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Resumo

Com a crescente necessidade de Tradução Automática (TA) num mundo cada vez mais glob-
alizado, existe também uma crescente necessidade de avaliar constantemente a qualidade das
traduções produzidas. Esta avaliação pode ser realizada através de anotadores humanos que real-
izam avaliações de qualidade ou através da utilização de métricas automáticas. Embora a avaliação
humana seja preferı́vel, é cara e demorada. Consequentemente, ao longo da última década, o
progresso na TA tem sido principalmente medido utilizando métricas automáticas que avaliam a
similaridade lexical em relação a traduções de referência. No entanto, numerosos estudos demon-
straram que as métricas baseadas em lexias não se correlacionam bem com os julgamentos hu-
manos, lançando dúvidas sobre a fiabilidade da investigação em TA.

Motivado por estes desafios, o principal objetivo desta tese é melhorar o estado atual da
avaliação da TA através do desenvolvimento de novas métricas automáticas que satisfaçam quatro
critérios: 1) forte correlação com anotações humanas, 2) robustez em diferentes domı́nios e pares
de lı́nguas, 3) interpretabilidade e 4) eficiência.

Com base nos recentes avanços em processamento de linguagem natural, propomos que uma
métrica supervisionada que incorpora o texto a traduzir no processo de avaliação. Para validar esta
hipótese, introduzimos o COMET (Crosslingual Optimized Metric for Evaluation of Translation),
uma framework de aprendizagem profunda para treino de modelos de avaliação de TA. Os modelos
desenvolvidos dentro desta framework são treinados para prever anotações humanas de TA, como
Avaliações Diretas (AD), Métricas de Qualidade Multidimensional (MQM) ou Taxa de Edição
de Tradução Mediada por Humanos (HTER). Os nossos resultados demonstram que as métricas
desenvolvidas dentro da nossa framework alcançam correlações estado da arte com julgamentos
humanos em vários domı́nios e pares de lı́nguas.

No entanto, métricas lexicais ainda têm méritos em termos de interpretabilidade e eficácia.
Já métricas como as do COMET, baseadas em aprendizagem profunda, são consideradas ”caixas-
pretas” lentas. Para melhorar isso, usamos métodos de explicabilidade neuronal para mostrar
como essas métricas usam informações de tokens ligadas a erros de tradução, comprovando sua
interpretabilidade ao comparar mapas de saliência com anotações MQM. Também realizamos
experiências para reduzir o custo computacional e tamanho dos modelos do COMET, mantendo
suas correlações de estado da arte com anotações humanas, diminuindo a diferença de desempenho
entre métricas lexicais e de redes neurais.

Apesar da robustez das métricas de TA, argumentamos que, ao aplicá-las e relatá-las no nı́vel
do sistema, são insuficientes para uma avaliação eficaz. Defendemos uma análise mais detalhada
ao nı́vel do segmento para compreender verdadeiramente a qualidade da TA. Para isso, desen-
volvemos o MT-TELESCOPE, uma ferramenta de análise comparativa entre sistemas de TA, que
expõe fatores de desempenho e analisa fenômenos como entidades mencionadas.

Ao longo dos últimos três anos, o COMET teve um impacto significativo na comunidade de
investigação, com vários estudos a validar as nossas descobertas e a demonstrar a sua correlação
superior com anotações humanas. Através deste trabalho, enfrentamos a tarefa ambiciosa de rev-
olucionar a avaliação da TA introduzindo novas métricas que se destacam em termos de desem-
penho, robustez, interpretabilidade e eficiência computacional. Esta tese representa um progresso
substancial para alcançar este objetivo.

Palavras-chave: Processamento de Linguagem Natural, Tradução Automática, Avaliação,
Qualidade Estimada, COMET
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Abstract

With the increasing need for Machine Translation (MT) in a world which is becoming global-
ized, there is also an increasing need to constantly evaluate the quality of the produced translations.
This evaluation can be achieved through human annotators performing quality assessments or by
employing automatic metrics. While human evaluation is preferred, it is expensive and time-
consuming. Consequently, over the past decade, MT progress has primarily been measured using
automatic metrics that assess lexical similarity against reference translations. However, numerous
studies have demonstrated that lexical-based metrics do not correlate well with human judgments,
casting doubt on the reliability of research in MT.

Motivated by these challenges, the main goal of this thesis is to enhance the current state of MT
evaluation by developing new automatic metrics that satisfy four criteria: 1) strong correlation with
human judgments, 2) robustness across different domains and language pairs, 3) interpretability,
and 4) efficiency.

Based on recent advancements in cross-lingual language modeling, we propose that a su-
pervised metric incorporating the source-language input into the evaluation process will yield
more accurate MT evaluation. To validate this hypothesis, we introduce COMET (Crosslingual
Optimized Metric for Evaluation of Translation), a neural framework for training multilingual
MT evaluation models that serve as metrics. Models developed within the COMET framework
are trained to predict human judgments of MT quality, such as Direct Assessments (DA), Mul-
tidimensional Quality Metrics (MQM), or Human-mediated Translation Edit Rate (HTER). Our
results demonstrate that metrics developed within our framework achieve state-of-the-art correla-
tions with human judgments across various domains and language pairs.

Nevertheless, lexical metrics still possess redeeming qualities in terms of interpretability and
lightweight nature. In contrast, fine-tuned neural metrics like COMET are considered “slow black-
boxes”. To address this, we employ neural explainability methods to reveal that these metrics
leverage token-level information directly associated with translation errors. We showcase their
effectiveness for interpreting state-of-the-art fine-tuned neural metrics by comparing token-level
neural saliency maps with MQM annotations. Additionally, we present several experiments aimed
at reducing the computational cost and model size of COMET while maintaining its state-of-the-
art correlation with human judgments, thus bridging the performance gap between lexical and
model-based metrics.

Notwithstanding the strength of MT metrics, we argue that, when applied and reported at
the system level, these are insufficient for effective MT evaluation. We claim that to truly un-
derstand the underlying MT quality, we need more fine-grained analysis built around segment-
level scoring. To showcase the strength of more fine-grained segment-level analysis we developed
MT-TELESCOPE. MT-TELESCOPE is an analysis tool for contrastive MT evaluation that takes
system-level comparisons a step further by exposing the underlying factors behind performance
and zooms into a fine-grained analysis of translation accuracy down to individual phenomena (e.g
named entities).

Over the past three years, COMET has made a significant impact in the research community,
with multiple studies validating our findings and demonstrating its superior correlation with human
judgments. Through this work, we undertake the ambitious task of revolutionizing MT evaluation
by introducing new metrics that excel in terms of performance, robustness, interpretability, and
lightweight nature. This thesis represents substantial progress towards achieving this goal.
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Chapter 1

Introduction

Our world is becoming a global community and within that community there is a need to commu-
nicate and understand each other. Yet, with approximately 8 billion people living in this world,
only 1.5 billion people speak English as a second-language, as reported by Statista1. Also, even if
everyone would share the same second language, the comfort of communicating in one’s mother
tongue is undeniable. With roughly 6,500 different languages around the planet, translation is the
only viable solution to break language barriers and build a united global community.

Translation can be performed by human translators or automatically through the use of Ma-
chine Translation (MT). While human translation in most cases results in high-quality translations,
that are faithful to the original content of the message, it does not scale well as it is slow and ex-
pensive. Thus, the best way to scale translation is through the use of MT. Nonetheless, widespread
adoption of MT raises quality concerns as it is less accurate and can lead to miscommunication.
To mitigate this issue, it is essential to continuously measure the quality of MT when choosing the
appropriate model for deployment or determining which translation to deliver. However, measur-
ing MT quality can lead to a similar problem of translation itself. On one hand, when performed
by humans it is slow but accurate and when performed automatically it is fast, scalable, but less
reliable/accurate.

Automatic MT evaluation is used under two possible scenarios: model selection, performed
during the development phase, where we are interested in comparing experiments and systems,
and model monitoring, which concerns to assessing the quality of a translation produced by an
MT system, after deployment, in an online fashion. For model selection we rely on Reference-
based MT metrics. Reference-based MT metrics (which we will call just MT metrics through
this document) produce a system-level score by comparing, for several test samples, the output of
the MT model with a human-generated reference (the expected output). The system-level score
is then used to rank different MT models developed during the MT Development Phase (Figure
1.1). On the other hand, model monitoring is performed through the use of Quality Estimation
(QE) (also known as Reference-free MT metrics) and since it is performed after deployment, in an
online fashion, it is constraint by the absence of an expected output. Therefore, QE metrics tradi-
tionally rely on machine learning to estimate the quality of an MT output. Also, in practical terms,
while MT metrics are concerned with overall system performance, QE metrics are concerned with
segment-level performance.

1The most spoken languages worldwide. Retrieved from https://www.statista.com/statistics/
266808/the-most-spoken-languages-worldwide/ at 02-06-2023
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Figure 1.1: Illustration of the MT development and MT deployment phases. In the development
phases several models are trained with different architectures and/or hyper-parameters. Then,
all models are tested using one or more MT metrics and the best performing model is selected
for deployment. During the deployment phase, for each translation request, a QE model is used to
assess the translation quality. If the quality of the MT output is insufficient we send that translation
to human post-editing before delivering the final order.

Modern Neural Machine Translation (NMT) result in a much higher quality of translation than
previous statistical approaches and they often deviate from monotonic lexical transfer between
languages. For this reason, it has become increasingly evident that we can no longer rely on
traditional lexical-based MT metrics (e.g. BLEU (Papineni et al., 2002), METEOR (Lavie and
Denkowski, 2009)) to provide accurate decisions of which MT system is better (Mathur et al.,
2020a; Kocmi et al., 2021). Nonetheless, the MT community still relies largely on these outdated
metrics and, for many years, no new widely-adopted standard has emerged. In 2019, the WMT
News Translation shared Task received a total of 153 MT system submissions (Barrault et al.,
2019). The Metrics Shared Task of the same year saw only 24 submissions, almost half of which
were participants from the Quality Estimation Shared Task, adapted as metrics (Ma et al., 2019).
The findings of the above-mentioned task highlight two major challenges to MT evaluation which
we seek to address herein. Namely, that metrics struggle to accurately correlate with human
judgements at segment-level and fail to adequately differentiate the highest performing MT
systems.

This growing disparity between the quality of NMT systems and the limitations of traditional
lexical metrics has motivated the need for improving the way automatic MT evaluation is con-
ducted today. In light of this, we have identified several desiderata that we aim to address in this
thesis.

Firstly, it is crucial for MT metrics to exhibit a strong correlation with human judgments.
Human evaluation, when conducted properly, such as through the utilization of the Multidimen-
sional Quality Metric (MQM) framework (Lommel et al., 2014), provides extremely informative
insights. Therefore, automatic metrics should strive to capture the nuances and qualities that align
with human annotations.

Secondly, should be robust to a wide range of languages and domains. MT is a multilin-
gual and multi-domain task, and the evaluation metrics should be versatile enough to accommodate
the diversity of translation outputs.
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Thirdly, MT metrics should be interpretable. The black-box nature of many existing metrics
hampers our ability to understand and trust their output. Therefore, we argue that interpretability
is an important feature of any metric.

Furthermore, the efficiency and computational speed of an MT metric are important factors
to take into account. One of the remaining redeeming qualities of lexical metrics is that they
are incredibly light-weight. In certain MT applications, where thousands of translations need to
be scored (e.g. outputs of multiple systems or different hypotheses of the same system, as in
Minimum Bayes Risk (MBR) decoding (Kumar and Byrne, 2004)), inference speed becomes a
crucial factor.

1.1 Contributions

Taking into consideration the desiderata presented above, the main contributions of this thesis can
be summarized as follows:

1. We introduce COMET (Crosslingual Optimized Metrics for Evaluation of Translation)(Rei
et al., 2020a), a framework for training highly multilingual and adaptable MT evaluation
models that can function as metrics. Our framework takes advantage of recent break-
throughs in cross-lingual language modeling (Artetxe and Schwenk, 2019; Devlin et al.,
2019; Conneau and Lample, 2019; Conneau et al., 2020) to generate prediction estimates of
human judgments such as Direct Assessments (DA) (Graham et al., 2013), Human-mediated
Translation Edit Rate (HTER)(Snover et al., 2006), and metrics compliant with MQM (Lom-
mel et al., 2014). A distinct feature of COMET-based metrics is that, in contrast to previous
mainstream metrics, the source-language input is incorporated into the evaluation process.
Drawing inspiration from (Takahashi et al., 2020), we demonstrate the value of using a
multilingual embedding space, which allows us to leverage information from all three in-
puts (source, reference, and translation). We show that incorporating source information
enhances the performance and robustness of our MT evaluation models.

Since its publication, COMET has made a significant impact in the community, and its
metrics have been widely adopted by MT practitioners. We have continuously improved
and kept COMET metrics state-of-the-art through our participation in several WMT shared
tasks (Rei et al., 2020b, 2021a, 2022b,c).

2. While COMET metrics have demonstrated significant improvements in correlating with hu-
man judgments compared to traditional lexical metrics, they are “black boxes” that provide
a single sentence-level score without revealing the underlying decision-making process. A
second contribution of this thesis sheds light on the inner workings of these metrics. In
our study entitled ”The Inside Story” (Rei et al., 2023), we reveal that these metrics lever-
age token-level information that can be directly attributed to translation errors, as assessed
through the comparison of token-level neural saliency maps with MQM annotations and
synthetically-generated critical translation errors.

3. We introduce MT-TELESCOPE (Rei et al., 2021b), an analysis tool designed for comparing
two MT systems side-by-side under different circumstances. MT-TELESCOPE can be used
in conjunction with COMET to enable robust MT comparison. While MT metrics possess
their strengths, when applied and reported at the system level, they can only provide a
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general indication of the superiority of one system over another, often relying on a single
score that may be limited to an arithmetic mean of segment-level score predictions. With
MT-TELESCOPE, we aim to simplify the process of comparing MT systems for researchers
and industry practitioners. The tool offers easy access to state-of-the-art MT evaluation
metrics, statistical tests like bootstrap resampling (Koehn, 2004), dynamic filters to select
specific phenomena within your test set, and a visual interface with plots to compare systems
side-by-side on a segment-by-segment basis.

4. Finally, despite the high correlations with human judgment, the computational heaviness of
COMET metrics, which are built on top of pre-trained language models, limits their usage in
scenarios where speed and efficiency are crucial. In an attempt to reduce the computational
cost of COMET and make it more efficient, we introduce several techniques based on pruning
and knowledge distillation to create more compact and faster versions of COMET, which we
dub COMETINHO’s (Rei et al., 2022a).

To summarize, with Contribution 1 we introduce a novel approach that improves the current
state of MT evaluation by achieving high correlations with human judgments across languages and
domains. Contribution 2 focuses on improving the interpretability of COMET metrics, aiming to
foster their adoption within the MT community. Contribution 3 promotes the widespread adoption
of good practices in MT evaluation. Lastly, Contribution 4 addresses the issue of efficiency, an area
where lexical metrics still excel over neural metrics. Collectively, these contributions advance
the field of MT evaluation, offering new evaluation methodologies, interpretability insights,
best practices, and improved efficiency.

In addition to the aforementioned contributions, I have had the privilege of actively collabo-
rating on the following research projects:

• Explainable Quality Estimation (Treviso et al., 2021): In 2021, the Eval4NLP workshop
organized the first shared task on Explainable QE. In our submission to this shared task
(Treviso et al., 2021), we experimented with several explainability methods to extract the
relevance of input tokens from sentence-level QE models built on top of multilingual pre-
trained transformers. We showed that these attention methods, combined with gradient
methods, can be effectively used to extract explanations for sentence-level results. This
work served as the foundation for our paper on interpretable metrics (Rei et al., 2023) and
received a best paper award at that workshop2.

• Quality-Aware Decoding (Fernandes et al., 2022): Despite the progress in MT quality esti-
mation and evaluation in recent years, decoding in NMT mostly centers around finding the
most probable translation according to the model (MAP decoding), approximated with beam
search, and is oblivious to quality considerations. In this work, we bridge the gap between
quality estimation and decoding in NMT by leveraging recent breakthroughs in QE and MT
metrics. Through various inference methods such as N-best reranking and MBR decoding,
we propose quality-aware decoding for NMT. Our results demonstrate that quality-aware
decoding consistently outperforms MAP-based decoding, not only on neural metrics such
as COMET and BLEURT, but also on human evaluation based on MQM.

• Uncertainty Quantification in MT Evaluation (Glushkova et al., 2021; Zerva et al., 2022b):
The COMET framework relies on point estimates, which provide limited information about

2https://eval4nlp.github.io/2021/awards.html
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the quality of a given translation. In a series of works, we addressed this limitation by in-
troducing uncertainty-aware MT evaluation and analyzing the trustworthiness of predicted
quality. Firstly, we combined the COMET framework with two uncertainty estimation meth-
ods, Monte Carlo dropout and deep ensembles, enabling us to obtain quality scores along
with confidence intervals, thus adding an extra layer of interpretability to COMET. Sec-
ondly, we focused on enhancing the COMET metric by incorporating an uncertainty pre-
diction output. We explored different training objectives, including heteroscedastic regres-
sion, divergence minimization, and direct uncertainty prediction, to target various sources
of aleatoric and epistemic uncertainty. Through our experiments, we achieved improved
results in uncertainty prediction and demonstrated the ability of these predictors to address
specific causes of uncertainty in MT evaluation.

• WMT 2021/2022 Metrics Shared Task (Freitag et al., 2021b, 2022): The metrics shared task
has been a key component of the Conference on Machine Translation (WMT) since 2008,
serving as a way to validate the use of automatic MT evaluation metrics and driving the de-
velopment of new metrics. Since 2021, I have been involved in the organization of the WMT
Metrics shared task and have contributed to several important modifications in the meta-
evaluation of MT metrics. These modifications included transitioning from crowd-sourced
DA to expert-based MQM annotations (Lommel et al., 2014), evaluating metrics across dif-
ferent domains (News, TED talks, Social media, e-Commerce, and Customer Support), and
introducing a new subtask where participants could submit challenge sets targeting potential
issues in MT metrics.

