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Abstract

ECMAScript is a highly influential modern programming language widely utilized in various envi-
ronments, including server-side web applications, mobile development, and particularly client-side web
applications. Despite its widespread popularity, the ECMAScript language specification is extensive
and complex, posing challenges for typical developers to comprehend. To address this, we present
ECMARef6, a reference interpreter designed for ECMAScript 6, the most popular version of the lan-
guage. Our implementation faithfully follows the standard line-by-line, and undergoes rigorous testing
against Test262, the official conformance test suite for ECMAScript. ECMARef6 represents the most
comprehensive academic interpreter targeting ECMAScript 6, surpassing all other academic reference
implementations in terms of test coverage. This project not only provides a robust implementation for
ECMAScript 6 but also lays the groundwork for the implementation of the more recent versions of the
ECMAScript standard.

Keywords: ECMAScript, Reference Interpreters, Specification Language, Dynamic Languages,
Test262
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Chapter 1

Introduction

JavaScript, also known as ECMAScript, is one of the most widely-used programming languages in the
world. It has become the industry standard for dynamic front-end web development, and it is also
utilized for server-side web applications using Node.js [1]. Additionally, it can run on a variety of devices
including mobile and embedded systems with JerryScript [2]. JavaScript is not only the most popular
programming language for the web, but it is also the most active language on GitHub,1 and the second
most active language on Stack Overflow.2

The ECMAScript Standard is the official specification for the language. Developed and maintained
by the technical committee TC39, which is composed of language experts, browser vendors, and other
stakeholders in the JavaScript community. The standard defines the syntax, semantics, and behavior of
the language. The specification is a highly complex document written in the form of an interpreter with a
mixture of pseudo-code and written text to explain its internal functionality.

ECMAScript is an ever-evolving programming language, which means that its standard must also
keep pace with these changes. Currently, the Technical Committee 39 (TC39) releases a new version of
the language every year. The evolution of the total number of pages in the ECMAScript standard is de-
picted in Figure 1.1. It is worth noting that the transition from ES5 to ES6 marked a significant milestone
for the language, as evidenced by the substantial increase in the number of pages. This leap represented
the most significant advancement in the language’s development so far. Despite so many versions, the
process of introducing new features is a significant manual undertaking. This process involves creating
proposals, refining them through committee discussions, implementing them across various engines,
and testing and documenting them. Unfortunately, this process is not only time-consuming, but it is also
error-prone. Such manual steps can result in delays in adding new features to the language, thereby
impeding its progress.

Introducing a reference interpreter for ECMAScript would provide several benefits and help control
the language’s evolution. A reference interpreter is a software implementation that conforms fully to the
language specification. With such an interpreter in place, various issues can be addressed, including:

• Backward compatibility: The reference interpreter plays a crucial role in ensuring backward
compatibility when making changes to the language specification. By running old test suites in
the reference interpreter, it verifies that modifications to the language do not break existing code.
This approach allows for the addition of new features while maintaining compatibility with previous
code, preventing errors and inconsistencies.

• Thorough testing: The reference interpreter facilitates comprehensive testing of the language

1Github most active programming languages based on pull requests - https://madnight.github.io/githut/
2Stack Overflow Trends over time based on use of their tags - https://insights.stackoverflow.com/trends
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Figure 1.1: The evolution on the number of pages of the ES standard official document.

standard, aiding in the detection of specification bugs. By measuring test coverage and aiming
to test the entire interpreter, it ensures that the language specification is consistent and free from
ambiguities that could result in varying interpretations by different implementations.

• Standardization of new features: The reference interpreter greatly assists in the standardiza-
tion of new features. It provides a clear specification for these additions, enabling developers to
implement them efficiently and ensure compliance with the language standard. This helps pre-
vent fragmentation and compatibility issues that may arise from the proliferation of non-standard
language features. Additionally, the TC39 can leverage the reference interpreter to directly write
and test code, which can then be used to generate complex HTML, streamlining the development
process.

Overall, the introduction of a reference interpreter for ECMAScript would provide a standardized and
consistent basis for the language’s evolution, enabling the addition of new features while maintaining
backward compatibility and ensuring a better programming experience for ECMAScript users.

In academia, numerous attempts have been made to develop a reference interpreter for ECMAScript.
However, most of these reference interpreters only support version 5 of the ECMAScript standard [3;
4; 5; 6; 7]. There is only one project that targets a version beyond 5, which is documented in [8].
Nevertheless, this implementation still lacks comprehensive coverage of the entire language, particularly
in terms of support for language built-ins. Consequently, this project only encompasses 18,064 tests out
of a possible 35,990 tests included in the language official test suite [9].

To address this issue effectively, the ECMA-SL project was developed, consisting of two key com-
ponents: a domain-specific language (DSL) specifically designed for standard specification and a refer-
ence interpreter built using this DSL. Figure 1.2 depicts the systems involved in the ECMA-SL project,
emphasizing the language (ECMA-SL) and the existing interpreter (ECMARef5). However, the current
interpreter has been limited to supporting only version 5 until now. The objective of this thesis is to
enhance the existing interpreter, which already supports version 5, to also include support for version 6.

The transition from ES5 (version 5) to ES6 (version 6) marked a significant milestone in the evolution
of the JavaScript language. ES6 introduced a plethora of new features such as arrow functions, template
literals, destructuring assignments, and let and const keywords, which greatly improved the language’s
readability and ease of use. However, the changes did not stop at just adding new features. The
internal structure of the document underwent a major overhaul, resulting in a complete refactor. This
refactor was so comprehensive that to this day, the internal structure and algorithms have remained

2



Figure 1.2: Systems in the ECMA-SL Project

almost unchanged, only being extended over time. Consequently, the first step towards supporting
modern JavaScript is to have a functional version of the interpreter that can handle ES6. However,
implementing an interpreter is an arduous task and is not feasible for a single thesis. Therefore, the task
was divided into two theses, with the current one focusing on the core of the language, and the other
one concentrating on the built-ins of the language.

Developing a reference interpreter for a complex real-world programming language, such as JavaScript,
encompasses more than just an engineering task due to the typically incomplete nature of language
specifications. Therefore, our role extended beyond merely translating the pseudo-code of the standard
into our own DSL (Domain-Specific Language), as we also had to address the gaps in the specifica-
tion. These gaps include defining suitable internal structures to represent the fundamental language
concepts, striking the right balance between static and dynamic computation to ensure our interpreter
aligns with the standard without sacrificing performance, and, perhaps most importantly, conducting
an in-depth study of the extensive body of research on academic reference interpreters for JavaScript.
By leveraging existing research on language specification, we were able to build upon prior work and
enhance the quality of our interpreter.

As part of our development process, we placed a great emphasis on ensuring the quality and correct-
ness of our work. To achieve this, we rigorously tested our interpreter using test262, which is the official
JavaScript test suite. This involved carefully selecting the appropriate tests and making sure that our
interpreter could successfully execute all of them. In the end, we were able to pass 92% of the selected
tests, which is a testament to the reliability and robustness of our implementation.

This thesis is structured as follows. Firstly, in Chapter 2, we provide an in-depth analysis of the
standard and ES6 language, highlighting key features such as objects, functions, and changes from
ES5 to ES6. Next, in Chapter 3, we discuss a collection of related projects and papers in connection
to the research conducted in this thesis. In Chapter 4, we present our solution, concentrating on the
significant modifications and most critical work accomplished. Additionally, in Chapter 5, we describe
our evaluation pipeline and results. Lastly, we conclude this thesis in Chapter 6.

3



4



Chapter 2

Background

2.1 ECMAScript

The ECMAScript Standard is the language specification for ECMAScript, which is the official name for
the programming language commonly known as JavaScript. The language is maintained by TC39, a
committee formed by developers, implementers and academics to maintain and evolve JavaScript. The
group has regular meetings attended both by members and also by invited specialists.

In 2015, the TC39 committee changed the ECMAScript release process. Instead of trying to group
updates to the standard into large batches of changes, the committee started to favor a more incremental
approach, releasing a new version of the standard every year. This yearly update contains only the
changes approved by the committee within that year. In fact, the 6th version of the standard was the last
one under the old release process.

Because of this change, ES6 introduced a lot of user requested features, like arrow functions and
template strings but also was the last major refactoring of the ECMAScript standard, effectively doubling
the size of the standard from the previous version of the language, from 258 pages to 566 pages. But
before diving into the changes, it is important to understand the high-level structure of the standard and
how the JavaScript language works internally and is specified.

JavaScript has seven types of values on the language: Undefined, Null, Boolean, String, Symbol,
Number, and Object. The latter is arguably the most important one because most of ECMAScript’s
features are based on objects, which are defined as collection of key-value pairs with the keys being of
type String or Symbol. We refer to the keys of an object as its properties. Another important feature of
objects is that they have prototypal inheritance, meaning that each object can be connected to a chain
of object prototypes and inherit their properties.

The specification of the language is large and complex, being organized into 26 sections. This
sections can be grouped in three main classes:

• Syntax: Corresponding to the definition of the lexical grammar of the language.

• Core: An aggregate of all the basic building blocks of the language such as expressions, state-
ments and also the implementation of internal algorithms that will be fundamental for ES6 features,
such as ordinary objects and exotic objects. This is the main focus of this project and will be
further explained later on the report.

• Built-ins: All the libraries and APIs that are exposed by JavaScript programs and natively im-
plemented by the JavaScript runtime using the features defined in the core; these include, for
instance, the String, Boolean and Number built-in objects.

5



Figure 2.1 shows our division of the ECMAScript 6 standard as detailed above. The red rectangle
represents the syntax part, which covers sections 10 and 11. The yellow rectangle represents the core,
which goes roughly from section 7 to 16. At last, the blue rectangle represents the built-in objects that
goes from section 18 to section 24.

Figure 2.1: Our internal division of the ES6 Standard

2.2 ECMA-SL Project

The goal of the ECMA-SL project is to build an executable specification of the ECMAScript standard. To
this end, a research team at IST developed a new language, called ECMA-SL, for the specification and
analysis of the ES Standard, using which they developed ECMARef 5 [10; 11; 12], currently the most
complete academic reference interpreter of ES5.

Figure 2.2 describes the execution pipeline of a given JavaScript program in the ECMA-SL project,
which can be explained roughly in three steps:

1. Compiling the input program to ECMA-SL, storing the resulting code in a file called out.esl.

2. Compiling the file out.esl to Core ECMA-SL, a simplified version of ECMA-SL, obtaining the file
core.cesl.

3. Interpreting the obtained Core ECMA-SL program using our ECMA-SL interpreter

In order to detail these steps, lets show how each one of the three components involved in this
process work:

JS2ECMA-SL Given a file containing an ECMAScript program, the first step towards execution is the
compilation using JS2ECMA-SL. This tool parses the program by using Esprima,1 which is a standard-
compliant ECMAScript parser. The output of Esprima is the AST of the program and this tree is then
transformed into an ECMA-SL program that recreates it in ECMA-SL. To replicate the behavior of the

1Esprima - ecmascript parsing infrastructure for multipurpose analysis - https://esprima.org/
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original JavaScript program we still need to call the ECMAScript interpreter on the ECMA-SL pro-
gram. To accomplish this, we generate the program out.esl, which imports both the ES interpreter,
ESL Interpreter.esl, and the program for the AST, ast.esl and then we call the interpreter on the
result of the combination as shown below:

import ast.esl

import ESL_Interpreter.esl

function main() {

x := buildAST();

y := JS_Interpreter_Program(x);

}

Listing 1: The entry-point for JS programs execution (main.esl)

Listing 1 shows the main.esl file, the entry-point for the program execution. This file imports the mod-
ule ast.esl, which is the output of JS2ECMA-SL. It also imports the module ESL Interpreter.esl,
corresponding to our JS reference interpreter. The main function of this program simply constructs the
AST of the original JS program in memory (via the buildAST function) and interprets the program by
calling the function JS Interpreter Program with that AST.

ECMA-SL-to-Core The ECMA-SL program is then compiled to Core ECMA-SL, generating the pro-
gram core.cesl. During the compilation to Core ECMA-SL all the imports included in the output of
J2ECMA-SL are resolved. This means that the resulting program, core.cesl is self-contained and it
includes all the code both from ECMARef as well as the code of the program to be run.

ECMA-SL interpreter The resulting Core ECMA-SL program is then interpreted using the ECMA-SL
interpreter, which was written in OCaml [13]. There are two main modes for the interpretation: silent
and verbose. When in silent mode, the interpreter just outputs the final ECMA-SL heap generated by
the execution of the program. In verbose mode, the interpreter also logs the sequence of executed
commands for debugging purposes.

