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Resumo 

A modelação hidrológica é crítica para a avaliação do estado presente, tendências 

passadas e perspetivas futuras das disponibilidades de água. Mais especificamente, o 

conhecimento sobre os regimes e valores de caudais nos rios é essencial em diversas atividades 

e situações. O presente trabalho foca-se, assim, na estimativa do caudal considerando quatro 

domínios onde diferentes problemas relacionados com a água foram identificados. Os quatro 

domínios correspondem à zona Oeste da Península Ibérica (OPI) e às bacias hidrográficas do 

Guadiana, Maranhão e rio Ulla. A previsão do caudal foi realizada usando três abordagens 

diferentes, nomeadamente, um modelo físico, MOHID-Land, um modelo baseado em dados e 

uma solução híbrida na qual os dois tipos de modelos são acoplados. 

O domínio OPI inclui diferentes bacias hidrográfica independentes entre si. Este domínio 

foi modelado com o MOHID-Land para a estimativa do caudal em regime natural. Os resultados 

mostraram que a consideração de um domínio tão grande e diversificado não é a abordagem 

mais adequada na modelação de bacias hidrográficas. A bacia hidrográfica do Guadiana 

também foi simulada com o MOHID-Land considerando não só o caudal em regime natural 

mas, também, o impacto da operação das barragens no caudal. Nesta abordagem, à escala da 

bacia hidrográfica, foi possível demonstrar a capacidade do modelo em reproduzir o caudal em 

condições de regime natural. Contudo, aquando da consideração da operação das barragens, os 

resultados demonstraram uma diminuição na capacidade do modelo em reproduzir o regime de 

caudal. As limitações identificadas em ambos os estudos foram o ponto de partida para o 

restante trabalho. 

O MOHID-Land foi, assim, alvo de uma análise de sensibilidade por forma a identificar 

os principais parâmetros que influenciam a simulação do caudal. Esta análise foi realizada 

utilizando como caso de estudo a bacia hidrográfica do rio Ulla e os resultados permitiram que 

a simulação do caudal em regime natural nesta bacia atingisse um nível bastante bom. Os 

resultados deste estudo contribuíram, também, para o sucesso da modelação da bacia 

hidrográfica do Maranhão. Contudo, neste último caso o MOHID-Land foi calibrado e validado 

para uma sub-bacia, cujos parâmetros calibrados foram posteriormente expandidos ao domínio 

completo. A validação desses resultados foi, então, realizada considerando um balanço de massa 

ao nível da albufeira, a qual estava situada no ponto mais a jusante da bacia. Posteriormente, 

um modelo baseado em dados do tipo rede neuronal foi testado para a estimativa do caudal 

seguindo o mesmo procedimento. Assim, um modelo do tipo convolutional neural network 

(CNN) foi desenvolvido e treinado para a sub-bacia referida anteriormente e os resultados 
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foram posteriormente expandidos ao domínio completo através da substituição das variáveis de 

entrada. 

Por fim, e por forma a ultrapassar a dificuldade na representação da operação das 

barragens em modelos hidrológicos, foi estudada uma solução híbrida aplicada à bacia 

hidrográfica do rio Ulla. Assim, o caudal de saída de uma barragem situada naquela bacia e 

com alta capacidade de armazenamento foi estimado com um modelo do tipo convolutional 

long short-term memory (CLSTM). Este modelo foi alimentado pelos valores de caudal de 

entrada e nível estimados pelo MOHID-Land, enquanto os caudais de saída previstos pelo 

modelo CLSTM foram impostos nesse mesmo modelo hidrológico. Os resultados obtidos 

indicaram uma melhoria substancial quando o modelo acoplado é considerado, relevando a 

importância de considerar este tipo de infraestruturas durante a modelação. 

A presente tese discute a fiabilidade de diferentes métodos para a estimação do caudal em 

regime natural e em sistemas complexos marcados por alterações antrópicas. A discussão 

centra-se nas principais limitações e nos principais parâmetros que interferem na precisão da 

representação dos sistemas. Os resultados levaram ao desenvolvimento de uma nova 

abordagem que conecta o modelo MOHID-Land e uma rede neuronal, permitindo ultrapassar 

as limitações identificadas inicialmente. 

 

Palavras-chave: modelação hidrológica; caudal; modelo físico; MOHID-Land; redes 

neuronais. 
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Abstract 

Hydrological modeling is critical for evaluating the status, past trends, and future 

perspectives of water availability. More specifically, knowledge about streamflow regimes and 

values is essential for different activities and situations. This work focuses on the estimation of 

streamflow considering four different domains in which different water related problems were 

identified: the Western Iberian Peninsula (WIP), and the Guadiana, Maranhão and Ulla River 

watersheds. Streamflow was estimated using three different approaches, namely, with a 

physically based model, MOHID-Land, a data-driven model, and a hybrid solution coupling 

both types of models. 

The WIP, which contained several independent watersheds, was modelled with MOHID-

Land for natural streamflow estimation. Results demonstrated the inadequacy in considering 

such a large and diversified domain. The Guadiana watershed was also modelled with MOHID-

Land, considering the natural regime flow and the influence of reservoirs operation. This study 

at the watershed scale demonstrated the relative adequacy of the model in simulating the natural 

regime flow at the watershed scale, but identified several shortcomings when considering 

reservoirs’ operation, which the work that followed aimed to overcome. 

The MOHID-Land was first subjected to a sensitivity analysis to identify the key 

parameters impacting streamflow simulation. The Ulla River watershed was the selected case 

study, with the MOHID-Land showing high accuracy for simulations of the natural regime flow. 

The results of that study also contributed to the successful implementation of MOHID-Land 

model in the Maranhão watershed. In this case study, the MOHID-Land model was calibrated 

and validated for a sub-basin, and the calibrated parameters were extended to the entire 

watershed. The results’ validation was performed considering a mass balance of the reservoir 

located in the watershed’s outlet. Afterward, a data-driven model was tested following the same 

procedure in the same study area. A convolutional neural network model was developed and 

trained for the sub-basin and then extended to the entire watershed. Both approaches were 

compared, and the advantages and shortcomings of both solutions were discussed. 

Finally, a hybrid solution was applied to the Ulla River watershed. To overcome the 

difficulty in representing reservoirs’ operation in hydrological models, the outflow of a high-

capacity reservoir placed in the watershed was estimated with a convolutional long short-term 

memory (CLSTM) model, with this model being fed by the inflow and level values estimated 

by MOHID-Land. Then, the outflow values obtained with the CLSTM model were imposed in 

MOHID-Land model. Results demonstrated a drastic improvement when the coupled system 
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was considered, highlighting the importance of considering this type of infrastructure during 

the modelling task. 

Hence, this thesis discusses the reliability of different methods for streamflow estimation 

considering natural regime flow and complex systems with anthropogenic modifications, 

centering the discussion on the main limitations and key parameters influencing the accurate 

representation of systems. The findings allowed the development of a new approach that 

connects MOHID-Land with a neural network model, and which allowed to surpass many of 

the initial shortcomings. 

 

Keywords: hydrological modelling; streamflow; physically based model; MOHID-Land; 

neural networks. 
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1 Introduction 

In 2015 the United Nations defined 17 Sustainable Development Goals (SDG) in the 

attempt to promote planet protection, end poverty, hunger and disease spreading, and to create 

a more egalitarian world (SDG-UNDP, n.d.). Part of these SDGs are directly or indirectly 

related to water. For instance, SDG6 intends to promote access to clean water and sanitation, 

and SDG 14 and 15 are related with life below water and on land, respectively. Also, SDG 1, 

no poverty, and SDG 2, zero hunger, are both water dependent, since poverty and hunger 

eradication rely on food production, which in turn relies on the availability of water for 

irrigation. SDG 3, good health and well-being, SDG 7, affordable and clean energy, SDG 12, 

responsible consumption and production, and SDG 13, climate action, can also be intimately 

related to water as, to successfully deal with these issues, water availability and good water 

management practices need to be put into practice. Thus, water represents one of the pillars for 

a more sustainable and fairer world. 

In parallel, the last Intergovernmental Panel on Climate Change (IPCC) report (Pörtner 

et al., 2022) refers that nowadays half of the world’s population is already experiencing sever 

water scarcity for at least 1 month per year due to climatic and other factors, a condition that is 

exacerbated by inadequate water governance. Those situations are aggravating the societal 

impacts of droughts and floods, are impacting agriculture and energy production, are 

contributing to land degradation, and are increasing the incidence of water-borne diseases, 

especially in low-income countries. That same report makes an analysis of the water related 

projected risks. It points out that 800 million to 4 thousand million people will face different 

levels of water scarcity dependent of the projected warming temperature. It also evidences that 

10% of the global land area can face increasing high extreme streamflow and decreasing low 

extreme streamflow simultaneously. Changes in the water cycle will also affect the ecosystem 

services, with predictions pointing to 42% to 79% of the world’s watersheds environmental 

critical streamflow being affected. It also predicts an increase of wildfires combined with soil 

erosion due to deforestation causing a degradation of water supplies. The increase of 

evapotranspiration, the alteration of spatial patterns and amount of precipitation, the 

consequent changes in groundwater recharge, runoff and streamflow will then affect terrestrial, 

freshwater, estuarine and coastal ecosystems, and the transport of materials through the 

biogeochemical cycles. These changes, in turn, have an impact on humans and societal well-

being, with agriculture, energy production and urban water uses being affected. Population 

growth will also increase water needs in terms of food production, which is irrigation 
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dependent. Also drinking water needs and industrial water supplies are predicted to increase 

with population growth. The projected risks of extreme hydrological events are also a focus of 

the IPCC report, which states that South and Southeast Asia may face significative problems 

related to food availability and prices. The Mediterranean and parts of Europe will suffer 

potential reductions of hydropower of up to 40%, and up to 410 million people living in urban 

areas will be exposed to water scarcity because of severe droughts. Flood local events and 

associated societal damages are also predicted to increase as a consequence of more intense 

precipitation events, with coastal areas being at higher risk because of the projected sea level 

rise. All this problematic can then explain the increase in freshwater demands, with local, 

national, and regional hydrological systems being put under a high level of pressure. 

With water being such an important and essential resource for life on Earth, the 

understanding of water resources systems, the study of water processes and its complexity, the 

capacity to forecast near and long-term future hydrological events and integrate all this 

knowledge to improve water resources management is of extreme importance.  

In this regard, Droogers and Bouma (2014) state that simulation models are appropriate 

and indispensable tools to supply relevant information, based on reliable data, to assess past, 

present, and future conditions of water resources. More specifically, from a water governance 

perspective, the authors defend that hydrological models applied at the operational level allow 

water resources managers to shift their behavior from a reactive to a proactive approach, 

including in the decision-making process information about different possible scenarios. This 

will lead to more substantiated and assertive decisions. 

Streamflow knowledge and estimation are assumed by several authors as essential in a 

wide range of applications and studies (Bourdin et al., 2012; Ni et al., 2020). The list includes 

flood warning systems, hydroelectric reservoir operation, hydraulic structure design, fish 

production and survival, nutrient transport and water quality assessment, evaluation of long-

term climate or land use change impacts, and the definition of water management policies, 

besides the proper management and allocation of water resources, especially in areas with 

highly variable climate conditions and where there is not enough available data to adequately 

support decision-making (Humphrey et al., 2016). 

1.1 Hypothesis and research objectives 

Models driven by physical laws are usually considered powerful tools to understand and 

predict the conditions of a modelled system. They can represent different processes and the 

corresponding interactions very accurately. However, their physical basis together with the 
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detail with which their implementations are characterized makes the incorporation of random 

and unpredictive human behavior difficult. Thus, the hypothesis of this work is:  

• When natural regime flow is altered by human impacts, it is possible to accurately 

predict streamflow values if different modelling techniques are combined. 

The hypothesis was tested focusing the assessment of streamflow values in different 

watersheds, where different water related problems were already identified. The hydrological 

modelling was mainly performed considering two types of models, namely, a physically based 

model and a data-driven model. These types of models are opposite in terms of complexity, 

data needs, and the capacity of explicitly consider the hydrological processes. As a 

consequence, the implementation of both approaches is obviously distinct, implying a level of 

understanding and knowledge about the modelled system that is totally different. If on one 

hand, more complex models can give a wider view of the system and allow the investigation 

of different processes taking place in the modelled domain, their complexity and the amount 

of data needed can make its implementation difficult. On the other hand, less complex models 

are easier to implement. They need long time series data for the variables included in the 

analysis, but, besides that, no further characterization of the studied domain needs to be made, 

reducing the data necessities when compared with more complex models. However, since they 

are blind to physical processes, the interpretation of their results and errors can be a hard task 

and they do not allow an integrated view of different processes occurring in the modelled 

domain. Thus, to verify the hypothesis presented before, the main objectives of this research 

were defined as: 

1. Present and discuss the strengths and the weaknesses of different modelling 

approaches at different scales. 

2. Evaluate the capacity and robustness of different types of models to estimate 

streamflow and evaluate if the modelling performance is improved when they are 

combined.  

3. Demonstrate the contribution of hydrological modelling to improve water resources 

management. 

1.2 Thesis structure 

The present thesis is composed of 9 chapters, starting with the current Introduction, and 

ending with the Conclusions chapter, where the main conclusions of the work carried out and 

the proposed ideas for future work are presented. The 2nd chapter contextualizes the research 

developed, focusing on the importance of hydrological modelling nowadays, followed by a 
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contextualization of the MOHID-Land model and the neural network models, which are the 

two main modelling tools used here. The chapter finishes with a brief presentation of the 

studied domains.  

The other 6 chapters describe the work developed on this thesis, with each chapter 

corresponding to a manuscript (published or submitted). The title of the chapters/manuscripts, 

authors, journal, and candidate’s role of each publication are listed below: 

• Chapter 3: Modeling streamflow at the Iberian Peninsula scale using MOHID-Land: 

challenges from a coarse scale approach. 

Details: Ana R. Oliveira, Tiago B. Ramos, Lucian Simionesei, Maria C. Gonçalves, 

Ramiro Neves. Water 2022, 14, 1013, https://doi.org/10.3390/w14071013. 

Candidate’s role: the candidate was responsible for the implementation of the 

modelling approach and the analysis of the results, as well as the writing of the 

manuscript. The conceptualization and the definition of the methodology were shared 

between all the authors. 

• Chapter 4: Influence of reservoir management on Guadiana streamflow regime. 

Details: Nelson Canuto, Tiago B. Ramos, Ana R. Oliveira, Lucian Simionesei, Marta 

Basso, Ramiro Neves. Journal of Hydrology: Regional Studies 2019, 25, 100628, 

https://doi.org/10.1016/j.ejrh.2019.100628. 

Candidate’s role: the candidate was responsible for the guidance given for model 

implementation and results analysis. The conceptualization and the methodology 

followed that presented in the previous chapter. 

• Chapter 5: Sensitivity analysis of the MOHID-Land hydrological model: a case study 

of the Ulla River basin. 

Details: Ana R. Oliveira, Tiago B. Ramos, Lucian Simionesei, Lígia Pinto, Ramiro 

Neves. Water 2020, 12, 3258, https://doi.org/10.3390/w12113258. 

Candidate’s role: the candidate was responsible for the conceptualization and 

methodology definition together with other authors. The programming task, the 

modelling process, results analysis, and manuscript writing were performed by the 

candidate. 

• Chapter 6: Streamflow estimation in a Mediterranean watershed using neural 

network models: a detailed description of the implementation and optimization. 

Details: Ana R. Oliveira, Tiago B. Ramos, Ramiro Neves. Water 2023, 15, 947, 

https://doi.org/10.3390/w15050947. 
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Candidate’s role: the candidate was responsible for the conceptualization, definition 

of the methodology, the programming and modelling processes, the analysis of the 

results, and the manuscript writing. 

• Chapter 7: Assessing the reliability of a physical based model and a convolutional 

neural network in an ungauged watershed for daily streamflow prediction. 

Details: Ana R. Oliveira, Tiago B. Ramos, Lucian Simionesei, Ramiro Neves. 

Submitted to  

Candidate’s role: the candidate was responsible for the conceptualization, 

development of part of the software, formal analysis, modelling task, and writing of 

the original draft. The methodology was elaborated by all the authors. 

• Chapter 8: Direct integration of reservoirs’ operations in a hydrological model for 

streamflow estimation: coupling a CLSTM model with MOHID-Land. 

Details: Ana R. Oliveira, Tiago B. Ramos, Lígia Pinto, Ramiro Neves. Submitted to 

Hydrology and Earth System Sciences. 

Candidate’s role: the conceptualization was defined by all the authors, while the 

candidate defined the methodology, performed the programming job, executed the 

modelling task, analyzed the results, and wrote the first draft of the paper. 

The organization of this thesis intends to demonstrate the steps that were taken to reach 

good performances in streamflow estimation with the applied models. Because the research 

process is not only based on successful cases, chapters 3 and 4 present two situations where 

the selected modelling approach was not adequate, being the basis for the work developed in 

the following chapters. Chapter 5 presents a sensitivity analysis of the physically based model 

in order to master its behavior and obtain better performances. Then, in the attempt to 

investigate the adequacy and introduce the more recent solutions available in the literature, an 

application of neural network models to a small watershed is presented in chapter 6. The study 

made in chapter 6 is complemented by chapter 7, where the same small watershed was 

modelled by the physically based model and the ability of both approaches to represent the 

streamflow generation in a larger watershed that contains the first was compared. The study 

detailed in chapter 8 intends to demonstrate the improvement that streamflow estimation can 

have if those models are used to complement each other the gaps. Therefore, this last chapter 

presents the use of a neural network model to estimate the outflow of a reservoir and the results 

are introduced in the physically based model implemented to simulate the hydrological 

processes in the watershed where the reservoir is placed. 
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It is also important to denote other works that were developed during the period that 

contemplates the PhD degree reported here, and the two years before. Without being 

exclusively dedicated to streamflow estimation, those projects were essential for the 

development of a deeper understanding about hydrological modelling and, especially, about 

the physically based model used in this research. Some of those works are already published 

and what they represented to the development of this study justifies their reference in the 

following list: 

• Horta, A.; Oliveira, A. R.; Azevedo, L.; Ramos, T. B. Using digital soil hydraulic 

properties maps to simulate soil-water balance – implications for water management 

plans (submitted to Geoderma Regional). 

• Campuzano, F.; Santos, F.; Simionesei, L.; Oliveira, A. R.; Olmedo, E.; Turiel, A.; 

Fernandes, R.; Brito, D.; Alba, M.; Novellino, A.; Neves, R. Framework for improving 

land boundary conditions in ocean regional products. Journal of Marine Science and 

Engineering 2022 10, 852. 

• Rosa, A.; Cardoso, C.; Vieira, R. R.; Faria, R.; Oliveira, A. R.; Navarro, G.; Caldeira, 

R. Impact of flash flood events on the coastal waters around Madeira Island: the 

‘Land Mass Effect’. Frontiers Marine Science 2022, 8:749638. 

• Ramos, T. B.; Simionesei, L.; Oliveira, A. R.; Neves, R.; Darouich, H. Exploring the 

use of vegetation indices for validating crop transpiration fluxes computed with the 

MOHID-Land model. Application to vineyard. Agronomy 2021, 11, 1228. 

• Simionesei, L.; Ramos, T. B.; Palma, J.; Oliveira, A. R.; Neves, R. IrrigaSys: A web-

based irrigation decision support system based on open source data and technology. 

Computers and Electronics in Agriculture 2020, 178, 105822. 

• Ramos, T. B.; Simionesei, L.; Oliveira, A. R.; Darouich, H.; Neves, R. Assessing the 

impact of LAI data assimilation on simulations of the soil water balance and maize 

development using MOHID-Land. Water 2018, 10, 1367.  
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2 Context 

2.1 Hydrological modelling 

Hydrological models can be important tools to predict unexpected changes regarding 

water supplies that create uncertainties for water managers. Linsley (1976) was one of the first 

hydrologists that worked in the development of hydrological modeling (Droogers and Bouma, 

2014). He stated that the main objectives of model applications are: (i) to express hydrological 

processes and their interaction using quantitative mathematical expression, providing clarity 

and understanding, and (ii) to promote analysis of future scenarios that cannot be measured. 

As with any other model, hydrological models are a simplified representation of the “real-

world” system (Wheater et al., 2007, Droogers and Bouma, 2014).  Even with this limitation, 

hydrological models, together with the continuous improvement of computational capacity, 

continue to be one of the best available tools to provide relevant information in the search of 

better managed water resources systems. Hydrological modelling is thus an efficient way to 

analyze spatial and temporal data taking into account the interactions and impacts of different 

river basin components (Loucks et al., 2005). As is well known, all the components of the 

hydrological cycle are intimately related (Figure 2.1), and the management of a single 

component can affect the performance of other components in a river basin system. This linking 

between components results in a necessity for multi-component models that can represent the 

different processes of the system. 

 

Figure 2.1 A schematic diagram of the hydrological cycle applied to a watershed (source: Loucks et al., 2005). 
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The classification of hydrological models can be made considering different aspects. It 

can consider the basis of the model, the randomness of the variables, the time coverage, and 

the way a model accounts for the spatial characterization of the watershed (Loucks et al., 2005). 

Considering the rationale, a model can be classified as theoretical or empirical. Empirical 

models, also known as statistical models, are totally blind to physical principles and are 

considered representations of the observed data. In opposition, there are theoretical, also known 

as physically based, models, which are governed by physical principles described by 

mathematical functions. However, it is common to simplify the calculations of physically based 

models using empirical components, such as the Manning’s equation. 

According to the type of variables used, models can be divided into deterministic or 

stochastic. If model’s variables are totally free from random variation, the model is classified 

as deterministic, while if the values of one or more variables of the model can change 

unpredictably over time it is considered a stochastic model. Hydrological models are usually 

classified as deterministic models. 

If a hydrological model simulates a single event, usually with a time coverage of about 

an hour to several days, the model is classified as event based. However, if the model considers 

the simulation of a sequence of time periods and for each period it determines the state of the 

watershed keeping a continuous account of the watershed surface and groundwater conditions, 

it is classified as a continuous-time model. In the former case, results accuracy is dependent on 

the reliability of the system’s initial conditions, which are often assumed or determined by other 

means. In the latter case, the effect of initial conditions usually decreases rapidly as simulation 

time advances. 

Finally, hydrological models can be classified as lumped, distributed or quasi- or semi-

distributed, the latter resulting from a mix of the first two. This classification is related to the 

spatial discretization of the modelled domain. Lumped models simulate hydrological processes 

assuming homogeneous or average conditions for the entire or portions of a watershed, while 

distributed models consider the locations of different watershed characteristics such as land 

cover, soil type, and topography. Semi-distributed models are then made up of multiple 

connected lumped models representing parts of watersheds.  

2.2 MOHID-Land, a physically based model 

MOHID, which stands for Hydrodynamic Model (MOdelo HIDrodinâmico, in 

Portuguese), is the name of the water modelling system that includes the MOHID-Water and 

MOHID-Land models. With MOHID-Water dedicated to surface water bodies simulation, 
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MOHID-Land is directed to the simulation of the hydrological processes inland. Both are open-

source models (github.com/Mohid-Water-Modelling-System/Mohid) written in ANSI Fortran 

95 and based on a modular structure. They are characterized by an objected oriented 

programming philosophy and based on a finite volume approach. Because MOHID-Water and 

MOHID-Land belong to the same modelling system, they share basic functions and input and 

output formats. This simplifies the interface between both models, facilitating the integration 

of their results in each other’s simulations. 

The development of MOHID-Land started in 2000 with the inclusion of the numerical 

simulation of water fluxes and storages in the MOHID system (Neves et al., 2000). After that, 

Trancoso et al. (2009) presented the MOHID River Network, which was a one dimensional 

(1D) hydrodynamic model to simulate river networks. From then to present, MOHID-Land has 

known significative developments and improvements. These changes were made to provide 

the model with different methods of computation for some of the processes, aiming to improve 

the ability of the model to answer different problems. Also, the increasing number of case 

studies has given rise to different realities to be modelled. This led to the emergence of new 

processes and situations needing to be simulated, which were not contemplated at first. Thus, 

the changes made in the model over the last decades were driven by a need to overcome the 

limitations caused by the lack of conditions to properly simulate the new domains. Nowadays, 

MOHID-Land is able to consider the simulation of different processes with respect to the 

hydrological cycle.  

MOHID-Land (Trancoso et al. 2009, Canuto et al, 2019, Oliveira et al. 2020) is a fully 

distributed and physically based model that considers the mass and momentum conservation 

equations combined with a finite volume approach to simulate the water movement. To avoid 

instability problems and save computational time, the model time step is variable, being higher 

during dry seasons and lower in wet periods when water fluxes increase. 

The control volumes result from the discretization of the modelled domain by a 

combination of two grids: one in the surface plane and one in the vertical direction, the latter 

corresponding to the discretization of the porous media. The surface grid is a regular grid 

constructed based on the coordinate system chosen by the user, while the vertical grid follows 

a cartesian coordinate system. According to the elevation values assigned to each cell in the 

surface grid, the river network is constructed linking the surface cell centers (nodes). Thus, the 

river network is represented by a one-dimensional (1D) domain, the surface land is represented 

by a two-dimensional (2D) domain, and the porous media is represented by a three-dimensional 
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(3D) domain, with the water movement being simulated according to this discretization (Figure 

2.2). 

MOHID-Land works based on 4 main compartments, namely, the atmosphere, the porous 

media, the surface land, and the river (Figure 2.2). The atmosphere compartment is essentially 

simulated considering the MOHID’s atmosphere module, which is shared by MOHID-Land 

and MOHID-Water. It is the only compartment that is not explicitly simulated, being 

responsible for dealing with the information related to meteorological boundary conditions 

(precipitation, air temperature, solar radiation, etc.). Meteorological boundary conditions can 

be time and space variant. The remaining three compartments are simulated based on 9 modules 

that constitute the core of the MOHID-Land model. 

 

Figure 2.2  Scheme of discretization of a domain modelled with MOHID-Land. 

The 9 modules that constitute MOHID-Land are: basin, irrigation, porous media and 

porous media properties, reservoirs, runoff and runoff properties, snow, and vegetation. Besides 

those modules, there are several other modules of MOHID Water Modelling system that are 

shared inside the system. Most of the functions to deal with the input data, boundary conditions 

and the initialization of the models are placed in shared libraries. Among those shared modules 

are included the already referred atmosphere module, the discharge module, the drainage 

network, and the basin geometry modules. Figure 2.3 presents a simplified scheme of the 

interactions of the modules belonging to MOHID-Land’s core. 
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Figure 2.3 Scheme of MOHID-Land modules and corresponding information fluxes for water balance (black 

arrows) and property balance (pink arrows). 

The basin module is responsible for the management of the simulation and calls the 

modules responsible for meteorological boundary conditions, overland flow and drainage 

network processes, and the porous media and vegetation processes. It is also here that potential 

evapotranspiration and the basin water balance are estimated. When a simplified scheme 

(Green and Ampt or SCS CN method) describing the infiltration process is active, this module 

is responsible for estimating the infiltration rate. 

Potential evapotranspiration rates are obtained by multiplying reference 

evapotranspiration by a crop coefficient specific to each type of vegetation. While crop 

coefficient values are tabulated for most of the crops, reference evapotranspiration is here 

calculated based on the weather conditions and according to the FAO Penman-Monteith 

method (Allen et al., 1998). Potential evapotranspiration is then divided into potential 

transpiration and potential evaporation as a function of the plant stage, with these processes 

being detailed further below. 

In MOHID-Land the precipitated water at a certain time step is first divided into the 

amount of water that is intercepted by leaves and the amount of water that effectively reaches 

the surface. After that, the estimated infiltration rate drives the subsequent processes, 

estimating the amount of water that can enter the porous media and the remaining being 

transformed into surface and river runoff. 

2.2.1 Infiltration and porous media 

In MOHID-Land, the infiltration rate can be estimated according to three different 

methods: Darcy’s law (Eq. 2.1), Green and Ampt method (Green and Ampt, 1911), and SCS 

Curve Number (SCS CN) method (Soil Conservation Service, 1972).  
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𝑖 = −𝐾𝑠𝑎𝑡 (
𝜕ℎ

𝜕𝑧
+ 1) (Eq. 2.1) 

with i being the infiltration rate (LT-1), Ksat the saturated hydraulic conductivity (LT-1), h the 

soil pressure head (L), and z the vertical space coordinate (L). 

The Green and Ampt and SCS CN are both classified as empirical methods and can be 

used without considering the fluxes in the porous media, while Darcy’s law is driven by 

physical conditions. In the case of the SCS CN model, it first estimates the amount of water 

transformed into surface runoff, with the remaining becoming available for infiltration. 

Infiltration rates represent the velocity of the water entering the soil, which are then 

converted to vertical fluxes. If porous media is not being simulated (only possible for Green 

and Ampt and SCS CN methods), the infiltrated water is lost from the system. However, if 

porous media’s fluxes are considered in the simulation, the water contents in each cell of the 

3D domain are estimated taking into account the vertical and horizontal fluxes imposed by the 

infiltration process. Then, the water content values are analyzed by comparison with the 

saturated water content of the corresponding cell. If a saturation threshold is exceeded, the 

excess of water can be infiltrated to the next layer of soil, can arise to the above layer by 

capillarity, or can be exfiltrated, contributing to the surface water column, if the process is 

occurring in the surface soil layer. 

The movement of the water that infiltrates in the soil is computed according to Richards’ 

equation:  

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑥𝑖
[𝐾(𝜃) (

𝜕ℎ

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑖
)] − 𝑆(ℎ) (Eq. 2.2) 

where θ is the volumetric water content (L3L-3), xi represents the xyz directions (-), K is the 

hydraulic conductivity (LT-1), and S is the sink term representing root water uptake (L3L-3T-1). 

The soil hydraulic properties are described using the van Genuchten Mualem functional 

relationships (Mualem, 1976; van Genuchten, 1980) with the definition of 6 different 

parameters for each type of soil: residual and saturated water contents, saturated hydraulic 

conductivity, pore connectivity/tortuosity parameter, and two other values that are empirical 

shape parameters. That saturated hydraulic conductivity is defined by the user and corresponds 

to the vertical direction. The horizontal saturated hydraulic conductivity (Ksat,hor) is then 

obtained from the vertical saturated hydraulic conductivity (Ksat,ver) considering a factor (fh) 

defined by the user. This factor represents the ratio between horizontal and vertical saturated 

hydraulic conductivities (fh = Ksat,hor/Ksat,ver). 
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Porous media processes also contemplate the evaporation of the surface soil layer. This 

process can be activated or deactivated by the user, who can also define a limit for the 

evaporation velocity and for the evaporation head. 

The biogeochemical cycles that take place in soil can also be added to the simulation, 

however those processes are not analyzed here because the subject of the present work is water 

quantity. 

2.2.1.1 Vegetation 

The sink term of Richards’ equation represents the soil water loss caused by root water 

uptake, which occurs when vegetation is present. The root water uptake is estimated 

considering the potential transpiration and corrected considering the soil water availability.  

Based on the reference evapotranspiration (ET0, LT-1), potential crop evapotranspiration 

(ETc, LT-1) is calculated by multiplying the first by a crop coefficient (Kc) defined for each type 

of vegetation. Then, potential crop evapotranspiration is partitioned into potential crop 

transpiration (Tp, LT-1) and soil evaporation (Ep, LT-1). Potential crop transpiration is calculated 

as a function of the leaf area index (LAI, L2L-2), which in its turn is simulated considering a 

modified version of the EPIC model (Neitsch et al., 2011; Williams et al., 1989) and the heat 

units’ approach for the plant to reach maturity: 

𝑇𝑝 = 𝐸𝑇𝑐(1 − 𝑒
−𝜆𝐿𝐴𝐼) (Eq. 2.3) 

where λ is the extinction coefficient of radiation attenuation within the canopy (-). The potential 

soil evaporation is then obtained by the difference between the potential crop 

evapotranspiration and the potential crop transpiration. 

The actual crop transpiration is then calculated considering root water uptake reductions 

due to depth-varying stressors, such as water and salinity stresses (Šimůnek and Hopmans, 

2009; Skaggs et al., 2006). The root water uptake reductions are computed according to the 

macroscopic approach proposed by Feddes et al. (1978), where the real crop transpiration is 

calculated as a function of the soil pressure head. The actual soil evaporation is also reduced 

imposing a head threshold value (ASCE, 1996). 

With the transpiration water loss completely dependent on the plant stage, the vegetation 

module is responsible for the simulation of plants’ evolution and the estimation of their 

properties in each instant. Based on the heat units’ approach, each type of vegetation needs the 

definition of the minimum and optimal temperatures for its development and the total heat units 

to reach maturity. Then, according to the ratio of heat units accumulated by plant and the 

respective maturity heat units, the plant stage is updated. The updated plant’s properties include 
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the root depth, the root biomass, the total plant biomass, the leaf area index, and the canopy 

height. 

In previous versions of MOHID-Land, it was not possible to directly simulate the 

evolution of the crop coefficient when different types of vegetation are present in the modelled 

domain. Thus, most of the implementations at the watershed scale assumed a constant single 

crop coefficient throughout the entire simulated period. However, crop evapotranspiration 

varies during the crop season as a function of LAI development. The evapotranspiration 

evolution can be directly integrated in the simulation by imposing a variation of crop coefficient 

as a function of the plant growth stage (Figure 2.4).  

 

Figure 2.4 Evolution of single crop coefficient in time (source: Allen et al.,1998). 

Considering the simulation already being performed for other properties, a similar 

approach was implemented for the crop coefficient. Thus, the simulation of the evolution of 

crop coefficient was based on Allen et al. (1998), with the definition of three single crop 

coefficients for the initial (Kc,ini), the mid-season (Kc,mid), and the end.season (Kc,end) stages of 

plant development. In each instant, the crop coefficient was estimated following Eq. 2.4. 

  

𝐾𝑐 =

{
 
 
 

 
 
 

𝐾𝑐,𝑖𝑛𝑖, 𝐺𝐹𝑟 < 𝐺𝐹𝑟1

𝐾𝑐,𝑖𝑛𝑖 +
𝐺𝐹𝑟 − 𝐺𝐹𝑟1

𝐺𝐹𝑟2 − 𝐺𝐹𝑟1
(𝐾𝑐,𝑚𝑖𝑑 − 𝐾𝑐,𝑖𝑛𝑖), 𝐺𝐹𝑟1 < 𝐺𝐹𝑟 < 𝐺𝐹𝑟2

𝐾𝑐,𝑚𝑖𝑑, 𝐺𝐹𝑟2 < 𝑃𝑆 < 𝐺𝐹𝑟𝐿𝐴𝐼𝑆𝑒𝑛

𝐾𝑐,𝑚𝑖𝑑 +
𝐺𝐹𝑟 − 𝐺𝐹𝑟2

1.0 − 𝐺𝐹𝑟2
(𝐾𝑐,𝑒𝑛𝑑 − 𝐾𝑐,𝑚𝑖𝑑), 𝐺𝐹𝑟2 < 𝐺𝐹𝑟 < 1.0

𝐾𝑐,𝑒𝑛𝑑, 𝐺𝐹𝑟 > 1.0

 (Eq. 2.4) 

where GFr, GFr1, GFr2 and GFrLAISen are the plant growth fractions in the current instant, in 

the initial and mid-season stages, and when the LAI senescence starts, respectively. Those 

growth stages are represented as percentage of maturity heat units, and the values for GFr1, 



17 

 

GFr2 and GFrLAISen are defined in the plant growth database of MOHID-Land. Also, the three 

crop coefficients introduced here should be defined in the plant growth database. With all those 

parameters being set independently for each type of vegetation, this method allows the 

estimation of the crop coefficient in each simulated instant and for each type of vegetation 

present in the domain. 

Finally, the plant development is triggered when the planting date, defined by the user, is 

reached. Planting date can be set as Julian day or in heat units, as a percentage of the total 

temperature degrees that an entire year can comprehend. This annual accumulation of 

temperature degrees is not directly calculated by MOHID-Land, with the user defining this 

value before the simulation starts. This value is defined considering the average temperature of 

one day in the modelled domain multiplied by the number of days within a common year. 

User can also activate the simulation of other activities present in the simulated domain, 

namely, the grazing activity, the harvest and/or the kill activities, the dormancy, and the 

application of fertilizers and pesticides. With the dormancy cycle being dependent on the length 

of the day light, its beginning and ending dates are estimated by the model. However, for the 

remaining activities, the user must define the dates when they occur. As for the planting date, 

those dates can be set as Julian day or using the heat units’ approach, but in this case the 

percentage of heat units respects the plant’s maturity heat units. 

Supplementary information about the simulation of plant development in MOHID-Land 

can be found in Simionesei et al. (2016) and Ramos et al. (2017), where the update of different 

plant properties within the growth period is explained in detail. 

The application of fertilizers and pesticides implies the activation of the simulation of 

biogeochemical cycles in porous media. However, since the study of water quality properties 

is not the target of the present work, that capability is not analyzed here. 

2.2.1.2 Irrigation 

Although irrigation is not considered in this work, it is an important part of the water 

balance in a watershed, especially in areas where summer is characterized by high temperatures 

and low precipitation values. 

In MOHID-Land, the irrigation can be imposed or estimated. Irrigation can be imposed 

by the user when the applied irrigation depths and times are known. However, when those 

values are unknown irrigation needs can be estimated by the model and directly applied during 

the simulation. In both cases the irrigation fluxes are added to the precipitation fluxes and the 

resulting water volume is applied to the domain. 
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As described by Ramos et al. (2017), when irrigation depths are estimated by MOHID-

Land, the first task performed by the model is to check the water stored in each cell of the 

simulated domain. For that, the user must define a minimum threshold pressure head (hmin) and 

a target pressure head (htar). Then, considering each layer of the rootzone domain of each cell 

defined in the surface plane, the model checks if the water content is lower than hmin. If it is, 

the volume of water needed to reach htar is the deficit of water that 3D cell. The water deficit 

estimated in 3D cell is then accumulated in the soil column and the total represents the irrigation 

needs. However, to prevent the occurrence of too many irrigation events or the application of 

meaningless irrigation amounts, a minimum irrigation pulse, a maximum irrigation pulse, a 

minimum area to irrigate and a minimum irrigation interval must be defined. The model will 

only apply the estimated irrigation needs when they are higher than the minimum irrigation 

pulse, the area to be irrigated is higher than the minimum area to irrigate, and if the minimum 

irrigation interval since the previous irrigation event is overcame. The amount of irrigation 

applied is never higher than the maximum irrigation pulse, but if the water needs are higher 

than that maximum, the irrigation events will be scheduled in a way that all the constraints 

imposed by the system are fulfilled. 

In MOHID-Land, the development of the irrigation module was more focused on the plot 

scale. In that sense, the source of the water for irrigation purposes is not relevant and impossible 

to consider. Thus, MOHID-Land does not allow the definition of the water sources for irrigation 

purposes, which can have a relevant effect when the simulation of this activity is considered at 

the watershed level. 

Also, the fact that the simulations at plot scale (1D simulation, considering only vertical 

fluxes) are much simpler than those at watershed scale (3D domains), affects the usage of the 

irrigation module in the latter case. With more water being introduced in the porous media 

when irrigation is applied, computational time increases significantly, with much more impact 

on 3D domains. This increase may be such that it makes it impossible to consider the irrigation 

processes as they are being simulated in large 3D domains. 

2.2.2 Surface flow 

MOHID-Land solves the Saint-Venant equation (Eq. 2.5) to compute the surface flow, 

which occurs considering two dimensions in the surface plane and considering one dimension 

in the river network. The equation is solved in its conservative form, accounting for advection, 

pressure, and friction forces. 
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𝜕𝑄𝑢
𝜕𝑡

+ 𝓋𝑣
𝜕𝑄𝑢
𝜕𝑥𝑣

= −𝑔𝐴(
𝜕𝐻

𝜕𝑥
+
|𝑄|𝑄𝑖𝑛

2

𝐴2𝑅ℎ
4/3

) (Eq. 2.5) 

where Q is the flow in the river (LT-1), A is the cross-sectional flow area (L2), g is the 

gravitational acceleration (LT-2), 𝓋 is the flow velocity (LT-1), ∂H/∂x is the hydraulic gradient 

(-), n is the Manning coefficient (TL-1/3), Rh is the hydraulic radius (L), x e the length that 

separate, and subscripts u and v denote flow direction. 

The cross-sectional flow area in the surface plane considers the water column and the 

dimension of the cell in the flow direction, while in the river network the geometry and 

dimensions of node’s cross sections are defined by the user. 

The available water to generate surface flow results mainly from the amount of water 

that did not infiltrate. However, as was focused on the porous media section (see section 2.2.1) 

some water can be exfiltrated from the soil, contributing to the surface flow on the horizontal 

plane. 

Water exchanges also occur between the river network and the porous media, with the 

fluxes being driven according to the head pressure gradient. Thus, when head pressure is higher 

in soil than in the river, the water flows from the soil contributing to the river flow, while in the 

opposite situation the water in the river infiltrates into the soil. 

Biogeochemical cycles can also be simulated in the runoff medium, as well as the erosion 

and deposition processes. 

2.2.2.1 Reservoirs 

In MOHID-Land, reservoirs work as a box where a mass balance is performed (Figure 

2.5). It is essential to know the water stored volume (Vstored), and the volume of the inflow (I), 

outflow (O), and other discharges that go in (DIn) and/or out (DOut) of the reservoir (Eq. 2.6). 

𝑉𝑠𝑡𝑜𝑟𝑒𝑑
𝑖 = 𝑉𝑠𝑡𝑜𝑟𝑒𝑑

𝑖−1 + (𝐼 + 𝐷𝐼𝑛) − (𝑂 + 𝐷𝑂𝑢𝑡) (Eq. 2.6) 

with i representing the instant being simulated. 



20 

 

 

Figure 2.5 Scheme of reservoir operation in MOHID-Land. 

Reservoirs are placed in the nodes of the river network with the inflow considered for the 

mass balance being that in the nodes immediately upstream. More than one reservoir can be 

simulated at the same time in MOHID-Land, with the reservoirs operationality being dependent 

on the definition of several of its characteristics. The minimum requirements are the minimum 

and maximum volumes, the minimum outflow, and the curve defining the relation between the 

level and the stored volume must be defined. That curve allows the inference of the level of the 

reservoir for each estimated stored volume. The maximum outflow can also be defined. 

The outflow of each reservoir can be imposed or estimated. When imposed, the user must 

define a discharge and the corresponding volume of water removed from the reservoir is 

allocated to the river network in the node immediately downstream the reservoir. In case that 

the outflow is estimated by the model, it is necessary to define its type of operation. The type 

of operation allows the estimation of reservoir’s outflow as a function of the inflow, the stored 

volume and/or the level. The outflow can then be defined as an absolute value according to the 

level of the reservoir in each instant. Also, as a function of the level, the outflow can be defined 

as a percentage of the inflow. Considering the stored volume, the outflow can be defined as an 

absolute value, as a percentage of the inflow or as a percentage of the maximum outflow. In all 

the cases a curve with at least two points must be specified. 

Mainly to consider water supplies with their source in the reservoir, reservoirs’ module 

is prepared to take into account the imposition of water withdrawals. The volume of water 

removed by this method is considered to leave the system. Discharges entering the reservoir 
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can also be considered, with the origin of the water discharged into the reservoir being also 

undefined. 

The processes of infiltration and evaporation significantly affect the volume of water 

stored in a reservoir. Although they are not yet considered in the reservoirs’ processes 

simulated in MOHID-Land, they are of extreme importance in the mass balance performed at 

reservoir scale. 

2.3 Neural networks, empirical models 

The machine learning term has its origins in 1959, in the context of game-learning 

computers and arises from the fundament that software can learn how to play strategic games 

with a better performance than that obtained by a human programmer (Lange and Sippel, 

2020). In the beginning, machine learning was closely connected with artificial intelligence 

(AI). However, over the years, that connection has been diminished, mostly because machine 

learning has a strong connection with statistics and probability theory, using tools mainly for 

regression and/or classification problems, while AI is based on expert systems and knowledge-

based software. It is then easy to conclude that machine learning techniques are totally 

dependent on data availability, including the capacity of automatically collect, store, and 

distribute data. 

Neural networks are a type of supervised machine learning method, as well as decision 

trees, random forest, support vector machines, and others. Neural networks are data-oriented, 

or data-driven, approaches, in which the main goal is to detect and describe patterns in 

univariate or multivariate datasets. Those patterns are then generalized and used to make 

predictions on the system state. 

The history of neural networks started in 1958, when a psychologist, Rosenblatt, 

developed an investigation about an electronic device, a perceptron (Rosenblatt, 1958), which 

had the ability to learn, and which construction was based on biological principles (Macukow, 

2016). Then, in 1960, Widrow and Hoff (1960) developed a different method for leaning based 

on the Least-Mean-Squares learning rule. 

After those first attempts, there was a period when neural networks were discredited. 

Minsky and Papert (1969) published a book discussing a number of fundamental problems of 

the perceptron approach. However, that discussion was based on a perceptron two-layer 

machine that was only able to deal with linearly separable problems, instead of the powerful 

multiple layer perceptron machine defined by Rosenblatt. Although minimal resources were 

dedicated to this field of research during this negative period, some researchers made valuable 
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improvements. Klopf (1972) presented a basis for learning considering the biological principle, 

Werbos (1974) developed a back-propagation learning method, Fukushima (1975) studied a 

stepwise trained multilayered neural network to interpret handwritten characters, and 

Grossberg (1976) introduced the adaptative resonance as a theory of human cognitive 

information processing. 

In the decade of 1980, a renewed interest in neural networks emerged. Several works 

where new advances were presented were published (Kohonen, 1982; Hopfield, 1982; 

Rumelhart et al., 1986; Carpenter and Grossberg, 1987), older studies were revisited with a 

different perspective (Werbos ,1974), annual meetings and conferences were launched (Neural 

Networks for Computing meeting; IEEE International Conference on Neural Networks), 

several journals were founded (Neural Networks; Neural Computation; IEEE Transactions on 

Neural Networks), and the International Neural Network Society was created. 

In more recent years, the recurrent neural networks and deep feedforward neural 

networks were introduced, and a processor (TrueNorth) with the size of a postage stamp 

capable of simulate the work of millions of neurons and 256 million of synapses in real time 

was developed. 

The research in this field has experienced a huge advance, with neural networks being 

used in a variety of applications. Hydrology is not an exception, and Lange and Sippel (2020) 

presented a review of key machine learning algorithms already used in that field including 

artificial neural networks (ANNs), convolutional neural networks (CNNs), support vector 

machines (SVMs), decision trees learning, random forest, and gradient boosting machine. 

Sit et al. (2020) also presented a review of deep learning applications in hydrology and 

water resources. Limiting the review to papers that must include some form of deep ANN 

technique in their methodology, and considering a period that starts in 2018 and ends in March 

2019, the authors analyzed 129 publications. From this set, they refer that the most used neural 

network architectures are convolutional neural networks (CNNs), Generative adversarial 

networks (GANs), recurrent neural networks (RNNs), long short-term memory (LSTM) 

networks, gated recurrent unit (GRU) networks, nonlinear autoregressive (NAR) models, 

Elman network (ENN), autoencoders (AEs), restricted Boltzmann machines (RBM), deep 

belief networks (DBNs), extreme learning machines (ELMs), and deep Q networks (DQNs). 

Although the impressive development that has been seen in the field of deep learning in 

the last few years and the significative number of studies proving the ability of these techniques 

to model and predict hydrological processes, climate change and earth systems, there are still 

skeptics concerning the application of this type of approach. However, as pointed out by Lange 
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and Sippel (2020), machine learning techniques are just one more tool available in the 

modelling process, with its main strengths being the achievement of higher accuracy, 

robustness, efficiency, computation cost, and overall model performance (Ardabili et al. 2020). 

Also, these techniques are not formulated to replace process-based modelling approaches, since 

they are only suitable for situations where machines are good at learning and when enough and 

appropriate data are available to teach the model (Lange and Sippel, 2020). In that sense, the 

modelling process can take a significative advantage from the combination of data-driven and 

process-based approaches, with the improvement of predictions using this hybrid modelling 

approach already demonstrated by several authors (Humphrey et al., 2016; Okkan et al., 2021; 

Dong et al. 2023). 

2.4 Case studies 

There were 4 different areas modelled in this study, namely, the western part of Iberian 

Peninsula, and the Guadiana, Ulla River and Maranhão watersheds (Figure 2.6). The definition 

of those domains is in accordance with the work developed on the behalf of several projects 

that were carried out during the period in which this thesis was developed. In the following 

sections a brief description of the modelled domains is presented. 

 

Figure 2.6 Studied domains. 

2.4.1 Western Iberian Peninsula 

The Western Iberian Peninsula domain was modelled on the behalf of INTERREG 

SUDOE AGUAMOD project. It was a research project in which the main goal was to promote 

the cooperation between managers and land users involved with water resources management 
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in Southwest Europe (Portugal, Spain, Andorra, and part of France) with the development, 

sharing and implementation of innovative methodologies. Because drought events are getting 

more and more common in Southwest Europe, AGUAMOD’s focus relied on low flow periods. 

However, a global analysis of the water needs and stocks using numerical models was 

performed in the entire domain considering wet and dry periods. 

Reflecting the ability of MOHID-Land to consider domains that do not need to be 

coincident with the delineation of watersheds, the modelling approach adopted to answer 

AGUAMOD’s purposes considered the division of the entire project’s area into 3 sub-domains, 

with each of them including several watersheds. Thus, considering Portugal’s geographical 

position, a special attention was given to the sub-domain where the country is contained. 

Defined as the Western Iberian Peninsula, the referred sub-domain included 19 river basin 

districts that were modelled in a single MOHID-Land implementation (Figure 2.6). 

The Western Iberian Peninsula sub-domain covers an area of 438 178 km2 (75% of the 

Iberian Peninsula) that comprises different climatic patterns. In the North, the climate is 

characterized by warm summers, dry in the West and without a dry season in the East. The 

South and Southwest have dry and hot summers, while the central and East parts are mainly 

characterized by an arid, steppe and cold climate. These differences in climatic patterns have a 

strong impact in the differences in flow regimes within the domain, with the South part 

presenting a higher risk of hydrological droughts. 

To prevent water scarcity problems in drier areas, namely, in the South of the Iberian 

Peninsula, water storage through the construction of reservoirs was promoted. Thus, in the 

studied domain a total of 1113 reservoirs were identified, with 65% of them being placed in the 

South. Those 65% of the reservoirs in the South also correspond to about 64% of the total 

storage capacity in the entire domain. However, the adoption of these types of strategies alters 

the natural river flow regimes, with the modelling approach of these areas being hampered 

because of the anthropogenic modifications caused by those infrastructures. 

Besides that, the simulation of such a large and diversified area also implies the 

generalization of several properties and characteristics of the domain to simplify the modelling 

approach. However, that generalization can make it difficult to correctly represent the modelled 

domain, interfering in the accurate representation of the processes that take place in different 

areas of the domain. 

The Western Iberian Peninsula was here modelled considering the natural regime flow 

(no reservoirs were included) and using the MOHID-Land model. The discretization of the 

modelled domain in the surface plane comprehended a grid with a resolution of 0.045° in both 
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directions (Figure 2.7). The vertical discretization included a grid composed of six layers, with 

a maximum depth of 30 m. 

 

Figure 2.7 Discretization of Western Iberian Peninsula domain. 

2.4.2 Guadiana 

The modelling of Guadiana watershed (Figure 2.6) was also performed within the scope 

of the AGUAMOD project. If the modelling of Western Iberian Peninsula was performed for 

natural regime flow and including different and independent watersheds in the same 

application, the modelling work carried out in Guadiana watershed was focused on this single 

watershed and considered one scenario with reservoirs and other scenario without the presence 

of reservoirs. 

The Guadiana watershed is one of the four watersheds divided between Portugal and 

Spain, with Spain holding 83% of the area and Portugal the remaining 17%. According to the 

Portuguese and Spanish Management River Basin Plans, Guadiana watershed has a 

regularization index of 266 in Portugal and 248 in Spain, being both the highest values found 

within the watersheds located in the western of the Iberian Peninsula. Combining the areas that 

lie on both countries, Guadiana watershed presents the highest storage capacity (14 213 hm3, 

25%) in the Western Iberian Peninsula. However, with its East part included in an area 

classified as arid, steppe and cold climate, and the West part characterized by dry and hot 

summers, its annual surface flow is the sixth lower value among the watersheds comprehended 

in the west Iberian Peninsula. 
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Guadiana watershed was modelled with the MOHID-Land model. This implementation 

followed the one made for the Western Iberian Peninsula domain. Thus, Guadiana watershed 

was modelled considering a grid in the surface plane with a resolution of 0.045° in West-East 

and North-South directions and a vertical grid with 7 layers and a maximum soil depth of 30 

m. 

To consider the modification of the flow regime caused by reservoirs’ operations, 39 

reservoirs with a storage capacity larger than 10 hm3 were considered. Of those, 11 reservoirs 

were present since the beginning of the simulation, while the remaining 28 were added during 

the simulation according to their construction year. Also, only 31 of the 39 reservoirs had 

outflow data available. For those 31 reservoirs the observed outflow values were imposed on 

the simulation while for the remaining the outflow was estimated according to one of the 

operation curves available in MOHID-Land model. 

2.4.3 Maranhão 

The OMeGA (optimization of reservoirs’ management, Otimização da Gestão de 

Albufeiras in Portuguese) project was developed under a scenario of an increasing use of water 

resources for different purposes. Considering that agricultural activity is the major actor in 

water consumption worldwide, including Portugal, and with the Portuguese rainfall regime 

demonstrating a higher uncertainty in its intra and interannual variability, the need to improve 

the efficiency of water resources management is obvious. The OMeGA project’s main goal was 

to develop a tool that supports the management of the water stored in hydro-agricultural 

reservoirs in real-time and considering the quantity and the quality of that resource. This tool 

integrated observed data, such as information collected from meteorological stations and from 

satellite images, and several types of models to provide the system with the capacity of 

predicting near-future conditions. 

The Sorraia River watershed, where Maranhão and Montargil reservoirs are included, 

was adopted as the case study. In this area a meteorological high-resolution model was 

implemented to predict future meteorological conditions and a hydrodynamic model (MOHID-

Water) was applied to Montargil and Maranhão reservoirs to simulate the hydrodynamics and 

the biogeochemical processes in the reservoirs. The reservoirs’ inflows were predicted using 

the MOHID-Land model, which was implemented to Maranhão and Montargil watersheds. 

The Maranhão watershed is part of the Tagus watershed, being placed on its left margin 

and with part of its delineation corresponding to the border of Tagus and Guadiana watersheds 

(Figure 2.6). It is a small watershed with about 2300 km2 and is characterized by a 
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Mediterranean hot-summer climate. The watershed presents a significative problem of lack of 

data. The data publicly available for Maranhão reservoir includes only total water 

consumptions and discharges with a monthly timestep. The reservoir’s level and stored volume 

data have a daily timestep. Only four hydrometric stations are located in the watershed. From 

those, two drain small areas (9%) of the watershed, which makes them unrepresentative. The 

other two drain areas between 30% and 40% of the Maranhão watershed, but one of them only 

has data between 1985 and 1990. Therefore, only one hydrometric station (Ponte Vila Formosa) 

remains adequate to deduce the streamflow in Maranhão watershed. For that, the sub-basin 

drained by that station was the target of the modelling task and the results obtained there were 

generalized to the Maranhão watershed.  

Thus, for the purpose of this work, the Maranhão watershed and the sub-basin that drains 

to the hydrometric station were modelled using MOHID-Land model and neural networks. In 

the former case, both watersheds were simulated using the same implementation. This 

implementation considered a surface plane grid with a resolution of 0.006°C (~600 m) in both 

longitudinal and latitudinal directions and the vertical direction, i.e., the porous media, was 

discretized using a grid with 6 layers, with a maximum soil depth of 5 m (Figure 2.8). 

 

Figure 2.8 Discretization of Maranhão watershed. 

Considering the neural network approach, Ponte Vila Formosa sub-basin and Maranhão 

watershed streamflow were estimated based on the same neural network. While this neural 

network was developed and trained with data of Ponte Vila Formosa hydrometric station and 

the respective drained watershed, its adequacy to represent the flow regime of Maranhão 

watershed by just replacing the input variables was investigated. 



28 

 

A convolutional neural network (CNN) was used in this case study, with its structure 

being composed by three 1D convolutional layers with each being followed by a 

MaxPooling1D layer and ending with a dense layer (Figure 2.9). As input variable only 

precipitation was considered, but it was accumulated in 1, 2, 3, 4, 5, and 10 days and delayed 

by 1, 2, 3, 4, 5, 6, and 7 days. 

 

Figure 2.9 CNN structure for Maranhão watershed. 

2.4.4 Ulla River watershed 

The Ulla River watershed was modelled as one of the four case studies adopted in this 

work on behalf of HazRunoff project. 