1.2 Document Overview

The subsequent sections of this document are organized as follows: In Section 2, we present
the related work. Section 3 describes COMET, which serves as the main building block of this
thesis. In Section 4, we discuss our work on understanding how neural MT metrics leverage
token-level information to score sentences and, thus, making them more interpretable. Section 5
provides a description of MT-TELESCOPE. In Section 6, we outline a set of optimizations aimed at
making COMET more computational efficient. Section 7 covers additional contributions. Finally,
in Section 8, we present the main conclusions drawn from this work, along with considerations for
future research.
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Chapter 2

Related Work

As discussed in Chapter 1, the evaluation of Machine Translation (MT) can be conducted through
automated methods, utilizing MT metrics that compare a hypothesis with its corresponding refer-
ence, or by employing a Quality Estimation (QE) system that estimates the quality of a translation
by comparing it with the source text. Alternatively, human evaluation can also be employed.

In this chapter, we will begin by providing a brief overview of the various types of human eval-
uation metrics that will be utilized in this thesis. Subsequently, we will delve into an exploration
of the different automatic metrics and analysis tools available.

2.1 Human Evaluation of Machine Translation

Automated metrics are typically evaluated by measuring their correlations with human annota-
tions. Therefore, it is essential to comprehend the underlying distinctions among various human
evaluation schemes in order to better interpret metric results. In this regard, we will start by ex-
plaining three common types of human evaluation that are frequently used as ground truth.

2.1.1 Human Translation Error Rate

A straightforward approach to assess the quality of an MT output is to have a professional trans-
lator correct it by making only the necessary changes. The corrected version of the original trans-
lation is referred to as a Post-Edited Translation (PE). In the case of high-quality MT outputs, the
resulting PE will be very similar or identical to the original translation. However, when the MT
output is of poor quality, the professional translator will need to make extensive modifications to
improve it. Human Translation Error Rate (HTER) (Snover et al., 2006) is a metric defined as
follows:

HTER =
number of edits

number of words in the final PE
(1)

Intuitively, a larger number of edit operations leads to a higher HTER value, indicating a
greater amount of editing effort. Conversely, lower HTER values indicate good translations where
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minimal changes were required. Figure 2.1 illustrates the distinction between an MT output, a
Post-Edited MT, and a human reference.

Figure 2.1: Example of a source with respective reference, translation and post-edited translation
(PE). Note that the difference between the MT output and the resulting PE is 9 words (9 edit
operations). This results in a 9

22 = 0.4090 HTER

2.1.2 Direct Assessments

The Conference on Machine Translation (WMT) organizes annual MT shared tasks, where partic-
ipating systems are evaluated using direct estimates of quality, also known as Direct Assessments
(DA) (Graham et al., 2013). A DA involves assigning a score between 0 and 100 to reflect the
adequacy of a given translation. In WMT shared tasks, DA scores are typically collected using the
APPRAISE TOOL (Federmann, 2010, 2018). Annotators are presented with the original source,
the candidate translation, and a specific question: ”How accurately does the above candidate text
convey the original semantics of the source text?”. To provide their answer, annotators utilize a
sliding bar ranging from 0 to 100, where 0 represents a completely inaccurate translation and 100
represents a perfect one. Figure 2.2 showcases a screenshot of the tool.

Figure 2.2: Example of a DA annotation performed on APPRAISE TOOL.

One of the main advantages of DA evaluation is its relative speed and the minimal training
required for annotators. This makes DA evaluation well-suited for large-scale campaigns of MT
evaluation, such as the annual workshops and conferences on Machine Translation (WMT). More-
over, the simplicity of the scoring process, utilizing a sliding bar, makes it accessible to a wide
range of annotators, even those without specialized training in translation or linguistics.
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2.1.3 Multidimensional Quality Metrics

Multidimensional Quality Metrics (MQM) is a versatile framework that offers a hierarchy of trans-
lation errors, which can be customized to suit specific applications. An evaluation schema based
on MQM (Lommel et al., 2014) requires explicit error annotation and is often preferred over sim-
pler evaluation schemas, such as DA (Freitag et al., 2021a).

When using MQM for evaluation, annotators are instructed to identify and highlight errors in
the text. For each error, they are required to select a category and assign a severity level (minor,
major, or critical). Each severity level has an associated weight. Typically, the final score for
a segment is derived solely from the severity levels of errors, disregarding assigned categories.
However, it is worth noting that the option to compute the score directly from severities also
exists, offering flexibility in the evaluation process. A commonly used formula to compute the
final score is as follows:

MQM score = 100−
IMinor + 5× IMajor + 10× ICrit.

Sentence Length × 100
(2)

In the above equation, IMinor represents the number of minor errors, IMajor represents the
number of major errors, and ICrit. represents the number of critical errors. The MQM score is
derived by subtracting the weighted error count from 100 and normalizing it based on the sentence
length.

Due to the higher level of detail provided by MQM annotations, it has been embraced by
translation companies like Unbabel1 as a means to evaluate not only machine translation but also
human translation.

Furthermore, MQM has recently piqued the interest of major technology companies, including
Google, which has started investigating its application in machine translation. In their implemen-
tation, they annotate only minor and major errors, while introducing a ”Non-translation” category
with a predefined weight of 25. This category is assigned to translations that are so poor that the
annotator can barely comprehend them. Additionally, Google does not normalize the score based
on segment length. To mitigate the impact of long segments, they have imposed a maximum of
five errors per segment, instructing annotators to select the five most severe errors when segments
contain more errors. Consequently, the Google MQM equation is as follows:

MQM score = IMinor+5×IMajor+25×INon-translation (3)

2.2 Automatic Evaluation of Machine Translation

In this section, we will explore the current state of automatic evaluation for machine translation.
Firstly, we will discuss the different approaches to reference-based evaluation (Section 2.2.1), and
then we will delve into the current state-of-the-art reference-free evaluation (Section 2.2.2).

1https://help.unbabel.com/hc/en-us/articles/360004004013-How-does-Unbabel-assess-quality
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Figure 2.3: Example of MQM annotations performed on a customer support chat. This image
reflects the kind of Human Translation Evaluations typically performed at Unbabel for quality
audits. Text marked in green represent minor errors. Text marked in red represent critical errors.
Finally, text marked in yellow represent major errors.

2.2.1 Machine Translation Metrics (Reference-based)

Reference-based machine translation metrics can be categorized into three groups: n-gram-based
metrics, embedding-based and unsupervised neural metrics, and neural fine-tuned methods.

2.2.1.1 n-gram-based Metrics

n-gram-based metrics establish an alignment between the n-grams in a given translation hypothe-
sis and their respective human reference. An n-gram match occurs when a sequence of n subse-
quent words/characters in the hypothesis aligns successfully with the reference. In n-gram-based
metrics, good translations are characterized by a high number of aligned n-grams, indicating both
adequacy and fluency. The choice of n determines the level of fluency considered in the evalua-
tion. Based on the number and size of aligned n-grams, n-gram-based metrics calculate a score
that is typically based on precision (fraction of n-grams in the hypothesis that also appear in the
reference), recall (fraction of n-grams in the reference that also appear in the hypothesis), or a
combination of both. The most widely used n-gram-based metric is BLEU (Papineni et al., 2002).

BLEU was one of the first machine translation metrics developed, and it has since become the
standard method for evaluating translation quality in the MT community. The BLEU score is based
on precision of word n-grams. To address the bias towards longer translations in precision-based
metrics, BLEU incorporates a brevity penalty. In its early stages, BLEU showed correlations above
0.9 (on a scale from -1 to 1) with human judgments conducted on a scale from 1 (very bad) to 5
(very good). These high correlations were promising, as they allowed researchers to assess and
compare the quality of their MT systems accurately without relying solely on human annotations.
However, there was still room for improvement. BLEU considered only exact matches, neglecting
partial matches in terms of surface forms, stemmed forms, and meanings. Other metrics followed
in the footsteps of BLEU by calculating word overlaps between n-grams.

NIST (Doddington, 2002) modifies BLEU by assigning weights to n-gram matches based on
their frequency in the test set. This idea was later employed in embedding-based metrics like YISI

(Lo, 2019) and BERTSCORE (Zhang et al., 2020).

The ROUGE (Lin, 2004) family of metrics, originally designed for text summarization, focuses
on n-gram recall instead of n-gram precision. They introduce the concept of skip-bigrams, allow-
ing for gaps between matching words and providing more flexibility for partial matches compared
to BLEU.
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METEOR (Banerjee and Lavie, 2005) combines word precision and recall by computing an
F-measure with a strong emphasis on recall. It relaxes the reliance on higher-order n-grams and
incorporates support for morphological variants and synonyms using external resources such as
WordNet (Fellbaum, 1998). METEOR-NEXT Denkowski and Lavie (2010) extends the previous
version by incorporating paraphrase tables, which take word synonym matching a step further by
considering entire sentence matches.

These variations and extensions to the original BLEU metric reflect ongoing efforts to enhance
the evaluation of machine translation by accounting for different linguistic aspects and improving
the assessment of translation quality.

Similarly to the aforementioned metrics, TER (Snover et al., 2006) calculates an alignment
between the translation and the reference using the Levenshtein distance (Levenshtein, 1966).
While HTER requires a post-edit human translation, TER can be computed using an independent
reference translation.

For Asian languages like Chinese and Japanese, where white space is not used as a word de-
limiter, specialized word tokenizers are necessary to work with the aforementioned metrics. Addi-
tionally, when using words as n-gram units, matches between morphological variants are limited,
which is particularly important for morphologically rich languages like Russian. To address this,
metric developers have started exploring character-level metrics such as CHARTER Wang et al.
(2016) (which operates similarly to TER at the character level) and CHRF Popović (2015).

CHRF Popović (2015) calculates an F1 score based on character-level 6-grams. This straight-
forward approach has shown competitive results compared to METEOR without the need for ex-
ternal resources. Moreover, since it relies solely on character sequences, this metric is suitable for
various scripts without depending on language-specific tokenization. CHRF has been included in
all editions of the WMT Metrics shared task since its proposal and consistently outperforms BLEU

(Bojar et al., 2016, 2017; Ma et al., 2018, 2019; Mathur et al., 2020b).

2.2.1.2 Embedding-based and Unsupervised Neural Metrics

In recent years, word embeddings (Mikolov et al., 2013; Pennington et al., 2014; Peters et al.,
2018; Devlin et al., 2019) have become popular for creating soft alignments between translation
hypotheses and references. Metrics like YISI-* (Lo, 2019) have shown superior performance
compared to lexical metrics since their introduction in the WMT18 metrics shared task (Ma et al.,
2018).

The YISI- family of metrics consists of YISI-0, YISI-1, and YISI-2. Among these metrics,
YISI-1 has been identified as the best performing one (Ma et al., 2018; Lo, 2019). YISI-1 mea-
sures the quality between a candidate translation and reference translations by computing cosine
similarity between words and aggregating the scores to produce an n-gram-based similarity. Op-
tionally, YISI-1 can include shallow semantic features such as semantic role labeling. YISI-0 is
a lexical version of YISI-1 that evaluates lexical similarity using the longest common character
substring accuracy between a translation hypothesis and a reference. On the other hand, YISI-2
is similar to YISI-1 but does not rely on references. It utilizes a multilingual embedding space to
measure semantic similarity between a given translation hypothesis and a source sentence. The
YISI- metrics have been submitted to the WMT Metrics shared task since 2018 and were the best
performing metrics for WMT18 and WMT19.
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Similar to YISI-*, BERTSCORE (Zhang et al., 2020) utilizes contextual embeddings from
pre-trained transformers to create soft alignments using cosine similarity between translation and
reference embeddings. Based on the alignment matrix, BERTSCORE provides precision, recall,
and F1 scores. In experiments for MT, the authors reported higher correlations at the system level
compared to YISI-1 on the WMT18 Metrics benchmark, although these correlations were not
statistically significant for most language pairs.

In addition to YISI and BERTSCORE, which can be classified as unsupervised neural met-
rics due to their utilization of embeddings from neural language models like BERT, there are
other embedding-based metrics that have demonstrated improvements over lexical counterparts.
Examples of such metrics include METEOR-VECTOR (Servan et al., 2016), BLEU2VEC (Tättar
and Fishel, 2017), and MOVERSCORE (Zhao et al., 2019).

Another notable example of an unsupervised neural metric is PRISM (Thompson and Post,
2020). Unlike the previously mentioned metrics, PRISM does not rely on a general-purpose lan-
guage model. Instead, it leverages a multilingual machine translation (MT) model, which can
be viewed as a paraphraser when used to translate from a source language to the same target
language. By scoring the probability of a translation given its reference and vice versa, PRISM

presents a novel approach to assessing the quality of machine translation.

In addition to its strong correlation with human judgments, PRISM offers the advantage of
interpretability. The metric examines the log probabilities of individual tokens, providing insights
into the preferences and biases of the paraphraser in relation to a specific translation. This inter-
pretability allows users to gain a deeper understanding of the metric’s assessment by analyzing the
specific signals derived from the log probabilities of each token.

Throughout this thesis, we will frequently refer to BERTSCORE and PRISM as our baselines
to represent the category of evaluation metrics discussed in this section.

2.2.1.3 Neural Fine-tuned Metrics

Neural fine-tuned metrics take a different approach compared to lexical and embedding-based
metrics. Instead of directly measuring similarity between a translation hypothesis and a reference,
these metrics use supervised learning to mimic human perception of translation quality.

Some popular neural fine-tuned metrics include RUSE (Shimanaka et al., 2018a,b), BLEURT

(Sellam et al., 2020), COMET(Rei et al., 2020a), C-SPEC(Takahashi et al., 2020), ROBLEURT

(Wan et al., 2021) and UNITE (Wan et al., 2022).

RUSE utilizes three pre-trained Bidirectional Long Short-Term Memory neural networks (BiL-
STM) to encode both the translation hypothesis and the reference. These BiLSTMs are trained on
various tasks to extract different sentence embeddings, which are then concatenated to form feature
vectors. The semantic relation between the feature vectors is captured using element-wise product
and absolute difference operations. The concatenated feature vector is fed into a feed-forward
regressor for quality assessment. In experiments, RUSE showed improvements in segment-level
performance for the WMT16 Metrics compared to sentence-level BLEU.

BLEURT utilizes the BERT model to jointly encode the translation hypothesis and the refer-
ence, with the embedding of the [CLS] token serving as the input feature for the feed-forward
regressor. The training process of BLEURT consists of two stages. In the warm-up stage, the
metric predicts other machine translation (MT) metrics using a large-scale synthetic corpus. This
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(a) RUSE Architecture (b) COMET Architecture (c) BLEURT Architecture

(d) ROBLEURT Architecture (e) C-SPEC Architecture

Figure 2.4: Neural architecture difference between RUSE, BLEURT, COMET, C-SPEC and ROB-
LEURT. All These metrics are made of the following main blocks; input layer, encoding layer,
pooling layer and regression layer. The input layer receives the translation hypothesis (h) along
with the corresponding reference (r) and, in COMET, C-SPEC and ROBLEURT, the source (s).
Then prepares that input for the encoding layer where a pre-trained model is used to extract fea-
tures. Those features are then passed to a pooling layer that creates an overall representation of all
inputs and passes it to the regression layer that will produce a quality assessment. As we will see
in section 3 COMET can also be trained for a translation ranking task where the quality assessment
is given directly after the pooling layer.
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stage helps the model learn from a wide range of data. In the fine-tuning stage, BLEURT is further
trained using human quality assessment data, which provides more targeted and specific feedback.

In terms of performance, BLEURT has demonstrated superior results compared to other embedding-
based metrics like BERTSCORE and MOVERSCORE in terms of correlations with human judg-
ments. Additionally, the warm-up stage in the training process has shown to enhance the metric’s
robustness against quality drifts in machine translation, ensuring consistent performance over dif-
ferent translation scenarios.

C-SPEC is similar to BLEURT in terms of architecture but incorporates the source segment as
an additional input. The translation hypothesis is encoded twice: once with the source segment
and again with the reference segment. The resulting [CLS] token embeddings are concatenated
and passed to a regression layer. For the WMT 2021 shared task, Takahashi et al. (2021) proposed
training the model with pseudo negative examples, which are translations with induced critical
errors.

ROBLEURT is an extension of BLEURT that introduces the source segment as part of the input
and replaces the BERT model with XLM-R. During the warm-up stage, ROBLEURT leverages the
COMET metric (as discussed in Section 2) to generate synthetic labels for training. Building on the
advancements of ROBLEURT, the authors presented UNITE Wan et al. (2022), which introduces
a novel training objective that combines reference-free and reference-based evaluation.

UNITE is jointly trained to estimate translation quality using three different inputs: (hypothe-
sis, source), (hypothesis, reference), and (hypothesis, source, reference). Each input configuration
provides a distinct perspective on the quality assessment. During inference, users have the flexi-
bility to choose which input to utilize or can even ensemble the three output scores. This flexibility
enables users to tailor the metric according to their specific evaluation needs.

These neural fine-tuned metrics have dominated the WMT Metrics task since 2020. Metrics
like BLEURT, COMET, UNITE have formed distinct clusters of winning metrics in recent years
(Freitag et al., 2021b, 2022). Figure 2.4 illustrates the differences in neural architectures for these
metrics.

2.2.2 Quality Estimation (Reference-free Metrics)

In the field of machine translation evaluation, Quality Estimation (QE) has historically been re-
garded as a technique for predicting the quality of machine translations without relying on a ref-
erence translation. QE serves as a proxy for MT evaluation (Specia et al., 2009). Initially, when
QE was introduced as a regression task (Specia et al., 2009), the majority of MT metrics fo-
cused on lexical aspects (as discussed in Section 2.2.1.1). However, with recent advancements in
QE, particularly driven by large cross-lingual pre-trained models, these systems have emerged as
competitive alternatives to traditional MT metrics that assess translation quality using reference
translations (Rei et al., 2021a). Furthermore, the architecture of QE systems and neural fine-tuned
metrics, such as COMET, share many similarities due to their reliance on large pre-trained models.
The key distinction between these two types of systems lies in the presence or absence of a refer-
ence translation. To clearly differentiate between these approaches in this thesis, we will refer to
the task of QE as reference-free evaluation/metrics.

Most machine translation (MT) metrics rely on a reference translation to compare and evaluate
a hypothesis translation. However, the process of creating reliable reference translations is both

13 of 94



Chapter 2 Related Work

time-consuming and expensive, often requiring the expertise of professional translators. As a
result, reference-free metrics have emerged as an alternative to traditional metrics, offering a way
to save time and reduce costs.

The Conference in Machine Translation (WMT) annually hosts a shared task on quality esti-
mation, which consists of various subtasks. These subtasks include sentence-level HTER (Human
Translation Error Rate) prediction, word-level OK/BAD tagging, and more recently, sentence-level
DA (Direct Assessment) prediction. The primary subtasks for many years were sentence-level
HTER prediction and word-level OK/BAD tagging. In word-level OK/BAD tagging, the goal is
to predict the edit operations that are performed during the post-editing process. This subtask is
often performed alongside HTER prediction. Figure 2.5 provides an illustration of the objectives
of these two subtasks.

