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A B S T R A C T

Text clustering is an important method for organising the increasing volume of digital content, aiding in
the structuring and discovery of hidden patterns in uncategorised data. The effectiveness of text clustering
largely depends on the selection of textual embeddings and clustering algorithms. This study argues that
recent advancements in large language models (LLMs) have the potential to enhance this task. The research
investigates how different textual embeddings, particularly those utilised in LLMs, and various clustering
algorithms influence the clustering of text datasets. A series of experiments were conducted to evaluate the
impact of embeddings on clustering results, the role of dimensionality reduction through summarisation, and
the adjustment of model size. The findings indicate that LLM embeddings are superior at capturing subtleties in
structured language. OpenAI’s GPT-3.5 Turbo model yields better results in three out of five clustering metrics
across most tested datasets. Most LLM embeddings show improvements in cluster purity and provide a more
informative silhouette score, reflecting a refined structural understanding of text data compared to traditional
methods. Among the more lightweight models, BERT demonstrates leading performance. Additionally, it was
observed that increasing model dimensionality and employing summarisation techniques do not consistently
enhance clustering efficiency, suggesting that these strategies require careful consideration for practical
application. These results highlight a complex balance between the need for refined text representation
and computational feasibility in text clustering applications. This study extends traditional text clustering
frameworks by integrating embeddings from LLMs, offering improved methodologies and suggesting new
avenues for future research in various types of textual analysis.
1. Introduction

Text clustering has attracted considerable interest in text analysis
due to its potential to reveal hidden structures in large volumes of
unstructured textual data. With the exponential growth of digital text
content generated through platforms such as social media, online news
outlets, and academic publications, the ability to organise and analyse
these data has become increasingly critical. Text clustering can organise
large volumes of unstructured data into meaningful categories, facili-
tating efficient information retrieval and insightful thematic analysis
across various domains, such as customer feedback, academic research,
and social media content.

Text clustering serves as a preliminary step in various text analysis
tasks, including topic modelling, trend analysis, and sentiment anal-
ysis. By grouping similar texts, subsequent analyses can proceed with
enhanced accuracy and relevance, focusing on more homogeneous data
sets with specific characteristics or themes. This process improves the
precision of the analyses and ensures that the insights derived are
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more targeted and applicable to the context in which the data were
generated.

As an analytical task, text clustering involves grouping text docu-
ments into clusters such that texts within the same cluster are more
similar to each other than to those in different clusters. This process
relies on the principle that text documents can be mathematically rep-
resented as vectors in a high-dimensional space, known as embeddings,
where dimensions correspond to various features extracted from the
documents, such as word frequency or context. Clustering algorithms
use measures of proximity or resemblance to group documents that ex-
hibit close correspondence in the feature space. This approach enables
the identification of natural groupings within the data, facilitating more
effective organisation and analysis of large text corpora.

The research presented in this article aims to contribute to the do-
main of text clustering by testing and identifying optimal combinations
of embeddings – including those used in recently released large lan-
guage models (LLMs) – and clustering algorithms that maximise cluster-
ing performance across various datasets. The primary objective of this
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paper is to determine if embeddings derived from LLMs outperform tra-
itional embedding techniques, such as Term Frequency–Inverse Docu-
ent Frequency (TF–IDF). Additionally, experiments are conducted to

valuate the impact of model size and dimensionality reduction through
summarisation techniques on clustering performance.

Results indicate that LLM embeddings are highly effective at cap-
uring the structured aspects of language, with BERT demonstrating
uperior performance among lightweight models. Moreover, increasing
odel dimensionality and employing summarisation techniques do

not consistently enhance clustering efficiency, suggesting that these
strategies require careful evaluation for practical application. These
findings underscore the need to balance detailed text representation
with computational feasibility in text clustering tasks.

This paper is organised as follows. In Section 2, advancements
n textual embeddings are described, and classical text clustering al-
orithms used in this domain are briefly mentioned. Section 3 out-

lines the main steps and components of this study, including dataset
selection, data preprocessing, embeddings, and clustering algorithm
onfigurations used to assess clustering quality. Section 4 presents
he results of our study and provides a discussion of these findings.
imitations encountered during the study, along with recommendations
or overcoming them, are acknowledged in Section 5. Finally, Section 6

synthesises the main conclusions of this research and suggests future
evelopments.

2. Background

2.1. Text embeddings

The field of text representation in natural language processing (NLP)
has undergone an impressive transformation over the past few decades.
From simple representations to highly sophisticated embeddings, ad-
vancements in this domain have significantly improved the ability of
machines to process and understand human language with increasing
accuracy.

One of the earliest methods of text representation that laid the
groundwork for subsequent advances was Term Frequency–Inverse
Document Frequency (TF–IDF). This method quantifies the importance
f a word within a document relative to a corpus by accounting for

term frequency and inverse document frequency (Salton & McGill,
1983). While TF–IDF effectively highlights the relevance of words, it
reats each term as independent and fails to capture word context and
emantic meaning (Ramos, 2003).

Word embeddings, such as those produced by Word2Vec (Mikolov,
hen, Corrado, & Dean, 2013) and GloVe (Pennington, Socher, & Man-
ing, 2014), marked a significant advancement by generating dense
ector representations of words based on their contexts. These models

leveraged surrounding words and large corpora to learn word rela-
ionships, successfully capturing a range of semantic and syntactic
imilarities. Despite their effectiveness in capturing semantic regular-
ties, these models still provided a single static vector per word, which
osed limitations in handling polysemous words—words with multiple
eanings.

The arrival of BERT (Bidirectional Encoder Representations from
ransformers) initiated a new phase of embedding sophistication (Devlin

Chang, Lee, & Toutanova, 2019). To generate contextual embeddings,
ERT employs a bidirectional transformer architecture, pre-trained on
 massive corpus. This allows for a deeper understanding of word
elationships by considering the full context of a word in a sentence
n both directions. BERT revolutionised tasks like text clustering by
roviding richer semantic representations.

