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Abstract

Robust real-time obstacle detection and tracking remain significant challenges in the automotive in-
dustry. Historically, sensors like LiDAR and cameras have dominated this space, but recent technological
advancements have enabled the resurgence of radar technology, specifically millimeter-wave (mmWave)
radar sensors.

MmWave radar sensors prove to be more robust to adverse weather conditions than other commonly
used sensors. This work focuses on developing an obstacle detection and tracking algorithm that relies
exclusively on data from these radars. The developed algorithm starts by accumulating recent frames
of radar data and then employs DBSCAN for obstacle detection and Kalman Filters for tracking. Results
indicate that this approach effectively tracks various types of obstacles. However, it demonstrates supe-
rior performance in tracking obstacles moving away from the sensor compared to those moving toward
it. This discrepancy arises from the intrinsic properties of radar technology. Nonetheless, with proper
radar configuration and processing, this difference can be mitigated.

This approach serves as a method for evaluating the capabilities of mmWave radar systems in ob-
stacle detection and tracking while robust Neural Networks trained specifically for this problem are not

yet feasible, mainly due to the extensive data requirements for proper training.
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Resumo

A detegdo e o seguimento de obstaculos em tempo real continuam a ser desafios importantes
na industria automével. Tradicionalmente, sensores como os LiDARs e as camaras dominaram este
espago, no entanto, avangos tecnoldgicos recentes despertaram um novo interesse na tecnologia de
radar, mais especificamente nos sensores de radar millimeter-wave (mmWave).

Os sensores de radar mmWave mostram ser mais robustos a condigoes climatéricas adversas que
outros sensores tipicamente usados. Este trabalho foca-se no desenvolvimento de um algoritmo de
detegao e seguimento de obstaculos que usa somente dados provenientes destes radares. O algoritmo
desenvolvido acumula alguns frames recentes de dados destes radares, de seguida usa DBSCAN
para a detecdo de obstaculos e Filtros de Kalman para o seguimento. Os resultados obtidos mostram
que esta abordagem ¢é eficaz a seguir diferentes tipos de obstaculos. No entanto, mostra existir uma
maior capacidade em seguir obstaculos que se afastam do sensor comparativamente a obstaculos
que se aproximam do sensor. Esta discrepancia é causada por algumas caracteristicas intrinsecas
da tecnologia dos radares. Ainda assim, com uma configuragao adequada do radar e com algum
processamento dos dados, esta diferenga pode ser atenuada.

Esta abordagem serve como uma maneira de avaliar as capacidades dos radares mmWave em
sistemas de detecdo e seguimento de obstaculos enquanto Redes Neuronais robustas treinadas para
este problema em especifico ainda nao estdo prontas, principalmente devido a grande quantidade de

dados necessarios para um treino eficaz.
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The research and development of autonomous vehicles can be attributed to several key factors. One
of the primary driving forces is the still alarmingly high number of deaths and injuries resulting from road
traffic accidents, which continue to pose a serious problem globally. The World Health Organization
(WHO) estimates there have been 1.19 million road traffic deaths in 2021; this corresponds to a rate of
around 15 road traffic deaths per 100, 000 population, and about 66% of these fatalities occur among the
working age population, i.e., people aged between 18 and 59 years [1]. These statistics underscore the
urgent need for the implementation of safer transportation systems.

Furthermore, the ever-increasing population residing in urban areas contributes to the increasing
complexity of existing road networks and infrastructure. The growing number of vehicles on the roads
and limited space and resources impose significant challenges on transportation systems. Conse-
quently, finding innovative solutions to alleviate the strain on current infrastructure becomes crucial to
ensure the efficient and safe movement of people and goods. Moreover, using automated systems for
tasks like driving offers the potential for improved comfort and convenience for the general population,
which can lead to better mobility experiences, reduced stress levels, and increased productivity during
journeys.

Advancing this field holds promise in terms of mitigating the devastating impact of road traffic acci-

dents and addressing the evolving demands of modern transportation systems.

1.1 Levels of Vehicle Autonomy

Vehicle autonomy refers to the degree to which a vehicle can operate independently without human
intervention. The Society of Automotive Engineers (SAE) has established five levels of autonomy [2],

representing a continuum of capabilities ranging from fully manual to fully autonomous driving.

Level 0: No Automation At Level 0, there is no automation present in the vehicle, although the
vehicle may have some momentary assistance features, such as Automatic Emergency Braking or
Blind Spot Warnings;

Level 1: Driver Assistance At Level 1, there is some driver assistance in the vehicle. For example,
the vehicle may have a system to assist the driver with either steering or accelerating and decelerat-
ing, such as Lane Keeping Assistance (LKA) or Adaptive Cruise Control (ACC). These features are
qualified as Level 1 because the human driver is still required to monitor the other aspects of driving,
such as steering and braking, and must remain attentive at all times.

Level 2: Partial Driving Automation At Level 2, the vehicle can take control of both steering and
accelerating and decelerating in certain situations, such as highway driving or stop-and-go traffic.
However, the driver is still responsible for monitoring the vehicle’s performance and must be prepared

to take control at any time.



Level 3: Conditional Driving Automation At Level 3, the vehicle can operate autonomously under
certain conditions, such as clear weather or well-marked roads. Level 3 vehicles have “environmental
detection” capabilities and can make informed decisions for themselves, such as accelerating past
a slow-moving vehicle. However, the driver must still be present and ready to take control if neces-
sary. In some cases, the driver may be able to engage in other tasks while the vehicle is operating
autonomously.

Level 4: High Driving Automation At Level 4, the vehicle can operate autonomously in most sit-
uations without human intervention. However, there may be certain situations where the vehicle
requires human intervention, such as in extreme weather conditions or on unmapped roads.

Level 5: Full Driving Automation At Level 5, the vehicle can operate autonomously in all situations
without human intervention. Level 5 cars won'’t even require steering wheels or pedals. They will be
free from any virtual limitations, such as the need to drive on a road, and they should be able to go

anywhere and do anything that an experienced human driver can do.

In recent years, significant effort has been put into developing Advanced Driver Assistance Systems
(ADAS). These systems are targeted at the automotive industry and aim to increase road safety either by
automating specific driving tasks such as LKA, Emergency Brake Assist (EBA), and ACC or by providing
real-time alerts and warnings to the driver about potential dangers on the road.

While the system developed in this thesis is not able to provide great assistance to the driver by
itself, its outputs can serve as the basis to create a Colision Avoidance System (CAS), which is a Level
2 ADAS.

1.2 Sensor Technologies

An essential factor in the safe operation of these vehicles is their ability to perceive and interpret the
surrounding environment accurately. Different technologies are already being used in the automotive
industry today. These serve as the vehicle’s eyes and ears, enabling it to perceive obstacles and make

informed decisions.

1.2.1 Ultrasonic Sensors

Ultrasonic sensors derive their fundamental principles from the early 20th century Sound Navigation
And Ranging (SONAR) technology initially developed for naval purposes. This technology has since
evolved to suit various applications beyond underwater environments. Unlike SONAR, which excels in
aquatic environments for tasks such as submarine navigation and detecting underwater threats, ultra-

sonic sensors are designed for air and surface environments, making them suitable for ADAS systems.



Figure 1.1: Example of a Sonar being used on a boat. [3]

These sensors operate by emitting sound waves and measuring the time it takes for these waves
to echo back from nearby objects (Fig. 1.1). Ultrasonic sounds suffer significant attenuation when
traveling through the air, resulting in a shorter detection range when compared to other sensors. This
technology is commonly used in automotive vehicles to support parking assistance and close-range
collision avoidance systems.

The versatility of ultrasonic sensors has allowed them to be adapted for various civilian applications

beyond automotive uses, including industrial automation, object sorting, and robotic sensing.