Figure 2.5: Example of taken from (Kepler et al., 2019) where an english source sentence (top),
a German translation (bottom) and its post-edition (middle) are shown. We can also observe the
different type of word-level quality tags. The HTER sentence score for this segment is given by
the number of edit operations (8) normalized by the length of the post-edition (12), which results
in 8/12 = 66.7%

In more recent years, particularly in 2020, the primary task of the QE shared task shifted
from HTER prediction and word-level tags to DA prediction, aligning with the direction taken by
metrics.

Two prominent open-source toolkits for QE are OPENKIWI (Kepler et al., 2019) and TRAN-
SQUEST (Ranasinghe et al., 2020). OPENKIWI emerged as the winner of the QE shared task in
2019 (Fonseca et al., 2019), while TRANSQUEST claimed the top spot in 2020 (Specia et al.,
2020). Interestingly, the system architectures employed by both toolkits remained consistent
across these two years. They utilized a cross-lingual pretrained transformer model, XLM-RoBERTa,
which jointly encoded the source and target (MT hypothesis) texts. These encoded representations
were then leveraged to make predictions at either the word-level or segment-level. At the segment-
level, these models shared fundamental similarities with BLEURT, with the distinction that they
relied solely on the source text instead of utilizing the reference translation.

2.2.3 Natural Language Generation Analysis Tools

While the MT metrics discussed earlier provide a general assessment of the quality of developed
systems, without fine-grained evaluation methods such as MQM (section 2.1.3), it is difficult to
pinpoint particular weaknesses in the tested systems. In this section, we will introduce several
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analysis tools that assist MT practitioners in gaining a deeper understanding of the underlying
quality of their systems.

ComparEval (Klejch et al., 2015) was developed to assist MT developers in evaluating dif-
ferent systems and settings. It consists of three key components:

• Evaluation mechanism: This component computes MT evaluation scores according to sev-
eral evaluation metrics and statistical tests.

• Back-end engine: The back-end engine monitors and stores previous translation outputs,
such as outputs from previous MT systems.

• Evaluation panel: The evaluation panel is a graphical interface built on top of the other two
components. It displays the performance of different systems being evaluated, both at the
system-level and the segment-level.

Figure 2.6 illustrates the system-level evaluation panel, where multiple systems can be com-
pared based on their performance across lexical metrics, such as BLEU, uni-gram F-Measure,
Precision, and Recall.

Figure 2.7 demonstrates the segment-level evaluation panel. Here, users can compare two
systems based on their lexical similarity to the reference translation. It’s important to note that for
segment-level analysis, users need to specify the two systems they want to compare and the lexical
metric they want to use. The segments are then sorted according to the differences in the chosen
metric.

Another similar but more recent tool is Compare-MT (Neubig et al., 2019). It builds upon
the features of ComparEval by incorporating additional metrics such as METEOR and ROUGE.
It also introduces a bucketed analysis feature, which categorizes words or sentences into buckets
and calculates relevant statistics for each bucket. This analysis enables users to answer questions
such as, ”On what types of sentences can one system outperform the other?” The sentence type
can be defined based on factors like length or quality, as determined by the available metrics.

Figure 2.8 illustrates the results of a sentence-length bucketed analysis comparing a Phrase-
Based Machine Translation (PBMT) system with a Neural Machine Translation (NMT) system.
From this analysis, we can observe that the PBMT system performs better on longer sentences,
while its overall performance is lower compared to the NMT system.

While ComparEval and Compare-MT primarily focus on machine translation, VizSeq
(Wang et al., 2019) is designed to handle various natural language generation tasks, including
those involving images, audio, and video as the source. Unlike previous tools that heavily rely on
lexical metrics, VizSeq incorporates embedding-based metrics such as BERTSCORE.

2.2.4 Computationally Efficient Evaluation

Not much research has focused on improving the computational efficiency of neural fine-tuned
metrics. To the best of our knowledge, only one study by Pu et al. (Pu et al., 2021) has addressed
this issue. The authors aimed to explore the trade-off between multilinguality and model capacity
for machine translation evaluation. They trained several smaller versions of RemBERT (Chung
et al., 2021), which had 3, 6, and 12 layers. All these models were trained on the same data and
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Figure 2.6: System-level evaluation panel from ComparEval (Klejch et al., 2015). In this panel
we can observe 8 different systems being compared according to BLEU, n-gram F-Measure, Pre-
cision and Recall for a given testset.

supported 104 languages. The results indicated that compared to the original RemBERT model
with 32 layers, the smaller versions performed significantly worse, particularly for zero-shot lan-
guage pairs. To mitigate this problem, the authors proposed using synthetic data for low-resource
languages and employing a 1-to-N distillation approach. This approach involved distilling the
knowledge of a large teacher model into several students specialized in language families (e.g.,
Germanic or Romance languages). The resulting models achieved 92.6% of the teacher’s perfor-
mance while utilizing only one-third of its parameters.

2.2.5 Explainable Quality Estimation

In recent years, quality estimation (QE) systems such as OPENKIWI and TRANSQUEST have
achieved remarkable performances (Fonseca et al., 2019; Specia et al., 2020, 2021). However,
these systems, built on large pretrained language models, trade efficiency and interpretability for
improved performance. The lack of interpretability undermines user trust in these advanced tech-
nologies, leading to the neglect of these high-quality systems by many users (Leiter et al., 2022).

To address these limitations, in 2021, the 2nd edition of the Workshop on “Evaluation &
Comparison of NLP Systems” (Eval4NLP 2021) (Gao et al., 2021) organized a shared task on
Explainable QE (Fomicheva et al., 2021). The primary goal of this task was to provide a sentence-
level score indicating the overall quality of a translation and to explain this score by identifying the
specific words that were considered errors. In this first edition, the authors introduced a new dataset
where human annotators were asked to explain DA annotations by highlighting the errors present

16 of 94



Chapter 2 Related Work

Figure 2.7: Segment-level evaluation panel from ComparEval (Klejch et al., 2015). In this
panel we can observe the lexical differences between the reference, and two systems: Neural-MT
and CU-Chimera.

Figure 2.8: Sentence length bucketed analysis from Compare-MT (Neubig et al., 2019). In this
plot we are comparing a Phrase-Based Machine Translation (PBMT) system against a Neural
Machine Translation (NMT) system for different buckets defined according to sentence length.

in the translation. Later, in the WMT 2022 QE shared task (Zerva et al., 2022a), the organizers
introduced an explainable QE subtask using MQM annotations, which naturally provided error
spans.

Given the parallels between QE and MT Metrics and our interest in interpretability for this
thesis, we actively participated in both editions of this shared task. Our work on explainable
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QE is presented in Chapter 7 and serves as the foundation for Chapter 4, where we apply the
findings from QE to our best-performing neural fine-tuned metrics. As we will see, while our work
mainly focuses on attention and gradient methods, other participants followed simpler approaches
that only leverage the underlying representations produced by the encoder models behind the QE
system. An example of such an approach is the work by Tao et al. (2022), which, similar to
BERTSCORE, creates alignments between the source and translation. Each word then receives a
score that is the inverse of the cosine similarity. Intuitively, words that do not align well with
the source sentence correspond to translation errors. This simple approach was a top-performing
method for 5 out of 9 language pairs in the WMT 2022 QE shared task Zerva et al. (2022a).

18 of 94



Chapter 3 COMET: A Neural Framework for MT Evaluation

Chapter 3

COMET: A Neural Framework for MT
Evaluation

As previously mentioned, in this chapter, we present COMET (Crosslingual Optimized Metric for
Evaluation of Translation), a framework for training highly multilingual and adaptable MT evalua-
tion models that can function as metrics. Our framework takes advantage of recent breakthroughs
in cross-lingual language modeling (Artetxe and Schwenk, 2019; Devlin et al., 2019; Conneau
and Lample, 2019; Conneau et al., 2020) to generate prediction estimates of human judgments
such as Direct Assessments (DA) (Graham et al., 2013), Human-mediated Translation Edit Rate
(HTER) (Snover et al., 2006) and metrics compliant with the Multidimensional Quality Metric
framework (Lommel et al., 2014).

To illustrate the effectiveness and flexibility of the COMET framework, train several mod-
els that estimate different types of human judgements. Through our experiments, we showcase
promising progress in terms of improved correlation with human evaluation and robustness across
multiple dimensions, such as high-quality MT, diverse domains, and various languages.

The work presented in this section builds upon our initial research (Rei et al., 2020a) published
in the Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), as well as findings from our participation in the WMT Metrics shared task from 2020
to 2022 (Rei et al., 2020b, 2021a, 2022b).

3.1 Model Architectures

As we have seen in Section 2.1, human judgements of MT quality usually come in the form of
segment-level scores, such as DA, MQM and HTER (see Section 2.1). For DA, it is common
practice to convert scores into relative rankings (DARR) when the number of annotations per
segment is limited (Bojar et al., 2017; Ma et al., 2018, 2019). This means that, for two MT
hypotheses hi and hj of the same source s, if the DA score assigned to hi is higher than the
score assigned to hj , hi is regarded as a “better” hypothesis.1 To encompass these differences,
our framework supports two distinct architectures: The Estimator model and the Translation
Ranking model. The fundamental difference between them is the training objective. While the

1In the WMT Metrics Shared Task, if the difference between the DA scores is not higher than 25 points, those
segments are excluded from the DARR data.
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Estimator is trained to regress directly on a quality score, the Translation Ranking model is trained
to minimize the distance between a “better” hypothesis and both its corresponding reference and
its original source. Both models are composed of a cross-lingual language model and a pooling
layer.

3.1.1 Cross-lingual language model

The primary building block of all the models in our framework is a pretrained, cross-lingual lan-
guage model such as multilingual BERT (Devlin et al., 2019), XLM (Conneau and Lample, 2019)
or XLM-RoBERTa (Conneau et al., 2020)2. These models contain several transformer encoder
layers that are trained to reconstruct masked tokens by uncovering the relationship between those
tokens and the surrounding ones. When trained with data from multiple languages this pretrained
objective has been found to be highly effective in cross-lingual tasks such as document classifica-
tion and natural language inference (Conneau et al., 2020), generalizing well to unseen languages
and scripts (Pires et al., 2019). For our preliminary experiments, we rely on XLM-RoBERTa
(base) as our encoder model. Later on, we end up increasing the encoder size and replace the base
model with the large one for better performance and generalization.

Given an input sequence x = [x0, x1, ..., xn], the encoder produces an embedding e
(ℓ)
j for

each token xj and each layer ℓ ∈ {0, 1, ..., k}. In our framework, we apply this process to the
source, MT hypothesis, and reference in order to map them into a shared feature space.

3.1.2 Pooling Layer

The embeddings generated by the last layer of the pretrained encoders are usually used for fine-
tuning models to new tasks. However, (Tenney et al., 2019) showed that different layers within
the network can capture linguistic information that is relevant for different downstream tasks. In
the case of MT evaluation, Zhang et al. (2020) showed that different layers can achieve different
levels of correlation and that utilizing only the last layer often results in inferior performance. In
this work, we used the approach described in (Peters et al., 2018) and pool information from the
most important encoder layers into a single embedding for each token, ej , by using a layer-wise
attention mechanism. This embedding is then computed as:

exj = µE⊤
xj
α (1)

where µ is a trainable weight coefficient, Exj = [e
(0)
xj , e

(1)
xj , . . . e

(k)
xj ] corresponds to the vector of

layer embeddings for token xj , and α = softmax([α(1), α(2), . . . , α(k)]) is a vector corresponding
to the layer-wise trainable weights. In order to avoid overfitting to the information contained in
any single layer, we used layer dropout (Kondratyuk and Straka, 2019), in which with a probability
p the weight α(i) is set to −∞.

Finally, as in (Reimers and Gurevych, 2019), we apply average pooling to the resulting token
embeddings to derive a sentence embedding for each segment.
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Figure 3.1: Estimator model architecture. The source, hypothesis and reference are independently
encoded using a pre-trained cross-lingual language model. The resulting word embeddings are
then passed through a pooling layer to create a sentence embedding for each segment. Finally,
the resulting sentence embeddings are combined and concatenated into one single vector that is
passed to a feed-forward regression module. The entire model is trained by minimizing the Mean
Squared Error (MSE).

3.1.3 Estimator Model

Given a d-dimensional sentence embedding for the source, the hypothesis, and the reference,
we adopt the approach proposed in RUSE (Shimanaka et al., 2018b) and extract the following
combined features:

• Element-wise source product: h⊙ s

• Element-wise reference product: h⊙ r

• Absolute element-wise source difference: |h− s|

• Absolute element-wise reference difference: |h− r|

These combined features are then concatenated to the reference embedding r and hypothesis
embedding h into a single vector x = [h; r;h⊙ s;h⊙ r; |h− s|; |h− r|] that serves as input to
a feed-forward regressor. The strength of these features is in highlighting the differences between
embeddings in the semantic feature space.

The model is then trained to minimize the MSE between the predicted scores and quality
assessments (DA, HTER or MQM). Figure 3.1 illustrates the proposed architecture.

3.1.4 Translation Ranking Model

Our Translation Ranking model receives as input a tuple χ = (s, h+, h−, r) where h+ denotes an
hypothesis that was ranked higher than another hypothesis h−. We then pass χ through our cross-
lingual language model and pooling layer to obtain a sentence embedding for each segment in the

2We used only masked language models but this could be done with any kind of language model
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Figure 3.2: Translation Ranking model architecture. This architecture receives 4 segments: the
source, the reference, a “better” hypothesis, and a “worse” one. These segments are independently
encoded using a pre-trained cross-lingual language model and a pooling layer on top. Finally,
using the Triplet Margin Loss (Schroff et al., 2015) we optimize the resulting embedding space to
minimize the distance between the “better” hypothesis and the “anchors” (source and reference).

χ. Finally, using the embeddings {s,h+,h−, r}, we compute the Triplet Margin Loss (Schroff
et al., 2015) in relation to the source and reference:

L(χ) = L(s,h+,h−) + L(r,h+,h−) (2)

where:

L(s,h+,h−) = max{0, d(s,h+) − d(s,h−) + ϵ} (3)

L(r,h+,h−) = max{0, d(r,h+) − d(r,h−) + ϵ} (4)

d(u,v) denotes the euclidean distance between u and v and ϵ is a margin. Thus, during training
the model optimizes the embedding space so the distance between the anchors (s and r) and the
“worse” hypothesis h− is greater by at least ϵ than the distance between the anchors and “better”
hypothesis h+. Figure 3.2 illustrates the proposed architecture.

During inference, the described model receives a triplet (s, ĥ, r) with only one hypothesis.
The quality score assigned to ĥ is the harmonic mean between the distance to the source d(s, ĥ)
and the distance to the reference d(r, ĥ):

f(s, ĥ, r) =
2× d(r, ĥ)× d(s, ĥ)

d(r, ĥ) + d(s, ĥ)
(5)

Finally, we convert the resulting distance into a similarity score bounded between 0 and 1 as
follows:

f̂(s, ĥ, r) =
1

1 + f(s, ĥ, r)
(6)
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3.2 Corpora

To demonstrate the effectiveness of our described model architectures (Section 3.1), we train four
MT evaluation models where each model targets a different type of human judgment. Next we
present the corpora used to train each of these models:

3.2.1 HTER Corpora

To train a regressor that predicts HTER, we merge two publicly available corpora: QT21 (Specia
et al., 2017) and APE-QUEST (Ive et al., 2020).

The QT21 corpus contains industry-generated sentences from the information technology or
life sciences domains. It consists of a total of 173K tuples, including the source sentence, the cor-
responding human-generated reference, the MT hypothesis (from either a phrase-based statistical
MT or a NMT system), and the post-edited MT (PE). The language pairs covered in this corpus
are English→German, English→Latvian, English→Czech, and German→English.

The APE-QUEST corpus (Ive et al., 2020) comprises an additional 31K tuples for the language
pairs English→Dutch, French, Portuguese in the legal domain. The MT output in this corpus was
produced using neural MT systems.

For both corpus HTER score is obtained by computing TER between the MT hypothesis and
the corresponding PE. Finally, after computing the HTER for each MT, we built a training dataset
D = {si, hi, ri, yi}Ni=1, where si denotes the source text, hi denotes the MT hypothesis, ri the
reference translation, and yi the HTER score for the hypothesis hi. In this manner, we seek to
learn a regression f(s, h, r) → y that predicts the human-effort required to correct the hypothesis
by looking at the source, hypothesis, and reference (but not the post-edited hypothesis).

3.2.2 MQM Corpora

For our MQM regressor, we utilized the MQM annotations from (Freitag et al., 2021a), which per-
tain to WMT2020, and these were combined with the TED Talk MQM annotations from the 2021
Metrics shared task (Freitag et al., 2021b). The resulting training dataset D = {si, hi, ri, yi}Nn=1

consists of the source text (si), the MT hypothesis (hi) (a translation output from a WMT 2020/21
MT submission), the reference translation (ri), and the MQM score (yi) for each hypothesis
hi. This corpus comprises 56.5K tuples and covers three language pairs: English→Russian,
English→German, and Chinese→English, as well as two domains: News and TED Talks.

All annotations for English→German and Chinese→English were collected by Google using
a similar annotation process. However, for English→Russian, the annotations were collected by
Unbabel, following slightly different guidelines that include critical errors (this difference is fur-
ther explained in Section 2.1.3). To maintain consistency, we decided not to apply sentence length
normalization for the English→Russian portion.

Furthermore, the annotations from the 2021 Metrics shared task also include annotations for
the News domain. However, considering that we already had a substantial number of annotations
for this domain from Freitag et al. (2021a), we made the decision to use the 2021 News domain
as our development set. This choice allowed us to maintain consistency in our evaluation and
effectively utilize the available data for training and testing our models.
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3.2.3 DA and DARR Corpora

Since 2017, the organizers of the WMT News Translation Shared Task (Barrault et al., 2019) have
been collecting human judgments in the form of DA (Graham et al., 2013). It is common practice
to then transform those annotations into DARR (Ma et al., 2019). In this chapter, we utilize the
annotations from 2017 to 2019, either in their original DA format, where the DA score is used
for regression, or in the form of DARR, where our objective is to learn a discriminative function
f(s, h, r) such that the score assigned to a “better” hypothesis (h+i ) is strictly higher than the score
assigned to a “worse” hypothesis (h−i ) (f(si, h+i , ri) > f(si, h

−
i , ri)).

