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Abstract

To address scalability difficulties, many blockchains resort to sharding in an attempt to distribute the

load. In particular, the Filecoin network introduced a hierarchy of chains/networks [2], where subnets

can abide by different rules as long as members agree. This approach allows employing traditional

consensus algorithms, concretely BFT consensus [3], which can tolerate arbitrary faults. Traditionally,

(BFT) consensus has been solved by resorting to network timing assumptions to circumvent the FLP re-

sult [4] (partially-synchronous consensus). However, networks are inherently asynchronous, thus these

protocols sacrifice liveness, resulting in unavoidable performance faults. To address this issue, as an al-

ternative to partially-synchronous consensus, researchers devised asynchronous consensus protocols,

exploiting randomisation to solve consensus rather than timing assumptions. While early randomised

protocols were impractical, recent proposals show promising performance. Even so, this class of algo-

rithms has been relegated to theory and has seen little real-world use and evaluation. In this thesis, we

implement Alea-BFT [1], a practical asynchronous BFT consensus algorithm, and integrate it in Filecoin,

by building it on top of the Mir Framework [5]. This implementation bounds memory usage, which is

not always considered when designing consensus protocols, and includes several optimisations, par-

ticularly for Alea-BFT’s agreement stage, the most expensive component of the protocol. Furthermore,

we comprehensively evaluate the protocol in real-world scenarios, comparing it with a state-of-the-art

partially-synchronous BFT protocol – ISS-PBFT [6]. Our results show that Alea-BFT is competitive with

ISS-PBFT in fault-free and crash-fault scenarios.
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Resumo

Para colmatar os desafios de escala, muitos sistemas recorrem a sharding numa tentativa de distribuir

a carga. Em particular, a rede Filecoin propôs organizar-se hierarquicamente, em várias subredes com

regras independentes das demais acordadas pelos membros respetivos [2]. Crucialmente, esta abor-

dagem permite aplicar algoritmos de consenso tradicionais, particularmente consenso BFT [3], que con-

segue tolerar faltas arbitrárias. Habitualmente, o problema de consenso (incluindo BFT), tem sido re-

solvido com assunções sobre o desempenho da rede (consenso parcialmente-síncrono). No entanto,

redes são inerentemente assíncronas, e estas assunções, embora contornem o teorema FLP [4], sacri-

ficam garantias de progresso levando a vulnerabilidades de desempenho inevitáveis. Além desta classe

de algoritmos de consenso, a academia desenvolveu consenso assíncrono, que recorre a randomiza-

ção em vez destas assunções. Ainda que propostas recentes de consenso assíncrono mostrem de-

sempenho promissor, esta classe de algoritmos tem visto pouco uso e avaliação no mundo real. Assim,

nesta tese implementamos o Alea-BFT [1], um algoritmo de consenso BFT assíncrono com bom de-

sempenho, visando integrá-lo num sistema real, a rede Filecoin, construindo-o em cima do framework

Mir [5]. Neste processo, tomamos cuidado de limitar o uso de memória, que nem sempre é consider-

ado ao construir protocolos de consenso, e inclui várias otimizações, particularmente na componente

mais cara do Alea-BFT (agreement). Por fim, comparamos esta implementação com um protocolo

BFT parcialmente-síncrono de última geração – ISS-PBFT [6]. Os nossos resultados mostram que o

Alea-BFT é competitivo com o ISS-PBFT em cenários sem faltas e com faltas crash.
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1.1 Motivation

A blockchain (or distributed ledger) is, at its core, an append-only log of unforgeable transactions. Users

can broadcast their own transactions, which are then aggregated into blocks by validators (sometimes

called miners), to be eventually included in the chain. The entire process of including a new transaction in

the ledger, from the moment that it is created by a user to its inclusion in the chain, can be accomplished

without relying on any central authority, as long as the validators are themselves independent. Due to

this property, blockchain technology made decentralised currency and computation possible in projects

like Bitcoin and Ethereum, but these systems suffer from a very low throughput.

To correctly implement the functionality of a distributed ledger, validators must agree on which block

of transactions comes next in the chain, i.e., they must solve consensus. A particularly efficient way to

do this is through the use of well-studied consensus (also known as agreement) protocols, which are

a class of algorithms that fit the above specification. These have gained widespread adoption in the

context of permissioned blockchains, where system membership is fixed, but are also being adopted in

permissionless settings [9], leading to significant improvements in throughput [10].

At first glance, leveraging consensus can look simple, but our world is messy: the network is asyn-

chronous (it may delay, reorder or lose packets) and nodes can fail. Furthermore, failures are not nec-

essarily just crashes: the network may be controlled by an adversary [11], and participating nodes are

not always trustworthy – in fact, this is an intrinsic part of the trust model underlying blockchains. Even

if participants were to be trusted, nodes cannot: modern computers are the result of the integration of a

myriad of systems, increasing the probability of faults from their complexity alone, and even in otherwise

perfect software, environmental conditions alone can trigger hardware faults [12]. Therefore, for our sys-

tem to be reliable, it is imperative to tolerate arbitrary (Byzantine) faults. In other words, we must have a

solution for Byzantine consensus.

An intrinsic hurdle when devising a solution for consensus with faulty nodes is the need to work

around the FLP impossibility [4], which states deterministic consensus is impossible in asynchronous

systems under the presence of faults. To achieve this, many State Machine Replication (SMR) systems

like PBFT [13], Tendermint [14], ISS [6] and Red Belly [15] assume a partially-synchronous network – one

where the time to deliver a message is bounded, after some (unknown) point in the system execution. In

this case, although the network is fundamentally asynchronous, it has enough periods of synchrony to

allow this kind of algorithm to make progress and be performant during those periods.

While the partial synchrony assumption is enough to build consensus and SMR, systems built around

it can be complex and hard to tune. These protocols usually rely on leaders [16], demanding view-change

protocols to rotate them, which are not trivial. Additionally, leader-based protocols must deal with slow

leaders, by rotating them often [17,18] or running multiple parallel instances of consensus [6], increasing

complexity. This combination results in a non-trivial trade-off when setting those timeouts between losing
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liveness for long periods when the leader is not responsive, versus risking a frequent and unnecessary

leader rotation when nodes are working correctly but the network is slow.

Recent developments resulted in leaderless partially synchronous protocols like Red Belly [15], which

ease the previous concerns. However, the non-trivial trade-off remains between keeping system latency

as low as conditions allow versus tolerating momentarily slow nodes or network conditions.

Nevertheless, it is possible to solve consensus in an asynchronous settings if we stop restricting

ourselves to deterministic algorithms. In particular, we can relax the termination property, by stating that

the probability of the algorithm terminating is a value that can be as close as desired to one. This idea

is not new: Fischer et al. [4] recognised this in the conclusion to their proof for the FLP impossibility, as

well as the existence of multiple algorithms taking advantage of it. Unfortunately, these initial attempts

came with a steep cost in communication and execution time. However, progress did not stop there, and

several algorithms exist that offer an acceptable expected message complexity and number of rounds

like HoneyBadgerBFT (HBBFT) [19] and Alea-BFT [1]. Alea-BFT is particularly interesting because it

brought message complexity down to a value that is very close to the quadratic theoretical minimum,

while also striving to be significantly simpler than its predecessors.

Overall, asynchronous consensus presents an opportunity to devise SMR protocols that can perform

well with minimal to no tuning, even in varying network conditions, and in face of malicious participants.

1.2 Problem statement and contributions

Despite the recent advances in asynchronous consensus, this class of algorithms has seen little real-

world usage and testing. To bring asynchronous consensus to the limelight, we believe more research is

needed on the advantages and limitations of these systems, particularly regarding their competitiveness

with existing partially-synchronous protocols. Therefore, a systematic study is required to evaluate the

extent of these limitations and allow real-world applications to flourish.

In this thesis, we intend to address these shortcomings by building a production-ready implementa-

tion of Alea-BFT and integrating it into Filecoin under their hierarchical consensus initiative [2]. These

objectives entail several modifications to the algorithm, adapting it not only to the physical constraints

of the nodes that execute the protocol, whose memory and compute power are finite, but also to order

Filecoin transactions in a subchain.

Furthermore, we evaluate Alea-BFT against a state-of-the-art partially-synchronous Byzantine Fault

Tolerance (BFT) protocol – ISS-PBFT – in an apples-to-apples comparison to assess its competitiveness

with traditional BFT protocols in various conditions.

Lastly, Alea-BFT is a recent algorithm that was never deployed in a real-world scenario, and we ex-

pect to uncover optimisation opportunities during our comprehensive evaluation in terms of performance,
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ease of use, and ease of implementation. Therefore, as a final contribution, we intend to build on this

knowledge, improving the Alea-BFT algorithm to make it more robust, performant, and better aligned

with the requirements and interfaces of real-world systems.

1.3 Document Outline

The remainder of this document is organised as follows. Chapter 2 presents related work on other con-

sensus algorithms, Filecoin hierarchical consensus and the Mir framework. Chapter 3 describes the

general architecture of our Alea-BFT implementation, including its integration into Filecoin. Chapter 4

goes over a set of optimisations that we implemented in Alea-BFT. Chapter 5 outlines our systematic

evaluation methodology and presents our results. And finally, Chapter 6 summarises our findings and

future work proposals.
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When building reliable systems, it is common to abandon the notion of a central server that responds

to requests from clients, in favour of replicating it across multiple machines connected through a net-

work [20]. This may be motivated by wanting to keep the system alive even if some of the machines fail,

or even to ensure it remains correct in the presence of (possibly malicious) faults.

In this chapter we briefly explore the considerations involved in replication, focusing on SMR and its

relationship with blockchains, threshold cryptography – a powerful primitive that simplifies protocols –

and approaches for tolerating arbitrary (Byzantine) faults.

2.1 Replicated Systems

2.1.1 From SMR to Consensus

SMR [20] is a common method of achieving a replicated system. By modelling a system as a state

machine, where changes to the system state are deterministically determined from the previous state

and an operation, we can reduce the problem of replication to ordering the inputs to our state machine –

the operations.

Each node starts in the same initial state, with the same state machine. Instead of receiving operations

from clients directly, client requests first go through a Total Order Broadcast (TOB) component, which

ensures that every node receives each request exactly once, in the same position in the total order.

The problem of achieving TOB, sometimes also called atomic broadcast, can then be solved by se-

quencing multiple instances of consensus – one of the most fundamental problems in distributed sys-

tems [3]. The consensus problem consists in having a set of nodes (sometimes referred to as processes)

agree on a single value from their competing proposals.

There are a multitude of approaches to solving consensus. When considering a permissioned setting

– where only authorised nodes can participate – solutions are often inspired by elections: replicas vote

on which value they want to pick – sometimes in multiple rounds, to narrow down the set of candidate

values – and eventually agree on a single value.

This work focuses on TOB protocols, leaving the details of the state machine to the application, but

still allowing potential optimisations from tighter integration of the consensus component with the TOB

protocol.

2.1.2 Byzantine Fault Tolerance

In order to tolerate faults, it is crucial to define what do we understand by correct and faulty nodes through

a fault model.
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One common fault model to consider is Crash Fault Tolerance (CFT), in which nodes are assumed

to either be correct at all times, or correct until the moment they crash.

However, this model fails to capture hardware faults [12] or even malicious attackers that take control

of nodes, which can cause nodes to deviate from protocol.

In the context of blockchains and cryptocurrencies, which are meant to establish trust by consensus

among a set of non-mutually trusted parties, it is important not to assume anything about the behaviour

of faulty nodes, or in other words, we must consider faults to be arbitrary. This is what in literature is

known as BFT [3].

2.1.3 Relationship between SMR and Blockchains

SMR can support many applications, including distributed ledgers or, as they are commonly referred to

in recent times, blockchains. However, classical SMR is not enough for many well-known blockchains

such as Bitcoin and Ethereum as they are what is known as a permissionless (public) blockchain. In

permissionless blockchains, where system membership can change at any time, quorum-based protocols

break down, as any entity can create an unbounded number of identities and take control of the system,

performing what is called a Sybil attack. Rather than relying on quorums, permissionless blockchains use

agreement protocols that require nodes to spend finite resources, such as computing power or storage

space, to participate in consensus.

In contrast, permissioned (private) blockchains can rely on classical SMR and quorum-based con-

sensus protocols as system membership is tightly controlled: it only changes in explicit reconfiguration

steps, and the organisation(s) controlling the blockchain can also restrict new configurations, making

Sybil attacks a non-issue. Although this kind of blockchain is not fit for universal participation, it can

achieve superior performance and is perfect for the centralised governance models typical of organisa-

tions and consortiums.

Despite Alea-BFT being a quorum-based TOB protocol, upon which is trivial to build an SMR system

(see Section 2.1.1), this work allows its integration in a permissionless blockchain – Filecoin – using their

hierarchical consensus framework, which are discussed in Section 2.5.

In the context of SMR, blockchain transactions are sometimes also referred to as operations, com-

mands or client requests in the context of SMR, and transactions in the context of blockchains. From this

point on, they are always referred to as transactions, as it is the nomenclature used in the Mir framework.

2.1.4 Solving Consensus under an Asynchronous Network

Aside from node faults, consensus algorithms must also deal with the inherent asynchronous nature of

the network that connects nodes together.
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Under an asynchronous network, each message can be delayed indefinitely, meaning they can be

received in a different order from which they were sent or not received altogether.

As Fischer et al. showed in their famous FLP Impossibility result [4], it is impossible to devise a

deterministic algorithm to solve consensus when the network is asynchronous.

However, researchers created multiple variants of the consensus problem that allow them to circum-

vent this result. We describe two of the most popular options: timing assumptions and randomisation.

2.1.4.A Partially-Synchronous Consensus

Partially-synchronous consensus algorithms introduce timing assumptions to exploit the fact that the

network is mostly synchronous, apart from some unusual periods of asynchrony. In this specification of

the consensus problem, protocols must remain correct (safe) in the presence of asynchrony, but only

guarantee liveness during periods where network behaves well enough.

In formal terms, partial synchrony assumes that network delays are limited by some unknown bound,

or that they are limited by a known bound after an unknown amount of time, known as the global stabili-

sation time.

Timing assumptions have been the most popular approach to tackle consensus, and are used in

systems such as PBFT [13], ISS [6], Tendermint [14], and Red Belly [15], which we survey in Section 2.2.

This approach is common in permissioned blockchains such as Tendermint and Red Belly, which use

the protocols with the same name, and even in some permissionless blockchains like Filecoin, which

supports traditional consensus protocols like ISS under limited circumstances, which we discuss in Sec-

tion 2.5.

2.1.4.B Randomised Consensus

Randomised consensus, sometimes called asynchronous consensus, relaxes the termination property

of the classical consensus problem. Instead of demanding deterministic termination, it instead states that

termination is a probabilistically certain event, i.e. the probability of terminating converges to one.

This approach was already known around the time the FLP impossibility was published, and several

solutions were known and mentioned by the authors [21, 22]. Unfortunately these early solutions were

inefficient, with several having an exponential expected number of steps when considering 𝐹 = ⌊𝑁−1
3 ⌋

faulty nodes out of 𝑁 total nodes. However, in the last decade, there was a surge in research on the

topic of asynchronous BFT consensus, with several asymptotically efficient and practical solutions being

proposed such as HBBFT [19], Dumbo [23] and variations [24, 25], and Alea-BFT [1], which we survey

in Section 2.4.
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2.2 Partially-Synchronous BFT

This section describes the ISS framework and Red Belly Blockchain, which are two partially-synchronous

BFT protocols of interest to our work.

Traditionally, partially-synchronous BFT protocols rely on a leader to order transactions quicker, driv-

ing each consensus instance more efficiently by only allowing the leader to propose consensus values

in each round (or view), but at the cost of performance when the leader is faulty. However, the protocols

we survey in this section attempt to mitigate the cost of leader failure, either by using multiple leaders

concurrently – in the case of ISS – or by not relying on a leader at all – in the case of Red Belly Blockchain.

By comparing Alea-BFT to these protocols, we are able to compare partially-synchronous vs asyn-

chronous consensus without the confounding variable of leader reliance.

2.2.1 Insanely Scalable State Machine Replication

Insanely Scalable State Machine Replication (ISS) [6] is a modular SMR framework designed to help

traditional leader-based TOB protocols scale, by allowing multiple leaders to concurrently order transac-

tions, while avoiding redundant work ordering duplicate transactions.

The framework divides the transaction log into epochs, and each epoch into segments. Although

epochs are strictly sequential, the transactions within each segment are ordered concurrently and com-

bined deterministically (interleaved) to form the epoch. In order to avoid concurrent segments containing

the same transaction, ISS partitions incoming transactions into buckets, and assigns each bucket to a

single segment orderer.

Concurrent segment ordering allows ISS to scale, but without guaranteeing that the ordering proto-

col in each segment terminates epochs could never terminate, compromising the liveness property of

consensus. To rectify this problem, the authors created a new primitive to order segments – Sequenced

Broadcast (SB) – which wraps an existing TOB protocol and guarantees its termination. SB instances

have a fixed leader, a fixed number of delivered transactions, and detect if the leader is quiet – a fault in

a partially-synchronous setting – delivering a special empty value in this case.

By guaranteeing the termination of individual SB instances, the authors deal with potentially faulty

leaders by rotating leaders/buckets across segments at the start of every epoch. With this construction,

every bucket can be assigned to a segment with a correct leader infinitely often, and all its transactions

are eventually ordered. For the rotation of leaders and buckets, the authors chose the policy of BFT-

Mencius’ [26], which excludes up to 𝐹 nodes out of 3𝐹 +1, minimizing the performance impact of faulty

nodes deciding to slow down the SB instances they lead.

To evaluate ISS, the authors integrated various TOB protocols into it, and were able to achieve 37x,

56x and 55x improvements for PBFT, HotStuff and Raft, respectively, in fault-free executions on a 128
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node deployment uniformly distributed across IBM’s 16 data centres on Europe, America, Australia and

Asia.

Finally, they investigated the performance of ISS-PBFT under the presence of crash-faults and Byzan-

tine stragglers – Byzantine nodes that delay their proposals as much as possible without being detected

as faulty. Regarding crash faults, ISS-PBFT improves upon its predecessor Mir-BFT [27]1 by keeping

crashed nodes out of the leader set forever, and having a ”more lightweight” crash fault recovery. Re-

garding Byzantine stragglers, the throughput of ISS-PBFT drops by 85% with one straggler, and by 10%

with ten stragglers. The authors note that straggler-associated slowdown is inevitable to any SMR sys-

tem until they are removed from the leader set, and that a more sophisticated leader rotation policy that

dynamically detects and excludes stragglers could mitigate this issue.

Recently, the ISS implementation has undergone a refactoring effort to improve the Mir framework as

a prototyping tool for new consensus protocols and facilitate its usage as a consensus layer for real-world

systems like the Filecoin network, which we go over in detail in Section 2.5. Unfortunately, this means

some parts of ISS have not been fully re-implemented yet. Namely, only PBFT ordering is implemented

(but neither HotStuff nor Raft are), and the partitioning of transactions into buckets is not yet implemented,

with all transactions being assigned to a single common bucket in each node.

2.2.2 Red Belly

The Red Belly Blockchain [15] aims to be a blockchain that scales to hundreds of participants across the

world, open to transactions from untrusted nodes, while remaining secure, guaranteeing that no double-

spending occurs. The authors were particularly concerned with avoiding strong synchrony assumptions

(and related attacks), the performance penalty of faulty leaders, and the cost of transaction verification.

Rather than agreeing on individual sets of transactions (blocks), proposed by individual nodes, Red

Belly nodes agree on a superset (superblock), containing proposed transactions from least 𝑁−𝐹 nodes

(out of 𝑁 ≥ 3𝐹 +1 total nodes, where up to 𝐹 nodes can fail arbitrarily). By rotating the proposer whose

set of transactions is added to the superset first, Red Belly avoids transaction censorship.

Red Belly’s supersets are decided using a leaderless TOB protocol, which is uncommon in the

partially-synchronous world, and bears some similarities to HBBFT (which we discuss in Section 2.4.1).

We focus our presentation on the TOB protocol as it is the most relevant part of Red Belly to our work.

The Red Belly blockchain progresses in rounds, and decides the contents of a new superset. At

the start of each round, nodes propose a set of transactions using a verified reliable broadcast primitive.

This broadcast also includes Red Belly’s sharded transaction verification protocol, which partitions nodes

into (𝐹+1) primary and (𝑁−𝐹−1) secondary verifiers. Primary verifiers verify transactions immediately,
1Mir-BFT should not to be confused with the Mir framework, which was the result of modularising the Mir-BFT code base for

implementing ISS.
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while secondary verifiers optimistically wait for the primary verifiers to broadcast their result, but resort

to verifying transactions themselves after a timeout.

After broadcasting transactions, nodes must agree on which sets were successfully broadcast and

are to be delivered. This is accomplished with one binary consensus instance per proposer node/set of

transactions.

As broadcasts complete, nodes vote to deliver them in the corresponding binary consensus instance.

After receiving broadcasts from 𝑁−𝐹 nodes, and a timeout expiring, Red Belly nodes assume they have

received all broadcasts for the round, and vote against delivering transactions from the remaining nodes.

By always waiting for a timeout, Red Belly likely avoids wasting sets of transactions that take longer to

receive than the first 𝑁 −𝐹 sets, but still arrive within the timeout, which increases with the age of the

oldest unordered transaction.

After all binary consensus instances decide, the transactions from each accepted broadcast are com-

bined into the superset, by concatenating all decided sets of transactions, and removing conflicting trans-

actions. This concludes the round and allows nodes to start a new one.

The authors evaluated Red Belly extensively, spanning various configurations of hundreds nodes on

Amazon EC2, both in single data centre and multi-region deployments, and both in low-end and high-end

machines. On high-end machines, Red Belly reached 660k tx/s with 260 nodes.

To assess the impact of signature verifications in blockchain performance, the authors turned to low-

end machine configurations, where the node’s Central Processing Unit (CPU)s becomes the bottleneck.

Red Belly’s sharded verification allowed it to not only sustain throughput as the number of nodes increase,

but also surpass the rate of transactions that could be verified locally. The other systems under study,

HBBFT and a blockchain based on PBFT, were unable to sustain a throughput over 4k tx/s, and HBBFT

reached latencies of over 60s when scaling past 100 nodes. The authors attributed the poor scalability

of HBBFT under these conditions to the minimum quadratic bound on verifications, related to its use of

erasure coding.

Finally, Red Belly was evaluated under the presence of Byzantine faults, particularly Byzantine pro-

posers that fail to disseminate their transactions across all nodes. It maintained comparable latencies

to the fault-free case (920ms vs 2300ms), but suffered a sharp increase in message complexity (538MB

vs 2622MB). In any case, the authors note that the message complexity is still lower than HBBFT’s

(3600MB), which is not sensitive to this fault by design, due to its use of erasure coding.

Unfortunately, Red Belly is not open-source, making experimental comparisons to our work challeng-

ing.
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2.3 Threshold Cryptography

Before moving on to the asynchronous BFT protocols, we need to provide background on threshold cryp-

tography – a cryptographic primitive that all asynchronous BFT protocols we present employ. Computer

systems leverage cryptography to ensure data confidentiality, authentication or integrity. (𝑡,𝑁)-Threshold

cryptography generalises these constructs to a group setting by splitting the secret key and all computa-

tion that involves it among all group members. Performing operations that involve the secret key requires

the cooperation of at least 𝑡 out of 𝑁 group members, and the cryptosystem remains secure even if 𝑡−1

group members are compromised. [28]

In the context of Byzantine fault tolerance, threshold cryptography is interesting because it can enforce

the participation of a quorum of nodes and tolerate faults by design when performing sensitive operations.

Concretely, it can be used to construct common random sources [29], prevent targeted censorship of

consensus proposals, and alleviate the complexity of consensus algorithms (see Section 2.4).

This section presents two applications of threshold cryptography – threshold decryption and threshold

signatures – and the challenges associated with their usage, namely their setup (key generation and

distribution). We only consider non-interactive threshold schemes, that is, threshold schemes that do

not require non-trivial network communication. This restriction excludes the popular ECDSA and EdDSA

signature schemes, for which we could not find any non-interactive threshold (signature) adaptations.

Furthermore, we focus on threshold signatures as opposed to threshold decryption, as Alea-BFT – the

protocol under study – requires threshold signatures.

2.3.1 Threshold Decryption

A (𝑡,𝑁)-threshold decryption protocol requires at least 𝑡 parties to collaborate to decrypt ciphertext on

behalf of a group of 𝑁 entities [28]. By leveraging threshold decryption, information can remain confi-

dential (as ciphertext) until the threshold of decrypting parties is reached and only then be revealed to

the group. In this scenario, group members produce a decryption share from the ciphertext using their

private key share, representing a partial computation of the decryption process. Afterwards, 𝑡 decryption

shares can be combined to produce the original plaintext.

Additionally, some threshold decryption schemes have a robustness property, which guarantees that

any ciphertext, even if adversary-controlled, has at most one valid corresponding plaintext.

2.3.2 Threshold Signatures

A (𝑡,𝑁)-Threshold Signature Scheme (TSS) is a (𝑡,𝑁)-threshold variation of traditional cryptographic

signature schemes, which facilitate the creation and verification of cryptographic non-repudiable proofs of

data authenticity – digital signatures [28]. This construction must guarantee two basic security properties:
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• Unforgeability It is infeasible for a polynomial-time adversary to output a valid signature on a

message that was submitted as a signing request to less than 𝑁 −𝑡 honest parties.

