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fosse para o que fosse. Estes útlimos anos teriam sido muito mais difı́ceis se não tivesse tido o apoio

deles, e por isso, um grande obrigado.

Por fim, quero muito agradecer a todas as pessoas que fizeram parte do meu percurso académico

e que considero agora como amigos. Sem eles, estes cinco anos não teriam o mesmo significado e
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Resumo

O material circulante é o conjunto de unidades ferroviárias e é um dos maiores ativos que uma

empresa ferroviária pode ter. Ao escalonamento destas carruagens chama-se planeamento da rota-

tividade das locomotivas de comboio e é um problema muito complexo e demoroso, sendo que tem

de ser feito incorrendo os menores custos operacionais possı́veis. O escalonamento deve garantir que

as carruagens operam todas as viagens planeadas, respeitando os requisitos ferroviários. Este tra-

balho incorpora várias condições relativas ao sistema ferroviário, tais como a composição dos veı́culos,

a capacidade das estações, a bonificação para viagens regulares, a penalização para viagens em

vazio, e as manobras de acoplar, desacoplar e virar carruagens. Resolvemos o problema aplicando

o modelo dos hiperarcos e a nossa contribuição foca-se na adição de uma nova função objetivo, pas-

sando a ter um modelo bi-objetivo. Esta nova função objetivo visa minimizar as emissões produzidas

ao longo das operações envolvidas. Para resolver este modelo, usamos o método da ε-restrição au-

mentada. Mostrámos que a complexidade do nosso modelo deve-se principalmente aos hiperarcos das

operações de acoplamento e desacoplamento e que, variando a bonificação de regularidade, alteramos

as rotas de solução, enquanto a variação da penalização de viagens em vazio não se altera tanto. Além

disso, quando se considera a minimização das emissões, as soluções tendem a ter menos viagens

em vazio do que as soluções fornecidas pela minimização dos custos. Por fim, para validar e testar o

modelo, utilizámos a base de dados pública do sistema de metro de Chicago.

Palavras-chave: Material circulante, Composições de veı́culos, Acoplamento, Desacopla-

mento, Escalonamento, Emissões produzidas
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Abstract

Rolling stock is the set of train units and is one of the most expensive assets that a railway company

can own. The rolling stock rotation planning aims to schedule the rotation of the rolling stocks at minimal

costs and is a very complex and time-consuming problem when properly integrated. The rotation must

ensure that it covers all trips already defined in the timetable, and respects the requirements imposed

by the railway network. This work integrates a significant number of industrial railway requirements such

as vehicle compositions, station capacity, regularity bonification, deadhead trip penalization, shunting,

and turn operations. We solved the problem through the hypergraph model methodology, and our con-

tribution is the addition of a new objective function, implying the model to be considered as bi-objective.

The new objective function aims to minimize the damaging emissions produced within the operations

concerning the rolling stock rotation. To solve the model, we used the augmented ε-constraint method.

We showed that the complexity of our model is mainly due to shunting operations hyperarcs and that

by varying the regularity bonification, we would change the solution routes while the variation of the

deadhead trip penalty would not change as much. Moreover, when considering the minimization of

the emissions, the solutions tend to have fewer deadhead trips than the solutions provided by the cost

minimization. Lastly, to validate and test the model, we used the Chicago railway subway’s open data.

Keywords: Rolling stock, Vehicle composition, Shunting, Scheduling, Emissions produced
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Chapter 1

Introduction

1.1 Problem background

Over the years, the railway companies have more and more passengers to satisfy their travel needs,

as can be seen in Figure 1.1. Even if the pandemic COVID-19 significantly decreased the passenger

flow (46%), within the next year (2021) the passenger flow increased by 16.5% which is a considerable

rise. Due to this continuous increase in railway passenger demand, it is imperative for railway companies

to enhance their readiness to satisfy the ongoing emergence of passengers.

Figure 1.1: Evolution of the passenger-kilometers between 2015 and 2021. Source: Eurostat (2022).

Due to the complexity of operating railway transportation, the use of mathematical models and opti-

mization methods results in gains regarding both railway customers and operators either for customers

through improvement of service quality or operators in terms of reducing the costs. Indeed, one of

the first applications for mathematical optimization and operations research was for railway planning

(Schrijver, 2002).

Railway planning is a complex system involving the planning of several operations that can be divided

into several levels with different time horizons (Liebchen and Möhring, 2014; Lusby et al., 2017). Starting

from the general to the particular, first, there is the strategic level which is a stage in which the planning

horizon is developed for several years, then the tactical level which has a planning horizon of days to

years, and finally, the operational level where it deals with real-time planning management. This schema

1



is displayed in Figure 1.2. The problem aboard on this work is the rolling stock rotation and it finds itself

at the tactical level (blue box).

Figure 1.2: Levels of railway planning. Adapted from Lusby et al. (2017).

The rolling stock rotation planning (RSRP) problem is an essential part of railway planning, because

it involves the scheduling of the train locomotives, in order to fulfill the timetable trips previously planned,

satisfying the passengers’ demand, while minimizing the operational costs (Thorlacius, 2015). One can

see in Figure 1.2 that the trip timetable planning is performed just before the RSRP.

With the continuous increase in the number of passengers using the railway mode of transportation,

the pollution associated with the railway network could also rise. Krezo et al. (2018) stated that of the

several transportation modes, the railway is known for being one of the greenest modes of transportation,

once that it is the transportation mode that produces less pollution. Nevertheless, railway transporta-

tion is not as flexible as other modes, leading to the transportation of significant amounts conveyed in

massive train units (Demir et al., 2015). Consequently, with the increase of the railway network, and the

encouragement from governments to embrace railway transportation, this work will also consider the

emissions produced by the operations related to the rolling stock rotation problem.

1.2 Motivation

The RSRP is a major goal to have an efficient railway undertaking. The operations regarding the

RSRP are complex and can change over the years due to timetable alterations, acquisition of new

rolling stock, creation of new railway lines or destruction of existing ones, and significant changes in

demand, for example. Additionally, some extraordinary circumstances can occur like the collision of two

freight trains in November 2022 that ended closing the railway line between Hanover and Berlin (Freight,

2022), which lead to an inevitable re-scheduling of the rolling stock rotation in a very short period of time.

Hence, the ability to solve the RSRP in the most optimal and efficient way offers railway companies

a significant competitive advantage in the railway market (Schlechte et al., 2023). For this reason, even

if the rolling stock rotation planning is a tactical level problem (see Section 1.1), there can be cases in

which it is an operational level problem.
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Here lies the importance of the RSRP and the motivation for optimizing this problem of the many

problems that railway companies have to deal with. Moreover, considering the emissions produced in

the operations concerning the rolling stock rotation planning, and thus, confronting the results with the

ones resulting from the cost optimization brings a new vision to the RSRP existing in the literature.

1.3 Objectives and deliverables

The goal of this work is to solve the rolling stock rotation planning problem using the hypergraph

model proposed by Borndörfer et al. (2011), i.e., to find the optimal composition of vehicles for each trip,

and their rotation, considering the constraints that the railway companies have. The optimal composition

of the vehicles will take into consideration the minimization of the costs of this problem as well as the

minimization of the emissions emitted by the railway system within the operations required. The duality

between the two objective functions will be studied and we aim to find which features have more impact

on the costs and which one have more impact on the emissions.

The hypergraph model is a complex model, and the more characteristics we integrate within the

model, the more complex it is. Hence, we also have as an objective the understanding of the complexity

of this model and provide possible suggestions to simplify the model.

1.4 Dissertation’s structure

This work is composed of seven chapters, in which every step of the work will be properly explained

and detailed.

The first chapter regards the introduction with a small overview followed by an explanation and con-

textualization of the rolling stock rotation planning problem. We introduce the parameters that we aim to

analyze, and the goals that we will try to reach at the end of the dissertation.

The second chapter regards the literature review in which there are details of what is already known

and what was already done for this subject, such as which models exist to solve the RSRP and their

differences, or even what operations are involved within the rolling stock rotation planning. It will allow

us to better understand the problem and decide which path to follow.

In the third chapter, there will be a detailed explanation, description, and definition of the rolling stock

rotation planning problem, as well as a description of the characteristics integrated into our version of

the RSRP model.

Within chapter four, we develop more about the hypergraph model, once the mixed integer program-

ming formulation is presented and that we define the generation of the decision variables proper to the

hypergraph model. Moreover, the augmented ε-constraint method is briefly explained once it is used to

analyze and solve the RSRP considering it as a bi-objective problem.

3



Chapter five describes the Chicago subway network, and we will use the Chicago data in order

to validate our model. This chapter includes all computations required to solve the RSRP using the

hypergraph model as well as all assumptions made, regarding the Chicago real-world case.

By the sixth chapter, we will present and discuss the obtained results from our version of the model,

as well as draw conclusions and reach the goals set in this first chapter,

Finally, chapter seven presents the conclusion of this dissertation and it discusses an overview of

the achievements reached with our version of the RSRP model, as well as some suggestions for future

work.
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Chapter 2

Literature Review

The rolling stock rotation planning problem is a particular case of vehicle scheduling, but for railways.

This last scheduling problem is well-known in the literature and has been studied by several authors (see

survey Löbel,1997). The RSRP can be composed of several levels addressing various detail levels of

this scheduling, and the biggest goal is to cover all the timetabled trips by the existing rolling stock, at the

lowest operational costs possible (Thorlacius et al., 2015), respecting all the necessary requirements.

Initially, the operations research (OR) approaches would solve several specific problems within the

railway undertakings, but individually, which are briefly described in many surveys (Cordeau et al., 1998;

Ahuja et al., 2005; Caprara et al., 2007). More recently, the railway utilization of the OR techniques is

no longer used to solve individual problems at a time, but to find optimal solutions to the issues that

can be connected between them, which they are called integrated models (Thorlacius et al., 2015).

This leads to the elimination of sub-optimal solutions, once for integrated models the solution takes into

consideration way more parameters and requirements. This approach of the integrated models has not

only been used for railway problems but has been used in the airline industry at the moment (Saddoune

et al., 2012). Rolling stock rotation planning requires the integration of several features. As Thorlacius

et al. stated in 2015, ”rolling stock planning is often performed in a step-by-step manner, taking only

some of the many requirements into consideration in each step”. This means that not all requirements

can be taken into account, or at least they should be progressively involved in the model. However, the

more features implemented into the model, the more complex and time-consuming is to perform and

compute.

In Table 2.1, there is a detailed description of the features implemented within the rolling stock ro-

tation models presented in the literature from 2005 until 2023. The table is divided into the following

characteristics: scope, topic, process, requirements integration, objective, and solution method.
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2.1 Rolling stock rotation planning models

To solve the rolling stock rotation planning, many authors choose an arc-based multi-commodity

flow or some similar model, therefore denoted as flow-based models (Alfieri et al., 2006; Peeters and

Kroon, 2008; Vaidyanathan et al., 2008; Cadarso and Marı́n, 2011). This type of model focuses on the

conservation of the flow, i.e., each vertex ensures that the incoming flow is equal to the outgoing flow,

a typical approach in vehicle routing problems. It allows significantly lower complexity associated with

the models. However, the more integrated the model is the more complexity the model gains, such as

the implementation of regularity trips or maintenance requirements. Another model type used by the

authors (even if less popular) is the path-based multi-commodity model, which from now on is referred

to as path-based approaches (Jha et al., 2008; Thorlacius et al., 2015; Haahr et al., 2016). For this

approach, every singular sequence of displacement of the vehicles is modelled, through the association

of a path to the individual vehicles.

In 2011, Borndörfer et al. presented the hypergraph model, whose main difference and benefit is

to model changes in the train’s compositions at terminal stations, for long-distance railway passenger

transport, in a different way. The authors handled the railway’s necessary requirements using hyperarcs,

rather than the arcs generally used until the moment. In this way, the representation of the train unit

displacements is more detailed, leading to a better granularity level. The authors also proved that the

model provides high-quality solutions in reasonable times, using the rapid branching and column gener-

ation techniques, for real-world instances. The first version of the model did not include the maintenance

constraints. For this purpose, the authors Borndörfer et al. published in 2016, an improvement of their

hypergraph model, considering the maintenance requirements.

The three models presented above are suitable for the RSRP and are more appropriate depending

on the main features to integrate into the model. As a matter of fact, although integrated models con-

sider several characteristics, due to the vastness of railway operations, some models enhance some

requirements more than others. For instance, on the one hand, the hypergraph model presents itself as

being more flexible and detailed in the representation of the train unit displacements, allowing a better

understanding of the flows within the rotations, and is useful to lead with complex requirements. How-

ever, on the other hand, due to its intricacy is harder to model, and leads to higher computational times.

Therefore, an alternative to simplify the hypergraph model is the flow-based approach, which is usually

simpler to implement and less time-consuming to compute. Nevertheless, it is not as detailed as the hy-

pergraph model, implying that it cannot capture all the complexities regarding the interactions between

the rolling stock. Lastly, the path-based models have an intermediate quality between the hypergraph

and the flow-based models, providing varied results’ precision, once that it depends on how well the

rolling stock rotation problem is modelled. Hence, depending on the author’s expectations, different

approaches can be exploited.
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2.2 Scope

For the models that consider timetables that are presented as cyclic (also called periodic timetable,

or regular timetable), there is an incentive for the train fleet to follow regular trips over the horizon, which

can be defined within days, weeks, and sometimes months. This implies that each trip sequence can

be defined a priori through a set of simple rules (Lusby et al., 2017). A significant part of the authors

present models with a regular timetable to operate.

It can also happen that the timetable to operate and schedule the rolling stocks is acyclic, meaning

that the trips are not regular. For these situations, there is a necessity to optimize each trip sequence,

and the trip sequence cannot be provided a priori. The fact that the timetable is not regular leads to only

considering a lower number of train compositions when compared with regular timetables and the train

fleet position and order are commonly ignored (Lusby et al., 2017).

When comparing both cyclic and acyclic timetables, each one of them has its advantages and dis-

advantages. For example, the cyclic timetable allows passengers to get used to the departure time of

their usual train at their usual departure station. Moreover, it also allows us to consider a significant

number of passenger transfers. On the other end, the acyclic timetable is more flexible than the periodic

timetable. Furthermore, the cyclic timetable can be inefficient, once it can operate trips on days of the

week in which the demand is significantly lower than the rest of the days, which does not happen with

the acyclic timetable (Kroon et al., 2008).

