
FPGA Implementation of a CNN for Oriented Object
Detection in Aerial Images

Francisco Miguel Correia Torcato Carrilho

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor(s): Prof. Horácio Cláudio De Campos Neto
Prof. Mário Pereira Véstias

Examination Committee

Chairperson: Prof. Pedro Filipe Zeferino Aidos Tomás
Supervisor: Prof. Horácio Cláudio De Campos Neto

Member of the Committee: Prof. Rui António Policarpo Duarte

June 2024

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

i

ii

Acknowledgments

I would like to express my deepest gratitude to Prof. Horacio Neto and Prof. Mario Véstias whose

provided me with their knowledge, insight, non stop support, constant availability, patience, belief and

tremendous amounts of encouragement that helped me make the completion of this project a reality.

I would also like to thank my friends for their encouragement, help, belief, and the moments of joy we

shared. I would like to offer my particular thanks to my friend Pedro Ferreira, with whom I shared this

journey. Together, we kept pushing each other to get through the finish line.

Last but not least, I would like to thank my family for their unwavering support, not only throughout

this journey but also in life. My brother, for his belief, positive outlook, and sound advice. My parents,

for their patience, belief in my capabilities, and emotional support that helped me through the roughest

stages. And finally, my sister, whose complete support and belief enabled me achieve most of what I

have in my life.

iii

iv

Abstract

The objective of this work is to design and implement a hardware/software system for oriented object

detection of aerial images. The system is based on a convolutional neural network (CNN) detector and

is aimed at processing one aerial image per second using a system-on-chip field- programmable gate

array (SoC FPGA).

Object detection in aerial images and videos is an important and challenging computer vision prob-

lem with important real-world applications such as emergency rescue, disaster relief, and surveillance.

Oriented object detection considers both the position of the object and its rotation angle or orientation

which makes detections significantly more accurate but more computationally intensive. Most target ap-

plications must be locally computed on unmanned aerial vehicles (UAVs), which requires implementing

efficient solutions on edge devices, namely SoC FPGAs.

The hardware/software system implements an optimized version of an oriented object detection

model based on the YOLO object detection algorithm. The original YOLO model was optimized and

quantized, with both weights and activations represented with a specific 8-bit fixed-point format, to pro-

vide an efficient hardware-friendly solution. The system is composed by a dedicated hardware accel-

erator, which accelerates the inference of the main layers of the CNN model by executing 256 multiply-

accumulate operations in parallel, and by a software processor that executes the less computing inten-

sive functions. The final hardware/software system, implemented in a Zynq SoC FPGA, executes the

inference of the R-YOLOv4 with a frame rate close to 1 FPS and a power consumption of only 7.3 W.

Keywords

Object Detection, Quantization, Convolutional Neural Network, FPGA, Hardware/Software Co-design,

Hardware Acceleration.

v

vi

Resumo

O objetivo deste trabalho é projetar e implementar um sistema hardware/software para deteção de

objetos em imagens aéreas. O detetor utiliza uma rede neuronal convolucional (CNN) e visa processar

uma imagem aérea por segundo num sistema em circuito integrado programável (SoC FPGA).

A deteção de objetos em imagens e vı́deos aéreos é um problema importante com muitas aplicações

relevantes. Por considerar simultaneamente a posição do objeto e o seu ângulo de rotação ou orientação,

a deteção orientada de objetos permite aumentar significativamente a precisão das deteções, mas

é computacionalmente mais exigente. A maioria das aplicações alvo requer computação local em

veı́culos aéreos não tripulados (UAVs), o que obriga a implementar soluções eficientes em dispositivos

de baixo consumo de energia, nomeadamente em SoC FPGAs.

O sistema desenvolvido implementa uma versão otimizada de um modelo de deteção orientada de

objetos baseado no algoritmo de deteção de objetos YOLO. O modelo YOLO original foi otimizado e

quantizado, com pesos e ativações representados num formato de vı́rgula fixa de 8 bits, para maxi-

mizar o desempenho da sua execução em hardware dedicado. O sistema é composto pelo acelerador

hardware, que acelera a inferência das camadas principais da CNN executando 256 operações de

multiplicação-acumulação em paralelo, e por um processador genérico que executa em software as

funções menos exigentes. O sistema final, implementado num SoC FPGA Zynq, executa a inferência

do R-YOLOv4 com um ritmo de processamento de imagens próximo de 1 FPS e um consumo de ener-

gia de apenas 7,3 W.

Keywords

Detecção de Objetos, Quantização, Rede Neural Convolucional, FPGA, Co-projeto Hardware/Software,

Acelerador em Hardware.

vii

viii

Contents

Acknowledgments . iii

Abstract . v

Resumo . vii

List of Tables . xi

List of Figures . xii

Glossary . xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 1

1.3 Report Outline . 2

2 Background and State of the Art 3

2.1 Convolutional Neural Networks . 3

2.1.1 Convolution Layers . 3

2.1.2 Pooling Layers . 5

2.1.3 Fully Connected Layers . 5

2.1.4 Activation Functions . 5

2.1.5 Shortcut Layers . 6

2.1.6 Routing Layers . 6

2.1.7 Batch Normalization . 7

2.1.8 Upsampling Layers . 7

2.2 CNN models for Object Detection . 7

2.2.1 R-CNN: Regional Convolutional Neural Network 8

2.2.2 SSD: Single Shot Detector . 9

2.2.3 YOLO: You Only Look Once . 10

2.2.4 YOLOV4 and R-YOLOv4 . 11

2.2.5 Performance Metrics and Model Comparisons . 12

2.3 CNN implementations on FPGA . 14

2.4 Conclusions . 17

3 Design and Optimization of the Oriented Object Detection Model 18

3.1 Model Selection . 18

3.2 Dataset Selection . 18

ix

3.3 Model Optimization . 19

3.4 Tools for Training and Quantization . 22

3.4.1 PyTorch . 22

3.4.2 Brevitas . 23

3.5 Custom Tools . 25

3.5.1 Brevitas Converter . 25

3.5.2 Bach Normalization Merger . 25

3.5.3 Weights Extractor . 25

3.5.4 Bin File Generator . 26

3.6 Design Flow . 26

3.7 Quantization Analysis of R-YOLOv4 . 27

3.8 Conclusions . 27

4 Hardware Accelerator Design 28

4.1 IP Core Design . 28

4.2 Vits HLS Results . 32

4.3 Conclusions . 34

5 HW/SW System Implementation and Results 35

5.1 Hardware/Software Architecture . 35

5.2 System Results . 36

5.2.1 Resource Utilization . 36

5.2.2 Performance Results . 37

5.3 Conclusions . 40

6 Conclusion 41

6.1 Future Work . 41

Bibliography 43

x

List of Tables

2.1 Inference times and mAP50 results on COCO dataset adapted from [14] and [17] 13

2.2 AP50 and FPS results on COCO dataset adapted from [15] 14

2.3 mAP results on UCAS-AOD dataset adapted from [24] and [20] 14

3.1 Modified RYOLOv4 network description table. 20

3.2 Original and modified RYOLOv4 accuracy. 22

3.3 RYOLOv4 accuracy with and without quantization. Two different quantizations were con-

sidered: 8× 8 and 8× 4 . 27

4.1 Pipeline Characteristics of the Convolution IP core. 33

4.2 Resource utilization estimates from Vitis HLS. 33

5.1 Vivado’s Resource Utilization. 37

5.2 Performance results per layer. 38

5.3 Total execution times. 39

5.4 Performance and efficiency of different platforms . 40

xi

List of Figures

2.1 Example of a 3D convolution from [4]. 4

2.2 Example of a max-pooling layer with a window of 2× 2. 5

2.3 Examples of activation functions. 6

2.4 Example of a shortcut layer in addition. 6

2.5 OBB(a) and HBB(b) representation comparison presented in [8]. 8

2.6 R-CNN architecture proposed in [9]. 9

2.7 SSD architecture from [16]. 9

2.8 YOLO model proposed by [12]. 10

2.9 Diagram of explaining IoU calculation from [18]. 11

2.10 Generic CNN accelerator proposed by [25]. 16

3.1 Example images from UCAS-AOD dataset. 19

3.2 Residual Bottleneck block. 21

3.3 Simple example of a network done with Pytorch. 22

3.4 Quantization Engine. 24

3.5 Simple example of a network done with Brevitas. 24

3.6 Proposed project design flow. 26

4.1 Convolution IP Diagram. 29

4.2 Z-wise data organization. 30

4.3 Processing Element Diagram. 32

5.1 Vivado Block Design. 36

xii

Acronyms

APU Application Processing Unit

AXI Advanced eXtensible interface

BRAM Block random access memory

CNN Convolutional Neural Network

CPU Central processing unit

CSP Cross-Stage-Partial-connections

DMA Direct memory access

DNN Deep Neural Network

ELU Exponential linear unit

FM Feature map

FPGA Field-programmable gate array

GPU Graphics processing unit

HBB Horizontal bounding box

HLS High level synthesis

IoU Intersection over Union

IP Intellectual Property

MAC Multiply–accumulate

MPSoc MultiProcessor System-On-Chip

NMS Non-Maximum Surpression

OBB Oriented bounding box

ODAI Object detection in aerial images

ODNI Object detection in natural images

PANet Path Aggregation Network

PE Processing element

PL Programmable Logic

PS Processing System

R-CNN Regional Convolutional Neural Network

ReLU Rectified linear unit

RGB Red-Green-Blue

ROI Region of interest

xiii

RTL Register-transferlevel

SoC System-on-chip

SPP Spatial Pyramid Pooling

SSD Single Shot Detector

SVM Support Vector Machine

tanh Hyperbolic tangent

UAV Unmanned Aerial Vehicle

URAM Ultra random access memory

YOLO You Only Look Once

xiv

Chapter 1

Introduction

The goal of this work is to develop a deep learning-based object detection accelerator using a

System-on-chip (SoC) Field-programmable gate array (FPGA). The system will perform real-time ob-

ject detection in aerial images captured by edge devices such as Unmanned Aerial Vehicle (UAV). This

section describes the motivation and main objectives of the project, as well as the report outline.

1.1 Motivation

Object detection on images or videos is an important and challenging computer vision problem with

a wide range of applications, like surveillance, medical healthcare, and autonomous driving. In aerial

images, object detection has become more important with the rise of the UAV and has many real-world

applications such as emergency rescue, disaster relief, urban planning, surveillance, weather prediction,

etc. [1].

Advances in deep learning technology have led to the creation of Convolutional Neural Network

(CNN) based models for object detection whose accuracy surpasses the classical computer vision so-

lutions [2] and are being used for research in aerial sensing using UAVs [3].

State-of-the-art object detectors are usually run on Central processing unit (CPU) or Graphics pro-

cessing unit (GPU) that, for edge computing, namely in UAVs, are unsuitable solutions due to their high

energy consumption and monetary cost. Therefore, for this kind of application, the use of FPGAs can

be an efficient alternative even if, due to the limited resources, a compromise between performance and

accuracy would need to be found in order for one of these systems to be deployed in a FPGA.

1.2 Objectives

The objective of this work is the implementation of a state-of-the-art CNN-based object detector in an

SoC FPGA able to perform object detection in aerial images with a throughput of one frame per second.

State-of-the-art object detection models will be studied, in particular models for oriented object de-

tection in aerial images. These models are based on CNNs and therefore it is important to study their

1

structures and how they can be implemented in a SoC FPGA. Afterward, the selection, optimization,

training, and quantization of the selected model is done. The training is performed on a machine with a

high-performance GPU to mitigate the time spent on this time-consuming task. Furthermore, the hard-

ware accelerator is designed in hardware and validated. The hardware accelerator is then integrated in

a SoC architecture and mapped in a SoC FPGA. The embedded software necessary to for the network

deployment will be developed and then, the HW/SW system is validated and tested.