The resulting DARR dataset D = {si, h+i , h
−
i , ri}Ni=1 contains 854K instances, covering 24

high and low-resource language pairs, including Chinese→English (zh-en) and English→Gujarati
(en-gu). On the other hand, the DA dataset D = {si, hi, ri, yi}Nn=1, where yi represents a Z-
normalized DA score3, consists of 698K tuples, covering the same 24 language pairs4.

3.3 Experiments

Using the corpora described in the previous sections, we conducted experiments to train and eval-
uate different versions of our Estimator and Translation Ranking models. Specifically, we trained
three versions of the Estimator model, as described in Section 3.1.3: one that performs regression
on HTER (COMET-HTER), another that performs regression on MQM (COMET-MQM), and a third
version that performs regression on DA (COMET-DA). Additionally, we trained the Translation
Ranking model, as described in Section 3.1.4, using the WMT DARR corpus from 2017 and 2019
(COMET-DARR). In this section, we provide details of the training setup for these models and the
corresponding evaluation setup.

3.3.1 Training Setup

The Estimators (COMET-HTER/MQM/DA) share the same training setup and hyperparameters (de-
tailed in the Appendices). During training, we load the pretrained encoder and initialize both
the pooling layer and the feed-forward regressor. The layer-wise scalars α from the pooling
layer are initially set to zero, while the weights from the feed-forward regressor are initialized
randomly. To prevent catastrophic forgetting and improve generalization, we employ gradual un-
freezing (Howard and Ruder, 2018) during training. This means that the encoder model is frozen
for the first 30% of the first epoch, and then the entire model (except the embedding layer) is
fine-tuned with a constant learning rate of 1e−5. Contrarely, since COMET-DARR model does not
have any additional parameters, it is fine-tuned from the beginning.

3In WMT shared tasks, DA scores are typically normalized using the mean and standard deviation of each annotator
4It is worth noting that DARR data is derived from DA using pairwise comparisons, which explains the larger size

of DARR compared to the original DA dataset, even after excluding comparisons that fall within a 25-point difference.
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Additionally, all models are trained using the AdamW optimizer (Loshchilov and Hutter,
2018) with a batch size of 32 and using 2021 data for validation and early stopping. As we have
said previously, for the estimator models we used the News MQM annotations from (Freitag et al.,
2021b) while for COMET-DARR we used the relative-ranks from that same year and languages.

3.3.2 Evaluation Setup

To address the low segment-level correlations exhibited by MT Metrics (Ma et al., 2019) while
maintaining robustness across different language pairs and domains, our evaluation setup fo-
cuses on segment-level correlations using MQM annotations from the WMT 2022 Metrics task
(Freitag et al., 2022). We consider four different domains: News, eCommerce, Social Media,
and Customer Support. However, since these annotations only cover high-resource language
pairs (English→German, English→Russian, Chinese→English) that include English, as a sec-
ondary evaluation, we use the DARR from WMT 20215. This allows us to provide a compre-
hensive evaluation that covers different domains and includes challenging language pairs such
as Hindi↔Bengali (hi-bn and bn-hi), Zulu↔Xhosa (zu-xh and xh-zu), English→Hausa
(en-ha), English→Icelandic (en-is), and English→Japanese (en-ja).

For the WMT22 MQM data, we report the Pearson correlation coefficient (ρ) and Kendall’s
Tau (τ ) according to the Perm-Both hypothesis test (Deutsch et al., 2021), using 500 re-sampling
runs with a significance level (p) set to 0.05.

Regarding the WMT21 DARR test data, since we have pairwise comparisons, we use a modi-
fied version of Kendall’s Tau, denoted as τ̂ , which is defined as follows:

τ̂ =
Concordant − Discordant
Concordant + Discordant

(7)

Here, Concordant represents the number of times a metric assigns a higher score to the “better”
hypothesis h+, while Discordant represents the number of times a metric assigns a higher score
to the “worse” hypothesis h−. It also includes cases where the scores assigned to both hypotheses
are the same. Notably, the DARR data excludes segments where the difference between the DA
scores of two hypotheses with the same source is not higher than 25 points, ensuring that there are
no ties in the data.

In addition to our proposed models, we include several baselines for comparison. We use two
of the most commonly used lexical metrics, BLEU (Papineni et al., 2002) and CHRF (Popović,
2015), as well as two unsupervised neural metrics, BERTSCORE6 (Zhang et al., 2020) and PRISM

(Thompson and Post, 2020). These baselines provide a reference for the performance of our
models.
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Table 3.1: Segment-level correlations for WMT 2022 MQM annotations over News, eComerce,
Social media, and Customer Support domains (Freitag et al., 2022). The metrics are Pearson (ρ)
and Kendall Tau (τ ). Results in bold indicate which metrics are top-performing for that specific
language pair, domain and metric according to Perm-Both hypothesis test (Deutsch et al., 2021),
using 500 re-sampling runs, and setting p = 0.05.

BERTSCORE COMET Models
BLEU CHRF PRISM P R F1 HTER MQM DA DARR

E
ng

lis
h→

G
er

m
an N

ew
s ρ 0.220 0.260 0.464 0.335 0.337 0.345 0.437 0.502 0.507 0.214

τ 0.167 0.202 0.293 0.238 0.245 0.247 0.278 0.344 0.361 0.169

eC
om ρ 0.173 0.222 0.306 0.266 0.241 0.261 0.366 0.395 0.339 0.159

τ 0.179 0.212 0.290 0.241 0.237 0.246 0.326 0.343 0.321 0.253

So
ci

al ρ 0.172 0.220 0.265 0.245 0.256 0.256 0.300 0.333 0.362 0.158
τ 0.130 0.168 0.212 0.188 0.198 0.197 0.244 0.270 0.297 0.156

C
S ρ 0.228 0.285 0.226 0.271 0.252 0.270 0.281 0.373 0.359 0.153

τ 0.201 0.257 0.207 0.238 0.225 0.235 0.230 0.298 0.307 0.160

E
ng

lis
h→

R
us

si
an N

ew
s ρ 0.169 0.230 0.417 0.310 0.314 0.321 0.343 0.424 0.433 0.154

τ 0.125 0.164 0.310 0.222 0.229 0.231 0.273 0.338 0.349 0.139

eC
om ρ 0.249 0.287 0.408 0.349 0.350 0.359 0.462 0.540 0.444 0.201

τ 0.202 0.221 0.300 0.267 0.266 0.274 0.344 0.366 0.348 0.206

So
ci

al ρ 0.213 0.143 0.207 0.196 0.186 0.195 0.330 0.481 0.371 0.165
τ 0.152 0.132 0.234 0.200 0.194 0.200 0.281 0.372 0.317 0.111

C
S ρ 0.155 0.185 0.234 0.215 0.190 0.207 0.310 0.333 0.328 0.145

τ 0.140 0.175 0.201 0.194 0.172 0.188 0.276 0.285 0.296 0.203

C
hi

ne
se
→

E
ng

lis
h N

ew
s ρ 0.097 0.078 0.288 0.200 0.212 0.215 0.372 0.509 0.377 0.047

τ 0.046 0.042 0.203 0.138 0.145 0.148 0.277 0.346 0.304 0.025

eC
om ρ 0.220 0.230 0.312 0.267 0.284 0.285 0.379 0.436 0.410 0.103

τ 0.174 0.187 0.260 0.223 0.239 0.239 0.300 0.330 0.337 0.079

So
ci

al ρ 0.161 0.177 0.287 0.227 0.253 0.248 0.362 0.501 0.375 0.144
τ 0.162 0.190 0.273 0.224 0.249 0.244 0.286 0.320 0.324 0.184

C
S ρ 0.160 0.206 0.265 0.171 0.154 0.167 0.342 0.375 0.354 0.152

τ 0.125 0.160 0.218 0.146 0.136 0.145 0.285 0.291 0.293 0.173

A
V

G
.

ρ 0.185 0.210 0.307 0.254 0.252 0.261 0.357 0.433 0.388 0.149
τ 0.150 0.176 0.250 0.210 0.211 0.216 0.283 0.325 0.321 0.155

3.4 Preliminary Results

In this section, we will begin by presenting the performance of COMET models trained on differ-
ent types of human assessments and compare these neural fine-tuned metrics with other “unsuper-
vised” metrics across different domains and languages.

5We did not use all DARR from WMT 2021. Since we are already evaluating high-resource language pairs with
MQM data we used only low-resource and mid-resource language pairs and we excluded all directions →English
because they were annotated by mechanical turkers and the quality of those assessments is known to be low (Freitag
et al., 2021a,b).

6For a fair comparison we used XLM-R base instead of the default encoder, mBERT.
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3.4.1 Strong correlations across multiple domains

Table 3.1 presents the results for all four domains across three language pairs. We compare our
COMET models against popular lexical metrics (BLEU and CHRF), as well as more recent unsu-
pervised neural metrics: BERTSCORE and PRISM. Notably, our estimator models consistently
outperform all other metrics, often by significant margins. While the MQM model exhibits the
highest performance, it is noteworthy that the DA model also performs exceptionally well, with
correlations close to those of the MQM model. This is surprising considering that DA annotations
are known to be noisy and have poor correlation with MQM data (Freitag et al., 2021a).

3.4.2 Robustness to low-resource language pairs

Table 3.2 presents the results for low/mid resource language pairs. Similar to the MQM results,
we compare our COMET models against BLEU and CHRF, BERTSCORE and PRISM. However,
note that PRISM does not support most of these languages, so we can only report PRISM results
for Bengali and Japanese. Comparing the results with the MQM evaluations, we observe that the
estimator model trained on MQM performs the poorest among the COMET models, showing per-
formances similar to CHRF. We attribute this lack of robustness to the limited number of language
pairs seen during training, as publicly available MQM data only exists for three language pairs.
On the other hand, the DA model, which has been trained on 24 language pairs, demonstrates
excellent generalization and outperforms all other metrics on average.

Table 3.2: Segment-level correlations for WMT 2021 DARR over mid and low-resource language
pairs. The correlation metric used is the WMT Kendall (τ̂ ) (Equation 7). * Because PRISM does
not support all languages the average result is not directly comparable with other metrics in this
table.

BERTSCORE COMET Models
BLEU CHRF PRISM P R F1 HTER MQM DA DARR

ZU-XH 0.381 0.530 - 0.444 0.481 0.469 0.528 0.403 0.512 0.510
XH-ZU 0.187 0.301 - 0.263 0.292 0.284 0.285 0.241 0.273 0.222
BN-HI 0.070 0.071 - 0.134 0.105 0.112 0.124 0.100 0.125 0.086
HI-BN 0.246 0.327 0.577 0.393 0.395 0.403 0.479 0.450 0.462 0.430
EN-JA 0.315 0.371 0.442 0.348 0.429 0.420 0.451 0.370 0.497 0.474

EN-HA 0.124 0.186 - 0.135 0.162 0.155 0.178 0.111 0.173 0.165
EN-IS 0.279 0.373 - 0.354 0.377 0.373 0.396 0.385 0.434 0.400
AVG. 0.229 0.308 0.510* 0.296 0.320 0.317 0.349 0.294 0.354 0.327

3.5 The wmt22-comet-da Metric

Based on the results we have just presented, we believe that employing a DA estimator is the
most promising approach to achieve our goal of developing a single metric that exhibits strong
correlations with human judgments and demonstrates robustness across various domains
and language pairs. Unlike MQM data, which is limited in availability, DAs are abundant in the
literature and easy to collect. This abundance opens up possibilities for training an estimator with
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more diverse data, encompassing various domains and languages. However, we acknowledge that
MQM data offers greater richness, and we recognize the potential of aligning the evaluation metric
around MQM for future advancements, particularly if we can generate error spans with categories
and severities.

For the WMT 2022 shared task (Rei et al., 2022b), one of our focus was on developing a
robust DA estimator. To accomplish this, we concatenated all publicly available DA up to 2021,
while reserving the 2021 DARR and 2022 MQM data for testing purposes. Therefore, the final
DA corpus for this model consisted of the concatenation of DA from 2017, 2018, 2019, 2020, and
the MLQE-PE dataset (Fomicheva et al., 2022). Although the MLQE-PE corpus did not provide
explicit references, we utilized the post-edit translations as references. Notably, the MLQE-PE
dataset encompassed several low-resource languages, including Nepali, Sinhalese, Pashto, and
Khmer. The resulting corpus comprised 1027155 tuples, covering 36 language pairs (languages
distribution is shown in Appendix A.1).

In terms of domain, the resulting corpus mainly consists of News and Wikipedia articles.
However, due to the nature of these domains, it encompasses a wide range of topics, enhancing
the diversity of the data and contributing to the robustness of our estimator model.

Furthermore, we employed XLM-R Large as our encoder model, replacing XLM-R Base.
During the fine-tuning process, we made slight adjustments to the hyperparameters, particularly
using a lower learning rate for the encoder and implementing layer-wise learning rate decay (see
Appendix A.3 for detailed hyperparameters). These modifications were determined to be the best-
performing ones based on the MQM annotations from the 2021 News domain, which we used for
development.

COMET-DA (base) wmt22-comet-da Prism

Figure 3.3: Kendall Tau (τ ) correlations across the different WMT 2022 shared task domains
for wmt22-comet-da, our initial model trained on top of XLM-R Base, and PRISM, a strong
unsupervised neural baseline.
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Figure 3.3 shows the average τ for each domain of WMT 2022 MQM data. We observe that,
compared to the previous DA model, our results improved across all domains. For comparison,
we also show the results of PRISM, the best-performing unsupervised metric from Table 3.1.

Figure 3.4 contrasts the results of our best model from Table 3.2 and CHRF, the best base-
line, with wmt22-comet-da on low/mid-resource language pairs. Overall, we observe im-
provements in all languages, and when compared to CHRF, we can see significant differences for
Hindi→Bengali, English→Icelandic, and English→Japanese.

Language Pair

0.000

0.200

0.400

0.600

zu-xh xh-zu bn-hi hi-bn en-ja en-ha en-is

chrF COMET-DA (base) wmt22-comet-da

Figure 3.4: Kendall Tau (τ̂ ) correlations for mid/low-resource language pairs for
wmt22-comet-da, our initial model trained on top of XLM-R Base, and CHRF, a strong lexical
baseline known for its effectiveness on languages with uncommon tokenization.

3.5.1 Robustness to High-Quality MT

For our analysis, we utilized the WMT 2022 News test set and evaluated a subset of the data using
the top-performing MT systems for English→German and Chinese→English. We compared our
approach against BERTSCORE F1, PRISM, and CHRF. The results are presented in Figure 3.5.

In the case of Chinese→English, we observed that CHRF experienced a drop from 0.195 to
0.149 τ when considering only the top-4 MT systems. This observation supports the findings of
(Ma et al., 2019), where lexical metrics demonstrated a significant decrease in performance when
considering only the top-4 systems7.

Interestingly, the neural unsupervised metrics, BERTSCORE F1 and PRISM, demonstrated sta-
ble correlations with PRISM even exhibiting an increase in performance when evaluating the top-4
systems. Notably, when examining COMET (wmt22-comet-da), we observed its robust behav-
ior across different data cuts. This indicates its ability to differentiate between two translations,
even when they may have minimal quality differences.

7It is important to note that the analysis conducted in (Ma et al., 2019) differs from our analysis in this section.
They employed system-level Pearson (ρ̂), which we consider to be unreliable due to the limited number of data points.
Therefore, we focused on segment-level correlations, which provide a larger number of data points for analysis, even
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All 10 8 6 4
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English→German News domain

COMET

CHRF

PRISM

BERTSCORE F1

Figure 3.5: Kendall Tau τ performance over the top (10, 8, 6, and 4) performing systems on WMT
22 News Testset. For COMET we used the wmt22-comet-da model.

3.6 Comparison to other Neural Fine-tune Metrics

Since the introduction of COMET, several other neural fine-tuned metrics have emerged in the
literature. In this section, we will focus on analyzing two popular metrics: BLEURT8 and UNITE9.
As discussed in Section 2.2.1.3, the key distinction between these metrics and COMET estimators
lies in their approach to encoding. Unlike COMET, which utilizes combined features (as described
in Section 3.1.3), BLEURT and UNITE employ joint sentence encoding and leverage full input
attention to generate a [CLS] embedding that incorporates information from the entire input.
Notably, both BLEURT and UNITE use different data for training. While both metrics use fewer
DA annotations compared to our most recent model, they augment the data they use with synthetic
examples of perfect and imperfect translations.

Table 3.3 presents the correlations achieved by these metrics on the MQM annotations for
high-resource language pairs from the WMT 22 Metrics task, while Table 3.4 shows the results for
low/mid resource language pairs. UNITE can be used with different input combinations: [mt;
src] ( SRC ), [mt; ref] (REF), and [mt; src; ref] (SRC+REF). We provide results
for all of these combinations, as well as the average those scores. Observing the results, we
can see that these metrics achieve similar performance, with UNITE showing better correlations
on low/mid resource language pairs, particularly when using SRC+REF, while COMET seem to
perform better, on average, on the MQM data for high-resource languages.

Apart from performance, considering the architecture, COMET models offer two advantages:
Firstly, they can handle longer inputs since they do not have to fit more than one sentence into the
512 max positional embeddings of XLM-R/RemBERT. Secondly, they allow caching of source
and reference embeddings, as discussed in Chapter 5, making them more efficient for tasks such
as Minimum Bayes Risk (MBR) decoding10 or scoring multiple systems over the same test set.
Additionally, compared to both BLEURT and COMET, UNITE is much slower when ensembling
the results from SRC , REF, and SRC+REF, as it requires three forward passes without result reuse.

when considering only the top 4 performing systems.
8We used the latest checkpoint BLEURT-20: https://tinyurl.com/6jee7ts8
9UNITE was reportedly built using our framework, further demonstrating the versatility and adaptability of the

COMET framework. We used the UNITE-MUP checkpoint: https://tinyurl.com/jdjzsbt6
10In Section 7.2 we present work where we test COMET with MBR decoding
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Table 3.3: Comparison between different neural fine-tuned metrics on segment-level correlations
for WMT 2022 MQM annotations over News, eComerce, Social media, and Customer Support
domains (Freitag et al., 2022). The correlation metrics are Pearson (ρ) and Kendall Tau (τ ).
Results in bold indicate which metrics are top-performing for that specific language pair, domain
and metric according to Perm-Both hypothesis test (Deutsch et al., 2021), using 500 re-sampling
runs, and setting p = 0.05.