2.3 Requirements integration

The requirements integration is one of the most important topics presented in Table 2.1, once they

allow us to know what kind of requirements the models integrate into their solution. As we discussed,

the rolling stock rotation planning is an intricate problem due to several limitations imposed by the layout

of the rail. Hence, the more constraints are integrated into the model, the more complex the model, thus

more time-consuming whether on the formulation problem or in the resolution time (Cadarso and Marı́n,

2011; Haahr et al., 2016; Borndörfer et al., 2021).

Regarding the train composition order, the addition of these requirements leads to a significant com-

plexity of the model, once the model needs to take into account way more possibilities than if the model

did not consider it (Thorlacius et al., 2015; Borndörfer et al., 2021). Thus, the integration of this feature is

an important decision: some authors prefer to ignore this characteristic such as Maróti and Kroon (2007)

and Jha et al. (2008); and others authors implement this feature considering both the composition order

and the orientation of the fleet like Haahr et al. (2016) and Borndörfer et al. (2016).

Furthermore, in 2021, Borndörfer et al. suggested dividing this problem into three layers using the

coarse-to-fine (C2F) approach. The authors used a hierarchical column-generation method that first

performs the calculations on a coarse level and verifies the orientation and position on a more fine level.

The first layer is the coarse one, the vehicle layer, in which neither the position nor orientation of the
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fleet is considered. Then, there is the middle level that considers the vehicle position and it is called

the configuration layer. Finally, the fine layer is the composition layer in which both the position and

orientation of the fleet are taken into account. This method allows the evaluation of the train compositions

in several levels of complexity. Moreover, as we discussed previously in Section 2.2, it can be proved

that the models considering acyclic timetables do not integrate within their models the train composition

order.

Maintenance requirements are essential to railway fleets. Table 2.1 separates the models integrating

the maintenance by time and maintenance by distance. The difference between them is the necessity

to maintain the fleet after a certain number of hours or kilometres travelled by the train unit. It is less

complex to add maintenance requirements for the path-based models, once each possible movement

sequence of a certain train unit is modeled. However, when it comes to flow-based models, the addition

of the maintenance requirements adds more complexity to the model. Moreover, it is difficult to integrate

the maintenance restrictions for acyclic models.

For the flow-based models, in which the maintenance increases the complexity of the model, the

daily train units are generated to comprise a certain number of arcs related to the maintenance oper-

ation, meaning that the fleet can be assigned with sufficient maintenance operations. In this way, Gao

et al. (2022), divided the problem into two levels: the first level is to generate the trip sequences while

ignoring the maintenance requirements; and the second level is to assign each fleet to its maintenance

necessities, according with the optimization of the maintenance operations.

The depot capacity is considered in the majority of the models, and it represents the maximum

number of fleets that the depot can take. This feature is easily combined with the depot topology once

the topology aims to specify how the shunting and turn operations are performed (Freling et al., 2005;

Kroon et al., 2008; Cadarso and Marı́n, 2011; Thorlacius et al., 2015; Lusby et al. 2017; Schlechte et al.,

2023).

The regularity constraint comes directly from the cyclic timetable. In 2011, Borndörfer et al. intro-

duced the regularity notion in their hypergraph model. This constraint enhances the model to return

rolling stock rotations in which the train compositions are the same, for regular trips. This is achieved

through a reduction of the costs if the train composition is constant for all regular trips. The authors kept

this requirement (Borndörfer et al., 2021), and it aims to provide the passengers with some comfort, in

terms of knowing what to expect when the train arrives. For example, for the same regular trips, the pas-

sengers would be already expecting the train to have a certain length, and for that reason, they already

know which part of the platform the train will take over.

2.4 Objective Function

When it comes to optimization purposes, many models use several types of objective functions.

The main objectives functions used are mainly concerning minimizing operational costs and penalties,

as can be seen in Table 2.1. Minimizing costs is one of the most used approaches by the authors,
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which allows the company to reduce its actual costs in the operations performed, thus saving money.

It is to be highlighted that whether the author minimizes the penalties, the train units, or maximizes

the benefits, all of these objective functions implemented in their respective models, are intrinsically

related to the operational costs. For example, Jha et al. (2008), integrated into their model penalizations

for paths that deviate from the due date, in the form of costs. The penalization is considered in the

cost unit, considering the path miles, the deviation, and the due date. Another example is the model

presented by Borndörfer et al. in 2016 that penalized the deadhead trips (empty trips) through a time

penalization, that was then converted into additional costs. Regarding the minimization of the train

units, the same happens, once that Cacchiani and Toth (2012), and Giacco et al. (2014) presented their

models minimizing the train units, however, this was performed through the minimization of the costs

directly related to the train units.

A distinct approach was presented in 2015, by Thorlacius et al. which integrated within their model

the benefit approach. The authors introduced the benefit to counterbalance the operational costs and

penalties involving the rolling stock rotation planning. Thus, they were able to compute the net value of

the operations, by subtracting the costs and penalizations to the benefits. This model allows the authors

to have a different and more financial understanding of the operations.

As far as we know, the models presented in the literature are solved through one objective function.

As mentioned, these objective functions can be detailed and itemized into arc costs, turn operation costs,

shunting costs, penalization costs, and maintenance costs (Borndörfer et al., 2012; Cadarso and Marı́n,

2011). However, all of these parameters are set on the same scale, which is the cost. Our contributions

presented in this work is to explore the impact of having a bi-objective rolling stock rotation planning

problem, through the minimization of the costs and the emissions. When it comes to the minimization

of the emissions, to the best of our knowledge, there are no traces of RSRP models implementing

this objective function, or even considering some features regarding the pollution integrated within the

models. Hence, this work, by considering this new objective function, brings a new perspective to the

rolling stock rotations planning problems.

2.5 Solution method

Regardless of the approach chosen to solve the rolling stock rotation planning problem (hypergraph,

flow-based, and path-based models), due to the intricacy of the real-world data, the majority of the

models implemented a heuristic method to solve the problem. Indeed, all solution methods used in

the literature apply commercial solver or heuristics, and, in some cases, the authors use both methods

(Thorlacius et al., 2015).

Furthermore, some authors also applied decomposition techniques in their models such as column

generation and branch and price techniques, for some cases. By doing this, the authors were able to

reduce the resolution time for the integration of some requirements within the model (Borndörfer et al.,

2021) and the resolution time of the solution computation (Lusby et al., 2017; Grimm et al., 2019).
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Moreover, the authors were able to prove that the application of heuristics methods reduced the solving

time and returned good solutions, without having a large increase in the costs in the solutions found.

Through the heuristics and decomposition applications, the models presented by the authors show

significantly low-resolution times considering real-world cases. Furthermore, on average, the instances

solved by the authors do not consider timetables with more than 2,000 trips. This has led to a lack of

studies regarding instances considering more than 2,000 trips (Gao et al., 2022).

2.6 The environmental approaches

As we saw in Section 2.4, the main focus of the RSRP’s models presented in the literature is the

minimization of costs, regardless of the pollution impact. This is due to the fact that the authors es-

sentially use their version of the rolling stock rotation problem for real-world instances, in collaboration

with real-world railway companies. Giving some examples, Freling et al. (2005) used their model to

optimize the Netherlands shunting operation for the Zwolle station, Borndörfer et al. (2016) applied the

hypergraph model to the Deutsche Bahn in Germany, and Hoogervorst et al. (2021) implemented their

RSRP’s model for the Netherlands Railways.

The environmental concerns are not implemented in the rolling stock rotation models, leading to

models that do not aim to minimize the operations emissions produced. As a matter of fact, since the

beginning of the railway development, technology has considerably evolved, making it possible to start

improving other factors, beyond the cost reduction. By focusing on cost reduction at first, advancements

in energy efficiency needed to be made. According to the International Energy Agency (IEA) and the

International Union of Railways (UIC), between 1975 and 2012, the energy consumed per passenger-

kilometer decreased by 62%, a decrease that was accompanied by a 60% reduction in CO2 emissions

for the rail passenger transport (Agency, 2023; Railways, 2023). The case of China, India, and Russia

support these accomplishments. These are three countries with extensive railway networks, and yet

the ones with the lowest CO2 emissions per passenger-kilometer. China is distinguished for its most

efficient energy consumption per passenger-kilometre (67 KJ/passenger-km), in their high-speed rail

lines. India is highlighted for having the lowest CO2 emissions produced by passenger-kilometer (10

g of CO2/passenger-kilometer), and the most efficient consumes of energy per tonne of merchandise

transported, with 102 KJ/tonne-km. Finally, Russia stands for the country with the lowest emissions of

CO2 produced in goods transportation (9 g of CO2/ tonne-km).

The International Energy Agency considers that the railway is one of the least pollutants modes of

transportation, once that when compared with other transportation means, the railway tends to produce

significantly less emissions of CO2, especially when compared with private cars (Profillidis et al., 2014).

IEA explains this due to a high percentage of electric railway systems, counting for more than 85% of the

railway operations. Nevertheless, even if the railway mode of transportation presents to be less pollutant

than the remaining modes, it does not mean that its negative impacts should not be taken into consid-

eration. Moreover, it is to be noted that the dominance of the railway in terms of emissions produced is
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related to the type of locomotives built and not to the operations management. In other words, the rolling

stock rotation planning problem usually optimizes the costs regarding railway operations, which is not

the case for the emissions produced. IEA states that railway transportation is less pollutant due to the

railway network and not the operations management.

2.7 Summary in contribution

As mentioned, even if the hypergraph model is the one that leads to higher computational times and

is more complex to implement, it allows us to better understand the flows within the rotations, and it is

more integrated in the sense that allows us to lead with complex requirements. Moreover, in our version

of the model, the implementation of the emissions of CO2 equivalent produced is essential, hence we

want to implement it in a more integrated model. For these reasons, we will choose the hypergraph

model to solve our version of the RSRP further presented in Chapter 3.

When it comes to our contribution, to the best of our knowledge, there are no models implementing

the sustainability feature in the literature. Thus, we will integrate it into our model through the implemen-

tation of the emissions of CO2 equivalent produced throughout the operations related to the rolling stock

rotation. This will allow us to oppose the solutions obtained with the cost-minimization approach and the

emissions minimization.

12



Chapter 3

The rolling stock rotation planning

problem

3.1 Definition

The rolling stock rotation planning problem is one of the most complex problems in railway planning

(Borndörfer et al., 2016). This section aims to properly define the RSRP and describe all mathematical

structures implemented in our version of the model.

The RSRP aims to cover all timetable trips, respecting the necessary requirements in order to prop-

erly operate the trains. A trip t ∈ T belongs to the timetable trips planned in the standard week and has

departure and arrival times, in its respective departure and arrival stations s ∈ S. Let F be the set of the

fleet, also referred to as wagons, locomotives, or vehicles, and C as the set of the compositions that are

a group of vehicles f ∈ F . Take V as the set of vertexes, therefore referred to as nodes. The nodes rep-

resent the departure and arrival points of the vehicles that operate the trip t. A standard arc a ∈ A is an

arc that connects two nodes. A standard arc a = (u, v) ∈ A operates trip t if and only if u ∈ V express

the departure node of trip t and v ∈ V stands for the arrival node for that same trip t. A hyperarc h ∈ H

covers trip t if each standard arc a ∈ h ⊆ A, operates trip t. The set of all hyperarcs h that covers trip t is

defined as trip hyperarcs h ∈ H(t), and the set of all hyperarcs connecting two trips is denoted by con-

nection hyperarcs h ∈ H(c). Additionally, the set of hyperarcs h that enters and exits a node v is denoted

as H(v)in := {h ∈ H|∃a ∈ h : a = (u, v)}, and H(v)out := {h ∈ H|∃a ∈ h : a = (v, w)}, respectively, and

considering nodes u, v, w ∈ V . Finally, the hypergraph model is denoted by G = (V, A, H).

To solve the rolling stock rotation planning problem the constraints regarding the trips and stations

must be well-known and be a part of the model. In the further sections, it will be explained all the

constraints taken into consideration for the subsequent application of the hypergraph model and its

respective costs. Note that the maintenance requirement was left aside from our model. As mentioned in

Section 2.3, the implementation of the maintenance constraints is more complex for flow-based models,

therefore, we focused our analysis on other requirements.
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3.2 Indexes

In order to build the model, firstly we have to define the indexes used for the parameters and variables

considered. These sets of indexes are described in Table 3.1.

Table 3.1: Indexes.
Set Range Description

F f = 1, . . . , nf Indices related to the vehicles;
S s = 1, . . . , ns Indices related to the stations;
T t = 1, . . . , nt Indices related to the trips;
V v = 1, . . . , nv Indices related to the nodes;
C c = 1, . . . , nc Indices related to the vehicles compositions;
H h = 1, . . . , nh Indices related to the hyperarcs.

3.3 Parameters

The parameters used in our version of the RSRP model are detailed and described in the following

tables, presented below. Table 3.2 contains the parameters related to the stations, Table 3.3 describes

the vehicles parameters, and Table 3.4 details the trip parameters.

Table 3.2: Station parameters’ description.

Station parameters

distsksl ∈ Q+ Distance (kilometers) between station sk and sl, using the railway path, where
sk and sl are any stations belonging to the set of stations;

sLengs ∈ Q+ Length of the platform of the s-th station;
turns ∈ {0, 1} Binary parameter that is defined 1 when station s is capable of performing turn

operations, and 0 otherwise;
tTurns ∈ Q+ Time required to operate the turn operation in the s-th station, if the turn exists

into the solution;
cTurns ∈ Q+ Cost associated to the turn operation in the s-th station, if the turn exists into

the solution;
shunts ∈ {0, 1} Binary parameter that is defined 1 when station s is capable of performing

shunting operations, and 0 otherwise;
tShunts ∈ Q+ Time required to operate the shunting operation in the s-th station, if the shunt-

ing exists into the solution;
cShunts ∈ Q+ Cost associated to the shunting operation in the s-th station, if the shunting

exists into the solution;
reqT imes ∈ N Required time that a train has to remain in the terminal station between oper-

ating two trips.
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Table 3.3: Vehicle parameters’ description.

Vehicle parameters

capf ∈ N Passenger capacity of the f -th vehicle;
fLengf ∈ N Length (meters) of the f -th vehicle;
utilf ∈ Q+ Utilization cost of the f -th vehicle. The utilization cost is considered a fixed

cost only if the vehicle f is in the solution of the model;
travf ∈ Q+ Travel cost of one kilometer traveled by the f -th vehicle. This cost is vari-

able and increases as the number of kilometers travelled by vehicle f also
increases;

emisf ∈ Q+ Emissions of CO2 equivalent (kilograms) produced and emitted by one kilo-
meter travelled by the f -th vehicle. The emissions are variable, thus the value
will increase with the increase of the kilometers travelled by vehicle f .