Figure 2.2: Execution Pipeline
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2.3 ES6 Core

One can divide the ES6 language into three main components: syntax, core and built-in objects. We
use the term ES6 core to refer to Sections 7 to 16 of the ES6 standard. These sections describe the
main building blocks of the language.

The following subsections give a detailed description of the ES6 language based on the standard.
We put the focus on the core components of the language, which includes: objects, functions, scope
and the semantics of expressions and statements.

2.3.1 Objects and Properties

The ES6 language is object-based, which means that basic language and host facilities are provided
by objects and consequently an ES6 program is a cluster of communicating objects. Ordinary Objects
are the most common form of objects and they are defined as any object with the default semantics
presented in section 9.1 of the standard. In opposition to that, the standard defines Exotic Objects as
any object that is not an Ordinary Object. Both of these concepts were only introduced in the 6th version
of the standard.

Any object, either ordinary or exotic, is defined as a collection of properties. These properties are
containers that hold other objects, primitive types or functions. Apart from its value, a property also
contains attributes that determine how it is used. Each object property can be described as one of
these three classes: an internal slot, a named property, or a named accessor property. It is possible to
add/remove properties to/from objects during execution, which means that objects are dynamic.

Internal slots vs Named Properties Internal slots are properties that provide meta-information about
the object they are associated with, for instance, the object above in the prototype chain. Most of
these properties are used on the implementation of internal algorithms and operations presented in the
standard. These properties are not inherited by the prototype chain and cannot be accessed directly by
an ES6 program. Every ordinary object contains at least these two slots:

• [[Prototype]] representing the internal prototype of the object (used to implement prototype based
inheritance). Its value is either a pointer to an object, also referred to an object location, or null.

• [[Extensible]] storing a boolean that determines whether or not it is possible to add new named
properties to the object.

Properties explicitly created by the program are called named properties, which are divided into two
subtypes: named data properties and named accessor properties. Their differences are discussed later
in this section.

Listing 2 and Figure 2.3 illustrate the creation and representation of an object. The listing declares
the variable o using the keyword const and assigns it to an object containing two properties: answer

and nested. The object resulting from the evaluation of this assignment is shown in Figure 2.3. The two
named properties are represented as blue rectangles and the two default internal slots as red rectan-
gles. Note that each blue rectangle points to a yellow rectangle, which represents a property descriptor
(discussed in the subsection below) containing the value of the respective property and meta-information
about the property itself.

Property Descriptors When explicitly set by the program a property is called a named property, this
can be done either through built-in functions or assignment expressions. Named properties are repre-

8



const o = {

answer: 42,

nested: {

hello: "world"

}

}

Listing 2: An object declaration in ES6

Figure 2.3: Object representation of Listing 1

sented by property descriptors. Those descriptors are records with specific attributes describing both the
property value and meta information about the property. There are three types of property descriptors:

1. Data Property Descriptors;

2. Accessor Property Descriptors; and

3. Generic Property Descriptors.

Below we describe each each type of property descriptor illustrating with an example the most im-
portant one.

Data Property Descriptors A data property descriptor stores meta-information about the property
itself and also holds the value of that property. Each descriptor contains a record with four attributes:

1. [[Value]] stores the actual property value which is one of the types in the language: null, boolean,
undefined, number, string, object, or symbol;

2. [[Writable]] a boolean that determines whether the property value may or may not be modified;

3. [[Enumerable]] a boolean that determines whether the property is to be visible by operations that
iterate on properties of the object, like for-in enumerations;

9



4. [[Configurable]] a boolean that determines whether the property can be deleted, have its at-
tributes changed (other than [[Value]]), or if it can be transformed into an accessor property de-
scriptor.

Figure 2.3 shows the internal representation of ES6 data property descriptors, described in the yellow
rectangles. Note that the value of the property nested is stored inside the [[Value]] attribute. This
attribute points to another object, which also has its own named properties with their own descriptors.

In ES6, a program can update or create new properties in two ways: via property assignment ex-
pression or via a built-in function Object.defineProperty. This less usual way lets the program specify
the attributes associated with the given property descriptor. The attributes that store meta-information
on the property, [[Writable]], [[Enumerable]], and [[Configurable]] have different values depending on the
way a property is defined. There are two possible scenarios:

1. When using the object literal notation, e.g. { foo: "banana" }, all these attributes are true by
default;

2. When using the built-in function Object.defineProperty, if any of the attributes is not specified it
gets the default value of false.

Accessor Property Descriptors An accessor property descriptor associates a given property with a
function get that computes its value and a function set that updates or sets its value. Each descriptor
consists of a record with four attributes:

• [[Get]] if defined, returns the property value for every get access that is performed on the property;

• [[Set]] if defined, updates or sets a new property value for every set access that is performed on
the property;

• [[Enumerable]] and [[Configurable]] have the same meaning as the ones described above in
Data Property Descriptors.

Generic Property Descriptors A generic property descriptor is one that is neither a data nor an
accessor property descriptor, but it can have two of the attributes identified in the other two descriptors:
[[Enumerable]] and [[Configurable]]. This kind of property descriptor is only useful in the context of the
internal algorithms and operations defined in the standard and they cannot be created by an ECMAScript
program.

2.3.2 Function Objects

In ES6, a function object is an specialisation of the ordinary object. This means that functions also have
the two default slots, [[Prototype]] and [[Extensible]]. Apart from those, the function object also has to
store data that describes information about the function, such as: its parameters, the scope and the
code of the function. Here are some of the additional slots that are found in function objects:

1. [[Environment]] stores the scope chain in which the function was created (discussed in Section
2.3.3);

2. [[FormalParameters]] contains the list of the function’s formal parameters;

3. [[ECMAScriptCode]] contains the code of the body of the function;

10



4. [[FunctionKind]] contains the type of the function. A string with one of these three values:
"normal", "classConstructor", or "generator";

5. [[ThisMode]] defines how the this keyword will work inside the function. Either lexical, strict,
or global.

Note that, function objects in ES5 only had three dedicated internal slots, the first three defined in
the list above. The slots [[FunctionKind]] and [[ThisMode]] were only added in ES6, alongside with other
slots omitted in this report. Beside internal properties (slots), all ECMAScript function objects also have
internal methods which are responsible for operations related to functions, we choose to illustrate the
[[Call]] method which is responsible for the execution of the function itself.

Figure 2.4 shows the specification of the method by the standard. It follows these steps: first the
standard checks if the function can be executed (lines 1 and 2); then it stores both the caller context and
callee context on variables (lines 3 and 4); after that the callee context becomes the running execution
context and we make sure that the this keyword is referring to the correct object (lines 5 and 6); the
execution of the code happens in line 7 and the restoration of the previous context in line 8; at last, a
completion (discussed in Section 2.3.4) is returned based on the result of the code execution (lines 9 to
11).

Figure 2.4: The [[Call]] internal method from Function Objects

2.3.3 Functions and Scope

In ES6, the standard uses execution contexts to track the runtime evaluation of code. There are three
different types of execution context: global, function, and eval code. Global code is the code that is at
the top-level of an ES6 program and not inside functions. Function code is the code corresponding to
the body of a function. Finally, eval code is the code dynamically evaluated using the eval operator, e.g.
eval("x " + "= 2").

Each execution context contains a Lexical Environment. A Lexical Environment is used for storing
the bindings of variables and functions identifiers and it is defined by the standard as a type with its
own operations. Every Lexical Environment contains an Environment Record and a (possibly null) ref-
erence to an outer Lexical Environment. An Environment Record can be seen as a lookup table of
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key-value pairs because it maps all the variables and parameters associated with a given scope to their
respective values. Scope resolution is performed by inspecting the identifier bindings present in lexical
environments.

Listing 3 represents a program that deals with different lexical environments. In lines 1 and 2 the
program associates the global variables x and y to the values 1 and "Hello". After that, a function
named func1 is created and inside that function we associate a variable x with the value 2. The last part
of the listing shows the declaration of the function func2 inside func1, on this new function we have the
definition of variable x, this time pointing to the value 3.

Figure 2.5 shows the lexical environments created during the execution of Listing 3. The global
lexical environment (blue rectangle) has its outer lexical environment pointing to null and its environment
record contains: x and y with the values 1 and "Hello"; and func1 storing a function object. The lexical
environment of func1 (yellow rectangle) has its outer lexical environment pointing to the global lexical
environment and its environment record contains the x variable with the value 2 and func2 with its own
function object. At last, the lexical environment of func2 has its outer lexical environment pointing to the
one owned by func1 and its environment record contains only the variable x associated with the value
3.

1 let x = 1

2 let y = "Hello"

3 function func1() {

4 let x = 2

5 function func2() {

6 let x = 3

7 }

8 }

Listing 3: An example to illustrate the scope handling in ES6

Figure 2.5: Scopes representation example of Listing 3

2.3.4 Expressions and Statements

The following subsections aim to illustrate the semantics of the various constructs of the language spec-
ified by the standard. To this end, we explore in detail the If-Then-Else statement and the equality
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expression. Before diving into the specification of the semantics, we must introduce references and
completions.

References A reference is a representation of an unresolved name binding and it is formed by two
entities: a base value and a referenced name. The base value is either undefined, an object, a boolean,
a string, a symbol, a number, or an environment record. A base value of undefined indicates that the
reference could not be resolved to a binding. The referenced name is either a string or a symbol and
it is usually the name of the binding we want to resolve, e.g., the name of a variable or the name of a
property of an object. Note that the base value of an object reference is not necessarily the object where
the referenced property is defined, but rather an object in whose prototype chain that property can be
found. For instance, the reference l.p denotes the property p in the prototype chain of the object at
location l. To obtain the associated value, the reference needs to be dereferenced. This is the job of the
internal function, defined in the standard, called GetValue.

Completions Completions are represented by records in the standard. A completion record contains
meta-information about the evaluation of a statement; more precisely, a completion record includes the
following fields:

• [[type]] representing if the evaluation of the given statement terminated with a value, a return
statement, a break or a throw;

• [[value]] storing the resulting value of that operation (if any);

• [[target]] holding the target for when a flow transfer happens, e.g, when the type is return.

Any completion that has a [[type]] other than normal is referred to as an abrupt completion.

If-Then-Else In Figure 8, we show the specification of the If-Then-Else statement presented in the ES6
standard. This statement is described in 8 steps, on ES5 it was described in 3 steps. The specification
goes as follows: it starts with the evaluation of the guard expression, returning the reference exprRef

(line 1); then there is the conversion of this reference to a boolean using the internal functions ToBoolean

and GetValue (line 3); and the evaluation of one of the two statements (then or else) depending on
whether the value returned is true or false; the result is stored in the stmtCompletion variable (lines
4a and 5a). At last, we return the completion if its value is not empty or a normal completion with the
value undefined. Note that, during the evaluation, the standard uses the ReturnIfAbrupt (lines 3 and
6) internal function in order to check if an exception was thrown to terminate the execution in that case.

Equality Operations In ES6, the basic equality operator is the double equal operator, ==, which com-
pares the value of its right operand to the value of its left operand. The standard also defines other
equality and comparison operators, that are shorthand for other standard operations. For instance, the
strict equality operator, ===, a stricter way of comparing values, not performing implicit type coercions.

Figure 9 shows the semantics of the simple equality defined in the ES6 standard. Consider the
following expression: x == y. We can describe the semantics of this expression as this: evaluate
the left operand, assigning the returned reference to lref (line 1); get the value associated with lref

with the GetValue internal function and assign it to lval (line 2); repeat the same steps with the right
operand, generating rref and rval (lines 4 and 5); after that we return the result of the Abstract Equality
Comparison algorithm described in the standard. The algorithm is called with the parameters lval and
rval.
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Figure 2.6: The If-Then-Else specification

Figure 2.7: The equality (==) operation specification

2.4 From ES5 to ES6

In ES6, the ECMAScript standard introduced key differences when compared to the previous version.
These changes range from the addition of new features to refactoring of the standard’s internal algo-
rithms. The following subsections describes the changes related to the core of the ES6 language,
namely: the get and set functions, treatment of exceptions and the built-in objects.

2.4.1 The Get and Set Functions

The Get and Set functions are key factors on the language because they are the interface responsible
for retrieving and placing values on objects. These operations are crucial for the overall behavior of the
language. Therefore, we detail here the changes for each of those two functions.

