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my co-supervisor. I also thank my supervisor, José Sande Lemos, for proposing this problem to me, and

whose knowledge and availability were determinant throughout the thesis.

On a more personal note, I thank my mother, Sara, with whom my life began and with whom my life

will end. I also thank the rest of my family and friends for their support.

v



vi



Resumo

Perturbações de campos em espaços-tempo com buracos negros são consideradas em vários con-

textos, desde a investigação da dinâmica de buracos negros astrofı́sicos até ao estudo de teorias de

gravidade quântica. Um espaço-tempo perturbado vibra com frequências caracterı́sticas, conhecidas

como modos quasi-normais. Em espaços-tempo assimptoticamente anti-de Sitter (AdS), estes são es-

tudados no contexto da correspondência AdS/teoria de campo conformal (CFT), onde as frequências

dos modos quasi-normais determinam a escala de tempo da termalização da CFT.

Nós estudamos perturbações de campos de Proca em espaços-tempo AdS e Schwarzschild-AdS

com d-dimensões. Obtemos as equações de Proca decompondo o campo segundo o seu compor-

tamento tensorial na esfera. Demonstramos que as equações formam dois setores completamente

separados: o setor tipo-vetorial, que engloba d− 3 graus de liberdade desacoplados do campo, gover-

nados por uma única equação do tipo-onda; o setor tipo-escalar, que descreve os restantes dois graus

de liberdade do campo, governados por duas equações do tipo-onda acopladas. Nós mostramos que

as últimas desacoplam em AdS com d dimensões, e calculamos as soluções exatas de modos normais

para perturbações de Proca neste espaço-tempo, impondo condições de fronteira de Dirichlet no in-

finito. Adicionalmente, recuperamos os resultados para perturbações de Maxwell quando a massa do

campo de Proca tende para zero. A estabilidade linear em Schwarzschild-AdS perante perturbações

de Proca tipo-vetorial e monopolo é provada. Também calculamos numericamente os modos quasi-

normais de perturbações de Proca em Schwarzschild-AdS com 4, 5, 6, 7 dimensões, e desenvolvemos

um estudo analı́tico do espetro para buracos negros pequenos.

Palavras-chave: Buracos negros, modos quasi-normais, campos de Proca, espaço-tempo

AdS, espaço-tempo Schwarzschild-AdS, dimensões superiores.
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Abstract

Field perturbations in black hole spacetimes have been considered in a variety of contexts, from

probing the dynamics of astrophysical black holes to studying quantum gravity theories. A perturbed

spacetime vibrates with characteristic frequencies, known as quasinormal modes. In asymptotically

anti-de Sitter (AdS) spacetimes, these are studied in the context of the AdS/conformal field theory (CFT)

correspondence, where the quasinormal mode frequencies determine the thermalization timescale of

the CFT.

We study Proca field perturbations in d-dimensional AdS and Schwarzschild-AdS spacetimes. We

obtain the Proca equations by decomposing the field according to its tensorial behaviour on the sphere.

We demonstrate that the equations form two completely separated sectors: the vector-type sector, which

accounts for d − 3 decoupled degrees of freedom of the field, governed by a single wave-like equation;

the scalar-type sector, which describes the remaining two degrees of freedom of the field, ruled by

two coupled wave-like equations. We show that the latter decouple in higher-dimensional AdS, and

we compute the exact normal mode solutions of Proca field perturbations in this spacetime, imposing

Dirichlet boundary conditions at infinity. Additionally, the Maxwell field results are recovered by taking the

massless limit of the Proca field. In Schwarzschild-AdS, linear stability is proved against vector-type and

monopole Proca field perturbations. We also compute numerically the Proca field quasinormal modes

in 4, 5, 6, 7-dimensional Schwarzschild-AdS, and perform an analytical study of the spectrum for small

black holes.

Keywords: Black holes, quasinormal modes, Proca fields, AdS spacetime, Schwarzschild-AdS

spacetime, higher dimensions.

ix



x



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction 1

1.1 Black holes and quasinormal modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Black hole perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Field perturbations in asymptotically AdS spacetimes . . . . . . . . . . . . . . . . . . . . 2

1.4 Proca field perturbations in gravitational backgrounds . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Proca field perturbations 7

2.1 Proca field in curved spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Proca field perturbations in spaces with warped product topology . . . . . . . . . . . . . . 9

2.2.1 Proca field equations in spaces with warped product topology . . . . . . . . . . . . 9

2.2.2 Decomposition of the Proca field and harmonic expansion . . . . . . . . . . . . . . 9

2.2.3 Separation of Proca field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Proca field perturbations in a spherically symmetric (2+ n)-background . . . . . . 13

2.3 Maxwell field perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Normal modes of Proca field perturbations in d-dimensional AdS 18

3.1 Initial considerations and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Proca field perturbations in AdS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Proca field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Normal mode solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Maxwell field perturbations in AdS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Maxwell field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.2 Normal mode solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

xi



4 Quasinormal modes of Proca field perturbations in d-dimensional Schwarzschild-AdS 23

4.1 Proca field equations in Schwarzschild-AdS spacetime . . . . . . . . . . . . . . . . . . . . 23

4.2 Analytical study of the quasinormal mode spectrum . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Main properties of the spectrum and asymptotic solutions near infinity . . . . . . . 25

4.2.3 Schwarzschild-AdS stability against Maxwell and Proca field perturbations . . . . 28

4.3 Numerical methods to compute quasinormal modes . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Horowitz-Hubeny method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.2 Numerical integration of the equations of motion . . . . . . . . . . . . . . . . . . . 36

4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.1 Effect of the mass of the field on the quasinormal mode spectrum . . . . . . . . . 39

4.4.2 Quasinormal mode spectrum as a function of the black hole radius . . . . . . . . . 45

4.4.3 Higher overtones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.4 Dependence on l and the eikonal limit . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 The long-wavelength approximation for small Schwarzschild-AdS black holes . . . . . . . 56

4.5.1 Vector-type Proca and Maxwell field perturbations . . . . . . . . . . . . . . . . . . 57

4.5.2 Monopole Proca field perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.3 Scalar-type Maxwell field perturbations . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.4 Higher multipoles of scalar-type Proca field perturbations . . . . . . . . . . . . . . 69

5 Conclusion 71

5.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A Spherical harmonics on the n-sphere 81

A.1 Initial considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.2 Scalar spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.3 Vector spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.4 Properties under rotation and parity transformations . . . . . . . . . . . . . . . . . . . . . 83

B Hypergeometric differential equation 85

B.1 Main properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.2 Normal modes in pure AdS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.2.1 Proca field and vector-type Maxwell field perturbations . . . . . . . . . . . . . . . . 86

B.2.2 Scalar-type Maxwell field perturbations . . . . . . . . . . . . . . . . . . . . . . . . 88

C Chandrasekhar’s approach to isospectrality 91

xii



List of Tables

4.1 Fundamental mode of l = 1 vector-type Maxwell and Proca perturbations in 4, 5, 6, 7-

dimensional Schwarzschild-AdS spacetime with rh = 100, rh = 1 and rh = 0.05, for

different values of the mass of the field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Fundamental mode of l = 0 Proca perturbations in 4, 5, 6, 7-dimensional Schwarzschild-

AdS spacetime with rh = 100, rh = 1 and rh = 0.05, for different values of the mass of the

field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Fundamental mode frequencies of l = 1 scalar-type electromagnetic perturbations in

4, 5, 6, 7-dimensional Schwarzschild-AdS for different black hole sizes. . . . . . . . . . . . 42

4.4 Fundamental mode of the l = 1 electromagnetic polarization of scalar-type Proca pertur-

bations in 4, 5, 6, 7-dimensional Schwarzschild-AdS spacetime with rh = 100, rh = 1 and

rh = 0.05, for different values of the mass of the field. . . . . . . . . . . . . . . . . . . . . . 43

4.5 Fundamental mode of the l = 1 non-electromagnetic polarization of scalar-type Proca

perturbations in 4, 5, 6, 7-dimensional Schwarzschild-AdS spacetime with rh = 100, rh = 1

and rh = 0.05, for different values of the mass of the field. . . . . . . . . . . . . . . . . . . 43

4.6 Fundamental quasinormal mode frequencies of l = 2 Proca field perturbations in 5, 6, 7-

dimensional Schwarzschild-AdS, for a Proca field with mass µ = 0.2 and different black

hole sizes, in the large black hole regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7 Fundamental quasinormal mode frequencies of l = 2 Proca perturbations in 5, 6, 7-dimensional

Schwarzschild-AdS, for a Proca field with mass µ = 0.2 and different black hole sizes, in

the intermediate and small black hole regimes. The values for rh = 0 are for pure AdS,

computed with Eq. (3.15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.8 Lowest modes of l = 0, 1 and µ = 0.5 Proca field perturbations in 5, 6, 7-dimensional

Schwarzschild-AdS with rh = 1. For the empty cells, none of the methods implemented

converged. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.9 Fundamental, first and second overtones of l = 1 vector-type and scalar-type Maxwell

field perturbations in 5, 6, 7-dimensional Schwarzschild-AdS spacetime with rh = 100. In

6-dimensional Schwarzschild-AdS, the convergence of Horowitz-Hubeny method allowed

to find the k = 3, 4 modes as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.10 Fundamental quasinormal mode frequencies of µ = 0.5 Proca perturbations in the eikonal

limit for 5, 6, 7-dimensional Schwarzschild-AdS black holes with rh = 100. . . . . . . . . . 54

xiii



4.11 Values of β for the fundamental mode of µ = 0.5 Proca field perturbations in 5, 6, 7-

dimensional Schwarzschild-AdS black holes with rh = 100, computed from fitting the real

(βR) and imaginary (βI ) parts of the numerical results to Eq. (4.57). The analytical results

of [63] for scalar field perturbations are also displayed. . . . . . . . . . . . . . . . . . . . . 54

4.12 Fundamental mode of µ = 0.5 vector-type Proca perturbations in 5, 6, 7-dimensional

Schwarzschild-AdS spacetime with rh = 1, for different values of the angular momen-

tum number l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.13 Imaginary part of vector-type quasinormal frequencies for some of the allowed values of

d, l, µ, for black holes with sizes rh = 0.1 and rh = 0.01. The analytical results were

computed from Eq. (4.90). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.14 Imaginary part of vector-type quasinormal frequencies for some of the allowed values of

d, l, µ, for black holes with sizes rh = 0.1 and rh = 0.01. The analytical results were

computed from Eq. (4.91). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.15 Imaginary part of vector-type quasinormal frequencies for some of the allowed values of

d, l, µ, for black holes with sizes rh = 0.1 and rh = 0.01. The analytical results were

computed from Eq. (4.93). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.16 Imaginary part of monopole quasinormal frequencies for some of the allowed values of

d, µ, for black holes with sizes rh = 0.1, rh = 0.01 and rh = 0.001. The analytical results

were computed from Eq. (4.99). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.17 Imaginary part of scalar-type electromagnetic quasinormal frequencies for some of the

allowed values of d, l, for black holes with sizes rh = 0.1 and rh = 0.01. The analytical

results were computed from Eq. (4.109). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xiv



List of Figures

4.1 Effective potentials of l = 1 scalar-type electromagnetic perturbations for the 4, 5, 6, 7, 8-

dimensional Schwarzschild-AdS black holes with rh = 2. . . . . . . . . . . . . . . . . . . . 27

4.2 Convergence curves for the fundamental mode of l = 1 vector-type µ = 0.2 Proca field

perturbations, for 6-dimensional Schwarzschild black holes with sizes rh = 1 (Left) and

rh = 0.6 (Right). For rh ≲ 1, a small decrease in the black hole size significantly worsens

the convergence of the solution: for rh = 1 one achieves a precision up to the fifth signifi-

cant figure at N ≳ 100, whereas for rh = 0.6 such precision is only reached for N ≳ 200.

ωfit is extracted from the fit of ω(N) = ωfit+c2e
−c3N sin(c4N+c5) to the convergence curves. 33

4.3 Convergence curves for the fundamental mode k = 0 (Left) and for the second overtone

k = 2 (Right) of l = 1 vector-type µ = 0.2 Proca field perturbations in 6-dimensional

Schwarzschild-AdS, with rh = 100. For the k = 0 mode the method converges better

(frequency oscillates around its sixth significant figure for N ≃ 75) than for the k = 2 mode

(frequency oscillates around its sixth significant figure for N ≃ 120). The ωfit values are

also displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Convergence curves for the fundamental mode of vector-type µ = 0.2 Proca perturbations

in 4-dimensional Schwarzschild-AdS (Left) and 5-dimensional Schwarzschild-AdS (Right),

for a black hole with size rh = 100. While in 6-dimensional Schwarzschild-AdS the con-

vergence curves have a sinusoidal shape, in d = 4, 5, 7-dimensional Schwarzschild-AdS

the curves exponentially decay without oscillating, making the determination of ωfit less

accurate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Singular points of Eq. (4.26) in the complex plane for a rh = 1 Schwarzschild-AdS black

hole in: 6 (Left), 7 (Right) and 8 (Middle) dimensions. For the Horowitz-Hubeny method to

work, all the zeroes of f should lie outside the blue circle. For d > 7 and rh ≳ O(0.1), this

no longer happens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 Contour plot of the absolute value of the solution evaluated at r(f), in the phase space

of complex frequencies. The blue regions encompass the quasinormal modes. Note that

the fundamental mode is constrained to a very small region of frequencies, whereas this

region is larger for the first overtone. Moreover, for the second overtone, a broad region

of low absolute value modes is formed, impeding the determination of the frequency, at

least for such value of r(f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xv



4.7 Effect of the field’s mass (µ ∈ [0.1, 2.0]) on the fundamental quasinormal spectrum of

vector-type and scalar-type l = 1 Proca perturbations in 4, 5, 6, 7-dimensional Schwarzschild-

AdS, with rh = 1. We also plotted the results for a Maxwell perturbation, which should be

compared with the Proca small mass limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8 Comparison between the spectra for scalar field perturbations and for non-electromagnetically

polarized Proca field perturbations in 7-dimensional Schwarzschild-AdS, with rh = 1, l =

1. In the small-mass limit these are nearly isospectral, in agreement with Eq. (2.62). . . . 45

4.9 Fundamental quasinormal frequencies of l = 2 vector-type Proca perturbations in 5, 6, 7-

dimensional Schwarzschild-AdS spacetimes for a Proca field with mass µ = 0.2 as a

function of the black hole radius, in the large black hole regime. For large black holes, the

frequencies scale linearly with the radius of the horizon. Fit results: for d = 5, Re(ω) =

2.01926rh + 0.219492; for d = 6, Re(ω) = 3.00834rh + 0.205195; and for d = 7, Re(ω) =

3.84754rh + 0.214392. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.10 “Special” purely imaginary modes scaling with the inverse of the black hole radius, found

for scalar-type Maxwell perturbations in 5, 6, 7-dimensional Schwarzschild-AdS. Fit re-

sults: for d = 5, −Im(ω) = 1.50823rh
−1−9.47993×10−5; for d = 6, −Im(ω) = 1.33694rh

−1−

2.14671× 10−4; and for d = 7, −Im(ω) = 1.25203r−1
h − 5.33241× 10−5. . . . . . . . . . . . 47

4.11 Real part of the quasinormal mode frequencies for l = 2, µ = 0.2, Proca perturbations in

5-dimensional Schwarzschild-AdS spacetime in the small black hole regime. In the limit

rh → 0, the frequencies approach those of pure AdS, given by Eq. (3.15). . . . . . . . . . 48

4.12 Effect of the field’s mass (µ ∈ [0.1, 2.0]) on k = 0, 1 and l = 0, 1 Proca field modes, in

7-dimensional Schwarzschild-AdS, with rh = 1. The mass of the field seems to have a

similar effect on k = 0, 1 overtones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.13 Numerical gaps for vector-type (left) and scalar-type (right) electromagnetic perturbations

in 6-dimensional Schwarzschild-AdS. The higher the overtone, the closest the gap is to

the one predicted in [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.14 Radial profile of the effective potential for l = 1, l = 60 and l = 100 vector-type Proca field

perturbations, with µ = 0.5, in 7-dimensional Schwarzschild-AdS spacetime with rh = 1:

for sufficiently large l, the potential develops a well, accommodating long-lived modes. . . 53

4.15 Imaginary part of fundamental quasinormal modes of µ = 0.5 Proca perturbations in the

eikonal limit for 5, 6, 7-dimensional Schwarzschild-AdS black hole with rh = 100. These

were fitted to Eq. (4.57), showing an agreement with [63, 64]. . . . . . . . . . . . . . . . . 54

4.16 Imaginary part of fundamental modes for µ = 0.5 vector-type Proca perturbations in the

eikonal limit, l ≫ 1, in 5, 6, 7-dimensional Schwarzschild-AdS, with rh = 1. For sufficiently

large l, the mode damping becomes exponentially small with l. . . . . . . . . . . . . . . . 55

xvi



Preface

I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

The research presented was developed at Centro de Astrofı́sica e Gravitação (CENTRA), in the
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Chapter 1

Introduction

1.1 Black holes and quasinormal modes

General relativity remains the most successful theory of gravitation since its publication, in 1915, by

Albert Einstein. The concept of force in Newtonian theory was substituted by the concept of spacetime

curvature in general relativity, which is nothing more than a manifestation of mass existence, mathemat-

ically encoded in the Einstein field equations. Among the most remarkable solutions to these equations

are black hole solutions, containing regions of spacetime from which, classically, nothing, not even light,

can escape from [1–3]. Black holes were thought to be purely theoretical objects for many years, and

only in the latter half of the twentieth century they began to be increasingly accepted as fundamental

bodies of our universe, culminating with the first-time detected gravitational waves, in 2015, by the LIGO

collaboration [4], and with the two famous black hole images published by the EHT collaboration: the

first one in 2019, in the center of the M87 galaxy, and the second one in 2022, in the center of our galaxy

[5]. Different phenomena may contribute to the formation of black holes, with stellar collapse being a

recognized factor in their creation. Furthermore, collisions between compact object binaries, such as

two black holes or neutron stars, are believed to also play a role on their formation. The process of

collision between two black holes may be divided into three different stages. The first stage is called the

inspiral, characterized by a slow shrinking of the binary orbit, with energy being carried away through

weak gravitational waves. The second stage is called the merger, happening when the black holes get

sufficiently close to each other and become dynamically unstable, culminating in the formation of a sin-

gle larger black hole. In the process, strong gravitational radiation is emitted, making this stage highly

non-linear and impossible to study with any perturbative analytical approach. The final stage is called

the ringdown, characterized by the settling of the final black hole into a more stable state. In this stage,

the gravitational radiation emitted is weak enough to be treated linearly, and the final black hole “rings”

with characteristic frequencies, called quasinormal modes.

Quasinormal modes are particularly important because they only depend on the properties of the

black hole, such as its mass and charge, and are independent of the initial configuration that excited

them [6, 7]. The term “quasi” alludes to the dissipative nature of the black hole, which emits energy
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away to infinity through gravitational waves. Quasinormal modes have complex associated frequencies,

whose real part represents the actual frequency of oscillation, whereas the imaginary part represents

the decay timescale of the modes. While in resonant conservative systems a state can be described

by a superposition of independent normal modes at all times, quasinormal modes do not provide such

a complete expansion, which just reflects the fact that the system is not stationary. In astrophysical

settings, the study of black hole quasinormal modes is key to understand the signals obtained by the

existing gravitational antennas, such as LIGO and VIRGO, and by the new generation of gravitational

antennas, such as the space-based interferometer LISA, expected to launch in 2037. In this context, the

search is essentially focused on the lowest overtone modes, i.e., the modes with lowest frequencies, as

these are the ones which dominate the gravitational-wave signals, providing insights, namely, on no-hair

theorems [8] and scattering and absorption processes in black holes [9]. Additionally, investigation of

black hole quasinormal modes provides information on the linear stability of the perturbed spacetime: if

all the quasinormal modes are damped, the spacetime is linearly stable against such perturbations. In

astrophysical contexts, determining the stability of a perturbed spacetime is of great interest, as unstable

solutions cannot exist in nature and usually hint for state transitions.

1.2 Black hole perturbation theory

The study of linear field perturbations in gravitational backgrounds dates back to the seminal works

of Regge and Wheeler [10], and Zerilli [11], which studied gravitational perturbations in four-dimensional

Schwarzschild spacetime and showed that these can be reduced to two Schrödinger-like equations,

by decomposing the perturbations according to their transformation properties under parity. The as-

sociated quasinormal modes are obtained by solving these Schrödinger-like equations with the appro-

priate boundary conditions. This is the general formalism to obtain quasinormal modes in spherically

symmetric spacetimes, and it is known as the Regge-Wheeler-Zerilli formalism. The problem of linear

perturbations in higher-dimensional spacetimes was only addressed in the beginning of the twenty-first

century, after the works of Ishibashi and Kodama [12–14] (see also [15]). Their formalism generalizes

the Regge-Wheeler-Zerilli formalism by expanding perturbations in higher-dimensional scalar, vector

and tensor spherical harmonics, which independently form complete bases on the (d − 2)-sphere. Ac-

cording to their tensorial behaviour on the sphere, perturbations are separated in scalar-type, vector-type

and tensor-type perturbations, which decouple at the linear level. With such a decomposition, the field

equations can be once again written as Schrödinger-like equations, whose potential now also depends

on the spacetime dimension.

1.3 Field perturbations in asymptotically AdS spacetimes

Anti-de Sitter (AdS) spacetime is the maximally symmetric vacuum solution to the Einstein field

equations with negative cosmological constant [1, 2, 16]. Despite its simplicity, it exhibits unusual causal

properties, related to the existence of a timelike conformal boundary at spatial infinity. This makes AdS
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non-globally hyperbolic, meaning that, for fields to describe well-defined dynamics in AdS, besides pro-

viding initial data on a spacelike hypersurface, one needs to prescribe suitable boundary conditions at

spatial infinity [17]. When one imposes Dirichlet (reflective) boundary conditions at infinity, with fields

bouncing off from spatial infinity back to the AdS bulk, the system is conservative, as there is no energy

lost at spatial infinity. In this case, the field modes are normal modes, with real associated frequencies.

Scalar field normal modes in d-dimensional AdS were obtained firstly in [18], by imposing such con-

ditions. [19] determined all of the possible boundary conditions that ensure well-defined dynamics for

scalar, electromagnetic and gravitational perturbations in d-dimensional AdS: for d ≥ 7, electromagnetic

and gravitational perturbations define unique stable dynamics in AdS, as the Dirichlet boundary condi-

tion is a requirement to ensure square integrability of the solution; on the other hand, for scalar-type

electromagnetic and gravitational perturbations in d = 4, 5, 6, and vector-type electromagnetic and grav-

itational perturbations in d = 4, a whole one-parameter family of boundary conditions (including Dirichlet

and Neumann conditions) is allowed. This can be physically interpreted by analyzing the behaviour of

the effective potential appearing in the Schrödinger-like equation: if the potential is repulsive enough

near infinity, it completely reflects back the fields without them reaching the boundary. Exact solutions

for the normal modes of scalar, electromagnetic and gravitational perturbations in higher-dimensional

AdS were obtained in [19–21].

Asymptotically AdS spacetimes are, in simple terms, spacetimes that approach AdS geometry as

one gets sufficiently close to spatial infinity, although in the bulk they may exhibit very different features

from AdS, such as the presence of black holes. Quasinormal modes in asymptotically AdS spacetimes

gained large interest due to the AdS/CFT correspondence [22], which establishes a duality between

quantum gravity theories in d-dimensional AdS and conformal field theories (CFT) living on its (d − 1)-

dimensional boundary. According to it, a large black hole in AdS is dual to the thermal state of the CFT.

Quasinormal modes have then a direct interpretation within this framework: they describe how the per-

turbed thermal state of the CFT returns to equilibrium. Moreover, they allow to study non-perturbative

effects of strongly coupled field theories, such as quark-gluon plasmas, which cannot be studied with

the usual perturbative approaches of quantum field theory [23]. Also, as aforementioned, quasinormal

modes allow to infer on the linear stability of a spacetime, which in the AdS/CFT correspondence is of

great interest, as the transition from a stable solution to an unstable one is related to the thermodynamic

phase transition on the CFT side [24]. For such geometries, exact quasinormal mode solutions cannot

in general be found and one needs to rely on numerical methods to compute the quasinormal mode

spectrum. These have been extensively studied, see e.g. [25–39]. In this work we will be interested in

perturbations in Schwarzschild-AdS spacetimes, which are asymptotically AdS spacetimes containing a

Schwarzschild black hole in the bulk. These were first considered by [28] for scalar field perturbations in

d = 4 and by [30] in d = 4, 5, 7. Scalar, electromagnetic and Weyl perturbations in d = 3 were studied in

[31]. Electromagnetic and gravitational perturbations in 4-dimensional Schwarzschild-AdS were studied

in [32–34]. Since then, different kinds of perturbations were studied in a variety of asymptotically AdS

spacetimes, in order to better understand the role of quasinormal modes in the AdS/CFT correspon-

dence, cf. [36, 37] for great reviews on the subject. We will focus on Proca field perturbations, which we
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now review.

1.4 Proca field perturbations in gravitational backgrounds

A massive spin-1 (Proca) field propagating in d-dimensional spacetime has d−1 degrees of freedom

and can be viewed as the generalization of a massless spin-1 (Maxwell or electromagnetic) field, with

the latter having one less degree of freedom, due to the gauge invariance of Maxwell field equations.

One of the first works regarding Proca field perturbations in black hole spacetimes was done in [40],

which obtained the Proca field equations in 4-dimensional Schwarzschild spacetime and observed that

these could not in general be decoupled. [41] showed that the Proca field equations reduced to a single

second-order differential equation for a purely monopole (spherically symmetric) Proca field. Yet, for

higher multipoles, the equations could not be decoupled. This work was continued in [42], which studied

numerically the quasinormal modes of spherically symmetric Proca field perturbations in 4-dimensional

Schwarzschild and Schwarzschild-AdS spacetimes, having also found the exact normal mode solutions

of a purely monopole Proca field propagating in AdS. [43] studied general Proca field perturbations in

4-dimensional Schwarzschild and Schwarzschild-de Sitter spacetimes, with a particular focus on their

late-time behaviour, for which only the asymptotic form of the solutions was required. The quasinor-

mal mode analysis of general Proca field perturbations in 4-dimensional Schwarzschild spacetime was

done in [44]. More recently, [45] showed that, for higher multipoles, the Proca field equations in 4-

dimensional AdS spacetime could be reduced to three decoupled second-order differential equations,

and determined their exact normal mode solutions imposing Dirichlet boundary conditions at spatial

infinity. Generalization to higher dimensions was firstly considered in [46], which obtained the Proca

field equations in (2 + n)-dimensional spherically symmetric black hole spacetimes using the Ishibashi-

Kodama formalism (see also [47]). Perturbations were separated in two distinct sectors: the vector-type

sector, characterized by a single second-order differential equation describing d− 3 decoupled degrees

of freedom of the Proca field; the scalar-type sector, characterized by a coupled system of two second-

order differential equations, describing the remaining 2 degrees of freedom. The study of [46] was

centered in Hawking radiation and the coupled system was solved numerically. Yet, a possible strategy

to analytically decouple the scalar-type sector remained elusive. In 2018, [48] has demonstrated the

separability of the Proca field equations in d-dimensional Kerr-NUT-(A)dS geometries by using the lat-

ter called FKKS ansatz. [48] also performed a quasinormal mode analysis of Proca field perturbations

in Kerr spacetime by using the separated equations, being able to describe two of the three polariza-

tions of the field, whose results agreed with the ones previously obtained by solving directly the coupled

system [49] (see also [50]). [51] performed a quasinormal mode analysis of Proca field perturbations in

4-dimensional Schwarzschild-AdS spacetime using the FKKS ansatz and taking the NUT parameter and

angular momentum to zero. In particular, [51] showed that the FKKS ansatz decouples the scalar-type

modes successfully, although it cannot describe the vector-type mode. Still, little is known about Proca

field perturbations in higher-dimensional spacetimes. One of the objectives of this thesis it to bridge this

gap.
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1.5 Thesis outline

We study Proca field perturbations in higher-dimensional AdS and Schwarzschild-AdS spacetimes.

In Chapter 2, we review the Ishibashi-Kodama formalism [12–14] to study linear field perturbations

in higher-dimensional static gravitational spacetimes, and apply it to Proca field perturbations in (d =

2 + n)-dimensional spherically symmetric black hole spacetimes. This was done in [46], although our

equations are written in terms of “rescaled” variables as in [44, 45, 51], for which they become explicitly

Schrödinger-like equations.

In Chapter 3, we apply the study of Chapter 2 to higher-dimensional AdS spacetimes, obtaining

the exact normal mode solutions of Proca field perturbations, imposing Dirichlet boundary conditions at

infinity.

In Chapter 4, we study Proca field quasinormal modes in higher-dimensional Schwarzschild-AdS

spacetimes. Schwarzschild-AdS spacetime is proven to be linearly stable against vector-type and

monopole Proca field perturbations, in any dimension. A numerical quasinormal mode analysis is per-

formed for Proca field perturbations in 4, 5, 6, 7-dimensional Schwarzschild-AdS. Additionally, an analyti-

cal analysis of the quasinormal mode spectrum is performed for small black holes.

Appendix A reviews scalar and vector spherical harmonics in n dimensions, which are crucial to

expand the Proca field in higher-dimensional spherically symmetric backgrounds.

Appendix B reviews the hypergeometric differential equation and the fundamental properties of the

hypergeometric function.

