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Nonlinear control of autonomous air vehicles

David Alexandre Cabecinhas

Supervisor: Doctor Carlos Jorge Ferreira Silvestre
Co-Supervisor: Doctor Rita Maria Mendes de Almeida Correia da Cunha

Thesis approved in public session to obtain the PhD Degree in
Electrical and Computer Engineering

Jury final classification: Pass with Distinction

Jury

Chairperson: Chairman of the IST Scientific Board
Members of the committee:

Doctor Tarek Hamel
Doctor Urbano José Carreira Nunes
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Full Professor, Université Nice Sophia Antipolis, France

Doctor Urbano José Carreira Nunes
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Abstract

This thesis focuses on the challenge of achieving autonomous control of aerial vehicles, mo-

tivated by the requirements of current, and yet to be envisaged, applications of unmanned

aerial vehicles (UAVs). Particular emphasis is given to the design and experimental

evaluation of control algorithms that are simultaneously rooted in solid principles from

nonlinear systems theory and specifically targeted at applications of interest for vertical

takeoff-and-landing rotorcraft, in particular quadrotor vehicles. The motion control prob-

lems addressed include stabilization, trajectory tracking, and path following, all defined

in free-flight mode, and robust take-off and landing taking into account interaction with

the environment. The first key contribution of this thesis is a landmark-based controller

for force and torque actuation that almost globally stabilizes a fully-actuated rigid body.

The controller is based on the position coordinates of a collection of landmarks fixed

in the environment and velocity measurements as observed from the vehicle. The next

contributions focus on designing tracking controllers for more realistic vehicle models. A

trajectory tracking controller is proposed for steering a quadrotor vehicle along a time-

dependent trajectory considering constant force disturbances and ensuring actuation

bounds. In an effort to achieve global stabilization, the trajectory tracking problem is

relaxed and a controller to steer a quadrotor vehicle along a predefined path is presented,

with a secondary control objective related to the velocity. The proposed solution guaran-

tees global convergence of the closed-loop path following error to zero in the presence

of constant disturbances and ensures that the actuation does not grow unbounded as a

function of the position error. The remaining main contributions go a step further in the

effort to improve the autonomy of the vehicle, and include the design of a hybrid robust

take-off and landing maneuver and an output-feedback controller for free-flight. The

robust take-off and landing of a quadrotor UAV is targeted at critical scenarios, where

sloped terrains and surrounding obstacles are present. A cascaded output-feedback archi-

tecture comprising a nonlinear attitude observer and a nonlinear controller is proposed

for position and attitude stabilization of a quadrotor based on measurements provided by

a pan and tilt camera and rate gyros.

Keywords: trajectory tracking; path following; backstepping; adaptive control; output-

feedback; vision-based control; stability of nonlinear systems; hybrid systems; autonomous

unmanned aerial vehicles; quadrotor vehicles.
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Resumo

Esta tese tem como foco o desafio de conseguir controlo autónomo de veı́culos aéreos,

motivado pelos requerimentos das aplicações actuais e futuras de veı́culos aéreos não

tripulados. É prestada particular ênfase ao desenho e avaliação experimental de algorit-

mos de controlo que sejam simultaneamente baseados em princı́pios sólidos de teoria

de sistemas não lineares e especificamente direccionados a aplicações de interesse para

veı́culos a rotor capazes de descolagem vertical. Os problemas de controlo de movimento

endereçados incluem estabilização, seguimento de trajectórias e seguimentos de caminhos,

definidos em voo livre, e descolagem e aterragem robustos tendo em conta interações com

o ambiente. A primeira contribuição-chave desta tese é um controlador baseado em mar-

cas para actuação em força e momento que estabiliza quase-globalmente um corpo rı́gido

completamente actuado. O controlador é baseado nas coordenadas de posição de uma

colecção de marcas fixa no ambiente e medidas de velocidade observadas do veı́culo. As

contribuições seguintes focam-se no desenho de controladores para modelos de veı́culos

mais realistas. Um controlador de seguimento de trajectória é proposto para guiar um

veı́culo quadrirotor segundo uma trajectória na presença de perturbações constantes em

força e assegurando que a actuação é limitada. Num esforço para conseguir estabilidade

global, o problema de seguimento de trajectória é relaxado para um problema de segui-

mento de caminho para um veı́culo quadrirotor, com um objectivo secundário relacionado

com a velocidade. A solução proposta garante, em malha fechada, convergência global

do erro de seguimento de caminho para zero, na presença de perturbações constantes

em força e assegura que que a actuação é limitada como função do erro de posição. As

restantes contribuições-chave são esforços para melhorar a autonomia do veı́culo e in-

cluem o desenho de um controlador hı́brido robusto para manobras de descolagem e

aterragem e de um controlador para voo livre baseado em retroação da saı́da. A manobra

de descolagem e aterragem robusta para um quadrirotor é direccionada a cenários crı́ticos,

em terrenos inclinados e com obstáculos circundantes. Uma arquitectura em cascada que

inclui um observador de atitude não-linear e um controlador não-linear é proposta para

estabilização em posição e atitude de um veı́culo quadrirotor baseada em medidas obtidas

por uma câmara capaz de movimento horizontal e inclinação e por giroscópios.

Palavras-chave: Seguimento de trajectórias; seguimento de caminhos; backstepping;

controlo adaptativo; retroacção da saı́da; controlo baseado em visão; sistemas hı́bridos;

estabilidade de sistemas não lineares; veı́culos aéreos não-tripulados; veı́culos quadriro-

tores.
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Notation

R

set of real numbers.

R
n

set of n-dimensional vectors with real entries.

R
n×m

set of n×m matrices with real entries.

a,A,α,Γ

scalar variable or constant.

a,α

vector variable or constant.

ai

element i of a vector a ∈Rn.

A,γ

matrix variable or constant.

aij

element of a matrix A ∈Rn×m, located at row i and column j.

0

vector of zeros of the appropriate length, 0 = [0 0 . . . 0]T .

1

vector of ones of the appropriate length, 1 = [1 1 . . . 1]T .

ei

the ith unitary vector. The vectors e1, e2, and e3 denote the unit vectors co-directional

with the x, y, and z axes, respectively.

In

n×n identity matrix.

(.)T

transpose operator of a vector or matrix.
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Notation

(.)−1

matrix inverse operator.

sign(.)

signum function of the elements of its argument, possibly a vector or matrix.

|.|

absolute value operator, for scalar arguments.

‖.‖

norm operator, for vector arguments.

detA

matrix determinant operator, A ∈Rn×n.

tr(.)

trace of a matrix operator.

diag(A1, . . . ,An)

block diagonal matrix composed by the matrix elements A1 to An.

f ′(x)

partial derivative a function with respect to the parameter, f ′(x) = ∂f
∂x (x).

ḟ (x)

total time derivative of a function, ḟ (x(t)) = f ′(x(t))ẋ(t).

SO(n)

group of n×n proper rotation matrices, SO(n) = {R ∈Rn×n : R RT = In,det R = 1}.

SE(n)

special euclidean group of rigid body transformations in n-dimensional space, where

each element (R,p) is composed of a proper rotation matrix and a translation vector,

such that SE(n) = {R,p : R ∈ SO(n),p ∈Rn}.

so(n)

Lie algebra associated with the Lie group SO(n).

se(n)

Lie algebra associated with the Lie group SE(n).
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Notation

{I}

local inertial reference frame.

{B}

body-fixed reference frame, rigidly attached to the vehicle.

B
AR

rotation matrix in SO(3) from reference frame {B} to reference frame {A}.

Rx(.)

rotation matrix in SO(3) about the x-axis of the argument angle.

R y(.)

rotation matrix in SO(3) about the y-axis of the argument angle.

R z(.)

rotation matrix in SO(3) about the z-axis of the argument angle.

x̃

the error in estimating the unknown quantity x, defined as x̃ = x − x̂.

x̂

the estimate of the unknown quantity x.

σ (s)

A function σ (s) : R→R is a saturation function if it is differentiable and verifies, for

positive M and σmax,

0 < σ ′(s) <M, for all s,

σ (−s) = −σ (s), for all s,

sσ (s) > 0, for all s , 0, σ (0) = 0,

lim
s→±∞

σ (s) = ±σmax.

.

a×b

external product of vector a and b.

S(x)

the skew-symmetric operator map is an isomorphism between R
3 and the Lie algebra

so(3), denoted as S(x) : R3→ so(3), and verifies S(x)y = x× y =, where x,y ∈R3.
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S(x)−1

the inverse map for the skew operator, S−1(.) : so(3) → R
3, is defined such that

S−1(S(x)) = x.
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1
Introduction

1.1 Motivation

Over the past decades small-scale unmanned aerial vehicles (UAVs) have evolved from

a hobby to an industry where the vehicles are mass produced on a wide range of sizes

and serve as robust commercial and research platforms. Fueling this interest is the fact

that aerial vehicles are no longer restricted to being remote controlled airships but are

progressively being imbued with autonomous capabilities, so that a larger number of

complex missions can be carried out by non-skilled operators or even without any human

intervention.

Autonomous and remotely operated UAVs perform a plethora of civilian operations

with most of them falling under the umbrella term of remote sensing. Unmanned aerial

vehicles provide stable platforms that are not restricted to a given location in space and

can be equipped with different purpose sensors and survey a wide region in a short time

span. The UAV platforms also provide access to areas which are hazardous to human

life or inaccessible by conventional means, as its operation in risk theaters does not

endanger human lives. Prominent examples include search and rescue operations at sea

or inhospitable locations and post-disaster assessment at a nuclear site (see the recent

Fukushima Daiichi nuclear disaster [Gui12], on the wake of a major earthquake and

tsunami). Another important civilian application of UAVs in dangerous environments

is forest fire detection and monitoring [Emb]. The autonomy of the vehicles enables

sustained flight, in both day and night conditions, and provides the fire crews with helpful

real-time data, like thermal imaging, wind speed and temperature profiles, so they can

optimize the fire suppression efforts.

Commercially, UAVs can be used to save time and money by efficiently performing

tasks which previously required professional pilots, a crew, and a full scale helicopter.

Examples include the inspection of structures such as oil and gas pipelines, power lines,
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1. Introduction

bridges, and industrial buildings such as power plants and mills. Moreover, it is common

for oil and gas pipelines to cross vast regions in dangerous and unsafe areas. These

stretches of pipeline can be continuously patrolled by UAVs equipped with night vision

cameras, in order to keep thieves, pirates, and other attackers at bay, improving the

security of both workers and equipment [Aer].

The unique ability of unmanned aircraft to penetrate areas which may be too dangerous

to risk manned flights has also been exploited for scientific research. The National

Oceanic and Atmospheric Administration (NOAA) began utilizing an unmanned aircraft

system in 2006 as a hurricane hunter. Beyond the data typically obtained with manned

hurricane hunters, the UAV system provides measurements far closer to the water surface

than previously captured and can be used to obtain data in severe weather conditions,

without putting human lives at stake. . Another use of UAVs for scientific research in

extreme conditions is being carried out by the British Antarctic Survey in Antarctica [Bri].

Unmanned aerial platforms are also starting to have a predominant role in agriculture

where they can be used for spraying, seeding, remote sensing, precision agriculture, frost

mitigation and variable rate dispersal. The large-scale Yamaha RMAX helicopters have

been used for monitoring of crops and rice fields spraying in Japan [rma]. Additional

applications include environmental surveys and helping animal conservation efforts.

The popularity that UAVs enjoy nowadays, both as a mass market hobby and as

commercial and research platforms, was only made possible by recent technological

progress in several key areas. We now detail some of these improvements in the areas

of aerial platforms, sensors, and actuators, before going into their applications and

automation challenges.

Power sources play a preponderous role in defining the characteristics of the aircraft

they power. Internal combustion engines are the most common power source for large out-

door aircraft due to the unsurpassed endurance and range that they provide. Nonetheless,

electrical motors and related components have experienced a tremendous evolution, al-

lowing electrical vehicles to be competitive with respect to their gas powered counterparts,

in all but the most endurance demanding applications. Electrical motors are cleaner than

traditional combustion engines and allow for the use of aerial vehicles in closed spaces

and in situations where combustion engines are a potential hazard. The development of

strong rare-earth magnets led to powerful and efficient motors. These are produced in an

array of sizes, ranging from large motors that can power heavy aircraft to the miniature

scale, where highly agile aerial rotorcraft vehicles spanning only a few centimeters can

be produced. Battery technology also evolved considerably over the past years. Com-

mon lithium polymer (LiPo) batteries now pack enough energy density to allow even

the smallest rotorcraft to fly from 10 to 20 minutes. Besides high energy densities, LiPo
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1.1 Motivation

batteries are capable of high discharge rates, which are required for aggressive maneuvers

and aerobatic flight. Along with the motors, the servo actuators for the moving control

surfaces and blades also evolved to a point that enables the production of miniature linear

and angular actuators, which are fast enough to enable aggressive controlled flight.

Sensors are a fundamental component of an autonomous aerial vehicle. The UAV

depends on them to assess its current state and perceive the environment, so that it can

react in the most appropriate way to the internal and external conditions it is experienc-

ing. Sensor outputs are used to estimate the UAV state and to generate the appropriate

control action, in order to progress towards the mission goal, while avoiding potential

hazards. Typically UAVs are equipped with additional sensors that, while not required for

a successful autonomous flight, are needed to achieve the objectives of the envisaged ap-

plication. These additional sensors might include video cameras, thermographic cameras,

air quality sensors, thermometers, radar and doppler radar, laser rangefinders, among

other alternatives, depending on the mission objectives. The miniaturization effort and the

emergence of micro electro mechanical systems (MEMS) technology influenced the sensors

that can be carried on an autonomous aerial vehicle. Researchers and UAV developers

now have at their disposal small, lightweight, and sufficiently accurate sensors that enable

an autonomous vehicle to estimate its state and help its self-stabilization.

The state of a rigid body, such as an UAV, is composed by its position, attitude, velocity

and angular velocity. The angular states are the ones for which the most accurate onboard

sensors exist. Modern inertial measurement units (IMUs), comprising gyroscopes, ac-

celerometers and magnetometers, are available that output the estimated vehicle attitude

and angular velocity. They exist in a wide range of prices starting from the cheapest, but

also less accurate, used in toys and hobby vehicles to the intermediate, used essentially for

research platforms, both based on MEMS technology. On the more accurate range we find

IMUs based on fiber optic gyros (FOGs) and laser ring gyros (LRGs) technology, which

are expensive, export-restricted, and used mostly for large civilian and military aircraft,

submarines, as well as missiles and satellites.

For positioning, aerial vehicles that operate outdoors are able to use global navigation

satellite systems (GNSSs) such as the american global positioning system (GPS), the russian

GLONASS, and, in the future, the european Galileo. The GPS system, although initially a

military effort, has been open to civilians in its non-degraded accuracy mode since the year

2000. There are several problems with the GPS approach to UAV positioning, primarily

concerning the location accuracy, as the positions obtained from GPS receivers have, in

the best circumstances, standard deviations in the order of meters. Differential global

positioning system (DGPS) and real time kinematic (RTK) are improvements over plain

GPS that can increase the accuracy of the position estimated to the order of centimeters.
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However, they require additional ground-based reference stations that also acquire GPS

signals so the onboard and the fixed ground-based station data can be compared and

improved upon, using the fact that the ground station is at a known fixed position and

that the atmospheric perturbations suffered by the GPS signals received at the vehicle

and the ground station are the same. Another drawback of current GPS technology is

that the position information is obtained at a low sampling rate, typically 1 Hz. As a

consequence, neither the positions nor the velocity estimates obtained by filtering GPS

signals are very accurate and an UAV cannot rely solely upon GPS positioning signals for

high precision flight. As previously mentioned, satellite navigation is only feasible for

vehicles operating outdoor in unobstructed environments. In indoor environments, or

outdoors among high buildings, the satellite signals are weak and satellite-only navigation

is impossible. A solution to fly an autonomous UAV under these circumstances is the use

of additional short range sensors, such as onboard cameras, laser range finders or sonars,

to determine the relative distance to the ground and obstacles around the vehicle. These

sensors measure distances at much higher sampling rates than GPS (typically in the order

of 50 Hz), and the velocity estimates obtained by discrete differentiation and filtering of

the position signals are usable for control purposes.

As an alternative to GNSSs, other external sensor approaches can also be employed

to the yield absolute measurements for the positioning problem. Absolute position

measurements are typically obtained from an array of cameras that observes the vehicle

and determines its position by computer vision methods. In this scenario, the position is

determined by an offboard computer, and is relayed to the vehicle as soon as it is available.

Through triangulation of matching image points across high resolution and high speed

video cameras it is possible to obtain all of the vehicle state information (position, velocity,

attitude and angular velocity) with sub-milimeter and sub-degree accurately at high

sampling rates, typically in the order of hundreds of Hz. This approach provides the

best results for estimating position and velocity but requires a room equipped with a

fixed camera setup and a priori calibration of the cameras. Its usefulness is limited to the

room where the camera setup is installed as it is not practical to transport the camera

setup and recalibrate it for an outdoor UAV mission. In order to overcome this practical

limitation, the use of lasers and 3D time-of-flight cameras has been proposed for vehicle

simultaneous localization and mapping (SLAM). In this mode, the vehicle builds a map of

the terrain while simultaneously locating itself, using for that purpose the information

provided by the sensors along the way. SLAM is still an active research topic in the UAV

and mobile robotics community and has had moderate success in exploring structured

and, to a lesser degree, unstructured environments.

The development of novel communication technologies and the ongoing effort of
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computer miniaturization that is still taking place also contributed to the surge in UAVs

and their applications. Better communication channels brought out by spread spec-

trum techniques enable the operation of multiple vehicles simultaneously without radio

interference. Additionally, modern WiFi hardware and protocols enable the real-time

transmission of the large quantities of data generated by onboard sensors, including live

video streams and laser rangefinder scans, from the vehicles to ground stations for further

offboard analysis. This renders the data analysis faster, as we are not constrained by the

computational power available onboard nor by the time it takes for the vehicle to return

from its mission and the data to be finally transferred to a more powerful computing

platform for analysis. The ongoing microcomputer revolution brought innovations that

contribute for a more complete autonomy of aerial vehicles. The miniaturization efforts

taken by microchip companies, which have supported Moore’s Law for more than half

a century, have made possible for a device as small as a cellphone to carry the same

computational power that some years ago was only available on desktop computers. The

ever increasing performance of microcomputers has enabled even small UAVs not only to

execute advanced control algorithms for self stabilization but also to employ computation-

ally heavy techniques such as image processing to propel more sophisticated navigation

and control algorithms. Nowadays, even medium sized UAVs can easily carry onboard the

computational power available to the best laptop computers, thereby enabling the use of

state of the art image and video processing techniques, allied to computationally heavy

SLAM algorithms, to achieve the best navigation estimates possible.

The aforementioned technological advances have given rise to a variety of aircraft

platforms, each with different characteristics regarding payload, autonomy, and flying

qualities. We now describe some of these platforms, restricting ourselves to rotorcraft

similar in concept and maneuverability to the helicopter, in order to keep the discussion

focused on the subject matter of the thesis.

Toy helicopters are small electric helicopters, usually with a coaxial rotor configuration

and mechanically stabilized with a stabilizer bar. The possible control actions span from

2 control inputs (thrust and yaw) all the way to 4 control inputs (thrust, yaw, pitch and

roll). The coaxial configuration and the stabilizer bar mechanically provide stability

augmentation, resulting in vehicles that are easy to control and making them popular

with children. The downside of the additional stabilization is that the resulting vehicles

are slow, limited in the attitude angles they can attain, and do not fulfill their potential as

flying machines. Moreover, the extra stabilization induces undesirable couplings and side

effects, like the pendulum effect that one can see when trying to abruptly start moving or

make one of these vehicles come to a full halt. This also causes these rotorcraft to be poor

flyers in even the lightest wind conditions as they cannot tilt enough to counteract the
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Figure 1.1: Picooz micro helicopter.

Figure 1.2: CX2 coaxial helicopter.

Figure 1.3: mCPx micro helicopter.
Figure 1.4: Yamaha RMAX helicopter.

wind breeze and are dragged by it. Despite their high stability, most of the platforms have

very little payload capability, making them a weak choice for robotic platforms. Examples

of the use of these platforms for research include the two channel micro helicopter [PW09]

shown in Figure 1.1 and the larger four channel helicopter [RSTE+10, HSDM09] depicted

in Figure 1.2.

Remote controlled helicopters exist in several sizes, ranging from the 20 cm rotor

span of a mCPx micro helicopter to the 3.63 meters of a Yamaha RMAX. These rotorcraft

are highly maneuverable and the blades can have fixed or variable pitch. The variable

pitch makes inverted flight possible and allows the vehicle to perform very aggressive

maneuvers. These platforms are also more robust to wind disturbances as they can easily

reject them, unlike toy helicopters, that get projected away even with a calm or mild breeze.

The most common helicopter designs employ a bell-hiller stabilizing bar (also known

as flybar) to help stabilize the platform, without which the rotation of the blades would

make the helicopter vibrate uncontrollably. However, this mechanical solution for stable

helicopter flight has negative effects on performance. Recent advances in microelectronics

and miniaturization of sensors and actuators have led to the development of flybarless

helicopters that have all the advantages of flybar helicopters but imposes fewer restrictions

on flight envelope, as they do not have the additional mechanical stabilizing dynamics. An

6



1.1 Motivation

electronic feedback inner-loop replaces the stabilizer bar and allows for unprecedented

performance and the tracking of more aggressive maneuvers.

The mechanics and moving parts of the helicopter, in particular the rotor head, are

intricate and complex, with a large amount of moving parts which are susceptible to wear

and tear. Quadrotors and other multirotor aerial vehicles are a recent trend in the hobby

and research community and have been gaining popularity due to their simpler mechanics

and easier maintenance, compared to helicopters. The multirotor configuration results in

smaller rotor span to achieve the same thrust force, leading to less pronounced unmodeled

higher order effects such as blade flapping. The major drawback of this configuration is

that the vehicles are not able to perform inverted flight, although in practice this is not a

relevant feature. There is some research on variable pitch quadrotors but it sort of defeats

the purpose of having a robust machine with simple mechanics [MRU+11].

The quadrotor’s simple mechanics, high versatility, and payload capability, allied

to its high maneuverability and challenging controllability, make it an ideal platform

for the development, implementation, and testing of advanced control algorithms for

autonomous rotorcraft. As with helicopters, quadrotor platforms are available in a wide

range of sizes, from which we highlight only some representative examples. The Blade

mQX, a commercially available micro quadrotor, is used in Chapters 3, 4, and 5, to

experimentally validate the proposed rotorcraft control solutions for trajectory tracking,

path following ,and landing, respectively. Small and medium sized quadrotors like the

Figure 1.5: mQX quadrotor.

Asctec Hummingbird and Pelican, the latter of which is used in Chapter 6 to validate

an approach to quadrotor stabilization with a pan and tilt camera, are tried and tested

turnkey quadrotor platforms extensively used by the research community. Contrasting

Figure 1.6: Hummingbird quadrotor. Figure 1.7: Pelican quadrotor.

7



1. Introduction

with the wide availability of under 2 kg quadrotors, large quadrotors weighing over 3 kg

are a rarity. A detailed explanation of the design challenges and engineering trade-offs of

developing a large quadrotor platform (over 4 kg) with high payload capabilities (over

1 kg) is detailed in [PMC10]. This research culminated with the first successful outdoor

flight of a quadrotor UAV weighing over 4 kg, the X4 quadrotor depicted in Figure 1.8.

The Serafim quadrotor, depicted in Figure 1.9 and developed at ISR, is another example

of a large and high payload quadrotor that can fly autonomously indoors and outdoors,

carrying a collection of sensors that include optical flow sensors and a camera with the

respective image processing computer unit.

Figure 1.8: X4 quadrotor.
Figure 1.9: Serafim quadrotor.

A rotorcraft similar in spirit to the helicopter and quadrotor is the ducted fan aerial

vehicle. This configuration provides extra protection from the rotating blades, allowing

the vehicle to be used in cluttered environments, where the probability of contact with

people or buildings is greater. The vehicle is composed by a fixed pitch main rotor that

provides the thrust force, a set of control surfaces located on the downwash of the main

rotor, and a shroud that involves the main rotor and separates the dangerous rotating

blades from the environment. This configuration allows the vehicle to come into contact

and interact safely with the environment, albeit at the expense of mechanical simplicity,

since it involves more moving parts such as the control surfaces. A vehicle using this

configuration is being developed and tested at the University of Bologna [NGMS10].

The rotorcraft described in the preceding paragraphs are very versatile aerial vehicles

and are able to perform maneuvers unattainable by conventional fixed-wing aircraft, such

as vertical flight, hovering and vertical takeoff and landing. The ability to vertically take-

off and land makes these helicopter-like rotorcraft great scientific platforms since they

can perform their missions without the use of a large runway. The ability to hover is also

desirable as it enables the vehicle to move slowly and with great precision. This feature

also allows continuous data acquisition at the same location and helps the operation of

some of the sensors, e.g. video or photo cameras, air quality sensors and chemical analysis
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tools.

1.2 Summary of Contributions

This thesis focuses on the challenges and difficulties of the autonomous control of aerial

vehicles, motivated by the requirements of current, and yet to be envisaged, applications

of UAVs. Particular emphasis is given to the design and experimental evaluation of control

algorithms that are simultaneously rooted in solid principles from nonlinear systems

theory and specifically targeted at applications of interest for vertical takeoff-and-landing

rotorcraft, in particular quadrotor vehicles. This thesis key contributions are

• A landmark-based controller for force and torque actuation that guarantees almost

global asymptotic stability of the desired equilibrium point for a fully-actuated rigid

body. The controller is based on the position coordinates of a collection of landmarks

fixed in the environment and velocity measurements. As an additional feature, the

control law is designed so as to verify prescribed bounds on the actuation and is

formulated considering the natural configuration space for rigid bodies, the Special

Euclidean group SE(3).

• A trajectory tracking controller for steering a quadrotor vehicle along a time-

dependent trajectory that asymptotically stabilizes the closed-loop system, even in

the presence of constant force disturbances, and ensures that the actuation does not

grow unbounded as a function of the position error.

• A controller to steer a quadrotor vehicle along a predefined path, with a secondary

control objective of enforcing velocity tracking. The proposed solution guarantees

global convergence of the closed-loop path following error to zero in the presence of

constant wind disturbances and ensures that the actuation does not grow unbounded

as a function of the position error.

• A robust solution to the problem of taking-off a quadrotor UAV in critical scenarios,

such as in the presence of sloped terrains and surrounding obstacles. The original

take-off problem is addressed as the problem of tracking suitable reference signals

in order to achieve the desired transitions between different hybrid states of the

automaton. Reference trajectories and feedback control laws are derived to explicitly

account for uncertainties in both the environment and the vehicle dynamics.
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• A cascaded architecture comprising a nonlinear attitude observer and a nonlinear

controller for position and attitude stabilization of a quadrotor. The attitude esti-

mates are obtained from rate gyros measurements, corrupted by bias, and image

coordinates from a set of landmarks on the terrain, obtained by a controllable pan

and tilt camera. Stabilization of the vehicle is achieved with a nested saturation

control law by feedback of the image measurements, estimated body attitude, and

corrected rate gyros measurements.

The detailed contributions are addressed in the introduction of each chapter, whereas

the specific publications resulting from each chapter are provided in the next section.

1.3 Dissertation Outline

In this dissertation, the notation and most acronyms are introduced the first time they are

used. Nonetheless, a list of acronyms and the notation summary can be found before this

introductory chapter for quick reference. To distinguish between the author’s published

work and the remaining literature, the dissertation features two bibliography styles, using

only numbers for the former and alphanumeric codes for the latter, combining the initials

of the coauthors and the year of publication.

Following this introductory chapter, Chapters 2 to 6 present the core of this disser-

tation. Chapter 2 addresses the problem of stabilizing a fully-actuated rigid body. The

problem is formulated considering the natural configuration space for rigid bodies, the

Special Euclidean group SE(3). The proposed solution consists of a landmark-based con-

troller for force and torque actuation that guarantees almost global asymptotic stability

of the desired equilibrium point. As such the equilibrium point is asymptotically stable

and only a nowhere dense set of measure zero lies outside its region of attraction. The

controller uses velocity measurements and the position coordinates of a collection of

landmarks fixed in the environment. As an additional feature, the control law is designed

so as to verify prescribed bounds on the actuation. This body of work resulted in the

presentation of a conference paper [1] and subsequent publication of a journal paper [2].

Chapter 3 addresses the problem of designing and experimentally validating a con-

troller for steering a quadrotor vehicle along a time-dependent trajectory, while rejecting

wind disturbances. The proposed solution consists of a nonlinear adaptive state feedback

controller for thrust and torque actuation that asymptotically stabilizes the closed-loop

system in the presence of constant force disturbances, used to model the wind action, and

ensures that the actuation does not grow unbounded as a function of the position errors. A

prototyping and testing architecture, developed to streamline the implementation and the

tuning of the controller, is also described. Experimental results are presented to demon-
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strate the performance and robustness of the proposed controller. The work presented in

this chapter culminated in the presentation of the conference papers [4, 11, 12] and in the

publication of the journal paper [17].

Chapter 4 addresses the design and experimental evaluation of a controller to steer a

quadrotor vehicle along a predefined path. The problem is formulated so as to enforce

bounds on the actuation while guaranteeing robustness against constant wind distur-

bances. The proposed solution consists of a nonlinear adaptive state feedback controller

for thrust and torque actuation that i) guarantees global convergence of the closed-loop

path following error to zero in the presence of constant wind disturbances and ii) ensures

that the actuation does not grow unbounded as a function of the position error. A proto-

typing and testing architecture, developed to streamline the implementation and tuning

of the controller, is also described. Simulation results and experimental results, which

include a hovering flight in the slipstream of a mechanical fan, are presented to assess

the performance and robustness of the proposed controller. The work developed in this

chapter gave rise to the conference papers [3, 8, 10] and to a journal article [13].

Chapter 5 addresses the problem of robust take-off of a quadrotor UAV in critical

scenarios, such as in presence of sloped terrains and surrounding obstacles. Throughout

the maneuver the vehicle is modeled as a hybrid automaton whose states reflect the

different dynamic behavior exhibited by the UAV. The original take-off problem is then

addressed as the problem of tracking suitable reference signals in order to achieve the

desired transitions between different hybrid states of the automaton. Reference trajectories

and feedback control laws are derived to explicitly account for uncertainties in both the

environment and the vehicle dynamics. Simulation results demonstrate the effectiveness

of the proposed solution and highlight the advantages with respect to more standard

open-loop strategies, especially for the cases in which the slope of the terrain renders

the take-off maneuver more critical to be achieved. Preliminary versions of these results

were presented in [5, 14], a posterior journal version concerning the takeoff maneuver

has been published [9] and another focusing on landing has been submitted for possible

publication [15].

Chapter 6 proposes a cascaded architecture comprising a nonlinear attitude observer

and a nonlinear controller for position and attitude stabilization of a quadrotor. The atti-

tude estimates are obtained from rate gyros measurements, corrupted by bias, and image

coordinates from a set of landmarks on the terrain, obtained by a controllable pan and tilt

camera. Lateral-longitudinal stabilization is achieved with a nested saturation control law

by feedback of the image measurements, estimated body attitude, and corrected rate gyros

measurements. The vehicle is stabilized vertically using an additional vertical position

sensor. Due to the input-to-state stability property of controller, the quadrotor position
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and attitude are shown to converge to the desired equilibrium point and the convergence

is robust to the estimation errors. Additionally, the pan and tilt camera is actively actuated

to keep the landmarks visible in the image sensor for most operating conditions. The

performance of the proposed ensemble is illustrated with some simulation results. The

work developed in this chapter gave rise to the conference papers [6, 7] and a full paper

version has been submitted to a renowned journal in the field of control and robotics [16].

Finally, Chapter 7 provides the conclusions and outlines research directions for future

work.

1.4 Basic notation and nomenclature

Throughout this work we use the prime f ′(x) to denote the partial derivative of the func-

tion f with respect to x, f ′(x) = ∂f
∂x (x), and the upper dot ḟ (x(t)) = f ′(x(t))ẋ(t) to denote the

total time derivative of the function. We use boldface to denote vectors and ei to denote the

ith unitary vector. Vectors are represented by bold characters and e1, e2, and e3 denote the

unit vectors co-directional with the x, y, and z axes, respectively. When designing an esti-

mator for the unknown quantity x, we use x̂ to denote the estimate and x̃ = x− x̂ to denote

estimation error. The rotation group is denoted by SO(3) =
{
R ∈R3×3 : RTR = I3,det(R) = 1

}
,

where I3 denotes the 3×3 identity matrix, and the associated Lie algebra is denoted by so(3)

and is composed by the 3× 3 skew-symmetric matrices so(3) =
{
K ∈R3×3 : KT = −K

}
. The

skew-symmetric operator is denoted as S(x) : R3→ so(3) such that S(x)y = x× y =, where

x,y ∈ R3, whereas the inverse map S−1(.) : so(3)→ R
3 is defined such that S−1(S(x)) = x.

The Special Euclidean group SE(3) = SO(3) ×R3 is used to express rigid body motions.

The notation diag(a) describes a diagonal matrix formed by placing the elements of a ∈Rn

in the main diagonal. The Frobenius norm of matrices is denoted by ‖M‖F . A function

σ (s) : R→R is a saturation function if it is differentiable and verifies, for positive M and

σmax,

0 < σ ′(s) <M, for all s,

σ (−s) = −σ (s), for all s,

sσ (s) > 0, for all s , 0, σ (0) = 0,

lim
s→±∞

σ (s) = ±σmax.

Examples of smooth saturation functions are σ1(s) = s/
√

1 + s2 and σ2(s) = arctan(s). Fur-

ther notation will be introduced when necessary.
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2
Almost global stabilization

of fully-actuated rigid bodies

This chapter addresses the problem of stabilizing a fully-actuated rigid body. The problem

is formulated considering the natural configuration space for rigid bodies, the Special

Euclidean group SE(3). The proposed solution consists of a landmark-based controller

for force and torque actuation that guarantees almost global asymptotic stability of the

desired equilibrium point. As such the equilibrium point is asymptotically stable and only

a nowhere dense set of measure zero lies outside its region of attraction. The controller

uses velocity measurements and the position coordinates of a collection of landmarks

fixed in the environment. As an additional feature, the control law is designed so as to

verify prescribed bounds on the actuation.

2.1 Introduction

Rigid body stabilization is a difficult control problem that plays a central role in many

mechanical systems applications and has therefore received considerable attention over

the years. The classical approach to the stabilization of rigid bodies in position and

orientation relies on a local parametrization of the rotation matrix, such as the Euler

angles. This kind of parametrization transforms the state space into an Euclidean vector

space [Sas99], where the problem admits a trivial solution. However, stability results

can only be of local nature and there is no guarantee that the system trajectories will not

evolve to one of the singularities of the parametrization.