Get ES5 had the [[Get]] function implemented as a method common for all objects. This method
would try to access some property P associated with that object and return undefined if the property
was not found. On the new version, the [[Get]] method belongs to every ordinary object. The signature
of the function changed as it now receives the property P and the original object that requested the
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property, called Receiver. Another difference is that this new method searches for the property not only
inside the object but also in the prototype chain, on the old implementation this task was performed by
the [[GetProperty]] method. Figure 2.8 compares the two different implementations and highlights
the new search in the prototype chain, now inside the method itself.

Figure 2.8: The different implementations of the [[Get]] method

Set On the previous version the main method to set attributes inside an object was the [[Put]]

method, also attached to the object implementation. This function would receive a property P, a value
V and a flag Throw indicating if the method should throw an exception or not. In ES6, the method for
inserting properties is called [[Set]] and it is also attached to the ordinary object implementation. The
new method receives a property P, a value V and the original object that requested the operation, called
Receiver. This means that the [[Set]] method does not throw an exception anymore, it simply returns
true when it is able to set the property and false when it is not.

Apart from this changes inside the methods belonging to objects, the standard also added internal
functions with similar purposes. The Get and Set internal functions are not attached to any implementa-
tion. They act as a safer way of getting and setting properties.

In the case of the Get function, its first responsibility is to type check the property and the object that
made the request. After that, it calls the [[Get]] internal method to execute the operation.

The Set function also checks the type for the object and the property. Besides that, it also receives
a Throw flag and throws an exception when the flag is true and it was not able to set the property. The
execution of the operation is also delegated to the internal method [[Set]].

Figure 2.9 shows the specification of these two internal functions. The first lines on each function
type checks the parameters. After that, these functions delegate the operation to the methods tied to
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the object. It becomes clear then, that despite having similar names, these functions have different
responsibilities.

Figure 2.9: The Get and Set internal functions of ES6

2.4.2 Treatment of Exceptions

In ES5, the exception handling was made by internal algorithms that would throw an exception de-
pending on the execution. Despite throwing an exception, the execution would still run because the
completion generated by the throw would only be captured at statement level. ES6 changed that by
introducing changes that will deal with exceptions in a different way, namely:

1. Some functions now have more explicit names to be clear that they throw exceptions, for example
we have CreateDataPropertyOrThrow and DeletePropertyOrThrow methods.

2. A new internal function called ReturnIfAbrupt was added. This internal function is responsible
for checking if the argument is an Abrupt Completion and if it is, it returns immediately without the
need to execute the rest of the function.

This new operation is included in many internal algorithms of the language. There are more than
1000 references to this function call on the ES6 standard page. Figure 2.10 presents the GetValue

function (already discussed in Section 2.3.4) both on ES5 and ES6. The specification is almost identical,
the only difference is that on ES6 (the top definition) we have a ReturnIfAbrupt call as the first step of
the execution.

2.4.3 The Built-in Objects

Built-in objects are the structures that are available to the developer when using ECMAScript. They
include the Global Object, which is part of the global lexical environment and stores the global state,
numbers, strings, booleans and all other values and structures of the language.
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Figure 2.10: The GetValue specification both for ES5 and ES6.

In ES6, the built-ins were extended to support new features. To this end, the standard either cre-
ated new built-ins libraries or expanded the existing ones. All of the built-ins are constructed on top of
concepts presented above, like ordinary objects, function objects and others.

Figure 2.11 illustrates all built-ins defined in ES6. The yellow rectangles represent libraries introduced
in previous versions of the standard. The red rectangles represent new libraries introduced in the ES6
version.

As one can notice from the image, there is much work around the built-ins. Some of it is adapting the
ES5 implementation to ES6 and some of it is writing new libraries from scratch. Because of that, we will
have the help of intern students to advance on the work of other libraries that are further away from the
core.
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Figure 2.11: A scheme showing the built-ins in ES5 and ES6
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Chapter 3

Related Work

The research literature includes a variety of topics on program analysis techniques for JavaScript, in-
cluding: type systems [14; 15], points-to analyses [16], control-flow analyses [17], abstract interpretation
[18; 19], information-flow analyses [20; 21; 22], and program logics [23; 7; 24]. On this section, we give
an overview of the work that tries to formalise ECMAScript, including reference implementations of the
language.

The originality of our ES6 reference interpreter is that it is designed to follow line-by-line the EC-
MAScript standard. In contrast, existing reference interpreters/formalisations are often substantially
different from the text of the standard. This difference results in two drawbacks: first, most of these inter-
preters/formalisations are written in highly technical/mathematical formalisms (such as Coq [25] and K
[26]) which are difficult to understand by nonacademic programmers, as the majority of the ECMAScript
committee; second, the level of trust on these reference interpreters relies heavily on testing against
Test262, which is known to have severe coverage issues. The first problem is particularly important
considering that our goal is to argue for an executable JavaScript specification instead of the current
textual one. The effort of moving from the textual description would be considerably smaller when using
an interpreter written in the ECMA-SL language.

In the following, we give a brief summary of the most relevant research papers that present formali-
sations of the JS standard.

The first formal operational semantics of JavaScript Maffeis et al. were the first to design an
operational semantics for JavaScript [27]. They designed a small-step operational semantics for the
third version of the standard and used this semantics to reason about the security properties of web
applications and mashups [28; 29]. This semantics was the first to follow the standard formally, covering
most of its internal functions and behaviours.

Lambda calculi for reasoning about JavaScript code: λS and S5 λJS is a core lambda calculus
developed by Guha et al. [30] which supports features that are critical for ES3 such as: extensible
objects, prototype-based inheritance, and dynamic function calls. They used Racket [31] to write their
interpreter for λJS and also developed a compiler from ES3 to λJS. Alongside with that, they added a
type system for checking a simple confinement property of λJS expressions. On the other hand, the
authors do not test their compiler against Test262 and only support a subset of ES3.

Politz et al. further improved λJS with the addition of ES5 support, namely for property descriptors,
getters, setters and the eval statement [32]. This version was called S5 and was also implemented in
Racket. In contrast to λJS, S5 was thoroughly tested against Test262, passing 8,157 tests out of a total
of 11,606 (≈70%). Despite the good results, the authors claim that they only implemented 60% of the
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ES built-in objects, those missing objects are the ones responsible for the failing tests. Furthermore,
they also have tests related to non-strict code that are failing, showing that S5 is not entirely consistent
with the ECMAScript standard.

Mechanised semantics of JavaScript: JSCert and KJS Bodin et al. [4] developed a formalisation of
the semantics of ES5 written in Coq called JSCert. The authors adopted a pretty-big-step semantics [33]
of ECMAScript 5. Other than an operational semantics, they also implemented a reference interpreter,
JSRef, which they prove correct with respect to the defined operational semantics and tested it against a
fragment of Test262. They were able to execute the tests by using Coq-to-OCaml extraction mechanism,
generating an OCaml version of the JSRef interpreter. JSRef passes 1,796 tests out of a total of 2,782
tests corresponding to the core features of the language, as it does not support most of the ES5 built-in
objects. These failing tests are the ones that make use of built-in objects which were not implemented,
one example would be the ES array.

Gardner et al. [5] continued the work on JSRef by adding the support for ES5 Arrays by linking it
to Google’s V8 [34] Array built-in object implementation. In this second paper, the authors included a
breakdown of all passing and failing tests, alongside with a detailed account of the testing infrastructure
used to evaluate the JSCert project. More concretely, with the inclusion of the V8 Array built-in object,
JSRef passes 2,440 core language tests out of 2,782, and 1,309 Array tests out of 2,267.

Park et al. presented KJS [6], a formal semantics of ES5 written in the K framework [26], which is a
well established term-rewriting system supporting various types of symbolic analyses. This implementa-
tion was tested against the Test262 passing 2,782 core language tests. The K framework has a built-in
symbolic analysis mechanism based on reachability logic [35]. Because of that, one can symbolically
analyse JS programs by combining KJS with these symbolic facilities. The authors also demonstrated
how this strategy can be used in practice by verifying various data structures and sorting algorithms
implemented in ECMAScript [36], namely: AVL tree, binary search tree, quick sort, merge sort, among
others.

JSExplain and JaVert Chargueraud et al. [3] presented a reference interpreter for ECMAScript 5
called JSExplain. This interpreter follows the text of the specification closely. It also allows programmers
to code-step not only to their JS code but also the pseudo-code of the standard. JSExplain was written
in OCaml, using a purely functional subset of the language extended with a built-in monadic operator for
automatically threading the implicit state of the interpreter across pure computations [37]. Additionally,
the authors also have a version of JSExplain that runs in the browser, by implementing a compiler from
their purely functional subset of OCaml to JavaScript. The primary goal of JSExplain was to provide both
the state of the program and the internal state of the ECMAScript interpreter, allowing programmers to
debug the execution of JS code. Despite that, there are key differences from this work to JSExplain
especially the fact that JSExplain was not thoroughly tested against Test262 and has limitied support for
JS built-in libraries.

Apart from complete implementations of the standard, there were stand-alone reference implementa-
tions related to some of the built-in libraries inside the ECMAScript standard. Sampaio et al. developed
a reference implementation of JavaScript Promises that follows the standard line-by line [7] with which
the authors built a symbolic execution tool for analysing ECMAScript programs that use promises [38].

JISET Recently, J. Park et al. introduced JISET, an instruction set designed to be a compilation target
for ES code. JISET focus on ECMAScript 10 with an extraction mechanism to semi-automatically create
an ES to JISET compiler from the standard’s text. The authors were able to test the execution engine
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for JISET, passing 18,064 out of 35,990 available tests.
Despite the similarity between JISET and the ECMA-SL project, JISET does not support most of

ES built-in libraries. Most complex object implementations such as RegExp, JSON and String were not
implemented because they require advanced programming language techniques. In contrast with that,
ECMARef5 supports all built-in objects.

ECMARef5 ECMARef 5, the reference interpreter developed in the context of the MSc theses of L.
Loureiro [10], D. Gonçalves [11] and F. Quinaz [12]. This interpreter was thoroughly tested against
Test262 and also supports all the built-in object of ES5. Consequently, ECMARef5 has 12,026 passing
tests out of a total of 12,074 ES5 tests. Apart from the confidence on tests, this work also is line-by-line
compliant with the ES5 standard. Furthermore, a tool called HTML2ECMA-SL was created in order to
generate interpreter code from the text of the ECMAScript standard.

Summary As one can note, the work around implementations of the ECMAScript standard is exten-
sive. Figure 3.1 compares the number of passing tests on some of those projects. It also shows in which
language these projects were implemented. The image shows that ECMARef5 is the most complete
academic reference implementation of the ECMAScript 5 standard, passing 12,026 tests out of 12,074
applicable tests. Despite passing 18,064 tests, JISET targets the 10th version of the ECMAScript stan-
dard. Because of that, it has a larger pool of available tests and the 18,064 tests correspond only to
62,4% of all the ES10 tests. Additionally, neither JISET nor any other implementation have support for
all ES5 built-in objects, which ECMARef 5 does.

Figure 3.1: The test coverage on ES5 related projects and their used languages.
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Chapter 4

ES6 Reference Interpreter

This chapter describes the implementation of ECMARef6, a reference interpreter for the ES6 version
of the ECMAScript language. It is noteworthy that this language can be separated into two primary
components, namely the core and the built-ins. This study mainly focuses on the development of the
core aspect of the language, along with providing support towards the development of the built-ins.
Nonetheless, the core aspect of the language demanded most of my attention, particularly regarding
Functions, Scope, and Classes. I led the majority of the development of Functions and Classes, while I
received valuable aid from my colleague Manuel Costa concerning the topic of Scope. This chapter of-
fers readers a detailed account of these sections of the ECMAScript language and their implementation
in ECMARef6.

4.1 Functions

The transition from ES5 to ES6 brought a significant refactoring to the internal representation of functions
in the standard, along with newly added features. This refactoring included changes to various internal
functions related to ECMAScript functions including those responsible for function creation, function
execution, and context preparation. As a result, the entire function infrastructure of ECMARef had to be
re-written while maintaining compatibility with ES5.

To gain a deeper understanding of functions within the standard, let us examine the lifecycle of a
function in an ECMAScript program. Functions typically undergo two distinct stages: declaration and
execution. During declaration, the function’s abstract representation is stored in memory, while execution
ensures the function is invoked within the correct context. The next subsections outline these two stages.

4.1.1 Function Declaration

In ECMAScript, there are two fundamental types of functions: named functions and anonymous func-
tions. Named functions are explicitly declared with a specific name and can be invoked by that name
throughout the code. Anonymous functions, on the other hand, do not have a name attribute and are
created as a result of an expression. They can be defined using either the function keyword or using
arrow functions, the new syntactic construct introduced in ES6. More specifically, arrow functions offer
a more concise way of defining anonymous functions through the use of the => syntax.

