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Resumo

Nessa tese de doutoramento estudamos a convergência aos estados estacionários de
sistemas de partı́culas interagentes com fronteira aberta. A tese é dividida em duas
partes, sendo a primeira um estudo quantitativo dessa convergência quando o sistema
está em equilı́brio e a segunda, um estudo qualitativo dessa convergência quando o
sistema está fora do equilı́brio.

No caso de modelos com presença de dinâmica de Glauber em equilı́brio, estu-
damos o tempo necessário para que a distribuição do processo esteja próxima da
distribuição estacionária na métrica de variação total, obtendo resultados bem finos.
Além disso, mostramos que essa convergência é abrupta e que pode ser descrita
através de um perfil Gaussiano. Para explicarmos nossa abordagem, utilizamos o
processo de exclusão em contato com reservatórios.

No caso de sistemas fora do equilı́brio, estudamos os seus estados estacionários e
provamos um Teorema Central do Limite para o seu campo de flutuações. Como esse
resultado já é conhecido para o processo de exclusão com reservatórios, utilizamos
como exemplo um modelo de reação-difusão d-dimensional, sendo o resultado válido
para dimensões menores que quatro. A nossa grande contribuição vem do fato de
que o método funciona para modelos dirigidos por equações diferenciais parciais não
lineares. Além disso, é a primeira vez em que se obtém este tipo de resultado em um
modelo de dimensão alta.

Ambos os problemas são abordados com o método da entropia relativa de Yau, o
qual combinamos com uma desigualdade log-Sobolev bastante geral e que é válida
para medidas produto do tipo Bernoulli associadas a perfis definidos em cubos ou
toros d-dimensionais. Essa desigualdade, que pode ser considerada a nossa maior
ferramenta em ambos os problemas solucionados, possui uma prova que pode ser
adaptada para modelos gradientes com fronteira aberta gerais, em qualquer dimensão.
Utilizando a força da desigualdade log-Sobolev mencionada, é possı́vel obter cotas
superiores bem precisas para as entropias relativas entre algumas medidas de proba-
bilidade e assim provar os resultados supracitados.

Palavras-chave: Convergência fina, desigualdade de Yau, entropia rela-
tiva, tempos de mistura, teorema central do limite.
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Abstract

In this PhD thesis we study the convergence to stationary states of interacting particle
systems with open boundary. The thesis is divided into two parts, being the first one a
quantitative study of that convergence when the system is in equilibrium and the sec-
ond one, a qualitative study of that convergence when the system is out of equilibrium.

In the case of models with the presence of Glauber dynamics in equilibrium, we
study the time required so that the distribution of the process is close to the stationary
one in total variation distance, obtaining very precise results. Furthermore, we show
that this convergence is abrupt and that it can be described by a Gaussian profile. In
order to explain our approach, we use the exclusion process in contact with reservoirs.

In the case of a non-equilibrium system, we study its stationary states and prove a
Central Limit Theorem for its fluctuation field. Since this result is already known for the
exclusion process in contact with reservoirs, we use a d-dimensional reaction-diffusion
model as an example, being the result valid for dimensions smaller than four. Our great
contribution comes from the fact that the method works for models that are driven by
non-linear partial differential equations. Moreover, this is the first time that one obtains
this kind of result from a high-dimensional model.

Both problems are approached with Yau’s relative entropy method, which we com-
bine with a very general logarithmic-Sobolev inequality that is valid for Bernoulli product
measures associated with profiles defined on d-dimensional cubes or tori. This inequal-
ity, which may be considered our strongest tool in both solved problems, has a proof
that can be adapted to general gradient models with open boundary, in any dimension.
Using the strength of the above logarithmic-Sobolev inequality, it is possible to obtain
very sharp upper bounds on the relative entropy between some probability measures
and thus to prove the aforementioned results.

Keywords: Central limit theorem, mixing times, relative entropy, sharp con-
vergence, Yau’s inequality.
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Chapter 1

Introduction

Understanding the convergence to stationary states of interacting particle systems with
Glauber dynamics has called a lot of attention of researchers of probability theory in
the last decades. Depending on the action of the boundary dynamics, the process can
be either in or out of equilibrium. Namely, the process is said to be out of equilibrium if
there exists a non-null current driving the particles in some direction.

One of the most famous particle systems with Glauber dynamics is the simple ex-
clusion process in contact with reservoirs, see for instance [1, 6, 7, 8, 9] and [14].
The dynamics of this system consists of: particles performing nearest-neighbor ran-
dom walks on the discrete interval (a path graph) of length n − 1, with the exclusion
rule which forbids more than one particle at the same vertex; and Glauber dynamics
at the end-vertices of the discrete interval. This Glauber dynamics creates a particle
at a boundary vertex x ∈ {1, n − 1} with rate cx ∈ (0, 1) if that vertex is empty, and it
annihilates a particle at x with rate 1−cx if it is occupied. The Glauber dynamics can be
seen as the action of reservoirs on the left and on the right of the graph. When cx = ρ

for every x ∈ {1, n − 1} the process is said to be in equilibrium, otherwise it is out of
equilibrium.

The simple exclusion process in contact with reservoirs in equilibrium has the Ber-
noulli product measure with parameter ρ as its unique stationary measure, that is,
if at each vertex one tosses a coin with probability ρ for heads and puts a particle
in that vertex if and only if that coin lands heads up, then these actions induce the
above measure which is invariant under the action of the infinitesimal generator of
the particle system. Although it is simple to understand the stationary measure of this
process in equilibrium, it is difficult to understand how fast the distribution of the process
converges to the stationary one. In [8], the authors studied this problem and they
obtained a sharp result for the case where there is only one reservoir in the system,
for instance at the right boundary vertex. In the first part of this thesis, we study the
equilibrium scenario, with both reservoirs, for any ρ ∈ (0, 1). We start the process from
probability measures that are associated with profiles defined on the open unit interval
and we show that there exists a sequence of times tn and windows wn (with wn/tn → 0

as n→∞) for which the total variation distance between the distribution of the process
at time tn + bwn and the stationary one converges to a Gaussian profile that depends
only on b. Furthermore, we show that depending on the choice of the initial profile, the
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times tn may change.
The idea of the proof is very simple to understand. It is well known that the hydrody-

namic behavior of the simple exclusion process in contact with reservoirs in equilibrium
is driven by the unique solution of the heat equation with Dirichlet boundary conditions
that has value ρ at the boundary of the unit interval. Thus, instead of computing the
aforementioned total variation distance, we replace the distribution of the process at
time t by the Bernoulli product measure associated with the solution of this partial
differential equation. This replacement makes sense due to the law known as the con-
servation of local equilibrium [13, Chp. 9] and it has a cost. To make this idea work, we
have to show that the relative entropy between the replaced and substitute measures
converges to zero for small order n-dependent times, as n → ∞. We prove that by
using Yau’s relative entropy method [19] which we briefly explain below.

Yau’s relative entropy inequality allows one to upper bound the time derivative of the
relative entropy between the law of the process at time t and a reference measure µ by
two terms: the first involves the carré du champ operator and the second one involves
correlations. The first term is negative and therefore it can be simply discarded from
the inequality. However, if we do so we may lose the possibility of sharply bound the
relative entropy. In order to take advantage of this term, we prove a very general
logarithmic-Sobolev inequality which allows replacing this term by a negative multiple
of the relative entropy. Thus, using the integrating factor and sharp estimates on the
correlations, we obtain a very sharp bound on the relative entropy.

The second part of this thesis is devoted to qualitatively understanding the non-
equilibrium stationary states of particle systems with Glauber dynamics. However,
since this has already been done for the simple exclusion process in contact with
reservoirs (see [14]), we illustrate our method with the d-dimensional reaction-diffusion
model studied in [11], with d ≤ 3. In this model, particles perform nearest-neighbor
random walks of rate n2, with the exclusion rule, on the d-dimensional discrete torus
(representing the diffusion), while Glauber dynamics occurs at every vertex of the dis-
crete torus with rate 1 (representing the reactions).

The strategy used in this second problem is also based on Yau’s relative entropy
method: the particle system chosen for our study depends on a parameter λ ≥ 0

where the case λ = 0 treats the equilibrium scenario. Let ρ be the unique real solu-
tion of ρ = (1 − ρ)(1 + λdρ2). Starting from the Bernoulli product measure associated
with the stationary profile, which in this case is the constant profile equal to ρ, and
combining an adaptation of the Sobolev logarithmic inequality mentioned in the first
problem with Yau’s inequality, we obtain an upper bound on the relative entropy be-
tween the distribution of the process at time t and the initial probability measure itself,
independent of time, provided λ belongs to a sufficiently small interval [0, λ∗]. Since the
distribution of the process, which is irreducible, converges to the stationary probability
measure, which is unknown, and the estimate obtained for the relative entropy does not
depend on time, we obtain an estimate for the relative entropy between the stationary
probability measure and the Bernoulli product measure associated with the stationary
profile.

The estimate mentioned above immediately implies a result known as the hydro-

2



static limit, which is a kind of Law of Large Numbers. Using this upper bound obtained
for the entropy, we prove a result known as the Boltzmann-Gibbs Principle, which al-
lows us to deal with functionals that present long-range correlations. After we prove
these results, we show that, starting from the stationary states, the density fluctuation
field (observable of great interest in this area of knowledge) converges to a Gaussian
random variable with a very interesting variance – A kind of Central Limit Theorem.
The idea developed here to prove this type of result, which as said above is known for
the simple exclusion process, contributes significantly to the development of the area
due to the fact that it is applicable to particle systems driven by non-linear partial dif-
ferential equations, and also because it works for high-dimensional models, which had
not been rigorously proven in the literature yet.

Although it is possible that the main result remains valid for larger values of λ,
there are examples in real life where the solution of a problem in a non-equilibrium
environment may change depending on how far it is from equilibrium. Let us consider
an analogy. Assume first that a sailor sails a small boat on a lake and he wants to
go from a point A to a point B. Clearly, the simplest and fastest way to do that is to
follow the line that passes through A and B. Now let us change the situation to a very
large river (for instance the Tejo). There are small waves in the river but the solution
for the sailor remains the same. Last, let us consider the sailor with his boat on the
sea. Depending on the hight of the tide and of the waves, the sailor must perform zig-
zags so that he does not confront the breaking waves. This is a well known strategy
which is used even in sailing championships. The example of the lake suggests a
process in equilibrium, since there are no currents in the space. In the case of the
river, the process is out of equilibrium because there exists a current in the river, but
this current is not too strong. When we replace the river by the sea, the process can
be so perturbed that if the sailor uses the same strategy, he may sink the boat. In this
analogy, the relative entropy method represents the boat.

All in all, the thesis is dived into two parts that are placed in Chapters 2 and 3,
respectively. In Chapter 2 we do a quantitative analysis of the convergence to station-
ary states of particle systems with Glauber dynamics in equilibrium, where we use the
simple exclusion process in contact with reservoirs as an example. In Chapter 3, we
do a qualitative analysis of the stationary states of non-equilibrium particle systems
with Glauber dynamics. Our main tool is a logarithmic-Sobolev inequality, which when
combined with Yau’s relative entropy inequality, implies very sharp upper bounds on
the relative entropy of these Markov processes, as long as they start from adequate
probability measures. The study of the speed of convergence of non-equilibrium parti-
cle systems to their stationary states remains open and we pretend to do it in a future
work.

3



4



Chapter 2

Sharp convergence to equilibrium

In this chapter we introduce a method developed to prove the abrupt convergence,
from one to zero, of the total variation distance between the law of an interacting par-
ticle system and its stationary measure. The idea relies on the conservation of local
equilibrium [13, Chapter 9] and on Yau’s relative entropy method [19]. We explain our
method using the symmetric simple exclusion process (SSEP) in contact with reser-
voirs.

2.1 SSEP with reservoirs

Let n ∈ {2, 3, . . . , } be a scaling parameter. Let Λn := {1, . . . , n − 1} be the discrete
interval with n − 1 points. We will call the set {1, n − 1} the boundary of Λn. We give
to Λn a graph structure by taking En := {{x, x + 1} ; x ∈ {1, . . . , n − 2}} as the edge
set in Gn = (Λn, En). We call the vertex set Λn the bulk and we say that x, y ∈ Λn are
neighbors if {x, y} ∈ En. In that case we write x ∼ y.

Let us define Ωn := {0, 1}Λn. The elements η = {η(x) ; x ∈ Λn} of Ωn are called
configurations of particles. We say that a vertex x ∈ Λn is occupied by a particle
(resp. empty) in configuration η ∈ Ωn if η(x) = 1 (resp. η(x) = 0). Given a configuration
η ∈ Ωn and two vertices x, y ∈ Λn, we denote by ηx,y the configuration of particles
obtained from η by exchanging the occupations at x and y, that is,

ηx,y(z) =


η(x) if z = y,

η(y) if z = x,

η(z) if z 6= x, y.

Given a configuration η ∈ Ωn and a vertex x ∈ Λn, we denote by ηx the configuration of
particles obtained from η by changing the value of η(x) to 1− η(x), that is,

ηx(z) =

{
1− η(x) if z = x,

η(z) if z 6= x.

5



Given a function f : Ωn → R and x, y ∈ Λn, let ∇x,yf,∇xf : Ωn → R be defined as

∇x,yf(η) = f(ηx,y)− f(η), ∇xf(η) = f(ηx)− f(η) (2.1.1)

for any η ∈ Ωn.
The SSEP with reservoir densities α and β is the continuous-time Markov chain

{ηt ; t ≥ 0} with state space Ωn, generated by the operator Ln given by

Lnf(η) := n2

n−2∑
x=1

∇x,x+1f(η) + n2
∑

x∈{1,n−1}

(
cx(1− η(x)) + (1− cx)η(x)

)
∇xf(η)

for any function f : Ωn → R and any η ∈ Ωn, where c1 = α and cn−1 = β for α, β ∈ (0, 1).
The dynamics generated by Ln can be informally described as follows: in the bulk,

particles perform nearest-neighbor random walks with rate n2 under the exclusion rule
which forbids more than one particle at any vertex and at any time. At the boundary,
the Glauber dynamics injects (resp. annihilates) particles independently at each empty
(resp. occupied) vertex x in {1, n − 1} with rate cxn

2 (resp. (1 − cx)n2). The factor n2

speeds up time so that the process is observed in a diffusive time scale.

2.1.1 Stationary measure

For each function u : Λn → [0, 1], let νnu(·) the Bernoulli product measure in Ωn with
density u(·), that is,

νnu(·)(η) :=
∏
x∈Λn

{
η(x)u(x) + (1− η(x))(1− u(x))

}
for any η ∈ Ωn. Notice that if the values of u belong to the open interval (0, 1), then the
measures νnu(·) have full support.

Since the process {ηt ; t ≥ 0} is irreducible, it has a unique stationary measure.
When α and β are equal (let us differ this case writing ρ := α = β), the reservoirs
induce a null current in the bulk. In this case, the process is said to be in equilibrium
and the Bernoulli product measure ν̄nρ , associated with the constant function equal to
ρ, is the stationary one. From now on, we fix a parameter ρ ∈ (0, 1) and we deal with
the SSEP with reservoir density ρ. Observe that the process {ηt ; t ≥ 0} depends on
n and ρ. In order to simplify the notation, we do not make this dependence explicit in
the notation. The same observation applies to the dependence in ρ of Ln, as well as to
various other objects we define later.

2.1.2 Initial measure and law of the process

For each function u : [0, 1] → [0, 1], let un : Λn → [0, 1] be defined by un(x) := u
(
x
n

)
for

every x ∈ Λn. For ε0 ∈ (0,min{ρ, 1−ρ}] and κ ≥ 0, let Uε0,κ be the family of differentiable
functions u : [0, 1]→ [0, 1] such that:

6



• ε0 ≤ u(q) ≤ 1− ε0 for every q ∈ [0, 1];

• u(0) = u(1) = ρ;

• |u′(q)| ≤ κ for every q ∈ [0, 1].

Fix ε0 ∈ (0,min{ρ, 1 − ρ}] and κ > 0 and let u0 ∈ Uε0,κ. We call u0 a profile and
we call the measures {νnun0 (·) ; n ∈ {2, 3, . . . }} the profile measures. From now on, we
consider the process {ηt ; t ≥ 0} with initial distribution νnun0 (·). In order to simplify the
notation, let us define νn0 := νnun0 (·).

Let D([0,∞),Ωn) be the space of càdlàg trajectories in Ωn. We denote by Pνn0 the
probability measure in D([0,∞),Ωn) induced by the Markov process {ηt ; t ≥ 0} with
initial measure νn0 . We denote by Eνn0 the expectation with respect to Pνn0 . We denote
the law of ηt with respect to Pνn0 by µnt .