UNITE COMET

BLEURT SRC REF SRC+REF Avg. wmt22-comet-da

E
ng

lis
h→

G
er

m
an N

ew
s ρ 0.568 0.516 0.557 0.553 0.568 0.581

τ 0.380 0.329 0.374 0.371 0.373 0.369

eC
om ρ 0.444 0.329 0.404 0.411 0.409 0.442

τ 0.347 0.321 0.366 0.372 0.374 0.378

So
ci

al ρ 0.430 0.314 0.428 0.422 0.421 0.461
τ 0.328 0.248 0.328 0.324 0.322 0.330

C
S ρ 0.467 0.247 0.457 0.463 0.447 0.445

τ 0.338 0.168 0.329 0.335 0.308 0.324

E
ng

lis
h→

R
us

si
an N

ew
s ρ 0.498 0.492 0.484 0.499 0.515 0.516

τ 0.379 0.370 0.375 0.379 0.392 0.391

eC
om ρ 0.553 0.436 0.534 0.537 0.534 0.539

τ 0.417 0.350 0.401 0.402 0.399 0.409

So
ci

al ρ 0.398 0.361 0.379 0.379 0.398 0.417
τ 0.348 0.321 0.328 0.331 0.345 0.366

C
S ρ 0.384 0.386 0.476 0.476 0.480 0.431

τ 0.324 0.303 0.361 0.361 0.368 0.338

C
hi

ne
se
→

E
ng

lis
h N

ew
s ρ 0.462 0.375 0.394 0.399 0.418 0.423

τ 0.336 0.295 0.313 0.319 0.331 0.335

eC
om ρ 0.456 0.319 0.401 0.410 0.410 0.440

τ 0.367 0.272 0.344 0.351 0.349 0.358

So
ci

al ρ 0.420 0.336 0.385 0.381 0.393 0.410
τ 0.360 0.299 0.349 0.349 0.351 0.353

C
S ρ 0.363 0.321 0.390 0.386 0.401 0.398

τ 0.301 0.253 0.317 0.308 0.318 0.322

A
V

G
.

ρ 0.454 0.369 0.441 0.443 0.449 0.459
τ 0.352 0.294 0.349 0.350 0.353 0.356

However, one disadvantage we found with COMET estimator models is that they are difficult to
scale, particularly in the era of large language models. Preliminary experiments replacing XLM-R
Large (560M parameters) with XLM-R XL and XXL (3.5B and 10.7B parameters respectively)
proved challenging to converge during training, and successful convergence was only achieved
by reducing the sentence embedding size with a linear projection that reduces the embedding
dimension before passing it to the feed-forward layer. However, this compression results in some
information loss, and the resulting model is not better than the one trained with XLM-R Large.
This limitation makes it more attractive to develop large-scale metrics using an architecture closer
to BLEURT and UNITE and, potentially, distil those metrics into smaller models following COMET

architecture.
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Table 3.4: Comparison between different neural fine-tuned metrics on segment-level correlations
for WMT 2021 DARR over mid and low-resource language pairs. The correlation metric used is
the WMT Kendall (τ̂ ) (Equation 7).

UNITE COMET

BLEURT SRC REF SRC+REF Avg. wmt22-comet-da

ZU-XH 0.563 0.484 0.592 0.587 0.559 0.566
XH-ZU 0.364 0.285 0.360 0.365 0.348 0.302
BN-HI 0.178 0.134 0.170 0.170 0.167 0.153
HI-BN 0.499 0.512 0.495 0.516 0.529 0.495
EN-JA 0.482 0.465 0.529 0.531 0.543 0.528

EN-HA 0.186 0.221 0.249 0.257 0.260 0.220
EN-IS 0.469 0.436 0.489 0.489 0.488 0.494
AVG. 0.392 0.363 0.412 0.417 0.413 0.394

In addition to the correlations discussed above, independent studies have also explored the
strengths and weaknesses of these three metrics. Amrhein and Sennrich (2022) showed that
COMET estimator models were not able to detect errors in numbers and some named entities.
This finding was corroborated by Alves et al. (2022), who found similar limitations in BLEURT,
while UNITE demonstrated more robustness to these phenomena. Furthermore, Yan et al. (2023)
compared these three metrics, along with other embedding-based ones, and observed the pres-
ence of universal adversarial translations in BLEURT, while COMET and UNITE appeared to be
more robust to such phenomena. The authors hypothesized that the presence of such translations
in BLEURT could be attributed to the data augmentation techniques used, which might introduce
undesirable biases to the model.

3.7 System-level Results

Until now, our focus has primarily been on segment-level correlations, where traditional metrics
have shown particularly low performance. However, the main purpose of metrics is not to assess
the quality of individual translations, but rather to determine which MT system performs best for
a given test set.

To evaluate system-level performance, we adopted a similar setup as described in Section
3.3.2. Instead of Kendall Tau, we report the pairwise accuracy proposed in (Kocmi et al., 2021)
(⊚). This measure, similar to τ̂ (Eq. 7), quantifies how often a metric agrees with human annota-
tors on determining which system performs better on a given test set.

Table 3.5 presents the system-level results on WMT MQM annotations, comparing the neural
fine-tuned metrics discussed in the previous section with CHRF, BERTSCORE (F1), and PRISM.
From the results we observe that neural fine-tuned metrics consistently outperform lexical and
unsupervised metrics at the system level. Notably, BLEURT, UNITE, and COMET achieve similar
performances.
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Table 3.5: System-level results for WMT 2022 MQM annotations over News, eComerce, Social
media, and Customer Support domains (Freitag et al., 2022). Performance is measured in Pearson
(ρ) and Pairwise Accuracy (⊚) (Kocmi et al., 2021). Results in bold indicate which metrics are
top-performing for that specific language pair and domain according to Perm-Both hypothesis
test (Deutsch et al., 2021), using 100 re-sampling runs, and setting p = 0.05.

Neural Fine-tuned
CHRF PRISM BERTSCORE BLEURT UNITE COMET

E
ng

lis
h→

G
er

m
an N

ew
s ρ 0.414 0.506 0.466 0.791 0.819 0.892

⊚ 0.619 0.686 0.657 0.771 0.743 0.800

eC
om ρ 0.659 0.615 0.663 0.938 0.930 0.939

⊚ 0.667 0.676 0.714 0.924 0.848 0.838

So
ci

al ρ 0.739 0.636 0.727 0.825 0.823 0.911
⊚ 0.733 0.705 0.733 0.810 0.743 0.800

C
S ρ 0.946 0.931 0.917 0.917 0.886 0.944

⊚ 0.848 0.819 0.848 0.810 0.705 0.752

E
ng

lis
h→

R
us

si
an N

ew
s ρ 0.907 0.832 0.920 0.550 0.669 0.402

⊚ 0.810 0.829 0.829 0.743 0.762 0.733

eC
om ρ 0.835 0.802 0.848 0.957 0.958 0.919

⊚ 0.752 0.762 0.752 0.933 0.924 0.886

So
ci

al ρ 0.795 0.703 0.808 0.970 0.958 0.950
⊚ 0.819 0.800 0.886 0.924 0.905 0.895

C
S ρ 0.817 0.701 0.783 0.873 0.875 0.892

⊚ 0.762 0.714 0.762 0.800 0.819 0.790

C
hi

ne
se
→

E
ng

lis
h N

ew
s ρ 0.403 0.669 0.492 0.792 0.922 0.899

⊚ 0.619 0.743 0.676 0.762 0.724 0.705

eC
om ρ 0.750 0.880 0.806 0.896 0.963 0.943

⊚ 0.752 0.857 0.829 0.924 0.895 0.867

So
ci

al ρ 0.396 0.497 0.450 0.760 0.766 0.793
⊚ 0.533 0.610 0.562 0.705 0.686 0.686

C
S ρ 0.742 0.487 0.482 0.736 0.896 0.904

⊚ 0.695 0.667 0.705 0.705 0.695 0.638

A
V

G
.

ρ 0.700 0.688 0.697 0.834 0.872 0.866
⊚ 0.717 0.739 0.746 0.817 0.787 0.783

3.8 How Far Can We Go Without References?

Throughout the years of developing the COMET framework, we have built several reference-free
models to participate in the “QE-as-a-metric” subtask of the Metrics task (Rei et al., 2020b, 2021a)
or directly in the QE shared task (Zerva et al., 2021; Rei et al., 2022c). Surprisingly, some of these
models have demonstrated excellent performance in metrics shared tasks (Mathur et al., 2020b;
Freitag et al., 2021b, 2022) and even won the QE shared task in 2022 (Zerva et al., 2022a). Further-
more, an independent study conducted by Microsoft revealed that a reference-free COMET model
ranked as the second-best metric in terms of system accuracy (⊚) across 101 different languages
and 232 translation directions.
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Our best reference-free model follows a similar architecture to OPENKIWI (Section 2.2.2),
but utilizes the same data and hyperparameters as the wmt22-comet-da metric. Consequently,
we named this model wmt22-cometkiwi-da. It is worth noting that running UNITE on SRC

inputs shares the same architecture as wmt22-cometkiwi-da. By referring to Table 3.3 and
Table 3.4, we can already gain insights into the competitiveness of a reference-free evaluation
compared to state-of-the-art MT Metrics. An ensemble of such models was used to secure first
place in the WMT 2022 QE shared task (Rei et al., 2022c). In this thesis, we scale that model
from 560M parameters to 3.5B and 10.7B parameters using larger versions of XLM-R (Goyal
et al., 2021).

Table 3.6: Performance of reference-free models of different scale, ranging from 560M parameters
to 10.7B, measured by segment-level correlations for WMT 2022 MQM annotations over News,
eComerce, Social media, and Customer Support domains (Freitag et al., 2022). We used our best
reference-base metric wmt22-comet-da as baseline. The correlation metrics are Pearson (ρ)
and Kendall Tau (τ ). Results in bold indicate which metrics are top-performing for that specific
language pair, domain and metric according to Perm-Both hypothesis test (Deutsch et al., 2021),
using 500 re-sampling runs, and setting p = 0.05.

COMET COMETKIWI

wmt22-comet-da (580M) large (560M) xl (3.5B) xxl (10.7B)

E
ng

lis
h→

G
er

m
an N

ew
s ρ 0.581 0.546 0.542 0.548

τ 0.369 0.308 0.334 0.330

eC
om ρ 0.442 0.430 0.431 0.464

τ 0.378 0.374 0.358 0.364

So
ci

al ρ 0.461 0.324 0.368 0.423
τ 0.330 0.236 0.276 0.313

C
S ρ 0.445 0.301 0.365 0.388

τ 0.324 0.154 0.206 0.217

E
ng

lis
h→

R
us

si
an N

ew
s ρ 0.516 0.538 0.543 0.531

τ 0.391 0.401 0.410 0.420

eC
om ρ 0.539 0.517 0.537 0.552

τ 0.409 0.372 0.418 0.438

So
ci

al ρ 0.417 0.344 0.392 0.415
τ 0.366 0.323 0.356 0.370

C
S ρ 0.431 0.324 0.413 0.422

τ 0.338 0.288 0.339 0.368

C
hi

ne
se
→

E
ng

lis
h N

ew
s ρ 0.423 0.401 0.437 0.434

τ 0.335 0.326 0.341 0.333

eC
om ρ 0.440 0.372 0.355 0.399

τ 0.358 0.316 0.301 0.324

So
ci

al ρ 0.410 0.378 0.360 0.408
τ 0.353 0.344 0.327 0.353

C
S ρ 0.398 0.355 0.334 0.372

τ 0.322 0.293 0.262 0.298

A
V

G
.

ρ 0.459 0.403 0.423 0.446
τ 0.356 0.311 0.327 0.344
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Table 3.7: Performance of reference-free models of different scale, ranging from 560M parame-
ters to 10.7B, measured by segment-level correlations for WMT 2021 DARR over mid and low-
resource language pairs. The correlation metric used is the WMT Kendall (τ̂ ) (Equation 7). Re-
sults are averaged over 500 re-sampling runs

COMET COMETKIWI

wmt22-comet-da (580M) large (560M) xl (3.5B) xxl (10.7B)

ZU-XH 0.566 0.455 0.516 0.559
XH-ZU 0.302 0.248 0.321 0.365
BN-HI 0.153 0.137 0.144 0.129
HI-BN 0.495 0.529 0.479 0.506
EN-JA 0.528 0.520 0.507 0.539

EN-HA 0.220 0.159 0.256 0.253
EN-IS 0.494 0.454 0.469 0.510
AVG. 0.394 0.357 0.385 0.409

Reference-free evaluation is competitive with reference-based evaluation even for the same
compute budget. From Table 3.6, we can observe that the average τ of wmt22-cometkiwi-da
is τ = 0.311, which is comparable to τ = 0.356 achieved by wmt22-comet-da and far bet-
ter than the results of strong reference-based baselines such as PRISM and BERTSCORE-F1 with
τ = 0.25 and τ = 0.216, respectively (see Table 3.1).

Large-scale reference-free models can outperform SOTA metrics such as wmt22-comet-da.
When scaling the size of the encoder model from Large to XXL, we were able to further improve
the results of our reference-free model. In Table 3.6, we can see that in many cases, the XXL
model is competitive with wmt22-comet-da on the English→Russian language pair. If we re-
call Table 3.3, we see that our XXL model is able to match the performance of UNITE on REF

and SRC+REF inputs. Surprisingly, on low/mid resource language pairs, the XXL model is able
to outperform BLEURT and achieve a performance close to those of UNITE SRC+REF, which is
the best-performing metric for the DARR data.

We note that the metrics against which we compare our XXL QE model could also be built
using larger encoders such as XLM-R XXL. Our point is not that reference-free evaluation is
superior to reference-based evaluation, but rather that we can successfully build evaluation models
that rely solely on source information and far exceed the performance of popular metrics such as
BLEU or BERTSCORE-F1. With sufficient parameters, these models can even perform as well as
well-known SOTA metrics such as COMET and BLEURT, demonstrating the potential of reference-
free evaluation in achieving state-of-the-art results.

3.9 The Importance of Source Information

As we have observed, source-based evaluation can be competitive with reference-based evaluation.
For instance, in Tables 3.3 and 3.4, we can observe that combining reference information with
source information increases correlations for the UNITE metric. Additionally, while reference
translations can be difficult to obtain, they can also be of low quality and introduce undesirable
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biases that decrease the precision of metrics (Freitag et al., 2020).

In this section, we will highlight the importance of using the source in MT metrics. We will
begin by demonstrating the impact that a poor reference can have on the overall performance of
a metric. Subsequently, we will explore how source information can be leveraged to address the
challenge of ambiguous translations.

3.9.1 Impact of a Low-Quality Reference

In the WMT 2021 Metrics Shared Task, an additional domain (other than News) was introduced,
namely TED talks. The transcripts of these talks were extracted from OPUS11 and released by
Reimers and Gurevych (2020). While the talks were originally in English, they were translated
into multiple languages by volunteers, resulting in Chinese→English translations that were origi-
nally English→Chinese. To ensure natural-sounding translations, the organizers asked a Chinese
speaker to select the talks where the source was considered “natural sounding” (Freitag et al.,
2021b). However, no quality control was applied to the English translations, and after collect-
ing MQM annotations, it was discovered that the English reference (Ref.A) contained numerous
errors. To address this issue, professional translators were enlisted to provide high-quality transla-
tions, resulting in a second reference (Ref.B). This unfortunate incident highlights the challenges
of finding reliable references and the potential pitfalls of blindly using references from publicly
available parallel corpora.

We argue that one of the major advantages of incorporating the source in the evaluation process
is the increased robustness against noisy references. To demonstrate this, we compare the perfor-
mance of UNITE12 and COMET with and without source information when evaluating against
these two references. While COMET typically expects a source input, we created a modified ver-
sion that does not use the source13. The results are presented in Figure 3.6.

Reference-free evaluation outperforms evaluating with a poor reference. Examining the re-
sults in Figure 3.6a, we observe that the correlation for UNITE SRC is higher compared to UNITE
REF when using Ref.A. Although the use of SRC+REF appears to improve the results, the im-
provement is not statistically significant compared to using the source alone.

Using a poor reference has a greater impact on models that rely solely on the reference.
We can observe that using Ref.A significantly affects both UNITE and COMET. When using
Ref.A instead of Ref.B, UNITE REF experiences a drop in Pearson correlation from τ = 0.258 to
τ = 0.186, while COMET (without source) drops from τ = 0.270 to τ = 0.185. However, even
when using a poor reference, UNITE SRC+REF achieves a correlation of τ = 0.196. Similarly,
COMET (wmt22-comet-da) exhibits the same trend, with a correlation of τ = 0.213.

Performance of COMET using the source surpasses COMET without the source. The wmt22
-comet-da model achieves higher Pearson (ρ = 0.289) and Kendall (τ = 0.249) correlations

11https://opus.nlpl.eu/TED2020.php
12UniTE-MUP checkpoint: https://huggingface.co/Unbabel/unite-mup
13Our modified estimator closely follows the architecture of RUSE, utilizing XLM-R Large as the encoder and trained

with the same data and hyperparameters as wmt22-comet-da
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Figure 3.6: Impact of low-quality references on neural fine-tuned metrics with and without source
input. Correlations are measured using WMT 21 TED Talk MQM annotations with reference
B (Ref.B) and reference A (Ref.A). While Ref.B has an MQM score of 0.42 (less than a minor
error per sentence on average), Ref.A has an MQM score of 5.52 (on average, a major error per
sentence).

compared to the reference-only implementation of COMET (ρ = 0.270 and τ = 0.244)14. These
findings align with the results for UNITE presented in Tables 3.3 and 3.4 and the results reported
in (Rei et al., 2020a) regarding the Translation Ranking Model.

3.9.2 Dealing with Ambiguous Translation

Figure 3.7: Examples of different types of ambiguous translations from the ACES challenge set
(Amrhein et al., 2022).

Another compelling example that highlights the importance of using the source in MT evalua-
tion is the case of ambiguous translations, where the reference translation may not provide all the
necessary information to determine the quality of the translation. A notable study conducted by
Amrhein et al. (2022) focused on creating a comprehensive challenge set to assess the robustness
of MT metrics when evaluating translations with specific phenomena. One such phenomenon they
investigated was ambiguous translations.