1.3 Report Outline

This report has the following structure:

• Chapter 2 introduces deep learning concepts, in particular CNNs, reviews the state-of-the-art ob-

ject detection solutions based on deep-learning, strategies, and techniques that help to implement

CNN on an FPGA and CNN accelerators;

• Chapter 3 describes the design and optimizations done of the object detection model selected for

this project, the dataset used for training and testing, details about the software tools used and

the development workflow. The results from the model optimizations and model quantizations are

detailed;

• Chapter 4 presents the design of the hardware accelerator that will be integrated in the FPGA,

along side its implementation results;

• Chapter 5 the describes the integration of the hardware accelerator into the embedded system.

The entire HW/SW architecture is detailed and the experimental results such resource utilization

and performance results are presented;

• Chapter 6 concludes the work and proposes future development to further improve the project.

2

Chapter 2

Background and State of the Art

This chapter introduces the concept of convolutional neural networks by explaining their function-

alities and applications, as well as their role in state-of-the-art object detection models that are also

presented and compared. The implementation of FPGA accelerators is also discussed by presenting

parallelization opportunities in convolutional neural networks as well as possible accelerator architec-

tures.

2.1 Convolutional Neural Networks

A convolutional neural network (CNN) is one of the many types of Deep Neural Network (DNN).

Similarly to other types of neural networks, a CNN consists of multiple layers of interconnected nodes.

However, the CNN is specifically designed to process grid-like structured data making it especially good

when used for image analysis and pixel data processing.

Even though CNNs are applicable in a variety of tasks, their characteristics make them the model of

choice for problems involving image processing since images are usually data represented as a grid-like

arrangement of pixels, whose values represent their brightness. Some of the most popular applications

of CNNs are image classification, object recognition, and image segmentation.

A CNN is composed of three key layers: convolutional, pooling, and fully connected. Apart from

these, there are some other layers that can be added to help improve the model and the training in

various ways such as batch normalization and upsampling layers. All of these layers can and are usually

followed by an activation function.

2.1.1 Convolution Layers

The convolutional layer is the main building block of a CNN, it applies the convolution operation on

the input and it is where most of the computations are performed. A convolution is a mathematical

operation that when performed on two functions, creates a third one that expresses how the shape of

one is modified by the other. This operation involves utilizing a smaller matrix of learnable parameters,

known as kernel and is applied to a smaller area of the input known as the receptive field. The kernel

3

slides through the width and height of the input and the dot product between the input pixels and the

kernel is calculated and fed to an output array. Once the process is complete and the kernel swept

the entirety of the input map, an output map is generated. Both input and output maps are generically

designated feature map (FM). The process just described is known as a 2D convolution.

In the case of a 3D convolution the input is no longer a simple 2D matrix but instead, a set of 2D

maps, for example, an Red-Green-Blue (RGB) image that has 3 channels and so is comprised of 3

matrices of pixels, one for each channel. Each of these maps is then passed by a group of filters which

are basically 3D tensors composed of one kernel for each of the channels of the image. Each kernel of

the filter will perform a 2D convolution with each channel of the input and then all those maps are added

together, along with an optional bias parameter, to produce the output map. There are as many output

maps as there are filters involved in the convolution. An example of a 3D convolution is represented in

Figure 2.1.

Figure 2.1: Example of a 3D convolution from [4].

The dimensions of the resulting FM depend on the dimensions of the filters and input. The depth of

the FM is equal to the number of filters applied to the input. The width and height are calculated based

on (2.1), where inh,w is the input’s height/weight, Outh,w is the output’s height/width, kh,w, is the kernel

height/width, s is the kernel stride and p represents the padding added (number of layers of 0 added to

the edges of the input).

Outh,w =
inh,w − kh,w + 2 ∗ p

s
+ 1 (2.1)

Each operation performed in this layer can be described as a multiply–accumulate (MAC) operation

between the values of the kernels and the input pixels. For a generic 3D convolution the number of

MACs performed is given by

TotalMAC = Outw ×Outh ×Nchannels × kh × kw ×Nfilters, (2.2)

where Outw and Outh are the output’s width and height respectively, kw and kh are the kernel’s width

and height respectively, Nfilters is the number of filters and Nchannels is the number of channels.

4

2.1.2 Pooling Layers

A pooling layer reduces the spatial dimensions of the input data, reducing the number of parameters

by applying a pooling operation to it. A pooling operation, much like the convolution operation, sweeps

the input with a kernel and a given stride. However, the filter of the pooling operation has no weights and

instead, produces the output FM by performing a statistical summary of all neighboring pixels within the

receptive field. There are multiple pooling functions however, the most commonly used is max-pooling

which stores in the output the maximum value within the evaluated vicinity. An example of max-pooling

is represented in figure 2.2.

Figure 2.2: Example of a max-pooling layer with a window of 2× 2.

The shape of the output FM of a pooling layer is determined by (2.3), where inh,w is the input’s

height/weight, Outh,w is the output’s height/width, kh,w, is the kernel height/width and s is the kernel

stride.

Outh,w =
inh,w − kh,w

s
+ 1 (2.3)

2.1.3 Fully Connected Layers

As the name indicates, in a fully connected layer every node of the input layer is connected to every

output node and has a weight associated. Each output node is the result of the sum of the multiplication

of every input and its respective weight and a bias term. The value yk of an output neuron k of a fully

connected layer is given by

yk =

Ninput−1∑
i=0

wki ∗ xi + bk, (2.4)

where xki and wki are vectors with all the inputs values and weights associated with k and bk is the

optional bias term.

2.1.4 Activation Functions

Activation functions are nonlinear functions that are applied to the input FM. The most commonly

used activation functions are the sigmoid, the hyperbolic tangent (tanh), the rectified linear unit (ReLU),

the leaky ReLU, the exponential linear unit (ELU), and the softmax. The aforementioned functions are

represented in figure 2.3.

5

Figure 2.3: Examples of activation functions.

2.1.5 Shortcut Layers

This layer is used to mitigate the vanishing gradient problem, which happens in deeper DNN models,

where the gradient gets smaller and smaller making it difficult for the network to learn. Shortcut con-

nections skip one or more layers and then add their output to the output of a layer further ahead. This

concept was proposed in [5] and a visual example is represented in Figure 2.4.

Layer i

Layer i+1

x

+

Shortcut

Layer i+2

Figure 2.4: Example of a shortcut layer in addition.

The example in the figure includes a series of three convolutional layers in the backbone and a

shortcut connect. The output of the last layer is added to the output of the last convolutional layer.

2.1.6 Routing Layers

Routing layers recover the output from one or more previous layers, by concatenating them and

bringing them forward in the network while avoiding all the operations in between, bringing forward the

finer-grained features, from earlier stages of the network.

6

2.1.7 Batch Normalization

Batch normalization is an optional layer that aims to normalize the inputs of each layer inputs to

reduce internal covariate shift. This is achieved by initially dividing the data into mini-batches and then

normalizing the values based on its average (µ) and standard deviation (σ), whose values are µ = 0 and

σ = 1. After training, the learned parameters ϵ and β are used to shift and scale the input values. This

process was proposed by [6] and helps control each layer’s input distribution, reducing internal covariate

shift which in turn not only speeds up the training process but also improves accuracy. Each normalized

output, z, for a given value x is given by

z =
x− µ√
σ2 + ϵ

γ + β, (2.5)

where µ is the average, σ is the standard deviation, β, and γ are trainable parameters, and ϵis a

small constant that avoids numerical errors for denominators that are too close to zero.

2.1.8 Upsampling Layers

The upsampling layer increases the size of the FM to be fed to the next layer. A possible upsampling

strategy is replicating each pixel into a 2 by 2 square, doubling the height and width of the input FM.

Upsampling helps with the recovery of resolution due to all the downsampling done in convolutional and

pooling layers.

2.2 CNN models for Object Detection

Object detection is a computer vision problem that aims to determine the location and identity of

a given object in an image or video. This problem can be divided into three stages: region selection,

feature extraction, and object classification [7]. There are a variety of deep learning-based solutions

for this problem, including one-stage and two-stage detectors accompanied by various neural network

architectures.

All object detectors take an image as an input and extract features from it using a convolutional neural

network known as the backbone. The backbone is a CNN that on its own could be used to perform image

classification. As a support for the backbone, recent deep learning-based object detectors introduced the

neck section where features from different stages of the backbone are mixed, in order to help prepare

the object detection step. The object detector’s main function of classifying and localizing objects is

performed at the head.

These models tend to detect objects by placing bounding boxes around them and classifying them

within the correct category. These bounding boxes can be simple horizontal bounding boxes (HBBs) or

oriented bounding boxes (OBBs). Both are valid representations, that are dependent on the applications.

However, for aerial image object detection, OBB is more appropriate, since it allows the observer to more

accurately distinguish objects in instances that are closely packed. A figurative example can be observed

7

in Figure 2.5.

Figure 2.5: OBB(a) and HBB(b) representation comparison presented in [8].

As can be seen, the left image uses oriented boxes and so objects are easily identified In the image

on the right, horizontal bounding boxes are used. In this case, boxes overlap and it is difficult to identify

objects.

Object detection models are divided into two major groups: the more accurate two-stage detectors

such as the R-CNN family of detectors [9–11]; and the faster but less precise one-stage detectors such

as the YOLO [12–15], the SSD [16] and the RetinaNet [17]. These models’ use cases depend on the

application. Typically, two-stage object detectors are used when accuracy is the most important aspect.

One-stage object detectors are used in embedded devices where some accuracy must be traded-off for

performance.

Two-stage detectors divide the object detection problem into two steps. In the first step, a model

for feature extraction and region proposals is used, while in the second step, each region previously

proposed is fed to a classifier architecture to determine if and what objects are present in said region.

These models tend to be more precise but are also slower and more computationally heavy than one-

stage detectors. An example of this approach is the Regional Convolutional Neural Network (R-CNN)

family of object detectors.

One-stage object detectors are designed to solve the same problem but in a single forward pass

through a single network that is used for all stages of the object classification problem. This means

using a single network that produces a set of bounding boxes and classifications for objects present in

a given input image. These models, even if less precise than two-stage detectors, have faster inference

times. Some examples of these models are the Single Shot Detector (SSD) and You Only Look Once

(YOLO) models.

2.2.1 R-CNN: Regional Convolutional Neural Network

The R-CNN was initially proposed in 2014 and started by solving each stage of the object detection

problem independently [9]. This architecture starts by extracting region proposals from the input image

and then feeding these regions to a CNN model for feature extraction. Finally, a classification model

known as Support Vector Machine (SVM) operates as a fully connected layer and is used to classify each

8

region. The last two steps can be seen as a normal CNN that operates on cropped region proposals of

the original input. An illustrative representation of this model is depicted in Figure 2.6.

Figure 2.6: R-CNN architecture proposed in [9].

After the proposal of this model, several other variants were created, to improve the initial approach.

These improved models include the Fast R-CNN [10] and the Faster R-CNN [11]. The Fast R-CNN

introduced the Region of interest (ROI) pooling layer into the original architecture, which allows the use

of a single feature map for the whole input image. The model receives an input map and a set of RoIs,

the input is then sent to the CNN for feature extraction. The resulting FM is then divided into regions

and reshaped into feature vectors of a fixed size to be fed to the fully-connected layer and classified.

So, instead of having to pass each region through the CNN, the convolution operation is only done

once for the entire input making the process faster. The Faster R-CNN is an even further improvement

on the previous models, using a CNN to compute region proposals, ditching the slow selective search

algorithms proposed by its two previous models.

2.2.2 SSD: Single Shot Detector

The SSD [16] is an object detection model designed to operate in real-time, composed of two main

parts, the backbone, and the SSD head. A visual representation of the SSD architecture is present in

2.7.

Figure 2.7: SSD architecture from [16].

The backbone as mentioned before is where high-level features are extracted from the input image

and, is based on a standard image classification network with the final fully connected layers to con-

volutional layers, which in this case is the VGG-16 network but other models such as a variation of the

ResNet could also work. The head adds a few auxiliary convolutional layers that gradually decrease the

resolution of the FMs produced which will allow for multi-scale object detection. The SSD then divides

9

the FMs into grid maps and generates default bounding boxes for each grid cell of the FM. It then slides a

small filter over each FM predicting a number of bounding boxes for each grid cell, relative to the default

box. Moreover, all the confidence scores for all object categories are produced simultaneously with the

generation of the predicted boxes, hence the name single shot detector.