Appendix C reviews Chandrasekhar’s approach to establish isospectrality between modes of different

types of perturbations.
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Chapter 2

Proca field perturbations

2.1 Proca field in curved spacetime

The action of a massive vector field (Proca field) minimally coupled to a generic d-dimensional curved

spacetime with cosmological constant can be written as

S =

∫
ddx

√
−g
(
R− 2Λ

16π
− 1

2
µ2AµA

µ − 1

4
FµνF

µν

)
, (2.1)

where g is the determinant of the metric, gµν , R is the Ricci scalar, defined as the trace of the Ricci

tensor, Rµν , Λ is the cosmological constant, Aµ is the Proca field with mass µ and Fµν is the Proca field

strength, defined by

Fµν = ∇µAν −∇νAµ , (2.2)

obeying the internal equations

∇[µFαβ] = 0 . (2.3)

The equations of motion for the fields are obtained by applying the variational principle to the action

Eq. (2.1). A variation with respect to gµν yields the Einstein field equations for gµν

Rµν − 1

2
gµνR+ Λgµν = 8πTµν , (2.4)

where Tµν is the Proca stress-energy tensor, defined by

Tµν = µ2AµAν + gαβFµαFνβ − gµν

(
µ2

2
AαA

α +
1

4
FαβF

αβ

)
. (2.5)

In addition, the Bianchi identities for gµν ,

∇ν

(
Rµν − 1

2
gµνR+ Λgµν

)
= 0 , (2.6)
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imply the conservation law for Tµν ,

∇νTµν = 0 . (2.7)

Either by varying the action with respect to Aµ or by using the conservation law for Tµν , one obtains the

Proca field equations for Aµ

∇νF
µν + µ2Aµ = 0 . (2.8)

Taking the divergence in Eq. (2.8), i.e. ∇µ∇νF
µν + µ2∇µA

µ = 0, and due to the antisymmetry of Fµν ,

the Bianchi identity for Aµ becomes

∇µAµ = 0 . (2.9)

It is important to point out that, when µ ̸= 0, Eq. (2.9) is a direct consequence of the field equations

Eq. (2.8), so that Aµ describes d− 1 degrees of freedom, as one component of the field can always be

obtained from the others by integrating Eq. (2.9). On the other hand, for µ = 0, Aµ corresponds to the

Maxwell field and the equations Eq. (2.8) become invariant under the gauge transformation

Aµ → Aµ + ∂µχ , (2.10)

where χ is a scalar field. The Bianchi identity Eq. (2.9) is no longer a consequence of the field equations:

instead it becomes the usual Lorenz gauge for the Maxwell field. Even after imposing this gauge, a

residual gauge freedom remains as Eq. (2.9) is invariant under Eq. (2.10) if χ obeys the Klein-Gordon

field equation, i.e. ∇µ∇µχ = 0. Hence, the Maxwell field describes d − 2 degrees of freedom. In

d = 4, the previous discussion implies that, while the Proca field describes three degrees of freedom,

corresponding to two transversal polarizations and one longitudinal polarization, the residual gauge

freedom of the Maxwell field eliminates the longitudinal polarization, so that in total the Maxwell field

describes two degrees of freedom, corresponding to the usual two transversal polarizations.

The full physical picture of a Proca field propagating in curved spacetime can only be obtained by

solving Eqs. (2.4) and (2.8) simultaneously for both gµν and Aµ. Since this cannot be done analytically,

we perform a perturbative approach, taking only into account linear perturbations around the trivial

solution Aµ = 0. Since Tµν in Eq. (2.5) is of second order in Aµ, perturbations in the Proca field do

not induce a curvature perturbation on gµν at first order. Thus, at first order, the Einstein field equations

Eq. (2.4) completely decouple from the Proca field equations Eq. (2.8), reducing to the Einstein field

equations in vacuum with cosmological constant: the metric gµν corresponds to the background metric,

as if no perturbations in Aµ were made. One is left with the Proca field equations Eq. (2.8), which

are to be solved for Aµ in the fixed background. In the next section, we show how the Proca field can

be decomposed in spacetimes with warped product topology, writing Eq. (2.8) in this rather generic

background, following closely [12, 14, 19, 46, 47].
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2.2 Proca field perturbations in spaces with warped product topol-

ogy

2.2.1 Proca field equations in spaces with warped product topology

We consider a (d = m+ n)-dimensional spacetime, with d ≥ 4 and n ≥ 2, whose manifold structure

can be factorized as the warped product Md = Nm ×Kn. For one to distinguish between tensors living

on the different manifolds Md, Nm and Kn, we use greek indices µ, ν, ... for tensors on Md, latin indices

in the range a, b, ..., h for tensors on Nm and latin indices in the range i, j, ... for tensors on Kn. The line

element of (Md, g) is written in coordinates xµ =
(
ya, zi

)
as

gµνdx
µdxν = hab(y)dy

adyb + r2(y)γij(z)dz
idzj , (2.11)

where hab(y) and γij(z) are the metrics on Nm and Kn, respectively, and r(y) is the scalar field that

warps the product. We also assume that (Nm, h) is a Lorentzian manifold, and (Kn, γ) is a Riemannian

manifold with constant curvature, satisfying

R̂ij = K(n− 1)γij , (2.12)

with K = 0 (foliated by planes), K = 1 (foliated by spheres) or K = −1 (foliated by hyperboloids). The

non-vanishing Christoffel symbols Γµ
νρ associated to (Md, g) can be written in coordinates xµ as

Γa
bc = Γ̃a

bc , Γa
ij = −r (∂ar) γij , Γi

aj =
∂ar

r
δij , Γi

jk = Γ̂i
jk , (2.13)

where Γ̃a
bc and Γ̂i

jk are the Christoffel symbols associated to (Nm, h) and (Kn, γ), respectively. The

projections of Eq. (2.8) on Nm and Kn are written as

∇̃bF
ab + n

∂br

r
F ab + ∇̂jF

aj + µ2Aa = 0 , (2.14)

∇̃bF
ib + n

∂br

r
F ib + ∇̂jF

ij + µ2Ai = 0 , (2.15)

where ∇̃b and ∇̂i denote the covariant derivatives associated to (Nm, h) and (Kn, γ), respectively. These

equations are supplemented with the Bianchi identity Eq. (2.9)

∇̃aA
a + n

∂ar

r
Aa + ∇̂iA

i = 0 . (2.16)

2.2.2 Decomposition of the Proca field and harmonic expansion

To further simplify the field equations, one exploits the symmetric structure of the Kn space, studying

how the field behaves under a transformation in the zi coordinates. Essentially, the strategy is to project

the field into components that are orthogonal to Kn and components that are tangent to Kn. Then,

according to their tensorial behaviour on Kn, these are expanded in the appropriate harmonics. The Aµ
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field can be written as

Aµdx
µ = A(o)

a dya +A
(t)
i dzi , (2.17)

where A(o)
a denotes the projection of Aµ orthogonal to Kn and A(t)

i denotes the projection of Aµ tangent

to Kn. The latter can be further decomposed using the Helmoltz-Hodge decomposition [12], which allows

one to write uniquely A(t)
i , a covector field living on the cotangent space of a Riemannian manifold (in

this case Kn), as the sum of a longitudinal covector field, ∇̂iA
(S), and a transverse covector field, A(V )

i :

A
(t)
i = A

(V )
i + ∇̂iA

(S) , ∇̂iA(V )
i = 0 . (2.18)

A
(o)
a and A(S) behave as scalars on the cotangent space of Kn and are called the scalar-type compo-

nents of Aµ, while A(V )
i , a covector on the cotangent space of Kn, is called the vector-type component

of Aµ (we will call both A(V )i and A(V )
i vector-type components, as they can always be related through

A
(V )
i = γijA(V )j). When the Proca field is written in terms of these variables, equations Eqs. (2.14)-(2.16)

are decomposed in two completely decoupled sectors: the scalar-type sector, containing equations that

only relate scalar-type variables; the vector-type sector, described by a single equation for the vector-

type variable. We will come back to this in Section 2.2.3. The scalar-type components of Aµ can be

expanded in scalar harmonics Sk⃗s
, which form a complete basis on Kn, satisfying

(
□̂+ k2s

)
Sk⃗s

= 0 ,

∫
dγnSk⃗s

Sk⃗′
s
= δk⃗sk⃗′

s
, (2.19)

where □̂ = γij∇̂i∇̂j and −k2s is the eigenvalue of □̂ on Kn. If Kn = Sn, one has the result (see Appendix

A)

k2s = l(l + n− 1) , l = 0, 1, 2, ... , (2.20)

whereas if K = −1, 0, ks takes continuous values bounded by a lower limit [15]. We choose a basis

such that to each harmonic is associated an index k⃗s, which encodes not only the eigenvalue of the

Kn manifold, but also the eigenvalues of the lower-dimensional embedded spaces (see Appendix A).

Similarly, the vector-type component of Aµ can be expanded in vector harmonics Vk⃗v i
, which also form

a complete basis on Kn, satisfying

(
□̂+ k2v

)
Vk⃗v i

= 0 ,

∫
dγnγ

ijVk⃗v i
Vk⃗′

v j
= δk⃗v k⃗′

v
, ∇̂iVk⃗v

i = 0 . (2.21)

If Kn = Sn, one has the result (see Appendix A)

k2v = l(l + n− 1)− 1 , l = 1, 2, 3, ... , (2.22)

whereas if K = −1, 0, kv takes continuous values [12]. We expand the scalar-type components of the

field, {A(o)
a , A(S)}, as

A(o)
a (y, z) =

∑
k⃗s

Ak⃗sa
(y)Sk⃗s

(z) , (2.23)
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A(S)(y, z) =
∑
k⃗s

Ck⃗s
(y)Sk⃗s

(z) , (2.24)

while for the vector-type component, A(V )
i , one has

A
(V )
i (y, z) =

∑
k⃗v

ϕk⃗v
(y)Vk⃗v i

(z) . (2.25)

Here, Ck⃗s
(y) and ϕk⃗s

(y) are scalar fields on Nm, while Ak⃗sa
(y) is a covector field on the cotangent

space of Nm. Note that the m + 1 scalar-type components cover m degrees of freedom, as Eq. (2.9)

needs to be satisfied, whereas the vector-type component covers n − 1 degrees of freedom (note the

transverse condition of Vk⃗v i
in Eq. (2.21)). These variables cover in total n+m− 1 = d− 1 degrees of

freedom, as expected for a Proca field.

2.2.3 Separation of Proca field equations

The Helmoltz-Hodge decomposition allows one to separate the Proca field equations in two com-

pletely decoupled sectors: the scalar-type sector and the vector-type sector. To see this, note firstly that

one can use the Helmoltz-Hodge decomposition on F aj in Eq. (2.14), so that the divergenceless vector

of the decomposition (corresponding to the vector-type variable) completely vanishes and Eq. (2.14) re-

lates only scalar-type terms. The same argument can be used to write Eq. (2.16) in terms of scalar-type

components only. Note that Eq. (2.15) can be decomposed in a similar fashion. Indeed, Eq. (2.15) has

the structure of ηi = 0, where ηi can be found by expanding F bi in terms of {A(o)b, A(S), A(V )i}. Thus,

one can decompose Eq. (2.15) as ∇̂iη(S) + ηi(V ) = 0 and, taking the divergence on Kn, i.e., ∇̂iη
i = 0,

yields

□̂η(S) = 0 , (2.26)

which relates scalar-type components only. On the other hand, taking the Laplacian on Kn, i.e., □̂ηi = 0,

yields

□̂ηi(V ) − R̂ijη(V )j = 0 , (2.27)

where we used □̂∇̂iη(S) = ∇̂i□̂η(S) + R̂ij∇̂jη(S) and substituted Eq. (2.26), as well as ∇̂iη(S) = −ηi(V ).

Since Eq. (2.12) holds by assumption, Eq. (2.27) is for the vector-type component only. To see explicitly

this decomposition, we now substitute the expanded Proca field in the equations of motion. Substitution

in Eq. (2.14) yields

∑
k⃗s

[
∇̃b

(
∇̃aAk⃗s

b − ∇̃bAk⃗s

a
)
+ n

∇̃br

r

(
∇̃aAk⃗s

b − ∇̃bAk⃗s

a
)
+

(
k2s
r2

+ µ2

)
Ak⃗s

a − k2s
r2
∂aCk⃗s

]
Sk⃗s

= 0 ,

(2.28)

where we used the transverse condition ∇̂iVi
k⃗v

= 0. Furthermore, Eq. (2.16) is written as

∑
k⃗s

[
∇̃bAk⃗s

b + n
∂br

r
Ak⃗s

b − k2s
r2
Ck⃗s

]
Sk⃗s

= 0 . (2.29)
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These are clearly equations belonging to the scalar-type sector. On the other hand, Eq. (2.15) contains

both scalar-type and vector-type variables:

∑
k⃗v

[
□̃ϕk⃗v

+
(n− 2)

r
(∂br)(∂bϕk⃗v

)−

(
k2v + R̂/n

r2
+ µ2

)
ϕk⃗v

]
Vk⃗v

i+

+
∑
k⃗s

[
□̃Ck⃗s

+ (n− 2)
∂br

r
∂bCk⃗s

− µ2Ck⃗s
− ∇̂bA

b
k⃗s

− (n− 2)
∂br

r
Ab

k⃗s

]
∇̂iSk⃗s

= 0 ,

(2.30)

where we used

∇̂j∇̂iVk⃗v

j = ∇̂i∇̂jVk⃗v

j + R̂miVk⃗v

m , (2.31)

with R̂mi given by Eq. (2.12). Taking the divergence ∇̂i of Eq. (2.30) yields

∑
k⃗s

[
□̃Ck⃗s

+ (n− 2)
∂br

r
∂bCk⃗s

− µ2Ck⃗s
− ∇̂bA

b
k⃗s

− (n− 2)
∂br

r
Ab

k⃗s

](
−k2sSk⃗s

)
= 0 , (2.32)

which is an equation relating scalar-type components only, whereas taking the Laplacian □̂ yields

∑
k⃗v

[
□̃ϕk⃗v

+
(n− 2)

r
(∂br)(∂bϕk⃗v

)−

(
k2v + R̂/n

r2
+ µ2

)
ϕk⃗v

](
−k2vVk⃗v

i
)
+

+
∑
k⃗s

[
□̃Ck⃗s

+ (n− 2)
∂br

r
∂bCk⃗s

− µ2Ck⃗s
− ∇̂bA

b
k⃗s

− (n− 2)
∂br

r
Ab

k⃗s

](
R̂ij∇̂jSk⃗s

− ∇̂i□̂Sk⃗s

)
= 0 ,

(2.33)

where we again used the commutator Eq. (2.31). The term proportional to ∇̂i□̂Sk⃗s
vanishes from

Eq. (2.32), and substituting Eq. (2.30) in Eq. (2.33) gives

∑
k⃗v

[
□̃ϕk⃗v

+
(n− 2)

r
(∂br)(∂bϕk⃗v

)−

(
k2v + R̂/n

r2
+ µ2

)
ϕk⃗v

] (
−k2v −K(n− 1)

)
Vi

k⃗v
= 0 , (2.34)

which is an equation for the vector-type component only. We then have shown explicitly that the Proca

field equations give rise to two completely decoupled sectors: the scalar-type sector, described by

Eqs. (2.28), (2.29) and (2.32); and the vector-type sector, described by Eq. (2.34).

Due to the orthogonality conditions of the harmonics, the resulting equations of motion need to be

satisfied for all k⃗s, k⃗v in the sums. In what follows, we will drop the sums as well as the indexes k⃗s, k⃗v

in the fields, with the constant reminder that we are solving for the infinitely many modes of the system.

The scalar-type equations can be further simplified by substituting Eq. (2.29) in Eq. (2.28), giving an

expression for Aa only:

□̃Aa − R̃a
bA

b + n
∂br

r
∇̃bA

a −
(
k2s
r2

+ µ2

)
Aa + n∇̃a

(
∂br

r

)
Ab +

2∂ar

r

(
∇̂bA

b + n
∂br

r
Ab

)
= 0 , (2.35)

whereas C is determined from Eq. (2.32)

□̃C + (n− 2)
∂br

r
∂bC −

(
µ2 +

k2s
r2

)
C + 2

∂br

r
Ab = 0 . (2.36)
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These are supplemented by the Bianchi identity

∇̃bA
b + n

∂br

r
Ab − k2s

r2
C = 0 . (2.37)

For completeness, we also write the vector-type equation of motion Eq. (2.34) in the more compact form

□̃ϕ+
(n− 2)

r
(∂br)(∂bϕ)−

[
k2v + R̂/n

r2
+ µ2

]
ϕ = 0 . (2.38)

2.2.4 Proca field perturbations in a spherically symmetric (2+ n)-background

The analysis done so far, leading to Eqs. (2.35)-(2.38), holds for all spacetimes with the warped

product topology assumed in Section 2.2.1. In this section, we study how these equations simplify when

we restrict ourselves to the case m = 2, with ya = (t, r) and line element on N 2 given by

habdy
adyb = −f(r)dt2 + 1

f(r)
dr2 , (2.39)

where f(r) is a scalar field on N 2 depending only on r. Furthermore, we assume r(y) = r and Kn = Sn,

so that Eqs. (2.20) and (2.22) hold. Equation (2.11) then becomes

gµνdx
µdxν = −f(r)dt2 + 1

f(r)
dr2 + r2dΩ2

n , (2.40)

where dΩ2
n is the line element of the n-sphere. The background geometry Eq. (2.40) still includes a

large variety of interesting cases, such as the (2 + n)-dimensional spherically symmetric black hole

spacetimes. The non-vanishing Christoffel symbols and Ricci tensor components of hab are

Γ̃r
tt =

ff ′

2
, Γ̃t

rt =
f ′

2f
, Γ̃r

rr = − f ′

2f
, R̃t

t = R̃r
r = −f

′′

2
. (2.41)

Higher multipoles

Using the results of Sections 2.2.2 and 2.2.3, the vector-type component of the Proca field covers

d− 3 degrees of freedom in the spherically symmetric background. The vector-type equation of motion

Eq. (2.38) becomes

D̂luV = 0 , (2.42)

where we defined ϕ(r, t) = uV(r, t)r
1−n

2 and the operator D̂l as

D̂l = −∂2t + ∂2r∗ − f

(
(l + 1)(l + n− 2)

r2
+

(n− 2)(n− 4)

4r2
f +

(n− 2)

2r
f ′ + µ2

)
. (2.43)

The remaining two degrees of freedom of the Proca field, described by its scalar-type components, obey

the equations of motion Eqs. (2.35)-(2.37). In the background Eq. (2.40), these are written as

D̂lu1 +
(n− 2)f

r2

(
1− f +

rf ′

2

)
u1 + f ′ (∂tu2 − ∂r∗u1) = 0 , (2.44)
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D̂lu2 + f

(
n− 2

r2
− 2(n− 1)

r2
f +

(n− 1)

r
f ′
)
u2 −

f

r

(
f ′ − 2f

r

)
u3 = 0 , (2.45)

D̂lu3 + f
(n− 2)

r2
u3 +

2fl(l + n− 1)

r2
u2 = 0 , (2.46)

∂tu1 − ∂r∗u2 =
f

r

(n
2
u2 − u3

)
, (2.47)

where u1(t, r), u2(t, r) and u3(t, r) are defined by At(t, r) = u1(t, r)r
−n/2, Ar(t, r) = u2(t, r)f

−1r−n/2

and C(t, r) = u3(t,r)
l(l+n−1)r

1−n
2 . Without loss of generality, we can choose u1 to be completely determined

from u2, u3, so that the scalar-type physical degrees of freedom are completely described by the coupled

system Eqs. (2.45) and (2.46). This system may be written

D̂lu = Ku , (2.48)

where K is a 2 × 2 matrix that couples the modes and u = (u2 u3)
T . If K is diagonalizable, one can

write K = P−1MP, with M diagonal and having entries given by the eigenvalues of K, and P with

columns given by the corresponding eigenvectors. Making q = Pu, one sees that if ∂r∗P−1 = 0, the

system can be trivially decoupled.

Monopole mode

Modes with l = 0 are spherically symmetric, having only one physical degree of freedom, indepen-

dently of the dimension of the spacetime. Furthermore, this is a scalar-type degree of freedom, as vector

spherical harmonics are only defined for l ≥ 1. Setting u3 = 0
(
∇̂iS = 0

)
in Eq. (2.45), one finds the

equation of motion ruling monopole Proca perturbations in the spherically symmetric background to be

(
−∂2t + ∂2r∗ − f

(
n(n+ 2)

4r2
f − n

2r
f ′ + µ2

))
u2 = 0 . (2.49)

2.3 Maxwell field perturbations

A Maxwell (electromagnetic) field perturbation can be viewed as the limit of a Proca field perturbation

when µ = 0. However, in this case, the field equations are gauge-invariant and the field loses one

physical degree of freedom, which becomes a pure-gauge one. Thus, one cannot simply set µ = 0 in

the results above, as the equations of motion found only hold for µ ̸= 0. Equation (2.9) no longer follows

directly from the field equations, becoming simply a gauge choice. In order to distinguish between the

physical degrees of freedom and the pure-gauge ones, it is useful to work with gauge-invariant variables

rather than with Aµ. Under the gauge transformation Eq. (2.10), the fields transform as (using the

notation of Eqs. (2.17) and (2.18))

A(o)
a → A(o)

a + ∂aχ , A
(t)
i = A

(V )
i + ∇̂iA

(S) → A
(V )
i + ∇̂i

(
A(S) + χ

)
. (2.50)
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One sees that the gauge freedom in Aµ is only scalar, with the vector-type component of the Maxwell

field being gauge-invariant. This means that, even in the µ = 0 limit, the vector-type component of Aµ

covers the same n − 1 degrees of freedom as in the massive case. These are described by Eq. (2.38)

after setting µ = 0. The scalar-type sector is then expected to describe only m − 1 degrees of freedom

in the massless case, in order for the Maxwell field to have d − 2 degrees of freedom. To see this, we

start from Eqs. (2.14) and (2.15). Setting µ = 0 one has

∇̃b

(
∇̃aAb − ∇̃bAa

)
+ n

∂br

r

(
∇̃aAb − ∇̃bAa

)
+
k2s
r2

(Aa − ∂aC) = 0 , (2.51)

∇̃b

(
Ab − ∂bC

)
+ (n− 2)

∂br

r

(
Ab − ∂bC

)
= 0 . (2.52)

This motivates the definition of the field

Ba = Aa − ∂aC , (2.53)

which is gauge-invariant. Indeed, one can expand χ(y, z) =
∑

k⃗s
χk⃗s

(y)Sk⃗s
(z), so that, under the gauge

transformation, Aa → Aa + ∂aχ and C → C + χ. In terms of Ba, the equations of motion become

∇̃b

(
∇̃aBb − ∇̃bBa

)
+ n

∂br

r

(
∇̃aBb − ∇̃bBa

)
+
k2s
r2
Ba = 0 , (2.54)

∇̃b

(
rn−2Bb

)
= 0 . (2.55)

Note that this transformation completely removes a pure-gauge degree of freedom from the system, as

{Aa, C} → {Ba}. This only happens in the massless case, where Ba factorizes. So, as expected, the

Maxwell scalar-type sector only describes m− 1 (physical) degrees of freedom.

In the spherically symmetric background described in Section 2.2.4, Eqs. (2.54) and (2.55) give the

equation of motion for the physical mode

D̂s=1
l u(EM) = 0 , (2.56)

where we defined Br(t, r) = u(EM)(t, r)f
−1r1−

n
2 and the operator

D̂s=1
l = −∂2t + ∂2r∗ − f

(
l(l + n− 1)

r2
+
n(n− 2)

4r2
f − n− 2

2r
f ′
)

. (2.57)

On the other hand, Bt(t, r) = ut(t, r)r
1−n

2 is completely determined from u(EM) by the relation

∂tut(t, r) =
∂r∗
(
u(EM)r

n
2 −1

)
r

n
2 −1

. (2.58)

In this case, the scalar-type sector of the Maxwell field covers one degree of freedom, as expected.

The physical degree of freedom, u(EM), can be also related to the pure-gauge degree of freedom,

C, which turns out to be very important in the interpretation of the results, specially the numerical ones.
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We take Eq. (2.36) and write it in terms of the gauge-invariant variables, Ba, as

□̃C + n
∂br

r
∂bC −

(
µ2 +

k2s
r2

)
C + 2

∂br

r
Bb = 0 . (2.59)

In the spherically symmetric background, Eq. (2.59) reads

D̂s=0
l (ru3)− µ2fru3 = 2l(l + n− 1)f2r

n
2 −1Br , (2.60)

where we defined the operator

D̂s=0
l = ∂2r∗ − ∂2t − f

(
l(l + n− 1)

r2
+
n(n− 2)

4r2
f +

n

2r
f ′
)

, (2.61)

which rules linear scalar field perturbations on a spherically symmetric background, i.e. D̂s=0
l χ = 0 for a

perturbed scalar field χ [30]. In the massless limit, the RHS of Eq. (2.60) vanishes after applying D̂s=1
l ,

with Eq. (2.60) becoming

D̂s=1
l

(
f−1D̂s=0

l (ru3)
)
= 0 . (2.62)

Thus, in the massless limit, one can completely factorize the equation of motion for u3 in two wave equa-

tions: the “inner” one, for ru3, satisfying the scalar field equation; the “outer one”, for u(EM), satisfying

the scalar-type Maxwell field equation. If D̂s=0
l (ru3) = 0, u(EM) = ut = 0 and, from the definition of Ba,

Aa = ∂aC are pure-gauge. Thus, the degree of freedom described by the “inner” wave equation only has

physical significance when µ ̸= 0. In the small-mass limit, it is however reasonable to expect its modes

to approach the modes of scalar field perturbations. On the other hand, u(EM) is gauge-invariant and

the degree of freedom described by the “outer” wave-equation remains physical in the massless limit.

In the small-mass limit, its modes are expected to approach those of scalar-type Maxwell perturbations.

This allows us to identify the polarizations in the (in principle) coupled scalar-type sector: one just takes

the small-mass limit of the Proca perturbation and compares its modes with those of scalar field and

Maxwell field (scalar-type) perturbations.

Lastly, note that the results obtained in this section are for l ≥ 1. It is known that the monopole mode

of a Maxwell perturbation does not have dynamical degrees of freedom [44, 46, 53]. Indeed, in this case,

the field equations are simply given by

∇̃b
(
rnF̃ab

)
= 0 , (2.63)

where F̃ab is the gauge-invariant tensor living only on N 2 (omitting the k⃗s indices),

F̃ab = ∇̃aAb − ∇̃bAa , (2.64)

which completely determines the single degree of freedom of the system. In the background Eq. (2.40),

Eq. (2.63) reads

∂tF̃tr = 0 , ∂r

(
rnF̃tr

)
= 0 , (2.65)
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and so

F̃tr(t, r) =
Q

rn
, (2.66)

where Q is a constant, which can be interpreted as the total charge of the system. Thus, the unique

degree of freedom of the system, described by F̃tr, is non-dynamical, with Aµ being just the sum of a

pure-gauge term and a static Coulomb-like field. Observe that this is precisely the result one expects

from performing the multipole expansion of the electric potential outside a charge distribution.
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Chapter 3

Normal modes of Proca field

perturbations in d-dimensional AdS

3.1 Initial considerations and boundary conditions

In this chapter, we apply the formalism developed in Chapter 2 to a d-dimensional AdS background.

We further assume that the perturbations have time-dependence of the form u(t, r) = u(r)e−iωt, where

ω are interpreted as the mode frequencies. By doing so, the perturbation equations become eigenvalue

equations for ω with associated eigenfunctions u

∂2r∗u+
(
ω2 −V(r)

)
u = 0 . (3.1)

In the literature, Eq. (3.1) is usually called a Schrödinger-like equation, and V is interpreted as an effec-

tive potential that rules the dynamics of the perturbations. As stated in Chapter 1, the choice of boundary

conditions in asymptotically AdS spacetimes is a subtle question, as not all boundary conditions ensure

well-defined dynamics for the fields [19]. [19] showed that Maxwell field perturbations in d ≥ 7 AdS re-

quire the Dirichlet boundary condition at spatial infinity, i.e. u(r = ∞) = 0, to ensure square-integrability

of the solution, in the sense of
∫∞
0
u∗uf−1dr. On the other hand, for d = 4, 5, 6-dimensional AdS, a

whole one-parameter family of boundary conditions is allowed, including the usual Dirichlet and Neu-

mann boundary conditions. For Proca field perturbations, the Dirichlet boundary condition seems to be

required for all spacetime dimensions, with an interesting exception occurring in 4-dimensional AdS1. In

the latter case, while for µ2L2 ≥ 3/4 one must take the Dirichlet boundary condition, for 0 < µ2L2 < 3/4

a whole one-parameter family of boundary conditions is again allowed. This is particularly intriguing, as

the potential remains diverging at infinity for masses in this range.

In this work, we always impose Dirichlet boundary conditions on the fields at spatial infinity, as these

seem to be the most physically intuitive (at least in the classical sense). In this case, the conservation

of energy in the spacetime is easily understood: the AdS boundary acts like a perfect mirror and there

1Thanks to Tiago Fernandes for pointing this out.
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is no energy flux across it. In particular, the modes are normal modes, being purely oscillating, with real

associated frequencies. Other boundary conditions were studied in e.g. [54].

In AdS, one has, in global coordinates,

f(r) = 1 +
r2

L2
, (3.2)

where L2 = − (d−1)(d−2)
2Λ . The tortoise coordinate, r∗, is obtained from

r∗(r) =

∫
dr

f(r)
= L arctan

( r
L

)
− πL

2
+ r∗(∞) , (3.3)

where r∗(∞) is the (finite) value of the tortoise coordinate at spatial infinity. Without loss of generality,

one can set r∗(∞) = πL
2 so that r∗(r) = L arctan (r/L) and the region of interest gets mapped from

r ∈ (0,+∞) to r∗ ∈
(
0, πL2

)
.

