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Resumo

De modo a continuar a explorar órbitas terrestres baixas de forma economicamente viável, a indús-

tria aeroespacial necessita de soluções de controlo orbital eficientes e de baixo custo. Devido a re-

centes inovações em tecnologias de propulsão elétrica e à possibilidade emergente de implementação

de software complexo a bordo de satélites, os sistemas de controlo orbital autónomo surgem como a

solução mais indicada para satisfazer esta procura. Na presente dissertação, o problema de controlo

orbital é formulado como um problema de voo em formação, no qual o satélite líder (virtual) cumpre

os requisitos da missão. A dinâmica do problema é descrita utilizando um modelo linear periódico

discreto que exibe precisão comparável a modelos não lineares presentes na literatura. De modo a

desenvolver um regulador linear-quadrático para controlo orbital, propõe-se um algoritmo eficiente para

a solução da equação de Riccati periódica discreta. A solução de controlo desenvolvida na presente

dissertação controla todos os elementos Keplerianos, apresentando consumo reduzido de combustível

e dependendo apenas de atuação na direção transversal e perpendicular ao plano da órbita. O método

proposto explora, de forma notável, a mecânica orbital inerente ao problema, priorizando manobras em

locais ótimos ao longo da órbita. Simulações realizadas num propagador de alta fidelidade mostram

que o controlador desenvolvido atinge um seguimento da órbita de referência mais preciso, com menor

consumo de combustível, do que um dos métodos mais eficientes de controlo orbital, desenvolvido

para a missão PRISMA. Por fim, o algoritmo desenvolvido é validado também para correção de erros

de injeção na órbita.

Palavras-chave: Controlo orbital autónomo, satélite em órbita terrestre baixa, equação de

Riccati periódica discreta, propulsão elétrica
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Abstract

The increasing number of satellites orbiting Earth, alongside recent advances in electric propulsion

technologies and in on-board computational capability, call for novel autonomous orbit control solutions.

In this thesis, the orbit control problem is formulated as a formation keeping problem, where the refer-

ence spacecraft fulfills the mission requirements. Taking advantage of the periodic characteristics of a

satellite’s orbit, a discrete-time linear periodic model of the relevant dynamics is developed. The pro-

posed model is shown to have comparable accuracy to nonlinear models of the same dynamics found

in the literature. A novel solution for the discrete-time periodic Riccati equation (DPRE) is proposed,

and then leveraged in the design of a linear-quadratic regulator (LQR) for autonomous orbit control.

The proposed algorithm for the solution of the DPRE is computationally efficient and can be applied

to singular systems, contrary to some alternative algorithms. The control system proposed in this the-

sis achieves accurate reference tracking of all Keplerian elements, with low fuel consumption, resorting

solely to transverse and normal actuation. Notably, the control algorithm leverages the dominant or-

bital mechanics of the problem, prioritizing station-keeping maneuvers at the optimal locations along the

orbit, while remaining computationally light. Resorting to high-fidelity simulations, it is shown that the

proposed control algorithm attains more accurate reference tracking, with lower fuel consumption, than

an autonomous orbit control system designed for the PRISMA mission: one of the most precise orbit

control systems found in the literature. Lastly, the control system is also validated for the correction of

orbit injection errors.

Keywords: Autonomous orbit control, LEO spacecraft, discrete-time periodic Riccati equation,

electric propulsion
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Nomenclature

The following list describes several symbols that are consistently utilized along the body of the

present thesis. Matrices are denoted in bold typeface and uppercase. Vectors are denoted in bold

typeface and lowercase. Scalars are displayed in light typeface.

Greek symbols

ϵ Relative orbital element vector.

ξ Mean orbital element vector difference.

λ Longitude.

µ Standard gravitational parameter.

Ω Right ascension of the ascending node.
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δa Relative semi-major axis.
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A State matrix.
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r Position vector.

u Input.

v Velocity vector.
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x State.

y Output.
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a Semi-major axis.
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B⋆ Ballistic coefficient.

Cd Drag coefficient.

e Eccentricity.
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G Gravitational constant.
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m Spacecraft mass.
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p Period of a discrete-time periodic system.
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U Gravitational potential.
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Subscripts

N Across-track (normal).
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Chapter 1

Introduction

Since 1957, when the first artificial satellite was launched, thousands more have been placed into

orbit, with about 8700 satellites still currently operating [1, 2]. Society depends on satellites for numerous

services; they provide information, assure real-time communications, and support global security and

defense [3]. The vantage point satellites possess allows them to see large portions of Earth at one time.

As a result, satellite technology can collect and distribute data more efficiently than instruments on the

ground [4].

1.1 Motivation

Out of the 8700 satellites orbiting Earth, almost 8000 occupy a low Earth orbit (LEO) [1, 2]. Low

Earth orbits are characterized by being relatively close to the Earth’s surface. Their upper bound is often

defined as 2000 km, yet satellites in these orbits usually occupy an altitude of less than 1000 km, reaching

as low as 160 km [5]. Satellites in low Earth orbit are commonly used for Earth observation missions,

which provide vital information used to monitor and evaluate changes in the natural and human-made

environment [6]. Low Earth orbits are also home to large satellite constellations, such as Starlink and

OneWeb, which aim to provide worldwide broadband coverage [7]. A satellite’s proximity to Earth leads

to lower response time (latency), higher bandwidth, and diminished radiation damage. It also presents

benefits when it comes to end-of-life operations, as de-orbiting is facilitated [8]. Placing a satellite in a

low Earth orbit requires the lowest amount of energy, and thus cost, for the satellite launch [9]. This

makes LEO very attractive to countries that are not at the forefront of space technology, as only a few

institutions are able to launch satellites to higher Earth orbits [10].

During its motion, a satellite is strongly influenced by various perturbations, with diverse magnitudes

and directions, disturbing the satellite and leading to deviations from the desired orbit [11]. A satellite’s

orbit determines its position in the sky, conditioning the data it can gather and communicate. Therefore,

orbit maintenance is a common problem in the operation of satellites and is key for the success of

most missions [12]. This is particularly true for a satellite in LEO, as the denser atmosphere close

to the Earth’s surface substantially increases the impact of the atmospheric drag on the satellite’s orbit.

1



Additionally, orbit decay in LEO can lead to a satellite reentering and burning in the atmosphere, resulting

in complete mission failure [13].

Orbit control is a well-established concept in traditional space missions. This technique is often

dependent on ground operations and fulfills a wide range of applications, from single spacecraft to for-

mation flying orbit control [14, 15]. While orbit control still mostly depends on ground operations, the

current landscape of a related system, spacecraft attitude control, is very different. Autonomy in atti-

tude is well established and is considered essential [14]. Yet, a failure in an attitude control system is

more dramatic than a failure in an orbit control system, since it can result in an uncontrolled, tumbling

spacecraft, while a failure in the orbit control system would only cause the orbit to decay slowly, giving

ground operations more time to troubleshoot the problem and take recovery measures. This comparison

highlights the fact that the main roadblock to introducing autonomous orbit control is simply tradition. Or-

bit control has always been done from the ground, and new programs are very risk-averse and slow to

embrace the innovative autonomous orbit control systems [14]. Still, autonomous orbit control presents

many benefits. It guarantees better accuracy and flexibility than ground based orbit control, and allows

for simpler ground operations [16]. Moreover, the implementation of autonomous orbit control would

free the staff on-ground to accomplish other tasks. Autonomous orbit control can also lead to significant

savings on propellant mass since it allows the use of efficient low-thrust propulsion systems, such as

electric propulsion systems [17]. As the required accuracy for orbit control increases, the time between

two consecutive orbit-keeping maneuvers becomes smaller and, due to the latency between two con-

secutive ground station contacts, the choice of an autonomous (on-board) orbit control system becomes

the only feasible way to precisely control a spacecraft’s orbit [18].

Many recent developments are catalysts for the research of novel autonomous orbit control tech-

nologies. First, the augmented CPU capability on-board satellites allows for faster and more accurate

orbit propagation, leading to more precise control and decreasing the dependence on on-ground oper-

ations [19]. The increase in the amount of satellites in space also strengthens the importance of the

implementation of autonomous orbit control, particularly when satellites are utilized as part of large con-

stellations, since the ground operations associated with orbit control must be highly efficient in order

to support a complex mission without an oversized ground segment [20]. Furthermore, for small low-

cost satellites, ground-based control actions can represent a significant portion of both cost and mission

risk. To allow such systems to be economically viable, a need for low-cost, accurate orbit maintenance

systems arises [14]. The necessity for accurate low-cost orbit maintenance systems and the emerging

possibility to implement complex software on-board a spacecraft call for a paradigm shift in the industry

towards autonomous orbit control.

1.2 State of the art

Over the last two decades, several theoretical studies and in-flight demonstrations have been con-

ducted to develop and validate autonomous orbit control systems for LEO satellites [18]. Microcosm

was amongst the first companies to work on autonomous orbit control, in the early 1990s, developing
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the orbit control kit (OCK) software. Microcosm’s OCK aimed to keep the satellite’s orbit from decaying,

maintaining the satellite in a "box" which kept a predictable position relative to users on the ground [21].

The software was tested in 1999 on the UoSAT-12 mission and, in 2006, on-board the TacSat-2 satellite.

The results from these missions demonstrated that the OCK software was capable of autonomously

controlling the spacecraft’s position in its orbital plane (within about 1 km). Moreover, the algorithm did

not require complex orbital mechanics and orbit propagation, as it depended on simple geometric calcu-

lations [22]. Despite the success in controlling the spacecraft, the fuel spent in the station-keeping ma-

neuvers was equivalent to what would have been required to return the spacecraft to its initial orbit had

all the thrust been applied at the end of the test [21]. In 2004, the French DEMETER (Detection of Elec-

tromagnetic Emissions Transmitted from Earthquake Regions) satellite was controlled autonomously,

further demonstrating the capability of applying autonomous orbit control as a routine feature without

causing any deterioration to the scientific mission of the satellite [23].

The autonomous orbit keeping (AOK) controller, tested on the PRISMA mission in 2011, is one of

the most recent and accurate autonomous orbit control methods validated in-flight [18]. The algorithm

maintains the ascending node of the orbit within the required tolerance (10 m) by means of along-

track maneuvers (i.e. maneuvers along the orbital plane) which adjust the semi-major axis [24]. The

following year, a novel control system for the PRISMA mission was validated, via high-fidelity software

simulations, revealing better performance than the AOK algorithm [16]. The locations of the maneuvers

were decided a priori, employing an analytical rule, and the optimal maneuver at the selected location

was computed via a linear-quadratic regulator (LQR). An alternative method employing a linear control

law based on a simplified model was also validated in [16], displaying similar performance to the LQR.

The control system hinged on a linear time-varying model of the relevant dynamics which, however, did

not include all the six orbital elements. Moreover, the in-plane and out-of-plane control problems were

solved separately.

A control system employing model predictive control (MPC) was proposed in [25]. One of the advan-

tages of this control methodology is that it can guarantee optimality (with respect to some performance

measure) while simultaneously satisfying constraints on system states and inputs [26]. The study per-

formed in [25] showed that, in some cases, the fuel consumption for station-keeping can be substantially

lower when employing model predictive control instead of LQR. This can be attributed to the fact that

LQR, having no inequality constraints, can command an optimal maneuver that leads to the satura-

tion of the actuators, ending up realizing a suboptimal maneuver. Besides, the fuel consumption of the

LQR algorithm applied in the PRISMA mission will depend on where the problem is solved, since the

maneuver might be calculated and executed in a suboptimal location (decided a priori). On the other

hand, MPC can predict the behavior of the system and therefore execute a calculated maneuver at the

optimal location in the satellite’s orbit [25]. Still, MPC is severely limited by its substantial computational

complexity, due to the limited CPU capability on-board a satellite.

Nonlinear feedback control laws can be studied as an option to solve the problem at hand. Employing

nonlinear control can prove beneficial in improving robustness and in increasing the region of the state

space in which the system can be successfully controlled. On the other hand, there are no well-defined
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methodologies of choosing gains for the nonlinear control law, and it can be a laborious task to find

good values due to the complexity of the system [27]. Finding ways to exploit the dominant orbital

mechanics of the problem has been an issue while applying this methodology to orbit control. Ideally,

some feedback gains should be maximum for a very short time and practically zero for the remainder of

the orbit, in order to perform the maneuvers in the portion of a satellite’s orbit where they are known a

priori to be more effective [27, 28]. A method of choosing suitable feedback gains in order to accomplish

this goal was proposed in [28]. With this method, performances of at least similar accuracy to the LQR

algorithm applied to the PRISMA mission were achieved. Moreover, the nonlinear control laws proposed

in [28] were shown to decrease the reference tracking error to as low as a few meters, even when starting

kilometers away from the reference orbit.

Various autonomous orbit control techniques, such as [16, 21, 23, 25], employ chemical propulsion

technologies, relying on a few large maneuvers every orbit (or every few orbits). The emergence of

efficient electric propulsion techniques enables new control strategies. For instance, a control method

employing a low-thrust electric propulsion system was proposed in [17]. This autonomous control sys-

tem relied on continuous actuation for along-track corrections, employing a Lyapunov-based control

methodology, while the cross-track corrections (i.e. maneuvers perpendicular to the orbital plane) were

impulsive and computed analytically. The efficiency of the low-thrust electric propulsion system utilized

allowed for significant savings on propellant mass, leading to an increase in the spacecraft’s lifetime [17].

The autonomous orbit control problem can be described as a formation keeping problem, where

the (virtual) reference orbit is affected solely by the Earth’s gravitational field. This virtual orbit fulfills

the mission requirements, and the real orbit will deviate from this reference due to perturbations (e.g.

atmospheric drag, third-body perturbations, and solar radiation pressure). The goal is then to counteract

the effects of these perturbations with efficient orbital maneuvers. This definition of a reference orbit

is often seen in the literature [16, 17, 25, 28]. A nonlinear model expressing the deviation between

the spacecraft’s true orbit and the reference orbit can be obtained in order to apply Lyapunov-based

analysis, as seen in [17]. An accurate linearized (time-variant) model can be derived in order to employ

an LQR or MPC, as shown in [16] and [25], respectively.

1.3 Objectives

This thesis is motivated by the advances in electric propulsion technologies, and the needs in orbital

station-keeping, which call for novel autonomous, adaptive, and flexible space robotic control solutions.

This work aims to develop an autonomous control system which keeps the satellite’s orbit close to

the reference orbit, counteracting the (undesired) effects of perturbations. Particularly, the aim is set

in developing a computationally light control algorithm which, nonetheless, attains accurate reference

tracking with minimum fuel usage, leveraging the dominant orbital mechanics of the problem. With this

in consideration, the goals of this thesis are:

1. Derive suitable mathematical descriptions of the perturbations affecting a satellite’s orbit, in order

to characterize the motion of the satellite.
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2. Develop a model which describes the effects of perturbations on the orbit of a LEO satellite, with

suitable accuracy, and that can be leveraged using advanced control methodologies. Validate the

models utilizing the ephemerides resultant from orbital propagation with a high-fidelity simulator.

3. Design a novel automatic control system for single satellites, taking advantage of the derived

model, aiming for good reference tracking with minimal fuel usage and low computational cost.

4. Validate the proposed control solution with a high-fidelity orbital simulator, including on-board nav-

igation errors and realistic actuators.

1.4 Contributions

Taking advantage of the periodic characteristics of a spacecraft’s orbit, a discrete-time linear periodic

model expressing the deviation of the true orbit from the reference orbit is developed. While various mod-

els of the intended dynamics have been developed, these are either nonlinear [17], or linear time-varying

(non-periodic) models [16], limiting the applicability of control techniques. Moreover, the dynamics of the

in-plane and out-of-plane motion of the satellite are often separated in the literature, to develop simpler

control laws, which often do not maintain all six orbital elements [16, 17]. The proposed linear periodic

model includes the full dynamics of the problem and is shown to be very accurate when compared to

nonlinear models of the same dynamics found in the literature. Furthermore, it is discussed how the

discrete-time linear periodic model can be rewritten as an equivalent linear time-invariant (LTI) model,

to which powerful well-known control techniques can be applied. Since the developed LTI system is

equivalent to the original linear periodic system, it is likewise very accurate when compared to existing

nonlinear models. This is the first major contribution of this work. The development of an accurate linear

periodic and an (equivalent) linear time-invariant model, which include the full dynamics of the problem,

pave the way for future work employing advanced control solutions.

Another contribution of this thesis is the development of a novel solution to the discrete-time periodic

Riccati equation, in order to develop an LQR control solution for the periodic system. The proposed

method relies on an algorithm that converts a discrete-time linear periodic system into a linear time-

invariant equivalent, whereupon standard techniques for the algebraic Riccati equation can be applied.

This solution is computationally efficient and can be applied to singular periodic systems, contrary to

alternative algorithms to solve discrete-time periodic Riccati equations.

The control law proposed herein addresses the main shortcomings of autonomous orbit control sys-

tems found in the literature. Contrary to various existing methods, the control system proposed efficiently

maintains every Keplerian element, resorting solely to maneuvers in the along-track and cross-track di-

rections (i.e. no actuator aligned in the radial direction is required). Moreover, the control system takes

full advantage of the orbital dynamics associated with the problem, prioritizing maneuvers at the optimal

locations along the orbit. As a result, the developed control strategy allows for tight reference track-

ing with low fuel consumption. The proposed solution is also computationally light when compared to

methods such as MPC; a sizable benefit when implementing software on-board a satellite.
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1.5 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 is composed by a summary of

background concepts necessary for the intended research. It consists of a description of the employed

reference frames, an introduction to the two-body problem, and a discussion of the effects of pertur-

bations on the motion of a spacecraft. Additionally, commercially available sensors and actuators are

presented, alongside an introduction to the control methodology employed. Chapter 3 discusses how

the perturbations acting on the spacecraft can be modelled, and how a nonlinear model of the space-

craft’s reference and true orbit can be developed. In Chapter 4, an efficient solution to the discrete-time

periodic Riccati equation is proposed. The algorithm is validated, and it is shown to be more efficient

than existing methods. Chapter 5 includes the development of a linear periodic model for the deviation

of the true orbit from the reference orbit. The model is validated, being compared to a nonlinear model, a

linear time-varying (non-periodic) model, and the true motion of the spacecraft, obtained via high-fidelity

simulations. Chapter 6 provides an overview of the proposed control methodology. The proposed control

system is validated and compared with an impulsive control strategy designed for the PRISMA mission.

Additionally, the control scheme is validated for the correction of orbit injection errors. Finally, Chapter 7

summarizes the findings of this thesis and discusses future work.
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Chapter 2

Background

The current chapter offers important background, necessary to set and address the problem of satel-

lite orbit control. Section 2.1 offers insight into suitable reference frames to describe the problem. Section

2.2 presents an introduction to the two-body problem. This theory is a good starting point for the study

of orbital motion, however, perturbations acting on the system need to be taken into account to properly

model the problem. Section 2.3 describes the most important perturbations, how these can be mod-

elled, and their effects on the motion of a spacecraft. Next, Section 2.4 presents existing sensors and

propulsion technologies applicable to orbit control. Lastly, Section 2.5 introduces some basics of the

control methodology that is at the root of the proposed design.

2.1 Reference frames

The first step for describing an orbit is defining a suitable reference frame [29]. The coordinate

systems used to describe orbits in the solar system are typically either heliocentric (Sun-centered) or

geocentric (Earth-centered). However, the origin may occasionally be taken at the center of another

small body [30]. For a spacecraft orbiting Earth, the most suitable choices of reference frame are a

geocentric frame and a frame centered on the orbiting body.

2.1.1 Geocentric frame

The Earth and its orbit around the Sun form the basis of geocentric coordinate systems. The plane

of the Earth’s mean orbit around the Sun is denominated the ecliptic, and the angle between Earth’s

equator and the ecliptic is called the obliquity of the ecliptic (γ ≈ 23.5◦ ). The line of intersection between

these two planes, denominated line of nodes, aids in fixing a principal direction for the coordinate system,

whose reference direction is chosen towards the vernal equinox [31]. The direction of the vernal equinox

(often referred to as the first point of Aries) is designated à. This point is defined as the location where

the sun crosses the equator from south to north, as seen from Earth [30, 31].

A geocentric-equatorial reference frame can then be characterized by an Î-axis pointing in the vernal

equinox direction, a K̂-axis pointing in the direction of the North Pole, and a Ĵ -axis which completes

7



the right-handed set of coordinate axis, as shown in Figure 2.1 [29]. By definition, a geocentric-ecliptical

system is inclined in relation to the geocentric-equatorial frame (by the obliquity of the ecliptic). Due

to the precession of Earth’s polar axis, in a cycle that spans approximately 26000 years, these frames

are in motion, and are therefore non-inertial. Theoretical work is done with respect to the equator and

equinox of a standard epoch. Currently, the equator and equinox of the year 2000 are in use (J2000

Earth-centered inertial frame). In order to obtain accurate data from observing instruments, the epoch

of the standard frame is occasionally changed. The next change will happen in 2025 [32].

Figure 2.1: Geometry of the vernal equinox. Adapted from [31].

2.1.2 Satellite coordinate systems

The satellite coordinate systems, centered on the orbiting body, can be applied to studies of the

relative motion of a spacecraft. Such a system is the so called RTN (Radial-Transverse-Normal) frame,

composed by an R̂ axis pointing along the radius vector (from the Earth to the satellite), a T̂ axis

which is closely aligned with the satellite’s velocity, and an N̂ axis normal to the orbital plane, along

the angular momentum vector, in order to complete the right-handed coordinate system. The T̂ axis

is not necessarily parallel to the satellite’s velocity. However, this is always the case for circular orbits.

Radial displacements are often defined as being parallel to the position vector (R̂ axis). Along-track

displacements are normal to the position vector (along the T̂ axis), and cross-track displacements are

normal to the orbital plane (along the N̂ axis) [31].

It can be beneficial to have an axis aligned with the satellite’s velocity, instead of having an axis

aligned with the radius vector. In this case, an MVH frame can be employed, where the V̂ axis is aligned

with the satellite’s velocity vector, the M̂ vector is closely aligned with the radius vector, and the Ĥ axis

completes the right-handed coordinate system. The M̂ axis is not necessarily parallel to the radius

vector. However, this is always the case for circular orbits [31]. These two local (non-inertial) frames are

represented in Figure 2.2. For near-circular orbits, the difference between these frames is small (as the

velocity is almost normal to the radius vector), and these frames coincide for circular orbits.
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Figure 2.2: RTN and MVH coordinate frames. Adapted from [31].

2.2 Orbital Mechanics

The two-body problem is a fundamental cornerstone of the study of astrodynamics, often serving as

the starting point of more complex studies. In fact, practically any study of orbital motion will depend on

Newton’s laws, Kepler’s laws, and on the universal law of gravitation [31].