Table 3.4: Trip parameters’ description.

Trip parameters

dt ∈ N Passenger demand for the t-th trip;
tLengt ∈ N Maximum length that a train composition can take for the t-th trip;
cRegBonif ∈ Q+ Cost regularity bonification. It decreases the operational costs for regular trips, in

order to enhance the same composition train to perform regular trips;
cDhPen ∈ Q+ Cost deadhead trips penalty. It increases the operational costs for deadhead

trips, in order to disfavour the existence of deadhead trips in the solution;
eDhPen ∈ Q+ Emissions deadhead trips penalty. It increases the emissions produced for dead-

head trips, in order to disfavour the existence of deadhead trips in the solution.

3.4 Periodic Timetable

When it comes to managing the RSRP, the periodicity considered can be daily or weekly. Once that

in most cases, the trips repeat themselves weekly, the weekly periodicity is considered. In Figure 3.1,

the repeatability is represented through a loop that connects the end of the week with the beginning of

the following week (Borndörfer et al., 2016). Once the trips planned for a certain week are the same

every week, one can say that the end of the standard week n connects appropriately with the beginning

of week n+ 1.

One relevant limitation is that the cyclic hypergraph model does not cover the planning of weeks

that do not have the same trips planned as the rest of the year. This can happen during holidays, like

Christmas, Summer, or Easter, for example. In these weeks, the planned trips are not the same, which

means that the optimization of the hypergraph model will not consider all the trips planned for these

holidays. This implies that the model needs to be concerted for the cases in which the planned trips

are not the same. Furthermore, by considering the timetable cyclic, we cannot satisfy exceptional trips

planned on an operational level. These cases are acyclic, so they are not considered in the solution.
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Figure 3.1: Periodicity of the timetable. Source: Borndörfer et al. (2016).

3.5 Constraints

3.5.1 Vehicle compositions

A vehicle f ∈ F is a single unit fleet that allows the passengers to travel a trip t ∈ T . A set of grouped

vehicles is called a vehicle composition c, that belongs to the set of compositions C. It is to be noted,

that a singular vehicle is also considered a composition, but in that case, it is a composition composed

by a singular vehicle. As we will explore further across this chapter, not all compositions c ∈ C are

feasible for all trips t ∈ T . The set of the feasible compositions is denoted by C(t) ⊆ C, and they allow

to operate all the timetable t ∈ T .

Figure 3.2 shows how the hypergraph model works in order to solve the RSRP and how the vehicles

and compositions interact within the model. In the figure, there are represented three trips t1, t2, t3 ∈ T ,

all bellowing to the timetable table to be operated. A hyperarc h ∈ H is a connection between two nodes,

we can separate them into two categories. The first set is the set of the trip hyperarc h ∈ H(t) ⊆ H. The

hyperarcs within this set have the purpose of covering a trip t ∈ T , i.e., they start at the departure node

of the trip t of a composition c ∈ C(t) and end at the arrival node of that same trip and composition. The

second set of hyperarcs is denoted the connection hyperarcs h ∈ H(c) ⊆ H. These hyperarcs connect

the trips among them. They can represent the deadhead trip that a composition c may have to travel to

join two trips or represent the shunting operations, or turn operations. The two categories of hyperarcs

represent the overall set of hyperarcs, H(t) ∪ H(c) = H. Moreover, a hyperarc h cannot belong to

the set of trip hyperarcs H(t) and the set of connection hyperarcs H(c), thus these two categories are

complementary H(t) ∩H(c) = ∅.

The hypergraph model uses flow conservation to solve the RSRP. To ensure that, we need to consider

the outgoing and ingoing hyperarcs for each node v ∈ V . Take Figure 3.2 as an example, representing

two rotations in a hypergraph model G = (V,A,H), with |T | = 3 and |V | = 28. For hyperarc h4,

we have two nodes on the left, representing the departure of the compositions represented by h4, and

two nodes representing the arrival. As we can see, all nodes conserve the flow. For example, the let

top node has the connection hyperarc h13 ingoing and the trip hyperarc h4 outgoing. For the example

provided, both these hyperarcs belong to the solution, and thus if hyperarc h13 is in the solution, hyperarc
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h4 will also be, due to the conservation flow.

The feasible compositions c ∈ C(t) offer the model a large number of degrees of freedom for four

main reasons. The first one is due to the shunting operations. Within the RSRP, several shunting opera-

tions can be done, and the more vehicles a feasible composition has, the more shunting operations that

composition can have. To limit the degrees of freedom for this characteristic, we only allow the model

to perform one shunting operation per feasible composition, i.e., one composition cannot decouple in

more than two sub-compositions, and three compositions cannot couple into one singular composition

in one operation. This example is presented in Figure 3.2 with hyperarc h11 ∈ H. The second reason

is the orientation of the vehicles. Consider a composition c ∈ C formed by the vehicles {Blue, Blue}.

This composition in the model corresponds to four possible feasible compositions that are represented

in Figure 3.2 by hyperarcs h3, h4, h5, h6 ∈ H(t). This characteristic will be further explained in Sec-

tion 3.5.4. The third reason is the position of the vehicles within the composition. Our version of the

RSRP considers the position of the vehicle in a composition c, but does not distinguish particular vehi-

cles; it only considers the type of vehicle position. For example, in our model, the composition {Blue 1,

Yellow, Blue 2} is the same as {Blue 2, Yellow, Blue 1}, as we only consider the type of vehicles with-

out specifying each particular vehicle. Returning to the example, the composition considered is {Blue,

Yellow, Blue}. Finally, the fourth reason is the size of a feasible composition c ∈ C(t). Its size varies

based on several factors, such as the demand per trip t ∈ T , the capacity of the vehicles capf , and the

maximum length, lengt, that a composition c can take for a trip t. If a composition c composed of two

vehicles can satisfy the demand and the maximum length for a trip t is six, there are a significant number

of possible feasible compositions, considering the order and position of the vehicles.

Figure 3.2: Hypergraph model representation.
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There is an associated cost with the vehicle utilization, utilf , that is added to the operations if the

vehicle f , represented by hyperarcs, is to be selected in the solution. As mentioned in Table 3.3, there

are two types of costs regarding the rolling stocks utilization, that need to be taken into consideration to

solve the RSRP: fixed and variable costs. These costs are essential once they are mandatory to operate

the timetable in the standard week, at the minimal operational costs possible.

As we discussed, the connection hyperarcs h ∈ H(c) can represent deadhead trips, if the arrival

station of trip ti is not the same as the departure station of trip tj , shunting operations, or turn operations.

These three operations incur additional costs for the model. From these three operations, only the

turn operation can be mandatory to perform, if the arrival station of trip ti does not allow the turn.

Regarding the remaining operations, the model will tend to not include them in the solution, once they

are associated with non-necessary costs. As a matter of fact, the deadhead trips are not only expensive

to the railway companies, but they are an opportunity lost to use the trip in order to satisfy the demand.

For this reason, a deadhead trip penalization is included in the model, cDhPen, to ensure that this type

of trip is discouraged by the model, optimizing the trips that directly serve the passengers.

3.5.2 Capacity constraint

The capacity constraint lies in the fact that each trip t ∈ T is created knowing the forecasted demand

dt, which is the total number of passengers that will travel on trip t. So, for each trip t, the demand must

be satisfied, i.e., the sum of the capacity vehicles, capf , for a composition c ∈ C, operating a certain trip

t needs to be able to satisfy the demand.

3.5.3 Regularity constraint

The RSRP is considered a cyclic problem (see Section 3.4). This means that the timetable set of

trips is defined over a standard week and that the solution is applicable to the following weeks. However,

we can find the presence of a cyclic timetable within the week in the analysis. This usually happens

in the work days in which part of the trips are the same for the five days of the working week. These

trips occur every day at the same departure and arrival times, usually with the same demand, and pass

through the same stations in the same direction. Thus, this set of trips is called regular trips. Regular

trips have the advantage of creating comfort for the passengers, once they are aware of the expectations

in terms of the train´s composition. For instance, they already know where they prefer to wait on the

station platform, or where on the platform they will have direct access to the train or not. This comfort

needs to be registered in the model, and for that, a bonification is included in our version of the RSRP.

Figure 3.3 (a) presents the set of trips having the same departure and arrival stations and times and

the same train compositions. We presented an example considering only the working days, but regular

trips are any trips with the same set of characteristics, already defined, regardless of the day of the

week. Therefore, these trips are referred to as regular, and we can create a regular hyperarc, hr that

has the total operational cost as the sum of all operational costs involving hyperarcs hi, i = 15, 19 minus
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a reduction, the regularity bonification, cRegBonif . The generation of hr is displayed in Figure 3.3 (b)

and as we can see, this new hyperarc represents the same as the ones in Figure 3.3 (a), excluding

their costs. Section 4.1 will discuss better the objective functions, but we can already state that when

minimizing the costs, the regularity hyperarcs will be chosen over the normal trip hyperarcs. In this way,

the benefits of the regular trips will be encouraged in our RSRP solution.

(a) Separate hyperarcs (b) Joined through hyperarc hr

Figure 3.3: Regular trips.

3.5.4 Orientation constraint

The orientation of the vehicles was also considered, which means that for each composition of ve-

hicles considering the orientation of a trip t ∈ T , there are 2number of vehicles compositions considering the

orientation. It can be seen in Figure 3.4 that for a composition c ∈ C composed by two vehicles, the num-

ber of possible compositions is sixteen, considering the orientation and position of the vehicles. In 2021,

Borndörfer et al. designated the two possible orientations of the vehicles in the following way. If the first

class of the vehicle is in the front of the vehicle, considering its direction, the orientation is called tick.

However, if the first class finds itself on the back of the vehicle, once again considering the trip direction,

then the orientation is said to be tock. By the same logic, we call a vehicle´s orientation neutral if this

one does not have first or second class, as is the case for the subway fleet, i.e., the neutral orientation is

equivalent to not considering the orientation. However, we make a point about this distinction, because

our model is prepared to consider or not the orientation of the vehicles.

However, not all the compositions considering the orientation are feasible arcs for the solution. If a

trip does not specify anything, it is considered that all compositions are admissible, but if there is some

specification such as considering only the compositions with the fleet in tick orientation, the remaining

compositions are not feasible. This can happen for night trips in which the vehicles with first class can

have beds and, in this case, typically the railway companies prefer to have the fleet with first class in

front at the beginning of the train, eliminating the compositions that had the fleet with second class at

the front. However, for our version of the RSRP, this is not necessary, even if we decided to implement
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the possibility of restricting the compositions according to their orientations.

Figure 3.4: Possible compositions considering orientation and position for two vehicles.

In Figure 3.4, there are represented all sixteen possible compositions regarding the orientations and

positions of two vehicles blue and yellow. Consider that the vehicles with the white background are the

ones with the orientation tick and the ones with the grey background with orientation tock. The driving

direction is from left to right.

3.5.5 Station constraint

Each station s ∈ S has a length of its platform, sLengs, and it is noted that if a trip t ∈ T passes

through station s, then station s belongs to S(t). For that reason, some compositions, c ∈ C cannot be

considered, because they are too long to fit in the platform. Moreover, once each trip t is associated

with one line, one can calculate the maximum length that a composition c serving a trip t can have, i.e.,

the feasible compositions c ∈ C(t). For that, first, we have to define the length of a trip t which is defined

as the minimum length of station s ∈ S(t).

Furthermore, terminal stations required other conditions, such as the possibility to turn the train or

not. Consider that terminal stations are stations s belonging to the set S(d). When it comes to terminal

stations s ∈ S(d), i.e., stations in which the trip t ∈ T starts or ends, the station can force the train to

switch its orientation or not. This can lead to a change in the composition and orientation of the train,

which needs to be taken into account in the RSRP.

Figure 3.5, represents two possible situations for terminal stations. On the left of Figure 3.5, the train

will need to change its orientation of the composition, once the fleet orientation arriving at the departure

station will not be the same as the one when departing, once no turnaround is allowed. On the other

hand, in the right image in Figure 3.5, the turnaround is available which means that the train will perform

its next trip with the same orientation. These situations are not mutually exclusive, once it is possible to

have a terminal station s with both types of tracks, i.e., in which the train is allowed to turn of not. Hence,

the variable turns is defined according to the terminal station tracks.

The third requirement considered for the stations is once again, regarding the terminal stations s ∈

S(d), and it is related to the shunting operations. The shunting operations were already explained in

more detail in Section 3.5.1. These operations are time-consuming and they only can be performed in

terminal stations, although this operation is not allowed to be performed in all terminal stations. Thus, the

set of terminal stations allowing shunting operations needs to be defined accordingly with the structure

of the terminal stations.
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(a) Tracks not allowing the train to turn. (b) Tracks allowing the train to turn.

Figure 3.5: Tracks in terminal stations.

Moreover, some terminal stations can have a park in which the trains are allowed to stay from one

day to another (or more time), while they wait for their next trip. In these cases, the limitation of the park

needs to be taken into consideration. However, for our version of the RSRP, it was assumed that the

park has unlimited capacity.

3.6 Emissions of CO2 equivalent

As we mentioned in Section 2.6, the literature does not present models with the integration of CO2

emissions, hindering the understanding of how emissions can be assessed and allocated within the

operations, as we did for the costs, throughout the current chapter.

Once we aim to formulate a model that minimizes the emissions produced by the operations related

to the rolling stock rotation, we decided to evaluate the emissions through a parameter that is associated

with the travel distance traveled by the train compositions, emisf . This parameter is closely correlated to

the energetic efficiency of each vehicle, and it is set to be different for each type of vehicle. For instance,

it is expected that electric vehicles to have a lower coefficient of emissions of CO2 equivalent produced

than diesel vehicles. As well as it is expected that the most recent is the fleet, the most energetically

efficient it is.

Pollution is produced within several operations, and it can be estimated in different ways within the

railway system. For instance, it can be evaluated in kilo Jules per passenger-kilometer or in kilograms of

CO2 equivalent emitted per passenger-km. Our parameter emissf integrates the pollution in kilograms

of CO2 equivalent produced by kilometer. So, this implies that the emissions registered for the opera-

tions regarding the RSRP need to be converted into this unit. Once again, due to the lack of literature

integrating this feature, and since this dissertation does not count on the collaboration of a railway com-

pany, we are significantly limited to the poor detailed and itemized available data for the integration of

this feature in our model.