1.2.2 LiDAR

Another sensor commonly used in autonomous vehicles is the Light Detection and Ranging (LIDAR)
sensor. LIDAR sensors were initially developed for remote sensing applications in the 1960s, and their
use has since expanded to various fields, including the automotive industry.

These sensors work by emitting laser pulses and measuring the time it takes for these pulses to
bounce back after hitting an object. By rapidly changing the emitter’s position, it is possible to generate
a 3D map of the scene, providing highly detailed information about the shape, size, and distance of

objects.

(a) LIDAR data of a road sce- (b) Result of the tracking (c) RGB images with the de-
nario. method. tected obstacles’ bounding
boxes.

Figure 1.2: These images illustrate the results of an obstacle tracking method that uses 3D LiDAR point clouds,
described in [4].



Fig. 1.2(a) shows the data measured by a LiDAR sensor in a road scenario. Figs. 1.2(b) and 1.2(c)
show the results of bounding box estimation using LIDAR data, described in [4].

While LiDARs have been widely used in the automotive industry for obstacle detection and mapping,
their effectiveness still has some limitations. Besides, it is known that difficult weather conditions, namely

rain, can heavily degrade the quality of the readings from LiDAR sensors [5] [6].

1.2.3 Cameras

Cameras are cheap, compact, and offer excellent imaging capabilities. In autonomous vehicles,
camera-based perception systems play a vital role in understanding the surrounding environment. Two
main camera technologies are being used in today’s systems: Red-Green-Blue (RGB) cameras and
Depth cameras. These systems can be further categorized into monocular and stereo camera systems.

Monocular systems utilize a single camera, either a RGB or a Depth camera. These systems rely
on algorithms to extract useful information from the data provided by the camera, which can then be
used to estimate the sizes, positions, and shapes of objects in the scene. Some of the more advanced
techniques involve the usage of Machine Learning techniques to segment the data from the camera into

different sections, typically separating the road from the obstacles as seen in Fig. 1.3.

Figure 1.3: Example of the result of segmentation on a typical road scenario.

Stereo camera systems, on the other hand, employ two or more cameras with a known baseline
separation. By comparing the images captured from different viewpoints, stereo vision algorithms can
estimate the depths of the scene. These systems use the same techniques as monocular systems.
However, the additional number of cameras can improve the quality of the results, although it comes at
the cost of increasing the complexity of the required algorithms [7].

Camera systems are more sensitive to environmental factors than LiDARs due to their reliance on
visible light. In adverse conditions, such as fog or rain, the visibility of objects captured by cameras may
be significantly reduced, decreasing the system’s image quality and accuracy. Additionally, variations in
lighting conditions, such as strong glare or low-light environments, can wash out important visual details

from the resulting images.



1.2.4 mmWave Radar Sensor

Radio Detection And Ranging (RADAR)s are another crucial sensor used in autonomous vehicles for
perceiving the surrounding environment. Initially developed for military applications during World War 11,
radar has been widespread in various applications, including the automotive industry.

RADARs operate by emitting electromagnetic waves and analyzing the reflected signals, resulting
from the emitted signal being reflected after hitting an object (Figure 1.4). This technology allows the
detection of objects and can provide valuable information about their position, velocity, and size.

The name Millimeter Wave (mmWave) comes from the fact that the wavelength of the electromagnetic

waves emitted by these sensors ranges typically from 1 to 10 millimeters.

Reflecting Target

Figure 1.4: Example of a Radar detecting an approaching airplane.

One of the primary advantages of mmWave radars is their ability to function effectively in various
weather conditions, including fog, rain, and snow, which can pose challenges to other sensing tech-
nologies. Due to their reliance on lower-frequency electromagnetic waves, radar signals can propagate
in these challenging environments, enabling detection and perception even in adverse conditions, as

demonstrated in [8].

1.2.5 Comparison of Technologies in ADAS

In the context of ADAS, the currently predominant technologies are the cameras, due to their ability
to capture detailed visual information, and the LIiDAR, due to their ability to quickly and accurately re-
construct a 3D scene. However, despite their long history and extensive research, some fundamental
difficulties are associated with each of these technologies.

Meanwhile, mmWave RADARSs, which are a relatively new technology, have the potential to improve
even more. Further research is still needed to refine the mmWave radar capabilities. Nonetheless, these
radars show great potential in complementing or enhancing the capabilities of cameras and LiDARs in
developing safe and effective autonomous driving systems.

The research in [9] and [10] provides insights into the different aspects of each sensor, showcasing



their major strengths and weaknesses in the context of obstacle detection in autonomous driving. Table

1.1 compares the main characteristics of each sensor.

Table 1.1: Comparison of Sensor Technologies

Sensor Type Camera Systems LiDARs Ultrasonic Sensors mmWave Radars
D;t:rc‘:;:n Short to Medium  Medium to Long Very Short Short to Long*
Detection High Medium to High Medium Medium
Accuracy
Detectl9n Medium to High Medium to High Very Low Low to Medium*
Resolution

Instar!t Ve!oclty No No No Yes
Estimation
Size Small Medium Very Small Small
Cost Low High Very Low Low to Medium
Robustness to
Adverse Moderate Moderate to High Low Very High
Conditions

* - The specific frequency used affects the effective range of the radar.

1.3 Importance of Object Classification

Accurately classifying obstacles in real-time is crucial for ensuring safe and reliable autonomous
driving. Autonomous vehicles must be able to perceive and understand their surroundings, including
identifying and classifying a diverse range of obstacles, both static and dynamic.

For instance, in highway scenarios, a vehicle moving at a constant speed poses a lesser threat to
another moving vehicle than a vehicle that is stationary in the middle or on the side of the road. Similarly,
in urban environments, near crosswalks or areas with high pedestrian volume, vehicles need to be able

to distinguish between pedestrians and stationary obstacles such as traffic signs.

1.4 Research Problem and Objectives

This thesis explores the current challenges of using mmWave RADARSs in obstacle detection and
tracking applications. While mmWave RADARS offers advantages such as robustness in adverse weather
conditions and the ability to detect objects at long ranges, there are several challenges related to the
lower resolution of these sensors, the complexity of accurately interpreting RADAR signals, and differ-
entiating between various obstacles in dynamic road environments.

The objective of this thesis is to develop a robust obstacle detection and tracking algorithm that uses

exclusively mmWave RADAR data as an input. The algorithm will be designed to handle the specific



challenges of low-resolution and noisy data from these radars. After development, its performance will

be evaluated through a series of tests in diverse real-world road scenarios.

1.5 Document Outline

This thesis is organized as follows:

» Chapter 2: Background & State of the Art provides a brief overview of some of the current State
of the Art approaches to the obstacle tracking problem as well as a detailed explanation of the

working principles of mmWave RADAR sensors;

» Chapter 3: Problem Statement discusses in more detail the problem of obstacle detection and

tracking, as well as some important considerations needed to create a robust system;
» Chapter 4: Developed Algorithm explains the proposed solution;

» Chapter 5: Results contains the results obtained by running the developed algorithm on road

scenes from a public dataset, as well as road scenes recorded with our own setup;

» Chapter 6: Conclusion provides some overall conclusions about the developed algorithm, its

limitations and possible improvements in future work.
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This chapter explores the current advancements and methodologies in automotive obstacle detection
and tracking, focusing initially on the well-established technologies of cameras and LiDARs followed by
an explanation of the working principles of the mmWave RADAR technology along with some of the

more promising algorithms that can be applied to the data coming from the RADAR.

2.1 Sensor Applications Today

2.1.1 Cameras

Recent works focused on the usage of cameras resort mainly to machine learning techniques to
process data and extract information.

An example of this approach involves using a Neural Network to convert data from an RGB camera
into a point cloud, which is subsequently processed by a clustering algorithm to detect obstacles in the
scene [11]. This method illustrates the increasing trend of combining traditional imaging with advanced
computational techniques to enhance detection accuracy and reliability.