2.1.3 Sharp convergence

The distance to equilibrium of the process {ηt ; t ≥ 0} with initial measure νn0 is defined
as

Dn(t; νn0 ) := ‖µnt − ν̄nρ ‖TV ,

where ‖µ − ν‖TV stands for the total variation distance between the probability mea-
sures µ and ν in Ωn, that is,

‖µ− ν‖TV =
1

2

∑
η∈Ωn

|µ(η)− ν(η)| = max
A⊂Ωn

|µ(A)− ν(A)|. (2.1.2)

Let us introduce the Fourier coefficients of the initial profile u0. For u0 : [0, 1]→ [0, 1]

and ` ∈ N, define

c`(u0) :=
√

2

∫
(u0(q)− ρ) sin(π`q)dq. (2.1.3)

Let us define the Gaussian profile G : R→ [0, 1] by

G(m) := ‖N (m, 1)−N (0, 1)‖TV , (2.1.4)

for any m ∈ R.

The goal of this chapter is to prove the following result:

Theorem 2.1.1. Let u0 : [0, 1]→ [0, 1] be differentiable. Assume that u0(0) = u0(1) = ρ

and that u0(q) ∈ (0, 1) for every q ∈ [0, 1]. Let `0 ∈ N be the smallest integer such that
c`0(u0) 6= 0. For every b ∈ R,

lim
n→∞

Dn

(
1

2π2`20
log n+ 1

π2`20
b; νn0

)
= G(γe−b),

where γ :=
|c`0 (u0)|√
ρ(1−ρ)

.
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In order to explain this result, let us recall the Gauss error function

erf(q) =
1√
π

∫ q

−q
e−t

2

dt. (2.1.5)

By Theorem 2.1.1 and Proposition A.1.1, at times tn(b) := 1
2π2`20

log n + 1
π2`20

b the dis-
tance to equilibrium of the SSEP with reservoir density ρ converges, as n→∞, to the
Gaussian profile

G(γe−b) = erf
(
γe−b

2
√

2

)
.

Thus, we can see that G(γe−b) converges to one as b→ −∞, and to zero as b→ +∞.
Observe that the parameter b is inside the parcel of small order in tn(b), and that we
are passing the parameter b to the limit just after we pass n→∞. This shows that the
distance to equilibrium converges sharply (or abruptly) from one to zero at times tn(b)

with a window of order wn = 1. More rigorously, for any ε ∈ (0, 1) there exists b > 0

such that
lim sup
n→∞

Dn(tn(b); νn0 ) ≤ ε

and
lim inf
n→∞

Dn(tn(−b); νn0 ) ≥ 1− ε.

2.2 The strategy

In this section we explain the strategy that we use to prove Theorem 2.1.1. We start
recalling the definition of relative entropy. Indeed, let ν be a probability measure in Ωn

and let f be a density with respect to ν. The relative entropy of f with respect to ν is
defined as

Hν(f) :=

∫
f log fdν.

Relative entropy and total variation are related by Pinsker’s inequality:

Proposition 2.2.1. (Pinsker’s inequality) Let µ and ν be two probability measures in
Ωn. Let f be the Radon-Nikodym derivative of µ with respect to ν. It holds that

2‖µ− ν‖2
TV ≤ Hν(f).

Proof. This proof can be found in [13, page 341], with a small modification. From
(2.1.2),

‖µ− ν‖TV =
1

2

∑
η∈Ωn

ν(η)|f(η)− 1|.

Thus, applying the elementary inequality 3(a− 1)2 ≤ (2a + 4)(a log a− a + 1), which is
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valid for any a ≥ 0, we obtain

1

2

∑
η∈Ωn

ν(η)|f(η)− 1| ≤ 1

2
√

3

∑
η∈Ωn

ν(η)
√

2f(η) + 4
√
f(η) log f(η)− f(η) + 1.

Last, by Cauchy-Schwarz’s inequality, we bound the last expression from above by

1

2
√

3

(∑
η∈Ωn

(2f(η) + 4)ν(η)

)1/2(∑
η∈Ωn

(f(η) log f(η)− f(η) + 1)ν(η)

)1/2

=

√
2

2

√
Hν(f).

We say that a probability measure ν in Ωn is a reference measure if ν(η) > 0 for
every η ∈ Ωn. Let ν be a reference measure, which may depend on time, and let fnt be
the Radon-Nikodym derivative of µnt with respect to ν. By the triangle’s inequality,

∣∣Dn(t; νn0 )− ‖ν − ν̄nρ ‖TV
∣∣ ≤ ‖µnt − ν‖TV ≤

√
Hν(fnt )

2
. (2.2.1)

Therefore, if we are able to find some reference measures νnt for which Hνnt
(fnt )1/2

converges to 0 faster than Dn(t; νn0 ), then the proof of Theorem 2.1.1 is reduced to the
computation of the distance ‖νnt − ν̄nρ ‖TV .

Now we explain our choice for the reference measures νnt . Recall that we fixed
constants ε0 ∈ (0,min{ρ, 1 − ρ}], κ > 0 and a profile u0 ∈ Uε0,κ. For each t ≥ 0 let us
define unt : {0, 1, . . . , n} → [0, 1] as

unt (x) :=

{
Eνn0 [ηt(x)] if x ∈ Λn,

ρ if x ∈ {0, n}.

By Dynkin’s formula (Lemma B.2.1), we see that {unt ; t ≥ 0} is the unique solution of
the boundary-value problem

d
dt
unt (x) = ∆nu

n
t (x) for t ≥ 0 and x ∈ Λn,

unt (x) = ρ for t ≥ 0 and x ∈ {0, n},
un0 (x) = u0

(
x
n

)
for x ∈ Λn.

(2.2.2)

Above, ∆n stands for the discrete Laplacian operator defined on functions f :

{0, 1, . . . , n} → R as

∆nf(x) = n2
(
f(x+ 1) + f(x− 1)− 2f(x)

)
for any x ∈ Λn.

Let us define νnt := νunt (·). The property known as conservation of local equilib-
rium [13, Chp. 9] states that for any fixed t ≥ 0, the measures µnt and νnt are close as
n → ∞, if observed on an subset of Λn of fixed size. Therefore, it is reasonable to
use the measures {νnt ; t ≥ 0} as the reference measures to be plugged into (2.2.1).
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Observe, however, that this conservation of local equilibrium is too weak to be useful in
our situation: first, it only holds over a finite time interval (while we need to go to times
of order log n), and second, it only holds on a finite spatial interval (we need to go to
the whole bulk Λn). In Section 2.5 we prove the following bound on the aforementioned
relative entropy:

Theorem 2.2.2. Let ε0 ∈ (0,min{ρ, 1 − ρ}] and κ > 0 be given. Let u0 ∈ Uε0,κ and
let fnt be the Radon-Nikodym derivative of the measure µnt with respect to νnt . Define
Hn(t) := Hνnt

(fnt ). There exist constants C0 = C0(ε0, κ), δ0 = δ0(ε0, κ) > 0 such that

Hn(t) ≤ C0e
−δ0t

for every n ∈ {2, 3, . . . }, every u0 ∈ Uε0,κ and every t ≥ 0.

A version of this estimate was obtained in [12] in the context of non-equilibrium
fluctuations from the hydrodynamic limit. Our contribution is the exponential decay as
a function of t.

Using Theorem 2.2.2, we show that the relative entropy in (2.2.1) converges to zero
in times of order log n. To accomplish our goal, we still need to identify the time window
at which the convergence, in total variation, of νnt to ν̄nρ happens. Indeed, in Section 2.6
we prove the following result:

Theorem 2.2.3. Let u0 : [0, 1]→ [0, 1] be a differentiable function. Assume that u0(0) =

u0(1) = ρ and that u0(x) ∈ (0, 1) for every x ∈ [0, 1]. Let `0 be the smallest positive
integer such that (2.1.3) is non-null. Recall that γ :=

|c`0 (u0)|√
ρ(1−ρ)

. For every b ∈ R,

lim
n→∞

∥∥νn 1

2π2`20
logn+ b

π2`20

− νρ
∥∥
TV

= G(γe−b).

For each κ > 0, n ∈ {2, 3, . . . } and ε0 ∈ (0,min{ρ, 1 − ρ}], let Unκ,ε0 be the class of
functions u : Λn → [0, 1] such that:

• u(x) ∈ [ε0, 1− ε0] for any x ∈ Λn;

• n|u(x+ 1)− u(x)| ≤ κ for any x ∈ {1, . . . , n− 2}.

Now let Γn be the carré du champ operator associated to Ln: for every f : Ωn → R,
Γnf := Lnf

2 − 2fLnf . The following inequality, which we prove in Section 2.3, is the
main ingredient of the proof of Theorem 2.2.2:

Theorem 2.2.4 (Logarithmic Sobolev inequality for inhomogeneous product measures).
Let ρ ∈ (0, 1), ε0 ∈ (0,min{ρ, 1−ρ}] and κ > 0 be fixed. There exists a positive constant
K0 = K0(ρ, ε0, κ) such that

Hνn
u(·)

(f) ≤ 1

K0

∫
Γn
√
fdνnu(·) (2.2.3)

for every u ∈ Unε0,κ and every density f with respect to νnu(·).
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Estimates of this kind are known in the literature as log-Sobolev inequalities. The
log-Sobolev constant KLS is defined as the largest constant K0 that satisfies (2.2.3).
Theorem 2.2.4 shows that K−1

LS is uniformly bounded in n.

2.3 The log-Sobolev inequality

In this section we prove Theorem 2.2.4. First we prove a simpler version of that
log-Sobolev inequality, from which Theorem 2.2.4 follows by comparison of quadratic
forms.

Fix γ > 0. Recall (2.1.1). For each f : Ωn → R and each x ∈ {1, . . . , n − 2}, let us
define

Dx(f) :=

∫ (
∇xf(η)

)2
dνnu(·),

Dx,x+1(f) :=

∫ (
∇x,x+1f(η)

)2
dνnu(·),

D(f) :=
γ

n
D1(f) +

n−2∑
x=1

Dx,x+1(f). (2.3.1)

We prove the following:

Theorem 2.3.1. Let γ, κ > 0 and ε0 ∈ (0, 1
2
]. There exists a positive constant K =

K(ε0, κ, γ) such that

Hνn
u(·)

(f) ≤ n2

K
D(
√
f) (2.3.2)

for every u ∈ Unκ,ε0 and every density f with respect to νnu(·).

To prove Theorem 2.3.1, we need the following result:

Lemma 2.3.2 (Comparison of quadratic forms). There exists a finite constant C =

C(ε0, κ, γ) such that for every n ∈ {2, 3, . . . }, every ` ∈ {2, . . . , n− 1}, every f : Ωn → R
and every u ∈ Unκ,ε0,

D`(f) ≤ CnD(f).

Proof. Observe that for each x ∈ {2, . . . , n− 1},

∇xf(η) = ∇x−1,xf(η) +∇x−1,xf
(
(ηx−1,x)x−1) +∇x−1f(ηx−1,x).

Using the inequality

(a+ b+ c)2 ≤ 2(1 + β)(a2 + b2) +
(
1 + 1

β

)
c2,

which is valid for every a, b, c ∈ R and any β > 0, we obtain

Dx(f) ≤ 2(1 + β)

∫ ((
∇x−1,x(f)

)2
+
(
∇x−1,xf

(
(ηx−1,x)x−1

))2
)
dνnu(·)

+
(
1 + 1

β

) ∫ (
∇x−1f(ηx−1,x)

)2
dνnu(·).
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Now we perform some changes of variables. Indeed,∫ (
∇x−1,xf

(
(ηx−1,x)x−1

))2
dνnu(·) =

∫ (
∇x−1,xf(η)

)2ν
n
u(·)
(
(ηx−1)x−1,x

)
νnu(·)(η)

dνnu(·),

∫ (
∇x−1f(ηx−1,x)

)2
dνnu(·) =

∫ (
∇x−1f(η)

)2ν
n
u(·)(η

x−1,x)

νnu(·)(η)
dνnu(·).

Observe that the Jacobian factors satisfy

νnu(·)
(
(ηx−1)x−1,x

)
νnu(·)(η)

≤ 1

ε0

− 1,

νnu(·)(η
x−1,x)

νnu(·)(η)
≤ 1 + α,

where α = κ
ε20n

. Therefore,

Dx(f) ≤ 2(1 + β)

ε0

Dx−1,x(f) +
(

1 +
1

β

)
(1 + α)Dx−1(f). (2.3.3)

The idea now is to use this estimate to transport D`(f) to the boundary. Using (2.3.3)
successively for x = `, . . . , 2 we conclude that

D`(f) ≤ 2(1 + β)

ε0

`−1∑
x=1

[(
1 +

1

β

)
(1 + α)

]`−1−x
Dx,x+1(f) +

[(
1 +

1

β

)
(1 + α)

]`−1

D1(f)

≤
[(

1 +
1

β

)
(1 + α)

]`−1
(

2(1 + β)

ε0

`−1∑
x=1

Dx,x+1(f) +D1(f)

)
≤
[(

1 +
1

β

)
(1 + α)

]`−1

max
{2(1 + β)

ε0

,
n

γ

}
D(f).

Taking β = n− 1 and using the bound (1 + a)b ≤ eab we obtain the estimate

D`(f) ≤ nmax
{ 2

ε0

,
1

γ

}
eαn+1D(f).

The lemma follows from the fact that αn = κ
ε20

.

Proof of Theorem 2.3.1. We use the Yau’s martingale method [16]. We follow the ap-
proach underlined in [18, Chapter 3]. In what follows, all conditional expectations are
taken with respect to νnu(·). For every u ≥ 0, define ϕ(u) := u log u. The key observation
is that for every f : Ωn → R and every σ-algebra G, if g = E[f |G] and h = f/g, then∫

ϕ(f)dνnu(·) =

∫
ϕ(g)dνnu(·) +

∫
ϕ(h)gdνnu(·). (2.3.4)

Furthermore, since νnu(·) is a product measure, we can use this relation to recursively
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estimate the log-Sobolev constant KLS. For each ` ∈ {2, . . . , n− 1} let

G` := σ(η(x);x ∈ {1, . . . , `})

be the σ-algebra generated by the first ` coordinates of the configuration η. Let us
define

D`(f) :=
`−1∑
x=1

Dx,x+1(f) +
γ

n
D1(f)

and

K` = K`(γ, ε0, κ) := inf
f,u

D`(
√
f)∫

ϕ(f)dνnu(·)
,

where the infimum runs over all densities f with respect to νnu(·) which are measurable
with respect to G` and all profiles u ∈ Unε0,κ. The reader must not confuse the quadratic
operators Dx and Dx. Observe that KLS = Kn−1(ε0, κ, γ).

Fix u ∈ Unε0,κ. Let f be a density with respect to νnu(·) that is measurable with respect
to Gn−1. Define g : {0, 1} → R as g(θ) := E[f |η(n − 1) = θ] for each θ ∈ {0, 1}. Let
νn−2
u(·) be the law of ξ := (η(x);x ∈ {1, . . . , n− 2}) and let ν̂n−1

u(·) be the law of η(n− 1) with
respect to νnu(·). Observe that f can be thought as a function of (ξ, θ).

By (2.3.4),∫
ϕ(f)dνnu(·) =

∫
ϕ(g)dν̂`u(·) +

∫ (∫
ϕ
(f(ξ, θ)

g(θ)

)
νn−2
u(·) (dξ)

)
g(θ)ν̂n−1

u(·) (dθ).

Observe that for each θ ∈ {0, 1}, the function ξ 7→ f(ξ,θ)
g(θ)

is Gn−2-measurable and it is a
density with respect to νnu(·). From the definition of K`,∫

ϕ
(f(ξ, θ)

g(θ)

)
νn−2
u(·) (dξ) ≤ 1

Kn−2g(θ)
Dn−2(

√
f(·, θ)).

Therefore, we have that∫
ϕ(f)dνnu(·) ≤

∫
ϕ(g)ν̂n−1

u(·) (dθ) +
1

Kn−2

Dn−2(f).

Notice that ν̂n−1
u(·) is a Bernoulli law of parameter u(n−1). By [15, Lemma 2] (first proven

in [5, Example 3.1]), there exists a constant B independent of ξ and u(n− 1) such that∫
ϕ(g)ν̂n−1

u(·) (dθ) ≤ 2B
(√

g(1)−
√
g(0)

)2

.

Let X and Y be non-negative random variables. By Cauchy-Schwarz inequality(√
E[X]−

√
E[Y ]

)2 ≤ E
[(√

X −
√
Y
)2]
.
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Taking X(ξ) = f(ξ, 1) and Y (ξ) = f(ξ, 0), we see that

(√
g(1)−

√
g(0)

)2 ≤
∫ (√

f(ξ, 1)−
√
f(ξ, 0)

)2
νn−2
u(·) (dξ) = Dn−1(

√
f).

Using Lemma 2.3.2 with ` = n− 1, we see that∫
ϕ(f)dνnu(·) ≤ 2BDn−1(

√
f) +

1

Kn−2

Dn−2(
√
f)

≤
(

2BCn+
1

Kn−2

)
Dn−1(

√
f).

Therefore, by definition of Kn−1, we have

1

Kn−1

≤ C̃n+
1

Kn−2

for some finite constant C̃ = C̃(ε0, κ, γ). Iterating this strategy, we conclude the proof.