Unit quaternions and the axis-angle representation are other widely used alternative

parametrizations for rotation matrices. For example, Isidori et al. [IMS03] present a

nonlinear controller based on quaternions that solves an attitude regulation problem

for low-Earth orbit rigid satellites. This and other parameterizations are also applied

in different settings, such as in [MC02], where Malis and Chaumette use the angle-axis

representation to tackle a visual-servoing problem.
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2. Almost global stabilization

These representations are globally nonsingular and thus allow for global results to

be attained, making them more interesting than the Euler angles. However, they cover

the Special Orthogonal group SO(3) multiple times, introducing ambiguities. As noted

by Bhat and Bernstein [BB00], these approaches lead to control laws that are generally

not well-defined in the Special Euclidean group SE(3), yielding closed-loop systems that

exhibit unwinding. Under such control laws, a system can start at rest and arbitrarily

close to the desired configuration and still have to rotate through large angles before

coming to rest at the desired configuration. Other authors like Koditschek [Kod89], Bullo

and Murray [BM99], Chaturvedi, McClamroch, and Bernstein [CMB07, CM07] consider

rotation matrices in their natural space, as elements of SO(3). In this work, we adopt the

latter approach so as to avoid problems related to singularities or multiple coverings.

As pointed out by several authors [BB00, Ang01, MKS06, CMB07, Kod89], even if

the control law is well-defined it is impossible to achieve global asymptotic stability of

a rigid body with a continuous feedback controller. For systems evolving continuously

on manifolds not diffeomorphic to the Euclidean space, as is the case of SE(3), there are

topological obstacles that preclude the existence of globally asymptotically stable (GAS)

equilibrium points. The objective of GAS must then be relaxed to almost globally asymp-

totically stable (AGAS). In loose terms, this corresponds to saying that the equilibrium

point is stable and all solutions but those starting in a nowhere dense of measure zero

converge asymptotically to that point. A nowhere dense set of measure zero is considered

thin and negligible in both a measure-theoretical and a topological sense. In practical

terms, and from an asymptotic point of view, this relaxation is fairly innocuous since

disturbances or sensor noise will prevent system trajectories from remaining on this thin

set [Ang04, CBM06]. However, it should be noted that close to this set the system trajecto-

ries are strongly affected and convergence to the desired equilibrium can be arbitrarily

slow [CMB07, CM07].

In this chapter, we consider a fully-actuated rigid body modeled as a simple mechanical

control system and address the stabilization problem guaranteeing that prescribed bounds

on the actuation are satisfied. Building on previous results for a kinematic model [CSH08],

also explored and developed in [VCSO07] for attitude and position estimation, we specifi-

cally take into account the dynamics and propose an output-feedback solution defined on

a setup of practical significance. It is assumed that there is a collection of landmarks fixed

in the environment and that the output available for feedback are the position coordinates

of the landmarks and the velocities expressed in the body frame. The approach followed

in this chapter is in line with the methods presented in [Kod89, BM99, CBM06], which

address the stabilization problem using full-state feedback control and prove stability

based on total energy-like Lyapunov functions. Actuator saturation is also considered
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in [CBM06, CM07]. In this chapter we consider the combined position and attitude stabi-

lization problem and, equally important, provide a controller that is based on landmark

measurements. In order to obtain this controller, a landmark-based error function is

introduced for potential energy shaping and is combined with a dissipative force map,

yielding a dissipative closed-loop system with an AGAS equilibrium point at the minimum

of the error function.

The chapter is structured as follows. Section 2.2 introduces some background on

differential geometry used in the remainder of the chapter. Section 2.3 describes the

dynamics of the rigid body and defines the setup and the output vector considered. In

Section 2.4 we present the landmark-based error function that is used for stabilization.

The stabilization control law is derived and expressed as landmark-based feedback law

in Section 2.5. A study of the resulting closed-loop system’s stability properties follows

in Section 2.6. Simulation results that illustrate the performance of the control law are

presented in Section 2.7 and finally Section 2.8 summarizes the contents of the chapter

and presents the concluding remarks.

2.2 Mathematical background

In this section we briefly introduce the mathematical formalism of differential geometry

needed for the rest of the chapter. The notation on differential geometry is standard and

the reader is referred to [Lee97, Lee03] for additional material. The concept of a forced

simple mechanical control system and respective notation is borrowed from [BL04]. We

start by presenting the general setup for a simple control system evolving on a generic

Riemannian manifold and then particularize and simplify it for the case where the control

system evolves on a Lie group. Last, we discuss the definition of force norms on the

cotangent bundle TSE(3)∗, which is needed to characterize actuation boundedness.

Definition 1. A forced simple mechanical control system is a 6-tuple (Q,G,Fext,V ,F ,U ), where

1. Q is a configuration manifold;

2. G is a Riemannian metric on Q, corresponding to the kinetic energy of the mechanical

system;

3. Fext is an uncontrolled external force on Q;

4. V is a potential function on Q;

5. F = {F1, . . . ,Fm} is a collection of covector fields on Q, representing the control forces;

6. U ⊂R
m is the control set.
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2. Almost global stabilization

The pair (Q, G) is a Riemannian manifold and consequently there exists a unique Levi-

Civita connection
G

∇. Let q(t) ∈ Q denote the configuration of the mechanical system at

time t and the tangent space element q̇(t) ∈ Tq(t)Q denote the velocity. Then, the governing

dynamic equations for the forced simple mechanical control system are

G

∇q̇(t) q̇(t) = G
](Fext(q̇)− dV (q)) +

m∑
a=1

ua(t)(G](Fa(q))) (2.1)

where u : I 7→U are smooth control inputs and dV (q) denotes the differential of the poten-

tial function V (q). The map G
] : T∗qQ 7→ TqQ is the associated isomorphism corresponding

to the Riemannian metric G defined as 〈〈G](αq),vq〉〉 = 〈αq,vq〉 where αq ∈ T∗qQ, vq ∈ TqQ,

〈〈·, ·〉〉 denotes the inner product and 〈·, ·〉 is the natural application between tangent vectors

and covectors.

We now consider the more specific case where the configuration manifold Q is a Lie

group. We assume the Lie group is endowed with a Riemannian metric G = G
I

determined

via left translation of I, an inner product on the Lie algebra g. In this particular setup,

the dynamics (2.1) can be simplified to Euler-Poincaré equations. Consider a simple

mechanical control system evolving on a Lie group Q, subject to a potential force derived

from the potential function V (q) and actuated by body-fixed forces u. The Euler-Poincaré

dynamic equations for such a system are

Iξ̇ = ad∗ξ Iξ + (TeLq)
∗(Fext(q̇)− dV (q)) +u. (2.2)

In equation (2.2), ξ denotes the body velocity, ad∗ the dual adjoint operator, and TeLq
denotes the tangent map at the group identity of the left translation by q ∈ Q. It is

important to note that the pullback (TeLq)∗(df (q)) can be computed without introducing

coordinates by noting that

LξL f (q) =
d
dt
f (q(t))|t=0 = 〈(TeLq)∗(df (q)),ξ〉

where L denotes the Lie derivative and ξL is the left-invariant vector field with ξL(e) = ξ

at the identity.

In the geometrical control framework, forces and torques are modeled as covectors,

existing in the cotangent bundle TSE(3)∗ for a rigid body. To measure the magnitude of

forces and torques we need a metric on the cotangent bundle. In the case of rigid bodies,

the forces and torques are body-fixed. These are modeled as left-invariant covector fields

and are completely defined by their value at the identity.

The cotangent bundle TSE(3)∗ can be trivialized as TSE(3)∗ ' SE(3)× se(3)∗. The Lie

coalgebra se(3)∗ is isomorphic to, and can be identified with R
3 ×R3. Furthermore, we

identify left-invariant covector fields with their value at the identity u ∈ se(3)∗.
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We proceed to define two norms on se(3)∗. One that measures the total torque and

one that measures the total force exerted on the rigid body, viewed on the body frame.

We denote these as the torque norm ‖·‖τ and the force norm ‖·‖f , respectively. Their ex-

pressions are ‖u‖τ = ‖πτ (u)‖ and ‖u‖f = ‖πf (u)‖, where the norm ‖·‖ denotes the standard

euclidean norm on R
3 and we do the standard identifications so(3)∗ 'R

3 and (R3)∗ 'R
3.

The maps πτ : se(3)∗ 7→ so(3)∗ and πf : se(3)∗ 7→ (R3)∗ are the canonical projections from

the Lie coalgebra se(3)∗ to so(3)∗ and (R3)∗, respectively. Using these definitions we can

now measure forces and torques on the cotangent bundle in a physically meaningful way.

2.3 Problem formulation

In this section we particularize the mathematical notation of Section 2.2 for a rigid body

evolving on SE(3) to obtain the equations of motion. Additionally, we introduce the

measurements available for feedback and state the problem of stabilization on SE(3).

2.3.1 Equations of motion

Consider a fixed inertial frame {I} and a frame {B} attached to the rigid body’s center

of mass. The configuration of the body frame {B} with respect to {I} can be viewed as

an element of the special euclidean group, q = (R,p) = ( IBR,
IpB) ∈ SE(3). The kinematic

equations of motion for the rigid body expressed in an inertial frame {I} are

Ṙ = RS(ω)

ṗ = Rv

where ω and v are, respectively, the angular and linear velocities of the rigid body with

respect to {I} expressed in {B}. The vectors ω and v are called the angular and linear body

velocities. The map S(·) : R3 7→ so(3) is an isomorphism between R
3 and the Lie algebra

so(3) and verifies S(a)b = a×b.

The Euler-Poincaré equations (2.2) for the specific case of a rigid body evolving on

SE(3), subject to potential forces derived from the potential function V (q) and to external

forces Fext(q̇), can be decomposed in angular and linear motions as

Jω̇ = S(Jω)ω + S(Mv)v +πτ
(
F̄ext(v,ω) + F̄p(p,R)

)
+ uτ (2.3)

Mv̇ = S(Mv)ω +πf
(
F̄ext(v,ω) + F̄p(p,R)

)
+ uf (2.4)

where F̄ext(v,ω) = (TeLq)∗(Fext(q̇)), F̄p(p,R) = (TeLq)∗(−dV (q)), J is the total inertia matrix,

and M the total mass matrix. Both J and M include added terms, though added cross

terms are neglected.
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2. Almost global stabilization

In the Euler-Poincaré equation on SE(3), the body velocity is represented by the angular

and linear velocities. We have ξ = (ω,v) ∈ se(3) ' so(3)×R3. The vectors uτ and uf in (2.3)-

(2.4) correspond to the canonical projections of u ∈ se(3)∗ to so(3)∗ and (R3)∗, respectively,

each one identified with R
3. In the current setup, the rigid body is assumed to be fully

actuated. This means there are no restrictions on the allowable directions for the torque

and force vectors, i.e. uτ , uf ∈ R3. The external force Fext accounts for viscous effects

experienced by the rigid body when moving through a fluid.

2.3.2 Potential function

The setup in consideration can model several realistic situations and it is applicable to

both aerial and underwater vehicles. For aerial vehicles there is a potential force one

cannot ignore: gravity. Its potential function, when close to the Earth’s surface, is given by

V (q) = −mgeT3p (2.5)

where m is the total mass of the body, g the gravitational acceleration, and e3 =
[
0 0 1

]T
. In

the definition of the potential function it is implied that the z axis of the inertial frame

points towards the center of the Earth.

When considering underwater vehicles one has to take into account not just gravity

but also buoyancy, yielding a potential function that is position and attitude dependent

[SCPP09]. Other examples where attitude dependent potentials are present include the

3D pendulum [CMB07, CM07] and spacecraft under gravity fields [LML06]. Although

we particularize the potential function to be position dependent only, the proposed

methodology can also be applied in the general case.

2.3.3 Problem statement

Consider a target configuration q∗ = (R∗,p∗) = ( IDR,
IpD) ∈ SE(3) defined as the configuration

of the desired frame {D} with respect to the inertial frame {I}. The frame {D} is assumed

to be fixed in the workspace.

Figure 2.1 illustrates the setup at hand, where the coordinates of n points acquired at

the current and desired configurations q and q∗, respectively, are available to the system

for feedback control along with the body velocities ω and v. In loose terms, the control

objective amounts to designing a control law for the actuation uτ and uf that verifies

some prescribed bounds and ensures the convergence of q to q∗ (or, equivalently, of {B} to

{D}), with the largest possible basin of attraction.

The control law uses measurements that come in the form of the coordinates of n

fixed points expressed in the body frame. The coordinates of these points, which we call

landmarks, are available both in the current body frame and in the desired body frame,
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Figure 2.1: Problem Setup.

as shown in Figure 2.1. We also consider the body velocities ω and v to be available for

feedback.

The landmark measurements are typically obtained from onboard sensors that are

able to locate landmarks fixed in the environment. Because the sensors are onboard,

they produce the coordinates of the landmarks positions in the body frame. Examples of

such sensors include charge-coupled device (CCD) cameras, laser scanners, pseudo-GPS,

etc. The body velocities readings are typically obtained by combining dedicated sensor

measurements (e.g. pitot tubes) with positioning information and sensor readings from

inertial measurement units, which comprise triads of rate-gyros, accelerometers, and

magnetometers.

According to Figure 2.1, we define the matrix of inertial landmark coordinates X =

[x1 . . .xn] ∈R3×n, where xj ∈R3 denotes the coordinates of the jth point expressed in {I},
and the matrix of body landmark coordinates Q = [q1 . . .qn] ∈R3×n where qj = RT (xj −p),

j ∈ {1,2, . . . ,n} denotes the coordinates of the jth point expressed in {B}. Similarly, we

introduce the target matrix Q∗ = [q∗1 · · ·q∗n] ∈ R
3×n, where q∗j = R∗T (xj − p∗). Defining

the vector 1 = [1 · · ·1]T ∈ Rn, the Q and Q∗ matrices of coordinates can be rewritten as

Q = RT (X −p1T ), Q∗ = R∗T (X −p∗1T ).

The landmarks are required to satisfy the following condition.

Assumption 1. The n landmarks are not coplanar.

Assumption 2. The target configuration is such that the singular values of the matrix of desired

landmark coordinates Q∗ are all distinct.

We can now state Proposition 3, which will prove useful in the sequel.

Proposition 3. If Assumption 1 is verified there exists
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2. Almost global stabilization

1. a vector a = [a1 . . . an]T ∈Rn such that 1Ta = 1 and Q∗a = 0 and

2. a vector b = [b1 . . .bn]T ∈Rn such that 1Tb = 1 and Q∗b = R∗Te3.

To conclude the problem statement, we introduce the error configuration qe = (Re,pe) ∈
SE(3), with

Re = RTR∗ ∈ SO(3),

pe = RT (p−p∗) ∈R3,

and the state-space model for the error system, which can be written as

Ṙe = −S(ω)Re,

ṗe = v− S(ω)pe.

Using the configuration error, the output matrixQ can be expressed asQ = ReQ∗−pe1T .

Notice that, if Assumption 1 holds, the configuration error (Re,pe) is uniquely determined

and can be fully recovered from the landmark measurements Q.

2.4 Landmark-based error function

We wish to drive the error between the measured outputs qj and the desired outputs q∗j to

zero. Since the system under study evolves on SE(3), we express the error as a function on

SE(3) given by

e(qe) =
n
2
Φ(pe

Tpe) + tr((I3 −Re)Q∗Q∗T ) (2.6)

where the function Φ is defined as

Φ(x) =
x

1 +
√
x
.

It is convenient to note that the previous error function can be expressed as a function

of the landmark measurements. Using Proposition 3, the error function (2.6) can be

expressed in terms of the landmark measurements Q as

e(Q) =
n
2
Φ
(
aTQTQa

)
+ tr

(
(I3 − a1T )T (Q −Q∗)T (Q −Q∗)(I3 − a1T )

)
Considering that Assumption 2 holds, the error function (2.6) is a Morse function, i.e.

its critical points are non-degenerate and are consequently isolated. From the properties of

the modified trace function, which can take the form tr((I3 −Re)Q∗Q∗T ), the error function

(2.6) is positive definite and has a global minimum at (Re,pe) = (I3,0). It has exactly four

critical points: one minimum, one maximum and two saddle points. For further details on

Morse functions and the modified trace, the reader is referred to the discussion in [Kod89]
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2.5 Control law design

and references therein. As shown latter in the chapter, these are important properties that

will allow for the definition of an almost globally stabilizing law.

Computing the time derivative of the error function, we obtain

ė(qe) = n
2 + ‖pe‖

2(1 + ‖pe‖)2 pe
Tv− S−1(ReQ

∗Q∗T −Q∗Q∗TRT
e )

Tω

As such, the differential of the error function e(qe) expressed in the body frame, identifying

se(3) with R
3 ×R3, is

(TeLq)
∗de(qe) =

−S−1(ReQ∗Q∗T −Q∗Q∗TRT
e )

n 2+‖pe‖
2(1+‖pe‖)2 pe

 . (2.7)

Notice that due to the use of function Φ in the definition of the error function (2.6), the

norm of the differential is a bounded function of the configuration error qe.

Proposition 4. The differential of the error function (2.6) is bounded. Its torque and force

norms observe the following bounds

‖(TeLq)∗de(qe)‖τ ≤ λ1(Q∗Q∗T ) +λ2(Q∗Q∗T )

‖(TeLq)∗de(qe)‖f ≤ n

where λ1(Q∗Q∗T ) and λ2(Q∗Q∗T ) denote respectively the largest and second largest eigenvalues

of the matrix Q∗Q∗T .

2.5 Control law design

In this section we present the strategy devised for designing the control law and describe

the stability properties of the resulting closed-loop system. To stabilize the error system

we use a proportional-derivative control law that takes the form

u = −Kp(TeLq)
∗(de(qe)) + (TeLq)

∗(dV (qe))−Ψ (ξ) (2.8)

whereKp is defined as a positive definite block diagonal matrix given byKp = diag(Kpτ ,Kpf ),

Kpτ ,Kpf ∈ R
3×3. In (2.8), the position error and the potential functions act as potential

energy shaping terms, whereas the map Ψ (ξ) acts as a dissipative term.

2.5.1 Potential force

Expressing the potential (2.5) as a function of the configuration error we obtain V (qe) =

−mgeT3(R∗RT
epe + p∗). The differential of the gravitational potential V (qe) written in the

body frame is given by

(TeLq)
∗(dV (qe)) =

[
0

−mgReR∗Te3

]
. (2.9)
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2.5.2 Damping force

We now introduce the dissipative force map Ψ (ξ) used in the control law (2.8). Let

Ψτ : so(3) 7→ so(3)∗ be the C1 map given by

Ψτ (ω) =
Kdτω

1 + ‖Kdτω‖

with the usual identification so(3)∗ ' R
3 and where Kdτ is a positive definite matrix. It

is easy to verify that the natural application 〈Ψτ (ω),ω〉 is a positive definite function

of ω. We proceed analogously to define Ψf : R3 7→ (R3)∗ and obtain the force map

Ψ (ξ) : se(3) 7→ se(3)∗

Ψ (ξ) =
(
Ψτ (ω),Ψf (v)

)
. (2.10)

Proposition 5. The force map as defined in (2.10) is bounded, and its torque and force norms

verify ‖Ψ (ξ)‖τ ≤ 1 and ‖Ψ (ξ)‖f ≤ 1.

Using (2.7), (2.9), and (2.10), the control law (2.8) can be written explicitly as

[
uτ
uf

]
=

KpτS−1(ReQ∗Q∗T −Q∗Q∗TRT
e )

−Kpf n
2+‖pe‖

2(1+‖pe‖)2 pe

+
[

0
−mgeT3R

∗RT
e

]
−
[
Ψτ (ω)
Ψf (v)

]

2.5.3 Bounded actuation

The torque and force actuations generated by the control law (2.8) are bounded. However,

their bounds may not be compatible with the prescribed saturation of actuators. In the

sequel we will show how to derive a control law that observes some prescribed bounds in

the actuation.

We start by defining the constants Mτ and Mf as the maximum magnitudes of the

total torque and force available at the actuators and consider the control constraint

{u ∈ se(3)∗ : ‖u‖τ ≤Mτ and ‖u‖f ≤Mf }

Necessary conditions for the stabilization of the configuration error considering an

arbitrary desired configuration are

Mτ > sup
qe∈Q
‖(TeLq)∗(dV (qe))‖τ = 0 (2.11)

Mf > sup
qe∈Q
‖(TeLq)∗(dV (qe))‖f =mg (2.12)

since to maintain the system stabilized at a given point in space it is at least necessary to

counteract the potential force.
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2.5 Control law design

Given a maximum torque Mτ and force Mf satisfying (2.11)-(2.12), we define the

constants δτ and δf as

δτ =Mτ − sup
qe∈Q
‖(TeLq)∗(dV (qe))‖τ =Mτ

δf =Mf − sup
qe∈Q
‖(TeLq)∗(dV (qe))‖f =Mf −mg

The previous constants express the total amount of force and torque available for the

potential shaping and dissipative control. To specify the control law we need to define the

bounds mτ and mf

mτ ≥ sup
qe∈Q
‖(TeLq)∗de(qe)‖τ

mf ≥ sup
qe∈Q
‖(TeLq)∗de(qe)‖f

We then redefine the error function as

em(qe) =
nkf δf
2mf

Φ(pe
Tpe) +

kτδτ
mτ

tr((I3 −Re)Q∗Q∗T ) (2.13)

and the dissipative force map as

Ψ (ξ) =
(
(1− kτ )δτΨτ (ω) , (1− kf )δf Ψf (ω)

)
(2.14)

where kτ , kf ∈ (0,1) are tuning parameters that control the damping of the closed-loop

system. Small values for kτ , kf lead to highly damped closed-loop dynamics. Using the

error function (2.13) and the force map (2.14) in (2.8), we obtain a new control law

[
uτ
uf

]
=

 kτδτmτ
S−1(ReQ∗Q∗T −Q∗Q∗TRT

e )

−nkf δfmf

2+‖pe‖
2(1+‖pe‖)2 pe

+
[

0
−mgeT3R

∗RT
e

]
−
[
(1− kτ )δτΨτ (ω)
(1− kf )δf Ψf (v)

]
(2.15)

that verifies the following proposition.

Proposition 6. If the control law (2.15) is applied, the actuation bounds ‖u‖τ < Mτ and

‖u‖f <Mf are guaranteed hold.

2.5.4 Landmark-based control law

We now express (2.15) in an output-feedback form. Recall that the measured outputs

are given by the matrix of landmark coordinates Q, and the body velocities ω, v. The

constants kτ , δτ , mτ , kf , δf , and mf are determined a priori based on the desired closed-

loop characteristics and input saturation limits. Assuming that ω and v are directly

measured by the onboard sensors, we need only express pe, S−1(ReQ∗Q∗T −Q∗Q∗TRT
e ), and

23



2. Almost global stabilization

− mgReR∗Te3 as functions of the outputs. These can be written as follows

pe = −Qa, (2.16)

S−1(ReQ
∗Q∗T −Q∗Q∗TRT

e ) = S−1(QQ∗T −Q∗QT )− S(Q∗1)Qa, (2.17)

−mgReR∗Te3 = −mgQ(I − a1T )b, (2.18)

where a and b are the vectors defined in Proposition 3. Using the previous identities, we

can express the full control law (2.15) given the current and desired output measurements

Q and Q∗ and the velocities ω and v.

2.6 Stability analysis

In this section, we analyze the stability of the closed-loop system, from now on denoted

by Σ, that results from the feedback interconnection of (2.1) and the control law obtained

by left translation of (2.15). We show that the desired equilibrium point is AGAS, in the

sense that the set outside its region of attraction is nowhere dense and has measure zero.

Theorem 7. The point (qe,ξ) = (q0,0) ∈ TSE(3), where q0 = (I3,0), is an AGAS equilibrium

point of the closed-loop system Σ. Moreover, there exists a neighborhood of (q0,0), such that all

solutions starting inside it converge exponentially fast to (q0,0).

To prove Theorem 7, we follow a constructive approach yielding a succession of

intermediate results. First, we show that the closed-loop trajectories converge to one of

four well-defined equilibrium points of the system. We then proceed to linearize the

system about each of these equilibria. Based on the stability analysis of these linearized

systems, we can conclude that the initial conditions for which the system diverges from

(q0,0) form a closed set whose dimension is lower than that of the state-space TSE(3),

meaning that it has measure zero and is nowhere dense.

Consider the total energy function W : TSE(3) 7→ R
+
0 of the closed-loop system Σ

defined as

W (t) = em(qe(t)) +
1
2
〈〈q̇e(t), q̇e(t)〉〉 (2.19)

where q̇e = TeLqe(ξ). Using (2.19), we can apply LaSalle’s invariance principle to obtain

the following result.

Lemma 8. Under Assumptions 1 and 2, the solutions of Σ converge to one of the four equilibria

in the set M = {(qc,ξc) ∈ TSE(3) : dem(qc) = 0, ξc = 0}.

Proof. Under Assumption (1), the energy function W is positive definite. Its time deriva-
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tive is given by

Ẇ (t) =
d
dt

(
em(qe(t)) +

1
2
〈〈q̇e(t), q̇e(t)〉〉

)
= ∇q̇eem(qe(t)) + 〈〈∇q̇e q̇e, q̇e〉〉

= 〈dem(qe), q̇e〉+ 〈−dem(qe)− Ψ̃ (q̇e) +Fext(q̇e), q̇e〉

= −〈Ψ̃ (q̇e), q̇e〉+ 〈Fext(q̇e), q̇e〉

where Ψ̃ = (TeLq−1)∗(Ψ ). From the definition of Ψ (ξ) given in (2.10) and the strictly

dissipative nature of the external drag force Fext, it follows immediately that Ẇ is negative

semi-definite. Applying LaSalle’s invariance principle, we conclude that the closed-loop

trajectories converge to the largest invariant set such that Ẇ (qe,ξ) = 0⇔ ξ = 0. This

largest invariant set is then the set of points (qc,ξc) ∈ TSE(3) such that qc is a critical

point of em and ξc = 0 which is exactly the set M. As shown for example in [Kod89], if

Assumption 2 holds the set M has exactly four elements.

Remark 9. The external force Fext models the drag on the rigid body and thus is a strictly

dissipative force. Therefore, the natural application verifies 〈Fext(q̇e), q̇e〉 ≤ 0 for all q̇e and

〈Fext(q̇e), q̇e〉 = 0 if and only if the body velocity is zero.

Remark 10. The actual expressions for the critical points of em can be readily obtained from

the zeros of (2.7). These take the form qc = (Rc,0), with Rc = I3 for the minimum and Rc =

I3+2S(vi)2 for the remaining critical points, where vi is a unitary eigenvector of the symmetrical

matrix Q∗Q∗T .

Until now, we have shown that, for all initial conditions, the solutions of the system

converge to one of four points and that this set includes the desired equilibrium point

(q0,0). To prove that the closed-loop system is AGAS, we show that except for (q0,0) all

equilibrium points (qc,0) ∈M have an unstable manifold. To reach this result, we consider

the linearizations of the closed-loop system Σ about each of the four points of interest.

Let (qc,0) ∈M and consider the system (2.1) in closed-loop with the control law ob-

tained by the left translation of (2.8). As shown in [BL04], rewriting the dynamics in

first-order form and linearizing about the equilibrium points (qc,0), using the decomposi-

tion T(qc ,0)TSE(3) = TqcSE(3)⊕TqcSE(3), yields the linear system

AΣ(qc) =

 0 −
(
(G(qc)] ◦Hessem(qc)

)T
idTqcSE(3)

(
G(qc)] ◦ dq̇e(Fext − Ψ̃ )|(qc ,0)

)T 
T

(2.20)

From the positive definiteness of the natural application 〈Ψ (ξ),ξ〉 and the dissipative

nature of the external force, the tensor dq̇e (Fext−Ψ̃ )
∣∣∣
(qc ,0)

is symmetric and negative definite.
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2. Almost global stabilization

Consequently, the linear system (2.20) is stable (respectively unstable) if and only if the

linear system

ẋ = −Hess(em(qc))x

is stable (respectively unstable) [Kod89]. We can therefore conclude that the stability of

(2.20) is completely determined by the Hessian matrix Hess(em(qc)).

Lemma 11. If Assumptions 1 and 2 hold, the set of initial conditions for which the solutions of

Σ converge to (qc,0) ∈M \ {(q0,0)} is a closed set of Lebesgue measure zero, whose complement

is open and dense.

Proof. As stated in the proof of Lemma 8, if Assumption 2 is satisfied, it can be shown

that em is a Morse function with four critical points: one minimum, one maximum,

and two saddle points. At the global minimum, the Hessian is positive definite, i.e.

Hess(em(q0)) > 0, and at the other critical points, it is nonsingular and exhibits at least

one positive eigenvalue. Consequently the dimension of the stable manifold for each

of the equilibrium points (qc,0) ∈M \ {(q0,0)} is smaller than that of the tangent bundle

TSE(3).

We have now gathered the ingredients needed to prove Theorem 7.

Proof: Theorem 7. LetM =
⋃3
i=1Mi , where the setsMi correspond to the unstable mani-

folds of the equilibria (qc,0) ∈M \ {(q0,0)}, which according to Lemma 11 have measure

zero and are nowhere dense. As the finite union of these sets,M is also a measure zero

nowhere dense set. Since the solutions of Σ converge to (q0,0) for all initial conditions in

TSE(3)\M, it follows that (q0,0) is AGAS. Given that dq̇e (Fext − Ψ̃ )
∣∣∣
(qc ,0)

is negative definite,

the dampening of the linear system (2.20) is positive definite, which implies the system is

locally exponentially stable. Hence, we can also conclude that in a neighborhood of (q0,0),

the solutions of Σ converge to (q0,0) exponentially fast.

2.7 Simulation results

In this section we present simulation results for the stabilizing control law derived in the

Section 2.5. The simulation objective is to stabilize the configuration of a rigid body that

starts at rest. We consider the landmark placement corresponding to

X =


5 0 0 −5 0 0
0 2 0 0 −2 0
0 0 3 0 0 −3


and a vehicle with inertia matrices J = diag([1 2 3]), M = mI3, and a mass m = 2 Kg.

To model the drag we consider as external force the left-invariant covector field with
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2.7 Simulation results

Fdrag = (−0.01ω‖ω‖,−0.01v‖v‖) at the identity. The actuation is limited to 25 N for force

and 5 Nm for torque, meaning that, after compensating the gravity, a force of 5 N and a

torque of 5 Nm are available for stabilization. The control parameters were tuned so as to

achieve a balanced closed-loop response.

The time evolution of the position error and attitude error are presented in Figures 2.2

and 2.3. For the attitude error, we consider the angle of rotation from the angle-axis

representation for the error rotation matrix Re. As expected, both errors converge asymp-

totically to zero.
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Figure 2.2: Attitude error.
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Figure 2.3: Position error.

Figures 2.4 and 2.5 display the torque and force actuations, respectively. Since there

is no potential torque acting on the vehicle, the steady state torque is zero. As for the

actuation force, its steady state value is the force required to counteract gravity, given the

final configuration of the vehicle. It can be observed that the torque and force actuations

verify the imposed constraints.

To assess the robustness of the proposed solution to measurement noise we also

present results of a simulation considering additive noise on the measurements qi with

zero mean and standard deviation 0.3 m. The attitude and position errors evolution shown

in Figures 2.6 and 2.7 are very similar to those of the noiseless situation, meaning that in

this case the system is not driven to instability by the measurement noise. As expected,
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Figure 2.4: Torque actuation.
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Figure 2.5: Force actuation.

after reaching the steady state regime, the position and attitude errors are bounded by the

measurement errors. Comparing Figures 2.8 and 2.9 one sees that measurement noise

has a more significant impact on the actuations than on the vehicle’s position and attitude.

This can be explained due to the direct influence of the measurement matrix Q on the

feedback expressions (2.16), (2.17), and (2.18).
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Figure 2.6: Attitude error in the presence of sensor noise.
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Figure 2.7: Position error in the presence of sensor noise.

0 5 10 15 20 25 30 35 40
−3

−2

−1

0

1

2

3

Time (s)

T
o
rq

u
e 

(N
m

)

 

 
n

x

n
y

n
z

Figure 2.8: Torque actuation in the presence of sensor noise.

2.8 Concluding remarks

A landmark-based solution to the problem of stabilizing a fully-actuated rigid body while

keeping the force and torque actuation within predefined bounds was presented in this

chapter. A landmark-based error function was introduced for potential energy shaping

and combined with a dissipative force map to obtain a dissipative closed-loop system that

has an AGAS equilibrium point at the minimum of the error function. The prescribed

bounds on the actuation were enforced by appropriately scaling a modified version of the

error function and defining a bounded dissipative force map. Simulation results attested
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Figure 2.9: Force actuation in the presence of sensor noise.
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2. Almost global stabilization

to the performance and robustness of the proposed stabilization controller.
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3
Nonlinear trajectory tracking
control of a quadrotor vehicle

This chapter addresses the problem of designing and experimentally validating a con-

troller for steering a quadrotor vehicle along a time-dependent trajectory, while rejecting

wind disturbances. The proposed solution consists of a nonlinear adaptive state feedback

controller for thrust and torque actuation that asymptotically stabilizes the closed-loop

system in the presence of constant force disturbances, used to model the wind action, and

ensures that the actuation does not grow unbounded as a function of the position errors.

A prototyping and testing architecture, developed to streamline the implementation and

the tuning of the controller, is also described. Experimental results are presented to

demonstrate the performance and robustness of the proposed controller.

3.1 Introduction

In recent years, several approaches to the problem of helicopter and quadrotor mo-

tion control have been proposed, ranging from proportional-integral-derivative (PID)

control [GMHT08, PMC10] to nonlinear methods such as feedback linearization [KS98,

CDL04], dynamic inversion [DSL09], high gain and nested saturation control [MN07],

and backstepping [FDF00, MH04, HHMS09]. While PID control has demonstrated good

flying qualities for hovering and tracking of straight line trajectories in the low speed

regime, it has the drawback of relying on linearization of the quadrotor system. The

control laws obtained in this way cannot provide explicit guarantees regarding the size

of the basins of attraction for the stable equilibrium points and do not fully explore the

vehicle’s flight envelope. Nested saturation control and backstepping are examples of

nonlinear control techniques able to provide larger regions of attraction.