Listing 4 compares three ways of defining functions in ECMAScript. The first function, sum one, is
a regular named function defined using the function keyword. The second function, sum two, is an
anonymous function also defined using the the function keyword. The third function, sum three, is an
anonymous function defined with the special arrow syntax. It is worth noting that in arrow functions, the
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function block is optional; when it is omitted, the expression corresponding to the body is immediately
returned. This is the case of the last function, sum four.

function sum_one(a, b) {

return a + b

}

var sum_two = function(a, b) {

return a + b

}

var sum_three = (a,b) => {

return a + b

}

var sum_four = (a,b) => a + b

Listing 4: Different ways of defining the same function in ES6

The functions defined in Listing 4 would generate three distinct node types in the program’s Abstract
Syntax Tree (note that sum three and sum four are represented by the same type of node). Let us
briefly describe the three JavaScript AST nodes that represent function definitions:

• FunctionDeclaration: This AST node is used to represent a normal named function declaration,
as seen in the first example in Listing 4. It is treated as a statement, i.e., a high-level instruction in
the language;

• FunctionExpression: This AST node is used to represent an anonymous function expression
declared using the function keyword, like the second declaration in Listing 4. It is treated as an
expression and is typically used inside other statements, such as variable assignments;

• ArrowFunctionExpression: This AST node is used to represent an anonymous function defined
using arrow functions, as in the third declaration in Listing 4. It is also an expression.

When interpreting a function definition, ECMARef6 creates a Function Object that represents that
function in memory. If the function is named or assigned to a variable, as in Listing 4, the function object
is associated with a binding in the current scope. The topic of scope will be explored in §??.

All types of functions in ES6 are internally represented as Function Objects, which means they also
benefit from the prototype-based inheritance and extensibility of objects. Function objects store data that
describe information about their corresponding functions, such as their parameters, scope, and code.
Figure 4.1 shows the table in the standard that describes the internal slots of function objects. It is worth
mentioning the key slots of those Function Objects:

• The Environment slot stores the outer scope in which the function was declared.

• The FormalParameters slot stores the list containing the names of the formal parameters of the
function.

• The ECMAScriptCode slot stores the AST node representating the function body.

• The ThisMode slot stores a string that defines how the this keyword will be interpreted within the
function body.
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Figure 4.1: The attributes of Function Objects in ES6

In order to create a function object, the standard has a set of internal functions that handle dif-
ferent aspects of function creation. Figure 4.2 shows a sequence diagram describing the internal
methods that participate in the interpretation of a function declaration. The process begins with the
FunctionDeclaration internal function, which is responsible for interpreting function declarations. This
function calls the internal function FunctionCreate, which is in charge of creating function objects.
FunctionCreate calls the auxiliary function FunctionAllocate and FunctionInitialize. The former
sets more general internal slots such as Strict and FunctionKind, while the latter sets the internal
slots related to the function itself, such as FormalParameters, Environment, and ECMAScriptCode.

After the return from FunctionCreate, two additional calls may be made, though they are optional.
The MakeConstructor method converts a function object into a Constructor, and SetFunctionName as-
sociates the name of the function with the newly created function object (if the function is not anony-
mous).

To complement the function creation process, let us illustrate our implementation of ECMARef6
and demonstrate its compliance with the standard text. Figure 4.3 displays our implementation of the
FunctionInitialize function. Each line, implemented using the ECMA-SL language, has a comment
above with the corresponding line of the standard. The function has five parameters: the function object
F, the kind of function, the parameter list, the body of the function, and the scope. In the following, we
give a brief description of the behaviour of this function:

• Instructions 1-3 set the property length of the function object to the number of provided parame-
ters;

• Instruction 4 simply makes sure that the assignment to length was successful;

• Instructions 5-8 set the internal fields of the function object using the provided parameters Environment,
FormalParameters, ECMAScriptCode;
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Figure 4.2: A sequence diagram that creates a Function Object

• Instruction 9-11 set the ThisMode of the function object based on the function kind.

• Instruction 12 simply returns the now completed Function Object.

Figure 4.3: The implementation for FunctionInitialize in ECMARef6
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Figure 4.4 provides a visual representation of the Function Objects created by interpretation of func-
tions sum one and sum three from Listing 4. Despite one declaration being a regular function and the
other an arrow function, the objects are nearly identical. The only noteworthy difference is in the value
of the internal slot ThisMode. Functions declared using the function keyword have either the global or
strict flags for the ThisMode internal slot, while arrow functions have the lexical flag. These flags are
used to determine the binding of the this keyword inside the body of the declared function.

Figure 4.4: A visual representation of Function Objects

4.1.2 Function Execution

The second stage of the function lifecycle is the execution phase, during which the code stored in
the Function Object is executed with the necessary context, including parameters and scope. In this
subsection, we will expand on how the interpreter executes functions and also how the execution affects
the current scope of an ECMAScript program.

To illustrate the upcoming concepts, let us consider a more complex JavaScript example. Listing 5
declares a function called makeIdGen, that is used to create id generators. More concretely, makeIdGen
takes a prefix parameter and returns another function that generates unique IDs by appending a counter
to the given prefix. The returned function is an example of a closure because it has access to the
count variable in its parent function (makeIdGen). Specifically, each time the returned function is called,
it increments count and creates a new ID by combining the given prefix with the current value of count.
Finally, the new ID is returned to the caller.

Using the function makeIdGen, the example then creates two ID generators, gen 1 and gen 2. gen 1

generates IDs with the prefix prefix one, while gen 2 generates IDs with the prefix prefix two. When
gen 1() is called the first time, it generates the ID prefix one 0. Each subsequent call to gen 1()

generates a new ID with the same prefix but an incremented count. For example, the second call to
gen 1() generates the ID prefix one 1. Similarly, when gen 2() is called the first time, it generates
the ID prefix two 0. Each subsequent call to gen 2() generates a new ID with the same prefix but an
incremented count.

4.1.3 Scope Representation

To understand how the interpreter handles scope, it is important to understand the three main objects
used by the interpreter to represent it: Execution Contexts, Lexical Environments, and Environment
Records. In the context of function execution, these objects work together to determine which variables
are accessible within a given function call. For example, consider the call to gen 1 on line 13 of Listing
5. To execute this call, the interpreter follows these steps:
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1 function makeIdGen(prefix) {

2 let count = 0

3 return () => {

4 var id = prefix + '_' + count

5 count++

6 return id

7 }

8 }

9

10 let gen_1 = makeIdGen('prefix_one')

11 let gen_2 = makeIdGen('prefix_two')

12 gen_1() // prefix_one_0

13 gen_1() // prefix_one_1

14 gen_2() // prefix_two_0

Listing 5: A more complex function example in ES6

• It creates a new Execution Context associated with the function execution (Execution Context 1).

• It creates a new Lexical Environment (Lexical Environment 1) to connect the current scope to the
scope in which the function was declared (Lexical Environment 2) and stores it inside Execution
Context 1.

• It creates a new Environment Record for storing the bindings of the parameters and local variables
of gen 1 (Environment Record 1) and stores it inside Lexical Environment 1.

Figure 4.5 provides a visual representation of the scope objects involved in the call. Importantly, the
Lexical Environment of gen 1 is connected to the Lexical Environment that was active when it was cre-
ated, which corresponds to a Lexical Environment associated with the first call to makeIdGen. Therefore,
when gen 1 tries to access the value of variable count or prefix, the interpreter can simply go up one
level in the chain of Lexical Environments to find the appropriate value.

One aspect that requires explanation is how the interpreter can access the lexical environment that
was active when gen 1 was created, at the time of calling the function. In order to accomplish this, the
interpreter stores a reference to the lexical environment that was active during function creation within
the function object itself. Specifically, the function object of gen 1 contains a reference to the lexical
environment of the MakeIdGen function that was active at the time of its creation.

Finally, it is important to note that at the top of every lexical environment chain, there is a lexical
environment that is associated with the global object, rather than an environment record. This global
object is where the bindings for global variables are stored.

4.1.4 Function Call Interpretation

Having understood how scope is represented in the interpreter, we are in a position to explain how
function calls are executed. Since this process involves a large number of auxiliary functions, we
only focus on the most relevant of those. Figure 4.6 represents the relevant fragment of the inter-
preter call graph that captures their evaluation order. The entry point of the call graph is the function
JS Interpreter Expr used to interpreter JavaScript expressions. When given a CallExpression AST
node, the function JS Interpreter Expr ¡performs a bunch of checks¿ and calls the auxiliary function
Call. This function will, in turn, make use of the the functions PrepareForOrdinaryCall, for creating
the new execution context, and OrdinaryCallEvaluateBody, for executing the body of the function in
the created scope. Importantly, the OrdinaryCallEvaluateBody makes use of the auxiliary function
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Figure 4.5: Scope Representation when gen 1 is invoked

Figure 4.6: A simplified internal call graph for Function execution in ECMARef6

FunctionDeclarationInstantiation for setting up the lexical environment and environment record of
the new function with all the necessary bindings. In the following, we will detail our implementation of
these four function, as they are an essential part of our reference implementation.

Call The Call function illustrated in Figure 4.7 takes two parameters: the thisArgument, which is the this
value used for the function, and the argumentsList, which is the list of parameters passed to the function
execution. Line 1 checks if the object associated with that function (F) is a Function Object. Line 2 checks
if the function is not a class constructor. Lines 3 to 6 prepare the context for the function execution using
the the auxiliary functions PrepareForOrdinaryCall and OrdinaryCallBindThis. Line 7 evaluates the
function body through the use of the OrdinaryCallEvaluateBody function. Line 8 restores the scope
to be the one before the function execution. Lines 9 to 11 determine what will be returned from the
function: either the return value if the function body has a return statement or undefined, which is the
default return value for functions without the return statement.
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Figure 4.7: The specification of the Call internal function from the ES6

PrepareForOrdinaryCall The main task of the PrepareForOrdinaryCall internal function is to create
the new context in which the function will be executed. In order to achieve that, first the interpreter
creates a new Execution Context and associates with a new Function Environment. A Function Envi-
ronment is a special kind of Lexical Environment associated with a specific Function Object. This new
Function Environment will be stored in the Environment internal slot of the Function Object, i.e, the
scope in which the function was created. After all objects are created, the interpreter then suspends the
current Execution Context and makes sure the running execution context is the newly created one.

OrdinaryCallEvaluateBody The OrdinaryCallEvaluateBody internal function has only two steps: ex-
ecuting the FunctionDeclarationInstantiation internal function and evaluating the function body, which is
stored in the ECMAScriptCode internal slot of the Function Object. The FunctionDeclarationInstantia-
tion internal function is arguably one of the most complex internal functions in the entire ECMAScript
standard and deserves separate explanation.

Once the execution context is properly set up by FunctionDeclarationInstantiation, the final step is to
execute the function body. This step is relatively simple, mainly because we store the Abstract Syntax
Tree (AST) of the body on the Function Object. Hence, the interpreter simply has to recursively call itself
with the AST of function’s body as an argument.

FunctionDeclarationInstatiation This internal function is responsible for taking the newly created
context and inserting all the necessary bindings into the Environment Record to ensure the proper
execution of the function. FunctionDeclarationInstantiation in the Standard is specified in over 40 lines
of pseudocode, as it involves adding more than just the arguments passed to the function execution to
the context. This includes elements such as:

• Variables: every variable defined in the body of the function is initialized with the value undefined ;

• Parameters: Every parameter is initialized with either the value it was called with or with undefined
in case no value was passed.

• Arguments Object: In some cases, ECMAScript initializes a special variable called arguments,
which is an array containing all the parameters with which the function was called.
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• Parameter expressions: In ES6, parameters can contain expressions. These expressions are
evaluated and assigned to the associated parameters. We will provide a more detailed explanation
of this type of operation in Section 4.2.

• Functions: Functions declared inside the function body are initialized before the execution, mean-
ing that the interpreter creates the Function Objects associated with those functions even before
the execution starts.

FunctionDeclarationInstatiation is complex due to the number of tasks it performs. Each of these
tasks must be completed correctly, and the interpreter must be cautious with errors and possible edge
cases, such as repeated parameter names. Another behaviour of the standard that this function must
implement is the hoisting of variables and inner functions. Hoisting is an ECMAScript mechanism where
variables and functions can be used before they are declared, regardless of where they are actually
written in the function body.