Another different approach involves using multiple depth cameras to provide multi-directional ob-
stacle detection around a vehicle [12]. These cameras create a 3D representation of the surrounding
environment. Various techniques are then applied to the point cloud generated by the cameras to filter
out noisy points and interpolate regions where information is missing. Finally, the processed point cloud
is segmented to identify obstacles in the vehicle’s path.

Given that roads are inherently designed with visual cues to guide drivers, it is evident that cam-
eras, as sensors that excel in capturing visual information, will continue to play an indispensable role in

automotive safety systems, especially when paired with other types of sensors.

2.1.2 LiDAR

Many different works have been carried out using LiDARs as a basis, from mapping to obstacle
detection; which makes LiDARs one of the most adaptable sensors in today’s automotive automation
sector.

LiDARs generate high-density point clouds, offering great versatility in processing approaches. One
common approach involves using derivations of a famous neural network capable of processing point
clouds and segmenting the data into different classes, PointNet [13].

One such example involves using a LIDAR sensor placed on a car in an urban scenario to detect
obstacles with a custom Neural Network derived from PointNet [14]. This approach can correctly track
and estimate the positions and orientations of other vehicles on the road; however, it is unable to do the

same for some other obstacles, such as motorcycles.

13



Another approach developed an algorithm capable of segmenting and tracking data from a LiDAR
[15]. The algorithm begins by filtering out road-related data and identifying clusters in the remaining
data. It then classifies static obstacles through template matching with previous data frames and moving
obstacles using geometric feature matching algorithms. The identified obstacles are tracked with a
standard Kalman Filter. This is effective at tracking the positions and yaw angles of obstacles on the
road. However, it faces challenges when dealing with obstacles very close to each other, often clustering
them into a single large obstacle.

As urban environments grow more congested and road layouts become more complex, the role of
LiDAR in automotive safety systems becomes increasingly indispensable. Its precision in recreating

detailed road scenes is invaluable for developing reliable ADAS.

2.1.3 Radar

Given that the point clouds produced by mmWave RADARs are sparse and noisy when compared
to point clouds produced by Depth cameras and LIiDAR sensors, current approaches focus mainly on
the usage of mmWave sensors paired with other sensors. This allows for the overcoming of certain
limitations of each sensor and the improvement of the quality of the results.

One approach uses both a mmWave radar and a LiDAR to create a multi-obstacle tracking system
[16]. The results demonstrate that the fusion of these sensors leads to better tracking performance
than methods using only one of the sensors. Improvements are observed across various benchmarks,
including obstacle position, velocity, and size estimations.

Another study developed a Neural Network to infer depth in images from an RGB camera, aided
by a mmWave radar [17]. The results indicate that the addition of the mmWave radar enhances image
segmentation quality, particularly in scenarios where the subjects in the scene contain metallic surfaces
that reflect radar signals effectively.

There are approaches that focus solely on the use of radar sensors. For instance, one study uses
data from two separate mmWave radars in a Neural Network to estimate bounding boxes of obstacles
within the radars’ Field Of View (FoV) [18]. While this approach shows promising results, it requires a
substantial amount of training data, necessitating the creation of bounding boxes for many hours of data,

which can be labor-intensive.

2.1.4 Working Principles of Radar

Radars work by emitting a known signal and detecting the reflections of this signal created by obsta-
cles in the sensor’s FoV. The Radar Equation (2.1) provides the mathematical relationship between the

transmitted and received signal power in radar systems.

14
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p, = DGGA ol t(i;%géF 2.1)

Here P. and P, are the power of the received signal and the power of the transmitted signal re-
spectively, G; and G,, are the gains of the transmitting and receiving antennas respectively; X is the
wavelength of the emitted signal, o is the cross-section of the obstacle; F' is the propagation factor, R
is the distance from the emitter to the obstacle, and L is a factor that represents all propagation losses
other than free space path loss. This equation encapsulates all the relevant parameters that can influ-
ence the relationship between the reflected and the emitted signals, e.g., how the cross-section ¢ of an
obstacle directly influences how much power is reflected to the radar.

In the case of mmWave radars, the emitted signal is a Frequency-Modulated Continuous Wave
(FMCW), usually a sinusoidal wave often referred to as chirp (Fig. 2.1). The chirp signal is charac-
terized by a start frequency (f.), bandwidth (B), duration (7.), and slope (S) representing the rate of

change of frequency.
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Figure 2.1: Signal emitted by a mmWave radar.

Each of these chirp parameters directly affect the characteristics of mmWave radars such as maxi-
mum detection range (R,,qz), range resolution (R,..,), maximum velocity (v,,4:), and velocity resolution

(vres) is described in 2.2.

c A A

— Upmazr = — ; s = —— 2.2
237 UTTLG.L 4Tc ) U’rea 2Tf ( )

R’muw X Tc; R'r'es =

Here, T'; corresponds to the time interval of each frame of radar data, which includes multiple chirps,
as each frequency sweep occurs in just a few nanoseconds. Fig. 2.2 shows a sequence of chirps in one
frame of radar data. Fig. 2.2(a) illustrates the emitted chirps, while Fig. 2.2(b) shows both the emitted

chirps and the received signals.
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Figure 2.2: Sequence of chirps and reflections.

In this example, there’s only one reflected signal, indicating one detected obstacle. However, there
are often many unwanted reflections and noise in real-world scenarios. To correctly estimate obstacle
distances, it is necessary to know the exact frequency difference between the emitted and the received
signals; this difference is also known as beat frequency. To do so, radars mix the emitted signal with the
received signals, resulting in an Intermediate Frequency (IF) signal. A Fast Fourier Transform (FFT) is

applied to the sequence of IF signals to obtain the actual frequency difference between the two signals.

Let z; and x5 represent the emitted and the received signals, respectively, each represented by a

sinusoidal wave with its frequency (w1, w2) and its phase shift (¢, ¢2):

Te = sin(wit + ¢1)

(2.3)
T, = sin(wat + ¢2)
By mixing these signals, the resulting IF signal is going to be a sinusoidal wave with the form:
TIp = sz’n[(wl - LUQ)t + (¢1 - ¢2)} (24)
For an obstacle at distance d, equation 2.4 can be further simplified to:
Tip = Asin(27rf1Ft+¢1F) (2.5)

Where the values of frr and ¢;r can be written in function of the distance to the target (d), the slope
of the chirp signal (), and the wavelength of the emitted wave at the center frequency (\). The complete

mathematical deduction of these variables can be found in [19].

Jir = 52d (2.6)

c
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brr Y (2.7)

The distance (d) between the obstacle that reflected the wave and the sensor can be easily obtained

after estimating the time delay (v) between the emitted and reflected waves:

r==6d=7 (2.8)

Having estimated the distance of the obstacle, from 2.7, it is possible to derive the phase difference

(A¢) between the emitted and received signal:

_AmuT

A \

(2.9)

In equation 2.9, the term T, corresponds to the observation interval, which is equal to the time
duration of the modulation of the chirp signal, as seen in Fig. 2.1(b). This equation can be rearranged
to estimate the radial velocity (v) of the obstacle that reflected the chirp signal:

AP

v = IroT, (2.10)

In order to obtain the correct radial velocity (v) estimation, radars perform a second FFT, known
as the Doppler FFT, on the sequence of phase differences over time. This results in a Doppler spec-
trum, where each frequency corresponds to a different possible velocity of the detected obstacle. The
spectrum’s peak frequency corresponds to the detected obstacle’s correct velocity.

In summary, equations 2.8 and 2.10 show how to estimate the distance and the radial velocity,
respectively, of a single target relative to the mmWave sensor. In order to estimate the spatial coordinates
of the detected obstacle, a different approach is necessary.