In alignment with the deadhead trip cost penalty, we implemented the deadhead trip emissions

penalty, eDhPen. This parameter has the same goal as the cost penalty, which is the disadvantage

of the model in choosing solutions involving deadhead trips, or at least reducing them. Similarly, as the
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cost penalty that was created to represent the cost of opportunity for performing an unnecessary trip

(see Section 3.5.1), the emissions penalty serves to specify to the model that the empty trips do not

have the same value as trips that serve passengers. Hence, they should be penalized. Nevertheless,

we did not include a regularity bonification through the emissions, once that in terms of emissions, it is

not important to compositions of regular trips have the same compositions. Furthermore, a rolling stock

rotation solution can be less pollutant by switching compositions for regular trips.
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Chapter 4

Hypergraph Model

4.1 Mixed Integer Programming Formulation

In this section, we present the mixed integer programming formulation implemented to solve the

rolling stock rotation planning problem. The MIP uses the hypergraph model and thus is focused on

the flow conservation for each node v ∈ V , implying that vout = vin. To remember, each trip t ∈ T is

operated by a feasible train composition c ∈ C(t), and all trips are connected among them through the

connection hyperarcs h ∈ H(c).

A binary decision variable xh is defined for each hyperarc h ∈ H. For xh = 1, indicates that the hy-

perarc belongs to the RSRP’s solution, and thus it has its cost and emissions produced associated. The

solution of current RSRP is solved through a mixed integer programming formulation of the hypergraph

model, as it is presented above.

minimize
∑
h∈H

chxh (4.1)

minimize
∑
h∈H

ehxh (4.2)

s.t.
∑

h∈H(t)

xh = 1 ∀t ∈ T, (4.3)

∑
h∈H(v)in

xh =
∑

h∈H(v)out

xh ∀v ∈ V, (4.4)

xh ∈ {0, 1} ∀h ∈ H. (4.5)

This version of the RSRP is presented with two linear objective functions. The first one is Objec-

tive Function 4.1 and it aims to minimize the total cost of the RSRP’s operations. On the other hand,

the second linear objective function aims to minimize the emissions of CO2 produced throughout the

operations of the RSRP (Objective Function 4.2). Equation 4.3 indicated that for each trip t ∈ T , one

hyperarc in H(t) covers the trips, i.e., one hyperarc h is associated with one and only one trip t, ensuring
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that each trip is considered in the hypergraph model. Additionally, the flow needs to be conserved, and

this is achieved through Equation 4.4. This equation ensures that for each node v ∈ V that is contained

in the solution, i.e., for each node v in which the rotation is considered, it is ensured that the number

of outgoing hyperarcs is the same as the ingoing hyperarcs. Finally, the Equation 4.5 guarantees the

binarity of the decision variable xh that represents the hyperarc h. The binary decision variable will be

one of the hyperarc h belonging to the RSRP’s solution and zero otherwise.

4.2 Generation of hyperarcs

The hypergraph model relies on the creation of hyperarcs. As mentioned before, a hyperarc h ∈ H

can be divided into two groups, the trip hyperarcs h ∈ H(t) and the connection hyperarcs h ∈ H(c). The

first subset represents the hyperarcs that cover the trips, while the second subset contains the hyperarcs

connecting the trip hyperarcs. So, in order to generate the trip hyperarcs, we first have to generate the

feasible compositions for a trip t ∈ T . The feasible composition algorithm is displayed in Algorithm 1,

and it takes as an argument the set of all possible compositions (see Section 3.5.1). The set of possible

compositions is a priori defined with a maximum number of vehicles allowed for each composition c ∈ C.

The algorithm verifies for each trip t ∈ T if the compositions c ∈ C comply with the trip conditions, such

as the passenger demand of trip t, that composition c needs to satisfy and the maximum length that trip

t allows composition c to have. Therefore, Algorithm 1 verifies if composition c is able to operate in the

trip line. In this scenario (that will be explained in Chapter 5), the only feasible compositions for the red

line are the ones with 5000 series vehicles. Finally, for every composition c fulfilling the requirements, it

can be added to the set of feasible compositions that trip t can have, C(t).

Algorithm 1 Generation of feasible compositions.

for all t in T do
for all c in C do

if c.Length() ≤ tLengt & c.Capacity() ≥ dt then
if t.getRouteId() == ”Red” then

int verification = 0
for all f in c.getComposition() do

if f == ”5000 series” then
verification++

end if
end for
if verification == c.getSize() then

t → addFeasibleComposition(c);
end if

end if
end if

end for
end for

Now that we have defined how to choose the feasible compositions c ∈ C(t) for each trip t ∈ T , it

is possible to generate the trip hyperarcs h ∈ H(t), as it is displayed in Algorithm 2. Throughout the

generation of the trip hyperarcs h, the nodes v ∈ V will also be created, once that for each vehicle f ∈ F ,
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of belonging to each feasible composition c, two nodes are created. The first node is referred to as the

outgoing node, vout, and the second as the ongoing node, vin, referencing the departure and arrival of

the vehicle f . Moreover, for each feasible composition c, we create trip hyperarcs h, that indicate the

displacement of composition c between the departure and the arrival stations. Finally, we defined a set

of outgoing and a set of ingoing nodes (vout, and vin, respectively) that are allocated to each trip t. This

will be essential to connect the trips t among them, and therefore, to generate the connection hyperarcs

h ∈ H(c).

Algorithm 2 Generation of trip hyperarcs and vertices.

for all t in T do
for all c in C(t) do

for all vehicles in c do
create vout

create vin

end for
Create trip hyperarc ht

Add ht to vout

Add ht to vin

end for
end for

Algorithm 3, generates the connection hyperarcs h ∈ H(c) that connects the trip hyperarcs h ∈ H(t).

To simplify, the connecting hyperarcs will be called hc, the feasible compositions for trip i are represented

by hi and the ones for trip j are referred to as hj . The presented algorithm generates all the connection

hyperarcs hc that have the same position order of the vehicles f ∈ F within the compositions c ∈ C(t),

i.e., Algorithm 3 only generates hyperarcs for stations in which it is allowed the turn operation, as it can

be seen in condition (3). As mentioned, Algorithm 3, generates the connection hyperarcs between trips

with the same composition orientation. Therefore, to link trips that do not need shunting operations, the

condition (4) is considered. It only fails to know if the connection is feasible in terms of the time required

to perform all the required operations. For this purpose the function hasT imeToTravel(hi, hj) verifies if

it is possible to travel between the arrival station of hi and the departure station of hj , considering the

respective arrival and departure times (condition (5)). It also takes into account the required time for

hi to remain in its arrival station, and the turn and shunting times if the stations allowed it. Figure 4.1

represents the generation of a hyperarc hc between trips with the same compositions, considering that

the time requirements are respected. It is to be noted that the creation of h′
c is possible, when hi changes

to hj and the other way around, due to the cycles (1) and (2).

When it comes to the shunting operations, Algorithm 3 was created to only allow one possible shunt-

ing operation at a time. In the first place, we can only consider the shunting operations if the terminal sta-

tions allow it (condition (6)). Then, we created the following functions to consider the shunting operations:

doesComp aDecouplesIntoComp b Begin(ha, hb), and doesComp aDecouplesIntoComp b End(ha, hb).

These functions take as argument two hyperarcs and verify if the first one can be decoupled into the sec-

ond one, but only consider the beginning of composition ha or the end of composition hb. Take as an

example the hyperarcs hi and hj : if hj ’s composition is the same as the beginning of hi’s composition,
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Figure 4.1: Diagram representing the generation of hc between hi and hj , considering equal composi-
tions.

the function doesComp aDecouplesIntoComp b Begin(hi, hj) is true. It only lacks to know if it is possi-

ble to connect hi with hj , in order to create hc, as it is seen in condition (8). Moreover, it can be also

possible to connect hj with hj , if hj has time for it, creating h′
c, as it is shown in Figure 4.2. The same

process is applied to the doesComp aDecouplesIntoComp b End(ha, hb) function.

Figure 4.2: Diagram representing the generation of hc between hi and hj , considering shunting opera-
tions.

Despite Algorithm 3 generating the connection hyperarcs, it only generates one type of them. When

a trip ti ∈ T , arrives at the departure station, the train composition can turn, keeping its compositions,

or it can be forced to not turn, due to the layout of the station. For the arrival stations, in which the

train composition is forced to not turn, it implies that the composition ongoing for the next trip tj ∈ T is

the opposite reverse of composition for trip ti. So, we developed another algorithm that is very similar

to Algorithm 3, that generates the hyperarcs considering these situations. The differences between

these two algorithms lie in the fact that the conditions instead of checking if the composition order is the

same, verify if the composition orders between hi and hj are reversed. Thus, the generation of these

connection hyperarcs hc is quite similar.
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Algorithm 3 Generation of connection hyperarcs
for all hi in H(t) do ▷ (1)

for all hj in H(t) do ▷ (2)
if hi.arrivalStation.doesTurn() == 1 and hj .departureStation.doesTurn() == 1 then ▷ (3)

if hi.getCompositionId() == hj .getCompositionId() then ▷ (4)
if hasTimeToTravel(hi, hj) == 1 then ▷ (5)

Create connection hyperarc hc

Add hc to hj .get vout

Add hc to hi.get vin

end if
end if

else if hi.arrivalStation.Shunt() == 1 or hj .departureStation.Shunt() == 1 then ▷ (6)
if doesComp aDecouplesIntoComp b Begin(hi.getComp(), hj .getComp()) then

if hasTimeToTravel(hi, hj) == 1 then ▷ (7)
Create connection hyperarc hc

Add hc to hj .get vout

Add hc to hi.get vin

end if
if hasTimeToTravel(hj , hi) == 1 then ▷ (8)

Create connection hyperarc hc

Add hc to hi.get vout

Add hc to hj .get vin

end if
end if
if doesComp aDecouplesIntoComp b End(hi.getComp(), hj .getComp()) then

if hasTimeToTravel(hi, hj) == 1 then
Create connection hyperarc hc

Add hc to hj .get vout

Add hc to hi.get vin

end if
if hasTimeToTravel(hj , hi) == 1 then

Create connection hyperarc hc

Add hc to hi.get vout

Add hc to hj .get vin

end if
end if

end if
end for

end for
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4.3 Multi-objective approach

4.3.1 Multi-objective methods

In order to solve the RSRP through the mixed programming formulation, the multiplicity of the linear

objective functions must be taken into account. Because of that, it is expected that no single optimal

solution will be found that optimizes both objective functions 4.1 and 4.2. The multiplicity of the objective

functions causes the loss of the notion of the optimal solution and the notion of the Pareto optimality is

introduced (Mavrotas, 2009). The set of all Pareto optimal solutions, also named Pareto non-dominant

solutions composes the Pareto front. These solutions cannot improve one objective function without

jeopardizing at least one of the other objective functions. In this context, these solutions are the ones that

cannot minimize even more the costs (Equation 4.1), without increasing the emissions (Equation 4.2)

or the other way around. Within the Pareto front lies all the efficient solutions. Consider the following

example to define the efficient solutions: without loss of generality, it is assumed that all the n objective

functions fi, i = 1, ..., n, are for minimization. A feasible solution x for the multi-objective mathematical

problem (MOMP) is efficient if no other feasible solution x′ such that fi(x′) ≤ fi(x), for i = 1, ..., n.

For the MOMP, it fits the decision-maker (DM) to choose the most preferred solutions. There are

categories enhancing how much the decision maker is involved in expressing his preferences (Hwang

and Masud, 1979): the a priori methods, the interactive methods, and the a posteriori or generation

methods. In a priori methods, the DM indicates his preferences before the solution process through the

setting of weights to the objective functions, for example. The significant downside of this method is that

is very hard to quantify weights to the objective functions precisely before even starting the process.

The interactive methods mix steps calculating the solutions with discussion with the DM until there is a

convergence of the most preferred solution. This method needs some time and consecutive iterations,

in which the decision-maker conducts the process accordingly with his answers. The disadvantage is

that the DM never sees the Pareto front which leads to a lack of knowledge of the whole paradigm. This

can lead the decision-maker to choose a preferred solution according to his preferences in comparison

with other solutions, ignoring some possible solutions not found that he could prefer. Finally, in the

generation methods, the Pareto front is first calculated and then, the DM is involved in the process so

that he can choose the preferred solutions, which is a significant advantage. Once he is informed of the

whole paradigm, he can not only be required in the final step of this method (the efficient solutions need

to be calculated first and the decision-maker is not required for that) and when he is required, the DM

is aware of all the possible efficient solutions, which leads to a most conscious final decision about his

preferences. Due to a higher time-consuming work, the a posteriori method is sometimes non-preferred

in opposite to the other methods.

Usually, the weighting and ε-constraint methods are preferred when solving a MOMP, once they are

allowed to provide a significant subset of the Pareto front, which generally is appropriate to choose the

preferred solutions. Nevertheless, the ε-constraint presents several significant advantages in compari-

son with the weighting method, as Mavrotas, discussed in 2009.
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a) When it comes to solving linear problems, the ε-constraint method is able to alter the original feasi-

ble region and to produce non-extreme efficient solutions, while the weighting method is applied to

the original feasible region and is only able to provide efficient extreme solutions. Thus, in almost

every new iteration, with the ε-constraint method it is possible to find a different efficient solution,

whereas the weighting method can have several redundant iterations, once a lot of matches of

weights can return the same efficient extreme solution. Hence, the set of efficient solutions found

in the ε-constraint method is wider than using the weighting method.

b) For multi-objective integer and mixed integer programming problems, the ε-constraint method can

return non-supported efficient solutions, while the weighting method cannot (Steuer, 1986; Mietti-

nen, 1998).

c) In order to use the weighting method, it is necessary to scale the objective functions, while it is not

necessary for the ε-constraint method.

d) With the ε-constraint method it is possible to control the number of efficient solutions calculated by

adjusting the number of grid points for the several objective function ranges. The weighting method

does not allow the achievement of a desirable number of efficient solutions so easily, as can be

proven by confronting point a).

Therefore, to solve the multi-objective function for the RSRP proposed, the ε-constraint method is

chosen for the reasons explained above.