Today, LLMs like OpenAI’s GPT are at the forefront of generating
state-of-the-art embeddings (Brown et al., 2020). LLMs extend the ca-
abilities of previous models by providing an unprecedented depth and
readth of knowledge encoded in word and sentence-level embeddings.
hese models are trained on extensive datasets to capture a broad
101 
spectrum of human language variations and generate embeddings that
reflect a comprehensive understanding of contexts and concepts.

The progression from TF–IDF to sophisticated LLM embeddings
represents a significant advancement towards more contextually aware
ext representation in NLP. This evolution continues to propel the field
orward, expanding the possibilities for applications such as text clus-
ering, sentiment analysis, and beyond. In the context of text clustering

methodologies, there exists a considerable research gap that under-
scores the need for a comprehensive evaluation of LLM embeddings
against traditional techniques such as TF–IDF.

2.2. Text clustering algorithms

Text clustering involves grouping a set of texts such that texts in
he same group (referred to as a cluster) are more similar to each other
han to those in different clusters. This section provides an overview of
lassic clustering algorithms widely used for clustering textual data.

𝐾-means is perhaps the most well-known and commonly used clus-
ering algorithm due to its simplicity and efficiency. It partitions the
ataset into 𝑘 clusters by minimising the within-cluster sum of squares,
.e., variance. Each cluster is represented by the mean of its points,
nown as the centroid (MacQueen, 1967). 𝐾-means is particularly
ffective for large datasets but depends heavily on the initialisation of

centroids and the value of 𝑘, which must be known a priori.
Agglomerative hierarchical clustering (AHC) builds nested clusters

by merging them successively. This bottom-up approach starts with
each text as a separate cluster and combines clusters based on a
linkage criterion, such as the minimum or maximum distance between
cluster pairs (Ward, 1963). AHC is versatile and allows for discovering
ierarchies in data, but it can be computationally expensive for large
atasets.

Spectral clustering techniques use the eigenvalues of a similarity
matrix to reduce dimensionality before applying a clustering algorithm
such as 𝑘-means. It is particularly adept at identifying clusters that are
not necessarily spherical, as 𝑘-means assumes. Spectral clustering can
also handle noise and outliers effectively (Ng, Jordan, & Weiss, 2002).

owever, its computational cost can be high due to the eigenvalue
ecomposition involved.

Fuzzy 𝑐-means (FuzzyCM) is a clustering method that allows data
oints to belong to more than one cluster. This method minimises the
bjective function with respect to membership and centroid position,
roviding soft clustering and handling overlapping clusters (Bezdek,

1981). FuzzyCM is useful when the boundaries between clusters are
ot clearly defined, although it is computationally more intensive than
-means.

In addition to these classic approaches, recent years have seen
he rise of alternative methods for text clustering that leverage the
trengths of modern embeddings and consider the unique properties
f textual data. These include using deep learning models, particularly
hose based on autoencoders, to learn meaningful low-dimensional
epresentations ideal for clustering (Berahmand, Daneshfar, Golzari Os-
ouei, Dorosti, & Aghajani, 2022; Xie, Girshick, & Farhadi, 2016).

Ensemble clustering approaches, where multiple clustering algo-
ithms are combined to improve the robustness and quality of the

results, have also been gaining attention. These methods benefit from
the diversity of the individual algorithms and can sometimes overcome
the limitations of any single method (Strehl & Ghosh, 2002).

The field of text clustering is rapidly expanding, and keeping up
with the latest findings is crucial for advancing the state of the art.

ecent papers, such as those exploring the use of transformer-based
mbeddings for clustering (Pugachev & Burtsev, 2021) and integrating

external knowledge bases into the clustering process (Zhang, Lertvit-
tayakumjorn, & Guo, 2019), represent just the tip of the iceberg in this
area of research. Additionally, very recent work by Keraghel, Morbieu,
and Nadif (2024) offers a preliminary discussion on the potential
of using LLM embeddings for text clustering. The authors analysed
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embeddings from BLOOMZ, Mistral, Llama-2, and OpenAI using five
clustering algorithms. This paper extends that work by focusing on
different datasets, testing additional LLM embeddings, and comparing
results using classical TF–IDF as a baseline. Furthermore, this study ex-
periments with summarisation as a dimensionality reduction technique
and evaluates the impact of model size on clustering results.

3. Methods

This research evaluates the effectiveness of various embedding rep-
resentations in enhancing the performance of text clustering algo-
rithms, aiming to identify the most informative embeddings for clus-
tering tasks. To achieve this, we systematically experimented with
multiple datasets, embeddings, and clustering methods, and performed
an in-depth analysis of clustering results using different evaluation
metrics. The following steps were undertaken during the course of this
study:

1. Selection of datasets, ensuring the robustness of our findings
across different types of textual data.

2. Preprocessing of datasets, including the removal of miscella-
neous characters such as emails and HTML tags.

3. Utilisation of various embedding computations, including LLM-
related ones, to retrieve numerical text representations.

4. Application of several clustering algorithms commonly used in
text clustering.

5. Comparison of clustering results using different external and
internal validation metrics.

The following subsections provide a comprehensive description of
each of these steps, further detailing the employed methodologies.

3.1. Datasets

We selected five datasets to cover a variety of text clustering chal-
enges. Table 1 shows these datasets and their characteristics. The
STR abstracts dataset (Yamagishi, Veaux, & MacDonald, 2019) is a
orpus of 299 scientific abstracts from the Centre for Speech Tech-
ology Research. The homogeneous and domain-specific nature of the
STR dataset allowed us to investigate the effectiveness of clustering
echniques in discerning fine-grained topic distinctions in scholarly text
elated to categories such as artificial intelligence, theory, systems, and
obotics.