We finally prove Theorem 2.2.4:

Proof of Theorem 2.2.4. By Proposition B.1.1, for any f : Ωn → R,∫
Γnfdν

n
u(·) = n2

n−2∑
x=1

Dx,x+1(f) + n2
∑

x∈{1,n−1}

∫ (
ρ(1− η(x)) + (1− ρ)η(x)

)(
∇xf(η)

)2
dνnu(·).

Therefore, for γ = min{ρ, 1− ρ},

n2D(f) ≤
∫

Γnfdν
n
u(·)

for every n ∈ {2, 3, . . . } and every f : Ωn → R. Theorem 2.2.4 follows from this bounds
and Theorem 2.3.1, with K0(ρ, ε0, κ) = K(ε0, κ,min{ρ, 1− ρ}).

2.4 Estimates on the solution of the discrete heat equa-
tion

Before we estimate the relative entropy and compute the total variation distance be-
tween the profile measures, we collect and prove various facts about solutions of (2.2.2).
Using discrete Fourier series, (2.2.2) can be solved in terms of trigonometric functions:
for n ∈ {2, 3, . . . } and ` ∈ {1, . . . , n− 1}, define ϕn` : Λn → R as

ϕn` (x) :=
√

2 sin
(
π`x
n

)
14



for every x ∈ Λn and define

λn` := 2n2
(
1− cos

(
π`
n

))
= 4n2 sin2

(
π`
2n

)
.

Observe that ∆nϕ
n
` (x) = −λn`ϕn` (x) for every x ∈ Λn, that is, for any ` ∈ {1, . . . , n−1} ϕn`

is an eigenfunction of the discrete Laplacian operator associated with the eigenvalue
−λn` . The solution {unt (x);x ∈ Λn, t ≥ 0} has the following representation:

unt (x) = ρ+
n−1∑
`=1

cn` e
−λn` tϕn` (x) (2.4.1)

for every x ∈ Λn and every t ≥ 0, where

cn` = cn` (u0) :=
1

n

∑
x∈Λn

(u0(x)− ρ)ϕn` (x), ` ∈ {1, . . . , n− 1}

are the Fourier coefficients of u0 − ρ.

Our first lemma gives a very useful estimate on the eigenvalues −λn` . Below we use
the notation fn ∼ gn if limn→∞ fn/gn = 1.

Lemma 2.4.1. For each n ∈ {2, 3, · · · } and each `0, ` ∈ {1, . . . n − 1} such that `0 ≤
min{`, n

2
},

λn`
λn`0
≥ `

`0

.

Proof. Observe that as n → ∞, λn` ∼ π2`2 for ` = o(
√
n). Therefore, in fact the ratio

on the left-hand side of the inequality in the lemma approaches `2

`20
. The point on this

lemma is that the estimate is uniform in `0, ` and n. Let us consider f(x) := 1 − cosx

and fix x0 ∈ (0, π
2
]. Thus, f ′(x) = sinx ≥ sinx0 for every x ∈ [x0, π − x0]. Integrating in

x, we see that
f(x) ≥ f(x0) + (x− x0) sinx0,

from where

f(x)

f(x0)
≥ 1 +

sinx0

1− cosx0

(x− x0) =
x

x0

+ (x− x0)
( sinx0

1− cosx0

− 1

x0

)
for every x0 ∈ (0, π

2
] and every x ∈ [x0, π − x0]. Therefore, the lemma will be proved if

we show that
sinx0

1− cosx0

− 1

x0

≥ 0, (2.4.2)

because we can take x0 = π`0
n

and x = π`
n

. Observe that

sinx0

1− cosx0

= cot
(
x0
2

)
.

Therefore, the difference on the left-hand side of (2.4.2) is asymptotically equivalent to
1
x0

for x0 � 1 and it is decreasing in x0. For x0 = π
2
, the difference on the left-hand side
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of (2.4.2) is equal to 1− 2
π
> 0. Hence, the lemma is proved.

The following lemma is useful whenever we need a rough estimate on λn` :

Lemma 2.4.2. For every θ ≥ 0,

1− cos θ ≥ 1
2
θ2
(
1− 1

12
θ2
)
. (2.4.3)

In particular, for every ` ∈ {1, . . . , n− 1},

λn` ≥ π2`2
(
1− π2`2

12n2

)
(2.4.4)

and for every n ∈ {2, 3, . . . },

λn1 ≥ π2
(
1− π2

12n2

)
≥ π2

(
1− π2

48

)
≥ 3π2

4
. (2.4.5)

Proof. Let us define F : [0,+∞)→ R as

F (θ) = 1− cos θ − 1
2
θ2
(
1− 1

12
θ2
)
.

Let us denote the k-th derivative of F by F (k). Computing the first six derivatives of F
we obtain

F (1)(θ) = sin θ +
1

6
θ(θ2 − 6) , F (2)(θ) =

θ2

2
− (1− cos θ) , F (3)(θ) = θ − sin θ

F (4)(θ) = 1− cos θ , F (5)(θ) = sin θ and F (6)(θ) = cos θ.

Since F ′(θ) = 0 if and only if x = 0, since F (k)(0) = 0 for every k ∈ {1, . . . , 5} and since
F (6)(0) > 0, θ = 0 is a global minimizer. Therefore, for any θ ≥ 0

F (θ) ≥ F (0) = 0,

which implies (2.4.3). Inequality (2.4.4) follows from (2.4.3) and from the definition of
λn` . Inequality (2.4.5) follows from (2.4.4) and from the facts that n ≥ 2 and π2/(48) <

1/4.

Our next estimate establishes the exponential decay of the `∞-norm of the discrete
gradient of unt :

Lemma 2.4.3. For every n ∈ {2, 3, . . . }, every u0 : Λn → [0, 1], every x ∈ Λn and every
t ≥ 1

λn1
log 2, the solution of (2.2.2) satisfies

n
∣∣unt (x+ 1)− unt (x)

∣∣ ≤ 8πe−λ
n
1 t. (2.4.6)

Proof. Observe that |cn` | ≤ 2 for every ` ∈ {1, . . . , n− 1}. Thus, using the bound

| sinx− sin y| ≤ |x− y|,
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which is valid for every x, y ∈ R, we see that

n|unt (x+ 1)− unt (x)| ≤
n−1∑
`=1

2ne−λ
n
` t
∣∣ sin (π`x

n

)
− sin

(π`(x+1)
n

)∣∣ ≤ n−1∑
`=1

2π`e−λ
n
` t. (2.4.7)

From Lemma 2.4.1,

n−1∑
`=1

2π`e−λ
n
` t ≤

∞∑
`=1

2π`e−λ
n
1 `t =

2πe−λ
n
1 t

(1− e−λn1 t)2
.

Putting this estimate into (2.4.7), we obtain the estimate

n|unt (x+ 1)− unt (x)| ≤
n−1∑
`=1

2π`e−λ
n
1 `t ≤ 2πe−λ

n
1 t

(1− e−λn1 t)2
. (2.4.8)

Last, observe that for every t ≥ 1
λn1

log 2, the denominator of this expression is bounded
below by 1

4
, which proves the lemma.

Remark 2.4.4. Observe that in this lemma we are not assuming any condition on the
Lipschitz constant of u0. Therefore, a lower bound on the time t at which (2.4.6) holds
is needed. In particular the restriction t ≥ 1

λn1
log 2 is sharp up to a constant.

Remark 2.4.5. Being more careful on the computations, it is possible to replace λn1 by
π2, at the cost of taking n large enough and t ≤ n2. Since we only need an exponential
decay in this lemma, we did not pursue a more refined bound.

Define ϕ` : [0, 1] → R as ϕ`(x) =
√

2 sin(π`x) for every x ∈ [0, 1]. Observe that
ϕn` (x) = ϕ`

(
x
n

)
. Observe as well that the Fourier coefficients cn` are Riemann sums of

the Fourier coefficients of u0, c`(u0), in the continuous interval. We have the following
lemma:

Lemma 2.4.6. Let κ > 0 and `0 ∈ {2, 3. . . . }. There exists a constant C = C(κ, `0) such
that ∣∣cn` (u0)− c`(u0)

∣∣ ≤ C

n

for every n ∈ {`0 + 1, `0 + 2, . . . }, every ` ∈ {1, . . . , `0} and every u0 : [0, 1]→ [0, 1] such
that u0(0) = u0(1) = ρ and ‖u′‖∞ ≤ κ.

Proof. Let f : [0, 1]→ R be a differentiable function satisfying f(0) = f(1) = 0. Thus,∣∣∣∣ 1n ∑
x∈Λn

f
(
x
n

)
−
∫ 1

0

f(x)dx

∣∣∣∣ =

∣∣∣∣∣
n−1∑
x=1

{
1

n
f
(
x
n

)
−
∫ x+1

n

x
n

f(y)dy

}
−
∫ 1/n

0

f(y)dy

∣∣∣∣∣
=

∣∣∣∣∣
{
n−1∑
x=1

∫ x+1
n

x
n

{
f
(
x
n

)
− f(y)

}
dy

}
−
∫ 1/n

0

(f(y)− f(0))dy

∣∣∣∣∣
≤

{
n−1∑
x=1

∫ x+1
n

x
n

∣∣f(x
n

)
− f(y)

∣∣ dy}+

∫ 1/n

0

|f(y)− f(0)|dy.

17



By the mean-value Theorem, the right-hand side of the above equation is bounded
from above by

‖f ′‖∞
n−1∑
x=1

∫ x+1
n

x
n

∣∣∣y − x

n

∣∣∣ dy + ‖f ′‖∞
∫ 1/n

0

y dy.

Therefore, ∣∣∣∣ 1n ∑
x∈Λn

f
(
x
n

)
−
∫ 1

0

f(x)dx

∣∣∣∣ ≤ 2‖f ′‖∞
n

. (2.4.9)

The lemma follows by computing the derivatives of the functions 2(u0(x) − ρ)ϕ`(x) for
` ≤ `0.

Remark 2.4.7. The error in (2.4.9) is bounded by ‖f
′′‖∞

24n2 if f is twice differentiable, but
we do not need that precision here.

Our next lemma derives the asymptotic behaviour of unt on the relevant time window:

Lemma 2.4.8. Let `0 ∈ N and let u0 : [0, 1] → [0, 1] be differentiable, such that u0(0) =

u0(1) = ρ and such that c`(u0) = 0 for every ` ∈ {1, . . . , `0 − 1}. For every B > 0,

lim
n→∞

sup
|b|≤B

sup
x∈Λn

∣∣√n(untn(b)(x)− ρ)− c`0(u0)e−bϕn` (x)
∣∣ = 0,

where
tn(b) :=

1

2λn`0
log n+

1

λn`0
b.

Proof. The idea is to divide the sum in (2.4.1) into two parts:

√
n
∣∣unt (x)− ρ− c`0(u0)e−λ

n
`0
tϕn` (x)

∣∣ ≤ √2n

`0∑
`=1

∣∣cn` (u0)− c`(u0)
∣∣+
√
n

n−1∑
`=`0+1

2e−λ
n
` t.

By Lemma 2.4.6,
√

2n

`0∑
`=1

∣∣cn` (u0)− c`(u0)
∣∣ ≤ C(‖u′‖∞, `0)√

n
.

By Lemma 2.4.1,

√
n

n−1∑
`=`0+1

2e−λ
n
` t ≤

√
n

∞∑
`=`0+1

2e
−
λn`0+1
`0+1

`t
=

2
√
ne−λ

n
`0+1t

1− e−λ
n
`0+1t

.

Observe that
lim
n→∞

λn`0+1

λn`0
=
(
1 + 1

`0

)2
.

Therefore, there exists n0 = n0(`0) such that
λn`0+1

λn`0
≥ 1 + 1

`0
for every n ≥ n0. Observe

that the function s 7→ e−s

1−e−s is decreasing in s. Therefore, for every b ∈ [−B,B],

√
n

n∑
`=`0+1

2e−λ
n
` t
n(b) ≤ 2

√
ne
−(1+ 1

`0
)( 1

2
logn−B)

1− e−(1+ 1
`0

)( 1
2

logn−B)
≤ 2e2B

n
1

2`0 (1− e−2B)
≤ C(B)

n
1

2`0

.
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The numerical value of the constant C(B) is not really important, the decay in n is what
we need. Observing that

√
ne−λ

n
`0
tn(b) = e−b, the lemma is proved.

2.5 The relative entropy method

The goal of this section is to prove Theorem 2.2.2. The proof relies in the so-called
Yau’s relative entropy method, introduced in [19].

Let us recall the definition of the carré du champ operator, placed just above Theo-
rem 2.2.4. Let us use the Bernoulli product measure ν̄nρ as a reference measure in Ωn.
Recall the reference measures νnt = νunt (·) defined after (2.2.2). Let ψnt : Ωn → [0,∞)

be the Radon-Nikodym derivative of νnt with respect to ν̄nρ , that is, ψnt (η) =
νnt (η)

ν̄nρ (η)
for

every η ∈ Ωn. Let L∗n,t be the adjoint of Ln with respect to νnt . The action of L∗n,t over a
function g : Ωn → R is given by

L∗n,tg(η) := n2

n−2∑
x=1

(
g(ηx,x+1)

νnt (ηx,x+1)

νnt (η)
− g(η)

)
+ n2

∑
x∈{1,n−1}

((
ρη(x) + (1− ρ)(1− η(x)

)
g(ηx)

νnt (ηx)

νnt (η)
−
(
ρ(1− η(x)) + (1− ρ)η(x)

)
g(η)

)
(2.5.1)

for every η ∈ Ωn.

Now we invoke Yau’s relative entropy inequality:

Proposition 2.5.1 (Yau’s inequality). For each t ≥ 0, let µnt be the law of ηt with respect
to Pνn0 and let fnt be the Radon-Nikodym derivative of µnt with respect to νnt . Recall that
Hn(t) := Hνnt

(fnt ). We have that

d
dt
Hn(t) ≤ −

∫
Γn
√
fnt dν

n
t +

∫
fnt
(
L∗n,t1− ∂t logψnt

)
dνnt ,

where 1 is the constant function equal to 1.

Proof. This proof can be found in [12, Lemma A.1] in a more general scenario. Let
L∗n,t be the adjoint of Ln with respect to the reference measure νnt . The forward Fokker-
Planck equation asserts that

d

dt

(
fnt ψ

n
t

)
= L∗n,t

(
fnt ψ

n
t

)
for any t ≥ 0, from where

d

dt
fnt =

1

ψnt

(
L∗n,t

(
fnt ψ

n
t

)
− fnt

d

dt
ψnt

)
.
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Therefore, rewriting Hn(t) as
∫
fnt log fnt ψ

n
t dν̄

n
ρ , we see that

d

dt
Hn(t) =

∫
(1 + log fnt )

(
L∗n,t

(
fnt ψ

n
t

)
− fnt

d

dt
ψnt
)
dν̄nρ

+

∫
fnt log fnt

d

dt
ψnt dν̄

n
ρ

=

∫
fnt Ln log fnt dν

n
t −

∫
fnt

d

dt
logψnt dν

n
t .

Now, since a(log b− log a) ≤ 2
√
a(
√
b−
√
a), we obtain

fnt (η)Ln log fnt (η) =
∑
ξ∈Ωn

r(η, ξ)ft(η)
(

log fnt (ξ)− log fnt (η)
)

≤
∑
ξ∈Ωn

2r(η, ξ)
√
fnt (η)

(√
fnt (ξ)−

√
fnt (η)

)
for any η ∈ Ωn, where r(η, ξ) stands for the jump rate from configuration η to ξ. More-
over, since 2

√
a(
√
b−
√
a) = −(

√
b−
√
a)2 + b− a, we conclude that

2 r(η, ξ)
√
fnt (η)

(√
fnt (ξ)−

√
fnt (η)

)
= −r(η, ξ)

(√
fnt (ξ)−

√
fnt (η)

)2
+r(η, ξ)

(
fnt (ξ)−fnt (η)

)
.

Therefore, 2
√
fnt Ln

√
fnt = −Γn

√
fnt + Lnf

n
t . Hence, we obtain that

d

dt
Hn(t) ≤ −

∫
Γn
√
fnt dν

n
t +

∫ (
Lnf

n
t − fnt

d

dt
logψnt

)
dνnt ,

which implies the desired inequality due to the fact that
∫
Lnf

n
t dν

n
t =

∫
L∗n,t1f

n
t dν

n
t .

Now that we know Yau’s inequality, observe that

ψnt (η) =
∏
x∈Λn

(
η(x)

unt (x)

ρ
+ (1− η(x))

1− unt (x)

1− ρ

)
. (2.5.2)

Using this expression and (2.5.1), it is possible to compute L∗n,t1 − ∂t logψnt , explicitly.
Indeed, for each x ∈ Λn, let us define

ωx :=
η(x)− unt (x)

unt (x)(1− unt (x))
.