Ambiguous translations occur when the source text can be translated in multiple ways, re-
sulting in different possible interpretations. The ACES challenge set examined various types of

14Results are statistically significant according to the Perm-Both hypothesis test using 500 re-sampling runs.
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ambiguity, including gender, word sense, and discourse connectives. Figure 3.7 showcases exam-
ples of different types of ambiguous translations from the ACES paper.

To investigate the performance of MT metrics in handling ambiguous translations, we exam-
ined the results of COMET, UNITE, and COMETKIWI using the WMT Kendall Tau τ̂ metric (Eq.
7). The results are presented in Table 3.8.

Table 3.8: Comparison between neural fine-tuned metrics with and without source input on Am-
biguous Translations from the ACES challenge set. Results are measured in terms of WMT
Kendall Tau (τ̂ ) (Eq. 7).

Ambiguous Translation
Word Sense

Disambiguation
Discourse Connectives Gender AVG.

COMETKIWI 0.524 0.611 0.581 0.572
COMET 0.066 0.194 0.77 0.112
UNITE SRC 0.454 0.505 0.716 0.559
UNITE REF 0.000 0.187 0.000 0.062
UNITE SRC+REF 0.030 0.230 0.142 0.134
UNITE Avg. 0.163 0.279 0.539 0.327

The results shown in Table 3.8 further support our findings. When reference information is
poor, such as in the case of ambiguous translations, reference-free evaluation performs better. Sur-
prisingly, even though both COMET and UNITE SRC+REF use source information, they perform
much worse than reference-free models like COMETKIWI. This indicates that when a reference
is used, these models place more weight on the reference information. It aligns with the behav-
ior of COMET, which intentionally incorporates more reference information into the feed-forward
estimator. In the case of UNITE, this behavior is learned during training.

3.10 Conclusion

In this chapter, we have demonstrated the effectiveness of the COMET framework in constructing
neural fine-tuned metrics that achieve high correlations with human judgments across various
languages and domains. We have introduced wmt22-comet-da, a robust metric built using 1
million direct assessments across 36 language pairs. Through comparisons with other metrics, we
have once again established the superiority of neural fine-tuned metrics over previous approaches.

Furthermore, we have presented several reference-free metrics ranging from 560 million to
10.7 billion parameters, showcasing the potential for state-of-the-art evaluation without the need
for reference translations, given sufficient computational resources.

Throughout this chapter, we have also emphasized the importance of incorporating source
information in metrics. By highlighting the value of source information, we have demonstrated its
contribution to more accurate and robust evaluation.

Overall, the findings in this chapter solidify the value of neural fine-tuned metrics, re-
inforce the significance of leveraging source information, and pave the way for advanced
evaluation methods that align with human judgments.
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Chapter 4

Towards Interpretable MT Evaluation
Neural Metrics

Figure 4.1: Illustration of our approach. In this example, the metric assigns the translation a low
score. We aim to better understand this sentence-level assessment by examining the correspon-
dence between our token-level explanations and human annotated error spans.

In Chapter 3, we explored the effectiveness of neural metrics for evaluating MT. These metrics
have demonstrated significant improvements in correlating with human judgments compared to
traditional metrics like BLEU, which rely on lexical overlap. However, a drawback of neural
metrics is their inherent opacity, as they operate as “black boxes”, providing a single sentence-
level score without revealing the underlying decision-making process.

To address this limitation, this chapter proposes a framework for investigating how these met-
rics utilize token-level information. Our aim is to shed light on the inner workings of neural metrics
by comparing their results with MQM annotations and synthetically-generated critical translation
errors. By analyzing the token-level neural saliency maps, we can attribute the information lever-
aged by these metrics directly to translation errors. Figure 4.1 illustrates our framework.

The primary objective of our framework is to provide explanations for sentence-level qual-
ity assessments in reference-based metrics by producing token-level explanations that align with
translation errors. However, since recent metrics also incorporate source information, we intend
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to further investigate the significance of various input types, particularly the utilization of source
information, to gain a better understanding of their impact on the final metric.

The work presented in this chapter was showcased at the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (ACL 2023) and builds upon the findings from our participation
in the shared task for explainable Quality Estimation (QE) (Fomicheva et al., 2021; Treviso et al.,
2021). We will commence by providing a brief background and overview of our submission to the
shared task, followed by the presentation of our ACL 2023 work titled “The Inside Story” (Rei
et al., 2023).

4.1 Background: Explainable QE Shared Task

Before delving into our submission to this shared task, let us provide a brief overview of the setup
as described in Section 2.2.5. In the first edition of the Explainable QE shared task (Fomicheva
et al., 2021), the organizers adapted the Appraise platform to incorporate human annotators’ ra-
tionales for their score decisions, in addition to the sentence-level scores. Annotators were specif-
ically asked to highlight the words in translated sentence corresponding to translation errors that
justified the assigned sentence score. The test data included four language pairs: Estonian→English,
Romanian→English, Russian→German, and German→Chinese. For training, participants were
provided with the MLQE-PE corpus (Fomicheva et al., 2022), restricting models in the constrained
task to only use this corpus.

In our participation to the shared task we extensively explored various explainability meth-
ods to determine which ones show promise in extracting explanations from QE systems like
wmt22-cometkiwi-da. Specifically, we investigated rationalizers, attention mechanisms, gradient-
based approaches, and perturbation-based methods:

Attention-based methods. Since the backbone of our models consists of pre-trained multilin-
gual transformers, we studied their main component, the multi-head attention mechanism, expect-
ing to find interpretability patterns that assign higher scores to words associated with translation
errors. We extracted the following explanations from the multi-head attention mechanism:

• Attention weights: For a source sentence with N tokens and a translation with M tokens,
we compute the average of the attention matrix A row-wise for all heads in all layers. This
results in a total of 384 explanation vectors a ∈ RN+M for XLM-R-based models and 576
explanation vectors for RemBERT-based models (32× 18 = 576).

• Cross-attention weights: by manual inspection of attention weights, we noticed that some
attention heads learn plausible connections from source-to-hypothesis and hypothesis-to-
source. Therefore, instead of computing a row-wise average of the entire attention matrix,
we average only cross-alignment rows.1

• Attention × Norm: following the findings of (Kobayashi et al., 2020), we scale attention
weights by the norm of value vectors

∥∥V W V
h

∥∥
2
, where V is the transformer attention value

matrix and W V
h is the corresponding learned linear transformation.

1Note that we can get cross-attentions from XLM-R and RemBERT by selecting only the words of the source that
attend to the hypothesis and vice-versa.
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Figure 4.2: Target AUC of different attention heads at each layer of our XLM-R model for
Romanian→English. The last tick on the y-axis represents the average of all attention heads.

Gradient-based methods. Explanations extracted by storing gradients computed during the
backward propagation is a standard tool used to interpret NLP models. For this shared task, we
investigate the following gradient-based methods:2

• Gradient × Hidden States: we compute gradients w.r.t. the hidden states of each layer, and
multiply the resultant vectors by the hidden state vectors themselves: ∇Hi ×Hi ∈ RN+M ,
for 0 ≤ i ≤ L+ 1.

• Gradient × Attention: the same as before, but we use the output of the multi-head attention
module instead of the hidden states.

• Integrated Gradients: we extract integrated gradient explanations w.r.t. the hidden states
of each layer. We use a zero-vector as the baseline. We map gradients to explainabil-
ity scores by normalizing them by their L2 norm and summing the hidden dimensions:
1⊤∇Hi/ ∥∇Hi∥2.

Perturbation-based methods. As baselines, we also extracted explanations using LIME (Ribeiro
et al., 2016) and a leave-one-out strategy, where we replace the erased token by the <mask>
token, which is used for the masked-language model training of XLM-R and RemBERT.

Rationalizers. We append a differentiable binary mask layer (Bastings et al., 2019) on top of the
XLM-R model in order to select which tokens are passed on for an estimator for the prediction of a
sentence-level score. For each instance, we take the model representations and pass it to an encoder
module, in which we sample a binary mask z ∈ [0, 1]N+M from a relaxed Bernoulli distribution

2Our implementation is based on Captum: https://captum.ai/
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(Maddison et al., 2017; Jang et al., 2017), and pass z ⊙ [s; t] to an estimator module, which re-
embeds the masked input and pass it to a linear output layer. Therefore, good explanations z will
aid the estimator in producing good sentence-level scores. In training time, the parameters of the
encoder and the estimator are jointly trained. In test time, we do not sample the binary masks.
Instead, we use the relaxed Bernoulli distribution probabilities as explanations.

Regarding the models used in all these experiments, we trained two models: one based on
RemBERT and another based on XLM-R. It is important to note that, as mentioned earlier, for this
shared task, we were limited to using the MLQE-PE corpus (Fomicheva et al., 2022). Therefore,
our models cannot be directly compared with wmt22-cometkiwi-da.

Evaluation. The explanations are evaluated by comparing them to the ground-truth word-level
labels using Area Under the Curve (AUC) and Recall at Top-K (Recall@K)3.

4.1.1 Findings

# ENCODER EXPLAINER AUC R@K

1 XLM-R Attention - Layer 18 - Head 3 0.7894 0.6054
2 XLM-R Attention - Layer 18 - Head 0 0.7462 0.5197
3 XLM-R Cross-attention - Layer 18 - Head 3 0.8066 0.6293
4 XLM-R Cross-attention - Layer 18 - Head 0 0.7374 0.4883
5 XLM-R Attention × Norm - Layer 18 - Head 3 0.8136 0.6342
6 XLM-R Attention × Norm - Layer 19 - Head 2 0.8099 0.6153
7 XLM-R Gradient × Hidden States - Layer 15 0.6780 0.4044
8 XLM-R Gradient × Attention - Layer 17 0.7618 0.5628
9 XLM-R Integrated Gradients - Layer 15 0.6560 0.3853

10 XLM-R LIME 0.5892 0.3300
11 XLM-R Leave-one-out 0.5921 0.3567
12 XLM-R Relaxed-Bernoulli Rationalizer 0.5434 0.2914
15 RemBERT Attention × Norm - Layer 23 0.7904 0.5723
16 RemBERT Attention × Norm - Layer 22 - Head 5 0.7167 0.4278

1 Ensemble (5) + (6) + (15) 0.8398 0.6606

Table 4.1: Area Under Curve (AUC) and Recall@K on the validation set of Romanian→English.

Attention heads are better alone. We found that some attention heads (mostly at upper layers)
learned to focus on words associated with BAD tags, achieving great performance in terms of AUC
on the validation set. We show in Figure 4.2 the target AUC of different attention heads per layer
as a heatmap for Romanian→English, with darker colors indicating higher results.4 We can see
that attention heads in layers 18 and 19 perform better than other layers in general, and that some
attention heads solely outperform the average of all attention heads for all respective layers. For
example, the attention head 3 at layer 18 achieves an AUC score of 0.79, while the average of all

3Recall@K is calculated only for the subset of translations that contain errors. It represents the proportion of words
with the highest attribution that correspond to translation errors, relative to the total number of errors in the annotated
error span.

4We got similar findings for Estonian→English.
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attention heads from layer 18 gets an AUC score of 0.74 (5 points difference). This finding also
seem to align with Figure 5.3b where we show that layer 15 to 19 are the most important ones for
COMET models.

Attention × Norm outperforms other explainers. By scaling attention probabilities by the
L2 norm of value vectors, we improved the performance further. All of our best results consist
of attention-based explainers, with the majority being the explanations that consider the norm of
value vectors. We show the results for all our explainers on the validation set of Romanian→English
in Table 4.1.5 When using XLM-R or RemBERT as encoder the results are similar, except that the
best explainer comes from different attention heads at different upper layers.

Overall, we observed that attention methods outperform gradient and perturbation methods
by a considerable margin, and gradients w.r.t. attention outputs yield better results than gradients
w.r.t. hidden states, indicating that the information stored in attention heads is valuable.

4.2 Explanations via Attribution Methods

Building upon the previous findings for QE systems, we extend them to the reference-based sce-
nario. Specifically, we employ the following techniques to extract explanations:

• embed–align: the maximum cosine similarity between each translation token embedding
and the reference and/or source token embeddings (Tao et al., 2022). It was not previously
explored in our research, but it has been shown to be a top-performing method used in
explainable QE shared tasks proposed by other authors;

• grad ℓ2: the ℓ2-norm of gradients with respect to the word embeddings of the translation
tokens (Arras et al., 2019);

• attention: the attention weights of the translation tokens for each attention head of the
encoder (Treviso et al., 2021);

• attn × grad: the attention weights of each head scaled by the ℓ2-norm of the gradients of
the value vectors of that head (Rei et al., 2022c).

4.3 Experimental Setting

In our experimental setting, we aim to analyze the effectiveness of the explainability methods
outlined in Section 4.2 for identifying translation errors and understanding the performance of
COMET and UNITE. To achieve this, we will use two datasets: one with MQM annotations per-
formed by experts, and another one with synthetically-generated critical errors.

MQM annotations. We use MQM annotations from the WMT 2021 Metrics shared task (Fre-
itag et al., 2021b),6 covering three language pairs — English-German (en→de), English-Russian

5Results for other language pairs such as Estonian→English follow the same trend.
6https://github.com/google/wmt-mqm-human-evaluation
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(en→ru), and Chinese-English (zh→en) —in two different domains: News and TED Talks. For
each incorrect translation, human experts marked the corresponding error spans. In our frame-
work, these error spans should align with the words that the attribution methods assign higher
importance to.

SMAUG perturbations. Publicly available MQM data consists primarily of high quality trans-
lations, with the majority of annotated errors being non-critical. However, it is important to assess
whether our explanations can be accurately attributed to critical errors, as this may reveal potential
metric shortcomings. To this end, we employ SMAUG (Alves et al., 2022)7, a tool designed to
generate synthetic data for stress-testing metrics, to create corrupted translations that contain crit-
ical errors. Concretely, we generate translations with the following pathologies: negation errors,
hallucinations via insertions, named entity errors, and errors in numbers.8

Models. For COMET, we utilize the latest publicly available model: wmt22-comet-da (Sec-
tion 3.5). To ensure a comparable setup, we train our own UNITE model using the same data as
COMET. The resulting UNITE model is on par with COMET and the original version, which we
examined in Section 2.2.1.3. The full list of hyperparameters is provided in AppendixA.

4.4 Results

4.4.1 High-level analysis

Explanations are tightly related to the underlying metric architecture. The results in Ta-
ble 4.2 show that the predictive power of the attribution methods differ between UNITE and
COMET: attn × grad is the best method for UNITE-based models, while embed–align works best
for COMET. This is expected as UNITE constructs a joint representation for the input sentences,
thus allowing attention to flow across them; COMET, in contrast, encodes the sentences separately,
so it relies heavily on the separate contextualized embeddings that are subsequently combined
via element-wise operations such as multiplication and absolute difference. Interestingly, embed–
align and attn × grad were the winning explainability approaches of the WMT 2022 Shared-Task
on Quality Estimation (Zerva et al., 2022a). This suggests that explainability methods developed
for QE systems can translate well to reference-based metrics.

Reference information boosts explainability power. Table 4.2 also shows that, across all met-
rics, using reference information brings substantial improvements over using only the source in-
formation. Moreover, while reference-based attributions significantly outperform source-based at-
tributions, combining the source and reference information to obtain token-level attributions does
not consistently yield superior results over using the reference alone. Notably, the best attribution
method for COMET does not require any source information. This is interesting: in some cases,
reference-based metrics may largely ignore source information, relying heavily on the reference
instead.

7https://github.com/Unbabel/smaug
8We corrupt fully correct translations that are not an exact copy of the reference translation. Moreover, as the full

suit of SMAUG transformations can only be applied to English data, we focus solely on zh→en translations. Overall,
the synthetic dataset consists of 2610 translations.
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METRIC
EXPLAINABILITY en→de zh→en en→ru Avg.
METHOD AUC R@K AUC R@K AUC R@K AUC R@K

src-only⋆ evaluation

UNITE SRC

embed–align 0.587 0.339 0.644 0.281 0.583 0.167 0.604 0.262
grad ℓ2 0.572 0.293 0.535 0.200 0.620 0.169 0.576 0.221
attention 0.636 0.322 0.612 0.253 0.612 0.189 0.620 0.254
attn × grad 0.707 0.376 0.639 0.294 0.633 0.211 0.660 0.294

ref-only evaluation

UNITE REF

embed–align[mt, ref] 0.658 0.396 0.667 0.328 0.635 0.218 0.653 0.314
grad ℓ2 0.596 0.319 0.571 0.260 0.661 0.202 0.609 0.261
attention 0.637 0.344 0.670 0.335 0.652 0.224 0.653 0.301
attn × grad 0.725 0.425 0.667 0.380 0.660 0.248 0.684 0.351

src,ref joint evaluation

UNITE SRC+REF

embed–align[mt, src; ref] 0.650 0.383 0.670 0.330 0.618 0.213 0.646 0.309
grad ℓ2 0.595 0.325 0.579 0.257 0.643 0.191 0.606 0.257
attention 0.657 0.421 0.670 0.383 0.649 0.223 0.659 0.342
attn × grad 0.736 0.421 0.674 0.383 0.671 0.248 0.693 0.351

COMET

embed–align[mt, src] 0.590 0.371 0.674 0.314 0.577 0.220 0.614 0.301
embed–align[mt, ref] 0.694 0.425 0.696 0.355 0.647 0.275 0.679 0.352
embed–align[mt, src; ref] 0.688 0.416 0.697 0.357 0.622 0.279 0.669 0.350
grad ℓ2 0.603 0.312 0.540 0.252 0.604 0.185 0.582 0.250
attention 0.604 0.351 0.592 0.259 0.633 0.209 0.608 0.268
attn × grad 0.710 0.365 0.633 0.278 0.662 0.244 0.669 0.295

Table 4.2: AUC and Recall@K of explanations obtained via different attribution methods for
COMET and UNITE models on the MQM data. ⋆Although UNITE SRC is a src-only evaluation
metric, it was trained with reference information (Wan et al., 2022).

Explanations identify critical errors more easily than non-critical errors. Figure 4.3 shows
that explanations are more effective in identifying critical errors compared to other non-critical
errors (see Table 4.2). Specifically, we find significant performance improvements up to nearly
30% in Recall@K for certain critical errors. Overall, hallucinations are the easiest errors to iden-
tify across all neural metrics. This suggests that neural metrics appropriately identify and penalize
hallucinated translations, which aligns with the findings of (Guerreiro et al., 2023). Moreover,
explanations for both UNITE models behave similarly for all errors except numbers, where the
source information plays a key role in improving the explanations. Notably, contrary to what we
observed for data with non-critical errors, COMET explanations are less effective than those of
UNITE REF and UNITE SRC+REF for identifying critical errors.