2.2.3 YOLO: You Only Look Once

YOLO [12–15], much like the SSD, is a real-time object detection algorithm that uses a single CNN to

localize and classify all the objects present in an image. This method divides the input image into a grid,

where each grid cell detects objects if said object’s center is present within the grid cell in question. This

means that each grid cell is responsible for the prediction of conditional probabilities for each available

class for a given object (C). Furthermore, each grid cell predicts several bounding boxes and confidence

scores that —represent how confident the model is that an object is present in a given box, also known

as the objectness score. Bounding boxes consist of 5 predictions, the coordinates of the center of the

box (bx, by), the width and height of the box (bw, bh), and the objectness score. The center coordinates

are relative to the grid cell dimensions whereas the width and height of the box are relative to the whole

image.

The predictions of the model, represented in Figure 2.8, for an input divided into a G × G grid, with

B bounding boxes per grid cell, are encoded in a tensor of shape

G×G× (B ∗ 5 + C). (2.6)

Figure 2.8: YOLO model proposed by [12].

In an image, a single object can have multiple candidate grid boxes which, when irrelevant need to

be discarded, meaning that needs to be a metric to determine which boxes are accurately localizing

an object. The iIntersection over Union (IoU) is a metric used to determine the accuracy of an object

10

detector by comparing the ground truth bounding box of an object to the predicted ones and, can have

values between 0 and 1. The user defines an IoU threshold that when exceeded by a given bounding

box means that the bounding box is a good prediction. Naturally, the higher the threshold the more

accurate the model will be. A representation of how the IoU is calculated can be found in Figure 2.9.

Figure 2.9: Diagram of explaining IoU calculation from [18].

As it can be seen in figure 2.9, the IoU represents the proportion between the area of the intersection

of two boxes and the area of their union. The higher the value of IoU, the more overlap there is between

the two boxes which means that, in the context of object detection, higher values of IoU represent better

predictions.

Now that a metric has been established to test the correctness of a bounding box there is still the

problem of multiple predictions exceeding the threshold which will lead to multiple bounding boxes per

object. To solve this problem a technique known as Non-Maximum Surpression (NMS) is used to prune

bounding boxes produced by suppressing (eliminating) the bounding boxes with too much overlap. This

technique consists of selecting the bounding boxes with the highest IoU scores with the ground truth

and then suppressing the ones with lower scores that overlap with it and repeating this process until all

predicted bounding boxes are considered. The overlap between the boxes is determined using the IoU

of the selected box and all other predicted bounding boxes, meaning ones over a certain IoU value with

the selected bounding box are considered to be duplicated and eliminated. By the end of this process,

all that remains are the bounding boxes with the highest probability score of containing an object and its

classification, meaning the object detection task is concluded.

2.2.4 YOLOV4 and R-YOLOv4

The YOLO model has had many versions and one of its adaptations is the YOLOv4, which introduces

some new key features and improvements over the previous versions. This version not only introduces a

new backbone but also uses a variety of techniques that either improve performance without introducing

further inference cost or accuracy but have an impact on inference time.

The backbone used for the YOLOv4 is the CSPDarknet53 [19] which, when compared to other mod-

els, is probed to be more suitable for the object detection problem. This network consists of convolutional

layers but and Cross-Stage-Partial-connections (CSP) blocks that help combat the vanishing gradient

problem very prominent in deep neural networks with considerable depth. This is accomplished by the

use of routing and shortcut layers, as mentioned before.

11

YOLOv4’s neck has two major blocks: Spatial Pyramid Pooling (SPP) and the Path Aggregation

Network (PANet). Both blocks are used for feature extraction which helps to isolate the most relevant

features extracted by the backbone and helps the detection process.

The main part of the algorithm is located at the head which, in this architecture, is the same used in

YOLOv3 [14]. The YOLOv3 (and consequently the YOLOv4) makes predictions on three different stages

of the convolution network to be able to detect objects of different sizes, in a similar fashion to the SSD.

The YOLOv3 also uses predefined anchor boxes and predicts the offsets of said boxes instead of directly

predicting the width and height of the bounding boxes. Thus calculations for bounding box predictions,

according to [14] are given by

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
tw

bh = phe
th

, (2.7)

where tx, ty, tw, th are the network’s predictions for the bounding box coordinates, pw and ph are the

anchor’s predefined dimensions and cx and cy are the cell offset from the top left corner of the image.

Furthermore, YOLOv4 introduces a few data augmentation techniques, regularization methods, and

even a few different activation functions (such as the mish activation) to further improve performance,

which is all part of the bag of freebies and bag of specials proposed.

The R-YOLOv4 is a YOLOv4 modification proposed in [20] that allows the model to make accurate

predictions with OBB instead of HBB. This is achieved by adding the rotation angle, θ, as an additional

attribute to the bounding boxes and adding more anchor boxes at different rotating angles. The number

of additional anchor boxes added is the result of multiplying the original three anchors per grid cell, per

scale by the number of rotation angles considered. The angle of the predicted bounding box is given by

bθ = pθ + tθ, (2.8)

where tθ is the network prediction for the bounding box angle and pθ is the predefined anchor’s angle.

Furthermore, the original bounding box loss had to be combined with the smooth-L1-IoU loss function

proposed by [21].

2.2.5 Performance Metrics and Model Comparisons

To evaluate an object detection algorithm several metrics are used to characterize the capacity of

said model to accurately and correctly localize and classify objects. The most commonly used metrics

are Average Precision (AP) and mean Average Precision (mAP). To obtain these metrics there is a need

to calculate the precision and recall of the model. The precision is used to measure the percentage

of correct positive predictions among all positive predictions made, while the recall measures only the

percentage of correct positive predictions among all actual positive cases. These metrics are calcu-

lated using (2.9) and (2.10) respectively where, tp are the true positive predictions, fp are false positive

12

predictions, tn are correct negative predictions and fn are false negative predictions.

Precision =
tp

tp + fp
(2.9)

Recall =
tp

tp + fn
(2.10)

The AP is then obtained by sorting the classifications produced by the model and then plotting the

precision-recall curve and then calculating the area below the curve, meaning that AP will be high when

both precision and recall are also high and low if either of them is low. Since both the precision and

recall can only assume values between 0 and 1 the AP is given by

AP =

∫ 1

0

p(r)dr. (2.11)

The mAP is the mean of the AP value of each class under consideration and is given by

mAP =
1

C

C∑
k=0

APk, (2.12)

where C is the total number of classes and APk is the AP for class k. Both mAP and AP can be

calculated for different IoU threshold values and the different object scales considered.

With the proper metrics in hand to evaluate model correctness, a performance comparison between

the different models mentioned can now be made, not only taking into account the precision of each

model but also their inference times.

Table 2.1, shows the mAP50 (IoU threshold equal to 0.5) scores and inference times of known models

referred to previously, on the Common Objects in Context (COCO) dataset [22], using the M40 and Titan

X GPUs which are identical in performance.

Table 2.1: Inference times and mAP50 results on COCO dataset adapted from [14] and [17]

.

Model mAP50(%) Inference Time (ms)

YOLOv3-320 51.5 22

YOLOv3-416 55.3 29

YOLOv3-608 57.9 51

SSD321 45.4 61

DSDSD321 46.1 85

R-FCN 51.9 85

SSD513 50.4 125

DSSD513 53.3 156

FPN FRCN 59.1 172

RetinaNet-50-500 50.9 73

RetinaNet-101-500 53.1 90

RetinaNet-101-800 57.5 198

13

These results lead to the conclusion that while having similar performance, the YOLOv3 exhibits

a much superior speed when compared to the state-of-the-art models. Furthermore, when observing

Table 2.2, adapted from [15], it is observable that the YOLOv4 improves on the YOLOv3 results for the

same dataset. These results were obtained on the M40 GPU.

Table 2.2: AP50 and FPS results on COCO dataset adapted from [15]

.

Model AP50(%) FPS

YOLOv3-320 51.5 45

YOLOv3-416 55.3 35

YOLOv3-608 57.9 20

YOLOv3-SPP-320 60.6 20

YOLOv4-320 62.8 38

YOLOv4-416 64.9 31

YOLOv4-608 65.7 23

Even so, these results are on the COCO dataset which is used for Object detection in natural images

(ODNI). To better understand the performance of these models in aerial images table 2.3 shows the

results of some of the models mentioned on the UCAS-AOD [23] dataset which is used for Object

detection in aerial images (ODAI).

Table 2.3: mAP results on UCAS-AOD dataset adapted from [24] and [20]

.

Model mAP (%)

Faster-RCNN 84.26

CNN-SOSF 86.52

YOLOv2 44.63

YOLOv3 91.09

CNN-AOOF 92.42

R-YOLOv4 95.05

As can be seen from the table, R-YOLOv4 is the most accurate model for oriented object detection

among the compared models.

2.3 CNN implementations on FPGA

CNNs, although incredibly useful, are also computationally complex meaning they can take a long

time to run and produce results. This happens because CNN architectures while reducing the number

of parameters of the network, increase the number of operations performed. Most of these operations

happen on the convolutional layer, as it can be seen in (2.2) and it is on these layers that 90% of

inference time is spent[25]. Nevertheless, while computationally expensive, the convolution operation

14

is highly parallelizable. This is why CNNs are usually run on GPUs or implemented in reconfigurable

devices such as CGRAs or FPGAs.

Hardware programmable FPGAs allow for the exploration of alternative accelarator architectures, and

provide support for CNN acceleration by exploiting the different levels of parallelization associated with

CNN computations. This way it is possible to optimize the hardware design to maximize performance.

The pseudo-code for generic 3D convolution is represented in algorithm 1.

Algorithm 1 3D Convolution Loop
1: for i < NF ilters do ▷ iterate through the filters
2: for j < Ow do ▷ iterate through output FM width
3: for l < Oh do ▷ iterate through output FM height
4: OFM [i, j, l] = bias[i] ▷ Add bias term
5: for c < Nchannels do ▷ iterate through the channels
6: for k < kw do ▷ iterate through kernel width
7: for n < kh do ▷ iterate through kernel height
8: OFM [i, j, l]+ = IFM [j, l, c] ∗ filter[i, k, n, c] ▷ Perform MAC

By analyzing the pseudo-code in 1 it is noticeable that many operations within the loops do not have

data dependencies meaning the loops could be parallelized. These parallelization opportunities are:

1. Operations within a single layer are independent meaning the last two for loops are parallelizable.(Intra-

Convolution)

2. Each channel has its own FM and kernel meaning they can be processed in parallel (Inter-

Convolution)

3. Multiple pixels from a single output FM can be processed in parallel (Intra-FM)

4. Different output channels can be computed simultaneously (Inter-FM)

These parallelization levels show that most operations performed on each of the loops are indepen-

dent, allowing for loop unrolling. Loop unrolling is a technique that allows for multiple iterations of a loop

to be performed in parallel significantly reducing the execution time, given a factor determined by how

many iterations can be done simultaneously.

Another challenge of FPGA CNN acceleration is the lack of on-chip memory to store the entirety of

the input and output FMs along with the kernels, meaning the data needs to be stored in an external

memory, whose accesses create a significant bottleneck. One possible solution for this problem is the

use of loop tilling where the kernels and input FMs are divided into blocks that can be stored in on-

chip buffers. This technique along with a datapath that maximizes data reuse significantly reduces the

overhead of accessing the external memory.

Furthermore, the reduction of precision of the fixed-point representation of the operands can also be

used not only to reduce data transfer overhead but also to maximize the number of operations possible

for the same resources. This technique known as quantization consists of reducing the number of bits

of the operands which allows for more data to be stored in the on-chip memory, faster data transfers

since more data can be transferred for the same bandwidth and also reduce the hardware complexity of

15

computations allowing for more MAC operations to be executed for the same number of DSPs. Nonethe-

less, this technique needs to be used carefully since reducing the number of bits results in the loss of

precision of the model meaning a sweet spot for the trade-off of precision and performance needs to be

found.