• Robustness It is computationally infeasible for an adversary to produce 𝑡 valid signature shares

such that the output of the share combining algorithm is not a valid signature.

Traditionally, asymmetric TSSs expose four different operations (excluding the setup, which we dis-

cuss in Section 2.3.3), which we refer to by the following names throughout the thesis:

• SignShare(PrivateKeyShare, Data) -> SigShare, which constructs a signature share from the

local nodes’s private key share for the given data.

• Recover(PublicKey, Data, Set[SigShare]) -> Sig ∪ {Error}, which reconstructs the full sig-

nature from signature shares of at least 𝑡 nodes for the given data and group public key. If all 𝑡

signature shares are valid, the resulting full signature is guaranteed to be valid.

• VerifyShare(PublicKey, Data, SigShare) -> {True, False}, which verifies if a signature share

is valid for the given data and group public key.

• VerifyFull(PublicKey, Data, Sig) -> {True, False}, which verifies if a (full) signature is valid

for the given data and group public key.

There are several threshold signature algorithms, of which we highlight RSA and BLS. Threshold-

RSA is a non-interactive TSS based on RSA, but, like RSA, it suffers from relatively large signature size

requirements. Although ECDSA is a popular alternative to RSA thanks to its small signature size with

equivalent security guarantees, we could not find any non-interactive threshold ECDSA algorithm [30],

so we do not consider it in this thesis. Finally, BLS also provides short signatures and a simple non-

interactive threshold BLS scheme exists, but signature verification is slower than ECDSA and RSA.

2.3.3 Threshold Key Generation and Distribution

There are multiple ways of setting up a threshold cryptosystem. A simple method is to trust a third-

party dealer, which is responsible for generating and distributing keys to each group member. However,

practical applications of threshold cryptography call for Distributed Key Generation (DKG), where group

members can agree on group keys without a trusted dealer and without any member being able to deduce

more than its share of the secret key from the interaction.

DKG is not trivial and is equivalent to consensus when considering non-synchronous communication

among nodes. That said, recent proposals include asynchronous and partially-synchronous DKG capa-

ble of tolerating Byzantine faults with reasonable asymptotic efficiency [31–33]. For instance, the latest

proposal we reviewed for asynchronous DKG achieves expected near-cubic communication complexity
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and expected cubic computational complexity per node [31]. Due to the effort involved in implementing

DKG protocols, this component is left as future work.

2.4 Asynchronous BFT

In this section, we present three asynchronous BFT protocols. We begin by summarising HoneyBad-

gerBFT, the first practical asynchronous BFT protocol, followed by two of its successors, Dumbo-NG

and Alea-BFT (the protocol under study).

2.4.1 HoneyBadgerBFT

HBBFT [19] addresses the demand for BFT protocols that can operate at the large scale required by

cryptocurrencies. The authors argue that such applications, where participants are distributed across

the globe and often mutually distrustful, cannot critically rely on network timing assumptions for liveness,

and instead should turn to asynchronous protocols. Previously, this class of protocols was considered

impractical due to their high expected communication complexity per transaction, but HBBFT lowered this

expected complexity to the asymptotically optimal 𝑂(𝑁) bits per transaction, making it the first practical

asynchronous BFT protocol.

This protocol builds upon the insight of previous work that the problem of Total Order Broadcast can

be reduced to Asynchronous Common Subset (ACS), which is the problem of agreeing on a set of inputs

to output, instead of a single input like in consensus. For this reason, ACS is sometimes called vector

consensus. The resulting set is guaranteed to contain the inputs of at least 𝑁 −𝐹 proposer nodes.

To construct TOB from ACS, we can repeat instances of ACS in rounds. In each round, every node

inputs a message they want to deliver into ACS, which decides a set of (𝑁 −𝐹 or more) messages

(transactions), and then delivering the resulting set of messages. For efficiency, instead of having each

node propose individual messages (transactions), they propose batches containing multiple messages,

and can order all the messages in a batch in one round.

The two key contributions of HBBFT are the elimination of redundant work among nodes without

compromising fairness (avoiding censorship), and efficiently implementing ACS, without resorting to an

Multi-Valued Byzantine Agreement (MVBA) protocol.

Firstly, to prevent transaction censorship, HBBFT encrypts transactions using a threshold decryption

primitive 2 before inputting them to ACS, and ensures they are only decrypted after ACS terminates –

threshold decryption protocols require a threshold of nodes to cooperate to decrypt the transactions, but
2HBBFT authors often refer to this primitive as threshold encryption, but it is more accurately described as threshold decryption,

as the threshold is required for decrypting, not encrypting.

14



not encrypt (see Section 2.3.1). This way, an adversary cannot know the contents of a transaction before

it is delivered by the protocol and therefore has no way to choose which transactions to try to censor.

Secondly, instead of using MVBA to realise ACS like its predecessor, HBBFT uses a combination of

reliable broadcast and binary agreement primitives. In particular, all nodes disseminate their proposals

using a reliable broadcast primitive, and, after receiving 𝑁 −𝐹 broadcasts, vote on the delivery of all 𝑁

proposals in 𝑁 instances of a binary agreement protocol – 1 if it was received, 0 otherwise. Afterwards,

all the proposals for which the corresponding binary agreement instance delivers 1 are delivered as the

result of the ACS protocol.

Despite this simpler approach to ACS being known for longer than MVBA, the reliable broadcast

primitive was too costly for it to be practical (𝑂(𝑁2 ∗ |𝑣|) bits sent per reliable broadcast, where |𝑣| is

the payload size). By leveraging a recent solution to reliable broadcast based on erasure codes, the

construction used in HoneyBadgerBFT becomes practical as it is asymptotically equivalent to a one-shot

broadcast in communication complexity (𝑂(𝑁 ∗|𝑣|)) for large enough payloads.

The authors evaluated HBBFT in a multi-region deployment on Amazon EC2, and measured a through-

put of over 20k tx/s on a 40 node deployment, and over 1.5k tx/s on a 104 node deployment. When

compared to PBFT, HBBFT was not only better able to sustain throughput, but was also CPU-bound,

whereas PBFT was network-bound. They note the loss in HBBFT throughput is due to the large number

of signature verifications (𝑂(𝑁2)), and the single-threaded implementation.

Additionally, they observed that HBBFT was able to operate in an extremely challenging environment

– the Tor network – where network latency is not only high, but also extremely variable. In an 8-node

deployment, with an average network latency of 12 seconds and variance over 2000 seconds, HBBFT

was able to sustain a throughput of over 800 tx/s without any additional tuning.

2.4.2 Dumbo-NG

Dumbo-NG is the latest work of a long line of research that stemmed from the original Dumbo proto-

col [23], which was itself an improvement on HBBFT. It is a state-of-the-art asynchronous TOB protocol

that aims to attain high throughput without significant latency sacrifices and be resilient to censorship.

The authors noted that the ACS framework split the bandwidth intensive proposal dissemination from

the latency-sensitive agreement, and that previous work focused on improving the efficiency of these

stages individually. Unfortunately, these earlier solutions sacrificed latency for throughput by relying on

large batch sizes, are prone to censoring transactions from the 𝐹 slowest nodes, demand more (po-

tentially limitless) computational resources, or asymptotically more rounds of communication to avoid

censorship. To address these issues, Dumbo-NG uses a design where multiple batches from the same

proposer can be decided in the same agreement round, and where any proposal from an honest node is

eventually delivered. The resulting protocol is similar to Alea-BFT (which we present in the next section),
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in that it also features concurrent proposal dissemination with agreement.

In this protocol, all nodes constantly disseminate proposals with a fixed batch size. Batches are

identified by the proposer node’s identifier and a sequence number – slot – assigned by the proposer.

To disseminate each batch, the protocol uses a form of Verifiable Consistent Broadcast (VCB). This

primitive relies on threshold signatures to ensure that two honest nodes never see different batches for

the same proposer-slot pair and to produce a proof of retrievability, that allows any node to verify that

a batch was disseminated to enough nodes to always be retrievable. As an additional optimisation, the

proof of retrievability is sent in the first message of the next broadcast.

Simultaneously, the always-running agreement component waits for new batches from 𝑁−𝐹 different

nodes before starting a new round. In each round, nodes use an MVBA primitive to decide what batches

are to be delivered. The input to this primitive is the last received slot from each node, accompanied by

the corresponding proofs of retrievability. The global predicate of the MVBA was fine-tuned to enforce

safety and liveness of the protocol: the output’s proofs of retrievability must be valid and the output

must contain new batches to deliver from at least 𝑁 −𝐹 proposers. Crucially, this MVBA primitive has

guaranteed quality: the probability of the decided value having been input by an honest node is 1/2,

which ensures that all correctly disseminated proposals are eventually delivered, since all correct nodes

eventually propose them to the MVBA.

However, it is possible for the agreement component to decide to deliver transactions that are not

yet available on all nodes, either due to bad network conditions, or to Byzantine proposers not fully

disseminating their batches. To solve this problem, the authors introduced an additional sub-protocol

that is used to request batches from other nodes. Nodes in need of help broadcast a CALLHELP message,

and receive in response HELP messages containing the required information to reconstruct the missing

transactions. It uses erasure coding and Merkle trees to keep communication complexity under control,

bringing each HELP message to 𝑂(1/𝑁) of the batch’s size.

The authors evaluated a single-threaded Python implementation of Dumbo-NG in an AWS deploy-

ment that spanned 16 regions. In this Wide Area Nework (WAN) setting, with 16 nodes, Dumbo-NG

achieved over 100k tx/s of throughput with a relatively small batch size (1k tx/batch), while maintaining

latencies of under 2 seconds. This stable latency as throughput increases was identified as one of the

key advantages of Dumbo-NG.

As batch sizes increased to 5k tx/batch, throughput peaked at over 150k tx/s, while latency increased

by less than 0.5 seconds. Previous work in the Dumbo family of protocols, which are also based on the

work of HBBFT, required much larger batch sizes to reach their peak throughput (over 10k txs per batch),

while suffering from much higher latencies (over 5 seconds in peak throughput), and never reaching the

throughput of Dumbo-NG.

The authors also investigated the performance of Dumbo-NG’s sub-protocols. They validated that
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their MVBA primitive’s performance (latency) did not depend on network bandwidth capacity, and that

their broadcast component could nearly saturate the network with small batch sizes.

Finally, they refer some important aspects that must be taken into account to make their prototype

implementation production-grade, and argue that strong validity is a crucial property for censorship re-

silience.

At a more practical level, we noticed in our experimental evaluation that this protocol requires a small

modification to make progress under low or uneven loads: honest nodes must occasionally broadcast

empty batches when they have no transactions to deliver, to ensure that other honest nodes that do have

undelivered batches are not perpetually stuck waiting for a new MVBA to start (which requires𝑁−𝐹 nodes

to have undelivered batches). Similarly, the broadcast of a batch only completes when the broadcast

of the next batch starts, due to their broadcast protocol piggybacking the batch’s signature in the first

message of the next broadcast, which also presents a liveness problem under low or uneven loads.

Occasionally broadcasting an empty batch also solves the liveness issue with Dumbo-NG’s broadcast

component.

2.4.3 Alea-BFT

Alea-BFT [1] is an asynchronous protocol, also based on the work of HBBFT, which aims to reap the

benefits of concentrating work on specific nodes while avoiding the performance penalty of over-reliance

on a leader. To this end, nodes locally order their proposed transactions in a queue, replicate it to other

nodes, and continuously agree on which queue’s head – if any – is to be delivered (globally ordered)

next. By leveraging this architecture, it is able to perform very close to the optimal asymptotic bounds

regarding time, message and communication (expected) complexity. Concretely, the protocol incurs an

expected time complexity of 𝑂(𝜎), expected message complexity of 𝑂(𝑁2 ∗𝜎), and expected commu-

nication complexity of 𝑂(𝑁2 ∗ (|𝑚|+𝜎𝜆)), where 𝜆 is the size of a threshold signature, |𝑚| the size of

a transaction, and 𝜎 the number of agreement rounds required for delivering a broadcast transaction,

which the authors argue is a very small constant, and close to 1 in practice.

The protocol is divided into two components: broadcast and agreement. The broadcast component

is responsible for appending new (batches of) transactions to the node’s queue, and managing local and

remote queue replication. Crucially, the broadcast component ensures that no two honest nodes see

different transactions in the same queue slot. The agreement component is responsible for deciding

when to deliver the head of each queue, using a consensus primitive.

We begin by presenting the two primitives used by Alea-BFT – VCB and ABBA 3 – followed by the

choice of common coin and, finally, how the broadcast and agreement components of the protocol are
3In the original description of Alea-BFT, Verifiable Consistent Broadcast (VCB) is abbreviated as VCBC and Asynchronous

Byzantine Binary Agreement (ABBA) as ABA. We use the new abbreviations throughout this document for consistency with the
terms used in the implementation.
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combined in Alea-BFT. This description of the protocol does not include the transaction deduplication

mechanism which is impractical to implement as described, since it relies on storing the full set of deliv-

ered transactions indefinitely.

2.4.3.A Verifiable Consistent Broadcast (VCB)

VCB is a protocol for one node – the broadcast leader – to send a message to all nodes. Despite not

guaranteeing that all correct nodes deliver the message when the leader is Byzantine, it does ensure

that all nodes that deliver a message deliver the same one. Additionally, correct nodes that deliver the

message can produce a succinct proof that allows other nodes to do the same safely and immediately.

Formally, a VCB protocol satisfies the following properties [34]:

• Validity If a correct sender broadcasts 𝑚, all correct nodes eventually deliver 𝑚.

• Integrity Correct nodes deliver at most once.

• Origin Integrity If a correct node delivers 𝑚, it was sent by the sender.

• Consistency If two correct nodes deliver 𝑚 and 𝑚′, then 𝑚=𝑚′.

• Verifiability If a correct node delivers 𝑚, it can produce a new message 𝑀 = (𝑚,𝜎) that it may

send to other nodes, such that any correct node that receives 𝑀 and hasn’t delivered anything can

safely deliver 𝑚.

• Proof Succinctness The size of the proof 𝜎 carried by𝑀 is independent of the size of the message

𝑚.

We will now describe the VCB protocol used by Alea-BFT. This description differs from the ones

presented by Antunes et al. [1] and Cachin et al. [34] in that it includes an optimisation for the ECHO and

FINAL messages. In the original description, every protocol message includes the broadcast value, which

is redundant as messages must be tagged with their unique VCB instance identifier. We instead only send

the broadcast value in the SEND message and assume all further communication refers to the broadcast

value contained in this message. With this optimisation, assuming the leader is honest, the broadcast

value is only sent once to each node. Note that VCB remains safe under the presence of Byzantine

nodes: the broadcast value included in the SEND message is the only acceptable value to use in any

further messages, and any messages that could have a different broadcast value in the original protocol

would already be rejected. The existing validation methods for the full threshold signature (broadcast by

the leader) and signature shares (sent by followers) are sufficient to detect and exclude nodes attempting

to sign a different broadcast value.
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Figure 2.1: Activity Diagram of the VCB Protocol used in Alea-BFT

This protocol relies on threshold signatures for directly enforcing several of the previously mentioned

properties, namely Consistency, Verifiability and Proof Succinctness. Note that, for simplicity, the broad-

cast leader also acts as a follower, and broadcasting a message to all nodes includes sending it to itself.

We present an activity diagram of this protocol in Figure 2.1.

The protocol begins with the leader sending <SEND, m> to all nodes (followers) containing 𝑚 – the

message to be broadcast. Upon receiving the SEND message, each follower node 𝑖 computes its threshold

signature share 𝜎𝑖 for 𝑚 and sends it to the leader in an <ECHO, 𝜎𝑖> message. Importantly, honest nodes

ignore any future SEND messages, ensuring that they never sign more than one message for the same

VCB instance.

Upon receiving at least 𝑁−𝐹 ECHO messages from different nodes, the leader reconstructs the thresh-

old signature Σ from the set of collected shares 𝜎, and sends it to all nodes in the form of a <FINAL, Σ>

message.

Finally, nodes eventually receive the FINAL message, verify that Σ is a valid signature for 𝑚, and

deliver 𝑚. The leader can bypass signature verification since it can trust itself to produce a valid one,

delivering 𝑚 immediately after broadcasting FINAL.

By relying on threshold signatures for consistency, the protocol achieves remarkable efficiency in com-

munication: it has linear message (𝑂(𝑁)) and communication (𝑂(𝑁|𝑚|)) complexity, and it terminates

in just three rounds of communication.

2.4.3.B Asynchronous Byzantine Binary Agreement (ABBA)

Binary consensus is a variant of consensus where the value to decide is a single bit – zero or one.

We specifically require an ABBA protocol: binary consensus that works in an asynchronous setting and

tolerates Byzantine faults.

Formally, binary consensus protocols guarantee the following properties [35]:

• Agreement If two correct nodes decide 𝑏 and 𝑏′, then 𝑏 = 𝑏′.

• Validity If all correct nodes input 𝑏, then any correct node that decides, decides 𝑏.

The previous list lacks a Termination property, which is crucial to any algorithm, particularly consen-

sus algorithms. If we were operating under partial synchrony assumptions, termination would mean that
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every correct node eventually decides, but Fischer et al. have proved this combination of requirements

impossible to satisfy. To circumvent the FLP impossibility [4] result with randomisation, termination is

reframed to be probabilistic [35]:

• P-Termination The probability that a correct node decides after 𝑟 rounds approaches one as 𝑟

approaches infinity.

We will now briefly describe the ABBA protocol used in Alea-BFT, which is the one from Mostéfaoui

et al. [35] with a fix for a liveness issue [36] also present on Cobalt’s binary agreement [37]. It provides

optimal fault resilience, and optimal expected asymptotic complexity in time (𝑂(1)), messages (𝑂(𝑁2))

and communication (𝑂(𝑁2𝜆), where 𝜆 is the overhead associated with the common coin). This protocol

relies on an 𝐹+1-strong common coin 𝜌, meaning its value can only be revealed after 𝐹+1 nodes (i.e.,

at least one honest node) attempt to sample it. Since we are interested in implementing this protocol, we

describe it from the point of view of a node and not the overall system (e.g., we refer to 𝑣𝑎𝑙𝑢𝑒𝑠𝑟 and not

𝑣𝑎𝑙𝑢𝑒𝑠𝑖𝑟, removing the reference to a specific node 𝑖). The protocol is represented as an activity diagram

in Figure 2.2. In this diagram color is used to group related functionality together. Additionally, there exist

multiple entry points (solid color circles) and a single dashed connection, which should be interpreted as

concurrently executing.

The Cobalt ABBA protocol progresses in rounds and can deliver before a value is input by a local

node. Delivery and termination happen after receiving a Byzantine quorum (at least 2𝐹 + 1 nodes) of

FINISH messages. Additionally, nodes help the protocol converge faster by helping to disseminate FINISH

messages from honest nodes by broadcasting <FINISH, b> after receiving it from 𝐹+1 nodes if the node

hasn’t sent any FINISH message already (refer to red sections in Figure 2.2).

Each ABBA round 𝑟 begins by broadcasting the current proposal 𝑒𝑠𝑡 in an INIT message, which

can be different from its original proposal after a round ends in a tie, to ensure the protocol eventually

decides. The set 𝑣𝑎𝑙𝑢𝑒𝑠𝑟 tracks which bits reach a Byzantine quorum of INIT messages for round 𝑟 and

is continuously updated during the entire round (refer to the green sections in Figure 2.2). Afterwards, the

protocol uses the AUX and CONF messages to confirm strong support for any single bit. If there is strong

support for bit 𝑏, 𝑒𝑠𝑡 is set to 𝑏. Furthermore, if this bit matches the result of sampling the common coin

for this round (𝑠𝑟 = 𝑏), the node broadcasts FINISH, if it hasn’t done so already, with bit 𝑏. Otherwise, if

we are tied between one and zero (i.e. 𝑣𝑎𝑙𝑢𝑒𝑠𝑟 contains both), we set 𝑒𝑠𝑡 to 𝑠𝑟 – the random value we

sampled earlier – which helps correct nodes converge to the same proposal. Lastly, a new round begins,

and all the state relating to the previous round may be discarded. Eventually, correct nodes converge to

the same proposal, and Byzantine nodes become unable to influence the execution of the protocol.
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Figure 2.2: Activity Diagram of ABBA Protocol used in Alea-BFT
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2.4.3.C Common coin

Alea-BFT realises the common coin required by the ABBA primitive using threshold signatures using the

protocol proposed by Cachin et al. [29].

In this protocol, every (honest) node signs a unique deterministically chosen bit string – the ”name”

of the coin – and broadcasts their signature share to other nodes. Afterwards, nodes reconstruct the full

signature from the received coin signature shares and obtain the coin’s value by passing the signature

through an unpredictable function that maps it into a single bit (0 or 1).

Aside from producing coin shares (threshold signature shares) and combining them, nodes must

disseminate their coin shares during each ABBA round at the time of coin sampling. To this end, each

node broadcasts an additional COIN message containing their share of the coin.

2.4.3.D Broadcast Component and Queues

The broadcast component of Alea-BFT manages each node’s queue, ensuring that queues are replicated

throughout the system and adding new batches of transactions to each node’s queue. Every queue

position (slot) is associated with an instance of the VCB sub-protocol and uniquely identified by the tuple

<𝑞, 𝑠>, where 𝑞 is the queue/node identifier, and 𝑠 the slot index in the queue. We will now describe the

two responsibilities of the broadcast component: queue replication and appending new batches to each

node’s queue.

Firstly, to replicate queues from remote nodes, each node listens to VCB protocol messages tagged

with <𝑞, 𝑠> and forwards them to the associated VCB instance. Then, when VCB instance <𝑞, 𝑠>

delivers a batch of transactions, it is added to queue 𝑞 in position 𝑠.

Secondly, nodes construct new batches to add to their respective queue. Each node 𝑖 waits for a fixed

number (the batch size) of new transactions and forms a new batch 𝑏𝑖𝑠 for slot 𝑠𝑖 in its queue, starting

from slot 0. Afterwards, the node inputs 𝑏𝑖𝑠 to the VCB instance <𝑖, 𝑠𝑖> – which it leads – adding 𝑏𝑖𝑠 to

queue 𝑖 on all (correct) nodes. Finally, the node increments 𝑠 and repeats this process. For simplicity,

nodes receive batches for their own queues by following the VCB instances that they lead.

In summary, this component extends the VCB primitive to 𝑁 ordered sets/queues of batches. It allows

every node to observe a consistent albeit possibly incomplete log of proposals for each node and ensures

that correct nodes eventually receive each other’s proposals.

2.4.3.E Agreement Component

The agreement component of Alea-BFT decides the delivery of batches of transactions. In every agree-

ment round, a previously agreed-upon queue selection policy chooses a node queue, and an instance of

ABBA decides whether to deliver the head of the said queue. Despite ABBA being a leaderless protocol,
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we refer to the owner of the chosen queue as the agreement round leader. The authors chose a round-

robin queue selection policy for their experiments, but they note that different policies are possible. The

protocol proceeds as follows for each round 𝑟.

Firstly, if a node has received the batch corresponding to an agreement round, it inputs 1 to ABBA

instance 𝑟. Otherwise, if it has not yet received the batch (due to network slowdowns or a Byzantine

proposer), it inputs 0 to ABBA.

Secondly, if ABBA-𝑟 delivered 1, the node delivers the corresponding batch, removing it from the

queue, and does nothing otherwise.

Thirdly, there is a crucial detail to consider when delivering batches: ABBA can decide to deliver

a proposal that a node will never receive – remember that the broadcast component only guarantees

dissemination of proposals from correct nodes, and note that nothing stops a Byzantine node from getting

its proposal ordered in the agreement component. If the batch to be delivered is not present, nodes

request it from others by sending a special FILL-GAP message to all nodes that have input 1 to ABBA,

containing the queue ID and the slot number of the missing batch. Any correct node that receives a

<FILL-GAP, 𝑖, 𝑠> message replies with a FILLER message containing the batch <𝑖, 𝑠>, if it has received

it.

In summary, the agreement component decides the delivery of proposed batches using a simple

binary consensus primitive and assures recovery from proposer faults.

2.5 Filecoin Hierarchical Consensus

Filecoin is a permissionless blockchain that aims to provide a fair, transparent, and decentralised data

storage market. Similarly to other public blockchains such as Bitcoin and Ethereum, Filecoin’s scalability

is hindered by consensus [2], which is limited by the existence of (temporary) forks in the blockchain,

requiring more time for nodes to converge [38]. In contrast, traditional BFT consensus performs well but

hasn’t seen use in permissionless blockchains due to its susceptibility to Sybil attacks [39].

To bridge this gap in performance, de la Rocha et al. proposed a hybrid approach: the Filecoin Hier-

archical Consensus (FHC) framework [2]. Rather than aggregating all transactions across the network

and running consensus over them, the authors propose a hierarchy of networks, where subnets (child

networks) can operate independently from their parent. Additionally, subnets are not bound by the rules

of the parent chain and can use any consensus protocol, including traditional BFT consensus.