The HazRunoff project was developed to integrate sensing and modelling technologies 

to improve early warning and detection systems, follow-up, and early response to different or 

combined types of flooding and hazmat pollution in inland and transitional waters. The project 

aimed to provide a comprehensive framework to reach the proposed goal. That framework 

combined different technologies, namely, in-situ sensing technologies, airborne and satellite 

remote sensing, and high-resolution modelling. It also included operational tools for situational 

awareness and crisis management and improved contingency planning and adapted protocols 

for response and communication. The approach designed in this project is focused on the 

preparation and response to civil health impacts and on the evaluation of environmental 

damage. 

The Ulla River is located in the Galicia Region, Northwest Spain (Figure 2.6). Its 

watershed drains an area of 2803 km2 and the river’s mouth is located in Ria de Arosa. The 

region is classified with a Mediterranean warm summer climate, which is characterized by 

warm and dry summers with the average monthly temperature of the warmest month not going 

above 22°C. 

There are three reservoirs in Ulla River watershed, namely, Portodemouros, Bandariz and 

Touro. Portodemouros is the most upstream reservoir, followed by Bandariz and with the 

system ending with Touro, the most downstream reservoir. Portodemouros is a high storage 
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capacity reservoir while Bandariz and Touro are dams of run-of-the-river type, characterized 

by low storage capacities. The three reservoirs work together for energy production purposes, 

while Portodemouros is also used for flood control.  

The Ulla River watershed was modelled with MOHID-Land model. This implementation 

considered a surface plane grid with a resolution of 0.005° (~500 m) in longitudinal and 

latitudinal directions (Figure 2.10). The vertical grid, corresponding to the discretization of the 

porous media, comprehended 6 layers with a maximum soil depth of 5.0 m (Figure 2.10). 

 

Figure 2.10 Discretization of Ulla River watershed. 

MOHID-Land model was first calibrated and validated for the natural regime flow 

considering hydrometric stations not influenced by the presence of the reservoirs. Then, the 

hydrological model was complemented by a neural network developed with the goal of 

estimating Portodemouros outflow. In this hybrid approach the neural network elected to 

predict Portodemouros outflow was of convolutional long short-term memory (CLSTM) type, 

and its structure comprises three sets of convolutional 1D plus MaxPooling layers, followed 

by a long short-term memory (LSTM) layer and a dense layer as output (Figure 2.11). The 

performance of the resulting coupled system was then evaluated in those stations downstream 

of the reservoirs. 

 



30 

 

 

Figure 2.11 CLSTM structure for Portodemouros reservoir. 
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Abstract 

Hydrological modeling is nowadays critical for evaluating the status, past trends, and 

future perspectives of water availability at the global, regional, and local scales. The Iberian 

Peninsula is registering more frequent and severe droughts and water scarcity caused not only 

by extreme meteorological events, but also by increased demand for water for urban, industrial, 

and agricultural supplies. Better simulation models are thus needed for accurately quantifying 

the availability of local water resources. In this study, the natural flow regime in different 

watersheds of the Iberian Peninsula was simulated using the process-based, fully distributed, 

MOHID-Land model from 1979 to 2013. Streamflow results were compared with 

measurements at 73 hydrometric stations not influenced by reservoirs, and with the data 

available in the management plans of each hydrographic region. The results showed a high 

dispersion of the goodness-of-fit indicators, with the coefficient of determination (R2) ranging 

between 0 and 0.91, and the modeling efficiency (NSE) being higher than 0.35 at only 22 

(calibration) and 28 (validation) hydrometric stations. Considering the scale of application, 

results were acceptable but evidenced the difficulties in simulating streamflow in watersheds 

using a coarse resolution. As such, this paper further deals with the difficulties and challenges 

of the adopted modeling approach. Nevertheless, this study constitutes a further step towards 

the more accurate assessment of water resources availability at the Iberian Peninsula scale 

using process-based modeling. 

Keywords: Iberian Peninsula; MOHID-Land; natural flow; regional modeling; 

transnational watersheds  
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3.1 Introduction 

According to the Intergovernmental Panel on Climate Change (IPCC) report (Barros et 

al., 2014), climate change is predicted to continue impacting the hydrology of river basins in 

Europe, particularly hydroclimatic extreme events. There is no generalized consensus about 

the areas that will be affected by the increase in the 100-year return period of discharge. Some 

studies project an increase in Continental Europe while others expect a decrease in parts of 

Northern and Southern Europe by 2100 (Dankers and Feyen, 2008; Rojas et al., 2012). Studies 

more focused on individual catchments indicate an increase in extreme discharge in regions 

such as Finland (Veijalainen et al, 2010), France (Quintana-Seguí et al., 2011; Chauveau et al., 

2013), and the Rhine basin (Görgen et al, 2010; Te Linde et al., 2010). On the other hand, 

meteorological droughts are to occur with greater intensity and for longer periods in Southern 

Europe. It is also highlighted that even in regions where an increase in summer precipitation is 

predicted, soil moisture may become more limited and hydrological droughts more severe 

because of the increasing evapotranspiration (Wong et al., 2011). More recently, the updated 

IPCC report (Shukla et al., 2019) projected an increase in air temperature over the 

Mediterranean from 1.5°C to 2°C compared to the present (Masson-Delmotte et al., 2018). This 

temperature rise is intimately related to the increase in the drought risk in that area and the 

intensification of the hydrological cycle, facilitating more vapor in the atmosphere, which 

affects regional extreme precipitation events and leads to amplification or weakening of future 

precipitation extremes (O’Gorman, 2015; Pfahl et al., 2017). 

Climate change projections, together with the evident rise in water needs for agricultural, 

industrial, urban, and rural population consumptions, are submitting surface and groundwater 

bodies to great pressures and causing water shortages throughout the world (Hoekstra et al., 

2012). Simulation models are thus key tools to improve water management at various scales, 

and to provide clarity and understanding on hydrological processes and their interaction in the 

studied domains, being also useful for scenario analysis and for exploring possible future trends 

(Linsley, 1976). 

A more detailed look at the Iberian Peninsula shows that the impact of climate change is 

already being noticed in this region, with a noticeable increase in air temperatures combined 

with a decrease in precipitation (García-Ruiz et al., 2011). Included in the Mediterranean basin, 

this area has long been identified as a regional climate change hotspot (Diffenbaugh and Giorgi, 

2012). Lorenzo-Lacruz et al. (2012) found a generalized and significant annual and seasonal 

trend for streamflow, which would decrease in most parts of the Iberian Peninsula during winter 
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and spring and increase in summer and autumn seasons. Further, climate change, reforestation, 

and increased water demand were pointed out as responsible for this trend. The increase in 

streamflow was then related to water management strategies that were developed to avoid water 

scarcity during dry seasons, but which were contributing to the decrease in streamflow during 

the wet seasons. This study evidences the need for better management of Iberian water 

resources, shared by Portugal and Spain, considering the increasing scarcity that is being 

observed in already highly human-modified basins. 

For coordinated management and a fair access to water resources in the transnational 

basins of the Iberian Peninsula (Minho, Lima, Douro, Tejo, and Guadiana), Portugal and Spain 

signed the Albufeira Convention in 1998, which was later revised in 2008. This agreement, 

approved in the Portuguese (Resolução da Assembleia da República n. 66/99, 1999) and 

Spanish legislation (Convenio Sobre Cooperación Para la Protección y el Aprovechamiento 

Sostenible de las Aguas de las Cuencas Hidrográficas Hispanoportuguesas, 2000), primarily 

established the scope of application of the convention, the type of information that should be 

shared between the two countries, the mechanisms for sharing it, and the communication, alert, 

and emergency systems to be used. Furthermore, the Albufeira Convention defined the 

guidelines regarding the behavior of the two countries in exceptional situations, namely, in case 

of accidental pollution events, floods, droughts, and scarcity of resources. The convention 

further promoted the protection and the sustainable use of water resources, with a focus on the 

prevention and control of pollution, water quality, water use, and streamflow values that must 

be assured in strategic points located along the borders of the two countries. 

Following Brito et al. (2015) and Campuzano et al. (2016) this study aims to simulate the 

flow regime in different watersheds of the Iberian Peninsula using the MOHID-Land model 

(Trancoso et al., 2009; Canuto et al., 2019) for better quantification of regional water resources. 

This fully distributed, physically based, three-dimensional model considers the interactions 

between multiple media (atmosphere–surface–soil), with fundamental processes being 

formulated at the grid cell level, i.e., at the model’s most basic component. The fluxes in each 

of these basic components (each cell) are after considered by its neighbors’ cells, contributing 

to the dynamics of the entire modeled domain. Thus, fully distributed models such as MOHID-

Land, with a high capacity to describe in detail the spatial variation of characteristics in the 

modeled domain, are considered to provide improved estimations of streamflow when 

compared with lumped and semi-distributed models. The former is not able to consider the 

spatial variation inside a watershed, while the latter can only assume such variation by dividing 

the studied domain into sub-basins. 
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Brito et al. (2015) and Campuzano et al. (2016) aimed to quantify streamflow in 

transnational Iberian catchments using coarse-scale implementations of the MOHID-Land 

model but were never able to quantify the prediction errors associated with the modeling 

performance through a comprehensive calibration/validation process of the modeling tool. As 

shown in Canuto et al. (2019) whose study focused only on the Guadiana catchment, this task 

can be quite laborious as the Iberian watersheds are highly changed by anthropogenic activities. 

As such, by extending the work in Canuto et al. (2019) to other transnational Iberian 

catchments, this study aims now to simulate the natural flow regime of the rivers in different 

watersheds of the Iberian Peninsula from 1979 to 2014. The estimation of the natural flow 

regime allows a better understanding and assessment of the impacts caused by changes made 

in the watersheds. On the other hand, the non-consideration of some processes, such as 

reservoirs management and water treatment plants discharge, helps reduce the sources of 

uncertainty related to the processes themselves and the input variables. Thus, in this 

application, reservoirs were not considered. Streamflow predictions were calibrated/validated 

through the comparison with measurements taken in hydrometric stations not influenced by 

this type of structure. Additionally, data available in the management plans of each 

hydrographic region was also used for model calibration/validation purposes. Hence, this paper 

aims: (i) to simulate streamflow in the Iberian transnational catchments using the MOHID-

Land model; (ii) to quantify the prediction errors associated with the coarse-scale approach 

adopted in previous studies (Brito et al., 2015; Campuzano et al., 2016; Canuto et al., 2019); 

(iii) to discuss the limitations of the modeling approach and the challenges that still need to be 

faced for improving the hydrological model when implemented at such a coarse scale. 

3.2 Materials and Methods 

3.2.1 Description of the Studied Area 

The Iberian Peninsula, in southwest Europe, covers a total area of 583 832 km2, mainly 

occupied by Portugal (89 060 km2) and Spain (492 175 km2) (Ferreira, 2000; Instituto Nacional 

de Estadística, 2006). The Peninsula is divided into 24 river basin districts, with these being 

defined as “the area of land and sea, made up of one or more neighboring river basins together 

with their associated groundwaters and coastal waters” and constituting the main units for 

management of river basins according to the EU directive Establishing a framework for 

Community action in the field of water policy (European Commission, 2000). 

In this application, the study area covered a total area of 438 178 km2 (75% of the Iberian 

Peninsula), comprehending 19 river basin districts located in the west and north part of the 
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Iberian Peninsula (Figure 3.1a). The main river basins were Douro (98 107 km2), Tagus (86 283 

km2), Guadiana (78 234 km2), and Guadalquivir (57 228 km2), with the first three being 

transnational basins divided between Portugal and Spain (Table 3.1). According to the Koppen 

climate characterization, the selected region is mainly characterized by four climate units 

(Figure 3.1b). In the north, the climate is temperate, with warm and dry summers in the 

northwest (Csb), and warm but not dry summers in the northeast (Cfb). The south and 

southwest regions have a temperate climate characterized by dry and hot summers (Csa), while 

the eastern part is characterized by an arid, steppe, and cold climate (BSk). The elevation of 

the study area ranges between 5 m and 3332 m (Figure 3.1a), with the highest value located in 

Sierra Nevada, Spain. In Portugal, the highest point is at an altitude of about 1990 m in Serra 

da Estrela. The more representative soil reference groups are Cambisols (43%), Regosols 

(22%), Leptosols (11%), Luvisols (10%), and Fluvisols (5%) (Nachtergaele et al., 2009). The 

land use is mainly characterized by non-irrigated arable land (18.7%), broad-leaved forest 

(11.1%), agroforestry areas (7.4%), sclerophyllous vegetation (6.9%), and transitional 

woodland-shrub (6.9%) (CLC, n.d.). 
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Table 3.1 Characteristics of the studied river basin districts (Area; number of reservoirs and respective total capacity, C total; total storage capacity, Cstorage; natural surface flow; 

regularization index, RI). 

River Basin District Country 
Area 

(km2) 

Number of reservoirs with Ctotal 
Cstorage 

(hm3) 

Surface flow 

(hm3/year) 

RI 

(%) 
Source 

≤10 hm3 
[10 hm3; 

1000 hm3] 
>1000 hm3 

Western Cantabrian Spain 17 433 29 7 0 518 13 243 4 CEDEX, 2020 

Eastern Cantabrian Spain 5806 30 3 0 79 5056 2 CEDEX, 2020 

Cávado, Ave and Leça Portugal 3585 4 6 0 1194 3607 33 
APA-RH2, 

2016 

Andalusia Mediterranean Basins Spain 17 952 31 14 0 1174 2813 42 CEDEX, 2020 

Douro (PT) Portugal 19 218 31 22 0 2681 8010 33 
APA-RH3, 

2016 

Duero (ES) Spain 78 889 53 27 2 7507 11 438 66 CEDEX, 2020 

Galician Coast Spain 12 991 14 10 0 684 11 912 6 CEDEX, 2020 

Guadalete and Barbate Spain 5948 15 7 0 1651 1097 151 CEDEX, 2020 

Guadalquivir Spain 57 228 59 58 0 8113 6921 117 CEDEX, 2020 

Guadiana (PT) Portugal 11 534 14 11 1 4715 1771 266 
APA-RH7, 

2016 

Guadiana (ES) Spain 66 700 138 32 2 9498 3829 248 CEDEX, 2020 

Minho and Lima (PT) Portugal 2464 1 3 0 406 3275 3 
APA-RH1, 

2016 

Miño-Sil (ES) Spain 17 581 30 26 0 3030 11 823 26 CEDEX, 2020 

Algarve Rivers Portugal 5511 0 4 0 268 622 43 
APA-RH8, 

2016 

Sado and Mira Portugal 12 149 6 9 0 1148 1159 99 
APA-RH6, 

2016 

Tagus and West Rivers (PT) Portugal 30 502 25 16 1 2789 6710 42 
APA-RH5, 

2016 

Tagus (ES) Spain 55 781 247 45 3 11 056 8368 132 CEDEX, 2020 

Tinto, Odiel and Piedras Spain 4762 48 9 0 229 787 29 CEDEX, 2020 

Vouga, Mondego and Lis Portugal 12 144 16 4 0 875 6826 13 
APA-RH4, 

2016 
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Figure 3.1 Study area: (a) Watershed’s identification and digital terrain model; (b) Koppen climate 

characterization according to Beck et al. (2018). 

The studied domain further comprises a total of 1113 reservoirs, 71% of these with a total 

capacity lower than 10 hm3, 28% between 10 and 1000 hm3, and 1% higher than 1000 hm3 

(MITERD, n.d.; SNIRH-Albufeiras, n.d.). As presented in Table 3.1, the river basin districts 

with more reservoirs are the Spanish Tagus (295 reservoirs, storage capacity of 11 056 hm3), 

Spanish Guadiana (172 reservoirs, storage capacity of 9498 hm3), Guadalquivir (117 reservoirs, 

storage capacity of 8113 hm3), Spanish Douro (82 reservoirs, storage capacity of 7507 hm3), 

and Tinto, Odiel and Piedras (57 reservoirs, storage capacity of 229 hm3). From this set, only 

Tinto, Odiel, and Piedras are not included in the top five basin districts with the highest storage 

capacity, which is attributed to the Portuguese Guadiana (4715 hm3) instead. On the other hand, 

the impact of reservoirs does not only depend on the storage capacity installed in a river basin 
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district, but it is intimately related with the ratio between the surface flow and the storage 

capacity, which is here represented by the regularization index (RI) computed as follows: 

𝑅𝐼(%) =
𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑙𝑜𝑤

𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒
× 100 (Eq. 3.1) 

The surface flow values presented in Table 3.1 correspond to the natural flow regime in 

each basin district. These values were obtained from the Portuguese and Spanish river basin 

management plans. River basin management plans are the reports developed under the 

implementation of the Water Framework Directive of the European Union (European 

Commission, 2000) and aim to characterize the river basin district, diagnose the state of its 

water bodies in terms of water quantity and quality, and propose solutions to improve that state 

when necessary. In these sources, for both countries, the natural flows were estimated using the 

Témez model (Témez, 1977) for the Portuguese river basin districts and the SIMulación 

Precipitación-Aportación (SIMPA) model (Monreal et al., 1996; Monreal et al., 1999; Álvarez 

et al., 2004) for the Spanish territory. This latter approach was developed by CEDEX and is 

also based on the Témez model. Considering the regularization index, the river basin districts 

where the storage capacity has more impact on streamflow are the Portuguese Guadiana 

(266%), Spanish Guadiana (248%), Guadalete and Barbate (151%), Spanish Tagus (132%), 

and Guadalquivir (117%), with all having a storage capacity higher than the volume of water 

naturally produced in an average year. The alterations in the natural flow regime of these rivers 

caused by the presence of these dams were already reported in different studies (Lorenzo-

Lacruz et al., 2012; Vicente-Serrano et al., 2016; Marcinkowski and Grygoruk, 2017). Aside 

from the modifications in the flow regimes caused by dams, the transfer of water between Tagus 

and Segura watersheds (not considered in the modeling approach) also affects the natural 

regime flow in both watersheds (Confederación Hidrográfica del Tajo, n.d.), modifying the 

hydrological cycle in Tagus headwaters from where water is transferred (Lorenzo-Lacruz et al., 

2010). 

3.2.2 Model Description 

MOHID-Land (Trancoso et al., 2009; Canuto et al., 2019) is a fully distributed, 

physically based model, which uses mass and momentum conservation equations to simulate 

water movement between four main compartments (atmosphere, porous media, soil surface, 

and river network) using a finite volume approach. To avoid instability problems and save 

computational time, the model time step is variable, acquiring higher values during dry seasons, 

and lower values in wet periods when water fluxes increase. 
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The atmosphere processes are not explicitly simulated, but this compartment allows the 

input of atmospheric data, which can be space and time-variant, as surface boundary 

conditions. The simulated domain is represented by a regular grid in the surface plane, with a 

user-defined grid size and cell resolution. The soil discretization (three-dimensional) considers 

this same grid in the horizontal plane and a division by layers with variable thickness in the 

vertical direction following a cartesian coordinate system. The river network is defined by a 

one-dimensional (1D) domain, by connecting the surface cell centers (nodes) with lower 

altitude in the digital terrain model. 

The free surface flow is computed according to the Saint–Venant equation in its 

conservative form and considering the advection, pressure, and friction forces: 

𝜕𝑄𝑢
𝜕𝑡

+ 𝑣𝑣
𝜕𝑄𝑢
𝜕𝑥𝑣

= −𝑔𝐴(
𝜕𝐻

𝜕𝑥𝑖
+
|𝑄|𝑄𝑖𝑛

2

𝐴𝑣2𝑅ℎ
4/3

) (Eq. 3.2) 

where Q is the water flow (L3T−1), A is the cross-sectional flow area (L2), g is the gravitational 

acceleration (LT−2), v is the flow velocity (LT−1), H is the hydraulic head (L), n is the Manning 

coefficient (TL−1/3), Rh is the hydraulic radius (L), xi represents the xyz directions (−) and the 

subscripts u and v denote flow directions. This equation is solved for one direction (1D domain) 

in the river network and for two directions (2D domain), coinciding with the directions of the 

horizontal grid, in cells without drainage network (overland flow). In the boundary of the 

drainage network and overland flow, the water exchanges are calculated according to a 

kinematic approach, neglecting bottom friction. 

In the porous media, the variable-saturated water flow is computed using the Richards’ 

equation in three directions (3D domain): 

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑥𝑖
[𝐾(𝜃) (

𝜕ℎ

𝜕𝑥𝑖
+

𝑑

𝜕𝑥𝑖
)] − 𝑆(ℎ) (Eq. 3.3) 

where θ is the volumetric water content (L3L−3), xi represents the xyz directions (−), K is the 

hydraulic conductivity (LT−1), and S corresponds to the sink term, representing the root water 

uptake (L3L−3T−1). The soil hydraulic properties are defined following the van Genuchten 

Mualem functional relationships (Mualem, 1976; Van Genuchten, 1980). The water exchanges 

between the porous media and the river network are driven by the pressure differences in the 

interface of these mediums. 

The crop evapotranspiration rates (ETc) are obtained from the product of the reference 

evapotranspiration (ETo) rates computed according to the FAO Penman–Monteith method and 

a crop coefficient (Kc) (Allen et al., 1998). ETc rates are then divided into potential soil 

evaporation (Ep, LT−1) and crop transpiration (Tp, LT−1) based on Ritchie (1972). The Tp rates 
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define the maximum values of the sink term for root water uptake in the Richards equation. 

These may be reduced due to the presence of rootzone stressors following a macroscopic 

approach proposed by Feddes et al. (1978). On the other hand, the actual soil evaporation (Ea, 

LT−1) is estimated by imposing a pressure threshold value to the potential evaporation values 

(ASCE, 1996). The connection between the surface runoff and the porous media is based on 

infiltration and exfiltration processes (Brito et al., 2017). The infiltration rate can be simulated 

according to three approaches, namely, Darcy’s law, the Green and Ampt method (Green and 

Ampt, 2011), or a modified version of the SCS curve number (SCS-CN) method (Soil 

Conservation Service, U.S., 1972). In the SCS-CN case, the first step comprehends the 

estimation of the surface runoff, with the remaining amount of water infiltrating the soil; 

however, when the soil has saturated, a correction in the infiltration rate (and consequently in 

the runoff flow) is made to respect the physical limitations of the system. 

More detailed information on the MOHID-Land model can be found in Canuto et al. 

(2019), Oliveira et al. (2020), and Ramos et al. (2017). 

3.2.3 Model Setup 

The MOHID-Land model was implemented in the studied area using a constant 

horizontally spaced grid, with a resolution of 0.045° (~5 km) in the longitudinal and latitudinal 

axis (180 rows × 200 columns; origin on 35.85°N and 10°W). The grid covered a domain that 

included all watersheds flowing to the Atlantic Ocean (West) and the Cantabrian Sea (North). 

Elevation data were interpolated from the Shuttle Radar Topography Mission of NASA 

(NASA-SRTM, n.d.), with an approximate resolution of 90 m. After burning in the main river 

lines and removing the depressed cells of the interpolated digital terrain model (DTM), the 

elevation values varied between −21 and 3093 m (Figure 3.2a). 

The river network was delineated based on the interpolated DTM, considering the 

steepest slope in all 8 directions of each cell, by connecting the cell centers (nodes) with the 

lowest height. The river cross-sections were defined according to the Strahler order of each 

reach (Strahler, 1952; Strahler, 1957). A trapezoidal geometry was adopted for all cross-

sections, with the height and top and bottom widths being set according to Canuto et al. (2019). 

The soil data were interpolated from the rasterized Harmonized World Soil Database 

(Nachtergaele et al., 2009), with an original resolution of 30 arc-second (~1 km). The main soil 

units identified in the model domain were Calcic Cambisol (28%), Calcaric Regosol (17%), 

Humic Cambisol (12%), Lithosol (7%), Calcaric Fluvisol (5%), and Albic Luvisol (5%) 

(Figure 3.2d). In-depth, the soil was defined by three horizons comprehending six grid layers. 
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The surface horizon corresponded to a layer of 0.3 m thickness, the middle horizon was 

composed of a layer with 0.5 m thickness, and the bottom horizon comprehended four layers 

with depth increasing thicknesses of 0.42, 0.50, 10.0, and 10.0 m. For each soil horizon, the 

Mualem–van Genuchten model parameters (Mualem, 1976) were obtained from the soil texture 

classes described in the Harmonized Soil Database using the HYPRES class pedotransfer 

functions (Wösten et al., 1999). The soil’s maximum and minimum depth were defined as 30 

and 0.3 m, respectively, with the soil depth in each cell being adjusted according to its slope. 

The initial soil condition was set as 80% saturated (from the bottom to the surface) and in the 

unsaturated zone water content was set to field capacity. 
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Figure 3.2 Characterization of the modeled domain: (a) digital terrain model, delineated drainage network, and 

localization of hydrometric stations not influenced by reservoirs with a total capacity larger than 10 hm3; (b) 

surface Manning coefficient; (c) curve number values for the SCS CN method; (d) major soil units; (e) 

vegetation classes according to the MOHID database; (f) crop coefficients. 

The land use in the studied domain was obtained from the CORINE Land Cover (CLC) 

2012, with a resolution of 100 m (CLC, n.d.). The information of the CLC map was interpolated 

to the horizontal grid by assigning to each CLC class: (i) a Manning coefficient according to 

van der Sande et al., 2003; (ii) a corresponding vegetation class from the MOHID-Land 

database (Figure 3.2e); an annual Kc value following Canuto et al. (2019) (Figure 3.2f). The 
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hydrologic soil groups were defined by combining land use and soil texture data to derive the 

respective CN values following the Soil Conservation Service (Soil Conservation Service, 

U.S., 1972) tables (Figure 3.2c). 

The meteorological data were obtained from the SAFRAN model, which was developed, 

calibrated, and validated by Quintana-Seguí et al. (2017). SAFRAN is a meteorological 

analysis system based on an optimal algorithm that combines observations and a first guess, 

such as the outputs of a global meteorological model. The resulting dataset is in gridded format, 

with a resolution of 5 km, and includes hourly data of precipitation, surface air temperature, 

wind speed, relative humidity, and solar radiation from 1979 to 2014. The information of these 

meteorological properties was interpolated to the MOHID-Land grid following a triangular 

method. 

3.2.4 Model Evaluation 

Model performance was evaluated by comparing simulated and measured monthly 

streamflow data at 73 stations not influenced by reservoirs operation (Figure 3.2a), i.e., only 

hydrometric stations under natural flow regime were considered. The simulation period was 

from 1985 to 2013 (35 years). The measured dataset was obtained from MITERD, n.d., and 

SNIRH (SNIRH-Monitorização, n.d.) for the stations in Spain and Portugal, respectively. Table 

3A.1, in Appendix 3A, presents the number of records as well as the minimum, maximum, 

mean, and standard deviation values of the measured monthly streamflow in each station. The 

calibration period was defined from January 1985 to December 1999, while the validation 

period went from January 2000 to December 2013. A warm-up period was also considered 

from September 1979 to December 1984. The calibration procedure considered the 

modification of selected model parameters, one at a time, within reasonable ranges, to 

minimize deviations between simulated and observed streamflow in the selected hydrometric 

stations. Following Oliveira et al. (2020), who identified the most sensitive parameters 

affecting simulations of streamflow in MOHID-Land, the modified parameters were: the 

vertical saturated hydraulic conductivity; the multiplying factor relating the vertical and 

horizontal saturated hydraulic conductivities (fh); the surface and channel Manning 

coefficients; the crop coefficients; the dimensions (height and top and bottom widths) of the 

river cross-sections. The calibrated parameters were then used for validation of streamflow 

predictions, with the deviation between model simulations and observed data being assessed 

again at the same hydrometric stations using the validation dataset. 
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Model performance was evaluated using four statistical parameters, namely, the 

coefficient of determination (R2), the percent bias (PBIAS), the root mean square error-

observation standard deviation ratio (RSR), and the Nash–Sutcliffe model efficiency (NSE), 

which are computed, respectively, as follows: 

𝑅2 =

[
 
 
 

∑ (𝑄𝑖
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 (Eq. 3.4) 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑄𝑖

𝑜𝑏𝑠 − 𝑄𝑖
𝑠𝑖𝑚)𝑝

𝑖=1

∑ 𝑄𝑖
𝑜𝑏𝑠𝑝
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× 100 (Eq. 3.5) 

𝑅𝑆𝑅 =
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 (Eq. 3.6) 
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 (Eq. 3.7) 

where Qi
obs and Qi

sim are the observed and simulated flow on day i, respectively, Qmean
obs and 

Qmean
sim are the observed and simulated mean flow for the analyzed period, respectively, and p 

is the total number of days in this period. When NSE > 0.5, RSR ≤ 0.7, PBIAS ± 25%, and R2 

> 0.5 the results of the modelled streamflow are considered satisfactory (Moriasi et al., 2007). 

Finally, model results were also compared with the official values available in Portuguese 

river basin management plans and in a report produced by Centro de Estudios y 

Experimentación de Obras Públicas (CEDEX) in the scope of Spanish river basin management 

plans (Table 3.1). This type of validation allows the assessment of the general values of 

streamflow obtained by watershed instead of considering only the headwater areas defined by 

the hydrometric stations presented before; however, it is important to denote that the values 

presented in the river basin management plans are also results of models and, consequently, 

they are also subjected to uncertainty, but in the end, they constitute official information. The 

values available in the river basin management plans and used in this study for comparison 

with model results were the average annual precipitation and the average annual natural surface 

runoff in each river basin district. The corresponding difference, in percentage, between the 

MOHID-Land modeled and official results were computed as follows: 

∆(%) =
𝑉𝑚𝑜𝑑𝑒𝑙 − 𝑉𝑜𝑓𝑓𝑖𝑐𝑖𝑎𝑙

𝑉𝑚𝑜𝑑𝑒𝑙
× 100 (Eq. 3.8) 
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where Vmodel and Vofficial are the modeled and official average annual values of 

precipitation/surface runoff, respectively, and ∆ is the difference between these values. 

3.3 Results and Discussion 

3.3.1 Model Parametrization 

The best fit between simulated and observed streamflow values was obtained for a 

simulation in which the Manning coefficient ranged in the different soil units from 0.02 to 

0.298 s m−1/3 (Figure 3.2b), and the annual Kc value for the different crops varied from 0.15 to 

1.02 (Figure 3.2f). The curve number was set to values between 68 and 80 (Figure 3.2d), with 

these values not having a significant impact on the streamflow simulation, as demonstrated by 

Oliveira et al. (2020). The multiplying factor fh was set to 10. The soil hydraulic parameters 

were adjusted to the values presented in Table 3B.1 of Appendix 3B, with the saturated water 

content (θs), the residual water content (θr), the empirical shape parameters α and η, and the 

vertical saturated hydraulic conductivity (Ks) ranging between 0.35 and 0.766 m3 m−3, 0.01 and 

0.025 m3 m−3, 0.198 and 3.83 m−1, 1.086 and 1.377, and 9.26×10−7 and 6.94×10−6 m s−1, 

respectively. The connectivity/tortuosity parameter (L, m) adopted the value 0.5 as proposed 

by Mualem (1976). A summary of the ranges for the calibrated parameters is presented in Table 

3.2. Finally, the calibrated dimensions for the river cross-sections were defined as presented in 

Table 3.3. The calibrated values of the Manning coefficient, Kc, CN, fh, and the dimensions of 

the river cross-sections were thus in agreement with those used in Canuto et al. (2019), and 

Oliveira et al. (2020), for simulating streamflow in different catchments of the Iberian 

Peninsula. The soil hydraulic parameters were also in the range of those proposed by Ramos et 

al. (2013) for the different texture classes of soils in Portugal. 

Table 3.2 Summary of calibrated parameters. 

Parameter Minimum value Maximum value 

n (s m−1/3) 0.02 0.298 

Kc (−) 0.15 1.02 

CN (−) 68 80 

fh (−) 10 

θs (m3 m−3) 0.35 0.766 

θr (m3 m−3) 0.01 0.025 

α (m−1) 0.198 3.83 

η (−) 1.086 1.377 

Ks (m s−1) 9.26×10-7 6.94×10-6 

L (m) 0.5 

 

Table 3.3 River cross-sections dimensions. 

Strahler order Height (m) Bottom width (m) Top width (m) 

1 8 20 30 

2 10 30 40 
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Strahler order Height (m) Bottom width (m) Top width (m) 

3 12 70 80 

4 15 95 105 

5 20 145 155 

6 25 175 205 

 

3.3.2 Model Performance 

Figure 3.3 presents the histograms of the distribution of the statistical parameters 

obtained by comparing simulated and measured streamflow data at 73 hydrometric stations 

selected for calibration/validation. In general, the statistical parameters showed a large 

dispersion. In the calibration period, the R2, RSR, PBIAS, and NSE values ranged from 0 to 

0.91, 0.36 to 9.83, −1160% to 81%, and −96 to 0.87, respectively. The R2 histogram showed 

that the most populated classes were those between 0.4 and 0.6 (at 21 stations) and 0.6 and 0.8 

(21 stations), thus expressing the model’s capability in explaining most of the variability of the 

observed data at 57% of the selected hydrometric stations. For the RSR parameter, values 

higher than 1 were obtained at 29 stations, being the most frequent and indicating a large error 

of the estimate. Yet, at 31 stations the RSR values were within the 0.4 to 1.0 range, thus 

showing a more acceptable performance. The class with a deviation lower than −25% was the 

most populated (33 stations) for the PBIAS statistical parameter, revealing a small tendency of 

overestimation of the observed data in these stations. Lastly, the NSE values lower than 0.15 

were the most frequent at 32 stations; however, the NSE values were within the acceptable 

range at 22 stations, being higher than 0.35 in 11 of those stations and higher than 0.55 in the 

remaining 11 stations. In the validation period, the R2 values ranged between 0.01 and 0.88, 

the RSR between 0.4 and 19.22, the PBIAS was in the range −3500% and 90%, and the NSE 

varied from −368 to 0.84. In this period, the most populated classes for R2, RSR, PBIAS, and 

NSE were, respectively, ]0.6,0.8] at 38 stations, ]1,+∞[ at 34 stations, ]−∞,−25%] at 42 stations, 

and ]−∞,0.15] at 39 stations, thus showing the same tendencies observed during calibration. 
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Figure 3.3 Histograms with the statistical parameters obtained at 73 hydrometric stations during model 

evaluation: (a,b) coefficient of determination (R2) for calibration and validation periods, respectively; (c,d) root 

mean square error-observation standard deviation ratio (RSR) for calibration and validation periods, 

respectively; (e,f) percent bias (PBIAS) for calibration and validation periods, respectively; (g,h) model 

efficiency (NSE) for calibration and validation periods, respectively. 

The analysis of the results in each hydrometric station (Figure 3.4) shows that three 

stations (1215, 1353, and 1519) in the Galician Coast and Western Cantabrian river basin 

districts, two stations (2028 and 2089) in the Douro basin, and three stations (3226, 3234, and 

3235) in the Tagus basin presented satisfactory statistical indicators for both calibration and 

validation periods. Stations 2081 in the Douro basin, 3146 in the Tagus basin, and 5097 and 

5145 in the Guadalquivir basin also obtained satisfactory results but only for the calibration 

period. The stations 1404, 1620, and 1621 in the Galician Coast and Western Cantabrian, 2016 

and 2150 in the Douro basin, and 3231 in the Tagus basin had satisfactory results but this time 

only for the validation period. Hence, results were much in line with Canuto et al. (2019) for 
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the Guadiana basin, showing the difficulties in correctly portraying the spatial dynamics of 

evapotranspiration, soil moisture, and land-use change impacts on simulations of streamflow 

in coarse-scale applications of a distributed-based model such as MOHID-Land in highly 

anthropogenic watersheds. As such, the use of these models for conducting scenario analysis 

should be carried out with great care due to the great uncertainty associated with model 

predictions, and calibration of model parameters should definitely not be limited to one or two 

locations as sometimes is observed in the literature since these are hardly representative of the 

hydrological processes across the catchments. 
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Figure 3.4 Statistical parameters by stations for calibration (left side) and validation (right side) periods: (a,b) 

coefficient of determination (R2); (c,d) root mean square error-observation standard deviation ratio (RSR); (e,f) 

percentage bias (PBIAS); (g,h) Nash–Sutcliffe efficiency (NSE). 

A more general analysis allowed the comparison of the annual average precipitation from 

the SAFRAN model, and the respective annual natural surface flow generated by the MOHID-

Land model with the corresponding information available in the Portuguese and Spanish river 
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basin management plans (Table 3.4). With the natural surface flow values available in these 

sources already presented (Table 3.1) and explained in the description of the studied area, it is 

also important to denote that the average annual precipitation presented in river basin 

management plans was estimated based on observations from meteorological stations. The 

official precipitation and flow annual average values were estimated considering a period of 

28 years for Portugal (1985–2013) and 38 years for Spain (1980–2018). 

Table 3.4 Comparison of annual precipitation and surface flow between model and official values of river basin 

management plans. 

River Basin 

District 

Precipitation 

(mm/year) 

Precip. 

difference 

(%) 

Surface flow 

(hm3/year) 

Flow 

difference 

(%) 

Source 

Model Plan Model Plan 

Western Cantabrian 1 351 1 264 -7 12 334 13 243 7 
CEDEX, 

2020 

Eastern Cantabrian 1 449 1 461 1 4 851 5 056 4 
CEDEX, 

2020 

Cávado, Ave and 

Leça 
1 299 1 778 27 2 624 3 607 27 

APA-RH2, 

2016 

Andalusia 

Mediterranean 

Basins 

544 528 -3 2 868 2 813 -2 
CEDEX, 

2020 

Douro (PT) 854 999 15 10 365 8 010 -29 
APA-RH3, 

2016 

Duero (ES) 602 576 -5 21 698 11 438 -90 
CEDEX, 

2020 

Galician Coast 1 554 1 516 -2 10 764 11 912 10 
CEDEX, 

2020 

Guadalate and 

Barbate 
775 724 -7 2 436 1 097 -122 

CEDEX, 

2020 

Guadalquivir 582 561 -4 15 322 6 921 -121 
CEDEX, 

2020 

Guadiana (PT) 608 566 -7 3 196 1 771 -80 
APA-RH7, 

2016 

Guadiana (ES) 512 498 -3 10 296 3 829 -169 
CEDEX, 

2020 

Minho and Lima 

(PT) 
1 625 1 946 17 4 009 3 275 -22 

APA-RH1, 

2016 

Miño-Sil (ES) 1 157 1 163 1 12 772 11 823 -8 
CEDEX, 

2020 

Algarve Rivers 575 676 15 451 622 28 
APA-RH8, 

2016 

Sado and Mira 550 634 13 1 268 1 159 -9 
APA-RH6, 

2016 

Tagus and West 

Rivers (PT) 
616 728 15 6 806 6 710 -1 

APA-RH5, 

2016 

Tagus (ES) 599 590 -2 14 603 8 368 -75 
CEDEX, 

2020 

Tinto, Odiel and 

Piedras 
676 669 -1 1 407 787 -79 

CEDEX, 

2020 

Vouga, Mondego 

and Lis 
687 1 136 39 3 310 6 826 52 

APA-RH4, 

2016 
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The comparison between precipitation values used as input to MOHID-Land and the river 

basin management plans showed that the main differences occurred in the Portuguese river 

basin districts, namely, Vouga, Mondego, and Lis (∆ = 39%); Cávado, Ave, and Leça (∆ = 

27%); Minho and Lima (∆ = 17%); Douro (PT), Tagus and West Rivers (PT), and Algarve 

Rivers (∆ = 15%) (Figure 3.5a). Precipitation data used in the MOHID-Land model were thus 

higher than that considered in the river management plans; however, the pattern found for the 

precipitation differences was not reproduced for flow, with the more significative flow 

differences occurring in Spanish river basin districts, especially in Guadiana (ES) (∆ = 169%), 

Guadalate and Barbate (∆ = −122%), and Guadalquivir (∆ = −121%) (Figure 5b). This time, 

flow data in the MOHID-Land model were smaller than in the river management plans at these 

watersheds. 

Although SAFRAN was classified as a robust dataset, differences in precipitation values 

could result from limitations of the SAFRAN algorithm, already highlighted by MITERD (n.d.) 

namely, the overestimation of the number of precipitation days, the missing of high 

precipitation events, and the errors often found at the border of the homogenous climatic zones; 

however, the high precipitation differences reported in Portugal result from the fact that 

SAFRAN has been extended to this country without considering any meteorological station in 

this area to better apply the SAFRAN methodology, which favors high station density, thus 

resulting in the reported difference errors. 

  

 

Figure 3.5 Percentage of difference between model and plan’s precipitation (a) and natural surface flow (b) 

values. 

The differences found for natural surface flow do not have the same magnitude as the 

precipitation differences, with the former being much higher than the latter in central and south 

Spanish river basin districts where the differences in precipitation are not significant. Since the 
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only water input in this implementation was rainfall, these results show that the hydrological 

model might be evaporating or retaining too much of the precipitated water in the soil or sub-

surface layers instead of accounting it to surface flow. In Portugal, Minho and Lima, Douro 

(PT), Tagus and West Rivers (PT), Sado and Mira, and Guadiana (PT) also presented a similar 

behavior, but less pronounced. Finally, model results in some river basin districts, such as 

Eastern Cantabrian and Andalusia Mediterranean Basins, correctly reproduced the average 

annual natural surface flow or, at least, maintained a correspondence between surface flow and 

precipitation when the latter was overestimated by SAFRAN. This occurred in the river basin 

districts where the drainage network had more and/or shorter branches (Figure 3.1a). 

3.3.3 About Model Predictions 

Canuto et al. (2019) extensively discussed the challenges of modeling streamflow in 

highly complex, anthropogenic catchments using a coarse-scale approach and the MOHID-

Land model. These referred to the calibration procedures to meet the set of parameters that best 

describe the simulated landscape processes, but also a set of causes related to field 

measurements, and to model input and model structure errors. While most of those causes are 

still valid for this study, a few more can be added. 

The choice of a 5 km grid resolution hindered the correct delineation of the drainage 

network in the headwaters of the watershed where the analyzed hydrometric stations were 

located. That resolution grid was chosen to save computational time since this factor has a 

significant impact on simulation time (Oliveira et al., 2020). Errors in the delineation of the 

river network happened even after the main river lines were forced to flow through the correct 

cells of the grid domain by using the burn-in process in the MOHID-Land model. This tool 

allows the subtraction of a constant value to the elevation in cells identified as river path 

(usually, this information is available in shapefile format). Since the drainage network is 

delineated to make the river lines follow the lower elevation cells, this process should force 

those lines crossing the right cells, correcting the river path; however, after observing the details 

of the drainage network in the watershed’s headwaters, it is possible to identify several cases 

where the adoption of this coarse resolution caused a connection between cells that 

corresponded to different river lines. As exemplified in Figure 3.6, this situation led to 

significant differences between the real and the simulated drained area of a hydrometric station, 

with an obvious impact on the amount of water flowing through that sub-basin. 
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Figure 3.6 Details of the drainage network. 

Oliveira et al. (2020) tested the MOHID-Land model with two different grid resolutions 

(0.5 and 1 km) in the Ulla basin, Northern Spain, and found that the coarser application would 

cause a decrease of more than 70% in streamflow values as a result of a less detailed 

representation of the watershed. These results suggest that, besides the errors previously 

mentioned in the delineation of the drainage network, the grid resolution in this type of model 

can lead to inferior streamflow generation by itself, especially when the adopted resolution 

cannot simulate the processes in the watershed with sufficient detail. The same had also been 

experienced in Canuto et al. (2019). These conclusions are also corroborated by Refsgaard 

(1997), who applied the MIKE SHE model in the Karup basin (440 km2), Denmark, with four 

different resolutions, namely, 0.5, 1, 2, and 4 km, and concluded that there was a maximum 

grid size for a good model performance of streamflow simulations and result deteriorated for 

resolutions lower than this maximum. Sreedevi and Eldho (2021) applied the SHETRAN 

model in the humid tropical Netravathi basin (3657 km2), Southern India, reporting that for 

three used resolutions (4, 2, and 1 km), there was no gain in the streamflow performance. 

Furthermore, Oliveira et al. (2020) demonstrated that cross-sections geometry could 

significantly impact MOHID-Land simulations of streamflow. In that study, the differences in 

the highest and lowest values (extremes) of streamflow showed an increase of 39% and 30%, 

respectively, after increasing cross-sections height by 100% when compared to the baseline 

simulation. Canuto et al. (2019), also modified their cross sections geometry in the calibration 

process, reporting a ratio between the calibrated and default cross-sections area ranging from 

1.5 to 10.5, thus demonstrating the sensitivity of streamflow simulation in MOHID-Land to 

channel geometry. Since the domain covered in the present case study is extensive, the variation 

of model inputs can be very large, including the channel cross-sections geometry. The database 
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published by Andreadis et al. (2013), who derived the river widths and depths using 

HydroSHEDS river topology dataset and simple geomorphic relationships between those 

dimensions and the drained area and the discharge, allows understanding the variation of 

channel geometry in the domain. Figure 7 shows the ratio between the estimated width and 

depth (a) and the drained area (b) using that database. The referred figure clearly shows that 

the ratio between width/depth does not vary linearly with the drained area and that for similar 

drained areas, this ratio is higher in the north than in the south; however, these differences were 

not able to be implemented in the model as the available preprocessing tool only allows the 

assignment of cross-section geometries to the entire modeled domain. Hence, it was not 

possible to represent with detail the existing differences in the channel river cross-sections 

geometry throughout the domain, preventing a detailed calibration/validation process and, 

consequently, deteriorating results. For this reason, applications of the MOHID-Land model at 

the catchment scale instead of at the regional scale are highly recommended. 

 

Figure 3.7 Ratio between cross-sections width and depth (a) and the drained area (b) in the studied domain, 

according to Sreedevi amd Eldho (2021). 

Finally, it is important to denote that the solution presented here is the best from a set of 

tests performed during the calibration process; however, since each simulation takes about 15 

days to perform, it is possible that with more efficient implementation, the calibration process 

would have gone further, and better results would be achieved. This also demonstrates that in 

fully distributed physically based models such as MOHID-Land the calibration process should 

not be dismissed, especially when the modeled domain is characterized by a significant lack of 

data (Sahoo et al., 2006). The importance of the calibration process in MOHID-Land model 

applications is demonstrated in Oliveira et al. (2020), Canuto et al. (2019), Epelde et al. (2016), 

and Brito et al. (2015), where the first three studied domains were extensively calibrated, and 

satisfactory results for streamflow simulation were obtained, while the latter never referred the 
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existence of a calibration process which along with the choice of hydrometric stations 

influenced by reservoirs to evaluate the model performance appears to be the reason for the 

model not being able to represent the observed values. 

3.4 Conclusions 

The MOHID-Land model was used to simulate the natural flow regime in Iberian 

transnational catchments using a process-based, fully distributed approach implemented in a 

coarse (5 km) resolution grid domain. While results were satisfactory, they also evidenced the 

difficulties in simulating the streamflow in highly modified basins following such a complex 

modeling approach. As such, the goodness-of-fit indicators computed at 73 hydrometric 

stations located in basins headwaters showed large variability, with the Nash–Sutcliffe 

modeling efficiency (NSE) reporting acceptable results for only 22 and 28 of those locations 

during calibration and validation, respectively. Nevertheless, the MOHID-Land application 

presented here shows the capacity of this model to simulate water processes at the regional 

scale instead of considering the division and simulation by watershed. This work also 

highlights the difficulties in calibrating the model in such a vast domain, as well as the 

importance of adopting a resolution with sufficient detail for representation of the physical 

processes without losing computational efficiency. Computational efficiency is essential for a 

successful calibration process. 

The implementation of the MOHID-Land model at a regional scale can contribute to 

better water governance of the Iberian water resources, namely those shared by Portugal and 

Spain. While the modeling approach still needs to be improved, the implementation of the 

hydrological model at the regional scale shows that these tools can be extremely useful for 

improving the integrated river basin management and contribute to the study of anthropogenic 

and climate change impacts; however, an approach more focused on the basin level may be 

more suitable when studying water governance, since each basin “represents a hydrological 

entity with its own interval dynamics governed by the hydrological cycle”. 
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3.5 Appendixes 

3.5.1 Appendix 3A 

Table 3A.1 Number of observations (N. obs.), minimum (Min), maximum (Max), average (Ave), and standard deviation (Std. Dev.) of flow values in calibration and validation 

periods. 

Station 
Calibration Validation 

N. Obs. Min (m3 s−1) Max (m3 s−1) Ave (m3 s−1) Std. Dev. (m3 s−1) N. Obs. Min (m3 s−1) Max (m3 s−1) Ave (m3 s−1) Std. Dev. (m3 s−1) 

1215 180 0.1 37.9 8.1 8.4 153 0.0 49.0 8.7 9.3 

1265 63 0.6 10.9 4.2 2.9 168 0.4 20.4 4.5 3.6 

1268 180 1.1 68.5 12.7 10.9 168 0.3 56.7 13.1 10.6 

1293 0 - - - - 46 1.5 46.8 16.2 13.6 

1295 180 1.3 83.7 19.7 16.7 168 1.5 59.1 18.8 14.5 

1302 180 1.5 46.4 12.1 10.2 168 1.1 53.2 12.9 11.4 

1303 180 1.1 40.4 9.4 8.5 168 0.9 42 9.5 8.8 

1353 180 2.4 54.5 15.9 11.6 168 1.1 53.3 14.6 12.5 

1365 180 0.6 36.1 9.2 7.5 165 0 43 9.8 9 

1404 178 1.8 34.4 10.4 7.2 140 1.1 49.5 9.8 9.2 

1519 144 3.1 176.5 38.5 33.8 21 3.1 239.2 62 72.6 

1520 0 - - - - 118 1.6 63.5 16.3 14.8 

1554 0 - - - - 63 9 187.6 51.3 44.7 

1568 0 - - - - 59 2.9 49.7 15.8 13.5 

1605 0 - - - - 72 1 38.6 11 9.9 

1607 180 0.2 67.5 11.6 11.9 163 0.7 57.1 11.2 12.3 

1608 180 0.3 51.7 11.5 10 158 0.5 55.2 11 12 

1619 180 0.5 111.9 22.4 21.8 161 0.9 156.6 23.7 27.7 

1620 0 - - - - 72 0.1 15.2 3.7 4 

1621 175 2 257.5 47.7 47.2 114 0.4 322.5 50.8 62.1 

1622 0 - - - - 63 2.7 201.5 54 53.8 

1640 0 - - - - 72 0.6 77.3 20.8 19.2 

1642 0 - - - - 62 35.2 1031.5 326.5 267.2 

1645 180 0.6 111.8 16.8 18.7 168 0.6 108 14 16.5 

1659 0 - - - - 72 0.5 38.9 9.1 9.7 

1726 0 - - - - 72 0.9 30 8.4 7.8 

1727 180 0.7 83.9 14.1 13.1 114 1 94.7 12.2 16.2 

2000 151 0 8.9 1.8 1.7 168 0 15 2.3 2.5 
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Station 
Calibration Validation 

N. Obs. Min (m3 s−1) Max (m3 s−1) Ave (m3 s−1) Std. Dev. (m3 s−1) N. Obs. Min (m3 s−1) Max (m3 s−1) Ave (m3 s−1) Std. Dev. (m3 s−1) 

2004 170 4.2 58.2 14.9 8.2 168 2.6 79.3 12.3 11.5 

2007 81 4.9 92.6 16.3 12.5 0 - - - - 

2009 178 0 2.9 0.5 0.5 168 0 2 0.5 0.4 

2012 171 0.4 7.2 1.7 1.3 168 0.8 9.4 1.9 1.3 

2013 176 2.8 103.5 16.4 14.2 168 4 116.7 15.9 17.5 

2016 168 0 20.7 3.4 4 168 0 12.4 1.9 2.4 

2018 0 - - - - 156 0 34.1 2.9 4.8 

2028 180 0 18.5 2.9 3.3 168 0 30.9 3.4 4.8 

2029 180 1.1 146.2 16.6 20.8 168 2.2 186.1 20.3 28.4 

2031 180 0 78.2 13.9 15.6 168 0.2 154.5 16.4 22.5 

2046 180 0 46.6 3.2 6.4 168 0 22.5 3 4.3 

2062 180 5 643 86.2 94.9 168 6.4 879.8 107.6 135.4 

2078 180 1.5 19.1 6.5 4.2 168 0.5 20.2 3.8 3.1 

2081 27 0 103 24.6 25.6 168 0 172.9 24.9 29.8 

2085 51 0.4 95.1 43 29.9 39 0.2 47.5 14.5 12.9 

2089 178 0.4 48.9 4.4 5.5 168 0.4 28.1 4.4 5.1 

2150 0 - - - - 159 0.2 34.8 6.9 7.1 

3001 180 0.8 24.3 4.2 4.3 168 0.6 24.2 3.9 4 

3002 180 0.1 6.7 1.3 1.2 168 0.1 5 1.3 1.2 

3005 180 4.1 82.9 14.3 11.1 168 3.6 70.9 12.9 11.5 

3146 145 0.1 121.3 11.3 16.2 39 0 38.6 7.2 7.8 

3161 179 0 84 6.8 12.7 168 0 111.7 6.5 12.6 

3218 179 0 24.8 2.5 3.5 168 0 15.4 2.3 2.9 

3221 180 0 33.1 2.6 4.5 168 0 28.5 2.6 3.9 

3226 178 0 21.9 2.6 3.6 168 0 28.3 2.2 3.5 

3231 174 0 92.7 7.6 13.1 168 0.1 52.2 7.3 8.7 

3234 175 0 72 5.9 8.9 168 0 57.9 5.3 7.6 

3235 168 0 31.6 2.5 3.8 167 0 18.5 2.4 3.4 

4004 135 0.2 13.5 1.4 1.7 168 0.6 21.5 2.4 3.1 

4009 60 0 59.8 6.6 10 117 0 33.9 3 6.4 

4165 29 0.1 15.4 1.1 3 104 0 4.4 0.8 0.8 

4202 177 0 9.8 0.8 1.3 105 0 13.4 0.9 2.1 

4214 132 0 161 4.8 17.4 144 0 45.1 4.1 7.3 

4251 72 0 2.7 0.3 0.5 90 0 3.3 0.5 0.7 

4255 171 0 234.2 10.3 29.3 162 0.3 151.7 9.9 19.4 
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Station 
Calibration Validation 

N. Obs. Min (m3 s−1) Max (m3 s−1) Ave (m3 s−1) Std. Dev. (m3 s−1) N. Obs. Min (m3 s−1) Max (m3 s−1) Ave (m3 s−1) Std. Dev. (m3 s−1) 

5049 51 0 1.9 0.1 0.3 128 0 4.5 0.3 0.6 

5050 26 0.3 2 0.8 0.4 144 0.1 48 3.6 5.9 

5057 121 0.1 67.9 6.5 12.1 124 0.2 37.5 3.3 6.4 

5088 138 0.3 10.3 1.9 1.6 12 0.4 3.1 1.4 1.2 

5097 158 0 24.1 1.2 2.5 102 0 5.2 0.7 0.9 

5137 108 0 6.4 1.3 2 153 0 1.9 0.3 0.3 

5142 150 0 31.4 0.7 3.1 151 0 18.3 0.9 2 

5145 100 0 24.2 2.4 4.5 155 0 11.2 1.4 2.1 

07F/03H 9 0 19.2 3.7 6 0 - - - - 

08P/01H 180 0 196.3 15.5 27.8 141 0 176.9 16.5 28.1 
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3.5.2 Appendix 3B 

Table B3.1 Soil hydraulic parameters. 