Quantization can be applied post-training or during training. In the first case, the network is trained

and then the produced weights are converted from the original floating-point format into the desired

fixed-point configuration. The second case results from converting the weights and activations during

the forward pass of the training process resulting in already quantified values. While taking longer to

train, the second choice leads to better results, since in this case the network is trained to take into

account the quantization error.

Weight pruning can also be applied, by eliminating weights that do not surpass a certain threshold,

reducing the overall number of MACs performed by the network. This technique shares some of the

same risks of quantizations and also requires fine-tuning in order to avoid loss of precision. A represen-

tation of a generic architecture of a CNN accelerator is present in Figure 2.10.

CPU

Controller

Memory Controller

PS

DMA

Input
Buffer

Kernel
Buffer

Output
Buffer

PE PE PE PE PE...

PL

External Memory

Figure 2.10: Generic CNN accelerator proposed by [25].

The generic architecture makes use of three on-chip buffers that allow for the reduction of data

transfer overhead, by storing data locally. These buffers communicate with the main memory through

Direct memory access (DMA) which not only fetches the input FMs and kernels into the buffers, for their

16

use in the PEs Processing element (PE) but also streams the outputs into the main memory for storage.

Every element of the Programmable Logic (PL) is controlled by the controller, whose control signals are

sent by the CPU.

Based on this generic architecture there are two main possible architectural approaches. The first

involves mapping the entire CNN to the FPGA and all layers processed in a full dataflow. This approach

is certainly the faster of the two since it minimizes memory transfers. However, it requires either small

network configurations, an extremely large FPGA or even multiple FPGAs connected since mapping

all operations performed in CNN requires a large number of resources. The second approach consists

of processing each layer in sequence with a single engine. The engine is configured according to the

characteristics of each layer (kernel size, sizes of the input and output maps, stride, etc.). This approach,

known as Configurable Layer Processor (CLP) accelerator, requires more external memory accesses

but supports models with different layer configurations, and bigger CNN architectures in a less expensive

FPGA device, since the resource consumption of an individual layer is much smaller.

2.4 Conclusions

This chapter describes the CNN model and how it is used for the object detection problem. Different

examples of state-of-the-art object detectors were presented and compared in terms of accuracy and

inference speed. The YOLOv4 proved to have an accuracy that matches other state-of-the-art models,

while having the fastest inference speed, making it suitable model for real-time object detection. Based

on the YOLOv4 model, the R-YOLOv4 improves its ability to detect oriented objects.

Additionally, the opportunities for hardware acceleration on FPGA of CNN models were presented

and two possible approaches were discussed. The full pipelined and the single engine implementations.

The single engine accelerator while being slower, it is the most suitable approach for an edge computing

application, since it uses fewer resources allowing the usage of a smaller FPGA.

17

Chapter 3

Design and Optimization of the

Oriented Object Detection Model

In this chapter, the choice of network most suited to the proposed application is formalized, based

on the conclusions of the last chapter, as well as a dataset to train the model. Then, optimizations

applied to the model to reduce the hardware complexity and improve the throughput of the accelerator

are described. Finally, accuracy results are determined for different configurations of the model.

3.1 Model Selection

The objective of this work is to implement an object detector accelerator in a SoC FPGA with the goal

that it can be used for real-time oriented aerial object detection. With that objective in mind, an object

detection model has to be chosen, and, based on the models presented and compared in the previous

chapter the model chosen is an altered version of the R-YOLOv4. Based on the collected information,

this is the most appropriate model for the task proposed. Not only is this model based on the YOLOv4,

an object detection model with good accuracy for real-time applications, but its modifications also allow

it to be more accurate when detecting oriented objects, which perfectly fits the objective of the work.

Some modifications are made to the model at a cost of a minor precision loss to make it better suited for

hardware acceleration. These modifications will be explained in section 3.3.

3.2 Dataset Selection

For the training of the model and testing of the application, a dataset has to be chosen. The dataset

should be comprised of aerial images and support the detection of oriented objects by having an oriented

bounding box (OBB) representation. To that end, the dataset chosen is the UCAS-AOD, which contains

1510 RGB images from Google Earth, having 2 total classes, cars and plains, with 14596 instances.

Furthermore, this dataset supports OBB representation, hence matching all the dataset requirements.

In the figure 3.1 are a few examples of images of the UCAS-AOD dataset.

18

Figure 3.1: Example images from UCAS-AOD dataset.

3.3 Model Optimization

This work uses a modified version of R-YOLOv4 [20]. The original network contains 111 convolutional

layers, each followed by one of three types of activation functions: Leaky ReLU, mish or linear (which

is only applied to the output layers). Moreover, the network contains max pooling, upsampling, and

shortcuts with concatenation.

To be more hardware-friendly, a few modifications were made to the original model at the cost of a

small decrease in accuracy. These modifications resulted in a network that contains 66 convolutional

layers all followed by the Leaky ReLU except for the output layers that have linear activation functions.

Additionally, all concatenations were turned into sums, and the max pooling layers were removed.

Represented in table 3.1 is a description of the modified version of the RYOLOv4 network that con-

tains all of its convolutional layers as well as their configurations.

19

Table 3.1: Modified RYOLOv4 network description table.

Conv # Layer
Input
Size

Input
Channels

Kernel
Size Stride Padding

Output
Channels

Output
Size

1 Conv0 608 3 3 1 1 32 608

2 Conv1 608 32 3 2 1 64 304

CSP BLOCK 1

3 CSP conv1 304 64 1 1 0 32 304

4 CSP conv2 304 64 1 1 0 32 304

5 Bottleneck 304 32 1 1 0 32 304

6 Bottleneck 304 32 3 1 1 32 304

7 CSP conv3 304 32 1 1 0 32 304

8 CSP conv4 304 32 1 1 0 64 304

9 Conv2 304 64 3 2 1 128 152

CSP BLOCK 2

10 CSP conv1 152 128 1 1 0 64 152

11 CSP conv2 152 128 1 1 0 64 152

12 Bottleneck 152 64 1 1 0 64 152

13 Bottleneck 152 64 3 1 1 64 152

14 CSP conv3 152 64 1 1 0 64 152

15 CSP conv4 152 64 1 1 0 128 152

16 Conv3 152 128 3 2 1 256 76

CSP BLOCK 3

17 CSP conv1 76 256 1 1 0 128 76

18 CSP conv2 76 256 1 1 0 128 76

19 Bottleneck 76 128 1 1 0 128 76

20 Bottleneck 76 128 3 1 1 128 76

21 CSP conv3 76 128 1 1 0 128 76

22 CSP conv4 76 128 1 1 0 256 76

23 Conv4 76 256 3 2 1 512 38

CSP BLOCK 4

24 CSP conv1 38 512 1 1 0 256 38

25 CSP conv2 38 512 1 1 0 256 38

26 Bottleneck 38 256 1 1 0 256 38

27 Bottleneck 38 256 3 1 1 256 38

28 CSP conv3 38 256 1 1 0 256 38

29 CSP conv4 38 256 1 1 0 512 38

30 Conv5 38 512 3 2 1 384 19

CSP BLOCK 5

31 CSP conv1 19 384 1 1 0 192 19

32 CSP conv2 19 384 1 1 0 192 19

33 Bottleneck 19 192 1 1 0 192 19

34 Bottleneck 19 192 3 1 1 192 19

35 CSP conv3 19 192 1 1 0 192 19

36 CSP conv4 19 192 1 1 0 512 19

SPP BLOCK

37 SPP conv1 19 512 1 1 0 256 19

38 SPP conv2 19 256 3 1 1 512 19

39 SPP conv3 19 512 1 1 0 256 19

40 SPP conv4 19 256 1 1 0 256 19

41 SPP conv5 19 256 3 1 1 512 19

42 SPP conv6 19 512 1 1 0 512 19

20

Conv # Layer
Input
Size

Input
Channels

Kernel
Size Stride Padding

Output
Channels

Output
Size

43 Conv6 19 512 1 1 0 256 19

44 Conv7 38 512 1 1 0 256 38

C5 BLOCK 1
45 C5 conv1 38 256 1 1 0 128 38

46 C5 conv2 38 128 3 1 1 256 38

47 C5 conv3 38 256 1 1 0 256 38

48 Conv8 38 256 1 1 0 128 38

49 Conv9 76 256 1 1 0 128 76

C5 BLOCK 2
50 C5 conv1 76 128 1 1 0 64 76

51 C5 conv2 76 64 3 1 1 128 76

52 C5 conv3 76 128 1 1 0 128 76

53 Conv10 76 128 3 1 1 256 76

54 Conv11 76 256 1 1 0 561 76

55 Conv12 76 128 3 2 1 256 38

C5 BLOCK 3
56 C5 conv1 38 256 1 1 0 128 38

57 C5 conv2 38 128 3 1 1 256 38

58 C5 conv3 38 256 1 1 0 384 38

59 Conv13 38 384 3 1 1 512 38

60 Conv14 38 512 1 1 0 561 38

61 Conv15 38 384 3 2 1 512 19

C5 BLOCK 3
62 C5 conv1 19 512 1 1 0 256 19

63 C5 conv2 19 256 3 1 1 512 19

64 C5 conv3 19 512 1 1 0 384 19

65 Conv16 19 384 3 1 1 512 19

66 Conv17 19 512 1 1 0 561 19

The reduction in the number of layers of the original model result from changes made to the CSP

and C5 blocks. The C5 blocks were originally blocks of 5 consecutive convolutional layers, while in the

modified version the last two layers of said block were removed resulting in the reduction of 2 layers per

each C5 block in the network. The CSP block consists of a 4 convolutions and a bottleneck residual

block, which an example of can be seen in figure 3.2. One of the parameters of the CSP block is a

conv2D 3x3conv2d 1x1x +

Shortcut

Figure 3.2: Residual Bottleneck block.

factor that indicates how many times the bottleneck is applied. In the original model for each of the 5

CSP blocks the said parameter assumes the values 1, 2, 8, 8 and 4, while in the modified model all CSP

blocks have the factor set at 1 significantly reducing the number of convolutions of the network.

The substitution of concatenation layers with sums helped reduce the depth of various layers reduc-

21

ing the number of parameters and thus making the model consume less memory and have to perform

less operations. Additionally some of the layers in the additional model had biases that were removed in

the modified version, futher reducing the number of parameters of the model.

The accuracy of the original and modified versions of the RYOLOv4 are represented in table 3.2.

Table 3.2: Original and modified RYOLOv4 accuracy.
Model MACS Parameters Car map50% Airplane map50% map50%

Original RYOLOv4 55.8 G 56.7 M 78.7 96.5 87.6
Modified RYOLOv4 26.7 G 18.1 M 75.5 94.7 85.1

.

From the results, it can be observed that the total accuracy reduces 2.5%, but the complexity (MACS

- Multiply-Accumulate) reduces about 2× and the number of parameters also reduces about 3×.

3.4 Tools for Training and Quantization

After the selection of the model, it has to be trained, quantized and its parameters extracted to be

used by the hardware accelerator. This section describes the tools necessary for training, quantization,

and parameter extraction. The adopted training framework was PyTorch and the quantization framework

was Brevitas. A few custom tools were developed to help export the model to hardware.

3.4.1 PyTorch

Pytorch is a python open-source machine-learning framework that allows for the development, train-

ing, and testing of machine-learning models. Even though it supports a wide variety of models, this

framework is mostly used for deep learning and neural networks. These models can be defined in

Pytorch as several functions, each representing a layer and where the arguments are the layer’s param-

eters such as kernel size, stride, number of channels for the output and input, and padding. An example

of a simple network developed in Pytorch is represented in 3.3.