Observe that ωx also depends on t. In order to compact notation, we will not include
this dependence in ωx. We have

L∗n,t1(η) = n2
∑
x∈Λn

η(x+ 1)(1− η(x))
(νnt (ηx,x+1)

νnt (η)
− 1
)

+ n2
∑
x∈∂Λn

η(x)
(
ρ
νnt (ηx)

νnt (η)
− (1− ρ)

)
+ n2

∑
x∈Λn

η(x)(1− η(x+ 1))
(νnt (ηx,x+1)

νnt (η)
− 1
)

+ n2
∑
x∈∂Λn

(1− η(x))
(

(1− ρ)
νnt (ηx)

νnt (η)
− ρ
)
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= n2
∑
x∈Λn

η(x+ 1)(1− η(x))
(unt (x)(1− unt (x+ 1))

unt (x+ 1)(1− unt (x))
− 1
)

+ n2
∑
x∈Λn

η(x)(1− η(x+ 1))
(unt (x+ 1)(1− unt (x))

unt (x)(1− unt (x+ 1))
− 1
)

+ n2
∑
x∈∂Λn

η(x)

unt (x)
(ρ(1− unt (x))− (1− ρ)unt (x))

+ n2
∑
x∈∂Λn

1− η(x)

1− unt (x)
((1− ρ)unt (x)− ρ(1− unt (x))) .

Observe that the above identity can be rewritten as

L∗n,t1(η) = n2
∑
x∈Λn

η(x+ 1)(1− η(x))

unt (x+ 1)(1− unt (x))

(
unt (x)(1− unt (x+ 1))− unt (x+ 1)(1− unt (x))

)
+ n2

∑
x∈Λn

η(x)(1− η(x+ 1))

unt (x)(1− unt (x+ 1))

(
unt (x+ 1)(1− unt (x))− unt (x)(1− unt (x+ 1))

)
+ n2

∑
x∈∂Λn

(
η(x)

unt (x)
− 1− η(x)

1− unt (x)

)(
ρ(1− unt (x))− (1− ρ)unt (x)

)
= n2

∑
x∈Λn

(
η(x+ 1)(1− η(x))

unt (x+ 1)(1− unt (x))
− η(x)(1− η(x+ 1))

unt (x)(1− unt (x+ 1))

)
×
(
unt (x)(1− unt (x+ 1))− unt (x+ 1)(1− unt (x))

)
+ n2

∑
x∈∂Λn

(
η(x)

unt (x)
− 1− η(x)

1− unt (x)

)(
ρ(1− unt (x))− (1− ρ)unt (x)

)
= n2

∑
x∈Λn

(
η(x+ 1)(1− η(x))

unt (x+ 1)(1− unt (x))
− η(x)(1− η(x+ 1))

unt (x)(1− unt (x+ 1))

)(
unt (x)− unt (x+ 1)

)
+ n2

∑
x∈∂Λn

(
η(x)

unt (x)
− 1− η(x)

1− unt (x)

)(
ρ− unt (x)

)
.

Since unt (x) = ρ for any x ∈ ∂Λn we have

L∗n,t1(η) = n2
∑
x∈Λn

(
η(x+ 1)(1− η(x))

unt (x+ 1)(1− unt (x))
− η(x)(1− η(x+ 1))

unt (x)(1− unt (x+ 1))

)(
unt (x)− unt (x+ 1)

)
.

The next step is to rewrite η(x+1)(1−η(x))
unt (x+1)(1−unt (x))

− η(x)(1−η(x+1))
unt (x)(1−unt (x+1))

as a linear combination of 1,
ωx, ωx+1 and ωxωx+1. Indeed, assume that

η(x+ 1)(1− η(x))

unt (x+ 1)(1− unt (x))
− η(x)(1− η(x+ 1))

unt (x)(1− unt (x+ 1))
= a+ bωx + cωx+1 + dωxωx+1

for some a, b, c, d ∈ R. Taking the expectation of the above identity with respect to νnt ,
we see that a = 0. Evaluating this identity at η(x) = 1 and η(x + 1) = unt (x + 1) (which
is equivalent to taking expectations with respect to Bern(1)×Bern(unt (x))), we see that
b = −1. Similarly, evaluating the identity at η(x + 1) = 1 and η(x) = unt (x), we see that
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c = 1. Last, evaluating the identity at η(x) = η(x+ 1) = 1, we obtain that

d

unt (x)unt (x+ 1)
− 1

unt (x)
+

1

unt (x+ 1)
= 0,

from which we conclude that d = unt (x+ 1)− unt (x). Hence,

L∗n,t1(η) = n2
∑
x∈Λn

(
ωx+1 − ωx + (unt (x+ 1)− unt (x))ωxωx+1

)(
unt (x)− unt (x+ 1)

)
.

Summing the above expression by parts and using the fact that unt (x) = ρ for any
x ∈ ∂Λn, we conclude that

L∗n,t1(η) =
∑
x∈Λn

∆nu
n
t (x)ωt(x)−

n−2∑
x=1

n2
(
unt (x+ 1)− unt (x)

)2
ωxωx+1, (2.5.3)

Now observe that

d

dt
logψnt (η) =

d

dt

∑
x∈Λn

(η(x) log(2unt (x)) + (1− η(x)) log(2(1− unt (x))))

=
∑
x∈Λn

(
η(x)

unt (x)
− 1− η(x)

1− unt (x)

)
d

dt
unt (x)

=
∑
x∈Λn

ωx
d

dt
unt (x).

Since d
dt
unt (x) = (∆nu

n
t )(x) for any x ∈ Λn we conclude that

L∗n,t1− ∂t logψnt = −
n−2∑
x=1

n2
(
unt (x+ 1)− unt (x)

)2
ωxωx+1.

Observe that integrating a function that depends on ηt with respect to fnt dν
n
t is

equivalent to taking expectations with respect to the law Pνn0 . Therefore,

d
dt
Hn(t) ≤ −

∫
Γn
√
fnt dν

n
t −

n−2∑
x=1

n2
(
unt (x+ 1)− unt (x)

)2Eνn0
[
ωxωx+1

]
. (2.5.4)

We see that it would be good to have an estimate for Eνn0 [ωxωx+1]. We recall that the
expression inside the previous expectation depends on t. The following proposition
follows from [14, Lemma 4.1 and Proposition 4.4]:

Proposition 2.5.2. For every n ∈ {2, 3, . . . }, every profile u ∈ Uε0,κ, every x ∈ Λn−1 and
every t ≥ 0, ∣∣Eνn0 [ωxωx+1]

∣∣ ≤ 4κ(2 + κ)

ε2
0n

and
n
∣∣unt (x+ 1)− unt (x)

∣∣ ≤ κ. (2.5.5)
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We are finally ready to prove Theorem 2.2.2.

Proof of Theorem 2.2.2. By Proposition 2.5.2 and (2.5.4), we have

d
dt
Hn(t) ≤ −

∫
Γn
√
fnt dν

n
t +

4κ3(2 + κ)

ε2
0

. (2.5.6)

By Theorem 2.2.4,
d
dt
Hn(t) ≤ −K0Hn(t) +

4κ3(2 + κ)

ε2
0

.

Thus, by Grönwall’s Lemma we conclude that

Hn(t) ≤ 4κ3(2 + κ)

K0ε2
0

(2.5.7)

for every t ≥ 0, which means that Hn(t) is uniformly bounded in t by a constant that
only depends on ρ, ε0 and κ.

In order to show that Hn(t) decays to 0 in t, we need to take advantage of the
presence of the discrete gradient n(unt (x + 1) − unt (x)) in the expression for L∗n,t1 −
∂t logψnt . By Lemma 2.4.3,

n
∣∣unt (x+ 1)− unt (x)

∣∣ ≤ 8πe−λ
n
1 t

for every n ∈ {2, 3, . . . }, every x ∈ Λn and every t ≥ 1
λn1

log 2. Therefore, for t ≥ tn0 :=
1
λn1

log 2,

d
dt
Hn(t) ≤ −K0Hn(t) +

28π2κ(2 + κ)e−2λn1 t

ε2
0

.

Assume that 2λn1 > K0. Integrating last inequality between tn0 and tn0 + t and using
(2.5.7) to estimate Hn(t0), we conclude that

Hn(tn0 + t) ≤
(4κ3(2 + κ)

K0ε2
0

+
28π2κ(2 + κ)

(2λn1 −K0)ε2
0

)
e−K0t.

If 2λn1 < K0, the estimate holds with exponential factor e−2λn1 t. If 2λn1 = K0, the estimate
holds with exponential factor e−(2λn1−δ)t for any δ > 0. By Lemma 2.4.2, λn1 ≥ 3π2

4
. Taking

t0 = 4
3π2 log 2, in each case Theorem 2.2.2 is proved.

2.6 Total variation distance between profile measures

We finally prove Theorem 2.2.3.

Proof of Theorem 2.2.3. By definition,

‖νnt − ν̄nρ ‖TV =
1

2

∫
|ψnt − 1|dν̄nρ .
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Recall that ψnt has an explicit formula, see (2.5.2). Observe that ψnt can be rewritten in
the form

ψnt := exp
( ∑
x∈Λn

(
ant (x)(ηx − ρ)− bnt (x)

))
for

ant (x) = log
unt (x)

ρ
− log

1−unt (x)

1−ρ

and
bnt (x) = −ρ log

unt (x)

ρ
− (1− ρ) log

1−unt (x)

1−ρ .

The sum ∑
x∈Λn

ant (x)(ηx − ρ)

can be understood as a triangular array of independent, centered random variables,
and in particular it should converge, after a suitable renormalization, to a Gaussian
random variable.

Let us define
snt :=

(
ρ(1− ρ)

∑
x∈Λn

ant (x)2
)1/2

,

Xn
t :=

1

snt

∑
x∈Λn

ant (x)(ηx − ρ),

bnt :=
∑
x∈Λn

bnt (x).

With these notations, we have that

ψnt = exp{sntXn
t − bnt },

and the analysis of ‖νnt − ν̄nρ ‖TV reduces to the analysis of snt , Xn
t and bnt . Recall that

we are interested in the behavior of these quantities for t = 1
2π2`20

log n + b
π2`20

. In order
to simplify notation, from now on we fix B > 0 and we will take

t = tn(b) :=
1

2λn`0
log n+

1

λn`0
b

with b ∈ [−B,B]. Here and below we denote by Rn,i
t (x) an error term that goes to 0 as

n→∞, uniformly in x ∈ Λn and b ∈ [−B,B]. The index i serves to indicate the places
at which the error term changes. By Lemma 2.4.8,

unt (x) = ρ+ 1√
n

(
c`0(u0)e−bϕn`0(x) +Rn,1

t (x)
)
.

By Taylor’s formula, log(1 + x) = x− x2/2 +O(x3). Therefore,

ant (x) =
1√
n

(
c`0(u0)e−bϕn`0(x)

ρ(1− ρ)
+Rn,2

t (x)

)
. (2.6.1)
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Now we can compute snt :

(snt )2 = ρ(1− ρ)
∑
x∈Λn

ant (x)2 =
ρ(1− ρ)

n

∑
x∈Λn

(
c`0(u0)2e−2bϕn`0(x)2

ρ2(1− ρ)2
+Rn,3

t (x)

)
.

Since
1

n

∑
x∈Λn

ϕn`0(x)2

is a Riemann sum of the integral 2
∫ 1

0
sin2(π`0x)dx, which is equal to 1, we see that

(snt )2 =
c`0(u0)2e−2b

ρ(1− ρ)
+Rn,4

t ,

from where

lim
n→∞

sup
b∈[−B,B]

∣∣∣snt − ∣∣c`0(u0)
∣∣e−b√

ρ(1− ρ)

∣∣∣ = 0.

In order to compute bnt , we need to go one step further in Taylor’s expansion of log(1+x).
More precisely,

log(1 + x) = x− 1
2
x2 +

x3

3
+O(x4).

Proceeding as before we see that

bnt =
1

n

∑
x∈Λn

(
c`0(u0)2e−2bϕn` (x)2

2ρ(1− ρ)
+Rn,5

t (x)

)
=
c`0(u0)2e−2b

2ρ(1− ρ)
+Rn,6

t ,

and in particular we see that bnt and 1
2
(snt )2 have the same limit as n→∞.

Recall that we want to obtain the limit as n→∞ of

1

2

∫ ∣∣ exp
{
sntX

n
t − bnt

}
− 1
∣∣dνρ. (2.6.2)

Up to here, we have proved the convergence of snt and bnt . By Lyapounov’s criterion
with fourth moment condition (Theorem A.2.1 with δ = 2), Xn

t converges in law to a
standard Gaussian law if

lim
n→∞

1

(snt )4

∑
x∈Λn

ant (x)4

∫
(ηx − ρ)4dνρ = 0.

Observe that
∫

(ηx − ρ)4dνρ = ρ(1− ρ)(1− 3ρ+ 3ρ2). The actual value of this integral is
not relevant; it is only relevant that it is constant in n, x and t. Since snt has a non-zero
limit, we only need to prove that

lim
n→∞

∑
x∈Λn

ant (x)4 = 0.

From (2.6.1), we see that there exists a finite constant C = C(u0, `0, B) such that
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|ant (x)| ≤ C√
n

for every n ∈ {2, 3, . . . }, every x ∈ Λn and every b ∈ [−B,B]. Therefore,

∑
x∈Λn

ant (x)4 ≤ C4

n

and Lyapounov’s condition is satisfied. Therefore, by the Central Limit Theorem (The-
orem A.2.1) and the above estimates, sntXn

t − bnt converges in law to γe−bX − 1
2
γ2e−2b,

where γ =
|c`0 (u0)|√
ρ(1−ρ)

and X has a standard Gaussian law. Since the exponential func-

tion is not bounded, one needs an additional argument in order to prove that (2.6.2)
converges. A sufficient condition so that the integral (2.6.2) converges to

1
2
E
[∣∣eγe−bX−1

2
γ2e−2b

− 1
∣∣]

is that the sequence {esnt Xn
t ;n ∈ {2, 3, . . . }} is uniformly integrable. Since Lp-boundedness

implies uniform integrability (see [2, Theorem 25.12]) for p > 1, it is enough to show
that

∫
eps

n
t X

n
t dνρ is uniformly bounded for some p > 1. From Hoeffding’s Lemma

(Lemma A.3.1), for any p > 1∫
eps

n
t X

n
t dνρ ≤ exp

{ ∑
x∈Λn

1
8
p2ant (x)2

}
≤ exp

{
1
8
C2p2

}
.

Therefore, for any b ∈ R,

lim
n→∞

1

2

∫
|ψnt − 1|dνρ =

1

2
E
[∣∣eγe−bX−1

2
γ2e−2b

− 1
∣∣] = G(γe−b),

which proves the theorem.
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Chapter 3

Central limit theorem for
non-equilibrium stationary states

In this chapter we perform a qualitative analysis of the stationary states of an example
of what is known in the literature as a reaction-diffusion model [4]. Although there are
some similar, or even matching, definitions, the notation in this chapter is independent
of the one introduced in Chapter 2.

3.1 Reaction-diffusion model

Let Tdn = (Vn, En) be the d-dimensional discrete torus. The vertex set of this graph can
be represented by Vn = Z/nZ and if we denote by ei the i-th vector of the canonical
basis of Rd, then the edges in En are the pairs xy such that y = x ± ei for some
i ∈ {1, . . . , d}. Abusing notation, from now on we will often write Tdn for its vertex set Vn.

Let Ωn = {0, 1}Tdn be the set of functions η : Tdn → {0, 1}. We will call an element
η ∈ Ωn a configuration of particles, meaning that vertices with value 1 are occupied
by a particle and that vertices with value 0 are empty. There are two types of inter-
actions in the reaction-diffusion model: the symmetric simple exclusion dynamics and
the Glauber dynamics. The exclusion dynamics just flip edges of the graph with rate
1, exchanging the occupation numbers of adjacent vertices. This makes particles per-
form nearest-neighbor random walks with the exclusion rule, which forbids a vertex to
be occupied by more than one particle. The Glauber dynamics creates a particle in an
empty vertex x ∈ Tdn with rate c+

x (η) = 1+λ
∑d

j=1 η(x−ej)η(x+ej), where λ ≥ 0 is fixed,
and annihilates a particle in an occupied vertex x with rate c−x (η) = 1. The infinitesimal
generator of this reaction-diffusion model is given by

Lnf(η) = n2Lexcn f(η) + LGlaubern f(η), (3.1.1)

where

Lexcn f(η) =
d∑
i=1

∑
x∈Tdn

(
f(ηx,x+ei)− f(η)

)
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and
LGlaubern f(η) =

∑
x∈Tdn

(
(1− η(x))c+

x (η) + η(x)c−x (η)
)(
f(ηx)− f(η)

)
on any f : Ωn → R. Above ηx,y stands for the configuration obtained from η after
exchanging the occupation numbers of vertices x and y, and ηx stands for the configu-
ration obtained from η after changing the occupation number of vertex x. Namely,

ηx,y(z) =


η(x), if z = y;

η(y), if z = x;

η(z), if z 6= {x, y}

and

ηx(z) =

1− η(x), if z = x;

η(z), if z 6= x.