Soil type 
Layer’s depth 

(m) 

θs 

(m3 m−3) 

θr 

(m3 m−3) 

α 

(m−1) 

η 

(-) 

Ks 

(m s−1) 

Gleyic 

Acrisol 

0–0.3 0.403 0.025 3.830 1.377 6.94×10−6 

0.3–0.7 0.481 0.010 0.198 1.086 9.84×10−7 

>0.7 0.350 0.025 3.830 1.377 6.94×10−6 

Chromic 

Cambisol 

0–0.3 0.403 0.025 3.830 1.377 6.94×10−6 

>0.3 0.392 0.010 2.490 1.170 1.25×10−6 

Humic 

Cambisol 

0–0.7 0.766 0.010 1.300 1.200 9.26×10−7 

>0.7 0.392 0.010 2.490 1.170 1.25×10−6 

Calcic 

Cambisol 

0–0.3 0.439 0.010 3.140 1.180 1.39×10−6 

>0.3 0.392 0.010 2.490 1.170 1.25×10−6 

Rendzina 
0–0.3 0.439 0.010 3.140 1.180 1.39×10−6 

>0.3 0.392 0.010 2.490 1.170 1.25×10−6 

Lithosol 
0–0.3 0.439 0.010 3.140 1.180 1.39×10−6 

>0.3 0.350 0.010 3.140 1.180 1.25×10−6 

Calcaric 

Fluvisol 

0–0.3 0.439 0.010 3.140 1.180 1.39×10−6 

>0.3 0.392 0.010 2.490 1.170 1.25×10−6 

Albic 

Luvisol 

0–0.3 0.403 0.025 3.830 1.377 6.94×10−6 

0.3–0.7 0.392 0.010 2.490 1.170 1.25×10−6 

>0.7 0.350 0.025 3.830 1.377 6.94×10−6 

Gleyic 

Luvisol 

0–0.3 0.439 0.010 3.140 1.180 1.39×10−6 

0.3–0.7 0.481 0.010 0.198 1.086 9.84×10−7 

>0.7 0.350 0.025 3.830 1.377 6.94×10−6 

Calcic 

Luvisol 

0–0.3 0.439 0.010 3.140 1.180 1.39×10−6 

0.3–0.7 0.481 0.010 0.198 1.086 9.84×10−7 

>0.7 0.350 0.025 3.830 1.377 6.94×10−6 

Dystric 

Histosol 
>0 0.766 0.010 1.300 1.300 9.26×10−7 

Gleyic 

Podzol 

0–0.3 0.403 0.025 3.830 1.377 6.94×10−6 

>0.3 0.350 0.025 3.830 1.377 6.94×10−6 

Cambic 

Arenosol 

0–0.3 0.403 0.025 3.830 1.377 6.94×10−6 

>0.3 0.350 0.025 3.830 1.377 6.94×10−6 

Calcaric 

Regosol 

0–0.3 0.403 0.025 3.830 1.377 6.94×10−6 

>0.3 0.350 0.025 3.830 1.377 6.94×10−6 

Ranker 
0–0.3 0.439 0.010 3.140 1.180 1.40×10−6 

>0.3 0.392 0.010 2.490 1.170 1.25×10−6 

Chromic 

Vertisol 

0–0.3 0.52 0.010 3.670 1.100 2.87×10−6 

0.3–0.7 0.481 0.010 0.198 1.086 9.84×10−7 

>0.7 0.392 0.010 2.490 1.170 1.25×10−6 

Dystric 

Planosol 

0–0.3 0.403 0.025 3.830 1.377 6.94×10−6 

0.3–0.7 0.481 0.010 0.198 1.086 9.84×10−7 

>0.7 0.392 0.010 2.490 1.170 1.25×10−6 

Calcic 

Xerosol 

0–0.3 0.439 0.010 3.140 1.180 1.40×10−6 

>0.3 0.392 0.010 2.490 1.170 1.25×10−6 

Gleyic 

Solonchak 

0–0.3 0.520 0.010 3.670 1.130 2.87×10−6 

0.3–0.7 0.481 0.010 0.198 1.086 9.84×10−7 

>0.7 0.392 0.010 2.490 1.170 1.25×10−6 
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Abstract 

Study region: Guadiana international catchment, located in the Iberian Peninsula. 

Study focus: The Guadiana River catchment has registered an intense and speed up 

modification of its natural regime over the last few decades to cope with water scarcity. Such 

modifications pose a serious challenge to the development of improved management tools as 

information on available water resources is often not detailed enough. This study aimed to 

simulate the flow regime of the Guadiana River using the MOHID-Land model during a 30 

year period. Two scenarios were defined by considering (or not) inputs from reservoirs. Model 

performance was assessed by comparing simulated and measured monthly streamflow at 24 

hydrometric stations influenced (9 stations) or not (15 stations) by reservoir management. 

New hydrological insights for the region: Streamflow simulations produced quite 

acceptable estimates for most of the hydrometric stations not influenced by reservoirs. 

However, results also showed the importance of non-simulated processes (e.g., groundwater 

abstractions) to the accurate prediction of the Guadiana flow regime. For the stations influenced 

by reservoir management, model simulations generally overestimated streamflow 

measurements. Information related to reservoir management needs thus to be made clearer for 

achieving better results, which can only be accomplished when national water agencies 

improve their cooperation protocols. Further model limitations were also addressed as well as 

the necessary developments for improving streamflow estimates in future modeling 

applications. 

Keywords: Distributed model; Iberian Peninsula; MOHID-Land; Streamflow; Water 

scarcity  
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4.1 Introduction 

Water resources in regions under arid, semi-arid, and even sub-humid conditions are 

subjected to multiple pressures that result mostly from: population growth; major demographic 

shifts as people move from rural to urban environments; higher demands for food security and 

socio-economic well-being; increased competition between users and usages; and 

contamination from point and diffuse pollution sources (WWAP, 2019). Agriculture is by far 

the largest water consumer (accounting for 69% of the global annual water withdrawals) 

followed by industry (19%) and households (12%) (AQUASTAT, 2019). As global water 

demand is expected to increase 20 to 30% above the current level of water use by 2050, mainly 

due to the rising demand in the industrial and domestic sectors, so will water stress levels which 

already afflict about 4 billion people worldwide be enhanced (WWAP, 2019). Sustainable 

management practices are thus needed for optimizing the use of water resources at the regional 

scale and reducing potential conflicts among users. 

A representative example of the need for improved management plans is the Guadiana 

transnational river catchment shared by Portugal and Spain. The climate in the region is mostly 

dry-sub humid to semi-arid, with some areas being among the driest places in Europe. The 

seasonality of rainfall and high evapotranspiration demand typically results in a period with 

high winter discharges and another with low summer discharges. The region is also cyclically 

affected by extended droughts that further enhance the seasonality of local water resources 

(Vicente-Serrano, 2006; Paulo et al., 2012; Lorenzo-Lacruz et al., 2013). Consequently, the 

Guadiana River has been subjected to an intense and speed up modification of its natural 

regime, with reservoir storage capacity increasing from almost zero in 1954 to close to 14,000 

hm3 nowadays (Brandão and Rodrigues, 2000; CEH-CEDEX, 2019; SNIRH, 2019). At the 

same time, large agriculture projects were developed, with water withdrawals approaching 

sometimes the limits of sustainability. For example, the dramatic increase of groundwater 

abstractions for irrigation in the upper region of the Guadiana basin has led to the decline of 

groundwater levels, degradation of protected wetlands, rise of groundwater salinity levels, and 

occasional water transfers from the Tagus basin (Conan et al., 2003; Bromley et al., 2010). In 

Portugal, Alqueva was built to be the largest reservoir in Europe, constituting a strategic water 

reserve for the southern part of the country and deeply modifying the landscape and production 

systems by providing water for irrigation of 150,000 ha of agricultural land distributed between 

the Guadiana and Sado basins, urban and industrial consumption, energy production, and 

regularization of flows (EDIA, 2019). 
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The Albufeira Convention is the international agreement signed between Portugal and 

Spain in 1998, and later revised in 2008, which regulates the flow regime in the five 

transnational basins shared by the two countries (Minho, Lima, Douro, Tejo, and Guadiana). 

For the case of the Guadiana catchment, the Convention defines minimum flows for different 

trimesters of the year or, alternatively, a minimum annual flow measured at the Badajoz weir 

where the Guadiana River enters Portugal. Minimum flows are dependent on the amount of 

rainfall and water stored in pre-defined reservoirs. The Convention further defines conditions 

for an exceptional regime, which is usually associated with drought periods. In this case, a 

minimum daily flow of 2 m3 s−1, perceived as a basic ecological minimum, is established as the 

only requirement at the Badajoz weir, but also at Pomarão, as the river flows from Portugal to 

become the border between the two countries just 70 km above its estuary (Agência Portuguesa 

do Ambiente, 2016). While the compliance with the Albufeira Convention agreement is 

considered a top priority for water allocation in both countries, water scarcity issues in both 

Portugal and Spain pose already significant challenges for water resources management (Do 

Ó, 2012). On the Spanish side, local authorities report an annual deficit close to 600 hm3 

without the adoption of measures limiting demand (Confederação Hidrográfica do Guadiana, 

2014). On the Portuguese side, irrigation during drought seasons is much dependent on the 

amount of water stored in Alqueva, which is now connected to smaller reservoirs to compensate 

for water shortages in different parts of the Alentejo region. Meanwhile, climate change 

projections that foresee significant reductions in rainfall and streamflow for the near future 

(Kilsby et al., 2007; Guerreiro et al., 2017) only add more uncertainty to the availability of 

water resources in the Guadiana basin. 

The vulnerability of water resources in the Guadiana catchment requires a precise 

quantification of the volumes available with modeling being many times selected as a preferred 

tool for achieving such purpose. Brandão and Rodrigues (2000) used the IRAS (Interactive 

River Aquifer Simulation; Loucks et al., 1995) model to simulate streamflow in the Portuguese 

part of the Guadiana catchment, considering six hydrological scenarios that were defined to 

assess the impact of the Albufeira Convention and the Spanish Hydrological Plan on water 

volumes stored in Portuguese reservoirs. Also, Conan et al. (2003), applied the SWAT (Soil 

Water Assessment Tool; Neitsch et al., 2011) model to assess the impact of groundwater 

withdrawals on the hydrological behavior of the upper Guadiana River catchment. Later, 

Kilsby et al. (2007) estimated the impact of climate change projections on runoff production, 

streamflow, and water resources availability in the Guadiana catchment using a distributed 

daily rainfall-runoff model. Finally, Guerreiro et al. (2017) pursued a similar objective, 
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estimating the impact of climate change projections on the Guadiana River streamflow using 

the SHETRAN model (Ewen et al., 2000). While the previous studies provided significant 

insights for the accurate quantification of local water resources, they all shared similar 

constraints when validating model results due to simplifications adopted when describing the 

complexity of the Guadiana basin and the modified flow regime of the Guadiana River. 

This study provides a further attempt to simulate streamflow in the Guadiana River using 

the MOHID-Land model (Trancoso et al., 2009). MOHID-Land is a fully distributed process-

based model that considers interactions between multiple components of the soil-water-

atmosphere continuum, with fundamental processes being formulated at fine spatial (at the grid 

cell level) and temporal scales, contributing to the overall dynamics of the catchment at a larger 

scale. The MOHID-Land model structure is comparable to the SHETRAN model used in 

Guerreiro et al. (2017) and applications include, for example, improving irrigation practices at 

the plot and field scales (Ramos et al., 2017, 2018; Simionesei et al., 2018), understanding the 

contribution of flood events to the eutrophication of water reservoirs (Brito et al., 2017, 2018), 

and forecasting fresh water quantity and quality in coastal rivers (Brito et al., 2015). The 

objectives of this study were thus: (i) to simulate streamflow in the Guadiana catchment under 

two scenarios that included (or not) reservoir management; and (iii) to discuss model 

limitations and developments (research and data) needed for better quantifying local water 

resources in future applications. 

4.2 Materials and methods 

4.2.1 Description of the study area 

The Guadiana catchment is located in the southern region of the Iberian Peninsula (Figure 

4.1), being the fourth largest after Douro, Tagus, and Ebro. The drainage area covers 66 999 

km2, of which 55 465 km2 (82.8%) are in Spain and 11 534 km2 (17.2%) are in Portugal 

(Agência Portuguesa do Ambiente, 2016). The river has a bed length over 800 km, with 

headwaters in Lagunas de Ruidera, Castilla-La Mancha, Spain (38°58′21″N, 2°53′9″W, 868 

m). The river then flows in the North East – South West direction to the border cities of Vila 

Real de Santo António (Portugal) and Ayamonte (Spain), where it meets the Atlantic Ocean 

(37°10′40″N, 7°24′18″W, 0 m).  
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Figure 4.1 Location of the Guadiana River catchment. 

The climate in the catchment ranges from hot-summer Mediterranean climate (Csa) to 

cold semi-arid (steppe) climate (Bsk) (IM and AEMET, 2011). The mean annual temperature 

is close to 16 °C, varying between 28 °C in July/August (Ciudad Real, Spain) and 8.5 °C in 

January (Elvas, Portugal). The mean annual rainfall is 550 mm (561 mm in Portugal and 540 

mm in Spain), with minimum of 350–450 mm in the central area of the La Mancha plain (Spain) 

and Mértola and Moura (Portugal) and maximum of more than 1000 mm in the headwaters of 

the tributaries Ardila, Odeleite and Caia. The interannual distribution of precipitation is also 

extremely irregular, ranging from 386 mm in dry years to 766 mm in wet years. On average, 

more than 80% of the total annual precipitation occurs between October and April (Agência 

Portuguesa do Ambiente, 2016). 

The dominant soils are Regosols (44% of the area), Cambisols (28%), and Luvisols 

(14%) (IUSS Working Group, 2014) (Figure 4.2). Soils in the upper region of the catchment 

are mostly derived from unconsolidated calcareous deposits, while in the middle and low 

regions soils originate from metamorphic rocks (schists, gneiss, migmatite). The main land 

uses are divided between rainfed or irrigated agriculture (65%) and Mediterranean woodland 

(18%) or shrubland (16%) (Figure 4.2). In Spain, 85% of the diverted water is used for 

irrigation; the irrigated area covers over 400 000 ha; cereals, vineyards, and industrial crops 

are the dominant crops, with an annual average consumption of 5300 m3 ha−1 (Confederação 
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Hidrográfica do Guadiana, 2014). In Portugal, 88% of the diverted water is used mainly for 

energy production, although this is not a consumptive use; water use in agriculture totalizes 

only 9.1% of the diverted water (Agência Portuguesa do Ambiente, 2016); however, this 

number will inevitably increase in the near future as the Alqueva Project progressively adds 

over 150 000 ha of new irrigated land to that already existing in the region (EDIA, 2019). 

 

Figure 4.2 Digital terrain model (a), main land uses (b), and main soil types (c) in the Guadiana catchment. 

The catchment has a population of 1.9 million inhabitants, with a density of 28 

inhabitants km−2 in Spain and 114 inhabitants km−2 in Portugal (EUROSTAT, 2019). There are 

39 reservoirs located along the catchment with a total storage capacity above 10 hm3 (the 
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threshold limit assumed here to impact the hydrological regime of the Guadiana River). These 

were built between 1944 and 2010. The largest is Alqueva (38°11′48′'N, 7°29′45′'W, 85 m) built 

in 2002, with a total capacity of 4150 hm3. The smallest is Lucefecit (38°38′09′'N 7°24′22′'W, 

173 m) built in 1982, with a total capacity of 10.2 hm3. Several others exist with less storage 

capacity (Figure 4.3). 

 

Figure 4.3 Location of the reservoirs with storage capacity above 10 hm3 (a) and hydrometric stations used for 

model calibration/validation (b). 

4.2.2 Model description 

MOHID-Land is a physically-based, fully-distributed model designed to simulate the 

water cycle in hydrographic catchments (Trancoso et al., 2009). The model considers four 

compartments or mediums (atmosphere, porous media, soil surface, and river network). The 
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atmosphere is not explicitly simulated but provides data necessary for imposing surface 

boundary conditions that may be space and time variant. Water moves through the remaining 

mediums based on mass and momentum conservation equations that are computed using a 

finite volume approach. The simulation domain is organized into a regular structured grid, 

quadrangular or rectangular in the horizontal plane, and cartesian type in the vertical plane. 

Surface land is thus described by a 2D horizontal grid. The porous media is a 3D domain, which 

includes the same horizontal grid as the surface complemented with a vertical grid with variable 

thickness layers. The river network is a 1D domain defined from the digital terrain model 

(DTM), with the drainage network linking surface cell centers (nodes). The model further uses 

an explicit algorithm with a variable time step that is maximum during dry seasons when fluxes 

are reduced and minimum when fluxes increase (e.g., during rain events). 

In this study, runoff and infiltration of surface water were computed using the curve 

number (CN) procedure (USDA Soil Conservation Service, 1972): 

𝑄𝑠𝑢𝑟𝑓 = {

0
(𝑃𝑑𝑎𝑦 − 𝐼𝑎)

2

(𝑃𝑑𝑎𝑦 − 𝐼𝑎 + 𝑅)
 

when Pday ≤ Ia 

when Pday > Ia 
(Eq. 4.1) 

where Qsurf is the accumulated runoff or rainfall excess (L), Pday is the rainfall amount for the 

day (L), Ia is the initial abstraction which includes surface storage and infiltration prior to runoff 

(L), and R is a retention parameter (L): 

𝑅 =
25400

𝐶𝑁
− 254 (Eq. 4.2) 

where CN is the curve number (−). 

The variably saturated flow in the porous medium was computed using the Richards 

equation as follows: 

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑥𝑖
[𝐾(𝜃) (

𝜕ℎ

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑖
)] − 𝑆(ℎ) (Eq. 4.3) 

where θ is the volumetric water content (L3 L−3), t is the time (T), xi are the xzy directions (−), 

h is the soil pressure head (L), K is the hydraulic conductivity (L T−1), and S is the sink term 

accounting for water uptake by plant roots (L3 L−3 T−1). The unsaturated soil hydraulic 

properties were then described using the van Genuchten-Mualem functional relationships 

(Mualem, 1976; van Genucthen, 1980): 

𝑆𝑒(ℎ) =
𝜃(ℎ) − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

=
1

(1 + |𝛼ℎ|𝜂)𝑚
 (Eq. 4.4) 

𝐾(ℎ) = 𝐾𝑠𝑆𝑒
ℓ[1 − (1 − 𝑆𝑒

1/𝑚
)𝑚]

2
 (Eq. 4.5) 
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where Se is the effective saturation (L3 L−3), θr and θs denote the residual and saturated water 

contents (L3 L−3), respectively, Ks is the saturated hydraulic conductivity (L T−1), α (L−1) and η 

(−) are empirical shape parameters, m = 1–1/η, and ℓ is a pore connectivity/tortuosity parameter 

(−). The MOHID-Land model uses the Richards equation in the whole subsurface domain and 

simulates saturated and unsaturated flow using the same grid. A cell is considered as saturated 

when moisture is above 98%. When a cell reaches saturation, the model uses the saturated 

conductivity and pressure becomes hydrostatic, corrected by friction. This procedure eases the 

implementation of the model and simplifies its use at annual scale. The penalty is the time step 

that during the wetting period must be shorter to guarantee stability. The constraint is 

minimized using parallel computing. 

The sink term (S) in Eq. (4.3) was computed using the macroscopic approach proposed 

by Feddes et al. (1978). Following this approach, potential transpiration (Tp, L T−1) was linearly 

distributed over the root zone, creating the function Tp(z), which was diminished by the 

presence of depth-varying root zone stressors, namely water stress (Skaggs et al., 2006; 

Šimůnek and Hopmans, 2009) as follows: 

𝑇𝑎 = 𝛼(ℎ)𝑇𝑝(𝑧) (Eq. 4.6) 

where Ta is the actual transpiration rate (L T−1) and α is a prescribed dimensionless function of 

h (0 ≤ α ≤ 1) limiting Tp over the root zone. The piecewise linear model proposed by Feddes et 

al. (1978) was then adopted for computing Tp reductions due to water stress (α(h)), assuming 

that the water uptake was at the potential rate when the pressure head was between h2 and h3, 

dropped off linearly when h > h2 or h < h3, and became zero when h < h4 or h > h1 (subscripts 

1–4 denote for different threshold pressure heads). 

Plant transpiration and soil evaporation were thus the main drivers for computing soil 

water dynamics in the porous media. But first, crop evapotranspiration rates (ETc, L T−1) were 

obtained from the product of reference evapotranspiration rates (ETo, L T−1) computed with the 

FAO Penman-Monteith method (Allen et al., 1998) and a single crop coefficient (Kc). The Kc 

values were not crop stage dependent as in Allen et al. (1998), representing instead average 

characteristics of each vegetation type over the entire growing season as well as averaged 

effects of evaporation from the soil. ETc values were then partitioned into potential soil 

evaporation (Ep, L T−1) and Tp as a function of the leaf area index (LAI, m2 m−2), following 

Ritchie, 1972: 

𝑇𝑝 = 𝐸𝑇𝑐(1 − 𝑒
(−𝜆𝐿𝐴𝐼)) (Eq. 4.7) 

𝐸𝑝 = 𝐸𝑇𝑐 − 𝑇𝑝 (Eq. 4.8) 
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where λ is the extinction coefficient of radiation attenuation within the canopy (−). The actual 

soil evaporation (Ea, L T−1) was obtained by limiting Ep values using an imposed pressure head 

threshold value (American Society of Civil Engineers, 1996). 

The LAI, as well as other crop growth state variables, were simulated using a modified 

version of the EPIC model (Williams et al., 1989; Neitsch et al., 2011). This model is based on 

the heat unit theory, which considers that all heat above the base temperature will accelerate 

crop growth and development. Crop growth was thus simulated as a function of the intercepted 

light, its conversion into biomass, and LAI development (Neitsch et al., 2011). LAI was 

calculated as a function of heat units, the crop development stages, and crop stress (Neitsch et 

al., 2011). Additional details can be found in Ramos et al. (2017). 

Surface water movement in the soil and the river network were computed by solving a 

Saint-Venant equation in its conservative form, accounting for advection, pressure, and friction 

forces for one (in the river) or two horizontal (at the soil surface) directions of the grid: 

𝜕𝑄𝑢
𝜕𝑡

+ 𝑣𝑣
𝜕𝑄𝑢
𝜕𝑥𝑣

= −𝑔𝐴(
𝜕𝐻

𝜕𝑥𝑖
+
|𝑄|𝑄𝑖𝑛

2

𝐴𝑣2𝑅ℎ
4/3

) (Eq. 4.9) 

where Q is the water flow in the river (L3 T−1), Av is the cross-sectional flow area (L2), g is the 

gravitational acceleration (L T−2), v is the flow velocity (L T−1), H is the hydraulic head (L), n 

is the Manning coefficient (T L−1/3), Rh is the hydraulic radius (L), xi represents the xyz 

directions (−) and the subscripts u and v denote flow directions. The exchange between the 

river network and the subsurface flow (computed with the Richards equation) was driven by 

the pressure at the interface (river level) and the pressure in the porous media (phreatic level). 

Likewise, the eventual excess water volume reallocated to the surface of the porous media 

domain (exfiltration) when the soil column was saturated was driven by the phreatic level. 

Surface water exchange between the river and riparian zones were further computed based on 

the kinematic approach, neglecting bottom friction, and using an implicit algorithm to avoid 

instabilities. 

4.2.3 Model implementation 

The MOHID-Land model (Trancoso et al., 2009) was implemented in the study area 

using a square horizontal grid with 75 × 136 cells, each with 0.045° × 0.045° (5 km × 5 km). 

The digital terrain model (DTM) was obtained from the NASA Shuttle Radar Topographic 

Mission (SRTM) at 3 arc-second spatial resolution (approximately 70–90 m) (Rabus et al., 

2003); then interpolated to the MOHID-Land grid using the average of values inside a grid cell; 
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and further modified to eliminate sunken or depressed cells. Topography in the modified DTM 

varied then from 0 to 1375 m (Figure 4.2). 

The soil map was extracted from the Harmonized Soil Database 

(FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009), with the 30 arc-second raster information being 

also interpolated to the MOHID-Land grid. The soil reference units represented at the scale of 

the study domain were Regosols (44.0%), Cambisols (28.3%), Luvisols (14.0%), Leptosols 

(4.6%), Acrisols (4.5%), Fluvisols (2.8%), Planosols (0.7%), Vertisols (0.7%), and Arenosols 

(0.4%) (Figure 4.2). First, the porous media was discretized into seven vertical layers, with 

varying thickness from 0.3 m at the surface to 8.9 m at the impermeable bottom. Each soil 

column was then divided into three horizons (by grouping layers of the vertical grid): the 

surface horizon was defined by the top layer of the vertical grid (0.0–0.3 m depth); the sub-

surface horizon by the second layer (0.3–0.8 m depth); and the bottom horizon by the remaining 

five layers (0.8–30.0 m depth). Soil depth was corrected according to the surface slope provided 

by the DTM, assuming larger depths in valleys than in ridges. The thickness of the bottom 

layers was thus adjusted based on the assumed soil depths, which end up varying from 25.9 to 

30.0 m. The soil hydraulic parameters of the Mualem-van Genuchten model (van Genuchten, 

1980) were finally derived for each soil horizon of each soil reference group using soil texture 

information available in the Harmonized Soil Database and the HYPRES class pedotransfer 

functions (Wösten et al., 1999). The ℓ pore connectivity/tortuosity parameter was set to 0.5 

following Mualem (1976). For the initial conditions, the soil was assumed as saturated for 83% 

of the profile (from the bottom to the surface), while the soil water content in the unsaturated 

zone was set to field capacity. 

The CORINE Land Cover (CLC) 2012 map with 100 m resolution (Copernicus Land 

Monitoring Service, 2019) was likewise interpolated to the MOHID-Land grid and used for 

defining the vegetation type and surface rugosity. The land uses represented at the scale of the 

study domain were agricultural areas (65.3%), shrubland (16.5%), mixed forest (12.4%), 

evergreen forest (2.9%), deciduous forest (2.7%), and grassland (0.1%) (Figure 4.2). Urban 

areas were not included. Considering the large representation of agricultural and shrubland 

areas (81.9%), the definition of the CN values ended up being simplified to basically account 

for the soil reference group and were set following the USDA Soil Conservation Service 

(1972), tables. The Manning coefficient was defined for each vegetation type according to van 

der Sande et al., 2003. Vegetation growth parameters assumed the same default values as in 

Neitsch et al. (2011). The annual Kc values of each vegetation type averaged the Kc values of 

the different crop development stages given in Allen et al. (1998). 
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Hourly data from the SAFRAN model (Quintana-Seguí et al., 2017) was used for 

defining the atmosphere boundary conditions of the simulation domain. SAFRAN applies an 

interpolation algorithm that combines observations and the outputs of a meteorological model 

to produce a gridded dataset of precipitation, temperature, wind speed, relative humidity, and 

downward visible and infrared radiation for the period 1969–2014. The SAFRAN further uses 

climatically homogeneous zones to divide the space into the analysis areas, which are then 

presented in a grid format with a resolution of 5 km. This grid was here interpolated to the 

MOHID-Land grid using a triangulation method. 

The river network was derived from the DTM using the steepest slope in 8 directions 

(i.e., according to the height of the surrounding cells). The river cross-sections were defined as 

having a trapezoidal shape, with dimensions set based on the drainage area of each node. 16 

classes were considered (Table 4.1), with heights and widths at the top and bottom of the 

trapezoidal cross-sections being set according to Andreadis et al. (2013) and Neal et al. (2015). 

For the nodes with intermediate drainage areas, the dimensions of the cross-section were linear 

interpolated from those assumed in the upper and lower classes. 

Table 4.1 Dimensions of the river cross-sections. 

Drainage 

area 

(km2) 

Surface width (m) Bottom width (m) Height (m) Cross-section (m2) 

Default Calibrated Default Calibrated Default Calibrated Default Calibrated 

18 3.5 6.1 2.3 4.1 0.15 0.33 0.4 1.7 

25 3.8 7.4 2.5 4.9 0.16 0.45 0.5 2.8 

50 4.7 10.4 3.1 6.9 0.2 0.58 0.8 5 

100 6.7 21.3 4.6 14.2 0.26 0.77 1.5 13.7 

200 9.8 34.2 6.5 22.8 0.34 1.03 2.8 29.4 

500 15.8 53.6 10.6 35.7 0.5 1.42 6.6 63.4 

750 19.5 56.2 12.9 37.5 0.6 1.48 9.7 69.3 

1000 23 60.8 15.2 40.5 0.7 1.52 13.4 77 

2000 30 80.6 22 53.7 0.85 1.7 22.1 114.2 

5000 55 110.5 36.7 73.7 1.4 2.13 64.2 196.1 

10 000 79 138.2 53 92.1 1.8 2.35 118.2 270.6 

20 000 111 179.8 74 119.9 2.35 3.1 217.4 464.5 

40 000 160 245.5 107 163.7 3 4.8 400.5 982 

50 000 178 315 119 210 3.5 5.7 519.8 1496.3 

60 000 280 350 186 233.3 4.9 6.8 1141.7 1983.3 

67 000 300 358 200 238.7 5.5 7 1375 2088.3 

 

Table 4.2 Relation between outflow/inflow and actual stored volume (operation curve) considered in the MOHID-

Land model for estimating outflow in reservoirs. 

Stored volume (%) Outflow/Inflow (%) 

0 0 

40 5 

60 10 

95 30 
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Stored volume (%) Outflow/Inflow (%) 

96 40 

97 50 

98 70 

99 90 

100 100 

 

For the scenario simulating the modified flow regime of the Guadiana River, model 

simulations further considered all reservoirs with a volume storage capacity larger than 10 hm3. 

39 reservoirs were implemented, representing a total storage capacity of 13 974 hm3 (Figure 

4.3). 11 reservoirs were present from the beginning of the simulation period while the 

remaining were gradually introduced depending on the respective start of operation date. The 

MOHID-Land model further requires the location and maximum and minimum volume 

capacity for simulating reservoir operation. Reservoir outflows can then be imposed (when data 

is available) or estimated according to an operation curve. In this study, reservoir outflows were 

defined for 31 reservoirs, with data being extracted from SNIRH, 2019, for Portugal and CEH-

CEDEX, 2019, for Spain. The operation curve was considered for the remaining 8 reservoirs, 

with the outflow being estimated as a function of the inflow and the actual storage volume (in 

percentage values) (Table 4.2). 

4.2.4 Model calibration/validation 

Model simulations were conducted between October 1st, 1979, and June 30rd, 2014: the 

first six years (October 1st, 1979, to September 30rd, 1985) were used as model “warm-up”; the 

calibration period was from October 1st, 1985 to September 30rd, 1995 (10 years); and the 

validation period was from October 1st, 1995 to June 30rd, 2014 (19 years). During model 

calibration/validation, simulations of daily streamflow were compared against measured data 

in 24 hydrometric stations located along the catchment (Figure 4.3). Daily values were also 

converted to monthly data to compute the statistical indicators presented below. Only 

hydrometric stations having a minimum of five years of measured data were considered. 

Measured data were obtained from SNIRH (2019) for Portugal and from CEH-CEDEX (2019) 

for Spain. 

A sensitive analysis was first carried out where selected parameters were modified one at 

a time and the model was run until the end of the calibration period to assess their impact on 

MOHID-Land simulations of streamflow. Model calibration/validation ended up focusing on 

the dimensions of the river cross-sections in the different nodes (heights and top and bottom 

widths), the curve number (CN), the manning coefficient (n), the annual crop coefficient (Kc), 
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the vertical saturated hydraulic conductivity (Ks), and the multiplying factor (fh) for obtaining 

the horizontal saturated hydraulic conductivity from Ks (Ks,hor = fh Ks). Model parameters were 

modified by trial-and-error during calibration until deviations between measured and simulated 

values were minimized. Validation was then performed by simply comparing model 

simulations using the calibrated parameters for the 1995–2014 period and respective measured 

dataset. Different goodness-of-fit tests were considered for assessing model performance, 

including the coefficient of determination (R2), the ratio of the root mean square error to the 

standard deviation of observed data (NRMSE), the percent bias (PBIAS), and the model 

efficiency (NSE), respectively given by: 

𝑅2 =

[
 
 
 

∑ (𝑂𝑖 − 𝑂̅)(𝑃𝑖 − 𝑃̅)
𝑛
𝑖=1

√∑ (𝑂𝑖 − 𝑂̅)2
𝑛
𝑖=1 √∑ (𝑃𝑖 − 𝑃̅)2

𝑛
𝑖=1 ]

 
 
 
2

 (Eq. 4.10) 

𝑁𝑅𝑀𝑆𝐸 =

√∑ (𝑂𝑖 − 𝑃𝑖)2
𝑛
𝑖=1

𝑛 − 1

√∑ (𝑂𝑖 − 𝑂̅)2
𝑛
𝑖=1

 (Eq. 4.11) 

𝑃𝐵𝐼𝐴𝑆 = 100
∑ (𝑂𝑖 − 𝑃𝑖)
𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

 (Eq. 4.12) 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖 − 𝑂̅)2
𝑛
𝑖=1

 (Eq. 4.13) 

where Oi and Pi are respectively the observed and model predicted values at time i, 𝑂̅ and 𝑃̅ 

are the respective mean values, and n is the number of observations. R2 values close to 1 

indicate that the model explains well the variance of observations. NRMSE, and PBIAS values 

close to zero indicate accurate model predictions (Legates and McCabe, 1999; Moriasi et al., 

2007). Positive or negative PBIAS values refer to the occurrence of under- or over-estimation 

bias, respectively. Nash and Sutcliff, 1970, modelling efficiency NSE values close to 1 indicate 

that the residuals variance is much smaller than the observed data variance, hence the model 

predictions are good; contrarily, when NSE is very close to 0 or negative there is no gain in 

using the model, i.e., 𝑂̅ is as good or better predictor than the model. 

4.3 Results and discussion 

4.3.1 Model parametrization 

The MOHID-Land model includes a considerable number of parameters that need to be 

first calibrated/validated to provide reliable estimates of simulated results. The sensitive 

analysis carried out in this study identified the dimensions of the river cross-sections (heights 
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and top and bottom widths) and the CN, n, Kc, Ks, and fh parameters as the most important in 

need of adjustment, suggesting the importance of horizontal flow processes (runoff and lateral 

flow) for reproducing the hydrological response of the Guadiana catchment. This agrees with 

Glaser et al. (2019), who discussed the importance of nonuniform lateral flow rather than 

vertical preferential flow processes observed at plot scale for simulating the hydrological 

regime in the Weierbach catchment, Germany, using the HydroGeoSphere model. Likewise, 

El-Nasr et al. (2005) simulated streamflow in the Jeker catchment, Belgium, using the MIKE-

SHE model. In their application, model calibration/validation focused mostly on parameters 

influencing lateral flow, such as the drainage network configuration, and the vertical and 

horizontal hydraulic conductivity of the geological layers in the saturated zone. McMichael et 

al. (2006) and Im et al. (2009) further expressed the importance of horizontal flow processes in 

their applications using the same distributed model. 

In this study, the MOHID-Land simulations required the enlargement of the river cross-

sections for accommodating streamflow in the drainage network during peak events (Table 

4.1). This adjustment was especially noted at the nodes discharging the smallest areas, with 

cross-section areas increasing size by 3 to 10 times compared to the initial default values. The 

CN values are listed in Table 4.3 for the main soil reference units, ranging from 66 to 79. These 

values were comparable to those used by Conan et al. (2003) in their SWAT model application 

for the Upper Guadiana basin. In this previous work, CN values were set to range from 39 for 

pasture in Regosols to 87 for agriculture in Luvisols. In both applications, higher CN values 

obviously resulted in higher runoff and lower infiltration volumes. The n values suffered only 

minor adjustments (Table 4.4) except for the deciduous forest class, which value increased 

from 0.125 to 0.230 s m−1/3. Higher n values meant greater resistance to surface flow and 

reduced runoff volumes. Table 4.4 further lists the annual Kc values considered in this study, 

which ranged from 0.8 in the deciduous forest class to 1.0 in the evergreen forest class. Because 

catchment scale applications of the MOHID-Land model can only currently consider a single 

Kc value describing the full crop growing season, the calibrated values cannot meet the 

definitions given in Allen et al. (1998) and can hardly be compared to other applications. 

Nevertheless, higher Kc values correspond to greater potential evapotranspiration rates. The Ks 

values also increased when compared with Wösten et al., 1999, tabulated values (Table 4.3), 

which comes with no surprise since pedotransfer functions can only provide modest estimates 

of soil hydraulic properties. These functions are further based on measurements carried out in 

the laboratory in samples of limited size, with issues related to their representativeness being 

often raised when describing actual flow conditions, transport, and reaction processes occurring 
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at the field/catchment scales due to limitations in the porous medium continuum (Van Looy et 

al., 2017). Finally, the fh was set to 3.0, promoting sub-surface flow. 

Table 4.3 Calibrated soil parameters. 

Parameters Rg Le Ar Fl Ca Lu Pl Ve Ac 

CN (−) 79 79 77 71 69 66 74 70 68 

Top layer 

θs (−) 0.403 0.439 0.403 0.439 0.403 0.403 0.403 0.52 0.403 

θr (−) 0.025 0.01 0.025 0.01 0.025 0.025 0.025 0.01 0.025 

α (cm−1) 0.038 0.031 0.038 0.031 0.038 0.038 0.038 0.037 0.038 

η (−) 1.38 1.18 1.38 1.18 1.38 1.38 1.38 1.1 1.38 

Ks (cm d−1) 200 18 550 22 70 85 85 6 85 

Sub-surface layer 

θs (−) 0.35 0.3 0.35 0.392 0.392 0.392 0.481 0.481 0.481 

θr (−) 0.025 0.01 0.025 0.01 0.01 0.01 0.01 0.01 0.01 

α (cm−1) 0.038 0.031 0.038 0.025 0.025 0.025 0.002 0.002 0.002 

η (−) 1.38 1.18 1.38 1.17 1.17 1.17 1.09 1.09 1.09 

Ks (cm d−1) 200 18 550 18 13 85 85 6 60 

Bottom layer 

θs (−) 0.35 0.3 0.35 0.392 0.392 0.35 0.392 0.392 0.35 

θr (−) 0.025 0.01 0.025 0.01 0.01 0.025 0.01 0.01 0.025 

α (cm−1) 0.038 0.031 0.038 0.025 0.025 0.038 0.025 0.025 0.038 

η (−) 1.38 1.18 1.38 1.17 1.17 1.38 1.17 1.17 1.38 

Ks (cm d−1) 200 18 550 18 13 18 85 60 60 

Rg, Regosols; Le, Leptosols; Ar, Arenosols; Fl, Fluvisols; Ca, Cambisols; Pl, Planosols; Ve, Vertisols; Ac, 

Acrisols. θr, residual water content; θs, saturated water content; α and η, empirical shape parameters; Ks, saturated 

hydraulic conductivity. 

  

Table 4.4 Calibrated model parameters for different land uses. 

Soil use 
Manning coefficient, n (s m−1/3) Crop coefficient, Kc (−) 

Default Calibrated Default Calibrated 

Agriculture 0.045 0.043 0.92 0.96 

Forest – Mixed 0.227 0.225 0.95 0.95 

Forest − Deciduous 0.125 0.230 0.80 0.80 

Forest – Evergreen 0.125 0.127 1.07 1.00 

Grassland 0.039 0.039 0.85 0.85 

Shrubland 0.032 0.058 0.90 0.90 

 

4.3.2 Model performance 

4.3.2.1 Streamflow simulations not influenced by reservoirs management 

Table 4.5 presents the goodness-of-fit indicators used to evaluate the level of agreement 

between streamflow measurements in hydrometric stations located in upstream reservoirs 

(Figure 4.3) and the MOHID-Land simulations. In general, the model performed reasonably 

well when simulating streamflow at the above-mentioned locations during the calibration 

(1985–1995) and validation periods (1995–2014). An example is given in Figure 4.4, which 

shows the flow-duration curve for the Oeiras station. The flow-duration curve is a cumulative 

frequency curve that shows the percent of time during which specified discharges are equaled 
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or exceeded in a given period (Searcy, 1959). At the Oeiras station, model simulations matched 

closely the measured values for streamflow values below 2.0 m3 s−1 but a small departure 

between the two data series was noticed for larger flows. 

Table 4.5 Goodness-of-fit indicators obtained during calibration and validation (in brackets) of monthly 

streamflow simulations in hydrometric stations without the influence of reservoir management. 

Hydrometric 

station 

Records 

(years) 

Average flow 
R2 

(−) 

NRMSE 

(−) 

PBIAS 

(%) 

NSE 

(−) 
measured 

(m3 s−1) 

simulated 

(m3 s−1) 

4004 
7.0 

(18.7) 

0.72 

(2.42) 

0.83 

(3.11) 

0.03 

(0.28) 

0.87 

(0.15) 

−14.7 

(−28.5) 

−61.43 

(−4.12) 

4201 
10.0 

(15.7) 

0.70 

(1.82) 

1.31 

(2.70) 

0.02 

(0.13) 

0.46 

(0.20) 

−87.4 

(−48.5) 

−23.90 

(−6.42) 

4224 
8.7 

(12.5) 

0.17 

(0.41) 

2.90 

(3.87) 

0.17 

(0.29) 

2.31 

(0.25) 

−1634.0 

(−446.8) 

−586.06 

(−9.06) 

4108 
9.7 

(12.1) 

0.46 

(1.59) 

1.21 

(2.30) 

0.83 

(0.85) 

0.13 

(0.04) 

−160.9 

(−44.9) 

−1.04 

(0.74) 

4212 
5.5 

(8.8) 

1.75 

(2.02) 

2.31 

(1.89) 

0.80 

(0.80) 

0.06 

(0.05) 

−31.5 

(6.1) 

0.79 

(0.78) 

4218 
3.6 

(9.5) 

2.39 

(4.60) 

1.80 

(1.97) 

0.73 

(0.35) 

0.10 

(0.08) 

24.6 

(56.62) 

0.51 

(0.20) 

4257 
3.5 

(12.4) 

1.03 

(0.75) 

1.60 

(1.80) 

0.83 

(0.44) 

0.11 

(0.17) 

−56.2 

(−142.3) 

0.40 

(−3.82) 

Ponte Algalé 
9.0 

(8.5) 

0.30 

(0.63) 

0.14 

(0.09) 

0.53 

(0.27) 

0.08 

(0.12) 

55.3 

(87.7) 

0.25 

(−0.53) 

Monte Pisão 
9.0 

(−) 

0.79 

(−) 

0.75 

(−) 

0.76 

(−) 

0.05 

(−) 

5.1 

(−) 

0.74 

(−) 

Entradas 
10.0 

(5.6) 

0.15 

(0.30) 

0.16 

(0.28) 

0.79 

(0.63) 

0.04 

(0.08) 

−4.5 

(6.6) 

0.78 

(0.62) 

Monte de Ponte 
9.8 

(−) 

2.50 

(−) 

2.13 

(−) 

0.81 

(−) 

0.05 

(−) 

−4.0 

(−) 

0.75 

(−) 

Oeiras 
9.7 

(5.4) 

1.81 

(3.43) 

2.16 

(2.96) 

0.88 

(0.91) 

0.04 

(0.04) 

−19.2 

(13.91) 

0.80 

(0.89) 

Vascão 
9.4 

(4.8) 

2.25 

(2.62) 

2.54 

(2.82) 

0.87 

(0.90) 

0.04 

(0.04) 

−12.8 

(−7.4) 

0.80 

(0.89) 

Tenência 
7.9 

(−) 

1.46 

(−) 

1.38 

(−) 

0.78 

(−) 

0.05 

(−) 

5.1 

(−) 

0.75 

(−) 

Monte dos 

Fontes 

9.0 

(5.3) 

2.37 

(3.23) 

1.31 

(1.70) 

0.85 

(0.76) 

0.05 

(0.08) 

44.7 

(49.1) 

0.71 

(0.55) 
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Figure 4.4 Observed and simulated flow-duration curves in the Amieira (influenced by reservoirs) and Oeiras 

(no reservoir influence) hydrometric stations. 

Relatively high values of R2 (R2 ≥ 0.75) were found for 10 of 15 hydrometric stations 

considered during calibration, showing that the model could explain well the variability of the 

observed data. Most of these stations were in the lower region of the Guadiana catchment 

(mostly in Portugal), while those located in the upper part (stations 4004, 4201, and 4224) 

failed to produce acceptable R2 values (R2 ≤ 0.17) (Figure 4.5a). Model simulations performed 

well for 5 of the 12 hydrometric stations considered during validation. The R2 values were 

generally lower than in calibration, with the upper region of the Guadiana catchment still failing 

to produce acceptable R2 values (R2 ≤ 0.29) (Figure 4.5b). 
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Figure 4.5 Spatial distribution of the coefficient of determination (R2) values during calibration (a) and 

validation (b). 

Overall, the errors of the estimates were relatively small, resulting in NRMSE values 

below 0.25 for 12 of 15 hydrometric stations considered in calibration (Figure 4.6a), and for 

all stations accounted for in validation (Figure 4.6b). On the other hand, the PBIAS values 

evidenced some overestimation of the measured data (negative values) in most of the Spanish 

hydrometric stations during both calibration and validation, which were not so relevant since 

average flows were relatively small at these locations (0.17 to 4.60 m3 s−1). For the hydrometric 

stations in Portugal, model simulations resulted in smaller over- or under-predictions of the 

measured streamflow, but no spatial trend was noticed (Figure 4.7). Exceptions were the 

streamflow estimates in Ponte Algalé and Monte dos Fortes where a larger bias was found. 
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Figure 4.6 Spatial distribution of the normalized root mean square error (NRMSE) values during calibration (a) 

and validation (b). 
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Figure 4.7 Spatial distribution of the percent bias (PBIAS) values during calibration (a) and validation (b). 

Finally, the NSE modeling efficiency values were relatively high (NSE ≥ 0.75) for 7 of 

15 hydrometric stations considered during calibration (Figure 4.8a), indicating that the residual 

variance was much smaller than the measured data variance. Most of those stations were in the 

lower region of the Guadiana catchment, while for the upper region results showed that the 

measured averages were a more reliable predictor than model simulations. Similar results were 

found during validation (Figure 4.8b). 
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Figure 4.8 Spatial distribution of the modelling efficiency (NSE) values during calibration (a) and validation (b). 

The model systematically failing in delivering accurate estimates of streamflow in the 

upper Guadiana was associated with the large groundwater abstractions in the region, which 

were not accounted for in model simulation (Conan et al., 2003; Kilsby et al., 2007). For 

example, Bromley et al., 2010, reported considerable annual groundwater discharge rates (from 

200 to 688 hm3 y−1) from the West La Mancha aquifer during a period of unrestrained irrigation 

expansion from 1974 to 1988. Nevertheless, while the MOHID-Land model was not able to 

accurately simulate streamflow in all hydrometric stations located upstream the reservoirs 

considered in this application, results were very satisfactory for most of the locations under 

analysis. Note that contrarily to Guerreiro et al. (2017), who considered only a small sub-basin 

for calibrating/validating model predictions for the entire Guadiana basin, the MOHID-Land 

model performance was here assessed considering the entire extent of the catchment, thus 
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accounting for the different land uses, soils, slopes, and rainfall patterns found throughout the 

basin. 

4.3.2.2 Streamflow simulations influenced by reservoir management 

The goodness-of-fit indicators obtained by comparing streamflow measurements in 

hydrometric stations influenced by reservoir management and the MOHID-Land simulations 

are presented in Table 6. These monitoring stations were naturally located down-stream some 

reservoirs (Figure 4.3), with reservoir operation deeply modifying the flow regime. Globally, 

results were much worse than those presented for the scenario without reservoir management, 

with the MOHID-Land model failing to reproduce streamflow measurements in most stations. 

Exceptions were the 4255 and Amieira stations in Spain and Portugal, respectively (Figure 4.5-

8). In these locations, all statistical indicators showed a relatively good agreement between 

model results and measured data (R2 ≥ 0.72; NRMSE ≤ 0.05; PBIAS ≤ 33.9%; and NSE ≥ 0.6). 

Figure 4.4 further gives an example of the flow-duration curve for the Amieira station. For the 

remaining hydrometric stations, the model always overestimated measured flows as seen by 

the large negative values of the PBIAS (Table 6). This constituted the main problem in this 

modeling application since measured streamflow were higher (range from 1.01 to 145.8 m3 s−1) 

than those registered in the hydrometric stations located upstream reservoir management (range 

from 0.17 to 4.60 m3 s−1). For the stations located in the main riverbed (Rocha da Galé, Pulo 

do Lobo, and Ponte Mourão), streamflow simulations even produced unrealistic estimates (> 

1688 m3 s−1). Thus, the erroneous predictions found for the stations influenced by reservoir 

management posed here as the main obstacle to an accurate computation of the catchment water 

balance, in line with all previous modeling applications in the Guadiana River (Brandão and 

Rodrigues, 2000; Conan et al., 2003; Kilsby et al., 2007; Guerreiro et al., 2017). 

Table 4.6 Goodness-of-fit indicators obtained during calibration and validation (in brackets) of monthly 

streamflow simulations in hydrometric stations influenced by reservoir management. 

Hydrometric 

station 

Records 

(years) 

Average flow 
R2 

(−) 

NRMSE 

(−) 

PBIAS 

(%) 
NSE (−) measured 

(m3 s−1) 

simulated 

(m3 s−1) 

4174 
9.8 

(-11.3) 

2.03 

(3.84) 

7.87 

(11.98) 

0.01 

(0.01) 

0.20 

(0.12) 

−287.3 

(−212.1) 

−3.72 

(−1.01) 

4214 
6.0 

(-16) 

1.49 

(5.37) 

5.19 

(8.75) 

0.65 

(0.72) 

0.18 

(0.04) 

−248.3 

(−62.8) 

−1.35 

(0.65) 

4255 
8.8 

(-17) 

5.66 

(12.45) 

6.17 

(8.24) 

0.82 

(0.71) 

0.04 

(0.04) 

−9.0 

(33.9) 

0.81 

(0.60) 

Vendinha 
10.0 

(-5.1) 

1.01 

(1.80) 

2.71 

(5.27) 

0.85 

(0.81) 

0.08 

(0.20) 

−168.5 

(−193.4) 

0.21 

(−1.54) 

Rocha da Galé 
10.0 

(-5.0) 

51.74 

(49.74) 

1799.94 

(1906.28) 

0.82 

(0.71) 

1.09 

(1.39) 

−3379.1 

(−3732.8) 

−139.76 

(−112.83) 

Pulo do Lobo 
9.2 

(-4.9) 

58.68 

(145.80) 

1783.62 

(1940.42) 

0.76 

(0.86) 

0.99 

(0.74) 

−2939.6 

(−1330.9) 

−114.29 

(−31.91) 
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Hydrometric 

station 

Records 

(years) 

Average flow 
R2 

(−) 

NRMSE 

(−) 

PBIAS 

(%) 
NSE (−) measured 

(m3 s−1) 

simulated 

(m3 s−1) 

Ponte Mourão 
10.0 

(-5.5) 

38.96 

(90.29) 

1688.36 

(1750.75) 

0.52 

(0.68) 

1.57 

(1.09) 

−4233.1 

(−1839.0) 

−292.35 

(−78.33) 

Monte da Vinha 
8.4 

(−) 

22.26 

(−) 

83.78 

(−) 

0.74 

(−) 

0.24 

(−) 

−276.5 

(−) 

−4.96 

(−) 

Amieira 
8.9 

(-6.1) 

4.29 

(9.30) 

4.01 

(8.65) 

0.87 

(0.82) 

0.05 

(0.05) 

6.6 

(7.0) 

0.71 

(0.79) 

 

Figure 4.9 compares the scenarios with and without reservoirs at Amieira, 4255, and 

Monte da Vinha stations. Monte da Vinha was added to the figure to better explain the 

differences between both scenarios despite results were not validated at that location by the 

statistical indicators (Table 4.6). In general, the further downstream the station was located, the 

greater the departure between the two simulations. Streamflow at Amieira ended up being 

slightly influenced by reservoir management due to the size of the Monte Novo (15.3 hm3) and 

Vigia (16.5 hm3) upstream reservoirs. At 4255, the two simulations started departing after 

January 1996 when the Peña del Águila reservoir (130 hm3) began operating, affecting mostly 

streamflow peaks. Monte da Vinha showed the greatest difference between the two simulations, 

but as consumptions were not considered in the modeling approach the differences between the 

two scenarios remained small. 
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Figure 4.9 Streamflow simulations considering (or not) reservoir management at three locations (Amieira, 4255, 

and Monte da Vinha hydrometric stations). 

4.3.3 About model predictions 

Fully distributed models such as MOHID-Land are usually considered to provide 

improved predictions of streamflow along the river network of a catchment while also 

accounting for the spatial dynamics of evapotranspiration, soil moisture content, water quality, 

soil erosion, and land use change impacts (Yilmaz et al., 2008; Fatichi et al., 2016). Yet, their 

spatial complexity often limits the proper identification of model parameters, translating into 

significant predictive uncertainty in the simulation results (Beven and Freer, 2001). Model 

parameters are typically derived from soil and land use datasets or inferred from spatiotemporal 

data. These parameters mostly result from relationships derived from small-scale applications, 
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being embedded into larger-scale model grids without proper accounting for heterogeneity, 

emergent processes, scaling, and interactions across scales (Reed et al., 2004; Yilmaz et al., 

2008; Fatichi et al., 2016). 

This modeling application adopted a simple trial-and-error procedure for calibrating 

streamflow. A series of techniques (e.g., data mining, machine learning, and inverse 

optimization) exist that can be used to further optimize model parameters, but which require a 

considerable effort if implemented in MOHID-Land. Despite that, model uncertainty can still 

be associated with different causes, including errors related to field measurements, and to model 

input and model structure errors. 

4.3.3.1 Field measurements 

Streamflow measurements were obtained from public datasets used to monitor the 

Guadiana flow regime in both Portugal (SNIRH, 2019) and Spain (CEH-CEDEX, 2019). Those 

values are usually not directly measured but converted from water level (known as “stage”) 

time series through a stage-discharge model (known as rating curve). This in turn is derived 

using paired stage and discharge measurements occasionally observed in the field. Horner et 

al. (2018) discussed the general sources of error for stage measurements, with these being site 

specific and associated with the channel characteristics, the information available to build the 

rating curve, the station management, the time interval at which streamflow data are averaged, 

and the streamflow range. Those authors further adverted for the fact that while stage 

measurement errors are generally overlooked, they may well be more substantial for 

hydrometric stations characterized by low flow depths such as those in the Guadiana catchment 

(catchments in arid/ semiarid environments). Additionally, the CADC (2017) minutes refer the 

need for harmonizing the measurement procedures in both Portugal and Spain as readings from 

some hydrometric stations are sometimes inconsistent with others available nearby. 

4.3.4 Model inputs 

Parameter uncertainty was associated with soil, land use, and rainfall data. Detailed soil 

maps are rare in most regions of the world, and soil information is even scarcer when referring 

to soil hydraulic properties. Pedotransfer functions are thus presented as the best possible 

solution for characterizing soil heterogeneity at the catchment scale since direct measurements 

are impractical due to the associated costs (Van Looy et al., 2017). The pedotransfer functions 

adopted in this study (Wösten et al., 1999) provided only a very simplified representation of 

soil variability by considering a set of soil hydraulic parameters for each textural class. 

Likewise, past applications of the MOHID-Land model (e.g., Brito et al., 2015, 2017) adopted 
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the same functions for characterizing soil variability. Recently, Montzka et al. (2017) and Tóth 

et al. (2016) developed soil hydraulic grid maps (250 m – 1 km) for different layers that may 

better describe soil heterogeneity, and that should provide the basis for improving soil hydraulic 

characterization in future catchment scale applications of the MOHID-Land model. A 

functional evaluation of those maps is thus required to better understand their usefulness to 

catchment scale modelling. 

Uncertainty related to land use was mostly associated with vegetation growth stages. The 

corresponding set of model parameters impact directly evapotranspiration fluxes and respective 

partitioning into soil evaporation and crop transpiration. Ramos et al. (2018), showed the 

importance of an accurate description of vegetation growth, particularly the LAI curve, on 

estimates of the soil water balance at the plot scale. They further described the impact of 

assimilation of LAI data derived from Landsat 8 imagery on MOHID-Land simulations. The 

main conclusion was that modeling vegetation growth at the regional scale cannot depend 

solely on inputs from the LAI data assimilation because estimates may diverge substantially 

from the reality, thus confirming the need to use a proper data set for calibration. Nevertheless, 

the sensitivity analysis performed in this study failed to demonstrate vegetation growth as 

relevant for streamflow simulations, meaning that the impact of those parameters on final 

model results was only minor. 

 Finally, the SAFRAN dataset (Quintana-Seguí et al., 2017) was used for defining the 

atmosphere boundary conditions of the simulation domain. As the only water input considered 

in the modeling application, deviations between measured and simulated discharges were 

highly dependent on the quality of the rainfall inputs provided by that data. Limitations have 

been reported in Quintana-Seguí et al. (2017) and include: the existence of artificial 

discontinuities at the borders of the climatically homogeneous zones; the overestimation of the 

number of rainfall days as the model generates rainfall for a whole climatically homogeneous 

zone once there is a localized rainfall event in some of the stations within, thereby wrongly 

assigning the event to unaffected stations; and missing of high rainfall (or localized) events as 

the model tends to average the values of all stations in a zone. The impact of these errors on 

model results needs thus to be quantified, for example, by comparing streamflow simulations 

using different weather datasets. 

4.3.4.1 Model structure errors 

The MOHID-Land model was implemented using a relatively coarse grid (5 km × 5 km), 

which was defined considering the length of the simulation period, quality of results, and 
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computational speed. While that grid size was similar to Guerreiro et al., 2017, much detail 

was inevitably lost when converting model inputs into the grid. The impact of such losses on 

final model results was not assessed but streamflow simulations should expectably improve 

when adopting smaller grid scales as seen in other MOHID-Land applications (Oliveira et al., 

2020). 

While the MOHID-Land model is generically a physically based model that solves mass 

and momentum conservation equations for simulating landscape processes, water infiltration 

and surface runoff were here computed using a semi-empirical approach with the intention of 

simplifying the description of the simulated processes and increasing computation speed. 

Limitations on using the CN method for simulating such processes are well documented in 

Boughton (1989) and Eli and Lamont (2010), which among other critics include the systematic 

underestimation of runoff discharge peaks when compared with other approaches (e.g., the 

Green-Ampt method). 