1 import torch.nn as nn

2

3 class ExampleNet(nn.Module):

4 def __init__(self, in_channels, out_channels, kernel_size, stride, padding):

5 super(ExampleNet, self).__init__()

6 self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)

7 self.bn1 = nn.BatchNorm2d(out_channels)

8 self.relu1 = nn.ReLU()

9

10 def foward(self, x):

11 x = self.conv1(x)

12 x = self.bn1(x)

13 x = self.relu1(x)

14

15 return x

Figure 3.3: Simple example of a network done with Pytorch.

22

The example illustrated in the figure is a simple model with one convolutional layer, one batch nor-

malization layer followed by a ReLU activation function.

3.4.2 Brevitas

Brevitas is a Python library that extends Pytorch, allowing for quantization-aware training to be ap-

plied to neural network models. There are quantized versions of the PyTorch layers that can be replaced

in the original PyTorch model to help recreate hardware’s low precision datapath during training, reduc-

ing the quantization error during inference in hardware. These layers are similar to the normal Pytorch

layers, but require a quantization engine where all the quantization configuration parameters are de-

clared.

The key parameter for quantization is the bitwidth, which defines the number of bits used to represent

the data. Other parameters are also important to help define the exact representation of data. The

quantization mode refers to the application of one of the supported quantization functions provided by

Brevitas, as detailed in section 2.3. The quantization type indicates the data representation format.

Additionally, the scaling type limits the range of values that the quantization scaling factor can assume

during training. Furthermore, Brevitas allows for the activations and weights to be quantized separately

in the same layer, meaning that weights and activations can be quantized with different sizes in the same

layer.

The activations are quantized during the application of the activation functions while the weights are

quantized during the backward step that occurs during training. The quantization engine used for the

project can be seen in figure 3.4 and, an example of a simple network using Brevitas is represented in

3.5. This example is simply the result of the conversion of the the Pytorch model in 3.3 to a Brevitas

quantized one.

As can be seen from the figure, the quantized version of the convolutional layer replaced the layer in

the original model. The ReLu function was also replaced by its quantized version. The batch normal-

ization layer is not quantized, since it will be merged with the convolutional layer and is not considered

during inference.

23

1 #Engine declaration

2 from brevitas.inject import ExtendedInjector

3 from brevitas.quant.solver import WeightQuantSolver, ActQuantSolver

4 from brevitas.core.bit_width import BitWidthImplType

5 from brevitas.core.quant import QuantType

6 from brevitas.core.restrict_val import RestrictValueType, FloatToIntImplType

7 from brevitas.core.scaling import ScalingImplType

8 from brevitas.core.zero_point import ZeroZeroPoint

9 from brevitas.inject.enum import ScalingImplType, StatsOp, RestrictValueType

10

11 class CustomQuant(ExtendedInjector):

12 bit_width_impl_type = BitWidthImplType.CONST

13 scaling_impl_type = ScalingImplType.CONST

14 restrict_scaling_type = RestrictValueType.POWER_OF_TWO

15 zero_point_impl = ZeroZeroPoint

16 float_to_int_impl_type = FloatToIntImplType.ROUND

17 scaling_impl_type = ScalingImplType.STATS

18 scaling_stats_op = StatsOp.MAX

19 scaling_per_output_channel = False

20 bit_width = None

21 narrow_range = True

22 signed = True

23 quant_tyoe = QuantType.INT

24

25 class CustomWeightQuant(CustomQuant,WeightQuantSolver):

26 scaling_const = 1.0

27

28 class CustomActQuant(CustomQuant, ActQuantSolver):

29 signed=True

30 float_to_int_impl_type = FloatToIntImplType.FLOOR

31

32 class CustomSignedActQuant(CustomQuant, ActQuantSolver):

33 signed=True

34 float_to_int_impl_type = FloatToIntImplType.FLOOR

Figure 3.4: Quantization Engine.

1 import torch.nn as nn

2 import brevitas.nn as qnn

3

4 weightBitWidth=8

5 activationBitWidth=8

6

7 class ExampleNet(nn.Module):

8 def __init__(self, in_channels, out_channels, kernel_size, stride, padding):

9 super(ExampleNet, self).__init__()

10 self.conv1 = qnn.QuantConv2d(in_channels, out_channels, kernel_size, stride, padding,

weight_bit_width=weightBitWidth, weight_quant=CustomWeightQuant,return_quant_tensor=True)↪→

11 self.bn1 = nn.BatchNorm2d(out_channels)

12 self.relu = qnn.QuantReLU(bit_width=activationBitWidth, act_quant=CustomSignedActQuant,

return_quant_tensor=True)↪→

13

14 def forward(self, x):

15 x = self.conv1(x)

16 x = self.bn1(x)

17 x = self.relu(x)

18

19 return x

Figure 3.5: Simple example of a network done with Brevitas.

24

3.5 Custom Tools

To help the development of the accelerator, some extra tools were needed, not only to convert and

integrate the original Pytorch model with a Brevitas quantized one, but also for parameter extraction

and test generation. Most of these tools were originally developed in [26] and were modified to fit the

requirements of this project. These tools are the Brevitas converter, the batch normalization merger, the

weights extractor, and the bin file generator. All these tools were developed using the Python program-

ming language.

3.5.1 Brevitas Converter

The Brevitas converter is a program that takes the original Pytorch model description and automati-

cally converts it to a Brevitas quantized model description. This tool allows for a fast quantization of the

original model.

The tool has two additional scripts that allow for the conversion of the weights trained from the original

model into quantized, Brevitas-compatible weights, which allows for training with pre-trained weights,

instead of training the model from scratch which speeds up the very time-consuming training process.

3.5.2 Bach Normalization Merger

The batch normalization merger is a program that iterates through every layer and merges the batch

normalization layer with its respective convolutional layer. This is possible because since a batch normal-

ization layer is effectively a 1x1 convolution and there are no non-linear layers between the convolutional

and batch normalization layers. The processing of merging is completed by applying (3.1) to each layer

of the model. The bias are irrelevant since they were removed from the model utilized in this project.

Output = WBN×(WConv×FMV alueWBNMerged = WBN×WConvOutputBNMerged = WBNMerged×FMV alue

(3.1)

This batch merging is useful because it reduces memory consumption and computational needs,

further speeding up the training process. It also makes the extraction of the weights easier.

3.5.3 Weights Extractor

The hardware accelerator runs the inference of the model using the weights determined after training.

Therefore, a program is needed to extract the weights produced during the quantization aware training,

so that they can be used by the hardware accelerator.

The weights extractor tool is a program that extracts the weights from the brevitas quantized model

and stores them into binary files in a fixed point format. These weights are stored z-wise, which is the

format that allows for more parallelism. While in the original script from [26] these weights are packed

in 64-bit words, in this project the weights are packed into 128-bit words. When there are not enough

weight values to fill an entire 128-bit word, the remaining values are filled with zeroes.

25

3.5.4 Bin File Generator

The Bin File Generator developed in this work generates random arrays of any shape, determined

by a configuration specification, and then stores them in a bin file in the format described in 3.5.3, z-

wise, 128-bit words. The purpose of this script was to create tests to validate the functionality of the

accelerator without having to run the whole network and wait for the training to be complete. With this

tool, multiple tests for different convolution configurations can be generated and then used to validate

the application.

3.6 Design Flow

Using Pytorch, Brevitas and the custom tools, the model quantization and export tasks to generate

the quantized weights for the SoC FPGA are achieved follwing the design flow represented in figure 3.6.

Base Network Train in
Pytorch

Trained
Unquantized

Network

Convert to
Brevitas

Post trainning
Quantized
Network

Train with
Brevitas

Fully trained
and Quantized

Network

Extract trained
parameters

Quantized
weights

Design hardware
accelarator

 Object detection
accelarator in

FPGA

Figure 3.6: Proposed project design flow.

The base model is first trained using the PyTorch framework, producing trained model with weights

and activations represented in single-precision floating-point. Then, using the Brevitas Converter tool,

the model is quantized alongside its previously trained floating point weights and activations which gen-

erates a quantized Brevitas network and quantized weights and activations. Afterwards, Brevitas is

used so that quantization-aware training can be applied to the network to reduce quantization error in

inference. At this step, multiple quantization configurations are explored to find a good trade-off be-

tween computational complexity and accuracy. Typically, bitwidths of 2, 4, and 8 are considered for both

weights and activations.

After quantization-aware training, the model is ready to have its quantized weights extracted, using

the weights extractor tool, and used in the design, testing, and validation of the hardware accelerator.

The hardware accelerator will be designed by developing an Intellectual Property (IP) core capable of

running configurable layers. The design and development of the hardware accelerator will be discussed

in Chapter 4.

26

3.7 Quantization Analysis of R-YOLOv4

Different quantization were tried with the reduced R-YOLOv4 model with varying weights and activa-

tion bitwidths. The mAP50 was annotated for each quantization.

The quantization process followed the design flow described in section 3.4. The models were trained

for 100 epochs with the Adam optimizer. Table 3.3 reports the results for two different quantizations:

8× 8 and 8× 4.

Table 3.3: RYOLOv4 accuracy with and without quantization. Two different quantizations were consid-
ered: 8× 8 and 8× 4

Model MACS Parameters Car map50% Airplane map50% All map50%
Original RYOLOv4 55.8 G 56.7 M 78.7 96.5 87.6
Modified RYOLOv4 26.7 G 18.1 M 75.5 94.7 85.1

Quant. Modified RYOLOv4 8× 8 26.7 G 18.1 M 73.5 92.3 82.9
Quant. Modified RYOLOv4 8× 4 26.7 G 18.1 M 62.9 85.4 74.2

.

The accuracy of the modified model with quantization 8×8 reduced 2.2 percentual points compared to

the same non-quantized model. Considering the more aggressive quantization, 8×4, the model accuracy

dropped about 11 percentual points. Therefore, it was decided to consider the 8 × 8 quantization.

Compared to the original model, the model implemented in hardware has an accuracy drop of 5.7

percentual points.

3.8 Conclusions

This chapter describes the design flow of the optimized model from the original floating-point model

to the quantized model and finally the extraction of weights to be used in the hardware accelerator.

The original model was modified to reduce the computational complexity and memory requirements.

The complexity reduces about 2× and the number of parameters reduces about 3× at the cost of 2.5%

drop in accuracy.

Then, different quantitazions were tested to find a quantized model with a good trade-off between

accuracy and computational complexity. The 8× 8 quantization was chosen with an accuracy reduction

of 5.7 percentual points compared to the original floating-point model.

27

Chapter 4

Hardware Accelerator Design

In this chapter, the design of the hardware accelerator for the model discussed in the previous section

is presented.

The accelerator was developed using Xilinx Vitis High level synthesis (HLS) version 2022.1, and the

target FPGA was an AMD/Xilinx Zynq Ultrascale+ MultiProcessor System-On-Chip (MPSoc) XCZU7EV

from Xilinx integrated in a ZCU104 board. Besides the FPGA, the board also includes 2GB of DDR4

memory and interfaces to peripherals.

Vitis HLS is a high-level synthesis tool where hardware descriptions can be done using the C/C++

programming languages as well as in built pragmas for optimization. The development process consists

of producing the logic for the operations meant to be performed by the accelerator and then testing

and validating their functionality through simulation. Afterwards, the design is synthesized and into an

Register-transferlevel (RTL) design and its implementation is validated. Finally the RTL IP is exported

and added to the Vivado’s block design in order to finalize the implementation of the accelerator in the

device.

4.1 IP Core Design

The objective of the accelerator is to make the inference of the model described in the previous

chapter faster. This is done by creating an IP capable of performing all the convolutional layers of

the RYOLOv4 model described in the previous chapter, since this is where most of the operations are

performed and where there is more parallelism to be exploited.

The core was designed to execute the layers in sequence, that is, a single engine is considered

that can be configured according to the characteristics of each layer of the network model. The IP core

is therefore configurable to support the execution of any convolutional layer present in the RYOLOv4

model. More specifically, the IP supports convolutions with kernels of size 3× 3 and 1× 1, and strides of

1 or 2. It also only supports the leaky ReLU activation function.