3.2 Proca field perturbations in AdS

3.2.1 Proca field equations

The vector-type sector is described solely by Eq. (2.42), which in AdS is written

∂2r∗uV + (ω2
V −V(V))uV = 0 , (3.4)

where V(V) is the effective potential ruling the dynamics of the vector-type modes, given by

V(V) = f

(
n(n− 2)

4L2
+

(2l + n)(2l + n− 2)

4r2
+ µ2

)
. (3.5)

On the other hand, the scalar-type sector is described by the system of two coupled differential equa-

tions, Eqs. (2.45) and (2.46), which may be written as

∂2r∗u+ (ω2
SI−V(S))u = 0 , (3.6)

with u = (u2 u3)
T and V(S) the potential matrix mixing the two scalar-type modes, given by

V(S) = f

 4l(l+n−1)+n(n+2)
4r2 + n(n−2)

4L2 + µ2 − 2
r2

− 2l(l+n−1)
r2

4l(l+n−1)+(n−4)(n−2)
4r2 + n(n−2)

4L2 + µ2

 . (3.7)

Equation (3.6) may be diagonalized by performing, for example,

u2 = u(−) + u(+) , u3 = (l + n− 1)u(−) − lu(+) , (3.8)
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which yields, in terms of u(−), u(+),

D̂l+1u(+) = 0 ,

D̂l−1u(−) = 0 .
(3.9)

Thus, in AdS, one can condense the Proca field equations as

∂2r∗uS + (ω2
S −VjS )uS = 0 , (3.10)

with S = {(+), (−),V} and

VjS = f

(
n(n− 2)

4L2
+

(2jS + n)(2jS + n− 2)

4r2
+ µ2

)
, (3.11)

with j(+) = l + 1, j(−) = l − 1, jV = l. Note that the modes are splitted in accordance with the

angular momentum addition rules for a spin-1 field, i.e., |l − 1| ≤ j ≤ l + 1, resembling a spin-orbit

interaction between the spin projection of the field, s = 0,±1 (corresponding, respectively, to vector-type

and scalar-type perturbations), and the angular momentum number of each multipole, l. Each mode is

then identified with its total angular momentum number, j = l + s.

For n ̸= 2, jS ̸= 0, the potential Eq. (3.11) diverges both at the origin and at infinity, essentially

behaving as a “box” that traps the field inside of it. Near the origin, the potential can be interpreted as

an infinite potential barrier, completely reflecting the field as it gets closer to r = 0 (observe that, if a

black hole was present, the barrier would have a finite height making the field leak energy into the black

hole). Additionally, near spatial infinity, both the mass of the field and the trapping character of AdS

intertwine to reflect the field back to the origin. Observe that the latter behaviour holds independently

of what is present in the bulk of AdS. An interesting exception arises when n = 2 and jS = 0: although

the potential at spatial infinity also shows the behaviour mentioned, the 1/r2 term vanishes, making the

potential approach a constant near the origin. This, however, will not have deep consequences in the

physical results for the solutions, as we show in Appendix B.

Finally, note that the analysis done above is for modes with l ≥ 1. For the monopole mode, one can

start directly from Eq. (2.49) or substitute u3 = 0 in Eq. (3.8) to obtain

D̂1u(+) = 0 . (3.12)

Thus, the monopole mode only has scalar-type (+) polarization, which again agrees with the addition

rules of angular momentum, as for the monopole mode only j = 1 is allowed.

3.2.2 Normal mode solutions

We now proceed to solve Eq. (3.10) analytically, writing it as

∂2r∗uS +

(
ω2
S −

k1jS
sin2

(
r∗
L

) − k2

cos2
(
r∗
L

))uS = 0 , (3.13)
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with k1jS = 4jS(jS+n−1)+(n−2)n
4L2 and k2 = (n−2)n+4µ2L2

4L2 . Equation (3.13) is a second-order differential

equation with three regular singular points, at r∗ = 0, r∗ = ±πL/2. It follows that it can be transformed, by

an appropriate change of variables, into the standard hypergeometric differential equation (see Appendix

B). Its solutions satisfying the regularity boundary condition at r = 0 and the Dirichlet boundary condition

at r = ∞ can be written as

uS(r) = AS

( r
L

) 2jS+d−2

2

(
1 +

r2

L2

)k−ωSL

2

F1

[
−k + ωSL,−k, jS +

d− 1

2
;

r2/L2

1 + r2/L2

]
, (3.14)

with

ωSL = 2k + jS +
d− 1

2
+

1

2

√
(d− 3)

2
+ 4µ2L2 , k = 0, 1, 2, ... . (3.15)

Setting d = 4, the result agrees with [45]. As discussed in Section 3.2.1, the monopole mode only

contains scalar-type (+) polarization, so that its normal modes may be obtained by setting j(+) = 1 in

Eqs. (3.14) and (3.15). In particular, observe that the lowest frequency mode of the complete Proca

spectrum corresponds to a l = 1 perturbation (with scalar-type (−) polarization), not to the l = 0 per-

turbation. An interesting feature of the spin-orbit splitting of the spectrum is that, for the same multipole

l ≥ 1, the k + 1-overtone with polarization (−) is isospectral to the k-overtone with polarization (+).

3.3 Maxwell field perturbations in AdS

3.3.1 Maxwell field equations

Although the equations of motion are simpler for Maxwell field perturbations, the associated effective

potentials show some interesting features that do not appear in the massive case. Take, for example,

the vector-type component of the Maxwell field, ruled by Eq. (3.5) with µ = 0. While at the origin the

potential essentially remains unaltered, at infinity its behaviour now depends on the dimension of the

spacetime: for n ̸= 2 it still diverges, whereas for n = 2 it now approaches a constant. The difference

between massless and massive cases is even more notorious in the scalar-type sector. While the

Maxwell vector-type potential is simply the Proca vector-type potential after setting µ = 0, the scalar-

type sector is described by Eq. (2.56), which reads in AdS

∂2r∗u(EM) +
(
ω2
(EM) −V

(S)
(EM)

)
u(EM) = 0 , (3.16)

with

V
(S)
(EM) = f

(
(n− 2)(n− 4)

4L2
+

(2l + n)(2l + n− 2)

4r2

)
. (3.17)

While for n = 2, 4 the potential approaches a constant at spatial infinity, for n = 3 it is not bounded

from below, dipping to −∞. These novel features of the potentials are intricately related with the afore-

mentioned allowed boundary conditions one may choose at spatial infinity to define stable dynamics in

AdS.

21



3.3.2 Normal mode solutions

Similarly to what was done for Proca field perturbations, we now determine the normal modes of

Maxwell field perturbations that satisfy the regularity condition at r = 0 and the Dirichlet condition at

r = ∞. For the vector-type component, the normal modes are found by simply setting µ = 0, S = V in

Eqs. (3.14) and (3.15). On the other hand, for scalar-type perturbations, one needs to solve Eq. (3.16),

which can be also written as

∂2r∗u(EM) +

(
ω2 − k1

sin2
(
r∗
L

) − k2

cos2
(
r∗
L

))u(EM) = 0 , (3.18)

with k1 = 4l(l+n−1)+(n−2)n
4L2 and k2 = (n−2)(n−4)

4L2 . This is done in Appendix B, yielding Eq. (3.14) with

S = (EM), j(EM) = l and

ω(EM)L = 2k + l + 2 , d = 4 , k = 0, 1, 2, ... ,

ω(EM)L ∈ R+ , d = 5 ,

ω(EM)L = 2k + l + d− 3 , d > 5 , k = 0, 1, 2, ... .

(3.19)

So, while for d ̸= 5 the normal mode frequency spectrum is discrete, for d = 5 the Dirichlet condition

does not impose any restriction on the frequencies, yielding a continuous normal mode spectrum. These

results agree with [20]. In particular, we believe a deeper analysis needs to be performed to better

understand this peculiar behaviour in 5-dimensional AdS.
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Chapter 4

Quasinormal modes of Proca field

perturbations in d-dimensional

Schwarzschild-AdS

4.1 Proca field equations in Schwarzschild-AdS spacetime

The results from Chapter 3 are for pure d-dimensional AdS spacetime. This is an interesting case,

as it captures the dynamics of a Proca field in a simple but non-trivial spacetime. Moreover, it provides a

background geometry where the scalar-type modes of the Proca field completely decouple. Indeed, one

is left with modes splitted by their total angular momentum number, j = l + s, with s = 0 for vector-type

modes and s = ±1 for scalar-type modes, in analogy with a spin-orbit interaction between the field’s

proper spin and the angular momentum of each multipole. A question that naturally arises is if the

study can be extended to physically richer spacetimes, such as black hole spacetimes. In this case, the

black hole dissipates energy from the system and the latter can no longer be described as a superposi-

tion of independent normal modes. Instead, the modes are now quasinormal, with complex associated

frequencies, whose imaginary part encodes the decay of the modes into the black hole. In this chap-

ter, we study the quasinormal modes of Proca field perturbations in d-dimensional Schwarzschild-AdS

spacetime, mainly with d = 4, 5, 6, 7, although generalization to higher-dimensions is straightforward.

Schwarzschild-AdS spacetime is a non-rotating and uncharged asymptotically AdS spacetime. Thus, it

shares the same features as AdS near the boundary, while having a Schwarzschild black hole in its bulk.

In global coordinates, the line element of Schwarzschild-AdS is written as Eq. (2.40), with

f(r) = 1 +
r2

L2
−
(r0
r

)d−3

= 1 +
r2

L2
−
(
1 +

r2h
L2

)(rh
r

)d−3

, (4.1)

where r0 is related to the mass of the black hole, M , by M =
(
(d− 2)Ad−2r

d−3
0

)
/16π, with Ad−2 being

the area of a (d − 2)-sphere, Ad−2 = 2π(d−1)/2/Γ[(d − 1)/2]. Schwarzschild-AdS spacetime has a
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single event horizon, which is the unique real and positive zero of f(r), rh. The equations of motion of

Proca field perturbations in Schwarzschild-AdS are still given by Eqs. (2.42), (2.45) and (2.46), as the

only restriction imposed on the spacetime was to be of the form Eq. (2.40). Substituting Eq. (4.1) in

these equations and making the Fourier transformation to the frequency domain, the effective potential

ruling the dynamics of the vector-type component of the Proca field in d-dimensional Schwarzschild-AdS

spacetime is

V(V) = f

(
(d− 4)(d− 2) + 4µ2L2

4L2
+

(2l + d− 4)(2l + d− 2)

4r2
+
d(d− 4)

4r2h

(
1 +

r2h
L2

)(rh
r

)d−1
)

,

(4.2)

while the scalar-type components are governed by

V(S) =

V
(S)
22 V

(S)
23

V
(S)
32 V

(S)
33

 , (4.3)

with

V
(S)
22 = f

(
(d− 4)(d− 2) + 4µ2L2

4L2
+

4l(l + d− 3) + d(d− 2)

4r2
− 3(d− 2)2

4r2h

(
1 +

r2h
L2

)(rh
r

)d−1
)

,

V
(S)
23 = f

(
− 2

r2
+
d− 1

4r2h

(
1 +

r2h
L2

)(rh
r

)d−1
)

,

V
(S)
32 = −2l(l + d− 3)f

r2
,

V
(S)
33 = f

(
(d− 4)(d− 2) + 4µ2L2

4L2
+

4l(l + d− 3) + (d− 4)(d− 6)

4r2
− d(d− 4)

4r2h

(
1 +

r2h
L2

)(rh
r

)d−1
)

,

for modes with l > 0. The monopole mode, l = 0, follows

V(S,l=0) = f

(
(d− 4)(d− 2) + 4µ2L2

4L2
+
d(d− 2)

4r2
− 3(d− 2)2

4r2h

(
1 +

r2h
L2

)(rh
r

)d−1
)

. (4.4)

For Maxwell field perturbations, the vector-type potential is simply Eq. (4.2) with µ = 0, while the scalar-

type potential is given by Eq. (2.56)

V
(S)
(EM) = f

(
(d− 4)(d− 6)

4L2
+

(2l + d− 4)(2l + d− 2)

4r2
− (3d− 8)(d− 4)

4r2h

(
1 +

r2h
L2

)(rh
r

)d−1
)

. (4.5)

As the perturbation equations all have the form

∂2r∗u+ (ω2I−V(r))u = 0 , (4.6)

a complete analysis of the potentials is the key to study the analytical properties of the quasinormal

modes. In the next section, we start by discussing the appropriate boundary conditions at the horizon

and at spatial infinity. We then obtain the asymptotic form of the solutions near infinity, which will also be

important from the numerical point of view, as we shall explain. Finally, we study whether Schwarzschild-

AdS is stable under Proca and Maxwell field perturbations.
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4.2 Analytical study of the quasinormal mode spectrum

4.2.1 Boundary conditions

Quasinormal modes of black hole spacetimes are the solutions to the eigenvalue problem Eq. (4.6)

with appropriate boundary conditions specified at the black hole horizon and far from the black hole.

Since usually the effective potential ruling the perturbations vanishes at the event horizon, the only

classically allowed boundary condition at r = rh is an ingoing plane wave, so that u should behave as

u(r∗) ∼ e−iωr∗ , r∗ → −∞ , (4.7)

or, in terms of the radial coordinate, r,

u(r) ∼ (r − rh)
− iω

f′(rh) , r → rh , (4.8)

where we used f(r) = f ′(rh)(r − rh) +O
(
(r − rh)

2
)
. The remaining boundary condition is imposed far

from the black hole and depends on the background one is considering. For example, in asymptotically

flat and de Sitter spacetimes, the potential also vanishes at r∗ = +∞ (corresponding to spatial infinity

in the flat case and to the cosmological horizon in the de Sitter case), and one imposes an outgoing

plane wave there [32, 37]. In asymptotically AdS spacetimes, we impose a Dirichlet boundary condition

at spatial infinity for the rescaled variables, so that u = 0 as r, r∗ → ∞, although in some cases such

condition is not unique, as aforementioned in Chapter 3. Quasinormal modes obeying other boundary

conditions were studied in [54]. In what follows, we discuss the behaviour of the effective potentials

Eqs. (4.2)-(4.5), as well as the properties of the asymptotic solutions to Eq. (4.6) near spatial infinity.

4.2.2 Main properties of the spectrum and asymptotic solutions near infinity

Proca and electromagnetic vector-type perturbations

The vector-type variable describes d − 3 degrees of freedom of the Proca field and is governed by

Eq. (4.6) with effective potential Eq. (4.2). Since the vector-type sector is invariant under the gauge trans-

formation even in the massless case, Eq. (4.2) describes both Maxwell and Proca field perturbations.

Note that the potential is always positive and can be written

V(V) =
(d− 4)(d− 2) + 4µ2L2

4L4
r2 +

(d− 4)(d− 2) + 2l(l + d− 3) + 2µ2L2

2L2
+O

(
1

r

)
, (4.9)

diverging at infinity for all values of the parameters, except when d = 4, µ = 0. In this case, the potential

approaches l(l+1)
L2 , as found in [32]. For d ̸= 4, µ ̸= 0, the equation for the vector-type component near

infinity yields, at first order,

r4

L4
∂2ru

(∞)
V +

2r3

L4
∂ru

(∞)
V − (d− 4)(d− 2) + 4µ2L2

4L2
r2u

(∞)
V = 0 , (4.10)
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which can be solved analytically, giving

u
(∞)
V = c1r

− 1
2−

1
2

√
(d−3)2+4µ2L2

+ c2r
− 1

2+
1
2

√
(d−3)2+4µ2L2

, (4.11)

where c1 and c2 are constants of integration. The Dirichlet boundary condition then implies c2 = 0 and

u
(∞)
V ∼ r−

1
2−

1
2

√
(d−3)2+4µ2L2 , at first order. On the other hand, when d = 4 and µ = 0, one has

r4

L4
∂2ru

(∞)
V +

2r3

L4
∂ru

(∞)
V +

(
ω2 − l(l + 1)

L2

)
u
(∞)
V = 0 , (4.12)

giving the solution

u
(∞)
V = c1e

i

√
ω2L2−l(l+1)L

r + c2e
−i

√
ω2L2−l(l+1)L

r . (4.13)

In this case, the Dirichlet condition implies c1 = −c2, so that, at first order, u(∞)
V ∼ r−1. One thus always

has

u
(∞)
V ∼ r−

1
2−

1
2

√
(d−3)2+4µ2L2 [

1 +O(r−1)
]

, (4.14)

which agrees with Eq. (3.14).

Electromagnetic scalar-type perturbations

In the massless limit, the scalar-type sector describes only one physical degree of freedom, due to

the gauge freedom. The equations of motion governing the scalar-type sector decouple to give Eq. (4.6)

with effective potential Eq. (4.5). One can show that, for d ̸= 5, the only solution satisfying the Dirichlet

boundary condition at infinity is

u
(∞)
(EM) ∼ r−

1
2−

1
2 |d−5| [1 +O

(
r−1
)]

. (4.15)

For d = 5 the behaviour of the solution near infinity is

u
(∞,d=5)
(EM) = r−

1
2 (c1 + c2 log (r))

[
1 +O(r−1)

]
, (4.16)

which vanishes for every c1, c2 when the limit is taken. Note that now, for d > 4, there is always a

region near the horizon where the potential is negative, as depicted in Fig. (4.1). As we will show in

Section 4.2.3, this will make the stability study of the perturbations more complicated. Fig. (4.1) also

shows the features of the potentials at spatial infinity: while for d ≥ 7 the potential diverges, for d = 4

and d = 6 it approaches a finite value. Additionally, for d = 5, the potential is unbounded from below,

going to negative infinity near the boundary. This agrees with what was found in [55]: for d = 4, 5, 6, the

potential behaviour near infinity allows a looser constraint on the boundary condition. In particular, one

can impose an outgoing wave condition at infinity and recover the definition of quasinormal modes in

asymptotically flat and de Sitter spacetimes.
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Figure 4.1: Effective potentials of l = 1 scalar-type electromagnetic perturbations for the 4, 5, 6, 7, 8-dimensional
Schwarzschild-AdS black holes with rh = 2.

Proca monopole mode

The Proca monopole mode is ruled by Eq. (4.6) with potential Eq. (4.4). While the scalar-type modes

are coupled for higher multipoles, the monopole mode only has one degree of freedom, due to its

spherical symmetry, being described by a single second-order differential equation. A similar analysis

to what was done for the vector-type component also yields Eq. (4.14) for the asymptotic monopole

solution subject to the Dirichlet condition.

Higher multipoles of Proca scalar-type perturbations

For higher multipoles, l > 0, the scalar-type Proca sector is coupled. Equation (4.6) is now a sys-

tem of two coupled second order differential equations, whose effective potential is the matrix Eq. (4.3)

mixing the two scalar-type modes. To be able to distinguish between them, we define two polarizations:

the non-electromagnetic polarization, which reduces to a pure-gauge degree of freedom in the electro-

magnetic limit and to the unique physical degree of freedom of the monopole mode; the electromagnetic

polarization, which corresponds to the dynamical degree of freedom in the electromagnetic limit and has

no physical monopole analogue. Note that Eq. (2.62) allows one to interpret the non-electromagnetic

polarization as a scalar field polarization (we opted to call “non-electromagnetic polarization” instead of

“scalar polarization” because the latter could create confusion with the already adopted “scalar-type”

term). Indeed, in the small-mass limit, we expect the electromagnetic and non-electromagnetic polariza-

tions to approach the (scalar-type) Maxwell field and scalar field modes, respectively. Also, observe that

the nomenclature “scalar (field)-type” and “vector-type” adopted in [44, 51] to distinguish between the

two polarizations only makes sense in four dimensional spacetimes, where the scalar-type and vector-

type Maxwell modes are isospectral. In higher dimensional spacetimes, this no longer happens, making

that nomenclature incorrect. Near infinity, the behaviour of Eq. (4.3) can be picked up by comparing
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what was already done for pure AdS in Chapter 3. In this limit the modes decouple, yielding Eq. (3.10)

with S = (+), (−). The solutions near infinity after imposing the Dirichlet boundary condition can then

be read off from Eq. (3.14), yielding Eq. (4.14) for both polarizations.

4.2.3 Schwarzschild-AdS stability against Maxwell and Proca field perturba-

tions

The problem of stability of a spacetime against different kinds of perturbations is crucial to determine

whether the system is physically viable or not. In particular, within the context of AdS/CFT, the transition

from a stable solution to an unstable one in asymptotically AdS spacetimes is dual to the thermody-

namic phase transition of the CFT [24]. Since perturbations in gravitational backgrounds can usually

be described by Eq. (4.6), the problem of stability sums up to finding the quasinormal mode spectrum

and to see if all the modes decay in time. Within our definitions, this means checking if all the mode

frequencies have negative imaginary part. Although in general this is a hard task, in some situations the

potential behaviour allows an analytical proof of stability, as we sketch below, following closely [32, 35].

Multiplying Eq. (4.6) by u† and integrating in the region of interest one has

(
u† du

dr∗

)∣∣∣∣r∗=r(∞)
∗

r∗=−∞
+ ω2

∫ r(∞)
∗

−∞
|u|2 dr∗ =

∫ r(∞)
∗

−∞

(∣∣∣∣ dudr∗
∣∣∣∣2 + u†Vu

)
dr∗ , (4.17)

where r∗ = r
(∞)
∗ is the finite value of the tortoise coordinate at Schwarzschild-AdS spatial infinity (in

asymptotically flat and de Sitter spacetimes, r∗ = ∞ at spatial infinity and at the cosmological horizon,

respectively). The boundary term in the LHS of Eq. (4.17) needs to be evaluated carefully: near infinity,

f ∼ r2 and Proca solutions behave as Eq. (4.14), yielding fu† du
dr ∼ r−

√
(d−3)2+4µ2L2 , which vanishes

when evaluated at r = +∞; similarly, Maxwell solutions in d ̸= 5 behave either as Eq. (4.14) or as

Eq. (4.15) and so the term evaluated at spatial infinity also vanishes. On the other hand, for d = 5,

scalar-type Maxwell solutions behave as Eq. (4.16), so that near infinity fu† du
dr = − 1

2L2 |c1 + c2 log(r)|2.

Moreover, near the horizon, Eq. (4.7) gives u† du
dr∗

= −iω |u(−∞)|2 for all the solutions, with Eq. (4.17)

yielding

iωA+ ω2B − C =

∫ r(∞)
∗

−∞

(∣∣∣∣ dudr∗
∣∣∣∣2 + u†Vu

)
dr∗ , (4.18)

where A,B are real and non-negative, A = |u(−∞)|2 and B =
∫ r(∞)

∗
−∞ |u|2 dr∗, and C = 1

2L2 limr→∞ |c1 +

c2 log(r)|2 for scalar-type Maxwell perturbations in 5-dimensional Schwarzschild-AdS, C = 0 otherwise.

Subtracting to Eq. (4.18) its hermitian adjoint, and further dividing by 2i yields

Re(ω)A+ 2Re(ω)Im(ω)B =
1

2i

∫ r(∞)
∗

−∞
u† (V −V†)udr∗ . (4.19)

If V is hermitian, the RHS of Eq. (4.19) vanishes and Im(ω) > 0 implies Re(ω) = 0. This means

that the unstable growing modes must be purely imaginary, a well established result since the seminal

work of Vishveshwara [6]. This is a very important result when searching for instabilities numerically, as
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instead of searching in a two-dimensional grid of complex ω, one only needs to search for instabilities

on the imaginary axis. One can also take the sum of Eq. (4.18) with its hermitian adjoint, yielding, with

Re(ω) = 0 and after dividing by 2,

−Im (ω)A− Im(ω)
2
B =

∫ r(∞)
∗

−∞

∣∣∣∣ dudr∗
∣∣∣∣2 dr∗ + 1

2

∫ r(∞)
∗

−∞
u† (V +V†)udr∗ + C . (4.20)

Thus, assuming V is hermitian, if V is positive definite (i.e. V can be written V = KK†), the RHS of

Eq. (4.20) is positive and Im(ω) < 0, proving stability. Although this provides a very practical method of

proving stability, it is rather restrictive, as most of the effective potentials are not positive definite in the

whole region of interest (take Fig. (4.1) as an example). In some cases, however, one can still address

stability analytically by using the S-deformation technique, firstly introduced by Ishibashi and Kodama in

[12–14]. Defining the operator

D = I
d

dr∗
+ S(r∗) , (4.21)

with S hermitian, one can write Eq. (4.18) as

iωA+ ω2B − C =

∫ r(∞)
∗

−∞

(
|Du|2 + u†

(
V +

dS

dr∗
− S2

)
u

)
dr∗ −

(
u†Su

)∣∣∣∣r∗=r(∞)
∗

r∗=−∞
. (4.22)

Thus, if u†Su is non-positive at spatial infinity, non-negative at r∗ = −∞, and if S makes Ṽ ≡ V +

dS
dr∗

− S2 positive definite, then the results following from Eqs. (4.19) and (4.20) can be applied and

one can establish stability. Of course, since there is not a systematic way of finding S, the S-deformation

procedure becomes specially helpful for simple potentials. For cumbersome potentials it is hard to guess

the functional form of S. In the latter cases, usually, a numerical study of stability needs to be performed.

Having set up the general procedure, we will now apply it to study analytically the stability of electro-

magnetic and Proca perturbations in Schwarzschild-AdS. As can be seen from Eq. (4.2), the potential

ruling vector-type Proca and Maxwell field perturbations in Schwarzschild-AdS is the only one which is

positive definite in the whole region of interest. It follows from Eqs. (4.19) and (4.20) that Schwarzschild-

AdS is stable against these perturbations.

On the other hand, for scalar-type electromagnetic perturbations, the potential Eq. (4.5) dips to neg-

ative values close to the horizon when d > 5, whereas for d = 5 it becomes unbounded from below (cf.

last term of Eq. (2.57) and Fig. (4.1)). Setting

S =
(d− 4)f

2r
, (4.23)

makes Ṽ = fl(l+d−3)
r2 ≥ 0 and S = 0 at the horizon. At spatial infinity S ∼ r and, using Eq. (4.15), one

has that, for d > 5, S|u|2 ∼ r5−d, which vanishes. Furthermore, for d = 5, S|u|2 = 1
2L2 limr→∞ |c1 +

c2 log(r)|2 = C at spatial infinity, so that the C terms cancel in Eq. (4.22). For d = 4 there is no need

to use the technique as the potential is already positive definite (also, note that for this case S = 0).

Thus, d-dimensional Schwarzschild-AdS is guaranteed to be stable against scalar-type Maxwell field

perturbations as well.
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Similarly, for the monopole mode of Proca perturbations, Eq. (4.4) becomes negative near the hori-

zon. Making

S =
(d− 2)f

2r
, (4.24)

the deformed potential is Ṽ = fµ2 ≥ 0. At the horizon S = 0 and at spatial infinity S|u|2 ∼ r−
√

(d−3)2+4µ2L2

vanishes, proving stability of Schwarzschild-AdS against the monopole mode of scalar-type Proca field

perturbations.

For higher multipoles of scalar-type Proca perturbations, described by the coupled system Eq. (4.6)

with potential Eq. (4.3), one cannot prove stability using this technique, as in this case the potential is

non-hermitian, leading to terms in Eqs. (4.18) and (4.19) that do not allow such analysis. One could

argue that there could be a S function transforming the non-hermitian potential into a hermitian one.

However, this is not the case, as for the S-deformation to work one also needs to ensure that S itself is

hermitian. From the relation between the old potential and the transformed one, if Ṽ ≡ V + dS
dr∗

− S2

is hermitian, V needs to be hermitian. Thus, in this case, we can only test stability by computing

numerically the quasinormal mode spectrum.

4.3 Numerical methods to compute quasinormal modes

Since for most background geometries, such as Schwarzschild-AdS, it is not possible to solve the

eigenvalue problem Eq. (4.6) exactly, numerical methods to compute the quasinormal mode spectra

of such spacetimes have been extensively studied. For a review of such techniques, we refer to [35–

37, 39]. We compute the Proca and Maxwell field quasinormal mode spectrum in Schwarzschild-AdS

using two different approaches: by applying the Horowitz-Hubeny method and by numerically integrating

the equations of motion. In this section, we describe these two methods in detail.

4.3.1 Horowitz-Hubeny method

Description of the method

The Horowitz-Hubeny method is widely used to compute quasinormal modes in asymptotically AdS

spacetimes, as the Dirichlet boundary condition at spatial infinity provides a power series equation for

ω, which can be solved numerically by truncating the series [30]. Considering the case of a single

second-order differential equation, Eq. (4.6) can be written as

∂2rψ +
(f ′ − 2iω)

f
∂rψ − V

f2
ψ = 0 , (4.25)

where we factorized the behaviour of the solution near the horizon, i.e., u(r) = e−iωr∗ψ(r). Equa-

tion (4.25) has d+ 1 singular points: the d− 1 zeroes of f(r), r = 0 and r = ∞. Since both limr→0 f
′(r)

and limr→0 V(r) diverge, r = 0 is an irregular singular point. This does not constitute a problem, how-

ever, as the region of interest is only rh < r <∞. On the other hand, the zeroes of f are regular singular

points, as they are non-degenerate. The r = ∞ singularity is studied by writing x = 1/r, which is always
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finite in the range of interest. By doing so, one arrives at

s(x) (x− xh) ∂
2
xψ + t(x)∂xψ +

u(x)

(x− xh)
ψ = 0 , (4.26)

where

s(x) =
x4f

x− xh
, t(x) = x2∂x

(
x2f

)
+ 2iωx2 , u(x) = − (x− xh)V

f
. (4.27)

Thus, taking the limit x→ 0, one sees that r = ∞ is also a regular singular point (it is convenient to stick

to the x coordinate, ranging from 0 to xh = 1/rh). Fuchs’ theorem guarantees that Eq. (4.26) admits a

Frobenius solution near each of its regular singular points, namely, near xh. The radius of convergence

of the solution will be given by the minimum distance between x = xh and the other singular points. One

then has, near the horizon, x = xh,

ψ(x) = (x− xh)
α

∞∑
m=0

am(x− xh)
m , (4.28)

where am are coefficients that depend on the frequency (i.e. am = am(ω)), with a0 ̸= 0, and α is a

constant, determined from the indicial equation after imposing the boundary condition at the horizon.