However, partitioning a permissionless blockchain raises security concerns. If transactions are triv-

ially split among network partitions, honest users divide their resources accordingly across all network

partitions. By focusing their resources on a specific network network partition, an attacker can over-

whelm the partition, performing what is known as a 1% attack. In the context of FHC, this problem is
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sidestepped by isolating subnets from each other: users must move their on-chain resources to a subnet

to conduct transactions on that subnet, explicitly choosing to participate in it. Additionally, subnets are

regularly checkpointed to their parent network, adding the security guarantees of the parent network on

top of their own.

When choosing a real-world system to integrate Alea-BFT into, Filecoin emerged as the winning pick

due to the FHC initiative. Although FHC has not yet seen widespread use, it is under active development

from its creators and does not constrain our implementation, allowing for future code reuse and flexibility.
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In this chapter, we visit all aspects about our implementation of Alea-BFT, excluding optimisations,

which we present in the Chapter 4. We begin with an evaluation of various strategies considered for im-

plementing Alea-BFT. Afterwards, we present the framework upon which our Alea-BFT implementation

stands, summarise the various pre-existing components for said framework, and introduce the additional

supporting components that Alea-BFT uses. Finally, we describe the implementation of Alea-BFT’s sub-

protocols (VCB and ABBA), components (broadcast and agreement), and the new ”orchestrator” com-

ponent which coordinates said components.

3.1 Plan of Action

Our work aims to build and evaluate a production-ready implementation of Alea-BFT, and take steps

towards its integration in real-world systems. To this end, we had an initial set of desires for this new

implementation:

• Modularity and Testability Alea-BFT sub-protocols must be independent of the remaining com-

ponents, allowing for independent testing.

• Performance The overhead imposed by the implementation should be minimal. Protocol latency

should be dominated by the network and threshold cryptography.

• Constant Memory Usage The original Alea-BFT description does not cover how old protocol mes-

sages are garbage collected for simplicity. We wish to limit maximum memory usage to a predefined

constant, by restricting sub-protocol instantiation with a sliding window (see Section 3.4.2).

• Rust The Rust programming language [40,41] is known for its excellent performance and reliability,

and is seeing growing usage in the context of blockchain technology. We believe it is a good fit for

Alea-BFT.

• Real-World Applicability The implementation should be easy to integrate into FHC – a real-world

application for Alea-BFT.

Apart from Alea-specific concerns, distributed systems require various supporting components such

as a network stack for node communication. Despite FHC not imposing any particular requirement on

a subnet’s consensus protocol, it can be difficult to align Alea-BFT with Filecoin’s consensus, network

and other interfaces in practice. For this reason, we chose to first investigate how to integrate a new

consensus protocol into FHC, and use the resulting information to guide our implementation decisions.

In the next section, we summarise the results of this investigation.
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3.2 Integrating a New Consensus Protocol into FHC

To integrate a new consensus protocol into FHC, the Filecoin clients must be updated accordingly to

instantiate and use it. Lotus, one of the official Filecoin clients, was modified in an experimental ver-

sion to support FHC by Protocol Labs (the company behind Filecoin). Therefore, we focus our work on

integrating with this variant of Lotus specifically.

Despite Lotus being written in Go, using Rust was not initially discarded, as it has excellent support for

interfacing with other languages, and it is also possible to create a stub consensus module that delegates

all work to another process in the same machine, which can be coded in any language, namely in Rust.

We have identified three strategies for integration which we will now describe, ending on the chosen

strategy.

3.2.1 Direct Integration in Lotus

Firstly, it is possible to integrate with Lotus directly, by adapting Alea-BFT to work with its consensus

interface:

interface Consensus {
ValidateBlock(Context, FullBlock) (error)
ValidateBlockPubsub(Context, bool, Message) (ValidationResult, error)
IsEpochBeyondCurrentMax(ChainEpoch) bool
Type() ConsensusType
CreateBlock(Context, Wallet, BlockTemplate) (FullBlock, error)

}

Listing 3.1: Lotus Modular Consensus Interface [8]

This strategy allows for reusing the validation logic from existing implementations, leaving only open

the question of how Alea-BFT interacts with the CreateBlock method, which proposes a new block for

consensus.

However, it was not trivial to construct a Filecoin hierarchical consensus protocol from Alea-BFT, as it

was not immediately clear which properties (e.g., signatures) are required by Lotus for all (sub)chains, or

if some are specific to the main chain consensus protocol. Furthermore, this interface does not include

any mechanism to pass the stream of ordered blocks from the consensus protocol back to Lotus.

Since existing FHC integrations were already available in the Lotus code base, this strategy was

abandoned in favour of reusing existing integrations.
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3.2.2 Tendermint Interface

Tendermint [14] is a permissioned blockchain that uses a classic BFT SMR protocol. It was the first

permissioned blockchain to be integrated into Filecoin and its Lotus client. The authors of FHC opted to

reuse the existing production-ready Tendermint implementation and bridge it to the Lotus client through

its Remote Procedure Call (RPC) interface. Under this strategy, Tendermint would run in its own process,

co-located with Lotus. Lotus would submit blocks to the co-located Tendermint process and process the

stream of ordered blocks from Tendermint using the two existing RPC endpoints.

To integrate Alea-BFT into Lotus/Filecoin, we could completely reuse the existing Tendermint inte-

gration, changing the instantiation code to execute Alea-BFT instead. Our implementation of Alea-BFT

would implement the Tendermint interface for block submission and ordered block streaming, allowing it

to work with the existing integration with little to no changes.

Aside from nearly eliminating all integration work on Lotus’s side, this approach would allow us to

implement Alea-BFT in any language without adding complexity by leveraging the RPC endpoints as

well-defined abstraction boundaries.

Although we were initially interested in this approach, a new FHC integration emerged shortly after

(see Section 3.2.3), which led us to abandon the Tendermint approach. In hindsight, this was the right

decision since the Tendermint integration was abandoned and removed.

3.2.3 Trantor Modular SMR

After the success of the Tendermint integration, the Lotus developers experimented with integrating an-

other permissioned consensus algorithm – ISS [6]. Interestingly, ISS was implemented on Trantor [7], a

modular SMR system, which is itself implemented on Mir [5], a framework for building distributed systems

protocols. Rather than integrating ISS directly into Lotus, the authors focused on integrating Trantor itself,

allowing future consensus protocols implemented on top of it to be easily included in Lotus.

Mir/Trantor is modular, making it easy to embed in other systems, as long as they are written in Go

(like Lotus), and to facilitate tight integration to existing components – Trantor and Lotus share the same

network stack and cryptography. Although it is not yet production-ready nor thoroughly optimised, Trantor

boasts impressive performance: it attained a throughput of over 30k tx/s with 32 replicas distributed

across five continents.

With this in mind, we decided to implement Alea-BFT on top of Mir/Trantor, as it made integration

in Filecoin trivial and removed the burden of implementing several components, such as the network

stack and cryptographic signatures. However, this approach made us exclude the usage of Rust to

implement Alea-BFT, as the efforts it required (inter-process communication or in-process calls using a C-

compatible interface) negated the advantages of component reutilisation. We describe the Mir framework
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and Trantor’s components in detail in the next section.

3.3 The Mir Framework and Trantor

The Mir framework [5] enables fast development of distributed protocols by providing an event-driven

execution engine for an arbitrary set of modules, supporting tracing, debugging and fault-injection. Con-

cretely, it allows events to be intercepted for recording, replaying or modification before continuing to

their destination module. The capabilities of Mir are fully realised in Trantor, a modular SMR system that

was developed alongside Mir and includes components providing common services used in distributed

protocols such as communication, storage, and cryptography.

In this section, we describe not only the architecture of Mir but also the architecture of Trantor [7],

which provides a set of Mir modules with well-defined abstractions that together form an SMR system.

3.3.1 Overview

Figure 3.1: Mir Framework High Level Architecture [5]

The Mir framework was designed to implement distributed protocols and follows the conventional

distributed systems model, representing a system as a set of communicating nodes. Each node is an

independent Mir instance capable of communicating with the remaining nodes through messages over a

network. Inside each Mir node is an event loop (represented in Figure 3.1), continuously routing events to

and from local modules, which concurrently execute portions of the distributed protocol (or sub-protocols).

The event loop dedicates a Goroutine per module to forwarding events from the global event buffer to

the Goroutine’s corresponding module.

To aid debugging, Mir allows events to be intercepted before dispatch, allowing a debugger to record

a full trace or collect metrics of the current execution. Additionally, a debugger can inject events in a
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node, which allows it to step (deterministic) modules through execution states.

Although Mir only accepts a static set of modules, the runtime extracts a prefix of the destination

module identifier (up to the first module identifier path separator). This convention facilitates the existence

of module hierarchies and can enable dynamic module management.

3.3.2 Mir Modules

A Mir node is a set of modules that interact with each other through events, and where most modules

only generate events in response to incoming events – called Passive Modules in Mir. This property

greatly simplifies development as the interface of a passive module can be a single event application

function (see Listing 3.2) that produces an outgoing event list in response to incoming events. The Mir

event buffer receives outgoing events from a passive module through its dedicated event submission

Goroutine.

interface PassiveModule {
ApplyEvents(EventList) (EventList, error)

}

Listing 3.2: Mir Passive Module Interface [5]

In contrast, modules that interact with the outside world such as timers (which interact with the clock)

and the network module must be able to generate events at any time. Instead of an event application

function, Active Modules expose an event submission function (ApplyEvents) and an outgoing event

channel (returned by EventsOut) as seen in Listing 3.3. Unlike passive modules, active modules require

an additional Goroutine dedicated to forwarding events from their output channel to the Mir event buffer.

interface ActiveModule {
ApplyEvents(EventList) (error)
EventsOut() (chan EventList)

}

Listing 3.3: Mir Active Module Interface [5]

By moving non-determinism and interactions with the world to active modules, passive modules can

be modelled as fully deterministic state machines, allowing developers to test passive modules or repro-

duce bugs in simulated environments.

3.3.3 Dynamic Module Management (Factory Module)

In Mir, the root set of modules is fixed at the time of instantiation, but the runtime supports the notion

of sub-modules, allowing for dynamic module management. Mir/Trantor include a module designed for
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dynamic module management named Factory Module, which exposes an interface for explicitly creating

instances of a particular module (e.g., the PBFT protocol in the ordering component of ISS-PBFT). Each

instance of a sub-module is identified by a number.

The Factory Module also exposes an explicit mechanism for sub-module deletion. The sub-module

identifier is also its retention index, and the Factory Module’s garbage collection method allows a con-

troller module to remove all modules up to a given retention index.

Although dynamic module management allows for modular code, variance in sub-module instantiation

time across nodes may cause severe performance degradation. If a sub-module in a node sends mes-

sages to its counterpart in another node before the remote node instantiates it, messages are dropped

and then delayed by the nature of re-transmissions. To alleviate this issue, Factory Module instances

buffer incoming messages for sub-modules that are not instantiated and are ahead of the current retention

index (i.e., were not garbage collected).

However, buffering presents additional challenges, as buffers must be partitioned in order to avoid

one single node filling the hypothetical single buffer with (potentially bogus) messages. Additionally,

choosing the size of a buffer is a problem on its own, as different modules have different communication

characteristics. Furthermore, modules can fully eliminate redundant message information by merging

message data into their state, by leveraging module-specific communication properties. We present a

different approach to dynamic module management in Section 3.4.2, which drops buffering in favour of

automatic module instantiation and sidesteps these issues.

3.3.4 DSL Modules and Code Generation Facilities

Creating a Mir Module can be a tedious process, as it requires writing long multiplexing switch statements

that peel away the hierarchy of event types and intricate state management to retain context in request-

reply-style inter-module communication (e.g. to request the hasher to hash a value and receive the hash

back). Additionally, Mir authors wished to express modules in terms of upon rules, not only to facilitate

implementing an algorithm but to ease the analysis of implementation correctness.

To ease module creation and enhance expressiveness, Mir authors built the Domain-Specific Lan-

guage (DSL) module – a passive module with configurable logic and context storage – and facilities for

generating specialised upon rule builders and event emitters from event definitions for use with DSL mod-

ules. To facilitate request-reply-style communication, the corresponding events include an origin field that

refers to a stored context object in the requester DSL module instance. This field is used by event emit-

ters and upon rule builders to store/retrieve arbitrary context objects for events marked as requests and

replies, respectively. Furthermore, DSL modules accept special batched state update handlers, which

the module triggers after processing a complete batch of events.
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3.3.5 Trantor SMR System

Trantor [7] is a practical modular SMR system realised as a set of modules in Mir, encompassing not

only the tasks strictly needed for replication but also checkpointing, garbage collection and online system

reconfiguration. Although it currently implements a protocol similar to ISS-PBFT [6] (everything apart from

transaction deduplication), Trantor modules can be switched out for replacements from other consensus

or TOB protocols as long as they conform to the modules’ event-based interfaces.

Applications that want to leverage Trantor only need a corresponding Mir module supporting the inter-

action in Figure 3.2. Trantor restores the application’s state from the checkpoint when it is too far behind

the known most recent state and constantly provides an ordered stream of batches of transactions. Oc-

casionally (between epochs), Trantor requests new configurations from the application to apply and a

state snapshot to create a checkpoint.

Figure 3.2: Trantor Application Interaction [7]

3.3.5.A Architecture

We will now describe the architecture of Trantor, referencing the diagram in Figure 3.3, which presents

all Trantor Mir modules and their connections. The four modules in the lower section of the diagram

(Networking, Timer, Hashing and Crypto) are used extensively by all others, and we omit any connections

to them for simplicity. Modules highlighted with red (Application, Proposal Validator) are meant to be

implemented by the SMR system leveraging Trantor with their custom logic. Modules highlighted with

green (Availability, Ordering, Orchestrator) are those we expect to be customised for a specific TOB

protocol, and thus our focal point when implementing Alea-BFT.

Trantor splits SMR into five logical stages (numbered in the diagram):
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Figure 3.3: Trantor Architecture (based on original architecture diagram from [7])

1. Mempool, which aggregates client transactions into batches.

2. Availability, which disseminates batches across the system and produces proofs certifying batches

are present in enough replicas to ensure the batch is available for fetching from an honest node.

3. Ordering, which is a TOB protocol, responsible for ordering dissemination proofs (from the previous

stage).

4. Fetching, which, given ordered dissemination proofs, fetches the corresponding batches of trans-

actions from local node storage or other nodes if they are missing (e.g., due to a faulty proposer).

The Batch Fetcher module additionally filters out duplicate transactions based on a client identifier

and a client-controlled counter (transaction number) and serialises delivery of new batches with

snapshot requests for checkpointing.

5. Execution, which corresponds to the business logic specific to a particular SMR system (imple-

mented by the Application module).

However, these five stages are not sufficient to realise SMR in practice, and several supporting mod-

ules are required:

• BatchDB stores transactions durably.1

• Checkpointing creates checkpoints of system/protocol/application state.
1Currently, BatchDB only has an in-memory implementation.
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• Proposal Validator validates proposals from other nodes with application-specific logic. It is op-

tional and not implemented within Trantor (interface only).

• Checkpoint Validator validates checkpoints from other nodes. The choice of checkpoint validator

is dictated by the choice of checkpointing implementation.

• Networking sends/receives messages to/from other nodes over the network.

• Timer allows other modules to emit events on a fixed interval or after a timeout.

• Hashing hashes arbitrary data.

• Crypto generates and validates digital signatures.

Crucially, checkpoints make garbage collection of old sub-protocol instances possible. Since check-

pointing and garbage collection involve most components, a special Orchestrator module coordinates

most interactions between modules, ensuring operations are adequately synchronised. The Orchestra-

tor module in Trantor manages the transaction log, a sequential list of transactions that captures the state

transitions for the application state machine. It is equivalent to the state machine since it can reconstruct

the application state by applying all its transactions in order. This log is identical across all nodes except

for entries at the end of the log that may not yet be present on some nodes.

Practical applications of SMR must be bound in memory usage, meaning the transaction log must

not grow indefinitely. To enable garbage collection of the transaction log, the Orchestrator occasion-

ally checkpoints the application state and replaces a prefix of the transaction log with the checkpoint.

It additionally instructs other Trantor components, such as the BatchDB, to delete data related to old

transactions.

In Trantor, the transaction log is divided into epochs, and an epoch length is a certain number of trans-

actions fixed at the beginning of the epoch. After the transaction log accumulates enough transactions,

the current epoch ends and a checkpoint process begins. During this process, the Orchestrator requests

a state snapshot and a new system configuration from the application, which are identical across all hon-

est nodes. The resulting checkpoint certificate allows any node in the system to fast-forward to the valid

state captured in the checkpoint.

However, removing old transactions presents a problem for nodes lagging behind the rest of the

system, as they might get stuck in an old state. The Orchestrator module also oversees the recovery

process for nodes that lag behind the rest of the system. It keeps track of other nodes and dispatches the

latest checkpoint to those that fall behind. It also receives and applies incoming checkpoints that refer to

a more recent version of the transaction log, coordinating the process with other Trantor components.
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3.3.5.B Integration with other systems

Trantor’s loosely coupled modular architecture makes it easy to embed in other systems. Each module

has a well-defined interface, allowing it to be swapped for a compatible implementation.

In the case of Filecoin/Lotus, Trantor is configured with adapters for Lotus’ mempool, networking stack

and cryptography stack.

In the case of Alea-BFT, our attention is focused on the Ordering and Availability modules, which are

akin to Alea-BFT’s agreement and broadcast components, respectively. Since these components have

tighter coupling in Alea-BFT than in ISS, we also built a separate Orchestrator module better adapted to

our needs. Alea-BFT also requires additional supporting components, such as threshold cryptography,

which we describe in the next section.

3.4 New Supporting Modules

While Trantor already includes a network stack and a cryptography stack, it lacks support for threshold

cryptography. Furthermore, we considered some of the existing abstractions too limiting for real-world

usage, particularly those related to dynamic module management.

In this section, we present the new supporting modules added to Trantor and describe the additions

to existing Trantor modules that made the integration of Alea-BFT possible, of which we highlight a more

efficient abstraction for dynamic module management that we developed to replace the existing Factory

Module – the Modring.

3.4.1 Threshold Signatures

Alea-BFT requires threshold signatures to realise its common coin and the VCB sub-protocol. Similarly to

the exiting crypto module, we developed a threshcrypto that adapts any threshold signature backend

conforming to a standard Go interface into a Mir module with an event-based interface. We begin by

presenting the new interface for threshold signature backends, then briefly describe the threshcrypto

module, summarise the various developed implementations for this interface, and finish by introducing a

reusable primitive for collecting signature shares and computing the full signature in other Mir modules.

The threshold signature backend interface expected by the threshcrypto module (Listing 3.4) is iden-

tical to its counterpart for digital signature in the crypto module as both contain methods for creating and

validating signatures. However, threshold cryptography splits the private key into shares, only permitting

the creation of signature shares. Therefore, the interface for threshold cryptography accordingly exposes

a method for creating signature shares (SignShare) rather than (full) signatures, and verification methods

for both kinds of signature (VerifyShare and VerifyFull). Additionally, threshold cryptography requires
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the ability to recover the full signature from shares, for which the Recover method, not present for regular

cryptography, is used. Furthermore, we opted to represent signature shares and full signatures with dis-

tinct types rather than regular byte slices to avoid confusion between full signatures, signature shares,

and data to be signed.

type SigShare []byte
type FullSig []byte

interface ThreshCrypto {
// Creates a signature share for the provided data using the current node's
// private key.
SignShare(data [][]byte) (SigShare, error)

// Validates a signature share for the provided data against a group member's
// public key.
VerifyShare(data [][]byte, signatureShare SigShare, nodeID NodeID) error

// Guaranteed to succeed, recovering a full signature, when signatureShares
// contains at least <threshold> signature shares created with SignShare for
// the same data by different nodes.
Recover(data [][]byte, signatureShares []SigShare) (FullSig, error)

// Validates a full signature for the provided data against the group public key.
VerifyFull(data [][]byte, signature FullSig) error

}

Listing 3.4: Threshold Cryptography Interface

The threshcrypto module itself is also identical to the crypto module. It defines two events for each

interface method: one for requesting the cryptographic operation, containing the corresponding method

arguments, and another to deliver the result of the operation, containing the corresponding method re-

turn value(s). All value conversions between event and interface argument/return types are trivial apart

from the data argument: this value is hashed using a cryptographic hash function (SHA256) before be-

ing passed to the crypto/threshcrypto backend. This transformation is not necessary but increases

consistency in the duration of cryptography operations by compressing the data to be signed into a

constant-size digest.

Finally, we developed three different backends for the threshcrypto module: dummy, tbls and tbls-

herumi. All backends are initialised with the threshold of nodes required to compute a full signature,

and, similarly to the crypto backends, may be instantiated with deterministic pseudorandom keys. This

deterministic instantiation enables distributed test deployments without the challenges of key distribution.

Regarding the backends themselves, the dummy backend is meant to accelerate tests and performs no

actual cryptography: it returns a single fixed signature/signature share and only accepts this fixed value

as valid for all data.
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The remaining two backends – tbls-kyber and tbls-herumi – implement BLS12-381 threshold sig-

natures. While both BLS backends are adequate for our use case (and even rely on the same crypto-

graphic construction), performance problems initially attributed to cryptographic operations prompted us

to replace the tbls-kyber backend, a Go library [42] used in a real-world system, that appeared to intro-

duce allocation-related overhead. Its tentative replacement – tbls-herumi – uses a C/Assembly-based

library [43] and therefore does not stress the Go garbage collector. Despite the difference in perfor-

mance being minor, we valued the consistent duration of cryptographic operations and decided to use

tbls-herumi as our main backend.

The threshcrypto module, including the dummy and tbls backends, was already contributed back to

the original Mir/Trantor code base [44].

3.4.1.A Threshold Signature Aggregator

Constructing threshold signatures is significantly more complex than regular digital signatures, as they re-

quire collecting a set of signature shares, and only then combine them into the full signature with Recover.

Additionally, the presence of Byzantine nodes complicates the recovery process, introducing share veri-

fication requirements and potentially requiring multiple calls to Recover. Furthermore, the process lends

itself to optimisation, particularly regarding signature share verification. To abstract away threshold sig-

nature creation and its relevant optimisations, we created a reusable construct that performs this task

and can be applied to any Mir DSL module (Section 3.3.4).

The initialisation of the threshold signature aggregator requires two parameters: the threshold of

nodes required to compute a full signature and a function that fetches the data to be signed. This func-

tion can temporarily return nil until the data to be signed is ready. However, it must eventually return

(non-nil) data to be signed and must return the same data in subsequent calls.

The aggregator exposes two operations: Add and FullSig. A user of the aggregator calls Add re-

peatedly to input signature shares into the aggregator, along with the ID of the node that produced each

share. Eventually, enough shares will be input, the signature is reconstructed, and then it can be retrieved

with FullSig. Before the signature reconstruction is finished, FullSig returns nil. Since the creation of

signature shares is already accomplished with a single operation, and their dissemination varies widely

between use cases, we explicitly leave these steps out of the aggregator’s scope.

The exact details of the algorithm for threshold signature reconstruction are presented in Section 4.4,

along with its relevant optimisations.

3.4.2 Modring

Dynamic module instantiation in Mir relies on special modules that instantiate and manage other (sub-

)modules, where the parent must explicitly forward events to its children. While the Factory Module
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included in Mir already allows for dynamic module instantiation, it relies on buffering incoming messages

for sub-module instances that were not yet created. However, due to its generic nature, Factory Module

instances cannot avoid buffering redundant messages, as it is oblivious to the communication properties

of the instances they manage. Furthermore, they buffer messages for any sub-module ahead of some

retention index, despite many applications (e.g., Alea-BFT’s Broadcast and Agreement components,

or ISS’s orderer factory module) only being interested in a small contiguous subset where each node

expects the system to be operating.

To address these challenges, we focused on applications with a small contiguous set of sub-module

instances of interest, and devised a new abstraction for dynamic module management based on a fixed-

sized sliding window, which we call Modring. Rather than buffering messages or events for not-yet-

created sub-module instances, Modrings instantiate sub-modules as needed or drop messages/events if

the destination instance is too far ahead of the current window. This approach also facilitates controlling

resource usage in the node and tuning tolerance to network delays. By sizing the window larger than

required, we expect nodes to remain reasonably synchronised in the presence of latency fluctuations

at the cost of increased resource utilisation. Concretely, we expect sub-module instances retained in

the window’s first slots to help slow nodes catch up and the instances in the last slots to accumulate

messages from faster nodes.

Additionally, the Modring exposes methods for detecting and recovering nodes lagging too far behind

the rest of the system, particularly nodes stuck in windows of sub-module instances that can no longer

make progress (because they were already freed in other up-to-date nodes). To detect stale nodes,

Modring exposes incoming messages directed at freed sub-module instances, allowing up-to-date nodes

to notice attempts to make progress in freed instances. To recover stale nodes (e.g., after the stale node

receives a checkpoint message), Modring allows nodes to force their window to move to an arbitrarily

distant future state.

In the remainder of this section, we present the lifecycle of sub-module instances within a Modring

and how it interacts with the operating window, followed by Modring’s control interface.