The IP explores two types of parallelism: inter-layer parallelism (where multiple output maps are

generated in parallel) and intra-kernel parallelism (where multiple MAC units are used to run a single

28

convolution in parallel). The developed architecture has 16 PEs to explore inter-layer parallelism each

with 16 parallel MAC units. A larger number of PEs and MACs can be considered at the cost of more

hardware resources. Considering that the activations are quantized with 8 bits, 16 output activations are

produced in parallel and packed in a 128-bit word output to be sent to the output interface. Since each

PE runs 16 MACs operations, it receives 16 activations and weights in parallel packed also in 128 bits.

The architecture of the IP is represented in figure 4.1.

Input FM Line 0

Input FM Line 1

Input FM Line 2

Input FM Line 3

Input FM Line 4

Input
FM

Stream

128

PE0
Weights

PE0 PE1 PE2 . . .

PE1
Weights

PE2
Weights

PE15
Weights

PE15

. . .

128

128 128 128
128

8 8 8 8

Leaky ReLU

Scale
Adjustement

Saturation

Leaky ReLU

Scale
Adjustement

Saturation

Leaky ReLU

Scale
Adjustement

Saturation

Leaky ReLU

Scale
Adjustement

Saturation

128 bit Output Value

Output
AXI-Stream

128

Figure 4.1: Convolution IP Diagram.

Before running a layer, all weights are stored in distributed on-chip memory. The higher number

of weights among all layers is considered to size the local memories of the IP allocated to store the

29

weights. These are stored in the Ultra random access memory (URAM) of the FPGA. To guarantee

a single transfer of weights for each execution of a convolutional layer, the size of the local weight

memories is set according to the layer with the larger number of weights. Input and output maps are

only stored partially in on-chip memory since these are processed in stream. Only 5 lines from the input

FM are stored locally in Block random access memory (BRAM) and the output activations are packed

and sent immediately to external memory to be read by the next layer. This on-chip storage allows the

IP to process any convolution configuration while reducing the number of data transfers with the external

memory which would affect performance.

Furthermore, the memory for the filters is partitioned into 16 sections, one for each PE for local

PE access, allowing for simultaneous access to different sections of the filters memory. In order to

ensure a PE workload balance, the filters are evenly distributed through the partitions, meaning that for

a convolution with 32 filters, each PE stores locally two filters.

The IP is configured to receive both the maps and the weights in a z-wise configuration, meaning that

they are sorted through their Z-axis. The easiest way to understand this data configuration is to imagine

a map with 5× 5× 24, which means that this map has 24 input channels. This map is organized so that,

in the first place, the IP receives all 24 channels at position (0,0), then all the 24 channels of position

(1,0), and so on until all the 25 positions are sent. This is done by first iterating through X and then Y,

meaning, all the 24 channels of a FM line are sent before going onto the next. The values are packed

into 128-words and each of the map values is 8 bits meaning each bus has 16 values. For the previous

example since there are 24 channels, two 128 bit words are needed to represent one pixel of the map,

with the first 126-bit word being the first 16 channels and the second being the remainder 8. Since 8

activations are not enough to fill the 128-bit bus, the remainder free positions are filled with zeros, so

that these useless positions will not affect the computations. In figure 4.2 there is a visual representation

of this data organization. This representation is true for both maps and filters.

Z=15(0,0)

(2,0)

(0,0)

(1,0)

(2,0)

(1,0)

(X,Y)

 Value

128 bits

8 bits

 Empty Value

Z=0

Z=16Z=31

Z=0Z=15

Z=31 Z=16

Z=0Z=15

Z=31 Z=16

Figure 4.2: Z-wise data organization.

30

The figure illustrates an example of packing activations of a map with 24 channels. Since the number

of channels is not multiple of 16, the data is padded to 16 positions.

The order in which the input activations are read depends on the kernel size. The neural network

model considered in this work includes kernels of size 3 × 3 and 1 × 1. The z-lines of pixels must be

read to follow the window of the kernel. With a kernel of size 3 × 3, the PEs receive three vectors of

three sequential lines. For a kernel of size 1 × 1 only a single vector is read. The sequence of reading

addresses of the feature map lines is generated by an address generator unit that shares the output

address with all PEs (not represented in the figure). The filters in each PE are read in sequence since

the order in which they are stored in memory matches the sequence with which the activations are read.

To execute one layer, the IP starts by receiving the configuration parameters of said layer: map size,

kernel size, padding, number of input channels, number of filters, stride, activations, via an AXI4-Lite

port. Then, it reads through the AXI-Stream port all the weight values and stores them in the URAMs,

and also reads the initial three or four liens from the input FM (depending on the kernel size) to enable

the execution of the first convolutions with any value of stride. The remaining lines of the input map are

read in parallel with the calculation of the convolutions over the lines present in the input map memory.

The processing flow for the convolution operation begins by resetting all PE accumulators. Next a

128-bit word, which contains the first 16 channels of the pixel of the FM, is sent to the PE along with

another 128-bit word containing the 16 corresponding weights for the convolution operation. Inside the

PE, the dot product between the activations and the weights is calculated by performing 16 MAC oper-

ations. In the subsequent iteration, the next 16 channels of the first input activation are sent, repeating

the previous step until all channels of the activation are processed. Once all channels of the first input

activation are processed, the convolution moves to the next activation, performing all z-wise operations

and continuing this process until all activations required for the output are iterated over.

A visual representation of a PE is represented in 4.3.

The sixteen parallel multipliers are followed by an adder tree and an accumulator. Once the accu-

mulator of each of the PEs has an output activation ready, these values are passed through the Leaky

ReLU function, scaled according to the scale of the fixed point representation, and then saturated within

the 8-bit signed representation range (-127 to 127) to avoid over and underflow. Finally, the accumulator

values are concatenated into a 128-bit word to be streamed out through the output AXI-Stream port.

Since each PE accesses different filters, the output pixels produced will correspond to different chan-

nels of the output, which will preserve the z-wise organization in the output feature map.

Simultaneously, at every iteration of the processing elements, a 128-bit word composed of 8-bit

activations is read through the AXI-Stream port and stored in local memory. This allows reading the next

input FM lines to be processed while processing the previous ones, masking the data transfer overhead.

This process needs to be controlled cautiously to prevent the newly read lines to overwrite the yet to be

processed lines read before. The IP is entirely pipelined in order to maximize throughput.

A modified version of the Leaky ReLU function was considered to simplify its hardware implemen-

tation. The original Leaky ReLU function is defined as max(0.1 × x, x). This requires a multiplication

by 0.1. The modified Leaky ReLU function is defined as max(0.09375 × x, x) to simplify this operation.

31

Activations
128-bit word

Weights
128-bit word

A0

A1

A2

A15

w0

w1

w2

w15

X
A0

w0

X
A1

w1

X
A2

w2

X
A15

w15

+ Accumulator

Figure 4.3: Processing Element Diagram.

Knowing that 0.09375 = 2−4 +2−5, a multiplication by this constant is implemented as an addition of two

shifted values. The modified Leaky ReLU was considered during the training of the model.

4.2 Vits HLS Results

The Vitis HLS tool generates reports detailing the pipeline characteristics and utilization estimates

of the IP. These pipeline characteristics are obtained after synthesis, allowing for the observation of

the iteration interval and iteration latency for each loop. The iteration latency represents the number of

clock cycles required to complete one full iteration of a loop from start to finish, while iteration interval,

also known as initiation interval is the number of clock cycles needed to start consecutive iterations of

a loop. While the impact of iteration latency on performance becomes less significant as the number

of iterations in a loop increases, the iteration interval is crucial for the overall performance of the loop.

A lower iteration interval allows iterations to start more frequently, resulting in more effective pipeline

utilization.

The pipeline characteristics of the IP are represented in the table 4.1. It is important to mention that

the clock period considered is 10 ns.

32

Table 4.1: Pipeline Characteristics of the Convolution IP core.

Iteration Interval

(clk cycles)

Iteration Latency

(clk cycles)

Read Weights Loop 1 1

Read Initial FM Loop 1 2

Convolution Loop 1 43

As it can be observed in 4.1 the iteration interval for all of the loops is 1 which very important for the

performance of the IP. An iteration interval greater than 1 would have a multiplicative effect on the time

needed to run the loop, as it reduces the frequency at which new iterations start, thereby decreasing

throughput and increasing total execution time.

The utilization estimates from HLS can also be obtained post-synthesis, however, these are very

conservative estimations. A much more accurate resource utilization estimate is obtained from the post-

implementation report. The resources estimate from the post-implementation report of Vitis HLS is in

table 4.2.

Table 4.2: Resource utilization estimates from Vitis HLS.
Resource Used Available Utilization (%) Guideline(%)

LUT 18293 230400 7.9 70

FF 9461 460800 2.1 50

DSP 281 1728 16.3 80

URAM 64 96 66.7 80

BRAM (36K) 21.5 312 6.9 80

As intended the resource consumption of the accelerator does not exceed the device hardware

limitations. Most of the DSPs used are bound to the PEs to execute the MAC operations. However,

there are a few more that are used for execute calculations and other control operations.

The local memory of the IP was divided between BRAMs and URAMs. The BRAMs are used to

store the feature map lines and were dimensioned to be able to support the biggest possible line. This

happens in the second layer of the model when the input map dimensions are 608× 608× 32. The map

values are organized z-wise and the IP only stores 5 lines of the map, that is, 97KB of memory are

needed to store the lines. Since each BRAM has 36Kb, the amount of BRAms needed to store the FM

lines can be calculated, as it is shown in (4.1).

#BRAMs =
95KB

36Kb
= 21.1 ≈ 21, 5 BRAMs (4.1)

The URAMs is used to store the weights and were dimensioned to support the largest layer of the

model. The largest layer features 512 × 384 × 3 × 3 weights which is equivalent to 1, 69MB of weights.

Since the memory is partitioned into 16 sections, each partition needs to be able to store 110.6KB.

Knowing that each URAM has a capacity of 288Kb, the ammount of URAMs needed for each partition

33

can be calculated, as it is shown in (4.2).

#URAMs =
110, 6KB

288Kb
= 3.1 ≈ 4 URAMs (4.2)

Since there are 16 partitions and each uses 4 URAMs, the total number of URAMs used is 64.

4.3 Conclusions

A single computing engine was developed to execute the convolutional layers in sequence. The

engine is configurable and supports the execution of convolutions with kernels of size 3 × 3 and 1 × 1,

strides of 1 or 2, and the modified leaky ReLU activation function.

The accelerator has 16 processing elements, each running the convolution with a different filter in

parallel, and each PE has 16 MACs in parallel. Therefore, the engine efficiently runs 256 MACs in

parallel.

The reports from HLS show that all loops within the IP have an iteration interval of 1, which means the

IP will have optimal throughput and the design does not exceed the hardware limitations of the FPGA,

nor the recommended limits of Vitis HLS.

34

Chapter 5

HW/SW System Implementation and

Results

In this chapter, the development and results of the HW/SW system to implement the RYOLOv4 are

presented.

5.1 Hardware/Software Architecture

The hardware/software architecture of the system is comprised of the accelerator and the processor.

Both the Processing System (PS) and the PL of the target FPGA (Zynq UltraScale+ XCZU7EV) are

used to implement the system. The PL block implements the IP explained in the previous section which

was exported as an IP core and integrated into the FPGA. The PS block equipped with a quad-core Arm

Cortex-A53 Application Processing Unit (APU) runs the software of the system.

For the interface between the PS and the PL blocks, the Advanced eXtensible interface (AXI) commu-

nication standard is used, which provides high bandwidth, low latency connections, resulting in efficient

data transfers.

The system requires the transfer of the FM and filters from the external memory to the hardware

accelerator. The access to the external memory is done through one high-performance port of the PS-

PL interface and with the use of DMA blocks, which are set up and configured by the PS to send the FM

and filters as well as receive the outputs produced by the accelerator.

The hardware/software architecture was elaborated in Vivado, whose block design is represented in

figure 5.1.

As it can be seen in 5.1, other then the PL and PS, a DMA is included to transfer the weights and

input FM values from external memory into the IP and transfer the output FM values produced by the IP

to the external memory via the AXI-Stream protocol.