The polynomials s(x), t(x) and u(x) can also be expanded near the horizon, yielding

s(x) =

∞∑
p=0

sp (x− xh)
p

, t(x) =

∞∑
p=0

tp (x− xh)
p

, u(x) =

∞∑
p=0

up (x− xh)
p

, (4.29)

where sp, tp and up are coefficients independent of x. Substituting Eqs. (4.28) and (4.29) in Eq. (4.26)

one gets
∞∑

m,p=0

[sp(m+ α)(m+ α− 1) + tp(m+ α) + up] am (x− xh)
m+α+p

= 0 (4.30)

The term with m = p = 0 is unique (m+ α+ p can only give α if m = p = 0) and gives rise to the indicial

equation for α

s0α(α− 1) + t0α+ u0 = 0 . (4.31)

Taking into account that s0 = −x2hf ′(rh), t0 = 2x2h (iω − f ′(rh)/2) and u0 = 0, the solutions to Eq. (4.31)

are α = 0 or α = 2iω/f ′(rh), corresponding, respectively, to ingoing and outoing modes at the horizon.

The boundary condition Eq. (4.8) sets α = 0, so that only ingoing modes are allowed near the horizon.

Setting this in Eq. (4.30), relabelling indexes and equating the terms for each power of (x − xh), one

arrives at the recursion relation for the coefficients aj ,

aj = − 1

Pj

j−1∑
m=0

[m(m− 1)sj−m +mtj−m + uj−m] am , (4.32)
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where Pj = j(j − 1)s0 + jt0. Without loss of generality, one can set a0 = 1 and solve recursively

Eq. (4.32) up to a given order, N. The Dirichlet boundary condition at spatial infinity then yields

ψ(x = 0) =

∞∑
m=0

am(ω) (−xh)m = 0 , (4.33)

which can be solved numerically for ω by truncating the sum at a sufficiently large N. To see whether the

N chosen is sufficiently large, one simply checks if the solution of the N-term sum is sufficiently close to

the solution of the (N + 1)-term sum, within the desired accuracy.

Similarly, for systems described by M coupled differential equations for M perturbation variables,

Eq. (4.26) reads [51, 56]

s(x) (x− xh) ∂
2
xψ + t(x)∂xψ +

U(x)

(x− xh)
ψ = 0 , (4.34)

with U(x) = − (x−xh)V
f . After expanding ψ(x) near the horizon as

ψ(x) =

∞∑
m=0

aj(ω)(x− xh)
j , (4.35)

as well as s(x), t(x) and U(x), the coefficients aj obey

aj(ω) = − 1

Pj

j−1∑
m=0

[(m(m− 1)sj−m +mtj−m) I+Uj−m]am(ω) , (4.36)

and can be expanded as

aj(ω) = Bj(ω)a0 , (4.37)

with matrices Bj to be determined from Eq. (4.36),

Bj(ω) = − 1

Pj

j−1∑
m=0

[(m(m− 1)sj−m +mtj−m) I+Uj−m]Bm(ω) , (4.38)

where we expanded a0 in the suitable orthogonal basis

a0 =

M∑
i=1

aiei , (4.39)

with e1 = (1, 0, ..., 0, 0)T , e2 = (0, 1, ..., 0, 0)T , etc.. The Dirichlet boundary condition at spatial infinity

then yields

ψ(x = 0) =

∞∑
j=0

aj(ω)(−xh)j =

 ∞∑
j=0

Bj(ω)(−xh)j
a0 = 0 , (4.40)

whose non-trivial solution fixes the values of ω through

det

 ∞∑
j=0

Bj(ω)(−xh)j
 = 0 . (4.41)
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As in the one-dimensional case, Eq. (4.41) can be solved numerically for ω by truncating the sum at a

sufficiently large N.

Comments on the method’s accuracy and reliability

At this point, we should make several remarks regarding this technique. The numerical results are

always presented in units with L = 1. This can always be done, as the equations are all invariant under a

rescaling in r. While this method performs well for large black holes, rh ≫ 1, it shows poor convergence

properties for black holes with rh ≲ O(1). For small enough black holes (typically rh ≲ O(0.1)), it

becomes impractical to compute the quasinormal mode spectrum with Horowitz-Hubeny method, not

only due to the enormous computer time needed, but also due to the numerical error accumulation [30]

(see, however, [33]). Such worsening of convergence is depicted in Fig. (4.2) for black holes with sizes

rh = 1 and rh = 0.6. One may also compare these with the left side of Fig. (4.3), computed for rh = 100.
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Figure 4.2: Convergence curves for the fundamental mode of l = 1 vector-type µ = 0.2 Proca field perturbations,
for 6-dimensional Schwarzschild black holes with sizes rh = 1 (Left) and rh = 0.6 (Right). For rh ≲ 1, a small
decrease in the black hole size significantly worsens the convergence of the solution: for rh = 1 one achieves
a precision up to the fifth significant figure at N ≳ 100, whereas for rh = 0.6 such precision is only reached for
N ≳ 200. ωfit is extracted from the fit of ω(N) = ωfit + c2e

−c3N sin(c4N+ c5) to the convergence curves.

While the radius of the black hole affects the solutions’ convergence properties the most, these also

depend on the other parameters (whether perturbation-related or spacetime-related) of the system. We

found that the dimension of the spacetime, d, and the overtone number, k, were the most impactful

parameters on that regard. The dependence on d is easy to understand: after all, the shape of the

potential is strongly related to d, specially for 4 ≤ d ≤ 6. Concerning the overtone number, the minima of

ψ(x = 0) becomes less pronounced for higher k, resulting in a poorer convergence (this will be illustrated

in the next section). Figure (4.3) shows the solutions for Re(ω) as a function of N, for perturbations

differing only on the overtone number. For the fundamental mode, the solution reaches a precision up

to the sixth significant figure with N ≳ 75, while for the second overtone this precision such precision is

only reached for N ≳ 120. All of the results obtained for Re(ω) can be equally reproduced for Im(ω).
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Figure 4.3: Convergence curves for the fundamental mode k = 0 (Left) and for the second overtone k = 2 (Right)
of l = 1 vector-type µ = 0.2 Proca field perturbations in 6-dimensional Schwarzschild-AdS, with rh = 100. For the
k = 0 mode the method converges better (frequency oscillates around its sixth significant figure for N ≃ 75) than
for the k = 2 mode (frequency oscillates around its sixth significant figure for N ≃ 120). The ωfit values are also
displayed.

To increase the accuracy of the results, instead of simply solving Eqs. (4.33) and (4.41) for a single

large order N, we solved them for several orders and then fitted the convergence curve to ω(N) =

ωfit + c2e
−c3N sin(c4N + c5) (see also [30]). The desired solution was then determined by extracting ωfit

from the fit. Observe that the reliability of the solutions depends on the convergence curve shape: while

in 6-dimensional Schwarzschild-AdS these are indeed sinusoidally damped, we found that in 4, 5, 7-

dimensional Schwarzschild-AdS these no longer oscillate, making it harder to determine an accurate

value for the frequencies. This is illustrated in Fig. (4.4) for vector-type Proca field perturbations. It

should be noted, however, that this behaviour was found to be independent of the perturbation-related

parameters. Since scalar-type Proca field modes are coupled, it is reasonable to expect that these

converge worse than the decoupled ones. Although such is true, the convergence of scalar-type and

vector-type modes did not differ significantly for most parameters studied.
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Figure 4.4: Convergence curves for the fundamental mode of vector-type µ = 0.2 Proca perturbations in 4-
dimensional Schwarzschild-AdS (Left) and 5-dimensional Schwarzschild-AdS (Right), for a black hole with size
rh = 100. While in 6-dimensional Schwarzschild-AdS the convergence curves have a sinusoidal shape, in
d = 4, 5, 7-dimensional Schwarzschild-AdS the curves exponentially decay without oscillating, making the deter-
mination of ωfit less accurate.

Lastly, we address a subtlety that arises from expanding the solution in a Frobenius series: the series

remains valid only if the region of interest, from x = 0 to x = xh, is inside its radius of convergence,

which, as we stated, is the distance between the point from which we initiate the expansion, x = xh,

and its closest singular point in the complex plane. Since the remaining singular points are given by the
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zeroes of f , one needs to find these zeroes and check if they all lie outside the circle centered at xh and

with radius xh in the complex plane. If not, and if it is not possible to perform a coordinate transformation

that moves the singular points outside the circle, the Horowitz-Hubeny method fails [37, 57]. For large

black holes, one can study this constraint analytically, as

f(x̄) ≃ 1

x̄2L2
−
(
x̄

xh

)d−3

= 0 =⇒ x̄n̄ = xhe
2πn̄i/(d−1) , n̄ = 0, 1, ..., d− 2 . (4.42)

Convergence of the series implies xh < |x̄1 − x̄0|, which after using Eq. (4.42) yields

1

2
< sin

(
π

d− 1

)
=⇒ d < 7 . (4.43)

Note that, for d = 7, xh lies precisely on the boundary of the convergence region. In this case, since

Eq. (4.42) is only approximately satisfied, we need to check numerically if xh is greater or smaller than

the convergence radius. We found it was smaller, so that Horowitz-Hubeny method actually converges

for d ≤ 7, in the large black hole regime. For general-sized d-dimensional Schwarzschild-AdS black

holes, such analytical solution for the zeroes of f cannot be found, and these need to be determined

numerically. Although now the zeroes manifestly depend on the black hole radius, we once again found

that, at least for the feasible radii to be studied with this method (rh ≳ O(0.1)), the series only converges

for d ≤ 7. This is illustrated in Fig. (4.5) for rh = 1.
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Figure 4.5: Singular points of Eq. (4.26) in the complex plane for a rh = 1 Schwarzschild-AdS black hole in: 6
(Left), 7 (Right) and 8 (Middle) dimensions. For the Horowitz-Hubeny method to work, all the zeroes of f should lie
outside the blue circle. For d > 7 and rh ≳ O(0.1), this no longer happens.
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4.3.2 Numerical integration of the equations of motion

Description of the method

The poor convergence characteristics exhibited by the Horowitz-Hubeny method for small black holes

and higher-dimensional spacetimes prompted us to exploit an alternative approach to compute the

quasinormal mode spectrum. In [25], Chandrasekhar and Detweiler proposed the following method to

compute quasinormal modes: start from a large value of r∗, say, r(f)∗ , where u∞
(
r
(f)
∗

)
= u

(
r
(∞)
∗

)
, with

u
(
r
(∞)
∗

)
determined from the asymptotic behaviour of the solution near r(∞)

∗ , and integrate numerically

Eq. (4.6) down to an intermediate point, r(m)
∗ (u∞ denotes the inwardly numerically integrated solution).

Similarly, start from a value of r∗ = r
(i)
∗ close to the horizon, where uh

(
r
(i)
∗

)
= u (−∞), with u (−∞)

determined from the asymptotic behaviour of the solution near r∗ = −∞, and integrate numerically up

to the same intermediate point (uh denotes the outwardly numerically integrated solution). Since at this

point the solutions need to be linearly dependent, one obtains the quasinormal frequencies by finding

the roots of the Wronskian of the two solutions evaluated at r(m)
∗ , i.e. (∂ru∞/∂ruh)|r(m)

∗
= (u∞/uh)|r(m)

∗
.

In asymptotically flat and de Sitter spacetimes, the integration quickly becomes contaminated with the

unwanted asymptotic behaviour of the solution. To see this, note that the leading-order solution near

r∗ = ±∞ in these cases is

u(r∗) = c1(ω)e
iωr∗ + c2(ω)e

−iωr∗ , r∗ → ±∞ . (4.44)

When one integrates the equation inwardly, starting at large r∗, the initial solution should be ∼ eiωr∗ ,

which is exponentially large. However, this solution quickly becomes admixtured with the exponentially

suppressed solution ∼ e−iωr∗ , so that the equation one is integrating no longer corresponds to that

satisfying an outgoing boundary condition. The same happens with the outward integration.

In asymptotically AdS spacetimes, however, the solution converges at spatial infinity and the numer-

ical instabilities mentioned do not appear. In this case, besides the strategy already mentioned, one can

also do the simpler procedure: starting from the near-horizon point r(i)∗ and using the boundary condition

Eq. (4.7), integrate Eq. (4.6) outwards to a large r(f)∗ . Since the asymptotic behaviour at spatial infinity

is of the form

u(r) = c1(ω)u1(r) + c2(ω)u2(r) , (4.45)

with u1 and u2, respectively, decaying and growing functions of r, the values of ω that minimize the

growing behaviour of the solution are easily found. For each ω, one can fit the integrated solution near

r
(f)
∗ to the expected behaviour Eq. (4.45) and extract the coefficient c2 from the fit. The quasinormal

modes are found by solving numerically c2(ω) = 0. Due to the asymptotic behaviour of the solution, it is

often sufficient to just minimize the solution at a sufficiently large point r(f), instead of performing the fit.

For a M × M coupled system, the procedure is similar [39]: one needs to perform M integrations

from the horizon, each of them for a different element of the suitable basis spanning the leading-order

coefficients, e.g., {(1, 0, ..., 0, 0) , (0, 1, ..., 0, 0) , ..., (0, 0, ..., 1, 0) , (0, 0, ..., 0, 1)}. One then computes the
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matrix

S(ω, r) =


u
(1)
1 . . . u

(M)
1

...
...

u
(1)
M . . . u

(M)
M

 , (4.46)

where u(j)i corresponds to the integrated solution of the i-th differential equation with respect to the j-th

element of the basis. The quasinormal mode spectrum is then obtained by solving numerically

det
[
S
(
ω, r(f)

)]
= 0 , (4.47)

for a sufficiently large r(f). To see whether r(f) is sufficiently large, one computes the variation of the

quasinormal mode frequency between the old r(f) and the new one.

Comments on the method’s accuracy and reliability

This technique turns out to be very reliable to compute the quasinormal mode spectrum in asymptot-

ically AdS spacetimes, specially the fundamental mode. For overtones with k ≥ 1, the less pronounced

minima makes it harder to find the correct solution for the mode frequency, as shown in Fig. (4.6). In

general, we were able to find also the first and second overtones.

To start the integration from a point near the horizon, r(i), we expanded the solution as

uh(r) = (r − rh)
−iω/f ′(rh)

N∑
m=0

αm(ω)(r − rh)
m , (4.48)

where the frequency dependent coefficients αm(ω) are determined by substituting Eq. (4.48) in Eq. (4.6).

We found that, for N ≳ 3, the order of the expansion did not influence the results, within the desired

precision. Thus, we set the order at N = 5. Having found the coefficients αm, we integrated numerically

Eq. (4.6) from r(i) = rh(1 + ϵ), with ϵ≪ 1, using as initial conditions

u(r(i)) = uh(r
(i)) ,

u′(r(i)) = u′h(r
(i)) ,

(4.49)

up to the point r(f) = prh, where p ≫ 1. While the choice of ϵ does not influence the results within the

desired precision, the choice of p does. This makes sense, since it is the choice of p that determines if

the solution already reached its asymptotic infinity behaviour. Typically, the solutions started converging

at p ∼ 500. However, for small black holes or k ≥ 1 overtones, we had to increase this value until the

solution started to converge. When even then the solution failed to converge, we matched the outward

solution Eq. (4.48) with the inward solution

uinf(r) = u∞(r)

N∑
m=0

βm(ω)r−m , (4.50)

at the intermediate point r = r(m) whose variation was tested to check the reliability of the solutions. In
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Figure 4.6: Contour plot of the absolute value of the solution evaluated at r(f), in the phase space of complex
frequencies. The blue regions encompass the quasinormal modes. Note that the fundamental mode is constrained
to a very small region of frequencies, whereas this region is larger for the first overtone. Moreover, for the second
overtone, a broad region of low absolute value modes is formed, impeding the determination of the frequency, at
least for such value of r(f).

Eq. (4.50), u∞(r) corresponds to the leading-order asymptotic behaviour of the solution, determined in

Section 4.2.2. The quasinormal mode frequencies were then determined by minimizing the Wronskian

W (r, ω) = uh(r, ω)u
′
inf(r, ω)− u′h(r, ω)uinf(r, ω) , (4.51)

evaluated at r = r(m).

4.4 Numerical results

Having outlined the numerical techniques, we now proceed to compute the quasinormal mode spec-

trum of Proca and Maxwell field perturbations in Schwarzschild-AdS. The distances are governed by two

parameters: the radius of the black hole, rh, and the radius of curvature of AdS, L. As aforementioned,

the Schödinger-like equations of motion are invariant under a rescaling on r, µ, ω, which corresponds

to choosing the units of the physical quantities. In particular, one can perform the rescaling r → rL,

ω → ω/L, µ → µ/L, so that Eq. (4.6) is independent of L. Thus, without loss of generality, we fix

L = 1. In asymptotically AdS spacetimes, the qualitative behaviour of the quasinormal spectrum highly

38



depends on the radius of the black hole [32, 34, 36, 58], so it is useful to do a separate study for three

different types of black holes, according to their radii: large black holes, with rh ≫ 1, intermediate black

holes, with rh ≃ 1, and small black holes, with rh ≪ 1. In addition, the quasinormal mode spectrum may

depend on the dimension of the spacetime, d, as well as on the perturbation-related parameters: the

type of perturbation (scalar-type and vector-type), the mass of the field, µ, the angular momentum num-

ber, l, and the overtone number, k. As stated before, our analysis focuses on d = 4, 5, 6, 7-dimensional

Schwarzschild-AdS spacetimes. Generalization to higher dimensions should be straightforward.

Furthermore, the relevant range for the mass of the Proca field depends on the physical problem

at study. In Schwarzschild-AdS spacetime, the key parameters describing the interaction between the

spacetime geometry and the Proca field are µrh ∼ µM1/(d−3), which is often called the gravitational

coupling, and µL = µ (in L = 1 units). We try to give an overview of all of these regimes, focusing

in particular on µrh ≲ 1, µ ≲ 1. Be aware that it is always assumed there is no back-reaction of the

Proca field in the metric, i.e., that the Proca field propagates in fixed Schwarzschild-AdS background. In

Chapter 2, the energy-momentum tensor of the Proca field, Tµν , was found to be Eq. (2.5), and it was

argued that linear perturbations in the Proca field do not contribute to Tµν . However, there are terms

in Tµν which, despite second-order in Aµ, are multiplied by the mass of the Proca field squared, µ2.

This means that, for large values of the mass of the field, the physical relevance of the perturbations

diminishes, as one needs to guarantee these are also small enough to counteract the mass factor. A

quantitative bound for the mass of the field remains, however, elusive. In the next section, we study how

Proca quasinormal modes are affected by varying the mass of the field. We then analyze the spectrum

as a function of the black hole radius, the overtone number and the angular momentum number.

4.4.1 Effect of the mass of the field on the quasinormal mode spectrum

Vector-type perturbations

The vector-type sector is described by Eq. (4.2) for both Maxwell and Proca field perturbations, so

that asking what are the differences between the vector-type spectra of a Maxwell field and a Proca

field propagating in Schwarzschild-AdS is qualitatively analogous to asking what are the differences

between those of a massless scalar field and a massive one. In Table (4.1), we show the fundamental

mode frequencies for l = 1 vector-type Maxwell and Proca field perturbations, for different masses of

the Proca field, in 4, 5, 6, 7-dimensional Schwarzschild-AdS black holes with sizes rh = 100, rh = 1 and

rh = 0.05.
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rh µ ω (d = 4) ω (d = 5) ω (d = 6) ω (d = 7)

100

0 0.− 150.048i 200.026− 199.995i 299.458− 200.486i 383.691− 199.894i

0.1 0.− 152.185i 200.525− 200.493i 299.823− 200.765i 383.979− 200.071i

0.2 0.− 158.505i 202.007− 201.975i 300.914− 201.596i 384.839− 200.602i

0.3 0.− 168.844i 204.429− 204.398i 302.715− 202.969i 386.267− 201.483i

0.4 0.− 183.251i 207.729− 207.698i 305.205− 204.868i 388.252− 202.707i

0.5 0.− 202.583i 211.829− 211.798i 308.356− 207.269i 390.780− 204.266i

1

0 2.16302− 1.69909i 3.84177− 1.62618i 5.20392− 1.53559i 6.43969− 1.45072i

0.1 2.17058− 1.71095i 3.84730− 1.63091i 5.20810− 1.53813i 6.44299− 1.45229i

0.2 2.19254− 1.74526i 3.86377− 1.64499i 5.22058− 1.54573i 6.45286− 1.45699i

0.3 2.22707− 1.79879i 3.89075− 1.66805i 5.24123− 1.55828i 6.46923− 1.4648i

0.4 2.27191− 1.86765i 3.92761− 1.69952i 5.26981− 1.57567i 6.49202− 1.47565i

0.5 2.32497− 1.94823i 3.97359− 1.73872i 5.30603− 1.59769i 6.52107− 1.48949i

0.05

0 2.93223− 5.39171× 10−5i 4.11251− 4.65094× 10−6i 4.99957− 4.53425× 10−7i 5.99996− 4.85953× 10−8i

0.1 2.94163− 5.46847× 10−5i 4.07167− 4.45560× 10−6i 5.00290− 4.54977× 10−7i 6.00246− 4.87122× 10−8i

0.2 2.96881− 5.69458× 10−5i 4.03879− 4.30233× 10−6i 5.01284− 4.59635× 10−7i 6.00994− 4.90633× 10−8i

0.3 3.01112− 6.05978× 10−5i 4.01466− 4.19204× 10−6i 5.02927− 4.67405× 10−7i 6.02234− 4.96497× 10−8i

0.4 3.01112− 6.05978× 10−5i 3.99999− 4.12551× 10−6i 5.05197− 4.78298× 10−7i 6.03957− 5.04733× 10−8i

0.5 3.12875− 7.16258× 10−5i 3.99493− 4.10327× 10−6i 5.08069− 4.92331× 10−7i 6.06151− 5.15367× 10−8i

Table 4.1: Fundamental mode of l = 1 vector-type Maxwell and Proca perturbations in 4, 5, 6, 7-dimensional
Schwarzschild-AdS spacetime with rh = 100, rh = 1 and rh = 0.05, for different values of the mass of the field.

Note that for rh = 0.05, the frequencies are close to the ones for pure AdS, given in Eq. (3.15). This

will be further investigated in Section 4.4.2. The frequencies for 4-dimensional Schwarzschild-AdS are

close to the ones reported in [51]. We believe the discrepancies between values have to do with the poor

convergence properties of the Horowitz-Hubeny method as the mass of the field increases (c.f. Figure

1 of [51] shows the convergence curve for µ = 0.5). The frequencies of Table (4.1) were computed by

matching the numerical integrated solutions at an intermediate point and minimizing the Wronskian. This

is specially important in d = 4, as the growing solution at infinity has an exponent close to zero for small

masses of the field, c.f. Eq. (4.11). The impact of the mass of the field and the spacetime dimension

on the spectrum will be studied in Section 4.4.1, along with scalar-type perturbations. As a prelude,

note that both real and imaginary parts increase in magnitude as the mass of the field increases, in

agreement with [42, 51].

Monopole mode of the Proca field

As explained earlier, the monopole mode allows one to distinguish between the two scalar-type

polarizations, since in this case only the non-electromagnetic polarization corresponds to a physical

degree of freedom. We will thus start by analyzing this situation to better interpret the results for higher

multipoles. Table (4.2) shows the quasinormal mode spectrum of monopole Proca perturbations in
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4, 5, 6, 7-dimensional Schwarzschild-AdS, for different masses of the field and black hole sizes.

rh µ ω (d = 4) ω (d = 5) ω (d = 6) ω (d = 7)

100

0.1 185.569− 267.526i 312.426− 275.165i 413.971− 269.616i 501.060− 261.424i

0.2 187.346− 270.819i 313.801− 276.650i 415.038− 270.457i 501.916− 261.962i

0.3 190.106− 275.942i 316.047− 279.075i 416.800− 271.846i 503.334− 262.853i

0.4 193.636− 282.504i 319.103− 282.376i 419.234− 273.765i 505.304− 264.092i

0.5 197.742− 290.148i 322.892− 286.471i 422.310− 276.190i 507.811− 265.669i

1

0.1 2.80724− 2.68313i 4.58507− 2.55966i 6.01308− 2.35363i 7.27221− 2.16280i

0.2 2.83328− 2.71753i 4.60375− 2.57442i 6.02701− 2.36168i 7.28309− 2.16779i

0.3 2.87379− 2.77101i 4.63430− 2.59855i 6.05003− 2.37497i 7.30115− 2.17606i

0.4 2.92572− 2.83946i 4.67589− 2.63137i 6.08184− 2.39332i 7.32625− 2.18756i

0.5 2.98623− 2.91912i 4.72755− 2.67209i 6.12207− 2.41652i 7.35822− 2.20219i

0.05

0.1 2.86292− 1.94677× 10−2i 3.98937− 1.75825× 10−3i 5.00162− 1.81866× 10−4i 6.00231− 1.94173× 10−5i

0.2 2.88910− 1.98707× 10−2i 4.00405− 1.77507× 10−3i 5.01155− 1.83002× 10−4i 6.00979− 1.95086× 10−5i

0.3 2.92988− 2.05020× 10−2i 4.02805− 1.80268× 10−3i 5.02797− 1.84886× 10−4i 6.02219− 1.96605× 10−5i

0.4 2.98222− 2.13182× 10−2i 4.06075− 1.84049× 10−3i 5.05066− 1.87503× 10−4i 6.03942− 1.98727× 10−5i

0.5 3.04330− 2.22800× 10−2i 4.10136− 1.88781× 10−3i 5.07935− 1.90836× 10−4i 6.06136− 2.01447× 10−5i

Table 4.2: Fundamental mode of l = 0 Proca perturbations in 4, 5, 6, 7-dimensional Schwarzschild-AdS spacetime
with rh = 100, rh = 1 and rh = 0.05, for different values of the mass of the field.

As before, the frequencies approach those of pure AdS, c.f. Eq. (3.15), for small black holes. The

results of Table (4.2) for d = 4 may be compared with the ones obtained in [42]: overall there is an agree-

ment between the results up to the fifth significant figure. The remaining discrepancies are attributed

to the different methods used to compute the spectrum: [42] used Horowitz-Hubeny method while the

results from Table (4.2) were obtained by numerical integration. Other aspects are similar to the ones

observed for higher multipoles of scalar-type pertubations, and will be discussed in Section 4.4.1.

Although we did not present it in Table (4.2), we found there was a purely imaginary mode for all the

dimensions studied. This was confirmed with Horowitz-Hubeny method. In particular, this mode was not

reported in [42] for the 4-dimensional case. We chose not to present it here explicitly as we are not sure

regarding its physical significance. Additionally, this mode was found to scale with the horizon radius,

so that it does not correspond to the family of “special” modes discovered for vector-type gravitational

perturbations in [32, 59, 60].

Maxwell scalar-type perturbations

In the electromagnetic limit, the non-electromagnetic polarization becomes spurious due to the gauge

freedom of the field, and the scalar-type sector is described by a single degree of freedom: the electro-

magnetic polarization. The frequencies for l = 1 scalar-type electromagnetic perturbations are displayed

in Table (4.3). In the small black hole limit, the results approach those of Eq. (3.19). For d = 5, the fre-

quencies were found by imposing that the subdominant logarithmic term in Eq. (4.16) vanishes. Note,
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rh ω (d = 4) ω (d = 5) ω (d = 6) ω (d = 7)
100 0.− 150.048i 200.010− 200.000i 299.447− 200.490i 383.681− 199.896i
1 2.16302− 1.69909i 2.66237− 1.58299i 4.41406− 1.68956i 5.73731− 1.59713i

0.05 2.93223− 5.39171× 10−5i 2.99617− 5.74442× 10−6i 3.99948− 1.65071× 10−6i 4.99994− 3.35996× 10−7i

Table 4.3: Fundamental mode frequencies of l = 1 scalar-type electromagnetic perturbations in 4, 5, 6, 7-
dimensional Schwarzschild-AdS for different black hole sizes.

however, that this is not required by the Dirichlet boundary condition, as this term also vanishes when

the r → ∞ limit is taken. This is why the frequencies also approach the expression for d ≥ 6 spacetimes

of Eq. (3.19). A more elaborate study still needs to be performed in order to establish the physically

relevant boundary conditions in d = 5 [19, 55]. Besides the results presented in Table (4.3), we found

for d ≥ 5 an interesting purely imaginary mode which, unlike the other modes, scales with the inverse of

the black hole radius. This could belong to the family of “special” modes reported numerically in [32, 59]

and analytically in [60], and will be studied in Section 4.4.2

Note that scalar-type and vector-type Maxwell field modes are nearly isospectral in the large black

hole regime for all spacetime dimensions. This is rather surprising, as the potentials Eqs. (4.2) and (4.5)

show different behaviours for d > 4, even within this regime. We explore this in Appendix C following [3]

(see also [32, 36]), and it turns out that, for large black holes, the scalar-type and vector-type potentials

are “superpartner potentials”, which, added to the asympotitc behaviour of the solutions near spatial

infinity, yield isospectral frequencies.