3.1.1 Law of the process

Let µn be a probability measure on Ωn. We will denote by {ηt; t ≥ 0} the continuous-
time Markov process with generator Ln and initial measure µn. We will denote by St
the semigroup associated with Ln. Let D([0, T ],Ωn) be the path space of càdlàg trajec-
tories with values in Ωn, known as the Skorohod space. Given a probability measure
µn ∈ Ωn, we denote by Pµn the probability measure on D([0, T ],Ωn) induced by the
initial measure µn and the Markov process {ηt ; t ≥ 0}. We denote by Eµn denote the
expectation with respect to Pµn. We also use the notation η. to represent elements of
the Skorohod space D([0, T ],Ωn), that is, the time trajectories of the reaction-diffusion
model. This notation η. should not be confused with the notation η for elements of
Ωn. Given any other probability measure µ and a random variable X we will use the
notation µ(X) for the expectation of X with respect to µ.

3.1.2 Non-equilibrium scenario

Now we will discuss a little about the difficulties of the model. Given a function u : Tdn →
[0, 1], the Bernoulli product measure νu(·) associated with the profile u is defined on Ωn

by
νu(·)(η) =

∏
x∈Tdn

{
η(x)u(x) + (1− η(x))(1− u(x))

}
.

When u is constant equal to p, we will write νp instead of νu(·). Let p ∈ (0, 1) and let us
define

F (p) :=

∫
Lnη(0)dνp =

∫ {
(1− η(0))c+

0 (η)− η(0)c−0 (η)
}
dνp. (3.1.2)

In the above definition, the vertex 0 can be replaced by any other vertex.
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The exclusion dynamics is already reversible with respect to the measures νp,
p ∈ [0, 1]. If λ were zero then we would obtain a completely reversible dynamics with
respect to the measure ν1/2. In this case the process is said to be in equilibrium and the
Bernoulli product measure with parameter 1/2 is stationary, that is,

∫
Lnf(η)dν1/2 = 0

for every f : Ωn → R. In particular, F (1/2) = 0. In the non-equilibrium scenario, that is,
λ > 0, we still can find ρ ∈ (0, 1) that satisfies F (ρ) = 0. Indeed, a simple computation
shows that ρ is given by

ρ = (1− ρ)(1 + λdρ2). (3.1.3)

Let Θ(ρ) = (1 − ρ)(1 + λdρ2). Since Θ(1) = 0, Θ(0) = 1 and Θ is continuous, the
Intermediate Value Theorem asserts that there exists ρ ∈ (0, 1) such that Θ(ρ) = ρ. On
the other hand, νρ is not the stationary measure of the process: it can be checked, for
instance, that ∫

Ln (η(0)η(1)) dνρ 6= 0.

3.2 Density fluctuation field

Let the inner product in L2(Td) be given by 〈f, g〉 =
∫
Td f(u)g(u)du. For each k ∈ Zd let

ψk : Td → C be defined by

ψk(x) = e2πkix (3.2.1)

for any x ∈ Td. The family {ψk; k ∈ Zd} forms an orthonormal basis of L2(Td). For each
bounded function f : Td → R, let f̂ : Zd → C be the Fourier coefficient of f of order k,
that is,

f̂(k) := 〈f, ψk〉 .

For each f ∈ C∞(Td) and each m ∈ R let us define

‖f‖m :=

(∑
k∈Z

|f̂(k)|2(1 + |k|2)m

)1/2

,

where |k| := (k2
1 + · · · + k2

d)
1/2. Observe that ‖f‖m < ∞ for each m ∈ R because

f ∈ C∞(Td). The Sobolev space Hm is defined as the closure of C∞(Td) with respect
to the norm ‖f‖m.

The density fluctuation field is defined on functions G ∈ Hk(Td), by

Xn
t (G) =

1

nd/2

∑
x∈Tdn

(ηt(x)− ρ)G
(x
n

)
. (3.2.2)

By duality, (3.2.2) defines a process {Xn
t (G); t ≥ 0} with values in H−k(Td) for any

k > d/2 (see [12, comments after Proposition C.5]).
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3.2.1 Review of some results in the literature

The main result in [11], where the authors consider this same model, is the following:

Theorem 3.2.1. Let G ∈ Hk(Td), k > d/2. Let us fix a time horizon [0, T ], T > 0.
Assume that η0 has law νρ. For any d ≤ 3, the sequence {Xn

t (G);n ∈ N} converges,
with respect to the J1-Skorohod topology on the Sobolev space D([0, T ],H−k(Td)), to
the unique solution of the Ornstein-Uhlenbeck equation

dXt(G) = (∆− Φ(ρ))Xt(G)dt+ dWt(G)

where dWt(G) denotes space-time white noise with quadratic variation

2t
(
χ(ρ)‖∇G‖2

L2(Td) + ρ‖G‖2
L2(Td)

)
,

χ(u) = u(1− u) and

Φ(ρ) := −F ′(ρ) = 2 + λρ2d− 2λχ(ρ)d > 0. (3.2.3)

In particular, for G ∈ Hk(Td), the sequence {Xn
t (G);n ∈ N} is tight in the J1-Skorohod

topology of D([0, T ],R) and if X·(G) is a limit point, then the processes

Mt(G) := Xt(G)−X0(G)−
∫ t

0

Xs

(
∆G+

(
2λχ(ρ)d− 2− λρ2d

)
G
)
ds

and
Nt(G) := (Mt(G))2 − 2t

(
χ(ρ)‖∇G‖2

L2(Td) + ρ‖G‖2
L2(Td)

)
are mean-zero martingales with respect to the filtration Ft := σ{Xs(g) : s ≤ t and g ∈
Hk(Td)}.

The main ingredient to prove Theorem 3.2.1 is the following result:

Theorem 3.2.2. Let ρ ∈ (0, 1) be given by (3.1.3). Let ft denote the Radon-Nikodym
derivative of the measure νρSt with respect to the measure νρ. Let H(t) =

∫
ft log ftdνρ

be the relative entropy of ft with respect to the measure νρ. Thus, there exists a positive
constant such that

H(t) ≤ C tnd−2gd(n), (3.2.4)

where

gd(n) =


n, if d = 1;

log n, if d = 2;

1, if d ≥ 3.

3.2.2 Improvement on the entropy bound

In Lemma 3.3.5 we state an improvement in the upper bound on the relative entropy
H(t) in Theorem 3.2.2. More precisely, we will remove the multiplicative factor t on the
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right-hand side of (3.2.4). This allows us to pass the inequality to the limit when t→∞
with fixed n. Our aim is to prove the following result:

Theorem 3.2.3. Let ρ ∈ (0, 1) be given by (3.1.3) and let µnss be the stationary measure
of the process {ηt; t ≥ 0}. Let f denote the Radon-Nikodym derivative of the measure
µnss with respect to the measure νρ and let H(µnss|νρ) =

∫
f log fdνρ be the relative

entropy of f with respect to the measure νρ. There exist positive constants λ∗, C such
that for any λ < λ∗,

H(µnss|νρ) ≤ C λnd−2gd(n).

3.2.3 Hydrostatic limit

The hydrodynamic limit of the process {ηt; t ≥ 0} was also proven in [11]. It is a
consequence of Theorem 3.2.2 and it states the following:

Theorem 3.2.4 (Hydrodynamic limit). Let ρt be the strong solution of the reaction-
diffusion equation  d

dt
ρt(q) = ∆ρt(q) + F (ρt(q)) , q ∈ Td,

ρ0(q) = f(q) , q ∈ Td.
(3.2.5)

For any δ > 0, any t ≥ 0 and any H ∈ C (Td),

lim
n→∞

Pνf(·/n)

η· ; ∣∣∣ 1

nd

∑
x∈Tdn

ηt(x)H
(x
n

)
−
∫
Td
ρt(u)H (u) du

∣∣∣ > δ

 = 0.

The hydrodynamic limit above can be seen as a law of large numbers with respect to
the law of the process starting from the measure νf(·/n). Below we use Theorem 3.2.3
to prove the same kind of result, but now starting from the stationary measure, the
hydrostatic limit :

Corollary 3.2.5 (Hydrostatic limit). Let ρ ∈ (0, 1) be given by (3.1.3). There exists
λ∗ > 0 such that for any λ < λ∗, any δ > 0, any t ≥ 0 and any H ∈ C (Td),

lim
n→∞

µnss

η ;
∣∣∣ 1

nd

∑
x∈Tdn

ηt(x)H
(x
n

)
− ρ

∫
Td
H (u) du

∣∣∣ > δ

 = 0.

Proof. Fix δ > 0, t ∈ [0, T ] and H ∈ C (Td) and let us define the random variable

At,H :=
1

nd

∑
x∈Tdn

ηt(x)H
(x
n

)
− ρ

∫
Td
H (u) du (3.2.6)

and the event At,δ,H := {η ; |At,H | > δ}.
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By Corollary B.3.2, we have

µnss(At,δ,H) ≤ log 2 +H (µnss | νρ)
log (1 + 1/νρ (At,δ,H))

.

Our goal is to show that there exists a positive constant C = C (δ) such that for any
sufficiently large n ∈ N we have νρ (At,δ,H) < e−C n

d. Thus,

µnss(At,δ,H) ≤ log 2 +H (µnss | νρ)
C nd

.

Assuming Theorem 3.2.3 we have H (µnss | νρ) ≤ C λnd−2gd(n) from which we can con-
clude the proof. Indeed, let us define

Bt,H :=
1

nd

∑
x∈Tdn

(ηt(x)− ρ)H
(x
n

)
.

and

Ct,H :=
ρ

nd

∑
x∈Tdn

H
(x
n

)
− ρ

∫
Td
H (u) du.

Thus,

νρ (At,δ,H) = νρ (At,H > δ) + νρ (At,−H > δ)

= νρ (Bt,H + Ct,H > δ) + νρ (Bt,−H + Ct,−H > δ) .

Since 1
nd

∑
x∈Tdn

H
(
x
n

)
converges to

∫
Td H (u) du, for sufficiently large n we have

−δ
2
< Ct,H <

δ

2
.

Therefore, νρ (At,δ,H) ≤ νρ (Bt,H > δ/2) + νρ (Bt,−H > δ/2). Moreover, by Chebyshev’s
exponential inequality and since νρ is a product measure, for any a > 0 we have

νρ (Bt,H > δ/2) ≤ e−a δ/2νρ[e
aBt,H ] = e−a δ/2 νρ

 ∏
x∈Tdn

exp

{
aH

(
x
n

)
nd

(ηt(x)− ρ)

}
= e−a δ/2

∏
x∈Tdn

νρ

[
exp

{
aH

(
x
n

)
nd

(ηt(x)− ρ)

}]

= e−a δ/2 exp

log
∏
x∈Tdn

νρ

[
exp

{
aH

(
x
n

)
nd

(ηt(x)− ρ)

}]
= e−a δ/2 exp

∑
x∈Tdn

log νρ

[
exp

{
aH

(
x
n

)
nd

(ηt(x)− ρ)

}].
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Now, by Hoeffding’s Lemma (Lemma A.3.1), we conclude that

νρ (At,δ,H) ≤ 2 e−a δ/2 exp

 a2

n2d

∑
x∈Tdn

∣∣∣H (x
n

) ∣∣∣2
 = exp

{
a2

nd
‖H‖2

∞ + log 2− a δ

2

}
.

Choosing a = δ nd

4 ‖H‖2∞
we obtain that

νρ (At,δ,H) ≤ exp

{
− δ2

16 ‖H‖2
∞
nd + log 2

}
Hence, there exists a constant C = C (δ) such that for any sufficiently large n we have

νρ (At,δ,H) < e−C n
d

.

3.2.4 Gaussian limit for the density fluctuation field

The goal of Section 3 is to prove that under the non-equilibrium stationary states, which
are unknown, the fluctuation field converges to a Gaussian field:

Theorem 3.2.6. Let d ≤ 3. Let λ∗ > 0 be sufficiently small. Let λ ∈ [0, λ∗]. Let ρ ∈ (0, 1)

be given by (3.1.3). Let H ∈ Hk(Td), k > d/2. Let Xn(H) := Xn
0 (H) be the initial

density fluctuation field defined in (3.2.2) starting from µnss. For each t ≥ 0 let TtH be
the solution of the Fokker-Planck equation d

dt
TtH = ∆TtH − Φ(ρ)TtH,

T0H = H.
(3.2.7)

Recall that χ(ρ) = ρ(1− ρ). The sequence {Xn(H);n ∈ N} converges to a mean-zero
Gaussian field X(H) in H−k(Td), k > d/2, with variance given by

E
[
(X(H))2

]
= 2χ(ρ)

∫ ∞
0

‖∇TrH‖2
L2(Td) dr + 2ρ

∫ ∞
0

‖TrH‖2
L2(Td) dr (3.2.8)

= χ(ρ)

(
‖H‖2

L2(Td) +

(
2ρ

χ(ρ)
− 2Φ(ρ)

)∫ ∞
0

‖TrH‖2
L2(Td)dr

)
.

Remark 3.2.7. The assumption d ≤ 3 comes from the fact that the upper bound ob-
tained for relative entropy in Theorem 3.2.3 becomes weaker as d increases. Thus,
some of the estimates obtained in Section 3.5 are not strong enough to conclude the
result in higher dimensions. This is better explained further ahead.
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Remark 3.2.8. In order to see that the integral in (3.2.8) is finite, observe that

d

dt
‖TtH‖2

L2(Td) = 2

∫
Td

(TtH(x))
( d
dt
TtH(x)

)
dx = 2

∫
Td

(TtH(x))((∆− Φ(ρ))TtH(x))dx

= −2

∫
Td

(∇TtH(x))2dx− 2Φ(ρ)

∫
Td

(TtH(x))2dx

≤ −2Φ(ρ)‖TtH‖2
L2(Td).

Thus, for any t ≥ 0

‖TtH‖L2(Td) ≤ ‖H‖L2(Td)e
−Φ(ρ)t. (3.2.9)

From the linearity of the equation (3.2.7), ∇TtH = Tt∇H. Thus, by (3.2.8), we
conclude that the right-hand side of (3.2.9) is bounded from above by

2
(
χ(ρ) ‖∇H‖2

L2(Td) + ρ ‖H‖2
L2(Td)

)∫ ∞
0

e−2Φ(ρ)rdr =
χ(ρ) ‖∇H‖2

L2(Td) + ρ ‖H‖2
L2(Td)

Φ(ρ)
<∞.

While it is simple to obtain an upper bound on the L2(Td)-norm of TtH, we need to
do some more effort when considering its L∞(Td)-norm:

Proposition 3.2.9. For any t > log 2
4π2 we have

‖TtH‖∞ ≤ 5d‖H‖∞e−Φ(ρ)t.

In particular, there exists a positive constant c0 such that ‖TtH‖∞ < c0 for any t ≥ 0.

Proof. Recall the Fourier coefficients Ĥ(k) of the function H with respect to the ba-
sis {ψk; k ∈ Zd} defined in the beginning of Section 3.2. For each k ∈ Zd let λk =

−4π2|k|2 and observe that Ttψk(x) = ψk(x)e−(λk+Φ(ρ))t for every x ∈ Td. Since H(x) =∑
k∈Zd Ĥ(k)ψk(x) we have

|TtH(x)| =

∣∣∣∣∣∑
k∈Zd

Ĥ(k)Ttψk(x)

∣∣∣∣∣ =

∣∣∣∣∣∑
k∈Zd

Ĥ(k)ψk(x)e−(λk+Φ(ρ))t

∣∣∣∣∣
≤
∑
k∈Zd

∣∣∣Ĥ(k)
∣∣∣ e−(λk+Φ(ρ))t.

Since Ĥ(k) ≤ ‖H‖∞, we have

|TtH(x)| ≤ ‖H‖∞ e−Φ(ρ)t
∑
k∈Zd

e−4π2k2t = ‖H‖∞ e−Φ(ρ)t

(∑
`∈Z

e−4π2`2t

)d

.

Moreover, since `2 ≥ |`| for every ` ∈ Z we obtain

|TtH(x)| ≤ ‖H‖∞ e−Φ(ρ)t

(
1 + 2

∞∑
`=1

(
e−4π2t

)`)d

= ‖H‖∞ e−Φ(ρ)t

(
1 +

2e−4π2t

1− e−4π2t

)d

.
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Using the inequality (1− e−a)−1 < 2 for any a > log 2 we conclude that for any x ∈ Td

|TtH(x)| ≤ 5d‖H‖∞ e−Φ(ρ)t

for every t > log 2
4π2 .

3.3 Relative entropy method

In this section we prove Theorem 3.2.3. As in Chapter 2, the main ingredient on the
entropy estimate is a log-Sobolev inequality.

3.3.1 Logarithmic-Sobolev inequality

Let Λn := {0, . . . , n − 1} be the path of length n. Let ρ : Λn → (0, 1). Let Sn = {0, 1}Λn

and let νρ be the Bernoulli product measure in Sn of parameter ρ.
Fix γ > 0. For f : Sn → R and x, y ∈ Λn, let us define

Dx(f) :=

∫ (
f(ηx)− f(η)

)2
dνρ,

Dx,y(f) :=

∫ (
f(ηx,y)− f(η)

)2
dνρ,

Dk(f) :=
k−2∑
x=0

Dx,x+1(f) +
γ

n2

k−1∑
x=0

Dx(f),

and D(f) := Dn(f). First, we prove the following:

Lemma 3.3.1 (Comparison of quadratic forms). There exists a positive constant C =

C(ρ) such that for any function f : Sn → R

Dn−1(f) ≤ CnD(f).