3.4.2.A Sub-module Instance Lifecycle and Operating Window

In a Modring, sub-module instances are automatically created but manually freed. However, sub-module

instantiation is limited by a sliding window called the operating window – only sub-module instances inside

the operating window can be created. This window has size Size, starts in position 0, and automatically

advances as sub-module instances are freed. We will now describe in detail the lifecycle of a sub-module

instance within Modring, referencing the state transition diagram in Figure 3.4.

Initially, nearly every sub-module instance is ahead of the current operating window – the ”Future”

state – where events directed to the instance are dropped. When a sub-module instance enters the op-

38



Figure 3.4: Modring sub-module instance 𝑖 (𝑆𝑀𝑖) State Transition Diagram

erating window – the ”Current” state – the Modring begins forwarding events directed at it. Eventually,

”Current” sub-module instances are marked as past, leaving the current operating window and transi-

tioning to a ”Past” state. In this situation, Modring ceases forwarding events to them (except for ”Past

(Live)” sub-module instances, as we describe in the next section).

However, sub-module instances are lazily created and freed, which results in ”Current” and ”Past”

states having two variants: ”Live” and not live (”Current (Pending)” and ”Past (Freed)”). ”Current” module

instances start in the ”Current (Pending)” state and transition to the ”Current (Live)” state when they are

initialised. This initialisation is triggered by the first event directed at the sub-module instance while in the

”Current (Pending)” state, which causes the Modring to create the new instance using the Generator. Re-

garding freeing of sub-module instances, ”Current (Live)” instances initially transition to the ”Past (Live)”

when marked past and are only freed (transition to ”Past (Freed)”) once a ”Current (Pending)” instance

being created requires them to. Concretely, Modring stores live sub-module instance metadata in a ring

buffer and defers freeing ”Past (Live)” instances to the moment when their slot in the ring buffer is re-

quired for another (”Current (Pending)”) instance. Note that sub-module instances may be marked as

”Past” while other instances behind them are still in ”Current” or ”Future” states, forcing their metadata to

be stored in the ring buffer and potentially freeing ”Past (Live)” instances in their slots.

3.4.2.B Modring Control Interface

Unlike the Factory Module, which is controlled through Mir events for sub-module instance creation and

freeing, Modring exposes an interface based on regular function calls. We designed this interface to be

used from an arbitrary controller module, which interacts with the rest of the system using regular Mir

events and can use any logic to control the Modring. To facilitate this pattern of partitioning controller

and children modules, we created a new abstraction – RoutedModule – which forwards incoming events

to a controller module in case they are directed at the root, or to another module (in this case the

Modring) in case they are directed to the children. To avoid complexity in sub-module instance lifecycle

management and synchronising Modring internal structures, all controller events are processed before

children events.

A Modring is initialised with the following parameters:
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• Size – the maximum number of concurrent sub-module instances at any given time.

• Generator – a function that creates a new sub-module instance given its identifier, and a list of

events to be emitted at the time of creation.

• CleanupHandler – a function that is called whenever a sub-module instance is freed. It accepts

the sub-module instance identifier, and returns a list of events to be emitted by the Modring.

• PastMessageHandler – a function that is called when messages are received for sub-module in-

stances that are behind the current working window. It returns a list of events to be emitted by the

Modring.

• ModuleID – the root of the sub-module hierarchy managed by the Modring.

The operations exposed by the Modring are as follows:

• AdvanceViewToAtLeastSubmodule(p) -> () – Marks all modules up to position 𝑝 − 1 as Past,

leaving the operating window starting in sub-module instance 𝑝.

• FreePast() -> EventList – Frees all Past sub-modules that are still live. Returns events gener-

ated by CleanupHandler for each freed sub-module instance.

• MarkSubmodulePast(p) -> EventList – Marks sub-module instance at position 𝑝 as past. This

may free a live instance 𝑝′ in a position previously marked as past. In that scenario, this operation

returns the events generated by CleanupHandler for instance 𝑝′

• IsInView(p) -> {True, False} – Checks if sub-module instance 𝑝 is inside the operating win-

dow.

• IsInExtendedView(p) -> {True, False} – Checks if sub-module instance 𝑝 is live or inside the

operating window.

• MarkPastAndFreeAll() -> EventList – Marks all sub-module instances as past, and frees all live

instances (returning their respective CleanupHandler events).

3.4.3 Snooze Net

Mir/Trantor includes a network stack based on Transport Control Protocol (TCP) (TLS/Noise if the net-

work is untrusted) and a variant of stubborn channels [45]. Together, they guarantee message integrity

and eventual delivery, albeit with the possibility of message duplication. However, it requires that all mod-

ules buffer or process all incoming messages to guarantee eventual delivery. This requirement is hard

to satisfy in practice (node resources are limited) and impossible in the context of Modrings, which drop
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incoming messages outside of their operating window by design. Additionally, the current network stack

includes a buffer for outgoing messages, whose size must be carefully chosen to preserve the eventual

delivery guarantee: if the buffer is too small, the network stack may drop outgoing messages. To ad-

dress both of these issues, we developed a new module – Snooze Net2 – that allows nodes/modules

to drop incoming messages, by automatically re-transmitting them until they are (implicitly or explicitly)

acknowledged. Concretely, Snooze Net wraps the existing network module with a similar variant of stub-

born channels, enqueueing messages separately and re-transmitting them until they are acknowledged,

guaranteeing that they are eventually delivered successfully to their destination module.

Snooze Net is initialised with two parameters: the maximum number of messages re-transmitted in

one go (MaxRetransmissionBurst) and the interval of re-transmission (RetransmissionLoopInterval).

It exposes an event-based interface, shown in Listing 3.5 as Golang-formatted pseudo-code, which in-

cludes events for sending messages, acknowledging messages, and marking messages as received. In

particular, sending messages is similar to the net module with the addition of a CustomID, which uniquely

identifies a message when combined with the IDs of the destination module and destination node. The

choice of custom message ID is specific to each module and is often discernable from context. Therefore,

it is not sent across the network by default and must be passed in all Snooze Net operations.

Regarding resource usage, Snooze Net’s re-transmission queue size must be bounded. This is ac-

complished by limiting the number of destination-ID pairs that can be scheduled for re-transmission. Note

that Snooze Net’s resource usage in each node is bounded by the maximum number of destination-ID

pairs that can be scheduled for re-transmission. By combining Snooze Net with Modrings and protocols

that require a limited number of message types (custom IDs), the re-transmission queue size is bounded

by design.

In the following sub-sections, we specify how messages are re-transmitted and acknowledged.

3.4.3.A Re-transmission

Snooze Net’s re-transmission mechanism differs from protocols like TCP because the underlying channel

is already stubborn. Therefore, it focuses on re-transmitting messages that were received but not pro-

cessed by their destinations (messages left unacknowledged). Additionally, Modring window sizes are

expected to be large enough to dampen the effects of network latency spikes, further minimising the need

for re-transmissions. Therefore, we expect re-transmissions to be required only when a node lags far

behind the rest of the system. Considering this expectation, Snooze Net re-transmits a small fixed num-

ber of messages (MaxRetransmissionBurst) at a configurable interval (RetransmissionLoopInterval),

which is set to a value much larger than the expected network latency (e.g., several seconds).
2Snooze Net is named Reliable Net in the code base because it was initially developed to circumvent a reliability bug in the Mir

network stack.
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type CustomID string

interface SnoozeNet {
// Each method corresponds to a Mir Event that Snooze Net can process as described.

// Sends message msg to all nodes in destinations, queueing it for re-transmission
// to each destination until they acknowledge it.
// Note: destination module ID is a property of msg
SendMessage(msg Message, id CustomID, destinations []NodeID)

// Sends acknowledgement of message identified by (destModule, id) to sender.
Ack(destModule ModuleID, id CustomID, sender NodeID)

// Marks message identified by (destModule, id) as received by nodes.
MarkRecvd(destModule ModuleID, id CustomID, nodes []NodeID)

// Marks messages directed to destModule and its sub-modules as received by nodes.
MarkModuleMsgsRecvd(destModule ModuleID, nodes []NodeID)

// Executes re-transmission routine.
// Re-transmits up to MaxRetransmissionBurst messages that were enqueued for
// re-transmission before the last execution of the re-transmission routine and
// reschedules the routine for execution if the queue is not empty.
Retransmit()

}

Listing 3.5: Snooze Net Event Interface

We now describe the re-transmission routine, which is only scheduled when required. Concretely,

whenever the message queue becomes non-empty and the re-transmission routine is not scheduled for

execution, the timer module is configured to signal the Snooze Net module with the Retransmit event

after RetransmissionLoopInterval time. The re-transmission routine (triggered by Retransmit) first

checks if the queue is empty. If so, all messages were acknowledged, the routine registers that it is

no longer scheduled for execution and exits. Otherwise, there are unacknowledged messages, and the

routine re-transmits up to MaxRetransmissionBurst messages, considering only those that were added

to the queue before the last execution of the routine to avoid needless re-transmissions. This operation

advances a cursor in the re-transmission queue, which controls the next set of re-transmitted messages,

ensuring that all queued messages are eventually re-transmitted. Note that the cursor circles back to

the beginning of the queue when it reaches the end of the queue. Finally, the re-transmission routine

reschedules itself for execution using the timer module.

Despite the low rate of re-transmissions, the current implementation does not consider network con-

ditions and may completely fill the net module outgoing message buffer, preventing other (more recent)

messages from being sent. To combat this, Snooze Net could be integrated into the net module, which

entails refactoring the net module to be generic over the underlying transport library (libp2p or gRPC).
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Furthermore, re-transmissions have no concept of priority and may occupy the network with messages

that are not critical to system progress, inflating its latency. Resolving these issues is a significant under-

taking and is left for future work.

3.4.3.B Acknowledging a Message

Snooze Net supports both explicit and implicit message acknowledgements. Explicit acknowledgements

are sent using the Ack event, which prompts Snooze Net to send an acknowledgement message to the

sender node, carrying the unique identifier of the message being acknowledged. Snooze Net handles

these explicit acknowledgement messages directly, removing the acknowledged message from the re-

transmission queue.

Implicit acknowledgements allow acknowledgements to be piggybacked on existing protocol mes-

sages. After a module receives a message that implicitly acknowledges the previously sent message, it

can tell Snooze Net to mark messages as acknowledged using MarkRecvd. Additionally, all messages

with a given destination module prefix can be marked as acknowledged using MarkModuleMsgsRecvd,

which is used by Modring controllers to clear all messages from a freed module from the re-transmission

queue. SnoozeNet indexes queued messages by destination module to ensure MarkModuleMsgsRecvd

is computationally efficient.

3.4.4 Threshold-Signature-based Checkpointing

Trantor already includes a checkpointing protocol, which collects signatures from a quorum of nodes on

a summarised representation of the application state. However, this approach results in different nodes

potentially having different views of the checkpoint signers, which Trantor/ISS solves with an additional

instance of consensus to decide the set of signatures included in the checkpoint.

To avoid this instance of consensus, we created a variant of Trantor’s checkpointing implementation

using threshold signatures. Rather than sending a checkpoint signature to all nodes, each node sends

a signature share to all other nodes, and the threshold signature is reconstructed from the shares. Since

the original protocol required ⌈𝑁+𝐹+1
2 ⌉ signatures (a Byzantine quorum), we decided to require an equal

threshold of ⌈𝑁+𝐹+1
2 ⌉ shares in the threshold signature cryptosystem. However, future exploration may

be able to lower this bound to 𝐹+1, as all correct nodes hold the same application state.

3.5 Verifiable Consistent Broadcast (VCB)

The VCB protocol used by Alea-BFT’s broadcast component (see Section 2.4.3.A) was realised as a Mir

module that can be instantiated multiple times and, in particular, supports concurrent instances of VCB.
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Since VCB has the leader of the broadcast also act as a follower, the VCB module encapsulates the

behaviour of both leader and follower nodes, conditionally enabling leader behaviour when the leader ID

matches the current node ID. This module requires three parameters for initialization: the ID of the VCB

instance (included in data to be signed), the set of participating nodes, the ID of the leader node, and the

ID of the current node. Similarly to other Mir modules, it exposes an event-based interface consisting of

the following events:

• InputValue (leader-only, inbound) – provides input to the VCB instance. For efficiency reasons, this

event accepts both the list of transactions to be broadcast and the list of corresponding transaction

IDs. The transaction IDs are computed by the mempool module and are required for computing

the VCB threshold signature. However, the mempool already provides the transaction IDs when

delivering a new batch, so the VCB module allows the invoker to pass them and avoid redundant

work.

• Deliver (outbound) – conveys the result of the broadcast to the parent module. Includes the stored

batch ID, the threshold signature, and the ID of the VCB module emitting the event.

Note that the VCB module ID allows the parent module to distinguish between different VCB in-

stances. In the case of VCB, followers deliver a broadcast without any input, rendering the Mir DSL

module’s request-reply helpers (Section 3.3.4) useless in this situation.

• QuorumDone (leader-only, outbound) – signals that ⌈𝑁+𝐹+1
2 ⌉ nodes indicated they completed the

broadcast. In particular, this also implies that at least 𝐹 +1 correct nodes received the broadcast

value. In the context of Alea-BFT, VCB leaders must wait for this event before freeing the broadcast

instance to ensure the corresponding queue slot to this broadcast is eventually delivered. Addition-

ally, it is used for VCB duration estimates, which is useful for a set of optimisations that we describe

in Section 4.3.

• AllDone (leader-only, outbound) – signals that all nodes indicated they completed the broadcast.

It is used for VCB duration estimates, which, again, are used by our optimisations explained in

Section 4.3.

The VCB module closely follows the protocol description, with the following key differences:

• After the FINAL message is processed, followers reply to the leader with a new DONE message.

Furthermore, FINAL messages are immediately replied to with DONE.

The leader registers the reception of DONE messages to emit QuorumDone and AllDone events at

their appropriate moments.

• Network communication is realised with Snooze Net. Leader SEND messages are implicitly ac-

knowledged with ECHO messages, which are in turn implicitly acknowledged by the leader’s FINAL
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message. The leader’s FINAL message is implicitly acknowledged by the new DONE message, which

bypasses Snooze Net and thus does not require an acknowledgement.

• The broadcast value (input to the leader or received via the leader’s SEND message) undergoes

a pre-processing step before any cryptographic operations are performed, that ensures the batch

is stored in the BatchDB and the threshold signature data is computed. This step is detailed in

Section 3.5.1.

• The threshold signature reconstruction from shares in the broadcast leader uses the mixin pre-

sented in Section 3.4.1.A.

Regarding the storage of the broadcast value, the BatchDB module demands a retention index for

each batch, which controls when the batch is deleted. However, Alea-BFT is asynchronous and, even

after adding a checkpointing mechanism, requires batches to be retained for an indefinite period until

they are delivered. Therefore, the retention index is initially set to infinity by the VCB module and the

invoker is responsible for modifying the retention index of the batch to allow the BatchDB to eventually

free it.3

However, this introduces the possibility of a resource leak under the presence of a Byzantine leader.

Concretely, a Byzantine leader may send bogus signatures to a small portion of the nodes, causing

the VCB instance to fail and storing a broadcast value that may never delivered. Since the broadcast

value is never delivered, the parent module cannot modify its retention index, and the batch is never

deleted. The solution to this problem is not trivial. In the context of Alea-BFT, freeing the batch of a

failed VCB could lead to a race condition with the recovery mechanism (FILL-GAP/FILLER). Even if the

parent module or the VCB instance could modify the retention index to free the batch, the Byzantine

leader can follow protocol with the remaining nodes, potentially causing the batch to be deleted before it

is delivered on the nodes that received the bogus SEND message. A tentative solution to this problem is

introducing reference counting to the BatchDB module, allowing batches to be freed upon cleanup of their

corresponding incomplete/failed VCB instance only when not in use by other components. Additionally,

this problem suggests that dynamic module instantiation helpers (such as the Modring or the Factory

Module) should allow sub-modules to specify custom cleanup actions.

We developed and executed a small simulation-based unit-test for this implementation of VCB to

validate it under a multi-node fault-free scenario.

3.5.1 Broadcast Value Pre-Processing

The broadcast value pre-processing mixin is responsible for persisting the batch and computing the VCB

threshold signature data. It interacts with the VCB module through two methods: Input – which provides
3We made a small modification to BatchDB module to allow for the retention index to be modified on stored batches.
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the transactions (and, if already computed, their IDs) being broadcast – and SigData – which retrieves

the data to be threshold-signed. Initially, SigData returns nil until the pre-processing routine concludes,

at which point it returns the data to be signed. This mixin is shared by both leader and follower logic,

ensuring that leader nodes (which also act as followers) do not perform the pre-processing routine twice.

Furthermore, this mixin prepends a unique string (the VCB instance ID) to the data being threshold-

signed, to prevent replay attacks. This instance ID is built by concatenating a system-wide instance ID

and the module ID corresponding to the VCB instance.

Figure 3.5 presents an activity diagram detailing the routine, including the conditions upon which

Input is called. Concretely, it enlists the help of the Mempool module to compute the transaction IDs,

then the ID of the batch, and finally asks the BatchDB module to store the batch. After BatchDB stores

the batch, the routine computes the threshold signature data and makes it available to the VCB module

in its SigData method.

Figure 3.5: VCB Broadcast Value Pre-Processing Activity Diagram

3.6 Asynchronous Byzantine Binary Agreement (ABBA)

The ABBA protocol used by Alea-BFT’s broadcast component (see Section 2.4.3.B) was realised as a

Mir module that can be instantiated multiple times and, in particular, supports concurrent instances of

ABBA. This module requires three parameters for initialization: the ID of the ABBA instance (included in

the name of the coin), the set of participating nodes and the ID of the current node. Similarly to the VCB

module, it uses Snooze Net for network communication with explicit acknowledgement messages and

exposes an event-based interface consisting of the following events:

• InputValue (inbound) – provides input to the ABBA instance. For efficiency reasons, this event

accepts both the list of transactions to be broadcast and the list of corresponding transaction IDs

(which are required for a later step and are already computed by the parent).

• Deliver (outbound) – conveys the result of the binary agreement to the parent module. Includes

the decided bit and the ID of the ABBA module emitting the event.

Note that the ABBA module ID allows the parent module to distinguish between different ABBA

instances. In the case of ABBA, nodes may deliver before providing any input themselves, rendering

the Mir DSL module’s request-reply helpers (Section 3.3.4) useless in this situation.
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• RoundInputValue (internal, outbound) – provides input to an ABBA round.

• RoundDeliver (internal, inbound) – conveys the output of an ABBA round to the ABBA module.

• RoundFinishAll (internal, inbound) – conveys the intent to broadcast FINISH (if not broadcast yet)

from an ABBA round to the ABBA module.

The ABBA module is responsible for broadcasting and processing FINISH messages, emitting Deliver

events when the binary agreement decides. However, the remaining protocol steps are encapsulated into

independent ABBA round sub-modules, managed using a Modring. By allowing multiple ABBA round

sub-modules to execute concurrently, we prevent a stall between ABBA rounds where nodes slightly

behind the rest of the system miss the initial message of the next round. Additionally, this approach is

tunable: by setting a larger window size, the system can tolerate nodes being more rounds behind the

rest of the system. Note that, despite allowing concurrent ABBA rounds to coexist, the ABBA protocol

was left unmodified. Concretely, round modules do not broadcast any messages nor deliver a result be-

fore receiving input. Before receiving input, round modules only register messages received from other

nodes (deduplicated, in a constant-size structure).

The ABBA module functions as follows.

1. When ABBA reaches the condition for termination (Byzantine quorum of FINISH messages), it

forcefully advances the Modring window to free all ABBA round sub-modules. Since FINISH mes-

sages are enough to ensure protocol delivery and termination, there is no point in continuing to

execute ABBA rounds.

2. The main module forwards its input bit to the first ABBA round.

3. The ABBA round 𝑖 delivers 𝑏. The main module frees ABBA round 𝑖 and inputs 𝑏 to ABBA round

𝑖 +1. This step is repeated until the protocol reaches the conditions of step 1.

Furthermore, in each ABBA round, the protocol demands the toss of a common coin, which is realised

using the protocol presented in Section 2.4.3.C. Concretely, the ABBA round module broadcasts a new

COIN message containing a threshold signature share of a unique coin name (which is the concatenation

of a globally unique system ID, the ABBA instance module ID – unique in each system – and the round

number). Each node then reconstructs the full signature using the threshold signature aggregator from

the received COIN messages and derives from it the value of the coin (a single bit) by hashing it using

SHA-256 and selecting the first bit of the hash.

Later in our work, we realised that most cryptographic hashes do not guarantee unpredictability

for each output bit (only for the complete output). Thus, this construction needs to be replaced by a

Deterministic Random Bit Generator (DRBG) [46], which can be seeded with the (constant-length) sig-

nature hash and used to generate a single truly unpredictable bit. Nevertheless, we do not expect this
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issue to affect our experimental results because a separate experiment showed that 50.6% out of 3808

coin flips resulted in 1, which is close to the expected 50% of a random coin flip, and the Hash_DRBG

algorithm described by Barker et. al [46] only entails a constant number of hash calculations to produce

a random bit.

Lastly, to minimise coin-related latency, the coin signature share (local) computation begins when

the round sub-module is instantiated. However, the COIN message is only sent in the coin toss step to

preserve protocol properties.

We developed and executed a small suite of simulation-based unit tests for this implementation of

ABBA to validate it under multi-node fault-free scenarios with unanimous and non-unanimous inputs.

3.7 Alea-BFT components

The original description of Alea-BFT divides it into two components: broadcast and agreement. These

roughly correspond to Trantor’s availability and ordering components, which are responsible for dissem-

inating and ordering client requests, respectively. However, the original design of Alea-BFT does not

include a checkpointing mechanism, which is essential for limiting its resource usage by freeing old in-

stances of its sub-protocols. Additionally, applications using Trantor expect to receive ordered batch IDs

and obtain the corresponding batches from the BatchFetcher module, which in turn expects an avail-

ability module to fetch any missing batches. Furthermore, Trantor modules rely on a notion of sequence

numbers, which correspond to the position of batches in the log of delivered/ordered batches.

To address these concerns, we refactored Alea-BFT for better integration into Trantor and to include

a checkpointing mechanism. Concretely, the failed broadcast recovery mechanism (FILL-GAP/FILLER)

was moved to the broadcast component, the agreement component became a façade for executing

agreement rounds in series, and all logic regarding Alea-BFT’s queues was moved to a new orchestrator

component. This design mirrors Trantor’s, where an orchestrator component coordinates the interactions

of an availability/broadcast component, responsible for disseminating client requests, and an ordering/a-

greement component, responsible for ordering them.

Regarding sequence numbers, they can be directly mapped to Alea-BFT’s agreement round numbers

since each agreement round causes the delivery of at most one batch. Consequently, the sequence

number of a batch is the agreement round number that caused its delivery.

Regarding checkpointing, the orchestrator component coordinates their creation and usage. The

notion of checkpointing mandated the introduction of epochs to Alea-BFT, which mark the moments

when checkpoints are taken. To allow the orchestrator to free resources that are no longer needed, all

resources consumed by Alea-BFT are associated with a retention index corresponding to the epoch in

which they were last required.
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To validate this implementation of Alea-BFT, we adapted ISS’s existing integration tests covering

various scenarios, namely fault-free, crash fault and censoring a node from all incoming proposals to

force the use of the recovery mechanism.

In the rest of this section, we describe the redefined roles of Alea-BFT’s components – orchestrator,

broadcast and agreement – and their implementation in Mir.

3.7.1 Orchestrator Component

Alea-BFT’s orchestrator4 is responsible for the following duties:

• Batch Cutting – Instruct the broadcast component to create and disseminate new batches.

• Agreement Loop Control – Provide inputs for agreement rounds to the agreement component.

Process the results of agreement rounds, delivering the corresponding slots in Alea-BFT’s queues

to the application.

• Checkpointing & Garbage Collection – Create system checkpoints. Instruct other components

to free unneeded resources when checkpoints stabilise. Unlike ISS’s checkpointing, this check-

pointing process does not block the end/beginning of epochs: the protocol can continue regardless

of checkpointing progress.

• Recovery – Track other nodes’ progress in the system. Send checkpoints to nodes that fell too far

behind the rest of the system. Recover a local node using checkpoints received from other nodes.

Despite these duties being orthogonal to each other, there is a non-trivial technical cost associated

with creating and coordinating multiple Mir modules. Additionally, if split into different modules, these

duties would perform redundant work as they have similar inputs, albeit for different purposes. Therefore,

we decided to incorporate them in the orchestrator module and let them share state.

To ease coordination among duties, we developed a Queue Selection Policy construct, that abstracts

the state tracking of Alea-BFT’s queues and the mapping between agreement rounds and the slots whose

delivery is being decided.

We describe the Queue Selection Policy abstraction and orchestrator duties in detail in Appendix A.

3.7.2 Broadcast Component

In Trantor, transaction dissemination is handled by an availability module. This module can create and

verify availability certificates, which certify that a given batch was disseminated to at least one correct
4In the Alea-BFT Mir code base, the orchestrator component is named director. However, we always refer to it as orchestrator

in this document for consistency with the Trantor design document [7].
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node (a necessary condition for delivery). Additionally, the availability module must be able to retrieve

the batch corresponding to valid availability certificates.