The SyskillWebert dataset (Pazzani, 1999), which includes user
atings for web pages, enabled exploratory clustering to analyse infor-

mation used in recommendation systems. The 20Newsgroups dataset
(Mitchell, 1999) is a famous collection of approximately 19,000 news
documents partitioned across 20 different classes. With its broad as-
ortment of topics and noisy, unstructured text, this dataset provided a
ealistic scenario for evaluating the robustness of clustering algorithms

under less-than-ideal conditions.
To complement these, we added the MN-DS dataset (Petukhova

 Fachada, 2023), a diverse compilation of multimedia news arti-
les, which provides the opportunity to explore the effectiveness of

clustering algorithms in handling multi-categorical data. The dataset
is organised hierarchically in two levels; therefore, experiments were
erformed independently for each level. Additionally, we included the
euters dataset (Lewis, 1997), a benchmark dataset widely used in text

mining and information retrieval research, which contains stories from
the Reuters news agency. To enhance the comprehensiveness of our
evaluation, we selected documents assigned to single classes, reducing
the dataset from 10,369 to 8654 text articles. This allowed us to assess
the clustering algorithms’ ability to accurately group similar documents
ccording to their predefined categories.
102 
Table 1
Tested datasets and their characteristics. ‘Size’ represents the number of documents in
he dataset, while ‘No. classes’ is the number of categories.
Dataset Size No. classes Ref.

CSTR 299 4 Yamagishi et al. (2019)
SyskillWebert 333 4 Pazzani (1999)
20Newsgroups dataset 18,846 20 Mitchell (1999)
MN-DS dataset level 1 10,917 17 Petukhova and Fachada (2023)
MN-DS dataset level 2 10,917 109 Petukhova and Fachada (2023)
Reuters 8,654 65 Lewis (1997)

3.2. Preprocessing

The motivation for preprocessing text data is to minimise noise and
highlight key patterns, thereby improving the efficiency and accuracy
of clustering algorithms (Petukhova & Fachada, 2022).

For all datasets, a series of preprocessing steps were taken to ensure
the quality and uniformity of the input data. The initial step involved
emoving miscellaneous items such as irrelevant metadata, HTML tags,

and any extraneous content that might skew the analysis. Continuing
with this methodology, we systematically eliminated invalid non-Latin
characters from the dataset. These characters could arise from multi-
lingual data sources or artefacts of data collection, such as encoding
errors. Given that the employed workflow is optimised for Latin-based
languages, retaining such characters could increase the dimensionality
of the feature space, thereby undermining clustering performance, both
in terms of computational efficiency and interpretability of the results.

3.3. Text embeddings

For textual data representation, we compared classical embed-
ings (Devlin et al., 2019; Uther et al., 2010) and state-of-the-art

LLM embeddings. Traditional TF–IDF vectors served as a baseline,
providing a sparse but interpretable representation based on word
importance within the analysed dataset. BERT embeddings were ex-
tracted from the BERT model, which was trained as a transformer-based
idirectional encoder on BookCorpus (Zhu et al., 2015) and English
ikipedia (Przybyła, Borkowski, & Kaczyński, 2022). These embed-

dings were utilised to achieve deep contextual understanding, capturing
the semantic variations across the corpus.

We also employed ‘‘text-embedding-ada-002’’ (Greene, Sanders,
Weng, & Neelakantan, 2023) embeddings, as they demonstrated the
est results among OpenAI’s embeddings on larger datasets for tasks

such as text search, code search, and sentence similarity. Additionally,
other LLM embeddings were extracted for Falcon (Almazrouei et al.,
2023) and LLaMA-2-chat (Touvron et al., 2023) models, included for
their respective advancements in performance and efficiency. Falcon
mbeddings were trained on a hybrid corpus consisting of both text
ocuments and code, while the LLaMA-2-chat embeddings – built
n the foundation of the LLaMA-2 model using an optimised auto-
egressive transformer – underwent targeted fine-tuning for dialogue
nd question-and-answer tasks.

BERT, Falcon, and LLaMA-2-chat embeddings were obtained from
ugging Face’s transformers library, a platform providing state-of-

he-art models in accessible pipelines (Hugging Face, 2024). Table 2
describes the exact embeddings and configurations used.

3.4. Clustering algorithms

The selected clustering algorithms address the diverse nature of text
ata, which often contains complex patterns requiring robust methods
or effective grouping. Standard 𝑘-means clustering was used for its sim-
licity and efficiency in dealing with large datasets. 𝐾-means++ was
hosen as an enhanced variant of 𝑘-means, with careful initialisation
o improve convergence and cluster quality (Arthur, Vassilvitskii, et al.,

2007). AHC was utilised for its ability to reveal nested structures within
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Table 2
Tested embeddings and their configuration. For TF–IDF, parameters 𝗆𝗂𝗇_𝖽𝖿 and 𝗆𝖺𝗑_𝖽𝖿
are used to exclude terms that have a document frequency strictly lower than or higher
han the specified thresholds, respectively, during the vocabulary creation process; if
eal-valued, these parameters represent a proportion of documents; if integer-valued,
hey represent absolute document counts. In turn, 𝗆𝖺𝗑_𝖿 𝖾𝖺𝗍𝗎𝗋𝖾𝗌 limits the vocabulary to
nly the top 𝗆𝖺𝗑_𝖿 𝖾𝖺𝗍𝗎𝗋𝖾𝗌 terms, ordered by term frequency across the corpus.
Embeddings Configuration

TF–IDF 𝗆𝗂𝗇_𝖽𝖿 = 5, 𝗆𝖺𝗑_𝖽𝖿 = 0.95, 𝗆𝖺𝗑_𝖿 𝖾𝖺𝗍𝗎𝗋𝖾𝗌 = 8000
BERT huggingface.co/sentence-transformers/all-mpnet-base-v2
OpenAI huggingface.co/Xenova/text-embedding-ada-002
Falcon huggingface.co/tiiuae/falcon-7b
LLaMA-2 huggingface.co/meta-llama/Llama-2-7b-chat-hf