4.3.2 Augmented ε-constraint method

The ε-constraint method has some flaws when it comes to building the Pareto front. The solutions

found can be dominated by other solutions non-dominated. To avoid this issue, Mavrotas (2009) sug-

gested the augmented ε-constraint method to solve this issue. The method was later improved by the

same author in Mavrotas and Florios (2013). The method suggested helps build the Pareto front ensur-

ing that only non-dominant solutions are found, which increases the reliability of the method. In order

to perform that, as opposed to other ε-constraint methods that only use the objective function of z1(x),

the augmented ε-constraint method through the utilization of surplus variables in the objective function,

a component that is related to the remaining objective functions is included. In this section, the version

adopted by Almeida et al. in 2023 of the augmented ε-constraint method is used and described.

Ideal and approximation nadir points

The first step is to compute the ideal point for all objective functions zi, i = 1, ..., nz, using Equa-

tion 4.6. As mentioned, using the augmented ε-constraint method, when calculating the objective func-

tion it is necessary to consider a component related to the remaining ones. Hence, the first component

corresponds to the minimization of one of the objective functions zi(x), i = 1..., nz, and the second com-

ponent is the sum of all the remaining objective functions zj(x), j = 1, ..., nz, j ̸= i, multiplied by 10−E ,
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which is an adequate number that guarantees that, independently the value of the second component,

called the perturbation, the value of zρ
∗
i

i is the same as we would only calculate the minimization of

zi(x), i = 1, ..., nz, as presented in Equation 4.7.

z
ρ∗
i

i = min
x∈X

zi(x) + (10−E)

nz∑
j=1,i̸=j

zj(x)

 , i = 1, . . . , nz (4.6)

z∗i = min
x∈X

zi(x), i = 1, . . . , nz (4.7)

The perturbation of zi(x), i = 1, ..., nz is defined as ρi and is descripted in Equation 4.8, where 0

≤ ρi < 1.

ρi = (10−E)

nz∑
j=1,i̸=j

zj(x) i = 1, . . . , nz (4.8)

Once that zi(x) ∈ N, then ρi does not interfere with the value of zi(x), and it is now possible to define

the ideal point for zi(x) by removing the perturbation from Equation 4.6, as it is described in Equation 4.9.

z∗i = z
ρ∗
i

i − ρi i = 1, . . . , nz (4.9)

It is now possible to define all the ideal points for each zi(x), i = 1, ..., nz. The set of all ideal points

is defined as zid and it is described in Equation 4.10.

zid = (z∗1 , ..., z
∗
i , ..., z

∗
nz
) (4.10)

Now that the ideal points are found for each zi(x), i = 1, ..., nz, it is possible to find the approximate

nadir points for each zi(x). When minimizing zi(x) in Equation 4.6, the value value obtained for the

objective function zj(x), j = 1, ..., nz, j ̸= i is denoted zi∗j . So, each scalar component, znadiri , is a part

of the approximate nadir vector, called znadir, and it is defined as in Equation 4.11.

znadiri = max
j=1,...,nz

{
zj∗i

}
, i = 1, . . . , nz (4.11)

Once each scalar component is calculated, the approximate nadir vector is defined by the Equa-

tion 4.12.

znadir = (znadiri , ..., znadiri , ..., znadirnz
) (4.12)

Build the Pareto front

At this point, both ideal and approximate nadir points are found for each zi(x), i = 1, ..., nz. However,

to find the remaining non-dominant solutions desired, using the ε-constraint method is required to first

calculate the surplus variables denoted by si(x), x ∈ X, for each objective function zi(x), i = 1, ..., nz.

The surplus variables are calculated through the ratio of the difference between the value of the objective
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function zi(x) and its correspondent ideal point, z∗i , by the difference of its nadir point, znadiri , and its

ideal point, z∗i , as it is displayed in Equation 4.13. The surplus variables talked values between 0 and 1:

0 ≤ si(x) ≤ 1.

si(x) =
zi(x)− z∗i
znadiri − z∗i

, i = 2, . . . , nz, x ∈ X (4.13)

Once the surplus variables are defined, it is possible to calculate the objective function denoted by zε,

as it is presented in Equation 4.14. Once again, the objective function is divided into two components,

the first one is related to the objective function z1(x), and the second one is the perturbation. This

perturbation is calculated through the sum of all surplus variables, si(x) and it ensures that the solutions

to be found are non-dominant, as it is pretended. Additionally, the utilization of the surplus variables also

guarantees that the value found for the objective function zi(x) is the same as it would be if we would

only minimize the objective function z1(x) separately, like in the Equation 4.7, for i = 1. The necessity

of adding the perturbation (Equation 4.16 is because it is necessary to also consider the remaining

objective functions zj(x), j = 2, ..., nz and that they are subjected to an upper bound denoted ε, as it is

displayed in Equation 4.15.

zε = max
x∈X

{
z1(x) +

(
nz −

1

0.9

nz∑
i=2

si(x)

)}
(4.14)

zj(x) ≥ εj j = 2, . . . , nz (4.15)

The perturbation displayed below in Equation 4.16 is related to the objective function z1(x) and once

the surplus variables take values from 0 to 1, the perturbation will fit between 0 ≤ ϕ < 1. So, ϕ will

not interfere with the minimization of the objective function z1(x), as long as the remaining objective

functions zj(x), j = 2, ..., nz is restricted by the upper bounds vector ε, once that z1(x) ∈ N.

ϕ = (nz − 0.9)−1
nz∑
i=2

si(x) (4.16)

The upper bounds will decrease over the augmented ε-constraint method and are defined in Equa-

tion 4.17.

εi = znadiri + vipi(z
∗
i − znadiri ), i = 2, . . . , nz (4.17)

However, the upper bound, εi needs to be updated over the process, and for that the first step is

to define a parameter k, that is subjected to 1
ki

∈ N. This is the gap percentage between the ideal,

z∗i , and nadir, znadiri points. This percentage is incremented over each iteration for a specific objective

function zi(x), i = 2, ..., nz. In order to keep the count of the incrementations, a vector v of dimensions

nz - 1 is created, so that each component, vi, i = 1, ..., nz − 1, indicates the number of iterations that

εi suffered and incrementation through its corresponding gap percentage, ki. Throughout the iterations,

all parameters are constant, except for vi which is altered across iterations, and finds itself between
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0, ..., 1/pi. In addition, note that the maximum value of the upper bound is the znadiri , i = 2, and the

minimum value is the same as z∗i , i = 2.

Through the continuous iterations of vi, we are able to find a maximum of 1/pi solutions that allow us

to build the Pareto Front, and therefore, analyze with more detail the implications of the addition of the

Objective Function 4.2 in our version of the RSRP.
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Chapter 5

Chicago subway data

5.1 The RSRP for subway railway planning

The RSRP model can be used for several railway planning types, such as intercities train trips, or

urban subways. Then, to validate the model, we had to find real data or simulate it, from a railway system.

Once the literature’s works do not provide sufficient data to validate the model due to confidentiality

constraints, the real data from the Chicago Transit Authority1 (CTA) was used. This section aims to

explain how the data was found and how was it used in order to validate the model.

5.1.1 Chicago Transit Authority description

CTA operates the second-largest public transportation system in the United States of America. CTA

serves the city of Chicago and 35 suburbs and is able to provide 81% of Chicago’s public transportation.

For the model, only the subway data is necessary. They operate 1,492 rail cars, distributed over 8 lines.

The total sum of the rail tracks is 360.65 kilometers, and the total number of stations operated by CTA

is 145. Additionally, the transit authority operates 2,318 trips per day, on average. The CTA data was

chosen for one main reason, which is the diversity of available data provided on the website, leading to

a lower lack of needed data, compared with other open data available from other railway companies.

The CTA publishes several databases and three of them have real data that can be used to solve

the RSRP. The first database regards the daily demand 2 for each station between 01/01/2001 and

30/06/2022, which is a large period of time that can be analyzed. However, due to the propriety of

the Periodic Timetable (see Section 3.4), only one week needs to be chosen to solve the RSRP. The

second database concerns the trip timetable 3, as the available period of time with real data is between

10/12/2020 and 28/02/2021. For that reason, the week that will be analyzed and for which the RSRP

will be solved is the one between 10/12/2020 and 16/12/2020, in which both databases have real data.

1Chicago Transit Authority’s open data: https://www.transitchicago.com/data/.
2Chicago Transit Authority’s daily demand: https://data.cityofchicago.org/Transportation/

CTA-Ridership-L-Station-Entries-Daily-Totals/5neh-572f.
3Chicago Transit Authority’s trip timetable: https://www.transitchicago.com/downloads/sch_data/.
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The third database does not change over time, once it indicates which stations belong to which lines 4,

and will also be used in the process.

This section is now divided into different explanations of how the data was obtained or calculated.

We will first start with the calculation of the demand per trip, then the cost calculations, and after the

emissions computations.

5.1.2 Chicago Transit Authority demand

Accordingly, with the provided data, the demand per trip is not given. However, it can be calculated

through some assumptions. CTA provides the list of the 145 stations with the respective number of

entries per day (Table 5.1). The rides are the number of entries at each station, and the ”Day type”

column indicates if the trip occurs on a working day (w), Saturday (A), or on a Sunday or holiday (U). This

raises a problem, which is the lack of information related to the passengers that change the line when

traveling. Once CTA did not have any information about them, they were ignored and only considered in

their first train.

Table 5.1: Stations information.
Station id Station name Date Day type Rides

40010 Austin-Forest Park 10/12/2020 W 4450
40010 Austin-Forest Park 11/12/2020 W 4480
40010 Austin-Forest Park 12/12/2020 A 2380
40010 Austin-Forest Park 13/12/2020 U 2220
40010 Austin-Forest Park 14/12/2020 W 4070
40010 Austin-Forest Park 15/12/2020 W 3930
40010 Austin-Forest Park 16/12/2020 W 3980
40020 Harlem-Lake 10/12/2020 W 12170
40020 Harlem-Lake 11/12/2020 W 11430
40020 Harlem-Lake 12/12/2020 A 7140
40020 Harlem-Lake 13/12/2020 U 5880
...

...
...

...
...

Moreover, CTA also provides the station stops for each trip5. So, knowing this, we can calculate

the demand per trip as long as we know which part of the daily demand enters in which trip. For that,

we need to know the distribution of the demand per day, and for that, we adopted the daily demand

distribution of the Beijing Yizhuang line studied by Wang et al. (2018) presented in Figure 5.1.

Figure 5.1 indicates the number of passengers entering the train for each hour of the day. We used

this distribution and transformed it into a percentage, as can be seen in Figure 5.2. The histogram

presented indicates which percentage of the total daily station demand is allocated to among the daily

schedule, and therefore allocated to a certain trip. This is a piece of relevant information, once that CTA

only provided the daily demand and not the demand per trip, as the RSRP requests.
4Chicago Transit Authority’s stations’ information: https://data.cityofchicago.org/Transportation/

CTA-System-Information-List-of-L-Stops/8pix-ypme.
5Chicago Transit Authority’s stations stops for each trip: https://www.transitchicago.com/downloads/sch_data/.
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Figure 5.1: Demand distribution of the Beijing Yizhuang line.

Figure 5.2: Demand distribution throughout the day.

Considering the daily demand of each station, and using the daily distribution of Figure 5.2, it is

possible to simulate the distribution of the Chicago subway along the day, for each station. To calculate

the demand per trip, more information is needed. The first one is the number of trips per station in a

certain schedule, and the second one is the distribution of the passengers considering the trip direction.
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To solve the first problem, we computed the number of trips passing through each station for each half

hour. To solve the second problem, we need to know the percentage of passengers going in each

direction. However, contrary to the Beijing Yizhuang line (Wang et al., 2018), the direction of the trip is

not important to the computation of the trip demand. Indeed, it is expected a bigger demand for the trips

going towards the city during the morning and then a higher demand for the trips departing from the city

at the end of the day. In Chicago’s lines, this issue can be ignored, due to the lines’ structure that are

displayed in Figure 5.3. There are two groups of possibilities for the eight Chicago subway lines:

Figure 5.3: Chicago subway lines.

• Red, blue, and green lines - once these tree lines pass through the city center and then continue

to the suburbs, it does not matter the direction of the trip. Once neither of these lines starts or ends

at the city center, in both directions (North or South), the train will pass through the city and leave

it. Let´s see the case in which a trip in the red line goes to the south: this trip starts in the north,

so, for the stations at the north of the city, it is expected a high quantity of passengers going to

the south (city center) and low going to the north (suburbs). However, when the same trip passes

through the city center, it is expected that the passengers for each station aim to go north, so there

would be a low percentage allocated to the south direction, after passing the city center. Due to

this reason, we assume that the demand is symmetrical when confronting both directions, which

means that it was assumed that the demand can be allocated at 50% of the total demand for the

station, to simplify;

• Yellow, purple, pink, orange, and brown lines - these five lines are cyclic, which means that they

depart and arrive at the same station. In the same logic as the other three lines, the trips that are
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performed in these five lines also start and end outside of the city center, which means that the

direction does not affect the demand. The same reasoning was applied, which led to the same

conclusion: the demand was divided equally (50%) for all stations.

At this point, it is known the total passenger entries, for each trip considering its direction, at a certain

station. To compute the trip demand, it is only necessary to sum the station’s demand in which each trip

t ∈ T passes through. The only lacking information is the existing passengers throughout the trip. This

information is essential, because if we only sum the total demand, the calculated demand would be way

bigger than the actual demand, once the passengers leave along the trip. Once that was not possible

to find information in the literature relative to this, and we only needed to know the maximum demand

at the same time for each trip t, the following assumption was considered: the total demand of the trip

is 50% of the sum of all the demand´s stations in which trip t goes through. Now, the trip demand dt is

known for each trip t.

Now that we have all the data related to the CTA trips, an extract of the overall information of the trips

input in our RSRP model is described in Table 5.2.

Table 5.2: Trips information.

Trip id Date Line
Departure

station
Arrival
station

Departure
time

Arrival
time

Length Demand

62189359694 10/12/2020 Org Clark/Lake State/Lake 48480 48450 118 281
62189360473 10/12/2020 Pink 54th/Cermak State/Lake 47520 49260 132 83
62189360473 16/12/2020 Pink 54th/Cermak State/Lake 565920 567660 132 83
62188840736 10/12/2020 Red Dan Ryan Howard 57840 61740 118 193
62188780868 12/12/2020 Red Howard Dan Ryan 230400 234120 118 140
62189359940 10/12/2020 Blue Jackson O’Hare 28920 31440 118 688
62189359942 10/12/2020 Blue LaSalle Forest Park 28950 30660 118 352
62189359940 10/12/2020 Blue Jackson O’Hare 28920 31440 118 688
62189359942 10/12/2020 Blue LaSalle Forest Park 28950 30660 118 352
62189360133 10/12/2020 Blue O’Hare Jackson 30420 33180 118 569
...