This concept maps well to Alea-BFT’s broadcast component, using VCB proofs as availability certifi-

cates. However, in Alea-BFT’s original description, failed VCB instances are recovered by the agreement

component using the FILL-GAP/FILLER mechanism. To better integrate Alea-BFT into Trantor, we merged

this recovery sub-protocol into the broadcast component to form a complete availability module.

Since the set of broadcast queues is static (one per node, and system membership is fixed), we opted

not to use the Modring (presented in Section 3.4.2). Instead, the broadcast component is implemented

as a custom Mir module, which forwards events to one of the 𝑁 broadcast queue sub-modules or to

a controller module, which is the broadcast component itself but is separate to use Mir’s DSL module

abstraction (Section 3.3.4). This approach is similar to the RoutedModule pattern used with the Modring

and controller module but with a fixed set of sub-modules.

In the remainder of this section, we describe how the broadcast component implements the availabil-

ity module interface, the broadcast queues, and the lifecycle of transactions in the system concerning

epochs.

3.7.2.A Broadcast Component as an Availability Module

Availability modules expose events for requesting and verifying availability certificates and retrieving

the batch corresponding to an availability certificate. In Alea-BFT, this availability certificate is a VCB

proof and the batch metadata – its slot and content-based hash that identifies it within Mir/Trantor’s

BatchDB. These events follow a request-reply pattern: RequestCert/NewCert request and deliver a

new availability certificate respectively, VerifyCert/CertVerified pertain to certificate verification, and

RequestTransactions/ProvideTransactions request and deliver the batch of transactions correspond-

ing to an availability certificate.

Creating availability certificates (RequestCert/NewCert) boils down to requesting a new batch from

the mempool and inputting it into the local node’s broadcast queue (in the next unused slot). However,

the mempool controls the batch size and does not impose a minimum size (batches can even be empty!),

only a maximum size. Thus, we extended the mempool with a minimum batch size parameter that can

be set to the same value as the maximum batch size to enforce a fixed batch size, as specified in the

original protocol description. Section 4.3 refines this idea by allowing non-full batches to exist during

periods of low system load to improve latency.

However, unlike other availability implementations, Alea-BFT may deliver broadcasts originating from

any node in the system. Therefore, the request-reply pattern does not fit the creation of new availability

certificates in Alea-BFT. Instead, the broadcast component uses a modified version of the RequestCert

and DeliverCert that do not use DSL code generation for request-reply events. Concretely, when any
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broadcast queue delivers new certificates to the broadcast component, they are forwarded to the orches-

trator in modified DeliverCert events.

Batch retrieval (RequestTransactions/ProvideTransactions) is accomplished by fetching the trans-

actions from the BatchDB module using the content-based hash of the batch (present in the availability

certificate). However, Alea-BFT reasons only about queue slots, not availability certificates, so we wished

to allow the orchestrator to reason only about slots. Therefore, we opted to allow the existence of incom-

plete availability certificates – containing only the identified slot and store the full availability certificates

in the broadcast component indexed by their corresponding slot. This decision also aided in garbage-

collecting old transactions, by keeping all relevant metadata in the broadcast component.

Thus, when the batch fetcher module requests transactions for a delivered availability certificate, the

provided certificate only identifies a slot in Alea-BFT’s queues. To retrieve the transactions, the broad-

cast component procures the corresponding full availability certificate. If it is present, its transactions

are locally available and can be delivered, otherwise, we trigger the FILL-GAP/FILLER recovery mech-

anism. When the recovery mechanism finishes, the batch transactions become locally available, the

corresponding full availability certificate is stored, and the request for transactions is satisfied.

Availability certificate verification (VerifyCert/CertVerified) consists of checking the VCB proof of

the availability certificate against the batch metadata present in the certificate. Despite being part of the

availability module interface, verification is not required by any other module: it is only used in Alea-BFT’s

broadcast recovery mechanism. Nevertheless, we exposed it for completeness.

3.7.2.B Broadcast Queues

Broadcast queues are implemented with the RoutedModule+Modring pattern presented in Section 3.4.2.B.

Their Modring holds all VCB instances related to the queue, which share the same leader – the queue

owner.

The queue module abstracts interactions with the underlying VCB instances. When a VCB instance

delivers a batch, the queue module generates the corresponding availability certificate and delivers it to

the broadcast component. Additionally, if the queue is owned by the local node, it exposes an InputValue

operation. This operation inputs transactions into the VCB instance with a given slot in the queue.

Additionally, the queue module accepts events for freeing slots in the Modring (allowing the creation of

more VCB instances), for informing the queue of new epochs and for garbage-collecting VCB instances

associated with old epochs. The lifecycle of VCB instances and their transactions is described in detail

in the next section.
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3.7.2.C Lifecycle

This implementation of Alea-BFT was designed to be bounded in resource usage while maintaining

protocol guarantees. Thus, the broadcast queues must eventually garbage-collect old VCB instances

and their respective transactions. To this end, the broadcast component receives and propagates events

from the orchestrator to the broadcast queues, informing them of new epochs, requests for garbage

collection of old epochs, and restoration from checkpoints.

Broadcast queue slots are freed when the corresponding batch is delivered by the orchestrator to

the application. Thus, to garbage-collect old VCB instances, the queues track the last freed slot in each

epoch. When instructed to garbage-collect slots for all epochs below a given epoch, the queue module

instructs the Modring to free all slots below the last freed slot in that epoch. Additionally, it clears the map-

ping of epochs to their last freed slot for all epochs below the given epoch. Furthermore, the broadcast

component clears all full availability certificates corresponding to slots for old epochs.

However, this mechanism does not garbage-collect old transactions, as VCB stores them with an

infinite retention index in BatchDB. To address this, the broadcast component associates the current

epoch with a batch of transactions upon their delivery. Concretely, when the batch fetcher requests

the transactions corresponding to an availability certificate from the broadcast component, it fetches the

transactions and updates the retention index of the batch in BatchDB to the current epoch. Alas, this

approach suffers from a problem similar to VCB’s in the presence of Byzantine nodes. If a batch is

delivered, and an identical batch is later disseminated but only delivered several epochs later, the batch

may be garbage-collected and become unavailable in all nodes. This problem can be circumvented by

introducing a reference-counting mechanism in BatchDB, similar to the proposal for an identical problem

in VCB (see Section 3.5).

3.7.3 Agreement Component

Alea-BFT executes a sequence of binary agreements, deciding in each one whether or not to deliver the

head of a broadcast queue. In this implementation, the agreement component is a façade for the serial

execution of ABBA instances, delegating the computation/interpretation of ABBA inputs/outputs to the

orchestrator.

Unlike the original Alea-BFT description, we allow multiple ABBA instances to exist concurrently to

prevent stalls when moving between one agreement round and the next. Concretely, the agreement com-

ponent is realised with the RoutedModule+Modring pattern presented in Section 3.4.2.B. Despite having

multiple ABBA instances, the agreement component still executes a single agreement round at a time.

The ABBA instances ahead and behind of the current round passively listen to future agreement rounds

and allow message re-transmissions, respectively. To avoid out-of-order deliveries of ABBA outputs,
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which is possible in this design, we buffer ABBA outputs and deliver them in order.

Modrings have a fixed capacity, so the agreement component frees ABBA instances as they termi-

nate. However, this could render remote nodes stuck in old ABBA instances as more up-to-date nodes

garbage-collect them and stop message re-transmission. Thus, the agreement component stores the

outputs of ABBA instances as they deliver and, after they are garbage-collected, replies to any message

directed at them with a special FinishMessage, conveying the decided output for that ABBA instance.

The remote node transforms this message into a FINISH message and forwards it to the corresponding

ABBA instance, allowing it to eventually deliver and terminate. This modification to the FINISH message

does not compromise ABBA guarantees: the underlying mechanism made possible by the FINISH mes-

sage is similar to PBFT’s checkpoint mechanism [13] and unanimity allows a node to determine the final

value of ABBA protocol, so unanimity is a sufficient condition to broadcast FINISH and broadcasting the

FINISH message is sufficient to ensure liveness.

However, this mechanism demands storing the outputs of all ABBA instances, leading to unbounded

memory usage. Thus, the agreement component only retains the outputs of ABBA instances for the last

RetainedEpochCount epochs (RetainedEpochCount×EpochLength agreement rounds) and relies on a

global checkpoint-based recovery mechanism to maintain liveness. Concretely, this retention limit on

ABBA outputs may lead to nodes getting stuck on old ABBA instances (due to the rest of the sys-

tem having already moved on and cleared the outputs of the old rounds). In this situation, the node

eventually receives a valid checkpoint from the orchestrator to recover. Upon receiving the checkpoint,

the agreement component advances the Modring window to the first agreement round after the check-

point, discarding all ABBA instances and their outputs for epochs before the checkpointed epoch minus

RetainedEpochCount.
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Throughout our work, we devised several optimisations to improve the performance of Alea-BFT

and the Mir/Trantor framework itself. In this chapter, we present these optimisations, beginning with

the optimisations to Alea-BFT and its sub-protocols, followed by how we expedite threshold signature

reconstruction and Mir/Trantor-specific optimisations.

4.1 Binary Agreement Unanimity

The binary agreement sub-protocol (ABBA) in Alea-BFT possesses a validity property which prevents a

value exclusively proposed by Byzantine nodes from being decided. We exploit this property to expedite

ABBA when all nodes input the same value and deliver a result in a single round of all-to-all broadcasts.

Concretely, we augmented the ABBA sub-protocol with an INPUT message, which replaces the INIT

message in the input step of the protocol. This message is identical to the INIT message but is only

sent by nodes that have not yet input a value into the sub-protocol. If a node receives 𝑁 identical INPUT

messages, it can conclude that all correct nodes have provided the same input 𝑏 to the ABBA. Therefore,

𝑏 is the result of the sub-protocol (validity property), and the node can immediately deliver 𝑏.

However, some nodes may see a different non-unanimous set of ABBA inputs due to Byzantine be-

haviour. Thus, ABBA can deliver a unanimous input but not immediately terminate: it must continue

executing the protocol to ensure other correct nodes eventually deliver. To expedite termination, nodes

broadcast the FINISH message when delivering through this fast path. To distinguish delivery from ter-

mination, we augmented the ABBA implementation with a new Done event, which signals when the sub-

protocol terminates. This event is used by the agreement component to only mark ABBA instances for

garbage collection after they terminate (and not after they deliver).

4.2 Eager Agreement Input

Alea-BFT achieves good performance when compared to other BFT protocols such as HBBFT by moving

from a fully leaderless ACS-based design to a simple binary agreement primitive that only decides the

delivery of proposals from a single node at a time. However, this may be a bottleneck to scalability as

we decide on the delivery of a single proposal at a time. To address this, we explore the possibility of

having multiple agreement rounds executing in parallel.

Parallel agreement round execution is possible as long as we can determine what to input to the

parallel rounds. We noticed the current agreement round and the next 𝑁 − 1 are all led by different

nodes/decide the delivery of different queues (assuming a round-robin policy). Thus, we can map those

agreement rounds to the queue slots whose delivery is being decided and determine what the input
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for those agreement rounds (”1” if the slot was delivered by the broadcast component, ”0” otherwise)1.

Additionally, we must buffer and serialise agreement round outputs to ensure they are delivered in order.

To utilise this mechanism in our implementation, we extend the queue selection policy with a revered

version of the aforementioned partial map (from queue slots to agreement rounds) and modify the or-

chestrator to, after a broadcast delivers, input 1 to the corresponding agreement round if no input was

previously provided.

However, multiple ABBA instances executing in parallel comes at the cost of network bandwidth.

Thus, we limited the number of eager inputs the agreement component can broadcast to a configurable

parameter MaxAgRoundEagerInput and buffer agreement inputs, allowing the orchestrator to be oblivi-

ous to this limit. Additionally, we opted to inhibit the MaxAgRoundEagerInput future agreement rounds

from making any progress outside of the unanimity fast path. Concretely, we only allow each of the Max-

AgRoundEagerInput future rounds to do one of two actions after broadcasting their INPUT messages:

deliver using the unanimity fast path and broadcast FINISH or wait for the previous rounds to deliver

before continuing non-unanimous (slow path) ABBA protocol execution.

4.3 Pipeline Tuning

Alea-BFT promises efficiency with a simple design, but a disordered execution of the broadcast and

agreement sub-protocols may compromise this efficiency. We identified two main issues that may arise

from a disordered execution of the sub-protocols and propose a mitigation for each issue based on

delaying protocol steps:

• Non-Delivering Agreement Rounds. When the system is under load, we expect all nodes to

continuously create and disseminate new batches of transactions. In this situation, if all nodes are

correct, zero-deciding agreement rounds are purely wasted work, as they could decide to deliver a

batch if only nodes waited for the corresponding broadcast to deliver. Additionally, uniform inputs

help ABBA converge faster: if an input is proposed by ≤ 𝐹 nodes, ABBA discards it. Thus, we

wish to avoid inputting 0 to ABBA instances to aid ABBA convergence and avoid deciding against

delivery.

Mitigation: Agreement 0-Input Delay – delay ”0” inputs to agreement rounds when the corre-

sponding broadcasts are estimated to complete soon and when no queues have batches ready to

deliver.

• Poor Quality Broadcasts. When a client sends the same transaction to multiple nodes, it may be

included in different batches by different nodes and thus broadcast several times. While Alea-BFT
1This mapping should be possible using other queue selection policies, but must be constructed in a case-by-case basis for

each policy.

56



specifies a deduplication mechanism, it focuses on the agreement component and does not pre-

vent the broadcast component from sending duplicate transactions. However, we can extend the

mempool to eliminate duplicate transactions as they are delivered. For this mechanism to work

optimally, we wish to create new batches as late as possible, thus maximising the chances that

potential duplicate transactions are proposed by other nodes and delivered before being included

again in a different batch by a different node.

Mitigation: Batch Creation Delay – delay the creation of each new batch such that the estimated

time of broadcast completion on all nodes is just before the estimated time when nodes vote on the

delivery of that batch.

To ensure the protocol remains responsive to changes in system conditions (e.g., network latency or

processing speed), the orchestrator re-evaluates the applied delays whenever it processes (a batch of)

new events. In the following sub-sections, we describe the conditions that prompt us to delay agreement

input and batch creation.

4.3.1 Agreement 0-Input Delay

To increase agreement efficiency, we avoid inputting 0 to agreement rounds. Concretely, we delay in-

putting 0 to agreement rounds while no queue has a batch ready to be agreed upon or while the cor-

responding broadcast is in progress and its duration is within the estimated duration for a broadcast.

However, this presents three problems.

Firstly, we cannot delay agreement input indefinitely because detecting nodes behind the rest of the

system relies on slow nodes continuously trying to advance to the next agreement round. Specifically,

up-to-date nodes need to observe slow nodes attempting to provide input to old agreement rounds to

mark them as slow and recover them with the latest checkpoint.

Secondly, Byzantine proposers can consistently slow down agreement input by proposing new batches

of transactions just before the corresponding agreement round begins. We leave this issue as future work

but outline two potential solutions. One potential solution is a complete overhaul of the delay control logic

that integrates agreement 0-input and batch creation delay control and penalises consistently late pro-

posers. Another potential solution is extending the early agreement input optimisation to allow future

agreement rounds to progress when the current one is delayed. This modification to early agreement

input is simpler than a complete redesign of delay control but may not be sufficient to limit Byzantine

node influence, particularly with a high number of nodes.

Thirdly, estimating broadcast durations is not trivial. Leader and follower nodes have different per-

spectives on broadcast duration, and there is a risk of Byzantine nodes arbitrarily inflating estimates,

which allows them to arbitrarily delay agreement rounds by exploiting the previous issue in conjunction
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with this issue. To account for different perspectives, nodes maintain separate estimates for locally-

initiated and externally-initiated broadcasts.

To estimate locally-initiated broadcast duration, nodes track the length of these durations (from VCB

input to delivery) and compute the 95th percentile across the last EstimateWindowSize measured du-

rations. We select the 95th percentile because we believe 0-inputs to agreement rounds to be highly

undesirable and thus worthy of a conservative estimate of broadcast duration.

To estimate externally-initiated broadcast duration, nodes track these durations (from the reception

of the first VCB message – SEND – to delivery), and, for each proposer/VCB leader, compute the 95th

percentile across the last EstimateWindowSize measured durations. To avoid Byzantine node influence,

we take the 𝐹 +1-th highest externally-initiated broadcast duration estimate across the estimates for all

external proposers as the (uncorrected) externally-initiated broadcast estimate – 𝑑𝑏𝑐∗. Additionally, we

correct this estimate by adding what we call the bc-done margin (broadcast-done margin) estimate. This

margin corrects broadcast duration estimates using the timing differences in inputs to each agreement

round, which we expect to correlate with differences in broadcast delivery times across nodes. Con-

cretely, during each agreement round, each node tracks when every node provides a positive (1) input to

the agreement round. When delivering the agreement round, each node registers, if possible, 𝑡local input

(local input time), 𝑡quorum 1-input (moment when 𝑁 −𝐹 nodes provide a positive input to the agreement

round) and 𝑡total 1-input (moment when all nodes provide a positive input to the agreement round). Since

Byzantine nodes can arbitrarily inflate 𝑡total 1-input by delaying their input to the agreement round, we limit

the influence of this parameter in the estimate to MaxExtSlowdownFactor times the time taken by a quo-

rum of nodes to provide 1-inputs. Additionally, the sample computation penalises situations where there

are not enough 1-inputs to measure 𝑡quorum 1-input or 𝑡total 1-input, bounded by the latest estimate for 𝑑𝑏𝑐∗.

We present the complete algorithm that computes each bc-done margin sample in Listing 4.1.

4.3.2 Batch Creation Delay

To avoid including duplicate transactions in new batches, we delay batch creation such that the new

batch is disseminated to the other nodes just in time for the agreement round that decides its delivery.

This delay allows the duplicate transactions to be filtered out of the system when they are delivered (after

being proposed in other nodes). Concretely, we delay batch creation while the estimated duration of

batch creation and dissemination to all nodes (𝑑local bc all-done) is less than the estimated time until the next

agreement round where the batch’s delivery is decided (𝑑until batch ag).

However, delaying batch creation may hinder performance if batch broadcasts finish after the begin-

ning of their corresponding agreement round. Thus, we are conservative with our estimates by assuming

agreements are as fast as possible, taking all fast paths and experiencing 5th percentile latencies, and

broadcasts as slow as possible, experiencing 95th percentile latencies. Additionally, we only delay batch
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1: inputs:
2: MaxExtSlowdownFactor
3: 𝑡local input, 𝑡quorum 1-input, 𝑡total 1-input
4: 𝑑𝑏𝑐∗ ▷ latest uncorrected estimate for externally-initiated broadcast duration
5: last margin est for leader ▷ 95th percentile of last EstimateWindowSize margins for the agreement round

leader
6: agreement round output

7: posQuorumWait←𝑡quorum 1-input −𝑡local input ▷ ⊥ if quorum 1-input was not observed
8: posTotalDelta←𝑡total 1-input −𝑡quorum 1-input ▷ ⊥ if total 1-input was not observed

9: if posQuorumWait=⊥ then
10: output 𝑚𝑖𝑛{2× last margin est for leader,𝑑𝑏𝑐∗} ▷ No reference for margin, so take previous margin (for that

queue owner) and double it
11: else if posTotalDelta=⊥ then
12: output posQuorumWait×(1+MaxExtSlowdownFactor) ▷ No reference from slow nodes for margin, so

assume their maximum slowness
13: else
14: output posQuorumWait+𝑚𝑖𝑛{posQuorumWait×MaxExtSlowdownFactor,posTotalDelta}

Listing 4.1: bc-done margin Sample Calculation

creation when the computed delay is over the estimated minimum network latency (estimation process

described in Section 4.3.2.A) to avoid the overhead of the Mir runtime itself from inflating delays. Further-

more, we also restrict batch creation delays to when at least 𝐹 +1 queues have batches pending deliv-

ery, speeding up convergence during system fluctuations, which may temporarily inflate 𝑑until batch ag over

𝑑local bc all-done, unduly delaying batch creation in some nodes. These fluctuations always happen when

the system starts: in each node, 𝑑local bc all-done = 0 until the node proposes a batch but 𝑑until batch ag > 0

after a single agreement round.

To estimate 𝑑local bc all-done, we take the 95th percentile of the last EstimateWindowSize locally-initiated

broadcast durations, measured from input to delivery on all nodes. However, these durations must ex-

clude Byzantine node influence, which could arbitrarily delay acknowledging the broadcast to inflate

the estimate. Thus, we track the time spent between VCB input and QuorumDone event (𝑑vcb quorum)

and between QuorumDone and AllDone events (𝑑vcb done delta) for all locally-initiated broadcasts. Simi-

larly to the bc-done margin from the previous section, we limit the influence of slow, possibly Byzantine,

nodes on the estimated broadcast duration by measuring each broadcast’s duration as 𝑚𝑖𝑛{𝑑vcb quorum×

MaxExtSlowdownFactor,𝑑vcb quorum+𝑑vcb done delta}, where MaxExtSlowdownFactor is a tunable parameter

controlling how slower Byzantine nodes can be in proportion to the remaining nodes.

We estimate 𝑑until batch ag as𝑁rounds×𝑑ag round, where𝑁rounds is the number of agreement rounds to take

place until the agreement round corresponding to the batch to be broadcast begins2 and 𝑑ag round is the

estimated duration of an agreement round. Since we assume agreement rounds are as fast as possible,

we expect all rounds to take advantage of the ABBA unanimity optimisation (described in Section 4.1)
2This calculation assumes a round-robin queue selection policy but is generalizable for all policies if they provide a partial

mapping from agreement rounds to the slots whose delivery is being decided.
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and thus require a single communication step to deliver. Therefore, we set 𝑑ag round to the minimum

network latency, which we estimate as described in Section 4.3.2.A. Additionally, some agreement rounds

deliver instantaneously due to the combination of the ABBA unanimity and the agreement eager input

optimisations (described in Section 4.2 and Section 4.1 respectively). To account for instant rounds,

we subtract the agreement rounds whose corresponding batch is already locally present from 𝑁rounds,

on the expectation that all other nodes also have them present and provide inputs to the corresponding

agreement rounds.

4.3.2.A Estimating Minimum Network Latency

We devised two methods for estimating minimum network latency based on VCB and ABBA step timings.

While we expect the ABBA-based method to be more precise, it relies on ABBA instances to use the slow

path, which we do not expect to happen unless some nodes are faulty. Thus, we created the less precise

VCB method to provide preliminary estimates of network latency when the ABBA method is unfeasible.

To combine the estimates obtained from the two methods, we select the minimum value of the two. In

turn, both methods compute their estimate similarly to the estimates described in previous sections: by

selecting the 5th percentile of the last EstimateWindowSize latency samples. We use the 5th percentile

to select a small latency of the recent past while excluding outliers.

To estimate minimum network latency from ABBA instances, we measure, in each ABBA round, the

time passed between broadcasting the AUX message to when the coin toss starts (right after receiving

enough CONF messages), which we expect to correspond to roughly 2 communication steps (AUX and

CONF). Therefore, we divide the measured duration by 2 to obtain a network latency sample.

To estimate minimum network latency from VCB instances, we consider locally initiated broadcasts

and measure the time difference between the local node’s ECHO message and ECHO messages received

from other nodes. This difference corresponds to two communication steps and one threshold signature

share creation. Our experiments showed this signing operation to be fast, specifically under 3𝑚𝑠 in 95%

of measured signings as detailed in Section 5.2.1. Therefore, we divide the measured difference by 2 to

obtain a network latency sample and assume the signing operation (half-)duration is negligible.

4.4 Fast Path for Threshold Signature Reconstruction

Reconstructing a 𝑡-threshold signature requires collecting 𝑡 valid shares. Validating each signature share

is computationally expensive and hinders system scalability, so some systems opt to aggregate the

shares and validate the aggregate signature. However, we believe we can achieve a better improve-

ment by validating only the full threshold signature instead of all signature shares. If the full threshold

signature is valid, we can safely output it by definition. Conversely, if the full signature happens to be
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invalid, we fall back to validating the shares individually.

This approach introduces a potential problem: Byzantine nodes can slow down the system by pro-

viding invalid shares. However, when we encounter an invalid share, we can safely conclude that the

sender is Byzantine and ignore its shares in the future. This exclusion mechanism was not implemented,

but it is a straightforward modification. Furthermore, aggregate share verification could be leveraged to

improve the slow path.

4.5 Timer Coalescing

The pipeline optimisations introduced in Section 4.3 rely heavily on timers to delay protocol steps. How-

ever, our preliminary evaluation showed that nodes spent significant computational resources setting up,

firing and processing timers. To address this, we refactored the orchestrator logic to be timer-invariant:

rather than scheduling an action to execute when a timer expires, we always execute the timer-associated

logic after processing a batch of events and allow it to request the orchestrator to run again after some

minimum amount of time. After processing all events, the orchestrator sets up a single timer for the

lowest requested wait (or no timer if no requests were made). This timer sends a heartbeat event to

the orchestrator, which executes all timer-associated logic again, repeating this process for as long as

required.

4.6 Mir/Trantor Optimisations

We conclude this chapter with the set of optimisations we developed during the course of this work that

can be applied to the Mir and Trantor frameworks themselves.

