/IsabelCastelo_MasterThesis
https://github.com/Saphira7544/IsabelCastelo_MasterThesis
https://github.com/durable-ist/Multi_Robot_Simulation
https://github.com/durable-ist/Multi_Robot_Simulation

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Thesis Outline

	2 Background
	2.1 UAV Controller
	2.1.1 Reference Frames
	2.1.2 Equations of Motion
	2.1.3 Linearized State Space Model
	2.1.4 Cascade Controller
	2.1.5 PID Controller

	2.2 Fiducial Markers
	2.3 Finite State Machine

	3 State of the Art
	3.1 Artificial Landmarks
	3.2 Landing Pad Detection
	3.3 UAV Control
	3.4 Landing Strategies
	3.5 Detection without Landmarks
	3.6 Hardware
	3.7 Conclusion

	4 Implementation
	4.1 System Setup
	4.1.1 UAV
	4.1.2 UGV
	4.1.3 Simulation

	4.2 Quadrotor Controller
	4.2.1 Quadrotor Controller Design

	4.3 Vision-based UGV detection
	4.4 Implementation in ROS
	4.4.1 Mavros
	4.4.2 SMACH

	4.5 Implemented Code

	5 Simulation Results
	5.1 Detection Range
	5.2 PID Tuning
	5.2.1 Stationary UGV
	5.2.2 Moving UGV
	5.2.3 Descent
	5.2.4 Consistency

	5.3 Simulation Experiments

	6 Real Drone Results
	6.1 Motion Capture System
	6.2 Detection Range
	6.3 Flight Experiments
	6.3.1 Tuning
	6.3.2 Landing Experiments

	7 Conclusions
	7.1 Future Work

	Bibliography
	A Code Repositories
	A.1 GitHub Repositories