By knowing the angle of a reflected signal along the horizontal plane, called Angle of Arrival (AoA), it

is possible to estimate the obstacle’s position in this plane. Fig. 2.3 contains a visualization of the AoA.

object

¥
o

radar

Figure 2.3: Angle of arrival. [19]

To estimate the AoA along a plane, at least two Receiving Antennas (Rx) antennas are required.

Given that the two antennas are in slightly different positions, each Rx antenna will measure a different
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distance d. Fig. 2.4 contains a visualization of the differences in distance measured by each of the Rx

antennas.

d+Ad
™ RX
antenna antennas

Figure 2.4: Two antennas are required to estimate the AoA. [19]

In the configuration of Fig. 2.4, the phase change between the two antennas can be derived mathe-

matically by equation 2.11.

_ 27Ad

A¢ \

(2.11)

Under the assumption the two Rx antennas are on the same plane, the distance Ad can be expressed
as lsin(6), where [ is the distance between the antennas. By rearranging equation 2.11 with this new

value of Ad, it is possible to calculate the AoA of the reflected wave:

AAD

— ein—1
0 = sin (27rl)

(2.12)

Using multiple Rx antennas makes it possible to estimate the AoA across various planes. In fact, with
only three Rx antennas, it is possible to estimate the relative 3D position between the detected obstacle
and the radar. The spatial arrangement of these antennas dictates the shape of the radar’s FoV and the

resolution along each axis.

It is worth noting that, so far, the assumption is that the radar has detected only one object, i.e.,
there is only one reflection of the emitted chirp signal. In reality, however, multiple reflections of the
emitted signal are reaching the Rx antennas simultaneously. To distinguish between different reflections,
these radar sensors use FFTs to detect the various beat frequencies present in the IF signals, each
corresponding to a detected obstacle. A more in-depth explanation of this process can be found in the

official Texas Instruments document where the mmWave radar fundamentals are explained. [19]

In summary, the data generated by a mmWave radar with multiple Rx antennas can then be inter-
preted as a 3-dimensional point cloud, where each detected point contains additional information about

the module of its radial velocity.
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2.2 Datasets

As research in ADAS has grown, large datasets featuring recordings from various sensors in diverse
road scenarios have emerged. These datasets, containing a wide range of driving conditions, were
developed to support and encourage the advancement of ADAS technologies.

One of the first datasets created was the KITTI Dataset, recorded using a stereo camera system
consisting of an RGB camera and a monochrome camera, a 3D LiDAR sensor, and vehicle position
data provided by Global Positioning System (GPS) [20].

As the demand for more complex datasets increased, new datasets containing more data, recorded
with newer sensors, and, importantly, including labeled data, were created. An example is the NuScenes
dataset, which comprises 1000 scenes recorded across four different cities [21]. This dataset was
recorded using one LiDAR, six cameras providing a 360-degree view around the vehicle, five mmWave
radars (three at the front and two at the back of the vehicle), and data from a GPS and Inertial Mea-
surement Unit (IMU) placed inside the vehicle. The inclusion of labeled data is crucial for training neural
networks.

In recent years, various radar models have been used across datasets, generally categorized into
two main types: the 2+1D radars, which capture range, azimuth, and radial velocity, and the 3+1D
radars, which incorporate elevation along with the previous measurements. For example, the NuScenes
dataset [21] and the RadarScenes dataset [22] contain data recorded with 2+1D radars. However,
more recent datasets tend to use the more advanced 3+1D radars, which is the case of the Pointillism
dataset [18] and the View-of-Delft Dataset [23].

2.3 Clustering Algorithms

The analysis of RADAR data presents some challenges due to the presence of significant noise
within the generated point cloud and their lower resolution. To identify possible obstacles in the point
cloud, it is necessary to apply clustering algorithms. Some algorithms stand out for processing the data

generated by RADAR sensors.

2.3.1 DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is an algorithm specifically
designed to handle sparse and noisy point clouds, making it particularly well-suited for analyzing data
from the mmWave radar. This algorithm finds dense areas and expands these recursively, forming

individual clusters, separated by low-density zones that exist in the point cloud.
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Algorithm 1 Pseudocode of Original Sequential DBSCAN Algorithm

Input: DB: Database, e: Radius, minPts: Density threshold, dist: Distance function
Output: Clusters and noise points
Data: label: Point labels, initially undefined
for all point p in database DB do
if label(p) # undefined then
continue
end if
Neighbors N < RANGEQUERY(DB, dist, p, €)
if |N| < minPts then
label(p) < Noise
continue
end if
¢ < next cluster label
label(p) < ¢
Seed set S «+ N\ {p}
forall ¢in S do
if label(¢) = Noise then
label(q) < ¢
end if
if label(q) # undefined then
continue
end if
Neighbors N < RANGEQUERY(DB, dist, ¢, ¢)
label(q) + ¢
if | V| < minPts then
S+~ SUN
end if
end for
end for

The effectiveness of DBSCAN relies on two main parameters: ¢ (epsilon) and minPts. The param-
eter e defines the maximum distance that determines the neighborhood of a data point, while minPts
specifies the minimum number of data points required within that neighborhood for a point to be con-
sidered a core point. DBSCAN distinguishes between three types of points: core points, which have
a sufficient number of neighboring points within ¢; border points, which have fewer neighbors than the
required minimum but are within the neighborhood of a core point; and noise points, which have neither
enough neighbors nor fall within the neighborhood of a core point.

Algorithm 1, as described in [24], explains the iterative process behind the original DBSCAN algo-
rithm. In the worst-case scenario, where each point in the point cloud represents a different obstacle,
DBSCAN has a time complexity of O(n?). However, it is possible to pre-process the point cloud data
with spatial indexing structures, such as k-d trees or R-trees, before applying the DBSCAN algorithm.
This pre-processing can reduce the time complexity from O(n?) to O(log(n)) [25].

One study, described in [26], presents a Spacial-Temporal Clustering (STC)-based method built upon

the DBSCAN algorithm to work with mmWave radar point clouds. Another one, explained in [27],
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proposes an inter-frame DBSCAN clustering method for data generated by mmWave radars, utilizing

Doppler information.

2.3.2 K-means Clustering

K-means clustering is a widely used algorithm for partitioning data into distinct groups based on
similarity. It is a centroid-based algorithm, where each cluster is represented by its centroid, which is
equal to the average of all the points in that cluster.

K-means clustering aims to minimize the sum of squared distances between each data point and its
assigned centroid. This optimization objective leads to an iterative process that converges to a locally
optimal solution.

Algorithm 2 outlines the steps involved in the K-means clustering algorithm. It begins by initializing &
centroids randomly within the range of the data points. Then, it iteratively performs two steps: assign-
ment and update. In the assignment step, each data point is assigned to the nearest centroid based on
the Euclidean distance in the assignment step. In the update step, each centroid is recalculated as the
mean of the assigned data points. These steps are repeated until convergence is achieved, indicated
by minimal centroid movement or after a predefined number of iterations. The K-means algorithm has a
time complexity of O(n x k « I « d), where n is the number of data points, k is the number of clusters, I is
the maximum number of iterations of the algorithm, and d is the dimensionality of the data.

Algorithm 2 The K-means clustering algorithm

Input: D: Point cloud data, k: Number of clusters
Output: Cluster assignments and centroids
Initialize k& centroids randomly within the data range
while Convergence or maxIter do
Assign each data point to the nearest centroid
Update each centroid as the mean of the assigned data points
end while

The choice of the number of clusters, k, is crucial in K-means clustering, as it can significantly impact
the resulting clusters and their interpretability. In obstacle detection, it is impossible to know the number
of obstacles (clusters) a priori. However, there are techniques that can be used to estimate the optimal
number of clusters for a given dataset [28] [29].

The Doppler information can also be used to add one degree of dimensionality to the data, which
may increase the effectiveness of the clustering algorithm.