The DMA connects to the external memory controller through HP0 (High-Performance) port of the

ZYNQ Ultrascale+ PS. This connection is done by the AXI SmartConnect block.

There is also an AXI Interconnect block, that connects the AXI-Lite interface of the PS to both the

35

Figure 5.1: Vivado Block Design.

DMA and the PL block. This allows the PS to send the configuration parameters of the convolutional

layer via the AXI-Lite protocol, as well as to control the scheduling of data being transferred between the

IP and the external memory through the DMA.

The model is executed by running the convolutional layers one at a time until all layers are executed.

The software platform created in the Vitis IDE runs in the ARM processor of the ZYNQ FPGA. It

iteratively configures the convolutional engine and instructs the accelerator to start executing the con-

volution. The configuration parameters of the engine are sent through the AXI-Lite interface. Then, a

start signal through the same interface instructs the core to start operating. The accelerator first reads

all weights and stores them in the local memories of the PEs. These are read in the predefined order

from the external memory. This transfer is executed by the DMA, which are configured to transfer the

right number of weights, using the AXI-Stream interface. The output transfer is done by the same DMA,

which is configured before starting the stream of input FM values so that the outputs can be streamed

out of the IP and into the external memory as soon as they are ready.

The processor then waits for the end of the transfer of output activations to external memory, meaning

that the core has finished the execution. Once the output stream finishes and the signal done of the

control register of the AXI-Lite is read, the convolution is completed. The process described must be

repeated and chained together by feeding the output of a previous layer as the output of the next. The

upsampling and FM sum layers are not supported, so these must be executed in software.

5.2 System Results

This section presents the experimental results of the project. First, the Vivado results from the

model are introduced. Following that, the performance results of the model HW/SW implementation are

presented and compared with other solutions.

5.2.1 Resource Utilization

The resource utilization of the hardware architecture illustrated in Figure 5.1 after place and route is

found in table 5.1.

36

Table 5.1: Vivado’s Resource Utilization.
LUT

(230 400)

FF

(460 800)

DSP

(1728)

BRAM

(312)

URAM

(96)

Used % Used % Used % Used % Used %

Convolution IP 25 577 11.1 10 720 2.3 163 9.4 21.5 6.9 64 66.7

DMA 2077 0.9 3217 0,7 0 0 5 1.6 0 0

ps8 axi periph 1321 0.6 1446 0.2 0 0 0 0 0 0

Smartconnect 2151 0.9 3910 0.8 0 0 0 0 0 0

Total 31 135 13.5 19 326 4.2 163 9.4 26.5 6.9 64 66.7

As shown in Table 5.1, the majority of the FPGA resources are utilized by the developed convolution

IP and the DMA. Both the BRAM and URAM usage estimates from the HLS (Table 4.2) are accurate.

The remaining components have a minimal impact on FPGA resource usage.

The most used resource is memory, in particular, URAM to store the weights of the model. The

architecture can be designed with less memory. However, this would mean that the weights of the larger

layers would not fit into internal memory at the same time. Therefore, the input map would have to

be read more than once and the output maps would be produced in chunks which would then have

to be concatenated. Besides, reducing data transfers with external memory also reduces the energy

consumption.

Another important aspect is that only around 13% of LUTs and 10% of DSPs were used. Since the

proposed accelerator is scalable in terms of parallelism, the system’s performance could be improved

by increasing parallelism at the cost of more resources.

5.2.2 Performance Results

Each convolutional layer from the model was run individually on the ZCU104. The output of each

layer was validated as correct and its timings were registered. Furthermore, a software-only convolution

was also developed using simple C, with which the outputs were validated and the execution times were

also collected to be compared with those obtained with the accelerator. It is relevant to mention that the

C code for the software code is not optimized and thus the software execution results could be potentially

better.

The processing time of each layer was calculated, including the data transfers in and out of the

FPGA, with the accelerator running with an operating frequency of 100 MHz. The theoretical time the

accelerator would need to complete each layer was also calculated by multiplying the number of cycles

each layer takes to complete by the clock period of 10 ns. The number of cycles the accelerator takes

to complete a layer is calculated by dividing the number of MAC operation of a layer by the number of

MACS the accelerator performs per cycle, which in this case is 256. The timing results for each layer

can be found in table 5.2.

37

Table 5.2: Performance results per layer.

Conv #
Input
 Size

Input
 Channels

Kernel
 Size Stride Padding

Output
 Channels

Output
 Size

#MACs
 (M) #Cycles

Theoretical
 time (ms)

Real Time
 (ms)

SW Time
 (ms)

1 608 16 3 1 1 32 608 1703.41 6 653 952 66.540 69.29 320 160

2 608 32 3 2 1 64 304 1703.41 6 653 952 66.540 74.115 319 028

3 304 64 1 1 0 32 304 189.27 739 328 7.393 11.437 38 087

4 304 64 1 1 0 32 304 189.27 739 328 7.393 10.896 38 081

5 304 32 1 1 0 32 304 94.63 369 664 3.697 5.087 19 139

6 304 32 3 1 1 32 304 851.71 3 326 976 33.270 34.562 159 924

7 304 32 1 1 0 32 304 94.63 369 664 3.697 5.087 19 141

8 304 32 1 1 0 64 304 189.27 739 328 7.393 8.828 38 233

9 304 64 3 2 1 128 152 1703.41 6 653 952 66.540 70.209 318 745

10 152 128 1 1 0 64 152 189.27 739 328 7.393 9.17 38 007

11 152 128 1 1 0 64 152 189.27 739 328 7.393 9.172 38 005

12 152 64 1 1 0 64 152 94.63 369 664 3.697 4.432 19 071

13 152 64 3 1 1 64 152 851.71 3 326 976 33.270 34.013 1 569 683

14 152 64 1 1 0 64 152 94.63 369 664 3.697 4.418 19 063

15 152 64 1 1 0 128 152 189.27 739 328 7.393 8.13 38 080

16 152 128 3 2 1 256 76 1703.41 6 653 952 66.540 68.827 318 764

17 76 256 1 1 0 128 76 189.27 739 328 7.393 8.35 37 963

18 76 256 1 1 0 128 76 189.27 739 328 7.393 8.22 37 965

19 76 128 1 1 0 128 76 94.63 369 664 3.697 4.098 19 023

20 76 128 3 1 1 128 76 851.71 3 326 976 33.270 33.829 159 314

21 76 128 1 1 0 128 76 94.63 369 664 3.697 4.097 19 025

22 76 128 1 1 0 256 76 189.27 739 328 7.393 7.814 37 999

23 76 256 3 2 1 512 38 1703.41 6 653 952 66.540 69.055 317 584

24 38 512 1 1 0 256 38 189.27 739 328 7.393 8.054 37 934

25 38 512 1 1 0 256 38 189.27 739 328 7.393 8.055 37 934

26 38 256 1 1 0 256 38 94.63 369 664 3.697 3.991 19 004

27 38 256 3 1 1 256 38 851.71 3 326 976 33.270 34.247 158 665

28 38 256 1 1 0 256 38 94.63 369 664 3.697 3.991 19 002

29 38 256 1 1 0 512 38 189.27 739 328 7.393 7.775 37 955

30 38 512 3 2 1 384 19 638.78 2 495 232 24.952 27.711 118 455

31 19 384 1 1 0 192 19 26.62 103 968 1.040 1.226 5 379

32 19 384 1 1 0 192 19 26.62 103 968 1.040 1.226 5 364

33 19 192 1 1 0 192 19 13.31 51 984 0.520 0.601 2 723

34 19 192 3 1 1 192 19 119.77 467 856 4.679 5.143 22 180

35 19 192 1 1 0 192 19 13.31 51 984 0.520 0.6 2 724

36 19 192 1 1 0 512 19 35.49 138 624 1.386 1.549 716 233

37 19 512 1 1 0 256 19 47.32 184 832 1.848 2.147 9 525

38 19 256 3 1 1 512 19 425.85 1 663 488 16.635 18.233 78 720

39 19 512 1 1 0 256 19 47.32 184 832 1.848 2.147 9 523

40 19 256 1 1 0 256 19 23.66 92 416 0.924 1.061 479 397

41 19 256 3 1 1 512 19 425.85 1 663 488 16.635 18.233 78 716

42 19 512 1 1 0 512 19 94.63 369 664 3.697 4.168 18 994

38

Conv #
Input
 Size

Input
 Channels

Kernel
 Size Stride Padding

Output
 Channels

Output
 Size

#MACs
 (M) #Cycles

Theoretical
 time (ms)

Real Time
 (ms)

SW Time
 (ms)

43 19 512 1 1 0 256 19 47.32 184 832 1.848 2.147 9 524

44 38 512 1 1 0 256 38 189.27 739 328 7.393 8.055 37 929

45 38 256 1 1 0 128 38 47.32 184 832 1.848 2.103 9 534

46 38 128 3 1 1 256 38 425.85 1 663 488 16.635 17.089 79 360

47 38 256 1 1 0 256 38 94.63 369 664 3.697 3.991 19 006

48 38 256 1 1 0 128 38 47.32 184 832 1.848 2.102 9 537

49 76 256 1 1 0 128 76 189.27 739 328 7.393 8.349 37 965

50 76 128 1 1 0 64 76 47.32 184 832 1.848 2.239 9 543

51 76 64 3 1 1 128 76 425.85 1 663 488 16.635 16.838 79 695

52 76 128 1 1 0 128 76 94.63 369 664 3.697 4.097 19 025

53 76 128 3 1 1 256 76 1703.41 6 653 952 66.540 67.295 318 571

54 76 256 1 1 0 561 76 829.53 3 240 336 32.403 33.449 166 194

55 76 128 3 2 1 256 38 425.85 1 663 488 16.635 17.463 79 394

56 38 256 1 1 0 128 38 47.32 184 832 1.848 2.103 9 528

57 38 128 3 1 1 256 38 425.85 1 663 488 16.635 17.089 79 359

58 38 256 1 1 0 384 38 141.95 554 496 5.545 5.883 28 475

59 38 384 3 1 1 512 38 2555.12 9 980 928 99.809 102.48 475 871

60 38 512 1 1 0 561 38 414.76 1 620 168 16.202 17.04 83 058

61 38 384 3 2 1 512 19 638.78 2 495 232 24.952 27.645 118 505

62 19 512 1 1 0 256 19 47.32 184 832 1.848 2.147 9 521

63 19 256 3 1 1 512 19 425.85 1 663 488 16.635 18.233 79 558

64 19 512 1 1 0 384 19 70.98 277 248 2.772 3.158 14 261

65 19 384 3 1 1 512 19 638.78 2 495 232 24.952 27.361 118 046

66 19 512 1 1 0 561 19 103.69 405 042 4.050 4.547 20 805

As shown in table 5.2, each layer the accelerator timings have a slight discrepancy with the theoretical

ones. This is due to the data transfer times not being accounted for in the theoretical times calculations.

The total execution time of the model, based on the run times of each layer, can be found on the table

5.3. It is noteworthy that this execution time is only an estimate of the real network total runtime, since

the upsampling and FM layers were not implemented and, if implemented solely on software, these

layers would have a significant impact on the models’ performance.

Table 5.3: Total execution times.
Theoretical HW Time (s) Real HW Time (s) SW Only Time (s)

1.05 1.13 7710.77

To further compare the system results, the network model was ran and tested in other platforms. In

addition to the software-only solution run in the Arm Cortex-A53 present on the ZCU04 development

kit, the model was also tested in with a GPU-only execution, using a NVIDIA GeForce RTX 3090, and

a CPU-only execution using an Intel(R) Core(TM) i7-11700F. These tests were done using the Pytorch

floating point model and measuring its overall execution time. The execution of the model in the GPU and

CPU was done by running the model in inference mode for 453 images from the UCAS-AOD dataset.