Table 3
Tested clustering algorithms and respective parameters. For 𝑘-means and 𝑘-means++,
𝗂𝗇𝗂𝗍 refers to the method used for the initial selection of cluster centroids, 𝗇𝗂𝗇𝗂𝗍 specifies
the number of times the 𝑘-means algorithm is run with different centroid seeds, while
𝗌𝖾𝖾𝖽 defines the random number for centroid initialisation. For AHC, 𝗆𝖾𝗍𝗋𝗂𝖼 defines
the metric used to compute the linkage, while 𝗅𝗂𝗇𝗄𝖺𝗀𝖾 specifies the linkage criterion
that determines the distance measurement used between sets of observations. For
FuzzyCM, 𝗂𝗇𝗂𝗍 is the initial fuzzy 𝑐-partitioned matrix–if set to 𝑁 𝑜𝑛𝑒, the matrix will be
randomly initialised–𝗆 is the degree of fuzziness, 𝖾𝗋𝗋𝗈𝗋 defines the stopping criterion,
and 𝗆𝖺𝗑𝗂𝗍𝖾𝗋 specifies the maximum number of iterations allowed. For Spectral clustering,
𝖺𝗌𝗌𝗂𝗀𝗇_𝗅𝖺𝖻𝖾𝗅𝗌 determines the strategy used to assign labels in the embedding space
and 𝗌𝖾𝖾𝖽 is a pseudo-random number seed for initialising the locally optimal block
preconditioned conjugate gradient eigenvectors decomposition. For all algorithms, the
umber of clusters was set to match the number of classes present in the dataset.
Algorithm Parameters

𝑘-means 𝗂𝗇𝗂𝗍 = random, 𝗇𝗂𝗇𝗂𝗍 = 10, 𝗌𝖾𝖾𝖽 = 0
𝑘-means++ 𝗂𝗇𝗂𝗍 = 𝑘-means++, 𝗇𝗂𝗇𝗂𝗍 = 1, 𝗌𝖾𝖾𝖽 = 0
AHC 𝗆𝖾𝗍𝗋𝗂𝖼 = euclidean, 𝗅𝗂𝗇𝗄𝖺𝗀𝖾 = ward
FuzzyCM 𝗂𝗇𝗂𝗍 = None, 𝗆 = 2, 𝖾𝗋𝗋𝗈𝗋 = 0.005, 𝗆𝖺𝗑𝗂𝗍𝖾𝗋 = 1000
Spectral 𝖺𝗌𝗌𝗂𝗀𝗇_𝗅𝖺𝖻𝖾𝗅𝗌 = discretise, 𝗌𝖾𝖾𝖽 = 10

the data. Compared to 𝑘-means, which assigns each data point to a
single cluster, FuzzyCM provides a probabilistic membership approach,
accommodating polysemy and subtle semantic differences typical in
ext data. Finally, Spectral clustering was selected for its effectiveness

in identifying clusters based on their data-induced graph structure, and
t is particularly adept at discovering clusters with non-convex shapes.

To map the newly formed clusters to the original labels of the
dataset, we calculated the Euclidean distance between the centroid of
each derived cluster and the centroid of each ground truth cluster,
assigning the closest ones. The Euclidean distance is a preferable metric
for this process because it accurately reflects distances in multidimen-
sional space, ensuring precise mapping. This method allows the use
of external evaluation metrics such as the 𝐹1-score. In our work, we
did not apply Euclidean distance at the word level, which can be
problematic. Instead, the process computes an aggregation for each
identified cluster, enabling a more reliable association with the existing
labels.

The selected algorithms and their respective parameters are listed
n Table 3. The scikit-learn library (Pedregosa et al., 2011) provided
he implementations for all algorithms except for FuzzyCM, which was
tilised from the scikit-fuzzy package (Warner et al., 2019).

3.5. Evaluation metrics

To comprehensively evaluate the quality of different embeddings
and algorithm combinations, we used a diverse set of metrics. For
external validation, since the original labels were available, we used
he weighted 𝐹1-score (F1S) (Chinchor, 1992), the Adjusted Rand Index
ARI) (Steinley, 2004), and the Homogeneity score (HS) (Rosenberg &

Hirschberg, 2007). The 𝐹1-score was computed to balance precision
nd recall in the presence of class imbalance. ARI was used to assess
lustering outcomes while correcting for chance grouping, and HS was
sed to evaluate the degree to which each cluster is composed of data
oints primarily from one class. For internal validation, we employed
103 
Table 4
Metrics used to assess clustering results, their type (external or internal), and their
espective formulas. For the 𝐹1-score (F1S), 𝐶 represents the number of classes, 𝑤𝑖
s the weight assigned to the 𝑖th class, which is typically the proportion of that class
ithin the dataset, and 𝐹1,𝑖 represents the 𝐹1-score computed for the 𝑖th class. For

he Adjusted Rand Index (ARI), 𝑅𝐼 stands for Rand Index, 𝐸 𝑥𝑝𝑒𝑐 𝑡𝑒𝑑_𝑅𝐼 refers to the
xpected value of the Rand Index under random label assignment (calculated using
he contingency table marginals), and 𝑀 𝑎𝑥_𝑅𝐼 is the maximum possible value of the
and Index. For the Homogeneity Score (HS), 𝐻(𝐶|𝐾) is the conditional entropy of

he class distribution given the predicted cluster assignments, and 𝐻(𝐶) is the entropy
f the class distribution. For the Silhouette Score (SS), 𝑁 represents the total number
f data points in the dataset, and 𝑠(𝑖) is the silhouette score for a single data point
, defined as 𝑠(𝑖) = 𝑏(𝑖)−𝑎(𝑖)

max{𝑎(𝑖),𝑏(𝑖)}
, where 𝑎(𝑖) is the average distance from the 𝑖th data

oint to other points in the same cluster, and 𝑏(𝑖) is the minimum mean distance from
he 𝑖th data point to points in a different cluster, minimised over all clusters. For the
alinski–Harabasz Index (CHI), 𝑇 𝑟(𝐵𝑘) is the trace of the between-group dispersion
atrix that measures the between-cluster dispersion, 𝑇 𝑟(𝑊𝑘) is the trace of the within-

luster dispersion matrix, which quantifies the within-cluster dispersion, 𝑁 refers to
he number of data points, and 𝑘 indicates the number of clusters. The optimal value
or all these metrics is the maximum.
Metric Type Formula