A mmWave radar-based algorithm using the K-means clustering technique is presented in [30]. Here
the radar data is used to estimate the positions of pedestrians in a situation containing both human and

non-human obstacles.
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2.4 Tracking Algorithms

This section presents some tracking algorithms that are typically used in object-tracking situations.
These algorithms estimate and predict the motion of detected objects over time by combining successive

information relative to the object being tracked.

2.4.1 Kalman Filter

The Kalman Filter is a widely used tracking algorithm that provides an optimal estimation of state
variables by iteratively combining measurements with predictions based on a linear dynamic model.
The Kalman Filter assumes that the system being tracked can be described by a linear dynamic model
and that the noise present in the measurements follows a Gaussian distribution.

The Kalman Filter basic equations are presented in (2.13) and (2.14). x; corresponds to the vector
of the system’s state variables in the instant k, and z; corresponds to the measurements of the state
variables in instant k.

T = Axp_1 + Bug + wi_1 (2.13)
zr, = Hxp + v, (2.14)

From (2.13), it is possible to confirm that x;, results from a linear combination of its previous value, a
control signal u, which can be null at times, and a process noise wy_1, which captures the uncertainty
or randomness in the state evolution. (2.14) shows that the measurements z; also result from a linear
combination of the state plus the measurement noise vy.

The values A, B, and H correspond to the state transition matrix, the control input matrix, and
the measurement matrix, respectively. In linear problems, these matrices contain just numeric values,
although these values may change between states.

The process noise wy_; and the measurement noise v, are assumed to be Gaussian. However, even
if the noises’ mean and standard deviation are poorly estimated, the Kalman Filter can still converge to
correct estimations.

The algorithm operates in two main steps: the prediction step and the update step. In the prediction
step, the time update equations estimate the values of the current state and the error covariance for the
next time step. In the update step, the measurement update equations adjust the previously estimated
values based on the actual measurements at that time step.

Fig. 2.5 showcases the equations used in the Kalman Filter and also how each iteration is processed
[31].

In the time update equations, @ is the process noise covariance, 2, is the a priori state estimate

obtained from previous state estimations (Z,_,), and P, is the error covariance estimate at iteration k.
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Figure 2.5: Kalman Filter equations and iterations. [31]

In the measurement update equations, R is the measurement noise covariance, iy, is the a posteriori
state estimate given by the actual measurements z;, P is the a posteriori error covariance estimate,

and K}, is the Kalman gain at iteration .

By iteratively repeating the prediction and update steps, the Kalman Filter can continuously refine its

estimation of the system’s state over time, resulting in a robust and accurate tracking solution.

The Kalman Filter assumes linear system dynamics and measurement models. However, in many
real-world systems, the underlying system dynamics and measurements are non-linear. The Extended
Kalman Filter (EKF) and the Unscented Kalman Filter (UKF) are two widely used variations to address

this issue.

The EKF [32] addresses this issue by linearizing the system dynamics and measurement functions
using first-order Taylor series approximations. It provides a way to estimate states in non-linear systems
by incorporating the linearized models into the prediction and update steps. However, the EKF relies on
the assumption that the system’s characteristics are approximately linear within the estimation region,

and its performance can be affected by significant non-linearities, resulting in large estimation errors.

To address highly non-linear systems, the UKF [33] directly captures the mean and covariance of a
set of carefully selected sample points called sigma points. By propagating these sigma points through
the non-linear functions, the UKF provides a more accurate approximation of the actual state distribution

compared to the EKF.

An experiment was conducted using a mmWave radar to capture data in an agricultural field with
some moving obstacles [34]. The EKF algorithm was applied to the radar data to track the obstacles.
The results showed that the estimations from the EKF had an average error that was 51.6% lower than

the average observations from the radar, demonstrating it as a viable approach to the problem.
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2.4.2 Particle Filter

The Particle Filter, also known as the Sequential Monte Carlo (SMC) method, is another widely used
tracking algorithm in object-tracking scenarios. Unlike the Kalman Filter, which relies on assumptions
of linearity and Gaussian distributions, the Particle Filter is a non-parametric and non-linear filtering
technique. ltis particularly effective in handling non-linear and non-Gaussian systems, making it suitable
for a wide range of tracking applications.

The Particle Filter estimates the system’s state by representing it with a set of particles, each rep-
resenting a possible hypothesis of the system’s state. These particles are randomly generated and
propagated over time based on the system dynamics and measurements.

The Particle Filter's basic functioning is described in five steps: initialization, prediction, update,
resampling, and estimation.

The initialization consists of generating an initial set of particles x;, where i = 1,2,..., N. Each z;
corresponds to a hypothetical system state and each of these particles has a weight associated with it,
which is initially set to +-.

In the prediction step, each particle is propagated forward in time based on the system’s dynamics.

(2.15) represents the forward propagation of a single particle z;.

2, = f(zi,u) +w; (2.15)

In (2.15), «} is the propagated state, f(.) is the non-linear motion model, « is the control input, and
w; is the process noise.
In the update step, the importance (or likelihood) of each particle is evaluated based on the mea-

surements of the system. The measurement model is represented by Equation 2.16.
z = h(z;) + v; (2.16)
In (2.16), z corresponds to the measured value of the system, h(.) to the non-linear measurement
function, and v; to the measurement noise. The weight update process is described in (2.17).
w = w; - P(z|;) (2.17)

In (2.17), w; corresponds to the updated weight, and P(z|x;) to the likelihood or probability of the
measurement given the particle’s state.

In the resampling step, the particles with lower associated weights are eliminated. This aims to
concentrate particles in regions with higher probability, ideally converging to a single high-density region.

There are different techniques to perform the resampling, such as systematic resampling or resampling
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with replacement.
In the final step, an estimation of the system is obtained by computing the weighted average of the

particle states, as described in (2.18).

N
j:Zwi-xi (218)
=1

By iteratively repeating the prediction, update, resampling, and estimation steps, the Particle Filter
can refine its estimation of the system’s state over time, providing a robust and accurate tracking solution.
The work developed in [35] presents a method based on the Particle Filter to create a mmWave-
based beam tracking algorithm. This approach highlights the potential application of a Particle Filter in

our system.

The described algorithms, along with their variations and extensions, demonstrate to be viable ap-
proaches for processing the data generated by mmWave radar sensors. Among these, DBSCAN and
Kalman Filter appear to be simpler to implement in the early stages and are therefore the initial choices

for the system.
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Let’s imagine the hypothetical situation in Fig. 3.1. This image presents a road with two opposing
lanes, where multiple vehicles drive simultaneously. In one of the lanes, there are two vehicles, denoted
Vehicle A and Vehicle B. The opposing lane contains a single vehicle, referred to as Vehicle C. Adjacent
to the road is a row of trees, representing possible stationary obstacles.

Let us assume the perspective of Vehicle B in this scenario. The presence of multiple obstacles,
including other vehicles and stationary obstacles such as trees, introduces potential dangers that Vehicle
B must proactively detect and account for in its decision-making processes. To ensure safe navigation,
Vehicle B must accurately perceive the neighboring vehicles’ positions, velocities, and trajectories and

acknowledge the presence of stationary obstacles and their positions.
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Figure 3.1: Hypothetical road situation.

3.1 Thesis Objective

This work aims to develop a real-time detection and tracking system based on a set of mmWave
radars. This system should be able to detect both stationary and moving obstacles and should be able

to correctly predict the motion of the latter, once they leave the radars’ FoV.

3.2 Radar Data Interpretation and Processing

As mentioned in Chapter 2, radar-generated data contains the positions and the velocities of some

points in its field of view. Fig. 3.2 presents an example of the data measured by the radar.
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(a) RGB image of the radar’s FoV (b) Frame of radar data.
Figure 3.2: Example of a radar data frame.
In (3.1), the generic structure of the data that will be handled is presented.
Pir(n) = [Tir(n), Yir (1), 2ir (1), vir(n)] (3.1)

Where i corresponds to the index of the point and ranges from 0 to N (number of detected points)

and r corresponds to the index of the radar and ranges from 0 to R (number of used radars).