2.2.1 The two-body problem

Let the masses of the Earth and a satellite be denoted by M⊕ and m, respectively. For an inertial

coordinate system, the universal law of gravitation (for the force of gravity of the Earth acting on the

satellite) is given by

Fg = −GM⊕m

r2

(r
r

)
, (2.1)

where r is the position vector of the satellite, measured from the center of mass of the primary body, r

is the distance between the bodies, and G is the gravitational constant. Considering Newton’s third law,

the force the satellite enacts on Earth has the same magnitude and opposite direction to (2.1). Denoting

r⊕ and rsat as the position vector of the Earth and the satellite, respectively, then r̈ = r̈sat − r̈⊕, leading

to

r̈ =
Fg

m
− Fg

M⊕
= −G(M⊕ +m)

r2

(r
r

)
(2.2)

or, considering that the mass of the satellite is much smaller than the mass of the primary body:

r̈ = −µ⊕

r3
r, (2.3)

where µ⊕ = GM⊕ is the gravitational parameter of the central body - Earth in this case. Equation

(2.3) is the two-body equation. It is often called the relative form, because the motion is written in

reference to the primary body [31]. To derive this equation, it was assumed that no forces act on the

system, except for the gravitational forces of the two bodies, and the satellite and Earth were modelled
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as spherically symmetrical, with uniform density, so as to treat each as a point mass. Additionally, the

mass of the satellite was disregarded, as it will be orders of magnitude smaller than the Earth’s mass,

for the foreseeable future.

The two-body problem is a three degree of freedom dynamical system, and a particular orbit is

completely specified by the initial position and velocity vectors (r0 and ṙ0, given at some initial time t0).

While this is true in a mathematical sense, these initial conditions do not convey helpful information to

intuitively visualize the orbit. It is often advantageous to employ alternative representations that lend

themselves to being directly visualized. Hence, the most common approach to representing an orbit is

employing the six Keplerian elements (often simply denominated as orbital elements), which innately

describe the shape and orientation of the orbit [30, 32].

2.2.2 Keplerian element representation

One of Newton’s greatest achievements was showing that the motion under the influence of his law of

gravitation was described by a conic section, implying that all closed orbits are elliptical and showing how

the first Kepler law arises [29, 33]. With this knowledge, three parameters can be used to characterize

the motion of the satellite within its orbital plane (irrespective of its relation to the reference frame). Two

of these parameters characterize the shape of the conic section: the conic’s semi-major axis (a) and

eccentricity (e). The final parameter, true anomaly v, denotes the angle between the periapsis1 and the

orbiter, describing the current position of the body along the conic. Alternatively, the true anomaly v0 at

a certain epoch t0 can be utilized, as the rate of change of the true anomaly can always be obtained

(as a function of v, and the conic’s semi-major axis and eccentricity) [30, 32]. Commonly, the epoch of

passage at the periapsis (v0 = 0) is utilized.

It is often beneficial to consider other quantities, such as the mean anomaly M , which denotes the

fraction of an (elliptical) orbit’s period that has elapsed since the orbiting body passed the periapsis.

Defining T = 2π
√
a3/µ as the orbital period, the mean motion n (i.e. average rate of sweep) can be

written as n = 2π/T , and

M = n(t− τp), (2.4)

where τp is the epoch of passage at the periapsis and t denotes the current epoch. As shown in

Figure 2.3, three other quantities are required for the spatial orientation of the orbit. These are the

right ascension of the ascending node Ω, the orbital inclination i, and the argument of periapsis ω [32].

The right ascension of the ascending node (also denominated as longitude of the ascending node, for

geocentric orbits), is the angle in the equatorial plane, measured positive eastward, from the unit vector

Î (pointing to the first point of Aries) to the point where the satellite crosses the equator from south to

north, denominated ascending node. The inclination is expressed as the angle between the reference

frame and the orbital plane, and the argument of periapsis (or argument of perigee, for geocentric orbits)

is the angle between the ascending node and the periapsis, measured along the orbital plane [31].

1Periapsis denotes the point (along a bodies orbit) where the orbiter is closest to the primary body.
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Figure 2.3: Classical orbital elements on a geocentric-equatorial frame. Adapted from [34].

2.3 Perturbations

In the universe, there are more than two bodies, and these bodies can have irregular shapes, leading

to strongly nonspherical mass distributions. There will be a multitude of forces applied to the system de-

scribed in the previous section, so real orbits can seldom be properly modelled taking into consideration

the hypothesis of a two-body problem with spherical mass distributions. In order to accurately model

the motion of a body, especially for long periods of time, other forces need to be taken into account. To

do so, the effects of the main perturbations on the system must be properly modelled [35]. One way to

account for these effects is to simply add the perturbing accelerations to the two-body equation, deriving

a more accurate equation of motion. This method is denominated Cowell’s formulation [31], and can be

expressed as

r̈ = − µ

r3
r+ ap, (2.5)

where ap represents the accelerations caused by perturbations on the satellite. Setting ap to zero, the

equation of motion is reduced to the ideal Keplerian situation, where the central body is a sphere with

symmetrical mass distribution and all other disturbances are null (i.e. two-body problem) [27].

The main influence on a satellite orbiting Earth is the Earth’s gravitational field, more explicitly the first

term of its gravitational potential (representing the solution to the two-body problem). The second term

of the potential, denominated J2 coefficient, also has a significant impact, as depicted in Figure 2.4.

Thus, the gravitational field is often modelled at least up to this term. The relative importance of the

remaining perturbations heavily depends on the altitude of the satellite’s orbit. For satellites in low Earth

orbits, atmospheric drag takes a fairly large importance, becoming the most important factor besides the

Earth’s gravitational field. Other perturbations, such as the influence from third-bodies (especially from

the Moon and the Sun), solar radiation pressure, and tides have smaller effects [36].
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Figure 2.4: Magnitude of the main perturbations on a geocentric orbit. Retrieved from [36].

To numerically integrate Cowell’s formulation, mathematical models for each perturbing force must

first be derived [31]. The most impactful disturbing forces acting on the orbit of a satellite orbiting

Earth, such as the perturbation caused by the nonspherical mass distribution of the primary body, the

atmospheric drag, third-bodies, and the solar radiation pressure, are discussed in the following sections.

2.3.1 Earth’s oblateness

To accurately describe the gravitational force of a primary body, a potential function that includes the

perturbing accelerations due to the nonspherical mass distribution of that central body must be formed.

Integrating the potential of a differential mass element over the (central) body results in

U(r) = G

∫
β

dm(ρ)

||r− ρ||
, (2.6)

where ρ is the position vector of the differential mass element (dm) and β is the collection of all mass

elements. The gravitational potential (2.6) satisfies Laplace’s equation outside the body (∇2U = 0) and

Poisson’s equation inside the body (∇2U = −4πGσd), where σd represents the local density [35]. For a

sphere with uniform density, the integral of (2.6) yields (outside the body)

U =
µ

r
, (2.7)

which agrees with the previously presented solution for the two-body problem.

There are several methods to specify the gravitational potential of a nonspherical body. In fact, any
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solution which corresponds to the physical mass distribution of the body and that satisfies Laplace’s

equations will generally work [35]. The potential function U can be developed (see [31, 35]) to show that

the general form for the spherical harmonic potential for a gravity field at a point outside the body is

U =
µ

r

∞∑
w=0

w∑
q=0

(
R

r

)w

Pw,q(sinφ) (Cw,q cos qλ+ Sw,q sin qλ) , (2.8)

where the summation introduces the w and q indices as degree and order, respectively, R is a normal-

izing radius (chosen as the equatorial radius of the body2), Pw,q are associated Legendre functions,

Cw,q and Sw,q are the gravity field harmonic coefficients, which characterize the mass distribution of the

body, and φ and λ are the latitude and the longitude of the point, respectively [35]. Another very common

form of this relation, which separates the terms with q = 0 from the terms with q ̸= 0, is given by

U =
µ

r

(
1−

∞∑
w=2

Jl

(
R

r

)w

Pw,0(sinφ) +

∞∑
w=2

w∑
q=1

(
R

r

)w

Pw,q(sinφ) (Cw,q cos qλ+ Sw,q sin qλ)

)
, (2.9)

where Jw = −Cw,0 [31]. Note that the sign in the definition of Jw is merely a matter of convention,

chosen to make J2 positive [37]. The first term of (2.9) coincides with (2.7), representing the gravitational

potential of a spherical body with radially symmetric mass density distribution. The following terms

specify the influence of the deviations of the body’s shape and mass density distribution from a uniform

sphere. Particularly, the second term (zonal harmonics, q = 0) models the deviations in the north-

south direction and the third term (tesseral and sectorial harmonics) represents the deviations in the

north-south and east-west directions. For the tesseral harmonics q ̸= w holds, whereas for the sectorial

harmonics q = w [37]. The spatial structure of the spherical harmonics is presented in Figure 2.5, where

the shading represents regions of additional mass.

Figure 2.5: Spatial structure of spherical harmonics. (a) zonal harmonic P6, (b) sectorial harmonic P6,6,
(c) tesseral harmonic P12,6. Retrieved from [38].

Modern models for the Earth’s gravitational field often contain coefficients up to large order and

degree (2150 or higher). However, for bodies whose shape and mass distribution is roughly spherical

(such as planets) it is often viable to employ simpler versions of these models, as the first terms of

the gravitational potential will accurately model the gravitational field [37]. Consider Table 2.1, which

contains some coefficients Jw from the GRACE GGM02C Earth gravity field model. It can be noted that

J2 is, by far, the strongest perturbation due to the Earth’s shape, over 400 times larger than the next

largest coefficient (J3). The J2 coefficient accounts for most of the Earth’s gravitational departure from
2It can alternatively be defined as the mean radius of the body [37].
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a perfect sphere, and primarily characterizes the Earth’s equatorial bulge [31]. Therefore, the motion of

a satellite orbiting Earth can often be properly modelled as an ideal two-body problem, perturbed by the

effect of the second term of the expansion, J2 [39].

Table 2.1: Some coefficients of the GRACE GGM02C Earth gravity field model. Adapted from [37].

w Jw (10−6)

2 1082.6357
3 −2.5324737
4 −1.6199743
5 −0.2279051

2.3.2 Atmospheric drag

A spacecraft orbiting Earth suffers an acceleration due to the atmospheric drag. By definition, this

acceleration has opposite direction to the velocity of the vehicle relative to the rotating atmosphere [29].

The acceleration caused by the atmospheric drag is usually modelled by

aD = −1

2

CdA

m
ρv2rel

(
vrel

||vrel||

)
, (2.10)

where ρ is the atmospheric density, vrel is the orbital velocity in relation to the rotating atmosphere (with

magnitude vrel), Cd is the drag coefficient of the spacecraft, A is its cross-sectional area and m its mass,

as previously defined [31]. The velocity vector considered in (2.10) is not the velocity vector ṙ, typically

found in the state vector, as the velocity is taken in relation to the atmosphere which has a mean motion

due to the Earth’s rotation. This velocity can be obtained as

vrel =
dr

dt
− ω⊕ × r, (2.11)

where ω⊕ indicates the angular velocity vector of the Earth’s rotation, with magnitude ω⊕ [31]. The drag

coefficient depends on the spacecraft configuration, as it essentially reflects the spacecraft’s suscepti-

bility to drag forces [31]. However, a value of approximately 2.2 is widely used [40]. The atmospheric

density indicates how dense the atmosphere in the vicinity of the satellite is, and is often the most difficult

parameter to determine. The cross-sectional area is defined as the area of the spacecraft normal to the

satellite’s velocity vector [31]. Usually, these three quantities are grouped and presented as the ballistic

coefficient

B⋆ =
CdA

m
, (2.12)

which is an important measure of a satellite’s susceptibility to the effects of the atmospheric drag3.

Atmospheric drag has important effects on the semi-major axis of the orbit, reducing it by hundreds of

meters to several kilometers per year, depending on the height of the orbit and the ballistic coefficient of

the spacecraft [41]. While the ballistic coefficient of the spacecraft is an important property, the decisive

factor for the magnitude of the acceleration caused by the atmospheric drag is the height of the orbit,

3Many organizations use the reciprocal: B⋆
2 = m/(CdA).
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since the atmospheric density decreases (approximately) exponentially with height.

Determining the atmospheric density

Atmospheric density has a remarkable variability over time, making atmospheric drag estimation very

difficult [18]. In fact, the atmosphere is substantially impacted by factors such as the solar heat input

and, as such, the atmospheric density at a specific location may vary considerably over time. A diurnal

variation of the atmospheric density can be noted, due to the Earth’s rotation relative to the direction

of the Sun. The Sun’s rotation about its axis will also cause a 27-day variation of the solar input, and

thus, of the atmospheric density. Furthermore, many other semiregular and irregular variations have

noticeable effects. As a result, the atmospheric conditions are not only a function of the altitude, but also

dependent on the time of the day and the solar activity [37].

In order to develop a simple model of the atmosphere, assume a spherically symmetrical distribution

of particles and an exponentially decreasing atmospheric density. Based on these assumptions, the

atmospheric density (as a function of the satellite’s altitude) can be written as

ρ = ρ0e
− h

H0 , (2.13)

where ρ0 is a reference density, h is the satellite altitude, and H0 is the scale height

H0 =
RgTk

Mpg
, (2.14)

which depends on the gas constant Rg, the mean atmospheric temperature Tk, the mean mass of

a mol of particles Mp, and the gravitational acceleration at the location. To accurately represent the

real atmosphere, the appropriate scale height H0 (and reference density ρ0) will vary with factors such

as height and solar activity. Hence, atmospheric models often propose a different scale height and

reference density for different intervals of altitude (i.e. layers).

In order to increase the reliability of the estimation of the atmospheric drag, numerous phenomena

(such as solar activity) must be captured. To this end, various atmospheric models have been devel-

oped over the past decades [31]. The U.S. Standard Atmosphere (1976), for instance, aims to provide

a standard reference model for moderate solar activity. The model consists of tabulated data of the at-

mospheric parameters (such as density, pressure, temperature, and scale height) at a latitude of 45◦ N.

Starting in the late 1970s, the MSIS-class models (Mass Spectrometer Incoherent Scatter radar) were

developed by NASA. This class of atmospheric models is based on space-based mass spectrometry

and ground-based incoherent scatter radar readings. The consistent development of the MSIS-class

models resulted in an upgraded model, NRLMSISE-00, published in 2002. Besides the data employed

in the MSIS-class models, the novel NRLMSISE-00 atmospheric model employs satellite accelerometer

data and orbit decay databases [37].
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2.3.3 Third-body perturbations

While the dominant force affecting the orbital motion of a satellite is usually the gravitational field of

the mother planet, significant perturbations arise from other sources, such as nearby planets, stars, or

other large orbiters. The acceleration due to the gravitational attraction that a perturbing body applies to

a satellite can be written as

asp = − µp

||rsp||3
rsp, (2.15)

where µp is the gravitational parameter of the perturbing body and rsp is the vector from the satellite

to the perturbing body [35]. However, note that the motion of the satellite must be obtained in relation

to Earth, so the relative acceleration is needed (i.e. the difference between the acceleration that the

third-body induces on the orbiter and on Earth). Therefore, assuming that the mass of the satellite

is negligible in relation to the masses of the Earth and the perturbing body, the acceleration due to a

third-body perturbation is given by

aTB = −µp

(
rsp

||rsp||3
− r⊕p

||r⊕p||3

)
, (2.16)

where r⊕p is a vector from the Earth to the perturbing body. In case multiple bodies are attracting the

spacecraft with significant importance, a different perturbing acceleration may be written for each one.

These perturbations may then be summed in order to obtain the total perturbing acceleration by third-

bodies. The distance between the spacecraft and the perturbing bodies may either be obtained from

ephemerides or theory (i.e. two-body problem) [35].

2.3.4 Solar radiation pressure

Similarly to the atmospheric drag, the effect of the solar radiation pressure varies substantially with

height. However, contrary to the atmospheric drag, the effect of the solar radiation has a larger influence

at higher altitudes. Determining the effect of the solar radiation is often a complex task, as it involves

predicting variations in the solar flux, and modelling the effect of the Earth’s shadowing on the space-

craft [31]. Depending on the solar activity, the solar radiation pressure may be either relatively significant

(e.g. due to phenomena such as solar storms) or it may be negligible [31].

The solar radiation pressure is given by the force that the incoming radiation exerts on the satellite

divided by the incident area exposed to the Sun. Hence, to compute the solar radiation pressure, the

solar flux must first be determined. While the solar flux varies over time, many programs employ an

approximated constant value because the actual value is often very difficult to determine. The most

commonly employed value is the so called solar-radiation constant (Sf = 1367 W/m2). The perturbing

acceleration on the satellite due to the solar radiation pressure can be modelled by

aSRP = −pSRPcrA⊙

m

rs⊙
||rs⊙||

, (2.17)

where cr is the reflectivity of the spacecraft (a value between 0 and 2 which represents how the satellite
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reflects incoming radiation), pSRP is the solar radiation pressure, A⊙ is the exposed area to the Sun,

and rs⊙ is the vector from the spacecraft to the Sun [31]. Studying Figure 2.4, it can be noted that

this perturbation is rather unimportant for very low Earth orbits, in comparison to other perturbations.

However, it may be significant for low Earth orbits close to the upper limit of 2000 km of altitude.

2.3.5 Other perturbations

There exist a multitude of other forces which affect a satellite’s orbit. However, these are often

negligible, particularly for low Earth orbits, as the atmospheric drag and the J2 coefficient overbear the

smaller effects of these perturbations. Some solar radiation that reflects off the Earth back onto a satellite

(albedo) can affect its orbit. Solid-Earth tides, which are displacements of the Earth’s surface due to

third-body perturbations (particularly the Moon), also impact the motion of the satellite. Ocean tides, the

effect of the Earth’s magnetic field, and relativistic effects are some other sources of perturbations on

the satellite’s motion [31, 37].

2.3.6 Perturbed motion

As previously noted, it is often enriching to utilize the Keplerian elements to represent an orbit, as

these make it easy to visualize. An additional advantage of representing the orbit with Keplerian ele-

ments is that most of the elements undergo small variations in perturbed motion, whereas the position

and velocity vectors change rapidly over time. Orbital elements can be distinguished as either fast or

slow variables, depending on their relative rate of change. Fast variables change substantially during

one orbital revolution, even in the absence of perturbations. Examples are the true and mean anomalies,

which change 360◦ over an orbit. On the other hand, slow variables (semi-major axis, eccentricity, incli-

nation, longitude of the ascending node, and argument of perigee) hardly change throughout one orbital

revolution. These small changes are caused by perturbations, and without them all the slow elements

would remain constant [31].

Osculating and mean orbital elements

To each set of position and velocity vectors along the perturbed orbit corresponds a set of osculating

orbital elements, from the Latin osculare, "to kiss" [33]. This term implies the contact between the

osculating orbit and the true (perturbed) orbit. The osculating orbit, described by the osculating orbital

elements at a certain epoch, is the orbit which would result if all perturbing forces were removed at

that instant, leading to each point on the perturbed trajectory having a (unique) corresponding set of

osculating elements [29, 31]. The osculating elements capture the periodic variations of the satellite’s

orbit, and thus vary quite erratically. At the time the osculating orbital elements are obtained, the true

and osculating orbits are in contact. However, these soon diverge, as the true orbit continues to be

perturbed. Figure 2.6 displays the true orbit and two (differing) osculating orbits obtained at two different

epochs4.

4The process called "rectification", mentioned in Figure 2.6, simply means that a new epoch and starting point coincident with
the true orbital path are considered, and a new osculating orbit is calculated (see Encke’s method [29]).
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Figure 2.6: Osculating and true orbits. Adapted from [29].

Contrary to the osculating orbital elements, the mean orbital elements are averaged over some

selected time. These elements define an approximate orbit considering only fast motions (e.g. true

anomaly) and discarding the slower motions caused by perturbations on the orbit, not representing the

true values of position and velocity, but varying less erratically over time than their osculating coun-

terpart [42]. These elements are useful for mission planning because they approximate the satellite’s

long-term behavior, not including short-periodic variations [31].

Gauss’ variational equations for near-circular non-equatorial orbits

The equations of motion of a controlled spacecraft, in terms of the osculating orbital elements, are

given by Gauss’ form of Lagrange’s planetary equations [30, 35]

da

dt
=

2a2

hm

(
e sin v aR +

ℓ

r
aT

)
, (2.18a)

de

dt
=

1

hm
(ℓ sin v aR + [(ℓ+ r) cos v + re]aT ) , (2.18b)

di

dt
=

r cosu

hm
aN , (2.18c)

dΩ

dt
=

r sinu

hm sin i
aN , (2.18d)

dω

dt
=

1

hme
(−ℓ cos v aR + (ℓ+ r) sin v aT )−

r sinu cos i

hm sin i
aN , and (2.18e)

dM

dt
= n+

b

ahme
((ℓ cos v − 2re) aR − (ℓ+ r) sin v aT ) , (2.18f)

where aR, aT and aN are the radial, along-track (perpendicular to orbit radial direction), and cross-track

acceleration components (caused by perturbations), respectively, u = ω + v is the argument of latitude,

and b, hm, and ℓ are the semi-minor axis, the angular momentum (per unit of mass), and the semi-latus

rectum, respectively. Studying (2.18), it can be noted that, if no perturbations acted on the satellite,

all the orbital elements would be constant, besides the mean anomaly, which would vary over time
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respecting dM/dt = n (two-body problem).

Valuable low Earth orbits are often near-circular (e ≈ 0) [16, 22, 23]. For near-circular orbits, the

semi-minor and semi-major axis of the orbit have approximately the same length, and the distance

between the spacecraft and the Earth remains approximately constant. As a result, the approximations


e = 0,

r = a = b, and

hm =
√
µa

(2.19)

can be applied, and Gauss’ form of Lagrange’s planetary equations for near-circular orbits can be written

as
da

dt
=

2a2
√
µa

aT =
2a

v
aT , (2.20a)

de

dt
=

1
√
µa

(a sin v aR + 2a cos v aT ) =
sin v
v

aR +
2 cos v

v
aT , (2.20b)

di

dt
=

a
√
µa

cosu aN =
cosu

v
aN , and (2.20c)

dΩ

dt
=

sinu

v sin i
aN , (2.20d)

where v is the orbital velocity. Notice how the classical orbital element representation leads to singular

equations for (2.18e) and (2.18f) when the eccentricity is zero. This requires an alternative parametriza-

tion of the problem to be chosen. Consider the parametrization kosc, in terms of osculating orbital

elements,

kosc =



a

ex

ey

i

Ω

u


=



a

e cosω

e sinω

i

Ω

ω +M


(2.21)

as, for near-circular orbits v−M = 2e sinM , such that v ≈ M and u ≈ ω+M . With this parametrization,

Gauss’ variational equations of motion adapted for near-circular non-equatorial orbits can be written,

utilizing an RTN orbital frame, as

d

dt



a

ex

ey

i

Ω

u


=

1

v



0 2a 0

sinu 2 cosu 0

− cosu 2 sinu 0

0 0 cosu

0 0 sinu/ sin i

−2 0 − sinu/ tan i




aR

aT

aN

+



0

0

0

0

0

n


. (2.22)

While this parametrization avoids singular equations for near circular orbits, it will still lead to singular
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equations for equatorial orbits (i = 0◦), but this will not be the case studied [16]. If the orbit to be studied

were equatorial, then a different set of orbital elements, denominated equinoctial orbital elements, could

be employed. These would result in nonsingular equations, except for hm = 0 (rectilinear orbits), and for

orbits with inclination i = π rad (retrograde equatorial orbits) [30].