Backstepping is a well known technique extensively used for control of nonlinear

systems. For example, it has been applied to helicopter trajectory tracking [FDF00]

and [MH04], to control of a two tilt rotor aircraft [KFL06] and also to quadrotor trajectory
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3. Trajectory tracking control

tracking [GHM08] and tracking of parallel linear visual features [MH05]. In general, the

backstepping technique is not applicable to underactuated systems. However, as shown

in [KS98], a simplified model commonly adopted for both quadrotors and helicopters

is feedback linearizable by dynamic augmentation of the thrust actuation, and hence

stabilizable by means of backstepping. Several methodologies can be combined with

backstepping to attain desirable characteristics of a control law, such as robustness to

external disturbances and actuation boundedness. The use of integral action to achieve

zero steady state error or equivalently rejection of constant disturbances in a closed-

loop regulation system is standard in the control literature and can be combined with

the backstepping technique as discussed in [SF04]. The control methodology known

as adaptive backstepping [KKK95] relies on an estimator to achieve the disturbance

rejection effect of integral control. One problem with a straightforward application of

adaptive backstepping is that the parameter estimate can grow, without an a priori bound,

depending on the initial conditions of the system. The typical approach to this problem is

to use a projection operator to constrain the parameter estimate to a given set [KKK95].

The discontinuity of the projection operation is a twofold problem. First, it leads to

practical problems when applied to continuous time systems. Second, the recursive

application of the backstepping procedure is no longer possible, as Lipschitz continuity

is violated and the usual theorems on the existence and uniqueness of differentiable

equations can no longer be applied. To overcome both these problems, we employ the

arbitrarily smooth projection operator proposed in [CdQD06], which generates parameter

estimates with sufficient smoothness to complete the backstepping procedure.

Several works for the stabilization of thrust propelled rotorcraft based on dynamic

extension of the thrust input have also been proposed, namely the ones presented

in [FDF00, MH04] and more recently [GL13, LMA12, Kob13]. Despite employing dif-

ferent control laws, a common characteristic unifies these controllers: the existence of

a singularity in the control law for zero thrust. The typical scenario is for either the

singular condition to be ignored or for the control laws to be ad hoc modified when near

the singularity. This course of action can lead to a loss of the stability properties and can

endanger a vehicle unnecessarily. Nonetheless, for a set of initial error conditions, it can

be proven that the thrust never reaches zero and the control law is well defined for all

time, as detailed in [MH04].

The work in [RT11] employs similar adaptive techniques to achieve control of a

vertical take-off and landing (VTOL) UAV for a set of constant external disturbances. The

quadrotor control is constructed by designing a bounded thrust virtual control, which is

then tracked using the thrust and torque available controls. The zero thrust singularity

is avoided by constraining the virtual control law but that leads to a rather conservative
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control action. Two controllers are then presented, one which achieves almost global

stabilization and other which presents some restrictions on the initial conditions. The

estimation and cancelation of the external disturbance is performed using the smooth

projection from [CdQD06] to ensure that the estimates are differentiable. As opposed

to our method, which treats the rotational degree-of-freedom inherent to these vehicles

independently from the position tracking objective, the solution in [RT11] completely

prescribes the desired rotation matrix through the attitude extraction method proposed.

Simulation results are presented for the proposed controllers, although they are not

evaluated in an experimental setup.

Typically, small-scale quadrotors are either controlled in thrust and angular velocity

or thrust and torque. With today’s technology, there are commonly available sensors for

angular velocity with an extremely small footprint that can be carried by even the smallest

quadrotor vehicles. This fact makes it easy for aircraft manufacturers to measure the

angular velocity and design inner-loop controllers to track angular velocity commands.

Torque commands for quadrotor vehicles are also trivial to implement since most electric

motors employed in remote controlled aircraft are internally controlled in speed. The

motor’s angular speed is directly related with the thrust force they generate and by acting

on the motors the manufacturer can impose a different force on each motor, so as to track

a torque reference.

In this chapter we address the problem of trajectory tracking for quadrotors, using a

backstepping procedure that builds on the dynamic augmentation principle presented

in [KS98]. The desired trajectory is specified by a sufficiently smooth time-parameterized

position vector. The desired attitude of the vehicle is not prescribed since attitude con-

vergence (up to a rotation about the body z axis) is naturally accomplished by solving

the position tracking problem. Robustness to external constant disturbances is accom-

plished through adaptive backstepping. These disturbances can be used to represent

both exogenous inputs such as constant wind and model uncertainties such as quadrotor

mismatches. The proposed control laws allows us to determine a Lyapunov function

for the closed-loop system whose time derivative is negative definite with regard to the

tracking errors, rendering it inherently robust to small errors and noise. Experimental

results are presented to attest the robustness and performance of the proposed control

laws.

This chapter is structured as follows. Section 3.2 introduces the quadrotor model. The

problem and control objectives are stated in Section 3.3. Controller design is described in

Section 3.4, including the necessary steps to ensure disturbance rejection. Experimental re-

sults illustrating the performance of the proposed control law are presented in Section 3.6

and Section 3.7 summarizes the contents of the chapter.
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3. Trajectory tracking control

3.2 Quadrotor model

The quadrotor vehicle is modeled as a rigid body, that can generate a thrust force along

the body z axis. We consider two distinct forms of angular actuation: i) torque, which

is equivalent to controlling the force exerted by electric motors; and ii) angular velocity.

Both are common in quadrotors, whether they are commercial off-the-shelf vehicles or

custom built ones.

Consider a fixed inertial frame {I} and a frame {B} attached to the vehicle’s center

of mass. The configuration of the body frame {B} with respect to {I} can be viewed as

an element of the Special Euclidean group, (R,p) = ( IBR,
IpB) ∈ SE(3), where p ∈R3 is the

position and R ∈ SO(3) the rotation matrix. The kinematic and dynamic equations of

motion for the rigid body can be written as

ṗ = Rv, (3.1)

v̇ = −S(ω)v +
1
m

f, (3.2)

Ṙ = RS(ω), (3.3)

ω̇ = −J−1S(ω)Jω + J
−1n, (3.4)

where the linear velocity v ∈ R3, the force f ∈ R3, the angular velocity ω ∈ R3, and the

torque n ∈ R3 are expressed in the body frame {B}. For quadrotors actuated in angular

velocity, only equations (3.1)-(3.3) are necessary for a complete model of the vehicle,

whereas for actuation in torque the additional angular dynamics (3.4) is required. The

scalar m and the matrix J ∈R3×3 represent the quadrotor’s mass and moment of inertia,

respectively. For both quadrotor models, the aerodynamic drag forces due to the fuselage

are neglected given the low speeds at which the quadrotors operate.

(a) Quadrotor platform
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(b) Quadrotor setup

Figure 3.1: Quadrotor experimental platform and diagram.

Bearing in mind the geometry of the quadrotor and assuming that the forces and

moments generated by each of the four rotors are approximately given by the thrust and
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torque components perpendicular to the rotor disk plane, we can consider a quadrotor

model such that torques (or angular velocities) can be generated in any direction and the

generated thrust force is always aligned with the body z axis. Figure 3.1(a) shows a small-

scale quadrotor platform and a sketch of the quadrotor setup is presented in Figure 3.1(b),

together with illustrations of reference frames, the force Fi generated by each motor and

the direction of rotation for each propeller. There is a bijective correspondence between

the motor forces Fi and the total thrust T and torque n applied to the quadrotor. We

consider that the torque is either an input for the quadrotor or that an inner-loop controller

exists that adjusts the torque in order to track angular velocity references. We call this

latter design a quadrotor controlled in angular velocity.

The total force acting on the quadrotor, in body coordinates, is given by

f = −T e3 +mgRTe3 +mRTb (3.5)

where T is the thrust generated by the motors, e3 = [0 0 1]T , g is the gravitational ac-

celeration, and b ∈ R3 is an unknown external force disturbance expressed in {I}. The

force disturbance mb can model exogenous inputs, such as constant wind, and also model

uncertainties, such as imperfect knowledge of the mass of the vehicle. With the full torque

control available, the angular dynamics (3.4) can be reduced to the integrator form ω̇ = τ,

using the input transformation

n = Jτ + S(ω)Jω. (3.6)

The quadrotor is thus an underactuated vehicle, as evidenced by (3.2) and (3.5), making

the control problem much more difficult to address than what it would be for a fully-

actuated vehicle, such as the one discussed in the previous chapter. In this particular case

we only have one degree of freedom for the force actuation in the body frame and we are

required to control the three-dimensional linear position of the vehicle p ∈R3. As shall

be demonstrated in the sequel, it is indeed possible to control the vehicle’s position, as its

attitude can be used to drive the thrust force to some desired direction.

3.3 Problem statement

Let the desired trajectory pd(t) ∈R3 be a curve of class at least C4. The control objective

consists of designing a control law for the quadrotor actuations T (t) and ω(t), or T (t) and

τ(t), that ensures convergence of the vehicle’s position p(t) to the trajectory pd(t) with the

largest possible basin of attraction. Throughout the remainder of the chapter, the time

dependence of variables is often omitted to lighten notation.

Due to the underactuated nature of the vehicle, the desired attitude cannot be arbitrar-

ily selected. From (3.2) and (3.5), it is easy to observe that the equilibrium for trajectory
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tracking satisfies

TdRde3 =mge3 −mp̈d +mb. (3.7)

Consequently, the desired rotation matrix Rd is automatically prescribed up to a rotation

about the body z axis (TdRdRz(ψ)e3 = mge3 −mp̈d +mb, with ψ ∈ R). The symmetry

exhibited by the quadrotor vehicle dictates that there is an additional degree of freedom.

Rotations about the body z axis bear no influence on the control action as it is possible to

generate any angular velocity and thrust, within the vehicle’s limits of operation, regardless

of its heading angle. Throughout the design of the trajectory tracking controller, the

attitude is handled in its natural space, the Special Orthogonal group SO(3), as a rotation

matrix. This avoids the introduction of artefacts related only to the parameterization used

for the attitude, as is the case of singularities with Euler angles and multiple coverings

with the quaternion representation [BB00].

We consider the full state of the vehicle to be available for feedback. In an experimen-

tal setup, the orientation and angular velocity readings are typically produced by IMUs,

equipped with advanced algorithms which combine triads of rate-gyros, accelerometers,

magnetometers [MHP08, BSO10, VCSO10]. The position and linear velocity are com-

monly obtained from GPS signals [BSO09], if they are available. Whenever the quadrotor

is being operated indoors, and thus GPS is not available, the position and velocity can be

estimated resorting to additional onboard sensors such as laser scanner units [CMcTN07]

or cameras [PPTN08]. In our setup we employ a high speed motion tracking system, based

on a set of external cameras tracking reflective markers on the vehicle, as described in

section 3.6.

Although this is hardly ever the case in practice, the external disturbance b is assumed

to be constant for controller design purposes. An upper bound is assumed to be known on

the external disturbance, so that the quadrotor can perform a trajectory tracking maneuver

with bounded thrust input.

Assumption 12. The external disturbance b in (3.5) is constant and is bounded as ‖b‖ ≤ B
with B > 0.

In practice, this assumption is an idealization that approximates reality and thus

perfect tracking is never achieved. Nonetheless, the robustness added to the controller by

considering constant disturbances is beneficial and results in smaller closed-loop errors.

Even though the disturbance is bounded, straightforward or naı̈ve implementations

of estimators can lead to wind-up phenomena and result in unbounded growth of the

estimate. To avoid a wind-up effect on the disturbance estimator, and keep the estimate

bounded, we employ a sufficiently smooth projection operator when designing the esti-

mators. This procedure is detailed in the next section, together with the design of the
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controller based on the backstepping technique. The smooth projection method requires

overparameterization of the disturbance due to the higher order of the quadrotor system.

The multiple estimates of the external disturbance, denoted by b̂1 and b̂2, are obtained by

adaptive backstepping and used for feedback control. Stability of the estimation errors is

guaranteed by Lyapunov-like methods, from which we can also assert the convergence of

the first estimate b̂1 to the real value of the disturbance, as detailed in the sequel.

3.4 Controller design

We start the design process by considering a virtual controller for the translational sub-

system, which is backstepped through the angular subsystem to obtain the final imple-

mentable controllers, one for angular velocity and another for torque actuation. The

proposed controller for the translational subsystem is based on the procedure detailed

in [MI04], which is presented in the following Proposition for a one-dimensional double

integrator.

Proposition 13. Consider the double integrator system

ẋ1 = x2,

ẋ2 = u,

driven by input u ∈R and let σ and ρ be saturation functions of class C2 and Ω a function of

class C3 such that Ω(s) = s, for |s| < 2σmax and Ω′(s) ≥ 1 for all s. The control law

u(x1,x2) = −
(x2 + σ (x1))(ρ(x2 + σ (x1)) + σ (x1))

Ω′(x2)
(
Ω(x2) +Ω(σ (x1))

) +
σ ′(x1)x2

Ω′(x2)
(3.8)

renders the origin of the double integrator GAS and the input verifies

|u(x1,x2)| ≤ 1
Ω′(x2)

(
ρmax + σmax + σ ′max|x2|

)
.

Notice that if Ω is, at least, asymptoticly quadratic, then an upper bound on |u(x1,x2)|
can be established a priori and for all (x1,x2) ∈R2. The Lyapunov function for the double

integrator

V (x1,x2) = φ(x1) + 1
2 (Ω(x2) +Ω(σ (x1)))2,

with φ(s) =
∫ s

0 σ (t)dt, has closed-loop negative-definite time derivative

V̇ (x1,x2) ≤ −σ (x1)2 − (x2 + σ (x1))ρ(x2 + σ (x1)).

In order to define the virtual controller for the translational subsystem, consider the

following error states

z1 = p−pd , (3.9a)

z2 = ż1 + σ (z1), (3.9b)
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for the double integrator driven by

z̈1 = u = −T
m
Re3 + ge3 + b− p̈d . (3.10)

A tentative Lyapunov function is devised as

VDI = φ(z1)T1 +
1
2

(
Ω(z2 − σ (z1)) +Ω(σ (z1))

)
T
(
Ω(z2 − σ (z1)) +Ω(σ (z1))

)
,

where, with a slight abuse of notation, φ, σ , and Ω are applied element-wise. For a

fully-actuated vehicle, the control law

u? =


u(z11, z21 − σ (z11))
u(z12, z22 − σ (z12))
u(z13, z23 − σ (z13))

 , (3.11)

with the controller u defined as in (3.8), globally asymptotically stabilises the system and

renders the Lyapunov function derivative negative definite

V̇DI ≤ −σ (z1)Tσ (z1)− k2zT2ρ(z2) = −W2(z1,z2).

In the next step, we consider the real vehicle and the errors introduced by the underac-

tuation. Furthermore, a term is added to the Lyapunov function to enable disturbance

rejection. The new tentative Lyapunov function is

V2 = VDI +
1

2kb1
b̃T

1b̃1, (3.12)

with positive gain kb1, and has the following time derivative

V̇2 ≤ −W2(z1,z2) +
∂V2

∂z2
(u−u?)− 1

kb1
b̃T

1
˙̂b1

≤ −W2(z1,z2) +
∂V2

∂z2
(û−u?) + b̃T

1(
∂V2

∂z2

T

− 1
kb1

˙̂b1),

where the real control input, computed using the estimated disturbance, is

û = −T
m
Re3 + ge3 + b̂1 − p̈d . (3.13)

and the partial derivative of (3.12) with respect to z2 is written as

∂V2

∂z2

T

= (Ω(z2 − σ (z1)) +Ω(σ (z1)))⊗Ω′(z2 − σ (z1))

where ⊗ denotes element-wise vector multiplication.

The term û−u? can be regarded as an actuation error due to the fact that the quadrotor

is an underactuated vehicle, i.e. the thrust must be aligned with the z body axis, and due

to the unknown disturbance b. Applying the backstepping procedure, we define the new

backstepping error

z3 = û−u? (3.14)
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and the new Lyapunov function

V3 = V2 +
1
2

zT3z3,

with time derivative

V̇3 ≤ −W3(z1,z2,z3) + zT3(k3z3 +
∂V2

∂z2

T

+ ż3) + b̃T
1(
∂V2

∂z2

T

− 1
kb1

˙̂b1), (3.15)

where W3(z1,z2,z3) =W2 + k3zT3z3 is a positive definite function.

The time derivative of the error state z3 is

ż3 = − Ṫ
m
Re3 −

T
m
RS(ω)e3 + ˙̂b1 −p(3)

d − ˆ̇u? − ∂u?

∂z2
b̃1, (3.16)

where ˆ̇u? denotes the estimate of the time derivative of u? obtained using b̂1 instead of

the unknown b. The time derivative of the virtual actuation can be expressed as

du?

dt
=
∂u?

∂z1

dz1

dt
+
∂u?

∂z2

dz2

dt
,

where the external disturbance appearing only linearly in the term dz2
dt . We have thus that

the error when performing the estimation using b̂1 is given by

u̇? − ˆ̇u? =
∂u?

∂z2
b̃1.

Substituting ż3 in (3.15) and defining the input vector

µ =
[
Ṫ ω1 ω2

]T
and the matrix

M(T ) =


0 0 −T
0 T 0
−1 0 0

 ,
we get an expression for the Lyapunov function time derivative,

V̇3 ≤ −W3(z1,z2,z3) + zT3

(
1
m
RM(T )µ+ k3z3 +

∂V2

∂z2

T

+ ˙̂b1 −p(3)
d − ˆ̇u?

)
+

b̃T
1

(
∂V2

∂z2

T

− ∂u?

∂z2

T

z3 −
1
kb1

˙̂b1

)
.

that can be rendered negative semi-definite to achieve convergence of the trajectory

tracking error to zero, with the appropriate control inputs, Ṫ and ω, and estimator law

for ˙̂b1.

We tackle the estimation of the disturbance using a projection operator that keeps

the estimate b̂1 within some a priori defined set and verifies the smoothness properties
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required for the iterative application of the backstepping procedure. Consider the estimate

control law,
˙̂b1 = kb1 Proj(ξ, b̂1) = kb1

(
ξ −

η1η2

2(ε2 − 2εB)n+1B2 b̂1

)
(3.17)

with

ξ =
∂V2

∂z2

T

− ∂u?

∂z2

T

z3,

η1 =

 (b̂T
1b̂1 −B2)n+1, if (b̂T

1b̂1 −B2) > 0

0, otherwise
,

η2 = b̂T
1ξ −

√
(b̂T

1ξ)2 + δ2,

where ε > 0 and δ > 0 are arbitrary parameters and B is the bound on the norm of the

unknown parameter. The smooth projection operator is taken from [CdQD06] and has

the following properties,

P1 – ‖b̂(t)‖ ≤ B+ ε,∀t ≥ 0;

P2 – b̃T Proj(ξ, b̂) ≥ b̃Tξ;

P3 – ‖Proj(ξ, b̂)‖ ≤ ‖ξ‖
(
1 + B+ε

B

)2
+ B+ε

2B2 δ;

P4 – Proj(ξ, b̂) is at least of class Cn.

From the estimator control law (3.17) and property P2 we derive the upper bound for

the Lyapunov function derivative

V̇3 ≤ −W3(z1,z2,z3) + zT3

(
1
m
RM(T )µ+ k3z3 +

∂V2

∂z2

T

+ ˙̂b1 −p(3)
d − ˆ̇u?

)
. (3.18)

Moreover, property P4 ensures that the derivatives of the estimate are continuous up

to b̂(n+1)
1 . At this point, for vehicles actuated in angular velocity, we can actuate on the

control inputs µ and render (3.18) negative semi-definite to achieve convergence of the

trajectory tracking error to zero.

We are now able to state Theorem 15, regarding the design of a stabilizing control

law. The Theorem requires the following assumption, which is met under the appropriate

conditions, to be detailed in the sequel.

Assumption 14. The thrust actuation verifies T (t) ≥ ε > 0 for all time t > 0.

Theorem 15. Let the quadrotor kinematics and dynamics be described by (3.1)-(3.3), let

pd(t) ∈ C3 be the desired trajectory, and consider the transformation to error coordinates z1,
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z2, z3 given by (3.9a), (3.9b), (3.14), respectively. For any ω3(t), the closed-loop system that

results from applying the control law

µ = −mM−1(T )RT

(
k3z3 +

∂V2

∂z2
+ ˙̂b1 −p(3)

d − ˆ̇u?
)

(3.19)

and the estimator law (3.17) achieves trajectory tracking by guaranteeing that the errors z1,

z2, and z3 converge to zero for any initial condition. Moreover, the disturbance estimate b̂1

converges asymptotically to the unknown constant disturbance b.

Proof. The proposed control law (3.19) is well defined, in the conditions of Assumption 14.

Starting with the positive definite Lyapunov function

V = φ(z1)T1 +
1
2

(
Ω(z2 − σ (z1)) +Ω(σ (z1))

)
T
(
Ω(z2 − σ (z1)) +Ω(σ (z1))

)
+ 1

2 zT3z3+

1
2kb1

b̃T
1b̃1,

and computing its time derivative, in closed-loop, we have that

V̇ ≤ −σ (z1)Tσ (z1)− k2zT2ρ(z2)− k3zT3z3,

which is a negative semidefinite function. Since the quadrotor error dynamics are non-

autonomous, we resort to Barbalat’s Lemma to prove convergence of V̇ to zero. From the

unboundedness of V with respect to z1, z2,z3 and b̃1, and observing that V̇ is negative

semi-definite, we conclude that the states z1, z2,z3 and b̃1 are bounded. The external

input p(3)

d is bounded by assumption and ˙̂b1 is bounded from property P4 of the projection

operator and boundedness of the error states and estimation. We have thus that V̈ is

bounded and, consequently, V̇ is uniformly continuous. We can therefore apply Barbalat’s

Lemma to prove convergence of V̇ to zero and, consequently, of the states z1, z2 and z3 to

the origin.

For quadrotors actuated in torque, we need to continue applying the backstepping

procedure. Let us look at the Lyapunov derivative upper bound (3.18) and define the final

backstepping error,

z4 =
1
m
RM(T )µ+ k3z3 +

∂V2

∂z2

T

+ ˙̂b1 −p(3)
d − ˆ̇u? . (3.20)

The error time derivative, finally featuring the torque controls, is

ż4 =
1
m
RS(ω)M(T )µ+

1
m
RṀ(T )µ+

1
m
RM(T )ν + ĥ +

∂
∂z2

(
k3z3 +

∂V2

∂z2

T

+ ˙̂b1 −p(3)
d − ˆ̇u?

)
b̃2.

(3.21)

where we performed the input transformation

ν =
[
T̈ τ1 τ2

]T
(3.22)
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and ĥ is the estimate of

h =
d
dt

(
k3z3 +

∂V2

∂z2

T

+ ˙̂b1 −p(3)
d − ˆ̇u?

)
obtained using the estimate b̂2 instead of the unknown disturbance b. The estimation

error is given by

h− ĥ =
∂
∂z2

(
k3z3 +

∂V2

∂z2

T

+ ˙̂b1 −p(3)
d − ˆ̇u?

)
b̃2.

Let us consider the final Lyapunov function,

V4 = V3 +
1
2

zT4z4 +
1

2kb2
b̃T

2b̃2

with kb2 > 0 and verify that its time derivative is

V̇4 ≤ −W4(z1,z2,z3,z4) + zT4
(
z3 + k4z4 +

1
m
RS(ω)M(T )µ+

1
m
RṀ(T )µ+

1
m
RM(T )ν + ĥ

)
+ b̃T

2

(
∂
∂z2

(
k3z3 +

∂V2

∂z2

T

+ ˙̂b1 −p(3)
d − ˆ̇u?

)T
z4 −

1
kb2

˙̂b2

)
.

At this point, we can establish a control law for ν and an estimation law for b2 that, in

conjunction with the previously proposed estimation law (3.17), renders the Lyapunov

function negative semi-definite and achieves trajectory tracking. This result is established

in the following Theorem.

Theorem 16. Let the quadrotor kinematics and dynamics be described by (3.1)-(3.4), let

pd(t) ∈ C4 be the reference trajectory, and consider the transformation to error coordinates

z1, z2, z3, z4, given by (3.9a), (3.9b), (3.14), (3.20), respectively. For any bounded τ3(t), the

closed-loop system that results from applying the input transformation (3.22), the control law

ν = −mM−1(T )RT
(
z3 + k4z4 +

1
m
RS(ω)M(T )µ+

1
m
RṀ(T )µ+ ĥ

)
, (3.23)

and the estimator laws (3.17) and

˙̂b2 = kbProj
(
∂
∂z2

(
k3z3 +

∂V2

∂z2

T

+ ˙̂b1 −p(3)
d − ˆ̇u?

)T
z4, b̂2

)
,

achieves trajectory tracking by guaranteeing that the errors z1, z2, z3, and z4 converge to zero

for any initial condition verifying√
2V (0) < g − (B+ ε)− ‖p̈d(t)‖∞ −u?max,

where B is the bound on the external disturbance, ‖·‖∞ denotes the supremum norm (also

called infinity norm) of a function and u?max is the upper bound on the virtual control law

u?(z1,z2). Moreover, the disturbance estimate b̂1 converges asymptotically to the unknown

constant disturbance b.
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Proof. The proposed control law (3.23) is well defined, in the conditions of Assumption 14.

Starting with the positive definite Lyapunov function

V = φ(z1)T1 +
1
2

(
Ω(z2 − σ (z1)) +Ω(σ (z1))

)
T
(
Ω(z2 − σ (z1)) +Ω(σ (z1))

)
+ 1

2 zT3z3 + 1
2 zT4z4

+ 1
2kb1

b̃T
1b̃1 + 1

2kb2
b̃T

2b̃2,

and computing its time derivative, in closed-loop, we have that

V̇ ≤ −σ (z1)Tσ (z1)− k2zT2ρ(z2)− k3zT3z3 − k4zT4z4,

which is a negative semi-definite function of the error states and the estimation errors,

and is strictly negative definite with regard to the error states. Since the quadrotor error

dynamics are non-autonomous, we resort to Barbalat’s Lemma to prove convergence of V̇

to zero. From the unboundedness of V with respect to the states z1, z2,z3, and z4 and the

estimation errors b̃1 and b̃2, and observing that V̇ is negative semi-definite, we conclude

that the states, the estimates and estimation errors are bounded. Since V̇ is semi-definite

negative then the Lyapunov function is upper bounded by V (0) for all time. From that

fact and the definition of the error z3 it follows that |z3| ≤
√

2V (0). Observing the bound

on error z3, its definition (3.14) with (3.13), and property P1 of the smooth projection

operator, we can establish the following conservative lower bound for the thrust input

|T | ≥m
(
g − (B+ ε)− ‖p̈d(t)‖∞ −u?max −

√
2V (0)

)
. (3.24)

The external reference pd and its derivatives are bounded by assumption and ˙̂b1 and
˙̂b2 are bounded from property P4 of the projection operator and boundedness of the error

states and disturbance estimations. From the boundedness of the state z3, the definitions

(3.13) and (3.14), and boundedness of the virtual control law (3.11), p̈ and estimate b̂1 we

conclude that the thrust force T is bounded. From the definition (3.20) and boundedness

of z4 we conclude that µ is bounded if the initial error is within the conditions of the

Theorem. Finally, boundedness of the time derivative ż4 follows from the boundedness

of the states, estimates, and the terms in the control law (3.22). The estimate ĥ and the

partial derivatives in (3.21) are bounded since they are smooth functions of the states and

bounded external variables and have no singularities.

We have shown that in the conditions of the Theorem the control law (3.23) is well

defined and V̈ is bounded, from which follows that the time derivative V̇ is uniformly

continuous. We can therefore apply Barbalat’s Lemma to prove convergence of V̇ to zero

and, consequently, of the error states z1, z2, z3 and z4 to the origin.

Convergence of the estimate b̂1 to b is a consequence of the convergence of the error

states to the origin, the definition (3.14) and the dynamics equation (3.10). At the error
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system origin, we have u? = 0. From (3.14) it follows that û = 0 and from (3.10) we

get u = 0, leading to the conclusion that the estimate b̂1 converges to the real external

disturbance b.

The rotational degree of freedom allowed for ω3(t) in the control law (3.19), and

subsequently for τ3(t) in (3.23), by the term S(ω)e3 in (3.16) is due to the axial symmetry

exhibited by the quadrotor and can be exploited to control the heading of the vehicle

independently of the trajectory tracking laws (3.19) or (3.23). An additional feature of the

proposed actuation laws is that they depend only on bounded functions of the position

error. This is a desirable property since the initial position error can be arbitrarily large

and, without the saturation, would lead to physically infeasible control actuations.

The main drawback of both proposed trajectory tracking controllers is that they can

only be applied if Assumption 14 holds. A conservative estimate of the initial states

for which T (t) ≥ ε is guaranteed for all t > 0 can be obtained using the definition of the

backstepping error (3.14) together with the bounds for the errors and estimation derived

from the Lyapunov function and its derivative. Using ‖·‖∞ to denote the maximum norm

(also called infinity norm) of a function, we obtain the following lower bound for the

thrust, for all t > 0,

|T (t)| ≥mg − (B+ ε)− ‖p̈d(t)‖∞ − ‖u?‖∞ −
√

2V (0).

If the initial conditions and desired trajectories are such that the lower bound for |T (t)|
is positive, then the thrust T (t) that results from applying the proposed control law is

guaranteed to take only positive or only negative values.

3.5 Experimental setup

In order to experimentally validate the proposed control algorithms a rapid prototyp-

ing and testing architecture was developed using a Matlab/Simulink environment to

seamlessly integrate the sensors, the control algorithm and the communication with the

vehicles. The vehicle used for the experiments is a radio controlled Blade mQX quadro-

tor [bla], depicted in Figure 3.1(a). This aerial vehicle is very agile and maneuverable,

readily available and inexpensive, making it the ideal platform for implementing the

controllers proposed in the present work. The quadrotor weighs 80 g with battery in-

cluded and the arm length from the center of mass to each motor is 11 cm. The available

commands are thrust force and angular velocity.

Due to the lack of support for onboard sensors, the state of the vehicle must be

estimated through external sensors. In our setup we use a VICON T-Series optical motion

capture system (OMCS) [VIC], comprising 12 cameras, together with markers attached to
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the quadrotor. The OMCS is able to accurately locate and estimate the positions of the

markers, from which it obtains position and orientation measurements for the aircraft.

The particular OMCS used for obtaining the experimental results is a high performance

system, able to operate with sub-millimeter and sub-degree precision at up to 250 Hz.

The performance is such that the linear velocity can be well estimated from the position

measurements by a simple backwards Euler difference, with relatively low noise level.

For the experimental setup, the state measurements from the motion capture system are

obtained at 50 Hz, allowing for improved accuracy.

The vehicles use a 2.4 GHz wideband direct sequence spread spectrum (DSSS) signal to

generate a robust radio link with on-channel interference resistance. This radio technology

also allows for the simultaneous use of several vehicles in a confined space, enabling

formation flight. The commercial off-the-shelf quadrotor vehicles are designed to be

human piloted with remote controls but not directly from a computer. In order to be able

to send commands to a quadrotor from a computer we identified the radio chip inside the

remote control and connected the serial interface of the radio frequency (RF) module to a

computer serial port. Figure 3.2 shows four disassembled RF modules which allow for

an extension of the experimental setup to up to four vehicles flying simultaneously. To

maintain the radio link, the radio transmitters must receive the control signals via serial

port and send them to the vehicle once every 22.5 ms.

Figure 3.2: Serial port to RF interface used to generated the quadrotor radio control signals
from a computer.

A graphical representation of the overall architecture is presented in Figure 3.3. We

use two computer systems, one running the VICON motion tracking software and the

Simulink model which generates the command signals sent to the other computer through
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an Ethernet connection; and a second one that receives the command signals and sends

them through the serial port to the RF module at intervals of 22.5 ms. The decision to

separate control and communications was made to avoid jitter in the transmission of the

serial port signals to the RF module, which occurred when running all the systems in the

same computer, and lead to erratic communication with the vehicle.

Figure 3.3: Quadrotor control architecture.

The Matlab/Simulink interface (see Figure 3.4) enables a fast iteration between sim-

ulation and experimental testing of control algorithms. A VICON block handles the

reception of estimates from the motion capture system and outputs the quadrotor state;

computation of the control signals is performed based on measured or simulated vehicle

state; and the actuation signals are ultimately relayed to the second computer for radio

transmission to the quadrotor or to a simulator block.

VICON

Quadrotor 1

Quadrotor 2

...

To Linux PC

radio cmd

Quadrotor simulator

mQX_model

Quadrotor

Controller

state

ref
cmd

fcn

 Reference

Path

Figure 3.4: Simulink block diagram of the quadrotor controller featuring the alternative
VICON sensor or quadrotor simulator, reference input, and output to the RF module.

Identification

Identification of the platform was performed by applying different constant commands

over several experiments and measuring the thrust force and angular velocity response
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of the vehicle. The thrust force was measured by attaching weights to the quadrotor and

finding the thrust command that balanced it. For the angular velocity a command was

applied and the angular velocity measured directly with the motion capture system. The

radio control system accepts commands in the range [0,1] for the thrust and [−1,1] for the

angular velocities.
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(a) Linear regression of thrust commands.
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(b) Linear regression of roll commands.
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(c) Linear regression of yaw commands.

Figure 3.5: Quadrotor commands identification.

The identification results are presented in Figure 3.5. The radio control (RC) com-

mands were found to relate linearly with the vehicle outputs. The maximum thrust

generated by the propellers is then approximately 1.37 N (equivalent to 140 g) and varies

slightly with the battery charge. Keeping in mind that the commands for angular velocity

range between [−1,1], the maximum angular velocity that can be commanded is 200

deg/s for the x and y axes and 300 deg/s for the z axis. However, the commands issued

to the quadrotor are not instantaneously followed. This delay nonlinearity can be well

approximated by considering the motors as first order dynamic systems with a pole at 1.5

Hz.
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3.6 Experimental results

For the first experimental evaluation of the proposed controller we selected for the desired

trajectory a lemniscate (figure eight) parameterized as

pd(t) =
3
2
Rx(−π/4)Rz(−π/6)


sin(φ(t))cos(φ(t))

sin(φ(t))2+1
cos(φ(t))

sin(φ(t))2+1
0

+


0
0
−1

 ,
where φ(t) obeys

φ̇(t) = V
√

1 + sin2 t.

This parametrization results in a trajectory with unitary norm time derivative and constant

desired speed for the quadrotor of V m/s.

The control law coefficients are k3 = 4, kb = 1, and the initial estimate b̂(0) is set to

zero. For the sigmoid function we use

σ (s) =
Mr s
√

1 + r2s2
,

which has the bound |σ (s)| ≤M and derivative at the origin σ ′(s) = r, with M = 1.5 and

r = 3. As yaw input action we use ω3(t) = 0.

A comparison between the reference trajectory, a lemniscate in an inclined plane

described at a speed of V = 1 m/s, and the actual quadrotor trajectory is presented in

Figure 3.6. The quadrotor is initially in a landed state, located approximately at the origin,

and the initial reference position is approximately (1,1,−1.5). Both of these locations are

identified by purple markers. The figure shows that the quadrotor trajectory converges to

the reference trajectory in a straight fashion, without unnecessary trajectory deviations

or changes of direction. After the initial transient, corresponding to the first haft of the

figure eight, the position error is small, as evinced by the nearly identical reference and

actual lemniscate trajectories.