Each frame of radar data will inevitably contain points that correspond to reflections from the road
surface or unwanted noisy measurements. These points are not relevant to the problem at hand and
must be removed, taking into account the radar spatial position in the scene.

The points obtained from multiple successive radar measurements will be grouped into clusters
based on their location and velocity attributes. In (3.2) is presented a set of clusters: the result of
the clustering of the data from radar r at instant n. M corresponds to the total number of clusters re-
sulting from this process. Each cluster ¢,,,-(n) has a set of radar points associated with it, as seen in
(8.3).

Cr(n) = {c1r(n), car(n), ...ycprr(n) } (3.2)

Cmr (n) = {pir(n)7pi’7“(n)7 ceey Pttt (TL)} (33)

Finally, eachcluster will be tracked individually and updated as new clusters are detected. The lifes-

pan of each point within the cluster must be carefully selected because the velocities of obstacles can
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change rapidly and the presence of outdated points in a cluster can affect its analysis. The sequential

steps involved in the proposed solution to the problem are illustrated in Figure 3.3.

Obtain sensor | Filter noisy N Align .| Detect clusters
data ” data accumulated "1 in the data
frames
\ 4
Accumulate the Track the
points in the [« detected
clusters clusters

Figure 3.3: Solution pipeline.

3.3 Placement of the Radar

The accurate placement of the radar system is crucial to ensure effective obstacle detection and
situational awareness. Fig. 3.4 visually demonstrates the impact of radar placement on the FoV, repre-
sented by the red cone. Each sub-figure contains two images: the upper image depicts the view from

the XY plane, while the lower one represents a view from the Z-axis.

(a) Radar FoV, when placed at roof (b) Radar FoV, when placed at headlight
height. height.

Figure 3.4: Effect of radar placement on the FoV.
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From these images, it is possible to conclude that placing the radar too high introduces blind spots
near the vehicle, compromising its ability to detect obstacles in close proximity, while placing the radar
too low leads to the intersection of the road with the radar FoV, reducing its effective area for obstacle
detection.

Another challenge involves the placement of multiple radars in the same vehicle. Fig. 3.5 represents

the fields of view of two radars placed on the same vehicle.

Figure 3.5: Placement of two radars on the same vehicle.

It is possible to see that there are areas where both FoVs overlap, which can potentially improve
the quality of detections within these zones. However, there are also areas covered by only one radar,
which can be increased by reducing the overlap of the two FoV, increasing the covered area. The
balance between maximizing coverage and enhancing the quality of detections remains an ongoing
challenge in the automotive context. An experiment was conducted using mmWave radars for Human
Activity Recognition (HAR) [36]. The tests demonstrated that fusing data from multiple mmWave radars

significantly improves the precision of detections compared to using a single radar.

3.4 Coordinate Frames

It is also important to define the appropriate coordinate frames to deal with the positions of the
obstacles and the vehicle.

We assume that a road can be considered a two-dimensional plane for simplicity and ease of analy-
sis. Figure 3.6 illustrates the coordinate frames of the radar (R), the car (C), and the world (W).

Within this diagram, it is possible to observe the coordinate frame associated with the car, typically
referred to as the ego frame or vehicle frame. This frame serves as a reference when measuring the
positions and orientations of objects relative to the vehicle.

The radar’s coordinate frame is the reference to all of its measurements. These measurements need
to be converted into the car’s coordinate frame to ensure consistency and ease of integration with other

vehicle systems.
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Figure 3.6: Important coordinate frames.

The world coordinate frame is essential to accurately locate the vehicle within its surrounding envi-
ronment. Using this frame, it is possible to define the vehicle’s position using global coordinate systems

such as the Universal Transverse Mercator (UTM) coordinates.

3.5 Vehicle Kinematics

When tracking vehicles, it is advantageous to use appropriate kinematic models to predict their mo-
tion rather than assuming free movement. This constrains the movement predictions to a smaller and
more probable set of values.

A simplified car-like vehicle kinematic model, described in [37], is a potential consideration for future

implementation in this work.

v

X
Figure 3.7: The kinematic model of a car-like vehicle. (z,y) are the coordinates of the rear axle midpoint, 6 is the
orientation of car, ¢ is the steering angle and [ is the wheelbase. [37]

The state variables of this kinematic model are the position of the vehicle’s rear axle midpoint
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(X,Y, Z), the orientation of the car and its variation (8, ©), and the steering angle and its variation (¢, ®),
which can be seen in (3.4).

The system inputs are the car’s linear velocity (v) and the car’s steering velocity (w), as shown in
(3.5).

s(n) = [z(n),y(n), 2(n), 0(n), O(n), (n), ®(n)] (3.4)
u(n) = [v(n),w(n)] (3.5)

Finally, the kinematic equations of the vehicle in this model can be expressed in matrix form as shown
in (3.6).

[z(n+1)] [1 0 0 0 0 0 0] [z(n)] [At-cos(@(n)) O

y(n+1) 0100 0 0 0] ]|yn) At - sin(f(n)) 0

2(n+1) 0010 0 0 0l]zn 0 0

Bn+1)| =10 0 0 1 At 0 o |6(m)]|+ 0 0 [”(”)} (3.6)
om+1)| 0000 0 0 0f]|6Mm tan®® 0 w(n)

sn+1)| 0000 0 1 At]|sén) 0 0

3(n+1)] 0000 0 0 of|am)] | o K]
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This chapter explains in detail the algorithm developed, as well as the considerations and choices

made while developing it. The developed algorithm can be divided into a few different steps:

4.1 Acquiring Radar Data

This algorithm utilizes the Robot Operating System (ROS) framework for communication with the
radar, by subscribing to the relevant ROS topics. The official mmWave ROS Driver from Texas Instru-

ments [38] was used to publish the radar data onto ROS topics.

4.2 Filter Unwanted Data

Following radar data acquisition, an initial filtration step is executed to mitigate false detections and
points irrelevant to the problem. In this stage, data points with aberrant height values, when considering
the radar placement, are filtered. Additionally, points within a small radius of the radar are also filtered,

as most of these detections result from interference.

4.3 Align Accumulated Data

The data generated by the radar is sparse and noisy, which presents a challenge when trying to clus-
ter the data based on point density because there are instances where an obstacle will only produce a
single point in space. To overcome this, a strategy to utilize multiple frames of radar data was employed.
This consists of accumulating the last L frames of radar data and aligning the L — 1 previous frames to
the most recent one.

This is possible because of the radial velocity values measured by the radar, which allows the predic-
tion of future positions of the points. The initial prediction is done with the radial velocity value v,.. Once
the same point has been associated with two different clusters, it is possible to estimate the velocity of
this point by measuring the displacement of the clusters between frames, from where v, results. The
velocity vector v, is more accurate than the radial velocity measured by the radar v,.. This process is
explained in Algorithm 3.

Each time a point position is aligned to the most recent frame, its uncertainty increases. This means
that the number of frames to accumulate, L, should not be too high, as this is also the number of updates
done to each point.