Proof. For each f : Sn → R and x, y ∈ Λn, define ∇x,yf,∇xf : Sn → R as

∇x,yf(η) := f(ηx,y)− f(η),

∇xf(η) = f(ηx)− f(η)

for any η ∈ Sn. For x, y we have that

∇xf(η) = ∇x,yf(η) +∇yf(ηx,y) +∇x,yf
(
(ηx,y)y

)
.

Using the inequality

(a+ b+ c)2 ≤ 2(1 + β)(a2 + b2) + (1 + 1
β
)c2,
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valid for any a, b, c ∈ R, β > 0, we see that

Dx(f) ≤ 2(1 + β)

∫ [(
∇x,yf

)2
+
(
∇x,yf

(
(ηx,y)y)

)2
]
νρ(dη)

+
(
1 + 1

β

) ∫ (
∇yf(ηx,y)

)2
νρ(dη).

Performing some changes of variables, we see that∫ (
∇x,yf

(
(ηx,y)y)

)2
νρ(dη) =

∫ (
∇x,yf(η)

)2νρ
(
(ηy)x,y

)
νρ(η)

νρ(dη),

∫ (
∇yf(ηx,y)

)2
dνρ ≤

∫ (
∇yf

)2νρ(η
x,y)

νρ(η)
dνρ.

Since νρ in invariant under transpositions, the Jacobian factors satisfy

νρ
(
(ηy)x,y

)
νρ(η)

≤ 1

ρ
− 1,

νρ(η
x,y)

νρ(η)
= 1. (3.3.1)

We conclude that

Dx(f) ≤ 2(1+β)
ρ
Dx,y(f) +

(
1 + 1

β

)
Dy(f).

Now let us choose x = n − 1 and β = n. Let us sum the above inequality over all
y 6= n− 1 and divide both sides by n− 1. We obtain

Dn−1(f) ≤ 2(1+n)
ρ(n−1)

n−2∑
y=0

Dn−1,y(f) +

(
1 + 1

n

)
n− 1

n−1∑
y=0

Dy(f).

Therefore, the proof is complete once we show that

n−2∑
y=0

Dn−1,y(f) ≤ Cn

n−2∑
x=0

Dx,x+1(f).

Indeed, for each x, y ∈ Λn let us define (x, y) ◦ η := ηx,y. Observe that for any x > y,
ηx,y can be rewritten as

(x−1, x)◦(x−2, x−1)◦· · ·◦(y+1, y+2)◦(y, y+1)◦(y+1, y+2)◦· · ·◦(x−2, x−1)◦(x−1, x)◦η.

Thus, there exists a finite sequence ξ1, . . . , ξm, with m ≤ 2(x − y), such that ξ1 = η,
ξm = ηx,y and for any 2 ≤ k ≤ m we have ξk = (`, ` + 1) ◦ ξk−1 for some `. Therefore,
we can write

f(ηx,y)− f(η) =
m−1∑
k=1

(f(ξk+1)− f(ξk)) .
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By Cauchy-Schwarz inequality, for any x > y we obtain that

Dx,y(f) =

∫
(f(ηx,y)− f(η))2 νρ(·)(dη) ≤ m

m−1∑
k=1

∫
(f(ξk+1)− f(ξk))

2 νρ(dη) (3.3.2)

= m
m−1∑
k=1

∫
(f(ξk+1)− f(ξk))

2

(
νρ(η)

νρ(ξk)

)
νρ(dξk). (3.3.3)

Moreover, since νρ in invariant under transpositions, νρ(η) = νρ(ξk) for every k ∈
{1, . . . ,m− 1}. Hence,

Dx,y(f) ≤ m

m−1∑
k=1

∫
(f(ξk+1)− f(ξk))

2 νρ(dξk) (3.3.4)

≤ 2n
n−2∑
x=1

Dx,x+1(f). (3.3.5)

Observe that although the statements of Lemma 2.3.2 and Lemma 3.3.1 are similar,
their proofs are different because they use the dynamics of the system to move parti-
cles. Once the comparison of quadratic forms are done, we can prove a log-Sobolev
inequality for a reaction-diffusion model on Sn, following the same recipe given in the
proof of Theorem 2.3.1:

Theorem 3.3.2. There exists a finite constant K = K(γ, ρ) such that∫
f log fdνρ ≤

1

K
n2D

(√
f
)

(3.3.6)

for any density f with respect to νρ.

Now prove the validity of the result for the process evolving on the d-dimensional
tori:

Theorem 3.3.3 (Log-Sobolev inequality). Let ν be a probability measure on Ωn and
define D(f, ν) =

∫
Γfdν where Γ is the carré du champ operator associated with Ln

given by

Γf(η) = n2

d∑
i=1

∑
x∈Tdn

(
f(ηx,x+ei)− f(η)

)2
+
∑
x∈Tdn

cx(η) (f(ηx)− f(η))2 (3.3.7)

for any function f : Ωn → R. Let ρ ∈ (0, 1) be given by (3.1.3). There exists a positive
constant KLS, independent of n (but depending on ρ), such that∫

f log fdνρ ≤
1

KLS

D
(√

f, νρ

)
for any density f with respect to νρ.
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Proof. For each n ∈ N let G1 = (V1, E1) be such that V1 = {0, 1 . . . , n − 1} and E1 =

{{x, x+ 1 (mod n)} ; x ∈ V1}. Notice that G1 and T1
n are isomorphic. By comparison of

Dirichlet forms, Theorem 3.3.2 gives a logarithmic-Sobolev inequality for the generator
of the exclusion process on G1 with Glauber dynamics of density γ/n at all vertices,
and the measure νρ.

Now, for each d ≥ 2 let us consider n copies of Gd−1 = (Vd, Ed), which we label as
Gi
d−1 = (V i

d , E
i
d), i ∈ {0, . . . , n− 1}. The vertex set V i

d and the edge set Ei
d are defined

by

Vd := ∪n−1
i=1 V

i
d and Ed := ∪n−1

i=1 E
i
d.

We will let the process evolve in each of the graphs Gi
d−1, independently. By [5,

Lemma 3.2] and since the resulting process on Gd can be seen as a product chain of
the one on G1, the inverse of log-Sobolev constant associated with the quadratic form
D (·, νρ) is or order 1. In order to obtain the tori in this graph construction, for each
vertex v ∈ Vd let vi denote its copy at V i

d . Define

E∗d := {{vi, vi+1 (mod n)} ; v ∈ Vd−1}.

The graph G̃d = (Vd, Ed∪E∗d) is now a torus. The result follows from the fact that adding
more edges can only decrease the log-Sobolev constant of the process.

3.3.2 Entropy estimate

Let u : Tdn → [ε0, 1− ε0] for some ε0 ∈ (0, 1/2]. Assume that

n|u(x+ ei)− u(x)| ≤ κ

for any x ∈ Tdn and any i ∈ {1, . . . , d}.
Let O− = {x ∈ Zd; zi ≤ 0 for any i ∈ {1, . . . , d}} be the non-positive orthant and let

A ⊂ O− be finite. Note that A is projected into Tdn when n is sufficiently large.
Now, for each x ∈ Tdn let us define

ω(x) =
η(x)− u(x)

χ(u(x))
,

which is well-defined because ε0 > 0. Moreover, define

ω(x+ A) =
∏
y∈A

ω(x+ y)

and, for each i ∈ {1, . . . , d} and each G : Tdn → R define

Vi(η,G,A) =
∑
x∈Tdn

ω(x+ A)ω(x+ ei)G(x) (3.3.8)
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For any density f with respect to νu(·) define H
(
f |νu(·)

)
=
∫
f log fdνu(·). With the

above notation, the following replacement lemma was proven in [12, Lemma 3.1]:

Lemma 3.3.4 (Static Replacement). There exists a finite constant C = (ε0, A) such
that for any G : Tdn → R, any density f with respect to νu(·) and any δ > 0,

∫
Vi(η,G,A)fdνu(·) ≤ δn2

∫ d∑
i=1

∑
x∈Tdn

(√
f(ηx,x+ei)−

√
f(η)

)2

dνu(·)

+
C(1 + κ)

δ

(
‖G‖∞ + ‖G‖2

∞
) (
H
(
f |νu(·)

)
+ nd−2gd(n)

)
.

Using the log-Sobolev inequality and Lemma 3.3.4, we are able to prove the follow-
ing result:

Lemma 3.3.5. Let ρ ∈ (0, 1) be given by (3.1.3). Let ft be the Radon-Nikodym deriva-
tive of νρ St with respect to the measure νρ. Let H(t) := H(ft|νρ). Then, there exist
positive constants λ∗, C such that for any λ < λ∗ and any t ≥ 0 we have

H(t) ≤ Cλnd−2 gd(n).

Proof. Let ψ be the Radon-Nikodym derivative of νρ with respect to the measure ν1/2.
Let ft denote the Radon-Nikodym derivative of νρSt with respect to νρ and let H(t) =

H(ft, νρ). By Yau’s entropy inequality (Proposition 2.5.1),

d

dt
H(t) ≤ −D

(√
ft, νρ

)
+

∫ (
L∗t1−

d

dt
ψ

)
ft dνρ,

where L∗t stands for the adjoint of Ln with respect to νρ. After a very long, but elemen-
tary computation (similar to the one done in (2.5.3)), we can see that for any density f
with respect to νρ we have∫ (

L∗t1−
d

dt
ψ

)
f dνρ =

∫ ∑
x∈Tdn

ω(x) (F (ρ)) f dνρ (3.3.9)

+ 2λ(χ(ρ))2

∫ ∑
x∈Tdn

ω(x)
d∑
j=1

ω(x+ ej) f dνρ

+ λ
(χ(ρ))3

ρ

∫ ∑
x∈Tdn

ω(x)
d∑
j=1

ω(x− ej)ω(x+ ej) f dνρ.

Therefore, since F (ρ) = 0 and f = ft we obtain that
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d

dt
H(t) ≤ −D

(√
ft, νρ

)
+ 2λ(χ(ρ))2

∫ d∑
i=1

∑
x∈Tdn

ω(x)ω(x+ ei) ft dνρ

+ λ
(χ(ρ))3

ρ

∫ d∑
j=1

∑
x∈Tdn

ω(x)ω(x− ej)ω(x+ ej) ft dνρ.

Now, by Lemma 3.3.4, there exists a positive constant C such that for any δ > 0

2λ(χ(ρ))2

∫ d∑
i=1

∑
x∈Tdn

ω(x)ω(x+ ei) ft dνρ

+ λ
(χ(ρ))3

ρ

∫ d∑
j=1

∑
x∈Tdn

ω(x)ω(x− ej)ω(x+ ej) ft dνρ

is bounded from above by

λδn2

∫ d∑
i=1

∑
x∈Tdn

(√
ft(ηx,x+ei)−

√
ft(η)

)2

dνρ +
Cλ

δ

(
H(t) + nd−2 gd(n)

)
.

Thus, since n2
∫ ∑d

i=1

∑
x∈Tdn

(√
ft(ηx,x+ei)−

√
ft(η)

)2

dνρ ≤ D
(√

ft, νρ
)

we obtain

d

dt
H(t) ≤ −(1− λδ)D

(√
ft, νρ

)
+
Cλ

δ

(
H(t) + nd−2 gd(n)

)
.

Let us use the main ingredient of this proof. By Theorem 3.3.3, for any δ ≤ λ−1,

d

dt
H(t) ≤ −

(
(1− λδ)KLS −

Cλ

δ

)
H(t) +

Cλ

δ
nd−2 gd(n).

Let us choose our parameter δ. We will take one such that the function f(δ) := (1 −
λδ)KLS − Cλ/δ is positive. Since f(δ) > 0 if and only if the polynomial p(δ) := δ2 −
λ−1δ +C/KLS is negative and since the discriminant of p(δ) equals λ−2 − 4C/KLS, our
choice on δ is possible only if λ <

√
KLS/(4C) =: λ∗ (this forces our assumption that λ

is small enough). Moreover, since the roots of p(δ) are λ−1±
√

(2λ)−2 − C/KLS and we
had required that δ ≤ λ−1, we must choose some δ∗ ∈

(
λ−1−

√
(2λ)−2 − C/KLS, λ

−1
)

.
Therefore,

d

dt
H(t) ≤ −f(δ∗)H(t) +

Cλ

δ∗
nd−2 gd(n).

Finally, by Gronwall’s inequality, we conclude the Lemma.

Observe that Theorem 3.2.3 follows from Lemma 3.3.5.

40



Proof of Theorem 3.2.3. By [13, Proposition 8.1], the entropy is lower semicontinuous.
Therefore, by Lemma 3.3.5 we see that

H(µnss|νρ) ≤ lim sup
t→∞

H(t) ≤ Cλnd−2 gd(n).

3.4 Estimates of some functionals

In this section we use the entropy bound of Theorem 3.2.3 to estimate some function-
als.

Proposition 3.4.1. There exist positive constants λ∗ and C∗ = C∗(λ∗) such that for any
λ ∈ [0, λ∗], any function G ∈ C1,∞(R+ × Td), any t ≥ 0 and any sufficiently large n we
have

Eµnss

∣∣∣ 1

nd/2

∑
x∈Tdn

(η0(x)− ρ)Gt

(x
n

) ∣∣∣
 ≤ C∗ nd/2−1

√
gd(n)‖Gt‖L2(Td).

Proof. By the entropy inequality (Proposition B.3.1), for any γ > 0 we have

Eµnss

∣∣∣ 1

nd/2

∑
x∈Tdn

(η0(x)− ρ)Gt

(x
n

) ∣∣∣
 ≤ H(µnss|νρ)

γ

+
1

γ
log

∫
exp

γ ∣∣∣ 1

nd/2

∑
x∈Tdn

(η0(x)− ρ)Gt

(x
n

) ∣∣∣
 dPνρ(·) .

Moreover, by Theorem 3.2.3, we can bound the right-hand side of the above inequality
by

Cλnd−2gd(n)

γ
+

1

γ
log

∫
exp

γ ∣∣∣ 1

nd/2

∑
x∈Tdn

(η0(x)− ρ)Gt

(x
n

) ∣∣∣
 dPνρ . (3.4.1)

Since e|x| ≤ ex + e−x and

lim sup
n→∞

1

n
log(bn + cn) = max

{
lim sup
n→∞

1

n
log bn , lim sup

n→∞

1

n
log cn

}
,

we can remove the absolute value on the right-hand side of (3.4.1), obtaining

Cλnd−2gd(n)

γ
+

1

γ
log

∫
exp

 γ

nd/2

∑
x∈Tdn

(η0(x)− ρ)Gt

(x
n

) dPνρ . (3.4.2)

Now, by Hoeffding’s Lemma (Lemma A.3.1), the previous expression is bounded
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from above by
Cλnd−2gd(n)

γ
+

γ

8nd

∑
x∈Tdn

G2
t

(x
n

)
.

Since n−d
∑

x∈Tdn
G2
t (x/n) converges to ‖Gt‖2

L2(Td)
, for sufficiently large n we have

1

nd

∑
x∈Tdn

G2
t

(x
n

)
≤ 2‖Gt‖2

L2(Td).

Therefore,

Eµnss

∣∣∣ 1

nd/2

∑
x∈Tdn

(η0(x)− ρ)Gt

(x
n

) ∣∣∣
 ≤ Cλnd−2gd(n)

γ
+
γ ‖Gt‖2

L2(Td)

4
.

The proof finishes taking γ = nd/2−1
√
gd(n)/‖Gt‖L2(Td).

Proposition 3.4.2. LetG ∈ C1,∞(R+×Td). Assume that there exists a positive constant
c0 such that ∫ t

0

‖Gs‖2
L2(Td)ds ≤ c0

for every t ≥ 0. There exist positive constants λ∗ and C∗ = C∗(c0) such that for any
λ ∈ [0, λ∗], any t ∈ [0, T ], any a ∈ R and any sufficiently large n, we have

Eµnss

∣∣∣ ∫ t

0

1

na

∑
x∈Tdn

(ηs(x)− ρ)Gs

(x
n

)
ds
∣∣∣
 ≤ C∗ (t+ 1)nd−1−a

√
gd(n).

Proof. By Jensen’s inequality and Fubini’s Theorem

Eµnss

∣∣∣ ∫ t

0

1

na

∑
x∈Tdn

(ηs(x)− ρ)Gs

(x
n

)
ds
∣∣∣
 ≤ ∫ t

0

Eµnss

∣∣∣ 1

na

∑
x∈Tdn

(ηs(x)− ρ)Gs

(x
n

) ∣∣∣
 ds.