Effect of perturbations on the orbital elements

Perturbations affecting the orbital motion result in secular and periodic changes for the orbital el-

ements. Figure 2.7 shows an example of each of these effects. Secular changes cause a particular

element to grow over time. The orbital element may grow linearly over time or, in some cases, pro-

portionally to some power of time. These secular changes result in unbounded error growth and, as a

result, are the main cause of the deterioration of the accuracy of analytical satellite theories over long

time intervals. Periodic changes can be classified as either short-periodic or long-periodic, depending

on the length of time required for an effect to repeat. Typically, changes with a period similar to, or

smaller than, the satellite’s orbital period are considered short-periodic changes, whereas changes with

cycles considerably longer (usually one or two orders of magnitude larger) than the orbital period are

considered long-periodic changes. These long-periodic effects can last for over a month and are seen,

for example, in the motion of the ascending node and the argument of perigee [31].

Figure 2.7: Effects of perturbations on an orbital element. Retrieved from [31].

Mean orbital elements are usually at the basis of the calculations of the ephemerides of artificial

satellites [43]. Moreover, mean orbital elements are usually the ones employed in feedback laws for

orbit control. However, in practice, the osculating elements of the orbit are the ones that are available.

As a result, algorithms for the conversion between osculating and mean orbital elements are crucial [44].

A frequently utilized theory on the motion of artificial Earth satellites is Brouwer’s analytical satellite the-

ory [45]. For Brouwer’s analytical satellite theory, the set of mean elements is understood as osculating

orbital elements from which the short-periodic (functions of the mean anomaly) and long-periodic (mul-

tiples of the argument of perigee) perturbations of the Earth’s gravitational field have been removed.

An algorithm to convert osculating elements to mean elements, as understood by Brouwer, generally

relies on a process that iterates the osculating orbital elements under the restraints of Brouwer’s satel-

lite theory. Applying this class of algorithms, a set of mean orbital elements can be obtained for each

set of osculating orbital elements, at a certain epoch. The mean orbital elements do not include the

short and long-period perturbations due to the Earth’s gravitational field, and thus describe the long-
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term behavior of the satellite [44]. This topic has been thoroughly discussed in the literature. Older

publications such as [44] and [46] propose iterative procedures for the determination of the mean ele-

ments for Brouwer’s analytical theory. Alternatively, conversion algorithms based on Eckstein-Ustinov’s

analytical satellite theory, first developed by Ustinov and later corrected by Eckstein [47, 48], can be

employed. Eckstein-Ustinov’s satellite theory presents a large advantage for near-circular orbits, as it

employs the nonsingular orbital elements of (2.21), which avoid singular Lagrange planetary equations

when e = 0 [49]. Since this thesis will study near-circular orbits, the conversion between osculating and

mean orbital elements will be conducted by an algorithm based on Eckstein-Ustinov’s analytical satel-

lite theory. Particularly, the conversion is performed by an algorithm included in the osculating2mean

package, available at [50].

2.4 Sensors and actuators

2.4.1 Sensors

Global navigation systems (e.g. GPS, GLONASS, Galileo, and BeiDou) intend to provide positioning

services for users on the ground. However, their signals spill into space and can likewise be received

by other satellites. Satellites in low Earth orbit particularly benefit from these navigation systems, expe-

riencing similar signal strength to users on the ground, without any natural or man-made obstacles to

block the signal. Alternatively to (or supplementing) the readings of the GNSS, ground stations can be

employed to determine the orbit of the satellite, with radar observations providing the radial distance and

Doppler observations providing the radial velocity. Utilizing a combination of these sensors, and possibly

using measurements from various ground stations, six independent quantities are determined in order

to infer the satellite’s position and velocity vectors [51]. The obtained data is filtered and, depending

on the observations, an appropriate preliminary orbit determination algorithm can be applied. Classical

preliminary orbit determination algorithms include the Gibbs’ method, which predicts the orbit from three

geocentric position vectors, and the Lambert’s problem, deducing the orbit from two position vectors

and the time between them. The results from these preliminary analyses are then adjusted considering

perturbations, as the algorithms mentioned are based on the two-body equation of motion [52]. An al-

ternative to applying orbit determination algorithms, which require multiple measurements, is to utilize

the GNSS estimated position and velocity vectors at a single epoch. These vectors can be converted to

osculating orbital elements (see, for instance, Algorithm 9 of [31]), and then converted to mean orbital

elements (e.g. utilizing Eckstein-Ustinov’s theory [48]). The sole utilization of GNSS provides many ad-

vantages in relation to traditional ground-based tracking systems. It offers continuous coverage (since it

is not limited by contacts with a ground station), low system cost, and increased spacecraft autonomy,

as no orbit determination process is required [53].

The spacecraft absolute position measured by a GNSS receiver r̂, can be modeled as the true

absolute position r, plus sensor noise wr (i.e. r̂ = r +wr) [17]. The necessary on-board position and

velocity knowledge depends on the mission of the satellite. For instance, Earth observation missions
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require precise alignment of their instruments (e.g. cameras and altimeters). These requirements lead

to necessary position and velocity knowledge with accuracies of about 10 m and 1-10 cm/s, respectively.

Altimeter missions, to determine the mean sea level, require strict position requirements of about 1-2 cm

in the radial direction. Satellite missions to monitor the troposphere measure the delay of a signal

traversing Earth’s atmosphere, and thus require precise knowledge of the satellite’s velocity, usually with

an uncertainty of less than 0.05-0.2 mm/s. These different missions not only require GNSS receivers

with varying accuracies, but also lead to different orbit control requirements [53]. Besides the required

position and velocity accuracy for the mission, the weight and the power requirement of the GNSS

receiver are important factors for the choice of a suitable navigation system for the spacecraft. Table 2.2

summarizes these key parameters for a variety of GNSS receivers employed in various space missions.

Table 2.2: GNSS receivers for space applications. Adapted from [53].

Mission Objective Receiver Type Power (W) Mass (kg)

Sentinel-6 Radar altimeter PODRIX GNSS GPS + Galileo 15 3
GOCE Map Earth’s gravity Lagrange GPS 30 5.2
SARah Radar Reconnaissance LION GPS + GAL 15 3

DEMETER Detect EM Emissions TopStar 3000 GPS 1.5 1.5
PRISMA Earth observation Phoenix GPS 0.9 0.1

2.4.2 Actuators

The actuators employed are often a set of thrusters, allowing for orbit corrections to be applied in

multiple directions. However, the type of propulsion that is considered will depend on the goals of the

mission [17].

The rocket equation

In order to derive the equation of motion of a rocket, consider the ejection of a small mass of fuel

during a short interval of time (dt). Assume that there are no external forces on the rocket and that

the exhaust gas is expanded at zero pressure. In these conditions, to conserve linear momentum, the

equation of motion must read as

m
dv

dt
= ve

dm

dt
, (2.23)

where v is the velocity vector of the spacecraft and ve is the exhaust velocity vector (velocity of the

expelled mass of fuel in relation to the spacecraft) [32]. The quantity described by (2.23) is called thrust

and has opposite direction to the expelled material, since dm/dt is negative. It is common to employ

the specific impulse Isp instead of the exhaust velocity. The specific impulse is usually defined as the

amount of momentum gained per weight (instead of mass) of fuel consumed [32]. This parameter can

be understood as a measure of how efficiently a reaction mass engine creates thrust and is given by

Isp =
ve
g0

, (2.24)
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where ve is the magnitude of the exhaust velocity and g0 is the standard mean acceleration of gravity

on Earth, not the local acceleration of gravity. Note that this had to be the case, otherwise (2.24)

would (wrongly) convey that the exhaust velocity of an engine becomes smaller near a planet with lower

gravity, and zero when the vehicle is in free fall. While any propulsion system that produces thrust by

ejecting mass obeys the rocket equation, different propulsion technologies have unique strengths and

weaknesses as well as differing performances [32]. Table 2.3 lists some current propulsion technologies,

with their exhaust velocities and specific impulses.

Table 2.3: Efficiency of various propulsion technologies. Adapted from [32].

ve (km/s) Isp (s) Technology

1.6− 2.1 170− 220 Solid fuel
1.9− 3.4 200− 350 Hydrocarbon liquid fuel

4.4 455 Liquid hydrogen and liquid oxygen
3− 7 300− 700 Plasma jet, Arcjet
102 ≤ 104 ≤ Ion, Magnetohydrodynamic

It can be noted that chemical rocket engines have the lowest performance out of the rocket technolo-

gies listed in Table 2.3. The efficiency of a chemical rocket engine is tied with the energy liberated by

the chemical reactions Ech, which can be written as

Ech =
1

2
mrv

2
e ≈ 5

2
kBTc, (2.25)

where mr is the mass of one molecule of the reaction product, Tc is the combustion temperature, and

kB is the Boltzmann’s constant. It is possible to note that, to achieve good performance (i.e. large

exhaust velocity), the mass of the exhaust product must be small. An efficient chemical rocket engine

is employed in the space shuttle’s main engine. This chemical rocket utilizes liquid hydrogen and liquid

oxygen, achieving an Isp of 455 s (out of a theoretical maximum of 457 s) [32].

In order to develop propulsion systems with better performances, it is necessary to break the first

equality of (2.25). That is, the energy source must not be a chemical reaction. The energy may instead

be provided by thermal processes, expelling a low mass working fluid such as liquid hydrogen or hy-

drazine. The plasma jet and arcjet technologies fall into this category. Still, these technologies also have

an inherent limit to their performance. Note that by working the second equality of (2.25), it is possible

to write

Tc ≈
mrv

2
e

5kB
. (2.26)

Therefore, according to Table 2.3, an engine with the same exhaust velocity and fuel as the space shut-

tle’s main engine would already be operating at a temperature of 6000 K. Since the exhaust temperature

increases with the square of the exhaust velocity, any further (sizeable) progress should not be expected

from a technology using a thermal process [32].

To progress further, it is necessary to break the equality of (2.26). That is, the mass must be ejected

by a nonthermal process. The ion engines, which electrostatically accelerate ionized gas, and the

magnetohydrodynamic (MHD) engines, in which an ionized gas is electromagnetically accelerated, fall
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into this category. Ion thrusters can reach a very high specific impulse. However, when operated at high

exhaust velocities, these engines require large quantities of electrical power. Since the power supply

on-board a spacecraft is heavily limited, it is often beneficial to feed ion engines more fuel instead of

more electricity. This would increase the available thrust, but it would also reduce the specific impulse

of the engines [32].

Figure 2.8 follows a traditional approach of displaying the performance of propulsion systems for

satellite orbit control, showing the range of thrust and specific impulse provided by various propulsion

technologies. Two main categories of propulsion systems can be noted: 1) the chemical and thermal

propulsion systems and 2) the electromagnetic and electrostatic propulsion systems. These categories

are differentiated by the specific impulse and thrust range provided by the respective technologies [54].

The chemical and thermal propulsion systems are usually less efficient than the electromagnetic and

electrostatic propulsion systems, as previously noted. However, the former deliver larger amounts of

thrust, from 1 mN to 10 N. On the other hand, electromagnetic and electrostatic propulsion system are

very efficient, providing a specific impulse up to 6000 s. Yet, these technologies provide a limited amount

of thrust, from 10 µN to 10 mN. As a result, the two defined categories of propulsion systems are useful

for different missions. Chemical and thermal propulsion systems are recommended for missions that

require fast maneuvers to be performed. On the other hand, electromagnetic and electrostatic propul-

sion systems are beneficial for mission profiles that need some maneuverability but do not require fast

maneuvers [54]. Employing a low-thrust continuous control scheme allows the application of an elec-

tromagnetic or electrostatic propulsion system, providing higher efficiency at the cost of a low maximum

actuation. On the other hand, orbit control methods relying on large impulsive maneuvers will likely

require chemical or electrothermal propulsion systems.

Studying the specific impulse of the available propulsion systems can prove useful for an initial com-

parison. However, it is important to note that other system aspects, such as the hardware mass, the

electric power supply, and the thermal shielding, must also be taken into consideration [54].

Figure 2.8: Thrust and specific impulse provided by some propulsion technologies. Retrieved from [54].
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2.5 Control methodology

The control methodology that is at the root of this thesis is the LQR, applied to a linear time-invariant

discrete system. Consider that the plant to be controlled is given by a linear time-invariant discrete

system

xk+1 = Axk +Buk, (2.27)

where xk is the state of the system, uk is the control input, A is the state matrix, and B is the input

matrix. The goal is to determine an optimal control policy uk which minimizes a certain performance

measure J . For an infinite control window, the performance measure J can be written as the quadratic

function

J =
1

2
lim

N→∞

[
xT
NSNxN +

N−1∑
k=0

(
xT
kQxk + uT

kRuk

)]
, (2.28)

where Q and SN are symmetric positive semi-definite matrices (Q = QT ⪰ 0, S = ST ⪰ 0) and R

is a symmetric positive definite matrix (R = RT ≻ 0) [55]. In (2.28), the penalty on the state error is

given by the term xT
kQxk, whereas the second term represents the necessary cost associated with the

magnitude of the control. The weighting matrices Q and R are tuned to specify the relative importance

of the error in each of the components of the state and of the actuation [16]. Let Q = CTC. Under

the assumption of stabilizability of the pair (A,B) and detectability of (A,C), the LQR design for this

problem is associated with the discrete-time algebraic Riccati equation [55, 56]. Moreover, the optimal

feedback law is given as

uk = −
(
R+BTPB

)−1
BTPAxk, (2.29)

where the steady-state solution P can be found by backwards iteration of the dynamic Riccati equation

(with terminal condition PN = SN ) until it converges and is, in fact, the unique positive definite solution

of the discrete-time algebraic Riccati equation [55]

ATPA−ATPB
(
R+BTPB

)−1
BTPA+Q = P. (2.30)
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Chapter 3

Problem statement

The absolute orbit control problem can be formulated as a two spacecraft formation flying control

problem, in which one of the spacecraft is virtual and not affected by non-gravitational orbit perturba-

tions [16]. The virtual orbit, or reference orbit, represents the mean nominal motion of the satellite over

a long enough time interval and must generally include the perturbations that are not intended to be

corrected [11]. For a sun-synchronous orbit, such as PRISMA’s and DEMETER’s orbit, the reference

orbit’s model should at least consider the nonspherical terms of the Earth’s gravitational potential which

cause the motion of the ascending node (intended to precess 360◦ per year, so that the satellite always

oversees interest points on the Earth’s surface at the same local time) [24]. Other secular, long-periodic

and short-periodic perturbations can be included in the reference orbit, depending on the mission re-

quirements. Deviations of the real orbit from the reference, which would eventually lead to a violation of

the mission requirements, must be corrected by orbital maneuvers [11].

3.1 Modelling the effects of the main perturbations

In order to accurately model the reference orbit and the true orbit, the main perturbations acting on a

LEO spacecraft must be modelled. The reference orbit is considered to be solely under the influence of

the Earth’s gravitational field. The Earth’s gravitational potential is modelled up to its second term, since

the secular motion of the ascending node must be maintained, and J2 is orders of magnitude larger

than the coefficients of the remaining zonal harmonics. The effects of the remaining perturbations must

be efficiently counteracted by orbital maneuvers. The model for the true orbit must include the largest

forces acting on a body in LEO. As discussed in Chapter 2, these are: the Earth’s gravitational potential,

which will also be modelled up to the second harmonic, and the atmospheric drag.

3.1.1 Atmospheric drag

First, consider a spacecraft subject to atmospheric drag. Recall that the acceleration due to the

atmospheric drag is given by

aD = −1

2

CdA

m
ρv2rel

(
vrel

||vrel||

)
. (2.10)
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Neglecting the velocity of the rotating atmosphere in relation to the satellite’s velocity, it can be written

that vrel ≈ v. Therefore

aD = −1

2

CdA

m
ρv2âV , (3.1)

where âV is a unit vector aligned with the spacecraft’s velocity. If the orbit is not circular, then the velocity

of the spacecraft is generally not perpendicular to the orbit’s radial direction. As such, it becomes neces-

sary to write the Gauss’ variational equations with the acceleration components in an MVH frame [43].

Let aV denote the acceleration component along the spacecraft’s velocity vector, aM the acceleration

component in the same direction as the radius vector (but not necessarily parallel to it), and aH the

cross-track acceleration component, completing the right-handed frame. The unit vectors of the MVH

frame {âM , âV , âH } can be written as a function of the unit vectors of an RTN frame {âR, âT , âN }, as

âV =
v

v
=

hm

ℓv

(
e sin v âR +

ℓ

r
âT

)
, (3.2a)

âM =
hm

ℓv

(
ℓ

r
âR − e sin v âT

)
, (3.2b)

and âH = âN [43]. Therefore, the transformation between the acceleration vector components in each

frame can be compactly written as
aR

aT

aN

 =
hm

ℓv


ℓ/r e sin v 0

−e sin v ℓ/r 0

0 0 ℓv/hm



aM

aV

aH

 , (3.3)

which, as expected, is an identity when e = 0. Applying the transformation (3.3) to (2.18), the Gauss’

variational equations can be written in an MVH frame as

da

dt
=

2a2v

µ
aV , (3.4a)

de

dt
=

1

v

( r
a
sin v aM + 2(e+ cos v)aV

)
, (3.4b)

di

dt
=

r cosu

hm
aH , (3.4c)

dΩ

dt
=

r sinu

hm sin i
aH , (3.4d)

dω

dt
=

1

ev

(
−
(
2e+

r

a

)
cos v aM + 2 sin v aV

)
− r sinu cos i

hm sin i
aH , and (3.4e)

dM

dt
= n+

b

aev

( r
a
cos v aM − 2

(
1 + e2

r

ℓ

)
sin v aV

)
. (3.4f)

Note that (3.4) is applicable for every orbit, as the near-circular orbit approximation of (2.19) was not

employed. Finally, the expression for the effect of the atmospheric drag on the orbital elements can be
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obtained by replacing the acceleration due to atmospheric drag, given by
aM

aV

aH

 =


0

||aD||

0

 , (3.5)

in (3.4). The rate of change of the mean orbital elements k =
[
a ex ey i Ω u

]T
, due to the effect

of atmospheric drag on a geocentric orbit, can then be written as

k̇d = Ãd(k) = −A

m
CDρ



√
µ⊕a

(ex + cosu)
√
µ⊕/a

(ey + sinu)
√
µ⊕/a

0

0

0


, (3.6)

where the short-periodic effects of drag on the eccentricity (i.e. terms depending on trigonometric func-

tions of the argument of latitude) are considered1.

3.1.2 Earth’s gravitational field

Assume that the Earth is symmetric about its rotational axis. In this case, the gravitational poten-

tial derived in Section 2.3.1 can be greatly simplified, while still considering the effect of the Earth’s

oblateness [31]. With this approximation, the disturbance potential function for the J2 component of the

spherical gravitational harmonics is given by

UJ2
(r, φ) = −

µ⊕R
2
⊕

2

J2
r3

(3 sin2 φ− 1), (3.7)

where R⊕ is the Earth’s equatorial radius. Note that (3.7) is no longer a function of the longitude λ, due

to the assumption of rotational symmetry. In Cartesian coordinates sinφ = z/r, therefore (3.7) can be

written as [43]

UJ2
(r, z) = −

µ⊕R
2
⊕

2

J2
r5

(3z2 − r2). (3.8)

The components of the perturbing acceleration due to J2 can be expressed, in an RTN reference frame,

as [57]

aRJ2
=

∂UJ2

∂r
+

∂UJ2

∂z
sin i sinu, (3.9a)

aTJ2
=

∂UJ2

∂z
sin i cosu, and (3.9b)

aNJ2
=

∂UJ2

∂z
cos i. (3.9c)

1As previously mentioned, in this context, mean orbital elements are understood as orbital elements where the perturbations
of the Earth’s gravitational potential are averaged in the differential equations of motion.
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The accelerations resultant from (3.9) can be substituted in (2.18), similarly to the process employed

in the previous section, in order to obtain the rate of change of the osculating orbital elements due to

J2. The complete results (instantaneous element rates) are discussed in [43, p. 509-510]. The J2

perturbation results in periodic changes (short-periodic oscillations and long-periodic oscillations) and

in a secular rate. The short and long-periodic oscillations will not be considered in this problem since,

for long-term orbit study, the interest is in studying the secular drift [43]. Using asymptotic expansion

theory, it is possible to extract the secular rates and express the mean, or orbit average, effect of J2 on

the mean orbital elements as
da

dt
=

de

dt
=

di

dt
= 0, (3.10a)

dΩ

dt
= −3

2

(
R⊕

a

)2
nJ2

(1− e2)2
cos i, (3.10b)

dω

dt
=

3

4

(
R⊕

a

)2
nJ2

(1− e2)2
(5 cos2 i− 1), and (3.10c)

dM

dt
=

3

4

(
R⊕

a

)2
nJ2

(1− e2)2

√
1− e2(3 cos2 i− 1), (3.10d)

where the mapping between mean and osculating orbital elements is found as part of Brouwer’s artificial

satellite theory [43, 45]. The effect of the gravitational field must also include the first term of the expan-

sion (i.e. the mean motion n), in order to represent the secular variation of the orbital elements caused

by the Earth’s gravitational field up to the second term of the harmonics expansion. Hence, the rate of

the change of the mean orbital elements k due to the Earth’s gravitational field2 can be approximated by

k̇J2
= Ãg(k) =

3

4

(
R⊕

a

)2
nJ2

(1− e2)2



0

−(5 cos2 i− 1)ey

(5 cos2 i− 1)ex

0

−2 cos i

5 cos2 i− 1 + (3 cos2 i− 1)
√
1− e2


+



0

0

0

0

0

n


. (3.11)

3.2 Nonlinear model

The state-space model of the orbital motion of the real and the reference spacecraft can be de-

scribed, considering the effect of the two major perturbations, as

k̇ = Ãg(k) + Ãd(k) +

(
∂ζ

∂kosc

)
B̃(kosc)∆v and (3.12)

k̇R = Ãg(kR), (3.13)

respectively, where the matrices Ãd and Ãg describe the behavior of the mean orbital elements, re-

spectively under the influence of the atmospheric drag and the Earth’s gravitational field (modelled up

2Note that the effects of short and long-periodic oscillations of the Earth’s gravitational potential were averaged.
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to J2), ∆v =
[
∆vR ∆vT ∆vN

]T
is a velocity increment vector in an RTN frame (∆v ≈ a∆t where ∆t

is the duration of the station-keeping maneuver, assuming constant thrust is provided), kR is the set of

reference mean orbital elements and

k = ζ(kosc) (3.14)

is an analytical transformation from the osculating orbit elements kosc to the mean elements k, as the

effect of the actuators on the system B̃(kosc), is given by the Gauss’ form of Lagrange’s planetary equa-

tions adapted for near-circular orbits, which describe the variation of osculating orbital elements [43].