This strategy results in an increase of effective data, allowing the clustering algorithm used, DBSCAN,
to have a denser point cloud as the input. Fig. 4.1 shows how much difference accumulating and aligning

the recent frames of data (with L = 5) can make, even in a scene where only one obstacle is present.
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Algorithm 3 Temporal Alignment Function

Input: Frame of radar data
Output: Aligned frame of radar data
function TEMPORALALIGNMENT(frame f)
Compute At between frame f and last frame
for pointin f do
Compute radial velocity vector v, using Doppler value
if point has 2+ associated clusters then
Estimate more accurate velocity v, of the point
end if
if point has v, associated then
Update point: point < point 4+ v, - At
else
Update point: point < point + v, - At
end if
end for
return frame f aligned
end function
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(a) RGB image of aroad scene.  (b) Single frame of radar data

(XY plane projection).
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Figure 4.1: Comparison of a single frame of radar data and the result of accumulation and aligning of recent frames

radar data.
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4.4 Cluster Detection

The chosen clustering algorithm to implement in the algorithm was DBSCAN. While, initially, K-
means clustering was considered, it proved to be hard to estimate the number of obstacles in the scene.
The number of obstacles could be estimated by having a RGB camera monitoring the area correspond-
ing to the FoV of the radar sensor and running an external methodology to estimate the number of
obstacles in the scene, however, since DBSCAN performed well in early tests, it was chosen instead.

Depending on the radar configuration used, the ranges and densities of the point clouds generated
can vary significantly, meaning that, for each configuration, the values of ¢ and minPts in a cluster must
be tuned.

-25

Y (meters)
s

-10 -5 0 5 10
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Figure 4.2: Clusters resulting from DBSCAN (XY plane projection).

Fig. 4.2 illustrates the result of the clustering algorithm in the scene described in Fig. 4.1. After each
cluster is obtained, its centroids and the average values of v, and v, can be estimated by averaging all
the associated points. The covariance matrices of each cluster can also be obtained, which will be used
to update and initialize the associated Kalman filters. In Fig. 4.2, the calculated variance of the points in

each cluster is represented by the red ellipse.

4.5 Cluster Tracking

Once each cluster properties are obtained, it is possible to initialize a Kalman filter to track each
cluster individually. The chosen properties to track correspond to the centroid position (z,y, z) and
velocity direction (z, 7, 2), which can be collectively represented as the state vector x,,, described in

(4.1):

o = [, s s 2l @)
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With this state representation, the system dynamics can be described using the state transition matrix

A, described in (4.2):

~

Xy, (4.2)

Xn+1 =

cooc oo =

cooco~o

coo—oo

o~ocolbo

—ocooboo
<

r{l oomool
<

We can now define the observation vector y,,, which comprises two sub-vectors: y; representing
the position information ([z, y, z]) and y> representing the velocity information ([, y, 2]). This separation
allows for the positions and velocities of the centroids to be updated separately. The observation vector

yn is presented in (4.3):

Yn = [y1n7y2n]T (43)

Given that there are two velocity values (v, and v,) associated with each cluster, it may be possible to
update the Kalman Ffilter velocity with two different measurements, resulting in a better estimation. The
Kalman Filter implementation allows the estimation of the positions and velocities of each centroid over
time, creating robust tracking for each cluster, even with noisy property estimations. Fig. 4.3 illustrates
the result of the Kalman filter tracking for each cluster detected in Fig. 4.2. Here, the magenta ellipses

represent the tracking uncertainty of the centroid position.
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Figure 4.3: Kalman filter tracking results (XY plane projection).
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4.6 Data Publishing

Finally, all the calculated parameters are published into ROS topics, meaning they can be visualized
with the built in ROS visualizer, rviz, and that they can also be recorded into a rosbag file for posterior
analysis.

4.7 Algorithm Structure

Algorithm 4 outlines the steps of the developed solution: it starts by accumulating and aligning the
data to the most recent frame (T'emporal Alignment function is described in Algorithm 3), followed by
detecting clusters within the data, and finally updating current tracks and creating new ones when nec-

essary. In every iteration, each point may be associated with a cluster.

Algorithm 4 Developed Algorithm

Input: Sparse data from a mmWave radar
Output: Array of detected obstacles, along with their
properties: [X, Y, z, &, ¥, Z]
while Data received do
Accumulate the last L frames
fori=1:L —1do
Temporal Alignment(frame 1)
end for
DBSCAN(Aligned Data, eps, MinPts)
Update list of associations
if no Kalman Filters then
Create a Kalman Filter track for each detected cluster
else
Predict the next state of existing Kalman Filters
Update Kalman Filters with closest valid cluster
Create a Kalman Filter track for new clusters
end if
end while

Initially, a particle filter approach was also considered for testing. However, due to time constraints,

this approach was not pursued.
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To evaluate the performance of the developed algorithm, tests were conducted using the Pointillism
dataset [18], a public dataset containing recordings of various road scenes captured with a LIiDAR,
two mmWave radars, and an RGB camera. This specific dataset was selected because the mmWave
sensors used for recording are very similar to the one available in our lab. After verifying that the
algorithm was fully operational, additional scenes were recorded using our current setup for further

analysis.

5.1 Real Time Analysis

This algorithm was developed to operate in real-time. To assess its performance, the execution time
of each iteration of the algorithm was measured in both a scene from the Pointillism dataset [18] and a

scene recorded with our setup. These tests were run on a quad-core laptop running Ubuntu 20.04.

Fig. 5.1(a) shows the execution times of the algorithm running with the Pointillism dataset, while
Fig. 5.1(b) presents the execution times for our recorded scene. Some iterations exhibit abnormally
long execution times, likely due to sudden drops in performance or momentary synchronization issues.
However, the majority of iterations execute well within the radar publishing frame rate, which was set
to 30 frames per second in the Pointillism dataset and 15 frames per second in our experiments. The
difference in execution times between the Pointillism dataset and our recordings is attributable to the
different radar configurations used; the configuration used in our recordings generates more points per

frame than the one used in the dataset, requiring more time to process.
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(a) Histogram of the iteration execution (b) Histogram of the iteration execution
times in a scene from the Pointillism times in a scene recorded with our
dataset. setup.

Figure 5.1: Algorithm execution time analysis.
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5.2 Results with a public dataset

In all of the following figures containing ellipses, the ellipses correspond to a confidence level of 3o,
which represents approximately 99.7% certainty that the points will fall within the corresponding bounding
ellipse.

The parameters of the radar configuration used for recording the scenes in the Pointillism dataset [18]
are presented in Table 5.1, along with the parameters used in the algorithm, shown in Table 5.2.

Table 5.1: Radar Configuration Parameters
Table 5.2: Algorithm Parameters

Parameter Value
Start Frequency 77 GHz DBSCAN Parameters Value
Frame Rate 30 fps € 1.5
Bandwidth 2240 MHz MinPts 3
Range Resolution 0.067 m G icP val
ADC Rate 7500 ksps eneric Parameters alue
Chirp Duration 40 us Num Accumulated Frames 6
Velocity Resolution 2.59 m/s Kalman Filter Lifespan 10
Maximum Velocity 20.74 m/s

Frame 74 Frame 79 Frame 81

Frame 85

X-axis (m)
X-axis (m)
X-axis (m)

S

0 0 0
-15 -10 5 0 5 10 -15 -10 5 0 5 10 -15 -10 5 0 5 10 -15 -10 5 0 5 10
Y-axis (m) Y-axis (m) Y-axis (m) Y-axis (m)

Figure 5.2: Excerpt of scene14, where a car moves away from the sensor. The top row of images contains RGB
images of frames 74, 79, 81, and 85, respectively, and the bottom row contains the radar measurements
of the same frames.

Fig. 5.2 presents a sequence of frames taken from “scene 14” of the dataset. In this sequence, a
vehicle is moving away from the radar sensor. The top row of images contains the RGB image of the
scene, while the bottom row contains snapshots of an aerial view of the radar measurements, along with
the associated radial velocities represented by green arrows. In these snapshots, the sparse nature of
the radar data is evident. Additionally, the last frame of radar data in Fig. 5.2 highlights the limited range
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of the radar configuration used, where the distant vehicle returns no measurements while the closer one

does.

Frame 93
Frame 39

E E
" £
@ X
¥ (1]
> x
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Y-axis (m) Y-axis (m)
(a) Tracking of the vehicle described in Fig. (b) Unsuccessful tracking example.