4.6.1 Prioritisation of State Transfer Messages

The Mir/Trantor network stack buffers outgoing messages in one First-In First-Out (FIFO) queue per

destination. However, these queues may delay or even prevent the delivery of state transfer messages,

which are crucial for fast-forwarding nodes stuck in an old system state (epoch). To address this, we

augmented the network stack with a ForceSend operation that bypasses the queue and is processed as

early as possible. Concretely, we introduce a special 1-element queue for ForceSend messages that is

always processed before the main FIFO queue. This operation should only be used for the latest state

transfer message, as repeated calls to ForceSend replace the message in the special queue.

ForceSend not only speeds up the recovery process under strained conditions but also fixes a potential

liveness problem in Mir.
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4.6.2 Avoiding Event Conversions

For historical reasons, Mir/Trantor defines all events as protobuf messages, but the more expressive

Mir DSL module infrastructure (Section 3.3.4) uses custom Go structures generated from the protobuf

message definitions. This mismatch results in unnecessary conversions between protobuf and custom

structures every time Mir DSL modules are used: the DSL module must convert protobuf-formatted

events to the custom structures to process them and then must convert the output events to the protobuf

format. To address this, we changed all event processing code to use the custom structures and only

leverage protobuf when serialising messages to the network.

4.6.3 Slices as Event Lists

Mir/Trantor uses linked lists to store events, which are constant-time for appending new elements and

can be constant-time for in-place concatenation. At first glance, this seems like a good choice for event

lists, as events are constantly appended to module input event lists (from module output event lists) and

are often concatenated when combining events from different sub-modules. However, linked lists have

poor cache locality and there is a non-negligible cost associated with the indirection of linked lists. In

practice, Mir event lists are too small to benefit from the constant-time appends. Additionally, Golang’s

list implementation does not reuse allocations, forcing new list nodes to be allocated for every append

(even if moving an element from another list) and forcing the full list to be copied for concatenation. Thus,

we switched the event list representation to a slice of events, which is more cache-friendly and avoids

the indirection cost of linked lists.

4.6.4 Module Goroutine Pools

Mir/Trantor provides helpers for creating simple stateless modules – modules where the reaction to an

event depends purely on the event itself. These helpers can create passive modules that process events

sequentially, by simple iteration and transformation of input events into their outputs, or concurrently,

by launching a Goroutine for each event and collecting the results of processing of the batch of events

before returning. The concurrent variant is particularly useful for computationally intensive operations

(such as signature verification), as it can leverage multiple CPU cores.

However, there is a performance overhead in launching a Goroutine (and a corresponding output

channel) for every single operation. To address this, we built a new abstraction based on an active module

that processes events concurrently using a fixed-size pool of Goroutines that all output to the active

module’s output channel. To avoid breaking simulation-based tests, which need special adaptations to

work with active modules, we opted to initially create a passive module that processes events sequentially

but allow it to be upgraded to the concurrent variant with a single function call. With this approach, tests
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can benefit from the simplicity (and determinism) of passive sequential modules while production code

can leverage multi-core architectures. Additionally, we introduced a new operation to the module set type

that upgrades all passive modules using their abstraction to their concurrent variants. This operation is

called at the start of the Mir benchmarking code to ensure performance is evaluated with the concurrent

modules.

4.6.5 Avoiding Allocations in Event Loop

During Alea-BFT’s performance evaluation, we noticed that the Mir/Trantor event loop was one of the

biggest Golang garbage-collection stressors, performing many allocations at every iteration. Upon fur-

ther inspection, we noticed that the event loop was dynamically constructing a Golang select statement

at every iteration. This select statement considers all (root) modules that have pending input events,

and selects a module that can accept input events to process. To construct it, Mir creates a slice of

SelectCase objects, each corresponding to the input channel of a Mir module with pending input events.

Then, Mir uses Golang’s reflection Application Program Interface (API) to perform the select operation,

which returns the index of the selected case. Mir then uses this index to call the corresponding closure

in a parallelly constructed slice of select reactions.

While it is hard to avoid constructing the select statement dynamically (knowing the set of root modules

at compile-time is non-trivial), the set of select cases (and reactions) is always a subset of the set of root

modules, which is fixed at startup. Thus, we refactored the event loop to reuse the allocated objects (the

slices of select cases and reactions) and avoid duplicate work. Concretely, we start the event loop by

constructing a slice with all possible cases and reactions (one per module). In each iteration, we reorder

the slices of select cases and reactions in unison, moving all the cases and respective reactions for nodes

without pending input to the ends of their respective slices. This reordering brings no additional cost – it

replaces the existing linear pass through all root modules to select the ones with pending input events.

Importantly, the reordered slice has the desired select cases for the current iteration contiguous at the

beginning of the slice. Thus, when calling Golang’s reflection API to perform the select operation, we can

construct a slice of the desired select cases at no cost, by sub-slicing the slice with all possible cases.
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In this chapter, we present a comprehensive evaluation of our Alea-BFT implementation. Section 5.1

describes the setup used in our experiments. Section 5.2 provides a detailed performance breakdown

of our implementation, focusing on the latencies of the main sub-protocols and the delays introduced by

the optimisations. Section 5.3 compares Alea-BFT with a performant partially-synchronous BFT protocol

– ISS-PBFT.

This evaluation aims to answer the following questions:

1. Does the observed performance of our implementation of Alea-BFT match analytical expectations?

2. What are the performance bottlenecks of our current implementation?

3. Is the performance of Alea-BFT competitive with partially-synchronous BFT protocols (specifically

ISS-PBFT)?

5.1 Experimental Setup

Over the course of our work we used two different setups: one optimised for fast iteration and prototyping

and another optimised for stability, which was used to produce the final evaluation results presented in

the remainder of this chapter.

For prototyping and testing, we used the lab machines from Instituto Superior Técnico (specifically

the ”RNL Cluster”1). To facilitate fast iteration, we built a set of scripts [47] that parallelise test execution

across the available machines, with care to isolate each experiment (with potentially different software

versions) from the others. Furthermore, this set of scripts recorded all the necessary information to re-

produce each experiment, such as the software versions, node configuration and the scripts themselves.

Since we tested several experimental configurations with different software versions at the same time,

this record was crucial for tracing results back to their respective configurations. While this setup allowed

fast iteration during early development and sported a large number of physical machines, it was not a

sufficiently stable environment for gaining good confidence in the evaluation results and enabling repro-

ducibility (the cluster machines can be used at any time by anyone), which prompted us to switch to a

more controlled environment.

For the final evaluation, we moved to a set of dedicated machines at the INESC-ID cluster, housed

in a climate-controlled server room. This setup is composed of 7 physical machines with 128𝐺𝐵 of RAM

connected by a 1𝐺𝑏𝑝𝑠 network with 0.1𝑚𝑠 inter-machine latency. Regarding CPU, 3 of the machines

possess a 16-core AMD EPYC 7282 processor, while the remaining 4 have a 12-core AMD EPYC 7272

processor. To normalise the number of CPU cores across all machines and allow scalability experiments

with high node counts, we run all (logical) nodes on Docker containers limited to 4 CPU cores each
1https://rnl.tecnico.ulisboa.pt/servicos/cluster/
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and distribute them across the 7 physical machines. To evaluate performance under varying network

conditions, we used tc’s netem to emulate different inter-node latencies (Local Area Nework (LAN)/0𝑚𝑠,

5𝑚𝑠, 25𝑚𝑠, 75𝑚𝑠). Additionally, scalability experiments use tc’s tbf to limit the outbound bandwidth

available to each container to 50𝑀𝑏𝑝𝑠 to avoid different maximum bandwidth between co-located nodes

and nodes in different machines. The bandwidth limitation severely constrains the maximum throughput

achievable in experiments, so we only enable it for scalability experiments. Each experiment ran for 5

minutes and was repeated 5 times. The full list of configuration parameters for each protocol under test

can be found in Appendix B.

In the remainder of this section, we describe how we submit transactions to the system during exper-

iments, and how we measure and present the various properties of the system.

5.1.1 Transaction Submission Method

There are multiple methods to apply load to an SMR system. Clients can either be completely external to

the system, submitting transactions through a network interface, or co-located with the nodes, submitting

transactions using some form of inter-process or inter-thread communication. Besides co-location, each

client can either wait for each transaction to be delivered before submitting the next one – known as a

closed loop client – or submit transactions continuously at some pre-determined rate of submission –

known as an open loop client.

Initially, Mir/Trantor included support for receiving transactions from external clients and a pre-built

generic open-loop client, which we planned to use because it would be a simple way to provide an iden-

tical workload to the existing ISS-PBFT implementation. However, during our work, Mir/Trantor switched

their primary benchmarking infrastructure to closed-loop clients co-located with nodes (in the same pro-

cess) for the experiments.

After discussing the matter with the authors, we decided to also switch to closed-loop clients, as they

are more appropriate for latency measurements (they impose minimal load on the system) and facilitate

peak throughput measurements. Concretely, closed-loop clients include back-pressure by design, which

allows measuring peak throughput with a small number of test configurations, whereas using open-loop

clients requires increasing system load very slowly to observe peak throughput without overloading the

system. While closed-loop clients also eventually reduce system throughput (when used in high enough

numbers), this reduction is less pronounced than in open-loop clients, which submit transactions at a

fixed rate regardless of the system’s ability to process them.
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5.1.2 Measuring Peak Throughput

Peak throughput is the maximum throughput observed in the system. Thus, we choose a number of

closed-loop clients that aims to keep a small number of full batches of transactions ready to process in

each node – namely a number of clients that is a small (1 to 16) multiple of the batch size (𝐵). Concretely,

by instantiating, e.g., 4×𝐵 closed-loop clients per node, each client is continuously attempting to order

one transaction in the system. Therefore, at any given time, we expect 𝐵 clients to have their 𝐵 trans-

actions being processed and the remaining 3×𝐵 clients to have their 3×𝐵 transactions waiting in the

system’s mempool but ready to be processed as soon as a new batch is requested. However, high client

counts can overload the system since each client requires a dedicated Goroutine. Therefore, we needed

to conduct some preliminary runs to experimentally determine the optimal number of clients per node for

measuring peak throughput for each batch size (𝐵). For experiments with 𝐵 = 1, we observed the optimal

number of clients to be 8×𝐵 = 32 per node for both protocols: both require at least 2×𝐵 clients to avoid

stalls and performed well in all configurations that satisfy this, but 8×𝐵 is the configuration where both

protocols performed at their best (by a small margin). For experiments with 𝐵 = 1024, we observed the

optimal number of clients to also be 8×𝐵 = 8192. For experiments with variable batch size, we collected

data for configurations with 1×𝐵, 2×𝐵, 4×𝐵 and 8×𝐵 closed-loop clients per node. For each batch size

and protocol, we selected the client count configuration that yielded the highest throughput (averaged

across all nodes/repetitions) and discarded the rest. Despite the potential for stalls, it was crucial to

test configurations with 1×𝐵 clients because the overhead of Goroutines (one per client) exceeded the

overhead of protocol stalls in configurations with significant batch sizes (e.g., 𝐵 = 16384). These configu-

rations with large batch sizes would likely benefit from an alternate client implementation that uses fewer

Goroutines to submit the same number of transactions but keeping the closed-loop nature of the clients.

For each combination of experimental parameters, we report the average of all throughput measure-

ments across all repetitions and nodes as a single data point and the respective standard deviation as

error bars.

5.1.3 Measuring Base Latency

Base latency represents the time for a transaction to be processed by the system in optimal conditions.

To measure base latency, we set the batch size to 1 and create two closed-loop clients on each node.

While base latency measurements demand an unloaded system, using a single closed-loop client for

latency measurements leads to stalls in both protocols. Thus, we increased the number of clients to two

per node, which ensures that each node always has at least one transaction to process, preventing stalls

without imposing a big load on the system, which would add noise to our measurements.

However, using two clients inflates latency measurements – the latency of one transaction includes
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part of the latency of the previous transaction. To exclude the effects of the two-client setup on the results,

we measure transaction latency from the time the transaction is removed from the mempool (instead of

client submission) to the time it is delivered to the client. This method measures the optimal latency of

the system, emulating a situation where transactions are submitted at the exact moment the system is

ready to start processing them.

For each combination of experimental parameters, we report the average latency measurement across

all repetitions and nodes as a single data point and the respective standard deviation as error bars.

5.1.4 Measuring Sub-Protocol Latency

To measure sub-protocol latency, we introduced a custom event interceptor to each node, which tracks

the start and end of various protocol steps. The specific events that determine when a protocol step

starts/ends vary widely, so they are presented together with their relevant results. This interceptor was

tailored to our Alea-BFT implementation and imposes significant overhead due to the high number of

events it tracks (several millions for each 5min experiment repetition in LAN settings). Thus, this inter-

ceptor was only active for collecting data on sub-protocol latencies (presented in Section 5.2) and not for

macro-level base latency or throughput measurements.

Experiments using the interceptor all ran in a fault-free environment with a batch size 𝐵 = 1, across

𝑁 = 4 nodes with 2 closed-loop clients each, configured to tolerate up to 𝐹 = 1 Byzantine faults. We

repeated these experiments under various network conditions (LAN, 5𝑚𝑠, 25𝑚𝑠, 75𝑚𝑠). We opted to

exclude LAN results due to the high number of outliers in our experiments, which was likely caused by

CPU contention (LAN experiments achieve higher throughput, meaning they require more computational

resources).

Sub-protocol latencies are presented using box plots, where the whiskers represent the 2.5th and

97.5th percentile of the dataset, meaning we consider the outermost 5% of our data points as outliers

and discard them.

5.2 Alea-BFT Execution Breakdown

Alea-BFT relies on sub-protocols for disseminating transactions, agreeing on their delivery and recover-

ing from faulty/slow proposers. To understand the behaviour of this protocol, we break down processing

into these various stages, including the aforementioned sub-protocols and the pipeline optimisation de-

lays described in Section 4.3. We used the trace data collected by the custom event interceptor and

experimental setup described in Section 5.1 and aggregated it into five different stages:

• Batch Creation Delay – Delay stalling the creation of a new batch (pipeline tuning optimisation).
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• Broadcast – Duration of broadcast stage: measured from the moment a new batch is requested

from the mempool (or the first received VCB message, in the case of VCB followers) to VCB delivery.

• Agreement 0-Input Delay – Delay stalling 0 inputs to agreement rounds (pipeline tuning optimisa-

tion).

• Agreement – Duration of agreement stage: measured from the end of the previous agreement

round (excluding 0-input delay) to the current round’s delivery.

• Batch Fetching – Duration of batch fetching stage: measured from agreement round delivery to

application delivery. This stage is Trantor-specific and includes Alea-BFT’s recovery protocol and

delays related to serialising application deliveries with state snapshot requests (used for check-

pointing).

Despite having collected data for multiple inter-node latencies, we initially focus on the WAN scenario

(75𝑚𝑠 of inter-node latency) to minimise visual noise (fewer transactions are processed per unit of time)

and computational overhead from cryptography. We select the median-latency transaction from this data

set and present it as an execution trace (Figure 5.1) broken down into stages from the perspective of

node 0. In addition to the median-latency transaction, the trace includes the 8 transactions that precede

it and the 8 transactions processed after it. Each tick in the Y axis corresponds to a transaction (identified

by its proposer/queue owner and sequence number/queue slot) from the perspective of a node. Time

is represented in the X axis with the conventional direction (left-to-right) and is normalised: 𝑡 = 0𝑠 cor-

responds to the moment the median-latency transaction (2/638, highlighted with darker colours) leaves

the mempool in its proposer (node 2). The median-latency transaction (2/638) is highlighted by darker

shades of all colours.

We will now describe the processing of the median-latency transaction from the perspective of node 0.

This transaction is proposed by node 2 and is first seen by node 0 𝑡 ≈ 82𝑚𝑠 (≈ 1.1 communication steps),

which corresponds to some pre-processing of the new batch and the time to receive VCB’s SEND message

from node 0. The broadcast stage continues and delivers in node 0 at 𝑡 ≈ 263𝑚𝑠 (≈ 3.5 communication

steps after 𝑡 = 0). Thus, our broadcast implementation incurred approximately 37.5𝑚𝑠 of overhead. After

broadcast delivery, the system waits for approximately 75𝑚𝑠 (≈ 1 communication step) before being able

to start the agreement round for this transaction. This delay is not the agreement 0-input delay but rather

is imposed by the previous agreement round, which takes this time to complete. Finally, the agreement

round that decides the delivery of this transaction starts and lasts under 15𝑚𝑠 (under 0.2 communication

steps). The transaction is almost instantly delivered to the application afterwards.

Regarding other transactions, they display similar results, apart from the duration of agreement rounds

and related (non-optimisation-related) delays, which vary periodically.
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Figure 5.1: Alea-BFT Execution Trace (node 0)

To ensure the observed behaviour is not exclusive to node 0, we also produced an execution trace

that shows all node perspectives (Figure 5.2), albeit for a shorter time window. Each set of bars on the

Y axis corresponds to a transaction from the perspective of a single node, where all transactions are

ordered by time of delivery and node perspectives are ordered by node ID. To aid readability, only the

bars for the node 0 perspective are filled. The remaining visual elements follow the same design from

the previous trace in Figure 5.1.

This global perspective paints a similar picture to the previous analysis. For most stages, all nodes

display similar timings in every transaction. The only exceptions are the batch creation delay stage, which

only exists in the proposer node, and the broadcast stage, which is driven by the proposer and thus starts

one communication step earlier in this node. The broadcast stage also delivers earlier in the proposer

node due to the nature of the VCB protocol.

In the following sub-sections, we further analyze this trace focusing on each of the aforementioned

stages.
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Figure 5.2: Alea-BFT Execution Trace (all nodes)

5.2.1 Broadcast Latency

The broadcast stage encompasses obtaining a new batch of transactions from the mempool and broad-

casting it using VCB. During this stage, node perspectives differ. The broadcast leader obtains the new

batch of transactions from the mempool, stores it and delivers after just two communication steps – si-

multaneously broadcasting FINAL to other nodes. Broadcast followers only observe the broadcast after

the first communication step of the VCB protocol (receiving the SEND message from the leader) but only

deliver after receiving the FINAL message from the leader and verifying its signature. Thus, broadcast

followers only deliver one communication step and signature verification after the leader.

By inspection of the execution trace from all node perspectives (Figure 5.2), we conclude that the

median-latency transaction had its broadcast stage last approximately 270𝑚𝑠 (≈ 3.6 communication

steps). Without overhead, we would expect VCB to begin in follower nodes at 𝑡 = 75𝑚𝑠 (after 1 com-

munication step), to deliver in the leader at 𝑡 = 150𝑚𝑠 (after 2 communication steps) and to deliver in

all follower nodes at 𝑡 = 225𝑚𝑠 (after 3 communication steps). However, the leader node delivers at

𝑡 ≈ 180𝑚𝑠 (after ≈ 2.4 communication steps), and the earliest follower node delivers at 𝑡 ≈ 262.5𝑚𝑠 (≈ 3.5

communication steps after starting the broadcast).

We will now attempt to explain this overhead, beginning by analysing the use of threshold cryptogra-

phy, known for its high computational cost. From 𝑡 = 0𝑠 to leader delivery (𝑡 ≈ 180𝑚𝑠), we expect three

cryptographic operations to take place: followers use SignShare in parallel to construct signature shares,

then the leader uses Recover and VerifyFull to reconstruct the full signature from shares (following the

71



fast protocol from Section 4.4). After the leader delivers and broadcasts FINAL, VCB followers receive

FINAL, verify the included VCB proof and deliver. Figure 5.3 shows the collected performance data for

threshold cryptography operations during the trace experiments, which perform identically under all inter-

node latency scenarios. Considering the median durations for each operation, we expect cryptography

overhead to be ≈ 1.2𝑚𝑠+1.6𝑚𝑠+3.25𝑚𝑠+3.25𝑚𝑠 ≈ 9.3𝑚𝑠, leaving 262.5𝑚𝑠−225𝑚𝑠−9.3𝑚𝑠 = 28.2𝑚𝑠

of unexplained overhead.

(a) SignShare Latency (b) Recover Latency (c) VerifyFull Latency

Figure 5.3: Threshold Cryptography Operation Latencies

Despite our expectations, threshold cryptography only accounts for a quarter of the observed over-

head. We believe the remaining overhead may be due to inefficiencies in the Mir runtime, which handles

all inter-module communication within each node but was not subject to thorough optimisation. Addi-

tionally, we believe module hierarchies exacerbate this problem by requiring event lists to be split and

merged at every level of the hierarchy.

Finally, we argue that our analysis of broadcast duration and overhead in the median-latency trans-

action generalises to other transactions due to the consistent broadcast durations measured for leaders

and followers, plotted in Figure 5.4.

(a) Broadcast Leaders (b) Broadcast Followers

Figure 5.4: Alea-BFT Broadcast Stage Duration
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5.2.2 Protocol Step Delays

In the presented traces, we observe negligible delays related to pipeline optimisations. For agreement

0-input delay, this is a positive sign that the pipeline is broadcasting transactions in a timely manner

(without delaying input). However, for the batch creation delay, this is problematic since we can also

see significant (≈ 1 communication step long) stalls between broadcast delivery and the start of the

corresponding agreement round, suggesting it should be increased.

To investigate the matter, we plotted these delays using all of the experiment data (in Figure 5.5) and

observed significant delays in the tails of their distributions, particularly in the 5𝑚𝑠 inter-node latency case.

While the 75th percentile of agreement 0-input delay is negligible (< 1𝑚𝑠), meaning batch creation was

not overly delayed for 75% of transactions, the 97.5th percentile of this metric is just over 3 communication

steps long in the 5𝑚𝑠 inter-node latency configuration, and around 1 communication step long for the

25𝑚𝑠 and 75𝑚𝑠 inter-node latency configurations. Thus, 5% of transactions experienced an overinflated

batch creation delay. Since the late broadcasts severely compromise protocol efficiency, we believe

caution should be exercised in any attempt to increase the batch creation delay.

(a) Batch Creation Delay (b) Agreement 0-Input Delay

Figure 5.5: Alea-BFT Pipeline Optimisation-Induced Delays

Regarding agreement 0-input delay, it works as intended, avoiding 0-inputs to agreement rounds to

encourage the agreement component to perform useful work in every round (decide to deliver rather than

not deliver batches/transactions). In the conditions of these experiments (all nodes are correct and have

transactions to order at all times), this delay is always beneficial when applied and its existence merely

indicates problems in earlier stages.

However, more research is needed to understand the impact of these delays in the presence of faults.

Specifically, a faulty proposer may consistently slow down the system by always starting its broadcasts so

that the first message arrives just before the corresponding agreement round starts, causing an agree-

ment 0-input delay that spans the duration of a broadcast. The batch creation delay may also hinder
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performance in the presence of an adversarial network, but we expect its impact to be small when com-

pared with the effects on other protocol stages due to the conservative approach when applying it.

5.2.3 Agreement Latency

Alea-BFT agrees on the delivery of batches of transactions using a binary agreement primitive. Despite

this primitive requiring several rounds with 4 communication steps each, the agreement stages shown

in the execution traces oscillate between negligible durations and approximately a single communication

step. We attribute this small duration to the combination of two optimisations: ABBA unanimity (Sec-

tion 4.1) and agreement eager input optimisations (Section 4.2). Concretely, the unanimity optimisation

brings down the duration of each agreement round to a single communication step, and the eager input

optimisation allows the agreement rounds to exchange inputs before their turn, meaning they can start

after reaching unanimity and immediately deliver.

To better understand agreement latency, we divide the remainder of this analysis into three parts.

Firstly, we present our full nominal agreement latency results, using not only the traces from Figures 5.1

and 5.2 but the complete collected dataset. Secondly, we describe a potential avenue for pipeline optimi-

sation uncovered during this analysis. Thirdly, we characterise the duration of ABBA rounds to understand

if non-unanimous ABBA executions are as expected.

5.2.3.A Nominal Agreement Latency

We present nominal agreement latency in Figure 5.6 split between two perspectives: the agreement

round leader’s (Figure 5.6a) – whose queue head delivery is being decided – and the agreement round

followers’ (Figure 5.6b) – the remaining nodes. This separation is important because agreement round

leaders may provide input to the respective ABBA instance much earlier than followers (the respective

batch broadcast delivers around one communication step earlier in the broadcast leader). Additionally,

the plots from Figure 5.6 present latencies as multiples of inter-node latency (INL) to aid visualization and

in logarithmic scale to show the lower tail of the distribution. From these plots, we extract two key points.

Firstly, agreement round leaders have slightly higher agreement latencies than the remaining nodes.

This discrepancy is explained by a similar disparity in agreement 0-input delays: leaders immediately

provide input to the next agreement round, whereas followers sometimes stall for a short time.

Secondly, agreement latency is small overall, similar to the transactions present in the trace snip-

pet, which exploit a combination of agreement and ABBA optimisations to achieve latencies under 1𝐼𝑁𝐿

(roughly a single communication step). However, unlike the trace snippet, over half of all agreement

rounds have latencies under 1𝐼𝑁𝐿, which indicates better exploitation of agreement optimisations than

observed in the snippet. Concretely, for wide-area scenarios (25𝑚𝑠 and 75𝑚𝑠 of inter-node latency), ev-

ery instance of ABBA terminated in less than 4𝐼𝑁𝐿. Since a single ABBA round requires 4 communication
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steps, we conclude that all agreement rounds in this configuration were able to exploit the unanimity op-

timisation. Additionally, between 50% and 75% of agreement rounds delivered in under 1𝐼𝑁𝐿. Thus,

several transactions experienced even better exploitation of the eager input optimisation than the ones

shown in the trace. The 5𝑚𝑠 inter-node latency scenario has comparatively high (≈ 7𝐼𝑁𝐿) tail latencies.