F1S External
𝐶
∑

𝑖=1
𝑤𝑖𝐹1,𝑖

ARI External 𝑅𝐼 − 𝐸 𝑥𝑝𝑒𝑐 𝑡𝑒𝑑_𝑅𝐼
𝑀 𝑎𝑥_𝑅𝐼 − 𝐸 𝑥𝑝𝑒𝑐 𝑡𝑒𝑑_𝑅𝐼

HS External 1 − 𝐻(𝐶|𝐾)
𝐻(𝐶)

SS Internal 1
𝑁

∑𝑁
𝑖=1 𝑠(𝑖)

CHI Internal Tr(𝐵𝑘 )
Tr(𝑊𝑘 )

× 𝑁−𝑘
𝑘−1

the Silhouette Score (SS) (Rousseeuw, 1987) and the Calinski–Harabasz
Index (CHI) (Caliński & JA, 1974), evaluating cluster coherence and
separation without requiring ground truth. This multifaceted approach
nsures a robust assessment, capturing both the alignment with known
abels and the intrinsic structure of the generated clusters. These met-
ics collectively provide a balanced view of performance, accounting
or datasets with varying characteristics and sizes. The metrics and their
orresponding formulas are presented in Table 4.

3.6. Additional experiments

This section describes additional experiments in which we per-
formed text summarisation (3.6.1) and tested LLM embeddings ob-
tained from larger models (i.e., models with more parameters) prior
o clustering (3.6.2). The purpose of these experiments is to investi-

gate whether such representations can improve the discriminability of
features within text clusters.

3.6.1. Summarisation
This experiment aims to evaluate summarisation as a tool for di-

ensionality reduction in text clustering by creating compact repre-
entations of the texts that encapsulate their semantic core without
osing context. These experiments are hypothesised to streamline the
lustering process, potentially leading to more coherent and inter-

pretable clusters, even in large and complex datasets. This involves
dding a summarisation step after preprocessing and before the re-
rieval of embeddings. The models used in summarisation are de-
cribed in Table 5. As an alternative approach to LLM-based mod-

els, we used the BERT-large-uncased summarisation model (Devlin
t al., 2019) implemented by the BERT summariser (Miller, 2019) to

assess potential improvements in clustering achieved by utilising a
lower-dimensionality model.

For the LLaMA-2 and Falcon models, we used the Hugging Face
ransformers library with the parameters described in Table 6.

The following zero-shot prompt was used for generating the sum-
marised text with LLMs:
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Table 5
Overview of text summarisation models used in this study, each employing a
transformer-based architecture. ‘Max tokens’ is the maximum input sequence length.
BERT is a bidirectional encoder-only model trained on BookCorpus, a dataset consisting
of 11,038 unpublished books and English Wikipedia (excluding lists, tables, and
eaders); OpenAI is a GPT-3-based decoder-only model built with multi-head attention
locks, trained on an extended dataset with reinforcement learning from human feed-

back; Falcon is a causal decoder-only model with a multi-query attention mechanism
rained on 1,500B tokens of RefinedWeb enhanced with curated corpora; LLaMA-2-
hat is a LLaMA-2-based auto-regressive decoder-only model trained on a 1,000B token
ataset collected by Meta, enriched with supervised fine-tuning, reinforcement learning
rom human feedback, and the Ghost Attention mechanism.
Embeddings Summarisation model Max tokens

BERT bert-large-uncased (Devlin et al., 2019) 512
OpenAI gpt-3.5-turbo (gpt, 2024) 4096
Falcon falcon-7b (fal, 2024; Almazrouei et al., 2023) 2048
LLaMA-2-chat Llama-2-7b-chat-hf (Lla, 2024; Touvron et al., 2023) 4096

Table 6
Parameters used for summarisation with LLaMA-2 and Falcon models: 𝗍𝖾𝗆𝗉𝖾𝗋𝖺𝗍𝗎𝗋𝖾

epresents the value to modulate probabilities of the next token, 𝗆𝖺𝗑_𝗅𝖾𝗇𝗀𝗍𝗁 defines
he maximum length of the sequence to be generated, 𝖽𝗈_𝗌𝖺𝗆𝗉𝗅𝖾 is a parameter that
etermines whether to use sampling rather than greedy decoding, 𝗍𝗈𝗉_𝗄 restricts the
election to the top 𝑘 tokens with the highest probabilities during top-𝑘 filtering, and
𝗎𝗆_𝗋𝖾𝗍𝗎𝗋𝗇_𝗌𝖾𝗊𝗎𝖾𝗇𝖼𝖾𝗌 is the number of independently computed returned sequences for
ach element in the batch.
Parameter name Value

𝗍𝖾𝗆𝗉𝖾𝗋𝖺𝗍𝗎𝗋𝖾 0
𝗆𝖺𝗑_𝗅𝖾𝗇𝗀𝗍𝗁 800
𝖽𝗈_𝗌𝖺𝗆𝗉𝗅𝖾 True
𝗍𝗈𝗉_𝗄 10
𝗇𝗎𝗆_𝗋𝖾𝗍𝗎𝗋𝗇_𝗌𝖾𝗊𝗎𝖾𝗇𝖼𝖾𝗌 1

Write a concise summary of the text. Return your responses with maxi-
mum 5 sentences that cover the key points of the text. {text}

SUMMARY:

3.6.2. Increasing model dimension
The original publications on LLMs underline the performance in-

crease with larger model sizes in tasks such as common sense reasoning,
question answering, and code tasks (Almazrouei et al., 2023; Touvron
et al., 2023). This experiment evaluates embeddings from various LLM
izes to analyse the impact of higher-dimensional models on the per-

formance of clustering algorithms, aiming to determine if they enhance
cluster cohesion and separation. For this purpose, we used embeddings
obtained from models presented in Table 7.