Higher multipoles of scalar-type Proca perturbations

The mass of the field introduces a coupling between the two scalar-type degrees of freedom, which

makes the analysis of the quasinormal mode spectrum more difficult. The solutions ω for the eigenvalue

problem Eq. (4.6) are now an admixture of modes corresponding to two different polarizations: the

electromagnetic polarization and the non-electromagnetic polarization. The distinction between these

two can be made in several ways. To begin with, the analysis leading to Eq. (2.62) suggests that,

in the small mass limit, the electromagnetic and non-electromagnetic polarizations should approach,

respectively, the (scalar-type) Maxwell field and the scalar field modes. The polarizations may thus

be picked up by comparing these spectra in this limit. Scalar field perturbations in higher-dimensional

Schwarzschild-AdS black holes were considered in [30], so we can apply the numerical methods studied

in Section 4.3 to the potential presented in [30]. However, for large black holes, the dependence on l

is weak and lower multipoles of non-electromagnetic polarized Proca perturbations may be picked up

by simply comparing them with the monopole mode spectrum. On the other hand, and even though

the boundary condition imposed at the horizon of Schwarzschild-AdS does not reduce to the regularity

boundary condition imposed at the origin of pure AdS, the numerical results already obtained show

that, for very small black holes, the Schwarzschild-AdS frequencies approach the pure AdS ones. This

can be also used to distinguish the two scalar-type polarizations: we are expecting that in the rh → 0

regime the spectra of electromagnetic and non-electromagnetic polarizations approach, respectively,

the spectra of the (−) and (+) polarizations, given in Eq. (3.15). The quasinormal frequencies for l = 1

scalar-type Proca perturbations are displayed in Tables (4.4) and (4.5), corresponding, respectively, to
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electromagnetic and non-electromagnetic polarizations. These were computed for different masses of

the field and different sizes of the black hole.

rh µ ω (d = 4) ω (d = 5) ω (d = 6) ω (d = 7)

100

0.1 0.− 152.097i 200.509− 200.499i 299.812− 200.768i 383.969− 200.073i

0.2 0.− 158.41i 201.990− 201.980i 300.902− 201.599i 384.830− 200.604i

0.3 0.− 168.74i 204.413− 204.403i 302.704− 202.972i 386.257− 201.485i

0.4 0.− 183.13i 207.714− 207.703i 305.194− 204.871i 388.242− 202.709i

0.5 0.− 202.42i 211.814− 211.803i 308.345− 207.272i 390.770− 204.269i

1

0.1 1.55730− 0.552855i 2.66878− 1.59009i 4.41877− 1.69234i 5.74090− 1.59879i

0.2 1.56804− 0.584696i 2.68791− 1.61115i 4.43286− 1.70062i 5.75162− 1.60373i

0.3 1.58499− 0.635019i 2.71949− 1.64544i 4.45614− 1.71432i 5.76942− 1.61194i

0.4 1.60693− 0.700894i 2.76308− 1.69187i 4.48836− 1.73324i 5.79417− 1.62335i

0.5 1.63298− 0.779491i 2.81810− 1.74904i 4.52915− 1.75717i 5.82571− 1.63789i

0.05

0.1 1.98737− 7.6215× 10−6i 3.00114− 5.79871× 10−6i 4.00281− 1.65889× 10−6i 5.00243− 3.37073× 10−7i

0.2 2.01476− 8.3030× 10−6i 3.01589− 5.96205× 10−6i 4.01275− 1.68350× 10−6i 5.00991− 3.40312× 10−7i

0.3 2.05739− 9.4465× 10−6i 3.04000− 6.23652× 10−6i 4.02917− 1.72478× 10−6i 5.02231− 3.45740× 10−7i

0.4 2.11204− 1.10687× 10−5i 3.07285− 6.62548× 10−6i 4.05187− 1.78312× 10−6i 5.03954− 3.53397× 10−7i

0.5 2.17574− 1.31993× 10−5i 3.11366− 7.13370× 10−6i 4.08058− 1.85907× 10−6i 5.06149− 3.63339× 10−7i

Table 4.4: Fundamental mode of the l = 1 electromagnetic polarization of scalar-type Proca perturbations in
4, 5, 6, 7-dimensional Schwarzschild-AdS spacetime with rh = 100, rh = 1 and rh = 0.05, for different values of the
mass of the field.

rh µ ω (d = 4) ω (d = 5) ω (d = 6) ω (d = 7)

100

0.1 185.569− 267.526i 312.433− 275.163i 413.978− 269.614i 501.067− 261.422i

0.2 187.346− 270.819i 313.808− 276.648i 415.045− 270.455i 501.922− 261.960i

0.3 190.106− 275.942i 316.054− 279.073i 416.807− 271.844i 503.340− 262.852i

0.4 193.636− 282.504i 319.110− 282.374i 419.241− 273.763i 505.310− 264.090i

0.5 197.742− 290.148i 322.899− 286.469i 422.316− 276.188i 507.817− 265.667i

1

0.1 3.33864− 2.50109i 5.09680− 2.38187i 6.53418− 2.18970i 7.80878− 2.01206i

0.2 3.36178− 2.53441i 5.11406− 2.39630i 6.54725− 2.19759i 7.81908− 2.01696i

0.3 3.39782− 2.58616i 5.14229− 2.41988i 6.56884− 2.21062i 7.83617− 2.02509i

0.4 3.44410− 2.65233i 5.18076− 2.45195i 6.59870− 2.22862i 7.85993− 2.03638i

0.5 3.49815− 2.72926i 5.22860− 2.49174i 6.63649− 2.25137i 7.89019− 2.05076i

0.05

0.1 3.91824− 4.75563× 10−5i 4.99236− 7.1501× 10−6i 6.00264− 8.725× 10−7i 7.00244− 9.888× 10−8i

0.2 3.94538− 4.89806× 10−5i 5.01207− 7.2722× 10−6i 6.01258− 8.794× 10−7i 7.00991− 9.945× 10−8i

0.3 3.98765− 5.12362× 10−5i 5.03619− 7.4219× 10−6i 6.02901− 8.909× 10−7i 7.02231− 1.004× 10−7i

0.4 4.04191− 5.41980× 10−5i 5.06904− 7.6282× 10−6i 6.05171− 9.061× 10−7i 7.03954− 1.017× 10−7i

0.5 4.10524− 5.77538× 10−5i 5.10986− 7.8886× 10−6i 6.08042− 9.275× 10−7i 7.06149− 1.035× 10−7i

Table 4.5: Fundamental mode of the l = 1 non-electromagnetic polarization of scalar-type Proca perturbations in
4, 5, 6, 7-dimensional Schwarzschild-AdS spacetime with rh = 100, rh = 1 and rh = 0.05, for different values of the
mass of the field.
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As expected, the frequencies approach the spectra of Eq. (3.15) in the small black hole regime, c.f.

last rows of Tables (4.4) and (4.5). This however creates a difficulty in the distinction between the two

polarizations, since the k + 1th overtone with electromagnetic polarization is isospectral to the kth over-

tone with non-electromagnetic polarization. Of course, a finite sized black hole breaks this isospectrality,

but for very small black holes the degeneracy between the modes is very hard to spot numerically. In

particular, for the modes computed, we needed to distinguish between the fundamental mode of the

non-electromagnetic polarization and the first overtone of the electromagnetic polarization. Our strategy

was to compute the first overtone of scalar-type Maxwell field perturbations and the fundamental mode

of scalar field perturbations in this regime and then compare them with the two candidate Proca modes,

for a small mass of the Proca field. The first overtone electromagnetically polarized corresponds to the

first overtone of the electromagnetic perturbation, while the fundamental mode non-electromagnetically

polarized corresponds to the fundamental mode of the scalar field perturbation. In d = 4 this does not

work, as the electromagnetic scalar-type frequencies in the small black hole regime approach ω = 3

instead of ω = 2. In this case, the distinction was made by comparing the frequencies to the scalar field

spectrum, while the electromagnetic polarization was picked up by exclusion.
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Figure 4.7: Effect of the field’s mass (µ ∈ [0.1, 2.0]) on the fundamental quasinormal spectrum of vector-type and
scalar-type l = 1 Proca perturbations in 4, 5, 6, 7-dimensional Schwarzschild-AdS, with rh = 1. We also plotted the
results for a Maxwell perturbation, which should be compared with the Proca small mass limit.

Figure (4.7) summarizes the results obtained so far, for fundamental l = 1 modes and rh = 1. The

qualitative effect of the Proca mass on the spectrum seems to be almost independent of the type of

perturbation, specially for d > 4. Increasing the spacetime dimension suppresses this effect, as one

expects from Eqs. (4.2) and (4.3): higher-dimensional Schwarzschild-AdS spacetimes already provide

a mass term to the potential, proportional to (d− 4)(d− 2). Note that, for d ≥ 5, the electromagnetically

polarized frequencies of the Proca field approach, in the small-mass limit, the ones for Maxwell field

perturbations. This is in agreement with what one expects from Eq. (2.62). However, such behaviour

does not happen in d = 4, where the Maxwell field modes can be viewed as the massless limit of vector-

type perturbations, due to the isospectrality between scalar- and vector-type sectors. This is explained

by the contrasting shapes of the vector-type effective potential when µ = 0 and when µ ̸= 0: for d > 4,
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going from a massless to a massive field changes smoothly the potential, whereas for d = 4 the leading-

order term in r disappears for µ = 0, creating a “barrier-like potential” instead of a “box-like” one. We also

compared the non-electromagnetic polarization spectrum with the spectrum for scalar field perturbations

(see, e.g. [30]). In the small mass limit, these become nearly isospectral, as depicted in Fig. (4.8) for 7

dimensions, and in agreement with what one expects from Eq. (2.62).

Scalar field

Proca field: Non-EM polarization
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Figure 4.8: Comparison between the spectra for scalar field perturbations and for non-electromagnetically polarized
Proca field perturbations in 7-dimensional Schwarzschild-AdS, with rh = 1, l = 1. In the small-mass limit these are
nearly isospectral, in agreement with Eq. (2.62).

Additionally, we found that the mass of the field seems to break the behaviour of the “special” modes

found for scalar-type Maxwell perturbations. One should however perform a deeper analysis of these

modes. Lastly, note that the isospectrality between scalar-type and vector-type modes in the large black

hole regime, established in Appendix C for Maxwell field perturbations, seems to be maintained for

vector-type and scalar-type electromagnetically polarized Proca field modes. This is quite a remarkable

result, and was verified for larger black holes and larger masses of the field. As the scalar-type modes

remain coupled in the large black hole regime, an analysis similar to the one done in Appendix C seems

to be more difficult. This would be an interesting result to establish, as it could also hint for a decoupling

in the scalar-type sector.

4.4.2 Quasinormal mode spectrum as a function of the black hole radius

In this section we take a closer look on how the quasinormal mode spectrum varies with the size

of the black hole. The qualitative behaviour in the different black hole regimes is independent of the

perturbation parameters. We will restrict ourselves to the study of l = 2 Proca perturbations, with

field’s mass µ = 0.2, in 5, 6, 7-dimensional Schwarzschild-AdS spacetime. Results for 4-dimensional

Schwarzschild-AdS and other types of perturbations can be found in [30, 32, 34].

Large black hole regime

We start by studying the large black hole regime, where the imaginary part of the mode frequency has

a direct application within the context of the AdS/CFT correspondence, as it is dual to the thermalization

scale of the CFT. In [30], Horowitz and Hubeny showed that large Schwarzschild-AdS back holes obey

a scaling symmetry such that the mode frequencies grow linearly with the radius of the horizon, that
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Figure 4.9: Fundamental quasinormal frequencies of l = 2 vector-type Proca perturbations in 5, 6, 7-dimensional
Schwarzschild-AdS spacetimes for a Proca field with mass µ = 0.2 as a function of the black hole radius, in the
large black hole regime. For large black holes, the frequencies scale linearly with the radius of the horizon. Fit
results: for d = 5, Re(ω) = 2.01926rh + 0.219492; for d = 6, Re(ω) = 3.00834rh + 0.205195; and for d = 7,
Re(ω) = 3.84754rh + 0.214392.

is, ω ∼ rh. The numerical results obtained for different radii in this regime, shown in Table (4.6) and

Fig. (4.9), confirm this behaviour.

rh Vector-type Scalar-type (EM) Scalar-type (Non-EM)

d = 5

500 1009.91− 1009.90i 1009.90− 1009.90i 1568.92− 1383.26i

250 504.969− 504.946i 504.955− 504.951i 784.473− 691.627i

100 202.027− 201.968i 201.990− 201.980i 313.820− 276.644i

50 101.083− 100.966i 101.010− 100.990i 156.965− 138.310i

25 50.6797− 50.4471i 50.5353− 50.4951i 78.5920− 69.1315i

10 20.6542− 20.0798i 20.2959− 20.1973i 31.7420− 27.5869i

d = 6

500 1504.43− 1008.01i 1504.43− 1008.01i 2075.08− 1352.31i

250 752.229− 504.000i 752.221− 504.002i 1037.55− 676.150i

100 300.928− 201.592i 300.907− 201.597i 415.055− 270.453i

50 150.529− 100.781i 150.487− 100.792i 207.587− 135.213i

25 75.3933− 50.3610i 75.3102− 50.3836i 103.912− 67.5802i

10 30.5160− 20.0622i 30.3099− 20.1179i 41.8956− 26.9584i

d = 7

500 1924.04− 1003.04i 1924.04− 1003.04i 2509.45− 1309.83i

250 962.035− 501.518i 962.029− 501.520i 1254.74− 654.914i

100 384.852− 200.599i 384.836− 200.603i 501.932− 261.958i

50 192.493− 100.285i 192.461− 100.293i 251.031− 130.964i

25 96.3813− 50.1136i 96.3176− 50.1285i 125.645− 65.4537i

10 38.9276− 19.9648i 38.7697− 20.0015i 50.6197− 26.1018i

Table 4.6: Fundamental quasinormal mode frequencies of l = 2 Proca field perturbations in 5, 6, 7-dimensional
Schwarzschild-AdS, for a Proca field with mass µ = 0.2 and different black hole sizes, in the large black hole
regime.

Note that the modes of Maxwell and Proca field perturbations in higher-dimensional large black holes
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are no longer purely imaginary, as it happened in 4 dimensions [32, 51]. This primarily relates to the

differences in the associated potential properties, although the modes always decay, whether oscillating

(d > 4) or not (d = 4). In Fig. (4.9) we plotted the real part of the frequencies as a function of the black

hole radius. Similar results can be found for the imaginary part. Within the AdS/CFT context, it is useful

to express the frequencies as a function of the Hawking temperature,

TH =
f ′(rh)

4π
=

(d− 1)r2h + (d− 3)L2

4πrhL2
≃ (d− 1)rh

4πL2
, (4.52)

where the last equality is for the large black hole regime. From this, one sees that the quasinormal

frequencies also scale linearly with the Hawking temperature. An interesting exception to the rh scal-

ing happens for the “special” modes mentioned in Section 4.4.1, which scale with 1/rh: these were

only found for scalar-type Maxwell perturbations in higher-dimensional Schwarzschild-AdS, and are pre-

sented in Fig. (4.10) as a function of the inverse of the black hole radius. We believe a study of these

modes for Maxwell field perturbations in higher-dimensional settings is still missing. We also high-

light once again the isospectrality between vector-type and electromagnetically polarized modes in this

regime.
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Figure 4.10: “Special” purely imaginary modes scaling with the inverse of the black hole radius, found for scalar-type
Maxwell perturbations in 5, 6, 7-dimensional Schwarzschild-AdS. Fit results: for d = 5, −Im(ω) = 1.50823rh

−1 −
9.47993 × 10−5; for d = 6, −Im(ω) = 1.33694rh

−1 − 2.14671 × 10−4; and for d = 7, −Im(ω) = 1.25203r−1
h −

5.33241× 10−5.

Intermediate and small black hole regimes

For intermediate and small black holes, the interpretations within the context of the AdS/CFT corre-

spondence are less clear [30, 36]. Nevertheless, it is important to study these regimes, as not only the

behaviour of the effective potential is very different from the one for large black holes, but also because

they provide simple backgrounds in which some analytical studies may be performed (we will come back

to this in Section 4.5). The frequencies for intermediate and small black holes are shown in Table (4.7).

These were computed by numerical integration, as Horowitz-Hubeny method in these regimes becomes

impractical (see, however, [33]). For very small black holes (typically with characteristic modes with

|Im(ω)| < 10−11) the poor convergence of the method only allows to estimate the order of magnitude
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of the mode. We also present the frequencies for pure AdS, computed with Eq. (3.15). Additionally,

Fig. (4.11) shows the evolution of the real part of the frequencies in the small black hole regime, for

l = 2, µ = 0.2 Proca perturbations in a 5-dimensional Schwarzschild-AdS black hole. Similar results can

be found for other dimensions.

rh Vector-type Scalar-type (EM) Scalar-type (Non-EM)

d = 5

2 5.85870− 3.59632i 4.10661− 3.61711i 7.90576− 5.18245i

1 4.71186− 1.41105i 3.62825− 0.900411i 5.81778− 2.18450i

0.5 4.63298− 0.293471i 3.76967− 0.136112i 5.46795− 0.567694i

0.25 4.92587− 0.00400019i 3.96795− 0.00131928i 5.70150− 0.0636701i

0.1 5.00759− 1.38323× 10−6i 4.01279− 6.69931× 10−7i 5.99879− 3.67252× 10−6i

0.01 5.01969− ∼ 10−14i 4.01974− ∼ 10−13i 6.01960− ∼ 10−11i

0 5.01980 4.01980 6.01980

d = 6

2 7.88651− 3.60743i 7.01425− 3.76222i 10.1112− 5.00159i

1 6.0056− 1.35223i 4.92789− 1.27903i 7.22317− 2.00688i

0.5 5.77058− 0.212875i 4.80185− 0.173010i 6.61634− 0.953938i

0.25 5.98038− 0.00142972i 4.98573− 0.00130714i 6.95226− 0.00450034i

0.1 6.01148− 3.67683× 10−7i 5.01177− 4.40212× 10−7i 7.01008− 9.42574× 10−7i

0.01 6.01327− ∼ 10−15i 5.01327− ∼ 10−13i 7.01327− ∼ 10−11i

0 6.01327 5.01327 7.01327

d = 7

2 9.71613− 3.57472i 9.04742− 3.69995i 12.0432− 4.79173i

1 7.21079− 1.28886i 6.27367− 1.35943i 8.48599− 1.84560i

0.5 6.84854− 0.158257i 5.85225− 0.178768i 7.8153− 0.854107i

0.25 6.99751− 0.000599454i 5.99607− 0.00100992i 7.98665− 0.00170896i

0.1 7.00969− 8.88417× 10−8i 6.00967− 1.90814× 10−7i 8.00947− 2.21802× 10−7i

0.01 7.00998− ∼ 10−17i 6.00998− ∼ 10−13i 8.00998− ∼ 10−12i

0 7.00998 6.00998 8.00998

Table 4.7: Fundamental quasinormal mode frequencies of l = 2 Proca perturbations in 5, 6, 7-dimensional
Schwarzschild-AdS, for a Proca field with mass µ = 0.2 and different black hole sizes, in the intermediate and
small black hole regimes. The values for rh = 0 are for pure AdS, computed with Eq. (3.15).
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Figure 4.11: Real part of the quasinormal mode frequencies for l = 2, µ = 0.2, Proca perturbations in 5-dimensional
Schwarzschild-AdS spacetime in the small black hole regime. In the limit rh → 0, the frequencies approach those
of pure AdS, given by Eq. (3.15).
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Near rh ∼ 1, the frequencies start to deviate from the linear scaling found in the large black hole

regime: their real part approaches a minimum for sufficiently small black holes, and, from there, it

starts to increase, asymptoting the frequencies for pure AdS, given by Eq. (3.15), while the imaginary

part tends to zero with an l-dependent functional form (this is explored in Section 4.5). The vanishing

of the imaginary part in the very small black hole limit is intuitively clear: the modes only decay due

to the absorption by the black hole, so one should expect purely oscillating normal modes when the

black hole has negligible size. However, the fact that the frequencies approach those of pure AdS was

not necessarily expected, as the purely ingoing boundary condition at r = rh does not reduce to the

regularity boundary condition at the origin imposed in pure AdS [30, 33]. On the other hand, the purely

imaginary “special” modes of Maxwell scalar-type perturbations seem to become suppressed in the

small black hole regime. Whether these modes disappear in this regime or this is simply a consequence

of our numerical method still needs to be further investigated.

4.4.3 Higher overtones

While in the previous section we only showed results for the fundamental mode, our methods still

allow an accurate determination of the first (k = 1) and, sometimes, second (k = 2) overtones of the

spectrum. Yet, k ≥ 2 overtones converge very poorly cf. Fig. (4.6), and are thus very difficult to find

using such methods. Table (4.8) shows the three lowest modes for l = 0, 1 Proca field perturbations in

5, 6, 7-dimensional Schwarzschild-AdS with rh = 1. We also investigated whether the mass of the field

impacted the k = 0, 1 modes differently. It is known that in Schwarzschild spacetimes the fundamental

mode of monopole Proca perturbations behaves particularly differently from the other modes [42]. In

Schwarzschild-AdS, such was not found, as Fig. (4.12) shows in 7 dimensions (similar results can be

obtained for other dimensions as well).

l = 0
l = 1

Vector-type Scalar-type (EM) Scalar-Type (Non-EM)

d = 5
k = 0 4.72755− 2.67209i 3.97359− 1.73872i 2.81810− 1.74904i 5.2286− 2.49174i
k = 1 7.55678− 4.72454i 6.52350− 3.83747i 5.71794− 4.03211i 8.59081− 6.07836i
k = 2 −−− −−− −−− −−−

d = 6
k = 0 6.12217− 2.41656i 5.30603− 1.59769i 4.52915− 1.75717i 6.63649− 2.25137i
k = 1 9.37977− 4.17408i 8.26224− 3.38494i 7.71083− 3.53869i 9.75569− 4.05188i
k = 2 12.6460− 5.89531i 11.3652− 5.11356i −−− −−−

d = 7
k = 0 7.35822− 2.20219i 6.52107− 1.48949i 5.82571− 1.63789i 7.89019− 2.05076i
k = 1 10.8523− 3.72975i 9.70370− 3.03895i 9.20224− 3.16690i 11.2431− 3.61882i
k = 2 14.3301− 5.19102i 13.0310− 4.51820i 12.6338− 4.62355i −−−

Table 4.8: Lowest modes of l = 0, 1 and µ = 0.5 Proca field perturbations in 5, 6, 7-dimensional Schwarzschild-AdS
with rh = 1. For the empty cells, none of the methods implemented converged.

While one expects the lowest modes to dominate the quasinormal ringing phase of a perturbed black

hole, the |ω| → ∞ limit has been studied in the context of quantum gravity, as in this regime the modes

are thought to be related to the area quantization of black holes [61]. In particular, for Schwarzschild

and Schwarzschild-de Sitter spacetimes, these modes are highly damped [27], and the spectrum in the

asymptotic limit approaches ω = ωoff − ik∆ω where ∆ω ∈ R is called the gap term of the asymptotic

spectrum and ωoff is an offset term independent of k. In asymptotically AdS spacetimes, the asymp-
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Figure 4.12: Effect of the field’s mass (µ ∈ [0.1, 2.0]) on k = 0, 1 and l = 0, 1 Proca field modes, in 7-dimensional
Schwarzschild-AdS, with rh = 1. The mass of the field seems to have a similar effect on k = 0, 1 overtones.

totic spectrum behaves differently, as it approaches ω = ωoff + k∆ω, with ∆ω = ωR − iωI ∈ C, so that

|Im(ω)| ≃ |Re(ω)| [32, 34]. Using a monodromy argument, [20] computed analytically the asymptotic

quasinormal mode frequencies for various static and spherically symmetric spacetimes. Their study

regarded scalar field and gravitational perturbations. [21, 62] generalized the results to electromagnetic

perturbations. Whereas usually the limit |ω| → ∞ is only reached when k ≫ 1, for large Schwarzschild-

AdS black holes the frequencies scale linearly with the size of the black hole, reaching quickly their

asymptotic behaviour. Since the numerical methods we are using are only able to capture the lowest

overtones, this proves to be very useful as a test to our numerical results. [21] showed that the quasi-

normal modes of scalar-type and vector-type Maxwell field perturbations in d > 5 Schwarzschild-AdS

obey, in the asymptotic limit,

ωx0 =
π

4
(d+ 1) + kπ +

1

2i
log

(
2 cos

πj

2

)
, k ∈ N , (4.53)

where j = 2(d−3)
d−2 and x0 = x(+∞), with x(r) being the complex tortoise coordinate, resulting from

the analytical continuation of Eq. (4.6) to the complex plane. Note that the asymptotic spectrum is

independent of l. This happens since the l-dependent term in the potentials is suppressed at leading-

order when one expands them near r = 0 and r = ∞ (note that, within the monodromy argument, r ∈ C).

For d = 5, the asymptotic spectrum of vector-type perturbations is also given by Eq. (4.53), whereas the

spectrum of scalar-type perturbations should be continuous [21]. For large Schwarzschild-AdS black

holes one has [20]

x0 =
1

4TH sin (π/(d− 1))
e−iπ/(d−1) , (4.54)

where TH is the Hawking temperature in Schwarzschild-AdS, given by Eq. (4.52). Substitution of x0 in
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Eq. (4.53) leads to (in L = 1 units)

ω

rh
= (4− 4i) + (2− 2i)k , d = 5 ,

ω

rh
= (5.44498− 3.75563i) + (2.37764− 1.72746i)k , d = 6 ,

ω

rh
= (6.61007− 3.55102i) + (2.59808− 1.50000i)k , d = 7 .

(4.55)

On the other hand, in d = 4 one has j = 1 and so Eq. (4.53) cannot be used. This has to do with the

vanishing of the leading order term in the large r expansion of the potential. [62] found the sub-leading

order expression for the quasinormal frequencies to be ∆ω
rh

= 1.299 − 2.25i − 0.179+0.103i
k , whose gap

term agrees with the numerical results of [34]. The fundamental, first and second overtones of l = 1

vector-type and scalar-type electromagnetic perturbations in 5, 6, 7-dimensional Schwarzschild-AdS are

presented in Table (4.9), for rh = 100. For d = 6, the sinusoidal shape of the convergence curve (c.f.

Fig. (4.4)) allowed to compute also the k = 3 and k = 4 modes using Horowitz-Hubeny method. A linear

k ω (d = 5) ω (d = 6) ω (d = 7)

Vector-type

0 200.026− 199.995i 299.458− 200.486i 383.691− 199.894i

1 400.031− 399.970i 541.138− 374.618i 651.862− 352.717i

2 600.078− 599.970i 780.131− 547.752i 914.764− 503.598i

3 − 1018.64− 720.647i −
4 − 1256.67− 893.452i −

Scalar-type

0 200.010− 200.000i 299.447− 200.490i 383.681− 199.896i

1 400.020− 400.000i 541.132− 374.619i 651.856− 352.718i

2 599.999− 600.002i 780.164− 547.738i 914.759− 503.599i

3 − 1018.55− 720.655i −
4 − 1256.68− 893.495i −

Table 4.9: Fundamental, first and second overtones of l = 1 vector-type and scalar-type Maxwell field perturba-
tions in 5, 6, 7-dimensional Schwarzschild-AdS spacetime with rh = 100. In 6-dimensional Schwarzschild-AdS, the
convergence of Horowitz-Hubeny method allowed to find the k = 3, 4 modes as well.

fit of the results of Table (4.9) for each dimension yields, for vector-type perturbations,

ω

rh
= (2.00019− 1.99991i) + (2.00026− 1.99987i)k , d = 5 ,

ω

rh
= (2.99906− 2.00652i) + (2.39191− 1.73196i)k , d = 6 ,

ω

rh
= (3.84569− 2.00218i) + (2.65537− 1.51852i)k , d = 7 .

(4.56)

Similar results can be obtained by fitting the scalar-type data, and by fitting different sized large black

holes (a more rigorous analysis would be achieved by computing the modes for different large radii

and performing a linear fit with variable rh: the results obtained for rh = 100 were however satisfac-

tory enough for what was pretended to show). Comparing Eq. (4.56) with Eq. (4.55), we see that the

numerical gaps ∆ωk = ωk+1 − ωk are close to the ones predicted by Ortega in [21]. The deviations

are mainly attributed to the fact that our numerical results only take into account the lowest overtones.

However, note from Fig. (4.13) that the higher the overtone, the closest to the analytical prediction the

gap is. Moreover, despite the disagreement between offsets, our results seem to be shifted by two over-
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tones when compared with [21]. For scalar-type Maxwell field perturbations in d = 5, we imposed the

vanishing of the subdominant logarithmic term in Eq. (4.16): that is why in this case the results can also

be compared with the general d expression in Eq. (4.53).

Analytic

k = 0

k = 1

k = 2

k = 3

2.37 2.38 2.39 2.40 2.41 2.42
Re(Δωk /rh)1.725

1.730

1.735

1.740

1.745
-Im(Δωk /rh)
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Figure 4.13: Numerical gaps for vector-type (left) and scalar-type (right) electromagnetic perturbations in 6-
dimensional Schwarzschild-AdS. The higher the overtone, the closest the gap is to the one predicted in [21].

Although our results tend to agree with [21], its analytical formulas still need to be confirmed numeri-

cally, for example, by employing Leaver’s method of continued fractions [26], which is much more suitable

to find higher overtones. Such analysis is way harder to implement (see, however, [57]), specially for

higher-dimensional spacetimes with curvature, and is beyond the scope of our work. Furthermore, bear

in mind that the asymptotic analysis done so far takes only into account Maxwell field perturbations.