Employing a first-order truncation of Brouwer’s analytical satellite theory for the transformation between

osculating and mean orbit elements, the matrix (∂ζ/∂kosc) becomes approximately a 6 × 6 identity ma-

trix with the off-diagonal terms being of order J2 or smaller [43, 45]. Therefore, for the purposes of

developing a feedback control law, it is reasonable to approximate (3.12) as [43, p. 650-651]

k̇ ≈ Ãg(k) + Ãd(k) + B̃(k)∆v, (3.15)

where B̃(k), which can be immediately computed from (2.22), is given by

B̃(k) =
1

v∆t



0 2a 0

sinu 2 cosu 0

− cosu 2 sinu 0

0 0 cosu

0 0 sinu/ sin i

−2 0 − sinu/ tan i


. (3.16)

Notice how the mean motion n is not included in the input matrix since this term results from the inter-

action between two point masses (i.e. the solution to the unperturbed problem), and thus is included

in Ãg.

Finally, defining the mean orbital element vector difference as ξ = k− kR, the dynamics of the error

between the orbital element vector of the true orbit and of the reference orbit, i.e. the difference between

(3.15) and (3.13), can be written as

ξ̇(k,∆v) = Ãg(k) + Ãd(k)− Ãg(kR) + B̃(k)∆v. (3.17)

Furthermore, (3.17) can be written in function of the error ξ as

ξ̇(ξ,∆v) = Ãg(ξ + kR) + Ãd(ξ + kR)− Ãg(kR) + B̃(ξ + kR)∆v. (3.18)

This thesis is focused on developing an on-board feedback control system for the dynamics described

by (3.18). In compliance with the described problem formulation, station-keeping is understood as main-

taining the true satellite close to the reference satellite, which fulfills the mission requirements, as it is

considered to be affected solely by the Earth’s gravitational field. Hence, not only do the reference and
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the true orbits coincide in space, but also in time, in the sense that there must be no phase difference

between the position of the true and the reference satellites along their respective orbits. Particularly,

this thesis is focused on counteracting every perturbation except the effect of the J2 coefficient, on a

near-circular low Earth orbit. While the proposed control scheme is valid for every (near-circular) low

Earth orbit, it is of particular interest for sun-synchronous orbits, as it maintains the desired effect of J2

in the precession of the ascending node (360◦ per year).

A linear time-periodic model, as well as a linear time-invariant model, which are very accurate in

relation to the nonlinear model (3.18) are derived herein. To derive a model which can be generally

applied in future work, it is firstly considered that the satellite is capable of actuation in the three axis.

However, for the control system design, it is considered that the satellite does not have thrusters aligned

with the radial axis, such that only actuation in the along-track and cross-track directions can be applied.

In fact, a satellite’s orbit under the influence of the Earth’s gravitational pull can be controlled solely by

along-track and cross-track maneuvers [58].

The validation of the proposed control system is realized by means of numerical simulations employ-

ing a high-fidelity simulator. Throughout this thesis, the high-fidelity simulator provided by the TU Delft’s

Astrodynamics Toolbox (Tudat) will be employed. The documentation of the simulator is available at [59]

and the source code is available at [60]. In order to offer practicality, and to further on implement a feed-

back control law, the simulation environment relies on an interface between the C++ Tudat application

and Matlab. This interface is provided by the tudat-matlab-thrust-feedback package, available at [61].
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Chapter 4

On the LQR design for discrete-time

linear periodic systems

Linear periodic system descriptions appear in various applications [62], such as vibration reduc-

tion in helicopter flight [63], spacecraft attitude control [64], rotor-blade vibration suppression [65], and

analysis of multi-rate filters [66]. Motivated by the periodic characteristics of various phenomena, the

synthesis of both continuous-time and discrete-time periodic control systems has been thoroughly stud-

ied [62]. For discrete-time linear periodic systems, the solution to the LQR is associated with the discrete-

time periodic Riccati equation (DPRE) [67]. Algorithms proposed in [56] and [68], hereby denominated

Hench & Laub (1994) and Yang (2017) respectively, solve the DPRE using a symplectic system which

arises from the Hamiltonian minimization necessary conditions. On the other hand, the algorithm pro-

posed in [69], hereby denominated Yang (2018), relies on a lifting method that converts the discrete-

time linear periodic system into an augmented linear time-invariant equivalent, whereupon standard

techniques for the algebraic Riccati equation can be applied. This solution is particularly efficient, as

it takes advantage of the special structure of the augmented linear time-invariant system to solve the

associated Riccati equation. However, with this methodology, the actuation is computed only once per

period. Therefore, disturbances on the system are not considered until the feedback law for the next

lifting period is applied.

This chapter builds on the lifting method proposed in Yang (2018) to develop an alternative algorithm

to compute the optimal feedback controller gains for the discrete-time linear periodic system, always

using the latest state in the feedback loop, similarly to Hench & Laub (1994) and Yang (2017). As a

result, while the methodology of Yang (2018) and the one proposed in this chapter are equivalent in the

absence of disturbances, the latter leads to improved robustness to system disturbances. Moreover,

similarly to Yang (2018), the proposed algorithm is generally faster than both Hench & Laub (1994) and

Yang (2017), and can be efficiently applied to singular periodic systems, unlike Hench & Laub (1994)

and Yang (2017).

Section 4.1 briefly describes the solution to the discrete-time periodic Riccati equation, employing

the algorithms of Hench & Laub (1994) and Yang (2017), as well as the lifting method proposed in
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Yang (2018). Section 4.2 proposes the novel algorithm to obtain the state feedback matrices. In Sec-

tion 4.3, the proposed feedback methodology and the augmented state feedback methodology are com-

pared in the presence of sensor and process noise. Lastly, the execution time of the proposed algorithm

is compared with the algorithm proposed in Hench & Laub (1994).

4.1 Preliminaries

The dynamics of a linear discrete-time periodic system can be compactly written as

xl+1 = Alxl +Blul, (4.1)

where Al = Al+p ∈ Rn×n and Bl = Bl+p ∈ Rn×m are periodic time-varying matrices. For the discrete-

time linear periodic system (4.1), the LQR state feedback problem is to determine an optimal control

policy ul which minimizes the performance measure

J =
1

2
lim

N→∞

[
xT
NpSNpxNp +

Np−1∑
l=0

(
xT
l Qlxl + uT

l Rlul

)]
, (4.2)

where SNp ⪰ 0, Ql = Ql+p ⪰ 0, and Rl = Rl+p ≻ 0 [67]. Let Ql = CT
l Cl. If the matrix pair (Al,Bl) is

stabilizable and the matrix pair (Al,Cl) is detectable for all l, then the optimal (periodic) feedback law is

given by

ul = −Klxl = −
(
Rl +BT

l Pl+1Bl

)−1
BT

l Pl+1Alxl, (4.3)

where Pl is the unique symmetric nonnegative definite periodic stabilizing solution to the discrete-time

periodic Riccati equation

Pl = Ql +AT
l Pl+1Al −AT

l Pl+1Bl(Rl +BT
l Pl+1Bl)

−1BT
l Pl+1Al, (4.4)

with final condition PNp = SNp [67]. The LQR design problem of (4.1)-(4.2) can be solved by finding

the solution to p (n-dimensional) Riccati equations, in order to obtain the p nonnegative definite matrices

Pl (l = 1, ..., p), as Pl = Pl+p [67]. Algorithms such as Hench & Laub (1994) and Yang (2017) study

the symplectic system which arises from the Hamiltonian minimization necessary conditions (Euler-

Lagrange equations), in order to obtain the p Riccati solutions Pl. The algorithm proposed in Yang (2017)

is more efficient than Hench & Laub (1994), for the case where the state matrix of the periodic system is

time-invariant. However, it offers no benefits in relation to the latter when the state matrix is time-varying.

Additionally, Yang (2017) cannot be applied to systems where any of the state matrices are singular. A

method proposed in Hench & Laub (1994) lends itself to be applied to these situations. However, this

would result in a very complex algorithm.
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4.1.1 Equivalent augmented linear time-invariant system

The linear time-periodic (LTP) system (4.1) can be reformulated as a linear time-invariant system,

employing a lifting technique [69]. The lifting technique proposed in Yang (2018) is discussed in this

section.

The state equations of the LTP system (4.1) can be expanded as

x1 = A0x0 +B0u0,

x2 = A1x1 +B1u1,

...

xp = Ap−1xp−1 +Bp−1up−1,

xp+1 = A0xp +B0up,

(4.5)

and so forth. Equation (4.5) can be rewritten as a function of the final state of the previous period (i.e.

x1 to xp can be obtained as a function of x0), leading to

x1 = A0x0 +B0u0,

x2 = A1A0x0 +A1B0u0 +B1u1,

x3 = A2A1A0x0 +A2A1B0u0 +A2B1u1 +B2u2,

(4.6)

and so forth. From (4.6) results an augmented linear time-invariant (LTI) system, equivalent to the LTP

system (4.1), which can be compactly written as

x̄k+1 = Āx̄k + B̄ūk, (4.7)

where x̄k ∈ Rpn and ū ∈ Rpm are the augmented state and input, respectively, and Ā ∈ Rpn×pn,

B̄ ∈ Rpn×pm are the augmented time-invariant system matrices [70]. The augmented state and input

can be written as

x̄k =


xp(k−1)+1

xp(k−1)+2

...

xp(k−1)+p

 with x̄0 :=


0

0
...

x0

 , and ūk =


upk

upk+1

...

upk+p−1

 , (4.8)

respectively. The state and input matrices can be compactly written as

Ā =



0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

A0

A1A0

...

Ap−2 · · ·A1A0

0 · · · 0 Ap−1 · · ·A1A0


=

 0 Ā1

0 Ā2

 and (4.9)
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B̄ =



B0 0 · · · 0 0

A1B0 B1 · · · 0 0
...

...
. . .

...
...

Ap−2...A1B0 Ap−2...A2B1 · · · Bp−2 0

Ap−1...A1B0 Ap−1...A2B1 · · · Ap−1Bp−2 Bp−1


=

 B̄1

B̄2

 . (4.10)

The LQR state feedback control problem for the augmented system (4.7) involves finding the optimal

control policy ūk that minimizes the quadratic performance measure

J̄ =
1

2
lim

N→∞

[
x̄T
N S̄N x̄N +

N−1∑
k=0

(
x̄T
k Q̄x̄k + ūT

k R̄ūk

)]
, (4.11)

where S̄N ∈ Rpn×pn, Q̄ = diag(Q0, ...,Qp−1) ∈ Rpn×pn, and R̄ = diag(R0, ...,Rp−1) ∈ Rpm×pm. Consider

Q̄ = C̄T C̄. As discussed in Section 2.5, under the conditions of stabilizability of (Ā, B̄) and detectability

of (Ā, C̄), the optimal feedback matrix for the problem (4.7)-(4.11) is given by

ūk = −K̄x̄k = −
(
R̄+ B̄T P̄B̄

)−1
B̄T P̄Āx̄k, (4.12)

where the steady-state solution P̄ can be found by backwards iteration of the Riccati equation (with

terminal condition P̄N = S̄N ) until it converges, and is the unique positive definite solution of the discrete-

time algebraic Riccati equation [55]

ĀT P̄Ā− ĀT P̄B̄
(
R̄+ B̄T P̄B̄

)−1
B̄T P̄Ā+ Q̄ = P̄. (4.13)

The optimal control problem described by (4.7) and (4.13) is time-invariant, however, it is equivalent to

the time-varying problem described by (4.1) and (4.2) [69]. Still, the condition that all the pairs (Al,Bl)

are stabilizable and all pairs (Al,Cl) are detectable is not equivalent to the stabilizability of (Ā, B̄) and

the detectability of (Ā, C̄), respectively [71]. This remark is demonstrated in Appendix B.1.

4.1.2 Efficient LQR design for the augmented system

The augmented state matrix Ā is not invertible, so the algebraic Riccati equation (4.13) cannot be

directly solved by algorithms such as [72]. It can be solved by employing the method proposed in [73],

which is, however, a very complex algorithm [69]. Additionally, it is computationally expensive to solve

(4.13), particularly for systems with a large amount of samples per period, as it is a pn-dimensional

Riccati equation. An algorithm which makes full use of the structure of Ā, in which the first (p − 1)n

columns are null, was proposed in Yang (2018). The main results are presented here, and the algorithm

is thoroughly explained in Appendix B.2. Let Q̄1 = diag(Q0, ...,Qp−2), R̄1 = diag(R0, ...,Rp−2), Q̄2 =

Qp−1 ∈ Rn×n, and R̄2 = Rp−1 ∈ Rm×m. Additionally, denote

Â = Ā2, B̂ = B̄2, (4.14a)
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Q̂ = Q̄2 + ĀT
1 Q̄1Ā1 ∈ Rn×n, (4.14b)

R̂ = R̄+ B̄T
1 Q̄1B̄1 ∈ Rpm×pm, and (4.14c)

Ŝ = ĀT
1 Q̄1B̄1 ∈ Rn×pm. (4.14d)

One of the main results of Yang (2018) was showing that the solution to the Riccati equation (4.13) is

given by P̄ = diag(Q̄1, P̂), where P̂ ∈ Rn×n is the solution to the Riccati equation

ÂT P̂Â−
(
ÂT P̂B̂+ Ŝ

)
︸ ︷︷ ︸

n×pm

(
B̂T P̂B̂+ R̂

)−1

︸ ︷︷ ︸
pm×pm

(
B̂T P̂Â+ ŜT

)
︸ ︷︷ ︸

pm×n

+Q̂ = P̂.
(4.15)

The Riccati equation (4.15) is discussed in [74], and can be solved by the algorithm implemented in

the Matlab function idare. Employing the proposed algorithm, the optimal control problem for the time-

invariant augmented system requires the solution of the Riccati equation (4.15), where P̂ ∈ Rn×n,

instead of the Riccati equation (4.13), where P̄ ∈ Rpn×pn. Moreover, the proposed method only requires

the solution of one n−dimensional Riccati equation, whereas Hench & Laub (1994) and Yang (2017)

solve p n−dimensional Riccati equations [69].

4.2 Feedback of the most recent state

Studying the expression of the augmented feedback matrix, given by (4.12), the following theorem

can be derived.

Theorem 1. The optimal feedback law for the lifted system can be written as ūk = −
[
0pm×(p−1)n K̂

]
,

where K̂ ∈ Rpm×n is the optimal state feedback matrix associated with the Riccati equation (4.15).

Proof. The theorem is proved in Appendix B.3.

From Theorem 1, it can be concluded that the first (p−1)n columns of the augmented state feedback

matrix K̄ are null and, as such, the augmented state feedback law applied over a period solely depends

on the final time instant of the previous period. For systems with large periods, the state considered

in the feedback law can be several hours old and unmodelled perturbations are not compensated until

the feedback law for the following period is obtained. Additionally, due to sensor noise, the only mea-

surement taken into consideration for the control policy applied to an entire period could be unreliable.

This section proposes an algorithm to compute the set of feedback matrices Kl for feedback of the most

recent state that is available, utilizing the augmented state feedback matrix K̄.

For simplicity, consider k = 1. The augmented state feedback law is given by


up

up+1

...

u2p−1

 = −
[
0 K̂

]
x̄1 = −


0 . . . 0 K̂0

...
. . .

...
...

0 . . . 0 K̂p−1



x1

x2

...

xp


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where K̂l ∈ Rm×n, and can be written as a function of the final state of the previous period, xp, as

up+l = −K̂lxp, for l = 0, ..., p− 1. (4.16)

Let Πl ∈ Rn×n be a linear transformation from xp+l to xp+l+1. Using the set of transformations Πl, it

can be written that
xp+1 = Π0xp,

xp+2 = Π1xp+1,

xp+3 = Π2xp+2,

(4.17)

and so on. Consider, for now, that all transformations Πl are invertible. Then, it can be noted that the

state xp can be written as a function of any state of the following period, following

xp = Π−1
0 xp+1,

xp = (Π1Π0)
−1

xp+2,

xp = (Π2Π1Π0)
−1

xp+3,

(4.18)

and so on, or generally

xp =

(
l−1∏
i=0

Πl−1−i

)−1

xp+l, for l = 1, ..., p− 1. (4.19)

Substituting (4.19) in (4.16), a new feedback law for the most recent state arises as

up+l = −Klxp+l, whereK0 = K̂0

Kl = K̂l

(∏l−1
i=0 Πl−1−i

)−1

, for l = 1, ..., p− 1.

(4.20)

Note that the feedback law for the first step of the period is the same for both methods, since at this step

the most recent state is the final state of the previous period. Additionally, the (last) state feedback law

of (4.20) coincides with the feedback law obtained by Hench & Laub (1994) and Yang (2017). Finally, it

must be shown that the transformations Πl do not depend on the period (k) considered. With that goal,

consider the closed-loop plant. Given the specific structure of both Ā and K̄, it can be concluded that

the first (p− 1)n columns of Ā− B̄K̄ are zero. Studying (4.17) and noting that

x̄k+1 =
(
Ā− B̄K̄

)
x̄k, (4.21)

it can be obtained that

Ā− B̄K̄ =



0 . . . 0 Π0

0 . . . 0 Π1Π0

...
...

...
...

... Πp−2Πp−3...Π0

0 · · · 0 Πp−1Πp−2...Π0


. (4.22)
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The closed-loop plant is time-invariant and, since (4.21) is applicable for every k, it can be noted that

Π0 = Πp. Moreover, it can be written that Π1Π0 = Πp+1Πp, so Π1 = Πp+1 (considering that Π−1
0 ex-

ists). Through this process, it can be shown that the transformations Πl do not depend on the period (k)

considered. As a result, the feedback matrices Kl are periodic, with period p (as expected, since these

coincide with the results from Hench & Laub (1994) and Yang (2017)). Note that the transformations Πl

do not need to be explicitly computed, since the last state feedback matrices can simply be obtained

from
K0 = K̂0,

K1 = K̂1(Π0)
−1,

K2 = K̂2(Π1Π0)
−1,

...

Kp−1 = K̂p−1(Πp−2Πp−3...Π0)
−1,

(4.23)

where the matrices Π0, Π1Π0, ..., Πp−2Πp−3...Π0 are given by (4.22). This approach aims to minimize

the number of matrix inversions employed by the algorithm, to increase robustness to numerical error in

case of ill-conditioned matrices Πl. Moreover, this approach is computationally faster than calculating

the matrices Πl from (4.17).

In order to employ the proposed method, that obtains the last state feedback matrices from (4.23),

the transformations Πl, l = 0, ..., p − 2, must be invertible. The following theorem provides a sufficient

and necessary condition for the invertibility of all transformations Πl, l = 0, ..., p− 1.

Theorem 2. All transformations Πl, l = 0, ..., p−1, are invertible if and only if Ã = Â−B̂R̂−1ŜT ∈ Rn×n

is invertible.

Proof. Studying (4.9), (4.10), and (4.14), the closed-loop plant can be written as

Ā− B̄K̄ =

 0 Ā1 − B̄1K̂

0 Â− B̂K̂

 . (4.24)

Therefore, considering (4.22), it can be reasoned that Πp−1Πp−2...Π0 = Â− B̂K̂. That is, the eigenval-

ues of the product of the transformations coincide with the closed-loop poles of the system associated

with the Riccati equation (4.15). Denote

Ã = Â− B̂R̂−1ŜT and Q̃ = Q̂− ŜR̂−1ŜT . (4.25)

The Riccati equation (4.15) can be solved either by Schur decomposition or eigendecomposition of the

generalized eigenvalue problem

Mz = λLz (4.26)

with

L =

I Ṽ

0 ÃT

 and M =

ÃT 0

−Q̃ I

 , (4.27)

39



where Ṽ = B̂R̃−1B̂T [56]. The 2n eigenvalues of (4.26) include n eigenvalues inside the unit circle,

which coincide with the closed-loop poles of the system. The remaining n are their inverse (in the

discrete case) [73, 75]. Moreover, it can be shown that, for the generalized eigenvalue problem (4.26), if

λ = 0 is an eigenvalue with multiplicity r, then there are only 2n−r finite eigenvalues for the problem. The

r missing eigenvalues may be denominated as infinite eigenvalues (or reciprocals of 0) [73]. Therefore,

the eigenvalues of this problem can be arranged as

0, ..., 0︸ ︷︷ ︸
r

, λr+1, ..., λn︸ ︷︷ ︸
n−r

,
1

λn
, ...,

1

λr+1︸ ︷︷ ︸
n−r

,∞, ...,∞︸ ︷︷ ︸
r

, where

0 < |λi| < 1, i = r + 1, ..., n.

(4.28)

It can be noted that if Ã is nonsingular, then all the eigenvalues of the generalized eigenvalue problem

(4.26) and, by consequence, all the eigenvalues of Â − B̂K̂, are nonzero. This can be proved by

contradiction. If λ = 0 were an eigenvalue, it would result from (4.26) that Mz = 0. Therefore,ÃT 0

−Q̃ I

z1
z2

 = 0, (4.29)

which implies that z1 = 0, and z2 = 0 (trivial solution). On the other hand, if Ã is singular, there is at least

one eigenvalue equal to zero, because (4.29) has a nontrivial solution [73]. Therefore, if Ã is invertible,

then the product Πp−1Πp−2...Π0 is also invertible. Since the product of two matrices is invertible if and

only if both matrices are invertible [76], it can be concluded that all transformations Πl are invertible. On

the other hand, if Ã is singular, then at least one of the transformations Πl must be singular.

In order to avoid utilizing Matlab’s idare, as it obtains more information than is strictly necessary, if

Ã is invertible (and by consequence, both L and M are invertible), then the eigenvalue problem (4.26)

is reduced to solving the eigenvalue problem Z = L−1M. It can be shown that Z is symplectic [69] and

that, as a result, the Schur decomposition of Z can be written as

W11 W12

W21 W22

T

Z

W11 W12

W21 W22

 =

U11 U12

0 U22

 , (4.30)

where U11 is upper-triangular and has all of its eigenvalues outside the unit circle [69]. The solution of

the discrete-time algebraic Riccati equation (4.15) can then be written as [68]

P̂ = W21W
−1
11 . (4.31)

4.2.1 Proposed solution for singular Ã

According to Theorem 2, if Ã is singular, then there exists at least one transformation Πl which is

not invertible and, as such, the proposed method cannot be applied (unless only the transformation

Πp−1, which does not appear in (4.23), is singular). However, the algorithm proposed in Yang (2018)
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can compute the solution of the Riccati equation (4.15) regardless of the invertibility of Ã. This section

proposes a method to compute the last state feedback matrices K0, ...,Kp−1 that relies on the Riccati

solution P̂ (and not Πl). As a result, the proposed algorithm does not require Ã to be invertible. The

following theorem establishes a key result that enables the proposed algorithm.