To visualise the different embeddings and capture their intrin-
sic structures, Principal Component Analysis (PCA) and 𝑡-Distributed
Stochastic Neighbour Embedding (𝑡-SNE) (Van der Maaten & Hinton,
2008) were employed. Initially, PCA was applied for preliminary di-
mensionality reduction while preserving variance. Subsequently, 𝑡-SNE

as used to project the data into a lower-dimensional space, emphasis-
ng local disparities between embeddings. This sequential application
f PCA and 𝑡-SNE allows us to capture both global and local structures
ithin the embeddings, providing a richer visualisation than using PCA
lone.

4. Results and discussion

Table 8 presents the clustering metrics for the ‘‘best’’ algorithm for
he tested combinations of dataset, embedding, and clustering algo-

rithm. By ‘‘best’’, we mean the algorithm with the highest 𝐹1-score
alue. The complete results are available as supplementary material.1

1 https://doi.org/10.5281/zenodo.10844657
104 
Table 7
Embeddings and corresponding models used in the dimensionality experiments. Here,
‘Size’ represents the number of parameters denoted in billions (bp), and ‘Tokens’ refers
to the embedding token size in trillions (trl).

Model Model reference Size (bp) Tokens (trl)
Falcon-7b huggingface.co/tiiuae/falcon-

7b
7 1.5

Falcon-40b huggingface.co/tiiuae/falcon-
40b

40 1

LLaMA-2-7b huggingface.co/meta-
llama/Llama-2-7b-chat-hf

7 2

LLaMA-2-13b huggingface.co/meta-
llama/Llama-2-13b-chat-hf

13 2

Results demonstrate that OpenAI embeddings generally yield su-
erior clustering performance on structured, formal texts compared
o other methods based on most metrics (column ‘Total’ in Table 8).
he combination of the 𝑘-means algorithm and OpenAI’s embeddings

yielded the highest values of ARI, 𝐹1-score, and HS in most experi-
ments. This may be attributed to OpenAI’s embeddings being trained
on a diverse array of Internet text, rendering them highly effective at
capturing the diversity of language structures.

Low values of SS and CHI for the same algorithm could indicate
that, while clusters are homogeneous and aligned closely with the
round truth labels (suggesting good class separation and cluster pu-
ity), they may not be well-separated or compact as evaluated in a
eometric space. This discrepancy can arise in cases where data has

a high-dimensional or complex structure that external measures such
as ARI, F1S, and HS capture effectively. However, when projecting
into a lower-dimensional space for SS and CHI, the clusters appear
to overlap or vary widely in size, leading to a lower score for these
spatial coherence metrics. This highlights a challenge in text clustering:
achieving both high cluster purity alongside tight cluster geometry.

Interestingly, for the case of the Reuters dataset (DS6), we observed
that FuzzyCM consistently outperformed other clustering algorithms
when paired with different embeddings. The potential reason behind
this result may be related to the flexibility of fuzzy clustering, which
allows data points to belong to multiple clusters with varying degrees
of membership, making it particularly suitable for datasets with a large
number of classes such as the Reuters dataset.

In the domain of open-source models, namely Falcon, LLaMA-2,
and BERT, the latter emerged as the frontrunner. Given that BERT
is designed to understand context and potentially due to the model’s
ower dimensionality, these embeddings demonstrate good effective-
ess in text clustering. In the comparative analysis of open-source
LM embeddings, Falcon-7b outperformed LLaMA-2-7b across most
atasets, demonstrating improved cluster quality and distinctiveness.
his superiority may be attributed to Falcon-7b embeddings’ ability
o better capture salient linguistic features and semantic relationships
ithin the texts since these embeddings were trained on a mixed

orpus of text and code, as opposed to the LLaMA-2 embeddings,
hich are specialised for dialogues and Q&A contexts. Additionally,

he CHI metric – measuring the dispersion ratio between and within
lusters – is higher for Falcon-7b embeddings, suggesting that clusters
re well-separated and dense.

Experiments with the MN-DS dataset, featuring a hierarchical label
tructure, indicate that clustering at a higher, more abstract label level

(17 classes) produces better class separation. However, the 𝐹1-score
s higher when clustering is assessed at the more specific level (109
lasses). This likely indicates better precision and recall for individual

classes, while lower values for other metrics reflect the increased
difficulty in maintaining overall clustering quality and cohesion with
a higher number of classes. These results indicate that clustering at
higher levels can produce more cohesive and interpretable clusters
that align with natural categorical divisions, though at the expense of
extracting less specific information for each document.

https://doi.org/10.5281/zenodo.10844657
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Table 8
Results of text clustering for the best-performing clustering algorithms for each
ombination of dataset and embedding. The best algorithm was determined by choosing
he algorithm with the highest 𝐹1-score value. DS1 represents the CSTR dataset, DS2 is
he SyskillWebert dataset, DS3 is the 20newsgroups dataset, DS4 is the MN-DS dataset

for level 1 labels, DS5 is the MN-DS dataset for level 2 labels, and DS6 is the Reuters
dataset. ‘Total’ represents the number of metrics per given embeddings/algorithm
combination that outperform other combinations.