The time evolution of the actual quadrotor position and of the reference is shown

in Figure 3.7. The quadrotor follows closely the desired path with neglectible error in

steady state. The trajectory tracking root mean square (RMS) error in steady state is 8.5

cm and the maximum error is 16.8 cm. The position error in steady state can be attributed

to unmodeled dynamics of the plant and to the fact that the issued commands are not

perfectly followed by the aircraft. The main contributions to the unmodeled dynamics

are threefold: i) there exist unmodeled cross-couplings between the angular velocity

commands and lateral forces acting on the quadrotor, due to an uneven and not perfectly

symmetric mass distribution of the vehicle; ii) the issued thrust and angular velocity

commands are not perfectly followed due to motor inertia and incorrect identification of
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Figure 3.6: Comparison of the reference and vehicle trajectories.

the relationship between the thrust command and the generated thrust force; iii) there

exist non-constant disturbances affecting the vehicle. Notice that the vehicle has a large

initial position error, leading to the saturation function having a preponderant role in the

control signal. Despite this unfavorable initial configuration, the actuation commands are

kept within their performance limits (see Figure 3.9) and convergence to the reference

trajectory occurs in just 5 seconds time, after which only small corrections are performed

to the quadrotor trajectory.
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Figure 3.7: Time evolution of the position and reference signals.

Although the trajectory tracking experiment is performed on a closed division, with

wind disturbances arising only from an air conditioning system, the effect of the integral
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action is evidenced on the vertical axis. After the initial transient, where the vertical error

decreases rapidly, there is a slower approximation of the altitude to the desired one, until

they match in steady state. This slower convergence is the result of the imposed integral

action, through the disturbance estimator, which enables perfect theoretical tracking,

even though the thrust command to thrust force relation is not perfectly known. The

time evolution of the disturbance estimate is presented in Figure 3.8. Also visible is the

convergence of the estimations of the lateral force errors, in average, to a constant value.

These can arise either from uneven mass distribution of the quadrotor or from the fact

that the motor and transmission gears have imperfections that result in different rotation

velocities, for the same command signal. The estimation does not converge to a constant

value but presents some periodic ripples. The ripples can be explained by the existence of

unmodeled dynamics, which disturb the system. The period of the ripples is the same as

the period of the trajectory, which is consistent with the unmodeled dynamics hypothesis.
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Figure 3.8: Force disturbance estimate.

The quadrotor actuation signals are depicted in Figure 3.9. The initial transient starts

with a high thrust, to take the quadrotor to the desired height, and large angular velocity

commands, to turn the quadrotor to the desired direction to minimize the errors. Once in

steady state, the actuation signals are primarily the ones necessary to drive the controller

through the reference trajectory, with only small corrections being performed according to

the control law, without large variations. The effect of the integral action can also be seen

in the thrust actuation, as it slowly increases with time, compensating for imprecisions in

the conversion between commanded and actual thrust due to its variation with battery

charge. Moreover, the thrust actuation is always well above zero and Assumption 14 holds

for all the trajectory.
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Figure 3.9: Time evolution of the actuation signals.

Finally, the time evolution of the backstepping errors is shown in Figure 3.10.

3.6.1 Torque actuation simulation

We also performed simulation runs of our proposed controller on a quadrotor actuated in

torque and thrust. The quadrotor was modeled to be identical to the physical quadrotors.

We consider a mass of m = 0.080kg, an inertia tensor J = diag(4.5,4.5,9) · 10−4 Nm, and

motors with a pole at 1.5 Hz, which is not taken into account when developing the

controller. The control law coefficients are k3 = 4, k4 = 5, kb1 = kb2 = 1, and the initial

estimates b̂1(0) and b̂2(0) are set to zero. A disturbance b =
[
0.3 0.2 0.1

]T
was included

in the simulation. For the sigmoid functions we use σ (s) = Mr s√
1+r2s2

, with M = 1 and r = 1

and ρ(s) = Mr s√
1+r2s2

, with M = 1 and r = 2. As yaw input action we use τ3(t) = 0.

Figures 3.11 and 3.12 show comparisons of the reference and actual trajectories,

along space and time. The figures are similar to the ones obtained experimentally, with

convergence to the trajectory being attained in around the 7 seconds mark, or equivalently,

after one lap around the figure eight. Due to the unmodeled vehicle dynamics, resulting

from characterizing the motors as first-order dynamic systems, the trajectory convergence

is not perfect. Small residual errors can be observed even in steady state, and are evidenced

more clearly in Figure 3.13, showing the time evolution of the backstepping errors. Despite

the unmodeled dynamics the RMS position error is only 3.4 cm and the maximum error is

7.0 cm.

Observing Figure 3.14, one can perceive that the estimate b̂1 converges to the real

value b and there is not much influence due to the unmodeled dynamics. The second

estimate on the other hand, is highly affected by motor dynamics, due to its dynamic
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3. Trajectory tracking control

proximity. The estimate b̂1 would have converged to the actual disturbance, b̂1 = b, in the

absence of motor dynamics, as shown in Theorem 16.

The time evolution of the quadrotor actuation is depicted in Figure 3.15. Again, a

transient is clearly visible in the first seconds of simulation, where the thrust and torque

vary rapidly, until the vehicle is settled close to the desired trajectory. The actuation values

for the transient are within the normal values for the steady state and the singularity

T = 0 is not approached, even during the transient.

3.7 Concluding remarks

This chapter presented a state feedback solution to the problem of stabilizing an un-

deractuated quadrotor vehicle along a predefined trajectory in the presence of constant

force disturbances. A Lyapunov function for the system was derived using adaptive

backstepping techniques and made possible by dynamic extension of the actuation. A

pair of sufficiently smooth estimators were introduced so as to compensate for the force

disturbance and add integral action to the system. Control solutions for different levels of

actuation control, angular velocity and torque, depending on the aircraft, were proposed

and tested.

Experimental data for trajectory tracking applied to a small-scale quadrotor vehicle

was presented which evidenced the effects of the adaptive action and demonstrated

the robustness and performance of the proposed control law. Realistic simulation data

using a non-ideal torque and thrust actuated quadrotor model is also presented, where

the robustness and performance of the proposed controllers with sufficiently smooth

estimators were assessed.
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Figure 3.10: Time evolution of the error signals.
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Figure 3.13: Time evolution of the error signals.
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Figure 3.14: Force disturbance estimate.
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4
Rotorcraft path following

control for extended
flight envelope coverage

This chapter addresses the design and experimental evaluation of a global controller to

steer a quadrotor vehicle along a predefined path. The global quadrotor controller can

be seen as an adaptation or extension of the controller proposed in the previous chapter,

for which only local stability properties could be proven. The problem is formulated so

as to enforce bounds on the actuation while guaranteeing robustness against constant

wind disturbances. The proposed solution consists of a nonlinear adaptive state feedback

controller for thrust and torque actuation that i) guarantees global convergence of the

closed-loop path following error to zero in the presence of constant wind disturbances

and ii) ensures that the actuation does not grow unbounded as a function of the position

error. Simulation results and experimental results, which include a hovering flight in the

slipstream of a mechanical fan, are presented to assess the performance and robustness of

the proposed controller.

4.1 Introduction

The trajectory tracking controllers proposed in [FDF00, MH04] and in Chapter 3 build

on the dynamic augmentation principle of appending two integrators to the thrust input.

The control laws are valid as long as non-zero thrust is applied at all times, meaning that

zero thrust situations must not arise when the vehicle is perfectly tracking the desired

trajectory neither when moving towards it. Since in the aforementioned controllers the

thrust is commanded by its second time derivative, it becomes difficult to determine the

set of initial conditions that do not lead to zero thrust commands while the vehicle is

converging to the path. An upper bound on the Lyapunov function initial value can be

computed that guarantees non-zero thrust for the whole trajectory. However, that bound

is extremely conservative and can impose restrictions on the initial conditions that are too

strict. Global trajectory tracking controllers have been proposed in [HHMS09] and [RT11]
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4. Path following control

but conservative conditions on the allowable control action are required to keep the thrust

force positive that lead to a significant reduction in thrust force available specifically for

vehicle control. The addition of adaptive control to reject external perturbations further

reduces the effective component of the control action.

The thrust singularity is inherent to the quadrotor dynamics and prevents the design

of (almost) global asymptotically stabilizing controllers. It arises whether the thrust is

directly controlled or whether the second derivative of the thrust is used as control input.

To lift the non-zero thrust restriction and thereby obtain a globally defined controller, we

consider the problem of path following [MS08]. As an alternative to trajectory tracking,

path following solutions typically result in smoother convergence to the path and less

demand on the control effort. A common approach to the path following problem is to

parameterize the desired path using a scalar variable, such as the arc-length, and then

select a timing law for that parameter [SK07, AHK08].

Robustness to external disturbances is crucial for aerial vehicles as, in typical oper-

ating conditions, they are subject to wind and possibly unknown payload distributions,

which make the vehicles deviate from their nominal model. Several approaches have

been proposed for aerial vehicles to deal with disturbances. The control approach pro-

posed in [ANT11] is based on linearization and piecewise affine approximations and the

controlled output is attitude and not position. In the experimental setting, the wind

disturbance is generated by a set of electrical fans, whose airflow is passed through a

pipe-system, rendering the flow affecting the quadrotor laminar and less turbulent. The

works [JJT12] and [NMRS11] propose controllers for attitude robust to external distur-

bances. In both cases experimental results are presented but the considered disturbances

include only unknown parameters or payloads. Trajectory tracking controllers that render

aerial vehicles robust to external disturbances are considered in [HHMS09], [KMAO12],

and [ROR10], but these works present only simulation results.

We explore the extra degree of freedom provided by the path following law (as op-

posed to a trajectory tracking law) to obtain global convergence to the path without any

singularities. The desired path is specified by a sufficiently smooth parameterized 3-D

curve. The attitude of the vehicle is naturally prescribed (up to a rotation about the body

z axis) by solving the path following problem. During the controller design, the attitude

is handled in its natural space, the Special Orthogonal group SO(3), as a rotation matrix.

This avoids the introduction of artifacts related only to the parameterization of SO(3), as

is the case of singularities with Euler angles and multiple coverings with the quaternion

representation [BB00].

The main contribution of this chapter is the design of a robust global path following

control law and the development of an experimental setup for rapid testing and tuning in
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a real vehicle. The control law is not subject to restrictions on the thrust magnitude or the

desired thrust direction, is bounded in the position error, and rejects constant force distur-

bances, as is the case of constant wind or model uncertainties such as imperfect knowledge

of the mass of the vehicle. To ensure that the actuation does not grow unbounded as a

function of the distance to the path, which initially can be arbitrarily large, a saturation

function is applied to the position errors used for feedback. We show that, for a large

class of sufficiently smooth reference path curves, the resulting control law guarantees

global convergence of the path following error to zero. Although the complementary

control techniques are not new, their joint application to obtain a globally stabilizing path

following controller for a quadrotor is a novel contribution to this topic. The experimental

evaluation of the control law is performed in a setup integrating the quadrotor vehicle,

sensors, and radio communication with a quadrotor simulator, allowing for fast iterations

between simulation and testing that expedite the process of tuning the controller gains.

This chapter is structured as follows: The proposed problem and control objective

are stated in Section 4.2. Controller design is described in Section 4.3. Experimental and

simulation results illustrating the performance and robustness of the proposed control

laws are presented in Section 4.4 and Section 4.5 summarizes the contents of the chapter.

4.2 Problem statement

Let the desired path pd(γ) ∈R3 be a curve of class at least C4, parametrized by γ ∈R. The

control objective consists of designing a control law for the quadrotor actuations T (t) and

τ(t) and a timing law for the path parameter γ(t) that ensures convergence of the vehicle’s

position p(t) to the path pd(γ) with the largest possible basin of attraction. Throughout

the remainder of the chapter, the time dependence of variables is often omitted to lighten

notation.

Although for the path following problem the vehicle’s velocity is not required to

converge to a given signal, its progression along the path can be controlled through an

adequate choice of the timing law γ(t). As a secondary control objective, γ̇ is required to

follow a given reference velocity profile γ̇r(t).

We consider the full state of the vehicle to be available for feedback. For the experi-

mental results the full state is provided by a high speed OMCS, based on a set of external

cameras tracking reflective markers on the vehicle, as described in section 3.6.

4.3 Controller design

In order to accomplish the path following objective, we now perform the following change

of variables, where the new variables correspond to the inertial position and velocity
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4. Path following control

errors

z1 = p−pd(γ), (4.1a)

z2 = Rv− ṗd , (4.1b)

with derivatives given by

ż1 = z2, (4.2a)

ż2 = − TmRe3 + ge3 − p̈d + b. (4.2b)

This subsystem can be regarded as three independent double integrators, each one driven

by one of the entries of the input vector − TmRe3 + ge3 − p̈d + b.

To devise a control law that steers the aerial vehicle along the path pd(γ) we consider

a two stage process. First, a virtual controller, with certain properties, is designed for

the translational subsystem without taking into account the dynamic specificities of the

quadrotor. Starting with this double integrator controller as an initial solution, the input

error resulting from the vehicle underactuation is backstepped through the rotational

subsystem until a control law for the angular velocity or torque actuation is reached.

Let u? be a state feedback controller for a three dimensional double integrator system

with states x1 and x2 that, for a Lyapunov function VDI (x1,x2), renders its closed-loop

time derivative a strictly negative definite function V̇DI (x1,x2) = −WDI (x1,x2) < 0. An

example of such a controller was presented in chapter 3. In addition, an example of a

more general controller for a double integrator can be found in appendix A and is easily

extended for the multidimensional case by noting that all three double integrators are

independent. We now apply the double integrator Lyapunov function to the error system

(4.2) and add an additional term to mitigate the effect of the unknown disturbance on a

first level. This results in the tentative Lyapunov function for the entire quadrotor system

V1 = VDI (z1,z2) +
∫ ‖z0‖

0
σ (τ)dτ +

∫ ‖b‖
0

σ−1(τ)−bTz0 (4.3)

with time derivative

V̇1 = −WDI (z1,z2) +
∂VDI
∂z2

(
− TmRe3 −u? + ge3 − p̈d + σ (z0)

)
, (4.4)

where z0 is an integral state given by

z0 =
∫ t

0

∂VDI
∂z2

T

.

The addition of the integral terms to the Lyapunov function draws inspiration from

[HHMS09] and is used to cancel out the external disturbance in the Lyapunov derivative

and add a bounded integral term to the desired thrust direction. Positive definiteness of
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4.3 Controller design

the Lyapunov function with respect to z0 comes from a particular application of Young’s

inequality

bTz0 ≤ ‖b‖‖z0‖ ≤
∫ ‖z0‖

0
σ (τ)dτ +

∫ ‖b‖
0

σ−1(τ)dτ,

where σ is a saturation function and σ−1 is its inverse.

Partitioning the rotation matrix in column vectors as R = [r1 r2 r3], the thrust control

law is designed as

T = TdrT3dr3, (4.5)

where the desired thrust Td and desired thrust direction r3d depend on the double inte-

grator stabilizing virtual force

Fd =m(−u? + ge3 − p̈d + σ (z0)) (4.6)

and are defined as

Td = ‖Fd‖, r3d =
Fd
‖Fd‖

. (4.7)

The closed-loop derivative (4.4) can be rewritten as

V̇1 = −WDI (z1, z2)− Td
m
∂VDI
∂z2

S(r3)2r3d ,

where the vector S(r3)2r3d belongs to the plane perpendicular to the thrust direction

and can be regarded as an input error due to the under-actuation of the translational

subsystem. An illustration of the vectors involved is provided in Figure 4.1.

�TdS(r3)
2r3d

Tdr3d

Tr3

Figure 4.1: The thrust actuation, desired thrust vector, and the corresponding vector error.

When the thrust is aligned with the desired direction, i.e. r3 = r3d , the input error is

zero and regulation to zero of the path following error is achieved. The error between the

desired and the actual thrust direction can be written in vector form as

z3 = r3 − r3d ,

or as an angular error zθ given by the relation

coszθ = rT3r3d . (4.8)
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We now extend the tentative Lyapunov function to include the angular error as follows

V2 = V1 + 1
2ka

zT3z3 + 1
2kb1

b̃T
1b̃1 = V1 + 1

ka
(1− rT3 r3d)) + 1

2kb1
b̃T

1b̃1,

and compute its closed-loop derivative as

V̇2 = −W2(z1, z2, zθ) + rT3dRS(e3)
(

1
ka

(ω −RTS(r3d)̂̇r3d)− S(e3)RT

(
Td
m
∂VDI
∂z2

T

+ k3r3d

))
− b̃T

1

(
1
ka

∂r3d

∂z2
S(e3)RT r3d + 1

kb1

˙̂b1

)
, (4.9)

where ka, k3 are positive control gains and W2 is a positive definite function, given by

W2(z1, z2, zθ) =WDI (z1, z2) + k3 sin2 zθ .

For W2 we used the relation −rT3dS(r3)2r3d = sin2 zθ.

The symbol ̂̇r3d represents the estimate of the time derivative of r3d obtained by using

the estimate b̂1 of the external disturbance instead of b, when performing the necessary

calculations. The estimation error is given by

ṙ3d − ̂̇r3d =
(
∂r3d

∂z2

)T
b̃1.

For quadrotors controlled in angular velocity we can, at this stage, set the actuation

ω such that (4.9) is negative semi-definite, as detailed subsequently in Lemma 18. For

vehicles with actuation in torque we introduce the last backstepping error

z4 = −S(e3)2
(

1
ka

(ω −RTS(r3d)̂̇r3d)− S(e3)RT

(
Td
m
∂VDI
∂z2

T

+ k3r3d

))
(4.10)

and the new Lyapunov function and its time derivative,

V = V2 + 1
2 zT4z4 + 1

kb2
b̃T

2b̃2,

V̇ = −W3(z1,z2,sinzθ ,z4)− zT4S(e3)2( 1
ka
τ + ĥ + k4z4 + S(e3)RT r3d)

− b̃T
1

(
1
ka

∂r3d

∂z2
S(e3)RT r3d + 1

kb1

˙̂b1

)
+ b̃T

2

(
∂z4

∂z2
z4 − 1

kb2

˙̂b2

)
where W3(z1,z2,sinzθ ,z4) =W2(z1,z2,sinzθ) + k4zT4z4 is a positive definite function and ĥ

is an estimate of

h = −S(e3)2 d
dt

(
− 1
ka
RTS(r3d)2 ̂̇r3d − S(e3)RT

(
Td
m
∂VDI
∂z2

T

+ k3r3d

))
. (4.11)

As previously with ṙ3d , the quantity h depends on the unknown disturbance b. Applying

the same procedure, we denote as ĥ the estimate obtained by using the estimate b̂2 instead

of the unknown disturbance. The resulting estimation error is

h̃ = h− ĥ =
(
∂z4

∂z2

)T
b̃2.
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We can now use the remaining actuation τ and the estimation laws ˙̂b1 and ˙̂b2 to render

V̇ negative semidefinite and achieve convergence of the path following error to zero. We

state this formally in Lemma 17, assuming that the control law is well-defined. In the

next section we show how the timing law can be chosen so that the control law is always

well-defined, meaning that the expression for Fd given in (4.6) never reaches zero.

Lemma 17. Let the quadrotor kinematics and dynamics be described by (3.1)-(3.4), let pd(γ(t)) ∈
C4 be the desired trajectory, and consider the transformation to error coordinates z1, z2, zθ, z4

given by (4.1a), (4.1b), (4.8), (4.10), respectively. For any bounded τ3(t) ∈ C1, the closed-loop

system that results from applying the input transformation (3.6), the control laws (4.5), the

torque

τ = kaS(e3)2
(
ĥ− S(e3)RT r3d + k4z4

)
+ τ3(t)e3, (4.12)

and the estimator laws

˙̂b1 = − kb1
ka

∂r3d

∂z2
S(e3)RT r3d ,

˙̂b2 = kb2
∂z4

∂z2
z4,

achieves global trajectory tracking, by guaranteeing that the errors z1 and z2 converge to

zero for any initial condition. In addition, the error vector (z1,z2, zθ ,z4) converges to one

of the equilibrium points in the set {(0,0,0,0), (0,0,π,0)} and the desired equilibrium point

(z1,z2, zθ ,z4) = (0,0,0,0) is uniformly asymptotically stable.

Proof. We assume that the control law is well defined, i.e. Td , 0. Starting with the positive

definite Lyapunov function

V = VDI+
∫ ‖z0‖

0
σ (τ)dτ+

∫ ‖b‖
0

σ−1(τ)dτ−bTz0+ 1
ka

(1−coszθ)+1
2 zT4z4+ 1

2kb1
b̃T

1b̃1+ 1
2kb2

b̃T
2b̃2,

and computing its time derivative we have that

V̇ = −WDI (z1,z2)− k3 sin2 zθ − k4zT4z4

is a negative semidefinite function. Since the quadrotor error dynamics are non-autonomous,

we resort to Barbalat’s Lemma to prove convergence of V̇ to zero. From the unboundedness

of V with respect to z1, z2, z4, b̃1 and b̃2, and observing that V̇ is negative semi-definite,

we conclude that the states z1, z2, z4, b̃1 and b̃2 are bounded. The state zθ evolves in a

compact set. The external inputs τ3(t) and p(4)

d are bounded by assumption and bounded-

ness of the auxiliary function (4.11) comes from boundedness of the errors and estimates.

We have thus that V̈ is bounded and, consequently, V̇ is uniformly continuous. We can

therefore apply Barbalat’s Lemma to prove convergence of V̇ to zero and, consequently, of

the states z1, z2, and z4 to the origin and of zθ to the set {0,π}. The closed-loop trajectories
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(z1(t), z2(t), zθ(t), z4(t)) converge to the invariant set {(0,0,0,0), (0,0,π,0)} or, equivalently,

the closed-loop trajectories (z1,z2,z3,z4) converge to the set {(0,0,0,0), (0,0,−2e3,0)}. For

initial conditions such that V (0) < 2ka, the time derivative of V is negative definite,

meaning that the origin is uniformly asymptotically stable.

For the sake of completeness, we rewrite now Lemma 18 for quadrotors actuated in

angular velocity. The proof is omitted as its arguments follow closely those of the Proof

for Lemma 17.

Lemma 18. Let the quadrotor kinematics and dynamics be described by (3.1)-(3.3), let pd(γ(t)) ∈
C3 be the desired trajectory, and consider the transformation to error coordinates z1, z2, zθ
given by (4.1a), (4.1b), (4.8), respectively. For any bounded ω3(t) ∈ C1, the closed-loop system

that results from applying the control laws (4.5),

ω = −S(e3)2
(
RTS(r3d)̂̇r3d + kaS(e3)RT

(
Td
m
∂VDI
∂z2

T

+ k3r3d

))
+ω3(t)e3, (4.13)

and the estimator law
˙̂b1 = − kb1

ka

∂r3d

∂z2
S(e3)RT r3d ,

achieves global trajectory tracking, by guaranteeing that the errors z1 and z2 converge to

zero for any initial condition. In addition, the error vector (z1,z2, zθ) converges to the set

{(0,0,0), (0,0,π)} and the desired equilibrium point (z1,z2, zθ) = (0,0,0) is uniformly asymp-

totically stable.

The rotational degree of freedom allowed by τ3(t) and ω3(t) in (4.12) and (4.13),

respectively, is due to the axial symmetry exhibited by the quadrotor and is used in

the sequel to control the heading of the vehicle independently of the path following

law. Notice that both actuations T and τ or ω depend only on bounded functions of the

position error. This is a desired property since the position error can be arbitrarily large,

depending on the initial conditions for the quadrotor.

4.3.1 Path following timing law

The proposed controller achieves the path following objective as long as the control laws

(4.13) and (4.12) are well-defined, which depend on (4.7) being different from zero. In

this section we explore the use of the degree of freedom provided by the path parameter

γ(t) to guarantee that the path following controllers are well-defined. More specifically,

the timing law for γ(t) ensures that Fd , 0, which using the definition (4.6) expands to

−u? + ge3 − p̈d + σ (z0) , 0, (4.14)
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is satisfied at all times. Recall that u? is a state feedback control law for the three

dimensional double integrator system comprising the states z1 and z2. As a secondary

control objective we drive the path speed γ̇ to a reference speed profile γ̇r(t).

The second order time derivative of the desired path vector is

p̈d = γ̇2p′′d (γ) + γ̈p′d(γ).

Substituting p̈d in (4.14) we obtain

−u? + ge3 − γ̇2p′′d (γ)− γ̈p′d(γ) + σ (z0) , 0 (4.15)

with γ̈ as the control input. Without loss of generality we consider that the desired path

has a parameter derivative of unitary norm, ‖p′d(γ)‖ = 1. We now devise a control law for

γ̈ appropriate for paths featuring

‖eT3p′d(γ)‖ < α (4.16)

for some design parameter verifying 0 < α ≤
√

3
3 . For paths verifying only ‖eT1p′d(γ)‖ > α or

‖eT2p′d(γ)‖ > α, the same principles can be used to derive similar timing laws and, as such,

these cases will not be presented here. If the desired path violates these three conditions

on p′d(γ) then it can be separated in smaller path segments, each verifying at least one of

the previous conditions.

Let R(γ) = R(θ(γ),n) be a rotation matrix defined by its angle-axis representation with

θ = arctan(eT1p′d(γ),eT2p′d(γ)),

n = e3

(4.17)

and left multiply (4.15) to obtain the following system of equations that cannot be simul-

taneously verified

v1 − γ̈
√

1− (eT3p′d(γ))2 = 0, (4.18)

v2 = 0, (4.19)

v3 − γ̈eT3p′d(γ) = 0, (4.20)

where

vi = eTi R(γ)(−u? + ge3 − γ̇2p′′d (γ) + σ (z0)). (4.21)

Notice that R(γ) is carefully crafted so as to eliminate γ̈ from the vector component v2. At

this point, we design a control law for γ̈ that drives γ̇ to γ̇r but perturb it when necessary

so that (4.18)-(4.19) are never simultaneously verified.
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Local perturbation of γ̈ is achieved through two bump functions (see [Lee03] for a

detailed definition) of class C∞ that are used in the design of the timing law,

ΨA,B(s) =



1 , 0 ≤ s < A

tanh
(
− λ(s)

1−λ(s)2 +
1
2

)
, A < s < B

0 , B < s

ΨA,B(−s) , s < 0

ΦA,B(s) = 1−Ψ (s),

where

λ(s) =
2s −A+B)

(B−A)

and A and B are positive parameters with B > A. This function is identically one for |s| < A
and zero for |s| > B. A graphical representation of the bump functions is presented in

Figure (4.2) for A = 0.5 and B = 1.
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Figure 4.2: Bump-like functions of class C∞.

We can now state the following result.

Lemma 19. Let pd(γ) ∈R3 be a function of at least class C4 such that ‖p′d(γ)‖ = 1 and (4.16)

are verified for all γ and eT1R(γ)p′′d (γ) = 0 or

eT1R(γ)p′′d (γ)

eT2R(γ)p′′d (γ)
(4.22)

is bounded for all γ (or its limit is bounded, when undefined). Controlling the path progression

parameter γ through

γ̈ = −(1−ΨA,B(v2))
(
k1(γ̇ − γ̇r ) + k3(γ̇ − γ̇r )3 − γ̈r

)
+ΨA,B(v2)

v1 −M√
1− (eT3p′d(t))2

(4.23)
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with M , 0 guarantees that the path following control laws (4.5) and (4.12) are always well-

defined and that γ̇ converges to γ̇r .

Proof. Define the velocity tracking error between the actual velocity and the reference

velocity profile as

zγ = γ̇ − γ̇r(t)

and consider the quadratic Lyapunov function

Vγ = 1
2z

2
γ .

Its time derivative is

V̇γ = −(1−ΨA,B(v2))(k1z
2
γ + k3z

4
γ ) + zγΨA,B(v2)

 v1 −M√
1− (eT3p′d(γ))2

− γ̈r

 . (4.24)

Sufficiently far from the singularity, when |v2| > B, the time derivative (4.24) is reduced to

V̇γ = −k1z
2
γ − k3z

4
γ .

The velocity error is driven to zero, bounded, and the control law (4.23) is well defined.

Let us now examine the opposite case, where |v2| ≤ B. Starting with the definition of v2 in

(4.21) and solving for the path velocity we get

γ̇2 =
eT2R(−u? + ge3 + σ (z0))− v2

eT2R(γ)p′′d (γ)
.

Substituting the previous equation in (4.23) we get

γ̈ = −(1−ΨA,B(v2))(k1zγ + k3z
3
γ − γ̈r ) +ΨA,B(v2) 1√

1−(eT3 p′d (γ))2

[
eT1R(γ)

(
−u? + ge3 + σ (z0)

)
−

eT1R(γ)p′′d (γ)

eT2R(γ)p′′d (γ)

(
eT2R(γ)(u? + ge3 + σ (z0))− v2

)
−M

]
. (4.25)

Since the terms in γ and γ3 are stabilizing and all the variables are bounded, in the

condition of the theorem we have that γ̈ is bounded and neither the path parameter γ nor

its derivatives grow unbounded in finite time.

The fact that the only singularity in (4.25) comes from the denominator allows us to

use the conditions (4.22) to verify a priori the stability of the timing law, even near its

singularity, as they are uniquely defined by the desired path. The discussion in the proof

of Lemma 19 is applicable to reference paths which have been normalized on their path

progression to have unit norm parameter derivative. This is a desirable situation since

we want to aggregate all the velocity behavior in the path derivative γ̇ , independently

of the path itself pd(γ). In such situation, the tracking of a path with constant velocity
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corresponds to a constant γ̇ . However, the relation (4.22) can also be written for a non-

normalized path enabling to check if it is a feasible path without having to normalize.

Let pr(γ) be a path definition and pd(γ) the corresponding path normalized so as to have

unitary norm derivative. Expanding the normalization of pr and the definition of R(γ)

in (4.17) leads to a simple formula to verify if the timing law is well defined. Then, the

following relationship can be determined

eT1R(γ)p′′d
eT2R(γ)p′′d

=
‖p′r‖2p′r3p′′r3 −p′Tr p′′r (p′r3)2

‖p′r‖2(p′r2p′′r1 −p′r1p′′r2)
,

from which follows directly that paths lying on a horizontal plane (p′r3 = 0) are all feasible.

4.3.2 Yaw degree of freedom

In a path following situation, the attitude of the vehicle is automatically prescribed up

to a rotation around the body z axis. This is specified in (3.7) and is corroborated by the

control laws (4.12) and (4.13) obtained in the previous section, where the actuation torque

τ3(t) or angular velocity ω3(t) are arbitrary functions. We can thus explore this extra

degree of freedom to achieve an additional control objective, which should be carefully

chosen so that it does not conflict with the original path following objective.

A simple possibility is to guarantee convergence of ω3 to zero, by application of the

control law τ3 = −kω3, or the trivial control ω3 = 0 for vehicles controlled in angular

velocity. In this situation the yaw angle does not vary significantly, or remains constant,

for all the trajectory. A more interesting and useful goal is to control the yaw angle

so that internal sensors that equip the vehicle (such as cameras or laser scanners) are

correctly aligned to better accomplish their tasks. In this chapter, since the quadrotor in

consideration does not possess internal sensors, we align the yaw angle to ensure that the

vehicle has zero side-slip angle, i.e., the vehicle follows the desired path with zero velocity

component along the body y axis.

Combining (3.7), which describes the path following equilibrium, with the additional

constraint

[0 1 0]Tvd = v2d = 0

we can arrive at the following expression for the desired rotation matrix

Rd =
[
− S(r3d )2p′d
‖S(r3d )2p′d‖

S(r3d )p′d
‖S(r3d )p′d‖

r3d

]
(4.26)

where the third column of Rd is given by (4.7). Clearly, (4.26) can only be used if S(r3d)ṗd ,

0. When this is not the case, any pair (r1d ,r2d) such that Rd = [r1d r2d r3d] ∈ SO(3) yields

v2d = 0. Since the control law for path following already ensures that r3 converges to

r3d , to guarantee that v2d approaches zero, we need only have convergence of r2 to r2d
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or equivalently of rT2dr2 to one. Once again, we stress that working directly with the

rotation matrix as opposed to adopting a parameterization has the advantage of avoiding

singularities and unwinding behavior of the system’s trajectories [BB00].

Consider first the case of torque controlled quadrotor vehicles. Having defined Rd
completely, straightforward but rather lengthy computations provide expressions for both

ω3d and its time derivative ω̇3d . Gathering all these elements, we define the following

PD-like control law for τ3

τ3 = −l2(ω3 −ω3d + l1rT2dr1) + ω̇3d − l1
d
dt

(rT2dr1) (4.27)

with l1 > 0 and l2 > 0. Computing the time derivative of the Lyapunov function W =

(ω3 −ω3d + l1rT2dr1)2 we can verify that it is negative definitive, which implies that ω3

converges to ω3d − l1rT2dr1. For vehicles controlled in angular velocity this translates

trivially to setting

ω3 =ω3d − l1rT2dr1. (4.28)

Clearly this is not enough to guarantee that r2 approaches r2d , however some insight

that this convergence is happening can be gained by noting that the term −l1rT2dr1 opposes

growth in the angular distance between r2 and r2d . More formally, we can define the states

ξ =ω3 −ω3d + l1rT2dr1 ∈R

η = 1− rT2dr2 ∈ [0, 2]

and verify that, at the path following equilibrium given by z1 = z2 = zθ = z4 = 0, and ξ = 0,

the dynamic system for η is described by

η̇ = −l1(2− η)η (4.29)

and the origin of this system is asymptotically stable.

If we consider the closed-loop quadrotor system that results from applying the control

laws (4.5) and (4.12) with (4.27), the system (4.29) can be thought of as the quadrotor

zero dynamics. We can therefore conclude that the overall closed-loop system has an

asymptotically stable equilibrium point at the origin, which follows from the asymptotic

stability of z1 = z2 = zθ = z4 = 0 and ξ = 0.

4.4 Experimental results

In order to experimentally validate the proposed control algorithms we use the rapid

prototyping and testing architecture described in Section 3.6. The vehicle used for the

experiments is a radio controlled Blade mQX quadrotor [bla], depicted in Figure 3.1(a).
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4.4.1 Path following

For the first experimental evaluation of the proposed controller we selected for the desired

path a lemniscate (figure eight) parameterized by γ according to

pd(γ) =


cos(π/4) sin(π/4) 0
−sin(π/4) cos(π/4) 0

0 0 1




sin(φ(γ))cos(φ(γ))
sin(φ(γ))2+1

cos(φ(γ))
sin(φ(γ))2+1

1

 ,
where φ(γ) is defined as

φ(γ) =
∫ γ

0

√
1 + sin2(τ)dτ .