Explanations can reveal potential metric weaknesses. Figure 4.3 suggests that COMET ex-
planations struggle to identify localized errors (negation errors, named entity errors and discrep-
ancies in numbers). We hypothesize that this behavior is related to the underlying architecture.
Unlike UNITE-based metrics, COMET does not rely on soft alignments via attention between the
sentences in the encoding process. This process may be key to identify local misalignments dur-
ing the encoding process. In fact, the attention-based attributions for UNITE metrics can more
easily identify these errors. COMET, however, encodes the sentences separately, which may re-
sult in grammatical features (e.g. numbers) being encoded similarly across sentences (Chi et al.,
2020; Chang et al., 2022). As such, explanations obtained via embedding alignments will not
properly identify these misalignments on similar features. Importantly, these findings align with

45 of 94



Chapter 4 Towards Interpretable MT Evaluation Neural Metrics

NEG HALL NE NUM

0

0.2

0.4

0.6

R
ec

al
l@

K

COMET
UNITE

REF
UNITE

SRC+REF

Figure 4.3: Performance of the best attribution methods for COMET, UNITE REF and UNITE
SRC+REF in terms of Recall@K on translations with critical errors: negations (NEG), hallucina-
tions (HALL), named entity errors (NE), and errors in numbers (NUM).

observations made in (Amrhein and Sennrich, 2022; Raunak et al., 2022). This showcases how
explanations can be used to diagnose and reveal shortcomings of neural-based metrics.

4.5 Comparison between COMET and XLM-R Alignments

We have observed from previous tables that COMET achieves the best explanations when using
alignments. However, since COMET is fine-tuned, a lingering question remains: How do these
alignments compare to the alignments obtained from the underlying encoder of COMET before
the fine-tuning process? To address this question, we conducted an experiment comparing the
results obtained directly from XLM-R.

Table 4.2 clearly demonstrates that the alignments between the reference and/or source and
the translation provide effective explanations for COMET. This leads us to examine how these
alignments compare to the alignments obtained from XLM-R without any fine-tuning, as shown
in Table 4.3.

Overall, the explanations derived from the alignments of COMET are found to be more in-
dicative of error spans compared to those obtained from XLM-R alignments. This suggests that
during the fine-tuning phase, COMET modifies the underlying XLM-R representations to achieve
improved alignment with translation errors.

METRIC
EXPLAINABILITY en→de zh→en en→ru Avg.
METHOD AUC R@K AUC R@K AUC R@K AUC R@K

XLM-R

embed–align[mt, src] 0.587 0.359 0.668 0.311 0.576 0.199 0.610 0.289
embed–align[mt, ref] 0.671 0.405 0.689 0.345 0.634 0.244 0.664 0.331
embed–align[mt, src; ref] 0.666 0.395 0.690 0.347 0.616 0.242 0.657 0.328

COMET

embed–align[mt, src] 0.590 0.371 0.674 0.314 0.577 0.220 0.614 0.301
embed–align[mt, ref] 0.694 0.425 0.696 0.355 0.647 0.275 0.679 0.352
embed–align[mt, src; ref] 0.688 0.416 0.697 0.357 0.622 0.279 0.669 0.350

Table 4.3: AUC and Recall@K of explanations obtained via alignments for COMET and XLM-R

without any further fine-tuning on human annotations.

46 of 94



Chapter 4 Towards Interpretable MT Evaluation Neural Metrics

4.6 COMET Explanation Examples

In Figures 4.4 and 4.5, we show examples of COMET explanations for Chinese→English and
English→German language pairs, respectively. We highlight in gray the corresponding MQM
annotation performed by an expert linguist and we sort the examples from highest to lowest
COMET scores. From these examples we can observe the following:

• Highlights provided by COMET explanations have a high recall with human annotations. In
all examples, subword tokens corresponding to translation errors are highlighted in red but
we often see that not everything is incorrect.

• Explanations are consistent with scores. For example, in the third example from Figure 4.4,
the red highlights do not correspond to errors and in fact the translation only has a major
error griffen . Nonetheless, the score assigned by COMET is a low score of 0.68 which is
faithful to the explanations that was given even if the assessment does not agree with human
experts.

4.7 Conclusion

In this chapter, our investigation focused on the application of explainability methods to gain a
deeper understanding of neural fine-tuned metrics, specifically COMET and UNITE. Our goal was
to explore how these metrics utilize token-level information to derive a sentence-level score, with
a particular emphasis on their alignment with human annotations such as MQM.

Through our analysis, we discovered the impact of reference information on the quality of
explanations and how these explanations can help identify the limitations of these metrics. We
found a strong correlation between the architecture of the underlying metric and the quality of
its explanations. Notably, our findings support the notion that COMET relies heavily on reference
information rather than source information, which aligns with the results obtained in Section 3.9.2.

Furthermore, our investigation unveiled how explanations can shed light on the weaknesses of
reference-based metrics, particularly in their failure to appropriately identify some categories of
errors such as numbers, where we observed a lower Recall@K for COMET. This insight offers
valuable guidance for further refining these metrics.

Overall, our exploration of explainability methods in this chapter deepens our understanding
of the inner workings of neural fine-tuned metrics and reveals crucial aspects for enhancing their
performance and effectiveness.
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Figure 4.4: Saliency map for COMET explanation scores for a set of English→German exam-
ples. Comparing the token-level explanations with the MQM annotation ( highlighted in gray )
reveals the source of correspondence between specific token-level translation errors and the re-
sulting scores.
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Figure 4.5: Saliency map for COMET explanation scores for a set of Chinese→English exam-
ples. Comparing the token-level explanations with the MQM annotation ( highlighted in gray )
reveals the source of correspondence between specific token-level translation errors and the re-
sulting scores.
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Chapter 5

Searching for COMETINHO: The Little
Metric That Could

In this chapter, we describe several experiments that attempt to reduce COMET computational cost
and model size to make it more efficient at inference. Our techniques are particularly useful in
settings where we have multiple translations from different systems on the same source sentences.
Since the models are based on triplet encoders, we will first analyse the impact of embedding
caching and length batching. Then, we will try to further reduce the computational cost by using
weight pruning and knowledge distillation. Our results show that embedding caching and length
batching alone can boost COMET performance 39.19% when scoring one system and 65.44%
when scoring 8 systems over the same test set. Furthermore, with knowledge distillation we are
able to create a model that is 80% smaller and 2.128x faster with a performance close to the
original model and above strong baselines such as BERTSCORE and PRISM. Figure 5.1 shows
time differences for all proposed methods when evaluating a varying number of systems.

It is worth noting that the experiments in this section were conducted before the development
of the wmt22-comet-da metric, as presented in Chapter 3. Therefore, all the experiments
described here utilized a previous version of the COMET model. The main difference lies in
the training data, which only ranged from WMT 17 to WMT 19, and the utilization of different
hyperparameters.

This work was published at the 23rd Annual Conference of the European Association for
Machine Translation (EAMT 2022) and received the Best Paper Award.

5.1 Length Sorting and Caching

Before exploring approaches that reduce the number of model parameters, we experiment with
techniques to optimize the inference time computational load. One which is commonly used is
to sort the batches according to sentence length to reduce tensor padding (Pu et al., 2021). Since
COMET estimators receive three input texts (source, hypothesis and reference), for simplicity, we
do length sorting according to the source length. Figure 5.2a shows the speed difference between
an unsorted test set with varying size and length-based sorting.
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Figure 5.1: Comparison between a COMET estimator with XLM-R Large, that same model with
caching and length batching, PRUNE-COMET and DISTIL-COMET. We report the average of 5
runs for each model/metric for a varying number of systems. All experiments were performed us-
ing the German→English WMT20 Newstest, with a NVIDIA GeForce GTX 1080 TI GPU
and a constant batch size of 16. For comparison we also plot the runtime of BLEU in a Intel(R)
Core(TM) i7-6850K CPU @ 3.60GHz.

As previously pointed out, estimator metrics are based on triplet encoders1 which means that
the source and reference encoding does not depend on the provided MT hypothesis as opposed
to other recent metrics such as BLEURT which have to repetitively encode the reference for every
hypotheses.

With that said, using a COMET estimator we only need to encode each unique sentence (source,
hypothesis translation or reference translation) once. This means that we can cache previously en-
coded batches and reuse their representations. In Figure 5.2b, we show the speed gains, in seconds,
when scoring multiple systems over the same test set. This reflects the typical MT development
use case in which we want to select the best among several MT systems.

These two optimizations altogether are responsible for reducing model inference time from
34.7 seconds to 21.1 seconds while scoring 1 system (39.19% faster) and from 265.9 seconds to
91.9 seconds when scoring 8 systems (65.44% faster).

For all experiments performed along the rest of the chapter we always use both optimization
on all COMET estimators being compared.

1A triplet encoder, is a model architecture where three sentences are encoded independently and in parallel. Ar-
chitectures such as this have been extensively explored for sentence retrieval applications due to its efficiency (e.g.
Sentence-BERT (Reimers and Gurevych, 2019))
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Figure 5.2: Both experiments were performed with an NVIDIA GeForce GTX 1080 TI
GPU, a constant batch size of 16. The time reported is the average of 5 runs using the COMET

estimator architecture. For comparison we also plot the runtime of BLEU in a Intel(R)
Core(TM) i7-6850K CPU @ 3.60GHz.

5.2 Model Pruning

Model pruning has been widely used in natural language processing to remove non-informative
connections and thus reducing model size (Zhu and Gupta, 2018). Since most COMET parameters
come from the XLM-R model, we attempt to reduce its size. We start with layer pruning by
removing the top layers of XLM-R. Then we experiment with making its encoder blocks smaller
either by reducing the size of the feed-forward hidden layers or by removing attention heads. The
main advantage of these approaches is their simplicity: within minutes we are able to obtain a new
model with reduced size and memory footprint with minimal performance impact.

For all the experiments in this section, we used the development set from the Metrics shared
task of WMT 2020. This set contains DA for English→German, English→Czech, English→Polish
and English→Russian. We use these language pairs because they were annotated by experts ex-
ploring document context and in a bilingual setup (without access to a reference translation)2.
Nonetheless, in Section 5.4 we show the resulting model performance on all language pairs from
WMT 2021 for both DA and MQM.

5.2.1 Transformer Block Pruning

The Transformer architecture is composed of several encoder blocks (layers) stacked on top of
the other. In the previous section, we reduce model size by removing the topmost blocks (depth
pruning). In this section we reduce the size of each block instead (width pruning).

Each transformer block is made of two components: a self-attention (composed of several
attention heads) and a feed-forward neural network. In XLM-R-large, each block is made of 16

2In the WMT 2020 findings paper Mathur et al. (2020b), most metrics showed suspiciously low correlations with
human judgements based on crowd-sourcing platforms such as Mechanical Turk. Thus, we decided to focus just on 4
language pairs in which annotations are deemed as trustworthy.
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to 5 layers does not affect model performance but
provides a 10% reduction in model size.

(b) In this figure we can observe layers between 15-
19 are the most relevant ones with a normalized
weight between 0.75 and 1. The representations
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Figure 5.3: impacts of Layer Pruning in terms of performance using the WMT 2020 development
set (Figure (a)) and the normalizes weights assigned to each layer when computing the final sen-
tence level representation (Figure (b)).

self-attention heads followed by a feed-forward of a single hidden layer with 4092 parameters.

Using the TextPruner toolkit3, we can easily prune both the attention heads and the feed-
forward hidden sizes. Figure 5.4a shows the impact of pruning the hidden sizes from 4096→{512,
1024, 2048, 3072} while Figure 5.4b shows the impact of reducing the attention heads from
16→{4, 6, 8, 10, 12, 14}.

5.2.2 PRUNED-COMET

After experimenting with these three different pruning techniques, we created a pruned version of
COMET in which we keep only 19 XLM-R layers, we reduced the feed-forward hidden size by
3/4 (3072 hidden size) and we removed 2 heads (out of 16). According to our experiments above,
the resulting model’s performance drop should be almost the same as the original model but the
resulting model is 21.1% smaller.

The resulting model is able to score 1000 samples in just 19.74 seconds, while the original
model takes around 31.32 seconds. It is important to notice that most of the XLM-R parameters
come from its huge embedding layer. Since the embedding size memory does not affect the infer-
ence time, the obtained 20% reduction in parameters translates into speed improvements of around
36.97%.4

3https://textpruner.readthedocs.io/en/latest/
4Experiments performed in a NVIDIA GeForce GTX 1080 TI GPU and a constant batch size of 16. The

resulting time is the average of 5 runs.
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(a) Impact of Feed-Forward hidden size pruning.
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(b) Impact of attention-head pruning.

Figure 5.4: Impact of gradient based pruning techniques on model size (in blue) and performance
on the WMT 2020 development set (in green). Note that in Figure (a) we apply pruning just for
the feed-forward hidden size. In Figure (b) pruning is applied to several heads while freezing the
hidden size to 3072 (3/4 of the original hidden size of XLM-R).

5.3 Distillation

Another commonly used way to compress neural networks is through knowledge distilation (Bu-
cilua et al., 2006; Hinton et al., 2015) in which, for large amounts of unlabeled data, a smaller
neural network (the student) is trained to mimic a more complex model (the teacher).

As the teacher network, we used an ensemble of 5 COMET models trained with different
seeds. The student network follows the same architecture as the original model and the same
hyper-parameters. However, instead of using XLM-R-large, it uses a distilled version with only
12 layers, 12 heads, embeddings of 384 features, and intermediate hidden sizes of 1536. This
model has only 117M parameters compared to the 560M parameters from the large model.

Regarding the unlabeled data for distillation, we extracted 25M sentence pairs from OPUS
ranging a total of 15 language pairs. To guarantee high quality parallel data we used Bicleaner
tool (Ramı́rez-Sánchez et al., 2020) with a threshold of 0.8. Then, using pre-trained MT models
available in Hugging Face Transformers, we created 2 different translations for each source: one
using a bilingual model (in theory a high quality translation) and another using pivoting (which
can be thought as lower quality). Finally, we scored all the data using our teacher ensemble. The
resulting corpus contains 45M tuples with (source, translation, reference, score).

The resulting model which name DISTIL-COMET, scores 1000 sentences in 14.72 seconds
resulting in a 53% speed improvement over the original model3.

5.4 Correlation with Human Judgements

In this section, we show results for {PRUNE and DISTIL}-COMET in terms of correlations with
MQM annotations from WMT 2021 Metrics task for two different domains: News and TED talks.
Since these annotations only cover high-resource language pairs (English→German, English→Russian,
Chinese→English), we also evaluate models on mid/low resource language pairs using DARR
from WMT 2021, the same data we used in Chapter 3. For a detailed comparison, we also present
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results for CHRF and BLEU, two computationally efficient lexical metrics, and other neural metrics
such as PRISM5, BLEURT and BERTSCORE (F1)

From Table 5.1, we can observe that PRUNE-COMET has minimal performance drops com-
pared with COMET with only 80% of its parameters. DISTIL-COMET performance is on average
0.013 Kendall’s bellow COMET for high resources languages, which is impressive for a model that
only has 20% of COMET’s parameters. For low-resource languages, we can observe bigger perfor-
mance differences between COMET, PRUNE-COMET, and DISTIL-COMET which confirm results
by Pu et al. (2021) that shows that smaller MT evaluation models are limited in their ability to
generalize to several language pairs. Nonetheless, when comparing with other recently proposed
metrics such as PRISM and BERTSCORE, {PRUNE and DISTIL}-COMET have higher correlations
with human judgements for both high and low resource language pairs. The only exception is
BLEURT which shows stronger correlations than COMET on high-resource language pairs and
competitive performance in low-resource ones. We would like to emphasize that the model used
in this section is not the most recent version, namely wmt22-comet-da, but rather an earlier
iteration.

Table 5.1: Kendall’s tau correlation on high resource language pairs using the MQM annotations
for both News and TED talks domain collected for the WMT 2021 Metrics Task.

zh-en en-de en-ru
Metric Params News TED News TED News TED avg.
BLEU - 0.166 0.056 0.082 0.093 0.115 0.067 0.097
CHRF - 0.171 0.081 0.101 0.134 0.182 0.255 0.154
BERTSCORE 179M 0.230 0.131 0.154 0.184 0.185 0.275 0.193
PRISM 745M 0.265 0.139 0.182 0.264 0.219 0.292 0.229
BLEURT 579M 0.345 0.166 0.253 0.332 0.296 0.347 0.290
COMET 582M 0.336 0.159 0.227 0.290 0.284 0.329 0.271
PRUNE-COMET 460M 0.333 0.157 0.219 0.293 0.274 0.319 0.266
DISTIL-COMET 119M 0.321 0.161 0.202 0.274 0.263 0.326 0.258

Table 5.2: Kendall’s tau-like correlations on low resource language pairs using the DARR data
from WMT 2021 Metrics task.

Metric Params zu-xh xh-zu bn-hi hi-bn en-ja en-ha en-is avg.
BLEU - 0.381 0.1887 0.070 0.246 0.315 0.124 0.278 0.229
CHRF - 0.530 0.301 0.071 0.327 0.371 0.186 0.373 0.308
BERTSCORE 179M 0.488 0.267 0.074 0.365 0.413 0.161 0.354 0.303
BLEURT 579M 0.563 0.362 0.179 0.498 0.483 0.186 0.469 0.391
COMET 582M 0.550 0.285 0.156 0.526 0.521 0.234 0.474 0.392
PRUNE-COMET 460M 0.541 0.264 0.163 0.519 0.513 0.197 0.439 0.377
DISTIL-COMET 119M 0.488 0.254 0.135 0.498 0.471 0.145 0.419 0.344

5PRISM does not support the low-resource language pairs used in our experiments, thus we only report PRISM

correlations with MQM data
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5.5 Conclusion

In this chapter we presented two simple optimizations that lead to significant performance gains on
neural metrics such as COMET and two approaches to reduce its number of parameters. Together
these techniques achieve impressive gains in performance (both speed and memory) at a very small
cost in performance.