The modeling approach was also limited by not properly defining the Kc values according 

to the vegetation growth stages (Allen et al., 1998), systematically over or underestimating 

evapotranspiration in the catchment throughout the simulation period. Groundwater extractions 

were also not included as such information was not available with enough detail. Furthermore, 

irrigation was absent, but if considered would likely modify flow paths and impact the 

comparison of modeled and simulated streamflow. Finally, water evaporation from reservoirs 

was not accounted for, likely having some impact on the computation of the catchment water 

balance. Still, the modeling limitation that most affected model performance was not doubly 

related to reservoir management. On one hand, better operation rules than those given in Table 

4.2 need to be defined in the MOHID-Land model for properly estimating reservoir discharge 

in the absence of measured data. On the other hand, the information related to reservoir 

discharge and consumption needs to be improved to be included in model simulations with 

greater detail. In this study, reservoir outflows imposed in the Portuguese reservoirs accounted 

for many data limitations as information was not available for the entire simulation period 

(SNIRH, 2019). For the Spanish reservoirs, the available information on reservoir outflows and 

consumptions was aggregated into one unique time series (CEH-CEDEX, 2019), obviously 

increasing uncertainty with the assumptions that need to be made for partitioning that data. As 

in this study no partitioning was considered, simulated streamflow values were inevitably 

higher than actual discharge values. 
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4.4 Conclusions 

This modeling application showed the usefulness of the MOHID-Land model in 

simulating streamflow at hydrometric stations not influenced by reservoir management, but 

also the inherent limitations by not considering relevant processes such as groundwater 

abstractions to the accurate prediction of the Guadiana River flow regime. For the hydrometric 

stations located downstream reservoir management, model simulations were generally poor as 

the agreement with measured streamflow was dependent on reservoir discharge rather than the 

basic physical processes (evapotranspiration, water infiltration, soil storage, and so on) 

describing landscape heterogeneity. Hence, information on groundwater abstractions and 

reservoir management (discharges, consumptions) needs to be made available with greater 

detail for the better development of water management tools, including fully-distributed 

models like MOHID-Land. In the end, the accurate quantification of streamflow in Guadiana 

as well as in other transitional catchments can only benefit local water authorities and reduce 

potential conflicts in a context of enhanced water scarcity. 
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Abstract 

Hydrological models are increasingly used for studying watershed behavior and its 

response to past and future events. The main objective of this study was to conduct a sensitivity 

analysis of the MOHID-Land model and identify the most relevant parameters/processes 

influencing river flow generation. MOHID-Land is a complex, physically based, three-

dimensional model used for catchment-scale applications. A reference simulation was 

implemented in the Ulla River watershed, northwestern Spain. The sensitivity analysis focused 

on sixteen parameters/processes influencing water dynamics at that scale. River flow 

generation was influenced by the resolution of the simulation grid, soil water infiltration, and 

crop evapotranspiration. Baseflow was affected by soil hydraulic properties, the depth of the 

soil profile, and the dimensions of the river cross-sections. Peak flows were mostly constrained 

by Manning’s coefficient in the river network, as well as the dimensions of the river cross-

sections. The MOHID-Land model was then used to simulate daily streamflow during a 10-

year period (2008−2017). Model simulations were compared against measured data at four 

hydrometric stations characterizing the natural flow regime of the Ulla River, resulting in 

coefficients of determination (R2) from 0.56 to 0.85; ratios of the standard deviation of the root 

mean square error to observation (RSR) between 0.4 and 0.67, and Nash and Sutcliffe model 

efficiency (NSE) values ranging from 0.55 to 0.84. The MOHID-Land model thus has the 

capacity to reproduce watershed behavior at a daily scale with reliable accuracy, constituting a 

powerful tool to improve water governance at the watershed scale. 

Keywords: MOHID-Land; physical model; sensitivity analysis; calibration; validation; 

river flow  



112 

 

5.1 Introduction 

Hydrological models are, similar to any other model, a simplified representation of the 

“real-world” system (Wheater et al, 2007). They are usually used for two main purposes: to 

predict future events and to better understand different hydrological processes (Devia et al., 

2015). Hydrological models can be classified considering their complexity (Sitterson et al., 

2017). Empirical models are the simplest, characterized by linear and non-linear equations 

relating inputs and outputs without fully representing the physical processes occurring in the 

catchment. Conceptual models are of intermediate complexity, based on simplified equations 

that describe the watershed’s water balance. Finally, the most complex are physical models, 

which are governed by laws and equations based on real hydrological responses. These models 

use finite difference equations as well as state variables that can be measured and are time and 

space dependent (Devia et al., 2015; Fatichi et al., 2016). They require a large number of 

parameters to describe the physical characteristics of the watershed, such as the initial water 

depth, topography, soil properties, and crop characteristics (Devia et al., 2015; Abbott et al., 

1986a; Abbott et al., 1986b; Ranatunga et al., 2017), which add increasing complexity to their 

correct implementation at the watershed scale. 

Pianosi et al. (2016) states that sensitivity analyses are increasingly being used in 

environmental modeling for multiple purposes, including uncertainty analysis, model 

calibration, and diagnostic evaluation. A sensitivity analysis of a hydrological model allows 

evaluating the influence that certain hydrological parameters have on model outputs (Silva et 

al., 2015; Shi et al., 2017; Song et al., 2015; Sreedevi and Eldho, 2019; Christiaens and Feyen, 

2002). Since results of hydrological models are space and time dependent when applied at the 

watershed scale, this methodology allows us to identify the dominant characteristics and 

processes occurring at that particular scale, presenting itself as an essential tool for modelers 

and decision makers (Ranatunga et al., 2017). Sensitivity analysis is usually carried out at the 

beginning of model applications to identify the parameters that most strongly influence the 

hydrological behavior of the watershed (Hamby, 1994; Doherty and Hunt, 2009). The 

information obtained is very useful to understand the strengths and weaknesses of an 

application of a given model to a specific case study (Doherty and Hunt, 2009). 

This study presents a sensitivity analysis performed with the MOHID-Land model 

(Trancoso et al., 2009), and its application to a case study considering calibration and validation 

processes based on the knowledge acquired during the former analysis. MOHID-Land is a 

physically based model that simulates the interactions between different mediums of the soil–
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water–atmosphere continuum. The fundamental processes that affect the hydrological behavior 

of a watershed are formulated at detailed time and spatial scales, with the study area being 

discretized by a grid of which the resolution is selected by the modeler. Processes are then 

calculated for each cell of that grid. Because of its versatility, the MOHID-Land model has 

been applied in different case studies, characterized by a diversity of spatial scales. At the plot 

and field scale, MOHID-Land was used to study soil water dynamics and to improve irrigation 

practices (Simionesei et al., 2016; Ramos et al., 2017; Simionesei et al., 2017; Ramos et al., 

2018; Simionesei et al., 2018). At the watershed scale, this model was used to understand the 

contribution of flood events to the eutrophication of water reservoirs (Brito et al., 2017; Brito 

et al., 2018), to develop a forecast system of fresh water quantity and quality in coastal rivers 

(Brito et al., 2015), to evaluate nitrogen transport and turnover (Epelde et al., 2016), to model 

and analyze the exchanges between groundwater and surface water in floodplains (Bernard-

Jannin et al., 2016), and to study the influence of reservoir management on the streamflow 

regime of a semi-arid watershed (Canuto et al., 2019). Despite its increasing use, MOHID-

Land was never subjected to a sensitivity analysis to better depict the main processes and 

parameters involved in the simulation of water dynamics at the watershed scale. 

Thus, the main objective of this study is to conduct a sensitivity analysis of the MOHID-

Land model following the guidelines proposed by Pianosi et al. (2016) and to identify the 

parameters/processes that most strongly influence river flow generation, baseflow, and peak 

flows in the Ulla River watershed, northwestern Spain, selected here as a case study. This 

watershed is frequently affected by flood events, particularly in the downstream areas. Water 

quality issues related to a deactivated metal mine located in an affluent area of the Ulla River 

have often been raised. It is thus imperative to have a reliable tool to predict the river flow 

regime and mitigate those events. Additionally, this study aims to identify which 

parameters/processes can improve the model’s computational speed. Results of this study can 

further be very useful for future applications of the model, directing users to the most impactful 

parameters for river flow generation and saving time. Thus, this study constitutes an added 

value for those users as well as for the hydrological modeling community in general. 

5.2 Materials and Methods 

5.2.1 Description of the Study Area 

The study area was the watershed of the Ulla River, Galicia, northwestern Spain (Figure 

5.1). The Ulla River watershed has an area of 2803 km2 (Augas de Galicia, 2015). Its origin is 

in Fonte de Ulla, Monterosso municipality, at a level of about 600 m, and the main watercourse 
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has a bed length of 142 km, crossing 19 counties. The maximum and minimum elevations are 

1160 m and −0.75 m, respectively. According to the Köppen-Geiger classification, the climate 

in the region is a Mediterranean warm summer climate (Csb). The average annual temperature 

is 12°C, ranging from 7°C in February to 18°C in August. The annual precipitation is 1100 

mm, occurring mainly from October to May. The dominant soil units are Umbric Leptosols and 

Umbric Regosols, occupying 69% and 31% of the area, respectively (FAO, 2009). The main 

land uses are forest and semi natural areas and agricultural areas, covering 57.2% and 40.3% 

of the watershed, respectively (Copernicus Land Monitoring Service, n.d.). 

 

Figure 5.1 (a) Location of the study area; (b) Digital terrain model and location of reservoirs and hydrometric 

stations; (c) main soil units; (d) main land uses (Copernicus Land Monitoring Service, n.d.). 

The watershed has a population of about 150 000 inhabitants, mainly located in the cities 

of Santiago de Compostela, Estrada, Lalín, and Padrón. The Ulla River further includes three 

reservoirs, namely, Portodemouros, Touro, and Bandariz (Figure 5.1). Portodemouros has a 
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total capacity of 297 hm3, while Bandariz and Touro are smaller, storing 2.74 hm3 and 3.78 

hm3, respectively. The reservoirs are mainly used for energy production and flood control. The 

three reservoirs function together, with Bandariz and Touro being used to uniformize turbinated 

flows in Portodemouros during peak times, reducing its impact in downstream areas. 

5.2.2 Model Description 

The MOHID-Land model (Trancoso et al., 2009; Canuto et al., 2019) is an open-source 

hydrological model; the code can be accessed from an online repository (github.com/Mohid-

Water-Modelling-System/Mohid). MOHID-Land simulates the water cycle considering four 

compartments or mediums: atmosphere, porous media, soil surface, and river network. The 

atmosphere is not explicitly simulated but provides data necessary for imposing surface 

boundary conditions that may be space and time variant. The water moves between the 

remaining mediums based on mass and momentum conservation equations that are computed 

using a finite volume approach. MOHID-Land is thus a physically based, fully distributed 

model using an explicit algorithm with a variable time step. The time step is maximum during 

dry seasons and minimum when fluxes increase. 

The simulated domain can be discretized by a regular grid, quadrangular or rectangular, 

in the surface plane, and by a cartesian coordinate system in the vertical direction. Thus, the 

surface land is described using a 2D horizontal grid while the porous media is a 3D domain, 

which includes the same horizontal grid on the surface complemented with a vertical grid with 

variable thickness layers. The river network is a 1D domain defined from a digital terrain model 

(DTM). The water lines of the drainage network are then delineated by linking surface cell 

centers (nodes) together. 

5.2.2.1 Infiltration 

The MOHID-Land model includes three options to compute soil water infiltration. The 

infiltration rate (i, LT−1) can be first estimated according to Darcy’s law, as follows:  

𝑖 = −𝐾𝑠𝑎𝑡 (
𝜕ℎ

𝜕𝑧
+ 1) (Eq. 5.1) 

where Ksat is the saturated soil hydraulic conductivity (LT−1), h is the soil pressure head (L), 

and z is the vertical space coordinate (L). 

The infiltration rate can also be calculated according to the Green and Ampt method 

(Green and Ampt, 1911): 

𝑖 = ∆𝜃 (
𝐷0
2𝑡
)
1/2

 (Eq. 5.2) 
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where t is the time (T), D0 is the soil water diffusivity (L2T−1), and ∆θ is the difference between 

the volumetric water content in the wetted region (θ0) and soil initial conditions (θi) (∆θ = θ0 − 

θi, L
3L−3). Soil water diffusivity can then be calculated as: 

𝐷0 =
𝐾0∆ℎ

∆𝜃
 (Eq. 5.3) 

where K0 is the hydraulic conductivity of the wetted region (LT−1), and ∆h is the difference 

between the matric head in the wetted region (h0) and at the moving front (hF) (∆h = h0 − hF). 

Finally, the SCS runoff curve number (CN) method (SCS, 1972) can be further used to 

estimate the infiltration rate. In this method, infiltration water is the amount of water not 

removed by surface runoff, entering the soil at a rate computed from the ratio between the 

amount of water available for infiltration and the time step. The surface runoff is first calculated 

as follows: 

𝑄 =
(𝑃 − 𝐼𝑎)

2

(𝑃 − 𝐼𝑎) + 𝑆
 (Eq. 5.4) 

where Q is the runoff (L, mm), P is the rainfall (L, mm), S is the potential maximum retention 

(L, mm) after runoff begins, and Ia is the initial abstraction (L, mm). Initial abstraction 

considers all losses before runoff begins, as water retained in surface depressions, water 

intercepted by vegetation, evaporation, and infiltration, and is calculated as: 

𝐼𝑎 = 0.2𝑆 (Eq. 5.5) 

The S parameter is related to soil properties and land use through the curve number (CN): 

𝑆 =
25400

𝐶𝑁
− 254 (Eq. 5.6) 

The CN values may range between 0 and 100 (-). Higher values of CN are related with 

more impermeable soils and, consequently, with higher runoff values. In MOHID-Land, the 

user can define average curve number values (CNII). However, because runoff is affected by 

soil moisture before a precipitation event, these average values are adjusted for dry (CNI) and 

wet (CNIII) conditions. The adjustment of the CNII values considers the comparison of the 

accumulated precipitation during the last five days with predefined thresholds. Under dry 

conditions, CN values will then decrease while under wet conditions CN values will increase. 

Nonetheless, it is important to note that, in MOHID-Land, the amount of water in Ia may not 

fully infiltrate if the soil is saturated, being transformed back to surface runoff and summed to 

Q in Eq. 5.4. 
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5.2.2.2 Surface Flow 

Surface flow is computed by solving the Saint-Venant equation in its conservative form, 

accounting for advection, pressure, and friction forces:  

𝜕𝑄𝑢
𝜕𝑡

+ 𝑣𝑣
𝜕𝑄𝑢
𝜕𝑥𝑣

= −𝑔𝐴(
𝜕𝐻

𝜕𝑥𝑖
+
|𝑄|𝑄𝑖𝑛

2

𝐴𝑣2𝑅ℎ
4/3

) (Eq. 5.7) 

where Q is the water flow in the river (L3T−1), A is the cross-sectional flow area (L2), g is the 

gravitational acceleration (LT−2), v is the flow velocity (LT−1), H is the hydraulic head (L), n is 

the Manning coefficient (TL−1/3), Rh is the hydraulic radius (L), and subscripts u and v denote 

flow directions. In the drainage network, surface flow is solved for one direction (1D domain) 

considering the water lines obtained from the DTM. The cross-sections in the nodes of the river 

network are defined by the user. Outside the drainage network, surface flow results from the 

amount of water that does not infiltrate or ascends by capillarity and is solved on a 2D domain 

considering the directions of the horizontal grid. Water exchanges between the soil surface and 

the drainage network are computed according to a kinematic approach, neglecting bottom 

friction, and using an implicit algorithm to avoid instabilities. 

5.2.2.3 Porous Media 

The movement of infiltrated water in the porous media is computed by the Richards 

equation:  

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑥𝑖
(𝐾(𝜃) (

𝜕ℎ

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑖
)) − 𝑆(ℎ) (Eq. 5.8) 

where θ is the volumetric water content (L3L−3), xi represents the xyz directions (-), K is the 

hydraulic conductivity (LT−1), and S is the sink term representing root water uptake (L3L−3T−1). 

The soil hydraulic properties are described using the Mualem-van Genuchten functional 

relationships (Mualem, 1976; van Genuchten, 1980): 

𝑆𝑒(ℎ) =
𝜃(ℎ) − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

=
1

(1 + |𝛼ℎ|𝜂)𝑚
 (Eq. 5.9) 

𝐾(ℎ) = 𝐾𝑠𝑎𝑡𝑆𝑒
ℓ [1 − (1 − 𝑆𝑒

1/𝑚
)
𝑚
]
2

 (Eq. 5.10) 

where Se is the effective saturation (L3L−3), θr and θs are the residual and saturated water 

contents, respectively (L3L−3), Ksat is the saturated hydraulic conductivity (LT−1), α (L−1) and η 

(-) are empirical shape parameters, m = 1 − 1/η, and ℓ is a pore connectivity/tortuosity parameter 

(-). In MOHID-Land, the relation between the horizontal and vertical hydraulic conductivities 

is defined by a factor (fh = Khor/Kver) that can be adjusted by the user. The model uses the 

Richards equation in the whole subsurface domain and simulates saturated and unsaturated 
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flow using the same grid. A cell is considered saturated when moisture is above a threshold 

value (e.g., 98%) defined by the user. When a cell reaches saturation, the model uses the 

saturated conductivity to compute flow and the pressure becomes hydrostatic, corrected by 

friction. This procedure eases the implementation of the model and simplifies its use at an 

annual scale. The penalty is the time step that during the wetting period must be shorter to 

guarantee stability. The constraint is minimized using parallel computing. The water fluxes 

between the porous media and the drainage network are also driven by the pressure gradient in 

the interface of these two mediums. 

5.2.2.4 Root Water Uptake 

Root water uptake considers the weather conditions and soil water contents. The 

reference evapotranspiration rates (ETo, LT−1) are first computed according to the FAO 

Penman–Monteith method (Allen et al., 1998). Crop evapotranspiration rates (ETc, LT−1) are 

then obtained from the product of ETo and a single crop coefficient (Kc). The Kc is imposed, 

with the model either assuming a constant value representing the average characteristics of 

each vegetation type over the entire growing season as well as average effects of evaporation 

from the soil (Canuto et al., 2019) or a crop stage-dependent value as used in Allen et al., 1998. 

Advantages and limitations of these approaches are discussed in Canuto et al. (2019). 

The ETc values are partitioned into potential soil evaporation (Ep, LT−1) and crop 

transpiration (Tp, LT−1) as a function of the simulated leaf area index (LAI, L2L−2) (Ritchie, 

1972): 

𝑇𝑝 = 𝐸𝑇𝑐(1 − 𝑒
(−𝜆𝐿𝐴𝐼)) (Eq. 5.11) 

𝐸𝑝 = 𝐸𝑇𝑐 − 𝑇𝑝 (Eq. 5.12) 

where λ is the extinction coefficient of radiation attenuation within the canopy (-). The LAI 

values are simulated using a modified version of the EPIC model (Neitsch et al., 2011; Williams 

et al., 1989), considering the heat units for the plant to reach maturity, the crop development 

stages, and crop stress. Additional details can be found in Ramos et al. (2017). 

Root water uptake reductions, i.e., Tp reductions, are finally computed using the 

macroscopic approach proposed by Feddes et al. (1978) as follows: 

𝑇𝑎 = 𝛼(ℎ)𝑇𝑝(𝑧) (Eq. 5.13) 

where Ta is the actual transpiration rate (Ta, LT−1) and α is a prescribed dimensionless function 

of h (0 ≤ α ≤ 1) limiting Tp over the root zone in the presence of depth-varying stressors, such 

as water stress (Šimůnek and Hopmans, 2009; Skaggs et al., 2006). According to the linear 

model proposed by Feddes et al. (1978), root water uptake is maximum when the pressure head 
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is between h2 and h3, has a linear reduction when h>h2 or h<h3, and becomes zero when h<h4 

and h>h1 (subscripts 1−4 denote different threshold pressure heads). Finally, the actual soil 

evaporation (Ea, LT−1) is calculated from Ep values by imposing a pressure head threshold value 

(ASCE, 1996). 

5.2.3 Model Set-Up (Reference Simulation) 

The MOHID-Land model was applied to the study area using a constant horizontally 

spaced grid in the eastern and northern directions (215 columns × 115 rows), with origin on 

42.468498°N and 8.801326°W, and a resolution of 0.005° (≈500 m). The DTM was provided 

by the European Environment Agency (EU-DEM) (Copernicus Land Monitoring Service—

EU-DEM, n.d.), with a resolution of approximately 30 m (0.00028°). This DTM is a hybrid 

product based on the Shuttle Radar Topography Mission (SRTM) and the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation 

Model (GDEM) data fused by a weighted averaging approach. 

The drainage network was derived from the DTM. The geometry of the river cross-

sections was defined according to Andreadis et al. (2013). This database relates the drained 

area in each node to the top width and depth of the cross-section at that node (Table 5.1). All 

cross-sections were considered rectangular, with bottom width equal to the top width. For the 

nodes with intermediate drainage areas, the dimensions of the cross-section were linearly 

interpolated from the upper and lower classes defined in Table 5.1. The Manning coefficient 

was set to a constant value of 0.035 s m−1/3 for the entire drainage network (the model does not 

allow setting up different values along the river network). 

Table 5.1 Cross-section drained area, width, and depth. 

Area 

(km2) 

Reference set-up Sensitivity analysis Model calibration 

Top width 

(m) 

Depth 

(m) 

Top width + 25% 

(m) 

Depth + 100% 

(m) 

Top width 

(m) 

Depth 

(m) 

37.85 12.71 0.42 15.89 0.84 12.71 2.0 

62.65 16.45 0.51 20.56 1.02 16.45 2.0 

84.49 19.16 0.58 23.95 1.16 19.16 2.0 

123.35 23.24 0.67 29.05 1.34 23.24 3.0 

161.90 26.71 0.75 33.39 1.50 26.71 3.0 

195.10 29.38 0.81 36.72 1.62 29.38 3.0 

312.45 37.36 0.98 46.70 1.96 37.36 3.0 

503.12 46.95 1.17 58.69 2.34 46.95 4.0 

1164.36 73.16 1.65 91.45 3.30 73.16 4.0 

2246.34 102.33 2.14 127.91 4.28 102.33 4.0 

2785.08 114.21 2.33 142.76 4.66 114.21 4.0 
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Corine Land Cover (FAO, 2009) data with a resolution of 100 m were used to identify 

land use. For each land use, the vegetation type and respective Manning’s coefficient were 

defined. Vegetation type was defined according to MOHID’s vegetation database, while the 

Manning’s coefficients were defined according to Pestana et al. (2013). The Kc values were set 

based on vegetation type. As mentioned earlier, these coefficients represent empirical average 

values for the growing season and are not stage dependent as in Allen et al. (1998). The 

resulting interpolation to the MOHID’s simulation domain (Figure 5.2) showed a variation for 

the Manning coefficient from 0.023 to 0.298 s m−1/3 while the Kc values varied from 0.15 to 

1.0 (Figure 5.2). 

 

Figure 5.2 MOHID-Land input data: Manning coefficients (a); main land uses (b); crop coefficients (c); and soil 

data for horizons 1 (d), 2 (e), and 3 (f). 



121 

 

The soil domain was divided into six grid layers, with a thickness from the surface to the 

bottom layers of 0.3, 0.3, 0.7, 0.7, 1.5, and 1.5 m (vertical grid). On the other hand, the soil 

profile was characterized by three horizons: 0 to 0.6 m, 0.6 to 2.0 m, and 2.0 m to the soil 

bottom. Thus, the first horizon included the first two grid layers, the second horizon included 

the two middle grid layers, and the third horizon consisted of the two bottom layers of the 

vertical grid domain. The soil depth in each cell was estimated considering the cell slope, with 

flat areas approximating a maximum predefined value while sloped areas approached a 

minimum. These maximum and minimum soil depths were defined as 5.0 and 0.1 m, 

respectively. Soil data were extracted from the multilayered European Soil Hydraulic Database 

(Tóth et al., 2017). This database includes the Mualem–van Genuchten hydraulic parameters 

for the whole of Europe at a resolution of 250 m. Information is provided at 0, 0.05, 0.15, 0.3, 

0.6, 1.0, and 2.0 m depths. For the present application, the 0.3 m layer was used to characterize 

the first horizon, the 1.0 m layer was used for the second horizon, and the 2.0 m layer was used 

for the bottom horizon. Figure 5.2 shows the spatial distribution of soil data in the Ulla 

watershed while Table 5.2 presents the corresponding Mualem–van Genucthen parameters. 

The fh parameter, which relates the horizontal and vertical hydraulic conductivities, was set to 

10. For the initial conditions, the soil was assumed as saturated for 95% of the profile (from 

the bottom to the surface), while the soil water content in the vadose zone was set to field 

capacity. Soil water infiltration was computed following the Darcian approach (Eq. 5.1). 

Table 5.2 Soil hydraulic parameters. 

ID θs θr η Ksat,ver α ℓ 

1 and 2 0.4912 0 1.9131 1.64×10−6 3.47 −4.3 

3 0.4646 0 1.116 2.26×10−5 12.84 −5.0 

4 0.4086 0 1.1335 5.05×10−6 7.00 −5.0 

5 0.4332 0 1.1701 9.93×10−7 3.36 −5.0 

6 0.4133 0 1.1191 1.43×10−6 2.27 −5.0 

7 and 8 0.3839 0 1.1206 4.29×10−6 7.17 −5.0 

9 0.4322 0 1.1701 9.93×10−7 3.36 −5.0 

10 0.4133 0 1.1191 1.43×10−6 2.27 −5.0 

11 and 12 0.3839 0 1.1206 4.29×10−6 7.17 −5.0 

θr, residual water content; θs, saturated water content; α and µ are empirical shape parameters; ℓ, pore 

connectivity/tortuosity parameter; Ksat, saturated hydraulic conductivity. 

 Meteorological data were extracted from the ERA5-Reanalysis dataset (Copernicus 

Climate Change Service (C3S), 2017). This dataset provides several gridded meteorological 

parameters with an hourly timestep and with a resolution of 0.28125° (31 km). The variables 

used were the u and v components of wind velocity at 10 m height, dewpoint temperature and 

air temperature at 2 m height, surface solar radiation downwards, surface pressure, total cloud 
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cover, and total precipitation. The ERA5 precipitation data were first validated through 

comparison with measured values obtained at Melide and Santiago meteorological stations 

(Figure 5.1). For the Melide station, a comparison was conducted from 1 January 2008 to 31 

December 2012, resulting in a coefficient of determination (R2) of 0.74 (Figure 5.3). For the 

Santiago station, that period was from 1 January 2016 to 31 December 2017, with the R2 value 

reaching 0.78. The ERA5 data were then interpolated to the case study grid. 

 

Figure 5.3 Validation of precipitation data measured at Melide (a) and Santiago (b) meteorological stations. 

5.2.4 Sensitivity Analysis 

The computational cost of one single run with the MOHID-Land model made it 

impossible to carry out thousands of runs to perform a global and detailed sensitivity analysis. 

Thus, a local sensitivity analysis was performed by modifying selected MOHID-Land 

parameters and processes one at the time and evaluating their impact on river flow. The 

respective flow-duration curves, which express the exceedance probability of a certain flow 

(Searcy, 1959), were then compared against the reference simulation. A sensitivity index was 

finally computed following the methodology proposed by Ranatunga et al. (2017). 

The simulated river flows at a specific location were arranged in a descending order and 

ranked from 1 to N with the exceedance probability (frequency of occurrence) being given as 

follows: 

𝐹 = 100
𝑅

𝑁 + 1
 (Eq. 5.14) 

where F is the exceedance probability (expressed as a percentage of time a flow value is 

equaled or exceeded), R is the rank, and N is the total number of flow values resulting from the 

simulation. The flow duration curve is thus the graphical representation of flow values and the 

corresponding F values. The flow duration curves were then divided into five zones based on 
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the percentage exceedance as shown in Figure 5.4. Flows with an F value from 0 to 10% were 

considered high flows; 10 to 40% corresponded to moist conditions; 40 to 60% corresponded 

to mid-range flows; 60 to 90% corresponded to dry flows; and 90 to 100% corresponded to low 

flows (Ranatunga et al., 2017). 

 

Figure 5.4 Division of the flow duration curve (adapted from Ranatunga et al., 2017). 

 The sensitivity index (SI) aimed at measuring the relative influence of the analyzed 

parameters/processes on river flow. This index results from the normalization of the root mean 

square error (RMSE) by dividing the error of the estimate of each simulated scenario by the 

range of flow values of the reference simulation: 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑄

𝑖
𝑟𝑒𝑓

−𝑄𝑖
𝑠𝑖𝑚)2

𝑝
𝑖=1

𝑝
 (Eq. 5.15) 

𝑆𝐼 =
𝑅𝑀𝑆𝐸

(𝑄𝑚𝑎𝑥
𝑟𝑒𝑓

− 𝑄𝑚𝑖𝑛
𝑟𝑒𝑓
)
 (Eq. 5.16) 

where Qi
ref is the flow of the reference simulation on day i, Qi

sim is the flow of the analyzed 

simulation on day i, Qmax
ref and Qmin

ref are the maximum and minimum flow values of the 

reference simulation in the respective flow classes, and p is total number of flow daily values 

in the same flow class. A larger influence of a parameter/process on watershed hydrology is 

represented by higher values of SI, while lower values of SI mean a lower influence of the 

analyzed parameter/process. 

Model simulations were performed from 1 January 2008 to 31 December 2012 (five 

years). The first four months of simulations were considered as the warm-up period and were 

not included in the analysis of the results. Flows were analyzed at a daily scale. Due to MOHID-
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Land’s high computational requirements and having as the ultimate goal the calibration of Ulla 

River watershed, the sensitivity analysis focused on a single variation of the selected 

parameters/processes, illustrating the impact of those variables on model performance. The 

analyzed parameters/processes as well as the variations imposed on model inputs were defined 

based on previous calibrations of the MOHID-Land model for different watersheds (Brito et 

al., 2017; Epelde et al., 2016; Bernard-Jannin et al., 2016; Canuto et al., 2019). Additionally, 

the calibration processes performed on similar physically based models were also considered 

(Shrestha et al., 2010, Pieri et al., 2014; Zhang et al., 2016; Moreira et al., 2018; Nazari-

Sharabian et al., 2019; Sreedevi and Eldho, 2020). Thus, sixteen parameters/processes 

influencing water dynamics at the catchment scale were analyzed: 

• The resolution of the simulation grid was modified from 0.005◦ (≈500 m) used in the 

reference simulation to 0.01° (≈1000 m; 140 columns × 100 rows) (simulation 1, S1). 

• The DTM was changed from the EU-DEM (30 m) to the one provided by the National 

Geographic Institute of Spain, with a resolution of 5 m (PNOA, n.d.). The new DTM was 

interpolated to the simulation grid, with the model also delineating a new catchment area 

and drainage network based on that input (S2). 

• The effect of cross-section geometry on river flow was assessed in two simulations. In one 

(S3), the top and bottom widths were increased by 25% (i.e., larger river) while the depth 

and the shape of the cross-section remained the same. In the other (S4), the river depth was 

increased by 100%, while the top and bottom widths and the shape of the cross-section 

were maintained as in the default simulation. Table 5.1 shows the variations introduced to 

those parameters per drainage area. 

• The Ksat value of each cell was multiplied by a factor of 10 while fh was maintained (S5). 

As a result, the horizontal hydraulic conductivity was also modified since fh = Khor/Kvert. 

• The fh value was analyzed in a separate test by changing this parameter from 10, in the 

reference simulation, to 20 (S6). The Ksat,vert values were the same as in the default 

scenario, meaning that a change in fh led to an increase in the Khor. 

• The number of layers in the vertical grid increased from 6 to 12 as defined in Table 5.3 

(S7), thus decreasing the thickness of the layers when compared with the reference 

simulation. 

• The soil depth also increased from 5 to 10 m (S8), with the number of layers in the vertical 

grid increasing from six to nine (Table 5.3). 

• The surface Manning coefficients increased by 50% when compared with the reference 

simulation (S9). 
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• The channel Manning coefficient also increased from 0.035 s m−1/3 to 0.0525 s m−1/3, 

corresponding to a 50% increase (S10). 

• The SCS curve number method was used to compute runoff and soil water infiltration as 

an alternative to Eq. 5.1 (S11). The CN values were defined for each grid cell according to 

the soil type and land cover. The hydrologic soil groups (HSGs) were extracted from the 

HYSOGs250 m dataset (Ross et al., 2018), which derived that information from the soil 

texture classes and depth to bedrock available in the SoilGrids250 m product (Hengl et al., 

2017). That information was then merged with Corine Land Cover (CLC, n.d.) data 

following the United States Department of Agriculture (NRCS, 2004) guidelines to derive 

the CN values. Figure 5.5 presents the CN values adopted in this study. Additionally, 

changes in the CN values were also assessed by decreasing the values set in S11 by 25% 

(S12). 

• The Green and Ampt infiltration method was now used as an alternative to Eq. 5.1 (S13). 

The MOHID-Land model needed the values of Ksat,ver, suction head, porosity, and wilting 

point in each cell as inputs (Figure 5.6). These inputs were obtained by combining the 

information available in the LUCAS database (Ballabio et al., 2016) with data from 

Rossman, 2015, who related the soil texture classes with the soil hydraulic characteristics. 

• The importance of the porous media and vegetation growth processes for river flow results 

were investigated in three separate simulations. Firstly, vegetation growth processes were 

deactivated (S14), meaning that no evapotranspiration occurred in the catchment area. 

Secondly, both the porous media and vegetation growth processes were deactivated (S15). 

In the absence of porous media, the SCS CN method was used to compute the partitioning 

of rainfall data between surface runoff and infiltration. Infiltration water was then lost to 

the system since soil porous processes were not considered. The CN values presented in 

Figure 5 were adopted for this analysis. Lastly, both porous media and vegetation growth 

processes remained deactivated, but the CN values were reduced by 25% (S16) as in S12. 

Table 5.3 Soil discretization for the reference simulation and simulations S7 and S8. 

 
Depth 

(m) 

Layers thickness (m) 

1st horizon 2nd horizon 3rd horizon 

Reference 

simulation 
5 0.3 0.3 0.7 0.7 1.5 1.5 

S7 5 0.15 0.15 0.15 0.15 0.35 0.35 0.35 0.35 0.75 0.75 0.75 0.75 

S8 10 0.3 0.3 0.7 0.7 1.0 1.0 1.5 2.0 2.5 

 



126 

 

 

Figure 5.5 Curve number values. 

 

 

Figure 5.6 Parameters used in the Green and Ampt model: (a) saturated hydraulic conductivity; (b) wilting point; 

(c) suction head; (d) soil porosity. 

The time required for MOHID-Land to compute each simulation was also quantified. 

The average, maximum, and minimum time (in seconds) required to complete each day of 

simulation were compared for all scenarios. This information was critical to understand which 

parameters/processes would improve computational speed during model calibration/validation. 

5.2.5 Model Calibration/Validation 

Based on results from the sensitivity analysis, the following parameters/processes were 

modified from those adopted in the reference simulation during model calibration/validation: 

the vertical hydraulic saturated conductivity (Ksat,ver); the relation factor between the horizontal 

and vertical hydraulic conductivities (fh); and the dimensions of the cross-sections in the river 
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network. Model calibration consisted of modifying these parameters one at a time, and 

adjusting them by trial-and error, until deviations between model simulations and flow 

measurements at Sar, Ulla, Arnego-Ulla, and Deza hydrometric stations (Figure 5.1) were 

minimized. Validation was then performed by simply comparing model simulations using the 

calibrated parameters with flow measurements at the same hydrometric stations. The Sar, Ulla, 

Arnego-Ulla, and Deza hydrometric stations were selected because their data describe the 

natural flow regime of the Ulla watershed, which was obtained from Augas de Galicia (2020). 

The Ulla-Teo station (Figure 5.1) was under the influence of reservoir management and 

therefore its data were not considered for evaluating model performance. Model simulations 

were carried out from 1 January 2008 to 31 December 2017 (10 years). The first four months 

were considered as the warm-up period, while the period between 1 May 2008 and 31 

December 2012 was considered for calibration. The validation period was defined between 1 

January 2013 and 31 December 2017. 

Different goodness-of-fit tests were considered for assessing model performance, 

including the Nash and Sutcliffe model efficiency (NSE), the percent bias (PBIAS), the RMSE-

observation standard deviation ratio (RSR), and the coefficient of determination (R2). The NSE 

(Nash and Sutcliffe, 1970) was computed as: 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑖

𝑜𝑏𝑠 − 𝑄𝑖
𝑠𝑖𝑚)2𝑝

𝑖=1

∑ (𝑄𝑖
𝑜𝑏𝑠 − 𝑄𝑚𝑒𝑎𝑛

𝑜𝑏𝑠 )2𝑝
𝑖=1

 (Eq. 5.17) 

where Qi
obs is the observed flow on day i, Qi

sim is the simulated flow for day i, Qmean
obs is the 

observed mean flow for the period under consideration, and p is the total number of days in 

that same period. The NSE is used to assess the relative magnitude of residual variance 

compared to the measured data variance and it ranges between −∞ and 1.0, being 1.0 the 

optimal value. Values between 0.0 and 1.0 are classified as acceptable levels of performance, 

and values ≤ 0.0 indicate that the mean observed value is a better predictor than the simulated 

value. 

The PBIAS is a statistical parameter that measures the average tendency of the simulated 

data to be larger or smaller than their observed counterparts, and was computed as follows: 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑄𝑖

𝑜𝑏𝑠 − 𝑄𝑖
𝑠𝑖𝑚)𝑝

𝑖=1

∑ 𝑄𝑖
𝑜𝑏𝑠𝑝

𝑖=1

× 100 (Eq. 5.18) 

The optimal value of PBIAS is 0.0 and low-magnitude values indicate accurate model 

simulation. Positive values demonstrate model underestimation while negative values represent 

model overestimation. 
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The RSR results from the ratio between the RMSE and the standard deviation of observed 

values were obtained as follows: 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠
=

√∑ (𝑄𝑖
𝑜𝑏𝑠 − 𝑄𝑖

𝑠𝑖𝑚)2𝑝
𝑖=1

√∑ (𝑄𝑖
𝑜𝑏𝑠 − 𝑄𝑚𝑒𝑎𝑛

𝑠𝑖𝑚 )2
𝑝
𝑖=1

 (Eq. 3.6) 

RSR incorporates the benefits of error index statistics and includes a 

scaling/normalization factor. RSR is equal to 0.0 when RMSE is 0.0, indicating that the 

variation is residual, and the model is perfect. Thus, low RSR values correspond to low RMSE 

values and a good model simulation performance. 

Finally, R2 describes the degree of collinearity between simulated and measured data and 

ranges from 0 to 1, with higher values indicating less error variance. This statistical parameter 

was computed as follows: 

𝑅2 =

[
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 (Eq. 3.4) 

According to Moriasi et al. (2007), model performance for streamflow can be classified 

as satisfactory when NSE > 0.50, RSR ≤ 0.70, PBIAS ± 25%, and R2 > 0.5. 

5.3  Results and Discussion 

5.3.1 Impact of Model Parameters/Processes on River Flow 

Although flow-duration curves were compared for all flow stations, only results for the 

Ulla-Teo station (Figure 5.1) are presented graphically, to limit the number of figures and to 

maintain consistency. This station was not considered for evaluating model performance 

because of the influence of reservoir management on river flow. However, its larger drainage 

area produced the most contrasting differences between the simulation scenarios and the 

reference simulation, which helped demonstrate model behavior during the sensitivity analysis. 

Figure 5.7 shows the flow-duration curves for each simulation included in the sensitivity 

analysis, while Table 5.4 and Table 5.5 present the mean flow and respective SI values for each 

exceedance probability class. 

Decreasing the resolution of the base grid from 500 m (reference simulation) to 1000 m 

(S1) had a substantial impact on river flow, with mean values decreasing between 71% and 

97% in all ranges of the flow-duration curve (Table 5.4). That was also visible in the SI values, 

which ranged from 0.42 to 0.93 (Table 5.5). These results showed that setting up the base grid, 

which basically defined how detailed the study area would be represented, was an important 
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step for accurately simulating river flow at the catchment scale. A more detailed grid led to a 

more dynamic watershed than when using a coarser one. These results contrast with Sreedevi 

and Eldho (2020) who, after testing three grid sizes (4000, 2000, and 1000 m), found no scale 

dependency on streamflow generation values using the SHETRAN model. Nevertheless, the 

use of a coarser resolution grid in the Ulla River watershed had a contrasting result at the 

hydrometric stations located in the river heads above 600 m (Sar, Arnego-Ulla, and Deza). In 

those locations with a drainage area smaller than at Ulla-Teo, the coarser steeper slopes in the 

DTM ended up promoting surface runoff and higher flow peaks, which eventually disappeared 

by the time the flow reached the Ulla-Teo station. 

On the other hand, for the same resolution grid (500 m), results with a more detailed 

DTM (S2) did not differ much from the reference simulation (Table 5.4 and Table 5.5). The use 

of high-resolution data in coarse scale applications seems thus to be irrelevant when not 

accompanied by a base grid also with greater resolution to be able to consider such detailed 

information. Yet, improvements in streamflow simulations using more detailed grids and 

DTMs can only go so far, as shown by Pieri et al. (2014). These authors found no statistically 

significant differences in the accuracy of DTMs varying between 10 and 2 m resolution when 

simulating streamflow and sediment yield using the WEPP model in a considerably smaller 

basin than the Ulla River catchment (the Centonara catchment in northern Italy, 1.92 km2). 

Also, Zhang et al. (2016) and Nazari-Sharabian et al. (2019) showed the influence of the DTM 

resolution on the calibration of streamflow simulations using different physically based 

models. 

Increasing the width (S3) and depth (S4) of the cross-sections (i.e., the river network) 

promoted higher river flow in all the exceedance intervals except for the moist conditions 

(Q10−40), where it slightly decreased (Figure 5.7). The largest increase was in the higher flow 

class (Q0−10), i.e., the flow peaks, with S3 and S4 leading to an increase of the mean flow by 

11% and 39%, respectively (Table 5.4). This was explained by the fact that increasing the 

dimensions of the cross-sections meant that the boundary between the riverbed and the porous 

media would also increase, promoting water exchanges between these two mediums, mainly 

from the porous media to the riverbed. However, only S4 resulted in higher SI values in the 

extremes of the flow duration curve, reaching 0.29 for the Q90−100 class and 0.26 for the Q0−10 

class. 
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Figure 5.7 Flow-duration curves for the simulations considered during sensitivity analysis. Impact of: (a) grid 

resolution (S1) and elevation data (S2); (b) cross-section widths and heights (S3 and S4); (c) vertical and 

horizontal saturated hydraulic conductivities (S5 and S6); (d) vertical soil discretization and soil depth (S7 and 

S8); (e) surface and channel Manning coefficients (S9 and S10); (f) infiltration methods (S11, S12, and S13); (g) 

porous media and vegetation processes (S14, S15, and S16) (see Section 5.2.4 for details). 
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Table 5.4 Mean river flow values at the station Ulla-Teo for each exceedance probability class of the reference 

simulation flow-duration curve and respective variation in each class for each simulation scenario compared with 

the reference simulation. 

Simulation (% Variation) 
Class (%) 

0-10 10-40 40-60 60-90 90-100 

Reference simulation (m3 s−1) 241.25 75.69 12.45 3.82 0.89 

1 −71 −80 −88 −92 −97 

2 +1 +4 +5 +7 +9 

3 +11 −1 +1 +2 +4 

4 +39 −11 +5 +9 +30 

5 −27 +1 +153 +188 +116 

6 −4 +1 +48 +91 +161 

7 +1 +3 −3 −2 −22 

8 −6 0 +53 +119 +289 

9 +6 +3 +1 0 0 

10 −23 −3 +7 +6 +10 

11 −1 +8 +19 +14 −8 

12 −1 +3 +9 +6 −6 

13 0 0 0 0 0 

14 +12 +54 +181 +434 +1531 

15 −37 −57 −63 −71 −85 

16 −69 −87 −87 −90 −97 

Simulations: 1—grid resolution; 2—elevation data; 3 and 4—cross-section widths and heights; 5 and 6—vertical 

and horizontal saturated hydraulic conductivities; 7 and 8—vertical soil discretization and soil depth; 9 and 10—

surface and channel Manning coefficients; 11, 12, and 13—infiltration methods; 14, 15, and 16—porous media 

and vegetation processes (see Section 5.2.4 for details). 

 

Table 5.5 Sensitivity index (-) at the station Ulla-Teo for each exceedance probability class of the flow-duration 

curve. 

Simulation 
Class (%) 

0-10 10-40 40-60 60-90 90-100 

1 0.42 0.48 0.88 0.67 0.93 

2 0.01 0.03 0.05 0.05 0.09 

3 0.07 0.04 0.02 0.02 0.04 

4 0.26 0.09 0.05 0.06 0.29 

5 0.17 0.14 1.52 1.41 1.20 

6 0.17 0.14 0.48 0.64 1.52 

7 0.01 0.02 0.03 0.02 0.21 

8 0.04 0.04 0.52 0.82 2.71 

9 0.04 0.02 0.01 0.00 0.00 

10 0.14 0.10 0.08 0.04 0.10 

11 0.02 0.05 0.20 0.13 0.08 

12 0.01 0.02 0.09 0.05 0.06 

13 0.00 0.00 0.00 0.00 0.00 

14 0.07 0.28 1.79 2.94 14.32 

15 0.21 0.33 0.63 0.51 0.82 

16 0.39 0.20 0.88 0.66 0.94 

Simulations: 1—grid resolution; 2—elevation data; 3 and 4—cross-section widths and heights; 5 and 6—vertical 

and horizontal saturated hydraulic conductivities; 7 and 8—vertical soil discretization and soil depth; 9 and 10—

surface and channel Manning coefficients; 11, 12, and 13—infiltration methods; 14, 15, and 16—porous media 

and vegetation processes (see Section 5.2.4 for details). 
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The increase in Ksat,ver (S5) and fh (S6) led to a rise of river flow values in the mid-range 

(Q40−60), low (Q60−90), and dry (Q90−100) classes of the flow duration curve, which varied from 

48% to 188% when compared with the reference simulation. On the other hand, flow values in 

the Q0−10 range (high flows) showed a decreasing trend while the Q10−40 class (moist condition) 

remained basically unchanged. Thus, the increase in those parameters promoted the infiltration 

process (exchange between the surface and the porous media), the faster movement of soil 

water (subsurface flow), and the exchange between the porous media and river sections. Higher 

subsurface flows caused the water to allocate to the baseflow instead of generating flow peaks, 

increasing the mean values in the lower classes of the flow-duration curve. As a result, the SI 

values were notoriously higher in the lower classes of the flow duration curve (Q40−60 to 

Q90−100), reaching values from 1.20 to 1.52 in S5 and from 0.48 to 1.52 in S6 (Table 5.5) due 

to the increasing baseflow. Note that a scaling factor of 10 was considered for varying Ksat,ver, 

in line with previous calibrations of this parameter performed by Canuto et al. (2019) in the 

Guadiana catchment, Iberian Peninsula. However, this parameter is known to be one of the 

most variable in nature, being affected by soil physical, chemical, and biological properties. 

There is also the fact that Tóth et al. (2017) maps were developed from a database containing 

measurements of this parameter carried out in the laboratory on samples of limited size, with 

issues related to their representativeness being often raised when describing actual flow 

conditions, transport, and reaction processes occurring at the field/catchment scales due to 

limitations in the porous medium continuum (Ramos et al., 2013; van Looy et al., 2017). 

Similarly, a scaling factor of 20 was considered in this application for fh. The literature is far 

less rich on variations of this parameter since it is specific to the MOHID-Land model. Yet, fh 

has been found to vary between 3.0 (Canuto et al., 2019) and 25.0 (Epelde et al., 2016). The 

latter was used to fit simulated streamflow to measurement values in the Alegria River 

watershed, northern Spain. Thus, different scaling factors could have been here considered for 

Ksat,ver and fh, but results would not differ much since the main point was to identify which 

hydrological processes would be affected by these parameters. 

The influence of vertical discretization (S7) on river flow was practically null. This 

explains the relatively coarse discretization of the vertical grid in existing applications of the 

MOHID-Land model at the watershed scale (Bernard-Jannin et al., 2016; Epelde et al., 2016; 

Brito et al., 2017; Canuto et al., 2019). These studies reported vertical grids varying from 7 to 

12 layers when describing soil profiles reaching 8 to 30 m depth. More detailed grids would 

have increased the computational burden with no practical benefit for model performance. 

Nonetheless, those numbers contrast with the one-dimensional application presented in Ramos 
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et al., 2017, who used 100 grid cells with 0.02 m thickness each to describe soil water dynamics 

in a soil profile with 2 m depth and respective interactions between the vadose zone and a 

shallow groundwater table. On the other hand, a deeper soil profile (S8) led to an increase in 

the lower exceedance probability classes of the flow-duration curve (Q40−60, Q60−90 and Q90−100) 

from 53% to 289% (Table 5.4), resulting in higher SI values in those classes (0.52 to 2.71). The 

increase in soil depth represented a larger volume of water stored below the surface, at depths 

(bottom profile) that were not affected by evapotranspiration. This water stored at deeper 

depths became thus an additional resource for exchanges between the porous media and the 

river network, leading to higher baseflow. 

The impact of modifying the surface’s Manning coefficients was small (S9). This agreed 

with Canuto et al. (2019,) who considered this parameter in the calibration of streamflow 

simulations in the Guadiana basin, but changes to the model’s default values ended up being 

only minor. Changing the channel’s Manning coefficient (S10) resulted in a decrease of the 

mean flow in the Q0−10 class by 23% and an increase in the Q90−100 class by 10% (Figure 5.7, 

Table 5.4). Increasing the roughness and, consequently, the friction between the water and the 

surface led to a decrease in flow velocity. The infiltration process was then promoted, causing 

an increase in baseflow and a reduction of the flow peaks. Nonetheless, the SI values were 

always smaller than 0.14, which show the reduced influence of this parameter in the generation 

of streamflow. 

The use of the SCS CN method (S11) promoted the increase in mean flow values for the 

moist (Q10−40), mid-range (Q40−60), and dry flow classes (Q60−90) by 8%, 19%, and 14%, 

respectively, when compared with the reference simulation (Table 5.4). Flow in the Q40−60 class 

also corresponded to the highest SI value (0.20; Table 5.5). Reducing the CN values of all grid 

cells by 25% (S12) naturally led to less runoff, with the mean flow values for the same classes 

referred to above being 3%, 9%, and 6% higher than in the reference simulation while in the 

Q90−100 class they were lower by 6%. The use of the Green and Ampt method as an alternative 

to Eq 5.1 had no real impact on river flow. Obviously, future works need to analyze the 

sensitivity of the MOHID-Land model to inputs used for computing soil water infiltration with 

this method. Notwithstanding, the MOHID-Land model offers analytical, semi-analytical, but 

also empirical solutions for modeling a key process in the hydrological cycle, which can be 

selected depending on the complexity of users’ applications. 

Finally, the deactivation of vegetation (S14) and porous media (S15) modules produced 

a strong modification of the flow-duration curve at the Ulla-Teo station (Figure 5.7), which 

was expected since most processes included in the reference simulation were disregarded. 
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Ignoring the evapotranspiration process in the catchment (S14) led to an increase in the mean 

flow in all intervals of the flow duration curve, particularly in the mid-range (Q40−60), dry 

(Q60−90), and low flow (Q90−100) classes (Table 5.4). Flow in the Q90−100 class also returned the 

highest SI value of 14.32 (Table 5.5). Without the main driver for soil water dynamics, soil 

water contents as well as exchanges between the porous media and the river network simply 

increased, promoting mainly baseflow. The porous media module was responsible for the 

occurrence of subsurface flow and baseflow. This constituted a major component in the water 

budget of the Ulla River catchment. Disregarding this module naturally led to a decrease in the 

mean river flow values in all classes of the flow-duration curve because the infiltrated water 

simply disappeared from the system. With the reduction of the CN values by 25% (S16), that 

drop was even higher (Table 5.4). 

5.3.2 Impact of Model Parameters/Processes on Model Time Consumption 

Figure 8 presents the boxplot of the time required for MOHID-Land to compute each day 

of the simulations considered in the sensitivity analysis, while Table 5.6 summarizes those 

results by presenting the minima, mean, and maxima values. The fastest computation time was 

naturally obtained by running the simplest applications, i.e., S2 with the coarser grid resolution 

of 1000 m, and S15 and S16 without considering the porous media processes. The former can 

be explained by a simulation grid four times smaller than the one in the reference simulation, 

substantially decreasing the calculations needed to run the simulation, and the latter by 

disregarding subsurface flow, with MOHID-Land distancing from its physically based nature 

and relying on a more empirical basis. On the other hand, the longest simulation performance 

was achieved with a more detailed vertical grid domain (S7). The higher number of vertical 

layers increased the calculations related to the porous media processes, with the model 

spending more time to perform the simulation. However, as showed earlier, this had no impact 

on river flow. All other simulations presented a similar computation time, with no real influence 

on the number of days (seven days) the reference simulation took to run. 



135 

 

 

Figure 5.8 Boxplot graph with the computation time spent for each day of the simulation performed in the 

sensitivity analysis (Simulations: Ref Sim—reference simulation; 1—grid resolution; 2—elevation data; 3 and 

4—cross-section widths and heights; 5 and 6—vertical and horizontal saturated hydraulic conductivities; 7 and 

8—vertical soil discretization and soil depth; 9 and 10—surface and channel Manning coefficients; 11, 12, and 

13—infiltration methods; 14, 15, and 16—porous media and vegetation processes (see Section 5.2.4 for 

details)). 

 

Table 5.6 Minimum, mean, and maximum computation times for each simulation test. 

Simulation 
Computation time (s day−1) 

Minimum Mean Maximum 

Reference simulation 238 402 1764 

S1 29 83 550 

S2 190 319 2011 

S3 228 389 1513 

S4 255 399 1269 

S5 213 422 1947 

S6 237 407 1702 

S7 354 528 2829 

S8 303 447 2155 

S9 235 404 1752 

S10 234 399 1723 

S11 216 360 1711 

S12 221 359 1600 

S13 231 334 1599 

S14 209 309 1437 

S15 6 65 475 

S16 5 52 448 

Simulations: 1—grid resolution; 2—elevation data; 3 and 4—cross-section widths and heights; 5 and 6—vertical 

and horizontal saturated hydraulic conductivities; 7 and 8—vertical soil discretization and soil depth; 9 and 10—

surface and channel Manning coefficients; 11, 12, and 13—infiltration methods; 14, 15, and 16—porous media 

and vegetation processes (see Section 5.2.4 for details) 

5.3.3 Prediction of River Flow in the Ulla River Watershed 

Figure 5.9 visually compares the measured and modeled river flow values at the Sar, 

Ulla, Arnego-Ulla, and Deza hydrometric stations during the calibration (2008−2012) and 

validation (2013−2017) periods. The respective goodness-of-fit indicators are presented in 
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Table 5.7. These results were obtained after modifying Ksat,ver, fh, and the dimensions of the 

cross-sections in the river network defined for the reference simulation. The Ksat,ver values for 

each soil horizon in Table 5.2 were multiplied by a scaling factor of 10, similarly as performed 

in the sensitivity analysis. The fh value was then automatically updated since this parameter 

represents the relation between horizontal and vertical conductivities in each cell. The 

dimensions of the cross-sections were defined as shown in Table 5.1 and consisted of increasing 

river depth and interactions between the porous media and the river network. Thus, by 

modifying these parameters, the calibration process mainly focused on increasing baseflow in 

the Ulla River watershed. 

 

Figure 5.9 Comparison between modeled and observed flow values for calibration (a,b) and validation (c,d) 

periods in the Deza station. 

 

Table 5.7 Statistical parameters obtained during model calibration/validation at the Sar, Ulla, and Arnego-Ulla, 

and Deza hydrometric stations. 

Station 

Calibration Validation 

R2 

(-) 

RSR 

(-) 

PBIAS 

(%) 

NSE 

(-) 

R2 

(-) 

RSR 

(-) 

PBIAS 

(%) 

NSE 

(-) 

Sar 0.75 0.53 0.18 0.72 0.83 0.44 16.09 0.81 

Ulla 0.56 0.67 -11.24 0.55 0.76 0.53 -18.54 0.72 

Arnego-Ulla 0.70 0.55 -12.29 0.69 0.78 0.49 -16.82 0.76 

Deza 0.74 0.53 -8.93 0.72 0.85 0.40 -4.35 0.84 

R2, coefficient of determination; RSR, root mean square error-observations standard deviation ratio; PBIAS, 

percent bias; NSE, Nash Sutcliffe efficiency. 
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The R2 values varied from 0.56 to 0.75 during the calibration period and from 0.76 to 

0.85 during the validation period (Table 5.7), showing that the model could explain most of the 

variability of the measured data in all hydrometric stations. The errors of the estimates were 

relatively small as shown by the low RSR values obtained at the different stations during both 

simulation periods (RSR ≤ 0.67). On the other hand, the PBIAS values showed some 

underestimation of measured values at the Sar hydrometric station (PBIAS ≤ 16.09%), and 

some overestimation of measured data for the remaining stations (−18.54% ≤ PBIAS ≤ 

−4.35%). Finally, the NSE values were relatively high in most locations, ranging from 0.55 to 

0.84 during both periods, indicating that the residual variance was much smaller than the 

measured data variance. These indicators are comparable with the best flow estimates under 

natural regimes in Canuto et al. (2019) with model predictions for the Ulla River watershed 

being considered extremely satisfactory if Moriasi et al. (2007) guidelines are considered. 