Indeed, studying only the lowest overtones is not sufficient to infer on the mass effect in the asymptotic

limit. This is an interesting question to pose, as the mass term changes the number of degrees of free-

dom of the field and, with it, the structure of the scalar-type sector. Also, the mass of the Proca field does

contribute to the leading-order asymptotic behaviour of the potential near spatial infinity. For the Proca

monopole in 4-dimensional Schwarzschild-AdS, [42] showed numerically that the gap term of the asymp-

totic spectrum does not depend on the mass of the field. Are the spectrum gaps independent of the mass

of the field in higher dimensions and for higher multipoles? Are these polarization-independent? Both

questions should yield affirmative answers: note from Eq. (4.53) that the spectrum gap only depends on

the spacetime-related parameters, through x0, being completely independent of the perturbation-related

parameters appearing in the potentials. On the other hand, the offset term should depend on the mass

of the field, and, in principle, also on the polarization-type. These conclusions, however, can only be

numerically supported with a larger sample of overtones.

4.4.4 Dependence on l and the eikonal limit

Another interesting feature of the quasinormal mode spectrum arises when one studies higher mul-

tipoles (so far, we have only focused on l = 0, 1, 2 perturbations). In asymptotically AdS spacetimes, the

evolution of the spectrum with l is specially important, as in the eikonal limit, l ≫ 1, modes may be very

long-lived [63–65]. These will in principle dominate the response of the perturbed black hole, and are

thus physically relevant. On the one hand, the potentials ruling quasinormal modes in small and inter-

mediate Schwarzschild-AdS black holes develop a well for sufficiently high l, allowing the existence of

trapped modes in the potential barrier. Such is shown in Fig. (4.14), where we display the radial profile of
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the effective potential for l = 1, l = 60 and l = 100 vector-type Proca field perturbations in 7-dimensional

Schwarzschild-AdS with rh = 1.

l=100

l=60

l=1

0 5 10 15 20 25 30 35
r/rh

0.2

0.4

0.6

0.8

1.0

1.2

V/Vmax

Figure 4.14: Radial profile of the effective potential for l = 1, l = 60 and l = 100 vector-type Proca field perturba-
tions, with µ = 0.5, in 7-dimensional Schwarzschild-AdS spacetime with rh = 1: for sufficiently large l, the potential
develops a well, accommodating long-lived modes.

Note that the depth and width of the well increase with increasing l, so that one expects higher-l

modes to live longer (and thus, with smaller imaginary part frequencies, in magnitude). On the other

hand, and despite not admitting such trapped modes, large Schwarzschild-AdS black holes were also

proven to accommodate long-living modes in the eikonal limit for scalar field and gravitational pertur-

bations [63, 64]. In this section, we investigate if such results can also be reproduced for Proca field

perturbations.

Large black hole regime

Using a WKB approach, [63] found that the dependence on l of scalar field quasinormal modes in

large asymptotically AdS black holes should be, in the eikonal limit, (in L = 1 units)

ω = l + (αR − iαI) l
−β , (4.57)

where αR ∈ R, αI ∈ R+ are parameters depending on the dimension of the spacetime, the radius of the

black hole and the overtone number, and β = d−3
d+1 . [64] confirmed numerically the results for tensor-type

gravitational quasinormal modes (and thus, scalar field quasinormal modes, which are isospectral), and

found that vector-type and scalar-type gravitational quasinormal modes also had the l-dependence of

Eq. (4.57) (although different coefficients αR, αI ). We study if such happens for Proca field perturbations

as well. In Table (4.10), we show the quasinormal mode frequencies of µ = 0.5 Proca field perturbations

for different values of l, in the large black hole regime, with rh = 100 (observe that l should only influence

the spectrum when l/rh ≫ 1: otherwise, as the l-dependent term in the potential goes as l2/r2, this term

would always be suppressed by the others). In Fig. (4.15), we fitted the frequencies’ imaginary parts to

Eq. (4.57). The fit results obtained from the real and imaginary parts are compared with the analytical
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predictions in Table (4.11).

l Vector-Type Scalar-Type (EM) Scalar-Type (Non-EM)

d = 5

10000 10032.2− 53.9532i 10015.4− 24.9753i 10051.6− 87.2931i

15000 15028.3− 47.1368i 15013.6− 21.7995i 15045.2− 76.2808i

20000 20025.8− 42.8352i 20012.4− 19.7972i 20041.1− 69.2954i

25000 25024.0− 39.7843i 25011.6− 18.3726i 25038.3− 64.2882i

d = 6

10000 10037.0− 44.3549i 10020.4− 23.7546i 10056.1− 68.2295i

15000 15031.3− 37.2864i 15017.4− 19.9390i 15047.4− 57.3779i

20000 20027.9− 32.9598i 20015.6− 17.6124i 20042.1− 50.7286i

25000 25025.5− 29.9460i 25014.3− 15.9967i 25038.4− 46.1020i

d = 7

10000 10041.4− 39.2259i 10025.2− 23.1973i 10060.0− 57.7746i

15000 15034.2− 32.0351i 15021.0− 18.9071i 15049.4− 47.2041i

20000 20029.9− 27.7374i 20018.4− 16.3555i 20043.1− 40.8814i

25000 25026.9− 24.8009i 25016.7− 14.6153i 25038.7− 36.5592i

Table 4.10: Fundamental quasinormal mode frequencies of µ = 0.5 Proca perturbations in the eikonal limit for
5, 6, 7-dimensional Schwarzschild-AdS black holes with rh = 100.
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Figure 4.15: Imaginary part of fundamental quasinormal modes of µ = 0.5 Proca perturbations in the eikonal limit
for 5, 6, 7-dimensional Schwarzschild-AdS black hole with rh = 100. These were fitted to Eq. (4.57), showing an
agreement with [63, 64].

β [63]
Vector-Type Scalar-Type (EM) Scalar-Type (Non-EM)

βR βI βR βI βR βI

d = 5 0.33 0.32 0.33 0.31 0.33 0.33 0.33

d = 6 0.43 0.41 0.43 0.39 0.43 0.41 0.43

d = 7 0.50 0.46 0.50 0.45 0.50 0.50 0.50

Table 4.11: Values of β for the fundamental mode of µ = 0.5 Proca field perturbations in 5, 6, 7-dimensional
Schwarzschild-AdS black holes with rh = 100, computed from fitting the real (βR) and imaginary (βI ) parts of the
numerical results to Eq. (4.57). The analytical results of [63] for scalar field perturbations are also displayed.
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Equation (4.57) not only shows good agreement with gravitational perturbations [64], but also with

our numerical results for Proca field perturbations, specially when we fit the imaginary part of the fre-

quencies. The fit to the real part of Eq. (4.57) gives less satisfactory results, which can be due to a real

number offset between Eq. (4.57) and the numerical results, i.e., ω−ω0 = l+ (αR − iαI)l
−β , although a

larger sample of numerical data (and preferably obtained with a different procedure) is needed to exclude

eventual numerical errors present. In particular, the results from Table (4.11), computed via numerical

integration, could not be confirmed with Horowitz-Hubeny method, as the series solution shows poor

convergence properties for l ≫ rh. This analysis however confirms the existence of long-lived Proca

field modes within the large black hole regime, and hints for the universal functional dependence on l. It

should be noted that, although β does not seem to depend on any parameter other than the dimension

of the spacetime, we found that αR, αI do depend on the type of perturbation, as also observed in [64].

Intermediate and small black hole regimes

In the intermediate and small black hole regimes, the damping of the mode is expected to decrease

exponentially with l in the eikonal limit [63, 64]. We illustrate this for vector-type Proca field perturbations

and a black hole with rh = 1: Table (4.12) shows the quasinormal mode frequencies for different values

of l and Fig. (4.16) shows a plot of the results, which agree with [63]. Similar results can be found for the

scalar-type sector. The exponential decrease in damping impedes us from studying higher l values, as

the numerical method starts to fail for sufficiently small imaginary parts.

l ω (d = 5) ω (d = 6) ω (d = 7)

10 12.5682− 5.83463× 10−1i 13.6872− 4.77965× 10−1i 14.7665− 4.22789× 10−1i

30 32.8045− 5.00076× 10−2i 33.9362− 8.98403× 10−3i 34.9839− 2.83059× 10−3i

50 52.9598− 7.46649× 10−4i 54.0233− 1.24031× 10−5i 55.0364− 1.15872× 10−6i

70 73.0128− 4.04631× 10−6i 74.0473− 8.46511× 10−9i 75.0489− 2.51485× 10−10i

Table 4.12: Fundamental mode of µ = 0.5 vector-type Proca perturbations in 5, 6, 7-dimensional Schwarzschild-
AdS spacetime with rh = 1, for different values of the angular momentum number l.
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Figure 4.16: Imaginary part of fundamental modes for µ = 0.5 vector-type Proca perturbations in the eikonal limit,
l ≫ 1, in 5, 6, 7-dimensional Schwarzschild-AdS, with rh = 1. For sufficiently large l, the mode damping becomes
exponentially small with l.
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A quick assessment of the potential Eq. (4.3) shows that the eikonal limit does not directly decouple

the scalar-type modes. This would make the numerical treatment much more tractable, as one would

not need to compare each mode with its analogue in the electromagnetic case by taking the massless

limit (as explained earlier, the k + 1th overtone of the electromagnetic polarization is very close to the

kth overtone of the non-electromagnetic polarization). Furthermore, it would also allow an analysis for

d = 4. In this case, and for small masses of the field, the solution’s behaviour at infinity according to

Eq. (4.11) is u(∞) ∼ c1r
−1−ϵ + c2r

ϵ with ϵ ≪ 1. The Dirichlet boundary condition yields c2 = 0, which is

very hard to solve numerically, specially for a coupled system, as rϵ grows very slowly. For large values

of angular momentum the numerical errors enhance, impeding one to find accurate solutions for the

quasinormal modes.

We could not end this section without mentioning the developments made concerning the study of

quasinormal modes in the eikonal limit for other spacetimes. In backgrounds allowing a purely outgoing

wave solution at infinity, such as asymptotically flat and de Sitter spacetimes, quasinormal modes in the

eikonal limit were shown to be related to the parameters describing particles trapped in unstable circular

null geodesics [66–68]. Namely, the real part of the quasinormal mode is related to the angular velocity

at the geodesic, while its imaginary part is determined by the instability timescale of the orbit. On the

other hand, asymptotically AdS spacetimes do not allow, in general, a wave-like solution at infinity, so

that such analogy between quasinormal modes and circular null geodesics cannot be directly inferred

[66]. An extension of such procedure to AdS spacetimes could provide a deeper physical insight on the

behaviour of quasinormal modes in this limit, as well as a possible way to decouple the Proca scalar-

sector [68]. Also, it would be interesting to check if Maxwell scalar-type modes in d = 4, 6, which do

allow the use of such boundary conditions, can be described by this “quasinormal mode/circular null

geodesics correspondence”.

4.5 The long-wavelength approximation for small Schwarzschild-

AdS black holes

In this section we investigate if it is possible to study analytically the quasinormal mode spectrum of

Maxwell and Proca field perturbations in small Schwarzschild-AdS black holes, by matching asymptotic

expansions of the solutions in the long wavelength approximation, which assumes that the radius of the

black hole, rh, is much smaller than the Compton wavelength of the field, 1/ω. This technique has often

allowed to prove spacetime instabilities, by searching for mode frequencies with positive imaginary part,

cf. [44, 69–74]. Our goal is to have results for the very small black hole regime, where even the numerical

integration procedure begins to fail. Also, we investigate if the scalar-type Proca sector decouples within

these approximations (we will see that it does not). A brief description of the method goes as follows.

The spacetime is separated in two different regions: the near-region, verifying r−rh
L ≪ 1

ωL (hereafter we

do not fix L for clarity); the far-region, for which r−rh
L ≫ rh

L . The Schrödinger-like equation Eq. (4.6)

is then solved analytically in both regions, by imposing the appropriate boundary conditions, and the
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quasinormal mode spectrum is obtained by matching the near-region solution and the far-region solution

at the overlap region rh
L ≪ r−rh

L ≪ 1
ωL , which is formed if the former assumptions are made.

4.5.1 Vector-type Proca and Maxwell field perturbations

Near-region

In the near-region one can neglect the effect of the cosmological constant, so that the background is

approximately Schwarzschild. Thus, it is useful to change coordinates to

z(r) ≡ 1−
(rh
r

)d−3

, (4.58)

which maps the domain of interest rh < r < ∞ to 0 < z < 1, with the event horizon at z = 0 and spatial

infinity at z = 1. In terms of z, the equation of motion for vector-type perturbations becomes

z(1− z)
∂2unearV

∂z2
+

(
1− z

(
2 +

1

d− 3

))
∂unearV

∂z
+

+
1

(d− 3)2

(
ω2r2

z(1− z)
− (l + 1)(l + d− 4) + µ2r2

1− z
− (d− 4)(d− 6)z

4(1− z)
− (d− 4)(d− 3)

2

)
unearV = 0 .

(4.59)

The term ω2r2 can be simplified as

ω2r2 = ω2r2h + 2ω2rh(r − rh) + 2ω2(r − rh)
2 ≃ ω2r2h , (4.60)

where the long-wavelength approximation was used. Additionally, assuming that µrh ≪ 1 and that, in

the near-region, µ(r − rh) ≪ 1, one has µ2r2 ≃ µ2r2h. This term may be neglected, as (l + 1)(l +

d − 4) is at least of the order of unity (remember that for vector-type perturbations l ≥ 1). With these

assumptions, Eq. (4.59) can be put in the standard hypergeometric equation form Eq. (B.1), by making

the transformation

unearV (z) = zα(1− z)βΨ(z) , (4.61)

with
α = − iωrh

d− 3
, β =

2l + d− 4

2(d− 3)
,

a =
l + d− 4− iωrh

d− 3
, b =

l + d− 2− iωrh
d− 3

, c = 1− 2iω

d− 3
.

(4.62)

It follows from Appendix B that its solution near z = 0 is

unearV (z) = c1z
α + c2z

α+1−c = c1z
−iωrh/(d−3) + c2z

iωrh/(d−3) , (4.63)

where limz→0 F1[a, b, c; z] = 1 was used. The boundary condition at the horizon then yields c2 = 0 and

unearV (z) = c1z
α(1− z)βF1[a, b, c; z] . (4.64)
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To obtain the solution in the overlap region, we take the limit z → 1 of Eq. (4.64). This is done by using

the z → 1 − z transformation rules Eqs. (B.5) and (B.6). If 2l
d−3 is not an integer, after taking the limit

z → 1 one has

unearV (z) = c1

Γ
[
1− 2iωrh

d−3

]
Γ
[
−1− 2l

d−3

]
Γ
[
1−l−iωrh

d−3

]
Γ
[
−1−l−iωrh

d−3

] (1− z)
2l+d−4
2(d−3) +

Γ
[
1− 2iωrh

d−3

]
Γ
[
1 + 2l

d−3

]
Γ
[
l+d−4−iωrh

d−3

]
Γ
[
l+d−2−iωrh

d−3

] (1− z)−
2l+d−2
2(d−3)

 ,

(4.65)

or, in terms of r,

unearV (r) =
u
(near,1/r)
V

r
2l+d−4

2

+ u
(near,r)
V r

2l+d−2
2 , (4.66)

with

u
(near,1/r)
V = c1

Γ
[
1− 2iωrh

d−3

]
Γ
[
−1− 2l

d−3

]
Γ
[
1−l−iωrh

d−3

]
Γ
[
−1−l−iωrh

d−3

]r 2l+d−4
2

h , u
(near,r)
V = c1

Γ
[
1− 2iωrh

d−3

]
Γ
[
1 + 2l

d−3

]
Γ
[
l+d−4−iωrh

d−3

]
Γ
[
l+d−2−iωrh

d−3

]r− 2l+d−2
2

h .

(4.67)

Note that Eq. (4.66) holds in the region rh ≪ r ≪ 1/ω. On the other hand, if 2l
d−3 is an integer, such that

−1− 2l
d−3 = −m, with m = 1, 2, ..., the solution is instead

unearV (z) = c1

 (−1)m+1Γ[a+ b−m]

m!Γ[a−m]Γ[b−m]
(1− z)

2l+d−4
2(d−3) log(1− z) +

Γ
[
1− 2iωrh

d−3

]
Γ
[
1 + 2l

d−3

]
Γ
[
l+d−4−iωrh

d−3

]
Γ
[
l+d−2−iωrh

d−3

] (1− z)−
2l+d−2
2(d−3)

 ,

(4.68)

or, in terms of r,

unearV (r) =
u
(near,1/r)
V

r
2l+d−4

2

log

(
r

rh

)
+ u

(near,r)
V r

2l+d−2
2 , (4.69)

with

u
(near,1/r)
V = c1

(d− 3)(−1)mΓ
[
1− 2iωrh

d−3

]
m!Γ

[
1−l−iωrh

d−3

]
Γ
[
−1−l−iωrh

d−3

]r 2l+d−4
2

h , (4.70)

and u
(near,r)
V is still given by Eq. (4.67). Equations (4.66) and (4.69) are to be matched with the corre-

sponding solutions from the far-region, which we compute next.

Far-region

In the far-region, one can neglect the effect of the black hole, so that the background is approximately

pure AdS. This case was already discussed in Chapter 3, although now the solution only holds in the

r ≫ rh region. So, while the equations of motion and the boundary condition at infinity are the same

as in pure AdS, instead of applying the regularity boundary condition at the origin, one takes the limit to

the overlap region to perform the matching. For clarity, we rewrite the equation of motion for vector-type

perturbations in terms of ξ, defined as

ξ(r) ≡ 1

1 + r2/L2
, (4.71)
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so that the region of interest rh < r < ∞ gets mapped to 0 < ξ < 1, this time with ξ = 0 corresponding

to spatial infinity and ξ = 1 corresponding to the horizon. This will spare us from using an additional

ξ → 1/ξ transformation of the hypergeometric function. The equation of motion is

ξ(1−ξ)∂
2ufarV

∂ξ2
+

(
1

2
− ξ

)
∂ufarV

∂ξ
+

(
ω2L2

4
− (2l + d− 4)(2l + d− 2)

16(1− ξ)
− 1

4ξ

(
µ2L2 +

(d− 4)(d− 2)

4

))
ufarV = 0 ,

(4.72)

which may be written as the usual hypergeometric differential equation by performing

ufarV (ξ) = ξα(1− ξ)βΨ(ξ) , (4.73)

with

α =
1

4

(
1 +

√
(d− 3)2 + 4µ2L2

)
, β =

2l + d− 2

4
,

a =
1

4

(√
(d− 3)2 + 4µ2L2 + 2l + d− 1 + 2ωL

)
, b =

1

4

(√
(d− 3)2 + 4µ2L2 + 2l + d− 1− 2ωL

)
,

c = 1 +
1

2

√
(d− 3)2 + 4µ2L2 .

(4.74)

In this case, c may be an integer and one needs to do a separate study for integer and non-integer c.

When c is non-integer, the solution near ξ = 0 (spatial infinity) is given by Eq. (B.2) with the appropriate

substitutions. Performing the ξ → 0 limit one gets

ufarV (ξ) = k1ξ
1
4

(
1−

√
(d−3)2+4µ2L2

)
+ k2ξ

1
4

(
1+

√
(d−3)2+4µ2L2

)
, (4.75)

and so k2 = 0 in order to satisfy the Dirichlet boundary condition. Thus,

ufarV (ξ) = k1ξ
α(1− ξ)βF1[a, b, c; ξ] . (4.76)

For integer c = m+1, with m = 1, 2, 3, ..., one can show that Eq. (4.76) is also the only solution satisfying

the Dirichlet boundary condition (see Appendix B). The solution in the overlap region is obtained by

taking the ξ → 1 limit of Eq. (4.76). If 1
2 (3− d− 2l) is non-integer, that is, if d is even, performing the

ξ → 1− ξ transformation and taking the ξ → 1 limit yields

ufarV (ξ) = k1

 Γ
[
1 + 1

2

√
(d− 3)2 + 4µ2L2

]
Γ
[
−l − d−3

2

]
Γ

[
5−d−2l+

√
(d−3)2+4µ2L2+2ωL

4

]
Γ

[
5−d−2l+

√
(d−3)2+4µ2L2−2ωL

4

] (1− ξ)
2l+d−2

4 +

+
Γ
[
1 + 1

2

√
(d− 3)2 + 4µ2L2

]
Γ
[
l + d−3

2

]
Γ

[
2l+d−1+

√
(d−3)2+4µ2L2+2ωL

4

]
Γ

[
2l+d−1+

√
(d−3)2+4µ2L2−2ωL

4

] (1− ξ)−
2l+d−4

4

 ,

(4.77)

or, in terms of r,

ufarV (r) =
u
(far,1/r)
V

r
2l+d−4

2

+ u
(far,r)
V r

2l+d−2
2 , (4.78)
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with

u
(far,1/r)
V =

k1Γ
[
1 + 1

2

√
(d− 3)2 + 4µ2L2

]
Γ
[
l + d−3

2

]
Γ

[
2l+d−1+

√
(d−3)2+4µ2L2+2ωL

4

]
Γ

[
2l+d−1+

√
(d−3)2+4µ2L2−2ωL

4

]L 2l+d−4
2 ,

u
(far,r)
V =

k1Γ
[
1 + 1

2

√
(d− 3)2 + 4µ2L2

]
Γ
[
−l − d−3

2

]
Γ

[
5−d−2l+

√
(d−3)2+4µ2L2+2ωL

4

]
Γ

[
5−d−2l+

√
(d−3)2+4µ2L2−2ωL

4

]L− 2l+d−2
2 .

(4.79)

Equation (4.78) holds in the region rh ≪ r − rh ≪ L2

2rh
. On the other hand, if 1

2 (3− d− 2l) is an integer,

such that −l − d−3
2 = −m, with m = 1, 2, 3, ..., that is, if d is odd, one has

ufar(r) =
u
(far,1/r)
V

r
2l+d−4

2

+ u
(far,r)
V r

2l+d−2
2 log

( r
L

)
, (4.80)

with

u
(far,r)
V = k1

2(−1)m+1Γ
[
1 + 1

2

√
(d− 3)2 + 4µ2L2

]
m!Γ

[
5−d−2l+

√
(d−3)2+4µ2L2+2ωL

4

]
Γ

[
5−d−2l+

√
(d−3)2+4µ2L2−2ωL

4

]L− 2l+d−2
2 , (4.81)

and u(far,1/r)V given by Eq. (4.79). The solutions originating in the far-region are then in the overlap region

described either by Eq. (4.78) or Eq. (4.80) .

Matching

For the functional matching to be possible, the near-region and far-region solutions need to have the

same functional dependence on r in the overlap region. Examining Eqs. (4.66), (4.69), (4.78) and (4.80),

one sees that the near-region and far-region solutions only have a common functional dependence

when both 2l
d−3 is non-integer and d is even. Otherwise, the logarithmic terms give different functional

contributions. We hereafter focus on non-integer 2l
d−3 and even d. Since the near- and far-regions hold,

respectively, in 0 ≪ r − rh ≪ 1/ω and rh ≪ r − rh ≪ L2

2rh
, the overlap region is given by rh ≪ r − rh ≪

min
(
1/ω, L2

2rh

)
. In this case, one can match Eq. (4.66) with Eq. (4.78), yielding

Γ
[
−1− 2l

d−3

]
Γ
[
−l − d−3

2

]
Γ
[
1−l−iωrh

d−3

]
Γ
[
−1−l−iωrh

d−3

]
Γ

[
5−d−2l+

√
(d−3)2+4µ2L2+2ωL

4

]
Γ

[
5−d−2l+

√
(d−3)2+4µ2L2−2ωL

4

] (rh
L

)2l+d−3

=

=
Γ
[
1 + 2l

d−3

]
Γ
[
l + d−3

2

]
Γ
[
l+d−4−iωrh

d−3

]
Γ
[
l+d−2−iωrh

d−3

]
Γ

[
2l+d−1+

√
(d−3)2+4µ2L2+2ωL

4

]
Γ

[
2l+d−1+

√
(d−3)2+4µ2L2−2ωL

4

] .

(4.82)

Equation (4.82) can then be solved for ω, which gives the quasinormal mode spectrum. Due to the

cumbersome form of the matching condition, one can only solve analytically Eq. (4.82) by performing

some approximations. In the far-region, we have already established that the spacetime can be regarded
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as pure AdS. Since rh/L ≪ 1 and given the numerical results obtained, we expect that the presence of

the black hole will change the frequencies from the pure AdS ones by a small imaginary part, δ, allowing

to write them as

ω = ωAdS + iδ , |δ| ≪ |ωAdS| . (4.83)

The stability study of Section 4.2.3 implies δ < 0, which can be used as a sanity check. Substituting

Eq. (3.15) with S = V in Eq. (4.83), the relevant gamma functions are transformed to

Γ

[
5− d− 2l +

√
(d− 3)2 + 4µ2L2 + 2ωL

4

]
= Γ

[
1 + k +

1

2

√
(d− 3)2 + 4µ2L2 + i

δL

2

]
≃

≃ Γ

[
1 + k +

1

2

√
(d− 3)2 + 4µ2L2

]
,

(4.84)

Γ

[
5− d− 2l +

√
(d− 3)2 + 4µ2L2 − 2ωL

4

]
= Γ

[
−k − l − d− 3

2
− i

δL

2

]
≃ Γ

[
−k − l − d− 3

2

]
,

(4.85)

Γ

[
2l + d− 1 +

√
(d− 3)2 + 4µ2L2 + 2ωL

4

]
= Γ

[
k + l +

d− 1

2
+

1

2

√
(d− 3)2 + 4µ2L2 + i

δL

2

]
≃

≃ Γ

[
k + l +

d− 1

2
+

1

2

√
(d− 3)2 + 4µ2L2

]
,

(4.86)
1

Γ

[
2l+d−1+

√
(d−3)2+4µ2L2−2ωL

4

] =
1

Γ
[
−k − i δL2

] ≃ i(−1)k+1k!
δL

2
, (4.87)

where we used
Γ[z + ϵ] ≃ Γ[z] , z ̸∈ Z≤0 ,

lim
z→−k

1

Γ [z + ϵ]
≃ lim

z→−k
−ψ[z]
Γ[z]

ϵ = (−1)kk!ϵ .
(4.88)

Substituting in Eq. (4.82), and doing the same for the gamma functions with arguments containing ωrh

terms, yields

δL =
2i(−1)k

k!

Γ
[
−1− 2l

d−3

]
Γ
[
−l − d−3

2

]
Γ
[
1 + 2l

d−3

]
Γ
[
l + d−3

2

] ×
Γ
[
l+d−4−iωrh

d−3

]
Γ
[
l+d−2−iωrh

d−3

]
Γ
[
1−l−iωrh

d−3

]
Γ
[
−1−l−iωrh

d−3

] ×

×
Γ
[
k + l + d−1

2 + 1
2

√
(d− 3)2 + 4µ2L2

]
Γ
[
k + 1 + 1

2

√
(d− 3)2 + 4µ2L2

]
Γ
[
−k − l − d−3

2

] (rhL )2l+d−3

.

(4.89)

Since 1−l
d−3 and − 1+l

d−3 are allowed to take non-positive integer values, one needs to be careful again

when performing the expansion of these gamma functions. Note that if 1−l
d−3 is integer, then −1−l

d−3 is not

and vice-versa. This is because 2
d−3 is never integer, as this would imply d = 4 or d = 5 (none of these

two cases can be studied with this method since, for d = 4, 2l
d−3 is always integer, and d = 5 is an odd

dimension). Thus, we only need to consider three cases: when 1−l
d−3 is integer; when −1−l

d−3 is integer;

when none of them are integers. For integer 1−l
d−3 = −p, with p = 0, 1, 2, ..., one has, after simplifying the
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negative arguments in the gamma functions,

δ =− 2p!

k!

(l + 1)
2
Γ
[
k + l + d−1

2 + 1
2

√
(d− 3)2 + 4µ2L2

]
Γ2
[
l+1
d−3

]
Γ
[
l+d−4
d−3

]∏k
j=1

(
l + d−3

2 + j
)

(2l + d− 3) (d− 3)
2
Γ
[
k + 1 + 1

2

√
(d− 3)2 + 4µ2L2

]
Γ2
[
1 + 2l

d−3

]
Γ
[
l + d−3

2

] ×

×
(rh
L

)2l+d−2

ωAdS ,

(4.90)

which is manifestly negative as for z > 0, Γ[z] > 0. This is in agreement with the stability study from

Section 4.2.3, where we proved stability for Schwarzschild-AdS black holes against vector-type Proca

and Maxwell field perturbations. In principle, we could test the validity of Eq. (4.90) by comparing it with

the numerical results obtained by numerical integration. However, for frequencies with sufficiently small

imaginary part (typically |Im(ω)| ≲ 10−11), the solutions obtained from numerically integrating the equa-

tion of motion oscillate substantially when one changes the initial guess or the domain of integration. As

we are dealing with small black holes, and since the magnitude of the imaginary part of the frequencies

decreases as (rh/L)
2l+d−2, we cannot obtain accurate numerical results in the majority of the cases (for

a black hole with size rh = 0.01, the largest imaginary parts are of the order ∼ 10−11). Thus, numeri-

cal verification of Eq. (4.90) is still needed, for example, using the Breit-Wigner resonance method ap-

proached in [39, 65]. Additionally, note that Eq. (4.90) only covers the cases: l = 1, d−2, 2d−5, 3d−8, ....