We found several agreement rounds that could not take advantage of the unanimity optimisation in this

configuration, which explains this disparity.

(a) Agreement Round Leader Latency (b) Agreement Round Follower Latency

Figure 5.6: Alea-BFT Agreement Latency

5.2.3.B Further Optimising the Pipeline

The remarkable improvement in agreement latency brought upon by the ABBA unanimity optimisation,

combined with the eager input optimisation, revealed a previously hidden, but relevant, bottleneck: the

serial nature of Alea-BFT’s broadcast queues. While inspecting the execution trace snippet, we noticed

that broadcasts could no longer keep up with the agreement component: when using the two optimisa-

tions, it can potentially deliver batches from all queues at every communication step, but the broadcast

component in each node can only place a new batch in the corresponding queue every 3 communi-

cation steps. Thus, we want each node to broadcast multiple transactions in parallel, tuning broadcast

throughput to match agreement throughput. Preliminary tests of this optimisation in an uncontrolled WAN

environment doubled system throughput with a small (< 10%) increase in latency.

5.2.3.C ABBA Slow-Path Latency

While the previously presented results show low agreement latency, this low latency is reliant on the ABBA

unanimity optimisation, which can be negated by a single faulty node. Thus, to study agreement latency,

we must analyse slow path ABBA latency (i.e., when unanimity is not possible). To characterise slow

path performance of our ABBA implementation, we decompose its latency into two variables: the number
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of ABBA rounds required to deliver and the duration of each ABBA round. Since all agreement rounds

in 25𝑚𝑠 and 75𝑚𝑠 inter-node latency experiments were able to take advantage of the unanimity optimi-

sation, we focus our analysis on the non-unanimous ABBA trace information from the 5𝑚𝑠 inter-node

latency experiments. From this dataset, we select only ABBA rounds that spanned at least 4 commu-

nication steps (20𝑚𝑠) to exclude ABBA instances exploiting the unanimity optimisation. This selection

corresponds to 47464 ABBA instances, roughly 5% of all observed ABBA instances in this experimental

configuration.

Regarding the number of ABBA rounds required for ABBA to deliver, we measured the 75th percentile

count to be 1 round and the 97.5th percentile to be 3 rounds. However, this experimental environment

does not include faulty nodes and induces a uniform constant load on the system. Thus, in the presence

of Byzantine nodes sending carefully crafted messages or asymmetric load across the system causing

bigger splits in agreement inputs, the number of rounds per ABBA instance may be higher.

Regarding the latency of each ABBA round (plotted in Figure 5.7), we observed variation between

20𝑚𝑠 and 44𝑚𝑠 after excluding the top and bottom 2.5% latencies, with a median of ≈ 26𝑚𝑠. We ex-

pect each ABBA round to take 20𝑚𝑠, corresponding to 4 communication steps lasting 5𝑚𝑠 each (the

inter-node latency), plus the overhead associated with the shared coin implementation (Section 2.4.3.C),

which relies on threshold signatures and was measured to be around 5𝑚𝑠 (see Figures 5.3b and 5.3c in

Section 5.2.1). Thus, the observed median ABBA round latency is in line with analytical expectations.

Figure 5.7: ABBA Round Latency

In conclusion, our implementation of ABBA appears to be performing within the analytically expected

latency but more research is needed to assess the impact of Byzantine nodes and non-uniform inputs.

76



5.2.4 Batch Fetching Latency

The batch fetching stage takes place when Trantor requests the ordered transactions from the agreement

component to deliver to the application, recovering from faulty/slow proposers if needed and serialises

deliveries with snapshotting of the replicated application state for checkpoint creation.

We measured the batch fetching latency and observed a sub-millisecond 97.5th percentile across all

experiments. Thus, we conclude that the recovery protocol was never triggered, meaning the broadcast

stage and batch creation delay stage operated correctly and on time. Additionally, we confirm that the

asynchronous checkpointing protocol does not delay transaction delivery.

5.3 Comparing Alea-BFT with other protocols

Alea-BFT promises simple and performant Byzantine Fault Tolerance on asynchronous networks. How-

ever, partially synchronous BFT protocols are known to perform excellently in fault-free runs. Thus,

we compare our Alea-BFT implementation to a state-of-the-art partially-synchronous BFT protocol –

ISS-PBFT – which was also built on the Mir framework. To ensure our comparison remains as fair

as possible, we execute ISS-PBFT with all the developed Mir runtime optimisations (presented in Sec-

tion 4.6) and configure it with similar parameters to its initial evaluation by Stathakopoulou et al. [6]. We

list the complete set of configuration parameters for each protocol in Appendix B.

It is important to note that the evaluated implementation of ISS-PBFT differs from the original publica-

tion. Concretely, it is missing the bucket partition mechanism designed to prevent transaction duplication.

However, since co-located clients only submit transactions to their respective nodes and the Filecoin sub-

nets follow this co-located client model, this does not pose a problem.

Additionally, base latency measurements in ISS-PBFT are only reported for node 0. We observed

the remaining nodes to have inflated latency values, which we attribute to poor interactions of this imple-

mentation of ISS-PBFT and our experimental setup. Specifically, we only observed this problem when

running experiments inside Docker containers. Since measurements in a Docker-less test environment

match node 0 latency in the final experiment environment, we opted to keep the experimental setup the

same and only report ISS-PBFT base latencies from node 0, thus avoiding penalising our baseline.

In the remainder of this section, we compare base latency and peak throughput between Alea-BFT

and ISS-PBFT varying various parameters. Firstly, we measure performance under various induced

inter-node latencies. Secondly, we study the influence of system scale. Finally, we analyse the impact

of crash faults on throughput. To aid readability, all plots in this section represent Alea-BFT in blue with

circle marks and ISS-PBFT in orange with triangular marks.
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5.3.1 Performance Under Varying Network Conditions

To study baseline performance, we performed experiments in a 4-node configuration while varying the

induced inter-node latency. In the following sub-sections, we present our results for base latency, choice

of optimal batch size and peak throughput.

5.3.1.A Base Latency

Regarding base latency, plotted in Figure 5.8, we observe Alea-BFT to closely follow ISS-PBFT. In low

inter-node latency scenarios (LAN and 5𝑚𝑠), Alea-BFT appears to have nearly constant latency while

ISS-PBFT achieves lower latencies overall, particularly in LAN scenarios. We attribute this difference to

Alea-BFT’s higher computational overhead associated with threshold cryptography and extensive use of

Mir module hierarchies. However, as inter-node latency increases, the gap between the two protocols

diminishes, and Alea-BFT surpasses ISS-PBFT in the wide-area scenario (75𝑚𝑠 of inter-node latency).

Figure 5.8: Base Latency vs Inter-Node Latency with 4 nodes

5.3.1.B Choosing a Batch Size

SMR protocol throughput is often bottlenecked by the agreement (ordering in ISS) stage of the protocol.

To sidestep this inefficiency, protocols often group transactions in batches to order more transactions

with fewer agreement stages. In this section, we evaluate the peak throughput of both protocols under

study when varying batch size under a 4-node configuration with no induced latency.

Figure 5.9 plots the results of this evaluation, where we observe both protocols’ throughput peaking

with 𝐵 = 8192. However, using batch sizes beyond 𝐵 > 1024 required modifying the default network
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Figure 5.9: Peak Throughput vs Batch Size with 4 nodes in a LAN configuration

outbound message buffer capacity and led to instability in our experiments (the system often stalled

indefinitely due to lost messages). Thus, we opt to use 𝐵 = 1024 for throughput measurements rather

than the observed optimal setting (𝐵 = 8192) or the setting used in the original ISS-PBFT evaluation by

Stathakopoulou et al. [6] (𝐵 = 2048).

5.3.1.C Peak Throughput

Regarding peak throughput, we studied both protocols under varying induced inter-node latencies using

two different batch sizes (𝐵), namely, 𝐵 = 1 (plotted in Figure 5.10a) and 𝐵 = 1024 (plotted in Figure 5.10b).

Despite small batch sizes being inadequate for throughput testing – real-world systems often leverage

batching to achieve higher throughput with a comparably smaller sacrifice in latency – we opted to also

conduct peak throughput tests with 𝐵 = 1 in this section to assess the throughput capability of agreement

(ordering in ISS) component in both protocols. In this experiment, we observed that ISS-PBFT can

achieve much greater throughput in low latency scenarios. However, as inter-node latency increases,

this difference disappears, and both protocols converge to a very similar peak throughput with inter-node

latencies of 25𝑚𝑠 and 75𝑚𝑠.

We attribute this gap to the higher degree of parallelism of ISS, which allows each node to broadcast

multiple batches of transactions in parallel, unlike Alea-BFT’s broadcast component, which proposes new

batches sequentially. In the Alea-BFT execution breakdown (Section 5.2), we proposed a modification

to Alea-BFT that allows parallel broadcasts (Section 5.2.3.B), which we expect to bring Alea-BFT on

par with ISS-PBFT. Alea-BFT’s agreement component is also sequential in nature, but the implemented
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eager input and ABBA unanimity optimizations (Sections 4.1 and 4.2) enable us to parallelise agreement.
2

With 𝐵 = 1024, the batch size chosen for throughput tests, both protocols’ peak throughput is in the

same order of magnitude across all inter-node latencies. Similarly to the previous scenario, Alea-BFT’s

peak throughput converges to ISS-PBFT’s and almost matches it in the 75𝑚𝑠 inter-node latency scenario.

(a) 𝐵 = 1 (b) 𝐵 = 1024

Figure 5.10: Peak Throughput vs Inter-Node Latency for various batch sizes 𝐵 with 4 nodes

5.3.2 Scalability

To evaluate the impact of system scale on performance, we run experiments under various system scales

(𝑁) fixing the number of tolerated faults 𝐹 to its maximum value (𝐹 = ⌊𝑁−1
3 ⌋), induced inter-node latency to

25𝑚𝑠 (to exclude the effects of computation overhead) and batch size to 1024 (the chosen real-world set-

ting in Section 5.3.1.B). In the following sub-sections, we present our base latency and peak throughput

results.

5.3.2.A Base Latency

Figure 5.11 plots base latency as a function of system size. Both protocols achieve the same latency for

𝑁 < 22, after which Alea-BFT becomes noticeably slower. We attribute this to ISS-PBFT’s multi-leader

design, which allows requests to be processed as soon as they reach the PBFT primary node, whereas,

in Alea-BFT, we have to wait for the designated node’s turn to run its agreement round. Additionally, there

is no prioritisation mechanism for threshold signature operations. Thus, the higher number of concurrent
2In reality, parallelism can be lost with a single faulty node but we can trivially modify the eager input optimization to allow parallel

agreement rounds that do not use the ABBA unanimity fast path.
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VCB instances may lead to the broadcast corresponding to some agreement round being prioritised over

the broadcast corresponding to an earlier agreement round, inflating latency.

Figure 5.11: Base Latency vs System Size with 25𝑚𝑠 of induced inter-node latency

5.3.2.B Peak Throughput

Figure 5.12 shows a plot of peak throughput as a function of system size. While Alea-BFT’s through-

put degrades gracefully, ISS-PBFT’s sharply declines with 𝑁 = 13 and approaches 0 for larger system

scales. However, we do not believe this is a problem with the design of ISS or ISS-PBFT but rather an

implementation issue, for reasons we will now describe.

For 𝑁 = 13, logs reveal the dropping of inbound messages due to size limits on the factory module

(Section 3.3.3) being exceeded. In contrast, Alea-BFT, which may have dropped incoming messages,

uses the Modring abstraction (Section 3.4.2) to prioritise dropping messages that are expected to be

required farther in the future.

For 𝑁 ≥ 25, we observed ISS-PBFT to overflow the outbound buffers of the network module, causing

the dropping of outgoing messages and, eventually, the system to halt irrecoverably. Alea-BFT likely

sidestepped this issue due to the serial nature of its agreement component. Similarly to replacing Factory

Module with Modring to avoid the intricacies of selecting buffer sizes, we propose exploring a different

network stack design that moves the responsibility of buffering outgoing messages to the sender modules,

which avoids the problem of selecting global outbound message buffer sizes.
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Figure 5.12: Peak Throughput vs System Size with 25𝑚𝑠 of induced inter-node latency and batch size 𝐵 = 1024

5.3.3 Throughput Under Crash Faults

Finally, we evaluated the throughput of both protocols when facing a crash fault. We performed the

relevant experiments in a 4-node configuration connected by a LAN network (no induced latency) with

the selected batch size for throughput tests (1024). After 150𝑠 of runtime, we crash node 0 and never

recover it.

Figure 5.13 shows an execution trace of node 1 on one of the five repetitions of the experiment around

the moment of the crash for each protocol under study. To aid the readability of pre-crash and post-crash

throughput, we also plot a moving average of throughput across all experiment repetitions and nodes

as a dotted line – blue for Alea-BFT, orange for ISS-PBFT. In this trace, we first observe a 15-second

stall of ISS-PBFT after the crash, waiting for a timeout for the detection of the crashed node, whereas

Alea-BFT can continue uninterrupted (albeit at reduced throughput) thanks to the leaderless design of its

agreement component. After this timeout expires, ISS excludes the crashed node from the set of leaders

and continues with a relatively small (≈ 20%) performance hit. However, Alea-BFT is penalised on two

fronts – it both loses a node proposing requests (like ISS) and the ABBA unanimity optimization – leading

to a reduction in throughput compared to the system with all nodes functional.
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Figure 5.13: Execution Trace in a LAN configuration and batch size 𝐵 = 1024 with a non-recovering crash at 𝑡 = 150𝑠
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In this chapter, we summarise the main contributions of this work and outline various avenues for

future research.

6.1 Conclusions

This thesis was motivated by the lack of real-world adoption of asynchronous BFT, which is a class of

BFT consensus that promises more robustness to performance degradation attacks when compared to

their partially-synchronous counterparts.

To bring asynchronous BFT to the limelight, we implemented, optimised and evaluated a practical

asynchronous BFT protocol – Alea-BFT – in the context of a real-world system by building it on top of

the Mir framework, which the authors intend to become a consensus layer in Filecoin subnets. During

this process, we were concerned with bounding resource usage of all protocol components, culminating

in the Modring abstraction for managing sub-protocol instances, which allows space-optimal buffering

of incoming messages. Additionally, we developed and implemented several optimisations improving

Alea-BFT and the performance of the Mir framework.

The results of our experimental evaluation substantiate our methodology and offer opportunities for

improving the Mir framework and Alea-BFT. Firstly, they validate our principled approach to implement-

ing distributed protocols and the resulting abstractions, refining the design of the Mir framework. Sec-

ondly, they provide key insights for tuning the developed Alea-BFT optimisations and proposing new

ones. Thirdly, the comparison with the ISS-PBFT protocol strengthens the claim the performance of

asynchronous BFT (particularly Alea-BFT) is on par with state-of-the-art partially-synchronous proto-

cols, which is crucial for real-world applications. Fourthly, they show the faster reaction time of Alea-BFT

to crashes when compared to the same state-of-the-art partially-synchronous protocol.

In summary, the two main conclusions from this work are the importance of implementing systems

with resource usage in mind and the readiness of Alea-BFT for real-world usage.

6.2 Future Work

During our research, we focused on implementing and evaluating Alea-BFT in the context of a real-

world application – Filecoin subnets – aiming to foster the adoption of Alea-BFT and asynchronous BFT

protocols in general. Throughout this process, we identified the strengths and limitations of our current

approach and proposed directions for further research and development. Below, we summarise our main

ideas.

Firstly, we implemented Alea-BFT with real-world usage in mind but left distributed threshold key

generation and online system membership changes as future work due to their complexity.
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Secondly, while the Modring successfully restricts sub-module resource usage by carefully choosing

which sub-modules are live at any given time, it is fundamentally at odds with the existing Mir network

stack, which reliably delivers all messages. To drop incoming messages, we developed SnoozeNet

to track message reception and re-transmit them as required. However, this module is complex and

interacts poorly with the network module’s outgoing message queue. Thus, we propose researching a

different approach to the network stack focused on sub-module-scoped communication channels and

queueing.

Thirdly, our evaluation of Alea-BFT shows competitive performance with state-of-the-art partially-

synchronous BFT protocols but only considers well-behaved networks and crash faults. More research

is needed to evaluate the impact of adversarial networks and Byzantine faults on these systems.

Fourthly, the Mir framework’s reusable modular components facilitate protocol implementation, but

the design of Mir itself complicates this process. Concretely, Mir’s event-based architecture requires

defining events for all intermediate operations and various context structures to pass between opera-

tions, straining productivity during early exploration. Additionally, intra-module concurrency is impossible

without breaking simulation-based testing due to introducing non-determinism (e.g. Goroutine Pools from

Section 4.6.4). Furthermore, it complicates the use of traditional debugging and (distributed) tracing tools

such as gdb and Jaeger. Therefore, we propose exploring alternative designs, favouring function calls

and limiting event stream usage to appropriate situations while maintaining Mir’s reproducible execution

guarantees that enable simulation-based testing. Preliminary research suggests we can use Rust’s Fu-

tures to allow intra-module concurrency and still be able to conduct simulations with a specially crafted

runtime.
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A
Alea-BFT Orchestrator Internals

Our work implements Alea-BFT in Mir/Trantor, which entails creating an orchestrator module that coordi-

nates the interactions of Alea-BFT’s components with Trantor components and the replicated application.

To manage the complexity of this component, we opted to subdivide into duties which are only briefly

presented in Section 3.7.1.

In this appendix we describe in detail a Queue Selection Policy abstraction that aids coordination

between duties and the duties themselves.

Note that the orchestrator, like many Mir modules, processes events sequentially. Therefore, despite

the existence of multiple upon rules for the same events, no two upon rules run concurrently. Instead,

they run by order of appearance in the module’s code, which corresponds to the order of appearance in

this document.

A.1 Queue Selection Policy

Alea-BFT selects a queue for each agreement round based on a deterministic policy. To allow for differ-

ent policies and enable checkpointing (which must include the state of the queues), we abstracted queue
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selection as a Golang interface, QueueSelectionPolicy, shown in Listing A.1. This interface was mod-

elled after the existing LeaderSelectionPolicy interface in Trantor/ISS, which selects the designated

leader node for each ISS sequenced broadcast instance (referred to as orderers in Trantor).

In this work, we only implement a round-robin policy, which selects the next queue in a round-robin

fashion. Additionally, the optimisation described in Section 4.2 extends this interface to allow mapping a

slot to the next agreement round that decides its delivery.

type Slot struct {
QueueID uint32
QueueSlot uint64

}

interface QueueSelectionPolicy {
// Map agreement round/sequence number to a slot, if the mapping is known.
// Mapping must be known for the next agreement round.
// Returns the slot corresponding to the given sequence number and whether
// the mapping is known.
Slot(sn uint64) (Slot, bool)

// Update the state of the queue selection policy with the result
// of an agreement round.
// This method can only be called exactly once for each agreement round
// and in order.
// Returns the slot that is delivered in this sequence number (if any)
// and whether a slot is delivered.
DeliverSn(sn uint64, agDecision bool) (Slot, bool)

// Number of the next sequence number to be delivered (next agreement round number).
NextSn() uint64

// Next queue slot to be delivered in a given queue
QueueHead(queueID uint32) uint64

// Serialises the state of the queue selection policy (for checkpointing purposes).
Bytes() ([]byte, error)

}

// Deserialises a queue selection policy from a byte slice.
function QueueSelectionPolicyFromBytes([]byte) (QueueSelectionPolicy, error)

Listing A.1: Queue Selection Policy Interface

A.2 Batch Cutting Duty

The orchestrator component controls when batches are created and disseminated. A naive approach

would continuously instruct the broadcast component to create and disseminate new batches. However,
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broadcasting batches without accounting for the comparatively slower agreement leads to unbounded

resource usage. Thus, the orchestrator component strives to maintain a limited backlog of unagreed

batches. This allows the broadcast component to accept a limited window of incoming VCB instances –

MaxOwnUnagreedBatches.

We will now describe the concrete implementation of this control, which is presented as pseudocode

in Listing A.2. This part of the orchestrator tracks the current queue selection policy (𝑞𝑠𝑝, managed

by the agreement loop control duty described in Appendix A.3), the ID of the next slot to be requested

(𝑛𝑒𝑥𝑡), and whether the broadcast component is currently working on a new batch (𝑠𝑡𝑎𝑙𝑙𝑒𝑑).

The first upon rule (Lines 6 to 8) is triggered when a new availability certificate is delivered pertaining

to the local node’s queue. It increments the next slot ID (Line 7) and registers the batch-cutting process

as stalled (Line 8), allowing the second upon rule to request a new batch.

The second upon rule (Lines 9 to 12), which runs after the orchestrator processes any set of events

(crucially, including the Init event which is sent to all newly instantiated modules in Mir), instructs the

broadcast component to create and disseminate a new batch (Line 11) if we are not waiting for it to do

so already (i.e., 𝑠𝑡𝑎𝑙𝑙𝑒𝑑 is 𝑇𝑟𝑢𝑒) and if there are no more than maxOwnUnagreedBatches unagreed but

already broadcast (Line 10).

1: shared state variables:
2: 𝑞𝑠𝑝

3: local state variables:
4: 𝑛𝑒𝑥𝑡 ← 0
5: 𝑠𝑡𝑎𝑙𝑙𝑒𝑑←𝑇𝑟𝑢𝑒

6: upon broadcast component delivering slot 𝑠 = ⟨𝑜𝑤𝑛𝑄𝑢𝑒𝑢𝑒,𝑛𝑒𝑥𝑡⟩ do
7: 𝑛𝑒𝑥𝑡 ←𝑛𝑒𝑥𝑡 +1
8: 𝑠𝑡𝑎𝑙𝑙𝑒𝑑←𝑇𝑟𝑢𝑒

9: upon finished processing batch of events in orchestrator do
10: if 𝑠𝑡𝑎𝑙𝑙𝑒𝑑∧𝑛𝑒𝑥𝑡 −𝑞𝑠𝑝.𝑄𝑢𝑒𝑢𝑒𝐻𝑒𝑎𝑑(𝑜𝑤𝑛𝑄𝑢𝑒𝑢𝑒) <𝑚𝑎𝑥𝑂𝑤𝑛𝑈𝑛𝑎𝑔𝑟𝑒𝑒𝑑𝐵𝑎𝑡𝑐ℎ𝑒𝑠 then
11: send event ⟨𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝐶𝑒𝑟𝑡,𝑛𝑒𝑥𝑡⟩ to broadcast component
12: 𝑠𝑡𝑎𝑙𝑙𝑒𝑑←𝐹𝑎𝑙𝑠𝑒

Listing A.2: Alea-BFT Orchestrator - Batch Cutting

A.3 Agreement Loop Control Duty

Alea-BFT describes an agreement loop, which decides on the delivery of a head of a queue in each

iteration. In the original description of Alea-BFT, this loop resides in the agreement component. However,

this implementation moved it to the orchestrator component and uses the agreement component as a

facade for executing agreement rounds in series. Listing A.3 presents the pseudocode for the agreement

loop control, which we will now describe.
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The agreement loop control is responsible for providing inputs and processing the outputs of agree-

ment rounds. To this end, it tracks the current agreement round number (𝑟), whether the agreement

component is stalled for input (𝑎𝑔𝑆𝑡𝑎𝑙𝑙𝑒𝑑), the queue selection policy (𝑞𝑠𝑝), and a set of unagreed slots

that were already delivered by the broadcast component (𝑢𝑛𝑎𝑔𝑟𝑒𝑒𝑑𝑆𝑙𝑜𝑡𝑠). Of these state variables,

only 𝑢𝑛𝑎𝑔𝑟𝑒𝑒𝑑𝑆𝑙𝑜𝑡𝑠 is local to the agreement loop control, while the others are shared with the rest of

the orchestrator component.

The first upon rule (Lines 6 to 7) adds slots delivered by the broadcast component to the set of

unagreed slots.

The second upon rule (Lines 8 to 17) processes the output of an agreement round. Note that, despite

agreement rounds being sequential in regular operation, the slow node recovery mechanism may fast-

forward the 𝑟 variable to a higher value (right past the restored checkpoint). Therefore, this upon rule

ignores delivery events for older rounds (only the delivery of round 𝑟 is processed). If the decision is to

deliver, we do so (Lines 11 to 12), removing it from the set of unagreed slots (Line 13) and instructing

the broadcast component to free the corresponding VCB instance (Line 14). Note that freeing the VCB

instance does not free the batch nor its metadata: it is merely a back-pressure mechanism that bounds the

number of unagreed slots broadcast by each node. Additionally, regardless of the result of the agreement

round, the queue selection policy is updated (Line 15), the agreement round number is incremented

(Line 16), and the agreement component is marked as stalled (Line 17).