Despite the good statistical results, Figure 5.9 further showed the difficulty of the 

MOHID-Land model in predicting the highest flow peaks in the Ulla River watershed. This 

was attributed to the precipitation inputs provided by the ERA5 dataset, which also failed to 

represent higher precipitation values as shown in Figure 3 for the Santiago meteorological 

station. This tendency was also verified by Hénin et al. (2018), who concluded that reanalysis 

products such as ERA5 present an underestimation of heavy precipitation events. Hence, the 

amount of water entering the basin during heavy rain events in that dataset was clearly below 

measured rainfall and proved to be insufficient for the model to reach higher flow peaks. 

However, the replacement of the ERA5 data by measured values from the different weather 

stations was not considered as a viable solution to overcome this problem. Rainfall 

measurements were only available at a daily time step while the ERA5 data have an hourly 

time step. In the MOHID-Land model, daily measured data are distributed evenly during the 

day, reducing rainfall intensity rates, which would further reduce or even miss flow peaks. 

Besides that, one should consider that the model was calibrated for the entire period without 

special distinction between dry and wet seasons, which could also explain the difficulty for the 

model to reach peak flows in the Ulla River watershed. One way to overcome the problem from 

the model point of view would have been to define distinct geometries of the cross-sections per 

subbasin, and not per drainage area. This would increase model accuracy of river flow 

predictions at the watershed scale. 
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5.4 Conclusions 

The MOHID-Land model is a complex, physically based, three-dimensional model used 

for catchment scale applications. The sensitivity analysis helped to identify the most relevant 

parameters/processes influencing river flow generation and for accurately modeling baseflow 

and peak flows. For the application in the Ulla River catchment, the resolution of the simulation 

grid, the choice of the infiltration method, and the evapotranspiration process were the main 

factors influencing river flow generation. The soil hydraulic properties, the depth of the soil 

profile, and the dimensions of the river cross-sections, which basically control the interactions 

between the porous media and the river, influenced baseflow. On the other hand, peak flows 

were mostly constrained by the channel’s Manning coefficient, as well as the dimensions of the 

river cross-sections. 

The sensitivity analysis further showed that the use of a too coarse resolution grid as well 

as the deactivation of the porous media and vegetation processes can compromise the quality 

of results, which should then be subjected to careful revision. Also, model simulations of soil 

infiltration considering the Darcian and the Green and Ampt approaches produced very similar 

outputs, both in terms of river flow values and computational time, meaning that users can 

choose between the two solutions depending on available data. Finally, the number of layers in 

the vertical simulation grid can lead to a substantial increase in the time needed to compute 

model simulations with no effect on river flow predictions. It is also important to note that the 

sensitivity analysis focused on just a few input parameters/processes used in MOHID-Land for 

simulating river flow at the watershed scale. Others should also be considered in future 

analysis, namely, the remaining soil hydraulic parameters, the crop coefficients, as well as the 

parameters used for water quality modeling. 

Nevertheless, the MOHID-Land model is a powerful tool for simulating river flow at a 

daily scale in areas under natural flow regimes. This was demonstrated in simulations of the 

Ulla River flow at four locations, with comparisons between model predictions and measured 

values returning R2 ≥ 0.56, RSR ≤ 0.67, and NSE ≥ 0.55. These same simulations showed a 

clear underestimation of river flow peaks, which was attributed to the quality of the ERA5 

dataset and the misrepresentation of higher rainfall events. 
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Abstract 

This study compares the performance of three different neural network models to 

estimate daily streamflow in a watershed under a natural flow regime. Based on existing and 

public tools, different types of NN models were developed, namely, multi-layer perceptron, 

long short-term memory, and convolutional neural network. Precipitation was either considered 

an input variable on its own or combined with air temperature as another input variable. 

Different periods of accumulation, average, and/or delay were considered. The models’ 

structures were optimized and automatically showed that CNN performed best, reaching, for 

example, a Nash–Sutcliffe efficiency of 0.86 and a root mean square error of 4.2 m3 s−1. This 

solution considers a 1D convolutional layer and a dense layer as the input and output layers, 

respectively. Between those layers, two 1D convolutional layers are considered. As input 

variables, the best performance was reached when the accumulated precipitation values were 

1 to 5, and 10 days and delayed by 1 to 7 days. 

Keywords: neural networks; MLP; LSTM; CNN; streamflow estimation  
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6.1 Introduction 

Accurate knowledge of streamflow is essential in a wide range of applications and 

studies, including the development of flood warning systems, hydroelectric reservoir operation, 

hydraulic structure design, fish production and survival, nutrient transport and water quality 

assessment, evaluation of long-term climate or land use change impacts, and the definition of 

water management policies (Bourdin et al., 2012; Ni et al., 2020). Humphrey et al. (2016) also 

state that an accurate and reliable streamflow forecast is crucial for the proper management and 

allocation of water resources, especially in areas with highly variable climate conditions and 

where there is not enough available data to adequately support decision-making. 

According to Besaw et al. (2010), streamflow estimation in gauged and/or ungauged 

areas can be performed based on conceptual, metric, physics-based, and data-driven methods. 

Conceptual methods only consider simplified conceptualizations of hydrological processes 

(Chiew and McMahon, 1994). Methods classified as metric are based on the unit hydrograph 

theory, without considering hydrological features or processes (Jakeman et al., 1990). 

Physically based models, also known as process-based models, rely on physical principles and, 

consequently, are suitable to provide insights into physical processes. However, these models 

often incorporate many simplifying assumptions and have requirements for large sets of data, 

with their calibration and validation processes being particularly laborious (Mehr et al., 2013; 

Zhang et al., 2015). Finally, data-driven methods are empirical, are developed based on 

historical observations, and do not require information on physical processes (Liu et al., 2015). 

Multiple linear regression (MLR) variations of autoregressive moving average (ARMA) or 

artificial neural networks (ANN) are examples of data-driven models. 

Artificial neural networks are special types of machine-learning methods, which have 

been extensively used in streamflow estimation with promising results in the last decades 

because of the nonlinear nature of the rainfall–runoff relationship and the availability of long 

historical records (ASCE, 2000). In the review written by Maier et al., 2010, of 210 published 

papers using ANN in the field of hydrology between 1999 and 2007, 90% were related to 

studies where the main goal was flow prediction (the other 10% were related to water quality 

variables). In the last few years, hydrologists have continued to investigate the ability of neural 

networks (NN) to predict river flow. For instance, Pham et al. (2020) used a multilayer 

perceptron (MLP) neural network combined with the intelligent water drop algorithm, an 

advanced optimization algorithm for searching the global optima, to predict the streamflow in 

two stations on Vu Gia Thu Bon watershed, Vietnam. Hussain and Khan (2020) tested a MLP, 
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a support vector regression model, and a random forest model in forecasting the monthly 

streamflow in the Hunza river watershed, Pakistan. Sahoo et al. (2019), Le et al. (2019), 

Hauswirth et al. (2021), and Althoff et al. (2021) presented the application of recurrent neural 

networks (RNN) for streamflow forecasting. Sahoo et al. (2019) assessed the applicability of 

RNN and the radial basis function network to forecast the daily streamflow in a hydrometric 

station placed in Mahanadi River watershed, India, while Le et al. (2019) used a RNN model 

for flood peak discharge forecasting one, two, and three days ahead at Hoa Binh station in the 

Da River basin, Vietnam. Hauswirth et al. (2021) tested five different data-driven models 

(multi-linear regression, lasso regression, decision trees, random forests, and RNN) on 

forecasting several hydrological variables, including observations on discharge and surface 

water levels, at a national scale and with consideration of a daily time step. Finally, Althoff et 

al. (2021) applied a single regional hydrological RNN model to 411 watersheds in the Brazilian 

Cerrado biome to predict daily streamflow, assessing the model’s performance with 

consideration of different input configurations. 

Differently, Shu et al. (2021) stated that convolutional neural networks (CNN) are also 

being gradually applied in hydrological forecasting in the past few years. For example, Wang 

et al. (2019) predicted water level values in the Yilan River, Taiwan. Hussain and Khan (2020) 

applied CNN to predict daily, weekly, and monthly values of the streamflow in the Gilgit River, 

Pakistan. Barino et al. (2020) used CNN to forecast river flow values several days ahead in the 

Madeira River, the Amazon’s largest and most important tributary. With all those authors 

making use of one-dimensional CNN models to predict streamflow, Shu et al. (2021) presented 

a different approach based on a two-dimensional CNN model to forecast the inflow to the 

Huanren Reservoir and Xiangjiaba hydropower station, China. 

There are also examples of the usage of model combinations, such as in the case of 

Anderson and Radić (2022) who developed a convolutional long short-term memory (a type of 

RNN) model to predict the daily streamflow in 226 watersheds across southwestern Canada, 

with the main goal being to learn both spatial and temporal patterns. 

Thus, the vast number of studies that can be found in the literature allow us to infer that 

these types of models are being increasingly used in the hydrological sciences, and represent 

promising tools for to be applied under the most varied conditions. However, the vast number 

of studies, the existence of different solutions, the often vague descriptions of the solutions in 

the literature, and the dispersion of the information, make the learning curve difficult and time-

consuming. Consequently, the present study aims to develop, optimize, and compare the 

performance of different neural network models to predict the daily streamflow values in a 
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natural watershed while focusing on all the essential information needed for their easy 

implementation. 

The studied area contains a natural small watershed (665 km2) in southern Portugal. This 

watershed drains to Ponte Vila Formosa hydrometric station and represents 30% of the 

Maranhão reservoir watershed, which is one of the two reservoirs included in the collective 

irrigation system of the Sorraia Valley. With its high runoff variability throughout the year (45% 

of the total runoff occurs in December and January and 14% of that occurs between April and 

September (SNIRH, n.d.), and with it being responsible for supplying 54% of the irrigation 

needs to the system, tools that can help to optimize the amount of water used in irrigation 

(Simionesei et al., 2020) or that can predict water availability are essential for improving water 

management and supporting decision-makers. 

The procedure adopted to create, develop, optimize, and tune the neural network that best 

fits the observed values of the modeled watershed is explored in this work. Due to the 

innumerous solutions found in the bibliography, the application of three different types of 

neural networks was tested: (i) the multi-layer perceptron (MLP) model; (ii) long short-term 

memory (LSTM) network, which is a type of recurrent neural network (RNN); (iii) 

convolutional neural network (CNN). The methodology presented here is based on a simplified 

approach that makes use of the potentialities of the Keras (Keras, n.d.) package, on top of those 

of the TensorFlow (Abadi et al., 2016) and KerasTuner (O’Malley et al., n.d.) packages, to 

construct and optimize the models’ structures. The optimization was performed for the three 

different types of NN models, independently, and focused on several parameters and 

characteristics of these structures (e.g., number of nodes, number of hidden layers, etc.). 

Additionally, the use of accumulated daily precipitation solely as an input variable or combined 

with the average daily temperature as another input variable was also tested, as well as the 

length of the period (i.e., the number of days) to accumulate or average those meteorological 

properties. The models’ structures, parameters, and input variable combinations were 

optimized and tuned using training and validation datasets. However, to make a more reliable 

evaluation, neural networks were also tested with consideration of a test dataset, which was 

never presented to the models during the training and validation processes. Among the set of 

models developed, the one with the best performance was selected to represent the watershed 

dynamics. 

Thus, this study compares the ability of different NN models to estimate the daily 

streamflow in a watershed under a natural flow regime. An easy-to-use approach using several 

tools that are already publicly available and require a regular level of programming skills is 
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presented to encourage the development and implementation of NN models in other situations. 

The results of this study will undoubtedly contribute to improving the estimation of inflows to 

a reservoir used for the storage and supply of water to a collective irrigation district in southern 

Portugal, where scarcity issues prevail. 

6.2 Materials and Methods 

6.2.1 Description of the Study Area 

The study area contains the watershed (665 km2) draining to Ponte Vila Formosa 

hydrometric station (39°12’57.6” N, 7°47’02.4” W), located in Raia River, Alter do Chão, 

southern Portugal (Figure 6.1). 

 

Figure 6.1 Location of the studied watershed, its delineation details, elevation, main rivers, and Ponte Vila 

Formosa hydrometric station. 

The most representative weather stations in the study area are Aldeia da Mata (18K/01C); 

Alegrete (18N/02G); Alpalhão (17L/03UG); Alter do Chão (18L/01UG); Cabeço de Vide 

(19L/01UG); Campo Experimental Crato (Chança) (18K/01C); Castelo de Vide (17M/01G), 

Monforte (19M/01UG); Ribeira de Nisa (17M/04U); Vale do Peso (17L/02UG) (Figure 6.2) 

(SNIRH, n.d.). 
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Figure 6.2 Most representative meteorological stations in the study area. 

The set of stations presents an average annual precipitation of 385 mm, with Castelo de 

Vide and Monforte showing the maximum (824 mm) and the minimum (516 mm) average 

annual precipitation, respectively (Table 6.1). 

Table 6.1 Average, minimum and maximum values, and number of completed years (total of daily values equals 

the number of days in the year) of annual precipitation registered in meteorological stations. 

Station Period 

Annual precipitation 

Average 

(mm) 

Minimum 

(mm) 

Maximum 

(mm) 

Number of completed 

years 

Aldeia da Mata 1979−2021 621 374 1056 26 

Alegrete 1980−2021 794 457 1269 17 

Alpalhão 1979−2021 717 365 1224  

Alter do Chão 2011−2021 614 101 1081 26 

Cabeço de Vide 1931−2021 668 352 1184 90 

Campo Experimental Crato 

(Chança) 
1971−2021 662 323 973 68 

Cartelo de Vide 1931−2021 824 46 1555 29 

Monforte 1911−2020 516 256 1030 76 

Ribeira de Nisa 1979−1985 673 452 962 88 

Vale do Peso 1931−2021 757 401 1324 5 

 

Daily average air temperature values were available from Campo Experimental Crato 

(Chança) station only, with a sample of 3995 values between 21 February 2001 and 14 July 

2021. This dataset presents minimum and maximum air temperature values of −0.1°C and 

36.1°C, respectively, and an average daily air temperature of 15.3°C. Thus, according to the 

Köppen–Geiger climate classification, the studied area is identified as having a Mediterranean 

hot summer climate (Csa) (Agencia Estatal de Meteorología (España), 2011). 

Based on the delineation preformed with QGIS tools and the Digital Elevation Model 

provided by the European Environment Agency (EU-DEM) (European Digital Elevation 

Model (EU-DEM), 2019), the watershed is characterized by minimum, average, and maximum 

altitudes of 140 m, 235 m, and 723 m, respectively. According to European Soil Data Centre 
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(Panagos et al., 2012), the main soil mapping units are regosols (60%) and luvisols (40%). The 

main land uses are in areas of agro-forestry (30%), broad-leaved forest (25%), and non-

irrigated arable land (19%) (CLC 2012, 2018). 

Ponte Vila Formosa hydrometric station (18K/01H), placed on the outlet of the studied 

watershed, has records dating between 1 November 1979 and 30 May 2011. However, only the 

data in the period from 25 July 2001 until 31 December 2008 was considered because they 

cover the most recent period with enough continuous daily streamflow values to perform the 

model analysis. Table 6.2 shows the streamflow dataset characterization for both periods, 

including the minimum and maximum streamflow values as well as the average of those and 

the number of records. 

Table 6.2 Characterization of the streamflow dataset (average, minimum, maximum, and standard deviation 

values, and number of records) of Ponte Vila Formosa hydrometric station between 1 January 1979 and 30 May 

2011 (entire dataset) and 25 July 2001 and 31 December 2008 (studied period) (source: SNIRH, n.d.). 

Period 

Streamflow 

Average 

(m3 s−1) 

Minimum 

(m3 s−1) 

Maximum 

(m3 s−1) 

Std. Deviation 

(m3 s−1) 

Number of 

records 

1 November 1979−6 

March 2019 
3.8 0 272.8 12.7 7703 

25 July 2001−31 

December 2008 
3.8 0 160.1 9.0 2645 

 

The studied area is part of the watershed that drains to Maranhão reservoir, representing 

30% of it. Together with Montargil reservoir, both were responsible for irrigating an area of 

18,753.7 ha in Sorraia Irrigation District, in 2021 (ARBVS, n.d.). Additionally, this reservoir 

is one of the main recreative areas in the rural part of the Tagus River Basin District, where 

tourist and leisure activities have been growing in number (APA and ARH Tejo, 2012). Because 

of its relevance, and with some predictions pointing to an increase in the frequency and the 

severity of low flows in Southern Europe (Pörtner et al., 2022) and specifically in this area 

(Almeida et al., 2018), tools that demonstrate a good ability and capacity to estimate 

streamflow are essential for improving water management. 

6.2.2 Neural Network Models 

6.2.2.1 Artificial Neural Networks 

Artificial neural networks (ANNs) were born from the attempt of scientists to mimic, in 

a computational environment, the capacity of the human brain to identify complex patterns and 

perform difficult operations, even in situations where those patterns are distorted or have a high 

degree of noise (ASCE, 2000). Thus, ANNs are based on simplified models of the biological 

neuron system, making use of the parallel distributed processing computational capacity to 
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store knowledge and make it available for use (Lohani et al., 2012). This capacity to identify 

given complex patterns makes ANNs able to solve large scale complex problems such as those 

of nonlinear modeling, classification, and control. 

The attempt to reproduce the biological neuron system in ANNs models makes their 

structure composed of single elements, called nodes, units, cells, or neurons, where the 

information is processed. In each node, continuous linear or nonlinear transformation is applied 

as its net input. This transformation is called the activation function, and its result is the output 

signal of the node. The nodes are arranged in different layers, with each layer having the 

possibility to include a different number of neurons. The first layer of the ANN structure is 

named the input layer, while the last one is known as the output layer and consists of the 

model’s predicted values. Between them, there can be one or more layers called hidden layers 

(Figure 6.3) (ASCE, 2000; Dolling and Varas, 2002). 

 

Figure 6.3 General structure of an artificial neural network. 

All the nodes in a layer are connected to all the nodes in the previous and following layers 

through connection links which are responsible for passing signals between them, except for 

the input layer that receives the input variables instead of the output values of other neurons. 

Thus, the input layer only pretends to provide information to the network, which means that it 

can be considered a transparent layer. Each connection link is associated with a weight that 

represents its connection strength and modifies the activation function result, modifying, also, 

the output signal of each node that reaches the following neuron. Thus, after the ANN structure 

is defined, the output of the model can only be modified by changing the weights, which are 

adapted to correctly represent the desired output. The process of correcting or adapting the 
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weights, to better represent the model’s output, is called the training process (ASCE, 2000; 

Dolling and Varas, 2002). 

A detailed illustration of the general mth node is presented in Figure 6.4. The scheme 

considers an input vector I = (i1, i2, i3, . . . , in) where the subscript number indicates the node 

of the previous layer with which the connection is made. Each connection from the previous 

layer to the mth node has an associated weight, with this set of weights being represented by 

vector Wm = (w1m, w2m, w3m, . . . , wnm), where wnm represents the connection weight from the 

nth node in the preceding layer to the present node. 

 

Figure 6.4 Node details (Reproduced with permission from ASCE, 2000). 

In each node, an activation function is applied. This function is generically represented 

by Eq. 6.1: 

𝑜𝑚 = 𝑓𝑎(𝐼 ∙ 𝑊𝑚 − 𝑏𝑚) (Eq. 6.1) 

where om is the output value of the mth node, fa is the activation function, and bm represents the 

threshold value for this node, also known as bias. The activation function applied to a node 

determines its response to the total input signal it receives (ASCE, 2000). In the Keras package, 

the user can define his own activation function, however, in the present work, the activation 

functions to be tested were selected from those already available in the package. Thus, the 

linear, exponential linear unit, rectified linear unit, softsign, and hyperbolic tangent functions 

were considered. Table 6.3 presents a summary of the characteristics of those functions 

according to the Keras webpage (Keras Documentation: Layer Activation Functions, n.d.). 

Table 6.3 Summary of Keras activation functions considered in the study. 

Long name Activation name Equation 

Linear Linear 𝑓(𝑥) = 𝑥 
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Long name Activation name Equation 

Exponential linear unit Elu 𝑓(𝑥) = {
𝛼(𝑒𝑥 − 1), 𝑥 < 0 𝑎𝑛𝑑 𝛼 > 0

𝑥,          𝑥 ≥ 0
 

Rectified linear unit Relu 𝑓(𝑥) = max (𝑥, 0) 

Softsign Softsign 𝑓(𝑥) =
𝑥

|𝑥| + 1
 

Hyperbolic tangent tanh 𝑓(𝑥) =
sin(𝑥)

cosh (𝑥)
=
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

 

An ANN can be classified as single (Hopfield nets), bilayer (Carpenter/Grossberg 

adaptive resonance networks), or multilayer (mostly backpropagation networks) as a function 

of the number of layers present in its structure (ASCE, 2000). According to Dolling and Varas 

(2002) a single-layer network is adequate for representing a linear model, while multiple-layer 

networks are more suitable for nonlinear models. On the other hand, the classification of an 

ANN can be based on the information and the processes’ flow direction. Thus, an ANN can be 

classified as a feedforward or a recurrent network. In the first case, the information and the 

processes’ flows only occur in one direction, starting from the first layer, the input layer, 

passing through one or more hidden layers, and ending in the final layer, the output layer. Here, 

the output of a node only depends on the received inputs and respective weights from previous 

layers. A recurrent network distinguishes itself from a feedforward network by having at least 

one feedback loop (Haykin, 1999), i.e., the information passes through the nodes from the input 

layer to the output layer and vice versa. This process, with the information flowing in both 

directions, consists of the usage of the previous network outputs as current inputs (ASCE, 

2000). According to Haykin (1999) the feedback loops have a significative impact on the 

learning capacity and performance of these networks. Recurrent networks also involve the 

presence of unit delay elements which result in nonlinear dynamical behavior. 

Multi-layer perceptron models. Multi-layer perceptron (MLP) models are a type of 

feedforward artificial neural network. Usually, MLP models have a back-propagation algorithm 

associated with the training process, which implies a feedforward phase and a backward phase 

(Cigizoglu, 2003). During the first phase, the input data flows forward in the network structure 

to estimate the output values, while in the second phase the differences between the output 

values estimated by the network and the respective observed values force the adaptation of the 

connection weights (Eberhart and Dobbins, 1990). Based on the architecture described before, 

MLP models are composed of three or more layers of artificial neurons, meaning that these 

types of models have one or more hidden layers (Maier et al., 2010). 

Considering the terminology of the Keras package, MLP models are composed of dense 

layers, also known as fully connected layers. The implementation of one dense layer implies 
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the definition of the number of neurons on that layer. Besides that, the layers’ activation 

functions are also defined by the user. However, more arguments can be set, such as bias (true 

by default) and its initial value (zero by default). Thus, in this study, an input layer and an 

output layer were considered, with the number of hidden layers being 0 (no hidden layer), 1, 2, 

3, or 4. For the input layer, the number of neurons and the activation function were optimized, 

with the number of neurons tested varying between 1 and 6 or assuming the size of the number 

of input–output pairs of the set used to train the model (i.e., the training dataset, which will be 

elaborated further). The activation function for this layer was selected by taking into account 

the linear, exponential linear, and rectified linear unit functions. The option of adding a dropout 

layer, with a rate of 0.1 or 0.2, after the input dense layer was tested. The dropout layer is used 

to randomly set the input units with a frequency related to the defined rate (Keras 

Documentation: Dropout Layer, n.d.). This dropout layer only has an impact during the training 

process. For the hidden layers, the activation function was selected from a set including the 

softsign, linear, elu, and relu functions, and the number of neurons was defined with 

consideration of the same values presented for the input layer but independently of those. For 

these layers also, the existence (or not) of a dropout layer for each hidden layer in the structure 

was tested considering the same rate values. Finally, the output layer, with only one neuron, 

could assume a softsign or a linear function as an activation function. Table 6.4 presents a 

summary of the structure’s characteristics which were considered to optimize the MLP model. 

Table 6.4 Structure characteristics tested for MLP model. 

Layers 
Number of 

layers 
Number of neurons 

Activation 

function 
Dopout after dense 

Droput 

rate 

Input 

dense 
1 

1, 2, 3, 4, 5, 6 or 

training set size 
Linear, elu or relu Yes/No 0.1 or 0.2 

Hidden 

dense 
0, 1, 2, 3 or 4 

1, 2, 3, 4, 5, 6 or 

training set size 

Softsign, linear, 

elu or relu 

Yes/No (one by each 

hidden layer) 
0.1 or 0.2 

Output 

dense 
1 1 Softsign or linear - - 

 

Long short-term models. Long short-term models (LSTMs) are types of recurrent neural 

network (RNN) models. Although they are structurally similar to ANNs, i.e., they are 

composed of layers connected between them with cells representing neurons, RNNs have a 

recurrent hidden unit that allows the model to implicitly maintain historical information about 

all the past events of a sequence (Elman, 1990; LeCun et al., 2015; Lipton et al., 2015). In each 

instance, the recurrent hidden unit receives as input the information corresponding to that 

instance but also to the previous instance (Ni et al., 2020). This makes RNN very suitable for 

time-series data modelling (Bengio et al., 1994; Hochreiter and Schmidhuber, 1997; Saon and 
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Picheny, 2017), though a problem has already been identified which is related to the 

vanishing/exploding gradient during the learning process, which results in the loss of the ability 

of RNN to learn long-distance information. LSTM structure, proposed by Hochreiter and 

Schmidhuber (1997) emerged from the necessity to solve the vanishing/exploding gradient 

problem, and it has the capacity to learn long-term dependencies (Xu et al., 2020). As described 

by Ni et al. (2020), who cite LeCun et al. (2015) the LSTM solution makes use of a memory 

cell working as a gated leaky neuron, since “it has a connection to itself at the next step that 

has a weight of one, but this self-connection is multiplicatively gated by another unit that learns 

to decide when to clear the content of the memory”. As referred to by Xu et al. (2020) there are 

several applications demonstrating the potential of LSTM in watershed hydrological modeling, 

namely, in river flow prediction (Shen, 2018; Kratzert et al., 2018). 

Using the Keras package, the structure of LSTM models is based on LSTM layers. Thus, 

in this study, the LSTM solution is composed of at least one input layer of the LSTM type and 

one output dense layer. For the input layer, the number of neurons was optimized with 4, 8, 16, 

or 32 units, while in the output layer the number of neurons was set to 1 and the activation 

function was defined as linear. The model’s structure was optimized with consideration of the 

existence of 0, 2, or 4 hidden LSTM layers between the input and output layers. If no hidden 

layer is added, the model is composed only of the input and the output layers, but when two 

hidden LSTM layers are considered, the number of neurons in the first hidden layer is double 

that in the input layer and the second hidden layer is equal to the input layer (e.g., input layer: 

4 neurons; 1st hidden layer: 8 neurons; 2nd hidden layer: 4 neurons). When four hidden LSTM 

layers are considered, after the input layer, a LSTM layer with twice the number of neurons of 

the input layer is considered, followed by another LSTM layer composed by the triple of the 

number of neurons considered in the input layer. The third and the fourth hidden layers are 

composed of twice the number of neurons and the same number of neurons of the input layer, 

respectively (e.g., input layer: 4 neurons; 1st hidden layer: 8 neurons; 2nd hidden layer: 12 

neurons; 3rd hidden layer: 8 neurons; 4th hidden layer: 4 neurons). All these LSTM layers were 

implemented with consideration of the activation function defined by the default for this type 

of layer in the Keras package, which is the hyperbolic tangent (tanh) function. Table 6.5 shows 

a summary of the characteristics optimized for the LSTM model. 

Table 6.5 Structure characteristics tested for the LSTM model, with ninput representing the number of neurons in 

the input layer. 

Layers Number of layers Number of neurons Activation function 

Input LSTM 1 4, 8, 16 or 32 tanh (by default) 

Hidden LSTM 0, 2 or 4 If hidden layers = 2: tanh (by default) 
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Layers Number of layers Number of neurons Activation function 

1st layer: 2×ninput 

2nd layer: ninput 

If hidden layers = 4: 

1st layer: 2×ninput 

2nd layer: 3×ninput 

3rd layer: 2×ninput 

4th layer: ninput 

Output dense 1 1 linear 

 

6.2.2.2 Convolutional Neural Networks 

Developed by LeCun and Bengio (1995) to automatically identify handwritten digits, 

convolutional neural networks (CNNs) have origins in artificial neural networks but, instead 

of fully connected layers, CNNs have local connections, lending more importance to high 

correlations with nearby data (Wang et al., 2019). This correlation with nearby data is achieved 

using convolutional filtering, which means that these networks work based on shared weights 

with filter coefficients being shared for all input positions (Wang et al., 2019; Barino et al., 

2020; Chong at al., 2020). As Chong et al. (2020) state, knowing the number of filters and their 

values are essential for capturing the patterns present in the data. These characteristics make 

CNNs more suitable for identifying local patterns in images but also in time series data 

(Bengio, 2009; Deng, 2014), in which a certain identified pattern in a time frame can be 

recognized in another one independently of the time when both happened (Tao et al., 2019). 

On the other hand, one of the weaknesses of CNNs is the high time consumption needed for 

training (Huang et al., 2020). 

According to Huang et al. (2020) and Shu et al. (2021) a CNN is usually composed of 

five layers, namely, the input, convolution, pooling, fully connected, and output layers. As the 

names suggest, and as in ANNs models, the input layer receives the input data, in a vector or 

matrix shape, while the output layer is responsible for generating the model’s outputs. After the 

input layer, there is a convolutional layer which is responsible for the convolutional operation 

which considers the weights of convolutional neurons (filter) and local regions. Following the 

convolutional operation, a linear or nonlinear transfer can be applied. The output of the 

convolutional layer is, after, sent to the pooling layer. This layer will divide the data received 

from the convolutional layer into sub-regions where a maximizing or an averaging operation 

is applied, followed by a size reduction and an improvement of the translation invariance. The 

pooling layer’s result is then passed to a fully connected layer that is the same as those described 

in ANNs models, and its output is sent to the output layer, which is also fully connected with 

the actual layer (Huang et al., 2020). 
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Since in the present study the predictions were made based on time series data, the CNN 

model was developed based on one-dimensional (1D) convolutional layers, also known as 

temporal convolutional layers. In this kind of layer, the user must set the number of filters and 

the kernel size, with filters being defined as the dimensionality of the output space, i.e., the 

number of output filters in the convolutional layer, and the kernel size being the value that 

specifies the length of the 1D convolutional window. The structure of the CNN model 

developed here has one input convolutional layer and one output dense layer. The output layer 

has just one neuron, and softsign, linear, elu, and relu functions were tested as activation 

functions. For the convolutional input layer, 8, 16, and 32 were the numbers of filters tested, 

and they were combined with a kernel size of 1, 5, or 10. The padding was defined as causal, 

which is usually applied in 1D convolutional layers and allows the addition of zeros at the start 

of the dataset. The activation function was not defined, which means that no activation function 

was considered. After the convolutional input layer, a pooling layer for one-dimensional data 

(MaxPooling1D layer) was added with a pool size of 1 or 2, according to the number of input 

variables. After the convolutional input layers, the model was tested to have none or 1 more 

convolutional layer followed by none, 1 or 2 dense layers. If the convolutional hidden layer 

existed, both the number of filters and the kernel size were tested as 8, 16, and 32. The padding 

was also set to causal, and no activation function was applied. After this layer, a MaxPooling1D 

layer was added with a pool size of 1 or 2, following the same criteria as in the input layer. 

Following the convolutional layers, a flatten layer was added. Thus, for each hidden dense 

layer, a dropout layer could be considered, with a rate of 0.1 or 0.2. The number of nodes in 

hidden dense layers was elected from the sets 3, 5, and 10, while softsign, linear, elu, and relu 

functions were tested as activation functions. Table 6.6 presents a summary of the optimization 

of the convolutional model’s structure. 

Table 6.6 Structure characteristics tested for the convolutional model. 

Layers 
N. of 

layers 

N. of 

filters 

Kernel 

size 

Pooling 

size 

N. of 

neurons 

Activation 

function 

Dropout 

after 

dense 

Dropout 

rate 

Input 

convolutional 
1 

8, 16 

or 32 

1, 5 or 

10 
- - 

None (by 

default) 
- - 

MaxPooling1D 1 - - 1 or 2 - - - - 

Hidden 

convolutional 
0 or 1 

8, 16 

or 32 

8, 16 or 

32 
- - 

None (by 

default) 
- - 

MaxPooling1D 1 - - 1 or 2 - - - - 

Flatten 1 - - - - - - - 

Hidden dense 
0, 1 or 

2 
- - - 

3, 5 or 

10 

softsign, 

linear, elu 

or relu 

Yes/No 

(one by 

each 

hidden 

layer) 

0.1 or 

0.2 
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Layers 
N. of 

layers 

N. of 

filters 

Kernel 

size 

Pooling 

size 

N. of 

neurons 

Activation 

function 

Dropout 

after 

dense 

Dropout 

rate 

Output dense 1 - - - 1 

softsign, 

linear, elu 

or relu 

- - 

 

6.2.2.3 Training Process 

The training, or learning, process of a neural network aims to find the optimal values of 

the weights in artificial and recurrent neural networks and of the filters in convolutional neural 

networks (ASCE, 2000; Chong et al., 2020). This goal is reached by changing and adapting 

those values to optimize the model’s performance, minimizing the error function adopted in 

the study (ASCE, 2000). The adaptation of the weights and the filters is made with 

consideration of a continuous process, during which these values are changed by the 

stimulation of the environment in which the network is embedded. In Keras, and by default, 

the weights of all the types of layers used in this study were initialized with the Glorot uniform 

initializer (Keras Documentation: Layer Weight Initializers, n.d.), while the bias values were 

initialized as zero. According to Haykin (1999) and ASCE (2000) the training process can be 

made by following different algorithms, with most of them being classified as supervised or 

unsupervised training. Unsupervised training is also known as learning without a teacher and 

is based on adapting the connection weights of the neural network using only an input dataset 

in a way that ensure that the neural network will group those input patterns into classes with 

similar properties. However, in this study, only supervised training, also known as learning 

with a teacher, was employed. The learning-with-a-teacher algorithm implies the existence of 

a teacher that knows the environment and is responsible for the training process guidance 

(ASCE, 2000). To perform this process, a set of input–output examples must exist, where the 

inputs are the forcing variables, and the outputs are the effect variables. The basis of this 

method is to expose the neural network to the input variables and to adapt weights and threshold 

values in each node to better mimic the output variables belonging to the teacher. Thus, the 

main goal relies on the minimization of an error function selected by the user, which represents 

the difference between the values generated by the neural network and the target values, 

represented by the output variables of the teacher. When the training process ends, the neural 

network should be able to generate good-quality results given the new sets of inputs. 

In the present study, training algorithms were selected from the set made available by the 

Keras package, and their optimizers were named. Thus, six different optimizers were 

considered and tested: stochastic gradient descent (SGD), AdaGrad, RMSprop, Adam, 
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AdaMax, and Nadam. All of them are based on the gradient descent algorithm, which has the 

main goals of minimizing an objective function (J(θ)) dependent on the parameters of a model 

(θ ∈ Rd) and adapting those parameters in the opposite direction of the gradient of the objective 

function (∇θJ(θ)) (Ruder, 2017). The changes in the parameters’ values are estimated according 

to a learning rate which determines the size of the steps to reach the minimum value of the 

objective function. A detailed description of the optimizers is given below. 

To perform the training process with the Keras package, the constructed model needs to 

be compiled. It is in the compilation function where the arguments of the optimizer are set. 

Besides the optimizer parameters, the user must select the loss function and the metrics for 

model evaluation purposes. The loss function is responsible for describing what the user wants 

to minimize through the learning algorithms (Ebert-Uphoff et al., 2021). Thus, the choice of 

the loss function is extremely important for the good performance of the model during the 

training process. The metrics’ main goal is the follow-up of the selected criteria during and 

after the training process, which allows the user to prematurely detect the model’s problems 

and weaknesses (Ebert-Uphoff et al., 2021). In the present study, the mean square error was 

selected to be both the loss function and the metric. 

The training process of a neural network, which includes a validation of the model, is 

followed by the testing process. For training, validation and testing tasks, a dataset should be 

defined, namely the training, validation, and test datasets (Maier and Dandy, 2000). Thus, as 

the name indicates, the training dataset is used to train the neural network during the training 

process, i.e., to optimize the model parameters. According to Wu et al. (2014), the test set is 

also used during the training process to avoid over-fitting the model, while the validation set 

aims to assess the performance of the trained model independently. However, for Chong et al. 

(2020) and in the documentation available on the Keras webpage for “Model training APIs” 

(Keras Documentation: Model Training APIs, n.d.), the fit method considers an argument 

named “validation_data”, which is the data with which the trained model will be evaluated at 

the end of each epoch, allowing the over-fitting analysis. Thus, in this case, the test dataset is 

the one with which the user can assess the model’s performance after the training and validation 

processes are carried out. Consequently, the input dataset for the present study was divided into 

three different datasets following Keras website information, with the training set 

corresponding to 70% of the data, the validation set being 20% of the data, and the test set 

being the remaining 10%. 
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Stochastic gradient descent (SGD). The stochastic gradient descent (SGD) performs a 

parameter update for each training input–output example. Thus, the mathematical formulation 

for this method is: 

𝜃 = 𝜃 − 𝜂 ∙ ∇𝜃𝐽(𝜃; 𝑥
(𝑖); 𝑦(𝑖)) (Eq. 6.2) 

where η is the learning rate and the x(i) and y(i) pair represents the input–output example. The 

SGD can be used to learn online. However, when its frequent updates occur with a high 

variance, it can cause the objective function to fluctuate drastically. 

This method can present some difficulties in searching the exact minimum, jumping 

between local minima, but when the learning rate decreases slowly, this algorithm tends to find 

the local and global minimum for non-convex and convex optimization, respectively (Ruder, 

2017). 

The mode of implementation available in the Keras package (Keras, n.d.) allows the 

definition of three different arguments that can influence the algorithm’s behavior, namely, the 

learning rate and momentum values and the activation of the Nesterov momentum. As Ruder 

(2017) describes, the momentum method helps the convergence of the SGD algorithm in areas 

where the surface curves of the objective function are more steeply in one dimension than in 

another, giving the algorithm the capacity to predict the next step of optimization and to avoid 

jumps that are too big between iterations, indicating a significant improvement in the 

algorithm’s performance. In the Keras package, the default value for momentum is 0.0, 

however, in this study, it was set to 0.9 (Ruder, 2017). Additionally, the Nesterov option is not 

used in Keras by default, but it was used in this study. Finally, the algorithm’s learning rate was 

tested as 1×10−4, 1×10−3, and 1×10−2. 

AdaGrad. The AdaGrad algorithm (Duchi et al., 2011), i.e., the adaptive gradient 

algorithm, has as its main strength the capacity to adapt the learning rate to the parameters 

using larger updates for infrequent parameters and smaller updates for frequent parameters 

(Ruder, 2017). Thus, this algorithm does not require the manual tuning of the learning rate, 

with the most common value for this parameter being 0.01 according to Ruder, 2017. However, 

the main limitation of this algorithm is the fact that the learning rate can become infinitesimally 

small to a point where the algorithm cannot improve the results, since that value is shrunk 

according to the accumulation of squared gradients. 

In the implementation available in the Keras package, three main arguments can be 

defined for the AdaGrad algorithm, namely, the learning rate, the initial accumulator value, 

which is the starting value for the accumulators, and the epsilon, which is used to maintain 
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numerical stability. Although the default values for those parameters are, respectively, 0.001, 

0.1, and 1×10−7, in the present study, the learning rate was set to 0.01, while the epsilon was 

tested as 1×10−7 or 1×10−8. 

RMSprop. The RMSprop algorithm was developed to overcome AdaGrad’s problem, 

which is related to the extremely rapid decrease in the learning rate. Thus, this algorithm 

divides the learning rate by an exponentially decaying average of squared gradients (Ruder, 

2017). In the Keras package, the implementation of this algorithm involves five arguments: the 

learning rate, with a default value of 0.001; the discounting factor for the history/coming 

gradient, which is by default 0.9; the momentum value, set to 0.0; the epsilon, already defined 

in AdaGrad and with a default value of 1×10−7; the centered option, which allows the 

normalization of the gradients by the estimated variance of the gradient if it is activated. By 

default, this last option is deactivated, which makes the gradients normalized by the uncentered 

second moment. In the present study, the learning rate for RMSprop was set as 0.01, and the 

epsilon value was tested as 1×10−7 or 1×10−8. 

Adam. The Adam optimizer, the name of which comes from adaptive moment estimation, 

adapts the learning rate value for each parameter, like the RMSprop optimizer. However, the 

Adam optimizer considers an exponentially decaying average of past gradients, similarly to the 

momentum method described for the SGD optimizer. According to Kingma and Ba (2017) the 

Adam method is simple to implement, it is computationally efficient, its memory requirements 

are low, it is invariant to the diagonal rescaling of the gradients, and it has a good performance 

for noisy problems with large amounts of data. In the Keras package, the implementation of 

the optimizer referred to implies the definition of five arguments, namely, the learning rate, 

beta_1, beta_2, epsilon, and amsgrad, with default values of 0.001, 0.9, 0.999, 1×10−7, and 

deactivated, respectively. With the learning rate and the epsilon arguments already defined, 

beta_1 represents the decay rate for the 1st moment estimates, beta_2 represents the decay rate 

for the 2nd moment estimates, and the amsgrad option allows the user to use the AMSGrad 

variant of the Adam algorithm (more information can be found in Reddi et al., 2019). For 

Ruder, 2017, the beta_1, beta_2, and epsilon values should take the values 0.9, 0.999, and 

1×10−8, respectively. Thus, in this study, the learning rate was optimized, taking into account 

the values 1×10−4, 1×10−3, and 1×10−2, while the epsilon parameter took the value 1×10−7 or 

1×10−8. 

AdaMax. The AdaMax algorithm is an extension of Adam (Kingma and Ba, 2017). Thus, 

AdaMax improves the stability of the Adam optimizer based on the infinity norm. In the Keras 

package, the implementation of AdaMax involves the same arguments as that of Adam, and 
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both the learning rate and epsilon were tested for the values already presented for the Adam 

algorithm. 

Nadam. The Nesterov-accelerated adaptive moment estimation (Nadam) algorithm is the 

result of the combination of Adam and the Nesterov accelerate gradient (NAG) (Ruder, 2017). 

Nadam was developed due to the fact that Adam uses the regular momentum component, which 

has a lower performance than the NAG. Thus, Dozat, 2016, developed the Nadam optimizer 

and demonstrated that this optimizer can improve the speed of convergence and the quality of 

the learned models when compared to the Adam algorithm. In the Keras package, Nadam has 

the same arguments as the Adam optimizer. Thus, the learning rate and the epsilon were tested 

considering the same values presented for the Adam algorithm. 

6.2.2.4 Input Variables 

The dataset considered in this study is composed of the output variable and the forcing 

variables. As referred to before, the main goal of the neural network being developed was to 

estimate the daily streamflow in a cross-section of a river where the hydrometric station is 

located, so the output variable would be the daily streamflow at this point. On the other hand, 

it is necessary to define the input variables, with this task being referred to by several authors 

as crucial to reach in a successful model (ASCE, 2000; Dolling and Varas, 2002; Maier et al., 

2010; Wu et al., 2014; Juan et al., 2017). However, Maier and Dandy (2000) indicate that most 

of the authors with studies in the field of prediction and forecasting water resources variables 

with ANN models give little attention to the former task, with input variables being determined 

on an ad hoc basis or by using a priori system knowledge. For predictions with a daily timestep, 

Cigizoglu (2003), Nacar et al. (2018), and Huang et al. (2020) only used observed streamflow 

values from days previous to their study while considering different time lags. Besides the 

streamflow, Riad et al. (2004) predicted the streamflow of a specific day considering daily 

precipitation values from previous. On the other hand, Besaw et al. (2010) used only 

meteorological data, namely, total precipitation and average temperature, to predict streamflow. 

Ni et al. (2020), Dolling and Varas (2002), and Yang et al. (2019) also considered runoff and/or 

different meteorological variables, such as precipitation, temperature, sunshine hours, snow 

water, relative humidity, potential evapotranspiration, and so on, as the forcing data to predict 

streamflow values with monthly or annual timesteps. In the present study, daily total 

precipitation data or the combined use of daily total precipitation and daily average temperature 

were considered forcing variables. The meteorological data were obtained from the ERA5-

Reanalysis dataset (Hersbach et al., 2020), which is a gridded product with a resolution of 31 
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km and an hourly timestep. Thus, the date values belonging to the cells in which the center is 

within the watershed delineation were considered. The hourly total precipitation and the hourly 

average air temperature were collected, and both were averaged with consideration of the 

number of cells within the watershed. The watershed’s hourly total precipitation and hourly air 

temperature were then accumulated and averaged, respectively, considering a daily timestep. 

The meteorological data collected cover the same period as the one selected for the streamflow 

data, which corresponds to the period between 25 July 2001 and 31 December 2008. Since a 

meteorological model was input, no gaps existed in the precipitation and air temperature time 

series, with records totalizing 2718 values for each meteorological variable. Table 6.7 presents 

the time series statistical characterization for both variables. In contrast to other studies, in this 

work, the dependence of the forecasted streamflow on previous streamflow values was 

avoided. This decision was related to the fact that, if the neural network produced in this study 

was used to estimate streamflow values in periods without observed data, such as in climate 

change scenarios, or implemented as an operational tool to predict the streamflow a few days 

in advance, the input streamflow values would have been those values already estimated by the 

neural network itself, which would have contained a certain level of error and uncertainty and 

could have led to the exacerbation of errors and uncertainty in the estimations. Additionally, 

the use of forcing variables derived from observed data was avoided because it would have 

been impracticable to feed the trained neural network with that kind of data to predict future 

events. However, this did not invalidate the fact that an analysis of the controlling factors of 

the hydrological response could be performed to investigate if there were other factors that 

could have had a significant impact on the streamflow estimations. 

Table 6.7 Meteorological input data characterization (precipitation and air temperature, period 25 July 2001–31 

December 2008). 

Meteorological variable Average Minimum Maximum Std. Deviation 

Daily total precipitation (mm) 1.59 0 45.50 4.24 

Daily air temperature (°C) 16.09 1.77 34.74 6.46 

 

The daily total precipitation and air temperature values were here aggregated with 

consideration of different periods (2, 3, 4, 5, and 10 days or 10, 30, and 60 days), with 

precipitation being accumulated and air temperature being averaged in those periods. The 

periods elected here were considered to better understand the impact of short and long-term 

intervals on the results. On the other hand, the delay (1, 2, 3, 4, 5, 6, and 7 days) of total 

precipitation and air temperature values was considered. Thus, the impact of the aggregation 

periods or the time lags, and the combination of both, was tested in this study, resulting in 6 
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different scenarios that were established for the usage of only the total precipitation or of the 

pair total precipitation plus air temperature. Table 6.8 presents the summary of the tested 

scenarios. 

Table 6.8 Tested scenarios and dataset dimensions (Acc. TP—accumulated days of total precipitation; Ave. AT—

averaged days of air temperature). 

Scenario 

Total precipitation (TP) or Total Precipitation + Air Temperature (TP&AT) 

Time lag 

(days) 

Acc. TP 

(days) 

Ave. AT 

(days) 

Training set 

size 

Validation set 

size 

Test set 

size 

TP1 - 1 - 1851 529 265 

TP2 - 1,2,3,4,5,10 - 1845 527 264 

TP3 - 10,30,60 - 1810 517 259 

TP4 1,2,3,4,5,6,7 - - 1846 527 265 

TP5 1,2,3,4,5,6,7 1,2,3,4,5,10 - 1810 517 259 

TP6 1,2,3,4,5,6,7 10,30,60 - 1845 527 264 

TP&AT1 - 1 1 1851 529 265 

TP&AT2 - 1,2,3,4,5,10 1,2,3,4,5,10 1845 527 264 

TP&AT3 - 10,30,60 10,30,60 1810 517 259 

TP&AT4 1,2,3,4,5,6,7 - - 1846 527 265 

TP&AT5 1,2,3,4,5,6,7 1,2,3,4,5,10 1,2,3,4,5,10 1810 517 259 

TP&AT6 1,2,3,4,5,6,7 10,30,60 10,30,60 1845 527 264 

 

The input dataset was handled and prepared with the Pandas (McKinney, 2010) and 

Scikit-learn (Pedregosa et al., 2011) packages. Thus, with the Pandas package, all the 

accumulations, averages, and delays were performed, and days with data missing were 

excluded. The resulting dataset was then scaled using MinMaxScaler in the scikit-learn 

package to improve the learning process and avoid convergence problems. The range to scale 

each column of the dataset independently was set to [0,0.9] and the new values of the columns 

were calculated according to: 

𝑣𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑣 − 𝑣𝑚𝑖𝑛

𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
∗ (𝑀 −𝑚) ∗ 𝑚 (Eq. 6.3) 

where vscaled is the new value in the range [0,0.9], v is the original value in the dataset, vmax and 

vmin are the maximum and minimum values present in the column being scaled, respectively, 

M is the maximum value of the range, and m is the minimum value of the range. The range was 

selected considering that the maximum streamflow in this section could not be represented in 

the period analyzed. 

Finally, because of the different time lags and aggregation periods considered, the size of 

the input dataset varied, with the size of the training, validation, and test datasets also being 

different for the different scenarios. After removing the streamflow gaps, the size of those 

datasets for each scenario was presented in Table 6.8. 
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6.2.2.5 Tunning Parameters 

Besides the optimization of the weights or the filters during the model’s training process, 

the structure of the model should also be optimized. The best structure may be considered the 

one that demonstrates the best performance in terms of error minimization and, at the same 

time, that presents its simplest form (ASCE, 2000). Usually, the definition of a neural network 

structure is accomplished by a trial and error procedure, which is used to define the number of 

hidden layers and their number of nodes and filters or their kernel size. The number of nodes 

in the input and output layers is problem-dependent and, consequently, they are not an 

optimization target (ASCE, 2000; Chong et al., 2020). 

To avoid all the effort involved in manual structure optimization, the KerasTuner package 

was used to discern the best structure for each type of model studied in this work (MLP, LSTM, 

and CNN) in a more efficient way. This package allows the user to define ranges or values to 

test different parameters in the model’s structure as well as the model’s structure itself by, for 

example, providing the possibility to vary the number of hidden layers in the model. The 

parameters that can be optimized by the user, and that are set before the model’s training 

process, are known as hyper-parameters. In this study, the hyper-parameters optimized included 

the number of nodes in each layer in the MLP and LSTM models and the number of filters and 

the kernel size in the CNN model. The model’s structure was optimized with consideration of 

the number of hidden layers and the activation functions of the hidden, input, and output layers. 

The optimized hyper-parameters and the structures’ composition were already discussed and 

are summarized in Table 6.4 for the MLP models, Table 5 for the LSTM models, and Table 6.6 

for the CNN models. As referred to before, some hyper-parameters related to the training 

algorithms, such as the learning rate or the epsilon value, were further optimized using 

KerasTuner. Table 6.9 presents a summary of the hyper-parameters tuned for each training 

algorithm applied in this study. 

Table 6.9 Summary of hyper-parameters tuned for training algorithms. 

Training algorithm 
Hyper-parameters optimized 

Possible values tested for learning rate Possible values tested for ε 

SGD 1×10−4, 1×10−3 or 1×10−2 - 

AdaGrad - 

1×10−7 or 1×10−8 

RMSprop - 

Adam 

1×10−4, 1×10−3 or 1×10−2 AdaMax 

Nadam 

 

The batch size and the number of epochs were also optimized using a tuner customized 

by the user and based on the Bayesian optimization in KerasTuner. The batch size here can take 
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values from 10 to 50, in steps of 10, indicates the number of samples collected from the training 

dataset, and is used to make one update to the network parameters (Radiuk, 2017). This means 

that the choice of batch size has an impact on the convergence time and the fitting performance 

during the training process, with smaller batch sizes conducting a faster computation but 

forcing more samples to be passed through the model to achieve the same error because the 

number of updates per training iteration is lower. On the other hand, the number of epochs 

represents the number of times that the entire dataset flows in the model (Airola and Hager, 

2017; Afaq and Rao, 2020). In this study, it was possible to assume values for this parameter 

between 100 and 400 in steps of 50 and with a default value of 150. Finally, Bayesian 

optimization (Snoek et al., 2012) is an algorithm developed to efficiently guide the search for 

the best combinations of hyper-parameters among the search space of a model, which is 

composed of different combinations of hyper-parameter values (Jin et al., 2019). The usage of 

the KerasTuner package implies the definition of the maximum number of model 

configurations (trials) that should be tested, and this value was set to 500. From the entire set 

of trials, the tuner elects the model with the best performance, in terms of the resulting values 

of the validation dataset, as the best model, i.e., the model where the predicted values best fit 

the output variable. 

Therefore, 12 different combinations of input variables (Table 6.8) were tested in 

combination with each one of the three types of neural networks considered in this study, 

namely, MLP, LSTM, and CNN. For each pair of input variables and each type of neural 

network, the hyper-parameters were optimized and the performance of six different training 

algorithms (SGD, AdaGrad, RMSprop, Adam, AdaMax, and Nadam) was tested. In total, the 

hyper-parameters of 216 solutions (72 for MLP, 72 for LSTM, and 72 for CNN) were tuned 

with a total of 500 trials for each solution. For better understanding, Figure 6.5 presents a 

schematic summary of how the tests were carried out. 
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Figure 6.5 Schematic summary of the tests performed. 

6.2.3 Model Evaluation 

According to ASCE (2000) the performance of a neural network model can be evaluated 

by exposing the developed model to a new set of data containing values that had never been 

used during the model training process. Thus, in this study, the best solution for each 

combination of input variables, type of model and training algorithm was evaluated by 

considering the test dataset defined before. This means that each solution was run with 

consideration of the input variables present in the test dataset. The performance of each run 

was then evaluated by comparing the model results with the observed flow values. This 

comparison included a visual analysis and the calculation of four statistical parameters, namely, 

the coefficient of determination (R2), the percent bias (PBIAS), the root mean square error 

(RMSE), and the Nash–Sutcliffe efficiency (NSE), which were computed, respectively as 

follows: 

𝑅2 =

[
 
 
 

∑ (𝑄𝑖
𝑜𝑏𝑠 − 𝑄𝑚𝑒𝑎𝑛

𝑜𝑏𝑠 )(𝑄𝑖
𝑠𝑖𝑚 − 𝑄𝑚𝑒𝑎𝑛

𝑠𝑖𝑚 )𝑝
𝑖=1

√∑ (𝑄𝑖
𝑜𝑏𝑠 − 𝑄𝑚𝑒𝑎𝑛

𝑜𝑏𝑠 )
2𝑝

𝑖=1
√∑ (𝑄𝑖

𝑠𝑖𝑚 − 𝑄𝑚𝑒𝑎𝑛
𝑠𝑖𝑚 )

2𝑝
𝑖=1 ]

 
 
 
2

 (Eq. 6.4) 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑄𝑖

𝑜𝑏𝑠 − 𝑄𝑖
𝑠𝑖𝑚)𝑝

𝑖=1

∑ 𝑄𝑖
𝑜𝑏𝑠𝑝

𝑖=1

× 100 (Eq. 6.5) 

𝑅𝑀𝑆𝐸 = √
1

𝑝
∑ (𝑄𝑖

𝑜𝑏𝑠 − 𝑄𝑖
𝑠𝑖𝑚)

2𝑝

𝑖=1
 (Eq. 6.6) 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑖

𝑜𝑏𝑠 − 𝑄𝑖
𝑠𝑖𝑚)2𝑝

𝑖=1

∑ (𝑄𝑖
𝑜𝑏𝑠 − 𝑄𝑚𝑒𝑎𝑛

𝑜𝑏𝑠 )2𝑝
𝑖=1

 (Eq. 6.7) 

 



171 

 

where Qi
obs and Qi

sim are the flow values observed and estimated by the model on day i, 

respectively. Qmean
obs and Qmean

sim are the average flow values, which consider the observed and 

modeled values in the period comprehended in the test dataset, and p is the total number of 

days/values in this period. According to Moriasi et al., 2007, the model’s performance is 

considered satisfactory when NSE > 0.5, PBIAS ± 25%, and R2 > 0.5. The RMSE represents 

the standard deviation of the residuals (the difference between the predictions and the observed 

values) and, consequently, lower values mean better model performance. 