Theorem 3. The Riccati solution P̂ is the initial solution P0 of the DPRE (4.4).

Proof. The theorem is proved in Appendix B.4.

After obtaining P̂ = P0 = Pp, the remaining Riccati solutions Pl can be obtained by backwards

iteration of (4.4), and the optimal feedback matrices can be obtained from (4.3).

4.2.2 Algorithm

The proposed algorithm can be summarized as follows.

Algorithm 1 Solution to the DPRE via lifting method
Data A0, ...,Ap−1, B0, ...,Bp−1, Q0, ...,Qp−1, R0, ...,Rp−1.
Output Augmented state and last state feedback matrices.

• Step 1: Form the lifted system matrices Ā, B̄, Q̄, and R̄.

• Step 2: Obtain the augmented state feedback matrix K̄ (or the Riccati solution P̂).

– Step 2.1 Form Â, B̂, Q̂, R̂, and Ŝ (See [69] for an efficient algorithm to form these matrices).

– Step 2.2 Obtain the solution P̂ of the Riccati equation (4.15), employing the Schur decomposition
(4.30) if Ã is invertible, or using Matlab’s idare or [73] if Ã is singular. The augmented state
feedback matrix can be obtained according to Theorem 1.

• Step 3, Method 1: Obtain the state feedback matrices Kl (Applicable if Ã is invertible).

– Compute the block Ā1 − B̄1K̂ of the closed-loop plant and obtain the necessary products of the
transformations Πl, according to (4.22). Compute the state feedback matrices Kl with (4.23).

• Step 3, Method 2: Obtain the state feedback matrices Kl (Always applicable).

– Starting with P̂ = P0 = Pp, iterate backwards through (4.4) to find the remaining solutions Pl,
where l = 1, ..., p− 1. Compute the state feedback matrices Kl with (4.3).

4.3 Numerical results and algorithm efficiency

Consider the synthetic discrete-time linear periodic system

xl+1 = Alxl +Blul, (4.32)

where x ∈ R3 is the state vector, u ∈ R2 is the input vector, and the state and input matrices are

Al = τs


1/τs −0.02 0.02

−0.02 sin(2ω0τsl) 1/τs 0.05

−0.02 −0.05 1/τs

 and Bl = 10−2τs


0.2 −0.2

0.2 cos(ω0τsl)

sin(ω0τsl) −0.2

 , (4.33)
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respectively, where τs is the sample time and ω0 = 2π/Tp. Let τs = 1 and Tp = 100. In this case, the

state matrix is periodic with period pA = 50, while the input matrix has a period of pB = 100. Therefore,

the number of samples per period is p = 100. The lifting technique of Yang (2018) can be employed to

obtain an equivalent linear time-invariant system, as in (4.7).

Consider that the disturbances acting on the system, as well as the sensor noise, can be modelled

as white process noise, wp and wr, respectively. The discrete-time state space model is

xl+1 = Alxl +Blul +wpl
, (4.34)

and the state measurements are x̂l = xl + wrl . The covariance matrices of the process noise and

sensor noise are E(wpl
wT

pl
) = σ2

pI and E(wrlw
T
rl
) = σ2

rI, respectively. The root-mean-square (RMS) of

the magnitude of the state vector (over N periods) can be written as

RMS(||x||) =

√√√√ 1

Np

Np∑
l=0

||xl||. (4.35)

The RMS of the state vector of the system (4.32)-(4.33) is represented in Figure 4.1, for the first 100

periods, as a function of the covariance of the process noise (considering no sensor noise, and sen-

sor noise with σ2
r = 0.05), for the augmented state feedback methodology of (4.16) and the last state

feedback methodology of (4.20). The initial state is x0 = (1, 1, 1)
T and the weighting matrices were

chosen as Ql = diag(10, 10, 10) and Rl = diag(1, 1), for all l. It can be noted that, in the absence

of disturbances and uncertainty in the measurements (σp = σr = 0), the studied feedback methods

present the same results. However, when subjected to sensor noise and process noise, the last state

feedback methodology is preferable to augmented state feedback. The fact that the closed-loop linear

time-periodic system with state feedback is more robust to system disturbances than the closed-loop

linear time-invariant system with augmented state feedback motivates the computation of the last state

feedback matrices.
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Figure 4.1: Effect of process noise on both feedback methodologies.
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Yang (2017) has been shown to be less efficient than the lifting technique proposed in Yang (2018),

except when the number of samples per period, the number of states and/or the number of inputs of

the system is large [69]. The proposed algorithm employs the lifting technique proposed in Yang (2018),

and obtaining the last state feedback matrices (third step of Algorithm 1) takes a very small percentage

of the total execution time of the algorithm. In fact, as the number of samples per period increases, the

execution time of the third step of the algorithm becomes negligible in relation to the time required to

form the augmented system matrices. Therefore, the proposed algorithm remains more efficient than

Yang (2017), when the number of samples per period is moderate.

For the synthetic system (4.32)-(4.33), the first method to obtain the last state feedback matrices (i.e.

Step 3, Method 1 of Algorithm 1) is the most efficient when the number of samples per period is small

or moderate (until p ∼ 750). When the number of samples per period increases, the second method

becomes the most efficient. This is largely due to the fact that the first method requires the computation

of the matrix Ā1 − B̄1K̂, which takes significantly more time to obtain as p increases, whereas the

second method involves iterating p − 1 times through (4.4), which remains an n−dimensional equation

and, as such, the execution time of the second method increases linearly with the number of samples

per period.

The execution times of Hench & Laub (1994), when applied to the synthetic system (4.32)-(4.33)

with varying number of samples per period, are presented in Table 4.1 alongside the total execution

times of Algorithm 1. The third step of Algorithm 1 was conducted by the most efficient method for the

number of samples per period tested. Hench & Laub (1994) is less efficient than the proposed algorithm,

particularly if the number of samples per period is moderate. This may not be the case for augmented

systems with larger number of states, inputs, or samples per period, as discussed in Yang (2018).

Samples per period Algorithm 1 Hench & Laub (1994)

50 2.5 ms 9.4 ms
100 8.9 ms 34 ms
500 0.25 s 0.79 s
1000 1.1 s 3.2 s

Table 4.1: Execution time comparison for the synthetic system (4.32)-(4.33)1.

Besides being more efficient than Hench & Laub (1994) and Yang (2017), and being more robust to

perturbations than Yang (2018), the method developed in this chapter also has the advantage of remain-

ing simple and efficient when applied to singular systems, unlike Hench & Laub (1994) and Yang (2017).

The algorithm is validated for a system with a singular matrix Ã in Section B.5. Besides the computation

of the state feedback matrices, the lifted time-invariant system remains a helpful tool for the analysis of

the periodic system.

1The algorithms were implemented on version 2021a of Matlab, and executed by a machine with 16 GB of RAM and an AMD
Ryzen 7 5800H (3.20 GHz) processor.
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Chapter 5

Periodic model of the orbital motion

Considering the periodic properties of a satellite’s orbit, it is feasible that a periodic model expressing

the deviation of the true orbit from the reference orbit could be derived. An accurate discrete-time linear

periodic model would prove beneficial, as an equivalent LTI model could then be obtained, and the LQR

design problem would require the solution of the associated discrete-time algebraic Riccati equation,

which can be efficiently computed by the technique outlined in Chapter 4. To that end, the present

chapter aims to develop a linear periodic model of the relevant dynamics. In Section 5.1, the nonlinear

system developed in Chapter 3 is linearized, resulting in a linear time-varying system. A discrete-time

linear periodic system, aiming to approximate the linear time-varying system, is developed in Section 5.2.

The discrete-time linear periodic model and, by extension, the equivalent augmented LTI model, are

validated in Section 5.3, being compared with the nonlinear model developed in Chapter 3, the linear

time-varying model, and the true motion of the spacecraft obtained with a high-fidelity simulator.

5.1 Linearized dynamic model

Recall that the dynamics of the error between the orbital element vector of the true orbit and the

reference orbit can be written as

ξ̇(ξ,∆v) = Ãg(ξ + kR) + Ãd(ξ + kR)− Ãg(kR) + B̃(ξ + kR)∆v, (3.18)

where ξ is a column vector of the difference between the real orbit’s and the reference orbit’s mean

orbital elements (in the chosen parametrization k). Let the relative orbital element vector be defined as

ϵ := aR



δa

δex

δey

δix

δiy

δu


= aR



(a− aR)/aR

ex − exR

ey − eyR

i− iR

(Ω− ΩR) sin iR

u− uR


, (5.1)
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where the subscript R indicates the reference orbital elements. The relative orbital element vector can be

written as ϵ = T(kR)ξ, where T = diag(1, aR, aR, aR, aR sin iR, aR). Since the reference orbit is only

affected by the Earth’s gravitational field, the reference semi-major axis and the reference inclination

remain approximately constant. Therefore, Ṫ ≈ 0 and ϵ̇(ϵ,∆v) ≈ Tξ̇(ξ,∆v). Let


Ag(k) = TÃg(k),

Ad(k) = TÃd(k), and

B(k) = TB̃(k).

(5.2)

The dynamics of the error between the orbital elements vector of the true orbit and the reference orbit

can be written as a function of the relative orbital element vector as ϵ̇ = f(ϵ,∆v), where

f(ϵ,∆v) = Ag(kf ) +Ad(kf )−Ag(kR) +B(kf )∆v, (5.3)

with kf = T−1ϵ+ kR. Consider ϵ(t) = ϵ0 + δϵ(t),

∆v(t) = ∆v0 + δ (∆v(t)) ,

(5.4)

where the pair (ϵ0,∆v0) is an equilibrium point and δϵ, δ(∆v) are small perturbations in ϵ and ∆v,

respectively. The pair (ϵ0 = 0, ∆v0) is an equilibrium point, with

f(0,∆v0) = Ad(kR) +B(kR)∆v0 = 0, (5.5)

where the equilibrium delta-v is given by

∆v0(MVH)
=

A

m
CDρ


0

µ⊕/(2aR)

0

∆t, (5.6)

for an MVH frame. As previously noted, the transformation between an MVH frame and an RTN frame,

expressed in (3.3), is an identity for circular orbits (e = 0). As a result, for near-circular orbits, the

equilibrium velocity in an RTN frame can be approximated as

∆v0(RTN)
≈ ∆v0(MVH)

. (5.7)

Hence, considering a near-circular orbit and assuming that the spacecraft’s ballistic coefficient and the

atmospheric density remain constant, the equilibrium delta-v can be considered constant in an RTN

reference frame. Furthermore, with these assumptions, the equilibrium velocity increment is null in the

radial and cross-track directions.
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The Taylor series of f(ϵ,∆v), at the equilibrium point (ϵ0,∆v0), is given by

f(ϵ,∆v) = f(0,∆v0) +
∂f(ϵ,∆v)

∂ϵ

∣∣∣∣ ϵ0
∆v0

δϵ+
∂f(ϵ,∆v)

∂(∆v)

∣∣∣∣ ϵ0
∆v0

δ(∆v) + ..., (5.8)

which can be approximated with the first-order Taylor approximation

f(ϵ,∆v) ≈ ∂f(ϵ,∆v)

∂ϵ

∣∣∣∣ ϵ0
∆v0

δϵ+
∂f(ϵ,∆v)

∂(∆v)

∣∣∣∣ ϵ0
∆v0

δ(∆v). (5.9)

Substituting (5.3) in (5.9) results in the linear time-varying system

δϵ̇ = A(kR,∆v0)δϵ+B(kR)δ(∆v), (5.10)

where

A(kR,∆v0) =
∂[Ag(kf ) +Ad(kf ) +B(kf )∆v]

∂ϵ

∣∣∣∣ ϵ0
∆v0

. (5.11)

The derivation of the state matrix A of the linearized model (5.10), is shown in detail in Appendix A.

The input matrix B results directly from (5.2), evaluated at the reference orbit, and is also shown in

Appendix A.

5.1.1 Open-loop poles

In order to compute the six eigenvalues of the state matrix of the linear time-varying system (5.10),

a reference orbit was propagated employing the high-fidelity simulator provided by the TU Delft’s Astro-

dynamics Toolbox (Tudat). The only force acting on a reference orbit is the Earth’s gravitational field,

which is modeled by the high-fidelity simulator employing the spherical harmonics model discussed in

Section 2.3.1, considering coefficients up to degree and order 30. The relevant parameters of the refer-

ence orbit and of the spacecraft considered are displayed in Table 5.1 and Table 5.2, respectively. The

model’s (constant) atmospheric density was extracted from the tabulated U.S. Standard Atmosphere

1976 model, for an altitude of 710 km. The six eigenvalues of the state matrix of the linear time-varying

system were computed over ten reference orbits. Three of these eigenvalues remain at the origin, one

eigenvalue is real, and the remaining two eigenvalues are complex conjugates. The three time-varying

eigenvalues of the state matrix A are represented in Figure 5.11. It can be noted that these eigenvalues

remain nearly constant for the time studied. Still, all the orbital parameters of the reference orbit change

over time and, as such, neither the state matrix A nor the input matrix B is time-invariant [16].

Table 5.1: Initial state of the reference orbit. Retrieved from [77].

Mean O.E. a (km)
7087.297

ex
0.00067

ey
0.0013

i (deg)
98.1877

Ω (deg)
189.8914

u (deg)
0

1Henceforth, the "number of orbits completed" utilized in figures refers to the division between the time of the simulation and
the period of a reference orbit.
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Table 5.2: Main parameters of the MANGO spacecraft. Retrieved from [77].

Spacecraft Model Value

Mass 154.4 kg
Drag area 1.3 m2

Drag coefficient 2.5
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Figure 5.1: Evolution of the non-null eigenvalues of the time-varying state matrix over 10 orbits.

5.2 Periodic approximation

The effect of the J2 coefficient in the reference orbit causes the precession of the ascending node

and the argument of perigee. However, the ascending node is not a parameter included in the model,

and the precession of the argument of perigee can be disregarded, as this parameter only appears in the

model in the form of ex and ey, which can be taken as approximately null for near-circular orbits. Even if

this was not the case, it could still be considered that these secular changes are slow in comparison to

the change in the argument of latitude. Equation (3.10) notes that the mean effect of the J2 coefficient

on an orbit’s semi-major axis, eccentricity, and inclination is null. Since the second term of the Earth’s

gravitational potential is around 400 times larger than the following terms, this is a good indication that

the effect of the Earth’s gravitational potential on these elements is small. Finally, the argument of

latitude is only included in the linearized model as sinuR and cosuR, which results in a periodic variation

(with a period of approximately one orbit). Given the relatively small secular changes of the slow orbital

elements included in the model, and the approximately periodic change of the argument of latitude, this

section aims to approximate the linear time-varying model (5.10) with a linear periodic model, composed

by a time-invariant state matrix and a periodic input matrix, with a period of one reference orbit.

5.2.1 Time-invariant state matrix

In order to derive an approximation for the state matrix, note that the average of sinuR and cosuR

over an orbit is approximately null (since v̇R ≫ ω̇R, so u̇R ≈ v̇R). Moreover, the terms that depend

on sinuR and cosuR, in the state matrix A, arise from the Jacobian of the matrices Ad and B∆v and

are (generally) orders of magnitude smaller than the terms arising from the Jacobian of Ag, which do

not depend on the reference argument of latitude uR. For near-circular orbits, both the components
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of the eccentricity vector remain approximately null. As a result, neglect the terms that depend on the

argument of latitude and consider

eR ≈ 0, aR ≈ aR0 , iR ≈ iR0 , and nR0
:=
√
µ⊕/a3R0

, (5.12)

where the terms aR0
and iR0

are obtained from the average of aR and iR over the first reference orbit,

propagated in advance. Furthermore, neglect the term ag64 of the time-varying state matrix A (see

Appendix A), in order to write the argument of latitude as an integrator of the semi-major axis (as dis-

cussed in [11]). Employing the proposed approximations, the state matrix A can be approximated as

the time-invariant matrix

AI =



a11 0 0 0 0 0

0 a22 a23 0 0 0

0 a32 a33 0 0 0

0 0 0 0 0 0

a51 0 0 a54 0 0

a61 0 0 0 0 0


, (5.13)

where

B⋆ =
A

m
Cd, C⋆ = −3

4

(
R⊕

aR0

)2

nR0
J2,

a11 = B⋆ρ

√
µ⊕

aR0

, a22 = −B⋆ρ

√
µ⊕

aR0

,

a23 = C⋆(5 cos2 iR0
− 1), a32 = −a23,

a33 = a22, a51 =
7

aR
C⋆ cos iR0

,

a54 = 2C⋆ sin iR0 , a61 =
7

2
C⋆
[
5 cos2 iR0 − 1 + (3 cos2 iR0 − 1)

]
− 3nR0 .

The time-invariant state matrix AI is lower triangular by blocks. Therefore, the open-loop poles of the

periodic system are simply the eigenvalues of the diagonal blocks of AI [76], given by

s1 = a11 = B⋆ρ

√
µ⊕

aR0

,

s2, s3 = a22 ± a23j = −B⋆ρ

√
µ⊕

aR0

± C⋆
(
5 cos2 iR0

− 1
)
j,

s4 = s5 = s6 = 0.

(5.14)

The eigenvalues of the time-invariant state matrix AI (i.e. the open-loop poles of the time-periodic

system) are represented in Figure 5.2, alongside the eigenvalues of the time-varying state matrix A (i.e.

the set of open-loop poles of the time-varying system). It can be noted that the time-invariant poles take

similar values to the set of eigenvalues of the time-varying matrix A.

Alternatively, the state matrix can be approximated as a periodic matrix, by keeping the terms which

depend on sinuR and cosuR. However, this approximation does not significantly improve the accuracy

of the linear periodic model, in comparison to considering the time-invariant matrix of (5.13). Employing

a time-invariant state matrix instead of a periodic state matrix simplifies the model, leads to an easier
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discretization of the system, and allows for a simpler and more efficient implementation of the algorithm

proposed in Chapter 4, as the augmented matrices can be computed more efficiently.
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Figure 5.2: Evolution of the eigenvalues of the non-periodic and the periodic state matrices.

5.2.2 Periodic input matrix

To construct an accurate input matrix, the terms depending on the argument of latitude must be

considered. Therefore, considering solely the approximations of (5.12), the input matrix B(kR) of the

linear time-varying system (5.10), can be approximated by

Bper(kR) =
1

nR0
∆t



0 2aR0
0

sinuR 2 cosuR 0

− cosuR 2 sinuR 0

0 0 cosuR

0 0 sinuR

−2 0 − sinuR/ tan iR0


, (5.15)

for the first reference orbit, and considered periodic with the period of a reference orbit thereafter.

Finally, the linear time-varying system (5.10) can be approximately written as the linear time-periodic

system

δϵ̇ = AIδϵ+Bper(kR)δ(∆v). (5.16)

As discussed in Chapter 3, for the LQR design, it will be considered that the satellite does not have

thrusters aligned with the radial axis, such that only actuation in the along-track and cross-track direc-

tions can be applied. Since the equilibrium delta-v is also null in the radial direction (for near-circular

orbits), the system (5.16) can be written considering actuation solely in the along-track and cross-track

actuation, as

δϵ̇ = AIδϵ+Bper2(kR)δ(∆v2), (5.17)

where Bper2 is comprised by the two last columns of Bper and δ(∆v2) = δ
(
[∆vT ∆vN ]

T
)

is the input

vector in the along-track and cross-track directions. For this problem, with an assumption of a near-

circular orbit and no radial actuation, the periodic systems (5.16) and (5.17) are equivalent.
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5.2.3 Discrete-time linear periodic system

The linear system (5.17) can be discretized, assuming zero-order hold for the input δ(∆v2) and a

suitable time step (generally a time step of about 10 to 20 seconds yields good results), leading to

δϵl+1 = Alδϵl +Blδ(∆v2)l, where


Al = eAIτs , and

Bl ≈
(∫ τs

τ=0
eAIτdτ

)
Bper2(kR)

∣∣∣∣
lτs

(5.18)

are the discretized state-space matrices, and τs = ∆t is the sample time. It was considered that the

sample time is small enough so that the input matrix does not vary significantly between consecutive

samples (i.e. the change in the argument of latitude of the reference orbit over the sample time is small).

For the discrete-time linear periodic system, the state matrix Al = Al+1 is time-invariant, and the input

matrix Bl = Bl+p is periodic with period p. The LTI system equivalent to (5.18), that likewise considers

null actuation in the radial direction, can be written as

ϵ̄k+1 = Āϵ̄k + B̄δ(∆v2)k, (5.19)

where ϵ̄ ∈ R6p is the augmented state, δ(∆v2) ∈ R2p is the augmented input (in the along-track and

cross-track directions), and Ā ∈ R6p×6p and B̄ ∈ R6p×2p are the augmented time-invariant matrices, as

defined in Chapter 4. It can be noted that considering only along-track and cross-track actuation leads

to a substantial reduction in the dimension of the augmented time-invariant system. Nonetheless, it is

evident that an LTI system with actuation in the radial direction can be derived if necessary, following a

similar procedure. Such an LTI system would be equivalent to the discretization of the system (5.16).

5.3 Model validation

In order to validate the developed discrete-time linear periodic model, consider the three following

systems, which represent the dynamics of the relative orbital element vector ϵ: 1) Nonlinear system (5.3),

2) Linear time-varying system (5.10), and 3) Discrete-time linear periodic system (5.18), equivalent to

the LTI system (5.19). A discretization time step of ∆t = 10 s was considered. The atmospheric

density of the models was chosen as the average atmospheric density over the first reference orbit’s

path, employing the NRLMSISE-00 atmospheric model. The main parameters of the orbit and of the

spacecraft are represented in Table 5.1 and Table 5.2, respectively.

The motion of the spacecraft was initially propagated in the case of free fall (no actuation) with

the three models. The results are shown in Figure 5.3. The semi-major axis of the spacecraft’s orbit

decreases linearly, since the three models assume constant atmospheric drag and ballistic coefficient.

As expected, both of the eccentricity parameters have a periodic variation, with a much smaller secular

component. The periodic variation is caused by the effect of drag, and has a period of one orbit, since it

is modelled as a function of the argument of latitude. The inclination is modelled as constant, as neither

of the modelled perturbations have a significant secular effect on this orbital element. The tracking error
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of the reference argument of latitude (δu) is an integrator of the tracking error of the reference semi-major

axis (δa).
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Figure 5.3: Evolution of the relative orbital element vector for a spacecraft in free fall.
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Figure 5.4: Difference between the results of the nonlinear model and the linear models (free fall).