4.2 Assignment Patterns

The transition from ECMAScript 5 to ECMAScript 6 also introduced assignment patterns - a powerful
feature for directly assigning internal elements of ECMAScript values such as arrays and objects. These
patterns can be used both for variable assignments and as function parameters. Often referred to as
destructuring expressions, they allow extracting specific parts of arrays and objects, making code more
concise and readable. In this section, we will dive deeper into these new patterns and explore how they
are implemented in ECMARef6.

An assignment pattern comprises two elements: the left side, which describes the pattern to be
applied, and the right side, which is the value that the pattern should be applied to. A straightforward
example is var [first,..] = [1,2]. In this case, the first element of the array, which is 1, is assigned
to the variable first, which is declared inside an Array Pattern pattern on the left. Let us examine all
patterns that can be used on the left side:

• Array Pattern: As demonstrated in the example above (var [first] = [1,2]), Array Patterns
enable developers to assign specific values from an array to a variable based on their position.

• Object Pattern: Object Patterns enable the developer to associate a specific object key with a
variable named after that key. For instance, the pattern var a = a: 1 assigns the value of
the property key a (e.g., 1) to variable a.

• Rest Element: This pattern can be used in arrays and objects to assign all remaining values of
the corresponding element to a given variable. For instance, the variable declaration var [first,

...rest] = [1,2,3,4] assigns variable first to 1 variable rest to an array containing all the
remaining values of the right-hand-side array (e.g., [2,3,4]).

• Assignment Pattern: The standard uses the term assignment patterns for assignment expres-
sions where the left-hand-side expression has nested patterns. For instance, the variable decla-
ration var {a: [first]} = {a: [2]} contains an array pattern within an object pattern. This
declaration assigns first to 2 and leaves the a undefined. We will expand on this case with more
examples later in this section.

• Identifier: This is the simple assignment case in which we have a name on the left and a value on
the right. For instance, var a = 1 is an example of an assignment pattern with an identifier.
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Assignment Patterns in Function Parameters As mentioned earlier, assignment patterns are not
only used in variable assignments but also in function parameters. In this case, the left side is the
pattern with which the function was defined, and the right side is the value passed as the parameter
when the function is called. Since Assignment Patterns can be nested, functions can now have default
parameter values. For instance, consider the simple example in Listing 6, where the function get age

declared in line 1 has an Assignment Pattern as the argument using the identifier case: age = 20. When
we call the function in line 4, the interpreter understands that no value is assigned to age, so it relies
on the value 20 that is in the pattern. In line 5, we call the function with the value 30; in this case, the
interpreter would assign 30 to age and ignore the default value.

1 function get_age(age = 20) {

2 return age

3 }

4

5 get_age() // Output: 20

6 get_age(30) //Output: 30

Listing 6: A simple example of default parameters in ES6 functions

1 function person_details(

2 {name, age = 20} = {name: 'John', age: 20}, [first, second], ...otherParameters)

3 {

4 console.log('Name', name)

5 console.log('Age', age)

6 console.log('First', first)

7 console.log('Second', second)

8 console.log('Other Parameters', otherParameters)

9 }

10

11 personDetails({name: 'Dave', age: 35}, ['Howdy'], 'extra1', 'extra2')

12 // Output: Name Dave

13 // Age 35

14 // First Howdy

15 // Second undefined

16 // Other Parameters ['extra1', 'extra2']

17

18 personDetails({name: 'Rafael'}, [1, 2], 3)

19 // Output: Name Dave

20 // Age 20

21 // First 1

22 // Second 2

23 // Other Parameters [3]

24

25 personDetails({ })

26 // Output: Name undefined

27 // Age 20

28 // First undefined

29 // Second undefined

30 // Other Parameters []

Listing 7: A more complex example of Assignment Patterns usage in functions

Consider Listing 7, which explores a more complex example of the usage of assignment patterns in
function parameters. In particular, it defines a function person details with four parameters, each cor-
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responding to an assignment pattern. Below, we discuss each of the parameters individually, explaining
how they are interpreted in the three function calls that follow the code of the function.

1. Assignment Pattern The first parameter is an Assignment Pattern whose left side is an Object
Pattern, intended to extract the bindings of variables name and age from the supplied argument.
The age binding has a default value of 20. The outer Assignment Pattern has a default value of
{name:’John’, age:20}. This example illustrates that default values can occur at multiple nesting
levels of assignment patterns. Let us now take a look at how this pattern is evaluated on the
subsequent calls to function person details.

In the first call (line 11), the assignment pattern must be matched against the object {name:
’Dave’, age: 35}, which contains the two keys of the left-hand-side object pattern. Hence, the
semantics destructs the supplied object, assigning the the values ’Dave’ and 35 to the variables
name and age, respectively.

In the second call (line 18), the assignment pattern must be matched against the object {name:
’Rafael’}, which contains only one key of the left-hand-side object pattern. Hence, the semantics
destructs the supplied object, assigning the value ’Rafael’ to the variable name. The variable age

is set to the default value, 20.

In the last call (line 25), the assignment pattern must be matched against the empty object {}.
In this case, the variable age is set to its default value, 20, whereas the variable name is set to
undefined.

2. Array Pattern The second parameter is an Array Pattern intended to extract bindings of variables
first and second from the supplied array argument.

In the first call (line 11), the array pattern must be matched against the array value [’Howdy’],
which only contains one element of the left-hand-side array pattern. Hence, the semantics de-
structs the supplied array, assigning the value ’Howdy’ to the variable first and setting second to
undefined.

In the second call (line 18), the array pattern must be matched against the array value [1,2], which
contains both elements of the array pattern. Hence, the semantics destructs the supplied array,
assigning the values 1 and 2 to first and second, respectively.

In the last call (line 25), the array pattern must be matched against undefined, as no value was
supplied for the second parameter. In this case, both first and second are set to undefined.

3. Rest Pattern The third and last parameter is a rest pattern associated with variable otherParameters.
When used in functions, the rest element aggregates all remaining parameters that were supplied
to the function in an array.

In the first call (line 11), the rest element is matched against the two remaining parameters:
’extra1’ and ’extra2’. In this case, the otherParameters variable is set to the array value
[’extra1’, ’extra2’] that contains all remaining parameters with which the function was called.

In the second call (line 18), the rest element is matched against the only remaining parameter: 3.
In this case, the otherParameters variable is set to the array value [3].

In the last call (line 25), the rest element is matched against undefined, as all parameters were
already interpreted. In this case, the otherParameters variable is assigned to an empty array [].
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Figure 4.8: A Visual representation of our assignment pattern algorithm

4.2.1 Assignment Patterns Implementation

The specification of this feature in the standard can be challenging to comprehend because of the
potential for recursion. Although the standard endeavors to interpret a single Assignment Pattern in
small steps, the interpretation is obscured by several internal function calls. This complexity resulted
in confusion, and we opted to deviate from the standard in our implementation of the feature. Our
objective was to present a more straightforward approach that would make the functionality clear and
understandable.

To illustrate our implementation, let us examine Figure 4.8, a simplified diagram that represents the
internal function used to interpret assignment patterns of function parameters. The top-level function,
IteratorBindingInitialization, receives a list of pattern parameters and an iterator that contains
the values supplied to the the function. By utilizing the iterator, we can guarantee that each parameter
in the list refers to the correct value. This is achieved by executing a step on the iterator only when the
previous parameter was fully interpreted.

The IteratorBindingInitialization function iterates through the parameters and, for each pa-
rameter and its associated value, calls the recursive function BindingInitialization. This function
examines the pattern’s type and invokes the relevant function responsible for its interpretation. The
identifier pattern serves as the base case for BindingInitialization, with all other functions calling
BindingInitialization again and modifying the value if required, specifically if there’s a nested as-
signment pattern.

Now that we have a high-level view of the implementation, let us examine it in greater detail. Listings 8
and 9 show the pseudocode of the functions referred to in Figure 4.8. It is worth noting that we made the
pseudocode simpler than the actual implementation for presentation purposes. The real implementation
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1 function IteratorBindingInitialization(params, valuesIterator, scope) {

2 for (param in params) {

3 value := getIteratorValue(valuesIterator)

4 BindingInitialization(param, value, valuesIterator, scope)

5 }

6 }

7

8 function BindingInitialization(param, value, valuesIterator, scope) {

9 match param with {

10 { type: 'Identifier' } : {

11 BindingInitializationIdentifier(param, value, scope)

12 },

13 { type: 'ObjectExpression' } : {

14 BindingInitializationObject(param, value, scope)

15 },

16 { type: 'ArrayExpression' } : {

17 BindingInitializationArray(param, value, scope)

18 },

19 { type: 'RestElement' } : {

20 BindingInitializationRest(param, valuesIterator, scope)

21 },

22 { type: 'AssignmentPattern' } : {

23 BindingInitializationAssignment(param, value, scope)

24 }

25 }

26 }

Listing 8: Pseudo-code for the high-level functions involved in Assignment Patterns

is substantially more complex as it must be compliant with the standard and handle all possible edge
cases and errors. Nonetheless, the pseudocode is useful to get a general understanding of the overall
structure and control flow of our implementation.

Listing 8 presents the pseudocode for the highest-level functions: IteratorBindingInitialization
and BindingInitialization. The former iterates through all parameters, invoking BindingInitialization

on each parameter pattern with the corresponding value and scope. BindingInitialization uses a
match statement to route the implementation to the appropriate function handler, depending on the type
of parameter pattern.

Listing 9 presents the pseudocode for the specific implementations of those handler functions. The
first one in lines 1 to 3 is BindingInitializationIdentifier, which is the base case. In this case, we
have the binding name and value, and we just need to initialize that binding with its associated value in
the current scope. With the base case covered, we can now analyze the other more complex cases in
detail:

• BindingInitializationObject: This function is used to match object patterns against their asso-
ciated object values and its pseudo-code is given in lines 5-10. The function receives an object
pattern, objPat, an object value, objValue, and the current scope, scope. The logic is as follows:
for each of the keys in the object pattern, the function gets the associated key in objValue and
recursively calls the BindingInitialization function to match the corresponding key pattern to
its associated value. When a key is present in objPat but not in objValue, it is initialized as un-
defined. Only the keys present in objPat are initialized, so any keys in objValue that are not in
objPat are ignored.

• BindingInitializationArray: This function is used to match array patterns against their associated
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1 function BindingInitializationIdentifier(param, value, scope) {

2 scope.InitializeBinding(param, value)

3 }

4

5 function BindingInitializationObject(objPat, objValue, scope) {

6 for (key in param) {

7 value := objValue[key]

8 BindingInitialization(key, value, scope)

9 }

10 }

11

12 function BindingInitializationArray(arrPat, arrValue, scope) {

13 for (index i in arrPat) {

14 value := getArrayValue(arrValue, i)

15 BindingInitialization(arrPat[i], value, scope)

16 }

17 }

18

19 function BindingInitializationRest(restIdentifier, valuesIterator, scope) {

20 allValues := getAllValues(valuesIterator)

21 BindingInitialization(restIdentifier, allValues, scope)

22 }

23

24 function BindingInitializationAssignment(nestedPattern, currentValue, scope) {

25 if (currentValue == undefined) {

26 value := nestedPattern.right

27 } else {

28 value := currentValue

29 }

30 BindingInitialization(nestedPattern.left, value, scope)

31 }

Listing 9: Pseudo-code for the specific handler involved in the Assignment Patterns

array values and its pseudo-code is given in lines 12-17. The function receives an array pattern,
arrPat, an array value, arrValue, and the current scope, scope. The logic is as follows: for each
index i in arrPat, the corresponding value for that index in arrValue is assigned to the variable
value. Then, the function recursively calls the BindingInitialization function to match the
pattern stored in that index in arrPat with its associated value. If arrValue does not contain an
element at that index, the interpreter assumes the value to be undefined. The values within the
array arrValue that do not exist in the array arrPat are ignored.

• BindingInitializationRest: This function is used to match rest elements against their associated
values and its pseudo-code is given in lines 19-22. The function receives a binding used to store
the final value, restIdentifier, an iterator with all remaining values, valuesIterator, and the
current scope, scope. The logic is as follows: all values still remaining on the iterator are obtained
using the function getAllIteratorValues and its result is assigned to the variable allValues. Af-
ter that, the function recursively calls BindingInitialization to match the given binding with the
obtained value in allValues. If the iterator is already done and no values remain, the interpreter
simply sets allValues to an empty array.

• BindingInitializationAssignment: This function is used to match nested assignment patterns
against their associated values and its pseudo-code is given in lines 24-31. The function receives
the nested pattern, nestedPattern, the current value being matched to the pattern, currentValue,
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and the current scope, scope. The logic is as follows: if the current value is undefined, then the
new current value is the right-hand side of the nested pattern; otherwise, the current value remains
unchanged. The function then recursively calls BindingInitialization to match the left-hand
side of the nested pattern to the current value. This approach guarantees the behavior of default
values.