The model solution which combines the best statistics and the best visual fit between the 

modeled and observed values was elected as the one with a higher probability of better 

representing the watershed in the case study (Figure 6.5). 

6.3 Results 

The distribution of the values of the statistical parameters for the scenarios of each neural 

network considered (multi-layer perceptron, long sort-term model, and convolutional neural 

network) are presented in Figure 6.6. The dispersion of the markers presented in those graphs 

is a consequence of testing different optimizers, with most of the scenarios presenting a 

maximum of 6 markers, corresponding to the 6 optimizers tested. However, in some scenarios 

of optimizer–NN model combinations, the training process did not converge, and so the 

respective marker is not represented in the graph. In Appendix 6A, Table 6A.1, the statistical 

parameters are presented in detail for each scenario and each tested optimizer according to the 

NN model considered. 
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Figure 6.6 Distribution of values of statistical parameters (NSE, R2, PBIAS, and RMSE) for each scenario in 

each type of neural network tested. 

Considering the calculated statistical parameters and the range of values suggested by 

Moriasi et al. (2007), 24% (17 out of 72) of the combinations tested in the multi-layer 

perceptron models showed satisfactory performance in reproducing river flow. The long short-

term memory models and convolutional models each presented satisfactory behavior for 18 of 

the combinations tested, corresponding to 25% of the tests performed. 

The best solution for the multi-layer perceptron models presented a NSE of 0.8, an R2 of 

0.85, a PBIAS of −17.3%, and a RMSE of 5.0 m3 s−1. This solution was obtained for the TP5 

input scenario (Figure 6.7) with the Adamax optimizer. 
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Figure 6.7 Best solution for multi-layer perceptron model (TP5 scenario with Adamax optimizer). 

In the case of LSTM models, the best solution was also reached for the TP5 scenario and 

the Adamax optimizer (Figure 6.8a), resulting in NSE, R2, PBIAS, and RMSE values of 0.75, 

0.83, 15.8%, and 5.6 m3 s−1, respectively. However, the scenario in which TP3 was combined 

with the RMSprop optimizer (Figure 6.8b) showed a very similar performance, presenting a 

NSE of 0.74, R2 of 0.76, PBIAS of 13.6%, and RMSE of 5.8 m3 s−1. As shown in Figure 6.8, 

both models predicted negative flow values, which was considered a non-acceptable result. 
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Figure 6.8 Best solutions for long short-term memory model: (a) TP5 scenario with Adamax optimizer; (b) TP3 

with RMSprop optimizer. 

The best LSTM solution without negative predicted values resulted from the combination 

of scenario TP3 and the SGD optimizer (Figure 6.9). This solution returned acceptable 

indicators, with a NSE of 0.59, an R2 of 0.61, a PBIAS of −20.0%, and a RMSE of 7.2 m3 s−1. 

However, when compared with the best solution for the multi-layer perceptron model, the 

performance of this solution was substantially worse. 
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Figure 6.9 Best solution for long short-term memory model without negative predicted values. 

Finally, for the convolutional models, the four best solutions were obtained for scenario 

TP5, and all of them have a NSE and R2 higher than 0.82 and 0.83, respectively, with the 

PBIAS laying in the range of −14 to 11%, and the RMSE varying between 4.2 and 4.9 m3 s−1 

(Figure 10). From this set, the combination of the TP5 scenario with the Nadam optimizer is 

the one with the best performance, with the NSE, R2, PBIAS, and RMSE values being 0.86, 

0.87, 10.5%, and 4.2 m3 s−1, respectively. 

 

Figure 6.10 Best solutions for convolutional model: (a) TP5 scenario with Nadam optimizer; (b) TP5 with Adam 

optimizer; (c) TP5 with Adagrad optimizer; (d) TP5 with RMSprop scenario. 
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The structure of the best solution is composed of one input 1D convolutional layer with 

the number of filters and the kernel size being 16 and 1, respectively, and one output dense 

layer with a linear function as the activation function. Between them, two more convolutional 

1D layers were placed, with both having 32 filters and a kernel size of 8. After each 1D 

convolutional layer, a MaxPooling1D layer with a pool size of 2 was set. Finally, the learning 

rate and the ε of the optimizer took the values 1×10−3 and 1×10−8, respectively, with the batch 

size being defined as 20 while the optimum number of epochs was 200. 

6.4 Discussion 

In general, results show that convolutional neural networks seem better able to predict 

the river flow one day ahead than LSTM and MLP models. These results are in accordance 

with Huang et al. (2020) who compared the capability of a MLP model, a generic CNN model, 

and a CNN model trained with a transfer learning procedure to predict the river flow one day 

ahead in four different locations in the United Kingdom. For each location, the authors 

considered as inputs the river flow time series of neighboring sites. The results of both CNN 

models (average mean absolute percentage errors (MAPE): generic CNN = 27.09%; CNN with 

transfer learning = 22.85%) were substantially better than those presented for the MLP model 

(average MAPE = 31.65%). Shu et al. (2021) tested the prediction of the monthly river flow of 

two basins in China: the Huaren Reservoir basin, with a drained area of 10 400 km2 and an 

average annual streamflow of 142 m3 s−1, and the Xiangjiaba Hydropower Station basin, where 

the average annual streamflow is 3810 m3 s−1. The authors considered 68 variables as candidate 

inputs, from which rainfall and streamflow were the only ones specified; all others were not 

given. They compared the performance of a CNN model, an ANN model of the MLP type, and 

an extreme learning machine (ELM) model with a different number of inputs, with the first 

model presenting the best performance for both watersheds and most of the number of inputs 

tested. They concluded that the performance of the models does not improve or worsen clearly 

with the inclusion of more inputs, but they also did not provide the candidate variables that 

reached the best performances. Barino et al. (2020) also compared the performance of four 

different models, including a MLP model and two CNN models, to predict the river flow in a 

river section of Madeira River, a tributary of the Amazon River, Brazil. The input variable of 

the MLP model and one of the CNN models was the river flow of the previous days, while the 

other CNN model had the river flow and the turbidity in previous days as input variables. The 
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authors concluded that CNN models were the best models for predicting the river flow, with 

an average NSE, R2, and MAPE of 0.93, 0.93, and 22.44%, respectively, compared with the 

NSE of 0.93, R2 of 0.91, and MAPE of 33.60% for the MLP model. Finally, Duan et al. (2020) 

used a CNN with past values of precipitation, temperature, and solar radiation as inputs to 

predict the long-term river flow, for Catchment Attributes for Large-Sample Studies watershed 

regions, in California, USA. The CNN model’s performance was compared with that of other 

machine learning models, with the authors concluding that ANNs have problems capturing 

some important temporal features when compared with CNNs and RNNs. Additionally, the 

CNN model was demonstrated to be faster and more stable during the training phase, producing 

better results for average and high-flow regimes, while the LSTM model was better at 

producing results for a low-flow regime. 

However, there are several studies demonstrating that MLP and LSTM models can also 

predict river flow in some cases with acceptable results. Cigizoglu (2003) tested the 

performance of a MLP model to forecast the river flow one and six days ahead, beyond the 

calibration range and using different time series with the model already trained in four flow 

stations on the rivers Göksu, Lamas, and Ermenek, Turkey. The author obtained an average R2 

of 0.94. More recently, Darbandi and Pourhosseini (2018) and Ünes et al. (2020) also used 

MLP algorithms to predict the river flow in the Ajichay watershed (with a drained area of 12 

790 km2), East Azerbaijan, and in a station (with a drained area of 75 km2) of the Stilwater 

river, Worcester, Sterling, MA, USA, respectively. In the first case, the authors applied the MLP 

model to predict monthly river flow at three points of the watershed considering as input data 

the river flow values from the previous one, two, and three months. The average R2 

(considering all the stations and all the input data scenarios) for the training period reached 

0.86, while that of the test period was 0.78. In the second case, the authors predicted daily flow 

values using daily average temperature, precipitation, and lagged day flow values as input 

variables and obtained a Pearson’s correlation coefficient of 0.91. In both cases, MLP models 

were compared with other models, however, neither demonstrated the best performance. Ni et 

al. (2020) used a MLP model and three LSTM models (one simple LSTM model, a 

convolutional LSTM model, CLSTM, and a wavelet-LSTM model, WLSTM) to predict the 

monthly streamflow volume one, three and six months ahead in Cuntan and Hankou stations, 

Yangtze River basin, China. They demonstrated that the MLP model was the one with the worst 

performance (average NSE = 0.72), while the simple LSTM model reached an average NSE of 

0.76, and the WLSTM and CLSTM models had average NSEs of 0.78 and 0.79, respectively. 

According to the authors, WLSTM and CLSTM demonstrated better performance because both 
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can be considered as having preprocessing methods based on the convolutional operation, both 

are based on filter usage, and both are responsible for extracting temporally local information 

from data. However, the CLSTM filters can be trained by data and, thus, they can learn, while 

the WLSTM model has pre-specified structured filters. Xu et al. (2020) applied several models 

to predict the streamflow in two watersheds in China, namely, the Hun river basin, with a 

drained area of 14 800 km2, and the Yangtze river basin, with a drained area of 1 002 300 km2. 

Among the applied models, the authors considered the different structures of the LSTM models 

for each watershed with meteorological data from different stations in both basins being used 

as input variables. They concluded that, during the training period, the LSTM models had the 

best performance among all the models used in both watersheds, while during the verification 

period, LSTM performance decreased, becoming the second-best solution right after the 

hydrological model. Additionally, Hu et al. (2020) used a LSTM model to predict stream flow 

6h ahead in one hydrological station placed in Tunxi, China. Using streamflow and 

precipitation data to feed the model, the authors found that the LSTM model performed better 

than a support vector regression and the MLP models, with the LSTM solution reaching an R2 

of 0.97. On top of the good results, it is also important to note that Xu et al. (2020) and Hu et 

al. (2020) found some difficulties in predicting peak flow values when using LSTM models. 

According to the analysis presented before, there seems to exist an agreement about CNN 

models having the best capacity to predict stream flow, which is frequently related to their 

ability to extract features and to perform a subsampling of the data gained with the usage of 

filters (Lee and Song, 2019; Ni et al., 2020; Shu et al., 2021; Huang et al., 2020). Additionally, 

Lee and Song (2019) say that CNN models have a significant advantage over MLP models that 

is related to the number of parameters to estimate. This comes from the fact that CNNs share 

filters at different local regions of the input, visiting all parts of the input sequence and 

performing the same identical computation on it, thus considering several input features as one 

instead of considering each feature as different from the others, as is the case in MLP structures. 

Shu et al. (2021) also says that a careful selection of the input variables for models like ANN 

and ELM is required, while CNN models can do this task themselves because of their capacity 

for feature extraction. Thus, in this study, the worse performance of the MLP and LSTM models 

can be partly explained by the fact that the input variables were not a target of exhaustive 

exploration since the authors wanted to limit them to precipitation and temperature. This 

imposed limitation comes from the fact that, when considering an operational system, the study 

of future scenarios, or even a hydrometric station with limited data availability, there are no 

measured river flow values available to feed the model. Thus, if the neural network is based on 
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river flow values from past instances, in the situations referred to before, the model needs to 

be fed by its own outputs, which can significantly increase the uncertainty of the predicted 

values. 

On the other hand, in the last few years, several authors have explored different models 

from those presented here with promising results. This is the case of Sit et al. (2021) and 

Szczepanek (2022). Sit et al. (2021) used a graphical convolutional GRU model to predict the 

next 36 h of streamflow, obtaining a NSE very close to 1 for the first hours and decreasing to 

0.85 for the last predicted hours. Szczepanek (2022) tested the prediction of daily streamflow 

in mountain catchments with the XGBoost, LightGBM, and CatBoost models. The authors 

found that, using the default model parameters, CatBoost obtained the best results (NSE = 0.78, 

MAE = 3.96), while for hyperparameter optimization, LightGBM obtained the best 

performance (NSE = 0.87, MAE = 2.70). 

Finally, to improve the results of these types of data-driven models, Duan et al. (2020) 

proposed the use of alternative designs that can explicitly include physically based 

conservation laws, which also allow the physical interpretation of model results. However, 

even without considering these types of modifications, these models still have several 

advantages. Humphrey et al. (2016) suggest that the flexible model structure of neural network 

models allows them to capture the complex and nonlinear relationships between input and 

output values without taking into consideration the underlying processes. Besides the flexible 

structure, the advantages of ASCE (2000) include the capacity of these models to work well 

even when training datasets contain noise and measurement errors, the fact that they can adapt 

to solutions over time to compensate for changes in the modeled system, and the fact that they 

are easy to use once they are trained. On the other hand, there are also several disadvantages 

associated with the use of neural network models. These models are highly dependent on the 

size and quality of the input dataset, and they have many more parameters to calibrate than 

typical rainfall–runoff models do, which can lead to an over-parameterization of NN models 

(Humphrey et al., 2016; ASCE, 2000). This over-parametrization substantially increases the 

risk of the model’s inability to make forecasts beyond the calibration process. The lack of a 

standardized way to select the network architecture is also a limitation of the usage of these 

models. The network structure, the training algorithm, and the definition of error result, most 

of the time, depend on the experience of the user. 
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6.5 Conclusions 

The work presented here demonstrates that the implementation of neural network models 

based on tools already developed, namely, the Keras and KerasTuner packages, can constitute 

an easy-to-use and powerful solution to streamflow estimation with a daily time step. 

Among the set of tests performed for simulating streamflow in the Ponte Vila Formosa 

hydrometric station, the best solution was reached with a CNN model composed of one input 

1D convolutional layer with 16 filters and a kernel size equal to 1, followed by two other 1D 

convolutional layers, each having 32 filters and a kernel size of 8 and each being finalized with 

a dense layer activated by a linear function. After each 1D convolutional layer, a 

MaxPooling1D layer was imposed with a pool size of 2. The optimizer with the best 

performance was Nadam, with a learning rate of 1×10−3 and an ε of 1×10−8. The model obtained 

the best solution with a batch size of 20 and with 200 as the number of epochs. The input 

variables of the best solution included only the average daily precipitation values in the 

watershed accumulated in 1, 2, 3, 4, 5, and 10 days and delayed by 1, 2, 3, 4, 5, 6, and 7 days. 

This solution reached a NSE of 0.86 and an R2 of 0.87, with the PBIAS and RMSE being 10.5% 

and 4.2 m3 s−1, respectively. However, it is important to note that the worse performances of 

the LSTM and MLP models, when compared with solutions found in the literature, can be 

closely related to the choice and treatment of the input variables. 

It is also important to note that the methodology presented here focused on easy 

predictive data, such as meteorological conditions. However, according to different studies 

already presented, it seems possible that the results obtained could be improved using other 

parameters that are historically related as forcing variables. Additionally, the case study in this 

work is of a watershed characterized by a small size and natural regime flow. Thus, the 

transference of the methodology presented here to other watersheds should be carried out 

carefully and could perhaps be the target of benchmark tests (Demir et al., 2022). 

Although data-driven models are easy to implement and do not require knowledge about 

the physical processes involved in the generation of streamflow in a watershed, it is important 

to note that the application of these types of models relies on the fact that they are developed 

under a certain combination of watershed characteristics. When those characteristics change, 

for example, when the land use or the construction of a dam change, an already developed and 

trained model can no longer be representative of that watershed. To avoid these limitations, 

solutions for NN models that incorporate some information about the physical processes 

involved can be developed, which will be the topic of a subsequent study.
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6.6 Appendixes 

6.6.1 Appendix 6A 

Table 6A.1 Statistical parameters for each considered input variable scenario (according to Table 6.8) and for each tested optimizer for MLP, LSTM, and convolutional models. 

  Scenarios 

  TP1 TP2 TP3 TP4 TP5 TP6 TP&AT1 TP&AT2 TP&AT3 TP&AT4 TP&AT5 TP&AT6 

  MLP 

Adagrad 

NSE -0.46 0.56 0.59 0.12 0.60 0.21 -0.10 0.10 0.71 -0.59 - 0.19 

R2 0.20 0.66 0.59 0.46 0.63 0.59 0.22 0.50 0.72 0.24 - 0.46 

PBIAS -80.8 16.0 -0.5 11.1 8.8 93.6 -41.4 12.5 6.2 -56.3 - 12.2 

RMSE 13.9 7.5 7.2 10.8 7.5 10.1 12.0 10.9 6.1 14.4 - 10.3 

Adam 

NSE -0.64 0.10 0.59 0.53 0.60 0.37 - 0.16 0.72 -0.06 - -0.13 

R2 0.19 0.51 0.61 0.54 0.83 0.62 - 0.64 0.74 0.47 - 0.50 

PBIAS -54.6 -92.7 -16.4 15.3 -26.4 27.4 - 37.6 -19.3 -58.7 - -96.7 

RMSE 14.7 10.9 7.2 7.8 7.1 9.1 - 10.5 6.0 11.8 - 12.1 

Adamax 

NSE -0.23 0.41 0.69 0.49 0.80 0.40 -0.20 -0.34 0.69 0.06 0.74 0.06 

R2 0.21 0.70 0.72 0.56 0.85 0.60 0.24 0.46 0.70 0.49 0.76 0.55 

PBIAS -36.5 36.0 -54.9 -18.0 -17.3 -32.7 -33.4 42.5 -8.0 -49.9 21.3 -69.8 

RMSE 12.7 8.8 6.2 8.2 5.0 8.8 12.5 13.3 6.2 11.1 5.8 11.1 

Nadam 

NSE -0.57 -0.12 0.46 0.34 0.66 0.01 -0.10 0.42 0.67 0.02 0.80 0.36 

R2 0.20 0.61 0.71 0.53 0.81 0.60 0.24 0.61 0.68 0.47 0.85 0.49 

PBIAS -104.4 -86.0 11.7 -42.5 -26.0 -79.0 -58.0 -6.9 0.7 -88.0 -29.6 34.7 

RMSE 14.4 12.1 8.3 9.3 6.6 11.3 12.0 8.7 6.5 11.4 5.1 9.1 

RMSprop 

NSE -0.08 0.56 0.68 0.30 0.68 0.04 -0.08 -0.36 0.66 -1.36 0.65 -0.51 

R2 0.20 0.67 0.71 0.56 0.85 0.59 0.22 0.59 0.68 0.47 0.76 0.55 

PBIAS -26.5 -19.9 -17.6 -62.8 -39.2 -58.6 -51.7 -67.0 -24.2 -101.2 -50.4 -95.5 

RMSE 11.9 7.6 6.4 9.6 6.4 11.2 11.9 13.3 6.6 17.7 6.7 14.0 

SGD 

NSE -0.49 0.31 0.63 - 0.73 0.42 -0.29 0.15 - 0.17 0.66 0.10 

R2 0.20 0.62 0.63 - 0.75 0.60 0.24 0.46 - 0.41 0.68 0.42 

PBIAS -58.0 51.0 -8.9 - -1.5 0.3 -67.5 40.7 - -39.4 -5.6 -12.1 

RMSE 14.0 9.5 6.9 - 5.9 8.7 13.0 10.5 - 10.5 6.6 10.8 
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  Scenarios 

  TP1 TP2 TP3 TP4 TP5 TP6 TP&AT1 TP&AT2 TP&AT3 TP&AT4 TP&AT5 TP&AT6 

  LSTM 

Adagrad 

NSE 0.56 0.51 - 0.50 0.48 -0.03 0.01 - 0.07 -0.41 0.51 -0.02 

R2 0.58 0.69 - 0.58 0.53 0.57 0.41 - 0.18 0.50 0.60 0.57 

PBIAS -6.2 -35.1 - -23.9 13.1 -39.0 17.8 - 5.6 -51.7 2.7 -26.7 

RMSE 7.6 8.0 7.0 8.1 8.2 11.5 11.4 - 10.9 13.6 7.9 11.5 

Adam 

NSE 0.15 0.24 0.62 - 0.49 0.22 0.30 -0.42 0.38 -0.83 0.43 0.63 

R2 0.56 0.69 0.63 - 0.57 0.72 0.34 0.66 0.67 0.55 0.59 0.70 

PBIAS -47.3 -58.5 17.2 - 38.3 -101.4 26.4 1.4 53.7 -149.5 33.9 30.1 

RMSE 10.5 9.9 - - 8.1 10.1 9.6 13.7 8.9 15.5 8.5 6.9 

Adamax 

NSE 0.25 0.46 0.59 - 0.75 - 0.54 0.51 0.51 -0.66 0.42 0.47 

R2 0.56 0.72 0.64 - 0.83 - 0.61 0.64 0.55 0.38 0.60 0.64 

PBIAS -43.9 -38.5 11.7 - 15.8 - 38.4 9.4 15.5 -10.3 46.2 14.2 

RMSE 9.9 8.4 7.3 - 5.6 - 7.8 8.0 7.9 14.8 8.6 8.3 

Nadam 

NSE 0.53 0.33 0.72 0.63 0.69 0.10 0.21 0.41 0.69 -0.26 0.62 -0.75 

R2 0.62 0.61 0.72 0.67 0.75 0.70 0.56 0.64 0.75 0.52 0.75 0.61 

PBIAS -40.4 -8.5 -8.0 -24.6 -37.7 -121.1 -94.9 -58.0 -6.8 -107.4 8.1 -146.2 

RMSE 7.9 9.3 6.0 6.9 6.3 10.8 10.2 8.8 6.3 12.9 7.0 15.1 

RMSprop 

NSE 0.66 0.25 0.74 0.14 0.72 -0.07 0.59 -0.16 0.53 -0.26 0.42 -0.51 

R2 0.66 0.59 0.76 0.66 0.72 0.54 0.61 0.57 0.64 0.63 0.72 0.68 

PBIAS 8.9 9.4 13.6 -100.0 -6.3 -56.6 -18.0 -122.9 -17.0 -145.1 13.4 -150.2 

RMSE 6.7 9.9 5.8 10.6 6.0 11.8 7.3 12.3 7.8 12.9 8.6 14.0 

SGD 

NSE 0.39 -0.85 0.59 -0.08 0.60 0.46 0.23 -0.13 -0.63 -1.15 -0.06 -3.12 

R2 0.56 0.69 0.61 0.04 0.68 0.69 0.43 0.38 0.47 0.44 0.23 0.36 

PBIAS -19.5 -67.4 -20.0 -49.3 20.9 -37.6 11.1 -96.6 72.6 -104.8 -21.0 6.9 

RMSE 9.0 15.6 7.2 11.9 7.1 8.3 10.0 12.2 14.5 16.8 11.7 23.2 

  Convolutional 

Adagrad 

NSE -0.57 -0.13 0.67 - 0.83 0.39 -0.24 -0.12 0.60 0.48 0.66 0.18 

R2 0.21 0.50 0.71 - 0.84 0.53 0.23 0.60 0.65 0.53 0.75 0.44 

PBIAS -89.1 31.6 -19.0 - -4.4 4.5 -21.9 5.5 -21.4 -2.7 21.6 -26.9 

RMSE 14.4 12.2 6.4 - 4.6 8.9 12.8 12.1 7.1 8.3 6.6 10.3 
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  Scenarios 

  TP1 TP2 TP3 TP4 TP5 TP6 TP&AT1 TP&AT2 TP&AT3 TP&AT4 TP&AT5 TP&AT6 

Adam 

NSE -0.21 0.29 0.72 0.28 0.83 -0.30 -0.12 -0.38 0.62 0.00 0.40 0.09 

R2 0.21 0.57 0.72 0.58 0.85 0.67 0.22 0.63 0.68 0.65 0.72 0.66 

PBIAS -69.0 -71.9 0.9 69.3 -14.0 -111.2 -40.0 -103.7 11.5 -95.8 -27.0 -54.9 

RMSE 12.6 9.6 6.0 9.7 4.6 13.0 12.1 13.4 6.9 11.5 8.8 10.8 

Adamax 

NSE -0.19 0.28 0.76 0.39 0.71 0.20 -0.14 0.29 0.60 0.12 0.46 0.24 

R2 0.20 0.52 0.77 0.65 0.76 0.65 0.23 0.67 0.66 0.63 0.81 0.64 

PBIAS -79.6 -61.0 -10.5 -23.7 -21.0 -44.9 -52.3 -39.8 20.4 -103.8 -11.8 -6.2 

RMSE 12.5 9.7 5.5 9.0 6.1 10.2 12.3 9.7 8.5 10.8 8.4 9.9 

Nadam 

NSE -0.23 -0.10 0.62 0.13 0.86 -0.13 -0.35 0.19 0.67 0.02 0.56 0.01 

R2 0.21 0.63 0.62 0.68 0.87 0.67 0.23 0.62 0.72 0.61 0.69 0.64 

PBIAS -18.3 -8.7 -6.7 -91.7 10.5 -90.2 -46.6 -20.7 -3.0 -32.0 31.1 -1.6 

RMSE 12.7 12.0 6.9 10.7 4.2 12.1 13.3 10.3 7.2 11.3 7.4 11.3 

RMSprop 

NSE -0.36 -0.03 0.61 0.03 0.82 0.23 -0.64 0.03 0.29 0.29 0.71 -0.69 

R2 0.21 0.59 0.74 0.66 0.83 0.65 0.24 0.73 0.66 0.58 0.74 0.60 

PBIAS -102.2 -72.8 -58.1 -91.4 -1.8 -58.0 -126.1 1.7 -67.3 -67.0 -14.4 -125.9 

RMSE 13.4 11.6 7.1 11.3 4.9 10.0 14.7 11.3 9.5 9.6 6.1 14.8 

SGD 

NSE -0.24 0.12 0.71 -0.23 0.73 0.34 -0.22 0.39 0.68 0.40 0.68 0.53 

R2 0.21 0.47 0.73 0.33 0.86 0.59 0.23 0.55 0.69 0.50 0.71 0.66 

PBIAS -76.5 -8.2 -14.7 -12.3 -48.9 -0.3 -48.4 33.0 -9.1 -26.0 -12.7 -46.1 

RMSE 12.8 10.7 6.1 12.7 5.9 9.2 12.7 8.9 6.4 8.9 6.4 7.8 



184 

 

Author Contributions 

Conceptualization, A.R.O.; methodology, A.R.O.; validation, A.R.O.; investigation, 

A.R.O.; resources, A.R.O.; writing—original draft preparation, A.R.O.; writing—review and 

editing, T.B.R. and R.N.; supervision, T.B.R. and R.N. All authors have read and agreed to the 

published version of the manuscript. 

Funding 

This research was funded by FCT/MCTES (PIDDAC) through project LARSyS–FCT 

pluriannual funding 2020–2023 (UIDB/50009/2020), and by Project FEMME 

(PCIF/MPG/0019/2017). T. B. Ramos was supported by a CEEC-FCT contract 

(CEECIND/01152/2017). 

Data Availability Statement 

The observed streamflow and meteorological data can be downloaded from the SNIRH 

website (https://snirh.apambiente.pt/ (accessed on 7 February 2021)). ERA5 meteorological 

data is available on Climate Data Store—Copernicus website (https://cds.climate. 

copernicus.eu/#!/home (accessed on 10 December 2020)). The python scripts developed to 

implement and tune the neural networks as well as the input data time series are available on 

the GitHub repository: 

https://github.com/anaioliveira/ArtificialNeuralNetwork/tree/main/PteVilaFormosa (accessed 

on 23 February 2023). 

 

6.7 References 

Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; 

Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In 

Proceedings of the 12th USENIX Symposium on Operating Systems Design and 

Implementation (OSDI ’16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. 

Afaq, S.; Rao, S. Significance of epochs on training a neural network. Int. J. Sci. Res. Sci. Eng. 

2020, 9, 485–488. 

Agencia Estatal de Meteorología (España). Atlas Climático Ibérico: Temperatura del Aire y 

Precipitación (1971–2000)=Atlas Climático Ibérico: Temperatura do ar e Precipitação 

(1971–2000)=Iberian Climate Atlas: Air Temperature and Precipitation (1971–2000); 

Instituto Nacional de Meteorología: Madrid, Spain, 2011. 



185 

 

Airola, R.; Hager, K. Image Classification, Deep Learning and Convolutional Neural 

Networks: A Comparative Study of Machine Learning Frameworks. 2017. Thesis 

(BSc). Available online: https://www.diva-

portal.org/smash/record.jsf?pid=diva2%3A1111144&dswid=341 (accessed on 16 

October 2022). 

Almeida, C.; Ramos, T.; Segurado, P.; Branco, P.; Neves, R.; Proença de Oliveira, R. Water 

Quantity and Quality under Future Climate and Societal Scenarios: A Basin-Wide 

Approach Applied to the Sorraia River, Portugal. Water 2018, 10, 1186. 

https://doi.org/10.3390/w10091186  

Althoff, D.; Rodrigues, L.N.; Silva, D.D. Addressing hydrological modeling in watersheds 

under land cover change with deep learning. Adv. Water Resour. 2021, 154, 103965. 

https://doi.org/10.1016/j.advwatres.2021.103965  

Anderson, S.; Radić, V. Evaluation and interpretation of convolutional long short-term memory 

networks for regional hydrological modelling. Hydrol. Earth Syst. Sci. 2022, 26, 795–

825. https://doi.org/10.5194/hess-26-795-2022  

APA and ARH Tejo, 2012. Agência Portguesa do Ambiente and Administração da Região 

Hidrográfica Tejo. Plano de gestão da região hidrográfica do Tejo—Relatório técnico 

(Síntese). Available online: https://apambiente.pt/agua/1o-ciclo-de-planeamento-2010-

2015 (accessed on 6 September 2022). 

ARBVS, n.d. Área Regada. Associação de Regantes e Beneficiários do Vale do Sorraia. 

Available online: https://www.arbvs.pt/index.php/culturas/area-regada (accessed on 18 

October 2022). 

ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial 

Neural Networks in Hydrology. I: Preliminary Concepts. J. Hydrol. Eng. 2000, 5, 115–

123. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(115)  

Barino, F.O.; Silva, V.N.H.; Lopez-Barbero, A.P.; De Mello Honorio, L.; Santos, A.B.D. 

Correlated time-series in multi-day-ahead streamflow forecasting using convolutional 

networks. IEEE Access 2020, 8, 215748–215757. 

http://dx.doi.org/10.1109/ACCESS.2020.3040942  

Bengio, Y. Learning Deep Architectures for AI. Found. Trends Mach. Learn. 2009, 2, 1–127. 

https://doi.org/10.1561/2200000006  



186 

 

Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is 

difficult. IEEE Trans. Neural. Netw. 1994, 5, 157–166. 

https://doi.org/10.1109/72.279181  

Besaw, L.E.; Rizzo, D.M.; Bierman, P.R.; Hackett, W.R. Advances in ungauged streamflow 

prediction using artificial neural networks. J. Hydrol. 2010, 386, 27–37. 

https://doi.org/10.1016/j.jhydrol.2010.02.037  

Bourdin, D.R.; Fleming, S.W.; Stull, R.B. Streamflow modelling: A primer on applications, 

approaches and challenges. Atmos. Ocean 2012, 50, 507–536. 

https://doi.org/10.1080/07055900.2012.734276  

Chiew, F.; McMahon, T. Application of the daily rainfall-runoff model MODHYDROLOG to 

28 Australian catchments. J. Hydrol. 1994, 153, 383–416. https://doi.org/10.1016/0022-

1694%2894%2990200-3  

Chong, K.L.; Lai, S.H.; Yao, Y.; Ahmed, A.N.; Jaafar, W.Z.W.; El-Shafie, A. Performance 

enhancement model for rainfall forecasting utilizing integrated wavelet-convolutional 

neural network. Water Resour. Manag. 2020, 34, 2371–2387. 

https://doi.org/10.1007/s11269-020-02554-z  

Cigizoglu, H.K. Estimation, forecasting and extrapolation of river flows by artificial neural 

networks. Hydrol. Sci. J. 2003, 48, 349–361. 

https://doi.org/10.1623/hysj.48.3.349.45288  

Corine Land Cover 2012 (CLC 2012), n.d. © European Union, Copernicus Land Monitoring 

Service 2018, European Environment Agency (EEA). Available online: 

https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 22 June 2019). 

Darbandi, S.; Pourhosseini, F.A. River flow simulation using a multilayer perceptron-firefly 

algorithm model. Appl. Water Sci. 2018, 8, 85. https://doi.org/10.1007/s13201-018-

0713-y  

Demir, I.; Xiang, Z.; Demiray, B.; Sit, M. WaterBench-Iowa: A large-scale benchmark dataset 

for data-driven streamflow forecasting. Earth Syst. Sci. Data 2022, 14, 5605–5616. 

https://doi.org/10.5194/essd-14-5605-2022  

Deng, L. A Tutorial Survey of Architectures, Algorithms, and Applications for Deep Learning. 

APSIPA Trans. Signal Inf. Process. 2014, 3, E2. https://doi.org/10.1017/atsip.2013.9  



187 

 

Dolling, O.R.; Varas, E.A. Artificial neural networks for streamflow prediction. J. Hydraul. 

Res. 2002, 40, 547–554. https://doi.org/10.1016/S0022-1694(98)00242-X  

Dozat, T. Incorporating Nesterov Momentum into Adam. In Proceedings of the ICLR 2016 

Workshop, San Juan, Puerto Rico, India, 2–4 May 2016. 

Duan, S.; Ullrich, P.; Shu, L. Using convolutional neural networks for streamflow projection 

in California. Front. Water 2020, 2, 28. https://doi.org/10.3389/frwa.2020.00028  

Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and 

stochastic optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159. 

Eberhart, R.C.; Dobbins, R.W. Neural Network PC Tools. A Practical Guide; Academic Press: 

Cambridge, MA, USA, 1990. https://doi.org/10.1086/417516  

Ebert-Uphoff, I.; Lagerquist, R.; Hilburn, K.; Lee, Y.; Haynes, K.; Stock, J.; Kumler, C.; 

Stewart, J.Q. CIRA guide to custom loss functions for neural networks in environmental 

sciences—Version 1. arXiv 2021. Available online: https://arxiv.org/abs/2106.09757 

(accessed on 8 February 2023). 

Elman, J.L. Finding structure in Time. Cogn. Sci. 1990, 14, 179–211. 

https://www.doi.org/10.1207/S15516709COG1402_1  

European Digital Elevation Model (EU-DEM), version 1.1., n.d. © European Union, 

Copernicus Land Monitoring Service 2019, European Environment Agency (EEA). 

Available online: https://land.copernicus.eu/pan-european/satellite-derived-

products/eu-dem/eu-dem-v1.1/view (accessed on 15 May 2019). 

Hauswirth, S.M.; Bierkens, M.F.P.; Beijk, V.; Wanders, N. The potential of data driven 

approaches for quantifying hydrological extremes. Adv. Water Resour. 2021, 155, 

104017. https://doi.org/10.1016/j.advwatres.2021.104017  

Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall: Hoboken, NJ, USA, 

1999. 

Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, 

J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. 

Meteorol. Soc. 2020, 146, 1999–2049. https://doi.org/10.1002/qj.3803  

Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural. Comput. 1997, 9, 1735–

1780. https://doi.org/10.1162/neco.1997.9.8.1735  



188 

 

Hu, Y.; Yan, L.; Hang, T.; Feng, J. Stream-flow forecasting of small rivers based on LSTM. 

arXiv 2020. Available online: https://arxiv.org/abs/2001.05681 (accessed on 8 February 

2023). 

Huang, C.; Zhang, J.; Cao, L.; Wang, L.; Luo, X.; Wang, J.-H.; Bensoussan, A. Robust 

forecasting of river-flow based on convolutional neural network. IEEE Trans. Sustain. 

Comput. 2020, 5, 594–600. https://doi.org/10.1109/TSUSC.2020.2983097  

Humphrey, G.B.; Gibbs, M.S.; Dandy, G.C.; Maier, H.R. A hybrid approach to monthly 

streamflow forecasting: Integrating hydrological model outputs into a bayesian 

artificial neural network. J. Hydrol. 2016, 540, 623–640. 

https://doi.org/10.1016/j.jhydrol.2016.06.026  

Hussain, D.; Khan, A.A. Machine learning techniques for monthly river flow forecasting of 

Hunza River, Pakistan. Earth Sci. Inform. 2020, 13, 939–949. 

https://doi.org/10.1007/s12145-020-00450-z  

Jakeman, A.J.; Littlewood, I.G.; Whitehead, P.G. Computation of the instantaneous unit 

hydrograph and identifiable component flows with application to two small upland 

catchments. J. Hydrol. 1990, 117, 275–300. https://doi.org/10.1016/0022-

1694(90)90097-H  

Jin, Y.-F.; Yin, Z.-Y.; Zhou, W.-H.; Shao, J.-F. Bayesian model selection for sand with 

generalization ability evaluation. Int. J. Numer. Anal. Methods Geomech. 2019, 43, 

2305–2327. https://doi.org/10.1002/nag.2979  

Juan, C.; Genxu, W.; Tianxu, M.; Xiangyang, S. ANN Model-based simulation of the runoff 

variation in response to climate change on the Qinghai-Tibet Plateau, China. Adv. 

Meteorol. 2017, 2017, 1–13. https://doi.org/10.1155/2017/9451802  

Keras Documentation: Dropout Layer, n.d. Available online: 

https://keras.io/api/layers/regularization_layers/dropout/ (accessed on 14 October 

2022). 

Keras Documentation: Layer Activation Functions, n.d. Available online: 

https://keras.io/api/layers/activations/ (accessed on 14 October 2022). 

Keras Documentation: Layer Weight Initializers, n.d. Available online: 

https://keras.io/api/layers/initializers/ (accessed on 2 December 2022). 



189 

 

Keras Documentation: Model Training APIs, n.d. Available online: 

https://keras.io/api/models/model_training_apis/ (accessed on 14 October 2022). 

Keras. GitHub. Available online: https://github.com/fchollet/keras (accessed on 19 November 

2020). 

Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2017. Available 

online: https://arxiv.org/abs/1412.6980 (accessed on 8 February 2023). 

Kratzert, F.; Klotz, D.; Brenner, C.; Schulz, K.; Herrnegger, M. Rainfall–runoff modelling 

using Long Short-Term Memory (LSTM) networks. Hydrol. Earth Syst. Sci. 2018, 22, 

6005–6022. https://doi.org/10.5194/hess-22-6005-2018   

Le, X.-H.; Ho, H.V.; Lee, G.; Jung, S. Application of Long Short-Term Memory (LSTM) neural 

network for flood forecasting. Water 2019, 11, 1387. 

https://doi.org/10.3390/w11071387  

LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time-series. In The 

Handbook of Brain Theory and Neural Networks; Arbib, M.A., Ed.; MIT Press: 

Cambridge, MA, USA, 1995. 

LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. 

https://doi.org/10.1038/nature14539  

Lee, H.; Song, J. Introduction to convolutional neural network using Keras; an understanding 

from a statistician. Commun. Stat. Appl. Methods 2019, 26, 591–610. 

https://doi.org/10.29220/CSAM.2019.26.6.591  

Lipton, Z.C.; Berkowitz, J.; Elkan, C. A critical review of recurrent neural networks for 

sequence learning. arXiv 2015. Available online: https://arxiv.org/abs/1506.00019 

(accessed on 8 February 2023). 

Liu, Z.; Zhou, P.; Chen, X.; Guan, Y. A multivariate conditional model for streamflow 

prediction and spatial precipitation refinement. J. Geophys. Res. 2015, 120, 10116–

10129. https://doi.org/10.1002/2015JD023787  

Lohani, A.K.; Kumar, R.; Singh, R.D. Hydrological time series modeling: A comparison 

between adaptive neuro-fuzzy, neural network and autoregressive techniques. J. 

Hydrol. 2012, 442–443, 23–35. https://doi.org/10.1016/j.jhydrol.2012.03.031  



190 

 

Maier, H.R.; Dandy, G.C. Neural networks for the prediction and forecasting of water resources 

variables: A review of modelling issues and applications. Environ. Model. Softw. 2000, 

15, 101–124. https://doi.org/10.1016/S1364-8152(99)00007-9  

Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K.P. Methods used for the development of neural 

networks for the prediction of water resource variables in river systems: Current status 

and future directions. Environ. Model. Softw. 2010, 25, 891–909. 

https://doi.org/10.1016/j.envsoft.2010.02.003  

McKinney, W. Data structures for statistical computing in Python. In Proceedings of the 9th 

Python in Science Conference 2010, Austin, TX, USA, 28 June–3 July 2010; pp. 56–

61. https://doi.org/10.25080/Majora-92bf1922-00a  

Mehr, A.D.; Kahya, E.; Olyaie, E. Streamflow prediction using linear genetic programming in 

comparison with a neuro-wavelet technique. J. Hydrol. 2013, 505, 240–249. 

https://doi.org/10.1016/j.jhydrol.2013.10.003  

Moriasi, D.N.; Arnold, J.G.; Liew, M.W.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model 

Evaluation guidelines for systematic quantification of accuracy in watershed 

simulations. Trans. ASABE 2007, 50, 885–900. http://dx.doi.org/10.13031/2013.23153  

Nacar, S.; Hınıs, M.A.; Kankal, M. Forecasting daily streamflow discharges using various 

neural network models and training algorithms. KSCE J. Civ. Eng. 2018, 22, 3676–

3685. https://doi.org/10.1007/s12205-017-1933-7  

Ni, L.; Wang, D.; Singh, V.P.; Wu, J.; Wang, Y.; Tao, Y.; Zhang, J. Streamflow and rainfall 

forecasting by two long short-term memory-based models. J. Hydrol. 2020, 583, 

124296. https://doi.org/10.1016/j.jhydrol.2019.124296  

O’Malley, T.; Bursztein, E.; Long, J.; Chollet, F.; Jin, H.; Invernizzi, L. Keras Tuner. Available 

online: https://github.com/keras-team/keras-tuner (accessed on 30 May 2021). 

Panagos, P.; Van Liedekerke, M.; Jones, A.; Montanarella, L. European Soil Data Centre: 

Response to European policy support and public data requirements. Land Use Policy 

2012, 29, 329–338. https://doi.org/10.1016/j.landusepol.2011.07.003  

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; 

Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. 

J. Mach. Learn. Res. 2011, 12, 2825–2830. 



191 

 

Pham, Q.B.; Afan, H.A.; Mohammadi, B.; Ahmed, A.N.; Linh, N.T.T.; Vo, N.D.; Moazenzadeh, 

R.; Yu, P.-S.; El-Shafie, A. Hybrid model to improve the river streamflow forecasting 

utilizing multi-layer perceptron-based intelligent water drop optimization algorithm. 

Soft. Comput. 2020, 24, 18039–18056. http://dx.doi.org/10.1007/s00500-020-05058-5  

Pörtner, H.-O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; 

Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. IPCC, 2022: Climate Change 

2022: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to 

the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; 

Cambridge University Press: Cambridge, UK, 2022; p. 3068. DOI: 

10.1017/9781009325844  

Radiuk, P.M. Impact of training set batch size on the performance of convolutional neural 

networks for diverse datasets. Inf. Technol. Manag. 2017, 20, 20–24. 

http://dx.doi.org/10.1515/itms-2017-0003  

Reddi, S.J.; Kale, S.; Kumar, S. On the convergence of adam and beyond. arXiv 2019. Available 

online: https://arxiv.org/abs/19 04.09237  (accessed on 8 February 2023). 

Riad, S.; Mania, J.; Bouchaou, L.; Najjar, Y. Rainfall-runoff model using an artificial neural 

network approach. Math. Comput. Model. 2004, 40, 839–846. 

https://doi.org/10.1016/j.mcm.2004.10.012  

Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2017. Available 

online: https://arxiv.org/abs/1609.04747 (accessed on 8 February 2023). 

Sahoo, A.; Samantaray, S.; Ghose, D.K. Stream flow forecasting in Mahanadi River Basin 

using artificial neural networks. Procedia Comput. Sci. 2019, 157, 168–174. 

https://doi.org/10.1016/j.procs.2019.08.154  

Saon, G.; Picheny, M. Recent advances in conversational speech recognition using 

convolutional and recurrent neural networks. IBM J. Res. Dev. 2017, 61, 1:1–1:10. 

https://doi.org/10.1147/JRD.2017.2701178  

Shen, C. A transdisciplinary review of deep learning research and its relevance for water 

resources scientists. Water Resour. Res. 2018, 54, 8558–8593. 

https://doi.org/10.1029/2018WR022643  



192 

 

Shu, X.; Ding, W.; Peng, Y.; Wang, Z.; Wu, J.; Li, M. Monthly streamflow forecasting using 

convolutional neural network. Water Resour. Manag. 2021, 35, 5089–5104. 

https://doi.org/10.1007/s11269-021-02961-w  

Simionesei, L.; Ramos, T.B.; Palma, J.; Oliveira, A.R.; Neves, R. IrrigaSys: A web-based 

irrigation decision support system based on open source data and technology. Comput. 

Electron. Agric. 2020, 178, 105822. https://doi.org/10.1016/j.compag.2020.105822  

Sit, M.; Demiray, B.; Demir, I. Short-Term Hourly Streamflow Prediction with Graph 

Convolutional GRU Networks. arXiv 2021. Available online: 

https://arxiv.org/abs/2107.07039 (accessed on 8 February 2023). 

SNIRH, n.d. Sistema Nacional de Informação de Recursos Hídricos. Available online: 

https://snirh.apambiente.pt/index.php?idMain= (accessed on 7 February 2021). 

Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning 

algorithms. arXiv 2012. Available online: https://arxiv.org/abs/1206.2944 (accessed on 

8 February 2023). 

Szczepanek, R. Daily Streamflow Forecasting in Mountainous Catchment Using XGBoost, 

LightGBM and CatBoost. Hydrology 2022, 9, 226. 

https://doi.org/10.3390/hydrology9120226  

Tao, Q.; Liu, F.; Li, Y.; Sidorov, D. Air pollution forecasting using a deep learning model based 

on 1D convnets and bidirectional GRU. IEEE Access 2019, 7, 76690–76698. 

https://doi.org/10.1109/ACCESS.2019.2921578  

Ünes¸, F.; Demirci, M.; Zelenakova, M.; Çalışıcı, M.; Tas¸ar, B.; Vranay, F.; Kaya, Y.Z. River 

flow estimation using artificial intelligence and fuzzy techniques. Water 2020, 12, 2427. 

https://doi.org/10.3390/w12092427  

Wang, J.-H.; Lin, G.-F.; Chang, M.-J.; Huang, I.-H.; Chen, Y.-R. Real-time water-level 

forecasting using dilated causal convolutional neural networks. Water Resour. Manag. 

2019, 33, 3759–3780. https://doi.org/10.1007/s11269-019-02342-4  

Wu, W.; Dandy, G.C.; Maier, H.R. Protocol for developing ANN models and its application to 

the assessment of the quality of the ANN model development process in drinking water 

quality modelling. Environ. Model. Softw. 2014, 54, 108–127. 

https://doi.org/10.1016/j.envsoft.2013.12.016  



193 

 

Xu, W.; Jiang, Y.; Zhang, X.; Li, Y.; Zhang, R.; Fu, G. Using long short-term memory networks 

for river flow prediction. Hydrol. Res. 2020, 51, 1358–1376. 

https://doi.org/10.2166/nh.2020.026  

Yang, S.; Yang, D.; Chen, J.; Zhao, B. Real-time reservoir operation using recurrent neural 

networks and inflow forecast from a distributed hydrological model. J. Hydrol. 2019, 

579, 124229. https://doi.org/10.1016/j.jhydrol.2019.124229  

Zhang, X.; Peng, Y.; Zhang, C.; Wang, B. Are hybrid models integrated with data preprocessing 

techniques suitable for monthly streamflow forecasting? Some experiment evidences. 

J. Hydrol. 2015, 530, 137–152. https://doi.org/10.1016/j.jhydrol.2015.09.047 





195 

 

7 Assessing the reliability of a physical based model and a 

convolutional neural network in an ungauged watershed for 

daily streamflow prediction 

Authors: Ana Ramos Oliveira, Tiago Brito Ramos, Lucian Simionesei and Ramiro Neves 

Centro de Ciência e Tecnologia do Ambiente e do Mar (MARETEC-LARSyS), Instituto 

Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal 

 

Submitted to: Environmental Earth Sciences 

 

Abstract 

The main goal of this study was to estimate inflows to the Maranhão reservoir, in southern 

Portugal, using two distinct modelling approaches: a one-dimensional convolutional neural 

network (1D-CNN) model and a physically based model. The 1D-CNN was previously trained, 

validated, and tested in a sub-basin of the study area where observed streamflow values were 

available. The trained model was here subject to an improvement and applied to the entire 

watershed by replacing the forcing variables (accumulated and delayed precipitation) to make 

them correspond to the values of the entire watershed. In the same way, the physically based 

MOHID-Land model was calibrated and validated for the same sub-basin, and the calibrated 

parameters were then applied to the entire watershed. Inflow values estimated by both models 

were validated considering a mass balance at the reservoir. The 1D-CNN model demonstrated 

a better performance in simulating daily values, peak flows, and the wet period. The MOHID-

Land model showed a better performance in estimating streamflow values during dry periods 

and for monthly analysis. Hence, results show the adequateness of both modeling solutions for 

integrating a decision support system aimed at supporting decision-makers in the management 

of water availability in an area subjected to increasing scarcity. 

Keywords: MOHID-Land; 1D-CNN; streamflow; reservoir inflow; ungauged 

estimation  
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7.1 Introduction 

The IPCC 2022 report (Pörtner et al., 2022) projects an increase in the frequency and 

severity of low flows in Southern Europe, resulting from increasing drought and water scarcity 

conditions. Population exposed to moderate water scarcity will grow by 18% and 54% for a 

raise of 1.5°C and 2°C in air temperature, respectively. The groundwater resources will be 

affected by an increase in abstraction rates and a decrease in recharge rates. Agriculture, which 

represents the main water use in the region, may be seriously limited by water availability. 

Thus, there is a need to improve water management at different scales to cope with the 

increasing scarcity. At the regional scale, this means the construction of dams and reservoirs to 

increase water storage, desalination, water reuse, and the adoption of water conservation 

measures. At the plot scale, that means reallocation to crops more resistant to drought 

conditions, the improvement of water use efficiency and performance of irrigation systems, 

and the implementation of soil water conservation practices (Jovanovic et al., 2020; Pereira et 

al., 2009). 

Decision-support systems (DSSs) have been developed over the last few decades to 

improve water resources management at different spatial and temporal scales (Teodosiu et al., 

2009). These tools commonly consist of interactive software-based systems where useful 

information from raw data sources, documents, simulation models, and other sources, are 

aggregated to identify and solve problems and support decision-making. Considering the plot 

scale, Smart Irrigation Decision Support System (SIDSS, Navarro-Hellín et al., 2016) and 

IrrigaSys (Simionesei et al., 2020) are examples of DSSs for irrigation water management 

support. SIDSS estimates weekly irrigation needs based on data from soil sensors and/or 

weather stations using two machine learning techniques. IrrigaSys also estimates weekly 

irrigation needs using a physically based model fed by weather forecast and hindcast data. 

When considering larger scales, Zhang et al. (2015a) designed and developed a prototype of a 

DSS for watershed management by integrating open-source web-based geographical 

information systems, a modelling component, and a cloud computing platform. Ashrafi and 

Mahmoudi (2019) presented a DSS to assist decision-makers in examining the impacts of 

different operating policies at the basin scale. DSSs are also applied to reservoir flood control 

operations (Delaney et al., 2020) and early warning and detection, follow-up, and early 

response to flood events and hazmat pollution occurrences in inland and transitional waters 

(HAZRUNOFF Project - Layman’s Report, 2020). 
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As proposed by Miser and Quade (1985), one of the steps to designing a DSS is the 

building of models to predict consequences. A good hydrological and/or hydraulic model with 

reliable results and proven forecast capacity is of paramount importance for water management 

DSSs. Their results can then feed other models in the DSS. For instance, modelled groundwater 

levels can be used to estimate irrigation needs, or the simulation of river flows can help in flood 

forecast. However, modelling results can also be directly used to support decision-making. 

Concerning models’ classification, they can be divided into three main groups according 

to their complexity: (i) empirical models; (ii) conceptual models; and (iii) physical models 

(Sitterson et al., 2017). Empirical models are based on linear and non-linear equations that 

relate inputs and outputs ignoring the physical processes. These types of models are considered 

the simplest models. Conceptual models are based on simplified equations to describe the 

hydrological processes and are characterized by an intermediate level of complexity. Physical-

based models, also known as process-based models, are the most complex and rely on physical 

principles, being suitable to provide insights into physical processes. Usually, physical models 

use finite difference equations and state variables that can be measured and are time and space 

dependent (Devia et al., 2015; Fatichi et al., 2016). However, their weakness relies on the large 

number of parameters required to describe the physical characteristics of the watershed, which 

leads to high complexity levels that make their correct implementation difficult and laborious 

calibration and validation processes (Devia et al., 2015; Abbott et al., 1986a, 1986b; Ranatunga 

et al., 2016; Zhang et al., 2015b; Mehr et al., 2013). 

The study presented here is included within the framework of a larger work aimed at 

developing a DSS for supporting water management in the Maranhão and Montargil reservoirs, 

in southern Portugal. These reservoirs store water that is used mainly for irrigation of the 

Sorraia Valley, which comprehended a cultivated area of 21,280 ha and an irrigated area of 

18,754 ha (ARBVS, 2023) in 2021. With a 52% increase in the irrigated area over the last two 

decades (ARBVS, 2023) and facing predictions of river flow decrease between 54% and 94% 

due to climate change (Almeida et al., 2018), accurate forecast of streamflow is of extreme 

importance to improve the management of water availabilities in the region. Taking as an 

example the Maranhão reservoir, the work presented here makes use of two different types of 

models to estimate the daily inflow to the reservoir and discusses the advantages and 

weaknesses of both approaches. The applied models were the physically based MOHID-Land 

model (Trancoso et al. 2009, Canuto et al, 2019, Oliveira et al. 2020) and a convolutional neural 

network (CNN) (Oliveira et al., 2023), i.e., a data-driven model. In both cases, the models were 

calibrated/trained and validated using data from a hydrometric station that corresponds to 30% 
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of the Maranhão watershed. Because no stations are monitoring the entire watershed despite 

the importance of this information for the sustainability of the irrigation district, this study also 

aims to analyze the capacity of both approaches to represent streamflow generation in the entire 

watershed. That analysis comprehended the expansion of models’ results from the referred sub-

basin to the full basin scale through the extension of the calibrated parameters in MOHID-

Land, or through the replacement of the forcing variables in the CNN model. The results were 

then validated with a monthly reservoir mass balance. Therefore, this study provides 

sophisticated modeling tools for streamflow predictions in the Maranhão watershed, which 

were developed using two distinct modelling approaches. The ultimate aim is their integration 

into the DSS for supporting water managers in the decision-making of water availabilities in 

the region. 

7.2 Materials and methods 

7.2.1 Description of the study area 

The Maranhão dam is located at Ribeira da Seda, southern Portugal (39°0᾽53.846᾽᾽N; 

7°58᾽33.149᾽᾽W). The corresponding reservoir has a total capacity of 205 hm3 and drains an 

area close to 2300 km2. This watershed is included in the Tagus watershed. The minimum, 

average, and maximum altitudes are 122, 261, and 723 m, respectively (European Digital 

Elevation Model (EU-DEM), Version 1.1, 2019) (Figure 7.1). 
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Figure 7.1 Maranhão watershed: location, delineation, elevation, main rivers, and hydrometric stations. 

The climate is classified as Mediterranean hot-summer (Csa) according to the Köppen-

Geiger climate classification (Agencia Estatal de Meteorología (España), 2011). The average 

annual precipitation is 608 mm. The minimum and maximum average monthly precipitation is 

4 mm in July and August and 84 mm in December. The average monthly air temperature ranges 

from 24°C in July and August, and 9°C in January, while the annual average is 16°C. The main 

soil reference groups are Luvisols (67%), Regosols (18%), and Cambisols (11%) (Panagos et 

al., 2012). The main land uses are non-irrigated arable land and agro-forestry areas, both 

representing 28% of the watershed, broad-leaved forest, occupying 15%, and olive groves, with 

a representation of 11% (CLC 2012, 2019). 

The Maranhão watershed has four hydrometric stations (Figure 7.1), with all measuring 

daily streamflow in a natural regime. Table 7.1 presents the characteristics of those stations in 

terms of drained area, recording period, the percentage of records within this period, and the 

minimum, maximum, median, and average streamflow.  

Table 7.1 Characteristics of hydrometric stations: drained area, period of records, and percentage of records within 

this period, minimum (Min), maximum (Max), median (Med), and average (Ave) streamflow values (source: 

SNIRH, 2021). 

Station 
Drained area 

(km2) 
Period of records 

% of 

records 

Streamflow (m3 s−1) 

Min  Max  Med Ave  

Couto de 

Andreiros 
244.5 1 Oct 1963 – 15 Sep 2021 71 0 131.1 0.05 1.6 
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Station 
Drained area 

(km2) 
Period of records 

% of 

records 

Streamflow (m3 s−1) 

Min  Max  Med Ave  

Figueira e 

Barros 
889.8 20 Dec 1985 – 30 Sep 1990 100 0 147.3 0.13 2.3 

Monforte 141.5 1 Oct 1961 – 20 Oct 2020 62 0 121.7 0.03 0.9 

Ponte Vila 

Formosa 
664.8 1 Nov 1979 – 6 Mar 2019 54 0 272.8 0.63 3.8 

 

 

Figure 7.2 Monthly distribution of streamflow in the four hydrometric stations (source: SNIRH, 2021). 