...
...

...
...

...
...

...
...

5.1.3 Chicago Transit Authority vehicles

CTA provides information about the station’s maximum capacity to receive the train, and which fleet

is assigned to which station. This information is displayed in Table 5.3. To exemplify, let´s consider the

red line. One can see that the red line can only be operated by 5000 rail cars and that its maximum train

car capacity is 8, which means that in this line compositions with more than 8 trains are not allowed.

However, the information regarding the maximum train car capacity is not provided for every line, so

some assumptions had to be made for the purple, pink, and yellow lines. The values assumed are

around the maximum capacity of 8 cars for the other lines, so we assumed a maximum capacity of 9

vehicles for lines purple and pink and 7 vehicles for line yellow (values in red).
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Table 5.3: Lines information.

Line 2600 rail cars 3200 rail cars 5000 rail cars 7000 rail cars Maximum train car capacity

Red No No Yes No 8
Blue Yes Yes No No 8
Brown Yes Yes No Yes 8
Orange Yes No No No 8
Purple No No Yes No 9
Pink No No Yes No 9
Green No No Yes No 8
Yellow No No Yes No 7

Thus, with the information available in Table 5.3, it is now possible to allocate the maximum train

length for each trip, considering its line and vehicle lengths. For the Chicago subway, the vehicle length

is not relevant, once all vehicles have the same length, despite their types, as it is presented in Table 5.4.

Furthermore, CTA also provides the capacity of the types of vehicles used in their operations. Neverthe-

less, they do not provide all the required information, requiring to compute some calculations. CTA only

provides the seated capacity of their vehicles, with one exception: the 5000-series whereby the total

capacity (seated and stand-up) is also provided. From these values, one can say that the percentage of

seated passengers is 27.64% (34/123). Knowing this value, it is possible to compute the total number

of passengers that each type of vehicle can satisfy (total capacity). Consider the example of the 2600-

series vehicles: if the number of seated places is 46, then the total capacity will be 166 (46/27.64%). All

computed values all represented in red, and their calculations followed the same logic.

Table 5.4: Chicago vehicles’ length and capacity.

Vehicle type
Year of

construction
Length

(meters)
Capacity
(seated)

Capacity
(stand-up)

Capacity
(total)

2600-series 1981–1987 14.63 46 120 166
3200-series 1992–1994 14.63 39 102 141
5000-series 2009–2015 14.63 34 89 123
7000-series 2019–TBD 14.63 38 99 137

From this point, the remaining information about the Chicago subway fleet lacks to know the op-

erational costs and emissions produced. Starting with the operational costs: CTA does not provide a

detailed and allocated distribution of their operational costs, regarding their fleet, however, through the

financial report for December 2020 (because the week in the analysis is from 10/12/2020 to 16/12/2020),

one can compute the daily operational costs (Table 5.5).

Now that the operating expenses are known, one can calculate the daily fixed and variable costs. The

fixed costs are considered to be the Labor and fringe benefits, Purchase of security services, Mainte-

nance and repairs, utilities, rent and other (we only assumed 80%, leaving aside 20% for maintenance,

once that the maintenance is not been consider in this version of the RSRP), and Provision for deprecia-
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Table 5.5: Chicago’s operating expenses. Source: Authority (2020).

Daily operating expenses (C)

Labor and fringe benefits 3,137,041.43
Materials and supplies 199,606.74
Fuel 99,069.52
Electric 65,795.51
Purchase of security services 53,306.74
Maintenance and repairs, utilities, rent and other 289,928.79

3,844,748.74
Provision for injuries and damages 61,016.15
Provision for depreciation 1,336,884.83

Total operating expenses 5,242,649.72

tion, leading to fixed daily operating expenses of 4,759,176.04 C. Once CTA states that they operate, on

average, 2,318 trips per day, the fixed cost per trip is 2,053.14C. Now, we only have to divide this value

by the average number of needed fleets, per trip. We computed the average the average demand per

trip, which is 257 passengers, on average; and also computed the average capacity that Chicago’s fleet

can carry on: 166+141+123+137
4 ≈ 142. Dividing the 257 average passengers by the 142 average capacity

of one vehicle, we reach the average number of compositions for the Chicago subway operations, which

is two vehicles. Now that we found the average number of vehicles within a composition per trip, we

can conclude that the fixed cost of a vehicle is 2,053.14C/2 = 1,026.57C. However, in order to differ-

entiate the utilization costs of the four types of vehicles, we calculated the costs assuming variations

of 25% and 15% from this base value (positive variations for 2600-series and 3200-series fleet, and

negative variations for 5000-series and 7000-series fleet). Taking as an example the 2600-series fleet,

the fixed utilization cost assumed is 1,026.57C plus a variation of 25%, reaching 1,283.21C. The oldest

vehicles (2600-series and 3200-series fleet) are associated with higher costs than the latest vehicles

(5000-series and 7000-series fleet).

In order to compute the variable costs, we add up the operations whose costs depend on the activity:

Materials and supplies, Fuel, Electric, and Provision for injuries and damages, reaching a daily variable

cost of 425,487.92C. By doing the same calculations as for the fixed operating costs, the value of the

allocated costs for one vehicle is 91.78C. In opposite to the fixed costs, we still have to divide it by the

average number of kilometers traveled, and for that, we know that the total CTA tracks are distributed

by 360,65 km for the eight existing lines. So, considering the average number of kilometers traveled as

45.08km (360.65 km/8 lines), we can assume that the variable cost of the vehicles is 2.04C/km (91.78

C/45.08 km). Once again, the vehicles were constructed in different periods, and for that reason, we

assumed that the older vehicles would have higher variable costs, and the younger fleet would have

lower variation costs. Take as an example the case of the 5000-series fleet, we calculate its value, by

negatively varying the base costs by 15%, reaching a variable cost of 1.73C/km.

The total fixed and variable costs allocated to the four vehicles operating the Chicago subway are
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displayed in Table 5.6.

Table 5.6: Chicago vehicle’s costs.

Vehicle type
Utilization cost

(C)
Travel cost

(C/km)
2600-series 1,283.21 2.54
3200-series 1,180.55 2.34
5000-series 872.58 1.73
7000-series 769.93 1.53

The only remaining parameter needed is the emissions of CO2 equivalent produced by each vehicle

of the Chicago subway system.

When it comes to the emissions produced, the report presented by the Congressional Budget Office

(CBO) indicates that the average CO2 equivalent produced by the Chicago Transit Authority subway

over the year 2019 is 0.320 pounds of CO2 per pax-mile (for Transportation, 2022). Even if the week

used to solve the RSRP is between 10/12/2020 and 16/12/2020, the value of 0.320 is used by analogy.

Nevertheless, this value needs to be adapted to the four types of vehicles the CTA uses. Indeed,

the value of 0.320 is an average. Once the Chicago subway lines are operated by four vehicles, this

value will be allocated over the four vehicles, considering their year of construction, but keeping the

average. Once again, we consider that the older the fleet is, the more technologically limited is, thus it is

considered to pollute more. Considering that, the older railway vehicles are leading to higher indices of

CO2 equivalent per pax and miles, the generated values for emisi, i = 1, 2, 3, 4 depend on the fabrication

year of the vehicles. Using as a reference, the average value of 0.320, by increasing this value by 15%

and 25%, for older vehicles, and decreasing by 15% and 25% for younger vehicles, we reached the

following values: 0.4, 0.368, 0.272, and 0.24, for the 2600-series, 3200-series, 5000-series, and 7000-

series vehicles, respectively. The values need to be converted from pounds to kilograms and miles to

kilometers. The calculation performed is explained through the Equation 5.1, using the conversations:

1 pound (lb) is approximately equal to 0.453592 kilograms and 1 mile (mi) is approximately equal to

1.60934 kilometers (km).

emisi(CO2(kg)/pax/km) = emisi(CO2(lb)/pax/mi)×
0.453592kg

lb

1.609344km
mi

(5.1)

Considering, for example, the estimated value of the emissions of CO2 for the 2600-series vehicle -

vehicle fi, i = 1, the value of 0.4 lb of CO2/pax/mi is converted in Equation 5.2.

emis1(CO2(kg)/pax/km) = 0.40CO2(lb)/pax/mi×
0.453592kg

lb

1.609344km
mi

≈ 0, 1099 CO2(kg)/pax/km (5.2)

At this point, we have the CO2 emissions produced by kilogram and person for each vehicle. Once

we know the capacity of each vehicle, we can estimate the total emissions produced by each fleet,
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multiplying the CO2 produced per person, by the number of passengers that each vehicle can take,

leading us to the estimated value of the CO2 produced per kilometer, for each vehicle. Equation 5.3,

calculates this value, continuing the example for the 2600-series fleet.

emis1(CO2(kg)/km) = 0, 1099 CO2(lb)/pax/mi× 166 pax ≈ 18.71 CO2(kg)/km (5.3)

Hence, the total information needed to solve the RSRP regarding the Chicago subway vehicles is

displayed in Table 5.7.

Table 5.7: CTA’s vehicles information.

Vehicle type
Length

(m)
Capacity

(# passengers)
Utilization Cost

(C)
Travel Cost

(C/km)
Emissions of

CO2 eq (kg/km)

2600-series 14.63 166 1,283.21 2.54 18.71
3200-series 14.63 141 1,180.55 2.34 14.62
5000-series 14.63 123 872.58 1.73 9.43
7000-series 14.63 137 769.93 1.53 9.27

5.1.4 Chicago Transit Authority stations

From the design of the Chicago railway terminal station, the parameter turni is obtained. For terminal

stations like Kimball (Figure 5.4 (a)), there is no track reserved for the vehicles to turn, so the turni is

0. On the other hand, the stations that have the same design as Forest Park (Figure 5.4 (b)) own a

track reserved for the vehicles to turn around, so the turni is set to 1. When turni is 1, it will allow all

the trains to turn, but the orientation of each particular vehicle (tick and tock), despite the fact that it

changes the orientation, is not relevant to the model. Once the instances in the analysis are regarding

the Chicago railway subway, the orientation of the vehicles is considered to always be the same, neutral,

once the urban subway vehicles do not have first-class or second-class, this is reserved for the vehicles

operating in intercities lines, for example. To know the parameter shunts, we used a similar approach,

by observing the structure of the Chicago subway terminal stations. According to their layout, it was

decided if the shunting operations were allowed or not, for the train compositions.

It was also possible to calculate the distance between the several stations using the Google API

Distance Matrix Service6. The API allowed us to determine both distance and time between the set of

all stations. Even if we only needed the time in order to solve the rolling stock rotation planning, we

decided to opt for the distance. As a matter of fact, the API returned the time between the stations

considering the stop time of each station, hence to know the travel time between two terminal stations,

through the API, we would get an erroneous value. To solve this issue, we used the distance between

stations, which is presented in Table 5.8, and then computed the average speed to get the travel time.

Now that the distance between the stations is known, we can calculate a more accurate travel time

if we know the average speed of the train. CTA does not provide that information, therefore we had to
6Distance Matrix Service: https://developers.google.com/maps/documentation/javascript/examples/

distance-matrix.

41

 https://developers.google.com/maps/documentation/javascript/examples/distance-matrix 
 https://developers.google.com/maps/documentation/javascript/examples/distance-matrix 


(a) Kimball. (b) Forest Park.

Figure 5.4: Chicago terminal stations.

estimate it. To this end, we analyze three sections between two consecutive stations relatively distant

from each other (so that the train had time to reach its average speed) and calculate the average speed.

Table 5.9 displays the information regarding these three sections, and as one can see, the average

speed computed for the Chicago subway trains is 0.01373 km/sec (49.43 km/h). For the purpose of our

model, we used the speed in this unit, once that the distances between the stations are in kilometers,

and that the departure and arrival times are in seconds.

5.1.5 Chicago Transit Authority estimations

Despite the large amount of data available provided by the Chicago Transit Authority, some param-

eters essential to solving the rolling stock rotation planning problem are not available in the CTA’s open

data. So, in order to solve the RSRP some assumptions had to be made. The estimated data is a com-

pilation and adaptation of other real railway cases around the world. For instance, between two trips,

the train composition has a minimum required time in which it needs to stay in the terminal station. Even

if CTA does not provide this information, Chang et al. (2000) indicates that the trains need 45 minutes

to stay within the terminal station. However, for the terminal stations analyzed by the authors, the train

needed to travel to the depot, which is 15 km from the terminal station. For the Chicago subway, the de-
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Table 5.8: Distance matrix between stations.

Stations
(distance in km) A

us
tin
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m
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...

C
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ak

-
M
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W
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ng
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n/

W
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h

Austin 0 4.4 5.8 15.3 34.2 23.5 15.4 ... 18.2 14.8
Harlem 0 6.5 15.4 34.6 23.9 15.9 ... 18.5 15.2
Pulaski 0 9 27 17.5 9 ... 12.1 8.8
Quincy 0 22.4 10.8 0.8 ... 5.2 1.5
Davis 0 29.7 21.6 ... 24.3 21.0
Belmont 0 10.5 ... 13.7 10.1
Jackson 0 ... 3.4 0.9
...

. . .
...

...
Cermak-McCormick 0 3.4
Washington/Wabash 0

Table 5.9: Computation of the average speed.

Yellow line Blue line Green line
Oakton - Sokie Harlem - Jefferson Halsted - Garfield

Distance (km) 7 4,7 3,8
Time (minutes) 6 7 6
Speed (km/min) 1,167 0,671 0,633
Speed (km/sec) 0,019444 0,011190 0,010556
Average speed (km/sec) 0,01373

pot is in the same location as the terminal station, so we need to subtract the travel time for the terminal

instances analyzed by the authors. They say that the depot is at 15 km, considering an average speed of

0.01373 km/sec (0.8238 km/min) and that the required time at the terminal station is 45 minutes minus

the travel time to and from the depot (2 × 15 min), the required time for the terminal station estimated is

approximately 8 minutes and a half, which is 510 seconds (45 min − 2 × 15 km
0.8238 km/min ).

CTA does not provide any information regarding the costs or the execution times, when it comes

to the operations performed within the terminal stations, such as turn and shunting operations opera-

tions. Nevertheless, in 2021, Schwerdfeger et al. indicated that the required time to perform a shunting

operation for the German railway operator Deutsche Bahn is, on average, 30 minutes (1800 seconds).