The performance comparison alongside power consumption of these different systems can be found in

table 5.4. The power consumption values for the ZCU104 were obtaned via the Vivado power report,

with an additional estimated 3W accounted for external memory and component access. The power

consumption figures for the CPU and GPU were based on the manufacturer’s maximum specified power

usage

39

Table 5.4: Performance and efficiency of different platforms

Device Time (s) FPS Power (W)

ZCU104 1.13 0.88 7.27

ARM Cortex-A53 7710.77 1.2× 10−3 5.63

Intel(R) Core(TM) i7-11700F 0.15 6.67 65

NVIDIA GeForce RTX 3090 0.0082 122.46 350

The highest throughput is achieved with the GPU which achieves 122 FPS. Both the GPU and the

Intel processor are faster but require high power. The proposed solution in hardware achieves a frame

rate close to 1 FPS with only 7.3 W. As stated above, the parallelism of the architecture using the same

FPGA can be increased by a factor of 6 or 7, permitting increasing the throughput of the accelerator to

close to 6 FPS.

Almost 50% of the power consumed by the FPGA is by the ARM core. With the complete model

implemented in hardware, the processor is only used to configure the accelerator and the DMA. Using

a small soft processor for these tasks implemented in the programmable logic would permit using an

FPGA with only programmable logic and, thus, reduce the power.

This makes the hardware/software solution a far superior choice for real-time, on-site object detection

in aerial images. Although it may be less performant, it boasts significantly lower power consumption

compared to GPU and CPU platforms.

5.3 Conclusions

The accelerator was mapped in the programmable logic of the ZYNQ FPGA and integrated with ARM

processor. The transfer of weights and feature maps between the external memory and the core is done

through one DMA configured in the programmable logic.

The results reveal that the most used resource is memory. The free available DSPs and LUTs permit

to increase the parallelism of the accelerator and consequently increase the throughput of the system.

With a throughput of around 1 FPS and 7.3 W, the developed hardware/software system is slower than

a GPU but uses 48× lower power, making it a more suitable solution for edge computing appilications.

40

Chapter 6

Conclusion

This thesis presents the development and implementation of a hardware/software solution for real-

time object detection in aerial images using a Convolutional Neural Network (CNN).

The R-YOLOv4 model was selected as the most suitable for this project due to its balance between

accuracy and performance, as well as its support for oriented object detection. The model was mod-

ified to improve its suitability for hardware deployment. These modifications decreased the depth of

the network and reduced the number of parameters, thereby lowering the computational and memory

requirements at the cost of 2.5% of accuracy. The model was quantized with 8 bits for both activations

and weights, with a final mAP50 of 82.9%, 5.7% lower than the original model.

A custom hardware accelerator was designed and implemented in a Zynq Ultrascale+ MPSoc FPGA

XCZU7E, with a total of 256 MACs that run in parallel.

Experimental results demonstrated that the proposed solution achieves a frame rate of nearly 1 FPS

with a power consumption of only 7.3 W. Although this performance is lower compared to high-end GPU

and CPU platforms, the significant reduction in power consumption makes it an attractive solution for

edge computing applications. It is worth noting that the upsampling layers and feature map sum layers

were not implemented in hardware.

The implementation details and performance evaluations indicate that the hardware/software solution

offers a viable alternative for embedded object detection.

6.1 Future Work

As future work, the model can be fully implemented in hardware, including the upsampling and

the sum layers. The sum layer requires an additional adder in each core, while the upsampling layer

just requires additional memory to temporarily store the output activations before being upsampled.

Therefore, the impact on the number of resources is minimal.

The sum layers can be implemented including a second AXI-Stream interface in the accelerator to

receive the map to be summed to the output of the convolutional layer before being streamed out. The

second AXI-Stream would be connected to another DMA and High-Performance port of the FPGA to

41

access the external memory controller.

The upsampling operation replicates each activation of the map into a 2× 2 square. To implement it

in hardware, an additional buffer should be added to the IP to store a fully processed output line from the

IP. While processing the next line, the buffered line will be streamed out twice, with each activation in the

line also being streamed twice. Additionally, configurations with more PEs and more MACs per PE can

be implemented and tested to utilize the FPGAs available resources to achieve a higher throughput.

42

Bibliography

[1] V. Reilly, H. Idrees, and M. Shah, “Detection and Tracking of Large Number of Targets in Wide

Area Surveillance,” in Computer Vision – ECCV 2010, ser. Lecture Notes in Computer Science,

K. Daniilidis, P. Maragos, and N. Paragios, Eds. Berlin, Heidelberg: Springer, 2010, pp. 186–199.

[2] N. O. Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. Velasco-Hernandez, L. Krpalkova,

D. Riordan, and J. Walsh, Deep Learning vs. Traditional Computer Vision, 2020, vol. 943,

arXiv:1910.13796 [cs]. [Online]. Available: http://arxiv.org/abs/1910.13796

[3] U. Nepal and H. Eslamiat, “Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing

Spot Detection in Faulty UAVs,” Sensors, vol. 22, no. 2, p. 464, Jan. 2022. [Online]. Available:

https://www.mdpi.com/1424-8220/22/2/464

[4] Y. Tamaazousti, “On The Universality of Visual and Multimodal Representations,” Ph.D. dissertation,

Jun. 2018.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” Dec. 2015,

arXiv:1512.03385 [cs]. [Online]. Available: http://arxiv.org/abs/1512.03385

[6] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift,” Mar. 2015, arXiv:1502.03167 [cs]. [Online]. Available:

http://arxiv.org/abs/1502.03167

[7] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object Detection with Deep Learning: A Review,” Apr.

2019, arXiv:1807.05511 [cs]. [Online]. Available: http://arxiv.org/abs/1807.05511

[8] G. Cheng, X. Yuan, X. Yao, K. Yan, Q. Zeng, and J. Han, “Towards Large-Scale Small Object

Detection: Survey and Benchmarks,” Dec. 2022, arXiv:2207.14096 [cs]. [Online]. Available:

http://arxiv.org/abs/2207.14096

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object

detection and semantic segmentation,” Nov. 2013. [Online]. Available: https://arxiv.org/abs/1311.

2524v5

[10] R. Girshick, “Fast R-CNN,” Sep. 2015, arXiv:1504.08083 [cs]. [Online]. Available: http:

//arxiv.org/abs/1504.08083

43

http://arxiv.org/abs/1910.13796
https://www.mdpi.com/1424-8220/22/2/464
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1807.05511
http://arxiv.org/abs/2207.14096
https://arxiv.org/abs/1311.2524v5
https://arxiv.org/abs/1311.2524v5
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083

[11] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks,” Jan. 2016, arXiv:1506.01497 [cs]. [Online]. Available:

http://arxiv.org/abs/1506.01497

[12] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified,

Real-Time Object Detection,” May 2016, arXiv:1506.02640 [cs]. [Online]. Available: http:

//arxiv.org/abs/1506.02640

[13] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). Honolulu, HI: IEEE, Jul. 2017, pp. 6517–6525.

[Online]. Available: http://ieeexplore.ieee.org/document/8100173/

[14] ——, “YOLOv3: An Incremental Improvement,” Apr. 2018, arXiv:1804.02767 [cs]. [Online].

Available: http://arxiv.org/abs/1804.02767

[15] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy

of Object Detection,” Apr. 2020, arXiv:2004.10934 [cs, eess]. [Online]. Available: http:

//arxiv.org/abs/2004.10934

[16] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “SSD: Single

Shot MultiBox Detector,” 2016, vol. 9905, pp. 21–37, arXiv:1512.02325 [cs]. [Online]. Available:

http://arxiv.org/abs/1512.02325

[17] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for Dense Object Detection,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 318–327, Feb. 2020,

conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18] M. G. Selvaraj, A. Vergara, H. Ruiz, N. Safari, S. Elayabalan, W. Ocimati, and G. Blomme,

“AI-powered banana diseases and pest detection,” Plant Methods, vol. 15, no. 1, p. 92, Dec. 2019.

[Online]. Available: https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0475-z

[19] C.-Y. Wang, H.-Y. M. Liao, I.-H. Yeh, Y.-H. Wu, P.-Y. Chen, and J.-W. Hsieh, “CSPNet: A New

Backbone that can Enhance Learning Capability of CNN,” Nov. 2019, arXiv:1911.11929 [cs].

[Online]. Available: http://arxiv.org/abs/1911.11929

[20] “kunnnnethan/R-YOLOv4.” [Online]. Available: https://github.com/kunnnnethan/R-YOLOv4

[21] X. Yang, J. Yan, Z. Feng, and T. He, “R3Det: Refined Single-Stage Detector with Feature

Refinement for Rotating Object,” Dec. 2020, arXiv:1908.05612 [cs, eess]. [Online]. Available:

http://arxiv.org/abs/1908.05612

[22] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L.

Zitnick, and P. Dollár, “Microsoft COCO: Common Objects in Context,” Feb. 2015, arXiv:1405.0312

[cs]. [Online]. Available: http://arxiv.org/abs/1405.0312

44

http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://ieeexplore.ieee.org/document/8100173/
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/1512.02325
https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0475-z
http://arxiv.org/abs/1911.11929
https://github.com/kunnnnethan/R-YOLOv4
http://arxiv.org/abs/1908.05612
http://arxiv.org/abs/1405.0312

[23] H. Zhu, X. Chen, W. Dai, K. Fu, Q. Ye, and J. Jiao, “Orientation robust object detection in aerial

images using deep convolutional neural network,” in 2015 IEEE International Conference on Image

Processing (ICIP), Sep. 2015, pp. 3735–3739.

[24] Z. Dong, M. Wang, Y. Wang, Y. Liu, Y. Feng, and W. Xu, “Multi-Oriented Object Detection

in High-Resolution Remote Sensing Imagery Based on Convolutional Neural Networks with

Adaptive Object Orientation Features,” Remote Sensing, vol. 14, no. 4, p. 950, Jan.

2022, number: 4 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available:

https://www.mdpi.com/2072-4292/14/4/950

[25] K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, “Accelerating CNN inference on FPGAs: A

Survey,” May 2018. [Online]. Available: https://arxiv.org/abs/1806.01683v1

[26] M. Reis, “Hardware acceleration of cnn-based image segmentation for fire detection,” Nov. 2022.

45

https://www.mdpi.com/2072-4292/14/4/950
https://arxiv.org/abs/1806.01683v1

	Acknowledgments
	Abstract
	Resumo
	List of Tables
	List of Figures
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Report Outline

	2 Background and State of the Art
	2.1 Convolutional Neural Networks
	2.1.1 Convolution Layers
	2.1.2 Pooling Layers
	2.1.3 Fully Connected Layers
	2.1.4 Activation Functions
	2.1.5 Shortcut Layers
	2.1.6 Routing Layers
	2.1.7 Batch Normalization
	2.1.8 Upsampling Layers

	2.2 CNN models for Object Detection
	2.2.1 R-CNN: Regional Convolutional Neural Network
	2.2.2 SSD: Single Shot Detector
	2.2.3 YOLO: You Only Look Once
	2.2.4 YOLOV4 and R-YOLOv4
	2.2.5 Performance Metrics and Model Comparisons

	2.3 CNN implementations on FPGA
	2.4 Conclusions

	3 Design and Optimization of the Oriented Object Detection Model
	3.1 Model Selection
	3.2 Dataset Selection
	3.3 Model Optimization
	3.4 Tools for Training and Quantization
	3.4.1 PyTorch
	3.4.2 Brevitas

	3.5 Custom Tools
	3.5.1 Brevitas Converter
	3.5.2 Bach Normalization Merger
	3.5.3 Weights Extractor
	3.5.4 Bin File Generator

	3.6 Design Flow
	3.7 Quantization Analysis of R-YOLOv4
	3.8 Conclusions

	4 Hardware Accelerator Design
	4.1 IP Core Design
	4.2 Vits HLS Results
	4.3 Conclusions

	5 HW/SW System Implementation and Results
	5.1 Hardware/Software Architecture
	5.2 System Results
	5.2.1 Resource Utilization
	5.2.2 Performance Results

	5.3 Conclusions

	6 Conclusion
	6.1 Future Work

	Bibliography