This parametrization results in a path derivative with unitary norm. The desired progres-

sion along the path is governed by γ̇r = V Ψ0.5,1(‖z1‖). For large position errors, γ̇r is zero

to ensure that the desired position waits for the vehicle to reach it. When the vehicle is

close to the path the desired parameter derivative γ̇r takes a constant value to enforce a

vehicle velocity of constant norm V .

As the double integrator control law we use a vector application of

u?(x1,x2) = −k2(x2 + σ (x1))− σ (x1)− σ ′(x1)x2.

The control law coefficients are k2 = 3, k3 = 1, k4 = 3, ka = 20, kb1 = 1, kb2 = kb1/ka. The

unknown disturbance is set at b = [0.3,−0.2,0.1]T (m s−2) for the simulation and the initial

estimates b̂1(0) and b̂2(0) are set to zero. The heading is driven by the control laws (4.27)

and (4.28) with l1 = l2 = 1. For the sigmoid function we use

σ (s) = 2
s

√
1 + s2

,

and as timing law parameters and initial conditions we use kγ = 1, V = 1, γ(0) = 0 and

γ̇(0) = 1. For the simulation with torque actuation we consider J = I3/100 where I3 is the

3× 3 identity matrix.

A comparison of a segment of the reference path, the actual quadrotor path and a

simulation path starting with the same initial condition as the actual path is presented

in Figure 4.3. Small position errors can be seen for the simulation due to the initial

conditions for the quadrotor state and disturbance estimation and due to imposed force

disturbance b. These errors eventually converge to zero as the estimation errors go to

zero and path following is achieved. The time evolution of the actual quadrotor position

and the reference for the lemniscate trajectory is shown in Figure 4.4. The quadrotor

follows closely the desired path, with a maximum error of 8 cm and mean error of 4 cm

for the path shown in Figure 4.3. This small position error can be attributed to unmodeled

dynamics of the plant and to the fact that the issued commands are not perfectly followed

70



4.4 Experimental results

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x (m)

y
(m

)

 

 

Reference
Simulation
Actual

Figure 4.3: Reference and quadrotor paths.

by the aircraft. The main contributions to the unmodeled dynamics are threefold: i) there

exist unmodeled cross-couplings between the angular velocity commands and lateral

forces acting on the quadrotor, due to an uneven and not perfectly symmetric mass

distribution of the vehicle; ii) the issued thrust and angular velocity commands are not

followed instantly due to motor inertia; iii) there exists a non-constant wind disturbance

affecting the vehicle.

Although the path following experiment is performed on a closed division, without

much wind disturbance, the effect of the integral action is evidenced on the vertical axis.

The vertical steady state error is neglectable (see Figure 4.4, owing to the existence of both

the integral term σ (z0) in (4.6) and the disturbance estimator b̂, even though the thrust

command to thrust force relation is not perfectly known.

The command signals and the quadrotor angular velocity derived from attitude mea-

surements are depicted in Figure 4.5. Even though the commands are not followed

perfectly the controller is robust enough so that this mismatch results in small position

errors.

4.4.2 Robustness to external disturbances

The previous experiment shows that the proposed quadrotor controller accomplishes

its goals in a windless setup, despite the fact that the thrust command to thrust force

ratio is known only approximately and is subject to change with the battery charge.

However, the first trial does not fully evidence the controller behavior in the presence

of wind disturbances. In order to attest the controller’s robustness we devised a second
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Figure 4.4: Time evolution of the position and reference signal.

experiment where the quadrotor is forced to hover in the slipstream of a mechanical fan,

as pictured in Figure 4.6.

With the fan turned off, we initially hover the vehicle and then turn the fan on, creating

an airflow that the quadrotor controller is designed to reject. The results of the experiment

are shown in Figures 4.7 and 4.8, where only the data along the airflow axis is plotted for

better visualization.

The effect of the airflow disturbance can be seen around the 10s time instant, when the

fan is turned on and the integral term σ (z0) in (4.6) and the estimator b̂1 start adapting

to the new environmental conditions. The position error grows from effectively zero to

15 cm, when the fan is turned on, but quickly returns back to zero due the action of the

integral terms.

As a consequence of the integral terms and the new conditions, the quadrotor tilts

against the airflow so that it can hover at a designated location and not be dragged by

the fan’s slipstream. This is evidenced by Figure 4.8, where the pitch angle goes from an

average of −1.5 degrees, in a windless situation, to 7 degrees, when the mechanical fan is

working. Also visible in the figure is the increase in noise in the pitch angle that occurs

while the disturbance is active, due to the turbulent and narrow airflow generated by the

mechanical fan.

4.4.3 Saturation and negatived thrust

In this section we present the results from a simulation run of the controller that is

illustrative of the saturation function effect and of the control method stability and
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Figure 4.5: Time evolution of the actuation signals.

Figure 4.6: Setup of the quadrotor vehicle and the disturbance generator.

robustness properties for aerial vehicles actuated in torque. We used the same desired

path and controller parameters as described in Section 4.4.1.

At the initial time instant the vehicle state is at rest at p(0) = [10,−5,−3]T (m) and

turned upside down, presenting r3(0) = [0, 0, −1]T . This extremely unfavorable orientation

is chosen to illustrate a zero thrust actuation condition during the initial transient. The

initial position, corresponding to a large position error, enables the observation of the

transient behavior induced by the saturations in the control law.

Figure 4.9 depicts the time evolution of all the components of the path following and

backstepping errors. The convergence rates of the different errors vary but it can be seen

that a situation close to path following is attained in about 15 seconds time. The fastest

error to converge is z4, which is almost zero in less than 5 seconds time. The effect of the
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Figure 4.7: Time evolution of the disturbance estimation and related signals, restricted to
the slipstream axis, when subject to a wind disturbance.

σ saturation is clearly visible on the position and velocity error. The initial convergence of

the vehicle to the path is performed almost at constant velocity for x and y (see from 0

to 5 seconds). Once the main effect of the saturation ceases, all errors start to converge

simultaneously and are negligible after the 15 seconds mark. The remaining error is due

to the influence of the estimators and is gradually reduced to zero as time passes. Notice

that the due to the integral action of the controller we are able to reject the unknown

constant force disturbance.

It is worth to notice that due the initial unfavorable orientation, the direction of r3

suffers an inversion, as indicated by the evolution of the error component from z33 = −2

(r3 = −rd3) to z33 = 0 (r3 = rd3).

The quadrotor actuation does not vary significantly from its nominal values, apart

from the initial transient, as shown in Figure 4.10. The effect of the initial unfavorable

orientation is also visible in the thrust actuation. Its initial value is negative and becomes

positive when the vehicle returns to a more standard orientation.

The time evolution of the path parameter derivative is depicted in Figure 4.11. The

evolution of γ̇ is ruled by the timing law (4.23) and converges to V = 1 for sufficiently

small path following error. The large initial position error dictates a slow progression

along the path, with γ̇ approaching zero. Only when the path following error is small

does the parameter’s derivative reach an inflection point, to finally converge to the steady

state value of 1.
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bance.

4.5 Concluding remarks

This chapter presented a state feedback solution to the problem of steering a quadrotor

vehicle along a predefined path. The proposed solution guarantees global convergence

of the path following error to zero, for a large class of three-dimensional paths. The

nonlinear controller, which was designed using Lyapunov-based backstepping techniques,

ensures that the actuation does not grow unbounded as function of the position error

and allows for zero thrust actuation to be applied when the vehicle is converging to the

path. The proposed controller was designed to be robust to unknown constant force

disturbances that arise from the presence of wind or imperfect knowledge of vehicle

parameters. Additionally, the vehicle’s progression along the path is controlled to follow

a predefined speed profile and simultaneously maintain the path following control law

well-defined. A final degree of freedom in the control laws is explored so that the vehicle

flies with zero side-slip angle. Experimental and simulation results were presented for

vehicles controlled in both angular velocity and torque to assess the performance of the

proposed controllers. The robustness of the controller to non-ideal wind disturbances was

experimentally demonstrated using a mechanical fan as a disturbance generator. Future

work remains to be carried on input saturation as the proposed controller generates inputs

which are bounded with respect to the position error but can grow unbounded on the

remaining errors.
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Figure 4.9: Path following errors
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5
Robust take-off and landing

for a quadrotor vehicle

This chapter addresses the problem of robust take-off and landing of a quadrotor UAV

in critical scenarios, such as in presence of sloped terrains and surrounding obstacles.

Throughout the maneuver the vehicle is modeled as a hybrid automaton whose states

reflect the different dynamic behavior exhibited by the UAV. The original take-off or

landing problems are then addressed as the problem of tracking suitable reference signals

in order to achieve the desired transitions between different hybrid states of the automa-

ton. Reference trajectories and feedback control laws are derived to explicitly account

for uncertainties in both the environment and the vehicle dynamics. Simulation and

experimental results demonstrate the effectiveness of the proposed solution and highlight

the advantages with respect to more standard open-loop strategies, especially for the cases

in which the slope of the terrain renders the take-off and landing maneuvers more critical

to be achieved.

5.1 Introduction

To be truly autonomous, an UAV must perform maneuvers that encompass not only the

normal flight conditions, like hover or forward flight, but also the take-off and landing

maneuvers, where interaction with the ground occurs. In the critical take-off phase the

autopilot controller must provide robustness to uncertainties in both the environment

and the dynamical vehicle model. In most of the available literature, automated take-off

maneuvers for aerial rotorcraft are performed in a semi open-loop fashion.

In this chapter of the thesis, we target both the problem of automatic take-off and

landing in critical scenarios where heuristic “open-loop” approaches can not be used to

guarantee successful maneuvers and control solutions able to finely steer the vehicle along

appropriate trajectories are needed. The prototypical scenario motivating our attempts is

sketched in Figure 5.1, for the takeoff situation. The presence of a left-sided obstacle along
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Figure 5.1: Left: the quadrotor hits an obstacle if uncontrolled vertical thrusts are applied.
Right: a safe take-off maneuver.

with a sloped terrain makes the application of heuristic take-off strategies, for instance

based on the application of uncontrolled large vertical thrusts aiming to rapidly detach

the vehicle from the ground, inappropriate as leading to hit the obstacle (see the sketch

on left of Figure 5.5). Indeed, as shown on the right of the figure, successful take-off

maneuvers necessarily require a first phase in which the vehicle is tilted clockwise by

pivoting about the landing gear, followed by a getaway maneuver in which the vehicle

slides to the right while keeping the contact with the ground, before definitely taking-off

at a safe distance from the obstacle. The accomplishment of this kind of maneuver, in turn,

is challenging due to the changes of the dynamics governing the vehicle in the different

phases and to the possible uncertainties characterizing the environment and the vehicle.

Regarding the landing maneuver, early research work with demonstrated experimental

results considered horizontal flat and stable landing surfaces. To land, the aircraft was

simply commanded through position or velocity tracking maneuvers until contact with

the ground was made, see e.g. [BS07] and [RSZF07]. The more challenging problem of

landing an autonomous helicopter on an oscillating platform, such as the deck of a ship

at sea, was considered in [MIS02]. In this work the authors devise an inner-model based

control solution, based on the assumption that the vertical oscillation is the result of the

superposition of sinusoids of unknown amplitude, phase and frequency. More recently,

a landing controller able to cope with a landing platform that is moving vertically with

unknown dynamics was developed in [HHMR12], where landing is achieved based on

optical flow measurements. The proposed landing controller is designed based on a

time-scale separation principle between the attitude and position subsystems but the final

stability analysis is performed for the full nonlinear model of the quadrotor. The related

problem of landing on a horizontally moving platform was studied in [VBA10], where the

authors tackle the problem of landing the vehicle on a platform moving in the horizontal

plane. In order to land successfully, the vehicle tracks a desired velocity component in the

z-direction while a 2D-tracking controller leads the vehicle to hover above the moving

platform. The quadrotor control system is decomposed in an outer-loop for translational
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velocity control and an inner-loop for attitude control, where the inner-loop is designed

to be considerably faster than the outer-loop so as to decouple both dynamics. In that

situation the attitude is considered as a control input for the outer-loop. The landing

controller is finalized with a 2D tracking controller to drive the quadrotor to hover on

the moving platform. The controller however assumes perfect state measurement and

tracking, with no emphasis given to robustness.

Non-traditional approaches to landing have been developed in [MSK10] and [LDC10],

where solutions for landing aerial vehicles by perching on vertical walls are studied. In

the first work the authors design a claw and grippers that allow for a quadrotor vehicle to

robustly perch in a vertical wall by following an appropriate trajectory until it comes to a

halt at the desired goal or an error is detected. The procedure is robust in the sense that if

an error, or a too large trajectory deviation, is detected then the quadrotor is commanded

to hover at the original location and the perching maneuver is reattempted. Similarly, the

latter work proposes a solution for the control of miniature airplanes with the objective of

landing on vertical surfaces where perching is made possible by fitting the aircraft with

arrays of microspines.

Recently, particular emphasis has been payed to other flight conditions where inter-

action with the environment occurs, whether it is contact with vertical walls, with the

ground or even using an arm-like extension to interact with objects [FNM+12, MN12].

These flight regimes are considerably more challenging for the aircraft operation than free

flight as even small errors can result in catastrophic consequences, due to the proximity

of the rotor’s fast rotating blades to the environment. Additionally, special attention

has to be payed to the dynamics of the vehicle, as these change according to the type of

contact being established. As such, for a successful operation in a wide range of mission

scenarios, robust controllers must be designed for each flight regime that ensure the

vehicle completes the maneuver without incidents, despite possible parameter or model-

ing uncertainties. The use of a VTOL vehicle to apply forces to the environment while

maintaining flight stability was proposed in [ATH+10]. In that work a classical quadrotor

platform is augmented with an additional actuator, a propeller aligned with the horizontal

plane, so that the vehicle can generate lateral forces when in physical contact with the

wall while maintaining a leveled attitude. Similarly, in [FNM+12] a quadrotor vehicle

is fitted with an arm, which is used to interact with the environment. An impedance

controller is proposed to allow the UAV to dock to a vertical surface while applying a force

by means of the manipulator’s end-effector and maintaining stability. Further exploration

of flight modes were physical contact with the environment occurs culminated in [MN12],

which focuses on the interaction of a ducted-fan aerial vehicle with a vertical surface,

where sliding is allowed. The ducted-fan is a VTOL rotorcraft vehicle able to hover like a
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5. Robust take-off and landing

helicopter or quadrotor but whose fuselage is more appropriate for general contact with

the environment, as the sole rotating propeller is protected from accidental contacts by

the duct. Control of the vehicle position and of the exerted force is achieved by means

of state feedback control laws and their stability properties, in particular the system’s

zero dynamics, are thoroughly analyzed. An additional operative mode considered in this

work is the ducted fan vehicle as a mobile robot. Due to the mechanics of the vehicle, the

force generated by the rotor is not restricted to the thrust direction but can be oriented

laterally. In this way, by fitting the ducted fan landing gear with wheels, it is possible to

have the vehicle always in contact with the ground but moving laterally, for thrust forces

below the lift-off threshold.

Grasping of objects is yet another kind of interaction with the environment that

was studied in [PBD11] and [MFK11]. In the former work a helicopter is fitted with a

compliant grasper and the dynamic load disturbances are rejected resorting to a PID

controller. Bounds under which the helicopter system carrying a load is stable are

presented, together with stability conditions for partial contact with objects resting on a

surface. The latter manuscript considers the cooperation of multiple robots to transport

a payload attached with cables and details the kinematic constraints and the mechanics

underlying stable equilibria of the underactuated system.

The essence of the different dynamic behaviors of an aerial vehicle when interacting

with the environment and the conditions for commutation between each operating mode

can be easily captured by a hybrid automaton. Hybrid automata constitute a subset of

the larger class of hybrid dynamical systems [GST09] and allow to model a complex

system in a modular way by collecting simpler dynamical models, each one focusing only

on a precise operating mode of the system. Hybrid controllers have been successfully

applied for the trajectory tracking of aerial vehicles in different setups, from which we

highlight two. In [KHM+98], a hybrid controller is designed to fulfill multiple hierarchical

objectives and includes a tactical planner, responsible for the higher level behavior of the

aircraft, and a trajectory planner, which generates the desired trajectory for each mode.

The performance of each of the individual nonlinear controllers is demonstrated by the

authors, although an analysis of the overall switched system is not presented. A different

hierarchical control architecture for aggressive maneuvering applicable to autonomous

helicopters is proposed in [FDF99]. In this latter work, the hybrid controller is based

on an automaton whose states represent feasible trajectory primitives. The selection of

maneuvers, and hence the generation of the complete trajectory, is cast as an optimal

control problem. The proposed control methodology, however, assumes perfect tracking

of the nominal trajectory. In both papers, different states of the automata correspond to

different trajectories and not to different dynamics of the vehicle. Additionally, in the

82



5.2 Quadrotor hybrid model

former work, the overall switched system stability analysis is not presented and, in the

latter, perfect tracking of the nominal trajectories is assumed.

The methodology we adopt to address the takeoff and landing problems borrows from

the control framework proposed in [MNG09] and builds upon previous work on ground

interactions [NMG09] and interactions with structures in the environment [NGM11]. In

this approach, the vehicle is modeled as a hybrid automaton where each state corresponds

to a different operating condition, where the vehicle is subject to different dynamics,

according to the nature of the ground contact. The control methodology presented in the

following requires that the current operative mode of the UAV is known. For the specific

take-off and landing operations that are considered in this chapter, the operative mode

can be retrieved by merging the information deriving from contact or force sensors, to be

placed at each extremity of the vehicle’s landing gear, with the knowledge of the velocity

and the attitude of the system obtained through a standard inertial navigation unit.

Once the hybrid automaton is defined, the take-off control problem is addressed as

trajectory generation and tracking control problems. In particular, both the reference

signals and the feedback laws for each operating mode are derived considering explicitly

the presence of uncertainties. The references are designed such that their practical, and

not perfect, tracking ensures that the desired transitions happen, despite the possible

presence of parametric or modeling uncertainties. Other approaches to maneuver based

motion-planning include [FDF05] and [SF08], where supervisor hybrid controllers are

also used to ensure that a sequence of maneuvers is followed robustly.

The main contribution of this chapter consists in the explicit design of the hybrid

automaton, robust reference maneuvers, and low-level controllers for a quadrotor vehicle.

We derive the dynamics for a quadrotor pivoting and/or sliding along a slope and construct

a robust hybrid controller, along with the definition of appropriate reference trajectories,

that allows for fully autonomous robust take-off and landing of the vehicle. Robust

reference maneuvers are obtained as solutions of constrained optimal control problems.

The remainder of this chapter is organized as follows. Section 5.2 presents the hy-

brid automaton model for the vehicle. The robust control architecture is discussed in

Section 5.3, comprising with the generation of the robust reference maneuvers, low-level

controllers and the supervisor. Section 5.4 describes the simulation results for the takeoff

maneuver and Section 5.5 discusses the experimental results obtained for the landing

maneuver. Concluding remarks and final considerations are presented in Section 5.6.

5.2 Quadrotor hybrid model

The UAV considered in this chapter is a quadrotor aircraft actuated in force, generated

by the four propellers. For sake of simplicity, we consider only the “planar dynamics”
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5. Robust take-off and landing

on the configuration manifold S
1 ×R2. The general “spatial dynamics”, defined on the

configuration manifold SO(3)×R3, can be dealt with by properly adapting the presented

arguments.

Figure 5.2(a) presents a graphical description of the quadrotor geometry and the

landing environment. The ground is modeled as a flat surface at an angle β with the

horizontal. A body-fixed frame {B} = {CM,~jB, ~kB} is attached to the quadrotor’s center of

mass (CM), with the vector ~kB pointing upward, along the thrust direction. The inertial

frame {I} = {O,~j,~k} is defined by the vectors ~j and ~k that point North and up, respectively.

An additional frame {L} = {O,~jL, ~kL} is attached to the origin of {I} and rotated with respect

to {I} by an angle β. The angle θ denotes the rotation angle from the inertial frame to the

body frame.

The planar model of the quadrotor, illustrated in Figure 5.2(b), has two counter-

rotating motors for propulsion, generating forces F1 and F2, and a landing gear with two

points of contact with the ground, denoted by A and B. The distance from the center of

mass to each motor and to each contact point are denoted by r and `, respectively. The

angle with vertex in CM and subtended by the motor and contact point is denoted by

γ . The shorthand `g = ` cos(γ) is introduced to simplify mathematical expressions. The

aerodynamic forces generated by the motors at each of the propellers are represented by

F1 and F2.

β

CM

θ

j

k

kB

kL

jL

jB

I

B

L{   }

{   }

{   }

(a) Reference Frames

CM

A

γ

g

r

F1
F2

B

(b) Quadrotor geometry

Figure 5.2: Take-off slope and quadrotor

The coordinates of CM in the {I} and {L} reference frames are denoted by (x,z) and

(xL, zL), respectively, and are related by

xL = xcosβ + z sinβ,

zL = −x sinβ + zcosβ.
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The coordinates of the contact point A (α,ζ), expressed in the {L} frame can be written as

α = xcosβ + z sinβ + ` cos(θ +γ + β),

ζ = −x sinβ + zcosβ − ` sin(θ +γ + β).

Due to the symmetry of the quadrotor, we only consider maneuvers where rotation occurs

around the contact point A, resulting in θ(t)+β ≥ 0, for the operating modes where contact

with the ground exists. The symmetric situation is dealt with similarly and will not be

discussed in this work.

To simplify computations, the state of the quadrotor is expressed in different coordi-

nate systems, according to its operative mode. When in free flight, the quadrotor state is

described by the center of mass coordinates (x, z), the angle θ angle, and their respective

derivatives. In situations where contact with the ground occurs, the quadrotor state is

completely described by the states α, α̇, θ, and θ̇, decoupling the translational motion of

the contact point from the rotational motion around the contact point.

In what follows, we adopt the standard Coulomb friction model [HFC08] to describe the

interaction between the UAV and the terrain. The friction force Ff is bounded in norm

by the product of the normal contact force FN and the friction coefficient µ, as expressed

by the constraint |Ff | ≤ µFN . In case of sliding between the quadrotor and the ground,

the magnitude of the friction force is maximum and opposes the movement, resulting in

Ff = −µsign(α̇)FN , where

FN = (mg cosβ − (F1 +F2)cos(θ + β)), (5.1)

and α̇ is the contact point velocity along the slope. In a non-sliding situation, the vehicle

will remain at rest until the tangent component of the external forces acting on the vehicle

overcomes the friction force limit, |Ff | ≤ µFN . To allow the quadrotor to start at rest when

taking off, and to come to a rest when landing, we require that tanβ < µ. Additionally, for

simplicity, we consider just one friction coefficient, corresponding to a situation where the

kinetic and static coefficients are the same. This nonlinear behavior of the friction force

can be modeled in a hybrid automata framework by considering different states for the

rest and the sliding situations.

For the development of our quadrotor automaton, we consider five operating modes.

These depend on the number of contact points with the ground, and on the relative motion

between the vehicle and the ground, which determine different vehicle dynamics. The

operating modes are described as follows.

• Free Flight (FF) - In this operating mode the quadrotor is in free flight and no contact

with the landing slope occurs.
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• Take-off-and-Landing (TL and TLs) - In a take-off-and-landing situation, there exists

a single contact point between the quadrotor and the ground, depicted as A in

Figure 5.3(a). The shorthand notation TL denotes the non-sliding situation and TLs

the take-off-and-landing mode where sliding exists between the quadrotor and the

ground.

• Landed (LL and LLs) - In the landed operating mode, the landing gear is in full

contact with the ground, with both points A and B touching the landing slope, see

Figure 5.3(b). The shorthand notation LL denotes the non-sliding situation and LLs

the landing operative mode were the quadrotor slides on the ground.

A

(a) Take-off-and-Landing and Take-off-and-
Landing sliding (TL/TLs)

A

B

(b) Landed and Landed sliding (LL/LLs)

Figure 5.3: Quadrotor operating modes

Before dwelling into the dynamics and hybrid model description we introduce the

following mathematical notation, used throughout this chapter. The expression g : X→ Y

indicates that g is a map with domain X and codomain Y . Similarly, h : X ⇒ Y denotes

a set-valued map h with domain X and codomain Y . The sign function sign(x) : R→ R

extracts the sign of a real number. It is defined as sign(x) = −1, if x is negative, sign(x) = 1,

if x is positive, and sign(0) = 0. The symbol ∧ denotes the logical AND operator.

5.2.1 Dynamics of the operating modes

Free flight

In this operating mode the aircraft is airborne. The free flight planar quadrotor is modeled

as a rigid body evolving on SE(2) = S
1 ×R2, namely

mẍ = (F1 +F2)sinθ + δx,

mz̈ = (F1 +F2)cosθ −mg + δz,

Jθ̈ = (F1 −F2)r,

(5.2)

where m and J denote respectively the mass and moment of inertia of the vehicle, g the

gravity acceleration, and δx and δz are exogenous disturbance acting along the lateral and

vertical direction. Aerodynamic drag forces are not considered as they are negligible at
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velocities near the hover condition. To support the employment of the simplified dynami-

cal model proposed above, the Free Flight controller is designed to be robust to external

disturbances, which can encompass wind disturbances and modeling uncertainties and

errors, up to a given limit.

Partial interaction with the ground

In the TL and TLs modes of operation, there is only one contact point of the quadrotor with

the ground, as evidenced in Figure 5.3(a). The vehicle’s motion is restricted to rotation

around the contact point A and translation of the contact point along the slope. Recalling

that α ∈R is the ~jL coordinate of the contact point A in the {L} reference frame and that

θ ∈ (−π,π] is the rotation angle from the {I} to the {B} reference frame, the generalized

forces acting on the vehicle in these operating modes are

F1(F1,F2, α̇,θ) = (F1 +F2)sin(θ + β)−µsign(α̇)(mg cosβ − (F1 +F2)cos(θ + β)),

F2(F1,F2) = F1(r + `g )−F2(r − `g ).

The Lagrangian function of the system in the TL and TLs modes, considering the kinetic

and potential energies, is

L = 1
2m(ẋ2 + ż2) + 1

2 Jθ̇
2 −mgz

= 1
2m(α̇2 + θ̇2`2 + 2α̇θ̇` sin(θ + β +γ)) + 1

2 Jθ̇
2 −mg(α sinβ + ` sin(θ +γ)).

In order to simplify the design of controller for the dynamic system we define two

virtual controls, Fα and Fθ, related to the real actuations by(
Fα
Fθ

)
= L(θ)−1G(θ)M

(
F1
F2

)
(5.3)

where M, G(θ), and L(θ) are given by

M =
(

1 1
r + `g `g − r

)
,

G(θ) =
(
sin(θ + β) +µsign(α̇)cos(θ + β) 0

0 1

)
, (5.4)

L(θ) =m
(

1 ` sin(θ +γ + β)
` sin(θ +γ + β) `2 + J/m

)
,

respectively. This input transformation is always defined, since L(θ) is invertible for all θ,

and results on the following dynamics, after solving the Lagrangian equations defining

the system,

α̈ = Fα + hα(θ, θ̇, α̇,µ), θ̈ = Fθ + hθ(θ, θ̇, α̇,µ), (5.5)
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where

hα(θ, θ̇, α̇,µ) =
1

J +m`2 cos2(β +γ +θ)

(
− g(J +m`2)(µcosβsign(α̇) + sinβ)

+ gm`2 cos(γ +θ)sin(γ +θ + β)− `(J +m`2)cos(γ +θ + β)θ̇2
)
, (5.6)

hθ(θ, θ̇, α̇,µ) =
m`

J +m`2 cos2(β +γ +θ)

(
cos(γ +θ + β)(−g cosβ + ` sin(γ +θ + β)θ̇2)

+ gµcosβ sin(γ +θ + β)sign(α̇)
)
. (5.7)

The input transformation (5.3) is invertible if and only if the matrix G(θ) is non-singular,

as matrix M is full rank. That is, the original forces F1 and F2 are recoverable from Fα

and Fθ if

sin(θ + β) +µsign(α̇)cos(θ + β) , 0.

Note that the inverse transformation depends on a number of physical parameters, and in

particular on µ which is typically uncertain.

The dynamics (5.5) apply only to a quadrotor sliding along the slope. In the take-off
and landing operating mode, the vehicle is in a non-sliding situation. The α position is

constant and the dynamic system is reduced to the angular component of (5.5) with α̇ = 0,

resulting in

θ̈ = Fθ + hθ(θ, θ̇,0,µ). (5.8)

Equations (5.5) and (5.8) describe a 4-state dynamical model for the vehicle. The

coordinates of the center of mass and its derivatives are uniquely defined by the states α,

α̇, θ, and θ̇.

Complete interaction with the ground

In the LL and LLs operating modes, the vehicle is completely landed and only the ground

contact friction affects the motion of the vehicle. As in these configurations it is impossible

to generate forces along the ~jL axis of the {L} frame, the only effect of the controls F1, F2 is

to reduce the normal force FN , consequently reducing the friction force Ff . The dynamic

model for the LLs operating mode is completely described by the dynamical system

mα̈ = −mg sinβ −µsign(α̇)FN , θ̇ = 0, (5.9)

with FN given by (5.1). When in the LL operating mode, this reduces to

α̇ = 0, θ̇ = 0, (5.10)
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and the vehicle’s state remains constant. In these operative modes, and in order to prevent

physically impossible transitions from LL to FF by employing discontinuous forces, we

extend the system input with two integrators, where (v1,v2) are the residual control inputs

Ḟ1(t) = v1(t) , Ḟ2(t) = v2(t). (5.11)

5.2.2 Hybrid model of the overall dynamics

A description of the overall dynamics is obtained by means of a hybrid automaton whose

states correspond to the operating modes described in the preceding section. A hybrid

automaton is identified by the following objects, instanced here for the specific case of the

planar quadrotor.

Operating modes

The quadrotor automaton comprises the set Q of operating modes, denoted by Q =

{LL, LLs, T L, T Ls, FF}.

Domain map

The state of the system ξ ∈ R
6 is described by either (x, ẋ, z, ż,θ, θ̇) or (α,α̇,zL, żL,θ, θ̇).

When the UAV is in contact with the ground (LL, LLs, TL, and TLs operating modes),

the preferred reference frame and the state ξ = (x, ẋ, z, ż,θ, θ̇) are the {L} frame, yielding

ξ = (α,α̇,zL, żL,θ, θ̇), while the {I} frame is preferred for the free flight mode. The inputs

F1 and F2, which correspond to the forces generated by the propellers, are bounded by a

minimum and maximum value, leading to the definition of the input domain U ⊂R
2 as

the compact interval U = [Fmin,Fmax]× [Fmin,Fmax]. The domain mapping D :Q⇒R
6×R2

defines, for each operating mode, the set of values that the state ξ and the control input u

may take.

Flow map

The flow map f :Q×R6×R2→R
6 describes for each operating mode q ∈ {LL,LLs,T L,T Ls,FF}

the evolution of the state variables. In each operating mode q we have the dynamic system

ξ̇ = f (q,ξ,u), where each function f (q,ξ,u) is derived from the differential equations (5.2),

(5.5), (5.8), (5.9), and (5.10).

Edges

The set of edges E ⊂ Q×Q includes all the pairs (q1,q2) such that a transition between the

modes q1 and q2 is possible, for some combination of state and actuation. For the take-off

and landing procedure, we consider the transitions depicted in Figure 5.4. We do not

consider direct edges linking LL to FF or FF to LL as these transitions are not considered
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in the following design of the take-off and landing maneuvers due to possible robustness

issues. Observe also that they can be equivalently obtained by passing instantaneously

trough the intermediate operative modes T L and T Ls.

LL
ξ̇ = 0
D(LL)

LLs
(5.9)
D(LLs)

TL
(5.8)
D(T L)

TLs
(5.5)
D(T Ls)

FF
(5.2)
D(FF)

Figure 5.4: Planar quadrotor hybrid automaton

Guard mapping

The set-valued guard mapping G : E ⇒ R
6 ×R2 determines, for each edge (q1,q2) ∈ E,

the set G({q1,q2}) to which the quadrotor state ξ and inputs F1, F2, must belong so that a

transition from q1 to q2 can occur. There are three main groups of transitions to consider

for the take-off and landing procedures. The transition from two contact points (LL and

LLs operating modes) to one contact point (TL, TLs) is governed by the sign of the torque

Fτ at point A,

Fτ (θ,F1,F2) = (F1 +F2)lg + (F1 −F2)r −mg` cos(θ +γ),

and the inverse transition depends on the angle of the vehicle with the slope, θ + β, and

also on sign of Fτ . The operating mode transitions between free flight and the TLs mode

depend on the force perpendicular to the slope F⊥,

F⊥(θ,F1,F2) = (F1 +F2)cos(θ + β)−mg cosβ,

and the height of the quadrotor relative to the ground. Lastly, the transitions between

the at rest and the sliding modes are governed by the relation between the force along the

slope at the contact point (Fα + hα), the perpendicular force F⊥, and the vehicle’s velocity

along the slope α̇, according to the Coulomb friction model. The function

Fslide(θ, θ̇,F1,F2,µ) = |Fα(θ, θ̇,µ,F1,F2) + hα(θ, θ̇,0,µ)|

−µ
mg cosβ

mcos2(θ + β +γ)
+µ

(F1 +F2)cos(θ + β)
mcos2(θ + β +γ)

encapsulates these relations. A transition from a non-sliding mode to a sliding mode

occurs for Fslide > 0, whereas a reverse transition happens when the velocity along the
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slope reaches zero and Fslide < 0. In the landed operating mode, this function is reduced to

Fslide(−β,0,F1,F2,µ) =mg sinβ −µ(mg cosβ − (F1 +F2)).

Reset maps

For each (q1,q2) ∈ E and (ξ,u) ∈ G({q1,q2}), the reset map R : E ×R6 ×R2→ R
6 identifies

the jump of the state variable ξ during the operating mode transition from q1 to q2. The

jumps in the state reflect instantaneous changes which are caused by the collisions of

the contact points with the landing slope and also the use of either frame {L} or {I} to

describe the state, according to the operating mode.

In the take-off maneuver the nominal transitions do not involve impact with the ground

and thus all the reset maps are trivially the identity maps. The only reset maps that result

from physical interaction are the ones governing the transitions from FF to TLs and TL to

LL. In particular, for reference trajectory generation, we model the map R({T L,LL}, (ξ,u))

under the assumption of an inelastic collision and the map R({FF,T Ls}, (ξ,u)) is modeled

under the assumption of inelastic impact along the perpendicular of the landing slope

and by considering energy conservation – see among others [Bro96]. This results in a

trivial transition from T L to LL where the angular velocity of the vehicle is simply set to

zero when the second landing gear makes contact with the landing slope. The transition

from Free Flight to the TLs operating mode is more complex and is analyzed in the sequel.