Let γ > 0. By the entropy inequality (Proposition B.3.1), the right-hand side above is
bounded from above by

∫ t

0

H (µnss|νρ)
γ

+
1

γ
log

∫
exp

 γ

na

∣∣∣∣∣∣
∑
x∈Tdn

(ηs(x)− ρ)Gs

(x
n

)∣∣∣∣∣∣
 dνρ

 ds (3.4.3)

Moreover, since e|x| ≤ ex + e−x and

lim sup
n→∞

1

n
log(bn + cn) = max

{
lim sup
n→∞

1

n
log bn , lim sup

n→∞

1

n
log cn

}
,
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the expression (3.4.3) is not larger than

H (µnss|νρ) t
γ

+
1

γ

∫ t

0

log

∫
exp

 γ

na

∑
x∈Tdn

(ηs(x)− ρ)Gs

(x
n

) dνρds

By Theorem 3.2.3 and Hoeffding’s Lemma (Lemma A.3.1), the above expression is
bounded from above by

Cλt nd−2gd(n)

γ
+

γ

8n2a

∫ t

0

∑
x∈Tdn

G2
s

(x
n

)
ds.

Taking γ =
√
gd(n)/n1−a and since n−d

∑
x∈Tdn

G2
s(x/n) converges to ‖Gs‖2

L2(Td)
, we

conclude that there exists C∗ = C∗(c0) > 0 such that for any sufficiently large n, we
have

Eµnss

∣∣∣ ∫ t

0

1

na

∑
x∈Tdn

(ηs(x)− ρ)Gs

(x
n

)
ds
∣∣∣
 ≤ C∗ (t+ 1)nd−1−a

√
gd(n).

3.4.1 Boltzmann-Gibbs principle

Now we prove the so-called Boltzmann-Gibbs principle:

Theorem 3.4.3 (Boltzmann-Gibbs principle). Let G ∈ C1,∞(R+ × Td). Assume that
there exists a positive constant c0, independent of t, such that

‖Gt‖∞ < c0 for any t ≥ 0.

Recall the definition of Vi(η,G,A) given in (3.3.8). There exist positive constants
λ∗, C = C(c0) such that for any t > 0, any i ∈ {1, . . . , d}, any A ⊂ O− and any λ < λ∗,
we have

Eµnss

[∣∣∣ ∫ t

0

1

nd/2
Vi(ηs, Gs, A)ds

∣∣∣] ≤ C(t+ 1)nd/2−2 gd(n).

Proof. We will prove that

Eµnss

[∣∣∣ ∫ t

0

λ

nd/2
Vi(ηs, Gs, A)ds

∣∣∣] ≤ Cλ(t+ 1)nd/2−2 gd(n)

from where the proof ends. As we will see, the factor λ will be needed to show that
the argument only works when this parameter is small enough. Indeed, by the entropy
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inequality (Proposition B.3.1), for any γ > 0, and Jensen’s inequality we have

Eµnss

[∣∣∣ ∫ t

0

λ

nd/2
Vi(ηs, Gs, A)ds

∣∣∣] ≤ H (µnss|νρ)
γ

+
1

γ
log

∫
exp

{
γ
∣∣∣ ∫ t

0

λ

nd/2
Vi(ηs, Gs, A)ds

∣∣∣} dPνρ .
Therefore, by Theorem 3.2.3, for any λ small enough, we have

Eµnss

[∣∣∣ ∫ t

0

λ

nd/2
Vi(ηs, Gs, A)ds

∣∣∣] ≤ Cλnd−2gd(n)

γ

+
1

γ
log

∫
exp

{
γ
∣∣∣ ∫ t

0

λ

nd/2
Vi(ηs, Gs, A)ds

∣∣∣} dPνρ .
(3.4.4)

From now we ignore the first parcel on the right-hand side of the above inequality and
we deal with the second one. Since e|x| ≤ ex + e−x and

lim sup
n→∞

1

n
log(bn + cn) = max

{
lim sup
n→∞

1

n
log bn , lim sup

n→∞

1

n
log cn

}
,

the second parcel is bounded from above by

1

γ
log

∫
exp

{∫ t

0

γλ

nd/2
Vi(ηs, Gs, A)ds

}
dPνρ .

Moreover, by the Feynman-Kac’s formula (Lemma B.4.1), we can bound the previous
expression from above by∫ t

0

sup
f

{
−1

γ
D
(√

f, νρ

)
+

∫
λ

nd/2
Vi(η,Gs, A)fdνρ +

1

2γ

∫ (
L∗t1−

d

dt
ψ

)
f dνρ

}
ds,

where the supremum runs over all densities f with respect to νρ. Now recall the identity
(3.3.9). Thus, we can rewrite the expression inside the above supremum as

− 1

γ
D
(√

f, νρ

)
+

∫
λ

nd/2
Vi(η,Gs, A)fdνρ +

2λ(χ(ρ))2

2γ

∫ d∑
i=1

∑
x∈Tdn

ω(x)ω(x+ ei) f dνρ (3.4.5)

+
λ(χ(ρ))3

2γρ

∫ d∑
j=1

∑
x∈Tdn

ω(x)ω(x− ej)ω(x+ ej) f dνρ. (3.4.6)

We will choose γ = Lnd/2, for some L > 0, so that all the integrals in the sum
of (3.4.5) and (3.4.6) have the same order. Recall that there exists c0 > 0 such that
‖Gs‖∞ ≤ c0 for any s ≥ 0. Applying Lemma 3.3.4 to these integrals and using the fact
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that

n2

∫ d∑
i=1

∑
x∈Tdn

(√
f(ηx,x+ei)−

√
f(η)

)2

dνρ ≤ D
(√

f, νρ

)
,

we conclude that there exists a constant C such that (3.4.5) has the upper bound

− 1

Lnd/2
D
(√

f, νρ

)
+

λδ

Lnd/2
D
(√

f, νρ

)
+

Cλ

δ Lnd/2
(
H (f |νρ) + nd−2 gd(n)

)
for any δ > 0. Invoking Theorem 3.3.3, which is the key ingredient in this proof (as in
the entropy estimate), we can bound the previous expression from above by

−
(

1

Lnd/2
− λδ

Lnd/2
− Cλ

δ LKLSnd/2

)
D
(√

f, νρ

)
+
Cλ

δ L
nd/2−2 gd(n). (3.4.7)

Finally, let us choose constants L and δ such that the function r(L, δ) := 1
Lnd/2

−
λδ

Lnd/2
− Cλ

δ LKLSnd/2
becomes strictly positive. Thus, we can discard the term in (3.4.7)

involving D
(√

f, νρ
)
. Finding such constants is possible because we can take λ suffi-

ciently small. Therefore, the sum in (3.4.7) is bounded from above by Cλnd/2−2 gd(n).
Plugging the above estimates in (3.4.4) we get

Eµnss

[∣∣∣ ∫ t

0

λ

nd/2
Vi(ηs, Gs, A)ds

∣∣∣] ≤ Cλ (t+ 1) nd/2−2gd(n).

3.5 Central limit theorem

In this section we finally prove Theorem 3.2.6. Our approach relies on the semigroup
method.

3.5.1 Some Dynkin’s martingales

For each x ∈ Tdn, each i ∈ {1, . . . , d} and each G : Td → R let us define the discrete
derivative on direction ei by

∇i
nG
(x
n

)
= n

(
G

(
x+ ei
n

)
−G

(x
n

))
.

Similarly, for each x ∈ Tdn and each G : Td → R, the discrete Laplacian is the operator
given by

∆nG
(x
n

)
= n2

d∑
i=1

(
G

(
x+ ei
n

)
+G

(
x− ei
n

)
− 2G

(x
n

))
.
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Let ηx := η(x)− ρ. An elementary computation shows that for any η ∈ Ωn

Lnηx = ∆nηx − (2 + λρ2d)ηx + λχ(ρ)
d∑
i=1

(
ηx−ei + ηx+ei

)
− λ(1− ρ)

d∑
i=1

ηx−eiηx+ei
− λρ

d∑
i=1

ηx
(
ηx−ei + ηx+ei

)
− λ

d∑
i=1

ηx−eiηxηx+ei
.

Thus, for any G : Td → R we have

LnX
n(G) = Xn(∆nG) +Xn

(
(2λχ(ρ)d− 2− λρ2d)G

)
+
λχ(ρ)

n1+d/2

∑
x∈Tdn

ηx

d∑
i=1

(
∇i
nG
(x
n

)
+∇i

nG

(
x− ei
n

))

− λ(1− ρ)

nd/2

∑
x∈Tdn

G
(x
n

) d∑
i=1

ηx−eiηx+ei

− λρ

nd/2

∑
x∈Tdn

d∑
i=1

(
G
(x
n

)
+G

(
x+ ei
n

))
ηxηx+ei

− λ

nd/2

∑
x∈Tdn

d∑
i=1

G
(x
n

)
ηx−eiηxηx+ei

.

Recall (3.2.3). Let us fix a time horizon [0, τ ], τ > 0. By Dynkin’s formula (Lemma B.2.1),
for any function G ∈ C1,∞([0, τ ]× Td), any τ ≥ 0 and any t ∈ [0, τ ], the process

Mn
t,τ (G) : = Xn

t (Gt)−Xn
0 (G0)−

∫ t

0

((
∆− Φ(ρ) +

d

ds

)
Xn
s (Gs)

)
ds (3.5.1)

−
∫ t

0

((∆n −∆)Xn
s (Gs)) ds (3.5.2)

−
∫ t

0

λχ(ρ)

n1+d/2

∑
x∈Tdn

(ηs(x)− ρ)
d∑
i=1

(
∇i
nGs

(x
n

)
+∇i

nGs

(
x− ei
n

))
ds (3.5.3)

+

∫ t

0

λ

nd/2

∑
x∈Tdn

(1− ρ)
d∑
i=1

(ηs(x− ei)− ρ) (ηs(x+ ei)− ρ)Gs

(x
n

)
ds (3.5.4)

+

∫ t

0

λ

nd/2

∑
x∈Tdn

ρ

d∑
i=1

(ηs(x)− ρ) (ηs(x+ ei)− ρ)

(
Gs

(x
n

)
+Gs

(
x+ ei
n

))
ds

(3.5.5)

+

∫ t

0

λ

nd/2

∑
x∈Tdn

(ηs(x− ei)− ρ) (ηs(x)− ρ) (ηs(x+ ei)− ρ)Gs

(x
n

)
ds (3.5.6)

is a mean-zero martingale with respect to the natural filtration and its quadratic variation
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is given by

〈Mn(G)〉t,τ =

∫ t

0

1

nd

∑
x∈Tdn

d∑
i=1

(
∇i
nGs

(x
n

))2

(ηs(x+ ei)− ηs(x))2 ds

+

∫ t

0

1

nd

∑
x∈Tdn

{
(1− ηs(x))c+

x (ηs) + ηs(x)c−x (ηs)
}(

Gs

(x
n

))2

ds.

From now on we consider the process {ηt; t ∈ [0, τ ]} starting from the stationary
measure µnss. For each H ∈ C∞(Td) let {TtH; t ∈ [0, τ ]} be the solution of (3.2.7).
Replacing Gt by Tτ−tH in (3.5.1), we conclude that

Xn
t (Tτ−tH) :=Mn

t,τ (H) +Xn
0 (TτH) (3.5.7)

+

∫ t

0

((∆n −∆)Xn
s (Tτ−sH)) ds (3.5.8)

+

∫ t

0

λχ(ρ)

n1+d/2

∑
x∈Tdn

(ηs(x)− ρ)
d∑
i=1

(
∇i
nTτ−sH

(x
n

)
+∇i

nTτ−sH

(
x− ei
n

))
ds (3.5.9)

−
∫ t

0

λ

nd/2

∑
x∈Tdn

(1− ρ)
d∑
i=1

(ηs(x− ei)− ρ) (ηs(x+ ei)− ρ)Tτ−sH
(x
n

)
ds (3.5.10)

−
∫ t

0

λ

nd/2

∑
x∈Tdn

ρ
d∑
i=1

(ηs(x)− ρ) (ηs(x+ ei)− ρ)

(
Tτ−sH

(x
n

)
+ Tτ−sH

(
x+ ei
n

))
ds

(3.5.11)

−
∫ t

0

λ

nd/2

∑
x∈Tdn

(ηs(x− ei)− ρ) (ηs(x)− ρ) (ηs(x+ ei)− ρ)Tτ−sH
(x
n

)
ds, (3.5.12)

whereMn
t,τ (H) is a mean-zero martingale with quadratic variation given by

〈Mn(H)〉t,τ =

∫ t

0

1

nd

∑
x∈Tdn

d∑
i=1

(
∇i
nTτ−sH

(x
n

))2

(ηs(x+ ei)− ηs(x))2 ds (3.5.13)

+

∫ t

0

1

nd

∑
x∈Tdn

{
(1− ηs(x))c+

x (ηs) + ηs(x)c−x (ηs)
}(

Tτ−sH
(x
n

))2

ds.

(3.5.14)

In what follows, we use Proposition 3.4.2 and Theorem 3.4.3 to estimate some function-
als. In order the verify that these functionals satisfy the hypotheses of these results,
recall (3.2.9) and Proposition 3.2.9, and observe that for any smooth function H we
have
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∫ t

0

‖Tτ−sH‖L2(Td)ds ≤ ‖H‖L2(Td)

∫ t

0

e−Φ(ρ)(τ−s)ds =
‖H‖L2(Td)

Φ(ρ)

(
e−Φ(ρ)(τ−t) − e−Φ(ρ)τ

)
≤
‖H‖L2(Td)

Φ(ρ)
.

Moreover, we use the notation fn = O(gn) if there exists a positive constant C such
that fn ≤ Cgn. Sometimes we write the sequence gn depending on time, inside the
notation, because we want to consider sequences of time which converge to ∞ as
n→∞.

By Proposition 3.4.2, Theorem 3.4.3 and since F (ρ) = 0, for any t ∈ [0, τ ] and any
d ≤ 3 we have

〈Mn(H)〉t,τ =

∫ t

0

2χ(ρ)

nd

∑
x∈Tdn

d∑
i=1

(
∇i
nTτ−sH

(x
n

))2

ds (3.5.15)

+

∫ t

0

2ρ

nd

∑
x∈Tdn

(
Tτ−sH

(x
n

))2

ds+O
(

t√
n

)
. (3.5.16)

We remark that the above error is estimated in the L1(Pµnss)-norm. Thus, using Taylor’s
expansion on Tτ−sH and the fact that log n ≤ n, we obtain

〈Mn(H)〉t,τ = 2χ(ρ)

∫ t

0

‖∇Tτ−sH‖2
L2(Td) ds+ 2ρ

∫ t

0

‖Tτ−sH‖2
L2(Td) ds+O

(
t√
n

)
,

which, after the change of variables τ − s 7→ r, becomes

〈Mn(H)〉t,τ = 2χ(ρ)

∫ τ

τ−t
‖∇TrH‖2

L2(Td) dr + 2ρ

∫ τ

τ−t
‖TrH‖2

L2(Td) dr +O
(

t√
n

)
.

(3.5.17)

3.5.2 Convergence to the Gaussian field

Proof of Theorem 3.2.6. First, observe that, by Proposition 3.4.2,

(1) the L1(Pµnss)-norm of the sum of (3.5.8) and (3.5.9) is of order O
(
tnd/2−2

√
gd(n)

)
.

Furthemore, by Theorem 3.4.3,

(2) the L1(Pµnss)-norm of the sum of (3.5.10), (3.5.11) and (3.5.12) is of order
O
(
tnd/2−2 gd(n)

)
.

Last, but not least, by inequality (3.2.9) and Proposition 3.4.1,

(3) the L1(Pµnss)-norm of the term Xn
0,τ (TτH) in (3.5.7) is of order

O
(
nd/2−1

√
gd(n) e−2Φ(ρ)τ

)
.
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From the identity (3.5.7) and from the three observations above made, for any τ > 0,
and any H ∈ C∞(Td)

Eµnss
[
|Xn

τ (H)−Mn
τ,τ (H)|

]
=


O
(

τ√
n

+ e−2Φ(ρ)τ
)

, if d = 1,

O
(
τ logn
n

+
√

log n e−2Φ(ρ)τ
)

, if d = 2,

O
(
τnd/2−2 + nd/2−1 e−2Φ(ρ)τ

)
, if d ≥ 3.

(3.5.18)

Let us set τn = log n. Since the process {ηt; t ≥ 0} starts from the stationary
measure µnss, Xn

t (H) and Xn
0 (H) have the same law, for any H ∈ Hk(Td) and any t ≥ 0.

In particular, the fluctuation field has the same law as the limit of Xn
τn(H) as n → ∞,

provided this limit exists. Moreover, by (3.5.18) and since limλ→0 Φ(ρ) = 2, we can find
λ∗ small enough so that

lim
n→∞

Eµnss
[∣∣Xn

τn(H)−Mn
τn,τn(H)

∣∣] = 0 (3.5.19)

for any d ≤ 3.

Remark 3.5.1. Notice that we can find λ∗ such that the second parcel in the error of
(3.5.18) converges to zero for any d < 10. The first parcel is what makes us restrict to
d < 4.

By (3.5.19), we are left to show that Mn
τn,τn(H) converges to the Gaussian field

stated in Theorem 3.2.6. To do so, let us fix some t0 > 0 and let us construct the
sequence of martingales {N n

t,τ (H); t ∈ [0, t0]} which we define by

N n
t,τ (H) :=Mn

τ−t0+t,τ (H)−Mn
τ−t0,τ (H).