Not having any information about the turn operation, we assumed that its required time would be twice

the time required to be at the terminal station between trips, 17 minutes - 1020 seconds (2×8.5 min).

Although it was not possible to find the operational costs for both operations, we estimated it using as a

reference the average vehicle utilization cost (1,026.57 C). Once the turning operation was estimated to

take less time than the shunting operation, we assumed the turning operation to be one-third of the refer-

ence cost and the shunting operation to be half. Therefore, the turning cost is 342.19 C (1,026.57 C / 3),

and the shunting cost is 513.28 C (1,026.57 C / 2).
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Finally, the only required parameters that remain to be estimated are the bonification and penaliza-

tions, associated with the regular and deadhead trips, respectively. This value would be preferentially

provided by the decision-maker, after considering and quantifying the benefits of considering the regu-

larity within the timetable, and the disadvantages of the existence of the deadhead trips in the RSRP’s

solution. Therefore, we had to assume these values without discussing them with the decision-maker, in

our case, we are not working with a decision-maker. The values estimated are presented in Table 5.10.

Table 5.10: Bonification and penalization values.

Cost
Regular trips bonification 20%
Deadhead trip penalization 10%

Emissions Deadhead trip penalization 10%

As it can be seen in Table 5.10, we considered relatively low percentages of bonification and pe-

nalizations. In this way, we are enhancing train compositions to operate regular trips, and discouraging

the model to operate deadhead trips. Moreover, we estimated the same penalization for both costs and

emissions regarding the deadhead trips, so that there are differences between the two objective func-

tions. The bonification of the regularity is higher than the deadhead trip’s penalization once the model

already tends to disadvantage deadhead trips, once they are costly and are not necessary to satisfy the

demand.
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Chapter 6

Results

The hypergraph model used to solve the RSRP was implemented in C++, using the mixed integer

programming solver CPLEX 22.1.0. The computations were performed on a computer with an Intel(R)

Core(TM) i5-8250U CPU with 8,00 GB of memory RAM, with a base clock speed of 1,60 GHz, and

a maximum turbo frequency of 1,80 GHz. All computed instances are related to the Chicago Urban

Subway railway system, USA. It is to be noted that for the several analyses throughout this chapter,

various instances were created in order to take a deeper look into the understanding of the model. Due

to the low time reserved to test the model, the created instances are relatively small, yet enable us to

draw pertinent conclusions regarding our version of the rolling stock rotation planning problem.

In this section, there are some questions that aim to be answered in order to evaluate the complexity

of the hypergraph model and the implications of the addition of a new objective function, such as the

following:

a) What is more time-consuming for the hypergraph model: more possibilities of compositions or

more trips for a given timetable?

b) How does the addition of the new objective function (4.2) related to the emissions impact the cost

minimization (4.1)?

c) How do the regularity bonification and deadhead trips penalizations impact the RSRP considering

both objective functions 4.1 and 4.2?
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6.1 Instances description

In order to obtain the results achieved throughout this chapter, we had to create several instances,

varying their characteristics, by the analysis desired. Table 6.1 displays the several instances that will

be used according to the maximum number of vehicles allowed per feasible composition, the number of

trips and if the shunting is or is not considered. As the instances will be used, a deeper explanation will

be provided.

Table 6.1: Instances description.

Instances Maximum number of
vehicles per composition |T | Shunting allowed?

instance 0 2 13 ✓

instance c 2 49 ✓

instance c.3 3 49 ✓

instance c.4 4 49 ✓

instance c.5 5 49 ✓

instance c.6 6 49 ✓

instance c.50T 2 50 ✓

instance c.59T 2 59 ✓

instance c.79T 2 79 ✓

instance c.109T 2 109 ✓

instance c.149T 2 149 ✓

instance c.249T 2 249 ✓

instance 1 5 34 ✓

instance 2 2 222 ✓

instance 3 2 222
instance 4 2 106
instance 5 2 396
instance 6 2 325
instance 7 2 307
instance 8 2 408
instance 9 3 273

instance 10 2 177

6.2 Model’s validation

The interpretation of the hypergraph was already explored in Section 3.5.1. So, given that, we

can explore the instance 0 solution and how the vehicle planning can be done. The instance 0 was

created considering the 13 trips from the Chicago red subway line that have a departure time between

16h00 and 16h15 on 10/12/2020 and 12/10/2020 (Thursday and Saturday, respectively). Instance 0 was

deliberately created to be a small instance with its only purpose of showing how the hypergraph model

optimizes the rolling stock rotation and validating the model.

For the 13 trips considered in instance 0, a diagram of the RSRP’s solution is displayed in Figure 6.1.
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The trip direction is indicated through the background color: the white background indicates the direction

as Howard to 95th/Dan Ryan, while the grey background illustrates the direction as 95th/Dan Ryan to

Howard. Moreover, for all trips, the composition that minimizes the costs is {5000-series fleet, 5000-

series fleet}.

Figure 6.1: Instance 0 solution for cost minimization.

The diagram present in Figure 6.1 indicates the composition of each trip, and the departure and

arrival stations and time, but it does not present the rotation solved by the model. For that, take Figure 6.2

that illustrates the trips to which each composition train operates.

Figure 6.2: Instance 0 route solution for cost minimization.

As it can be seen in Figure 6.2, there are four rolling stock routes created. The first one indicates that

the one train composition operates only trip t8.The solution indicates that this particular composition only

travels trip t8 each week and when the trip ends, it returns to the initial departure station to operate the
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trip in the next week. This means that a deadhead trip is performed for this composition, each week. The

second route indicates that the train compositions operate trip t6, and then trip t7. As can be observed

in Figure 6.1, these two trips are on different days, and they can be performed by only one composition

train. Moreover, the arrival station of t6 is Howard, and the departure station of trip t7 is also Howard,

meaning that no deadhead trips are performed. The same happens when the train goes from trip t7

to trip t6. The third route present in the solution ensures four trips, which means that one train cannot

operate all within the same week, once trips t4 and t5 occur at the same time, and trips t9 and t12 also

occur at the same time. For this reason, there is the necessity of having two trains operating these trips,

due to the cyclicity of the timetable (see Section 3.4). To better understand this situation, Figure 6.3

illustrates the need to use two train compositions. As it can be seen, both train compositions have the

same compositions, which is {5000-series car, 5000-series car}, and the train compositions operate the

same trips, but in different orders: assume that train composition 1 starts in trip t4, and train composition

2 starts in trip t5. In this way, all timetable trips are covered by the train compositions, respecting all

the necessary requirements for the Chicago subway’s red line. Finally, the fourth route covers six trips,

and comparable to what happened for the third route, this path cannot be ensured by only one train

composition. This route has a maximum of three trips to cover at the same time, meaning that it needs

three train compositions to ensure the path. Once again, the three train compositions start at different

trips but perform the same route, to cover all six trips.

Figure 6.3: Route three’s rotation.

6.3 Complexity of the hypergraph model

As explored throughout this work, the hypergraph model is well-known for its complexity, once the

number of generated hyperarcs increases significantly with the addition of new feasible compositions

and trips. In this section, we will explore what is most time-consuming for the model. For that, we will

analyze the increment of the feasible compositions for one instance against the increment of additional

trips on that same instance. The instance in use is called instance c and considers the 49 trips departing

between 10h00 and 10h15 and between 15h00 and 15h15 from the Chicago subway red, blue, and

green lines on 10/12/2020.
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Instance c was created considering two constraints. The first is the necessity of starting with a few

feasible compositions. For instance c, the minimum number of vehicles for the feasible compositions is

2. In this way, we can increase the number of feasible compositions by adding one vehicle at a time. The

second constraint is the necessity of starting with a considerably low number of trips, in this case, 49 out

of the 26,730 trips provided by the CTA for the week in analysis. In order to understand what is more

time-consuming to our RSRP model and why, we created two scenarios: 1 and 2. Scenario 1 considers

instances between instance c.3 until instance c.6, i.e., it maintains the number of trips and increases

the maximum number of vehicles for the feasible compositions c ∈ C(t) for each trip t ∈ T . Scenario

2 considers the instances from instance c.1T until instance c.200T, which means that scenario 2 keeps

constant the maximum number of vehicles for the feasible compositions c for each trip t but progressively

increases the number of trips t.

In Figure 6.4 (a), there is represented the increase of the number of hyperarcs and its respective

generation time for each instance - scenario 1. Instance c considers 49 trips and the maximum number

for each feasible composition is 2. Instance c.3 considers 49 trips also, and the maximum number

for each feasible composition is 3, until instance c.6 considers 49 trips and a maximum number for

each feasible composition of 6 vehicles. From this initial instance, the maximum number that a feasible

composition can take is 8 vehicles, but when we ran the model for 7 cars the needed time to generate

hyperarcs was 18 hours and a half, which was significantly high. Hence, we decided to only analyze until

instance c.6. As can be seen, by adding one more vehicle to the set of feasible compositions, the number

of hyperarcs and their respective time to generate them also increases, as would be expected. Even

if the number of hyperarcs and generation time increase, they do not increase similarly. As it is shown

in Figure 6.4 (b), the number of hyperarcs tends to not increase as much over the tested instances. It

means that as we increase the set of feasible compositions, the number of hyperarcs will increase at

a lower rate as we test this scenario in further instances. However, even if the number of hyperarcs

created for the instances does not increase at high rates when compared with the last instance, its

generation time does. This means that, no matter how fast the number of hyperarcs augments, its

generation time will tend to exponentially increase. To narrow this issue, we suggest computing limited

feasible compositions. For the case of instance c, there is no need to consider feasible compositions with

more than 3 vehicles, once the minimum number of vehicles needed is 2. Consequently, by limiting the

degrees of freedom for trips, we can significantly decrease the number of feasible cars, and consequently

the number of hyperarcs and their generation time. Our suggestion is to limit the number of vehicles in

composition, by one more than needed, i.e., if a trip t ∈ T can satisfy its demand dt using 3 cars, there

should be only necessary to consider as feasible compositions, trains with 3 or 4 vehicles. Even if by

doing this, the a priori work is more time-consuming, it can save significant time a posterior. In our

example, if we limit instance c by 3 vehicles in each composition (the minimum needed fleet is 2), we

generate the hyperarcs in 22 seconds. Still, if we consider at most 6 vehicles, the generation time will

be 66 minutes. It is to be noted that in terms of operational costs or emissions produced, both instances

returned the same solutions. Even if this could not be the case for instances with more trips.

Figure 6.5 displays the impact of the addition of more trips on the hyperarcs´ number (a) and gen-
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(a) Increased of number of vehicles. (b) Percentage increased between instances.

Figure 6.4: Numerical and percentage increased of the number of vehicles per composition.

eration time (b) - scenario 2. The starting instance is the same as the previous case (instance c),

and we progressively increased the number of trips. Firstly, we increased the number of trips by 1 (in-

stance c.1T), then 10 (instance c.10T), 30 (instance c.30T), 60 (instance c.60T), 100 (instance c.100T),

and finally 200 (instance c.200T). It is to be noted that for these seven instances, the maximum number

of vehicles within the feasible composition is two so that we can compare directly the difference between

the increase of feasible compositions with the trip increase.

(a) Increased of number of trips. (b) Percentage increased between instances.

Figure 6.5: Numerical and percentage increased of the number of trips for the same feasible composi-
tions.

With the increase in trips, the hyperarcs’ number and time generation also increase. However, Fig-

ure 6.5 (b) shows that the variation between the instances regarding the increase of trips is not as

predictable as the one for the number of vehicles within the feasible compositions (Figure 6.4 (b)). How-

ever, we can see that the hyperarcs’ number for instance c.6 is 848,904, and for instance c.200T is

823,459. This means that we had to add 200 additional trips all with two vehicles at maximum for the

creation of the feasible compositions to achieve roughly the same number of hyperarcs for an instance

of 49 trips, but with six as the maximum number of vehicles for the feasible compositions. However, even

if the number of hyperarcs is almost the same, the corresponding generation time is very different. For

instance c.6 the generation time is 66 minutes, while the generation time for instance c.200T is almost
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6 minutes (eleven times inferior to instance c.6). This can be explained by the shunting operations. The

more sizes of feasible compositions c ∈ C(t) allowed for a trip t ∈ T , the more shunting operations

are allowed, i.e., it is possible to decouple and couple the train in several ways. To remember, this was

already forecasted in Section 5.1.4, hence the limitation of shunting operations by one for each feasible

composition c. Indeed, this feature can be more optimized than we did (see Section 4.2). However,

this leads us to the same conclusion drawn when analyzing the hyperarcs’ number and time generation

between instance c and instance c.6: the limitation of the feasible compositions c, for each trip t ∈ T ,

seems to be an interesting way to optimize the generation time of the hyperarcs. By comparing these

two cases, we saw that by limiting the degrees of freedom of the generation of feasible compositions c,

we can optimize the model and significantly decrease the hyperarcs’ generation time.

So far, we only compared the hyperarcs’ number and time generation. However, another interesting

parameter to analyze is the resolution time in all instances. Figure 6.6 displays the results for our

RSRP model’s resolution, for both scenarios. It is to be noted that, at the moment, the resolution times

presented are related to the minimization of the operation costs (Objective Function 4.1).

(a) Increase of number of vehicles. (b) Increase of number of trips.

Figure 6.6: Resolution times for the several instances scenarios.

The first notable difference between both scenarios is the progression of the resolution time between

scenarios. The resolution time of scenario 2 increases in a more exponential way than scenario 1, which

aligns with the progression of both hyperarcs’ number and generation time found in Figure 6.4. Further-

more, it stands out that the model’s resolution times are not correlated to the generation time of the

hyperarcs. Indeed, the resolution time for instance c.6 is 33 seconds, while the one for instance c.200T

is 4 minutes and 18 seconds (almost 8 times higher). Regarding the resolution time, it seems that the

addition of trips is more time-consuming than the increase of the maximum number of vehicles for the

feasible compositions.

All in all, the hypergraph model is a complex and time-consuming methodology to solve the rolling

stock rotation planning problem. However, through the control and limitation of the degrees of freedom,

it is possible to make it less time-consuming. That is why the Borndörfer et al. (2016) used the column

generation method to create the feasible compositions. It allows to progressively generate columns,
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instead of solving the problem from the beginning. Nevertheless, even if Algorithm 3 is optimized, it can

be expected that the proportions of the generation time remain, i.e., as we progressively implement new

hyperarcs, we exponentially increase the computational time.

Another relevant factor that increases the complexity of the model is the non-optimization of Algo-

rithm 3. This algorithm causes the model to solve the problem by considering all possibilities at once.