The kinetic energy of the vehicle, ignoring the constant lateral velocity along the slope,

before and after the impact is given respectively by

E− =
1
2
m(ζ̇−CM )2 +

1
2
m(α̇−CM )2 +

1
2
J(θ̇−)2

and

E+ =
1
2
m(α̇+

CM )2 +
1
2
m`2

g cos2γ(θ̇+)2,

where (αCM ,ζCM) are the coordinates of the center of mass in frame {L}. With cE ∈ (0,1]

an energy loss coefficient, it turns out that (E+)2 = cE(E−)2 and then

θ̇+ = cE

√
ζ̇−CM /(`

2
g cos2γ) + Jθ̇−/(m`2

g cos2γ).

and

(α̇+
CM )2 =

√
cE(α̇−CM )2.

Then by considering the constraint on ζCM characterizing DT Ls and DT Ls we obtain

ζ̇+
CM = θ̇+` cos(θ+ +γ + β).
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5.3 The control problem

5.3.1 Robust control strategy and architecture

With the hybrid automaton in hand, the problem of performing a take-off maneuver

can be reformulated as a problem of changing the operative mode q from the initial

landed configuration LL to the final free-flight mode FF, by passing through intermediate

states like T L and T Ls. The problem requires control policies achieving a transition

to a desired operative mode robustly with respect to uncertainties in the model and

environment parameters. At the same time, all transitions leading to an undesired final

configuration must be avoided. Motivated by the scenario in Figure 5.5, the targeted

take-off maneuver involves the transition between the following sequence of hybrid states

LL → T L → T Ls → FF. In all the above sequence the state LLs is regarded as a non-ideal

state to be avoided in the course of the maneuver. Indeed, the system in the LLs mode

lacks of control authority in the lateral direction, rendering LLs an undesired state when

targeting robust maneuvers.
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Figure 5.5: Left: the quadrotor hits an obstacle if uncontrolled vertical thrusts are applied.
Right: a safe take-off maneuver.

Inspired by the general framework proposed in [MNG09], the control problem is

divided into two different steps. The first step amounts to computing, for each of the

three desired transitions (LL→ T L, T L→ T Ls and T Ls→ FF) and for the final free flight

mode, reference trajectories for both the states ξ and the inputs u of the system, jointly

denoted as reference maneuvers, whose tracking guarantees that the desired transition

takes place. A key issue is to generate robust reference maneuvers whose practical, and not

perfect, tracking guarantees the desired transition while preventing the system to entering

undesired modes. In the proposed framework robustness is quantified in terms of a design

parameter ε > 0 that roughly expresses how far the actual motion of the system’s state and

input can be with respect to the reference maneuver in order to have the desired transition

effectively imposed.

The second step consists of designing feedback control laws guaranteeing that, for the

given reference maneuvers, the tracking error (both in the state and in the input) is upper
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5.3 The control problem

bounded by ε so that the planned transition is enforced. To this purpose the proposed

control architecture (sketched in Figure 5.6) is constituted by a set of low level controllers,

associated to the specific operative modes in which the vehicle operates, and a supervisor.

The role of the latter is to enable the appropriate low level controller, and to feed it with

the appropriate robust reference maneuver. The key requirement behind the design of

the low level controllers is to guarantee that, under appropriate restrictions on the initial

conditions and bound on the parametric/exogenous disturbances, the tracking error is

upper bounded by ε.

LL

TL

TLs

FF

Low-level controllers

Supervisor

Command

+
+

-
ξ

ξ q

Figure 5.6: Proposed control architecture, featuring the supervisor and low-level con-
trollers.

5.3.2 Design of robust reference maneuvers

The computation of robust reference maneuvers regarding a desired transition between

the generic hybrid states q?1 and q?2 involves a problem of nominal inversion of the system

dynamics in the operative mode q?1 that can be approached in different ways. In this

chapter, the problem is formulated as an optimal problem and a numerical tool is used for

the practical computation of the reference maneuvers (see Section 5.4 for details on the

adopted numerical tool). With ξ̇ = f (q?1 ,ξ,u,ρ) the model of the system in the operative

mode q?1 with parametric uncertainty ρ, the optimal problem is formulated, in general
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5. Robust take-off and landing

terms, as follow:

min
u?(t),ξ?(t),tf

tf +
∫ tf

t0

‖u?(τ)‖2dτ

subject to

(a) ξ̇? = f (q?1 ,ξ
?(t),u?(t),ρ0) , ξ?(t0) = ξ?0 , t ∈ [t0, tf ]

(b) u?(t) ∈ U , t ∈ [t0, tf ]

(c) χε(q
?
1 ,q

?
2 ,ξ

?(t),u?(t)) ≤ 0 , t ∈ [t0, tf ]

(d) Ψε(q
?
1 ,q

?
2 ,ξ

?(tf ),u?(tf )) ≤ 0 .

In the previous formulation the index cost is clearly shaped in order to trade-off the time

needed to accomplish the desired maneuver (note that the final time tf is a degree-of-

freedom) and the required control energy, which depends on the magnitude of the forces

generated by the quadrotor propellers. The constraints (a) and (b) force the solution to be

functionally controllable for the nominal system in the operative mode q?1 and to fulfill

actuator limitations characterizing the real system. In this respect it is worth noting that

nominal value ρ0 of the uncertainty ρ is used in (a), namely that an inversion of the nominal

system is necessarily targeted. A special role in (a) is played by the initial condition ξ?0 that

is a degree-of-freedom to be played in order to properly concatenate consecutive reference

maneuvers in the sequence of transitions. Finally, the functions χε(·) and Ψε(·) in (c) and

(d) must be properly specified in order to have the maneuver (ξ?(t),u?(t)) solution of the

optimal problem accomplishing the desired transition task. In this respect, by bearing

Section 5.3.1 and the meaning of the parameter ε in the definition of robust transition

maneuver, the function χε(·) must be specified in a way that maneuvers (ξ?(t),u?(t))

fulfilling (c) are necessarily ε-far from any undesired guard set (i.e. guard set different

from G(q?1 ,q
?
2)), so that switches to undesired hybrid modes are avoided. In a more precise

way χε(·) must be such that any (ξ?(t),u?(t)) fulfilling (c) necessarily satisfies

(x?(t),u?(t))
⋂  ⋃

(q?1 ,q2)∈E ,q2,q
?
2

G(q?1 ,q2) +Bε

 = ∅

for all t ∈ [t0, tf ]. Furthermore, possible other path constraints, such as the avoidance of

obstacles nearby the take-off area, can be taken into account in the definition of χε(·) by

defining forbidden regions in the x-z plane.

As far as the constraint (d) is concerned, the function Ψε(·) must be properly shaped in

a way that any maneuver (ξ?(t),u?(t)) fulfilling (d) at time tf is necessarily ε-inside the

guard set G(q?1 ,q
?
2), namely

(ξ?(tf ),u?(tf )) +Bε ⊂ G(q?1 ,q
?
2) .

In this way any actual maneuver (ξ(t),u(t)) that is ε-close to (ξ?(t),u?(t)) necessarily
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5.3 The control problem

enters, at a time upper bounded by tf , the set G(q?1 ,q
?
2) so that the desired transition is

enforced.

It is worth noting that possible uncertainties characterizing the environment (such

as the slope of the terrain, the friction coefficient, the position of nearby obstacles, etc.)

affect, in general, the definition of the guard sets and thus the design of χε(·) and Ψε(·).
In this respect a crucial issue in the specification of χε(·) and Ψε(·) is to adopt the a priori

knowledge about the uncertainties (such as compact sets where they range) so that the

fulfillment of (c) and (d) leads to the desired transition robustly.

The above optimization problem is solved for each of the transition maneuvers

LL → T L, T L → T Ls, and T Ls → FF, with the constraints derived keeping in mind

the description of the hybrid automaton presented in Section 5.2. In order keep the analy-

sis at a tractable level, we only consider uncertainties in the ground friction coefficient µ,

which affects the modes where contact with the ground exists, and no uncertainties in the

slope β of the landing surface. About the value of µ we assume to know only upper and

lower bounds denoted by µU and µL, respectively, and we let µ0 ∈ [µL, µU ] be the nominal

value of µ.

5.3.3 Design of low-level controllers

In this part we address the design of the local controllers in each operating mode involved

in the take-off maneuver. The goal of the controller is guarantee that, under appropriate

restrictions on the initial conditions and of the exogenous disturbances, the specific

reference maneuver is tracked with an error that is upper bounded by ε so that the desired

transition takes place.

Low level controller in the LL mode

With u?(t) = (v?1 (t),v?2 (t)) : [t0, tf ]→ R
2 and ξ?(t) = (F?1 (t),F?2 (t)) : [t0, tf ]→ R

2 a robust

reference maneuver solution of the optimal problem in Section 5.3, for some ε > 0 and

dynamics (5.10) and (5.11), the control law is simply chosen as

v1 = −k(F1 −F?1 ) + v?1 , v2 = −k(F2 −F?2 ) + v?2 (5.12)

where k is a positive design parameter.

Low level controller in the T L mode

With u?(t) = (F?1 (t),F?2 (t)) : [t0, tf ]→ R
2 and ξ?(t) = (θ?(t), θ̇?(t)) : [t0, tf ]→ R

2 a robust

reference maneuver solution of the optimal problem in Section 5.3.2, applied to the TL
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5. Robust take-off and landing

mode dynamics (5.8), for some ε > 0, we define (see (5.3))

F?θ(t) =
(

0 1
)
L(θ?(t))−1G(θ?(t))M

(
F?1 (t)
F?2 (t)

)
for all t ∈ [t0, tf ].

The control law for the T L dynamics (5.8) is then chosen as

Fθ = −KP (θ −θ? +KD(θ̇ − θ̇?)) +F?θ (5.13)

with KD ,KP positive design parameters. It turns out that KD and KP can be tuned so that

the closed-loop trajectory tracks, with an error bounded by ε, the reference maneuver pro-

vided that initial error and the uncertainty on µ are sufficiently small. This is detailed in

the next proposition (whose proof is deferred in Appendix B.1) in which we let u = (F1,F2)

and ξ = (θ, θ̇).

Proposition 20. Consider the closed-loop system resulting from (5.8) and (5.13). Let KD > 0.

There exists a K?P > 0 such that for all KP ≥ K?P there exist ∆T L,0 > 0 and ∆T L,µ > 0 such that if

‖ξ(t0)− ξ?(t0)‖ < ∆T L,0 and ‖µ−µ0‖ ≤ ∆T L,µ the following holds

‖(ξ(t)− ξ?(t),u(t)−u?(t))‖ < ε ∀ t ∈ [t0, tf ] .

Low level controller in the T Ls mode

With u?(t) = (F?1 (t),F?2 (t)) : [t0, tf ]→R
2 and ξ?(t) = (α?(t), α̇?(t),θ?(t), θ̇?(t)) : [t0, tf ]→R

4

a robust reference maneuver solution of the optimal problem in Section 5.3.2, for some

ε > 0 and using the dynamics (5.5), we define (see (5.3))(
F?α(t)
F?θ(t)

)
= L(θ?(t))−1G(θ?(t))M

(
F?1 (t)
F?2 (t)

)
for all t ∈ [t0, tf ].

The control law for the T Ls dynamics (5.5) is then chosen as

Fα = −KP (α −α? +KD(α̇ − α̇?)) +F?α
Fθ = −KP (θ −θ? +KD(θ̇ − θ̇?)) +F?θ

(5.14)

with KD ,KP positive design parameters. The main properties of the closed-loop system

are detailed in the next proposition in which it is show how, for an appropriate tuning

of KD and KP , the actual closed-loop trajectory remains ε-close to the robust reference

maneuver provided that the initial condition is sufficiently close to the reference and the

uncertainty on µ is sufficiently small. In the statement of the proposition we let u = (F1,F2)

and ξ = (α,α̇,θ, θ̇).
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Proposition 21. Consider the closed-loop system (5.5) and (5.14). There exist a K?D > 0 and,

for all positive KD ≤ K?D , a K?P > 0 such that for all KD ≤ K?D and KP ≥ K?P there exist ∆T Ls,0 > 0

and ∆T Ls,µ > 0 such that if ‖ξ(t0)− ξ?(t0)‖ < ∆T Ls,0 and ‖µ−µ0‖ ≤ ∆T Ls,µ the following holds

‖(ξ(t)− ξ?(t),u(t)−u?(t))‖ < ε ∀ t ∈ [t0, tf ] .

The proof of the proposition is deferred in Appendix B.2.

Control in free flight

Let u?(t) = (F?1 (t),F?2 (t)) : [t0, tf ] → R
2 and ξ?(t) = (z?(t), ż?(t),x?(t), ẋ?(t),θ?(t), θ̇?(t)) :

[t0, tf ]→R
6 a robust reference maneuver solution of the optimal problem in Section 5.3.2

for some ε > 0 and using the free flight operative mode dynamics (5.2). The control law

governing the quadrotor is free-flight is chosen as follow

(
F1
F2

)
=

1
2


1

cosθ
1

1
cosθ

−1


(
u1 + (F?1 +F?2 )cosθ?

u2 +F?1 −F
?
2

)
(5.15)

where
u1 = −k1(z − z?)− k2(ż − ż?)
u2 = −KP (KD(θ̇ − θ̇?) + tanθ − tanθ? +θout)

(5.16)

and

θout = λ2σ

(
K2

λ2
ζ

)
, ζ = ẋ − ẋ? +λ1σ

(
K1

λ1
(x − x?)

)
(5.17)

where KD , KP , ki , λi , Ki , with i = {1,2}, are positive design parameters and σ (·) is a

saturation function. The proposed control structure rests upon the design idea proposed

in [IMS03] and can be interpreted as a cascade control structure constituted by an inner

loop, controlling the angular (θ, θ̇) dynamics, and an outer loop governing the lateral

(x, ẋ) and vertical (z, ż) dynamics. The next proposition details the tuning of the previous

controller in order to achieve the desired asymptotic properties. In the statement of the

proposition we let u = (F1,F2), ξ = (z, ż,x, ẋ,θ, θ̇). Furthermore, the tuning of the controller

is given in terms of two parameters uL and uU defined as

uL := min
t∈[t0,tf ]

(F?1 (t) +F?2 (t))cosθ?(t) , uU := 2Fmax .

For a proof, we refer the reader to [IMS03] (see also [MN07]).

Proposition 22. Consider the closed-loop system given by (5.2) and (5.15)-(5.17) where δx
and δz are exogenous bounded disturbances. Let k1, k2 be positive parameters and let λi , Ki be

chosen as λi = εi−1λ?i , Ki = εK?i , i = 1,2, where ε is a design parameter and (λ?i ,K
?
i ) satisfy

λ?2
K?2

<
λ?1
4
, 8K?1λ

?
1 < uLλ

?
2, 24

K?1
K?2

<
1
6
uL
uU

.
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There exist K?D > 0, K?P (KD) > 0 and ε?(KP ) > 0 such that for any positive KD < K?D , KP ≥
K?P (KD ) and ε ≤ ε?(KP ) there exist ∆FF,0 > 0 and ∆FF,d > 0 such that if ‖ξ(t0)−ξ?(t0)‖ ≤ ∆FF,0
and ‖(δx,δz)‖∞ ≤ ∆FF,d the following holds

‖(ξ(t)− ξ?(t),u(t)−u?(t)‖ < ε ∀ t ∈ [t0, tf ] .

5.3.4 Supervisor design

With the definition of robust reference maneuvers and the properties of the low-level

controllers highlighted above, the design of the supervisor reduces to orchestrate the

switch of the low-level controllers and drive them with the appropriate reference ma-

neuver according to the actual state of the vehicle. Specifically, we assume that four

robust reference maneuvers (ξ?LL,u
?
LL) : [t01, tf 1]→D(LL) , (ξ?T L,u

?
T L) : [t02, tf 2]→D(T L),

(ξ?T Ls,u
?
T Ls) : [t03, tf 3]→D(T Ls) , (ξ?FF ,u

?
FF) : [t04, tf 4]→D(FF) are given as solutions of the

optimal problem developed in Section 5.3.2 for some fixed ε and respective operative

mode. Furthermore, with the reference maneuvers and ε fixed, we fix the four low-level

controllers according to the structures and the design principles specified in Section 5.3.3.

Specifically, we let uLL, uT L, uT Ls, uFF be the control laws designed respectively in (5.12),

(5.13), (5.14) and (5.15)-(5.17)

The supervisor logic switches the low-level controller according to the actual state

q(t) of the vehicle. The latter takes value in the set {LL, T L, T Ls, FF} and it is supposed

to be known by the reading of sensors appropriately placed in the quadrotor airframe.

The supervisor logic is thus simply u(t) = uq(t)(t). In the next items we detail the main

properties achieved by the resulting closed-loop system that show how the desired take-off

maneuver takes place. The claims in the items come immediately by joining the notion of

robust reference maneuver and the properties of the low-level controllers highlighted in

the Propositions in Section 5.3.3.

• Let F1(t01), F2(t02) be fulfilling the initial state restriction in the landed operative

mode. Then there exists a time ts1 ≤ tf 1 such that q(t) = LL for all t ∈ [t01, ts1) and

q(ts1) = T L. At time ts1 the low-level controller is thus switched to uT L.

• Let the uncertainties on the friction value be fulfilling |µ − µ0| ≤ ∆T L,µ with ∆T L,µ
coming from Proposition 20. Then there exists a time ts2 ≤ ts1 + tf 2 − t02 such that

q(t) = T L for all t ∈ [ts1, ts2) and q(ts2) = T Ls. At time ts2 the low-level controller is

thus switched to uT Ls.

• Let the uncertainties on the friction value be fulfilling |µ−µ0| ≤ ∆T Ls,µ and let ξ?(t03)

and ξ(ts2) be such that ‖ξ(ts2)− ξ?(t03)‖ ≤ ∆T Ls,0 with ∆T Ls,µ and ∆T Ls,0 introduced

in Proposition 21. Then there exists a time ts3 ≤ ts2 + tf 3− t03 such that q(t) = T Ls for

98



5.4 Simulation results

all t ∈ [ts2, ts3) and q(ts3) = FF. At time ts3 the low-level controller is thus switched

to uFF .

• Let the exogenous disturbances (δx,δz) be fulfilling ‖(δx,δz)‖∞ ≤ ∆FF,d and let ξ?(t04)

and ξ(ts3) be such that ‖ξ(ts3)− ξ?(t04)‖ ≤ ∆FF,0 with ∆FF,d and ∆FF,0 introduced in

Proposition 22. Then for all t ∈ [ts3, ts3 + tf 4 − t04] the vehicle evolves robustly in

free-flight by tracking the reference maneuver with an error upper bounded by ε.

5.4 Simulation results

In this section we present the results from a simulation run of the proposed controller

conducted using a software simulator for hybrid systems [GST09]. To compute the ref-

erence maneuvers as solutions to the constrained optimal control problems formulated

in Section 5.3.2, a numerical tool, named DIDO, has been adopted. DIDO implements a

direct collocation method (see for example [Bet01] for an overview of numerical optimiza-

tion techniques) based upon Legendre pseudo-spectral (PS) approximation. A detailed

description of the tool can be found in [Ros04]. The numerical optimization process

of DIDO can be controlled by setting the number of node points. Limiting to 20 the

maximum number of nodes employed to generate the maneuvers used in the simulations,

obtaining in few seconds feasible suboptimal solutions to be used directly as references.

The vehicle and terrain parameters are m = 1 kg, J = 0.5 kg m2, lg = 0.3 m, γ = 30◦,

r = 0.5 m, β = 0.2 rad, µ = 0.45, and µ0 = 0.5. The controller design parameters are

KP = 3, KD = 3 for the TL and TLs modes local controllers and KD = 0.3, KP = 70 for the

FF controller. To attest the robustness of the proposed controller to sensor noise, the

measurements of the states have been corrupted with additive gaussian white noise of

zero mean and standard deviation of 0.02 m, 0.02 m/s, 1.14◦ and 1.14◦/s. The vertical

bars overimposed on the figures denote the time instants when a transition of hybrid state

occurs.

For the take-off procedure, the reference trajectory consists of a sequence of robust

approach maneuvers LL→TL, TL→TLs, and TLs→FF, resulting in the vehicle sliding up

the slope. This maneuver is chosen in contrast with the situation presented in Figure 5.5,

where the application of a heuristic take-off procedure results in the quadrotor sliding

down the slope and hitting an obstacle.

The time evolution of the system’s states and actuations are presented in Figure 5.7.

The discontinuities that arise in the forces and the reference trajectories are due to the fact

that the initial conditions for the new transition maneuver do not necessarily correspond

to the end conditions of the approach maneuver leading into it. The final discrepancy

between the desired and the actual trajectory is due to an imperfect knowledge of the
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5. Robust take-off and landing

friction coefficient µ. As a consequence, practical tracking of the trajectories is achieved,

with an error smaller than ε, and the maneuver culminates with a successful robust

transition to the free flight operative mode.
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Figure 5.7: Comparison of the simulation maneuver and the desired maneuver for the
quadrotor take-off.

5.5 Experimental Results

In this section we present the results for an experimental run of the proposed hybrid

controller. The inputs for the quadrotor used in this experiment do not include each

motor force individually, thereby preventing the straight forward experimental testing

of the theoretical framework. To overcome this issue, the θ̈ dynamics are integrated in

simulation using the appropriate dynamics (5.2), (5.5) or (5.8), together with the inputs

F1 and F2 coming from the low level controllers. The resulting angular velocity θ̇ and

the total thrust are then used as inputs for the physical quadrotor. This setup is depicted

in Fig. 5.8, where VICON denotes the OMCS that measures the vehicle’s position and

velocity.
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Figure 5.8: Experimental setup with simulated quadrotor state.

5.5.1 Transition maneuvers

The proposed complete landing maneuver is depicted in Fig. 5.9. The landing procedure

starts in free flight, where a horizontal landing path is tracked. This eventually leads to a

collision with the sloped ground, at which instant the supervisor selects the TLs controller

and starts tracking a reference maneuver that leads the quadrotor to the TL state. The

quadrotor then slides up the slope, tracking a TLs to TL trajectory, until it comes to a halt

at a desired location. Upon coming to a halt, the quadrotor transitions to the TL operating

mode and the supervisor uses the TL low-level controller to track a TL to LL trajectory

that finally levels the quadrotor with the ground, without starting to slide again. Once all

the landing gear contact points touch the ground and the final transition to the Landed

mode is complete, the motors are turned off and the quadrotor remains at rest.

Figure 5.9: Sketch of a complete quadrotor landing maneuver

FF→ TLs robust transition maneuver

For taking the aircraft from free flight to the takeoff-and-landing sliding operating mode

we propose a maneuver that leads to the quadrotor sliding up. In that situation we have

α̇ > 0, which results in a G matrix that is well-conditioned (see (5.4)), thereby avoiding

problems when inverting (5.3) to obtain the inputs F1 and F2. In addition, the maneuver

was chosen to have a minimal impact on the quadrotor upon touchdown on the landing

slope. The quadrotor is chosen to track a horizontal line at a constant velocity until the

contact point A of the landing gear touches the landing slope. For the quadrotor model in
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(5.2), the reference maneuver is defined as

x?(t) = x0,

y?(t) = y0 + vy(t − t0),

θ?(t) = 0,

F?1 (t) = F?2 (t) =mg/2,

for positive lateral velocity vy , initial conditions x0, y0 ∈ R and initial time t0 ∈ R. The

positive velocity corresponds to a landing maneuver where the quadrotor lands from the

lower side of the slope. If tracked with an error smaller than ε, this maneuver ensures

that only one of the quadrotor’s landing gears hits the slope and that the quadrotor starts

to slide on the ground, forcing a transition to the TLs mode. The time instant at which

the transition occurs depends on the location of the slope, the quadrotor initial position

(x0, y0) and the lateral approach velocity vy .

TLs→ TL robust transition maneuver

Following Fig. 5.9, in the TLs operating mode the quadrotor tracks a straight line along the

slope and decreases its velocity, until it comes to a halt. We define a reference maneuver

with constant acceleration for the contact point and a fixed tilt angle as follows

α?(t) = α0 + vα(t − t0)− aα(t − t0)2,

θ?(t) = θ0,

for initial conditions α0 ∈ R and positive parameters vα, aα and θ0. The corresponding

reference inputs F?1 (t) and F?2 (t) are obtained by dynamic inversion of vehicle model. A

set of maneuvers with different initial condition parameters at the initial time instant t0 is

considered so as to cover the whole region of possible initial conditions that arises when

the tracking of the preceding maneuver is not perfect. The tilt angle θ0 that the quadrotor

follows while sliding should be slightly positive so that the quadrotor is able to slide along

the slope robustly, without returning to the free flight operating mode. The transition

to TL occurs when α̇ = 0. That final time instant, denoted as tf , depends on the initial

velocity vα and the desired acceleration aα. The final landing location along the slope also

depends on these two parameters and the initial location of the quadrotor. It can be made

constant for all trajectories by varying the acceleration parameter aα

aα =
v2
α

α?(tf )−α?(t0)
.
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Figure 5.10: Quadrotor performing a TLs to TL robust transition maneuver

TL→ LL robust transition maneuver

Once the quadrotor comes to a halt, the objective is to bring it to the slope level, without

inducing a sliding movement again. In this operating mode we are only interested in

controlling the tilt angle, for which we define the reference trajectory

θ?(t) = θ0 − vθt. (5.18)

for a positive parameter vθ. The quadrotor is finally leveled with the landing slope when

θ?(t) = −β. The reference input is determined by (5.18) and the reference total thrust,

T ? = F?1 + F?2 , which is chosen to converge from its initial value down to zero. In order

for the maneuver to be robust, the balance between T ?(t) and θ?(t) must be such that the

vehicle is always ε-far from restarting to slide during the whole transition maneuver. For

the duration of this transition maneuver, the displacement of the landing gear contact

point is constant, i.e. α(t) = α0.

5.5.2 Experimental setup

To adapt the physical setup to a 2D control setting, the quadrotor is restricted to a vertical

plane along the slope and its yaw is kept such that two of its landing gear contact points

are aligned with the slope direction, as shown in Fig. 5.11. For the proposed maneuver,

the quadrotor lands from the left to the right, relative to the figure, keeping the yaw angle

such that both the right side contact points touch the slope at the same time. Landing with

a correct yaw angle allows the quadrotor to tilt and continue in the same plane, therefore,

satisfying the 2D approximation.

The quadrotor’s 2D physical parameters are lg = r = 0.09 m, hCM = 0.025 m, ` =√
l2g + h2

CM , γ = 15.5◦. The landing slope has a β = 20◦ incline. The friction coefficient

is taken as µ0 = 1. The controller design parameters are KP θ = 3, KDθ = 0.2, KP α = 0.2,

KDα = 0.15, for the TL and TLs modes local controllers.
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Figure 5.11: Quadrotor aligned with the landing slope.
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Figure 5.12: Profile view of the complete quadrotor landing maneuver

5.5.3 Landing results

For the landing procedure, the reference trajectory consists of a sequence of robust

approach maneuvers FF→TLs, TLs→TL, and TL→LL, resulting in the vehicle sliding up

the slope and coming to a halt at the desired landing point. The tracking of the quadrotor

displacement and tilt angle is presented in Figs. 5.13 and 5.14. The figures are divided in

four sections, corresponding to the four operation states transversed, with each one being

labeled FF, TLs, TL or LL according to the respective operating mode. The transition to

TLs occurs around 8 s and at 11.5 s the quadrotor stops sliding and enters the TL state.

Finally, around 12 s the quadrotor has two points of contact with the ground and enters

the LL state, completing the landing procedure.
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Figure 5.13: Horizontal displacement along the slope.

Observing Figure 5.13 we can see the effects of the initial impact with the slope at

the 8 s. The quadrotor starts an initial slide along the slope but looses velocity. This
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Figure 5.14: Quadrotor tilt angle.

velocity is quickly recovered as the quadrotor tries to track the desired maneuver. Finally,

the quadrotor comes to a halt and a transition to TL occurs, with the landed state being

attained shortly after. Despite all the uncertainties existing in the model, the controller

proves to be robust and maintains the tracking error small.

Looking at Fig. 5.14, we see the time evolution of the quadrotor’s tilt angle. In free

flight this angle is approximately zero, as asserted in the reference maneuver discussion

in Section 5.5.1. Once in TLs, the quadrotor tracks a reference maneuver where θ0 = 7.5◦.

This tilt angle is close enough to the initial angle and confers increased controllability to

the quadrotor. Additionally, it helps to avoid a return to free flight situation, as could

happen easily if the reference maneuver was defined with θ0 = 0. Once the TL state is

entered, the quadrotor tries to follow a constant angular velocity trajectory that leads to

the complete contract of the landing gear with the landing slope.

The evolution of the motor forces F1 and F2 throughout the maneuver is presented

in Fig. 5.15. During the FF and TLs landing phases, the forces are similar in magnitude,

reflecting a control of constant tilt angle. In TL however, F2 drops drastically, when

forcing the rotation of the quadrotor and consequent landing. Nonetheless, F1 and F2 are

always positive and within the limits of the quadrotor actuation.
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Figure 5.15: Quadrotor forces generated by the propellers.

The evolution of the distance of both landing gear extremities to the slope is shown

in Fig 5.16. In FF, both distances decrease at the same rate until contact with the ground

happens at 8 s and the quadrotor enters the TLs state. After the transition, the contact

105



5. Robust take-off and landing

point A (see Fig. 5.2(b)) remains on the slope for the duration of the maneuver. The

contact point B on the landing gear gains a slight distance and then remains approximately

constant, as the quadrotor tilts to track θ0 and goes up the slope. Once in the TL operating

mode, the distance of point B diminishes, as the quadrotor rotates, until both points are

in contact with the landing slope. The distance is computed from the quadrotor position

and attitude, knowing the slope’s location and incline. The small resulting errors are due

to imperfections in the landing slope surface.
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Figure 5.16: Distance of the landing gear to the slope.

5.6 Concluding remarks

This chapter addressed the problem of robust take-off and landing control of a quadrotor

UAV, considering explicitly the interaction with the ground, that guarantees successful

maneuvers even in sloped terrains and in the presence of external disturbances and uncer-

tain parameters. The vehicle was modeled as a hybrid automaton, whose states reflect the

different dynamic behaviors exhibited by the UAV. The take-off and landing procedures

were then cast as the problem of changing the operating mode from the initial to the

final desired state, through the edges allowed for the hybrid automaton. The transitions

between intermediate operating modes were achieved through the application of low-

level feedback controllers, associated with each mode, to track robust reference signals.

The supervisor and the combined properties of the low-level controllers and reference

trajectories ensures that the desired intermediate transitions are attained, robustly to with

respect to uncertainties in the model and environment parameters, and that the final

desired state is reached.

Experimental results using a small scale radio controlled quadrotor vehicle were

presented to assess the feasibility of the proposed hybrid controller, demonstrating the

effectiveness of the proposed solution, especially for the cases in which the slope of the

terrain renders the landing maneuver more critical to be achieved. Simulation results

were also presented for the takeoff maneuver, where a standard takeoff procedure would

results in a collision, due to the slope of the terrain and the presence of a nearby obstacle.
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5.6 Concluding remarks

Future works will be primarily focused on improvements to the hybrid dynamical

model and the hybrid controller, towards having a vehicle that can operated resorting

only to internal sensors. In particular, a complex integration of the sensors (contact, force)

and avionics equipments will be required, extending the standard sensing capabilities

of the vehicle in order to robustly detect the current operative mode. This latter issue

suggests also to investigate methodological solutions aiming at improving robustness to

the possible uncertainties that may affect the measure of the current hybrid state. Another

interesting research topic is the appropriate extension of the proposed framework to a

third dimension, by adapting the presented arguments, allowing the controller to handle

more complex scenarios in terms of the characteristics of the possible environment of

operation.
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6
Integrated Solution to Quadrotor

Stabilization and Attitude Estimation
Using a Pan and Tilt Camera

This chapter presents an integrated solution to the problem of stabilizing a quadrotor

and estimating its attitude. The solution comprises a nonlinear attitude observer and

a nonlinear controller for position and attitude stabilization of a quadrotor, which are

combined in a cascaded architecture. The attitude estimates are obtained from rate gyro

measurements, corrupted by bias, and the image coordinates of a set of landmarks on the

terrain which are acquired by a controllable pan and tilt camera. Lateral-longitudinal

stabilization is achieved with a nested saturation control law by feedback of the image

measurements, estimated body attitude, and corrected angular velocity measurements.

The vehicle is stabilized vertically using an additional vertical position sensor. Resorting to

the input-to-state stability property of the controller, the quadrotor position and attitude

are shown to converge to the desired equilibrium point and the convergence is robust to

estimation errors. Additionally, the pan and tilt camera is actively actuated to keep the

landmarks visible in the image sensor for most operating conditions. The robustness and

performance of the proposed control and estimation architecture is illustrated through

both simulation and experimental results.

The operation of autonomous vehicles indoors and in obstructed or occluded locations

(e.g. in the vicinity of tall and cluttered structures), where GPS signals are unreliable or

simply unavailable, calls for alternative solutions based on local sensor measurements

such as captured images [CH06, CH07]. Computer vision has long been recognized

as an extremely flexible technique for sensing the environment and acquiring valuable

information for pose estimation and control. Awareness of this potential has brought

about a widespread interest in the field of vision-based control and localization.

The literature on vision-based rigid-body stabilization and estimation highlights im-

portant questions and indicates possible solutions to i) keep feature visibility along the

system’s trajectories for a large region of attraction [CWK02], [CSHA07], ii) minimize the
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6. Vision-based stabilization and estimation

required knowledge about the 3-D model of the observed object [MC02], iii) guarantee

convergence in the presence of camera parametric uncertainty and image measurement

noise [MC02], iv) establish observability conditions for attitude estimation [AH06]. A vari-

ety of algebraic and iterative estimation methods based on point and line correspondences

have been proposed (see for example [YSKS04]). In [MTR+09], an inertial navigation

system aided by computer vision is used to estimate the relative position, attitude and

velocity. Algorithms for attitude estimation greatly benefit from the integration with

inertial sensors, namely rate gyros and accelerometers as well as from the use of dynamic

filtering and observer techniques [MTR+09, RG03, LD03].

Apart from rigid-body stabilization, vision-based control has been used to accomplish

other tasks relying on different image features, such as straight line and curve represen-

tations [MH05, MKS99], and image centroids or higher order image moments [TC05].

For example, in [MH05], the authors propose an image-based controller to track parallel

linear features for an underactuated vehicle. A controller for point stabilization based on

backstepping and optical flow is presented in [MCH08]. A follow-the-leader problem for

mobile robots equipped with panoramic cameras is addressed in [VSS04]. In [MKS99],

the authors consider the problem of steering a mobile robot to track a ground curve by

controlling the shape of the curve in the image plane. In both [MKS99] and [VSS04],

the two-dimensional nature of the problem removes depth ambiguity from the image

measurements, which indicates that an extension to 3-D space may not be straightforward.