Dataset Embed. Best Alg. F1S ARI HS SS CHI Total

DS1 TF–IDF 𝑘-means 0.67 0.38 0.46 0.016 4 0/5
BERT Spectral 0.85 0.60 0.63 0.118 25 3/5
OpenAI 𝑘-means 0.84 0.59 0.64 0.066 13 1/5
LLaMA-2 𝑘-means 0.41 0.09 0.17 0.112 49 1/5
Falcon 𝑘-means 0.74 0.39 0.48 0.111 34 0/5

DS2 TF–IDF Spectral 0.82 0.63 0.58 0.028 8 0/5
BERT AHC 0.74 0.58 0.53 0.152 37 0/5
OpenAI AHC 0.90 0.79 0.75 0.070 19 3/5
LLaMA-2 𝑘-means 0.51 0.21 0.25 0.137 69 0/5
Falcon 𝑘-means++ 0.45 0.26 0.30 0.170 85 2/5

DS3 TF–IDF Spectral 0.35 0.13 0.28 −0.002 37 0/5
BERT 𝑘-means 0.43 0.25 0.44 0.048 412 0/5
OpenAI 𝑘-means 0.69 0.52 0.66 0.035 213 3/5
LLaMA-2 AHC 0.17 0.11 0.26 0.025 264 0/5
Falcon 𝑘-means 0.26 0.15 0.30 0.071 1120 2/5

DS4 TF–IDF 𝑘-means 0.29 0.13 0.48 0.034 17 0/5
BERT 𝑘-means 0.35 0.24 0.55 0.072 61 1/5
OpenAI 𝑘-means 0.38 0.26 0.58 0.053 42 3/5
LLaMA-2 𝑘-means 0.21 0.11 0.40 0.053 88 0/5
Falcon 𝑘-means++ 0.27 0.16 0.48 0.071 92 1/5

DS5 TF–IDF AHC 0.31 0.09 0.29 0.010 37 0/5
BERT 𝑘-means++ 0.43 0.27 0.42 0.060 178 2/5
OpenAI Spectral 0.45 0.25 0.41 0.036 120 1/5
LLaMA-2 AHC 0.23 0.10 0.23 0.031 263 0/5
Falcon 𝑘-means++ 0.28 0.12 0.25 0.070 359 2/5

DS6 TF–IDF FuzzyCM 0.51 0.19 0.20 0.01 74 0/5
BERT Spectral 0.51 0.32 0.35 0.02 37 1/5
OpenAI FuzzyCM 0.52 0.23 0.21 0.10 1095 3/5
LLaMA-2 k-means++ 0.19 0.08 0.63 0.07 518 1/5
Falcon FuzzyCM 0.22 −0.03 0.21 0.00 930 0/5

Results of the summarisation experiment, depicted in Table 9, show
that using summarisation as a dimensionality reduction technique does
ot consistently benefit all models. Clustering results for the original
exts without generated summaries are generally higher than those with
ummarisation. This finding suggests that essential details necessary

for accurate clustering might have been lost during the summarisation
process. Alternatively, the inherent complexity and variations of textual
representation might require a more sophisticated approach to text
ummarisation that can maintain essential information while reducing
omplexity. Additionally, it is important to highlight that we observed
ow-quality clustering results when using the summarisation output
rom the smaller-sized LLaMA-2-7b and Falcon-7b models, likely due
o their limited ability to capture and reproduce the complexity and
ubtle gradations in the source texts.

Results for the model size experiment, presented in Table 10, high-
ight the negative influence of the number of parameters on clustering
utcomes for Falcon, given that the larger model, Falcon-40b, produced
ower ARI, 𝐹1-score, and HS for the CSTR and SyskillWebert datasets.

This may be because embeddings for the Falcon-40b model were cre-
ated over a subset of the data used for the Falcon-7b embeddings
(1.5 trillion tokens for Falcon-7b and 1 trillion tokens for Falcon-
40b). In the case of LLaMA-2, models with sizes 7b and 13b were
reportedly trained on identical datasets (Lla, 2024). Results indicate
that embeddings from the larger model, LLaMA-2-13b, outperform
hose from LLaMA-2-7b. This outcome is anticipated, as larger models

with more parameters generally have a greater capacity to capture
complex patterns and relationships in the data, leading to richer and
more expressive embeddings.

Another perspective is given by Fig. 1, which shows a visualisation
of different LLM parameter sizes for the CSTR dataset using PCA and
105 
Table 9
Results of summarisation effect on text clustering for the best-performing clustering
algorithms in comparison to clustering without summarisation. The ‘DS’ column
indicates the dataset being analysed; in particular, DS1 represents the CSTR dataset,
while DS2 denotes the SyskillWebert dataset.

DS Embed. Version Best Alg. F1S ARI HS SS CHI

DS1 BERT Full Spectral 0.85 0.60 0.63 0.118 25
Summary Spectral 0.81 0.50 0.56 0.114 24

OpenAI Full 𝑘-means 0.84 0.59 0.64 0.066 13
Summary 𝑘-means 0.81 0.53 0.58 0.061 13

LLaMA-2 Full 𝑘-means 0.44 0.12 0.21 0.099 53
Summary AHC 0.47 0.16 0.30 0.072 24

Falcon Full 𝑘-means 0.74 0.39 0.48 0.111 34
Summary 𝑘-means 0.40 0.03 0.02 0.224 329

DS2 BERT Full AHC 0.74 0.58 0.53 0.152 37
Summary AHC 0.75 0.57 0.54 0.089 22

OpenAI Full AHC 0.90 0.79 0.75 0.070 19
Summary Spectral 0.79 0.71 0.64 0.054 18

LLaMA-2 Full 𝑘-means 0.51 0.21 0.25 0.137 69
Summary FuzzyCM 0.25 0.04 0.06 0.548 603

Falcon Full 𝑘-means++ 0.45 0.26 0.30 0.170 85
Summary FuzzyCM 0.34 0.04 0.07 0.269 577

Table 10
Results for the model size experiment, displaying the best performing clustering
lgorithm comparing two sizes of the LLaMA and Falcon models on the DS1 (CSTR)

and DS2 (SyskillWebert) datasets. Model sizes are given in billions of parameters.
Dataset Embed. Best Alg. F1S ARI HS SS CHI

DS1 LLaMA-2-7b 𝑘-means 0.41 0.09 0.17 0.112 50
LLaMA-2-13b AHC 0.82 0.53 0.61 0.084 21
Falcon-7b 𝑘-means 0.74 0.39 0.48 0.111 34
Falcon-40b AHC 0.46 0.17 0.30 0.111 44