Despite the examples focusing on function parameters, this architecture can easily be extended to
variable assignments. In this case, instead of calling IteratorBindingInitialization, the interpreter
would call BindingInitialization, which requires a pattern and its associated value. This demon-
strates that our implementation of assignment patterns, while deviating from the standard, still satisfies
all use cases and is sufficient for the implementation of this feature.

4.3 Classes

ECMAScript 6 introduced the concept of classes as a new feature to the language. Prior to that, classes
could only be emulated through object prototypes. Classes are a fundamental concept in object-oriented
programming that allow developers to create blueprints for objects with shared characteristics and be-
haviors. Classes also allow developers to use inheritance in a more standard way than the prototype
base inheritance present in the language. In this chapter we will expand on the main functionalities of
classes and their implementation in ECMARef6.

In ECMAScript, an object instantiated from a class becomes an instance of that class and inherits
all properties and methods defined within it. Although each object has its distinct set of properties and
behaviors, they share the same structure and functionality as other instances of the same class. To gain
a better understanding of classes in ECMAScript, let us explore the key aspects defined by the standard:

• Constructor: Class constructors are identified by the name ’constructor’ and are executed when
new objects of their respective classes are created. Constructors are used to initialize the object’s
properties and can also accept arguments to set initial values.

• Inheritance: Inheritance is the ability of a class to inherit properties and methods from a parent
class or any object. This means that objects instantiated from the child class will have access to
properties and methods defined not only within the child class but also within its parent class and
the entire inheritance chain.

• Super: In ES6 classes, the super keyword is used to call the constructor or a method of the
parent class from the child class. When a class extends another class, the subclass inherits
all properties and methods of the parent class. The super expression is used to access these
inherited properties and methods and can be called within the constructor or any method of the
child class.

• Static Methods: A static method is a method that belongs to the class itself, rather than to any
instance of the class. This means that a static method can be called directly on the class without
the need to create an instance of the class. Static methods are typically used for utility functions
or operations that do not require access to instance-specific data.

• Instance methods: In ES6 classes, an instance method is a method that belongs to each in-
stance of the class, rather than the class itself. This means that an instance method can only be
called on an instance of the class and has access to instance-specific data. These methods are
typically used for operations that are specific to each instance of the class, such as manipulating
or retrieving data from the instance’s properties.
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• This: The this keyword is used within classes to refer to the current instance of the class, allowing
methods to access and modify instance-specific data.

To illustrate the usage of these features, let us examine the example in Listing 10. In line 1, we define
a class using the class keyword and name it Shape. Lines 2 to 5 define the constructor function, which
takes two arguments, x and y. The function then assigns the parameter values to instance properties x

and y using the this keyword. After that, we define a dynamic method called getCoordinates, which
logs x and y in a formatted way. The last method defined in the Shape class is the static method
shape info. This method simply logs a pre-established message.

In the second part of Listing 10, we have the definition of the Circle class. This definition happens on
lines 16-30, and in this case, the Circle class extends the Shape class, meaning that Shape is the parent
of Circle. On lines 17-20, we define the constructor function for Circle. In this case, the constructor
takes three arguments: x, y, and radius. Line 18 in the constructor calls super with x and y, meaning
that it will execute the constructor of the parent class with arguments x and y. After that, on line 19, we
set this.radius to the value of the radius parameter. The Circle class defines two methods. The first
one is getArea, which returns the area of the circle on which it is called. The second method is static
and is called info. The definition of the method on lines 26-28 shows us that this method will call the
info method from the parent using super.info() and then log an additional message.

Now that we have all the definitions, let us take a look at the last part of the example, which is the
usage of both classes. On line 32, we instantiate a circle using the new keyword. This instance is created
with the arguments (0, 0, 5) and is assigned to the variable circle. On line 33, we call the getArea

method of the newly created circle, obtaining the result 78.53, which is shown as a code comment. The
next operation calls the getCoordinates method of the parent class. In this case, the answer is (0, 0),
which is also shown as a code comment. On line 35, we call the info method on the circle instance,
obtaining an error that says that info is not callable. This happens because the instance does not have
the info method; it is only present in the class object itself. The last line calls info in the class object,
and for this case, we would obtain logs for the messages associated with both Circle and Shape.

4.3.1 Class Hierarchy Representation

Classes in ES6 are not a complete replacement for prototype-based inheritance; instead, they provide
a convenient syntactic layer that builds upon the existing mechanisms of the language for represent-
ing functions and implementing prototype-based inheritance. When a class is defined, it is ultimately
evaluated in terms of its constructor and its associated objects.

Each class is associated with two distinct objects: the class constructor, which is a function object,
and the object linked to the constructor’s prototype field. It is important to note that this object corre-
sponds to the internal prototype of instances of that class, and for simplicity, we will refer to this object as
the prototype object. These two objects store the different methods associated with the class: instance
methods are stored in the prototype object, while static methods are stored directly in the class construc-
tor. Figure 4.9 depicts the internal representation of the Shape and Circle classes, with the constructors
illustrated in yellow and the prototype objects in green. From the diagram, we can observe the following:

• the instance methods of the Shape class, such as getCoordinates, are stored in the Shape Pro-
totype object;

• the instance methods of the Circle class, such as getArea, are stored in the Circle Prototype
object;

• the static methods of the Shape class are stored in the Shape Constructor object; and
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1 class Shape {

2 constructor(x, y) {

3 this.x = x;

4 this.y = y;

5 }

6

7 getCoordinates(){

8 console.log('(', this.x, ', ', this.y, ')')

9 }

10

11 static shape_info() {

12 console.log('Shapes are geometrical figures with no specific dimensions.');

13 }

14 }

15

16 class Circle extends Shape {

17 constructor(x, y, radius) {

18 super(x, y);

19 this.radius = radius;

20 }

21

22 getArea() {

23 return Math.PI * this.radius ** 2;

24 }

25

26 static info() {

27 super.shape_info();

28 console.log('Circles are a type of shape with a constant curvature.');

29 }

30 }

31

32 const circle = new Circle(0, 0, 5);

33 circle.getArea(); // Output: 78.53981633974483

34 circle.getCoordinates() // Output: (0, 0)

35 circle.info() // Error: info is not callable

36

37 Circle.info();

38 /* Output:

39 Shapes are geometrical figures with no specific dimensions.

40 Circles are a type of shape with a constant curvature.

41 */

Listing 10: A example of Class usage and its features in ES6

• the static methods of the Circle class are stored in the Circle Constructor object.

This representation ensures that the prototype object directly serves as the prototype of instances
belonging to the class. The diagram shows two instances represented in blue with their [[Prototype]]
internal slots pointing to the corresponding prototype objects. Consequently, when a new circle is in-
stantiated, for example, it has access to the getArea function defined in the Circle Prototype object.
Furthermore, this internal representation ensures that the class objects contain all the static methods.
This is possible because the class object itself serves as the constructor object, which holds all the static
methods.

To understand how subclasses have access to the methods defined in their superclasses, we need
to grasp how class-base inheritance is modeled in terms of prototype-based inheritance.

Representation of Class Inheritance There are two important aspects to consider when it comes to
class-based inheritance: inheritance of static methods and inheritance of instance methods. These are
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modeled differently.
Inheritance of instance methods relates to the need for instance methods of the superclass to be

accessible from instances of the subclass. For example, an instance of Circle must be able to call the
getCoordinates method of the Shape class. To ensure this functionality, we need the prototype object of
the subclass to point to the prototype object of the superclass. In Figure 4.9, the Circle Prototype object
in green has its internal slot [[Prototype]] pointing to Shape Prototype. Therefore, when searching for
the getCoordinates method in an instance of a circle, the language semantics will first attempt to find it
in the Circle Prototype object. If it is not there, it will continue following the prototype chain and attempt
to locate it in the Shape Prototype object, where it will be found.

Inheritance of static methods refers to the mechanism that allows a subclass to invoke a static func-
tion defined in its superclass. For instance, the Circle class does not have the static method shape info,
but since this method exists in the Shape class, the expression Circle.shape info() should evaluate
to the Shape class’s method. Once again, to ensure this functionality, we utilize the pre-existing mech-
anisms of prototypical inheritance in the language. In this case, we need to ensure that the Circle
Constructor object has the Shape Constructor object as its prototype. In the diagram, we can observe
that the Circle Constructor object has its [[Prototype]] internal slot pointing to Shape Constructor.

4.3.2 Classes Without Constructors

The implementation of classes in ECMAScript 6 required significant attention, not only to ensure proper
internal representation but also due to some cases where the specification was unclear. A particular
example is when a class does not define a constructor. In this subsection, we will delve into the specifi-
cation of this case in ES6 and explore the implications of omitting a constructor in a class definition.

The interpretation of classes that have no associated constructor is particularly complex. As ex-
plained in Section 4.3.1, all static methods are tied to the constructor function representation. If a
constructor is not explicitly defined in the class, the language should create one implicitly to ensure
that static methods can be accessed by any class on that inheritance line. The ECMAScript standard
therefore specifies a way of automatically assigning a constructor to a class that is defined without one.

Figure 4.10 displays the excerpt from the ECMAScript standard that specifies the behavior of empty
constructors. There are two cases to consider depending on whether or not the current class has a
parent class:

• The current class has a parent: The constructor should be the result of the evaluation of the
following source text: constructor(...args) super (...args);. This constructor calls the con-
structor of the parent class, passing any arguments received by the child constructor.

• The current class does not have a parent: The constructor should be the result of the evaluation
of the following source text: constructor( ){ }. This is an empty constructor, which does not take
any arguments or perform any operations.

However, the standard does not provide a clear definition of how this interpretation should occur or how
the text should be parsed at interpretation time. This leaves room for potential differences in implemen-
tation across different ECMAScript engines and the only reliable way to ensure compliance is through
testing with Test262. As such, it is crucial to devote sufficient attention to this step to ensure that the
program behaves as expected and conforms to the intended standard.

To address the issue of classes being defined without constructors in ECMAScript, we introduced a
pre-processing step during the parsing of the program into the Abstract Syntax Tree (AST). Whenever a
new class is created, we check if it has a constructor. If it does not, we add the necessary AST node to
create a default constructor. Figure 4.11 illustrates our implementation of this pre-processing step. The
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Figure 4.9: The internal representation of Class objects in ES6

Figure 4.10: The specification of functions without constructors

function defined on line 152 is executed for every class declaration and contains the logic for checking
if a constructor is defined. If it is not, we use either the function createConstructorWithSuper or
createConstructor to generate the appropriate AST node. The createConstructor function, displayed
in line 159, returns the AST node that corresponds to the source text constructor(){}, thus ensuring
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Figure 4.11: Our implementation to add the constructor function to classes

every declared class has a corresponding constructor function, and consistent behavior is guaranteed.
By using this approach, we were able to meet all the requirements. This example also makes it

clear that implementing an interpreter goes far beyond simply transposing the lines of the standard.
It requires a deep understanding of the language, and in addition, the sections where the standard is
vague in terms of implementation require great attention and excellent integration with the language.

4.3.3 Super

The super keyword is a feature that was introduced in ECMAScript 2015 (ES6) to allow classes and
subclasses in JavaScript to access and invoke functionality defined in their parent classes or objects.
Its primary purpose is to facilitate inheritance and enable subclasses to access the constructor and
methods of their parent classes or objects.

In ECMAScript, the super keyword has two primary uses: as a function call and as an object. When
used as a function call, it allows us to invoke the constructor of the parent class within the child class.
This ensures that the parent’s constructor is executed before any additional code in the child constructor,
enabling the child class to inherit properties and initialize the parent class’s state.

On the other hand, when super is used as an object, it allows us to access properties or methods
defined in the parent class from within the child class. This is particularly useful when the child class
wants to extend or override specific behaviors of the parent class while retaining the rest of its function-
ality. By leveraging super.propertyName or super.methodName(), we can access and manipulate the
parent’s elements within the child class.
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Figure 4.12: The internal function in ECMARef6 that handles super as a function call

Overall, the super keyword in JavaScript offers a powerful mechanism for implementing inheritance,
facilitating code reuse, and enabling customization of parent class behaviors within child classes. Let us
now expand on how ECMARef6 implements both usages of super.