5.2.

Figure 5.3: Tracking examples on a scene 14 from the dataset.

Fig. 5.3(a) shows the result of the algorithm tracking the front vehicle from Fig. 5.2 over time. The
centroids are represented by small white circles, the estimated confidence ellipses by the yellow and
the blue ellipses, and the velocity vectors estimated by the algorithm by red arrows. The yellow ellipses
correspond to the confidence ellipses associated with the clustering algorithm and are calculated using
the covariance of the points within the cluster. The blue ellipses, on the other hand, originate from the
Kalman Filter tracking this vehicle and reflect the uncertainty of the system’s state estimation over time.
As expected, after each successful update, the uncertainty of the system diminishes. However, when
the tracked vehicle exits the FoV of the radar, the tracking stops receiving new updates, relying solely on
its predictions to estimate the system’s state, resulting in progressively higher uncertainty.

It is apparent that the algorithm’s performance improves as the distance from the sensor increases.
This is because the sensor was placed on the side of the road, causing vehicles to enter the radar’s FoV
at a 90-degree angle. As mentioned previously, when the target moves perpendicular to the radius of
the FoV, the velocity measurements of the radar do not correspond to the actual velocity of the target,
causing the initial predictions to exhibit jittery movement. However, as the distance from the sensor
increases, the radial velocity measured becomes closer to the actual movement direction of the target,
leading to smoother tracking.

Fig. 5.3(b) depicts the movement of another vehicle in "scene 14” of the dataset, this time moving
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towards the radar. The algorithm fails to track the vehicle correctly, which can be explained by the
fact that the Kalman Filter did not have enough updates to estimate the vehicle’s movement accurately.
Additionally, the final updates were performed when the vehicle was moving perpendicular to the radius
of the radar’s FoV, resulting in poorer v, predictions. We can conclude that tracking vehicles moving

toward the radar is less reliable than tracking vehicles moving away from the radar with this method.

5.3 Results with current setup

Initially, the radar configuration used in our experiments was intended to match that of the Pointillism
dataset (Table 5.1); however, issues arose when parsing this configuration into our radar sensor. This
led to the experimentation with different configurations in road scenarios. The analysis of each config-
uration was conducted qualitatively, relying on visual inspection rather than quantitative data. The most
promising configuration is presented in Table 5.3, and the algorithm parameters used are shown in Table
5.4.

Table 5.3: Radar Configuration Parameters
Table 5.4: Algorithm Parameters

Parameter Value
Start Frequency 77 GHz DBSCAN Parameters Value
Frame Rate 15 fps € 1.0
Bandwidth 5000 MHz MinPts 6
Range Resolution 0.083 m -
ADC Rate 5000 ksps Generic Parameters Value
Chirp Duration 192 us Num Accumulated Frames 4
Velocity Resolution 0.029 m/s Kalman Filter Lifespan 10
Maximum Velocity 19.8 m/s

Fig. 5.4 shows the setup used for our experiments. It comprises an Intel RealSense camera [39]
to record RGB images of the scene and an AWR1443 mmWave radar from Texas Instruments [40].
The camera is placed directly above the radar sensor’s antennas, providing a better perspective of the
obstacles within the radar’s FoV.

The scenes recorded with our setup focused on situations where vehicles on the road move toward
or away from the sensor, as these are the most common scenarios while driving.

Fig. 5.5 illustrates a successful tracking example of a vehicle moving toward the sensor. The top row
displays RGB images of the tracked vehicle, while the bottom row shows the trail of detections of this ve-
hicle over time. This scene also contains some parked vehicles, which serve as stationary obstacles in
this situation. Each snapshot of the tracked obstacles contains two clearly defined obstacles, validating
the ability of the developed algorithm to also handle static obstacles. This visual representation effec-

tively illustrates the algorithm’s ability to accurately track the vehicle as it approaches the sensor, even
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Figure 5.4: Sensor setup containing a TI mmWave radar [40] and a RealSense camera [39].

during periods when the tracking system receives no updates and must rely solely on its predictions.
The blue ellipses indicate iterations where the Kalman Filter has not been updated, leading to increased
uncertainty in the tracking.

%

Figure 5.5: RGB snapshots of the scenario where a vehicle is moving toward the radar sensor.

Fig. 5.6 presents an example of a vehicle moving away from the sensor. From the snapshots of the
tracked obstacles, we conclude that, with this radar and algorithm configuration, the maximum detection
range is around 13m when the obstacle is moving away from the sensor. However, in the situation
described in Fig. 5.5, where a vehicle is moving toward the sensor, the maximum detection range
is between 6m and 8m. This discrepancy highlights the impact of accumulating recent frames over
iterations while applying the time alignment method described in Algorithm 3, as each point’s position is
updated based on its estimated velocity, slightly increasing the number of detections at the limit of the
radar’s FoV.

Fig. 5.7 contains a larger version of the complete tracking of the vehicles mentioned above. As in
Fig. 5.3, the centroids of the Kalman tracking are represented by small white circles, and the estimated

confidence ellipses of the clustering algorithm results and the Kalman filter are represented by the yellow
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Figure 5.6: RGB snapshots of the scenario where a vehicle is moving away from the radar sensor.

and blue ellipses, respectively. Finally, the estimated velocity direction and intensity of the tracking are
represented by red arrows.

Some tests were performed with the radar setup held by hand, creating a less stable scenario com-
pared to using a static tripod. This introduced small oscillations around all axes. These tests simulate
the oscillations that occur when a vehicle is moving. Although we don’t have direct evidence, the tracking
performance was not affected by these small oscillations. This suggests that in a scenario where the
setup is mounted on a vehicle moving in a straight line, the developed algorithm can function effectively

without the need of any tuning.
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Figure 5.7: Tracking examples on scenes recorded with our setup.
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6.1 Achievements

The objective of this thesis was to study the development of radar perception algorithms for obstacle
tracking and classification. This objective was successfully achieved by developing a detection and
tracking system based on mmWave radar technology. The system’s characteristics, advantages, and
limitations were thoroughly analyzed and discussed.

It was concluded that, while it is feasible to rely solely on the data generated by mmWave radars to
create a simple, low computational complexity detection and tracking algorithm, its performance depends
heavily on the specific radar configuration used. With this in mind, for some applications, this technology
is most effective when combined with other sensors to compensate for the low resolution of the radar
data.

An article [41] explaining the research conducted in this thesis was published and presented at the
2024 |EEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). This

publication underscores the current interest and relevance of this research topic.

6.2 Conclusions

The developed algorithm is capable of successfully detecting and tracking vehicles crossing the
radar’s FoV. It performs better at tracking vehicles moving away from the sensor compared to those
moving toward it. This is due to the nature of the radar measurements, where the radial velocity is more
accurate and useful when an obstacle is not too close to the sensor and not moving perpendicular to

the radar’s FoV.

6.3 Future Work

The performance of the algorithm is highly dependent on the quality of the radar data measurements.
The radar configuration used could be further optimized, and finding the ideal configuration is something
that should be done.

Further improvements to the algorithm itself could include estimating a minimum distance from the
radar at which measurements cease to be useful, refining the Kalman Filter matrices, exploring the use
of different state variables, and investigating alternative clustering criteria. Additionally, extrapolating
bounding boxes for each obstacle based on the Kalman Filter state uncertainties would be beneficial.
Integrating an IMU into the algorithm could improve the temporal alignment of data, particularly in dy-
namic scenarios, by compensating for small movements of the sensor.

The current model assumes that every obstacle can move in any direction and change direction at
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any time. Future work should incorporate more realistic kinematic models for each obstacle, as this
can better constrain the possible movements, leading to reduced uncertainty when predicting vehicle
motion. Finally, this algorithm should be evaluated with multiple radar sensors and in a non-static setup

to assess its performance under varied and realistic conditions.
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