Finally, the third upon rule (Lines 18 to 23) provides input for the next agreement round, starting it if

not already running. To this end, it determines the corresponding slot for the current agreement round

(Line 18), computes the input for the agreement round by checking if the corresponding slot is locally

available (Line 21), sends the input to the agreement component (Line 22), and marks the agreement

component as no longer stalled (Line 23). This upon rule could be merged into the second upon rule,

providing input for the next agreement round when the current round finishes. However, separating these

rules facilitates the optimisation described in Section 4.3.
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1: shared state variables:
2: 𝑟 ← 0
3: 𝑎𝑔𝑆𝑡𝑎𝑙𝑙𝑒𝑑←𝑇𝑟𝑢𝑒
4: 𝑞𝑠𝑝
5: 𝑢𝑛𝑎𝑔𝑟𝑒𝑒𝑑𝑆𝑙𝑜𝑡𝑠 ← {}

6: upon broadcast component delivering slot 𝑠 do
7: 𝑢𝑛𝑎𝑔𝑟𝑒𝑒𝑑𝑆𝑙𝑜𝑡𝑠 ←𝑢𝑛𝑎𝑔𝑟𝑒𝑒𝑑𝑆𝑙𝑜𝑡𝑠∪ {𝑠}

8: upon agreement component delivering round 𝑟 with decision 𝑑 do
9: 𝑠𝑟 ←𝑞𝑠𝑝.𝑆𝑙𝑜𝑡(𝑟)

10: if 𝑑 == 1 then
11: 𝑐𝑒𝑟𝑡 ← ⟨𝐴𝐿𝐸𝐴−𝐶𝐸𝑅𝑇,𝑠⟩
12: send event ⟨𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝐶𝑒𝑟𝑡,𝑠⟩ to batch fetcher
13: 𝑢𝑛𝑎𝑔𝑟𝑒𝑒𝑑𝑆𝑙𝑜𝑡𝑠 ←𝑢𝑛𝑎𝑔𝑟𝑒𝑒𝑑𝑆𝑙𝑜𝑡𝑠∖ {𝑠𝑟}
14: send event ⟨𝐹𝑟𝑒𝑒𝑆𝑙𝑜𝑡,𝑠𝑟⟩ to broadcast component
15: 𝑞𝑠𝑝.𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑆𝑛(𝑟,𝑑)
16: 𝑟 ← 𝑟 +1
17: 𝑎𝑔𝑆𝑡𝑎𝑙𝑙𝑒𝑑←𝑇𝑟𝑢𝑒

18: upon finished processing batch of events in orchestrator do
19: if 𝑎𝑔𝑆𝑡𝑎𝑙𝑙𝑒𝑑 then
20: 𝑠𝑟 ←𝑞𝑠𝑝.𝑆𝑙𝑜𝑡(𝑟)
21: 𝑖𝑛𝑝𝑢𝑡 ←𝑇𝑟𝑢𝑒 if 𝑠𝑟 ∈ 𝑢𝑛𝑎𝑔𝑟𝑒𝑒𝑑𝑆𝑙𝑜𝑡𝑠 else 𝐹𝑎𝑙𝑠𝑒
22: send event ⟨𝐼𝑛𝑝𝑢𝑡𝑉𝑎𝑙𝑢𝑒,𝑟, 𝑖𝑛𝑝𝑢𝑡⟩ to agreement component
23: 𝑎𝑔𝑆𝑡𝑎𝑙𝑙𝑒𝑑←𝐹𝑎𝑙𝑠𝑒

Listing A.3: Alea-BFT Orchestrator - Agreement Loop Control

A.4 Checkpointing And Garbage Collection Duty

The orchestrator creates system checkpoints every EpochLength agreement rounds summarising repli-

cated state machine application state and protocol state. As checkpoints become ”stable” (i.e., are certi-

fied by enough nodes), the node can free resources associated with older checkpoints, clearing all state

associated with epochs before the latest checkpointed epoch plus RetainedEpochCount. This process is

essential for limiting the resource usage of Alea-BFT, as it allows the system to free resources that are no

longer needed. Listing A.4 presents the orchestrator’s checkpointing logic, which we will now describe.

The checkpointing logic shares three variables with the remaining orchestrator parts: 𝑟 (current agree-

ment round number), 𝑞𝑠𝑝 (queue selection policy), and 𝑠𝑡𝑎𝑏𝑙𝑒𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 (latest stable checkpoint).

𝑟 and 𝑞𝑠𝑝 are maintained by the agreement loop control logic, but 𝑠𝑡𝑎𝑏𝑙𝑒𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 is updated by the

checkpointing logic.

The first upon rule (Lines 4 to 7) is triggered by the delivery of an agreement round (excluding out-of-

order deliveries caused by the slow node recovery procedure). Note that variable 𝑟 refers to the round

number of the next agreement round to be delivered, as it is incremented by the agreement loop control

logic, which runs before this upon rule. Thus, we will always observe the round delivery event for round

𝑟 ′ = 𝑟 −1. If the delivered round is the last round of an epoch, the orchestrator starts checkpointing the
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current epoch and advances to the next using the checkpoint-advance-epoch procedure.

The second upon rule (Lines 8 to 10) is triggered by the delivery of a checkpoint certificate, marking the

end of the checkpointing process for epoch 𝑒𝑝𝑜𝑐ℎ. If the new stable checkpoint is newer than the saved

latest stable checkpoint (Line 9), the orchestrator saves it (Line 10) using the save-latest-checkpoint

procedure, which will be described in the remainder of this section.

The checkpoint-advance-epoch procedure (Lines 11 to 16) advances the epoch using the advance-

epoch procedure (Lines 17 to 20), which conveys the new epoch to the broadcast component, agreement

component, and batch fetcher. Afterwards, checkpoint-advance-epoch serialises the queue selection

policy (Line 13) and starts a new checkpointing module instance (Lines 14 and 15). However, the check-

pointing module must eventually receive a snapshot of the application state. Therefore, this procedure

requests a snapshot of the application state from the batch fetcher and instructs the batch fetcher to send

this snapshot to the corresponding checkpointing instance (Line 16). Note that the snapshot request is

sent to the batch fetcher and not directly to the application, ensuring that the snapshot is taken before

any new batches are delivered.

The save-latest-checkpoint procedure (Lines 21 to 27) processes a new latest checkpoint, storing

it to allow recovery of other nodes and garbage-collecting information from older checkpoints. Firstly, it

stores the new stable checkpoint (Line 22). Secondly, it computes the new retention index for the check-

point (Line 23), which is the epoch number of the checkpoint minus the number of retained epochs.

Finally, if the new retention index is positive, there is data to clear. Thus, we instruct Alea-BFT’s com-

ponents to free resources associated with epochs before the new retention index (Lines 25 and 26).

Furthermore, it frees all checkpointing instances associated with epochs before the new retention index

(Line 27).
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1: shared state variables:
2: 𝑟, 𝑞𝑠𝑝
3: 𝑠𝑡𝑎𝑏𝑙𝑒𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 ←⊥

4: upon agreement component delivering round 𝑟 ′ = 𝑟 −1 with decision 𝑑 do ▷ Global variable 𝑟
was already incremented by agreement loop control (Line 16 in Listing A.3), so here we will always observe the
round delivery event for round 𝑟 −1.

5: if 𝑟 ′%𝐸𝑝𝑜𝑐ℎ𝐿𝑒𝑛𝑔𝑡ℎ = 𝐸𝑝𝑜𝑐ℎ𝐿𝑒𝑛𝑔𝑡ℎ−1∧𝑟 ′ > 0 then
6: 𝑛𝑒𝑤𝐸𝑝𝑜𝑐ℎ← ⌊ 𝑟

𝐸𝑝𝑜𝑐ℎ𝐿𝑒𝑛𝑔𝑡ℎ ⌋
7: checkpoint-advance-epoch(𝑛𝑒𝑤𝐸𝑝𝑜𝑐ℎ)

8: upon checkpoint module 𝑒 delivering checkpoint certificate 𝑐ℎ𝑘𝑝 = ⟨CHKP, 𝑒𝑝𝑜𝑐ℎ,𝑞𝑠𝑝𝐷𝑎𝑡𝑎,𝑠𝑡𝑎𝑡𝑒⟩ do
9: if 𝑠𝑡𝑎𝑏𝑙𝑒𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 =⊥∨𝑒𝑝𝑜𝑐ℎ > 𝑠𝑡𝑎𝑏𝑙𝑒𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡.𝑒𝑝𝑜𝑐ℎ then

10: save-latest-checkpoint(𝑐ℎ𝑘𝑝)

11: procedure checkpoint-advance-epoch(𝑛𝑒𝑤𝐸𝑝𝑜𝑐ℎ)
12: advance-epoch(𝑛𝑒𝑤𝐸𝑝𝑜𝑐ℎ)
13: 𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑒𝑑𝑃𝑜𝑙𝑖𝑐𝑦←𝑞𝑠𝑝.𝐵𝑦𝑡𝑒𝑠()
14: 𝑐ℎ𝑘𝑝𝑀𝑜𝑑𝐼𝐷 ← ⟨thresh-checkpoint, 𝑛𝑒𝑤𝐸𝑝𝑜𝑐ℎ⟩
15: send event ⟨NewInstance, 𝑛𝑒𝑤𝐸𝑝𝑜𝑐ℎ,𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑒𝑑𝑃𝑜𝑙𝑖𝑐𝑦⟩ to thresh-checkpoint factory module
16: send event ⟨AppRequestSnapshot, 𝑐ℎ𝑘𝑝𝑀𝑜𝑑𝐼𝐷⟩ to batch fetcher

17: procedure advance-epoch(𝑛𝑒𝑤𝐸𝑝𝑜𝑐ℎ)
18: send event ⟨NewEpoch, 𝑛𝑒𝑤𝐸𝑝𝑜𝑐ℎ⟩ to agreement component
19: send event ⟨NewEpoch, 𝑛𝑒𝑤𝐸𝑝𝑜𝑐ℎ⟩ to broadcast component
20: send event ⟨NewEpoch, 𝑛𝑒𝑤𝐸𝑝𝑜𝑐ℎ⟩ to batch fetcher

21: procedure save-latest-checkpoint(𝑐ℎ𝑘𝑝)
22: 𝑠𝑡𝑎𝑏𝑙𝑒𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 ← 𝑐ℎ𝑘𝑝
23: 𝑓𝑖𝑟𝑠𝑡𝑅𝑒𝑡𝐸𝑝𝑜𝑐ℎ← 𝑐ℎ𝑘𝑝.𝑒𝑝𝑜𝑐ℎ−𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑𝐸𝑝𝑜𝑐ℎ𝐶𝑜𝑢𝑛𝑡
24: if 𝑓𝑖𝑟𝑠𝑡𝑅𝑒𝑡𝐸𝑝𝑜𝑐ℎ > 0 then
25: send event ⟨GarbageCollect, 𝑓𝑖𝑟𝑠𝑡𝑅𝑒𝑡𝐸𝑝𝑜𝑐ℎ⟩ to agreement component
26: send event ⟨GarbageCollect, 𝑓𝑖𝑟𝑠𝑡𝑅𝑒𝑡𝐸𝑝𝑜𝑐ℎ⟩ to broadcast component
27: send event ⟨GarbageCollect, 𝑓𝑖𝑟𝑠𝑡𝑅𝑒𝑡𝐸𝑝𝑜𝑐ℎ⟩ to thresh-checkpoint factory module

Listing A.4: Alea-BFT Orchestrator - Checkpointing

A.5 Slow Node Detection And Recovery Duty

Alea-BFT’s orchestrator component is responsible for detecting slow nodes and recovering them. To this

end, it tracks the most recent epoch observed by each remote node and sends state transfer messages

to nodes that are too far behind. Concretely, we consider a node too far behind the rest of the system

if the last observed epoch is lower than the current epoch minus RetainedEpochCount. This condition

selects nodes behind the retained epoch range, meaning they are likely unable to make progress without

a state transfer message.

We will now present the logic associated with this task, referring to its pseudocode in Listing A.5.

This orchestrator duty requires access to all shared state, allowing it to fast-forward the orchestrator to a

future epoch from a checkpoint. Additionally, it maintains a single local state variable – 𝑛𝑜𝑑𝑒𝐸𝑝𝑜𝑐ℎ𝑠 –
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which tracks the most recent epoch that the local node observed on a remote node.

The first upon rule (Lines 5 to 8) is triggered by an internal HelpNode event, which signals the orches-

trator that some remote node is likely too far behind the rest of the system and needs help to catch up.

Thus, the orchestrator sends the node requiring help a state transfer messaged derived from the latest

checkpoint (Line 8). However, HelpNode events may be emitted by multiple components in duplicate.

Thus, the orchestrator will only send the state transfer message if the last observed epoch in the node

is outside of the nominal range (Line 6) and will register the epoch of the checkpoint in the sent state

transfer message as the latest observed epoch in the node being helped (Line 7).

The second upon rule (Lines 9 to 11) is triggered when a remote node 𝑝𝑖 signs a checkpoint for round

𝑒 (corresponds to an EpochProgress event from the thresh-checkpointing module). If a correct node

signs a checkpoint, it must have processed all protocol messages up to the corresponding epoch. Thus,

if 𝑒 is newer than the previously registered last observed epoch for node 𝑝𝑖 (Line 10), we update this

record accordingly (Line 11).

The third upon rule (Lines 12 to 17) is triggered by the receipt of a state transfer message from a

remote node 𝑝𝑖. We begin by updating the last observed epoch for node 𝑝𝑖 (Lines 13 and 14) similarly

to the second upon rule (Lines 10 and 11). Afterwards, if the local node is too far behind the checkpoint

(Lines 15 and 16), it will instruct the checkpoint certificate validator to validate it (Line 17).

The fourth upon rule (Lines 18 to 31) completes the recovery process and is triggered by a successful

validation1 of a checkpoint certificate. Similarly to the former upon rule, it checks if the local node is too

far behind the checkpoint (Lines 19 and 20) and, if so, instructs the batch fetcher, agreement component,

and broadcast component to restore their states to the checkpointed state (Lines 21 to 23). Note that,

once again, the batch fetcher serves as a proxy for the application, ensuring that the restoration process

is serialised with the delivery of new batches. Additionally, it restores the state of the orchestrator module

itself from the checkpoint. Concretely, it deserialises and updates the queue selection policy (Line 24),

updates the current agreement round number (Line 25). This leaves the orchestrator in the beginning of

the first round of the epoch after the one restored from the checkpoint. Thus, we mark the agreement

component as stalled (Line 26), and advance to that epoch (Line 27). Furthermore, the 𝑢𝑛𝑎𝑔𝑟𝑒𝑒𝑑𝑆𝑙𝑜𝑡𝑠

set is cleared of all already delivered slots (Lines 28 to 30). Finally, it saves the restored checkpoint as

the latest stable checkpoint (Line 31).

1Invalid checkpoints could be used to build failure detectors, but we chose to leave that as future work.
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1: shared state variables:
2: 𝑠𝑡𝑎𝑏𝑙𝑒𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡, 𝑟, 𝑞𝑠𝑝, 𝑢𝑛𝑎𝑔𝑟𝑒𝑒𝑑𝑆𝑙𝑜𝑡𝑠, 𝑎𝑔𝑆𝑡𝑎𝑙𝑙𝑒𝑑

3: local state variables:
4: 𝑛𝑜𝑑𝑒𝐸𝑝𝑜𝑐ℎ[𝑝𝑖] ← 0 for each node 𝑝𝑖, 𝑖 ∈ 0,…,𝑁 −1

5: upon event ⟨HelpNode, 𝑝𝑖⟩ do
6: if 𝑛𝑜𝑑𝑒𝐸𝑝𝑜𝑐ℎ[𝑝𝑖] < 𝑠𝑡𝑎𝑏𝑙𝑒𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡.𝑒𝑝𝑜𝑐ℎ then
7: 𝑛𝑜𝑑𝑒𝐸𝑝𝑜𝑐ℎ[𝑝𝑖] ← 𝑠𝑡𝑎𝑏𝑙𝑒𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡.𝑒𝑝𝑜𝑐ℎ
8: send event ⟨SendMessage, 𝑝𝑖, ⟨RECOVER, 𝑠𝑡𝑎𝑏𝑙𝑒𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡⟩⟩ to network

9: upon node 𝑝𝑖 signing checkpoint for round 𝑒 do ▷ EpochProgress event from thresh-checkpointing/𝑒 module
10: if 𝑒 > 𝑛𝑜𝑑𝑒𝐸𝑝𝑜𝑐ℎ[𝑝𝑖] then
11: 𝑛𝑜𝑑𝑒𝐸𝑝𝑜𝑐ℎ[𝑝𝑖] ← 𝑒

12: upon receiving message ⟨RECOVER, 𝑐ℎ𝑘𝑝 = ⟨CHKP, 𝑐ℎ𝑘𝑝𝐸𝑝𝑜𝑐ℎ,𝑞𝑠𝑝𝐷𝑎𝑡𝑎,𝑠𝑡𝑎𝑡𝑒⟩⟩ from node 𝑝𝑖 do
13: if 𝑛𝑜𝑑𝑒𝐸𝑝𝑜𝑐ℎ[𝑝𝑖] < 𝑐ℎ𝑘𝑝𝐸𝑝𝑜𝑐ℎ then
14: 𝑛𝑜𝑑𝑒𝐸𝑝𝑜𝑐ℎ[𝑝𝑖] ← 𝑐ℎ𝑘𝑝𝐸𝑝𝑜𝑐ℎ

15: 𝑜𝑤𝑛𝐸𝑝𝑜𝑐ℎ← ⌈ 𝑟
EpochLength⌉

16: if 𝑐ℎ𝑘𝑝𝐸𝑝𝑜𝑐ℎ−RetainedEpochCount> 𝑜𝑤𝑛𝐸𝑝𝑜𝑐ℎ then ▷ check if own node is behind
17: send event ⟨ValidateCheckpoint, 𝑐ℎ𝑘𝑝⟩ to thresh-checkpointing-validator

18: upon validating checkpoint certificate 𝑐ℎ𝑘𝑝 = ⟨CHKP, 𝑐ℎ𝑘𝑝𝐸𝑝𝑜𝑐ℎ,𝑞𝑠𝑝𝐷𝑎𝑡𝑎,𝑠𝑡𝑎𝑡𝑒⟩ do
19: 𝑜𝑤𝑛𝐸𝑝𝑜𝑐ℎ← ⌈ 𝑟

EpochLength⌉
20: if 𝑐ℎ𝑘𝑝𝐸𝑝𝑜𝑐ℎ−RetainedEpochCount> 𝑜𝑤𝑛𝐸𝑝𝑜𝑐ℎ then ▷ check if own node is still behind
21: send event ⟨RestoreState, 𝑐ℎ𝑘𝑝⟩ to batch fetcher
22: send event ⟨RestoreState, 𝑐ℎ𝑘𝑝⟩ to agreement component
23: send event ⟨RestoreState, 𝑐ℎ𝑘𝑝⟩ to broadcast component
24: 𝑞𝑠𝑝←𝑄𝑢𝑒𝑢𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑙𝑖𝑐𝑦𝐹𝑟𝑜𝑚𝐵𝑦𝑡𝑒𝑠(𝑞𝑠𝑝𝐷𝑎𝑡𝑎) ▷ error handler omitted for simplicity (valid

checkpoints always have valid queue selection policies)
25: 𝑟 ←𝑞𝑠𝑝.𝑁𝑒𝑥𝑡𝑆𝑛()
26: 𝑎𝑔𝑆𝑡𝑎𝑙𝑙𝑒𝑑←𝑇𝑟𝑢𝑒
27: advance-epoch(𝑐ℎ𝑘𝑝𝐸𝑝𝑜𝑐ℎ+1)
28: for each 𝑠𝑙𝑜𝑡 ∈ 𝑢𝑛𝑎𝑔𝑟𝑒𝑒𝑑𝑆𝑙𝑜𝑡𝑠 do
29: if 𝑠𝑙𝑜𝑡.𝑄𝑢𝑒𝑢𝑒𝑆𝑙𝑜𝑡 < 𝑞𝑠𝑝.𝑞𝑢𝑒𝑢𝑒[𝑠𝑙𝑜𝑡.𝑄𝑢𝑒𝑢𝑒𝐼𝐷] then
30: 𝑢𝑛𝑎𝑔𝑟𝑒𝑒𝑑𝑆𝑙𝑜𝑡𝑠 ←𝑢𝑛𝑎𝑔𝑟𝑒𝑒𝑑𝑆𝑙𝑜𝑡𝑠∖ {𝑠𝑙𝑜𝑡}

31: save-latest-checkpoint(𝑐ℎ𝑘𝑝)

Listing A.5: Alea-BFT Orchestrator - Slow Node Detection and Recovery
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B
Full Experimental Configuration

In this appendix we present the full list of experimental configuration. Appendix B.1 includes the list of

configuration that are used in both protocols. Appendix B.2 includes the list of configuration that are used

in ISS-PBFT. Finally, Appendix B.3 includes the list of configuration that are used Alea-BFT.

B.1 Common Experimental Configuration

• TxGen.PayloadSize – Size of each transaction payload (in bytes): 2561.

• TxGen.NumClients – Number of closed-loop clients co-located with node: depends on the experi-

ment.

• CryptoSeed – seed for cryptographic key generation: pseudorandom, generated from hash of ex-

perimental configuration and repetition number.

• RetainedEpochs – Number of most-recent epochs that are kept during garbage-collection: 2.
1In practice, transactions are larger than this value because they also carry a client ID string and are serialised using protobuf

101



• EpochLength – Number of agreed batches in an epoch: 2562.

• Mempool.MaxTransactionsInBatch – Maximum number of transactions per batch: depends on the

experiment.

• Net.MaxMessageSize – Maximum message size:

𝑚𝑎𝑥{2𝑀𝑖𝐵,𝑐×1.05,Mempool.MaxTransactionsInBatch×TxGen.PayloadSize×1.05}, where 𝑐 is the

approximated size of a checkpoint message.

• Net.ConnectionBufferSize – Per-destination outgoing message queue maximum capacity: 2048.

• Net.MaxDataPerWrite – Maximum size of chunk of data written to connection (in a single write

syscall): 100𝑘𝑖𝐵.

B.2 ISS-PBFT Experimental Configuration

• SegmentLength – Length of an ISS segment in sequence numbers: 𝑚𝑎𝑥{⌊EpochLength/𝑁⌋,2}

where N is the number of nodes in the system

• MaxProposeDelay – Maximum time between two proposals of a leader: 4𝑠

• MsgBufCapacity – Buffer capacity in factory module instances: 32𝑀𝑖𝐵

• CatchUpTimerPeriod – Length of time between the local node checking if other nodes have fallen

behind: MaxProposeDelay

• CheckpointResendPeriod – Re-transmission interval for checkpoint messages: MaxProposeDelay

• LeaderSelectionPolicy – Type of leader selection policy: Blacklist (excludes the nodes that most

recently timed out from the set of leaders, limited to 𝐹 excluded nodes)

• PBFTDoneResendPeriod: MaxProposeDelay

• PBFTCatchUpDelay: MaxProposeDelay

• PBFTViewChangeSNTimeout: 4×MaxProposeDelay

• PBFTViewChangeSegmentTimeout: 4×SegmentLength×MaxProposeDelay

• PBFTViewChangeResendPeriod: MaxProposeDelay

• Mempool.MinTransactionsInBatch – Minimum number of transactions per batch: 0

• Mempool.BatchTimeout – Time to wait for a batch to fill up: MaxProposeDelay
2The ISS implementation does not currently support setting the epoch length directly. The actual epoch length used in ISS

experiments is 𝑚𝑎𝑥{⌊EpochLength/𝑁⌋,2} ×𝑁 ′, where 𝑁 is the number of nodes in the system and 𝑁 ′ the number of leaders
selected by the leader selection policy.
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B.3 Alea-BFT Experimental Configuration

• InstanceUID – a unique identifier for an instance of Alea-BFT used for preventing replay attacks:

pseudorandom, generated from hash of experimental configuration and repetition number

• MaxConcurrentVcbPerQueue – Size of Modring of VCB instances in each Alea-BFT queue:

𝑚𝑎𝑥{(EpochSz/𝑁 +1)×2,MaxOwnUnagreedBatches×2}

• MaxOwnUnagreedBatches – Maximum number of batches that are mid-broadcast or already broad-

cast but not delivered in Alea-BFT: 2

• MaxAbbaRoundLookahead – Size of Modring of ABBA round instances in each ABBA instance: 4

• MaxAgRoundLookahead – Size of Modring of ABBA instances in Alea-BFT’s agreement compo-

nent: EpochLength×2

• MaxAgRoundEagerInput – Maximum number of agreement rounds that can have eager input at

any given time: EpochLength−1

• EstimateWindowSize – Duration estimate window size: 64

• MaxExtSlowdownFactor – Factor that controls how slower the 𝐹 slowest nodes can be in relation

to the rest of the system for duration estimation purposes (1 means both are the same speed): 1.5

• QueueSelectionPolicyType – Type of Queue Selection Policy: Round-Robin

• MaxAgStall – Maximum agreement 0-input delay: 10𝑠

• Mempool.MinTransactionsInBatch – Minimum number of transactions per batch: 1

• Mempool.BatchTimeout – Time to wait for a batch to fill up: 0

• SnoozeNet.RetransmissionLoopInterval – Length of time between message re-transmissions: 5𝑠

• SnoozeNet.MaxRetransmissionBurst – Maximum number of re-transmitted messages at a time: 64
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