Super as a Function In Figure 4.12, we show the function that handles the interpretation of super().
The only parameter is arguments, and they are mapped to the variable Arguments. The first line retrieves
the new target, which is the object that new was called with. The second line ensures that the new target
is not undefined. Next, the interpreter calls the internal function GetSuperConstructor and assigns the
return value to the func variable. We will discuss this function in more detail later. The interpreter then
uses the JS Interpreter Arguments internal function to interpret the arguments passed to super. In
line 7, the Construct internal function is used to invoke the constructor function from func. Finally, lines
9 and 10 ensure that the this environment has the correct values. Throughout the specification, there
are calls to "@ReturnIfAbrupt" to check for errors along the way.

The GetSuperConstructor function plays a crucial role in retrieving the parent constructor. Let’s
examine the specifications of this function, which are displayed in Figure 4.13. In the first line of the
function, the variable envRec is assigned to the Environment Record from which the super call was
made. This ensures that the function operates within the appropriate context. Moving to the second line,
an assertion is made to verify that envRec is indeed an Environment Record, ensuring the function’s
reliability. The third line assigns the current function to the variable activeFunction, representing an
object similar to those depicted in yellow in Figure 4.9. Next, in line 4, the super constructor variable is
assigned to the prototype of activeFunction. This prototype corresponds to the object pointed to by
the [[Prototype]] internal slot. Lines 5 and 6 perform necessary checks on the superConstructor

variable, ensuring the validity of the retrieved data. Finally, on line 7, the object corresponding to the
super constructor is returned. This operation can only be performed within the child’s constructor, as
the activeFunction variable always points to the current constructor function. Thus, this logical flow
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Figure 4.13: The specification for the GetSuperConstructor internal function

Figure 4.14: The specification for the GetSuperBase internal function

ensures the successful execution of the function.

Super as an object When using super as an object, the mechanism employed is similar to the one
used in the case of a super call. The specification of the internal function GetSuperBase is illustrated
in Figure 4.14. This function is responsible for retrieving the object referenced when super is used as
an object. In line 1, the variable envRec is assigned to the current environment record, although the
standard does not provide specific details on how to access the environment record at that particular
point. Moving on to line 2, the variable home is assigned to the [[HomeObject]] internal slot of that
environment record. The [[HomeObject]] contains the Prototype object for the corresponding class,
which is depicted in green in Figure 4.9. Lines 3 and 4 perform necessary checks on the home variable,
ensuring its validity. Finally, in line 5, the prototype for the home variable is returned. This prototype
represents the object from which we seek to access properties using super.
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Chapter 5

Evaluation

This chapter presents the evaluation of the ECMARef6 interpreter. To assess the interpreter’s compli-
ance with the standard we used the ECMAScript official test suite, Test262. The following subsections
will expand on the structure of Test262, discuss the test execution pipeline and present a comprehensive
analysis of the testing results.

5.1 Test262

Test262 [9] is the official ECMAScript test suite, used to evaluate the compliance of JavaScript inter-
preters with the ECMAScript standard. It consists of a large collection of test cases designed to cover
the language specification thoroughly. The purpose of Test262 is to ensure that JavaScript implementa-
tions conform to the standard. The test suite was first created in 2012 and has been regularly updated
to reflect changes to the ECMAScript standard. The test suite is maintained by the ECMA Technical
Committee 39, responsible for the development and maintenance of the ECMAScript standard. As of
the latest version, Test262 contains over 35,000 test cases covering various language features and edge
cases, making it a comprehensive tool for assessing ECMAScript compliance.

Tests are not the only feature of Test262. In addition to its tests, it also provides the harness, which
is a collection of files with auxiliary functions used by Test262 tests; these functions can be divided into
the three following classes:

• Value comparison: this class includes functions primarily used for comparing values, such as:
sameValue(v1, v2) for checking if v1 has the same value as v2 or notSameValue(v1, v2) for
checking if v1 has not the same value as v2;

• Property helpers: this class includes functions used for checking internal properties of objects,
such as: verifyNotEnumerable(v1, ’prop’) for checking if prop property from v1 is not enu-
merable; verifyNotWritable(v1, ’prop’) for checking if prop property from v1 is not writable;
verifyConfigurable(v1, ’prop’) for checking if prop property from v1 is configurable;

• Test262-Specific Errors: this class includes the error constructor functions used to create the
runtime errors thrown by Test262, such as assert.throws(expectedErrorConstructor, func)

to check if func will throw the error corresponding to expectedErrorConstructor.

In addition to utilizing harness functions, Test262 tests also make use of metadata to facilitate the
organization and categorization of the test suite. This metadata contains relevant information about
each test, such as the version of the ECMAScript standard to which it applies and the features that it
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covers. The metadata is included in the tests in the form of code comments that consist of key-value
pairs, where each key represents a test property. The most relevant keys are:

• esid: identifies the section of the ECMAScript specification that the test covers;

• description: provides a brief summary of the test case;

• info: contains additional information about the test case, such as the exact lines of the standard
at which the test is aimed;

• features: lists the JavaScript features that the test is designed to test;

• negative: specifies whether the test is expected to throw an error or not;

• includes: a reference to a harness file that needs to be included for the test to work.

The metadata of Test262 tests serves as a valuable resource for developers and testers to under-
stand the purpose and scope of each test case. It provides a standardized way of organizing and
categorizing test cases, allowing for easier management and maintenance of Test262. Additionally,
the metadata can be used to generate reports and metrics on test coverage and compliance with EC-
MAScript standards.

Importantly, some of the Test262 metadata keys have been deprecated but not updated in their
corresponding tests. In particular, the keys es5id and es6id, which referenced the section of tests
aimed at the version 5 and 6 of the standard, have been replaced by a new key esid described above.
However, the majority of tests created for the 5th and 6th versions of the standard still contain the keys
es5id and es6id.

Example Listing 11 presents a test262 test aimed at the testing the semantics of the property name
of class objects. The first two lines include the copyright and author information, followed by the test
metadata from lines 3 to 17. The metadata properties in this test are: es6id, description, info, in-
cludes and features. Lines 19-29 are the test itself with lines 23-29 being the assertion phase of the
test. The harness functions used by the tests are: sameValue, notSameValue, verifyNotEnumerable,
verifyNotWritable and verifyConfigurable

While, in principle, one could use the deprecated keys es6id and es5id, for identifying the tests
applicable to our reference interpreter, this methodology is not precise because it ignores all the tests
that target features of ES5 and ES5 and use the proper esid key, which does not expose the version. As
a result, we had to manually select the tests, analyzing each one individually. This was necessary for a
comprehensive evaluation of the interpreter, as the automatic selection of tests was too complex to be
resolved within the scope of this thesis.

5.2 Test Selection

Selecting the appropriate tests from Test262 for the ES6 standard is a challenging task. While the es5id

and es6id metadata properties can help in identifying the version of the standard to which a test belongs,
they were deprecated in 2016 and are no longer sufficient for selecting tests. As a result, developers
and testers must resort to alternative methods to identify relevant tests.

One solution to this problem is manual filtering. This involves executing all the tests present in
Test262 and carefully analyzing the results of each test, if a test fails it can fall into one of two categories:

• An ECMARef6 implementation bug: the test is related to ES6 but the interpreter has a bug;
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1 // Copyright (C) 2015 the V8 project authors. All rights reserved.

2 // This code is governed by the BSD license found in the LICENSE file.

3

4 /*---

5 es6id: 13.3.1.4

6 description: Assignment of function `name` attribute (ClassExpression)

7 info: |

8 LexicalBinding : BindingIdentifier Initializer

9 [...]

10 6. If IsAnonymousFunctionDefinition(Initializer) is true, then

11 a. Let hasNameProperty be HasOwnProperty(value, "name").

12 b. ReturnIfAbrupt(hasNameProperty).

13 c. If hasNameProperty is false, perform SetFunctionName(value,

14 bindingId).

15 includes: [propertyHelper.js]

16 features: [class]

17 ---*/

18

19 const xCls = class x {};

20 const cls = class {};

21 const xCls2 = class { static name() {} };

22

23 assert.notSameValue(xCls.name, 'xCls');

24 assert.notSameValue(xCls2.name, 'xCls2');

25

26 assert.sameValue(cls.name, 'cls');

27 verifyNotEnumerable(cls, 'name');

28 verifyNotWritable(cls, 'name');

29 verifyConfigurable(cls, 'name');

Listing 11: A test related to constant declarations and classes in ES6

• A feature not supported by ES6: the test uses a non-ES6 feature.

However, we did not have to manually filter all Test262 tests. Test262 is organised in folders, with
each folder testing a specific ECMAScript feature. Hence, we started by ignoring all the folders specifi-
cally aimed at a feature introduced in a later version of the standard (7 onward). Although this process
is time-consuming and complex, it is necessary for accurate evaluation of the interpreter’s compliance
with the ES6 standard.

Table 5.1 presents the results of the filtering process, which involved removing tests from the Test262
repository based on two criteria: folder removal and manual inspection. The process started with an
earlier commit from 2016, which contained 23,643 tests. We then filtered 2,978 tests from this commit
to arrive at our version of the tests, which contains 20,665 tests that were used to evaluate our reference
interpreter.

In Table 5.2, we provide further insight into the selected tests by showing the number of tests that
have the es5id key, the es6id key, and the esid key. We observe that the majority of tests have the esid

key, while a smaller number of tests have the es5id and es6id keys. Moreover, most of the selected
tests do not include the deprecated keys. This information helps us better understand the characteristics
of the tests we used to evaluate our reference interpreter.

Initial number of tests 23643
Filtered number of tests 20665

Table 5.1: Filtered tests from test262

Tests with es5id 8482
Tests with es6id 2966
Tests with esid 9108

Table 5.2: Metadata analysis from filtered tests
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Due to the difficulty of selecting appropriate tests for ECMARef6 compliance, we have kept the filtered
version of the Test262 test suite in our repository along with our interpreter. This serves as a valuable
resource for future development and testing of the interpreter, as well as for maintaining and improving
its compliance with the ES6 standard.

5.3 Evaluation Pipeline

The execution of tests in the ECMA-SL ecosystem is a highly complex and challenging process that
requires the integration of multiple systems. To provide a clearer understanding of the pipeline, we have
decided to begin by illustrating the single test execution pipeline in detail. By explaining this process
thoroughly, we can establish the complexities involved. After that, we can expand our focus and address
optimizations and changes necessary for executing a batch of tests at once, with maximum efficiency.

Figure 5.1 illustrates the single test pipeline, and we will explain each highlighted point to provide a
comprehensive understanding of the process:

1. First, we concatenate the test code and the harness code and use the JS2ECMA-SL tool to gen-
erate the corresponding code in ECMA-SL (ast.esl).

2. The entry point for the interpreter (main.esl) imports both the interpreter code and the gener-
ated ECMA-SL file, which includes the harness and the test code. This entry point executes the
interpreter using ast.esl as an argument, effectively running the program.

3. The main.esl file is then converted to CoreECMA-SL using the ECMA-SL2CoreECMA-SL tool.
The resulting file is core.cesl, which is the same program but in a smaller subset of the ECMA-
SL language.

4. The test outcome can be categorized as follows: Ok (success), Fail (failure), Error (interpreter
issue), or Unsupported (unimplemented/unsupported feature).

Figure 5.1: The execution pipeline for a single test from the Test262 suite
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The execution of a single test is efficient, but when running a series of tests, certain parts of the
process can become redundant. This is primarily due to the fact that the harness and interpreter code
remain unchanged throughout the sequence. Therefore, there exists an opportunity for improvement
when executing batches of tests. To optimize the process, we can implement changes such as caching
the common elements of the test execution, reducing the time and effort required to execute the test se-
quence, and improving the overall performance of the testing process. The following are some potential
strategies that can be employed to enhance the batch testing procedure:

1. Cache the interpreter code and harness in memory to avoid repeated recompilation and reloading.

2. Optimize the generation of CoreECMA-SL code for each test case to minimize the processing
overhead.

3. Parallelize the execution of tests to further optimize the performance of the testing process.

While optimizing the execution of multiple tests is a crucial aspect of software testing, it is not suffi-
cient on its own. The ECMARef project has multiple contributors, and to ensure the quality and stability
of the project, it is essential to implement a Continuous Integration (CI) system. CI is a development
practice that automates the testing and building of code changes in real-time. Our strategy for the EC-
MARef project was to implement a CI system that tracks the current state of tests locally, and provides
a report on the performance of the tests after each code change. This way, contributors can be more
confident that their changes to the interpreter will not negatively impact the overall performance of the
project. By implementing this approach, the project can maintain a high level of quality and stability,
while also enabling a collaborative development process.