The difference between the results from the orbit propagation with the nonlinear model and the two

linear models is represented in Figure 5.4. For every relative orbital element difference, the error of

the linear models is several orders of magnitude smaller than the value of the parameter. The largest

relative error for both linear models is in the propagation of δex and δey. Still, the absolute error in the
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propagation of these parameters is two orders of magnitude smaller than the amplitude of the periodic

variations of the respective parameters, for the first two orbits. Generally, the linear periodic model

presents a larger error than the linear time-varying (non-periodic) model. This is the case, particularly,

for the propagation of the argument of latitude. Still, for this parameter, the error of the linear periodic

model is around four orders of magnitude smaller than the value of the parameter δu. Note that while

no actuation was applied, these results show that the periodic input matrix approximates accurately the

effects of along-track maneuvers, since in free fall δ(∆v) = −∆v0 ̸= 0.

In a second validation study, the motion of the spacecraft was propagated considering constant

actuation in the along-track and cross-track directions, chosen as ∆vT = 5 · 10−7 m/s and ∆vN =

10−7 m/s, respectively (with ∆t = 10 s). The difference between the results of the nonlinear model and

the linear models is shown in Figure 5.5. The conclusions are similar to the case of free fall. The largest

relative error is in the propagation of the eccentricity parameters. The error of the linear periodic system

is generally larger than the error of the linear time-varying system, particularly for the propagation of the

argument of latitude. However, this error still remains three orders of magnitude smaller than the value

of δu. Due to the cross-track actuation, there is also a small error introduced in the propagation of the

out-of-plane parameters δix and δiy.
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Figure 5.5: Difference between the results of the nonlinear model and the linear models (with constant
actuation).

In conclusion, the nonlinear time-varying model (5.3) can be well approximated by the discrete-time

linear periodic system (5.18) and, thus, by the equivalent LTI system (5.19), for the case of a spacecraft

in free fall and for the case of a maneuvering spacecraft.
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5.3.1 Validation with a high-fidelity simulator

In this section, the results obtained by the discrete-time periodic model are compared with the true

motion of the spacecraft, obtained with a high-fidelity simulator (Tudat). The propagation parameters

utilized for the high-fidelity simulator are presented in Table 5.3. In order to simulate the error between

the reference orbit propagated on-board the spacecraft and the real gravitational field of the Earth, the

real Earth’s gravitational field was propagated with a spherical harmonics model of higher degree and

order than the gravitational field considered for the propagation of the reference orbit.

Table 5.3: Propagation parameters and perturbations considered by the high-fidelity simulator.

Spacecraft Model Value

Mass 154.4 kg
Drag area 1.3 m2

Drag coefficient 2.5
SRP Coefficient 1.3

SRP Effective Area 1.3 m2

Orbit propagation Model

RO Earth gravity field Spherical harmonics (30)
Earth gravity field Spherical harmonics (35)

Third-bodies gravity fields Point-mass (Sun, Moon, Mars, Venus, Jupiter)
Atmospheric density NRLMSISE-00

Solar radiation pressure Cannonball model (w/ Earth as occulting body)
Relativistic corrections Schwarzschild metric

Numerical method RK45

The evolution of the relative orbital element vector, for the case of a spacecraft in free fall, is presented

in Figure 5.6 for the linear periodic system and the high-fidelity simulator, over 5 orbits.
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Figure 5.6: Evolution of the relative orbital element vector for a spacecraft in free fall.
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The difference between the results of the high-fidelity simulator and the linear periodic model is

presented in Figure 5.7. Observing Figure 5.6, it can be noted that the deviation of the true orbit’s semi-

major axis, obtained by the high-fidelity simulator, has a periodic component that the linear periodic

model does not include. However, observing Figure 5.7, it can be noted that the error of the linear model

in the estimate of the semi-major axis is close to null every half orbit. Therefore, it can be concluded

that while there is a periodic effect that is not included in the model, the secular variation of the semi-

major axis is modelled accurately. These periodic effects cause the relative orbital difference δa to be

larger (in magnitude) for the high-fidelity simulator than for the periodic model, for the vast majority of

the time. Since δu is essentially an integrator of δa, this results in this parameter increasing more rapidly

in reality than the periodic model predicts. The relative orbital element differences δex and δey also have

a small periodic component which is not included in the model. Still, the real secular variation of these

variables is slow. In fact, the error for the propagation of δex is approximately null after the first orbit.

As expected, the model lacks accuracy in the out-of-plane (δix, δiy) motion prediction since neither the

third-body perturbations nor the solar radiation pressure (which are the main causes for the perturbation

of the out-of-plane motion) are included in the original nonlinear model [16].
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Figure 5.7: Difference between propagation with a high-fidelity simulator and the LTP model (free fall).

The propagation of the semi-major axis and the argument of latitude, over 100 orbits (approximately 7

days) is displayed in Figure 5.8. The observed 10.7-cm Solar Radio Flux and Ap index, which measure

solar particle radiation, vary over the week of the simulation and, as a result, the atmospheric drag

varies not only over the orbit, but also over time for the same location. Despite this fact, the linear

periodic model obtains an accurate estimate of the decrease in the semi-major axis (error of 4% after

100 orbits). Still, for long satellite missions, it will prove beneficial to routinely update the model with

a better prediction of the atmospheric density. Moreover, if atmospheric models predict a substantial

change in atmospheric density along the spacecraft’s path, the model must be updated with a more
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recent estimate of the atmospheric density.
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Figure 5.8: Difference between propagation with linear model and high-fidelity simulator (free fall).

The motion of the spacecraft was also propagated with constant actuation in the along-track and

cross-track directions, chosen as ∆vT = 5 ·10−7 m/s and ∆vN = 10−5 m/s, respectively (with ∆t = 10 s).

The error of the LTP model for this scenario is shown in Figure 5.9, alongside the error for the scenario

where the spacecraft is in free fall. Since the error for these two scenarios is similar, it can be deduced

that the effect of the maneuvers on the spacecraft’s orbit is accurately modelled by the linear model (i.e.

adding the maneuvers does not introduce a substantial amount of error to the linear system’s prediction

of the satellite’s motion). This is expected, as the input matrix results directly from the Gauss’ form of

Lagrange’s planetary equations, and the assumption of a near-circular orbit.
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Figure 5.9: Difference between propagation with a high-fidelity simulator and the LTP model.

5.3.2 Effect of the Earth’s gravitational field and the atmospheric drag

This section aims to determine if the differences between the linear periodic model and the high-

fidelity simulator are due to the model failing to represent the perturbations that are considered (drag

and the Earth’s gravitational field), or due to the effect of other (unmodelled) perturbations. With this

goal, consider Figure 5.10, where the results of the linear periodic model are displayed alongside the
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results of the high-fidelity simulator, considering only the atmospheric drag and the Earth’s gravitational

field. In this case, the results obtained by the periodic model more closely resemble the results of the

high-fidelity propagator. There still exists a small periodic variation on the orbit’s semi-major axis for the

high-fidelity simulator (caused by the change in the atmospheric density along the spacecraft’s path) that

the LTP model does not capture. However, the amplitude of this variation is much smaller than in the

previous section, where other perturbations were considered, causing the propagation of the argument

of latitude by the LTP model to be more accurate in this case. The main difference is noted in the orbital

element differences δex and δey, which have a slow secular change that the model does not predict.

This is likely because of the assumption of constant atmospheric density. The high-fidelity simulator

also shows a secular change in the orbit’s inclination. However, this secular change is around 300 times

smaller (after 5 orbits) than when other perturbations are included. The error of the LTP model in the

estimate of δiy is also significantly smaller than when other perturbations are included. As a result, it

can be concluded that the lack of accuracy of the model when compared to the propagation using a

high-fidelity simulator can be in large part attributed to the fact that the unmodelled perturbations, which

were not considered on the original nonlinear model, have noticeable effects on the system.
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Figure 5.10: Evolution of the relative orbital element vector (considering drag and the Earth’s gravita-
tional field).

In conclusion, the discrete-time linear periodic model, and its time-invariant equivalent, allow for ac-

curate short and long term prediction of the secular variation of the semi-major axis, as long as there are

no phenomena which significantly alter the atmospheric density during the simulation period. Moreover,

the linear periodic system accurately models the effects of orbital maneuvers on the spacecraft’s orbit.

Periodic changes in δex and δey are not accurately predicted by the model. On the other hand, these

elements have a slow secular change. The estimation of the out-of-plane motion (δix, δiy) is the most

significant shortcoming of the model, as the secular variations of the inclination and the longitude of the
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ascending node are not properly modelled. The shortcomings of the nonlinear and linear models studied

are mostly due to the fact that the unmodelled perturbations have relatively large effects on the satellite’s

orbit. This is particularly true for the out-of-plane motion of the satellite, since none of the perturbations

which primarily affect this motion are modelled. As a result, for better prediction of the satellite’s motion

(especially for the out-of-plane motion), other perturbations must be included in the model. Third-body

perturbations, from the Moon and the Sun, have the largest effect besides the perturbations already

modelled [78], and including these in the model would allow for better results in the prediction of the

out-of-plane motion. Finding a method to include the effects of these perturbations, while maintaining

the periodicity of the model, can lead to significant improvements.

For the sake of developing a feedback law, the LTP model developed herein may be utilized. In

fact, it was concluded that the LTP model has similar accuracy to the nonlinear and linear time-varying

models utilized in the literature, as these also solely model the effect of the atmospheric drag and J2.

While the effects of perturbations on the out-of-plane motion are not well modelled, the effects of orbital

maneuvers on the out-of-plane motion are accurately represented by the periodic input matrix derived,

as noted in Section 5.3.1.

Finally, it is important to note that the results are presented for an orbit with an altitude of approxi-

mately 700 km. The validity of the model employed rests on the fact that the atmospheric drag and the

Earth’s gravitational field (up to J2) are the dominant perturbations on the satellite’s orbit. As discussed

in Chapter 2, and observed in Figure 2.4, this becomes an erroneous assumption as the orbit’s height

increases, particularly since the atmospheric density decreases exponentially with height. The upper

bound of a low Earth orbit is often defined as 2000 km [5]. However, at this altitude, the effect of the

atmospheric drag is already less significant than the third-body perturbations caused by the Moon and

the Sun [36]. Generally, the models studied in this thesis will perform significantly better when applied

to orbits at lower altitudes, even within the height boundary that defines a low Earth orbit.
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Chapter 6

Controller design and simulation

results

In the present chapter, the proposed control system is designed and validated. Section 6.1 outlines

the LQR design process. Furthermore, the proposed control solution is validated with ideal sensors and

actuators (i.e. no navigation or actuation errors are considered), for the control of all orbital elements. In

Section 6.2, it is discussed how the problem can be formulated to fulfill mission requirements provided

in terms of Earth-fixed operational parameters (ground-track latitude, longitude, and orbit altitude). The

performance of the proposed control solution is compared with the precise impulsive control method-

ology employed in the PRISMA mission, both with ideal sensors and actuators, and while including

on-board navigation errors and realistic actuators. Finally, in Section 6.3, the controller is validated for

the correction of initial errors from the orbit injection process.

6.1 LQR design and controller validation

Let the linear periodic system (5.17) be discretized considering 300 samples per period (i.e. p = 300,

leading to ∆t ≈ 19 s). The performance of the discrete-time LTP model does not deteriorate significantly

due to considering ∆t ≈ 19 s instead of a smaller time step, as the choice of a time step between 10 s

and 20 s is well within tolerance for the study of a LEO satellite (see [27, 79]). The choice of the time step

was motivated by the fact that a decrease in the number of samples per period leads to a decrease in the

computational time of the algorithm proposed in Chapter 4 (or any other algorithm for the solution of the

DPRE, for that matter). This is a significant benefit due to the limited CPU capability on-board a satellite.

Forming the augmented LTI system, as described in Chapter 4, it can be noted that the pair (Ā, B̄) is

stabilizable, even though only actuation in the along-track and cross-track directions is considered.

In order to validate the control methodology developed, assume that the main goal of the mission is to

keep the relative orbital vector δϵ small, in order to achieve accurate reference tracking of all Keplerian

elements throughout the entire simulation (e.g. keeping the distance between the true and reference

spacecraft below 10 m). With that goal, an LQR problem with relatively inexpensive control will be
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considered (in order to attain accurate reference following). Let the matrices Ql and Rl be chosen as

diagonal and time-invariant, with Ql = diag(1.52, 22, 22, 32, 32, 52)−1 and Rl = diag(1011/1.225, 8 ·108),

for all l. It can be noted that the pair (Ā, C̄) is observable. Therefore, the algorithm proposed in Chapter 4

can be applied, resulting in the set of optimal periodic state feedback matrices Kl (l = 0, ..., p−1) ∈ R2×6.

Recall that the relative orbital element vector is δϵ = aR(δa, δex, δey, δix, δiy, δu)
T and that the optimal

feedback law is given by δ(∆v2)l = −Klδϵ, with Kl = Kl+p. Let the entries of the feedback matrices Kl

be represented as

Kl =

gT1
(l) gT2

(l) gT3
(l) gT4

(l) gT5
(l) gT6

(l)

gN1(l) gN2(l) gN3(l) gN4(l) gN5(l) gN6(l)

 . (6.1)

To perform an initial sanity check of the proposed control system, consider the optimal feedback matrices

resultant from the LQR problem defined in this section. The first row of these feedback matrices (which

influences the along-track actuation) is displayed in Figure 6.1, over one period. The feedback gains for

the states δix and δiy (gT4
and gT5

, respectively) are one to three orders of magnitude smaller than the

remaining gains. This is the case since δix and δiy are not directly altered by along-track maneuvers,

and are also not substantially affected by changes in the other orbital elements. The evolution of gT2

over the period resembles a cosine wave, whereas gT3
approximately follows a sine wave (with some

offset). This can be explained by the fact that the efficiency of an along-track maneuver ∆vT on the

orbital parameters ex and ey is a function of cosuR and sinuR, respectively. The entry gT1
does not vary

substantially over the period, as the effect of an along-track maneuver in the semi-major axis does not

depend on the location of the maneuver. While δu cannot be directly controlled by along-track impulses,

the entry gT6
is still large (considering that δu is often the largest error of the system). This is due to

the fact that δu is essentially an integrator of δa, and it is more effectively controlled by altering the

semi-major axis, rather than applying cross-track maneuvers which directly affect δu.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

5.55

5.6
#10-6

g T
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-2

-1

0

1

2

#10-6

g T
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-2

-1

0

1

2

#10-6

g T
3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5
#10-9

g T
4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Number of orbits completed

7.4

7.6

7.8

8

#10-8

g T
5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Number of orbits completed

-7.1

-7

-6.9

-6.8
#10-7

g T
6

Figure 6.1: Along-track optimal periodic feedback gains over a reference orbit.
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The second row of the entries of the periodic feedback matrices is displayed in Figure 6.2. It can be

noted that gN4 and gN5 are one to three orders of magnitude larger than the remaining entries. Thus,

it can be deduced that the along-track maneuvers mostly depend on δa, δex, δey and δu, whereas the

cross-track maneuvers are mostly a function of δix and δiy. The entry gN4
approximately follows a

cosine wave over the period, whereas the evolution of gN5
resembles a sine wave. Similarly to the

along-track case, this is influenced by the fact that the efficiency of a cross-track maneuver ∆vN on the

orbital parameters ix and iy is a function of cosuR and sinuR, respectively. As previously mentioned, a

cross-track maneuver also has an effect on the argument of latitude. As a result, the entries gN1
and

gN6
are only one and two orders of magnitude smaller than gN4

, respectively. Since the change in the

argument of latitude due to a cross-track maneuver depends on sinuR, the evolution of both gN1
and gN6

resembles a sine wave. In conclusion, the evolution of the feedback gains over the period (one reference

orbit) comply with the orbital mechanics associated with the problem.
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Figure 6.2: Cross-track optimal periodic feedback gains over a reference orbit.

For the simulations conducted in the present chapter, the reference and the true orbits are propa-

gated by a high-fidelity simulator (Tudat). The reference orbit considered is the orbit employed on the

PRISMA mission, whose initial state is displayed in Table 5.1. The spacecraft model and the propagation

parameters for the high-fidelity simulator are displayed in Table 5.3.

In order to validate the control algorithm proposed, consider that the controller designed in the current

section is employed to maintain the orbit of the PRISMA mission, aiming for accurate reference tracking

of all Keplerian elements. The high-fidelity simulation of the satellite’s motion was conducted over one

month (approximately 440 orbits), considering ideal sensors and actuators. The distance between the

true and the (virtual) reference spacecraft (averaged over one orbit) is shown in Figure 6.3. Henceforth,

this quantity will also be referred to as the distance between the true and the reference orbit. The main

results of the simulation are summarized in Table 6.1. The evolution of the relative orbital elements
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is displayed in Figure 6.4. It can be noted that the intended precision (10 m) can be achieved. All

the relative orbital parameters are kept within a small window of 2 m, except the tracking error of the

argument of latitude (multiplied by aR), which is kept within a window of 10 m (i.e. the maximum error for

the tracking of the argument of latitude is approximately 8.1 · 10−5 degrees).

Table 6.1: Performance and maneuver budget.

δϵ Mean (m) σ (m)

aRδa 0.28 0.50
aRδex 0.42 0.72
aRδey −0.10 0.81
aRδix 0.23 0.70
aRδiy 0.71 0.37
aRδu 3.11 3.21

Maneuvers Max. Total (m/s)

∆vT 1.1 · 10−5 m/s 0.41
∆vN 3.8 · 10−5 m/s 1.56
TT 88 µN —
TN 293 µN —
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Figure 6.4: Evolution of the relative orbital elements over one month.

The actuation is displayed in Figure 6.5. Henceforth, actuation will be represented in terms of com-

manded delta-v for the time step (it is assumed that constant thrust is applied over the time step). It can

be noted that negative along-track actuation is often applied, in order to keep the values of δa, δex, δey

and δu low throughout the entire simulation period. It is important to note that negative along-track ac-

tuation adds to the effect that the atmospheric drag has on lowering the orbit, increasing the amount

of (positive) change in velocity that will have to eventually be applied, and can therefore be considered

inefficient. However, negative along-track actuation is often necessary for missions with strict position
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requirements. The maximum commanded thrust is in the order of 102 µN. Due to the low maximum

thrust required, a very efficient low-thrust propulsion system can be employed, resulting in low fuel con-

sumption despite the relatively large delta-v. The total delta-v required for station-keeping will heavily

depend on the mission requirements, and thus is relatively large in this case, as the LQR design aimed

for very precise orbit control.
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Figure 6.5: Executed maneuvers, in terms of delta-v per time step.

6.2 PRISMA mission

In this section, the performance of the proposed control methodology is compared with the impulsive

feedback methodology proposed in [16, 80], for the PRISMA mission.

6.2.1 Relative Earth-fixed elements

The mission requirements for the PRISMA mission are given in terms of the relative Earth-fixed el-

ements (REFEs). This parameterization is analogous to the relative orbital elements (δϵ) [81, 82] and

describes the relative motion of the real and reference subsatellite points on the Earth’s surface. Employ-

ing the REFE parametrization is often helpful for designing a control system, as mission requirements

are usually expressed through Earth-fixed operational parameters [80]. As shown in Figure 6.6, the

{λ, φ, η} reference frame has the origin in the subsatellite point considered, and at the altitude of the

satellite. The λ (longitude) axis is tangent to the local line of latitude and points east, the φ (latitude)

axis is tangent to the local meridian and points north, and the η axis points along the orbit radius. The

relative position of the real and reference subsatellite points (on the Earth’s surface) is defined in the

{λR, φR, ηR} frame of reference by the phase difference vector δL = (δLλ, δLφ)
T and the normalized

altitude difference δh = ∆h/aR [80]. These parameters are likewise represented in Figure 6.6, and can
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be written as a function of the relative orbital elements (δϵ) as

δLλ

aR
=

1

sin iR
(−δix sinu+ δiy cosu) +

||ω⊕ − Ω̇R||
n

√
1− (sinu sin i)2

(
cos iR
sin iR

)
[δix sinu+ δiy(1− cosu)]

+
||ω⊕ − Ω̇R||

n

√
1− (sinu sin i)2

[
δu− 3

2
uδa+ 2(δex sinu− δey cosu)

]
, (6.2)

δLφ

aR
= cos iR [δix sinu+ δiy(1− cosu)] + sin iR

[
δu− 3

2
uδa+ 2(δex sinu− δey cosu)

]
, and (6.3)

δh

aR
= δa− (δex cosu+ δey sinu), (6.4)

for near-circular orbits, assuming that the separation between the reference and real orbits is small in

comparison to the radius of the reference orbit [16].

Figure 6.6: Geometry of the relative Earth-fixed elements. Retrieved from [80].

This section will consider one of the cases studied in [16, 80], where the system design aims to

control the relative Earth-fixed elements δLλ and δLφ at the ascending node, by means of along-track

and cross-track maneuvers. These relative Earth-fixed parameters are commonly used as operational

parameters for orbit maintenance [80]. At the ascending node, (6.2)-(6.4), and the rate of change of the

difference in ground-track longitude d(δLλ)/dt, can be written as

δLλ

∣∣∣∣
u=0

= c1(δiyaR) + c2(aRδu− 2aRδey),

d(δLλ)

dt

∣∣∣∣
u=0

≈ c3aRδa,

δLφ

∣∣∣∣
u=0

= sin iR(aRδu− 2aRδey), and

δh

∣∣∣∣
u=0

= aR(δa− δex),

(6.5)

where c1 = 1/ sin iR, c2 = ||ω⊕ − Ω̇R||/n, and c3 = ar1/ sin iR + ar2c2 (with ar1 and ar2 corresponding to

the entries a51 and a61 of the state matrix A) [80]. The impulsive control methodology proposed in [16],

and further developed in [80], is summarized in the following section.
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6.2.2 PRISMA’s linear feedback methodology

The linear control system of [16, 80] was designed by means of pole placement, employing a

simplified model (which considers only the state parameters a, iy, and u) and separating the prob-

lems of in-plane and out-of-plane control. Studying (6.5) it can be noted that, at the ascending node,

δLλ = k1δiy + k2Lφ, where k1, k2 ∈ R. Therefore, the only solution to control both δLλ and δLφ is

to select δiy as one of the control outputs. As a result, three outputs (δLλ, δLφ, δiy) and two inputs

(∆vT ,∆vN ) are considered.