In Table (4.13) we present the analytical results for several allowed parameters and the corresponding

numerical results with the available precision, for rh = 0.1 and rh = 0.01.

rh Parameters δ (Analytical) δ (Numerical)

0.1

d = 6, l = 1, µ = 0 −2.71624× 10−5 −3.44092× 10−5

d = 6, l = 1, µ = 0.5 −2.94359× 10−5 −3.75448× 10−5

d = 6, l = 4, µ = 0.5 −1.66287× 10−11 −2.85× 10−11

d = 8, l = 1, µ = 0.5 −1.36372× 10−6 −1.47671× 10−6

0.01

d = 6, l = 1, µ = 0 −2.71624× 10−11 −2.7239× 10−11

d = 6, l = 1, µ = 0.5 −2.94359× 10−11 −2.9522× 10−11

d = 6, l = 4, µ = 0.5 −1.66287× 10−23 −

d = 8, l = 1, µ = 0.5 −1.36372× 10−14 −1.4× 10−14

Table 4.13: Imaginary part of vector-type quasinormal frequencies for some of the allowed values of d, l, µ, for black
holes with sizes rh = 0.1 and rh = 0.01. The analytical results were computed from Eq. (4.90).

Similarly, for integer − 1+l
d−3 = −q, with q = 0, 1, 2, ..., one has

δ =− 2q!

k!

(l − 1)
2
Γ
[
k + l + d−1

2 + 1
2

√
(d− 3)2 + 4µ2L2

]
Γ2
[
l−1
d−3

]
Γ
[
l+d−2
d−3

]∏k
j=1

(
l + d−3

2 + j
)

(2l + d− 3) (d− 3)
2
Γ
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k + 1 + 1

2

√
(d− 3)2 + 4µ2L2

]
Γ2
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1 + 2l

d−3

]
Γ
[
l + d−3

2

] ×

×
(rh
L

)2l+d−2

ωAdS ,

(4.91)
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which covers the cases l = d− 4, 2d− 7, 3d− 10, .... Analytical and numerical results are shown in Table

(4.14).

rh Parameters δ (Analytical) δ (Numerical)

0.1

d = 6, l = 2, µ = 0 −2.61924× 10−7 −3.61579× 10−7

d = 6, l = 2, µ = 0.5 −2.87685× 10−7 −4.00185× 10−7

d = 6, l = 5, µ = 0.5 −1.09237× 10−13 −2.1035× 10−13

d = 8, l = 4, µ = 0.5 −2.42402× 10−12 −2.9644× 10−12

0.01

d = 6, l = 2, µ = 0 −2.61924× 10−15 −3× 10−15

d = 6, l = 2, µ = 0.5 −2.87685× 10−15 −3× 10−15

d = 6, l = 5, µ = 0.5 −1.09237× 10−27 −

d = 8, l = 4, µ = 0.5 −2.42402× 10−26 −

Table 4.14: Imaginary part of vector-type quasinormal frequencies for some of the allowed values of d, l, µ, for black
holes with sizes rh = 0.1 and rh = 0.01. The analytical results were computed from Eq. (4.91).

When none of − l+1
d−3 and − l−1

d−3 are integers, none of the gamma functions in Eq. (4.89) vanishes at

leading-order, so that

Γ
[
l+d−4−iωrh

d−3

]
Γ
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l+d−2−iωrh

d−3

]
Γ
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]
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]
Γ
[
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]
Γ
[
− l+1

d−3

] (
1 +

iπω

d− 3

(
cot

(
π(l − 1)

d− 3

)
+ cot

(
π(l + 1)

d− 3

)))
,

(4.92)

and the leading-order term of δ gives a correction to the real part of ω. The decay is given by the real

part of δ (corresponding to the next-to-leading-order term in the gamma expansion)

Re(δ) =− 2

k!

(l − 1)2(l + 1)2Γ
[
k + l + d−1

2 + 1
2

√
(d− 3)2 + 4µ2L2

]
Γ2
[
l+1
d−3

]
Γ2
[
l−1
d−3

]∏k
j=1

(
l + d−3

2 + j
)

(2l + d− 3)(d− 3)4Γ
[
k + 1 + 1

2

√
(d− 3)2 + 4µ2L2

]
Γ2
[
1 + 2l

d−3

]
Γ
[
l + d−3

2

] ×

×
(rh
L

)2l+d−2

ωAdS ,

(4.93)

so that Re(δ) < 0. This covers the cases not covered by Eqs. (4.90) and (4.91), keeping always in mind

that 2l
d−3 cannot be integer. Thus, for example, for d = 6, l = 3, 6, 9, ..., 2l

d−3 is integer and the method

does not work. Analytical and numerical results for some of the allowed values of l in d = 8 and d = 10

are presented in Table (4.15).
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rh Parameters Re(δ) (Analytical) Re(δ) (Numerical)

0.1

d = 8, l = 2, µ = 0.5 −1.89267× 10−8 −2.12663× 10−8

d = 8, l = 3, µ = 0.5 −2.25788× 10−10 −2.64183× 10−10

d = 10, l = 2, µ = 0.5 −9.71194× 10−10 −1.00734× 10−9

d = 10, l = 3, µ = 0.5 −1.36078× 10−11 −1.44325× 10−11

0.01

d = 8, l = 2, µ = 0.5 −1.89267× 10−18 −

d = 8, l = 3, µ = 0.5 −2.25788× 10−22 −

d = 10, l = 2, µ = 0.5 −9.71194× 10−22 −

d = 10, l = 3, µ = 0.5 −1.36078× 10−25 −

Table 4.15: Imaginary part of vector-type quasinormal frequencies for some of the allowed values of d, l, µ, for black
holes with sizes rh = 0.1 and rh = 0.01. The analytical results were computed from Eq. (4.93).

The agreement between analytical and numerical results highly depends on the black hole size

used. Ideally, if one was able to find accurate numerical results for rh ≲ 0.01, one could test the

analytical method by fitting the numerical results to δ = −A (rh/L)
B and comparing A,B with the ones

predicted by the corresponding analytical expressions Eqs. (4.90), (4.91) and (4.93). As discussed

above, our numerical results are only accurate for |Im(ω)| ≳ 10−11, making this technique unreliable

for the parameters studied. Note, however, that the numerically accurate values obtained for rh = 0.1

already agree in the order of magnitude with the analytical results. Such an agreement was not expected,

as in this case rhω ≃ 1 (ω is order 101 for the cases studied), and the overlap region is very small.

Moreover, the numerical results available for rh = 0.01 confirm this agreement, with the frequencies

deviating from the analytical predictions only in the second decimal place.

On a final observation, bear in mind that the analytical method developed is quite restrictive, as it

only works for even d. Indeed, for odd d, the functional form of the near- and far-region solutions is not

the same, preventing us from matching them at the overlap region. A possible way to overcome this

would be to match the near- and far-region solutions and its first derivatives at a suitable point in the

domain, although the lack of a prescription to choose the matching point leads to unreliable results for

the imaginary part of the frequencies [72]. A different analytical procedure seems to be needed in order

to study the spectrum of odd dimensional spacetimes (and certain combinations of l and d).
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4.5.2 Monopole Proca field perturbations

Near-region

One can perform the same analysis for the monopole mode of scalar-type Proca field perturbations.

Writing Eq. (4.6) with effective potential given by Eq. (4.4), one has, in terms of z,

z(1− z)
∂2unearl=0

∂z2
+

(
1− z

(
2 +

1

d− 3

))
∂unearl=0

∂z
+

+
1

(d− 3)2

(
ω2r2h

z(1− z)
− d(d− 2)z

4(1− z)
+

(d− 2)(d− 3)

2
− µ2r2h

1− z

)
unearl=0 = 0 .

(4.94)

The mass term may be neglected by making (d−2)(d−3)
2 = (d−2)(d−3)

2(1−z) − (d−2)(d−3)z
2(1−z) . Performing Eq. (4.61)

one arrives at the standard hypergeometric differential equation with

α = − iωrh
d− 3

, β =
d− 2

2(d− 3)
,

a =
2d− 4− iωrh

d− 3
, b = − iωrh

d− 3
, c = 1− 2iω

d− 3
.

(4.95)

Imposing the boundary condition at the horizon and taking the z → 1 limit as before one has, in the

overlap region,

unearl=0 (r) =
u
(near,1/r)
l=0

r
d−2
2

+ u
(near,r)
l=0 r

d
2 , (4.96)

with

u
(near,1/r)
l=0 = c1

Γ
[
1− 2iωrh

d−3

]
Γ
[
−1− 2

d−3

]
Γ
[
1− iωrh

d−3

]
Γ
[
1−d−iωrh

d−3

] r d−2
2

h , u
(near,r)
l=0 = c1

Γ
[
1− 2iωrh

d−3

]
Γ
[
1 + 2

d−3

]
Γ
[
2d−4−iωrh

d−3

]
Γ
[
−iωrh
d−3

] r− d
2

h .

(4.97)

Equation (4.96) holds for d ≥ 6. For d = 4 and d = 5, Eq. (4.96) contains a logarithmic term multiplying

r−
d−2
2 , as 2

d−3 is integer.

Far-region

In the far-region, the vector-type effective potential Eq. (4.2) with l = 1 is reduced to the monopole

effective potential Eq. (4.4), so that the results can be readily obtained by substituting l = 1 in the

expressions already obtained for vector-type perturbations. Thus, for even d, the solution is Eq. (4.78)

with Eq. (4.79) after setting l = 1, while for odd d there is a logarithmic term multiplying r
d
2 .
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Matching

The functional matching is only possible when d is even and d ̸= 4. In this case, the matching

condition is

Γ
[
−1− 2

d−3

]
Γ
[
−1− d−3

2

]
Γ
[
1−d−iωrh

d−3

]
Γ
[
1− iωrh

d−3

]
Γ

[
3−d+

√
(d−3)2+4µ2L2+2ωL

4

]
Γ

[
3−d+

√
(d−3)2+4µ2L2−2ωL

4

] (rh
L

)d−1

=

=
Γ
[
1 + 2

d−3

]
Γ
[
1 + d−3

2

]
Γ
[
2d−4−iωrh

d−3

]
Γ
[
−iωrh
d−3

]
Γ

[
1+d+

√
(d−3)2+4µ2L2+2ωL

4

]
Γ

[
1+d+

√
(d−3)2+4µ2L2−2ωL

4

] .

(4.98)

Assuming Eq. (4.83) with ωAdS given by Eq. (3.15), substituting in Eq. (4.98) and expanding the Gamma

functions in the same way as we did for vector-type perturbations, we arrive at

δ =−
2π2(d− 3)2Γ

[
1
2

(
d+ 1 + 2k +

√
(d− 3)2 + 4µ2L2

)]∏k
j=1

(
d−1
2 + j

)
(d− 1)k! sin2

(
2π
d−3

)
Γ2
[
1 + 2

d−3

]
Γ2
[
1−d
d−3

]
Γ
[
d−1
2

]
Γ
[
1 + k + 1

2

√
(d− 3)2 + 4µ2L2

]×
×
(rh
L

)d−2 1

ωAdSL2
,

(4.99)

which, again, is manifestly negative in agreement with the studies of Section 4.2.3. Since in this case

the dependence on rh is only rd−2
h , it is possible to obtain numerical results with the desired accuracy

for smaller black holes. For example, for d = 6 and a black hole with size rh = 0.001, δ should be

order 10−11, which is more or less the limit of accuracy of our numerical results. Of course, for higher

d, δ decreases in magnitude and more accurate numerical results are needed. Analytical and numerical

results are shown in Table (4.16). The numerical values for δ tend to agree with the analytical ones as

rh Parameters δ (Analytical) δ (Numerical)

0.1

d = 6, µ = 0.5 −2.85033× 10−3 −3.57515× 10−3

d = 6, µ = 2 −4.52707× 10−3 −6.12516× 10−3

d = 8, µ = 0.5 −1.34463× 10−4 −1.43570× 10−4

d = 8, µ = 2 −1.95524× 10−4 −2.12290× 10−4

0.01

d = 6, µ = 0.5 −2.85033× 10−7 −2.85907× 10−7

d = 6, µ = 2 −4.52707× 10−7 −4.54601× 10−7

d = 8, µ = 0.5 −1.34463× 10−10 −1.34567× 10−10

d = 8, µ = 2 −1.95524× 10−10 −1.95711× 10−10

0.001

d = 6, µ = 0.5 −2.85033× 10−11 −2.85045× 10−11

d = 6, µ = 2 −4.52707× 10−11 −4.52734× 10−11

d = 8, µ = 0.5 −1.34463× 10−16 −
d = 8, µ = 2 −1.95524× 10−16 −

Table 4.16: Imaginary part of monopole quasinormal frequencies for some of the allowed values of d, µ, for black
holes with sizes rh = 0.1, rh = 0.01 and rh = 0.001. The analytical results were computed from Eq. (4.99).

one decreases rh. In particular, for rh = 0.001, they are the same up to the fourth significant figure.

Interestingly, note that the damping of the monopole mode goes as δ ∼ ω−1
AdS, while for vector-type
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perturbations one has δ ∼ ωAdS.

4.5.3 Scalar-type Maxwell field perturbations

Near-region

The equation of motion for Maxwell scalar-type perturbations in the near-region is

z(1− z)
∂2unearEM

∂z2
+

(
1− z

(
2 +

1

d− 3

))
∂unearEM

∂z
+

+
1

(d− 3)2

(
ω2r2h

z(1− z)
− l(l + d− 3)

1− z
− (d− 2)(d− 4)z

4(1− z)
+

(d− 4)(d− 3)

2

)
unearEM = 0 .

(4.100)

Using Eq. (4.61) leads to the standard hypergeometric differential equation with

α = − iωrh
d− 3

, β =
2l + d− 4

2(d− 3)
,

a =
l − iωrh
d− 3

, b = 2 +
l − iωrh
d− 3

, c = 1− 2iω

d− 3
.

(4.101)

If 2l
d−3 is non-integer, after imposing the boundary condition at the horizon and taking the z → 1, the

solution in the overlap region yields

unearEM (r) =
u
(near,1/r)
EM

r
2l+d−4

2

+ u
(near,r)
EM r

2l+d−2
2 , (4.102)

with

u
(near,1/r)
EM = c1

Γ
[
1− 2iωrh

d−3

]
Γ
[
−1− 2l

d−3

]
Γ
[
1− l+iωrh

d−3

]
Γ
[
−1− l+iωrh

d−3

]r 2l+d−4
2

h , u
(near,r)
EM = c1

Γ
[
1− 2iωrh

d−3

]
Γ
[
1 + 2l

d−3

]
Γ
[
l−iωrh
d−3

]
Γ
[
2 + l−iωrh

d−3

] r− 2l+d−2
2

h .

(4.103)

On the other hand, if 2l
d−3 is integer, the solution acquires a logarithmic term multiplying r−

2l+d−4
2 .

Far-region

In the far-region, the equation of motion is written as

ξ(1− ξ)
∂2ufarEM

∂ξ2
+

(
1

2
− ξ

)
∂ufarEM

∂ξ
+

(
ω2L2

4
− l(l + d− 3)

4(1− ξ)
− (d− 2)(d− 4)

16ξ(1− ξ)
+
d− 4

4ξ

)
ufarEM = 0 ,

(4.104)

and performing the usual transformation yields the hypergeometric differential equation with

α =
d− 4

4
, β =

2l + d− 2

4
,

a =
l + d− 3 + ωL

2
, b =

l + d− 3− ωL

2
, c =

d− 3

2
.

(4.105)

67



We have already seen that the solutions obeying the Dirichlet boundary condition at infinity are

ufarEM(ξ) =


k1ξ

1
2 (1− ξ)

l+1
2 F1 [1 + a− c, 1 + b− c, 2− c, ξ] d = 4

ξ
1
4 (1− ξ)

2l+3
4 (k1F1 [a, b, c, ξ] + k2 log(ξ)F1 [1 + a− c, 1 + b− c, 2− c, ξ]) d = 5

k1ξ
d−4
4 (1− ξ)

2l+d−2
4 F1 [a, b, c, ξ] d ≥ 6

.

(4.106)

For d ≥ 6, after proceeding with the ξ → 1− ξ transformation and taking the ξ → 1 limit, one has, in the

overlap region, for even d,

ufarEM(r) =
u
(far,1/r)
EM

r
2l+d−4

2

+ u
(far,r)
EM r

2l+d−2
2 , (4.107)

with

u
(far,1/r)
EM =

k1Γ
[
d−3
2

]
Γ
[
l + d−3

2

]
Γ
[
l+d−3+ωL

2

]
Γ
[
l+d−3−ωL

2

]L 2l+d−4
2 , u

(far,r)
EM =

k1Γ
[
d−3
2

]
Γ
[
−l − d−3

2

]
Γ
[
− l+ωL

2

]
Γ
[
− l−ωL

2

] L− 2l+d−2
2 ,

(4.108)

while for odd d the same calculation leads to a logarithmic term multiplying r
2l+d−2

2 . For d = 4 a similar

analysis yields Eq. (4.107), although the pre-factors change. We do not show them here since the

matching cannot be done for d = 4 ( 2l
d−3 is integer). For d = 5, the usual requirement of the vanishing of

the logarithmic term in Eq. (4.106) implies a logarithmic term multiplying r
2l+3

2 in Eq. (4.107).

Matching

As for vector-type perturbations, the functional matching is only possible when d is even and 2l
d−3 is

non-integer. Carrying on the same calculations as before leads to

Re(δ) = − 2

k!

Γ [l + k + d− 3] Γ2
[
2 + l

d−3

]
Γ2
[

l
d−3

]∏k
j=1

(
l + d−3

2 + j
)

(2l + d− 3)Γ2
[
1 + 2l

d−3

]
Γ
[
l + d−3

2

]
Γ
[
k + d−3

2

] ×
(rh
L

)2l+d−2

ωAdS , (4.109)

where ωAdS is given by Eq. (3.19) and we expanded the next-to-leading order in ωrh since the leading-

order term gives an imaginary contribution to δ (and thus corrects the real part of ω). A comparison

between numerical and analytical results is displayed in Table (4.17).

rh Parameters Re(δ) (Analytical) Re(δ) (Numerical)

0.1

d = 6, l = 1 −1.01729× 10−4 −1.15610× 10−4

d = 6, l = 4 −7.55262× 10−12 −1.153× 10−11

d = 8, l = 1 −1.51335× 10−5 −1.34251× 10−5

d = 10, l = 1 −1.40309× 10−6 −9.85025× 10−7

0.01

d = 6, l = 1 −1.01729× 10−10 −1.01899× 10−10

d = 6, l = 4 −7.55262× 10−24 −
d = 8, l = 1 −1.51335× 10−13 −1.51× 10−13

d = 10, l = 1 −1.40309× 10−16 −1.4× 10−16

Table 4.17: Imaginary part of scalar-type electromagnetic quasinormal frequencies for some of the allowed values
of d, l, for black holes with sizes rh = 0.1 and rh = 0.01. The analytical results were computed from Eq. (4.109).
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4.5.4 Higher multipoles of scalar-type Proca field perturbations

For higher multipole scalar-type Proca field perturbations, the coupling between the modes makes

the analytical matching procedure more involved. We have seen in Chapter 3 that in pure AdS the two

scalar-type modes decouple. This means that one can find the behaviour of the two decoupled modes

in the overlap region by taking the limit of the far-region solutions. Indeed, the far-region solutions obey

ξ(1− ξ)
∂2ufar(±)

∂ξ2
+

(
1

2
− ξ

)
∂ufar(±)

∂ξ
+

+

(
ω2L2

4
−

(2j(±) + d− 4)(2j(±) + d− 2)

16(1− ξ)
− 1

4ξ

(
µ2L2 +

(d− 4)(d− 2)

4

))
ufar(±) = 0 ,

(4.110)

with j(±) = l±1. As already mentioned in Chapter 3, this is the same equation as Eq. (4.72) with jV = l,

resembling the spin-orbit interaction between the spin of the field and the orbital angular momentum of

each multipole. Thus, the behaviour of the solutions in the overlap region can be readily obtained from

Eq. (4.78) and Eq. (4.79) substituting l by l±1 (for simplicity and concreteness, we are already assuming

that d is even and 2l/(d− 3) is non-integer). Writing explicitly for clarity,

ufar(±)(r) = u
(far,1/r)
(±) r−

2(l±1)+d−4
2 + u

(far,r)
(±) r

2(l±1)+d−2
2 , (4.111)

where u
(far,1/r)
(±) , u

(far,r)
(±) are given by Eq. (4.79) substituting l by l ± 1. Note that there are two different

constants of integration: k(+) and k(−). One may then use Eq. (3.8) to write Eq. (4.111) in terms of

u2, u3, as

ufar2 (r) = u
(far,1/r)
(+) r−

2l+d−2
2 + u

(far,1/r)
(−) r−

2l+d−6
2 + u

(far,r)
(+) r

2l+d
2 + u

(far,r)
(−) r

2l+d−4
2 ,

ufar3 (r) = −lu(far,1/r)(+) r−
2l+d−2

2 + (l + d− 3)u
(far,1/r)
(−) r−

2l+d−6
2 − lu

(far,r)
(+) r

2l+d
2 + (l + d− 3)u

(far,r)
(−) r

2l+d−4
2 .

(4.112)

Moreover, using the definition Eq. (2.53) one gets

uEM =
u2
r

− fr
d−4
2

l(l + d− 3)
∂r

(
u3r

− d−4
2

)
, (4.113)

so that

ufarEM(r) =
2l + d− 5

l
u
(far,1/r)
(−) r−

2l+d−4
2 +

2l + d− 1

l + d− 3
u
(far,r)
(+) r

2l+d−2
2 . (4.114)

On the other hand, in the near-region, it is not possible to decouple the equations of motion, even within

the approximations we are performing. If we knew how the decoupled modes behave in this region, we

would just need to match these with Eq. (4.111) and extract the two frequencies δ(±) from the matching

condition, as we did before. Although this is not possible, we can try to match the solutions assuming

that the factorization in Eq. (2.62) holds, i.e., the scalar-type Proca field modes with electromagnetic

and non-electromagnetic polarizations approach the (scalar-type) Maxwell field and scalar field modes,

respectively. Assuming this, ru3 obeys the Klein-Gordon equation and we find that the solutions for u3
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in the overlap region behave as

unear3 (r) = u
(near,1/r)
3 r−

2l+d−2
2 + u

(near,r)
3 r

2l+d−4
2 , (4.115)

with

u
(near,1/r)
3 = k3

Γ
[
1− 2iω3rh

d−3

]
Γ
[
−1− 2l

d−3

]
Γ2
[
−l−iω3rh

d−3

] r
2l+d−4

2

h ,

u
(near,r)
3 = k3

Γ
[
1− 2iω3rh

d−3

]
Γ
[
1 + 2l

d−3

]
Γ2
[
l+d−3−iω3rh

d−3

] r
− 2l+d−2

2

h .

(4.116)

Similarly, Eq. (4.102) yields the behaviour of the Proca electromagnetic polarization in the overlap region

unearEM (r) = u
(near,1/r)
EM r−

2l+d−4
2 + u

(near,r)
EM r

2l+d−2
2 , (4.117)

with u
(near,1/r)
EM , u

(near,r)
EM given by Eq. (4.103). Note that while the electromagnetically polarized mode

has the same functional dependence in both regions, the non-electromagnetically polarized mode has

two additional power terms in the far-region that do not appear in the near-region. This is because,

in the near-region, we are solving a second-order differential equation for u3, instead of the fourth-

order differential equation that describes the coupled system, resulting from substituting Eq. (2.46) in

Eq. (2.45) and writing Eq. (2.45) as an equation for u3 only. If we match only the same functional terms

of Eq. (4.112) and Eq. (4.115) and of Eq. (4.114) and Eq. (4.117), and assume that ω(EM) = ω(−) =

ωAdS
(−) + iδ(−), ω3 = ω(+) = ωAdS

(+) + iδ(+), we get a single matching condition relating δ(−) and δ(+). Still,

in order to determine each one, we would need another matching condition of the same sort. If we were

able to solve the fourth-order differential equation for u3, and if the resulting terms power terms were

the same as the ones appearing in Eq. (4.115), an additional matching condition would appear, allowing

to determine both δ(−) and δ(+). However, a solution to the fourth-order differential equation does not

seem to be obvious, even within the approximations performed.

To summarize, the non-trivial coupling between the two scalar-type degrees of freedom in the near-

region does not allow an analytical matching procedure as the one done for decoupled perturbations.

Equations (4.112), (4.114), (4.115) and (4.117) illustrate this behaviour, with the modes in the near-

region being linear combinations of the (±) modes appearing in the far-region. Although a relation

between the two frequencies δ(±) can be achieved, one would need to solve an increased-order dif-

ferential equation for u3 to extract the missing relation between δ(+) and δ(−), which does not seem to

be possible. We conclude by mentioning that, although very restrictive and seemingly unable to de-

scribe the scalar-type sector of Proca field perturbations, this method improved our understanding in

the following aspects: for small black holes, the mode damping decreases with the black hole radius as

(rh/L)
2l+d−2, in agreement with previous studies [52, 65]; numerical and analytical results agree up to

the third significant figure for black holes with rh/L = 0.01 and up to the fourth significant figure for black

holes with rh/L = 0.001; the coupling between the Proca scalar-type modes is non-trivial even within

the small black hole regime and long-wavelength approximation.
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Chapter 5

Conclusion

5.1 Achievements

In this work, the formalism developed in [12–14, 46, 47] was used to study Proca field perturbations in

spaces with warped product topology Md = Nm×Kn. We showed that if the Proca field is decomposed

according to its tensorial behaviour on Kn, the Proca equations give rise to two completely separated

sectors: the vector-type sector, described by a second-order differential equation for one variable, which

covers n − 1 decoupled degrees of freedom of the field; the scalar-type sector, described by a system

of m second-order coupled differential equations for m variables, which cover the remaining m (dynam-

ical) degrees of freedom of the field. This procedure was further developed in (d = 2 + n)-dimensional

spherically symmetric spacetimes, by expanding the vector-type (scalar-type) variables in vector (scalar)

n-dimensional spherical harmonics. After such expansion, the Proca field equations simplified to a set of

three wave-like equations: a single decoupled wave equation describing the vector-type degrees of free-

dom and two coupled wave equations describing the scalar-type degrees of freedom. The Maxwell field

equations were also obtained by carefully taking the massless limit of the Proca field: in this case, one

scalar-type degree of freedom becomes pure-gauge, so that the scalar-type sector is also decoupled.

The remainder of the thesis was devoted to the study of Proca field (quasi)normal modes in d-

dimensional AdS and Schwarzschild-AdS spacetimes. In AdS, we showed that the Proca scalar-type

sector can be decoupled analytically and we found the exact normal mode solutions for the Proca field by

imposing Dirichlet boundary conditions at spatial infinity. The modes are splitted according to their total

angular momentum number, resembling a spin-orbit interaction between the spin of the Proca field and

the angular momentum of each mode [44]. Within this picture, vector-type modes have spin projection

0, whereas scalar-type modes have spin projections ±1, in accordance with the angular momentum

addition rules for a spin-1 field. The results agreed with [45] for d = 4 and generalized its study to higher-

dimensional AdS. Moreover, the Maxwell field normal modes were obtained, agreeing with [20, 21].

In Schwarzschild-AdS, such exact solutions cannot be found. Moreover, the Proca field scalar-type

degrees of freedom do not trivially decouple. We showed, however, that these can be distinguished in the

massless limit, where the degree of freedom that becomes pure-gauge satisfies the Klein-Gordon field
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equation and the degree of freedom that remains physical satisfies the scalar-type Maxwell field equa-

tion. The former degree of freedom was defined as having non-electromagnetic polarization, whereas

the latter as having electromagnetic polarization. Although an exact solution for the modes could not be

found, its stability was studied analytically using the S-deformation technique [13, 35]. Schwarzschild-

AdS was proved to be stable against vector-type Proca and Maxwell field perturbations, scalar-type

Maxwell field perturbations and monopole Proca field perturbations. Stability against higher multipoles

of scalar-type Proca field perturbations could not be proved due to the non-hermitian nature of the

mode coupling. The quasinormal mode frequency spectrum of Proca field perturbations in d = 4, 5, 6, 7-

dimensional Schwarzschild-AdS spacetimes was obtained numerically with two different techniques: by

using the Horowitz-Hubeny method and by integrating the equations of motion. The latter proved to

be more reliable and allowed to study the small black hole regime, for which Horowitz-Hubeny method

showed poor convergence properties. A summary of the main results from the numerical study goes as

follows:

• Both the real and imaginary parts of the frequencies increase in magnitude as the mass of the field

increases, in agreement with [42, 51].

• In the small-mass limit, scalar-type modes with electromagnetic and non-electromagnetic polariza-

tions approach, respectively, scalar-type Maxwell field modes and scalar field modes, as expected.

• In the large black hole regime, most frequencies scale linearly with the black hole radius, as found

in [30]. An exception was found for scalar-type Maxwell field perturbations in d ≥ 5 spacetimes,

whose spectrum also seems to contain “special” purely imaginary modes that scale with the in-

verse of the black hole radius.

• Also for large black holes, Maxwell field scalar-type and vector-type modes were found to be

isospectral. This was an unexpected result at first, as the associated potentials are different,

even within this regime. Following [3], we managed to prove analytically this isospectrality. For

Proca field perturbations, our numerical results suggest that the isospectrality is mantained for

vector-type modes and electromagnetically polarized scalar-type modes. An analytical proof of

this is however still missing.

• In the small black hole regime, the frequencies approach those of pure AdS. In particular, electro-

magnetically and non-electromagnetically polarized modes approach, respectively, the AdS modes

with total angular momentum l − 1 and l + 1.