From the definition of N n
t,τ (H) and by (3.5.17) we have

Eµnss
[(
Mn

τ,τ (H)−N n
t0,τ

(H)
)2
]

= Eµnss
[(
Mn

τ−t0,τ (H)
)2
]

= Eµnss
[
〈Mn(H)〉τ−t0,τ

]
= 2χ(ρ)

∫ τ

t0

‖∇TrH‖2
L2(Td) dr + 2ρ

∫ τ

t0

‖TrH‖2
L2(Td) dr +O

(τ
n

)
≤ 2ρ

∫ τ

t0

‖∇TrH‖2
L2(Td) + ‖TrH‖2

L2(Td) dr +O
(τ
n

)
≤ 2ρ

∫ ∞
t0

‖∇TrH‖2
L2(Td) + ‖TrH‖2

L2(Td) dr +O
(τ
n

)
.

Thus, from (3.2.9) and the linearity of the equation (3.2.7), we have

Eµnss
[(
Mn

τ,τ (H)−N n
t0,τ

(H)
)2
]
≤ 2ρ

(
‖∇H‖2

L2(Td) + ‖H‖2
L2(Td)

)∫ ∞
t0

e−2Φ(ρ)rdr +O
(τ
n

)
=

ρ

Φ(ρ)

(
‖∇H‖2

L2(Td) + ‖H‖2
L2(Td)

)
e−2Φ(ρ)t0 +O

(τ
n

)
.
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Therefore,

lim
t0→∞

lim
n→∞

Eµnss
[(
Mn

τn,τn(H)−N n
t0,τn

(H)
)2
]

= 0. (3.5.20)

Now we claim that {N n
t,τn(H); t ∈ [0, t0]} converges to a mean-zero Gaussian martin-

gale {Nt(H); t ∈ [0, t0]} with quadratic variation

〈N (H)〉t = 2χ(ρ)

∫ t0

t0−t
‖∇TrH‖2

L2(Td) dr + 2ρ

∫ t0

t0−t
‖TrH‖2

L2(Td) dr. (3.5.21)

Hence, by (3.5.20) we conclude that Mn
τn,τn(H) converges, as n → ∞, to the limit of

Nt0(H) as t0 →∞, which is a Gaussian random variable with variance

2χ(ρ)

∫ ∞
0

‖∇TrH‖2
L2(Td) dr + 2ρ

∫ ∞
0

‖TrH‖2
L2(Td) dr.

Finally, we prove the aforementioned claim. We will use Theorem B.5.1 for the
sequence of martingales {N n

t,τn(H); t ∈ [0, t0]} so we need to verify each of its three hy-
potheses. Indeed, from (3.5.17) and the definition ofN n

t,τ (H), the process {N n
t,τn(H); t ∈

[0, t0]}, has quadratic variation given by

〈N n(H)〉t = 〈Mn(H)〉τn−t0+t,τn
− 〈Mn(H)〉τn−t0,τn

= 2χ(ρ)

∫ t0

t0−t
‖∇TrH‖2

L2(Td) ds+ 2ρ

∫ t0

t0−t
‖TrH‖2

L2(Td) dr +O
(τn
n

)
,

which clearly converges to 〈N (H)〉t for any t ∈ [0, t0]. This proves the third hypothe-
sis of Theorem B.5.1. Furthermore, the explicit form of the quadratic variation of the
martingale directly implies that it has continuous trajectories in time, proving the first
hypothesis of Theorem B.5.1. To see that the second, and last, hypothesis of the the-
orem holds, observe that∣∣N n

s,τn(H)−N n
s−,τn(H)

∣∣ =
∣∣Mn

τn−t0+s,τ (H)−Mn
τn−t0+(s−),τ (H)

∣∣
=
∣∣Xn

s (Tτn−sH)−Xn
s−(Tτn−(s−)H)

∣∣ ,
being the last equality true due to the fact that the integrals in (3.5.8), (3.5.9), (3.5.10),
(3.5.11) and (3.5.12) are finite. Thus, since Tτn−tH : Td → [0, 1] is continuous,

Eµnss

[
sup
s∈[0,t0]

∣∣N n
s,τn(H)−N n

s−,τn(H)
∣∣]

=
1

nd/2
Eµnss

 sup
s∈[0,t0]

∣∣∣∣∣∣
∑
x∈Tdn

{
(ηs(x)− ρ)Tτn−sH

(x
n

)
− (ηs−(x)− ρ)Tτn−(s−)H

(x
n

)}∣∣∣∣∣∣


≤ 1

nd/2
Eµnss

 sup
s∈[0,t0]

∣∣∣∣∣∣
∑
x∈Tdn

{
ηs(x)Tτn−sH

(x
n

)
− ηs−(x)Tτn−(s−)H

(x
n

)}∣∣∣∣∣∣

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+
1

nd/2
Eµnss

 sup
s∈[0,t0]

∣∣∣∣∣∣ρ
∑
x∈Tdn

{
Tτn−(s−)H

(x
n

)
− Tτn−sH

(x
n

)}∣∣∣∣∣∣


=
1

nd/2
Eµnss

 sup
s∈[0,t0]

∣∣∣∣∣∣
∑
x∈Tdn

(ηs(x)− ηs−(x)) Tτn−sH
(x
n

)∣∣∣∣∣∣
 . (3.5.22)

Now observe that in an infinitesimal time only one update occurs and it changes the
occupations of a configuration in either one vertex (in case of a reaction update) or two
vertices (in case of an exclusion update). In the first case, there exists y ∈ Tdn such that
ηs(y) 6= ηs−(y), ηs(x) = ηs−(x) for all x 6= y and∣∣∣∣∣∣
∑
x∈Tdn

(ηs(x)− ηs−(x)) Tτn−sH
(x
n

)∣∣∣∣∣∣ =
∣∣∣(ηs(y)− ηs−(y)) Tτn−sH

(y
n

)∣∣∣ =
∣∣∣Tτn−sH (yn)∣∣∣ .

In the second case, there exist y, z ∈ Tdn such that ηs(y) = ηs−(z) = 1, ηs(z) = ηs−(y) =

0, ηs(x) = ηs−(x) for all x ∈ Tdn \ {y, z} and∣∣∣∣∣∣
∑
x∈Tdn

(ηs(x)− ηs−(x)) Tτn−sH
(x
n

)∣∣∣∣∣∣ =
∣∣∣(1− 0)Tτn−sH

(y
n

)
+ (0− 1)Tτn−sH

( z
n

)∣∣∣
=
∣∣∣Tτn−sH (yn)− Tτn−sH

( z
n

)∣∣∣ .
In any case

∣∣∣∑x∈Tdn
(ηs(x)− ηs−(x)) Tτn−sH

(
x
n

)∣∣∣ is uniformly bounded in n. Therefore,
by (3.5.22)

lim
n→∞

Eµnss

[
sup
s∈[0,t0]

∣∣N n
s,τn(H)−N n

s−,τn(H)
∣∣] = 0.

Hence, we can apply Theorem B.5.1 and conclude the claim.
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Chapter 4

Conclusion and future directions

In Chapter 2 we developed a method to study the time that a particle systems takes to
have its law close to equilibrium. We illustrate the strategy with the diagram depicted
in Figure 4.1:

Log-Sobolev
inequality

Correlations
estimate

Relative En-
tropy estimate

Gradient de-
cay of unt − ρ

L2([0, 1])-norm
of unt − ρ

Sharp convergence

Fourier Analysis

Figure 4.1: Diagram of tasks to prove sharp convergence to equilibrium of particle
systems with Glauber dynamics.

Heuristic arguments suggest that in a bidimensional version of this model (as the
one depicted in Figure 4.2) the correlations in Proposition 2.5.2 should be of order
O
(

logn
n2

)
. These estimates could be done as in [14] or one could avoid them with the

static replacement stated in Lemma 3.3.4. If one proves that, then, following the recipe
given in the above diagram, one can obtain a sharp convergence result as the one
stated in Theorem 2.1.1.
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Figure 4.2: Exclusion process on the unit square in contact with reservoirs of density ρ
in all four boundary sides.

The above method can be applied to other models. Due to the non-linearity of the
hydrodynamic equation, it would be a personal challenge to do it for the porous-media
model in contact with reservoirs [3] and we leave it for a future work. Another problem
is to study the non-equilibrium case.

In Chapter 3 we proved a central limit theorem for the fluctuation field of a reaction-
diffusion model that is out of equilibrium depending on a parameter λ ≥ 0. More
precisely, the larger λ is, further the process is from the equilibrium states. The strategy,
which we illustrate with the diagram depicted in Figure 4.3, works when λ is small
enough. An interesting problem would be to understand what happens when λ is large.

Relative En-
tropy estimate

Log-Sobolev
inequality

Hydrostatic Limit

Boltzmann-
Gibbs Principle

Static Replacement
Central Limit

Theorem for the
fluctuation field

Figure 4.3: Diagram of tasks to prove hydrostatic limit and stationary fluctuations for
particle systems with Glauber dynamics.

54



Bibliography

[1] Baldasso, R., Menezes, O., Neumann, A., and Souza, R. R. Exclusion process
with slow boundary. Journal of Statistical Physics 167.5 (2017): 1112–1142.

[2] Billingsley, P. Probability and measure. A Wiley–Interscience Publication, John
Wiley (1995).
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IV, ed. A. J. Soares and P. Gonçalves, Springer Proceedings in Mathematics and
Statistics, Volume 209 (2016), pp. 177–197.
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Appendix A

Some results for sub-Gaussian
random variables

A.1 Comparison of Gaussian densities

Proposition A.1.1. Let X be a standard Gaussian random variable, that is, X ∼
N (0, 1). Recall the Gauss error function in (2.1.5). For any m ≥ 0 we have

G(m) =
1

2
E
[ ∣∣∣emX−m2

2 − 1
∣∣∣ ] = erf

(
m

2
√

2

)
.

Proof. Let us recall that the probability density function fm of a Gaussian random vari-
able with mean m and variance 1 is defined as

fm(x) =
1√
2π
e−(x−m)2/2.

Observe that

E
[∣∣∣emX−m2

2 − 1
∣∣∣] =

∫ ∞
−∞

∣∣∣emx−m2

2 − 1
∣∣∣ f0(x)dx

=
1√
2π

∫ ∞
−∞

∣∣∣emx−m2

2 − 1
∣∣∣ e−x2/2dx

=
1√
2π

∫ ∞
−∞

∣∣∣e−(x−m)2/2 − e−x2/2
∣∣∣ dx

=

∫ ∞
−∞
|fm(x)− f0(x)| dx = 2G(m).

Therefore, we aim to compute the area between the red curve and the blue curve in
Figure A.1.
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Figure A.1: Red curve representing the probability density function f0 and blue curve
representing fm. The vertical axis represents the line x = m/2 where the two functions
intersect.

Furthermore, since the above figure is symmetric with respect to the axis x = m/2,
the desired area is the double of the area on the left side. Hence, we conclude that

E
[ ∣∣∣emX−m2

2 − 1
∣∣∣ ] = 2

∫ m/2

−∞
(f0(x)− fm(x)) dx = 2 erf

(
m

2
√

2

)
.

A.2 Lyapounov Central Limit Theorem

Theorem A.2.1 (Lyapounov Central Limit Theorem). Let {ξx;x ∈ {1, . . . , N}} be a se-
quence of independent random variables with mean E[ξx] = mx and variance Var[ξx] =

vx. Define s2
N =

∑N
x=1 vx. If for some δ > 0, the Lyapounov’s condition

lim
N→∞

1

s2+δ
N

N∑
x=1

E[|ξx −mx|2+δ] = 0

holds, then
1

sN

N∑
x=1

(ξx −mx)

converges, in law, to a Standard Gaussian random variable.

Proof. See [2, Theorem 27.3].

A.3 Hoeffding’s Lemma

Lemma A.3.1 (Hoeffding’s Lemma). Let η be a random variable taking values on [0, 1],
with mean m = E[η]. Then, for any θ ∈ R, we have logE

[
eθ(η−m)

]
≤ θ2

8
.

Proof. We refer to [17, Lemma 2.6] for a very detailed proof of a more general version
of this result.
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Appendix B

Classical results for hydrodynamics
and fluctuations

In this appendix we collect some classical results that are often used to prove scaling
limits of interacting particle systems. We refer the reader to see their proofs where we
believe that it is simpler to follow.

B.1 Carré du champ operator

Proposition B.1.1. Let L be the infinitesimal generator of an irreducible continuous-
time Markov chain with state space Ω. Let r(η, ξ) denote the jump rate from state η to
state ξ. Recall the carré du champ operator, which is defined on functions f : Ω → R
by Γf(η) = Lf 2(η)− 2f(η)Lf(η). We have

Γf(η) =
∑
ξ∈Ω

r(η, ξ) (f(ξ)− f(η))2 .

Proof.

Γf(η) =
∑
ξ∈Ω

r(η, ξ)
(
f 2(ξ)− f 2(η)

)
− 2f(η)

∑
ξ∈Ω

r(η, ξ) (f(ξ)− f(η))

=
∑
ξ∈Ω

r(η, ξ)
[
f 2(ξ)− f 2(η)− 2f(η) (f(ξ)− f(η))

]
=
∑
ξ∈Ω

r(η, ξ) (f(ξ)− f(η))2 .

B.2 Dynkin’s martingales

Lemma B.2.1. Let F : [0,+∞) × Ωn → R be a bounded function. Assume that F is
smooth in the first coordinate uniformly over the second: for each η ∈ Ωn, F (·, η) is
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twice continuously differentiable and there exists a finite constant C such that

sup
(s,η)

|(∂jsF )(s, η)| ≤ C

for each j = 1, 2. Above, (∂jsF ) stands for the j-th derivative of F (·, η). Denote by
{Ft; t ≥ 0} the filtration induced by the Markov process {ηt; t ≥ 0}: Ft = σ(ηs; s ≤ t).
Thus, the processes

Mt(F ) := F (t, ηt)− F (0, η0)−
∫ t

0

(∂s + Ln)F (s, ηs)ds,

and

Nt(F ) := (Mt(F ))2 −
∫ t

0

ΓF (s, ηs)ds

are zero-mean Ft-martingales.

Proof. We refer to [13, Appendix 1, Lemma 5.1].

B.3 Entropy inequality

Proposition B.3.1 (Entropy inequality). Let B > 0. Let µ and ν be two probability
measures in a finite space Ωn. Let g be the Radon-Nikodym derivative of the measure
µ with respect to ν and let H(µ|ν) =

∫
g log gdν be the relative entropy of g with respect

to ν. Let f : Ωn → R be any function. We have∫
f (η)µ(d η) ≤ 1

B

(
H (µ | ν) + log

∫
e{B f (η)} ν (d η)

)
.

Proof. We refer to [12, Proposition F.2].

An immediate consequence of the entropy inequality is the following:

Corollary B.3.2. Let A ⊂ Ωn. Let µ and ν be two probability measures in Ωn. Let g be
the Radon-Nikodym derivative of the measure µ with respect to ν and let H(µ|ν) be the
relative entropy of g with respect to ν. We have

µ (A) ≤ log 2 +H (µ | ν)

log (1 + 1/ν (A))
.

Proof. Take f = 1A and B = log (1 + 1/ν (A)) in the previous proposition.

B.4 Feynman-Kac’s inequality

The following result is a consequence of the Feynman-Kac’s formula:
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Lemma B.4.1. For any V : [0, T ]× Ωn → R and any t ∈ [0, T ],

logEµn
[
exp

{∫ t

0

Vs(ηs)ds

}]
≤
∫ t

0

sup
f

{
−D

(√
f, νρ

)
+

∫
V fdνρ +

1

2

∫ (
L∗s1−

d

ds
ψ

)
fdνρ

}
ds,

where the supremum runs over all densities f with respect to νρ.

Proof. We refer to [12, Lemma A.2].

B.5 Convergence of martingales

Theorem B.5.1. Let {Mn
t ; t ∈ [0, T ]}n∈N be a sequence of continuous-time martingales

living in the Skorohod space D([0, T ],R). For each n ∈ N and each t ∈ [0, T ] denote by
〈Mn〉t the quadratic variation of Mn

t . Assume that

1. for any n ∈ N, the quadratic variation process {〈Mn〉t ; t ∈ [0, T ]} has continuous
trajectories almost surely;

2. limn→∞ Eµn
[
sups∈[0,T ]

∣∣Mn
s −Mn

s−
∣∣] = 0;

3. for each t ∈ [0, T ] the sequence of random variables {〈Mn〉t}n∈N converges in
probability to a deterministic function 〈M〉t.

Thus, the sequence {Mn
t ; t ∈ [0, T ]}n∈N converges, in law, in D([0, T ];R), as n→∞, to

a zero mean Gaussian process {Mt; t ∈ [0, T ]} which is a martingale with continuous
trajectories and whose quadratic variation is given by 〈M〉t, for any t ∈ [0, T ].

Proof. We refer to [10, Theorem VIII, 3.12].
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