This is emphasised by the fact that the model resolution time from scenario 2 is lower.

6.4 Addition of the emissions minimization objective function

Typically, the RSRP is focused on the minimization of the operational costs. Our version of the

RSRP also includes the minimization of the emissions produced by railway operations. This section is

dedicated to understanding how this new objective function (4.2) impacts the usual minimization of the

operational costs (4.1). In the first place, Table 6.2 describes the results of both solutions considering

only the objective function related to the cost minimization (4.1) and the one regarding the emissions

minimization (4.2), respectively. It is to be noted that, in order to solve larger instances, we reduced the

number of degrees of freedom, so that the number of hyperarcs generated would not be so big that it

would end by jeopardizing the more the resolution time that it would be able to find a better solution.

To obtain our computational results, we used from instance 0 until instance c.9. All of these instances

(with one exception) were created for considering different departure times, different days of the week,

and different sets of lines. The exception is between instance c.2 and instance c.3, once these instances

are almost identical. The only difference is that instance c.2 includes the generation of hyperarcs for the

shunting operations while instance 3 does not have them so we could be able to see the difference with

and without the shunting operations hyperarcs. It was found that the difference is very meaningful, once

that the hyperarcs’ generation time for instance 2 is almost six hours, while the hyperarcs’ generation

time for instance 3 is only seventeen minutes. Moreover, the number of hyperarcs generated is more

than four times higher when considering shunting operations. For this reason, and once we did not

have solutions considering shunting operations due to the associated costs, we decided to ignore this

operation to continue with the computational results. To read the table, consider the first line of each

instance related to the results from the costs’ minimization and the second line related to the results

from the emissions’ minimization.

A difference between cost minimization and emissions minimization is the number of deadhead trips

traveled. For emissions minimization, the model tends to avoid deadhead trips due to the penalty asso-

ciated, more than the cost minimization avoids. On the other hand, the regular trips do not seem to be

more enhanced for any approach. Due to the regularity bonification, it was expected to observe a sig-

nificantly higher number of regular trips for cost minimization, which is not the case, as can be observed

for instance 2 and instance 9.
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We have already seen above how the solutions change in terms of operational costs and emissions

produced among the presented instances. However, to better understand the solutions achieved through

our bi-objective function, we have to take a deeper analysis, and for that, we will analyze the Pareto Front

of instance 1, which is presented in Figure 6.7.

Figure 6.7: Pareto Front from instance 1.

From Figure 6.7, it can be seen six solutions found using the augmented ϵ-constraint method (see

Section 4.3.2). Once we do not have a decision-maker, we cannot discuss with them in order to properly

find a solution that would fit their expectations and objectives. However, we can better understand the

solutions found, using a bi-objective function. First of all, the extreme solutions are the ones that only

minimize the costs and emissions. One of the many advantages of being able to see the Pareto front

is the ability to compare two solutions. For instance, take a decision-maker who would like to consider

a decrease in their emissions produced, but still keep the costs reduced, and let z1 be the solution for

the costs and z2 for the emissions. Let´s say that he is willing to increase its costs by 0.5% (compared

with the minimum costs) if it implies a reduction of the emissions produced. If we didn’t have the whole

picture that the Pareto front allows us, a solution that fits this description is the one with z1 = 321,188C

and z2 = 77,133 CO2 eq (red point). This solution increases the costs by 0.496% while reducing the

emissions by 0.484%, which complies with the decision-maker’s expectations. However, this solution in-

creases more the costs, than it decreases the emissions. By taking a deeper look, we can see that there

is another interesting solution, the one represented by the green point. Even if this solution increases the

costs by 0.556%, which is more than the decision-maker is willing to accept, it decreases the emissions

by 0.673%, which is significantly more than the previous solution, and consequently competitive with the

red solution. Hence, the decision-maker could be tempted to choose this rotation solution, even if the

costs are slightly superior than initially expected.

Assuming that the decision-maker chose the solution represented by the green point, we will compare

this solution with the one when only minimizing the costs, once this is the solution that the companies’

RSRP models typically would use. Table 6.3 displays the differences between both solutions in terms

of deadhead and regular trips, and shunting and turn operations. Take solution 1 as the solution for the

minimization of the costs, and solution 2 as the solution presented in the green point of Figure 6.7. The
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only difference between both solutions is the number of deadhead trips present in the solution. Indeed,

the more importance we give to the minimization of emissions, the less we provide to the minimization

of the costs, and the implications stated above, can already be seen between these two solutions.

Hence, a reduction in the number of deadhead trips is expected once the emissions penalization is quite

significant when compared with the cost penalization of the deadhead trips.

Table 6.3: Comparison between solution 1 and solution 2.

Shunting Turn Deadhead Regular

solution 1 0 4 34 0
solution 2 0 4 31 0

In short, the addition of the minimization of the emissions’ objective function brings new possible

rotations for the RSRP. The objective function related to the emissions tends to benefit rotations that

reduce the number of deadhead trips.

6.5 Bonification and penalizations

As explained in Section 3.5.1, Section 3.5.3, and Section 3.6, this version of the RSRP model in-

cludes the regularity bonification and the deadhead trips penalizations. The regularity bonification is

present through the reduction of the operational trips if, for regular trips, the train composition is the

same. The deadhead penalization exists for both Objective Function 4.1 (costs minimization) and Ob-

jective Function 4.2 (emissions minimization), through the increase of the costs and emissions in the

deadhead trips, respectively. This leads the model to return solutions that preferentially choose the

same train compositions for regular trips and exclude deadhead trips. However, this implementation can

lead to divergent solutions found. Throughout this section, we will explore how these parameters impact

the solutions found in our version of the RSRP via a scenario analysis.

To properly explore and analyze the three parameters in the study, we created instance 10 which is

described in Section 6.1, that considers the 177 trips departing between 10h00 and 11h00 of 10/12/2020,

14/12/2020, and 16/12/2020 in the red, yellow, and green lines. For the values implemented in the model

(regularity bonification = 20%; deadhead trip cost penalty = 10%; deadhead trip emissions penalty =

10%), the solution found for the cost minimization proposes 23 deadhead trips and 108 regular trips,

while for the emissions minimization, the solution return 21 deadhead trips and 105 regular trips. Now

that we established this, we can observe and analyze how the variation of the parameters modifies the

solutions. It is to be noted that we will only analyze the variations of deadhead trips and regularity trips,

once turn operations do not vary over the analysis, and that if we had considered shunting operations,

the time required for the computational results would be massive.

Figure 6.8 represents the variation of the regularity bonification, cRegBonif , for both costs and emis-

sions minimization, and the results obtained from these two objective functions are not the same. First
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of all, the range of the regular trips in Figure 6.8 (a) is wider than for the regular trips in Figure 6.8 (b),

once that for all solutions found considering the emissions minimization, the number of regular trips re-

main the same. Thus, the higher the regularity bonification, the more the solution (for cost minimization)

contains regular trips. Once we consider a periodic timetable (see Section 3.1), the variation of the pa-

rameter is significantly present. Moreover, as the number of regular trips increases with the increase of

the regularity bonification, it is to be noted that the deadhead trips tend to decrease. This shows that by

varying the regularity bonification, we are also varying the number of deadhead trips for both objective

functions, even if the impact is more visible for cost minimization.

Furthermore, we can analyze the difference in the solutions found for both objective functions related

to this scenario analysis. For example, if we vary the regularity bonification from 20% to 30%, the

number of regular trips increases, for the cost minimization. However, for the emissions minimization,

the solution remains the same. We have to decrease the bonification until 10% or increase it to 40% to

return solutions different than the ones with the original regularity bonification (20%). The increase and

decrease of the bonification implies a decrease in the deadhead trips.

(a) Cost minimization. (b) Emissions minimization.

Figure 6.8: Variation of the number of regular and deadhead trips with the variation of the regularity
bonification.

When it comes to the analysis of the deadhead trips cost penalization’s variation, the same results

reached for the regularity bonification cannot be applied. From Figure 6.9 (a) and Figure 6.9 (b), the

number of regular trips distinguishes itself. It appears the variation of the deadhead trips penalization

does not have an impact on the solutions found in terms of regular trips. Contrary to what could be

expected, the number of deadhead trips does not decrease when increasing the deadhead trips’ cost

penalization. We can assume that the solution found a way to increase the number of deadhead trips

while decreasing the value of the costs. This can be explained if, for example, the deadhead trips are

performed in such small paths that the penalization does not influence the solution. Even if the variation

of the number of deadhead trips is quite irregular for the emissions minimization (Figure 6.9), it can be

observed that the number of deadhead trips tends to decrease as we increase the value of the deadhead

trips penalization.
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(a) Cost minimization. (b) Emissions minimization.

Figure 6.9: Variation of the number of regular and deadhead trips with the variation of the deadhead
trips cost penalization.

The deadhead trip emissions penalization is the only penalization parameter directly connected to

the emissions objective function, thus it is expected that it will impact more the number of deadhead trips

than the cost penalization. As it can be observed in Figure 6.10 (b), this happens, once the range for

the number of deadhead trips is wider than the one for the cost penalization (Figure 6.9 (b)). The figure

indicates that the variation of the deadhead emissions penalty varies with the number of deadhead

trips. Even if the variation is not regular, it can be observed that the higher the penalty is, the fewer

deadhead trips the solution contains, as would be expected. Once again, the number of regular trips

does not change by varying the deadhead trips emissions penalty. Moreover, Figure 6.10 (a) indicates

that no matter the value of the penalty considered, neither the number of deadhead trips nor the number

of regular trips will vary. This outcome could be expected, once the variations for the deadhead cost

penalty were already few, and thus, it is expected that when analyzing the emissions penalty, it has no

impact on the solution obtained through the cost minimization.

(a) Cost minimization. (b) Emissions minimization.

Figure 6.10: Variation of the number of regular and deadhead trips with the variation of the deadhead
trips emissions penalization.
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Chapter 7

Conclusions

Rolling stock rotation planning is a complex problem that deals with several requirements. It only

makes sense to solve it considering a considerable number of conditions, otherwise, the solutions pro-

posed do not fit with reality. However, the more requirements implemented, the more intricate the model

and the more time-consuming is to build it.

To solve the RSRP, we used the hypergraph model, proposed by Borndörfer et al. (2011), which al-

lows us to have a deeper understanding of the rolling stock flow, once the model enhances the modeling

of the several changes in train compositions. Our version of the RSRP integrated the emissions of CO2

equivalent produced throughout the operations related to this problem, as a second objective function,

making the problem bi-objective. This feature was not implemented in any other work that we found in

the literature and thus, brings a new perspective in the RSRP. Moreover, this implementation enables us

to understand which differences exist between the minimization of the costs and the minimization of the

emissions. To implement this new objective function in our bi-objective problem, we used the augmented

ε-constraint method proposed by Mavrotas (2009).

Our version of the RSRP model is able to optimize the rotation of the rolling stock considering the

requirements integrated. However, it is an intricate model, which leads to high computational times. We

found that is possible to reduce the computational time, by restricting the maximum number of vehicles

per train composition. The more vehicles can a train composition consider, the more complex and

time-consuming the model. By using the hypergraph model, we considered every possible and feasible

composition of each trip, however, it was revealed that this was unnecessary and even adverse to the

computational time. Once demand is a priori known, by reducing the number of possible vehicles for the

train composition, the degrees of freedom are reduced, thus the computational time is also decreased.

Moreover, there was found another advantage of reducing the maximum number of vehicles per

composition, is the reduction of the shunting operations. The more possibilities of feasible compositions,

with different sizes, the more hyperarcs to perform the several possible shunting operations are gener-

ated. Even with our initial limitation of one shunting operation per feasible composition, we found that

hyperarcs related to the shunting operations still represented the majority of the hyperarcs, and were

not present in our solution. Thus, by eliminating these possibilities, we were able to reduce even more
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the degrees of freedom. Nevertheless, it is to be noted that the shunting operations are relevant in the

rolling stock rotation planning. However, one way to reduce the complexity would be ignoring them or

only considering them for certain stations, for example.

Furthermore, we were able to properly integrate the objective function regarding the emissions pro-

duced. Even if we had to state some assumptions it was possible to understand the implications and

changes of having this new objective function. First of all, when the emissions are minimized, the

model tends to avoid more deadhead trips than when only minimizing the costs. Secondly, through a bi-

objective analysis, we are prepared to show a potential decision-maker the results and find unexpected

solutions that can lead to low increases in the operational costs, but higher decreases in the emissions

produced by the operations, which is an interesting point of view.

When it comes to the parameters (regularity bonification, deadhead trip cost penalization, and dead-

head trip emissions penalization), on the one hand, it was observed that the higher the regularity boni-

fication, the more regular trips there are, and fewer deadhead trips. On the other hand, both deadhead

penalizations did not show to vary the number of regular trips, but only the number of deadhead trips.

Nevertheless, the number of deadhead trips varied more for the emissions penalization than the cost

penalizations. This aligns with the fact that there are several costs associated with different operational

activities, which does not happen for the emissions. Thus, to achieve better and more realistic results

for the emissions it is necessary to have a deeper understanding of the emissions that can be allocated

to the several operations within the rolling stock rotation planning problem.

Even if our version of the rolling stock rotation planning problem using the hypergraph model works,

it can be improved. To start, it was found that Algorithm 3 is not optimized, which leads to hyperarc

generation times significantly higher than the resolution time. Therefore, an improvement of Algorithm 3

is a suggestion for the reader. Furthermore, due to the long hyperarc generation times, it was not

possible to compute significant large instances for the Chicago subway. However, as many authors have

shown, the integration of real-world data leads to extensive computational times. To solve this issue,

heuristics approaches can be integrated into the model. The same can be applied in this version of the

model, once the generation of the connection hyperarcs is optimized.

Another limitation that we had to deal with was regarding the data. Even if the Chicago subway open

data is revealed to be satisfactory and appropriate for the RSRP, it was not enough to really understand

and model all the potential requirements that the Chicago subway must have. Another limitation was the

lack of data and information regarding the allocation and description of the emissions produced for rolling

stock rotation operations. It is strongly recommended to collaborate with a railway company to better

explore the impact of the emissions produced when facing the operations’ costs, and thus, developing

further this new version of the rolling stock rotation planning.
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[29] Kroon, L., Maróti, G., Helmrich, M. R., Vromans, M., and Dekker, R. (2008). Stochastic improvement

of cyclic railway timetables. Transportation Research Part B: Methodological, 42(6):553–570.
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