The main contribution of this chapter is an integrated solution to motion stabilization

and attitude estimation based on rate gyro measurements and visual information about

a set of landmarks placed on the terrain, which are retrieved by a pan and tilt camera.

The proposed nonlinear observer estimates the quadrotor attitude and the rate gyros bias,

driving the estimation error exponentially fast to the origin. The pan and tilt camera

controller differs from other solutions present in the literature (see e.g. [CH07]) as it

does not require explicit estimation of the camera’s position and velocity. The controller

for quadrotor stabilization follows the approach proposed in [IMS03] and [MN07] and

imposes a two-time scale dynamics, decoupling the vertical from the lateral-longitudinal

subsystem. The vertical controller can be viewed as a time-varying proportional-derivative

(PD) controller. A nested saturations control scheme is used to stabilize the lateral-

longitudinal subsystem, which has a feedforward structure. In the proposed controller,

only measurements from the available sensors and estimates from the attitude observer are

used, instead of classical full-state feedback. Notwithstanding, due to the robustness and

input-to-state stability (ISS) properties of each individual controller and the convergence

rates guaranteed by the proposed observer, the overall stability of the interconnected

system is established.
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6.1 Problem formulation

Figure 6.1: Diagram of the camera and landmarks setup.

The remainder of this chapter is organized as follows. The problem formulation is

presented in Section 6.1, together with the pan and tilt camera model. The attitude

observer is discussed in Section 6.2 and the nonlinear controller for the pan and tilt

camera is described in Section 6.3. The quadrotor vehicle controller based on image

measurements is proposed in Section 6.4, where the stability properties of the proposed

feedback control architecture that includes the quadrotor and the camera controllers are

shown. Simulation and experimental results are presented in Sections 6.5 and 6.6 attesting

the robustness and feasibility of the proposed estimation and control architecture. Finally,

concluding remarks are given in Section 6.7.

6.1 Problem formulation

In this chapter, we design a control law for the quadrotor, a control law for the pan and

tilt camera and an estimator for the vehicle attitude, whose interconnection stabilizes the

quadrotor in hover above certain terrain landmarks.

The problem setup is illustrated in Fig. 6.1, where the reference frames used to derive

the quadrotor and camera models are depicted. We consider a fixed inertial frame {I}
and a body frame {B} attached to the vehicle’s center of mass. The configuration of {B}
with respect to {I} is given by the pair (R,p) = ( IBR,

IpB). Connected to the aerial vehicle is

a pan and tilt camera with reference frame denoted by {C}. Its origin coincides with the

camera’s center of projection, and the z-axis is aligned with the camera optical axis. The

observed scene consists of four points, whose coordinates in {I} are denoted by Ixi ∈R3,

i ∈ 1, . . . ,4. Without loss of generality, the origin of {I} is assumed to coincide with the

centroid of the feature points so that
∑4
i=1

Ixi = 0. Moreover, the landmarks are assumed

111



6. Vision-based stabilization and estimation

to belong to the x–y plane.

We develop our control architecture taking into account that an external state measure-

ment solution, such as a motion capture system, is not available to the vehicle, modeling

realistic conditions in GPS-denied environments. As such, the control laws are required

to make use solely of the camera images and onboard sensor measurements. We consider

that a triad of rate gyros is installed onboard the platform and that it is aligned with

{B}, providing measurements of the body angular velocity ωB corrupted by a constant

unknown bias term b, such that

ωr = ωB + b, ḃ = 0.

In summary, the available measurements are the camera images, the pan and tilt camera

angles, the angular rate measurements corrupted by bias and absolute altitude, provided

by e.g. a pressure sensor, independent of the distance to the ground.

For controller design, we use the quadrotor dynamic model described in section 3.2,

and summarized by (3.1)-(3.4), while the remaining system components are modeled in

the sequel.

6.1.1 Camera model

As shown in Fig. 6.1, the camera can perform pan and tilt motions corresponding to the

angles α and β, respectively. As such, the rotation matrix from {C} to {B} is given by

B
CR = RpanRtilt, (6.1)

Rpan = Rx(α), Rtilt = Ry(β)

where Rx(·) and Ry(·) denote rotation matrices about the camera x-axis and y-axis, respec-

tively. We denote the configuration of {C} with respect to {I} by ( ICR,
IpC) ∈ SE(3), where

I
CR is the rotation matrix from {C} to {I} and IpC the position of the origin of {C} with

respect to {I}. Then, the 3-D coordinates of the feature points expressed in {C} can be

written as

ri = I
CR

T Ixi + CpI ,

for i ∈ 1, . . . ,4 and where CpI = −CI R IpC. Using the perspective camera model [RG03], the

2-D image coordinates yi ∈R2 of the landmark points are expressed as[
yi
1

]
= δiAri , (6.2)

where A ∈ R
3×3 is the camera calibration matrix, assumed to be known, and δi is an

unknown scalar encoding depth information and given by δi = (uT
3ri)−1, where u3 =

[0 0 1]T .
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6.2 Attitude observer

6.2 Attitude observer

In this section, we present a nonlinear observer for the vehicle attitude and angular

velocity based on the image coordinates of the landmarks angular velocity measurements

corrupted with constant bias. The nonlinear attitude observer follows [BCV+11] and is

designed to match the rigid body attitude kinematics (3.3) by taking the form

˙̂R = R̂S(ω̂B), (6.3)

where ω̂B is the feedback term designed to compensate for the estimation errors. The

attitude and bias estimation errors are defined as R̃ = R̂RT and b̃ = b̂ − b, respectively.

Using (3.3) and (6.3), the rotation error dynamics are given by

˙̃R = R̃S(R(ω̂B −ωB)). (6.4)

Special care must be payed when defining the landmark feature’s positions so as to

ensure that all the rotational degrees of freedom are observable. This property is lost, for

instance, when all the landmarks are collinear. The following assumption is a necessary

condition to ensure that we can obtain a correct attitude estimation based on image

measurements, as discussed in [BCV+11] and references therein.

Assumption 23. There are at least four landmarks of which no three are collinear.

The feedback law is a function of the angular rate measurements and the image

coordinates of the landmarks. To derive it, we start by defining the following matrices

X =
[
Ix1 · · · Ix4

]
, Y =

[
y1 · · · y4
1 · · · 1

]
,

where Ixi are the 3-D coordinates of the feature points expressed in {I} and yi the corre-

sponding 2-D image coordinates. Recall that, as discussed in Section 6.1, without loss of

generality, the origin of {I} coincides with the centroid of the feature points so that X1 = 0

and the landmarks belong to the x–y plane. The following result allows us to establish a

relation between the image coordinates and the camera attitude.

Lemma 24. Let σ = [σ1 σ2 σ3 σ4]T ∈ R4 \ {0} and ρ = [ρ1 ρ2 ρ3 ρ4]T ∈ R4 \ {0} be such that

Yσ = 0, Xρ = 0, and 1Tρ = 0, where 1 = [1 1 1 1]T . Consider that the landmarks satisfy

Assumption 23 and the camera configuration is such that the image is not degenerate (neither a

point nor a line). Then, the depth variables δi can be written as

δi = µ
ρi
σi
,

where µ ∈R, ρi , 0, and σi , 0 for i ∈ {1, . . . ,4}.
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Proof. See proof of [BCV+11, Lemma 1]

Writing (6.2) in matrix form and using Lemma 24, we have

Y = A(ICR
TX − CpI1

T )µD−1
σ Dρ,

where Dρ = diag(ρ). From the feature centroid constraint X1 = 0, it follows that

µICR
TX = A−1YD−1

ρ Dσ (I4 −
1
4

11T ),

which encodes information about the attitude of the camera up to a scale factor. We can

use the properties of the rotation matrix and the positive depth constraint δi > 0 to obtain

the normalized vector readings

Cx̄i = I
CR

T I x̄i = sign(µ)
µICR

T Ixi
‖µICRT Ixi‖

, (6.5)

where sign(µ) = sign(ρi/σi) and I x̄i = Ixi/ ||Ixi ||, i = 1, . . . ,4. Note that no discontinuity is

introduced by the use of the sign(.) function.

We now proceed with designing the observer where (6.5) and previous definitions are

instrumental in allowing to write the observer dynamics in terms of the image location of

the landmarks.

6.2.1 Observer Design

Recall that the bias in angular velocity measurements is assumed to be constant, i.e. ḃ = 0,

and consider the proposed Lyapunov function

VR =
‖R̃− I3‖2F

2
+

1
2kb
‖b̃‖2 = tr(I3 − R̃) +

1
2kb
‖b̃‖2,

where kb > 0. From the attitude error dynamics (6.4) and noting that, by the properties of

skew matrices,

tr(NS(a)) = −S−1(N −N T )Ta, for N ∈R3×3, a ∈R3,

we obtain the time derivative

V̇R = sTω(ω̂B −ωB) +
1
kb

˙̃bT b̃, (6.6)

where

sω = RTS−1(R̃− R̃T ).

Consider now the attitude feedback law

ω̂B = ωr − b̂− kωsω

= ωB − b̃− kωsω,
(6.7)
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where kω > 0. Substituting the estimator (6.7) in (6.6) and defining the bias estimator

update law
˙̂b := kbsω, (6.8)

the Lyapunov function derivative becomes V̇R = −kω||sω||2. Taking into account the

feedback law (6.7) and the update law (6.8), the closed loop attitude error dynamics can

be written as
˙̃R = −kωR̃(R̃− R̃T )− R̃S(Rb̃),
˙̃b = kbR

TS−1(R̃− R̃T ).
(6.9)

Exploiting results derived for linear time-varying (LTV) systems in [LP02], it can be

shown that the trajectories of the system (6.9) converge exponentially fast to the desired

equilibrium point. Global asymptotic stability is however precluded by topological

limitations associated with the points that satisfy ||R̃− I3||2F = 8 (for further information

see e.g. [BB00]). The stabilization result for the proposed controller is formally stated in

the sequel.

Theorem 25. Assume that ωB is bounded and ḃ = 0. Then, for any initial condition satisfying

‖b̃(t0)‖2

8− ‖R̃(t0)− I3‖2F
< kb, (6.10)

the estimation error x̃ = (R̃, b̃) is bounded and ‖R̃(t) − I3‖2F < 8 for all t ≥ t0. Moreover,

the attitude and bias estimation errors converge exponentially fast to the equilibrium point

(R̃, b̃) = (I3,0) for any initial condition satisfying (6.10).

The proof of this theorem follows a similar reasoning to the one used in the proof of

[BCV+11, Theorem 1] and is therefore not presented.

Remark 26. Note that the conditions of Theorem 25 are not restrictive, since ωB is intrinsically

bounded due to the practical limitation on the energy of the system and the condition (6.10) can

always be satisfied inside the almost global domain of attraction by tuning the gains.

We now detail how to express the estimation laws (6.9) solely as a function of the

image measurements and the biased gyro measurements. Consider the identity

QS−1(N −N T ) = S−1(QNQT −QN TQT ),

where N ∈R3×3, Q ∈ SO(3), and the relation

I
CR = RB

CR = I X̄CX̄†,

where B
CR is given by (6.1), CX̄ = [Cx̄1, . . . ,

Cx̄4,
Cx̄i × Cx̄j ], IX̄ = [I x̄1, . . . ,

I x̄4,
I x̄i × I x̄j ], for any

linearly independent I x̄i and I x̄j , and CX̄† = CX̄T (CX̄CX̄T )−1 is the Moore-Penrose inverse of
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CX̄. Using the following derivation, the feedback term sω can be expressed as an explicit

function of the sensor readings and known quantities

sω = RTS−1(R̃− R̃T )

= S−1(RT R̃R−RR̃TRT )

= S−1(RT R̂− R̂TR)

= S−1(BCR(CX̄†)T IX̄T R̂− R̂T IX̄CX̄†BCR
T ).

6.3 Pan and tilt controller

The camera frame attitude kinematics can be described by

I
CṘ = I

CRS(ωC),

where ωC ∈ R3 denotes the camera angular velocity. Taking the time derivative of (6.1),

and noting that I
CR = I

BR
B
CR, straightforward computations show that ωC can be written as

ωC = C
BRωB +RT

tilt[α̇ β̇ 0]T , (6.11)

where α̇ and β̇ are the time derivatives of the camera pan and tilt angles, respectively.

In summary, to develop an active vision system using the camera pan and tilt degrees

of freedom, we let ȳ be the image of the landmarks’ centroid given by [ȳT 1]T = δ̄Ar̄, where

r̄ = − ICR T IpC denotes the position of {I} expressed in {C} and δ̄ = (uT
3r̄)−1. The control

objective is to design a control law for α̇ and β̇ based on the measurements of ωB and yi ,

i ∈ {1, . . . ,4}, such that ȳ approaches the center of the image plane.

6.3.1 Camera Pan and Tilt Controller

We resort to Lyapunov theory and consider the following candidate Lyapunov function

W =
1
2

r̄TΠu3
r̄ =

1
2

(r2
x + r2

y ), (6.12)

where r̄ = [rx ry rz]T and Πu3
= I −u3uT

3 denotes the projection onto the plane orthogonal

to u3. Using the expression for ωC given in (6.11), the camera position kinematics can be

written as

˙̄r = S(r̄)ωC − vC

= S(r̄)(RT

tiltR
T
panωB +RT

tilt[α̇ β̇ 0]T )− vC, (6.13)

where vC is the camera linear velocity. Recall that by definition r̄ coincides with the

position of the landmarks’ centroid and its image is given by r̄. Therefore, by guaranteeing

that the Lyapunov function W is decreasing, or equivalently [rx ry] is approaching the
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origin, we can ensure that ȳ is approaching the center of the image plane. To simplify

the notation and without loss of generality, assume from now on that A = I so that

ȳ =
[
rx ry

]T
/rz.

Lemma 27. Let the camera position kinematics be described by (6.13) and assume that the

rigid body and camera motions are such that rz > 0 and cosβ , 0. Consider the control law for

the camera pan and tilt angular velocities given by[
α̇
β̇

]
= kc

[
0 − 1

cosβ
1 0

]
ȳ−

[
1 0 − tanβ
0 1 0

]
RT

panωB, (6.14)

where kc > 0. Then, the time derivative of the Lyapunov functionW along the system trajectories
satisfies

Ẇ ≤ −(kc − ε)W, ∀ ‖Πu3
r̄‖ ≥ 1

ε
‖Πu3

vC‖, (6.15)

and 0 < ε < kc.

Proof. By taking the time derivative of (6.12) and using the expressions for ˙̄r given in

(6.13), we obtain

Ẇ = r̄TΠu3
(rzS(u3)ωC − vC) (6.16)

Choosing ωC such that

S(u3)ωC = −kcΠu3
ȳ (6.17)

yields Ẇ = −kcW − r̄TΠu3
vC and consequently (6.15) holds. Substituting (6.11) in (6.17)

and solving for α̇ and β̇ we obtain the control law (6.14).

Remark 28. If we apply the control law (6.14) to the system with state Πu3
r̄ = [rx ry]T and

interpret vC as input, it follows from (6.15) that the system is exponentially input-to-state stable

(ISS). As such, the distance between the image of the centroid ȳ and the origin is ultimately

bounded by ‖Πu3
vC/rz‖ and converges exponentially fast to that bound. Moreover, if Πu3

vC/rz

converges to zero so does ȳ.

The proposed control law (6.14) has a significant advantage over classical eye-in-hand

system controllers, which are based on the inversion of the error Jacobian matrix to achieve

an exponential decrease of the error. The inverse of the error Jacobian matrix for the

present pan and tilt camera system is

J−1
e =

 0 1
rz cosβ−rx sinβ

− 1
rz

ry sinβ
r2
z cosβ−rxrz sinβ

 ,
where the Jacobian is computed from the equality

ė = ˙̄r = Je

[
α̇
β̇

]
+
∂r̄
∂t
,
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with the error given by e = r̄− 0 and r̄ =
[
rx ry

]T
. Clearly, the error Jacobian matrix has

singularities not present in the proposed control law. By exploiting the structure of Ẇ

in (6.16), we obtain a controller that still achieves exponential decay of the error for the

zero-disturbance case vC = 0, and whose only singularity does not depend on the vehicle’s

position but is intrinsic to the camera’s geometry. Moreover, the control law given in

(6.14) is effectively image-based in the sense that it uses solely the image coordinates ȳ,

whereas using the inverse of the Jacobian matrix would require reconstruction of the

depth coordinate rz.

6.4 Quadrotor controller

The quadrotor control objective consists of designing a control law for the quadrotor

actuations f and n, which ensures the convergence of the horizontal position in frame

{I} to zero with the largest possible basin of attraction, while maintaining the landmarks

visible in the image sensor and the vehicle’s vertical coordinate stable.

As sensor measurements, the image coordinates of the landmarks are available for

feedback in addition to the vehicle’s attitude and angular velocity estimations from the

proposed observer and the camera pan and tilt angles. Moreover, we consider the vehicle

equipped with an absolute vertical position sensor. The vertical position sensor here

considered can be a simple barometric sensor, providing the vehicle altitude, which differs

from the distance to the ground.

In order to achieve the stabilization goal, the proposed controller makes use of partial

information on the position and body linear velocity which are not directly measured. The

2-D image coordinates of the landmarks’ yi together with the rotation matrices B
IR and

C
BR provide us with means of obtaining, up to a scale factor, the position p and the body

linear velocity Iv = [Ivx Ivy Ivz]T , both expressed in the inertial frame. For that purpose,

we first determine the direction of the landmarks, or more precisely their position up to

a scale factor with respect to the body, expressed in the inertial frame. To simplify the

necessary notation, let us introduce a new reference frame {L}, with the same origin as {B}
but with the orientation of {I}. Let

[
xi yi z

]T
= I

CRri be the coordinates of the landmarks

expressed in {L}. Choosing 1/z as the scale factor, the direction of the landmarks in frame

{L} can be obtained from 
xi/z
yi/z

1

 =
L
CR

[
yT
i 1

]T
uT

3
L
CR

[
yT
i 1

]T , si . (6.18)

where [xi yi z]T = I
CRri are the coordinates of the landmarks expressed in {L}. The si points

can be thought of as the images of the landmarks in a virtual camera, attached to the

vehicle but with a fixed orientation relative to the inertial frame. Moreover, the position of
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6.4 Quadrotor controller

the vehicle can be estimated up to a scaling factor by computing (6.18) with the centroid

ȳ in the place of yi . Taking the time derivative of (6.18), the following relation is obtained

for the vehicle velocities, expressed either in {L} or {I},
Ivx
z −

xi
Ivz
z2

Ivy
z −

yi
Ivz
z2

0

 = ṡi , (6.19)

where the right-hand-side time derivative is a function of variables for which measure-

ments or estimators exist L
CR = I

CR , ωC , yi , and ẏi .

Since (6.19) is valid for every landmark, the vehicle velocity can be partially recovered

from the ṡi measurements by solving an overdetermined equation system in order to

obtain a least squares solution for Iv/z. This solution is akin to the computation performed

in [MCH08] to obtain Iv/z based on the derivative of the average of spherical images of

features. Notice, however, that unlike [MCH08], in this work we use estimates of the

attitude, whose estimation error is reflected in the position and velocity estimates.

The proposed controller makes use of the unit quaternions to represent the attitude,

in contrast with the rotation matrix parametrization used previously. Unit quaternions

q ∈ S4, are written in the form q =
[
q0 qT

]T
, where the scalar part q0 ∈R is related to the

rotation angle θ ∈ [0,Πu3
) and the vector part q = [q1 q2 q3]T ∈ R3 to the axis of rotation

n ∈ S3 through

q(θ,n) =
[
q0
q

]
=

[
cos(θ/2)

nsin(θ/2)

]
.

In general, there is an ambiguity in the unit quaternion parametrization as q and −q

represent the same attitude. However, in the present case, as the attitude controller

guarantees q0(t) > ε for all time. Then, for all system trajectories, there is a bijective

correspondence of the quaternion representation and the rotation matrix representation

The methodology adopted to address the quadrotor vehicle control problem is in

line with the state feedback controller proposed in [IMS03]. However, as the full system

state is not directly available for feedback, the controller is modified to exploit the image

measurements and attitude estimates to stabilize the quadrotor position at the desired

location. The controller comprises a vertical stabilization law together with a lateral-

longitudinal-attitude stabilization law. The latter law enforces two-time scale dynamics

and decouples the lateral-longitudinal dynamics from the attitude dynamics.

6.4.1 Stabilization of the vertical error dynamics

The control objective of the vertical stabilization law is to drive the vehicle to a given

reference altitude h? . Let h0 be the altitude of frame {I}. Then, the altitude of the

vehicle and its height in the inertial frame are related by h(t) = h0 + z(t), where z(t) is the
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6. Vision-based stabilization and estimation

z-coordinate of the vehicle in frame {I}. In order to simplify the notation we pose the

vertical stability problem in terms of driving z(t) to z? = h? − h0 while avoiding collisions

with the ground by enforcing z(t) > 0 for all time. The dynamic equation for the altitude,

mz̈ = (1− 2q2
1 − 2q2

2)T −mg, (6.20)

is derived from the altitude definition and the linear dynamics of the vehicle system

represented in (3.1) and (3.2). We propose a control law for the thrust T that drives the

vehicle to a fixed altitude z? through

T =
mg − k1(z − z?)− k2

ż
z

1− (2q2
1 + 2q2

2)
(6.21)

where k1 and k2 are positive parameters. The resulting closed-loop altitude dynamics are

mz̈ = −k1(z − z?)− k2

z
ż, (6.22)

which amount to a double integrator driven by a PD controller with a time-varying

derivative gain due to the nature of z(t). The closed-loop is asymptotically stable for initial

conditions z(t0) > 0 since both proportional and derivative gains are always negative and,

as proved in the sequel, ensures the quadrotor altitude is always positive and prevents

crashes against the ground. A subsequent choice of the attitude control law guarantees

that the quadrotor never overturns, and thus 2q2
1 + 2q2

2 < 1 for all time, precluding the loss

of altitude control through thrust actuation. For now, we take that fact as assumption and

state the following lemma, regarding the altitude control.

Lemma 29. Consider the quadrotor altitude dynamic system described by the closed-loop

system comprising (6.20) and (6.21) with k1, k2 > 0. If the initial conditions fulfill z(0) > 0,

then the control law is well defined and z(t) > 0 for all time, even in the presence of attitude

observer errors. Additionally, the cascade of the attitude observer and the altitude controller is

exponentially stable.

Proof. Let us define the auxiliar state

ξ = zexp
(

1
k2

(
mż+

∫ t

0
k1(z(τ)− z?)dτ

))
and notice that, with the imposed closed-loop dynamics (6.22), it has a constant value as

ξ̇ = 0. Since ξ(t) = ξ(0) is positive and the exponential of a number is always positive, it

results that z(t) > 0 for all time and thus collisions with the ground are always avoided.

Asymptotic stability of (z, ż) = (z? ,0) is established from LaSalle’s invariance principle

and the Lyapunov function

Vz =
1
2
k1(z − z?)2 +

1
2
mż2,
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which has negative semi-definite time derivative

V̇z = −k2
ż2

z
≤ 0.

An additional consequence of the convergence of (z, ż) to (z? ,0) and the constancy of the

auxiliar state ξ is that the altitude is lower and upper bounded for all time and z(t) > ε for

some ε > 0.

Furthermore, LTV system theory asserts that the convergence is indeed exponential.

Let the state x =
[
ż z − z?

]T
and compute

ẋ =
[
A(t) B
−C 0

]
x =

− k2
z(t) −k1

1 0

x. (6.23)

to obtain an LTV system equivalent to the altitude dynamics (6.22) Let P = 1
k1

and notice

that

AT (t)P + PA(t) = −2
k2

k1z(t)
= −Q(t)

with Q(t) bounded as 0 < qm < Q(t) < qM . Under these conditions, the LTV system (6.23)

is uniformly exponentially stable [LP02].

The interconnection of the attitude observer and the altitude subsystem can be re-

garded as a cascade of two exponentially stable systems with A(t) = − k2
z(t) bounded for all

trajectories. In these circumstances, the cascade is also exponentially stable [SI89, Propo-

sition 2.1]. Finally, impact with the ground is also avoided when the altitude subsystem

is perturbed by the orientation errors. This can be established by letting ∆1(t) be the

perturbations due to the estimation errors and considering that the state

ξ = zexp
(

1
k2

(
mż+

∫ t
0 k1(z(τ)− z?)−∆1(τ)dτ

))
(6.24)

is constant for the perturbed vertical dynamics

mz̈ = −k1(z − z?)− k2

z
ż+∆1(t).

To complete the proof it must be determined that the pathological cases of the finite

time escape and convergence to zero or divergence to infinity are impossible for the

altitude. This is proven by taking into account that the state ξ in (6.24) is constant and z?

is strictly positive. The case of finite time escape is impossible since it implies that z(t),

ż(t) and consequently ξ all diverge to infinity, which is in contradiction to the previously

established result that the state ξ is constant. Likewise, were z(t) to converge to zero, it

would result on ξ converging to zero. In that situation, the argument of the exponential

would be dominated by the integral term, whose argument is a strictly negative number.

Divergence of the altitude to infinity with time is also impossible since, if we take it as a
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premiss, it results in a ξ state that diverges to infinity. Since ξ is proven to be constant

all the aforementioned situations are impossible for the dynamic system at hand and

thus, even in the presence of attitude disturbances, z(t) has a lower and upper bound and

converges to the desired z? .

6.4.2 Stabilization of the lateral and longitudinal dynamics

To stabilize the quadrotor in hover, the proposed vertical stabilizer (6.21) needs to be

combined with a controller for the torque actuation n that stabilizes both the attitude and

the lateral-longitudinal dynamics. In order to achieve these goals, we interpret the attitude

as a virtual control input for the lateral-longitudinal dynamics. In this setting, the attitude

follows the virtual control law with fast dynamics and a slower outer control loop generates

the virtual control for the attitude so as to stabilize the lateral-longitudinal dynamics. The

proposed attitude-lateral-longitudinal closed-loop simultaneously stabilizes the lateral

and longitudinal dynamics and ensures the quadrotor does not overturn, that is, q0(t) > ε

for all time.

The lateral-longitudinal-attitude sybsystem dynamics for a quadrotor vehicle, with

equations of motion (3.1)-(3.4) and the thrust defined as (6.21), are described by the

following system of equations, where quaternions are used to represent the vehicle

attitude,

ẏ = vy , (6.25)

mv̇y = d(q)q1 +m(q)q2q3 + δy ,

ẋ = vx,

mv̇x = −d(q)q2 +m(q)q1q3 + δx,

q̇0 = −1
2
qTωB,

q̇ =
1
2

(q0I4 + S(q))ωB,

Jω̇B = −S(ωB)JωB + n.

The components x,y,vx and vy are written in frame {I}, the attitude functions d(q) and

m(q) are given by

d(q) =
2mg q0

1− (2q2
1 + 2q2

2)
, (6.26)

m(q) = −
2mg

1− (2q2
1 + 2q2

2)
,
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and δx, δy are asymptotically vanishing signals (see Lemma 29) defined as

δx =
2q1q3 + 2q0q2

1− (2q2
1 + 2q2

2)
(−k1(z − z?)− k2

ḣ
z

),

δy =
2q2q3 − 2q0q1

1− (2q2
1 + 2q2

2)
(−k1(z − z?)− k2

ḣ
z

)).

The control law for the attitude subsystem is chosen as the proportional-derivative

law

n = KP (η −KDω̂B) (6.27)

where KP > 0 and KD > 0 are design parameters and

η = q? − q̂

is the attitude error with q? defined as the virtual control input for the x − y system and q̂

the vectorial part of the quaternion estimate obtained with proposed observer system (6.9).

The quadrotor attitude estimation subsystem in closed-loop with the control feedback

(6.27) results in the following dynamics, written in quaternion representation

q̇0 = −1
2
qTωB (6.28)

q̇ =
1
2

(q0I4 + S(q))ωB (6.29)

Jω̇B = −S(ωB)JωB + kP ((q
? − q)− kDωB) +∆2(t), (6.30)

where the external input

∆2(t) = kP q̃+ kDω̃B

includes the errors resulting from the observer measurements and vanishes exponentially

fast. According to Proposition 5.7.1 in [IMS03], which we restate for the sake of complete-

ness, proper tuning of the torque control law (6.27) ensures boundedness of the attitude

subsystem trajectories and consequent stabilization of the vertical error dynamics, even in

the presence of attitude and bias estimation errors.

Proposition 30. For some 0 < ε < 1, fix compact sets of initial conditions Q, Ω for the observer

estimates q̂(t) and ω̂B(t), respectively, such that

Q ⊂ {q̂ ∈R3 : ‖q̂‖ <
√

1− ε2}.

Then there exist K?D (‖∆(t)‖∞) > 0 and positive numbers K?P (K?D ), λ?(K?D ) such that, for any ini-

tial conditions (q̂(0), ω̂B(0)) ∈ Q×Ω and ‖q?(t)‖ < λ? , the trajectories of the attitude subsystem

(6.28)-(6.30) are bounded and satisfy q̂0(t) > ε for all time.

Remark 31. A corollary of this Proposition is that the quadrotor does not overturn for initial

attitude and bias estimation errors satisfying
√

1
2 q̃0(0)2 + 1

2 b̃(0)T b̃(0) < ε.
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To achieve convergence of the overall system, the virtual control input q? is generated

from the quadrotor position and velocities by a nested saturation control law. Consider the

new state variables

ζ1 =
1
z

[
y
x

]
,

ζ2 =
1
z

[
vy
vx

]
+λ1σ

(
K1

λ1
ζ1

)
− vz
z
ζ1,

where σ (x) = (σ (x1), . . . ,σ (xn)) is a saturation function and vz = ż. Notice that the states ζ1

and ζ2 are readily obtained from x/z, y/z and Iv/z, whose estimates can be derived from

the camera sensor and attitude estimate.

Fix for q? the nested saturation structure

q? = −P2λ2σ

(
K2

λ2
ζ̂2

)
, (6.31)

where

P2 =


1 0
0 −1
0 0


and ζ̂2 is the estimate for ζ2 obtained applying (6.18) with the image centroid ȳ and the

attitude estimate R̂. The time derivatives of the states are then

ζ̇1 = ζ2 −λ1σ (
K1

λ1
ζ1),

mζ̇2 =
D
z

(
−P2λ2σ (

K2

λ2
ζ2) + η

)
+mK1σ

′(
K1

λ1
ζ1)ζ̇1

+ δ1 + δ2 +∆3,

where

D =
[
d(q) m(q)q3 0
m(q)q3 −d(q) 0

]
,

the exogenous inputs δ1 and δ2 are given by

δ1 =
[
δx
δy

]
/z,

δ2 =
k1(z − z?) + k2

ḣ
z )

z
ζ1 +m

v2
z

z2 ζ1 −m
vz
z
ζ̇1,

and the errors due to the attitude estimator are encapsulated in

∆3 =
D
z

(
−P2λ2

(
σ (K2

λ2
ζ2)− σ (K2

λ2
ζ̂2)

)
+ q̃

)
.

From the exponential convergence of the altitude (z − z?) and the attitude estimation

error q̃ to the origin and by noting that the growth of ‖ζ1‖, ‖ζ2‖ is, at most, quadratic, we
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can establish that the exogenous inputs and estimation induced errors are asymptotically

vanishing and converge exponentially fast to zero. From definition (6.26) and the attitude

and vertical controllers, we have the bounds 0 < dL ≤ d(q, t) ≤ dU and 0 < zL < z(t) < zU .

The following result is an adaptation of Proposition 5.7.2 and Theorem 5.7.5 in [IMS03]

and gives guarantees for the proposed quadrotor stabilization law.

Theorem 32. Let KD be fixed according to Proposition 5.7.1 in [IMS03] and let K?i and

λ?i , i = 1, 2, be such that the following inequalities are satisfied

λ?2
K?2

<
λ?1
4
, 4λ?1K

?
1 <

1
m
dL

zU
λ?2
8
, 24

K?1
K?2

<
1
6
dL

dU
zL

zU
. (6.32)

Then, there exist positive numbers K?P and ε? such that, taking

λi = εiλ?i and Ki = εK?i , i = 1,2, (6.33)

for all KP > K
?
P and 0 < ε ≤ ε? , the state trajectories of the system (6.25) in closed-loop with

the controller defined by (6.21), (6.27) and (6.31) converge asymptotically to the origin for

any initial condition such that z(0) > 0, (x(t),vx(t), y(t),vy(t)) ∈R4, (q̂(0), ω̂B(0)) ∈ Q×Ω and

|q̃0(0)| < q0(0).

Proof. The proof follows from the arguments in [IMS03] where the statement is proven

for constant z(t) = Z and exogenous disturbances δ2(t) = 0, ∆(t) = [∆1(t)∆2(t)∆3(t)]T = 0.

The statement of Theorem 32 is shown by noting that the additional disturbances δ2(t)

and ∆(t) are asymptotically vanishing. The lateral-longitudinal subsystem does not have

finite escape time and the trajectory (ζ1(t),ζ2(t)) exists and is bounded for any t > 0. Since

the disturbance δ2(t) is asymptotically vanishing, there exists a finite time T ? such that

for t > T ? the disturbances are within the bounds for which the convergence of (ζ1,ζ2) to

the origin is ensured by using the gains in (6.33), satisfying (6.32). The remainder of the

claims in the theorem statement follows identically from [IMS03].

Remark 33. At this point, it is important to notice that the vehicle controller can be obtained by

feedback of the image coordinates and their derivatives, vertical coordinate, and vehicle attitude

estimate for the thrust, and by feedback of the image coordinates and their derivatives, attitude

estimates and angular velocities of the camera and vehicle for the torque.

Gathering the previous results regarding the pan and tilt camera, stabilization of

the vertical position, attitude and lateral-longitudinal subsystems, we can now state the

following theorem which summarizes the main results of the chapter and corresponds

to the control architecture represented in Fig. 6.2. The camera controller Kcamera is given

by (6.14) and the vertical position controller Kvertical by (6.21), respectively. The lateral-

longitudinal controller Klat-long and the attitude controller are described by (6.31) and
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Kaltitude

KattitudeKlat-long
Attitude!
Observer

Kcamera

T

n

↵̇, �̇

q?

Figure 6.2: Block diagram of the cascaded control architecture.

(6.27), respectively. Lastly, the attitude observer estimates I
BR and ωB through (6.3), (6.7)

and (6.8).