• The numerical methods implemented only allowed to find modes up to the fourth overtone. How-

ever, in large Schwarzschild-AdS black holes, the behaviour of the spectrum in the asymptotically

high overtone regime, studied in [20, 21, 62], is already captured by the lowest overtones, due

to their linear scaling with the radius of the horizon. In particular, our numerical results for the

k = 0, 1, 2, 3, 4 modes of Maxwell field perturbations in large Schwarzschild-AdS black holes sup-

port the monodromy calculations of [21], although studies employing Leaver’s method of continued

fractions [26] still need to be performed in order to confirm its analytical predictions. Moreover, the
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small sample of overtones did not allow to accurately infer on the effect of the Proca field’s mass

on the spectrum in this limit, which gives another reason of why methods more capable to compute

higher overtones should be implemented. It should be noted, however, that neither the mass of

the field nor the perturbation-type should affect the asymptotic spectrum gap.

• In the eikonal limit, modes may become particularly long-lived. In the large black hole regime, our

numerical results for Proca field perturbations agreed with the scalar field analytical predictions

of [63] and therefore showed support for the universal l-dependence of the quasinormal modes,

suggested in [64]. For small black holes, we found that the imaginary part of the modes decreases

(in magnitude) exponentially with l, supporting [63–65].

Finally, we studied if Proca and Maxwell field quasinormal modes in small Schwarzschild-AdS black

holes could be analytically described by matching the asymptotic solutions at the horizon and at infinity

in an overlap region, which is formed in the long-wavelength approximation. It turned out that this method

is quite restrictive, as the solutions only have the same functional form in the overlap region if both d

is even and 2l/(d − 3) is non-integer: otherwise, non-common logarithmic dependences appear in the

solutions that do not allow such matching. We showed that quasinormal mode frequencies in small

Schwarzschild-AdS black holes exhibit an additional imaginary correction term in comparison to normal

modes in AdS spacetime, i.e. ω = ωAdS + iδ, with |δ| ≪ |ωAdS| and δ < 0. The δ dependence with rh

was found to be δ ∼ (rh/L)
2l+d−2, in agreement with [65, 74]. Also, for the allowed cases, analytical

and numerical results agreed up to the fourth significant figure, although further numerical support is

needed, using, for example, the Breit-Wigner resonance method of [39, 65]. Additionally, we could not

use this method to describe the scalar-type sector of higher Proca multipoles, as the two scalar-type

degrees of freedom remain non-trivially coupled, even within this approximation.

5.2 Future Work

A natural extension of our work involves attempting to analytically decouple the Proca field scalar-

type degrees of freedom in Schwarzschild-AdS. One possible solution is to use the FKKS ansatz of

[48] for Kerr-NUT-(A)dS geometries, after setting the black hole angular momentum and NUT param-

eter to zero. [51] did this for 4-dimensional Schwarzschild-AdS and showed that, although the FKKS

ansatz decouples the scalar-type sector, it does not capture the vector-type mode. Yet, this is a great

breakthrough, as the vector-type mode is decoupled and can be described using the spherical harmonic

expansion. Is the FKKS ansatz capable to decouple the scalar-type modes in higher dimensions as

well? This is definitely worth pursuing, since such decoupling would not only allow to approach analyti-

cally Schwarzschild-AdS stability against higher multipoles of scalar-type Proca perturbations, but also

to obtain improved numerical results for the scalar-type quasinormal modes.

Additionally, implementing Leaver’s method of continued fractions [26] in our study is of great interest:

on the one hand, it would in principle allow to obtain the high overtone limit of the spectrum and compare

it with the analytical results of [21]. Besides, this would also numerically establish the effect, if any, of
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the field’s mass on the asymptotic spectrum. On the other hand, it would be important to confirm the

existence of the “special” purely imaginary modes found for scalar-type Maxwell perturbations, which

scale with the inverse of the black hole radius. Also, it would be interesting to analytically establish

isospectrality between vector-type and electromagnetically polarized scalar-type modes, suggested by

our numerical results, as such could hint for a decoupling in the scalar-type sector.

The eikonal limit in asymptotically AdS spacetimes needs further studies as well. Can the “quasinor-

mal mode/circular null geodesics correspondence” be extended to perturbed spacetimes whose poten-

tial diverges at infinity? The answer to this question remains elusive and it could provide physical insight

on the quasinormal spectrum in this limit, as well as a possible way to decouple the scalar-type degrees

of freedom of the Proca field.

Finally, it would also be interesting to verify our analytical expressions for quasinormal modes of

small Schwarzschild-AdS black holes with a numerical method better adapted to this regime, such as

the Breit-Wigner resonance method discussed in [39, 65]. Furthermore, extending our analytical results

to odd dimensional spacetimes is of great interest, in order to have a complete analytical picture of the

spectrum in this regime.

74



Bibliography

[1] R. Penrose, “The Structure of Space-Time”, in Battelle Rencontres 1967 Lectures in Mathematical

Physics, eds B. DeWitt, J. A. Wheeler, 121 (Benjamin, New York, 1968).

[2] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, (Cambridge University

Press, Cambridge, 1973).

[3] S. Chandrasekhar, The Mathematical Theory of Black Holes, (Oxford University Press, New York,

1983).

[4] LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a

binary black hole merger”, Phys. Rev. Lett. 116, 061102 (2016); arXiv:1602.03837 [gr-qc].

[5] The Event Horizon Telescope Collaboration, “First M87 Event Horizon Telescope results. I. The

shadow of the supermassive black hole”, Ap. J. 875, L1 (2019); arXiv:1906.11238 [astro-ph.GA].

[6] C. V. Vishveshwara, “Stability of the Schwarzschild metric”, Phys. Rev. D 1, 2870 (1970).

[7] C. V. Vishveshwara, “Scattering of gravitational radiation by a Schwarzschild black hole”, Nature

227, 936 (1970).

[8] B. Carter, “Axisymmetric black hole has only two degrees of freedom”, Phys. Rev. Lett. 26, 331

(1971).

[9] R. A. Matzner, “Scattering of massless scalar waves by a Schwarzschild singularity”, J. Math Phys.

9, 163 (1968).

[10] T. Regge and J. A. Wheeler, “Stability of a Schwarzschild singularity”, Phys. Rev. 108, 1063 (1957).

[11] F. J. Zerilli, “Effective potential for even-parity Regge-Wheeler gravitational perturbation equa-

tions”, Phys. Rev. Lett. 24, 737 (1970).

[12] H. Kodama and A. Ishibashi, “A master equation for gravitational perturbations of maximally

symmetric black holes in higher dimensions”, Progress of Theoretical Physics 110, 701 (2003);

arXiv:hep-th/0305147.

[13] H. Kodama and A. Ishibashi, “Stability of higher-dimensional Schwarzschild black holes”, Progress

of Theoretical Physics 110, 901 (2003); arXiv:hep-th/0305185.

75



[14] H. Kodama and A. Ishibashi, “Master equations for perturbations of generalised static black holes

with charge in higher dimensions”, Progress of Theoretical Physics 111, 24 (2004); arXiv:hep-

th/0308128v4.

[15] H. Kodama and M. Sasaki, “Cosmological perturbation theory”, Progress of Theoretical Physics

Supplement 78, 1 (1984).

[16] E. Calabi and L. Markus, “Relativistic space forms”, Annals of Mathematics 75, 63 (1962).

[17] S. J. Avis, C. J. Isham, and D. Storey, “Quantum field theory in anti-de Sitter space-time”, Phys.

Rev. D 18, 3565 (1978).

[18] C. P. Burgess and C. A. Lütken, “Propagators and effective potentials in anti-de Sitter space”,

Physics Letters B 153, 137 (1985).

[19] A. Ishibashi and R. M. Wald, “Dynamics in non-globally-hyperbolic static spacetimes iii: anti-de

Sitter spacetime”, Class. Quant. Grav. 21, 2981 (2004); arXiv:hep-th/0402184.

[20] J. Natario and R. Schiappa, “On the classification of asymptotic quasinormal frequencies for d-

dimensional black holes and quantum gravity”, Adv. Theor. Math. Phys. 8, 1001 (2004); arXiv:hep-

th/0411267.
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Appendix A

Spherical harmonics on the n-sphere

A.1 Initial considerations

The decomposition in spherical harmonics explores the rotational invariance of the background and

is crucial to study the structure of the perturbations and to isolate the physical degrees of freedom of the

fields. Here, we discuss in more detail the properties of these functions. For more details we refer to

[14, 75–78]. Spherical harmonics on the n-sphere can be constructed recursively by dimensional reduc-

tion (see e.g.[76]). However, this approach becomes cumbersome when constructing vector spherical

harmonics. The approach we adopt here follows [75], where spherical harmonics are constructed by

embedding Sn in (n+ 1)-Euclidean space, Rn+1. Within this framework, spherical harmonics on Sn are

harmonic homogeneous polynomials in Rn+1 restricted to Sn.

Let Hl be the space of homogeneous polynomials of degree l in Rn+1. A polynomial hl : Rn+1 → C

belongs to Hl if

hl(λx) = λlhl(x) , (A.1)

for any λ ∈ R,x ∈ Rn+1. Furthermore, a polynomial is harmonic in Rn+1 if

□Eh = 0 , (A.2)

where □E is the laplacian in Rn+1. The space of homogeneous and harmonic polynomials of degree l

in Rn+1 is denoted Al. Then, spherical harmonics are defined as functions Y : Sn → C such that, for

some hl ∈ Al, Yl(η) = hl(η) for all η ∈ Sn.

A.2 Scalar spherical harmonics

In spherical coordinates, the Rn+1 line element, ds2 = gµνdx
µdxν , is related to the Sn line element,

dΩ2
n = γijdθ

idθj , by

ds2 = dr2 + r2dΩ2
n . (A.3)
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Using Eq. (2.13), the non-vanishing Christoffel symbols associated to (Rn+1, g) in these coordinates are

Γr
ij = −rγij , Γi

rj =
1

r
δij , Γi

jk = Γ̂i
jk, (A.4)

and the condition for a homogeneous polynomial of degree l, hl, to be harmonic in Rn+1 reads

□Ehl =
1

rn
∂r (r

n∂rhl) +
1

r2
□̂hl = 0 , (A.5)

where □̂ = γij∇̂i∇̂j . Moreover, the homogeneity condition yields, with xµ = rx̂µ,

hl(x
µ)|Sn = hl(rx̂

µ)|Sn = rlhl(x̂
µ)|Sn = rlSl(θi) , (A.6)

so that, substituting in Eq. (A.5), one has

□̂Sl = −l(l + n− 1)Sl , l = 0, 1, 2, ... (A.7)

S(l) are thus eigenvectors of the operator □̂, designated scalar spherical harmonics. These can be

further expanded in the basis k⃗s, containing l and the n−1 azimuthal quantum numbers, li, correspond-

ing to the eigenvalues of the respective lower-dimensional embedded spheres, and in turn satisfying

|l1| ≤ l2 ≤ ... ≤ ln−1 ≤ l. We then refer to the non-degenerate scalar spherical harmonics as Sk⃗s
,

obeying the eigenvalue equation

□̂Sk⃗s
= −l(l + n− 1)Sk⃗s

, l = 0, 1, 2, ... , (A.8)

as well as the orthogonality condition on Sn

∫
dΩnSk⃗s

S∗
k⃗′
s

= δk⃗sk⃗′
s

, (A.9)

and forming a complete basis on Sn.

A.3 Vector spherical harmonics

Vector spherical harmonics can be constructed in the same way as scalar spherical harmonics, only

this time one considers polynomials on Rn+1 as vector functions V l
µ : Rn+1 → Cn+1. Using the Helmoltz-

Hodge theorem, V l
µ can be written (in analogy to Eq. (2.17)) as

V l
µdx

µ = V l
r dr + (W l

i + ∇̂iσ
l)dθi , ∇̂iW l

i = 0 , (A.10)
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where W l
i is a vector on the n-sphere and V l

r , σ
l are scalars. Expanding □EV

l
µ in spherical coordinates,

and assuming that hµ is harmonic, one has

□EW
l
i = ∂2rW

l
i +

n− 2

r
∂rW

l
i −

n− 1

r2
W l

i +
1

r2
□̂W l

i = 0 , (A.11)

as well as two coupled equations for the scalars hr and σ [75], which yield the eigenvalue equations

for scalar harmonics. Here, we are interested in the eigenvalue equation for W l
i , that is, for vector

harmonics. Since V l
µ is homogeneous of degree l in Rn+1, then

W l
i (x

ν)|Sn ∼ rl+1Vl
i(θ

j) , (A.12)

where the extra r factor appears due to the Jacobian matrix of the transformation to polar coordinates.

Finally, substituting Eq. (A.12) in Eq. (A.11) yields

□̂Vl
i = − [l(l + n− 1)− 1]Vl

i , l = 1, 2, ... , (A.13)

which is the eigenvalue equation for vector spherical harmonics. Note that now l ≥ 1, as for l = 0

there are no non-trivial Vl
i satisfying Eq. (A.11) [75]. Vl

i are usually called transverse vector spherical

harmonics, as they obey the transverse condition ∇̂iVl
i = 0. One can also construct longitudinal vector

spherical harmonics, which are defined as the gradient of scalar spherical harmonics, ∇̂iSl, obeying the

eigenvalue equation

□̂
(
∇̂iSl

)
= − [l(l + n− 1)− (n− 1)] ∇̂iSl , l = 1, 2, ... . (A.14)

While the number of independent harmonics ∇̂iSl is the same as the number of scalar harmonics Sl,

the number of Vl
i is different [75], meaning that the basis used to expand Sl cannot be used to expand

Vl
i. The basis used to expand Vl

i will be denoted k⃗v, containing l and the n − 1 azimuthal numbers,

which now cover a different range than the one covered by k⃗s. As for scalar harmonics, vector spherical

harmonics obey the orthogonality relation

∫
dΩnγ

ijVk⃗v i
Vk⃗′

v

∗
j
= δk⃗v k⃗′

v
, (A.15)

and form a complete basis on Sn.

A.4 Properties under rotation and parity transformations

The action of the SO(n+ 1) Casimir operator, Ĵ2, on scalar and vector spherical harmonics is [19]

Ĵ2Sl = l(l + n− 1)Sl , Ĵ2∇̂iSl = l(l + n− 1)∇̂iSl , Ĵ2Vl
i = [l(l + n− 1) + n− 2]Vl

i . (A.16)
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For l ≥ 1 and n > 2, the Casimir eigenvalues of both scalar spherical harmonics and longitudinal

vector spherical harmonics are the same. One then expects these modes to mix. On the other hand,

the Casimir eigenvalues of the transverse vector spherical harmonics are never equal (n > 2) to the

eigenvalues of the longitudinal vector spherical harmonics, so that these completely decouple. For

n = 2, these are equal and one would expect to have mixed modes. However, in this case, the modes

are decoupled due to their different parity eigenvalues. Under parity transformations θi=1 → π + θi=1

and θi ̸=1 → π − θi ̸=1, one has

P̂Sl = (−1)
l Sl , P̂∇̂iSl = (−1)

l ∇̂iSl , P̂Vl
i = (−1)

l+1 Vl
i . (A.17)

(Note that a vector, Aθi , on the n-sphere transforms under parity as: Aθi=1
→ Aθi=1

, Aθi̸=1
→ −Aθi̸=1

).

Thus, the scalar-type sector is also referred to as the even- or polar-sector, while the vector-type sector

is referred as the odd- or axial-sector.
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Appendix B

Hypergeometric differential equation

B.1 Main properties

The equations of motion ruling the dynamics of the perturbation variables are often second-order

ordinary differential equations with three regular singular points. It follows then that they can be trans-

formed by an appropriate change of variables into the hypergeometric differential equation, which takes

the form

z(1− z)
d2Ψ

dz2
+ [c− (a+ b+ 1)z]

dΨ

dz
− abΨ = 0 , (B.1)

where a, b, c are parameters that depend on the background geometry and type of perturbation. The

regular singular points of the equation are located at z = 0, 1,∞. Solutions of Eq. (B.1) are found by

using Frobenius method near each of these regular points. In the main text, the solution is expanded

near z = 0 and the region of interest is 0 < z < 1 (note that it coincides with the radius of convergence

of the solution near z = 0). The behaviour near z = 1 can be easily obtained by applying the linear

transformation relation z → 1 − z (which we describe below) to the solution near z = 0. The solution of

Eq. (B.1) near z = 0 can be written in terms of the hypergeometric functions F1[a, b, c; z], for non-integer

c, as [79]

Ψ(z) = AF1 [a, b, c; z] +Bz1−cF1 [a− c+ 1, b− c+ 1, 2− c; z] , (B.2)

where A,B are constants of integration. On the other hand, if c is integer and c > 1 one has [79]

Ψ(z) =AF1 [a, b, c; z] +

+B

[
F1 [a, b, c; z] log (z)+

+
∞∑
i=1

(a)i(b)i
(c)ii!

zi (ψ(a+ i)− ψ(a) + ψ(b+ i)− ψ(b)− ψ(c+ i) + ψ(c)− ψ(i+ 1) + ψ(1))−

−
c−1∑
i=1

(i− 1)!(1− c)i
(1− a)i(1− b)i

z−i

]
,

(B.3)
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where (x)i and ψ(z) are, respectively, the Pochhammer symbol and the digamma function, defined as

(x)i ≡
Γ(x+ i)

Γ(x)
, ψ(z) =

Γ′(z)

Γ(z)
. (B.4)

Similar relations can be found for integer c < 1 [79]. To study how the solutions behave near z = 1, it is

useful to introduce the transformation z → 1−z of the hypergeometric function. For non-integer c−a−b,

one has [79]

F1[a, b, c; z] =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F1 [a, b, 1 + a+ b− c; 1− z] +

+ (1− z)c−a−bΓ(c)Γ(a+ b− c)

Γ(a)Γ(b)
F1 [c− a, c− b, 1 + c− a− b; 1− z] ,

(B.5)

whereas if c− a− b = −m with m = 1, 2, ...

F1[a, b, a+ b−m; z] =
Γ[m]Γ[a+ b−m]

Γ[a]Γ[b]
(1− z)−m

m−1∑
i=0

(a−m)i(b−m)i
i!(1−m)i

(1− z)i−

− (−1)mΓ[a+ b−m]

Γ[a−m]Γ[b−m]

∞∑
i=0

(a)i(b)i
i!(i+m)!

(1− z)i (log(1− z)− ψ(i+ 1)− ψ(i+m+ 1)+

+ψ(a+ i) + ψ(b+ i)) .

(B.6)

For c− a− b = m̃ with m̃ = 0, 1, 2, ... one can find similar transformation rules [79], although we usually

choose the parameters so that, without loss of generality, c− a− b < 0.

B.2 Normal modes in pure AdS

B.2.1 Proca field and vector-type Maxwell field perturbations

Equation (3.13) in the main text is of the type

∂2r∗q(i) +

(
ω2
(i) −

k
(i)
1

sin2
(
r∗
L

) − k2

cos2
(
r∗
L

)) q(i) = 0 , (B.7)

where k(i)1 =
[
4j(i)(j(i) + n− 1) + (n− 2)n

]
/4L2 and k2 =

[
(n− 2)n+ 4µ2L2

]
/4L2, with j(i) taking the

values l − 1, l, l + 1, for l ≥ 1. By making the change

q(i)(z) = zα(i)(1− z)βΨ(i)(z) , (B.8)

with z = sin2
(
r∗
L

)
, one can transform Eq. (B.7) into the hypergeometric differential equation Eq. (B.1)

with a(i) = α(i) + β +
ω(i)L

2 , b(i) = α(i) + β − ω(i)L

2 , c(i) = 2α(i) +
1
2 and

α(i) =
1

4

[
1 +

√
1 + 4L2k

(i)
1

]
=

2j(i) + n

4
, β =

1

4

[
1 +

√
1 + 4L2k2

]
=

1

4

(
1 +

√
(n− 1)2 + 4µ2L2

)
.

(B.9)
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Following the analysis of Section B.1, the solutions of Eq. (B.1) for even n (c(i) is non-integer) are given

by

Ψ
(even)
(i) (z) = A(i)F1

[
a(i), b(i), c(i); z

]
+B(i)z

1/2−2α(i)F1

[
a(i) − c(i) + 1, b(i) − c(i) + 1, 2− c(i); z

]
,

(B.10)

where A(i) and B(i) are constants of integration. Then

q
(even)
(i) (z) =A(i)z

α(i)(1− z)βF1

[
a(i), b(i), c(i); z

]
+

+B(i)z
1/2−α(i)(1− z)βF1

[
a(i) − c(i) + 1, b(i) − c(i) + 1, 2− c(i); z

]
.

(B.11)

On the other hand, for odd n, c(i) is a positive integer and it follows from Section B.1 that the solution for

q(i)(z) is given by Eq. (B.3), multiplied by zα(i)(1− z)β .

To obtain the normal modes, one needs to impose boundary conditions to the solutions. As stated in

the main text, at r = 0 (z = 0) one imposes regularity, so that the solution does not diverge there. For

even spacetimes, it is immediate to see from Eq. (B.11) that for α(i) > 1/2 one needs to set B(i) = 0

(limz→0 F1 [a, b, c; z] = 1). When α(i) = 1/2, which only happens for the (−) scalar-type polarization in

the l = 1, n = 2 case, the exponent in z vanishes and the solution seems to be finite (and constant) near

z = 0. However, this is just an artifact of having removed the origin when separating the field in spherical

harmonics [19]. To see this clearly, one writes the components of the four-dimensional Proca field Ar,

Aθ and Aφ in terms of q(+), q(−) and qϕ, yielding

Ar =
1

rf

∑
lm

(
q
(l,m)
(+) + q

(l,m)
(−)

)
S(l,m) ,

Aθ =
∑
l′m′

q
(l′,m′)
(ϕ) V

(l′,m′)
θ +

∑
lm

q(l,m)
(−)

l
−

q
(l,m)
(+)

l + n− 1

 ∂θS(l,m)

Aφ =
∑
l′m′

q
(l′,m′)
(ϕ) , V (l′,m′)

φ +
∑
lm

q(l,m)
(−)

l
−

q
(l,m)
(+)

l + n− 1

 ∂φS(l,m) .

(B.12)

Since, near the origin, q(l,m)
(ϕ) = q

(l,m)
(+) = 0 for all l,m and q

(l,m)
(−) = K(l,m) if l = 1, q(l,m)

(−) = 0 otherwise,

where K(1,1), K(1,0) and K(1,−1) are constants, Eq. (B.12) becomes, near the origin (f(r) ≃ 1)

Ar ≃ 1

r

(
K(1,1)S(1,1) +K(1,0)S(1,0) +K(1,−1)S(1,−1)

)
,

Aθ ≃ K(1,1)∂θS(1,1) +K(1,0)∂θS(1,0) +K(1,−1)∂θS(1,−1) ,

Aφ ≃ K(1,1)∂φS(1,1) +K(1,0)∂φS(1,0) +K(1,−1)∂φS(1,−1) .

(B.13)

The components of a vector field transform as Aµ′ = ∂xµ

∂xµ′Aµ to give Ax,y,z ∼ 1√
x2+y2+z2

, in carte-

sian coordinates. Since the Proca field equations Eq. (2.8) can be written near the origin in cartesian

coordinates as

∂ν∂νAα − µ2Aα = 0 , (B.14)

87



where α = {t, x, y, z}, one has

(
∂2x + ∂2y + ∂2z

)
Ax,y,z ∼ δ(x)δ(y)δ(z) . (B.15)

Due to this additional delta term, q(l,m)
(−) = K(l,m), with K(l,m) ̸= 0, cannot be a solution near the origin

and one needs to set B(−) = 0. This proves that all the modes need to have B(i) = 0 to be regular near

the origin.

On the other hand, for odd dimensional spacetimes, all the terms of Eq. (B.3) except the last one

vanish in the limit z → 0. Regarding the last term, it is guaranteed that it diverges, as the leading-

order term is q(odd)(i) ∼ z1/2−α(i) and α(i) > 1/2. Thus, one also needs to set B(i) = 0 in this case. To

summarize: so far, we have shown that the solutions of Eq. (B.7) that are regular at the origin are given

by

q(i) = A(i)z
α(i)(1− z)βF1[a(i), b(i), c(i); z] . (B.16)

As explained in the main text, the remaining boundary condition we impose is a Dirichlet boundary

condition at spatial infinity (z = 1). To do that, we use the transformation property z → 1 − z of the

hypergeometric function, given in Eqs. (B.5) and (B.6). We firstly focus on non-integer c(i) − a(i) − b(i) =

1/2− 2β, where one uses Eq. (B.5) in Eq. (B.16) to analyze the behaviour at infinity. Since β > 1/2, the

first term vanishes, as the gamma functions in the numerator are finite (c(i) − a(i) − b(i) is non-integer

and c(i) > 0). The remaining term must be 0 to satisfy the reflective boundary condition. This term

is proportional to z1/2−β and consequently explodes unless a(i) or b(i) are non-positive integers. The

additional requirement that ω > 0 yields the result for the frequencies of the normal modes

ω(i)L = 2k + j(i) +
d− 1

2
+

1

2

√
(d− 3)

2
+ 4µ2L2 , k = 0, 1, 2, ... , (B.17)

whereas the normal mode eigenfunctions are given by

q(i)(r) = A(i)

( r
L

) 2j(i)+d−2

2

(
1 +

r2

L2

)k−
ω(i)L

2

F1

[
−k + ω(i)L,−k, j(i) +

d− 1

2
;

r2/L2

1 + r2/L2

]
. (B.18)

Similarly, when 1/2 − 2β = −m, with m = 1, 2, ..., the transformation law z → 1 − z to be used is

Eq. (B.6). While the second term of the solution always vanishes when z → 1 (the leading-order term is

∼ (1− z)β log(1− z) and note again that the gamma function in the numerator does not diverge), for the

first term to vanish one again needs to impose a = −k or b = −k, where k is a non-positive integer, as

there is always the term (1− z)1/2−β in the sum. Thus, one also arrives at Eqs. (B.17) and (B.18).

B.2.2 Scalar-type Maxwell field perturbations

For the scalar-type Maxwell perturbations, q(EM) also obeys Eq. (B.7), except now k1 and k2 are

given after Eq. (3.18), so that α = 2l+n
4 and β = 1

4 (1 + |n− 3|). The solution to q(EM) is also given

by Eq. (B.16) after imposing the regularity condition at the origin. However, the expression for β brings

interesting consequences that do not appear in the massive case, and one needs to be careful when
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obtaining the normal modes. For n > 3 one has β = n−2
4 ≥ 1/2, so that Eq. (B.7) only obeys the

reflective boundary condition at infinity if

ω(EM)L = 2k + l + d− 3 , d > 5 , k = 0, 1, 2, ... . (B.19)

For d = 4 one has

ω(EM)L = 2k + l + 2 , d = 4 , k = 0, 1, 2, ... . (B.20)

For d = 5, β < 1/2 and the second term in Eq. (B.7) vanishes at infinity without imposing any restriction

in the frequencies. Thus, for d = 5, the spectrum is continuous, ω ∈ R+.
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Appendix C

Chandrasekhar’s approach to

isospectrality

In this appendix, we investigate why scalar-type and vector-type Maxwell field modes are isospectral

in higher-dimensional large Schwarzschild-AdS black holes, following the work developed by Chan-

drasekhar [3] (see also [32, 36]). For rh/L≫ 1, Eq. (4.6) yields, with potentials Eqs. (4.2) and (4.5) (we

assume l ≪ rh/L)

∂2r∗u
(V) +

(
ω2 −V

(V)
(EM)

)
u(V) = 0 , (C.1)

∂2r∗u
(S) +

(
ω2 −V

(S)
(EM)

)
u(S) = 0 , (C.2)

with

V
(V)
(EM) = f

(d− 4)
(
d
(
rh
r

)d−1
+ d− 2

)
4L2

, (C.3)

V
(S)
(EM) = f

(d− 4)
(
(8− 3d)

(
rh
r

)d−1
+ d− 6

)
4L2

, (C.4)

and f = r2

L2 −
(
rh
r

)d−3. From a preliminary assessment of the equations, nothing would lead us to

conclude that these yield isospectral modes. The potentials can be written as [3]

V
(V)
(EM) =W 2 − dW

dr∗
+ β (C.5)

V
(S)
(EM) =W 2 +

dW

dr∗
+ β , (C.6)

with W = −d−4
2L2

(
1−

(
rh
r

)d−1
)
r and β = 0. Potentials satisfying Eqs. (C.5) and (C.6) are known as

superpartner potentials. It follows that the corresponding Schrödinger-like equations Eqs. (C.1) and (C.2)
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can be written as

u(V) =
1√

β − ω2

(
−Wu(S) +

du(S)

dr∗

)
, (C.7)

u(S) =
1√

β − ω2

(
Wu(V) +

du(V)

dr∗

)
. (C.8)

Quasinormal modes obey the purely ingoing wave at the horizon and the Dirchlet condition at spatial

infinity, so that, assuming ω to be a quasinormal mode for u(V), i.e.

u(V) = A(V)e−iωr∗ , r → rh , (C.9)

u(V) = 0 , r → ∞ , (C.10)

Equation (C.8) yields, after substituting W and β,

u(S) = −A(V)e−iωr∗ , r → rh , (C.11)

u(S) =
1√
−ω2

(
Wu(V) + f

du(V)

dr

)∣∣∣∣
r=∞

, r → ∞ . (C.12)

The behaviour of u(V) near spatial infinity is given by Eq. (4.14), so that
(
Wu(V) + f du(V)

dr

)∣∣
r=∞ ∼

d−3
L2 r

2−d/2
∣∣
r=∞, which vanishes for d ≥ 5. Thus, if ω is a quasinormal mode for u(V), it is also a

quasinormal mode for u(S), and the isospectrality between scalar-type and vector-type modes is proven.

Note that there seem to be no dynamical “algebraically special modes”, for which ω2 = β = 0.
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