Figure 7.2 shows the monthly patterns considering the daily streamflow values at the four 

stations. In accordance with the meteorological characterization, streamflow patterns show 

higher values between November and April, while lower values occur between May and 

September, with August presenting the lowest value. Figueira e Barros station presents an 

unexpected behavior for the wet period with significative variations between months, which is 

not proper for natural regime flow. This is probably caused by the fact that this station only has 

records for 5 years, which are not enough to correctly analyze the monthly pattern. Couto de 

Andreiros and Monforte stations show smaller streamflow values than Ponte Vila Formosa 

since the drained area of the latter station is substantially higher than the former two. The 

specific streamflow (i.e., the average flow divided by the respective drained area) in Couto de 

Andreiros and Monforte is 6.0 L m−2, while in Ponte Vila Formosa is 5.8 L m−2. This seems to 

indicate that the streamflow generation is evenly distributed in the watershed. 

The water stored in the Maranhão reservoir is mainly for irrigation of the Sorraia Valley 

(ARBVS,2023). Other uses include energy production, industrial supply, and recreation. The 

stored volumes normally increase during the wet period and decrease in the dry period as 

expected in hydroagricultural reservoirs (Figure 7.3).  
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Figure 7.3 Monthly pattern of stored volume in Maranhão reservoir (source: SNIRH, 2021). 

7.2.2 Convolutional neural network model description 

A one-dimensional convolutional neural network (1D-CNN) was used in this study to 

estimate daily streamflow at Ponte Vila Formosa. This 1D-CNN model was created, developed, 

optimized, and tuned in Python language (version 3.8.10) using public and free tools (Keras, 

Chollet & others, 2015; TensorFlow, Abadi et al., 2016; KerasTuner, O’Malley et al., 2019; 

Pandas, McKinney, 2010; Scikit-learn, Pedregosa et al., 2011). A detailed description of the 

development of the 1D-CNN model used is presented in Oliveira et al. (2023). In that study, 

the authors carried out a set of experiments where three different neural network models were 

tested for streamflow estimation: a multi-layer perceptron model, a long short-term model, and 

a convolutional neural network model. Each type of model was presented to several 

combinations of precipitation and air temperature values, and their structures and hyper-

parameters were optimized and tuned using six different training algorithms. Also, the batch 

size and the number of epochs were optimized. The best solution for streamflow estimation 

was then obtained with a 1D-CNN model composed of one input 1D convolutional layer with 

16 filters, a kernel size equal to 1, and an output dense layer activated by a linear function. 

Between the input and output layers, two 1D convolutional layers, each having 32 filters and a 

kernel size of 8, were applied. After each 1D convolutional layer, a MaxPooling1D layer with 

pool_size set to 2 was placed. The Nadam optimizer was the training algorithm with the best 

performance combined with a learning rate of 1×10−3 and a ε (constant used for numerical 

stability) of 1×10−8. A batch size of 20 and the number of epochs set to 200 were found to be 

the best options to optimize the model. Finally, the best performance of this model was obtained 

considering the input variables the daily precipitation values in the watershed accumulated in 

1, 2, 3, 4, 5, and 10 days and delayed in 1, 2, 3, 4, 5, 6, and 7 days.  
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The CNN model was tuned, trained, and validated considering the streamflow values 

available in Ponte Vila Formosa hydrometric station for the period from 01/01/2001 to 

01/01/2009. The model performance was considered good, reaching a Nash-Sutcliffe 

Efficiency (NSE) value of 0.86, a coefficient of determination (R2) of 0.87, a percent bias 

(PBIAS) of 10.5%, and a root mean squared error (RMSE) of 4.2 m3 s-1 for the test dataset, but 

it only comprehended about 30% of the Maranhão watershed. Thus, in this study, the same 1D-

CNN model was used by considering the precipitation of the entire Maranhão watershed 

instead of the sub-basin’s data as in the original version. 

7.2.2.1 Input variables for 1D-CNN model 

The precipitation data used to train the 1D-CNN model was obtained from the ERA5 

Reanalysis dataset (Hersbach et al., 2017). This is a gridded product with a resolution of 31 km 

and an hourly timestep. Precipitation data was extracted from the dataset considering all the 

cells within the limits of the watershed. Precipitation hourly values were then averaged within 

the watershed area and accumulated each day from 01/01/2001 to 31/12/2009. The daily 

precipitation values in the watershed accumulated in 1, 2, 3, 4, 5, and 10 days and delayed in 

1, 2, 3, 4, 5, 6, and 7 days were considered. There were no gaps in the time series, counting a 

total of 78889 hourly values and 3287 daily values. The average annual precipitation for the 

period considered in this study was 575 mm, with July (3 mm) and August (8 mm) presenting 

the minimum monthly values, and October (104 mm) and November and December (both with 

67 mm) the months when more precipitation was registered. 

7.2.2.2 Estimation of Maranhão inflow with 1D-CNN 

The Maranhão reservoir’s daily inflow was estimated considering the daily precipitation 

in the corresponding watershed and the trained 1D-CNN model. However, because of the 

intrinsic random behavior verified in randomly initialized neural networks (Duan et al., 2020; 

Alzubaidi et al., 2021), the 1D-CNN model was trained 100 times. Those 100 runs were 

performed using the same dataset and division into training, validation, and test datasets 

presented in Oliveira et al. (2023). After each run, the trained weights were saved, and the 

results were compared and evaluated considering the observed streamflow in the Ponte Vila 

Formosa station. Based on the statistical evaluation, the model with the best performance was 

selected. 

The selected 1D-CNN model was then exposed to Maranhão watershed daily 

precipitation, with results representing the daily surface flow generated in the watershed and 

flowing to the Maranhão reservoir. Those daily values were then aggregated by month and 
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transformed into volume. The estimated monthly volume that reached the Maranhão reservoir 

was incorporated into the reservoir mass balance to estimate the stored volume in the following 

month. The validation of inflow values was made through the comparison of estimated stored 

volumes and the corresponding observed values. 

7.2.3 MOHID-Land model description 

MOHID-Land is a hydrological model that is part of the MOHID (Hydrodinamic Model) 

Water Modelling System (Mateus and Neves, 2013). It is an open-source model, with the code 

available in an online repository (github.com/Mohid-Water-Modelling-System/Mohid). 

MOHID-Land (Trancoso et al. 2009, Canuto et al, 2019, Oliveira et al. 2020) is a fully 

distributed and physically based model. Considering the mass and momentum conservation 

equations and a finite volume approach, the model simulates the water movement between four 

main compartments: atmosphere, porous media, soil surface, and river network. To avoid 

instability problems and save computational time, the model time step is variable being higher 

during dry seasons and lower in wet periods when water fluxes increase. 

According to his finite volume approach, the domains in MOHID-Land are discretized 

by a regular grid in the surface plane and by a cartesian coordinate system in the vertical 

direction. The land surface considers a 2D domain to simulate the water movement, while the 

porous media is represented by a 3D domain, which includes the same surface grid and is 

complemented by the vertical grid with variable thickness layers. Additionally, a 1D domain 

representing the river network can be derived from a digital terrain model represented in the 

horizontal grid. The water lines of the river network are then delineated by linking surface cell 

centers (nodes). 

The four compartments referred to before are all explicitly simulated, except the 

atmosphere which is only responsible for providing the data needed for imposing surface 

boundary conditions. The atmospheric data can be space and/or time-variant and include 

precipitation, air temperature, relative humidity, wind velocity, solar radiation, and/or cloud 

cover. 

The amount of water precipitated in each cell is divided into surface and subsurface flow 

considering the infiltration process and according to the soil saturation state. In this study, the 

infiltration rate (i, LT−1) was computed according to Darcy’s law: 

𝑖 =  −𝐾𝑠𝑎𝑡 (
𝜕ℎ

𝜕𝑧
+ 1) (Eq. 7.1) 

where Ksat is the saturated soil hydraulic conductivity (LT−1), h is the soil pressure head (L), 

and z is the vertical space coordinate (L). 
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The movement of infiltrated water in porous media was simulated using Richards’ 

equation, which is applied to the whole subsurface domain and simulates saturated and 

unsaturated flow using the same grid: 

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑥𝑖
[𝐾(𝜃) (

𝜕ℎ

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑖
)] − 𝑆(ℎ) (Eq. 7.2) 

where θ is the volumetric water content (L3L−3), xi represents the xyz directions (-), K is the 

hydraulic conductivity (LT−1), and S is the sink term representing root water uptake (L3L−3T−1). 

The soil hydraulic parameters were described using the van Genuchten Mualem functional 

relationships (Mualem, 1976, van Genuchten, 1980). When a cell reaches saturation, i.e., when 

soil moisture in a cell is above a threshold value defined by the user, the model considers the 

saturated conductivity to compute flow and pressure becomes hydrostatic, corrected by friction. 

The ratio between the horizontal and vertical hydraulic conductivities is defined by a factor 

(fh=Khor/Kver) that can also be tuned by the user. 

The root water uptake was estimated taking into account the weather conditions and soil 

water contents. The reference evapotranspiration (ETo) rates were computed following the FAO 

Penman-Monteith method (Allen et al., 1998). The crop evapotranspiration (ETc) rates were 

then estimated by multiplying the ETo first with a crop coefficient (Kc). The Kc values were 

made to vary as a function of the plant development stage, as follows: 

𝐾𝑐 =

{
 
 
 

 
 
 

𝐾𝑐,𝑖𝑛𝑖, 𝐺𝐹𝑟 < 𝐺𝐹𝑟1

𝐾𝑐,𝑖𝑛𝑖 +
𝐺𝐹𝑟 − 𝐺𝐹𝑟1

𝐺𝐹𝑟2 − 𝐺𝐹𝑟1
(𝐾𝑐,𝑚𝑖𝑑 − 𝐾𝑐,𝑖𝑛𝑖), 𝐺𝐹𝑟1 < 𝐺𝐹𝑟 < 𝐺𝐹𝑟2

𝐾𝑐,𝑚𝑖𝑑, 𝐺𝐹𝑟2 < 𝑃𝑆 < 𝐺𝐹𝑟𝐿𝐴𝐼𝑆𝑒𝑛

𝐾𝑐,𝑚𝑖𝑑 +
𝐺𝐹𝑟 − 𝐺𝐹𝑟2

1.0 − 𝐺𝐹𝑟2
(𝐾𝑐,𝑒𝑛𝑑 − 𝐾𝑐,𝑚𝑖𝑑), 𝐺𝐹𝑟2 < 𝐺𝐹𝑟 < 1.0

𝐾𝑐,𝑒𝑛𝑑, 𝐺𝐹𝑟 > 1.0

 (Eq. 7.3) 

where GFr, GFr1, GFr2, and GFrLAISen are the plant growth fractions in the simulated instant, 

in the initial stage, the mid-season stage, and when the LAI senescence starts, respectively, and 

Kc, ini, Kc,mid, and Kc,end are the crop coefficients during the initial, mid-season and end-season 

stages, respectively. The plant growth stages are represented as a percentage of maturity heat 

units, and the values for GFr1, GFr2, and GFrLAISen are defined in the plant growth database 

of MOHID-Land. ETc values are then partitioned into potential soil evaporation (Es) and crop 

transpiration (Tc) as a function of the simulated leaf area index (LAI,) which is computed using 

a modified version of the EPIC model (Neitsch et al., 2011, Williams et al., 1989) and 

considering the heat units approach for the plant to reach maturity, the crop development stages, 

and crop stress (Ramos et al., 2017). Following the macroscopic approach proposed by Feddes 
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et al. (1978), root water uptake reductions (i.e., actual crop transpiration rates, Ta) are computed 

by distributing water extractions along the root zone domain and are estimated considering the 

presence of depth-varying stressors, such as water stress (Šimůnek and Hopmans, 2009, Skaggs 

et al., 2006). Finally, the actual soil evaporation is calculated from potential soil evaporation 

by imposing a pressure head threshold value (ASCE, 1996). 

The amount of water that is not able to infiltrate is transformed into surface flow which 

is computed by solving the Saint-Venant equation in its conservative form, accounting for 

advection, pressure, and friction forces: 

𝜕𝑄𝑢
𝜕𝑡

+ 𝓋𝑣
𝜕𝑄𝑢
𝜕𝑥𝑢

= −𝑔𝐴(
𝜕𝐻

𝜕𝑥𝑢
+
|𝑄|𝑄𝑢𝑛

2

𝐴𝑣2𝑅ℎ
4/3

) (Eq. 7.4) 

where Q is the water flow (L3T−1), A is the cross-sectional flow area (L2), g is the gravitational 

acceleration (LT−2), 𝓋 is the flow velocity (LT−1), H is the hydraulic head (L), n is the Manning 

coefficient (TL-1/3), Rh is the hydraulic radius (L), and subscripts u and v denote flow directions. 

The Saint-Venant equation is solved on a 2D domain considering the directions of the 

horizontal grid except for the river network, where it is solved considering the 1D domain that 

comprehends the water lines. There, the cross-section for each node of the river network is 

defined by the user. 

The water changes between the river network and the soil surface are estimated according 

to a kinematic approach, neglecting bottom friction, and using an implicit algorithm to avoid 

instabilities. The water fluxes between the river network and the porous media are driven by 

the pressure gradient in the interface of these two mediums. 

7.2.3.1 Model set-up 

The MOHID-Land model was implemented using a constant horizontal spaced grid with 

a resolution of 0.006º in both longitudinal and latitudinal directions (⁓520 m×666 m). To cover 

the modelled domain, the grid was composed of 140 columns and 110 rows, with its origin 

located at 38°45'16.5"N and 8°03'12.4"W. 

Elevation data were interpolated to the MOHID-Land grid from the digital elevation 

model (DEM) provided by the European Environment Agency (European Digital Elevation 

Model (EU-DEM), Version 1.1, 2019). This DEM has a resolution of approximately 30 m 

(0.00028°) and results from the combination of Shuttle Radar Topography Mission (SRTM) 

and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global 

Digital Elevation Model (GDEM) data, fused by a weighted averaging approach. The 

watershed’s minimum and maximum elevations after the interpolation process were 107 m and 
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725 m, respectively (Figure 7.4a). The delineation of the watershed and the river network was 

performed considering the cell where the dam of Maranhão reservoir is located as the outlet. 

The minimum area to consider the existence of a waterline (minimum threshold area) was 10 

km2. Additionally, a rectangular geometry was chosen to represent the river cross-sections with 

the top (and bottom) width and the height defined according to Andreadis et al. (2013). The 

cross-sections’ dimensions were related to the drained area and were assigned to the river 

network according to Table 7.2. For the nodes where the drained area relied on between the 

values presented in the table, the dimensions of the cross-section were linearly interpolated 

based on the given information. 
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Figure 7.4 MOHID-Land inputs for Maranhão watershed: (a) digital terrain model and watershed and river 

network delineation; (b) Manning coefficient values; (c) types of vegetation; (d) identification number of the 

types of soil in the surface horizon; (e) identification number of the types of soil in the middle horizon; and (f) 

identification number of the types of soil in the bottom horizon. 

 

Table 7.2 Cross sections dimensions according to the drained area. 

Drained area 

(km2) 

Model set-up Calibration 

Width 

(m) 

Height 

(m) 

Area 

(m2) 

Width 

(m) 

Height 

(m) 

Area 

(m2) 

1.00 - - - 1.00 1.00 1.0 

10.00 2 0.04 0.1 2.00 1.00 2.0 
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Drained area 

(km2) 

Model set-up Calibration 

Width 

(m) 

Height 

(m) 

Area 

(m2) 

Width 

(m) 

Height 

(m) 

Area 

(m2) 

49.18 4.61 0.19 0.9 4.61 1.50 6.9 

86.80 6.22 0.24 1.5 6.22 1.50 9.3 

143.70 8.12 0.30 2.4 8.12 2.25 18.3 

395.33 13.84 0.45 6.2 13.84 3.00 41.5 

748.75 19.38 0.58 11.2 19.38 3.00 58.1 

2577.41 37.2 0.97 36.1 37.20 4.00 148.8 

 

The CORINE Land Cover 2012, with a resolution of 100 m (CLC 2012, 2019), was 

interpolated to the MOHID-Land’s grid and was used for representing land use in the 

watershed. Each land use class was associated with: (i) a Manning coefficient, which was 

defined according to Pestana et al. (2013) (Figure 7.4b), and (ii) a vegetation type class 

considering MOHID-Land’s database (Figure 7.4c).  

The Kc values were defined according to Allen et al. (1998) for agriculture (summer and 

winter crops), orchard, pasture, and brush, while pine, oak, and forest crop coefficients were 

defined based on the values proposed by Corbari et al. (2017) (Table 7.3). 

Table 7.3 Crop coefficient values for initial stage (Kc, ini), mid- (Kc, mid), and late (Kc, end) seasons for each type of 

vegetation. 

Type of vegetation 

Crop coefficient 

Model set-up Calibration 

Kc ini Kc mid Kc end Kc ini Kc mid Kc end 

Agriculture (summer 

crops) 
0.15 1.15 0.35 0.15 0.70 0.50 

Agriculture (winter crops) 0.70 1.15 0.30 0.40 0.70 0.15 

Orchard 0.40 0.90 0.65 0.30 0.60 0.40 

Forest 0.15 0.80 0.15 0.60 0.60 0.60 

Pasture 0.30 0.75 0.75 0.30 0.60 0.60 

Brush 0.40 0.40 0.40 0.30 0.30 0.30 

Pine 0.15 0.80 0.15 0.60 0.60 0.60 

Oak 0.15 0.80 0.15 0.60 0.60 0.60 

 

The Mualem–van Genuchten hydraulic parameters were obtained from the multilayered 

European Soil Hydraulic Database (EU Soil Database, Tóth et al., 2017). Although the database 

provides information at 0.0, 0.05, 0.15, 0.3, 0.6, 1.0, and 2.0 m depths, with a resolution of 250 

m, the present application only considered data from 0.3, 1.0, and 2.0 m depths. The porous 

media was divided into 6 layers, with a thickness of 0.3, 0.3, 0.7, 0.7, 1.5, and 1.5 m from 

surface to bottom (vertical grid), with the maximum total soil depth of 5.0 m. These layers were 

organized according to 3 different horizons characterized by the soil hydraulic properties 

acquired from the selected depths of the EU Soil Database. The 2 surface layers (0-0.6 m) were 

associated with the data at 0.3 m depth, the 2 middle layers (0.6-2.0 m) acquired the values at 
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1.0 m depth, and the information at 2.0 m depth was representative of the 2 bottom layers (2.0-

5.0 m) (Table 7.4). Since MOHID-Land corrects the soil depth according to the surface slope, 

the thickness of the bottom layer presented a variation between 0.68 m and 1.5 m, 

corresponding to a minimum and maximum soil depth of 4.18 m and 5.0 m, respectively. The 

spatial variation of soil properties in the surface, middle and bottom horizons are shown in 

Figure 7.4.d, e, and f, respectively, with each ID corresponding to a different combination of 

soil hydraulic data. 

Table 7.4 Mualem–van Genuchten hydraulic parameters by soil horizon. θr, residual water content; θs, saturated 

water content; α and η, empirical shape parameters; Ksat,vert, saturated hydraulic conductivity 

Horizon 
Layers 

(m) 

EU Soil 

Database 

depth 

(m) 

ID 
θs 

(m3 m-3) 

θr 

(m3 m-3) 

η 

(-) 

Ksat,vert 

(m s-1) 

α 

(m-1) 

Ɩ 

(-) 

Surface 0 – 0.6 0.3 

1 0.491 0.0 1.193 1.64×10-6 3.47 -4.3 

2 0.409 0.0 1.134 5.05×10-6 7.00 -5.0 

3 0.465 0.0 1.116 2.26×10-5 12.84 -5.0 

Middle 0.6 – 2.0 1.0 

4 0.384 0.0 1.121 4.29×10-6 7.17 -5.0 

5 0.413 0.0 1.119 1.43×10-6 2.27 -5.0 

6 0.432 0.0 1.170 9.93×10-7 3.36 -5.0 

Bottom 2.0 – 5.0 2.0 

7 0.384 0.0 1.121 4.29×10-6 7.17 -5.0 

8 0.432 0.0 1.170 9.93×10-7 3.36 -5.0 

9 0.413 0.0 1.119 1.43×10-6 2.27 -5.0 

 

The fh parameter relating horizontal and vertical hydraulic conductivities was set to 10. 

Finally, the initial water table was assumed at a depth corresponding to 50% of the soil profile, 

with the initial soil moisture conditions above that depth set to field capacity. 

As for the input variables used in the neural network model, meteorological data was 

obtained from the ERA5-Reanalysis dataset (Hersbach et al., 2017). For the implementation of 

MOHID-Land, the meteorological properties incorporated were the total precipitation, air 

temperature and dewpoint temperature (at 2 m height), u and v components of wind velocity 

(at 10 m height), surface solar radiation downwards, and total cloud cover. Wind velocity was 

adjusted from 10 m to 2 m height and relative humidity was estimated from air and dewpoint 

temperature according to Allen et al. (1998). 

7.2.3.2 Estimation of Maranhão inflow with MOHID-Land 

MOHID-Land was directly implemented in the entire Maranhão watershed but the lack 

of daily inflow data at the outlet only allowed model calibration and validation to be performed 

at Ponte Vila Formosa. There, the estimated daily streamflow data were compared with the 

observed data, and, when the performance of the model was good enough to represent the 

streamflow generation on that sub-basin, the calibrated parameters were assumed as 
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representatives of the Maranhão watershed. Hence, the daily streamflow estimated by the 

model in the outlet section was considered to represent the Maranhão reservoir’s inflow and 

was transformed into monthly volume. The monthly volumes were then validated with a 

reservoir mass balance identical to the one presented for the validation of the 1D-CNN model’s 

results. 

7.2.4 Models’ evaluation 

MOHID-Land and 1D-CNN were calibrated/trained using the average daily streamflow 

in Ponte Vila Formosa hydrometric station. Validation was performed with daily and monthly 

timesteps. The dataset was also divided into wet (October to March), and dry (April to 

September) periods, and the results were validated, ignoring the division between 

calibrated/trained. 

In the case of MOHID-Land, the calibration period was from 01/01/2002 to 31/01/2003 

and the validation was from 01/01/2004 to 31/12/2009. For the 1D-CNN model, each of the 

100 runs was evaluated considering the same test dataset presented by Oliveira et al. (2023). 

For both models, streamflow estimation performance was evaluated in Ponte Vila Formosa 

hydrometric station. The analysis was made with four different statistical parameters, namely, 

the coefficient of determination (R2), the percent bias (PBIAS), the root mean square error 

(RMSE), and the Nash-Sutcliffe model efficiency (NSE): 

𝑅2 =

[
 
 
 

∑ (𝑋𝑖
𝑜𝑏𝑠 − 𝑋𝑚𝑒𝑎𝑛

𝑜𝑏𝑠 )(𝑋𝑖
𝑠𝑖𝑚 − 𝑋𝑚𝑒𝑎𝑛

𝑠𝑖𝑚 )𝑝
𝑖=1

√∑ (𝑋𝑖
𝑜𝑏𝑠 − 𝑋𝑚𝑒𝑎𝑛

𝑜𝑏𝑠 )
2𝑝

𝑖=1
√∑ (𝑋𝑖

𝑠𝑖𝑚 − 𝑋𝑚𝑒𝑎𝑛
𝑠𝑖𝑚 )

2𝑝
𝑖=1 ]

 
 
 
2

 (Eq. 7.5) 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑋𝑖

𝑜𝑏𝑠 − 𝑋𝑖
𝑠𝑖𝑚)𝑝

𝑖=1

∑ 𝑋𝑖
𝑜𝑏𝑠𝑝

𝑖=1

× 100 (Eq. 7.6) 

𝑅𝑀𝑆𝐸 = √
1

𝑝
∑ (𝑋𝑖

𝑜𝑏𝑠 − 𝑋𝑖
𝑠𝑖𝑚)

2𝑝

𝑖=1
 (Eq. 7.7) 

𝑁𝑆𝐸 = 1 −
∑ (𝑋𝑖

𝑜𝑏𝑠 − 𝑋𝑖
𝑠𝑖𝑚)

2𝑝
𝑖=1

∑ (𝑋𝑖
𝑜𝑏𝑠 − 𝑋𝑚𝑒𝑎𝑛

𝑜𝑏𝑠 )
2𝑝

𝑖=1

 (Eq. 7.8) 

where Xi
obs and Xi

sim are the flow values observed and estimated by the model on day i, 

respectively. Xmean
obs and Xmean

sim are the average flow considering the observed and the 

modelled values in the analyzed period, and p is the total number of days/values in this period. 

According to Moriasi et al. (2007), a model is considered satisfactory when NSE>0.5, 
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PBIAS±25%, and R2>0.5, while the RMSE represents the standard deviation of the residuals 

with lower values meaning a better model’s performance. 

Maranhão reservoir’s inflow was evaluated with a monthly timestep since this is the 

frequency of the data available in the reservoir. Since the models were already calibrated, the 

validation of the reservoir’s inflow was done for the period comprehended between 01/01/2002 

and 31/12/2009. 

For the validation process, the monthly water volume that reaches the reservoir was 

incorporated into a mass balance where the observed stored volume from the previous month 

and the water volume that leaves the reservoir in the current month were also considered:  

𝑉𝑖
𝑠𝑖𝑚 = 𝑉𝑖−1

𝑜𝑏𝑠 + 𝑉𝐼𝑖
𝑠𝑖𝑚 − 𝑉𝑂𝑖

𝑜𝑏𝑠 (Eq. 7.9) 

where Vi
sim represents the estimated stored volume in month i, Vi-1

obs represents the observed 

stored volume in the previous month, VIi
sim is the volume that enters the reservoir in month i 

resulting from the simulations, and VOi
obs in the observed volume that leaves the reservoir. The 

stored volume estimated through the water balance was then compared to the observed stored 

volume of the corresponding month. 

Performance assessment was made by visual comparison, and it was complemented by 

the estimation of the R2, NSE, PBIAS, RMSE, and the RMSE-observation standard deviation 

ratio (RSR).  

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠
=

√∑ (𝑋𝑖
𝑜𝑏𝑠 − 𝑋𝑖

𝑠𝑖𝑚)
2𝑝

𝑖=1

√∑ (𝑋𝑖
𝑜𝑏𝑠 − 𝑋𝑚𝑒𝑎𝑛

𝑜𝑏𝑠 )
2𝑝

𝑖=1

 (Eq. 7.10) 

where Xi
obs and Xi

sim are the stored volume values observed and estimated on month i, 

respectively, and Xmean
obs and Xmean

sim are the average stored volume in the analyzed period. It 

is important to note that the typical approach for inflow validation, which considers the direct 

calculation of inflow values from a mass balance performed in the reservoir, was also tested. 

However, about 30% of the inflow values estimated with that approach resulted in negative 

inflow values. Because of that, the referred approach was not considered in the study. 

7.3 Results 

7.3.1 1D-CNN at Ponte Vila Formosa 

Considering the set of 100 runs performed with the 1D-CNN model and the precipitation 

of the Ponte Vila Formosa watershed, the four statistical parameters used to evaluate the 

model’s performance were calculated for each run and considering the test dataset. Four sets 
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of 100 values were obtained. For each of those sets the minimum, maximum, average, standard 

deviation, median, and 1st and 3rd quartiles were estimated and are presented in Table 7.5. 

Table 7.5 Goodness-of-fit indicators for the 1D-CNN model in Ponte Vila Formosa hydrometric station 

considering the set of 100 runs. 

 NSE R2 PBIAS (%) RMSE (m3 s-1) 

Minimum 0.42 0.59 -40.30 1.44 

Maximum 0.88 0.90 66.76 3.13 

Average 0.74 0.78 10.21 2.07 

Standard deviation 0.08 0.06 19.13 0.30 

Median 0.74 0.79 9.52 2.09 

1st quartile 0.71 0.75 -3.51 1.90 

3rd quartile 0.79 0.82 24.89 2.21 

Best model 0.88 0.88 -7.80 1.44 

 

A spread range of results was obtained for the statistical parameters, with RMSE ranging 

from 1.44 to 3.13 m3 s−1, PBIAS from -40 to 67%, R2 from 0.59 to 0.90, and NSE from 0.42 to 

0.88. Although some simulations did not reach the minimum requirements to be classified as 

satisfactory (NSE>0.5, R2>0.5, and PBIAS>±25%), most of them got acceptable values, with 

the 1st quartile presenting a NSE of 0.71 and a R2 of 0.75. This means that 75% of the 

simulations had higher values for NSE and R2. However, taking into account the PBIAS results, 

the table shows that the value of the 3rd quartile was 25%, which means that a quarter of the 

simulations present higher and not satisfactory PBIAS. In turn, the 1st quartile of this statistical 

parameter was -3.5% and the minimum value was -40.3%, which indicates that from the 25 

simulations that present lower PBIAS values, a significant part of them is still considered as 

having satisfactory behavior. 

The simulation considered the best in fitting the observed streamflow in Ponte Vila 

Formosa station presented a NSE of 0.88, a R2 of 0.88, a PBIAS of -7.8%, and a RMSE of 1.44 

m3 s−1 (Table 7.5). Although the R2 of this model was not the maximum presented in the table, 

the combined values of the four statistical parameters represented the best solution, since the 

simulation with the maximum R2 presented a PBIAS of 25%, which relies on the limit of the 

range for satisfactory performance. 

For easier comparison with MOHID-Land, the four statistical parameters were also 

estimated considering the entire dataset, neglecting the first year (2001). Streamflow results 

show that the model outputs included negative values for 1.5% of the dataset, which means 50 

of the 3229 days. Since these negative values occurred in isolated days, they were replaced by 

simply averaging the estimated streamflow from the previous and the next days. Table 7.6 
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presents those statistical parameters, while Figure 7.5 allows a visual assessment of the model’s 

performance. In Table 7.6 are also presented the NSE, R2, PBIAS, and RMSE values when the 

simulated interval was divided into wet and dry periods and considering the average monthly 

streamflow. 

 

Figure 7.5 Comparison between observed and estimated streamflow values (using the 1D-CNN model) in Ponte 

Vila Formosa between 01/01/2002 and 31/12/2009. 

  

Table 7.6 Goodness-of-fit indicators for the 1D-CNN model in Ponte Vila Formosa hydrometric station (best 

solution). 

 NSE R2 PBIAS (%) RMSE (m3 s-1) 

 Daily 

Entire dataset 0.83 0.83 -7.25  2.62 

 Daily 

Wet period 0.79 0.79 8.62 5.77 

Dry period 0.26 0.57 -52.74 2.16 

 Monthly 

Entire dataset 0.87 0.87 2.23 2.01 

 

When considering daily results, the 1D-CNN model demonstrated very good 

performance, with the NSE and R2 reaching values of 0.65, the PBIAS being -7.21%, and the 

RMSE as 4.75 m3 s−1. Results were better when average monthly streamflow was considered, 

with NSE, R2, PBIAS, and RMSE of 0.87, 0.87, 2.23%, and 2.01 m3 s−1, respectively. This is 

justified because the estimation of the average monthly values smooths out the daily errors. 

Considering the dry and wet periods, the 1D-CNN model shows a much better performance for 

the wet period. With the NSE and R2 having both values of 0.79, and a PBIAS of 8.62% for 
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the wet period, the dry period obtained only a NSE value of 0.26, the R2 decreased to 0.57, and 

the PBIAS presents a value of -53%. 

7.3.2 MOHID-Land at Ponte Vila Formosa 

MOHID-Land’s calibration focused on a large number of different parameters related to 

the porous media, river network, and plant development processes. Among them, the fh factor 

and the soil hydraulic parameters were calibration targets. In the river network, the minimum 

area to create a waterline, the cross-section dimensions, and the Manning coefficient were 

evaluated, and for the vegetation development, the Kc for different stages, and maximum root 

depth were also subjected to calibration. 

The best solution obtained with MOHID-Land comprehended a river Manning 

coefficient of 0.035 s m−1/3 and a minimum threshold area of 1 km2. The calibrated cross-section 

dimensions are presented in Table 7.2, being clearly larger than those of the model set-up. In 

porous media, the fh adopted the value 500 while the saturated water content of each soil type 

was increased by 10%. Finally, the development of the vegetation considered a triangular root 

profile (instead of the default exponential profile) with the maximum root depth being 25% to 

60% lower than the default values of MOHID-Land’s growth database. 

The comparison between the streamflow values registered in the Ponte Vila Formosa 

station and those estimated by MOHID-Land is presented in Figure 7.6, with the corresponding 

statistical parameters shown in Table 7.7. Table 7.7 also shows NSE, R2, PBIAS, and RMSE 

for the average monthly streamflow and the division of the analyzed period into wet and dry 

seasons. 

 

Figure 7.6 Comparison between observed and estimated streamflow values (using MOHID-Land model) in 

Ponte Vila Formosa between 01/01/2002 and 31/12/2009. 
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Table 7.7 Goodness-of-fit indicators for MOHID-Land model in Ponte Vila Formosa hydrometric station. 

 NSE R2 PBIAS (%) RMSE (m3 s-1) 

 Daily 

Calibration 0.65 0.65 -7.21 4.75 

Validation 0.62 0.63 4.18 6.50 

 Daily 

Wet period 0.61 0.63 8.67 7.87 

Dry period 0.39 0.69 -30.14 1.96 

 Monthly 

Calibration 0.85 0.86 -6.59 1.97 

Validation 0.92 0.95 4.15 1.57 

 

MOHID-Land’s results show the satisfactory performance obtained with this model. It 

reached a NSE and a R2 of 0.65 for the calibration period with a slight decrease in the validation 

period (0.62 for NSE and 0.63 for R2). PBIAS demonstrated an underestimation of streamflow 

in calibration and an overestimation during validation, while RMSE values were similar in both 

periods. When considering the monthly aggregation, the model reached a very good 

performance, with NSE and R2 values above 0.85 in calibration and validation periods. The 

RMSE showed a decrease in both periods when compared with the daily values. Finally, PBIAS 

values did not suffer significant changes. During the wet period, the performance of the model 

was better than in the dry period. Although R2 showed a better value for the dry period, NSE 

and PBIAS demonstrated an accentuated decrease in the model’s performance in the dry period, 

with the first going from 0.61 to 0.39 and the second indicating an overestimation of about 9% 

in wet periods and an underestimation of about 30% in the dry period. 

7.3.3 Maranhão reservoir’s inflow 

The characterization of the Maranhão reservoir’s inflow obtained with MOHID-Land 

and 1D-CNN models from 01/01/2002 until 31/12/2009 are presented in Table 7.8. The 

respective flow duration curve is presented in Figure 7.7. 

Table 7.8 Maranhão reservoir's inflow characterization for 1D-CNN and MOHID-Land models. 

 Inflow (m3 s-1) 

 Min Max Average 1st quartile Median 3rd quartile 

1D-CNN 0 143.1 3.6 0.7 1.9 4.1 

MOHID-Land 0.1 68.4 3.9 0.5 1.6 4.4 
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Figure 7.7 Flow duration curve for Maranhão reservoir's inflow estimated with MOHID-Land (blue line) and 

1D-CNN (red line). 

Results from Table 7.8 showed very similar behavior for both models apart from the 

maximum streamflow value. In that case, the 1D-CNN model presented a maximum 

streamflow of more than twice the maximum streamflow estimated by MOHID-Land. 

However, MOHID-Land had a slightly higher streamflow average. It indicates that for the 

middle streamflow values, MOHID-Land tends to overestimate 1D-CNN mode. It is also 

demonstrated in Figure 7.7, where it is possible to confirm that streamflow values with a non-

exceedance probability between 0 and 0.3 higher values are observed for MOHID-Land. 

Regarding the validation of stored volumes considering the reservoir’s mass balance, 

NSE, R2, PBIAS, RMSE, and RSR were estimated for the entire period, and the results are 

presented in Table 7.9. Figure 7.8 presents the graph with the comparison between the two 

models and the observed stored volumes. 

 

Figure 7.8 Comparison between observed stored volume (black line) and stored volumes estimated considering 

the streamflow simulated by MOHID-Land (blue line) and 1D-CNN model (red line). 
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Table 7.9 Goodness-of-fit indicators for MOHID-Land and 1D-CNN models for the reservoir’s stored volume. 

 NSE R2 PBIAS (%) RMSE (hm3) RSR (-) 

1D-CNN 0.79 0.84 -0.55 18.62 0.46 

MOHID-Land 0.79 0.85 -1.18 18.61 0.46 

 

Results showed good agreement between both models and observed values. In fact, 1D-

CNN and MOHID-Land presented very similar R2 (1D-CNN: 0.84; MOHID-Land: 0.85) and 

RMSE (1D-CNN: 18.62 hm3; MOHID-Land: 18.61 hm3) values. NSE and RSR values were 

equal in both cases, while PBIAS was the parameter in which some difference is observed. 

With a PBIAS of -0.55% for the 1D-CNN model and -1.18% for the MOHID-Land model, 

both models were slightly underestimating the reservoir’s inflow. MOHID-Land showed a 

higher tendency for that underestimation. 

7.4 Discussion 

7.4.1 1D-CNN model 

The 1D-CNN model had already demonstrated its adequacy to predict streamflow in the 

sub-basin of the Ponte Vila Formosa hydrometric station as demonstrated in Oliveira et al. 

(2023). The approach presented here, where 100 simulations were performed with the same 

1D-CNN structure, allowed to slightly improve the results obtained in that study. From the set 

of 100 models, the best solution had a NSE and a R2 of 0.88, a PBIAS of -7.80%, and a RMSE 

of 1.44 m3 s−1, considering the test dataset. It overcame the solution presented by Oliveira et 

al. (2023), which obtained a NSE, a R2, a PBIAS, and a RMSE of 0.86, 0.87, 10.5%, and 4.2 

m3 s−1, respectively. Results also show that half of the 100 simulations obtained a NSE higher 

than 0.74 and/or a R2 above 0.79. The same number of simulations got a PBIAS lower than 

9.52%. It indicates the suitability of the developed structure for streamflow estimation even 

with the random nature of the process involved. 

The results of the 1D-CNN model are in accordance with the results of Barino et al. 

(2020), Huang et al. (2020), Duan et al. (2020), and Song (2020). Barino et al. (2020) used two 

1D-CNN to predict multi-day ahead river flow in Madeira River, a tributary of the Amazon 

River, in Brazil. One of those models considered only the river flow on previous days, while 

the other considered that same variable combined with the turbidity on previous days. Both 

models obtained NSE and R2 values higher than 0.92, while mean absolute percentage error 

(MAPE) and normalized RMSE were lower than 25% and 0.20, respectively. Among the 

models analyzed by Huang et al. (2020), two CNN models were studied to forecast daily 
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streamflow a day ahead. Considering the lagged streamflow values of the past 16 days in the 

site to be forecasted and in the neighborhood, a generic CNN model and a CNN model trained 

with a transfer learning procedure were tested. With four different locations in the United 

Kingdom being the target of the study, the generic CNN model obtained MAPE values between 

14.36% and 41.95%, while the MAPE of the other CNN model laid between 12.29% and 

32.17%. Duan et al. (2020) considered the watersheds within the Catchment Attributes for 

Large-Sample Studies (CAMELS dataset), in California, USA, to test a temporal CNN model. 

The model was developed for long-term streamflow projection and consisted of a one-

dimensional network that used dilated causal convolutions. As input variables, authors elected 

precipitation, temperature, and solar radiation and tested different time window sizes to delay 

the values. After performing 15 runs for each watershed in the CAMELS dataset, the average 

NSE was 0.55, while the average NSE for the best run over all basins was 0.65. Finally, a CNN 

model was employed by Song (2020) to estimate daily streamflow in the Heuk River 

watershed, in South Korea. Using rainfall, runoff, soil map, and land use data, the authors 

generated a hydrological image based on the curve number method to feed the neural network 

and estimate streamflow in the watershed. The model evaluation resulted in a coefficient of 

correlation of 0.87 and a NSE of 0.60. 

Usually, in machine learning methods better results are verified when antecedent 

streamflow is considered as a forcing variable (Barino et al., 2020; Khosravi et al., 2022). 

However, when the model is used in the simulation of future scenarios or periods when no 

observed data are available, the antecedent streamflow values to feed the model are those 

already calculated by the model in previous iterations. As a consequence, the propagation and 

exacerbation of errors in the estimates lead to a degradation of the results in the long term. 

There are also other types of machine learning methods for streamflow estimation emerging in 

the last few years. For instance, Si et al. (2021) considered a graphical convolutional GRU 

model to predict the streamflow in the next 36h hours, while Szczepanek (2022) used three 

different models, namely, XGBoost, LightGBM, and CatBoost, for daily streamflow forecast. 

Additionally, hybrid solutions considering different machine learning algorithms for 

streamflow estimation, such as Di Nunno et al. (2023) and Yu et al. (2023), are becoming 

widely used and with improved results.  

7.4.2 MOHID-Land model 

MOHID-Land daily results demonstrated to be satisfactory according to the criteria of 

Moriasi et al. (2007). With a NSE and a R2 higher than 0.62 and 0.63, respectively, and a PBIAS 
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between -7% and 4%, and an average RMSE of 5.6 m3 s−1, these results were substantially 

better than those presented by Almeida et al. (2018) for the same study area. Using Soil Water 

Assessment Tool (SWAT), the authors compared the daily streamflow also in Ponte Vila 

Formosa hydrometric station. They obtained a NSE, a R2, a bias and a RMSE of -3.05, 0.31, 

2.93, and 12.61 m3 s−1, respectively, for the calibration period. For the validation, the NSE was 

0.11, the R2 was 0.24, and the bias, and RMSE were -0.46 and 15.21 m3 s−1, respectively. 

Almeida et al. (2018) also made a daily comparison in Moinho Novo hydrometric station, 

which is located in the Montargil watershed and is very similar to the Maranhão watershed 

sharing boundaries between them. For the Moinho Novo station, the authors obtained for 

calibration and validation periods, respectively, a NSE of 0.22 and 0.39, a R2 of 0.41 in both 

cases, a bias of 0.90 and -1.07 and a RMSE of 13.1 and 16.6 m3 s−1. Bessa Santos et al. (2019) 

estimated the daily streamflow in the Sabor River watershed, placed in Northeast Portugal and 

with an area of 3170 km2. Using the SWAT model, they compared the modelled and observed 

river flow values in a hydrometric station in which the drained area is slightly smaller than the 

Sabor River watershed. The results reached a NSE of 0.62 and 0.61 for calibration and 

validation periods, respectively, and a R2 for those same periods of 0.63 and 0.80. The PBIAS 

was 2.7% for calibration and -24% for validation, while RSR for calibration and validation was 

0.62 and 0.63, respectively. Considering the Pracana watershed, located in Central Portugal, 

Demirel et al. (2009) also used the SWAT model to predict daily streamflow. The authors 

classified the model as having a poor peak magnitude estimation. 

Considering the monthly values, MOHID-Land’s performance increased substantially 

when compared with the daily values. The results reached NSE values of 0.85 and 0.92 and R2 

values of 0.86 and 0.95 for calibration and validation periods, respectively. PBIAS and RMSE 

also demonstrated the very good behavior of the model on a monthly basis. Those parameters 

obtained very good results for the calibration and validation periods, with PBIAS indicating a 

slight underestimation during calibration (-6.59%) and an overestimation (4.15%) during 

validation, and the RMSE being about 2 m3 s−1 for both periods. In line with the work presented 

here, Brito et al. (2018) used SWAT for long-term forecasts of the monthly Enxoé reservoir’s 

inflow. With this watershed located in South Portugal and draining an area of 60 km2, the 

authors reached a NSE of 0.78 and a R2 of 0.77. Almeida et al. (2018) also presented a monthly 

analysis for the Ponte Vila Formosa station, with SWAT obtaining a NSE of -1.26 and 0.40 for 

calibration and validation periods. For calibration and validation, respectively, R2 reached 

values of 0.58 and 0.54, the bias was 2.97 and -0.42, and the RMSE was 6.04 and 5.93 m3 s−1. 

Ponte Vila Formosa streamflow was also modelled by van der Laan et al. (2023) with SWAT 
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model. They obtained a NSE, a R2, and a PBIAS for the calibration period of 0.76, 0.77, and -

7.1%, respectively. For the validation period, the NSE was 0.89, the R2 was 0.9, and PBIAS 

was 15%. 

The comparisons presented above allowed to conclude that MOHID-Land’s performance 

is in line with other studies carried out in Portuguese watersheds for daily streamflow 

estimation. The exception was the study performed by Almeida et al. (2018) where the 

simulation of the same sub-basin that was being modelled here obtained a much poorer 

performance there. When monthly streamflow was considered, MOHID-Land’s performance 

surpassed the results obtained with the SWAT model for the same or identical sub-basins. The 

difference in the performance of the models is justified by the fact that SWAT is more 

empirically parametrized than MOHID-Land. For instance, MOHID-Land explicitly estimates 

the infiltration and porous media fluxes based on Darcy’s law and Richards equation, 

respectively, with the remaining water transformed into surface runoff where fluxes are 

estimated based on the Saint-Venant equation. On the other hand, in SWAT a baseflow factor, 

which is a direct index of groundwater flow response to changes in recharge, or a surface runoff 

lag coefficient to control the fraction of the total available water that will be allowed to enter 

the reach on one day, needs to be defined. The empirical parametrization of some processes 

prevents a more accurate representation of reality, leading to more errors in estimates and the 

degradation of the overall performance, especially beyond the period of calibration.  

Nonetheless, MOHID-Land has its own limitations. On one hand, the implementation 

effort is significatively high, with several parameters needing to be defined, such as the six 

hydraulic parameters of all the soil types, the crop coefficients for each type of vegetation, the 

surface and the river Manning coefficients, and others. The high number of input data, 

parameters, and variables that the user should define conduces to an extremely high number of 

parameters that can be calibrated, which can be time-consuming. A consequence of this is 

reflected in the number of simulations performed to reach the best solution. In this study, more 

than 70 simulations were made to test the sensitivity of the MOHID-Land to other parameters 

than those studied by Oliveira et al. (2020) and to obtain the combination that allows a good fit 

between modelled and observed streamflow. On the other hand, the empirical representation of 

parts of the hydrological processes or the generalization of some parameters can make the 

representation of the modelled system difficult, leading to values of the calibrated parameters 

outside the normal ranges. That condition is here verified with the crop coefficients calibrated 

for the summer and winter crops, which are considered too low.  
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7.4.3 Models’ comparison 

Overall, the 1D-CNN model demonstrated a better performance than the MOHID-Land 

model for daily streamflow estimation in Ponte Vila Formosa hydrometric station. However, 

when the results are aggregated by month, MOHID-Land’s performance surpassed the neural 

network results. 

Focusing on wet and dry periods, it is interesting to verify that the results of both models 

complement each other. If on the one hand, the 1D-CNN model obtained a performance for the 

wet period better than that obtained by MOHID-Land, on the other hand, during the dry period 

MOHID-Land demonstrated a better performance. Thus, in the first case both models achieved 

satisfactory performances, but the 1D-CNN model, with a NSE and R2 of 0.79, was better than 

MOHID-Land, which obtained a NSE of 0.61 and a R2 of 0.63. In the second case, the dry 

period, both models experienced a decrease in their performances, but MOHID-Land, with a 

NSE of 0.39 and a R2 of 0.69, performed better than the 1D-CNN model, which obtained a 

NSE of 0.26 and a R2 of 0.56. These results put in evidence the difficulty of MOHID-Land in 

estimating the peak flow events, but also a better ability to simulate the transitions between the 

wet and dry periods when compared to the 1D-CNN. It can also be verified in Figure 7.5 and 

Figure 7.6, where the results for MOHID-Land demonstrate a more natural behavior than those 

obtained for the 1D-CNN model. 

The more irregular behavior of the 1D-CNN model is, in part justified, by the fact that 

these types of models do have not a physical basis, which means that the streamflow estimation 

does not take into account physical laws or limitations. This characteristic of neural network 

models also justifies the difficulty in avoiding the existence of negative streamflow values. 

Although other authors did not refer to this issue, it was verified in this study and should not 

be ignored, since it can limit the application of the model. 

7.4.4 Models’ extension to Maranhão watershed 

The streamflow estimated by the extension of 1D-CNN and MOHID-Land models to the 

entire Maranhão watershed (Maranhão reservoirs’ inflow) was made by the adaptation of the 

trained and calibrated models to that watershed. Thus, the 1D-CNN model presents a maximum 

inflow value substantially higher than the maximum predicted by MOHID-Land, which is 

related to the fact that MOHID-Land demonstrated some difficulty in reproducing peak flow 

values (Table 7.8). The remaining statistics are similar between both models, with the minimum 

streamflow near 0 m3 s−1, the average between 3.6 and 3.9 m3 s−1, and the median is 1.9 and 

1.6 m3 s−1 for 1D-CNN and MOHID-Land. 
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The evaluation of the inflow values based on the mass balance at the reservoir scale 

showed very good performance when using the 1D-CNN model and MOHID-Land model 

(Table 7.9). Both models have a NSE and RSR of 0.79 and 0.46, respectively. R2 is 0.84 for 

1D-CNN and 0.85 for MOHID-Land and the RMSE is 18.6 hm3 for both models. The higher 

difference in the statistical parameters is in the PBIAS with the 1D-CNN having an 

underestimation of -0.55% and the MOHID-Land also presenting an underestimation but a 

little higher, of about -1.18%. Visually, it is also possible to verify slight differences between 

the stored volume estimated with inflow from the 1D-CNN model and from MOHID-Land 

model (Figure 7.8), with the main differences occurring in the wet season (October to March). 

In a similar approach but considering the continuous simulation of the stored water in 

two reservoirs included in the same modelled watershed, Rocha et al. (2020) found identical 

results. Using the SWAT model for Monte Novo and Vigia reservoirs, in southern Portugal, the 

authors validated the stored volume of both reservoirs with a monthly timestep, obtaining a 

NSE of 0.44 and a PBIAS of 6.3% for the Monte Novo reservoir and a NSE of 0.70 and PBIAS 

of 10.1% for Vigia reservoirs. 

In this case, models were extended to an ungauged watershed, in which physical 

characteristics and the rainfall regime are similar to those verified in the sub-basin where the 

models were trained or calibrated. In that sense, the question that arises from this study is about 

the behavior of this expanding approach when larger watersheds, marked by diversified 

characteristics and rainfall regimes, are the target of the study. In those cases, the calibrated 

parameters cannot be representative or even represented in the expanded area, for the typical 

hydrological models, or the differences in the rainfall regime when considering the expanded 

area cannot be correctly related to the runoff values, which was already referred to by Parisouj 

et al. (2020). 

7.5 Conclusions 

The approach proposed in this study showed the adequateness of implementing a 1D-

CNN model and a physically based model for estimating daily streamflow generation at the 

outlet of an ungauged watershed after prior calibration/validation of those models in a subbasin 

of the same catchment. Considering the sub-basin modelling, the 1D-CNN model demonstrated 

a better performance than MOHID-Land when considering the daily values and the wet period. 

The MOHID-Land model showed a better performance in estimating streamflow values during 

dry periods and for monthly analysis. When the validation of the reservoir mass balance was 

taken into account, the results showed an identical behavior for both models, with only a slight 
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difference in the PBIAS value. That difference indicates a smaller underestimation of inflow 

by the 1D-CNN model than that estimated by MOHID-Land. 

Although the results were considered satisfactory to very good in all the steps taken 

during the validation process, the generation of negative values by the 1D-CNN model is of 

concern. In that sense, and since there is no reference to this situation in the literature, the model 

presented here should be a target of improvement in future applications. In turn, the MOHID-

Land model revealed a lower performance for daily streamflow estimation, but its physical 

basis contributes to avoiding unpredictable and incomprehensible results. 

Finally, it is worth noting that neural network models are developed and trained for 

present and/or past conditions, and their application to study future scenarios can be limited. 

Also, the prediction of events that go beyond the observations can be problematic. This 

limitation is mainly related to its lack of capacity to absorb information about future conditions 

in cases where neural networks were not prepared to be forced by variables that include the 

impact of those future changes. Nonetheless, the changes in future conditions can be easily 

imposed in physically based models, with the main problems being: (i) the detail of the 

characterization of future conditions, which most of the time is too coarse for the detail adopted 

on physical models; and (ii) the high computational time needed to run long-term simulations, 

usually performed in the analysis of future scenarios. In that sense, hybrid solutions, combining 

different types of models or different models, can be used to incorporate the predicted changes 

in neural network models. 
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Abstract 

Knowledge about streamflow regimes and values is essential for different activities and 

situations, in which justified decisions must be made. However, streamflow behavior is 

commonly assumed as non-linear, being controlled by various mechanisms that act on different 

temporal and spatial scales, making its estimate challenging. An example is the construction 

and operation of infrastructures such as dams and reservoirs in rivers. The challenges faced by 

modelers to correctly describe the impact of dams on hydrological systems are considerable. 

In this study, an already implemented, calibrated, and validated solution of MOHID-Land 

model for natural regime flow in Ulla River basin was considered as baseline. The referred 

watershed comprehends three reservoirs. Outflow values were estimated considering a basic 

operation rule for two of them (run-of-the-river dams) and considering a data-driven model of 

Convolutional Long Short-Term Memory (CLSTM) type for the other (high-capacity dam). 

The outflow values obtained with the CLSTM model were imposed in the hydrological model, 

while the hydrological model fed the CLSTM model with the level and the inflow of the 

reservoir. This coupled system was daily evaluated in two hydrometric stations located 

downstream of the reservoirs, resulting in an improved performance compared with the 

baseline application. The analysis of the modelled values with and without reservoirs further 

demonstrated that considering dams’ operations in the hydrological model resulted in an 

increase of the streamflow during the dry season and a decrease during the wet season but with 

no differences in the average streamflow. The coupled system is thus a promising solution for 

improving streamflow estimates in modified rivers. 
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8.1 Introduction 

Knowledge about streamflow, including water quantity and quality, is fundamental for 

monitoring and controlling the environmental impacts of several activities and situations, 

including infrastructures design, support in decision-making processes, irrigation scheduling, 

design and implementation of water management systems, environmental management, studies 

of river and watershed behavior, flood warning control, optimal water resources allocation, 

prediction of droughts, and management of reservoir operations (Mehdizadeh et al., 2019; 

Mohammadi et al., 2021; Hu et al., 2021). However, the task of delivering information about 

streamflow can be challenging since it commonly assumes a non-linear behavior, being 

controlled by various mechanisms that act on different temporal and spatial scales (Wang et al., 

2006). These non-linear forcing mechanisms include meteorological conditions, land use, 

infiltration, morphological features of the river, and catchment characteristics (Mohammadi et 

al., 2021). The complex and laborious process of streamflow estimation is usually exacerbated 

when the natural regime flow is modified by anthropogenic activities and human decisions. In 

this sense, reservoirs are a major concern in hydrological modelling since most models are not 

prepared to directly consider the existence of such infrastructures and the resulting alterations 

caused on the natural regime flow by their operations (Dang et al., 2020). If hydrological 

models are prepared to study and comprehend the behavior of natural systems, the lack of 

information about reservoirs’ operations such as operating rules and flood contingency plans 

makes it impeditive for a correct representation of those infrastructures. 

As pointed out by Dang et al. (2020), a postprocess methodology is often used to impose 

reservoirs’ operations on hydrologic-hydraulic models. This way, the need for modifying 

models’ structures is avoided. However, Bellin et al. (2016) considered the direct representation 

of reservoirs water storage and operation as the best approach to correctly simulate such 

systems. Nevertheless, the challenges faced   are many, having limited the number of studies 

carried out (Dang et al., 2020).  

Recently, Xiong et al. (2019) developed a statistical framework where an indicator 

combining the effects of reservoir storage capacity and the volume of the multiday antecedent 

rainfall input was used to assess the impact of a reservoir system on flood frequency and 

magnitude in downstream areas of the Han River, China. Yun et al. (2020) modified the 

structure of the Variable Infiltration Capacity (VIC) model to include a reservoir module for 

estimating the variation of streamflow and flood characteristics when impacted by climate 

change and reservoir operation in the Lancang-Mekong River basin, Southeast Asia. Also using 
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a modified VIC model, Dang et al. (2020) simulated storage dynamics of water reservoirs again 

in the Lancang-Mekong River basin. In both studies, a comparison between the model results 

with and without reservoirs was provided. It is important to denote that both Yun et al. (2020) 

and Dang et al. (2020) imposed operation rules on the model, with the former authors giving 

more importance to flood control and environmental protection while the latter focused on 

energy production. Also, Hughes et al. (2021) used a modified version of the SHETRAN model 

to simulate the streamflow considering the influence of reservoirs in Upper Cocker catchment, 

United Kingdom. The authors considered a weir model and two tests were performed: first the 

weir was simulated as static (with closed sluice) to identify the sluice operating rules by 

comparing results with the known outflow timeseries; second the weir model was run as non-

static to implement the sluice operating rules deducted from the first approach. All studies 

mentioned above reproduced reservoirs’ behavior considering their operation rules, which in 

most cases are difficult to obtain or are very laborious to reproduce. 