The impulsive control scheme computes along-track maneuvers at the ascending node every 6 hours

(four orbital periods) and cross-track maneuvers every 12 hours (eight orbital periods). The along-track

impulsive maneuvers are scheduled to be executed at

uRT
= arctan

(
δey
δex

)
+ kπ, where

k = 0 if δex∆vT < 0,

k = 1 if δex∆vT > 0,

(6.6)

and the cross-track maneuvers are scheduled to be executed at uRN
= π/2, to maximize their effec-

tiveness on altering δiy. The analytical rule (6.6), to select the location of the along-track maneuvers, is

an ingenious solution to controlling the eccentricity vector, employing only (at most) one maneuver per

orbit. Recall that the rate of change of δex and δey, caused by an along-track maneuver, can be written

as

˙δex =
∆vT
nR∆t

2 cosuR and ˙δey =
∆vT
nR∆t

2 sinuR, (6.7)

respectively. Consider that δex∆vT < 0. Since sin(arctanx) = x/
√
1 + x2 and cos(arctanx) = 1/

√
1 + x2,

(6.6) can be substituted in (6.7) to obtain

˙δexδex =
2

nR∆t

1√
1 + (δey/δex)2︸ ︷︷ ︸

≥0

δex∆vT︸ ︷︷ ︸
<0

≤ 0, and

˙δeyδey =
2(δey)

2

nR∆t

1√
1 + (δey/δex)2︸ ︷︷ ︸
≥0

∆vT
δex︸ ︷︷ ︸
<0

≤ 0.

(6.8)

As a result, if neither δex nor δey is null, the along-track maneuver causes both ||δex|| and ||δey|| to

decrease. If δex is null, then the along-track maneuver only affects δey, and vice versa. The same

process can be applied to prove that this is also true for the case where δex∆vT > 0. Hence, both of

the eccentricity parameters are controlled by determining the location of the along-track maneuver, even

though these orbital elements are not included in the model, and thus have no effect on the magnitude

or direction of the along-track maneuver ∆vT .

For the scheduled along-track maneuvers to be executed, the orbit’s parameters must be outside a

certain maximum design parameter (||δLλ|| > 10 m), otherwise, the scheduled maneuver is not exe-

cuted. The along-track velocity increment is given by ∆vT = − [g1(c1δiy + c2δu) + g2c3δa] aR, where g1

and g2 are gains based on constraints required to stabilize the system and limits imposed by design,
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and then tuned as necessary [80]. The gain values chosen are

g1 = sgn(c3)
∆vT(max)

aRδLλ(max)

and g2 = sgn(c3)
∆vT(max)

aRd(δLλ)/dt(max)
, (6.9)

where "sgn" represents the sign function. To control the element δiy, the cross-track velocity increment

is ∆vN = −gNδiyaR, where gN = ∆vN(max)/aRδiy(max) is a gain that depends on the limitations of the

system [16]. This feedback routine will lead to the maximum ∆vN(max) (e.g. the saturation of the actuator)

to be applied once the system is at the maximum acceptable deviation (aRδiy(max)), from the reference

orbit. The tuning parameters chosen were retrieved from [80], and are shown in Table 6.2.

Table 6.2: Design parameters.

δLλ(max) d(δLλ)/dt(max) aRδiy(max) ∆vT(max) ∆vN(max)

10 m 10/86400 m/s 40 m 10−3 m/s 1.5 · 10−2 m/s

6.2.3 LQR design: relative Earth-fixed elements

As previously mentioned, the main mission requirement is the control of the phase differences

δLλ, δLφ at the ascending node. However, the linear feedback law described in the previous section

also maintains the deviation of the altitude δh. This is due to the fact that δh is a function of the semi-

major axis and the eccentricity vector. The linear feedback law of [16, 80] controls the semi-major axis

by means of along-track maneuvers (to keep d(δLλ)/dt and δu), and the eccentricity vector by means

of the placement of the impulsive along-track maneuvers. Since the control scheme proposed in this

thesis includes every orbital element, the eccentricity vector can be continuously corrected to maintain

the altitude, as well as the phase difference vector. Therefore, δh (at the ascending node) can simply be

included as one of the outputs. Hence, a possible choice for the output vector is

y =
[
δLλ δLφ d(δLλ)/dt δh

]T∣∣∣∣
u=0

, (6.10)

which can be written in function of the state δϵ as

y = Hδϵ =


0 0 −2c2 0 c1 c2

0 0 −2/c1 0 0 1/c1

c3 0 0 0 0 0

1 −1 0 0 0 0

 δϵ. (6.11)

The cost function of the LQR problem can then be written as

J =
1

2

∞∑
l=0

(
δϵTl Qlδϵl + δ(∆v2)

T
l Rlδ(∆v2)l

)
=

1

2

∞∑
l=0

(
yT
l Q

⋆
l yl + δ(∆v2)

T
l Rlδ(∆v2)l

)
, (6.12)
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where Ql can be written in function of the weighting matrix of the outputs Q⋆
l , as Ql = HTQ⋆

lH,

and the output matrix H can be considered as constant, evaluated at the initial state of the refer-

ence orbit. The LQR weighting matrices were set to Q⋆
l = diag

(
2.252, 152, (300/86400)2, 32

)−1, and

Rl = diag
(
(6.5 · 10−7)2, (2.25 · 10−6)2/2

)−1, for all l. Employing this method, the LQR algorithm can be

applied to control the phase difference parameters δLλ and δLφ, and the altitude deviation δh, despite

being designed in terms of the relative orbital element vector. Note that the primary goal set in [80]

is to control the phase difference parameters δLλ and δLφ evaluated at the ascending node (u = 0).

However, the LQR design proposed in this thesis allows for the problem to be extended to control these

parameters at all u. Examining (6.2) and (6.3), a time-periodic output vector H can be developed, noting

that u ≈ uR. This would result in a problem with a periodic tuning matrix with a period of one reference

orbit (Ql = Ql+p), which can also be solved by the algorithms studied in Chapter 4.

6.2.4 Ideal simulation scenario

The relative Earth-fixed elements of the controlled orbit are represented in Figure 6.7, over 1 month,

when employing the impulsive control scheme of [16, 80] and when applying the LQR control method-

ology proposed in this thesis (considering ideal sensors and actuators). The main advantage of the

LQR is the vastly superior reference tracking of Lφ. The continuous and impulsive methodologies lead

to similar results for the phase difference δLλ and the altitude deviation δh. Still, the impulsive scheme

leads to larger variation of the parameters, as the station-keeping maneuvers are larger.
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Figure 6.7: Evolution of the relative Earth-fixed elements (at the ascending node).

The relative orbital elements of the controlled orbit are displayed in Figure 6.8. Studying the evolution

of δa, it can be noted that due to the scarcity and aggressiveness of the maneuvers commanded by

the impulsive scheme, this parameter has a much larger variation for the impulsive scheme than for

the continuous control scheme. Since δu is essentially an integrator of δa, the impulsive methodology
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displays poor tracking of the reference argument of latitude. The eccentricity parameter δey is often

larger for the LQR methodology than for the impulsive methodology. This can be explained by the fact

that altering δey can be used, by the LQR methodology, to decrease δLλ or δLφ. In fact, one of the

primary advantages of the methodology proposed in this thesis is that the six orbital parameters are

included in the model, whereas the impulsive methodology of [80] separates the problem of in-plane

and out-of-plane control, and uses a simplified model without the eccentricity parameters. As a result,

the control system proposed herein can directly control δLλ and δLφ by means of small changes to the

eccentricity vector and δiy, unlike the methodology of [80]. Note that the evolution of the parameter

δix hardly differs between the continuous control scheme and the impulsive control methodology (that

places the cross-track maneuvers at u = π/2 rad, not affecting the orbit’s inclination). This shows that

while the control scheme is continuous, fuel is not wasted by applying large maneuvers where these

affect δix instead of δiy. In fact, from (6.11), it can be concluded that none of the outputs directly depend

on the orbit’s inclination. Still, according to the linear time-varying model derived, every other orbital

element (except the semi-major axis) depends on δix.

0 50 100 150 200 250 300 350 400 440
-10

-5

0

5

10

a
R
/
a

(m
)

LQR
PRISMA's linear control law

0 50 100 150 200 250 300 350 400 440
-5

0

5

10

a
R
/
e x

(m
)

0 50 100 150 200 250 300 350 400 440

0

5

10

15

20

a
R
/
e y

(m
)

0 50 100 150 200 250 300 350 400 440
-100

-50

0

50

100

a
R
/
i x

(m
)

0 50 100 150 200 250 300 350 400 440

Number of orbits completed

0

20

40

60

a
R
/
i y

(m
)

0 50 100 150 200 250 300 350 400 440

Number of orbits completed

-1000

-500

0

a
R
/
u

(m
)

Figure 6.8: Evolution of the relative orbital elements.

The actuation commanded by PRISMA’s impulsive control technique is displayed in Figure 6.9, and

the actuation of the proposed LQR control methodology is displayed in Figure 6.10. The impulsive

cross-track maneuvers, executed at uR = π/2 rad, are always applied in the negative direction in order

to decrease δiy. On the other hand, the continuous cross-track actuation is applied in both directions,

as maneuvers applied near uR = 3π/2 rad must be positive in order to decrease δiy. For both control

methodologies, positive and negative along-track delta-v are applied. As previously noted, while nega-

tive along-track actuation adds to the effect that the atmospheric drag has on lowering the orbit, it may

be necessary to realize such maneuvers in order to meet strict mission requirements.
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Figure 6.9: Executed maneuvers for the impulsive control scheme.
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Figure 6.10: Executed maneuvers for the proposed continuous control scheme.

To enrich the analysis of the executed maneuvers for the continuous control scheme, consider Fig-

ure 6.11, where the actuation over 15 orbits (orbit 20 to orbit 35) is shown, alongside the equilibrium

along-track velocity increment ∆vT0
. The cross-track velocity increments are maximum around one

fourth and three fourths of every orbit (i.e. uR ≈ π/2 rad and uR ≈ 3π/2 rad). This is the case since,

as previously noted, the error in the tracking of the ascending node δiy is more vital than the difference

in the inclination δix, for the mission requirements set. Therefore, the actuation is larger when sinuR
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is maximum (in magnitude) and almost null when cosuR is large (i.e. the start and half-way point of

every orbit). The along-track actuation depends particularly on the tracking error of the semi-major axis,

δa. However, it is also strongly influenced by all other parameters except δix. As a result, it is more

difficult to intuitively understand the commanded along-track velocity increments. Still, it is possible to

conclude that throughout the entire month, negative along-track actuation is applied very sparsely. If

negative along-track actuation is applied, this is often done in the last fourth of the orbit (uR is in the

fourth quadrant). This manipulates the eccentricity parameters δex and δey such that δLλ decreases

(since throughout most of the simulation δLλ > 0) and causes an increase in δh (since during most of

the simulation δh < 0). Very rarely, as seen in orbits 28 to 34, there is also negative actuation in the first

quarter of the orbit, which causes an increase in δLφ (since throughout most of the simulation δLφ < 0).
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Figure 6.11: Continuous maneuvers executed between orbits 20 and 35.

The distance between the true and reference orbits is shown in Figure 6.12. The control methodology

proposed herein leads to more accurate reference tracking than the impulsive control scheme of [16, 80].
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Figure 6.12: Distance between the true and the reference orbit.
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The main results are summarized in Table 6.3. The fuel mass was computed taking into account

suitable actuators for each control scheme (as will be discussed in Section 6.2.5). Despite the continu-

ous control scheme applying a larger total delta-v, the corresponding fuel consumption is much smaller

than for the impulsive scheme. The continuous control scheme allows for the application of low-thrust,

efficient propulsion technologies, leading to lower fuel usage than the impulsive scheme, while simul-

taneously providing better overall performance. Better accuracy can be achieved by tuning the LQR

differently for the continuous case, or by decreasing the time between maneuvers, for the impulsive

case. However, this would lead to an increase in the fuel consumption for both methods.

Table 6.3: Main characteristics - Ideal scenario.

Relative Earth-fixed elements Mean (m) σ (m) ∆v Total (m/s) Fuel mass

δLλ 4.9 10.8 ∆vR —
61.2 g

(Isp = 252 s)Control law of [16, 80] δLφ −434.8 194.6 ∆vT 0.10
δh −1.7 4.8 ∆vN 0.88

δLλ 13.9 5.8 ∆vR —
4.8 g

(Isp = 4500 s)LQR δLφ −15.7 6.8 ∆vT 0.13
δh −3.0 1.4 ∆vN 1.24

6.2.5 Realistic simulation scenario

In this section, realistic sensors and actuators are considered. The impulsive and continuous control

schemes will employ the same sensors. However, the actuators are chosen in order to fulfill the specific

thrust range required by each methodology.

Sensors and actuators

The GNSS/GPS receiver considered is the PODRIX GNSS Receiver, designed for LEO applications.

With Precise Orbit Determination based on on-ground post-processed receiver data, excellent satellite

position measurement accuracy can be achieved. An optional software upgrade for Precise Point Po-

sitioning (PPP) based on Galileo’s High Accuracy Service is also available, providing centimeter level

precision for the spacecraft’s position [83]. The absolute navigation accuracy for this navigation system

is displayed in Table 6.4. The navigation system was modelled considering the standard performance

(without the PPP software upgrade), as the goal of this section is to study the effects of sensor noise

in the control methodologies. The error of the navigation system is modelled as white Gaussian noise,

where 3σ is chosen as the system’s accuracy (so that approximately 99.7% of measurements fall within

the accuracy limits). Employing this navigation system, the orbit of the spacecraft (in free fall) was deter-

mined over 5 days. The accuracy in the determination of the relative mean orbital elements is displayed

in Table 6.5.

Table 6.4: Absolute navigation accuracy - PODRIX GNSS receiver. Retrieved from [83].

On-board navigation Position accuracy (m) Velocity accuracy (mm/s)

Standard performance 1 2
With PPP software upgrade (Galileo-only mode) 0.2 1
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Table 6.5: Orbit determination accuracy with data from the PODRIX GNSS Receiver.

Relative (mean) orbital element Mean (cm) σ (m)

aRδa −1 0.82
aRδex −0.6 0.61
aRδey 0.3 0.61
aRδix −0.1 0.29
aRδiy 0.2 0.29
aRδu 0.3 0.75

The PRISMA mission employed a novel high performance green propellant (HPGP) technology for

space applications [84]. The propulsion system can be characterized by a minimum impulse value (MIV)

and a minimum impulse bit (MIB). Consequently, the thrusters can only deliver values of ∆v which are

larger than MIV and integer multiples of MIB. Furthermore, the execution error of the thrusters is quan-

tified by the relation edV = ||∆vreal − ∆vcmd||/100, where ∆vcmd is the velocity increment commanded

by the on-board controller, and ∆vreal is the actual velocity increment executed by the propulsion sys-

tem [80]. The parameters characterizing this propulsion system are displayed in Table 6.6.

Table 6.6: PRISMA’s propulsion system: performance parameters. Retrieved from [80, 84].

Accuracy Value

MIV 7 · 10−4 m/s
MIB 7 · 10−5 m/s
edV 5%

Performance Value

Isp 252 s

The continuous control scheme that is proposed in this thesis requires an actuator which can reliably

apply continuous thrust in the range of 100 − 102 µN (for the studied orbit). It is also desirable to take

advantage of the increased efficiency of low-thrust propulsion, employing an actuator with large specific

impulse (Isp). Consider the Alta’s FT-150 FEEP microthruster system (FEEP - Field Emission Electric

Propulsion). FEEP is an electrostatic propulsion technology, that uses a liquid metal as a propellant.

The characteristics of this propulsion system are displayed in Table 6.7 [85, 86]. Note that the Isp of

this propulsion technology is vastly superior to the one employed in the PRISMA mission, as propulsion

technologies tend to be more efficient when less thrust is required.

Table 6.7: Alta’s FT-150 Thruster: performance parameters.

Parameter Value Remarks

Thrust range 0.1 to 150 µN Measured up to 350 µN*

Thrust resolution (MIB) Below 100 nN —
Thrust accuracy See Figure 6.13 —

Isp 4500 s (Beginning-of-Life) 3200 s (End-of-Life)
Thrust response time 50− 150 ms Depending on thrust step

Propellant mass 92 g (per thruster) —
Power (nominal) 6 W Operative condition at 100 µN of thrust

* The power conditioning unit is designed to operate up to 200 µN. Maximum thrust on lab supplies was measured
to be 350 µN [86].
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The accuracy of the propulsion system depends on the commanded thrust Tcmd, as noted in Fig-

ure 6.13. The propulsion system error will be modelled as white Gaussian noise, with standard deviation

chosen such that 3σ equals the accuracy range provided in Figure 6.13. Hence, the standard deviation

of the white noise is modelled as3σ = 0.4 µN if ||Tcmd|| ≤ 4 µN,

3σ = 1
63 ||Tcmd||+ 0.4 µN if ||Tcmd|| > 4 µN.

(6.13)

In conclusion, the propulsion system is modelled with a thrust range between 0.1 µN and 150 µN and

a resolution (MIB) of 100 nN. The actuation error is modelled as white Gaussian noise, with standard

deviation defined by (6.13). The thrust response time (50-150 ms) is neglected, since it is considered

that the thrust applied is constant throughout the time step of the discretized periodic system (∼ 20 s),

which is much larger than the response time.

Figure 6.13: Thrust accuracy of Alta’s microthruster at nominal temperature. Retrieved from [86].

The controllers were tuned in order to achieve better results for the simulation with realistic sensors

and actuators. For the continuous scheme, the weighting matrices were set to

Q′
l = diag

(
1.752, 152, (400/86400)2, 2.252

)−1 and

Rl = diag
(
(4.25 · 10−7)2, (1.8 · 10−6)2/2

)−1
, for all l.

(6.14)

The impulsive control methodology did not see tangible improvements with the change of the tuning

parameters, so the original controller was used. The evolution of the relative Earth-fixed elements is

displayed in Figure 6.14. The evolution of the relative orbital elements vector is displayed in Figure 6.15.

Despite the measurement and actuator noise, both methodologies remain capable of controlling the

three relative Earth-fixed elements. The control methodology developed in this thesis still attains superior

results for the latitude phase difference δLφ.
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Figure 6.14: Evolution of the relative Earth-fixed elements - Realistic scenario.
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Figure 6.15: Evolution of the relative orbital element vector - Realistic scenario.

The actuation of both methodologies with realistic actuators and sensors are displayed in Figure 6.16

and in Figure 6.17. The actuation noise for the continuous actuation is noticeable (particularly in ∆vT ).

The accuracy of the continuous propulsion system is somewhat poor when the commanded thrust is

very small (the accuracy of the propulsion system is 400% of the commanded thrust when the minimum

thrust of 0.1 µN is commanded). The along-track actuator for the continuous methodology is saturated

between the orbits 250 and 325, as the maximum thrust was set to 150 µN. Since the power conditioning

unit of the system was designed to operate up to 200 µN [86], better results may be obtained, without
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damaging the propulsion system, by increasing the maximum thrust to 200 µN for a short window of

time.
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Figure 6.16: Executed maneuvers for the impulsive control scheme - Realistic scenario.
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Figure 6.17: Executed maneuvers for the continuous control scheme - Realistic scenario.

The main details are summarized in Table 6.8. The focal difference between the realistic results

and the ideal results is an increase in the along-track actuation for both methodologies (increase of

20% for the linear control law of [16, 80], and of 15% for the LQR). The total ∆v for the cross-track

maneuvers remained approximately the same. Moreover, the tracking of most parameters is slightly
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less accurate than for the ideal case (particularly noticed in an increase in the standard deviation of

the REFEs). It can be concluded that the addition of sensor and actuator noise leads to more fuel

consumption being required to achieve similar reference tracking as in the ideal case. However, similarly

to the ideal case, both methodologies can still keep δLλ and δh inside a small control window. The LQR

method still achieves significantly better results for the tracking of the latitude of the subsatellite point

at the ascending node (Lφ). Moreover, the LQR methodology still accomplishes accurate tracking of

Lλ, δLφ,and h, with significantly lower fuel usage than the control law of [16, 80].

Table 6.8: Main characteristics - Realistic scenario.

Relative Earth-fixed elements Mean (m) σ (m) ∆v Total (m/s) Fuel mass

δLλ 3.9 12.7 ∆vR —
62.5 g

(Isp = 252 s)Control law of [16, 80] δLφ −421.3 217.7 ∆vT 0.12
δh −1.8 5.3 ∆vN 0.88

δLλ 13.5 5.7 ∆vR —
4.9 g

(Isp = 4500 s)LQR δLφ −24.3 10.8 ∆vT 0.16
δh −3.4 1.5 ∆vN 1.24

6.3 Orbit injection

In this section, the proposed control scheme is validated for the correction of orbit injection errors.

Consider the Ariane 6 launch system, operated from the Guiana Space Center. The typical standard

deviation (1σ) for injection in sun-synchronous orbits at 800 km of altitude (similar to the 710 km of altitude

of the PRISMA mission) is displayed in Table 6.9. In addition to the injection errors of Table 6.9, consider

also an initial error of 0.02 degrees in the argument of latitude (u).

Table 6.9: Ariane 6 launcher’s sun-synchronous orbit injection accuracy. Adapted from [87].

Orbital element Accuracy (1σ)
Semi-major axis (a) 2.5 km

Eccentricity (e) 3.5 · 10−4

Inclination (i) 0.04◦

Ascending node (Ω) 0.03◦

The propulsion system employed consists of four QinetiQ GIE T5 ion thrusters in the along-track and

cross-track directions. The actuator dynamics are displayed in Table 6.10 [88, 89]. The sensor employed

was the PODRIX GNSS Receiver (with standard performance), whose parameters are displayed in

Table 6.4.

Table 6.10: 4x QinetiQ T5 ion thrusters: performance parameters.

Parameter Value

Thrust range 0.6 to 100 mN
Thrust resolution (MIB) 12 µN
Thrust accuracy (3σ) ± 1% of Tcmd

Isp 500− 3000 s
Power 60− 600 W
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The LQR was tuned for the new problem with Ql = diag(1/252, 1/752, 1/752, 1/802, 1/802, 1/802),

and Rl = diag(4 · 106, 1.25 · 105), for all l. The evolution of the relative orbital element vector, for the

first 5 orbits, is displayed in Figure 6.18. It can be noted that the spacecraft is placed in the reference

orbit approximately three reference periods after the initial orbit injection (approximately five hours). The

error in the semi-major axis decreases rapidly throughout the first half orbit. Then, δa is kept negative

for the next orbit and a half in order to increase δu (which is essentially an integrator of δa). The error in

both eccentricity parameters quickly decreases during the first quarter of the reference orbit. However,

δex quickly rises during the second quarter of the reference orbit, as a consequence of the necessary

negative along-track actuation to decrease δa. The error in the eccentricity parameter ex then steadily

decreases during the following two orbits. As a result of the cross-track maneuvers executed, δix and

δiy steadily decrease. Cross-track maneuvers can only simultaneously decrease δix and δiy for half of

the orbit (when sinuR and cosuR have the same sign), so there are portions of the orbit where there is

a small increase in one of these parameters in order to decrease the other.
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Figure 6.18: Evolution of the relative orbital element vector.

The actuation is displayed in Figure 6.19. The propulsion system is saturated for the along-track

direction for the start of the simulation. The thrusters aligned in the cross-track direction are saturated

for a large part of the simulation. As expected from observing the evolution of the orbital elements,

negative along-track actuation is applied initially to decrease the semi-major axis of the true orbit. The

cross-track actuation must always be negative for the first quarter of the orbit, and always positive for

the third quarter, in order to decrease both δix and δiy. For the second and third quarter of the orbit, the

direction of the maneuvers is mostly decided according to whether the magnitude of sinuR or cosuR is

larger, in order to decrease one of the out-of-plane parameters without substantially increasing the other.