Theorem 34. Consider a quadrotor described by the dynamic system (3.3)-(3.2) equipped with

a pan and tilt camera modeled by (6.1) with dynamics (6.14), and apply the set of camera and

quadrotor controllers (6.14), (6.21), (6.27) and (6.31), using the quadrotor attitude and rate

gyro bias estimator (6.7)-(6.8). Then, for any initial condition z(0) > 0, (x(t),vx(t), y(t),vy(t)) ∈
R

4, (q̂(0), ω̂B(0)) ∈ Q×Ω and |q̃0(0)| < q0(0) such that the landmarks are visible in the image

plane of the camera, the vehicle’s position, attitude, velocities converge asymptotically to
IpB = [0 0 z?]T , I

BR = I3, vB = 0, and ωB = 0, respectively, whereas the camera’s velocity and

image coordinates converge to ωC = 0 and ȳ = 0, respectively.

Proof. The stated result follows from Theorems 32 and 25. Theorem 32 states that

convergence of the vehicle position and velocity to zero is achieved, even in the presence

of attitude estimation errors. Convergence of the landmarks’ centroid image coordinates to

zero is achieved if the vehicle velocity and bias error converge to zero, which is guaranteed

by Theorem 25.

6.5 Simulation results

In this section, we present the results from a simulation run of the proposed control

architecture. At the beginning, the quadrotor is assumed at rest. The camera points

towards a set of landmarks that are visible, and the centroid of the landmarks is not

coincident with origin of the image plane. The objective of the simulation is to hover the

quadrotor over the centroid of the landmarks at a reference vertical position. The vehicle
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parameters, control and estimation gains are m = 1 kg, J = 0.5I3 kg m2, λ1 = 10, λ2 = 0.3,

K1 = 0.3, K2 = 0.3, KP = 10, KD = .5, k1 = 0.1, k2 = 6, kb = 0.001 and kω = 0.01.

Figure 6.3 presents the time evolution of the quadrotor position error expressed in

inertial coordinates. We can verify that the error converges from the initial e = [8 −6 −3]T m

to zero and is negligible after about 20 seconds.
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Figure 6.3: Inertial position error of the quadrotor.

The position of the landmarks’ centroid in the image plane is displayed in Fig. 6.4. The

centroid ȳ converges asymptotically to the origin as the velocity of the quadrotor converges

asymptotically to zero. The initial transient vanishes rapidly, lasting only a couple of

seconds, and then convergence slows down as the vehicle comes to a halt. The disturbance

effect of the quadrotor linear velocity and estimation errors on the time evolution of ȳ can

be observed in the figure by noting that the convergence to the origin is not monotonic.
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Figure 6.4: Landmarks’ centroid position in image coordinates.

The quadrotor actuations are shown in Fig. 6.5. The initial thrust is smaller than

gravity force, thereby making the quadrotor move down, closer to the desired altitude.

When the altitude finally stabilizes, the thrust also stabilizes to a steady-state value where

it compensates gravity. The high initial actuation for the torque drives the thrust vector to

point in the direction of the landmarks. Once this is accomplished, the torque actuation

necessary to counteract the vehicle’s movement is gradually smaller until the quadrotor
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comes to a full stop over the landmarks.
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Figure 6.5: Thrust and torque quadrotor actuations.

6.6 Experimental results

We evaluated the performance and robustness of the proposed controllers and estimators

at the SCORE lab flying arena at the University of Macau. The facilities are equipped

with a motion capture system that provides ground-truth data for the vehicle and camera

positions, allowing to assess the real-world performance of the proposed estimator, as

well as of the controllers.

The setup is depicted in Fig. 6.6, in which the motion capture cameras, the quadrotor

and the landmark markers are visible. We use an Asctec Pelican quadrotor with an

onboard Atom computer as our flying platform. The onboard computer communicates

with the low-level Asctec autopilot to obtain gyro measurements at 100Hz and acquires

and processes camera frames at 30 Hz to identify the four markers. The raw gyro data

and image coordinates of the markers are then transmitted to a ground station where the

nonlinear observer and controller loops are implemented. The final computed commands

for the quadrotor are then transmitter back to the onboard computer that issues them to

the low-level Asctec autopilot. Due to restrictions in the experimental setup, it was not

possible to use the attitude controller (6.27) to drive the vehicle. Instead of commanding

directly the quadrotor motors, we relied on an inner control-loop for the attitude, which
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Figure 6.6: Experimental setup at the University of Macau. The motion capture cameras,
the quadrotor equipped with the pan and tilt camera, and the landmark markers are
visible.

is implemented onboard the vehicle and receives attitude commands, such as the ones

given by the proposed lateral-longitudinal controller (6.31).

The steerable platform connects the camera to the quadrotor through two servo motors

(see Fig. 6.7, controlling each the pan and tilt angles of the platform. The platform is

adorned with reflective markers, so that ground-truth data can be obtained using the mo-

tion capture system. The input to the servos was restricted to the interval [−0.3, 0.3]rad/s

to avoid jerk in the movements.

The camera lens is an M12 mount lens with focal length of 2.1 mm and its cali-

bration matrix was determined a priori. The relevant parameters are the focal length

f = 344.1 pixels and the calibrated camera optical center (cx, cy) = (368.6,220.0) pixels.

The imaging sensor area is 752 by 480 pixels.

We now proceed with the analysis of a representative run of the proposed controller

and estimator, focusing first on the pan and tilt camera control. The camera coordinates

of the markers and intersection point are depicted in Fig. 6.8 and are clearly far from the

129



6. Vision-based stabilization and estimation

Figure 6.7: The camera setup with pan and tilt rotation axes signaled.

image plane limits throughout the whole maneuver. The time evolution of the coordinates

of the makers in the camera reference frame is shown in Fig. 6.9. The initial transient is

due to the quadrotor tilting and moving towards the desired location once the controller

is enabled. The pan and tilt servos are not able to respond fast enough so as to totally

mitigate the initial motion of the vehicle. However, the initial transient error converges

to values around zero. The corresponding camera pan and tilt angles are presented in

Fig. 6.10. There we can see the influence of the saturation on the input angular velocities,

particularly during the interval [1,3]s, where the descending slope for pan and tilt is

constant (−0.3rad/s) due to the input saturation. The pan and tilt angles are obtained

directly from the actuation servos. The error in Euler angles between the measurements

and the motion capture system ground-truth is shown in Fig. 6.11. We can see that

throughout most of the maneuver the error for each particular euler angle is less than

0.05 rad (2.9 deg).

To have a better picture of the global control, we plot the camera coordinates of the

intersection point in the virtual camera frame, that is, a camera that is always oriented

towards the ground, in Fig. 6.12. The coordinates converge to the optical center of the

calibrated camera, (cx, cy) = (368.6,220.0) pixels, corresponding to the quadrotor hovering

above the centroid of the landmarks.

The time evolution of the attitude estimation error is shown in Fig. 6.13. After the
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Figure 6.8: Marker’s location in camera sensor during the stabilization maneuver.

initial transient the errors are small, with a maximum error of about 0.05 rad, the same

order of magnitude of the camera installation errors. The initial error is larger than in

steady state due to the larger initial mismatch between the camera pan and tilt angles

measurements used for the attitude estimation and the real pan and tilt angles obtained

from ground-truth. The error between the measured and real angles is patent in Fig. 6.11

and a correlation between higher pan and tilt error and corresponding higher estimation

error can be perceived, particular in the initial instants following t = 0s and again at

t = 11s.

The attitude commands to the quadrotor are depicted in Fig. 6.14 and the position

error relative to the centroid of the landmarks is shown in Fig. 6.15. We can see that

there is an initial transient where the position of the quadrotor converges rapidly to the

landmarks. Once hovering the markers, the position error is always below 20 cm, which

attests to the performance of the proposed controller, despite the non-idealities present in

the overall system.

6.7 Concluding remarks

This chapter proposed a cascaded architecture comprising a nonlinear attitude observer

and a nonlinear controller for the stabilization of a quadrotor vehicle based on image

measurements of a set of landmarks obtained from a pan and tilt camera and biased

rate gyros. The vehicle was stabilized vertically to a given altitude by resorting to a
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Figure 6.9: Marker’s location in camera sensor.

proportional-derivative control law based on image measurements and a vertical position

sensor. The lateral-longitudinal stabilization was achieved with a nested saturation control

law using feedback of the image measurements, estimated body attitude and angular rate.

Both controllers were shown to be input-to-state-stable with respect to the attitude and

rate gyros bias estimation errors, which guarantees the closed-loop stability of the overall

cascaded architecture. During the whole stabilization procedure the pan and tilt camera

was actuated so as to keep the image of the landmarks’ centroid at the center of the image

plane. Experimental and simulation results exhibited good performance and attested the

applicability of the proposed technique, even in non-ideal conditions. Future work will

focus on the extension of the proposed control and estimation architecture to allow for

richer quadrotor control objectives, such as trajectory tracking or path following, always

with a focus on using explicitly the image sensor measurements without recovering the

quadrotor state.
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Figure 6.10: Pan and tilt camera measured angles.
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Figure 6.11: Orientation error of the camera pan and tilt platform.
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Figure 6.12: Virtual camera coordinates of the intersection point.
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Figure 6.13: Difference of observer estimates and ground-truth.
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Figure 6.14: Vectorial part of desired orientation quaternion.
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7
Conclusions

This thesis addressed a number of modeling and motion control problems posed by the

development of autonomous air vehicles. Its main contributions can be summarized as

follows:

• A landmark-based controller for force and torque actuation that guarantees almost

global asymptotic stability of the desired equilibrium point for a fully-actuated rigid

body.

• A trajectory tracking controller for steering a quadrotor vehicle along a time-

dependent trajectory that asymptotically stabilizes the closed-loop system, even in

the presence of constant force disturbances, and ensures that the actuation does not

grow unbounded as a function of the position error.

• A global controller to steer a quadrotor vehicle along a predefined path, with a

secondary control objective related to the velocity and robust to constant wind

disturbances.

• An approach to the robust take-off and landing of a quadrotor UAV in critical

scenarios, such as the presence of sloped terrains and surrounding obstacles.

• A cascaded control architecture comprising a nonlinear attitude observer and a non-

linear controller for vision-based position and attitude stabilization of a quadrotor.

Chapter 2 presented a landmark-based solution to the problem of stabilizing a fully-

actuated rigid body while keeping the force and torque actuation within predefined

bounds. A landmark-based error function was introduced for potential energy shaping
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and combined with a dissipative force map to obtain a dissipative closed-loop system that

has an AGAS equilibrium point at the minimum of the error function. The prescribed

bounds on the actuation were enforced by appropriately scaling a modified version of the

error function and defining a bounded dissipative force map.

In Chapter 3 we proposed a state feedback solution to the problem of stabilizing an

underactuated quadrotor vehicle along a predefined trajectory in the presence of constant

force disturbances. A Lyapunov function for the system was derived using adaptive

backstepping techniques and made possible by dynamic extension of the actuation. A

pair of sufficiently smooth estimators was introduced so as to compensate for the force

disturbance and add integral action to the system. Control solutions for different levels

of actuation control, which depend on the aircraft, were proposed and tested. A rapid

prototyping and testing architecture was developed to expedite the development process

by creating an abstraction layer that integrates the sensors, controller, and communication

with the vehicle. Experimental data for trajectory tracking applied to a small-scale

quadrotor vehicle was presented which evidenced the effects of the adaptive action and

demonstrated the robustness and performance of the proposed control law. Realistic

simulation data using a non-ideal torque and thrust actuated quadrotor model is also

presented, where the robustness and performance of the proposed controller with a

smooth double estimator is assessed.

Chapter 4 presented a state feedback solution to the problem of steering a quadrotor

vehicle along a predefined path. The proposed solution guarantees global convergence

of the path following error to zero, for a large class of three-dimensional paths. The

nonlinear controller, which was designed using Lyapunov-based backstepping techniques,

ensures that the actuation does not grow unbounded as function of the position error

and allows for zero thrust actuation to be applied when the vehicle is converging to the

path. The proposed controller was designed to be robust to unknown constant force

disturbances that arise from the presence of wind or imperfect knowledge of vehicle

parameters. Additionally, the vehicle’s progression along the path is controlled to follow

a predefined speed profile and simultaneously maintain the path following control law

well-defined. A final degree of freedom in the control laws is explored so that the vehicle

flies with zero side-slip angle. Experimental and simulation results were presented for

vehicles controlled in both angular velocity and torque to assess the performance of the

proposed controllers. The robustness of the controller to non-ideal wind disturbances was

experimentally demonstrated using a mechanical fan as a disturbance generator.

In Chapter 5 we addressed the problem of robust take-off control of a quadrotor

UAV, considering explicitly the interaction with the ground, so as to guarantee successful

maneuvers even in sloped terrains and in the presence of external disturbances and
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uncertain parameters. The vehicle was modeled as a hybrid automaton, whose states

reflect the different dynamic behaviors exhibited by the UAV. The take-off procedure

was then cast as the problem of changing the operating mode from the initial to the

final desired state, through the edges allowed for the hybrid automaton. The transitions

between intermediate operating modes were achieved through the application of low-

level feedback controllers, associated with each mode, to track robust reference signals.

The supervisor and the combined properties of the low-level controllers and reference

trajectories ensures that the desired intermediate transitions are attained, robustly to with

respect to uncertainties in the model and environment parameters, and that the final

desired state is reached. Experimental and simulation results were presented to assess

the performance of the proposed hybrid controller, demonstrating the effectiveness of the

proposed solution, especially for the cases in which the slope of the terrain renders the

landing and take-off maneuvers more critical to be achieved.

Chapter 6 proposed a cascaded architecture comprising a nonlinear attitude observer

and a nonlinear controller for the stabilization of a quadrotor vehicle based on image

measurements of a set of landmarks obtained from a pan and tilt camera and biased

rate gyros. The vehicle was stabilized vertically to a given altitude with a proportional-

derivative (PD) control law based on image measurements and a vertical position sensor.

The lateral-longitudinal stabilization was achieved with a nested saturation control law

using feedback of the image measurements, estimated body attitude and angular rate. Both

controllers were shown to be ISS with respect to the attitude and rate gyros bias estimation

error, which allows for the closed-loop stability of the cascaded architecture. During the

whole stabilization procedure the pan and tilt camera was actuated so as to keep the image

of the landmarks’ centroid at the center of the image plane. Simulation results exhibited

good performance and attested the applicability of the proposed technique.

7.1 Directions for future work

The results presented in this thesis leave several avenues open for future research. The

most obvious continuation to the work presented in Chapter 2 is its extension to a trajec-

tory tracking problem and its application to under-actuated vehicles such as quadrotors,

helicopter or fixed-wind aircraft. Steps in this direction have already been taken in the

remaining Chapters of this Thesis.

Regarding Chapter 3, direction of future work opened by this Thesis are the gener-

alization of the proposed control law to one that can be guaranteed to be almost-global.

Also of interest is the consideration of saturated control actuation and the derivation of a

law that ensures bounds on the thrust and torque inputs.

Future extensions to the work presented in Chapter 4 remain to be carried on input
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saturation as the proposed controller generates inputs which are bounded with respect

to the position and velocity errors but can grow unbounded on the other backstepping

errors.

Following Chapter 5, opportunities for future research are opened on the experimental

validation of the proposed solution for the take-off problem, as well as improvements

to the hybrid dynamical model and the hybrid controller. In particular, for the experi-

mental activity, a complex integration of the sensors (contact, force) and all the avionics

equipments will be required, extending the standard sensing capabilities of the vehicle

in order to robustly detect the current operative mode based solely on onboard sensors.

This latter issue suggests also to investigate methodological solutions aiming at improving

robustness to the possible uncertainties that may affect the measure of the current hybrid

state. Another interesting research topic is the appropriate extension of the proposed

framework to a third dimension, by adapting the presented arguments, allowing the

controller to handle more complex scenarios in terms of the characteristics of the possible

environment of operation.

Finally, the most immediate line of work on Chapter 6 is the extension of the proposed

control architecture from the stabilization problem to solving the trajectory tracking

control problem for a quadrotor. Additionally, other onboard sensors can be used to

enhance the attitude estimations, typically through accelerometer measurements. The

role of accelerometers for attitude estimation has been subject of scientific debate where

[MS10] first pointed out problems with typical model simplifications and observer im-

plementations. The more recent work [LMBM14] provides insightful details on the true

role of accelerometer measurements that can be adapted to further enhance the proposed

observer law.

As the motion control of aerial vehicles in free flight is reaching its maturity, new

and interesting challenges lie ahead. The recent trend of having the aerial vehicles

interacting with the environment opens an array of possibilities that include landing

and sliding on inclined slopes (as presented in Chapter 5), wall perching, grasping and

manipulation, and load transportation. In all these cases, special attention has to be payed

to the dynamics of the system, as these change significantly with respect to the free flight

dynamics. The maturity of single vehicle control also opens the avenue of multiple vehicle

cooperation. Cooperative control of multi-vehicle systems is advantageous in carrying

out tasks such as surveillance and search, where it results in a faster and more efficient

process, and mapping of large areas like the sea floor, providing results in a faster and

more efficient manner. Multiple sensing robots moving in a coordinated manner can

also be perceived as a distributed network of sensors, altogether accomplishing a larger

sensing task or alternatively providing robustness to sensor loss in critical environments.
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Challenges in maintaining a multi-vehicle formation while moving in space are posed by

the inter-vehicle communication topology and necessity to implement collision avoidance

(inter-vehicle and with the environment).

An interesting intersection of the two proposed future work avenues is the problem of

load transportation using multiple vehicles, as the operation of multiple vehicles to assist

the load transportation can extend significantly the range of the missions and increase

payload capacity. Closed-loop solutions for the slung-load transport problem can be

envisaged adopting two alternative approaches: From a robustness perspective, with the

load considered as a disturbance on the nominal multi-vehicle system, and from a position

control perspective, wherein the multibody dynamics are explicitly modeled and feedback

of the load position is used in order to steer it along a path.
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A
Double integrator

A.1 Arbitrarily bounded controller for a double integrator sys-
tem with strict Lyapunov function

Consider the double integrator system

ẋ1 = x2,

ẋ2 = u,

driven by the saturated input

u = σ (k1x1 + k2x2) (A.1)

bounded by σmax as |u| ≤ σmax. Define the positive definite matrix P as

P =

 a −a k1
k2

−a k1
k2

k1


with a > k2

2
k1

and positive k1, k2. To establish the global asymptotic stability of the origin we

consider the Lyapunov function

V (x1,x2) =
1
2

[
σ (k1x1 + k2x2)

x2

]
P
[
σ (k1x1 + k2x2) x2

]
+
∫ k1x1+k2x2

0
σ (τ)dτ

and compute it’s derivative as

V̇ (x1,x2) =
[
σ (k1x1 + k2x2)

x2

]
Q

[
σ (k1x1 + k2x2) x2

]
where Q is the definite negative matrix defined as

Q =

a k1
k2
− k2 − ak2σ

′(k1x1 + k2x2) ak1σ
′(k1x1 + k2x2)

ak1σ
′(k1x1 + k2x2) −a k

2
1
k2
σ ′(k1x1 + k2x2)

 .
143



A. Double integrator

The proposed controller (A.1) renders the closed-loop time derivative of the double

integrator dynamic system a strictly negative definite function as V̇ (x1,x2) = −W (x1,x2) ≤
0, where the positive definite function W is

W (x1,x2) = −
[
σ (k1x1 + k2x2)

x2

]
Q

[
σ (k1x1 + k2x2) x2

]
.
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B
Proofs for Chapter 5

B.1 Proof of Proposition 20

With θ̃(t) = θ(t)−θ?(t) the closed-loop error dynamics can be written as

¨̃θ = −KP (θ̃ +KD
˙̃θ) +Ψθ(θ̃, ˙̃θ),

where

Ψθ(θ̃, ˙̃θ) = hθ(θ? + θ̃, θ̇? + ˙̃θ,0,µ)− hθ(θ? , θ̇? ,0,µ),

with hθ(·) defined in (5.7). Form this the result immediately follows by using the fact that

Ψθ(·, ·) is locally Lipschitz and the definition of u.

B.2 Proof of Proposition 21

Let θ̃ := θ −θ? and α̃ := α −α? , and note that (5.5) in the new coordinates transform as

¨̃θ = F̃θ +Ψθ(θ̃, ˙̃θ, ˙̃α,t) + δθ(t) , ¨̃α = F̃α +Ψα(θ̃, ˙̃θ, ˙̃α,t) + δα(t) ,

where (see (5.6) and (5.7))

Ψθ(θ̃, ˙̃θ, ˙̃α,t) = hθ(θ? + θ̃, θ̇? + ˙̃θ, α̇? + ˙̃α,µ)− hθ(θ? , θ̇? , α̇? ,µ)

Ψα(θ̃, ˙̃θ, ˙̃α,t) = hα(θ? + θ̃, θ̇? + ˙̃θ,α̇? + ˙̃α,µ)− hα(θ? , θ̇? , α̇? ,µ)

δθ(t) = (µ−µ0)
g cosβ sin(θ? +γ + β)
` cos(θ?(t) +γ + β)2 sign(α̇?(t))

δα(t) = −(µ−µ0)
g cosβ

cos(θ?(t) +γ + β)2 sign(α̇?(t))

and F̃θ := Fθ − F?θ , F̃α := Fα − F?α with Fθ and Fα defined in (5.14). We observe that, by

definition of θ? , the functions δα(t) and δθ(t) satisfies |δδ(t)| ≤ Lδ|µ − µ0| and |δα(t)| ≤
Lα |µ−µ0| for all t ≥ 0, for some positive constants Lδ and Lα.
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Define the change of variables θ1 := θ̃, θ2 := ˙̃θ + 1
KD
θ̃, α1 := α̃, α2 := ˙̃α + 1

KD
α̃ which

transforms the closed-loop error system into

θ̇1 = − 1
KD
θ1 +θ2, (B.1)

θ̇2 = −KPKDθ2 +Ψθ(θ1,θ2 − 1
KD
θ1,α2 − 1

KD
α1, t)− 1

K2
D
θ1 + 1

KD
θ2 + δθ ,

and

α̇1 = − 1
KD
α1 +α2, (B.2)

α̇2 = −KPKDα2 +Ψα(θ1,θ2 − 1
KD
θ1,α2 − 1

KD
α1, t)− 1

K2
D
α1 + 1

KD
α2 + δα .

Let ρ := mint∈[t0,tf ]θ
?(t) + β and note that ρ > ε > 0. Define the Lyapunov function

V (θ1,θ2,α1,α2) = Vθ(θ1,θ2) +Vα(α1,α2) where

Vθ(θ1,θ2) :=
θ2

1
ρ − |θ1|

+
1
2
θ2

2 , Vα(α1,α2) :=
1
2

(
α2

1 +α2
2

)
,

and note that V (θ1,θ2,α1,α2) is defined and radially unbounded on the domain (−ρ,ρ)×
R×R×R. Furthermore, let Ω(`) := {(θ1,θ2,α1,α2) : V ≤ `2}, a level set of V .

By using the fact that Ψθ(·) and Ψα(·) are locally Lipschitz and vanishing in θ1 = 0,

θ2 − 1
KD
θ1 = 0, α2 − 1

KD
α1 = 0, for any ` there exist positive L1 and L2 such that for all

(θ1,θ2,α1,α2) ∈Ωθ(`) the following hold

|Ψθ(θ1, θ2 − 1
KD
θ1, α2 − 1

KD
α1, t)| ≤ L1(KD )|θ1|+L1(KD )|α1|+L2|θ2|+L2|α2|

|Ψα(θ1, θ2 − 1
KD
θ1, α2 − 1

KD
α1, t)| ≤ L1(KD )|θ1|+L1(KD )|α1|+L2|θ2|+L2|α2| ,

for all t ≥ 0.

The time derivative of Vθ and Vα along the solutions of (B.1)-(B.2), can be upper

bounded as

V̇θ ≤ T (θ)
(
− 1
KD
θ2

1 + |θ1||θ2|
)

+ (−KPKD +L2 + 1
KD

)θ2
2

+(L1(KD ) + 1
K2
D

)|θ1||θ2|+L1(KD )|θ2||α1|+L2|θ2||α2|+ |θ2||δθ |

V̇α ≤
(
− 1
KD
α1 +α2

)
+ (−KPKD +L2 + 1

KD
)α2

2

+(L1(KD ) + 1
K2
D

)|α1||α2|+L2|θ2||α1|+L1(KD )|θ1||α2|+ |α2||δα |

where T (θ1) =
(
2 +θ2

1/ |θ1|
)
/ (ρ − |θ1|)2. Note that T (θ1) ≥ 2/ρ2 for all θ1 ∈ R. By com-

pleting the squares, it follows that for any ` and for any c there exists a K?D > 0 and a

K?P (KD) > 0 such that for any positive KD ≤ K?D and KP ≥ K?P the following bound on V̇

can be established

V̇ ≤ −γ‖(θ1,θ2,α1,α2)‖+ c‖(δθ ,δα)‖

146



B.3 Proof of Proposition 22

for all (θ1,θ2,α1,α2) ∈Ω`, where γ is a positive constant. From this the result follows by

standard Lyapunov arguments by using the definition of u, of (δθ ,δα) and by noting that

for any ` and KD there exist a ∆T Ls,0 such that

{(θ1,θ2,α1,α2) ∈R×R×R×R :

|θ1| ≤ ∆T Ls,0, |θ2 − 1
KD
θ1| ≤ ∆T Ls,0

|α1| ≤ ∆T Ls,0, |α2 − 1
KD
α1| ≤ ∆T Ls,0} ⊂Ω(`) .

B.3 Proof of Proposition 22

Define the error coordinates z̃ = z − z? , x̃ = x − x? and θ̃ = θ −θ? . In these coordinates the

closed-loop system (5.2) and (5.15)-(5.17) reads as

m ¨̃z = −k1z̃ − k2 ˙̃z+ δz (B.3)

m ¨̃x = (tan(θ̃ +θ?)− tanθ?)u? + tanθu1(z̃, ˙̃z) + δx

J ¨̃θ = −rKP (KD
˙̃θ + tan(θ̃ +θ?)− tanθ? +θout(x̃, ˙̃x))

(B.4)

with θout defined in (5.17). This system can be interpreted as the cascade of the vertical

error system with state (z̃, ˙̃z) driving the lateral and angular dynamics with state (x̃, ˙̃x)

and (θ̃, ˙̃θ). Since k1 and k2 are positive the vertical subsystem is clearly input-to-state

stable with respect to the exogenous disturbance δz without restrictions on the initial

state and on the input. The lateral and angular subsystem has been studied in [IMS03]

(see also [MN07]). In particular, by Proposition 5.7.2 of [IMS03], the system in question,

with the tuning of the parameters KP , KD , Ki and λi , i = 1,2, specified in the statement

of Proposition 22, can be proved to be input-to-state stable with respect to the inputs u1

and δx without restrictions on the initial state and nonzero restrictions (dependent on

ε) on the inputs. Thus, by standard cascade arguments, it follows that the whole system

(B.3)-(B.4), with exogenous inputs (δx,δz) is input-to-state-stable without restrictions on

the initial state and nonzero restrictions (dependent on ε) on the inputs. From this, the

claim of the proposition follows by using the expression of u in (5.16).
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reference tracking and path following for nonlinear systems. Automatica,
44(3):598–610, January 2008.

[Ang01] David Angeli. Almost global stabilization of the inverted pendulum via
continuous state feedback. Automatica, 37(7):1103–1108, July 2001.

[Ang04] David Angeli. An almost global notion of input-to-state stability. IEEE
Transactions on Automatic Control, 49(6):866–874, June 2004.

[ANT11] Kostas Alexis, George Nikolakopoulos, and Anthony Tzes. Switching model
predictive attitude control for a quadrotor helicopter subject to atmospheric
disturbances. Control Engineering Practice, 19(10):1195 – 1207, 2011.

[ATH+10] A. Albers, S. Trautmann, T. Howard, Trong Anh Nguyen, M. Frietsch, and
C. Sauter. Semi-autonomous flying robot for physical interaction with envi-
ronment. In Proceedings of the, pages 441–446, 2010.

[BB00] Sanjay P. Bhata and Dennis S. Bernstein. A topological obstruction to continu-
ous global stabilization of rotational motion and the unwinding phenomenon.
Systems & Control Letters, 39(1):63–70, January 2000.

[BCV+11] S. Brás, R. Cunha, J.F. Vasconcelos, C. Silvestre, and P. Oliveira. A nonlinear
attitude observer based on active vision and inertial measurements. IEEE
Transactions on Robotics, 27(4):664–677, August 2011.

[Bet01] J.T. Betts. Practical Methods for Optimal Control Using Nonlinear Programming.
SIAM, 2001.

[BL04] Francesco Bullo and Andrew D. Lewis. Geometric control of mechanical systems,
volume 49 of Texts in Applied Mathematics. Springer, New York, 2004.

[bla] Horizon hobby inc. Available online at http://www.bladehelis.com.

149



Bibliography

[BM99] F. Bullo and R. M. Murray. Tracking for fully actuated mechanical systems:
A geometric framework. Automatica, 35(1):17–34, 1999.

[Bri] British Antarctic Survey. Unmanned aerial vehi-
cles (uav) - scientific technique. Available online at
http://www.antarctica.ac.uk/bas research/techniques/uav/index.php.

[Bro96] B. Brogliato. Nonsmooth Mechanics Model, Dynamics and Control. Springer,
1996.

[BS07] S. Bouabdallah and R. Siegwart. Full control of a quadrotor. In Intelligent
Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on,
pages 153 –158, 29 2007-nov. 2 2007.

[BSO09] P. Batista, C. Silvestre, and P. Oliveira. Position and Velocity Optimal Sensor-
based Navigation Filters for UAVs. In Proceedings of the American Control
Conference, pages 5404–5409, Saint Louis, USA, June 2009.

[BSO10] Pedro Batista, Carlos Silvestre, and Paulo Oliveira. Optimal position and
velocity navigation filters for autonomous vehicles. Automatica, 46(4):767 –
774, 2010.

[CBM06] N.A. Chaturvedi, A.M. Bloch, and N.H. McClamroch. Global stabilization
of a fully actuated mechanical system on a riemannian manifold including
control saturation effects. In Proceedings of the IEEE Conference on Decision
and Control, pages 6116–6121, December 2006.

[CDL04] P. Castillo, A. Dzul, and R. Lozano. Real-time stabilization and tracking of a
four-rotor mini rotorcraft. IEEE Transactions on Control Systems Technology,
12(4):510 – 516, July 2004.

[CdQD06] Z. Cai, M.S. de Queiroz, and D.M. Dawson. A sufficiently smooth projection
operator. IEEE Transactions on Automatic Control, 51(1):135 – 139, January
2006.

[CH06] F. Chaumette and S. Hutchinson. Visual servo control, part I: Basic ap-
proaches. IEEE Robotics and Automation Magazine, 13(4):82–90, December
2006.

[CH07] F. Chaumette and S. Hutchinson. Visual servo control, part II: Advanced
approaches. IEEE Robotics and Automation Magazine, 14(1):109–118, March
2007.

[CM07] N.A. Chaturvedi and N.H. McClamroch. Attitude stabilization of the inverted
3D pendulum on TSO(3) with control saturation. In Proceedings of the IEEE
Conference on Decision and Control, pages 1910–1915, December 2007.

[CMB07] N.A. Chaturvedi, N.H. McClamroch, and D.S. Bernstein. Stabilization of
a specified equilibrium in the inverted equilibrium manifold of the 3D
pendulum. In Proceedings of the American Control Conference, pages 2485–
2490, June 2007.

[CMcTN07] J. A. Castellanos, R. Martı́nez-cantı́n, J. D. Tardós, and J. Neira. Robocentric
map joining: Improving the consistency of ekf-slam. Robotics and Autonomous
Systems, 55:21–29, 2007.

[CSH08] Rita Cunha, Carlos Silvestre, and João Pedro Hespanha. Output-feedback
control for stabilization on SE(3). Systems & Control Letters, 57(12):1013–
1022, December 2008.

150



Bibliography

[CSHA07] R. Cunha, C. Silvestre, J. Hespanha, and A.P. Aguiar. Vision-based control
for rigid body stabilization. In Proceedings of the IEEE Conference on Decision
and Control, pages 2345–2350, December 2007.

[CWK02] N.J. Cowan, J.D. Weingarten, and D.E. Koditschek. Visual servoing via naviga-
tion functions. IEEE Transactions on Robotics and Automation, 18(4):521–533,
August 2002.

[DSL09] A. Das, K. Subbarao, and F. Lewis. Dynamic inversion with zero-dynamics
stabilisation for quadrotor control. Control Theory Applications, IET, 3(3):303–
314, March 2009.

[Emb] Embention. Applications of uavs. Available online at
http://www.embention.com/applications.htm.

[FDF99] E. Frazzoli, M.A. Dahleh, and E. Feron. A hybrid control architecture for
aggressive maneuvering of autonomous helicopters. In Proceedings of the
IEEE Conference on Decision and Control, volume 3, pages 2471 –2476 vol.3,
1999.

[FDF00] E. Frazzoli, M.A. Dahleh, and E. Feron. Trajectory tracking control design
for autonomous helicopters using a backstepping algorithm. In Proceedings
of the American Control Conference, volume 6, pages 4102–4107, 2000.

[FDF05] E. Frazzoli, M.A. Dahleh, and E. Feron. Maneuver-based motion planning for
nonlinear systems with symmetries. IEEE Transactions on Robotics, 21(6):1077
– 1091, December 2005.

[FNM+12] M. Fumagalli, R. Naldi, A. Macchelli, R. Carloni, S. Stramigioli, and L. Mar-
coni. Modeling and control of a flying robot for contact inspection. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 3532–3537, October 2012.

[GHM08] N. Guenard, T. Hamel, and R. Mahony. A practical visual servo control for
an unmanned aerial vehicle. IEEE Transactions on Robotics, 24(2):331 –340,
April 2008.

[GL13] Bryan Godbolt and Alan F. Lynch. Model-based helicopter uav control:
Experimental results. Journal of Intelligent & Robotic Systems, pages 1–13,
2013.

[GMHT08] Steven L. Waslander Gabriel M. Hoffmann and Claire J. Tomlin. Quadrotor
helicopter trajectory tracking control. In Proceedings of the AIAA Guidance,
Navigation, and Control Conference, Honolulu, HI, August 2008.

[GST09] R. Goebel, R. Sanfelice, and A. Teel. Hybrid dynamical systems. IEEE Control
Systems Magazine, 29(2):28–93, April 2009.

[Gui12] Erico Guizzo. Robotic aerial vehicle captures dramatic footage
of fukushima reactors, April 2012. Available online at
http://spectrum.ieee.org/automaton/robotics/industrial-robots/robotic-
aerial-vehicle-at-fukushima-reactors.

[HFC08] A. Harnoy, B. Friedland, and S. Cohn. Modeling and measuring friction
effects. IEEE Control Systems Magazine, 28(6):82 –91, December 2008.
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