DS2 LLaMA-2-7b 𝑘-means 0.51 0.21 0.25 0.137 69
LLaMA-2-13b 𝑘-means++ 0.60 0.49 0.39 0.095 37
Falcon-7b 𝑘-means++ 0.45 0.26 0.30 0.170 85
Falcon-40b 𝑘-means++ 0.40 0.15 0.13 0.188 131

𝑡-SNE. A noticeable artefact for LLaMA-2-7b (Fig. 1(a)) and Falcon-
40b (Fig. 1(d)) is the lack of coherence in the four document classes,
ndicating an unclear delimitation in the feature space. This observation
s consistent with the results in Table 10, where these two models
ave the lowest F1S, ARI, and HS values. Conversely, when employing
LaMA-2-13b (Fig. 1(b)) and Falcon-7b (Fig. 1(c)), the classes exhibit

better separation, which aligns with the clustering results observed in
Table 10, where these two models achieved the highest values in 3 out
f the 5 metrics calculated. Increasing the number of tokens in Falcon

yielded better results, aligning with existing literature that suggests
models trained on larger and more diverse corpora are more capable
of capturing complex patterns in the data (Naveed et al., 2023).

Balancing computational requirements with clustering quality in-
olves weighing the benefits of larger embeddings against their re-

source demands. As results show, a larger number of parameters do not
necessarily lead to improved clustering and require significantly more
computational power and memory. Empirical evaluation is essential to
determine if the improvements justify the additional costs, considering
the specific task and resource constraints.

In summary, these results provide valuable insights into the re-
lationship between text embeddings, clustering algorithms, and di-
mensionality reduction techniques. We evaluated five embeddings and
four clustering algorithms across five datasets, including the MN-DS
dataset with hierarchical labels. Embeddings from the OpenAI model
generally outperformed traditional techniques such as BERT and TF–
IDF, aligning with previous studies. Conversely, LLaMA-2 and Falcon
models produced inferior results compared to BERT across most met-
rics. The 𝑘-means algorithm was the most effective on most datasets,
while FuzzyCM performed better on the Reuters dataset. Addition-
ally, summarisation models used for dimensionality reduction did not
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Fig. 1. Representation of different embeddings for the CSTR dataset, where PCA was used as a preliminary dimensionality reduction algorithm and t-SNE for data projection into
a lower-dimensional space.
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enhance clustering performance, and the use of higher-dimensional
models displayed mixed results.

5. Limitations

Despite the insights revealed in this study, the available computa-
ional resources constrained the experiments. This limitation prohibited
dditional trials with summary generation, higher-dimensional models

on more voluminous datasets, and fine-tuning of model parameters.
onsequently, the potential benefits of summaries in large-scale text
lustering have yet to be thoroughly evaluated. Summarisation might

behave differently when applied at scale or with distinct prompts, po-
tentially providing more pronounced benefits or drawbacks depending
on the complexity and diversity of the text data.

Moreover, embeddings computed for extra-large models like Falcon-
180b or LLaMA-2-70b could potentially deliver substantial gains. How-
ever, practical application is restrained by the significant computational
demands associated with larger model sizes. This limitation potentially
skews the understanding of the absolute efficacy of the embeddings
computed for these models, as performance improvements could only
be inferred up to a specific size.

Testing the selected clustering algorithms with a wider range of
arameters could also provide additional insights into the results. How-
ver, due to the aforementioned computational limitations, a breadth-
irst approach was chosen – testing several different clustering al-
orithms – rather than a depth-first approach, which would involve

experimenting with more parameters for each algorithm. For example,
 s

106 
in AHC, the analysis was limited to using Euclidean distance with Ward
inkage. Ward linkage was chosen because of its ability to minimise the
ariance within clusters, resulting in more compact and cohesive clus-
ers, which is particularly beneficial for text data clustering. While this

approach provides a comprehensive comparison across different meth-
ds, future research could explore parameter optimisation in greater
epth to further refine clustering outcomes.

These constraints prompt essential considerations for future re-
search. Specifically, experiments with larger datasets and higher-dime-
sion models would enable a more comprehensive and accurate under-
tanding of the potentials and limitations of text clustering algorithms
nd their scalability in real-world applications.

6. Conclusions

In this study, we examined the impact that various embeddings
– namely TF–IDF, BERT, OpenAI, LLaMA-2, and Falcon – and clus-
tering algorithms have on grouping textual data. Through detailed
exploration, we evaluated the efficacy of dimensionality reduction
via summarisation and the role of model size on the clustering effi-
ciency of various datasets. We found that OpenAI’s embeddings gen-
erally outperform other embeddings, with BERT’s performance ex-
celling among open-source alternatives, underscoring the potential of
advanced models to positively influence text clustering results.

A key finding from the experiments with summarisation is that
ummary-based dimensionality reduction does not consistently improve
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clustering performance. This indicates that careful consideration is
equired when preprocessing text to avoid losing essential information.

This research highlights the trade-off between improved clustering
erformance and the computational costs of using embeddings from
arger models. Although results indicate that an increase in model size
ay yield superior clustering performance, potential benefits must be
eighed against the practicality of available computing resources.

These findings point towards continued research focused on devel-
ping strategies that leverage the strengths of advanced models while
itigating their computational demands. It is also critical to expand

the scope of research to include more diverse text types, which will
provide a more comprehensive understanding of clustering dynamics
cross different contexts. Analysing embeddings of very recent or yet-
o-be-released models will also be important. Additionally, conducting

parameter searches for clustering algorithms is essential to optimise
their performance and ensure robust clustering outcomes across various
datasets.

In conclusion, our findings highlight the relationship between em-
bedding types, dimensionality reduction, model size, and text clustering
effectiveness in the context of structured, formal texts. While more
advanced embeddings such as those from OpenAI offer clear advan-
ages, researchers and practitioners must weigh the trade-offs regarding
ost, computational resources, and the effects of text preprocessing
echniques.
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