Hence, the change between negative and positive cross-track maneuvers is performed approximately

at 37.5% and 87.5% of a completed orbit (i.e. at uR = 3π/4 rad and uR = 7π/4 rad, respectively, when
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sinuR = − cosuR). Obviously, other factors such as whether δix or δiy is larger will have an influence

on the cross-track actuation (as well as the fact that ˙δiy depends on δix, according to the linear models

derived).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of orbits completed

-15

-10

-5

0

5
#10-3

"
v T

(m
/s

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of orbits completed

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

"
v N

(m
/s

)

Figure 6.19: Executed maneuvers.

The average distance (per orbit) between the true and the reference spacecraft is displayed in Fig-

ure 6.20. It can be noted that the distance between and the true and reference orbits is almost null after

three reference orbits.
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Figure 6.20: Distance between the reference and the true spacecraft.
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Chapter 7

Conclusions

One of the main contributions of this thesis was showing that the nonlinear model proposed in [16]

can be accurately approximated by a discrete-time linear periodic model and, by extension, represented

as a linear time-invariant system. It was discussed how the LQR design, for discrete-time linear periodic

systems, is associated with the discrete-time periodic Riccati equation. Consequently, an efficient algo-

rithm for the solution of the discrete-time Riccati equation was developed. The proposed algorithm is

generally faster than existing methods and solves an important problem, as it can be efficiently applied to

singular systems, contrary to algorithms found in the literature. The developed algorithm for the solution

of the DPRE was then leveraged in the design of an LQR for autonomous orbit control. The resulting

continuous control scheme was compared with the impulsive control scheme proposed in [16], for the

PRISMA mission. It was shown that the control method proposed herein can achieve tighter reference

tracking than the impulsive method of [16], with a fraction of the fuel consumption. Additionally, the pro-

posed methodology was shown to be capable of correcting orbit injection errors. From the analysis of

the continuous actuation employed to maintain the orbit of the PRISMA mission, it became clear that the

control scheme developed in this thesis can take advantage of the orbital mechanics associated with the

problem, prioritizing maneuvers at the optimal locations along the orbit. This fundamental property re-

sults from the fact that the augmented LTI system contains the entire information about an orbital period

and models the evolution of every orbital element.

The proposed control scheme does not have the downfalls of various existing autonomous orbit

control systems, which require that the location of the maneuvers be chosen a priori, employ models

which do not include the dynamics of the eccentricity vector, and separately analyze the in-plane and

out-of-plane motion of the satellite. An additional benefit of the developed control algorithm is that it

does not require costly hardware on-board the spacecraft, as it is computationally light and only requires

along-track and cross-track actuation.

In conclusion, all the objectives of this thesis, outlined in Section 1.3, were achieved. The proposed

model of the effects of the perturbations on a LEO satellite is simple yet accurate, as suitable LTP and LTI

models were derived. As a result, the proposed model can be leveraged in future work, using advanced

control methodologies. The control system was validated via high-fidelity simulations, and it was shown
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to be vastly more precise and efficient than one of the latest and most accurate autonomous orbit control

methods: the control system proposed in [16], for the PRISMA mission.

7.1 Future Work

Relevant future work can be separated in three sections. First, it can be noted that while the linear

periodic model is quite accurate in relation to the original nonlinear model, neither accurately represents

the out-of-plane motion of the satellite, since (less significant) perturbations such as the gravitational

pull of the Moon and the Sun are not modelled. The possibility of including these effects in the model

should be studied. It is particularly interesting to compute the average of these effects over the orbit of

the third-body, so that the periodicity of the model (one reference orbit) can be kept. Secondly, other

advanced control methodologies can be applied to this problem. This thesis developed a discrete-

time linear periodic model and an equivalent linear time-invariant model. The simplicity of the models

derived opens the door to the implementation of complex control methodologies, such as MPC, which

are often limited by their substantial computational complexity. Moreover, it can be reasoned that the

application of robust control methodologies or adaptative control strategies can prove advantageous,

as the erratic variation of the atmospheric density is a roadblock to increasing the performance of orbit

control methodologies. Finally, motivated by the large satellite constellations in low Earth orbits, an

extension of the proposed control solution to networked satellites can prove fruitful.

In summary, the main recommendations for future work are:

1. Derive suitable mathematical descriptions of the out-of-plane perturbations affecting a satellite’s

motion, particularly the (averaged) effect of the Moon and the Sun on the satellite’s orbit.

2. Take advantage of the models derived herein to design novel advanced automatic control systems

for single satellites, aiming for good reference tracking with minimal fuel usage.

3. Extend the control solutions developed for single satellites to networked formations of satellites,

while keeping the key properties of the previously derived solutions.
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Appendix A

Linear model’s state and input

matrices

This section aims to obtain the state and input matrices of the linear time-varying model (5.10). To

that end, recall that the state matrix of the linear time-varying model (5.10) can be written as

A(kR,∆v0) =
∂[Ag(kf ) +Ad(kf ) +B(kf )∆v]

∂ϵ

∣∣∣∣ ϵ0
∆v0

= A′
g(kR) +A′

d(kR) +B′(kR,∆v0), (A.1)

where A′
g,A

′
d and B′ are the jacobians of Ag,Ad and B, respectively. Note that the partial derivatives

of any function ℏ with respect to ex and ey can be obtained as

 ∂ℏ
∂ex

∂ℏ
∂ey

 =

∂ex
∂e

∂ey
∂e

∂ex
∂ω

∂ey
∂ω

−1  ∂ℏ
∂e

∂ℏ
∂ω

 , (A.2)

since the transformation (e, ω) → (ex, ey) was employed for the parametrization k. That is,

∂ℏ
∂ex

= cosω
∂ℏ
∂e

− sinω

e

∂ℏ
∂ω

, and (A.3a)

∂ℏ
∂ey

= sinω
∂ℏ
∂e

+
cosω

e

∂ℏ
∂ω

. (A.3b)

The Jacobian of Ad can then be written as

A′
d(kR) =

∂Ad(kf )

∂ϵ

∣∣∣∣ ϵ0
∆v0

= −A

m
Cdρ



ad11
0 0 0 0 0

ad21
ad22

0 0 0 ad26

ad31 0 ad33 0 0 ad36

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, (A.4)
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where

ad11 =
∂ (

√
ua)

∂a

∣∣∣∣ ϵ0
∆v0

=
1

2

√
µ⊕

aR
, (A.5a)

ad21 =
∂
(
(ex + cosu)

√
µ⊕/a

)
∂a

∣∣∣∣ ϵ0
∆v0

= −1

2
nR(exR

+ cosuR)aR, (A.5b)

ad31 =
∂
(
(ey + sinu)

√
µ⊕/a

)
∂a

∣∣∣∣ ϵ0
∆v0

= −1

2
nR(eyR

+ sinuR)aR, (A.5c)
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∂
(
(ex + cosu)

√
µ⊕/a

)
∂ex

∣∣∣∣ ϵ0
∆v0

=

√
µ⊕

aR
, (A.5d)

ad33 =
∂
(
(ey + sinu)

√
µ⊕/a

)
∂ey

∣∣∣∣ ϵ0
∆v0

=

√
µ⊕

aR
, (A.5e)

ad26 =
∂
(
(ex + cosu)

√
µ⊕/a

)
∂u

∣∣∣∣ ϵ0
∆v0

= −
√

µ⊕

aR
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ad36 =
∂
(
(ey + sinu)

√
µ⊕/a

)
∂u

∣∣∣∣ ϵ0
∆v0

=

√
µ⊕

aR
cosuR. (A.5g)

Since the equilibrium delta-v in the radial and cross-track direction (∆vR0
and ∆vN0

, respectively) is null,

the Jacobian of B̃∆v, at the equilibrium point, is given by

B′(kR,∆v0) =
∂(B(kf )∆v)

∂ϵ

∣∣∣∣ ϵ0
∆v0

=



b11 0 0 0 0 0

b21 0 0 0 0 b26

b31 0 0 0 0 b36

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


∆vT0

∆t
, (A.6)

where ∆vT0 is the equilibrium delta-v in the along-track direction and

b11 =
∂ (2a/v)

∂a

∣∣∣∣ ϵ0
∆v0

= 3

√
aR
µ⊕

, (A.7a)
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∂ (2 cosu/v)
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b31 =
∂ (2 sinu/v)
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= 3 sinuR

√
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∂ (2 cosu/v)

∂u

∣∣∣∣ ϵ0
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= −2 sinuR

√
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∂ (2 sinu/v)

∂u

∣∣∣∣ ϵ0
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= 2 cosuR

√
aR
µ⊕

. (A.7e)
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The Jacobian of Ãg can be obtained through the same process, resulting in

A′
g(kR) =

3

4

(
R⊕

aR

)2
nRJ2

(1− e2R)
2


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−
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. . .
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3nR

2 . . . 0

 , (A.8)

where

ag21 =
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exR

eyR
, ag34 = −10exR

sin iR cos iR,

ag51 = 7 cos iR sin iR, ag52 = − 8exR

(1− e2R)
sin iR cos iR,

ag53 = − 8eyR

(1− e2R)
sin iR cos iR, ag54 = 2 sin2 iR,

ag61 = −7

2
[5 cos2 iR − 1 + (3 cos2 iR − 1)

√
1− e2R],

ag62 =
exR

(1− e2R)
[4(5 cos2 iR − 1) + 3(3 cos2 iR − 1)

√
1− e2R],

ag63 =
eyR

(1− e2R)
[4(5 cos2 iR − 1) + 3(3 cos2 iR − 1)

√
1− e2R],

ag64 = −2(5 + 3
√
1− e2R) sin iR cos iR.

As noted in (A.1), the input matrix A is given by A(kR,∆v0) = A′
g(kR) +A′

d(kR) +B′(kR,∆v0).

The input matrix B(kR) can be obtained directly by adapting (3.16) to the new parametrization ϵ, as

per (5.2), resulting in

B(kR) =
1

nR∆t



0 2 0

sinuR 2 cosuR 0

− cosuR 2 sinuR 0

0 0 cosuR

0 0 sinuR

−2 0 − sinuR/ tan iR


. (A.9)

89



90



Appendix B

Addendums to Chapter 4

Various theorems and remarks necessary for the development of the algorithm proposed in Chapter 4

are proved in this annex.

B.1 Necessary conditions for the solution of the DPRE

This section aims to show that the condition that all the pairs (Al,Bl) are stabilizable is not equivalent

to the stabilizability of (Ā, B̄), and the condition that the pairs (Al,Cl) are detectable is not equivalent

to the detectability of (Ā, C̄), following the examples of [71].

Consider a periodic system, with p = 2, where

A0 =

1 0

0 1

 B0 =

1
0

 C0 =
[
1 0

]

A1 =

1 2

2 1

 B1 =

0
1

 C1 =
[
1 0

]
.

(B.1)

Using the Popov-Belevitch-Hautus criterion, it can be shown that the pair (A0,B0) is not stabilizable,

since
[
λI−A0 B0

]
is not full rank for λ = 1. However, considering the resulting augmented state and

input matrices, given by

Ā =


0 0 1 0

0 0 0 1

0 0 1 2

0 0 2 1

 and B̄ =


1 0

0 0

1 0

2 1

 , (B.2)

respectively, it can be noted that (Ā, B̄) is stabilizable [71, 90]. Through the same discussion, it can

be shown that the pairs (Al,Cl) being detectable is not a necessary condition for the detectability of
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(Ā, C̄). Consider a different periodic system, with p = 2 and

A0 =

0 1

1 0

 B0 =

1
0

 C0 =
[
0 1

]

A1 =

0 1

1 1

 B1 =

0
1

 C1 =
[
0 1

]
.

(B.3)

It can be shown that both the pairs (Al,Bl) are controllable, on the other hand, considering the resultant

augmented state, given by

Ā =


0 0 0 1

0 0 1 0

0 0 1 0

0 0 1 1

 and B̄ =


1 0

0 0

0 0

1 1

, (B.4)

it can be noted that
[
λI− Ā B̄

]
does not have full row rank (in fact the third row is null) for λ = 1, which

implies that (Ā, B̄) is not stabilizable. Additionally, it can be noted that the pairs (Al,Cl) are observable

(and therefore, also detectable). However, that is not the case for the pair (Ā, C̄) [71].

B.2 Solution to the augmented Riccati equation

This section aims to more thoroughly describe the efficient method proposed in Yang (2018), for the

LQR design problem of the augmented system associated with the Riccati equation

ĀT P̄Ā− ĀT P̄B̄
(
R̄+ B̄T P̄B̄

)−1
B̄T P̄Ā+ Q̄ = P̄. (4.13)

Consider the partitioned augmented state matrices

Ā =



0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

A0

A1A0

...

Ap−2 · · ·A1A0

0 · · · 0 Ap−1 · · ·A1A0


=

 0 Ā1

0 Ā2

 =
[
0 F̄

]
, (B.5)

where Ā2 ∈ Rn×n, F̄ =
[
ĀT

1 , Ā
T
2

]T
and

B̄ =



B0 0 · · · 0 0

A1B0 B1 · · · 0 0
...

...
. . .

...
...

Ap−2...A1B0 Ap−2...A2B1 · · · Bp−2 0

Ap−1...A1B0 Ap−1...A2B1 · · · Ap−1Bp−2 Bp−1


=

 B̄1

B̄2

 , (B.6)
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where B̄2 ∈ Rn×pm. Additionally, recall that

Q̄ =

 Q̄1 0

0 Q̄2

 , and R̄ =

 R̄1 0

0 R̄2

 , (B.7)

where Q̄1 = diag(Q0, ...,Qp−2), R̄1 = diag(R0, ...,Rp−2), Q̄2 = Qp−1 ∈ Rn×n, and R̄2 = Rp−1 ∈

Rn×n. Finally, denote

P̄ =

 P̄11 P̄12

P̄21︸︷︷︸
(p−1)n

P̄22︸︷︷︸
n

} (p− 1)n}
n

(B.8)

and

Ȳ = P̄B̄
(
R̄+ B̄T P̄B̄

)−1
B̄T P̄. (B.9)

Substituting (B.5)-(B.9) in the time-invariant Riccati equation (4.13), yields 0

F̄T

 P̄
[
0 F̄

]
−

 0

F̄T

 Ȳ
[
0 F̄

]
+

Q̄1 0

0 Q̄2

 =

P̄11 P̄12

P̄21 P̄22

 , (B.10)

or equivalently 0 0

0 F̄T P̄F̄

−

0 0

0 F̄T ȲF̄

+

Q̄1 0

0 Q̄2

 =

P̄11 P̄12

P̄21 P̄22

 , (B.11)

which shows that P̄12 = P̄21 = 0 and P̄11 = P̄T
11 = Q̄1. From these considerations, and (B.8), it can be

reasoned that

F̄T P̄F̄ = ĀT
1 Q̄1Ā1 + ĀT

2 P̄22Ā2 (B.12)

and, from (B.5) and (B.9) results that

F̄T ȲF̄ =
[
ĀT

1 , Ā
T
2

] Q̄1 B̄1

P̄22 B̄2

[R̄+ B̄T
1 Q̄1B̄1 + B̄T

2 P̄
T
22B̄2

]−1

=

=
[
ĀT

1 Q̄1B̄1 + ĀT
2 P̄22B̄2

]
︸ ︷︷ ︸

n×pm

[
R̄+ B̄T

1 Q̄1B̄1 + B̄T
2 P̄22B̄2

]−1

︸ ︷︷ ︸
pm×pm

[
B̄T

1 Q̄1Ā1 + B̄T
2 P̄22Ā2

]
︸ ︷︷ ︸

pm×n

.

(B.13)

Denote

Â = Ā2, B̂ = B̄2, (B.14a)

Q̂ = Q̄2 + ĀT
1 Q̄1Ā1 ∈ Rn×n, (B.14b)

R̂ = R̄+ B̄T
1 Q̄1B̄1 ∈ Rpm×pm, (B.14c)

Ŝ = ĀT
1 Q̄1B̄1 ∈ Rn×pm, and (B.14d)

P̂ = P̄22. (B.14e)
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Finally, the right lower block of (B.11) can be rewritten, using (B.12)-(B.14), as

ÂT P̂Â−
(
ÂT P̂B̂+ Ŝ

)
︸ ︷︷ ︸

n×pm

(
B̂T P̂B̂+ R̂

)−1

︸ ︷︷ ︸
pm×pm

(
B̂T P̂Â+ ŜT

)
︸ ︷︷ ︸

pm×n

+Q̂ = P̂. (4.15)

In this section, the main result of Yang (2018) discussed in Chapter 4 was derived: the solution to the

augmented Riccati equation (4.13) is given by P̄ = diag(Q̄1, P̂), where P̂ ∈ Rn×n is the solution to the

Riccati equation (4.15).

B.3 Structure of the augmented state feedback matrix

This section aims to prove the following theorem, which makes the computation of the augmented

state feedback matrix K̄ more efficient and derives its very specific structure, in which the first (p − 1)n

columns are null.

Theorem 1. The optimal feedback law for the lifted system can be written as ūk = −
[
0pm×(p−1)n K̂

]
,

where K̂ ∈ Rpm×n is the optimal state feedback matrix associated with the Riccati equation (4.15).

Proof. The optimal feedback law resultant from (4.15) is given as

K̂ =
(
B̂T P̂B̂+ R̂

)−1

︸ ︷︷ ︸
pm×pm

(
B̂T P̂Â+ ŜT

)
︸ ︷︷ ︸

pm×n

, (B.15)

which, using (4.14), can be written as

K̂ = (R̄+ B̄T
1 Q̄1B̄1 + B̄T

2 P̄22B̄2)
−1(B̄T

1 Q̄1Ā1 + B̄T
2 P̄22Ā2). (B.16)

Considering (4.12), the optimal feedback matrix for the augmented system is given by

K̄ =
(
R̄+ B̄T P̄B̄

)−1
B̄T P̄Ā. (B.17)

It can be noted that

R̄+ B̄T P̄B̄ = R̄+
[
B̄T

1 B̄T
2

] Q̄1 0

0 P̄22

 B̄1

B̄2

 =

= R̄+ B̄T
1 Q̄1B̄1 + B̄T

2 P̄22B̄2︸ ︷︷ ︸
pm×pm

,

(B.18)

and

B̄T P̄Ā =
[
B̄T

1 B̄T
2

] Q̄1 0

0 P̄22

 0 Ā1

0 Ā2

 =

=
[
0 ... 0︸ ︷︷ ︸
pm×(p−1)n

︸ ︷︷ ︸
pm × n

B̄T
1 Q̄1Ā1 + B̄T

2 P̄22Ā2

]
.

(B.19)
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Substituting (B.18) and (B.19) into (B.17), and comparing the result with (B.16), yields

K̄ = (R̄+ B̄T
1 Q̄1B̄1 + B̄T

2 P̄22B̄2)
−1
[
0 ... 0︸ ︷︷ ︸
pm×(p−1)n

︸ ︷︷ ︸
pm × n

B̄T
1 Q̄1Ā1 + B̄T

2 P̄22Ā2

]
=

=
[
0pm×(p−1)n K̂

]
.

(B.20)

B.4 Equivalence of the Riccati solutions

This section aims to prove the following theorem, essential to connect the discrete-time periodic

Riccati equation and the Riccati equation associated with the augmented time-invariant system.

Theorem 3. The Riccati solution P̂ is the initial solution P0 of the DPRE (4.4).

Proof. The proof follows a similar argument to that of [67]: the optimization problems of (4.1)-(4.2) and

(4.7)-(4.11) are identical, therefore, the optimal values of the performance indices J and J̄ must coincide.

In order to obtain the optimal values of the performance indices, note that

Np−1∑
l=0

(
xT
l+1Pl+1xl+1 − xT

l Plxl

)
= xT

NpPNpxNp − xT
0 P0x0. (B.21)

Moreover, recall that SNp = PNp. Adding zero to the performance measure of (4.2), in the form of (half

of) the difference between the left side and right side of (B.21), results in

J =
1

2
lim

N→∞

[
xT
0 P0x0 +

Np−1∑
l=0

(
xT
l+1Pl+1xl+1 + xT

l (Ql −Pl)xl + uT
l Rlul

)]
. (B.22)

The summand of (B.22) can then be rewritten as the perfect square of a norm [55]

J =
1

2
lim

N→∞

[
xT
0 P0x0 +

Np−1∑
l=0

||(BT
l Pl+1Bl +Rl)

−1BT
l Pl+1Alxl + ul||2

]
. (B.23)

Analyzing (B.23) it can be concluded that the optimal value of the performance index, achieved by

selecting the optimal last state feedback law, is Jopt =
1
2x

T
0 P0x0. The same process can be applied to

the performance measure of the augmented lifted system, resulting in the optimal performance index

J̄opt =
1
2 x̄

T
0 P̄x̄0. Since the optimal values of these performance indices coincide, it can be written that

1

2
xT
0 P0x0 =

1

2
x̄T
0 P̄x̄0, (B.24)

which, considering the structure of P̂, shown in Section B.2, can be developed as

xT
0 P0x0 =

[
0 xT

0

] Q̄1 0

0 P̂

 0

x0

 , (B.25)
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that is

xT
0 P0x0 = xT

0 P̂x0. (B.26)

Since P0 and P̂ are symmetric, it results that P̂ = P0.

B.5 Validation for singular systems

In order to validate the algorithm proposed in Section 4 for systems where Ã is singular, consider

the following singular periodic system, with p = 3 (adapted from [56]):

A1 =


−3 2 9

0 0 −4

3 −2 3

 B1 =


1

1

0

 R1 = 1,

A2 =


6 −3 0

4 −2 2

2 −1 4

 B1 =


0

1

0

 R2 = 2,

A3 =


2 −3 −3

4 −15 −3

−2 9 1

 B1 =


0

1

1

 R3 = 1,

(B.27)

and Ql = I3 (for l = 1, 2, 3) [56]. For this system, Ã is singular and, in fact, all Πl are singular. As a

result, the Riccati equation associated with the lifted system equivalent to (B.27) cannot be solved by

(4.30). However, it can be solved by implementing [73], or Matlab’s idare function (that implements [74]),

obtaining P̂ = P0. Employing (4.4), the remaining solutions Pl can be obtained, and the feedback

matrices Kl can be computed from (4.3). Consider that x0 = (1, 1, 1)
T . The evolution of the state vector

is presented in Figure B.1, employing the last state feedback methodology and the augmented state

feedback methodology. As expected, both methodologies can solve the LQR problem for systems with

singular Ã. Moreover, it can be noted that the feedback methodologies are equivalent, as no process or

sensor noise was considered.
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Figure B.1: Evolution of the state vector of a system with a singular Ã matrix.
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