5.4 Results

The results of the selected tests from Test262 are presented in Tables 5.3, 5.4, 5.5, and 5.6. To make it
easier to navigate the large number of tests, we divided them into four tables based on the Test262 folder
structure: language and built-ins. Since the focus of this thesis is on the language folder, we provide
the results of the two most important sub-folders, expressions and statements, separately in Tables 5.3
and 5.4. Table 5.5, shows the results of the remaining sub-folders in the language folder, while Table 5.6
presents the tests from the built-ins folder.

Path Ok Fail Error Unsupported Total Success Percentage

language/expressions/array 11 0 0 0 11 100.00%
language/expressions/arrow-function 293 1 1 28 323 90.71%
language/expressions/assignment 291 45 0 30 366 79.51%
language/expressions/assignmenttargettype 7 0 0 0 7 100.00%
language/expressions/call 38 0 0 0 38 100.00%
language/expressions/class 455 0 0 0 455 100.00%
language/expressions/comma 5 0 0 0 5 100.00%
language/expressions/compound-assignment 408 22 0 0 430 94.88%
language/expressions/concatenation 5 0 0 0 5 100.00%
language/expressions/conditional 19 0 0 0 19 100.00%
language/expressions/delete 99 1 0 0 100 99.00%
language/expressions/function 21 0 0 0 21 100.00%
language/expressions/grouping 10 0 0 0 10 100.00%
language/expressions/in 14 0 0 0 14 100.00%
language/expressions/instanceof 43 0 0 0 43 100.00%
language/expressions/new 17 0 0 0 17 100.00%
language/expressions/object 53 0 0 0 53 100.00%
language/expressions/property-accessors 20 0 0 0 20 100.00%
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language/expressions/super 66 3 0 2 71 92.96%
language/expressions/this 7 0 0 0 7 100.00%
language/expressions/typeof 15 0 0 0 15 100.00%
language/expressions/void 9 0 0 0 9 100.00%
language/expressions/operations 666 3 0 0 669 99.55%
language/expressions/postfix-and-prefix 126 8 0 0 128 98.43%
language/expressions/unary-operations 66 1 0 0 67 98.50%

Expressions 2773 84 1 60 2918 95.04%

Table 5.3: Test results for our subset of Test262

Path Ok Fail Error Unsupported Total Success Percentage

language/statements/async-function 1 0 0 0 1 100.00%
language/statements/block 14 5 0 0 19 73.68%
language/statements/break 20 0 0 0 20 100.00%
language/statements/class 533 8 0 1 542 98.34%
language/statements/const 105 2 19 10 136 77.21%
language/statements/continue 23 0 0 0 23 100.00%
language/statements/debugger 2 0 0 0 2 100.00%
language/statements/do-while 33 2 0 0 35 94.29%
language/statements/empty 2 0 0 0 2 100.00%
language/statements/expression 3 0 0 0 3 100.00%
language/statements/for-in 88 19 7 0 114 77.19%
language/statements/for-of 417 64 146 109 736 56.66%
language/statements/for 283 20 45 33 381 74.28%
language/statements/function 226 6 0 0 232 97.41%
language/statements/if 47 12 0 0 59 79.66%
language/statements/labeled 6 0 0 0 6 100.00%
language/statements/let 112 4 19 10 145 77.24%
language/statements/return 16 0 0 0 16 100.00%
language/statements/switch 42 66 0 0 108 38.89%
language/statements/throw 14 0 0 0 14 100.00%
language/statements/try 170 2 15 14 201 84.58%
language/statements/variable 169 12 7 10 198 85.35%
language/statements/while 32 5 0 0 37 86.49%
language/statements/with 166 5 0 0 171 97.08%

Statements 2524 232 258 187 3201 78.85%

Table 5.4: Test results for our subset of Test262

Path Ok Fail Error Unsupported Total Success Percentage

language/arguments-object 75 0 0 0 75 100.00%
language/ascii 101 0 0 0 101 100.00%
language/block-scope 8 0 0 0 8 100.00%
language/comments 19 0 0 0 19 100.00%
language/directive-prologue 57 5 0 0 62 91.94%
language/eval-code 57 0 0 0 57 100.00%
language/function-code 211 1 0 0 212 99.53%
language/future-reserved-words 54 0 0 0 54 100.00%
language/global-code 3 0 0 0 3 100.00%
language/identifier-resolution 12 0 0 0 12 100.00%
language/identifiers 88 0 0 0 88 100.00%
language/keywords 25 0 0 0 25 100.00%
language/line-terminators 34 7 0 0 41 82.93%
language/literals/regexp 136 15 0 0 151 90.07%
language/punctuators 11 0 0 0 11 100.00%
language/reserved-words 13 0 0 0 13 100.00%
language/rest-parameters 11 0 0 0 11 100.00%
language/source-text 0 1 0 0 1 0.00%
language/statementList 31 0 0 0 31 100.00%
language/types 109 0 0 0 109 100.00%
language/white-space 40 0 0 0 40 100.00%
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Other Language Tests 1095 28 291 251 1123 97.50%

Table 5.5: Test results for the remainder sub-folders of the langugage folder

Path Ok Fail Error Unsupported Total Success Percentage

built-ins/Array 2677 20 1 1 2701 99.11%
built-ins/ArrayBuffer 78 10 1 0 89 87.64%
built-ins/ArrayIteratorPrototype 22 5 0 0 27 81.48%
built-ins/Boolean 51 0 0 0 51 100.00%
built-ins/DataView 323 12 0 0 335 96.42%
built-ins/Date 740 10 0 0 750 98.67%
built-ins/Error 41 0 0 0 41 100.00%
built-ins/Function 374 25 0 0 399 93.73%
built-ins/Infinity 7 0 0 0 7 100.00%
built-ins/IteratorPrototype 4 0 0 0 4 100.00%
built-ins/JSON 140 5 5 0 150 93.33%
built-ins/Map 154 2 0 0 156 98.72%
built-ins/MapIteratorPrototype 11 0 0 0 11 100.00%
built-ins/Math 337 4 0 0 341 98.83%
built-ins/NaN 7 0 0 0 7 100.00%
built-ins/NativeErrors 43 0 0 0 43 100.00%
built-ins/Number 303 45 0 0 348 87.07%
built-ins/Object 2941 1 0 0 2942 99.97%
built-ins/Promise 375 9 0 0 384 97.66%
built-ins/Proxy 252 7 0 1 260 96.92%
built-ins/Reflect 149 3 0 0 152 98.03%
built-ins/RegExp 883 508 19 0 1410 62.62%
built-ins/Set 196 1 0 0 197 99.49%
built-ins/SetIteratorPrototype 11 0 0 0 11 100.00%
built-ins/String 973 35 6 0 1014 95.96%
built-ins/StringIteratorPrototype 6 1 0 0 7 85.71%
built-ins/Symbol 67 14 0 0 81 82.72%
built-ins/TypedArray 624 1 0 0 626 99.68%
built-ins/TypedArrayConstructors 318 16 0 2 336 94.64%
built-ins/WeakMap 91 2 0 0 93 97.85%
built-ins/WeakSet 78 1 0 0 79 98.73%
built-ins/decodeURI 6 0 0 0 6 100.00%
built-ins/decodeURIComponent 6 0 0 0 6 100.00%
built-ins/encodeURI 6 0 0 0 6 100.00%
built-ins/encodeURIComponent 6 0 0 0 6 100.00%

Built-ins 12467 749 32 4 13255 94.06%

Table 5.6: Test results for built-ins part of Test262

The ECMARef6 project was subjected to a total of 20655 tests, with an overall success rate of
92.03%. Out of the total tests, 19009 were successful, while 1101 failed, 291 encountered errors, and
251 were unsupported. The tests are divided into two primary folders: built-ins and language. The
built-ins folder had a success rate of 94.06%, with 12467 successful tests, 749 failures, 32 errors, and
4 unsupported tests out of a total of 13255 tests. The language folder had a success rate of 88.41%,
with 6542 successful tests, 352 failures, 259 errors, and 247 unsupported tests out of a total of 7400
tests. The language folder consisted of two primary sub-folders, expressions, and statements, which
accounted for most of the errors encountered. Other folders contain occasional errors, mostly related to
edge cases that require careful analysis to be fixed.

The sub-folder that has encountered the most errors is the built-ins/regexp folder. Within this folder,
there are 893 successful tests, 508 failed tests, and 19 tests with errors. The primary reason for these
errors is due to Unicode. Unicode is a character encoding standard that enables the representation of a
diverse range of characters, including non-Latin scripts like Chinese, Arabic, and Cyrillic. However, our
interpreter currently does not fully support Unicode, which is the main cause of these errors.
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To illustrate a case, consider Listing 12, which tests whether a Unicode character can be inserted
into a regex query. The test begins on line 19 with a declaration of a string variable. Then, on line 21,
an assert statement uses the match method from the string to search using a regex query. The regex
query searches for a Unicode character that is not supported, causing the test to fail.

In addition to Unicode errors, we have other errors scattered throughout the test result tables. These
errors can fall into two categories: an edge case that requires effort and causes the failure of a few tests,
or an uncommon case that is thoroughly tested and causes the failure of several dozen tests. To fix
these tests, they must be carefully investigated. The difficulty lies in the fact that it is often challenging
to find the implementation detail that is related to the test, given that the interpreter is complex and has
many execution layers.

1 // Copyright (C) 2020 Apple Inc. All rights reserved.

2 // This code is governed by the BSD license found in the LICENSE file.

3 /*---

4 author: Michael Saboff

5 description: Exotic named group names in Unicode RegExps

6 esid: prod-GroupSpecifier

7 features: [regexp-named-groups]

8 ---*/

9

10 /*

11 Valid ID_Start / ID_Continue Unicode characters

12 \u{1d4d1} \ud835 \udcd1

13 \u{1d4fb} \ud835 \udcfb

14 \u{1d4f8} \ud835 \udcf8

15 \u{1d500} \ud835 \udd00

16 \u{1d4f7} \ud835 \udcf7

17 */

18

19 var string = "The quick brown fox jumped over the lazy dog's back";

20

21 assert.sameValue(string.match(/(?<>brown)/u).groups., "brown");

Listing 12: A failing test related to unicode support

52



Chapter 6

Conclusions and Future Work

In this thesis, we implemented a reference interpreter for version 6 of the ECMAScript Standard. Our
primary objective was to develop a robust and comprehensive interpreter that accurately captures the
core aspects of the language. We dedicated extensive efforts to ensure the correctness and trustworthi-
ness of our implementation. Throughout the development process, we placed great emphasis on testing
and adhering to the standard specification. Rigorous testing procedures were employed to thoroughly
evaluate the interpreter’s functionality and compliance with the ECMAScript Standard. Additionally, we
meticulously followed the guidelines outlined in the specification, striving to faithfully replicate the lan-
guage’s behavior in our implementation.

This resulted in ECMARef6, the most comprehensive academic reference interpreter for ES6 to date:
it passes over 19K tests out of a total 35K tests for the most recent version of the standard, while JISET,
the second most complete reference interpreter only passing 18K. The completeness and accuracy of
ECMARef6 make it a valuable tool for researchers, developers, and educators alike.

Future Work Looking towards the future, our work holds potential for further development and expan-
sion. ECMARef6 serves as a solid foundation that can be extended and built upon in various ways.
Here are some key areas where future work can be directed to enhance and leverage our reference
interpreter effectively:

• Completing the ES6 implementation: While our implementation of ES6 is nearly complete, we
acknowledge the presence of minor bugs that require attention. Additionally, there are a few
essential built-ins, including Modules, Generators, and Async Functions, that are yet to be fully
implemented. Addressing these remaining tasks will ensure the comprehensive coverage and
functionality of our interpreter;

• Leveraging ECMARef6 to implement newer versions: The robust core established in EC-
MARef6 positions it as an excellent foundation for implementing subsequent versions of the EC-
MAScript Standard. As newer versions primarily introduce new built-in libraries, our existing work
greatly facilitates the implementation process for these additions.

• New Projects: In addition to the ongoing ECMA-SL project, our reference interpreter opens up nu-
merous possibilities for the development of various tools for managing the ECMAScript standard-
isation process. For instance, the ECMA-SL project team is actively working on a tool to generate
the HTML version of the standard directly from the ECMA-SL implementation of the interpreter. Fur-
thermore, there are numerous other tools that can leverage the capabilities of our interpreter, such
as:
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– an automatic test suite coverage evaluator for assessing the coverage of existing JavaScript
test suites, most notably Test262;

– an automatic test suite generator for automatically synthesising tests for new features of the
language; and

– debuggers that allow developers to code-step not only the code of their programs but also the
pseudo-code of the standard while interpreting their programs.

These are just a few examples of the many opportunities for innovative projects that can benefit
from our reference interpreter.
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