The application of operation rules may often be adapted to specific conditions, objectives, 

or constraints based on the knowledge and experience of operators (Yang et al., 2019). This 

makes the reservoirs’ operation deviate from the reference operation curves, invalidating the 

sole use of physical-based models and the use of pre-established rule curves to reproduce the 

reservoir behavior in real-time. To overcome this issue, Yang et al. (2019) referred that machine 

learning methods, with their capacity to understand, extract, and reproduce complex high-

dimensional relationships, can be an efficient and easy-to-use solution to reproduce reservoirs’ 

operations, contemplating the reference operation rules as well as the operators’ historical 

experience. In this sense, the referred authors used recurrent neural network (RNN) models to 

extract reservoirs’ operation rules from the historical operation data of three multipurpose 

reservoirs located in the upper Chao Phraya River basin, Thailand. Also considering the use of 

the Geomorphology-based hydrological model (GBHM) to forecast the reservoir’s inflow, 

Yang et al. (2019) achieved a real-time reservoir outflow forecast. Dong et al. (2023) proposed 

a similar approach to improve the reconstruction of daily streamflow timeseries in the Upper 

Yangtze River Basin, China. These authors proposed a practical framework to quantitatively 

assess the cumulative impacts of reservoirs’ operation on the hydrologic regime, coupling two 

data-driven models, namely an extreme gradient boosting (XGBoost) model and an artificial 

neural network (ANN) model, with a high-resolution hydrologic model, and following a 

calibration free conceptual reservoir operation scheme. The data-driven models were used to 

predict the outflow of reservoirs with historical operation data, while the calibration-free 

conceptual reservoir approach was used to simulate the outflow in data limited reservoirs. The 
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study presented by Dong et al. (2023) is a rare example of a promising solution for improving 

streamflow prediction in highly modified catchments, which this study aims to follow. 

In the present study, the physical-based, distributed MOHID-Land model (Oliveira et al., 

2020) was coupled with a Convolutional Long Short-Term Memory (CLSTM) model to 

estimate the daily outflow in Portodemouros reservoir, Galicia, Spain. The results obtained 

with the CLSTM model were estimated considering the reservoir’s level and inflow simulated 

by MOHID-Land and then imposed in that same model for streamflow simulation downstream 

the reservoirs. However, the CLSTM model was first trained and tested using historical data. 

Thus, the main aim of this study is to verify the capacity of the coupled system to improve 

streamflow estimation downstream Portodemouros reservoir. This study demonstrates the 

ability of the proposed approach to directly simulate reservoirs’ operations in a hydrological 

simulation and validates a solution that is accessible and easy to implement. 

8.2 Materials and methods 

8.2.1 Description of the study area 

The Ulla River watershed is located in the Galicia region, Northwest of Spain, and drains 

an area of 2803 km2 discharging on Ria de Arousa estuary (Figure 8.1). Ria de Arousa is one 

of the most important coastal water bodies in Galicia, having the Ulla and Umia rivers as major 

tributaries, and mainly used for recreative and fishery activities (da Silva et al., 2005; Outeiro 

et al., 2018; Blanco-Chao et al., 2020; Cloux et al., 2022). The maximum and minimum 

elevations of the Ulla watershed are 1160 m and -0.75 m, respectively, and the main 

watercourse has a bed length of 142 km with its source at an altitude of 600 m. The watershed 

is inserted into an area characterized by a warm-summer Mediterranean climate (Csb) 

according to Köppen-Geiger classification. The annual precipitation is about 1100 mm, with 

rainy months from October to May. The annual average temperature is 12°C, reaching a 

maximum of 18°C in August and a minimum of 7°C in February. According to Nachtergaele 

et al. (2009), the main soil units in the Ulla river watershed are Umbric Leptosols and Umbric 

Regosols, representing 69% and 31%, respectively. The main land uses are forest, occupying 

57.2% of the area, and semi natural and agricultural areas, covering 40.3% (CLC 2012, n.d.). 
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Figure 8.1 Ulla River watershed location, digital terrain model, and identification of hydrometric stations and 

reservoirs. 

There are three reservoirs in the watershed: Portodemouros, Bandariz, and Touro (Figure 

8.1). Those reservoirs were constructed in cascade and work collectively, with Portodemouros 

placed at the beginning of the cascade, Touro at the end, and Bandariz in between. 

Portodemouros has a total capacity of 297 hm3, while Bandariz and Touro present much lower 

capacities, totalizing 2.7 hm3 and 3.78 hm3, respectively. Due to its significative storing 

capacity, Portodemouros reservoir can be used for flood control, however, the set of reservoirs 

is mainly responsible for energy production. The patterns of daily inflow and outflow of the 

two last reservoirs are very similar, since they are run-of-the-river dams (Figure 8.2b and c). 

However, Portodemouros works in a different way, presenting significative differences 

between the inflow and outflow patterns (Figure 8.2a and d). 
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Figure 8.2 Comparison of inflow and outflow in (a) Portodemouros, (b) Touro, and (c) Bandariz reservoirs for 

the period 2010-2018, and in (d) Portodemouros reservoir for the period 1990-2018. 

8.2.2 MOHID-Land description 

MOHID-Land is an open-source model (https://github.com/Mohid-Water-Modelling-

System/Mohid) and is part of the MOHID (Hydrodynamic Model) Water Modelling System. 

It is a fully distributed and physically based model adopting mass and momentum conservation 

equations considering a finite volume approach (Trancoso et al. 2009, Canuto et al., 2019, 

Oliveira et al., 2020). The model estimates water fluxes between four main compartments, 

namely, the atmosphere, the soil surface, the river network, and the porous media, which is also 

intimately related with the vegetation compartment. Excepting the atmosphere compartment, 

which is only responsible for providing the meteorological data needed to impose surface 

boundary conditions, the processes in all the other compartments are explicitly simulated. 

In MOHID-Land, the atmosphere compartment can deal with space and/or time variable 

data, and the input properties include precipitation, air temperature, relative humidity, wind 

velocity, and solar radiation and/or cloud cover.  

The simulated domain is discretized considering two grids, one in the surface plane and 

other in the vertical direction. While the first is defined according to the coordinate system 

chosen by the user, the last follows a cartesian coordinate system. The surface water movement 

is computed considering a 2D surface grid and solving the Saint-Venant equation in its 

conservative form, accounting for advection, pressure, and friction forces. The Saint-Venant 
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equation is also solved one-dimensionally (1D) for the river network. This network is derived 

from the digital terrain model represented in the 2D surface grid by connecting surface cell 

centers (nodes) and is characterized by a cross-section geometry defined by the user. The water 

fluxes between these two (2D and 1D) compartments are estimated according to a kinematic 

approach, neglecting bottom friction, and using an implicit algorithm to avoid instabilities. 

The porous media is discretized by combining the 2D surface grid with the vertical 

cartesian grid, defining a 3D domain with variable thickness layers. This compartment can 

receive or lose water from the river network, with fluxes being computed considering a pressure 

gradient in the interface of these two mediums. Besides the water coming from the drainage 

network, the porous media also receives water from the infiltration process, which is calculated 

according to Darcy’s law. In this 3D domain, the water movement is simulated using the 

Richards equation and considering the same grid for saturated and unsaturated flow. The soil 

hydraulic parameters are described using the van Genuchten-Mualem functional relationships 

(Mualem, 1976; van Genuchten, 1980). The saturation is reached when a cell exceeds the soil 

moisture threshold value defined by the user and, in that case, the model considers the saturated 

conductivity to compute flow, with pressure becoming hydrostatic and corrected by friction. 

To compute the lateral flow, the horizontal saturated hydraulic conductivity is given by the 

product of the vertical saturated hydraulic conductivity (Ksat,ver) and a factor (fh) set by the user.  

The soil water loss is mainly due to the evapotranspiration process, which is computed 

taking into account weather, crop, and soil conditions. The reference evapotranspiration (ETo) 

is first computed according to the FAO Penman–Monteith method (Allen et al., 1998). Then, 

the potential crop evapotranspiration (ETc) is obtained by multiplying the ETo by a single crop 

coefficient (Kc) representing standard crop conditions. ETc values are then partitioned into 

potential soil evaporation and crop transpiration rates based on the leaf area index (LAI) 

following Ritchie (1972). LAI is simulated using a modified version of the EPIC model 

(Neitsch et al., 2011, Williams et al., 1989) and considering a heat units approach for crop 

development, the crop development stages, and crop stress (Ramos et al., 2017). The actual 

transpiration is calculated based on the macroscopic approach proposed by Feddes et al. (1978), 

where root water uptake reductions are estimated considering the presence of depth-varying 

stressors (Šimůnek and Hopmans, 2009, Skaggs et al., 2006). The actual soil evaporation is 

estimated from the potential soil evaporation by imposing a pressure head threshold value 

(ASCE, 1996). 
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To avoid instability problems and save computational time, the model allows the use of 

a variable time step, which reaches higher values during dry seasons and lower values in rainy 

periods when water fluxes increase. 

8.2.2.1 Resrevoirs module 

Besides the main modules described above, MOHID-Land can also consider the 

existence of reservoirs in the river network domain. The operation of a reservoir needs several 

characteristics to be defined, namely, the minimum and maximum volumes, the minimum 

outflow (the definition of the maximum outflow is optional), the curve defining the relation 

between the level and the stored volume, the type of operation, the location in terms of 

coordinates, and the identification of the node in the river network where the reservoir is placed. 

Reservoir’s operation may be defined by the relationship between the level and the outflow as 

absolute value or as a percentage of the inflow, the percentage of the stored volume and the 

outflow as absolute value or as a percentage of the inflow, and the percentage of the stored 

volume and the outflow as a percentage of the maximum outflow. The user can also define the 

existence of discharges (in and/or out) and the state of the storage capacity (full, filled with a 

percentage of the total capacity, or empty) at the beginning of the simulation. In that sense, the 

reservoirs module works with each reservoirs as a box where a mass balance is performed. This 

mass balance takes into account the stored volume and the amount of water that enters and 

leaves the reservoir. The former considers the inflow from the river network and any input 

discharge defined by the user. The latter considers the outflow estimated by the type of 

operation and any output discharge defined by the user. The new stored volume is transformed 

into a level according to the level/volume curve specified by the user. 

8.2.2.2 Model set-up 

The MOHID-Land model was already implemented, calibrated, and validated in the 

study area as detailed in Oliveira et al. (2020). This study was carried out from 01/01/2008 to 

31/12/2017. Only the natural regime flow in the watershed was considered, with model 

calibration and validation using data from hydrometric stations not influenced by reservoirs’ 

operations. Following the sensitivity analysis performed, the best solution for the Ulla River 

model implementation was obtained considering a constant quadrangular horizontally spaced 

grid with 215 columns (West-East direction) and 115 rows (North-South direction), and a 

resolution of 0.005° (~500 m). The calibrated parameters were the Ksat,ver, the fh factor, and the 

dimensions of the cross-sections in the river network. 
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The elevation of the calibrated solution was interpolated based on the digital terrain 

model from the European Environment Agency (European Digital Elevation Model (EU-

DEM), n.d.), which has a resolution of 0.00028° (~30 m). The Manning coefficient for the river 

network was set to 0.035 s m-1/3, and the river cross-sections were assumed as rectangular with 

the dimensions varying according to the drained area of each node (Table 8.1). 

Table 8.1 Cross-sections dimensions. 

Drained area 

(km2) 

Top width 

(m) 

Depth 

(m) 

37.85 12.71 2.0 

62.65 16.45 2.0 

84.49 19.16 2.0 

123.35 23.24 3.0 

161.90 26.71 3.0 

195.10 29.38 3.0 

312.45 37.36 3.0 

503.12 46.95 4.0 

1164.36 73.16 4.0 

2246.34 102.33 4.0 

2785.08 114.21 4.0 

 

The surface Manning coefficients were specified based on the CLC 2012 (CLC 2012, 

n.d.) data. For each land use, a Manning coefficient was first defined according to Pestana et 

al. (2013). Considering the interpolation process, those values varied from 0.023 to 0.298 s m-

1/3. CLC 2012 data was further used to identify the vegetation in the watershed, which were 

made to correspond to data (vegetation growth parameters) in the MOHID’s vegetation 

database. For each type of vegetation, a single crop coefficient (Kc) was adopted based on Allen 

et al. (1998) tabulated values. After the interpolation process, the Kc values varied from 0.15 

to 1.0. 

The soil domain was vertically discretized considering three horizons that comprehended 

six grid layers. The layers had variable thickness increasing from surface to bottom: 0.3 

(surface), 0.3, 0.7, 0.7, 1.5, and 1.5 m (bottom). The first horizon included the first two layers, 

while the second horizon included the two middle layers, and, finally, the bottom horizon 

considered the last two layers. The van Genuchten-Mualem soil hydraulic parameters were 

obtained from the multilayered European Soil Hydraulic Database (ESHD, Tóth et al., 2017). 

For the surface horizon, ESHD data at 0.3 m depth was used to represent soil hydraulic data; 

ESHD data at 1.0 m depth was used to characterize the middle horizon; ESHD data at 2.0 m 

depth described the bottom horizon. In each of these horizons, three different sets of soil 

hydraulic data were identified (Figure 8.3). After model’s calibration, the van Genuchten-
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Mualem soil hydraulic parameters assumed the values presented in Table 8.2 for each set. The 

horizontal saturated hydraulic conductivity was obtained assuming the fh equal to 10. 

 

Figure 8.3 Soil IDs for each horizon: (a) surface; (b) middle; and (c) bottom horizons. 

 

Table 8.2 Soil hydraulic properties by soil ID: θs – saturated water content; θr – residual water content; η and α – 

empirical shape parameters; Ksat,ver – vertical saturated hydraulic conductivity; and l – pore connectivity/tortuosity 

parameter. 

ID 
θs 

(m3 m-3) 

θr 

(m3 m-3) 
η 

Ksat,ver 

(m3 s-1) 

α 

(m-1) 
l 

1 0.491 0.0 1.913 1.64×10-5 3.47 -4.3 

2 0.465 0.0 1.116 2.26×10-4 12.84 -5.0 

3 0.409 0.0 1.134 5.05×10-5 7.00 -5.0 

4 0.433 0.0 1.170 9.93×10-6 3.36 -5.0 

5 0.413 0.0 1.119 1.43×10-5 2.27 -5.0 

6 0.384 0.0 1.121 4.29×10-5 7.17 -5.0 

7 0.432 0.0 1.170 9.93×10-6 3.36 -5.0 

8 0.413 0.0 1.119 1.43×10-5 2.27 -5.0 

9 0.384 0.0 1.121 4.29×10-5 7.17 -5.0 

 

The meteorological boundary conditions were extracted from the ERA5-Reanalysis 

dataset (Hersbach et al., 2017), which is a gridded product with a resolution of 0.28125° (~31 

km) and makes available meteorological variables with an hourly time step. The variables used 

and interpolated to the case study grid were the u and v components of wind velocity at 10 m 
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height, dewpoint and air temperatures at 2 m height, surface solar radiation downwards, surface 

pressure, total cloud cover, and total precipitation. 

Reservoirs set-up 

The three reservoirs in the studied watershed were implemented according to the 

characteristics presented in Table 8.3. Their curves relating the level and the stored volume are 

given in Figure 8.4. These data were made available by Augas de Galicia (Augas de Galicia, 

2022), which is a public entity managing the Galicia-Costa basin district. 

Table 8.3 Implemented characteristics for Portodemouros, Bandariz and Touro reservoirs. 

 Portodemouros Bandariz Touro 

Node location 1476 1383 1247 

Coordinates 
42°51'21.6"N 

8°11'19.8"W 

42°50'09.6"N 

8°12'31.8"W 

42°49'51.6"N 

8°14'19.8"W 

Minimum volume (hm3) 54.5 0.33 0.015 

Maximum volume (hm3) 297 2.74 6.83 

Minimum outflow (m3 s-1) 10 10 10 

 

 

 

Figure 8.4 Level/stored volume curves for (a) Portodemouros, (b) Bandariz, and (c) Touro reservoirs. 

The operation for Bandariz and Touro reservoirs was defined based on the relation 

between the percentage of the stored volume and the outflow as a percentage of the inflow. If 

the stored volume was between 0 and 95%, the reservoir had no outflow. If the stored volume 

was above 96%, the outflow equaled the inflow, i.e., all the amount of water that entered the 

reservoir each instant left the reservoir in the same instant. For Portodemouros, no operation 

rule was set since there was no clear relation between the inflow and outflow values to be used 

in MOHID-Land. Thus, the daily outflow of Portodemouros reservoir was estimated using a 

neural network model and imposed to the hydrologic model as a timeseries. Additionally, and 
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by default, if the stored volume of any reservoir was equal or above the total capacity, the 

amount of water that reached the reservoir is transformed into outflow. 

8.2.3 Neural network model for reservoir outflow estimation 

To estimate Portodemouros reservoir daily outflow, a neural network model was 

developed and tuned. It was composed by a combination of convolutional and a long short-

term memory layers, hereafter defined as convolutional long short-term memory (CLSTM) 

model. This type of model was already applied for streamflow estimation by Ni et al. (2020) 

and Ghimire et al. (2021), who reported that, when compared with other neural network models 

(convolutional neural network, long short-term memory, multi-layer perceptron, extreme 

learning machine, etc.), the CLSTM represented the best solution. The demonstrated good 

behavior of CLSTM models is mainly related to its structure, which begins with the use of 

convolutional layers, responsible for the extraction of patterns in the input variables, and 

follows with long short-term layers, which are responsible for the prediction itself. 

As referred by Wang et al. (2019), convolutional neural networks (CNN) have their origin 

in artificial neural networks (ANN) but instead of fully connected layers, CNN use local 

connections, giving more importance to high correlations with nearby data. Developed by 

LeCun and Bengio (1995) to identify handwritten digits, CNN uses convolutional filtering to 

achieve high correlation with neighboring data. This means that this type of network works 

based on weight sharing concept, with the filters’ coefficients being shared for all input 

positions and their number and values being essential to capture data patterns (Wang et al., 

2019, Barino et al., 2020, Chong et al., 2020). CNNs are thus recognized as more suitable 

solutions to identify local patterns, with a certain identified pattern being able to be recognized 

in another independent occurrence (Tao et al., 2019). As Ghimire et al. (2021) describes, CNN 

models can be used to identify patterns in one (1D), two (2D) or three (3D) dimensions. Being 

more adequate for time series data analysis, the 1D CNN solution was selected to be used in 

this study as input layer. This selection avoided the manual feature extraction process since 1D 

convolutional algorithms are known for their powerful capability of doing it automatically. 

According to Huang et al. (2020), the time needed for training CNN models is one of its main 

weaknesses. 

As a type of recurrent neural network (RNN) model, long short-term memory (LSTM) 

models are known for their capacity to maintain historical information about all the past events 

of a sequence using a recurrent hidden unit (Elman, 1990, LeCun et al., 2015, Lipton et al., 

2015). This characteristic makes RNN very suitable for time series data modelling (Bengio et 
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al., 1994, Hochreiter and Schmidhuber, 1997, Saon and Picheny, 2017). However, RNN models 

demonstrate inability in learning long-distance information because of their already known 

vanishing and exploding gradient problems during the training process (Ghimire et al., 2021). 

Trying to solve this RNN problem, Hochreiter and Schmidhuber (1997) developed the LSTM 

structure, which has the capacity to learn long-term dependencies (Xu et al., 2020). 

8.2.3.1 Input data 

The forcing variables were selected from a set that included the daily values of inflow, 

level, precipitation, temperature, and volume. The usage of the outflow values as a forcing 

variable was avoided because, when there are no observed values, the outflow data generated 

by the model must be used to feed the model itself, which can lead to an accumulation and 

propagation of errors in the estimated values. Several tests were performed considering 

different forcing variables and their combinations to verify which better estimate the daily 

outflow from Portodemouros reservoir. Also, different time lags of those forcing variables were 

tested. The analysis of the tests results shows that the best performance of CLSTM model was 

obtained with inflow and level used as forcing variables, both considering the values of 1, 2 

and 3 days before the forecasted day. 

The daily values of inflow, level, and volume were provided by Augas de Galicia, and 

original hourly values of precipitation and temperature were obtained from ERA5-Reanalysis 

dataset, being then accumulated or averaged considering a daily time step. The dataset made 

available by Augas de Galicia covered a period of about 29 years, with data from 01/01/1990 

to 16/07/2018. 

8.2.3.2 Structure 

In this study, the model structure was developed based on Python language and using 

Keras package (Chollet et al., 2015), on top of TensorFlow (Abadi et al., 2016). As referred 

before, a CLSTM model is based on convolutional and long short-term memory layers. The 

types of layers made available by Keras package and used here were the Conv1D, MaxPooling, 

LSTM and dense. After several tests, the adopted model’s structure included a Conv1D input 

layer followed by a MaxPooling layer. Then, two other sets of Conv1D plus MaxPooling layers 

were adopted. After those, an LSTM layer was introduced, and the output layer was selected 

to be a dense layer (Figure 8.5). 
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Figure 8.5 CLSTM structure. 

For convolutional layers no activation function was defined, while the LSTM layer was 

activated with the hyperbolic tangent function. For the output dense layer, the exponential 

linear unit function was used as activation function. 

The optimizer, i.e., the training algorithm, was selected to be the Nadam algorithm, with 

a learning rate of 1×10-3, and an epsilon value of 1×10-7. The loss was estimated using the mean 

absolute error. Finally, the number of epochs and the batch size were also a target for some 

tests, with adopted values of 300 and 20, respectively. 

8.2.3.3 Model optimization 

The model optimization considered two phases, namely, the manual tunning of 

hyperparameters, and the optimization of weights reached with the training process. In both 

cases, the structure presented above was exposed to a subset of the original dataset, i.e., the 

training dataset, where the forcing and target variables were included. The training dataset was 

handled and prepared with Pandas (McKinney, 2010) and Scikit-learn (Pedregosa et al., 2011) 

packages, with the data being delayed with the first and scaled with the latter. The scaling 

function was the “MinMaxScaler”, which applies Eq. 8.1 to each variable in the dataset 

independently: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
(𝑥 − 𝑥𝑚𝑖𝑛)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
(𝑀 −𝑚) +𝑚 (Eq. 8.1) 

where xscaled is the scaled value, x is the original value, xmax and xmin are the maximum and 

minimum values of the variable being scaled, and M and m are the maximum and minimum 

values of the desired range of the scaled data. Considering that the maximum values of the 

variables cannot be represented in the dataset, the desired range was defined from 0 to 0.9. 

The tunning process was carried out to optimize the hyperparameters of the model. 

Several values for the number of filters and the kernel size for convolutional layers, and the 

number of units for the LSTM layer were tested. The best performance was reached with 16 
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filters and a kernel size of 10 for all the three convolutional layers and 10 units for the LSTM 

layer. The pool size was set as 2 for the first and second MaxPooling layers, and as 1 for the 

third layer of this type. 

The training process consists of changing the weights and bias values of a model to 

improve its capacity to estimate the target variable. The initialization of those values followed 

the default definitions of Keras package for all the layers, which means that the weights were 

initialized according to the Glorot uniform method (Glorot and Bengio, 2010), and the bias 

were initialized with value 0. However, this type of initialization and the consequent training 

process have a random nature associated, repeatedly resulting in different estimations of the 

same target variable even considering the same forcing variables and the same trained structure. 

To overcome this problem, the CLSTM model was exposed, trained, and the final weights were 

saved 100 times always considering the same training dataset, with the results being evaluated 

individually for each experiment. Based on these results, the model with the best performance 

was selected to estimate the outflow values for Portodemouros reservoir. 

8.2.4 Coupling MOHID-Land and CLSTM models 

The operationality of the coupled system, which includes the CLSTM and MOHID-Land 

simulations, was divided into two phases, one that comprehended the warm-up period, and 

other including the calibration and validation periods defined in Oliveira et al. (2020). Since 

MOHID-Land is a physical model, it was necessary to consider an initial warm-up period for 

the stabilization of the hydrological processes and to avoid the influence of the errors related 

to the imposed initial conditions in the results. 

In both phases, models were simulated on a daily basis, taking advantage of the 

possibility of doing continuous simulations in MOHID-Land. This means that in every 

simulation, the state of the system in the last simulated instant is saved and can be used as the 

initial state in the next simulation if date and time match. 

 In the warm-up simulation, used to stabilize the hydrological model, the  reservoirs’ 

module was deactivated. In the end of the warm-up period, the reservoirs’ module was activated 

and the initial conditions (level and stored volume) for the three reservoirs were manually 

imposed considering the measured values. Then, for each simulated day, the CLSTM model 

was the first to be run. This model was loaded with the weights already optimized and received 

the information about the level and the inflow of Portodemouros reservoir estimated by 

MOHID-Land for the three days before the simulated day. The CLSTM used this information 

to estimate the outflow for the simulated day. The outflow value estimated by the CLSTM 
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model was then imposed in MOHID-Land. A scheme representing the described process to 

couple both models is presented in Figure 8.6. This scheme was coded in the Python language. 

 

Figure 8.6 Operationality scheme for the modelling process. 

8.2.5 Model’s evaluation 

The CLSTM model used to predict the outflow from Portodemouros reservoir was 

evaluated considering a subset of the original dataset from Augas de Galicia, which was not 

previously exposed to the trained model. That subset is known as test dataset and contained 

pairs of forcing (inflow and level) and target (outflow) variables. Thus, the outflow was 

estimated based on the forcing variables and was then compared to the corresponding measured 

outflow. This comparison was based on a visual analysis, and the estimation of four different 

statistical indicators, namely, the coefficient of determination (R2), the percentage bias 

(PBIAS), the ratio of the root mean square error to the standard deviation of observation (RSR), 

and the Nash-Sutcliffe modeling efficiency (NSE), which were computed as follows: 

𝑅2 =

[
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 (Eq. 8.2) 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑋𝑖

𝑜𝑏𝑠 − 𝑋𝑖
𝑠𝑖𝑚)𝑝

𝑖=1

∑ 𝑋𝑖
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× 100 (Eq. 8.3) 
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 (Eq. 8.4) 
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𝑁𝑆𝐸 = 1 −
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𝑜𝑏𝑠 − 𝑋𝑖
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 (Eq. 8.5) 

where xi
obs and xi

sim are the outflow values observed and estimated by the model on day i, 

respectively, Xmean
obs and Xmean

sim are the average outflow considering the observed and the 

modelled values in the analyzed period, and p is the total number of days/values in this period. 

The test dataset corresponded to 10% of the size of the original dataset and covered the period 

between 19/09/2015 and 16/07/2018, totalizing 1023 daily values. 

In this study the evaluation of streamflow values focused on the hydrometric stations 

placed downstream the set of reservoirs and intended to verify the behavior of the coupled 

modelling system (MOHID-Land+CLSTM). This evaluation was performed by comparing the 

streamflow values estimated by the coupled modelling system with those measured in Ulla-

Touro and Ulla-Teo hydrometric stations. The validation of the coupled system was made from 

01/01/2009 to 31/12/2017 and was based on a visual analysis and the four statistical indicators 

presented before, namely, the R2, PBIAS, NSE, and RSR. According to Moriasi et al., 2007, 

the NSE and the R2 values should be higher than 0.5 and the PBIAS should be ±25% for the 

model performance to be considered satisfactory, while RSR values closer to 0 mean a more 

accurate model. 

8.3 Results 

8.3.1 MOHID-Land model 

In natural regime flow, MOHID-Land’s performance reached satisfactory to good results 

at Sar, Ulla, Arnego-Ulla and Deza hydrometric stations (Table 8.4) as shown in Oliveira et al. 

(2020). The R2 values ranged from 0.56 to 0.75 and 0.76 to 0.85 in the calibration (01/01/2009-

31/12/2012) and validation (01/01/2013-31/12/2017) periods, respectively. The RSR showed 

values lower than 0.67 for all stations in both periods, while the NSE presented values from 

0.55 to 0.72 in the calibration period and from 0.72 to 0.84 in the validation period. Finally, the 

PBIAS presented a slight overestimation of river flow in Sar hydrometric station (calibration: 

0.18%; validation: 16.09%) while in the other three stations the model was underestimating the 

river flow, with PBIAS values ranging from -12.29% to -8.96% and from -18.54% to -4.35% 

in calibration and validation periods, respectively. 

Table 8.4 Statistical indicators resulting from the comparison of the natural regime flow estimated by MOHID-

Land with the observed streamflow values in 6 hydrometric stations (Cal. – calibration, Val. – validation, adapted 

from: Oliveira et al., 2020). 

Station 
R2 (-) NSE (-) RSR (-) PBIAS (%) 

Cal. Val. Cal. Val. Cal. Val. Cal. Val. 

Sar 0.75 0.83 0.72 0.81 0.53 0.44 0.18 16.09 
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Station 
R2 (-) NSE (-) RSR (-) PBIAS (%) 

Cal. Val. Cal. Val. Cal. Val. Cal. Val. 

Ulla 0.56 0.76 0.55 0.72 0.67 0.53 -11.24 -18.54 

Arnego-Ulla 0.70 0.78 0.69 0.76 0.55 0.49 -12.29 -16.82 

Deza 0.74 0.85 0.72 0.84 0.53 0.40 -8.96 -4.35 

Ulla-Touro 0.46 0.52 -0.09 0.24 1.04 0.87 -19.06 -19.12 

Ulla-Teo 0.77 0.79 0.71 0.73 0.54 0.52 -16.68 -14.36 

 

Figure 8.7 compares the observed streamflow (black line) with the respective MOHID-

Land simulations without considering the influence of reservoirs (blue line) at Ulla-Touro and 

Ulla-Teo. Since these hydrometric stations have their natural regime flow altered by the 

operation of the set of reservoirs in the watershed, the performance of the hydrological model 

without reservoirs showed a significative decrease, as expected (Table 8.4). 

 

Figure 8.7 Comparison of modelled and observed streamflow in hydrometric stations (a) Ulla-Touro and (b) 

Ulla-Teo with and without considering the existence of reservoirs. 

8.3.2 CLSTM model 

To better evaluate the performance of CLSTM neural network model, the four statistical 

indicators were calculated for the set of 100 models trained with the same training dataset.  

Table 8.5 Average, minimum, maximum and standard deviation values of the four statistical parameters estimated 

for the set of 100 models ran. 

 R2 (-) NSE (-) RSR (-) PBIAS (%) 

Average 0.90 0.89 0.33 -1.71 

Minimum 0.89 0.86 0.31 -15.74 

Maximum 0.91 0.90 0.37 14.07 

Standard deviation 0.00 0.01 0.01 6.26 
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The behavior of the developed CLSTM model was extremely regular, with an R2 always 

above 0.89, and the NSE higher than 0.86. The worst PBIAS was -15.74%, and the maximum 

value of RSR was 0.37. More specifically, the trained model elected to represent the outflow 

estimation of Portodemouros reservoir obtained a NSE of 0.90, a R2 of 0.91, a PBIAS of -

2.61%, and a RSR of 0.31. Figure 8.8 shows the comparison between the modelled and the 

observed values for Portodemouros outflow. 

 

Figure 8.8 Comparison between modelled and observed Portodemouros outflow. 

The CLSTM predicted the outflow of Portodemouros reservoir very accurately. 

However, when the observed values showed accentuated differences in a short period of time, 

such as two consecutive days, the model demonstrated some difficulty in reproducing that 

behavior, being able to reproduce the increase-decrease behavior at the right instant but unable 

to reach correct values. This is the case of the outflow predictions for May and June of 2016 

(Figure 8.8). 

8.3.3 Coupled system 

In the coupled system (MOHID-Land+CLSTM), Portodemouros outflow was estimated 

with the CLSTM model considering the level and inflow estimated by MOHID-Land model. 

Then, the outflow predicted by the CLSTM model was imposed in MOHID-Land. Therefore, 

the inflow and outflow of the reservoir as well as the two hydrometric stations influenced by 

the presence of the reservoirs were the target of the validation of the coupled system. 

Figure 8.9a compares the observed and modelled inflow in Portodemouros reservoir, 

while Figure 8.9b shows the same comparison for the outflow. The observed (black line) and 

modelled (red line) streamflow comparison for Ulla-Tour and Ulla-Teo stations is presented in 

Figure 8.7a and Figure 8.7b, respectively. The four statistical indicators used to evaluate the 

model’s performance were also calculated for the inflow, outflow, and the streamflow in Ulla-

Touro and Ulla-Teo stations and are presented in Table 8.6. 
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Figure 8.9 Comparison between the modelled and observed (a) inflow and (b) outflow in Portodemouros 

reservoir. 

Table 8.6 Statistical parameters for inflow, outflow, and streamflow in Ulla-Touro and Ulla-Teo stations (Cal. – 

calibration, Val. – validation). The values between brackets represent the percentage of change of the statistical 

parameter to the corresponding value in the simulation without reservoirs. 

Station 
R2 (-) NSE (-) RSR (-) PBIAS (%) 

Cal. Val. Cal. Val. Cal. Val. Cal. Val. 

Inflow 0.79 0.81 0.76 0.77 0.49 0.48 -23.68 -28.38 

Outflow 0.71 0.66 0.64 0.55 0.60 0.67 -19.53 -25.35 

Ulla-Touro 
0.74 

(+61%) 

0.70 

(+35%) 

0.65 

(+822%) 

0.61 

(+154%) 

0.59 

(-43%) 

0.63 

(-28%) 

-17.20 

(-10%) 

-19.58 

(+2%) 

Ulla-Teo 
0.87 

(+13%) 

0.86 

(+9%) 

0.85 

(+20%) 

0.83 

(+14%) 

0.39 

(-28%) 

0.41 

(-21%) 

-15.48 

(-7%) 

-14.68 

(+2%) 

 

Inflows estimates in Portodemouros reservoir were in accordance with Oliveira et al. 

(2020). For the outflow values estimated with the CLSTM model considering the original 

dataset, the performance of the coupled system slightly decreased when compared with the 

previous indicators, with R2 of 0.66, NSE of 0.55, RSR of 0.67, and PBIAS of -25% for the 

validation period. The coupled system further showed a good performance when simulating 

streamflow in the two hydrometric stations (Ulla-Touro and Ulla-Teo), in which the regime 

flow is altered by the presence of the reservoirs. Considering both hydrometric stations, the R2 

improved about 30% compared with the results without reservoir, reaching a minimum of 0.70. 

The RSR indicator also demonstrated a better performance with values fitting the range from 

0.39 to 0.63 and revealing an average improvement of about 30%. The higher impact was 

observed for the NSE indicator, which increased about 253% with the values laying in the range 

from 0.61 to 0.85. Finally, the PBIAS showed an average decrease of about 4%. 
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Despite the good results obtained for the streamflow downstream reservoirs, it is 

important to denote that the reservoir’s level estimated by MOHID-Land model did not reach 

the minimum requirements to be classified as satisfactory (calibration: NSE=−2.44, R2=0.01, 

PBIAS=−3.16%, RSR=1.85; validation: NSE=0.00, R2=0.09, PBIAS=−0.67%, RSR=1.00). 

The coupled system overestimated Portodemouros level most of the time, with exception for 

the period between January 2013 and the middle of 2016, when the observed and modelled 

values were more similar (Figure 8.10). 

 

Figure 8.10 Comparison between modelled and observed level in Portoudemouros reservoir. 

It could be expected that this issue would affect streamflow estimation downstream the 

reservoir since the outflow estimated by CLSTM model considered the level values estimated 

by MOHID-Land. However, as demonstrated before, this issue did not significantly impact 

downstream results. 

8.3.4 Impact of reservoirs ‘operation on streamflow 

As referred to before, the reservoirs have an impact on the natural regime flow 

downstream those infrastructures. The impact in Ulla River watershed was here assessed by 

comparing the simulations under natural flow regime with the simulation of the coupled 

system. For this, the streamflow was evaluated in three locations along the river network, 

namely, at the Ulla-Touro and Ulla-Teo stations and at the outlet of the watershed. Table 8.7 

shows the minimum, maximum, average, and 2nd, 3rd and 4th quartiles values of the streamflow 

timeseries obtained for those locations considering the scenarios with (Res.) and without (No 

res.) reservoirs. 

Table 8.7 Alterations on streamflow downstream reservoirs considering the simulations without and with those 

infrastructures (No res. - without reservoirs; Res - with reservoirs). 

Statistical indicator 
Ulla-Touro Ulla-Teo Outlet 

No res. Res. No res. Res. No res. Res. 

Minimum (m3 s-1) 1.4 
6.2 

(+356%) 
3.6 

8.2 

(+127%) 
4.2 

8.7 

(+105%) 
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Statistical indicator 
Ulla-Touro Ulla-Teo Outlet 

No res. Res. No res. Res. No res. Res. 

Maximum (m3 s-1) 319.1 
260.8 

(-18%) 
462.2 

432.8 

(-6%) 
569.3 

511.9 

(-10%) 

Average (m3 s-1) 33.4 
33.2 

(-1%) 
62.1 

62.1 

(0%) 
74.1 

73.9 

(0%) 

2nd quartile (m3 s-1) 8.5 
10.9 

(+28%) 
17.2 

20.1 

(+17%) 
20.2 

23.4 

(+16%) 

3rd quartile (m3 s-1) 21.5 
22.0 

(+3%) 
42.0 

42.8 

(+2%) 
49.7 

50.2 

(+1%) 

4th quartile (m3 s-1) 43.5 
40.9 

(-6%) 
83.3 

79.8 

(-4%) 
99.2 

96.0 

(-3%) 

 

The most significative differences in streamflow occurred at the Ulla-Touro station, 

located immediately downstream the reservoirs and more influenced by reservoirs’ operations. 

The main differences between the two scenarios were observed in the smallest values, namely, 

the minimum and the 2nd quartile. In both cases, the streamflow showed an increase when the 

reservoirs were considered in the simulation, with the minimum streamflow increasing 105% 

in the outlet, 127% in Ulla-Teo, and 356% in Ulla-Touro, and the 2nd quartile increasing 16%, 

17% and 28% in the outlet, Ulla-Teo and Ulla-Touro, respectively. On the opposite, the main 

decreases were observed in the maximum and 4th quartile for all the evaluated points. However, 

the decreases of the highest values were not so significant as the differences observed for the 

smallest values, with the maximum values decreasing 10% in the outlet, 6% in Ulla-Teo and 

18% in Ulla-Touro and the 4th quartile presenting differences of -3%, -4% and -6% in the 

outlet, Ulla-Teo and Ulla-Touro, respectively. 

The distribution of streamflow along the year (Figure 8.11) showed a decrease in the 

average streamflow between October and December (wet season) when considering the 

reservoirs. Between January and March, also in the wet season, the streamflow only showed 

slight differences when considering or not the reservoirs. Finally, the dry season was totally 

characterized by an increase in the streamflow for the simulations with reservoirs, with the 

main differences found between July and September. For the same reasons presented before, 

Ulla-Touro station was the point where the main differences were observed. 
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Figure 8.11 Average monthly streamflow in Ulla-Touro and Ulla-Teo stations and in the outlet for the two 

simulated scenarios, i.e., without and with reservoirs. 

The behaviour presented in Figure 8.11 is the expected result when considering 

reservoirs’ operations since this type of infrastructure is commonly used to store water during 

the wet season, causing a decrease of downstream streamflow. On the other hand, it is expected 

that average streamflow increases during dry seasons due to the constant necessity of energy 

production throughout the year and the imposition of ecological flows downstream reservoirs 

to maintain the health of the ecosystems. 

8.4 Discussion 

The results of the presented study show that the direct incorporation of reservoirs’ 

operation in hydrologic modelling has a significative impact on the results of the modelled 

system, as already referred by Bellin et al. (2016). The development of the CLSTM model to 

predict Portodemouros outflow, which was after imposed in the hydrological model, needed to 

guarantee that the model estimation was good enough to avoid an error propagation. The 

elected CLSTM model reached a performance where the NSE was 0.90, the R2 was 0.91, and 

the PBIAS and RSR were -2.61% and 0.31, respectively, considering a test dataset. Similar 

results were obtained by Yang et al. (2019), who estimated the daily outflow of three 

multipurpose reservoirs located in Thailand, considering three different types of RNN models, 

namely, a non-linear autoregressive model with exogenous input (NAXR), a long short-term 

memory (LSTM), and a genetic algorithm based on NAXR (GA-NAXR). The authors 
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considered as forcing variables the inflow estimated by a hydrological model in the previous 

two days and the following two days together with the reservoir storage volume in the previous 

day. They obtained an average Pearson correlation coefficient of 0.91, an average NSE of 0.81, 

and an average PBIAS of -0.71% with the NARX model and considering the three modelled 

reservoirs. The LSTM and GA-NARX models reached an average Pearson correlation 

coefficient of 0.88 and 0.94, respectively, an average NSE of 0.72 and 0.88 and an average 

PBIAS of 0.22% and -0.24%, with the GA-NARX demonstrating the best performance. 

Hughes et al. (2021) demonstrated the ability of a modified version of the SHETRAN model 

to predict the outflow of Crummock Water Lake, located in the Upper Cocker catchment, in 

United Kingdom. By including a dynamic weir module in the original SHETRAN model, the 

authors deducted the behavior of sluices by comparing the outflow values of a static and a 

dynamic weir models. The developed approach reached an NSE of 0.82, a value similar to the 

ones obtained in the present study, but its application to other case studies presents several 

limitations. First, it can be very laborious since it was based on a generic framework that 

included 12 steps. Second, the implementation of that framework implied a deep knowledge 

about the geometry of control structures and the details of operating procedures, with the 

authors referring that the broad conceptual understanding of sluice operations needed for the 

implementation was obtained through site visits and operator interviews. 

On the other hand, the estimation of reservoirs’ outflow using neural network models, 

such as the CLSTM model used here can also contain several limitations. With the choice of 

the forcing variables being pointed out by several authors as crucial for a successful model 

(ASCE, 1996; Maier et al., 2010; Dolling and Varas, 2002; Wu et al., 2014; Juan et al., 2017), 

the consideration of other forcing variables should be evaluated. Also, the structure of this type 

of model, that includes the number of hidden layers, the number of nodes, the kernel size, the 

activation functions, and other characteristics, is usually optimized by a trial-and-error 

procedure. However, the number of options that can be adopted for each of those structural 

characteristics and their combination makes the search space too wide to evaluate all the 

possible solutions. Thus, the manual approach adopted here to define the model’s structure can 

be restrictive to the searching of the best solution since a small number of possible solutions 

were tested when considering the entire search space. It is then clear that the optimization of 

the structure of CLSTM model can improve the results. As suggested by Oliveira et al. (2023), 

this task can be done using tools that implement different algorithms to efficiently search for 

the best solution contained in a search space. 
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Considering the coupled system, the results showed a very clear and interesting 

improvement when compared with the implementation without reservoirs, with all the 

statistical indicators demonstrating a better performance in the coupled system for the two 

hydrometric stations influenced by reservoirs’ operations. Although the coupled system has 

demonstrated a very good performance it is important to refer that besides the limitations 

already pointed to the CLSTM model, the coupled system has its own limitations. Firstly, when 

CLSTM is incorporated into the system it will use an estimated inflow, in opposition with the 

observed values used to train the model. Thus, when the inflow value is not correctly estimated 

by the hydrologic model it will negatively influence the estimation of the outflow by the 

CLSTM model, leading to an exacerbation of the error downstream this point. Also, the level 

used by the CLSTM model to force the outflow estimation is simulated by a mass balance 

performed by the hydrologic model. However, MOHID-Land does not yet incorporate the 

reservoir’s loss by evaporation and infiltration, which can lead to an overestimation of the 

reservoir’s level as observed in Figure 8.10. As in the case of the inflow, if the level value that 

feeds the CLSTM model is far from the correct value, the estimated outflow will also be 

inaccurate and may lead to an increased error in downstream areas. 

Nevertheless, the results of this study agree with other studies. For instance, Yun et al. 

(2020) modified the original VIC model to contemplate the reservoirs ‘operations in the 

Lancang-Mekong River basin, in Asia, and compared the performance of the model with 

observed data in five hydrometric stations. Considering the calibration and validation periods, 

the author obtained NSE values ranging from 0.61 and 0.75 and a model bias that varied 

between -3% and 4% for daily streamflow. Following a similar approach, Dang et al. (2020) 

modified the VIC model to integrate reservoirs’ operation into hydrological simulations. 118 

solutions of the model with reservoirs and 109 solutions without reservoirs were run and 

automatically calibrated considering the upper Mekong River basin as case study. That set of 

models obtained NSE values from 0.68 to 0.79, and a transformed root mean square error from 

8.10 to 16.69, with the statistics of both solutions evenly distributed in those ranges. It is 

important to denote that the authors referred that, in the case of the implementations without 

reservoirs, the model reached such good performance probably because the model 

parameterization helped to compensate the structural error of the non-consideration of 

reservoirs. However, in both modified versions of the VIC model, reservoirs’ operations were 

imposed by the authors through the definition of several operation rules that implied the 

knowledge of reservoirs’ characteristics that sometimes are not easily available, such as the 

normal storage, the flood-limited storage, the environmentally friendly streamflow, the 
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maximum safe streamflow for the downstream area, the capacity of the turbines, the target 

storage, and others. This fact can limit the application of both methodologies in areas with 

limited information. 

Dong et al. (2023) adopted a similar approach to the one presented in this study, using 

two data-driven models to reproduce reservoirs behavior in terms of outflow, when data was 

available, and coupled them with a high-resolution model. For the reservoirs with no data, a 

calibration-free conceptual reservoir operation scheme was designed. Considering the Upper 

Yangtze River Basin, China as a case study, 10 reservoirs were considered, with 4 being 

simulated with the data-driven models and 6 being simulated with the conceptual scheme. The 

authors simulated the outflow and the storage of the reservoirs using a XGBoost model and an 

ANN model, with the first demonstrating the best performance for both properties. Considering 

the test period, XGBoost obtained NSE values higher than 0.85 for the outflow simulation and 

higher than 0.88 for the storage simulation, while the same indicator was higher than 0.80 and 

0.83 for the outflow and storage simulations, respectively, when the ANN was considered. 

Taking into account the set of hydrometric stations analyzed, the NSE values were higher than 

0.65.  

Finally, the reservoir’s downstream effects on streamflow values found in this study were 

also in accordance with Yun et al. (2020) and Dong et al. (2023). Both authors concluded that 

the presence of the reservoirs decreased the average streamflow during the wet season and 

increased in the dry season, with a higher increase during the dry season than the decrease in 

the wet season. In Ulla River basin, the annual average streamflow did not verify any changes; 

however, the differences in wet and dry seasons were also observed (Figure 8.11). During the 

wet season (Oct-Mar), the streamflow suffered a decrease of about 5%, 3% and 2% in Ulla-

Touro, Ulla-Teo and in the outlet of the watershed, respectively. For the dry season (Apr-Sep), 

increases of approximately 18%, 9% and 8% were estimated for those same points. At the same 

time, the maximum streamflow and the 4th quartile verified a decrease when the presence of 

the reservoirs was considered. The maximum streamflow decreased a maximum of 18% (from 

319 m3 s-1 to 261 m3 s-1) in Ulla-Touro station and a minimum of 6% (from 462 m3 s-1 to 433 

m3 s-1), while the 4th quartile presented decreases between 6% (from 44 m3 s-1 to 41 m3 s-1) and 

3% (from 99 m3 s-1 to 96 m3 s-1) at Ulla-Touro and at the outlet, respectively. The capacity of 

decreasing and control flow peaks is of extreme importance in Ulla River basin, since the 

downstream area is exposed to high flood risk exacerbated by the combination of intense 

rainfall events and the influence of high tides (Augas de Galicia, 2019). 
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8.5 Conclusion 

The approach presented and discussed in this work comprehended the direct integration 

of reservoirs operation into a hydrologic model. A CLSTM data-driven model was developed 

to estimate the reservoirs outflow, which values were then imposed in the MOHID-Land model. 

The case study focused on the Ulla River basin, which was the target of a previous work where 

MOHID-Land was implemented, calibrated, and validated for natural regime flow. In this 

watershed, a set of three reservoirs are present, with the one more upstream having the higher 

storing capacity while the following two work as run-of-the-river dams. The operation of run-

of-the-river dams was simulated with an operation curve that relates the level, the inflow and 

the outflow of the reservoirs, and the outflow of the high-capacity reservoir was estimated 

using the CLSTM model. The target of this work was to analyze how streamflow simulations 

improved in the areas where the natural regime flow was modified by reservoirs’ operations 

using the proposed coupled system. The main conclusions were: 

1. The CLSTM model selected to represent Portodemouros’ outflow showed a very good 

performance, with NSE, R2 and RSR values of 0.90, 0.91, and 0.31, respectively. The 

PBIAS was -2.61% indicating a very slight underestimation of the reservoir outflow. 

2. The implementation of the coupled system demonstrated a significative improvement 

of streamflow estimations in areas downstream reservoirs, with the NSE increasing 

from a minimum of -0.09 without reservoirs to a minimum of 0.61 with reservoirs. 

Also, the R2 demonstrated the same improvement, increasing from a minimum of 0.46 

to 0.70 without and with reservoirs, respectively. 

3. The MOHID-Land model failed to reproduce the level of the high-capacity reservoir, 

in part because the model does not include evaporation losses. However, the lack of 

accuracy did not have a significative impact on the performance of the coupled system. 

4. According to the validation performed downstream reservoirs, the basic operation 

curves selected to simulate the function of the two run-of-the-river dams in the study 

domain seemed adequate.  

5. For the modelled 10-year period, the impacts downstream reservoirs were in line with 

other studies, with the maximum streamflow (wet season) values experiencing a 

decrease and the minimum values (dry season) suffering an increase. However, the 

average streamflow did not show any increase or decrease tendency. 

Besides the excellent results obtained in this study, future applications of the 

methodology should be tested and evaluated to understand its applicability to different 
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scenarios. One of the doubts that remains is if the CLSTM model has the capacity to reproduce 

the behavior of a reservoir where water is used for irrigation, which is characterized by punctual 

discharges in time, instead of an almost continuous discharge as in Portodemouros. Also, the 

capability of the trained CLSTM model in reproducing outflow values of other reservoirs with 

similar purposes should be addressed. 
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9 Conclusions 

The work presented here proved the ability of physically based models, in particular 

MOHID-Land, to simulate daily natural regime flow accurately at the watershed scale. 

However, implementations on large and too diversified domains containing relatively small 

and independent watersheds should be disregarded. This type of implementation, where the 

sub-domains need to be characterized in detail to correctly catch all the processes occurring 

there, needs high resolution grids to reach good results. However, those high-resolution 

solutions can raise the computational time to levels that are not acceptable, namely, to carry 

out the calibration and validation processes. At the same time, the generalization of some 

parameters considered by MOHID-Land makes the calibration process on those vast domains 

difficult. 

The performance of a sensitivity analysis to MOHID-Land model was essential to 

successfully simulate Maranhão and Ulla River watersheds for natural regime flow. With the 

sensitivity analysis performed in the Ulla River watershed, the resolution of the simulation 

grid, the choice of the infiltration method, and the evapotranspiration process demonstrated to 

be the main factors influencing river flow generation. The soil hydraulic properties, the depth 

of the soil profile, and the dimensions of the river cross-sections, which basically control the 

interactions between the porous media and the river, influenced baseflow. Peak flows were 

mostly constrained by the channel’s Manning coefficient, as well as the dimensions of the river 

cross-sections. 

The monitoring network in Ulla River watershed allowed to accurately calibrate and 

validate the natural regime flow in most of the watershed area. However, for Maranhão, the 

situation was the opposite. This watershed was characterized by a significant lack of 

information about what concerns the streamflow. Thus, the model was calibrated and validated 

for a sub-basin that drains about 40% of Maranhão watershed. The calibrated parameters were 

then extended to the entire watershed and the results were validated with a monthly mass 

balance at the reservoir, which represents the outlet of the studied domain. 

Considering also Maranhão watershed and trying to reach better computational times, a 

neural network model was also applied to estimate streamflow. After several tests at the sub-

basin scale, a convolutional neural network (CNN) model considering the precipitation as 

forcing variable demonstrated to be the best solution for this case. With the CNN model trained 

and validated for the sub-basin, the extension of this model for the entire Maranhão watershed 

was performed replacing the values of the forcing variable by the precipitation of the larger 
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domain. As in the case of MOHID-Land, those results were validated at the reservoir level 

considering a monthly mass balance. 

Results demonstrated that MOHID-Land and the CNN model can reproduce the natural 

regime flow in the sub-basin with satisfactory to very good performances. In turn, the extension 

of the calibrated and trained models to the entire Maranhão watershed showed identical 

performances, classified as good. Nevertheless, the study allowed to understand that the 

application of neural network models can be limited in what concerns the study of future 

scenarios or events that go beyond the observed data. This limitation is mainly related to the 

lack of physical comprehension to respond to events that were not verified before and with the 

difficulty of including all the data needed to characterize future modifications in the forcing 

variables. These limitations are not verified when applying a physical-based model, and the 

inclusion of the changes in future scenarios only finds difficulties in the uncertainty of the 

forecasts of those changes. However, the implementation of physical models faces other 

problems, such as the detail needed to characterize the modelled domain and the computational 

needs to run long-term simulations. Thus, hybrid solutions, combining different types of 

models or different models, can be used to overcome the shortcomings of both approaches. 

Finally, considering that the implementation of MOHID-Land in the Guadiana watershed 

showed that the representation of the impact of reservoirs’ operation in streamflow regime is 

very difficult to capture and reproduce using only purely hydrological models, a hybrid solution 

was developed taking advantage of the characteristics of neural network models. That hybrid 

solution coupled a convolutional long short-term memory (CLSTM) model for reservoir’s 

outflow estimation with MOHID-Land implementation in Ulla River watershed. With 

MOHID-Land feeding the CLSTM model with inflow and level values, the outflow estimated 

by the CLSTM was then imposed into MOHID-Land model. Results showed a drastic 

improvement in streamflow estimates downstream the reservoir, proving the capacity of the 

proposed approach to simulate the impact of the reservoir in the alteration of streamflow 

regime. 

In what concerns the research objectives of this thesis, it is now possible to conclude that 

hydrological modelling for water management purposes should be focused on the watershed 

scale. The modelling task can be performed using models with different levels of complexity, 

but it is essential to keep in mind that less complex models have limitations in the representation 

of scenarios in which the considered changes cannot be incorporated in the input data that feed 

the models. It has also been demonstrated that hydrological modelling can benefit from hybrid 

approaches where different types of models are considered, especially when modelled systems 
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have a random and not purely physical component associated with human behavior. Finally, 

the contribution of hydrological modelling for the systems understanding and a consequent 

improvement of water resources management has stayed clear. 

In that sense, it is considered that the hypotheses presented in this thesis was verified 

with the combination of a data-driven and a physical based models demonstrating the ability 

to improve streamflow estimations when the human behavior takes place, as in the case of 

reservoirs’ operation. 

9.1 Future work 

As referred to before, water availability is not only related to water quantity. It is also 

extremely important to guarantee an appropriate water quality to maintain ecosystems and to 

assure its availability for consumption. Thus, one of the works to be carried out in the future is 

to include the simulation of biogeochemical cycles with MOHID-Land to assess water quality 

in long-term simulations as those presented here. 

Besides that, several other questions arise from the investigation described here. When 

only MOHID-Land simulations are considered the main question that emerges at this point is: 

how should irrigation be considered at watershed scale using without sacrificing the 

computational time? Also, future efforts should be made to include the simulation of reservoirs’ 

surface and bottom fluxes into MOHID-Land model. 

Concerning the modelling performed only with neural networks, the main questions that 

arise are: 

• How physical processes can be incorporated into neural network solutions to give an 

insight of the system behavior when using this type of technique? Will it be possible 

to consider different conditions from those with it the neural network was trained to 

simulate different scenarios? 

• Is the CLSTM structure developed in this work for outflow estimation capable of 

estimating the corresponding values for other high-capacity reservoirs just with a new 

training process? 

• What is the suitability of neural network models to predict the outflow of supply 

reservoirs, which are characterized by punctual discharges to the downstream reach? 

And to predict the usual urban, industrial, and agricultural withdrawals? 

Lastly, and taking into account the hybrid approach proposed here, the matter of whether 

the coupled model is adequate for more complex domains should be a target for future works. 
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This subject can have special impact in domains where more than one high-capacity reservoir 

is present or where a mix of high-capacity, supply and run-of-the river dams are identified.  

Also, future developments can consider the combination of neural network models and 

observed data, such as satellite images, to predict the initial conditions of hydrological systems. 

Then, that information can be assimilated by a hydrological model, and it is expected that 

predictions improve, and the time needed by the model to forget initial conditions can be 

significantly reduced. It can be especially advantageous in warning and control systems where 

time is crucial. 

 

 

 

 