To showcase the effectiveness of our methods, we presented DISTIL-COMET and PRUNE-
COMET. These models were obtained using an earlier iteration of wmt22-comet-da knowledge
distillation and pruning respectively. To test the proposed models, we used the data from the
WMT 2021 Metrics task which covers low resource languages as well as high resource languages.
Overall the results of PRUNE-COMET are stable across the board with only a small degradation
compared to the original metric. Knowledge distillation leads to much higher compression rates
but seems to confirm previous findings (Pu et al., 2021) which suggest the lack of model capacity
when it comes to the multilingual generalization for low resource languages.
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Chapter 6

MT-TELESCOPE: An interactive
platform for contrastive evaluation of
MT systems

In this chapter we will present MT-TELESCOPE. The fundamental goal of MT-TELESCOPE is
to widen access to state-of-the-art, robust MT comparison, to the benefit of the MT commu-
nity at large. To do so MT-TELESCOPE explores features such as named entities and glossary
handling which play a fundamental role in determining the suitability of an MT system for a
production environment. Furthermore, the platform applies a bootstrapped t-test for statistical sig-
nificance (Koehn, 2004) as a means of exposing the experimental rigor of system comparisons.
These features are not widely available in other tools and provide a uniquely tailored solution to
MT comparison that is highly informative and easy to use.

MT-TELESCOPE is open source, written in Python and uses a dynamic web interface imple-
mented in streamlit1. In this manner, MT-TELESCOPE provides a uniquely accessible framework
that requires little technical skill to operate and exposes information about the critical differences
between MT outputs that is interactive, informative and highly customizable.

6.1 MT-TELESCOPE: Features

In this section, we describe the main features and visualizations implemented in MT-TELESCOPE

and illustrate the user experience with examples:

6.1.1 User input and data

MT-TELESCOPE is opened in a web browser and takes four text (.txt) files as input; source and
reference segments and one set of MT outputs for each of the compared systems. Users drag and
drop these files directly onto the interface to begin evaluation. COMET is provided as a default
metric given its proven value in the WMT Metrics Shared Task 2020 (Mathur et al., 2020b).
Optionally the user can choose an alternate metric using a selection box. Currently available

1https://streamlit.io/

57 of 94

https://streamlit.io/


Chapter 6 MT-TELESCOPE: An interactive platform for contrastive evaluation of MT systems

metrics include BLEU, METEOR and CHRF, and a selection of more recently proposed metrics
such as PRISM, BLEURT, and BERTSCORE.

6.1.2 Visualizations

High-level results of the analysis are output in table format with the corresponding system scores.
MT-TELESCOPE then exposes segment-level comparison in three primary visualizations:

First, a bubble plot (Figure 6.1) where the position of bubbles show how scores between the
two systems differ for each segment, notable differences being highlighted with variations in bub-
ble size and color. This method of visualization of MT is unique to MT-TELESCOPE in that it
is fully interactive; by hovering the cursor over individual data points the user can preview the
segments and output as well as relevant scores and the magnitude of the difference between them
(as depicted in Figure 6.1). This plot allows for interactive exploration of the data which easily
exposes differences in model behaviour at a glance. In particular, the distribution of points along
the diagonal of this plot is highly informative; clustering along the diagonal indicates that the sys-
tems have minor differences whereas the contrary can indicate more dramatic change in behavior
which can be hidden by the corpus-level mean.

Figure 6.1: Segment comparison bubble plot.

Second, MT-TELESCOPE provides a bucketed error analysis in the form of a stacked bar plot
(Figure 6.2). This plot serves to isolate specific bands of translation quality. These bands are
highly customizable but can serve as a means of evaluating system utility; the plot can expose
the extent to which either model outputs critical error for example. This is particularly useful
in a commercial setting where the utility of a production system is inhibited by the presence of
particular error types.

Segments are grouped into four buckets: residual errors, minor errors, major errors, and
critical errors. The thresholds for each bucket can be dynamically adjusted by the user with
appropriate sliders and (as with many of the features of MT-TELESCOPE) the plots are updated
in real-time to reflect adjustments. Defaults were determined in line with suggestions outlined in
the COMET GitHub documentation and with distributions of system-level scores from the WMT
News Translation Shared Task 2020.
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Residual Errors: The highest tier of quality by default reflects scores greater than 0.70, which
generally equates to almost human-like translation with only minor, inconsequential error.

Minor Errors: By default this band reflects scores between 0.30 and 0.70 to reflect the di-
vision of quartiles from the distribution of system-level scores from the WMT News Translation
Shared Task 2020. In general the band is associated with translation that is adequate but with
minor flaws.

Major Errors: Translations scoring between 0.10 and 0.30 by default inhabit this band and
are generally inadequate due to more serious error.

Critical Errors: Any translation scoring under 0.10 here is considered to contain critical error.

These bands are intended as a guide and utility of the default thresholds will vary according
to use case. Translation quality and the difference between adequate and inadequate translation is
highly subjective and language dependant; optimization of these thresholds is a critical direction
for future work. Notwithstanding, we find that exposure of the general shift in distribution of
inadequate translation in general is potentially informative, particularly given that corpus-level
scores do not expose this type of analysis.

Finally, MT-TELESCOPE provides a histogram plot (Figure 6.3) for general evaluation of the
distribution of scores between models. We propose that this kind of plot can potentially provide a
high-level overview of the shift in performance between models. A corpus-level score (particularly
an arithmetic mean) can mask variance between distributions of scores.

Figure 6.2: Segment-level error bucket analysis plot. In this plot, we can compare the two systems
side by side according to the percentage of segments falling into 4 different category buckets:
residual errors, minor errors, major errors, critical errors. The thresholds for defining these
buckets can be dynamically adjusted using the sliders displayed above the plot.

59 of 94



Chapter 6 MT-TELESCOPE: An interactive platform for contrastive evaluation of MT systems

Figure 6.3: Segment-level histogram comparison.

6.1.3 Example evaluation

To demonstrate the utility of the MT-TELESCOPE evaluation we expose analyses for the Online-G
and the PROMT (Molchanov, 2020) systems from the WMT News Translation Shared Task 2020
(Barrault et al., 2020) for Russian-English:

The Online-G system (System Y) achieves a COMET score of 0.6081, outperforming the
PROMT system (System X) which only achieves 0.5972. We have isolated this example in partic-
ular as it represents a common occurrence of two systems achieving fairly comparable scores.

Figures 6.1, 6.2 and 6.3 above show the output of MT-TELESCOPE analysis on two sampled
systems:

• Figures 6.2 and 6.3 illustrate that the second system (System Y) in general exceeds per-
formance of the first (System X). We can conclude from these plots that the systems per-
form comparably with System Y producing a higher percentage of adequate translations. In
particular we note that System Y outputs fewer critical errors, consistent with its general
performance gain.

• Figure 6.1 illustrates isolation of an example where System Y makes substantial gain over
System X. Here we note that both systems struggle to render the named entity and the
corresponding possessive, but that System Y successfully produces the named entity as
reflected in the reference and adds a pronoun to at least give possessive flavor.

6.2 MT-TELESCOPE: Dynamic Corpus Filtering

Given a test corpus, MT-TELESCOPE provides functionality to dynamically evaluate sub-samples
of the system outputs as a means of focused analysis tailored to particular phenomena relevant to
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MT. On selection of any of the available filtering criteria, the MT-TELESCOPE Dynamic Corpus
Filtering feature (DCF) updates the output evaluation in real-time to allow the user to “zoom in”
on relevant data points.

Currently, MT-TELESCOPE supports filtering by named entity, glossary and source segment
length, as well as an option to remove duplicates. Whenever any of these options is selected, the
interface will output the size of the sub-sample as a percentage of the original test corpus.

6.2.1 DCF: Named Entities

Successful rendering of named entities is a known challenge for even modern MT systems and can
lead to distortion of locations, organization and other names (Koehn and Knowles, 2017; Modrze-
jewski et al., 2020). Recently, several methods have been proposed to improve the translation of
named entities in Neural Machine Translation (NMT) (Sennrich and Haddow, 2016; Ugawa et al.,
2018; Modrzejewski et al., 2020), but precise measurement of translation quality improvements
for these techniques is inhibited by the fact that not all sentences in traditional benchmark test sets
(e.g. WMT test sets) contain named entities and that scores produced by automated evaluation
metrics are not sufficiently fine-grained to reflect this type of variation. MT-TELESCOPE offers a
potential solution to this by applying the following filter:

We initially run the Stanza Named Entity Recognition (NER) model (Stanza, Qi et al. 2020)2

over the source test corpus to isolate segments that contain named entities. If the source lan-
guage (as specified by the user) is not supported by Stanza, we run NER on the reference. MT-
TELESCOPE will then update the output analysis allowing focused evaluation of the handling of
segments containing named entities by either MT system.

Table 6.1: Example of named entity errors produced Online-G system in comparison to the
PROMT system from the WMT20 shared task.

COMET

Source Маругов врезался на мотоцикле в такси, которым управлял Акбаров.
Online-G Murugov crashed into a motorcycle taxi, which was ruled by Akbar. -0.1799
PROMT Marugov crashed into a taxi driven by Akbarov on a motorcycle. 0.5154
Reference Marugov crashed on a motorcyle into the taxi Akbarov was driving.

To illustrate the utility of DCF analysis on named entities we again compare the outputs of the
Online-G and the PROMT (Molchanov, 2020) systems from the Metrics Shared Task 2020 (Bar-
rault et al., 2020) as above:

Applying DCF for named entities, the Online-G system COMET score drops to 0.5851 (pre-
viously 0.6081), while the PROMT system only drops to 0.5888 (previously 0.5972). We also
observe that the percentage of critical segments from the Online-G system in our bucketed analy-
sis jumps from 6.26% to 7.0%, while the corresponding percentage output by the PROMT system
drops from 6.66% to 6.29%.

On the basis of the DCF analysis for named entities we can conclude that whilst in general
the Online-G exhibits superior quality, it may be under-performing with regard to named entities.
Interestingly, the system description paper for the PROMT system (Molchanov, 2020) specifi-
cally details a targeted approach to handling translation of named entities, which may explain its
stronger performance on the isolated sub-sample.

2https://stanfordnlp.github.io/stanza/ner.html
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In Table 6.1 we illustrate an example of a translation in which the Online-G system produces
critical errors as a consequence of translating named entities incorrectly, specifically isolated by
the DCF feature.

6.2.2 DCF: Terminology

Similarly to named entities, enforcing that MT systems use specific terminology during translation
is a challenging task with particular relevance in commercial use cases. Measuring terminology
adherence typically involves relying on automated metrics for MT as well as measuring the accu-
racy of terminology output (Dinu et al., 2019; Exel et al., 2020).

This approach presents two concrete problems: a) applying terminology constraints typically
results in only minimal variance between translations, which limits the utility of using automated
metrics at the corpus level; and b) measuring accuracy in terminology usage typically relies on
exact string matching between a translation hypothesis and its respective reference, which implies
that properly inflected translated terms often do not receive proper credit.

MT-TELESCOPE offers a DCF Terminology feature which allows a user to optionally upload
a glossary by which to isolate a corresponding sub-sample of the test corpus. We apply string
matching on the source and filter to only those segments which contain a corresponding glossary
match.

6.2.3 DCF: Segment Length

Another common weakness of some MT systems is their inability to accurately translate long
segments (Koehn and Knowles, 2017). In general, corpus level evaluation on a distribution that
includes very short segments can artificially inflate performance, with substantial drops in scores
being observed when these segments are specifically excluded (Koehn and Knowles, 2017). In
the same manner, quality-based decisions regarding two systems can change when we consider
segments of different lengths.

Using our example systems outlined above in Section 6.2.1, when comparing the Online-G and
the PROMT systems using only the top 50% longest segments, the PROMT system outperforms
the Online-G system according to COMET and CHRF scores, changing the fundamental perception
of which system is ‘better’. With the above in mind, MT-TELESCOPE also offers an option to filter
by segment length. This filter is adaptive to the distribution of segment lengths in the test corpus.
We first build the distribution of the source segment lengths (measured in terms of characters) for
the entire test set. Then, the user can select which part of the distribution to analyse by adjusting
the a and b parameters of the density function P (a ≤ X ≤ b); a and b being the minimum and
maximum length allowed, respectively.

6.2.4 DCF: Duplication

The removal of duplicates can be particularly important in situations where the test corpus sample
contains repetition. Repeated segments in a test sample can artificially inflate the corpus-level
score, particularly where that score results from an average of segment-level scores. Whilst we
acknowledge that removal of duplicate segments is fairly common in public data sets such as
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that used in the WMT Shared Tasks and consequently our example here, we propose that it is,
nevertheless, a useful tool when evaluating on random samples.

6.3 Statistical Significance Testing

By default, MT-TELESCOPE implements the bootstrapped t-test for statistical significance pro-
moted for use in comparison of MT systems by Koehn (2004). Specifically, we iteratively re-
sample a portion of the test set (of size P ) N times, compare corpus-level results of each sub-
sample and record the comparative conclusions. The ratio of wins of a single system is a rea-
sonable proxy to the probability that that system is better than the other. In other words, if one
system outperforms the other system 95% of the time, we conclude that the former is better with
a significance of p = 0.05 (Koehn, 2004).

This is particularly useful in cases where the relative difference between systems is minimal
and acts as a measure of the robustness of any resulting decision. In our implementation P is an
optional parameter which defaults to 0.5 (50%) or 500 segments, whichever is larger, to ensure
reasonable stability in the output conclusion3. N is also user defined and by default is set at 300
iterations.

6.4 Conclusion

In this chapter we show how MT-TELESCOPE is designed to provide robust and insightful com-
parative analysis specific to the MT use case with state-of-the-art metrics. Data visualizations are
dynamic, interactive and highly customizable. The tools have been built specifically with ease of
use in mind, in the hope of expanding access to high quality MT evaluation.

3Employing a lower P value entails balancing statistical power and efficiency. A P value of 0.5 strikes a favorable
balance between the two.
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Additional Contributions

7.1 Uncertainty-Aware MT Evaluation

While the metrics above — COMET, BLEURT , UNITE — have enjoyed success in correlations
with human judgements, their segment-level quality scores are often unreliable. They all share
the limitation that their output is a single point estimate – they do not provide any uncertainty
information, such as confidence intervals, with their quality predictions. This is an important
limitation: often, complex or out-of-domain sentences receive quality estimates that are far from
their true quality (as illustrated in Figure 7.1). This may lead to translations with critical mistakes
being undetected, and hinders worst-case performance analysis of MT systems.

Figure 7.1: Example of uncertainty-aware MT evaluation for a sentence in the WMT20 dataset.
Shown are two Russian translations of the same English source “She said, ‘That’s not going to
work.” with reference “Она сказала: “Не получится ”. For the first sentence, COMET provides
a point estimate in red that overestimates quality, as compared to a human direct assessment (DA),
while our UA-COMET returns a large 95% confidence interval which contains the DA value. For
the second sentence UA-COMET is confident and returns a narrow 95% confidence interval.

In this work, we propose a simple and effective method to obtain uncertainty-aware neural
fine-tuned metrics, by representing quality as a distribution, rather than a single value. To this
end, we make use of two well-studied techniques for uncertainty estimation, namely: Monte Carlo
(MC) dropout (Gal and Ghahramani, 2016) and deep ensembles (Lakshminarayanan et al., 2017).
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Pearson (τ ) UPS ↑ NLL ↓ ECE ↓ Sha. ↓

E
N

-D
E MC Dropout 0.452 0.409 1.433 0.024 0.674

Deep Ensemble 0.459 0.336 1.435 0.035 0.556
Baseline 0.452 - 1.437 0.094 1.031

Z
H

-E
N MC Dropout 0.503 0.309 1.402 0.018 0.721

Deep Ensemble 0.485 0.257 1.415 0.023 0.653
Baseline 0.503 - 1.398 0.059 0.953

Table 7.1: Results for segment-level MQM prediction. Underlined numbers indicate the best result
for each language pair and evaluation metric. Reported are the predictive Pearson score r(µ̂, q∗)
(τ ), the uncertainty Pearson score r(|q∗ − µ̂|, σ̂) (UPS), the negative log-likelihood (NLL), the
expected calibration error (ECE), and the sharpness (Sha.) (see Appendix A Section X). Note that
the UPS of the baseline is always zero, since it has a fixed variance.

In both cases, our methods are agnostic to the underlying metric, as long as it can be ensembled
or perturbed. In our experiments we use the COMET metrics and, to get confidence intervals,
we either apply a dropout probability of 0.1 and run N = 100 runs of MC dropout, or we get
predictions from 5 different models that are replicas of each other trained with 5 different seeds.

The models employed in these experiments are estimator models that were originally submit-
ted to the WMT20 Metrics shared task Rei et al. (2020b). The DA estimator represents an earlier
version of our primary metric presented in Section 3.5, trained exclusively on DA data from the
years 2017 to 2019. On the other hand, the HTER model resembles the HTER model outlined in
Section 3.4, albeit employing an XLM-R Large encoder. For the purpose of deep ensembles, we
retrained these models using five different seeds. The ensemble employed as a teacher in Chapter
5 is identical to the one developed for this study.

We evaluate our approach using data from the WMT20 metrics task (Mathur et al., 2020b),
including its recent extension with Google MQM annotations (Freitag et al., 2021a), and the QT21
dataset (Specia et al., 2017). In Table 7.1 we show results for the MQM corpus were we can
observe that the resulting confidence intervals are informative and correlated with the prediction
errors, leading to slightly more accurate predictions with informative uncertainty. On top of the
benefits of having an uncertainty-aware metric, we were able to improve the performance of the
original model (measured by the Pearson correlation between the model’s predictions and ground
truth). In fact, by using deep ensembles and MC dropout we improve prediction performance over
the original model (baseline) across all language pairs. In Appendix A (Section B) we explain
with more detail how evaluate uncertainty and we also show the results for the other 2 test sets
used.

We next experiment with the WMT20 EN-DE MQM data to get some insights on the impact
of using multiple references. This dataset contains 3 human references (Human A, B, and P)
for each source sentence generated in different ways: A and B are generated independently by
annotators and P is a paraphrased as-much-as-possible version of A. Our goal is to simulate the
availability of multiple human references of varying quality levels. As reported in the findings of
WMT20 Metrics task (Mathur et al., 2020b), in realistic scenarios the available references have
very disparate quality levels, and the quality of human references is not always known. We thus
calculate the performance when using each of the Human-A, Human-B and Human-P references
individually, and then compare randomly sampling r from R with averaging predictions over each
r in R, hypothesizing that the combination of references will result in reduced model uncertainty.
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#r Pearson (τ ) UPS ↑ NLL ↓ ECE ↓ Sha. ↓

R={A,B}

S-1 1 0.452 0.407 1.403 0.017 0.746
Mul 2 0.471 0.389 1.388 0.020 0.718

R={B,P}

S-1 1 0.391 0.327 1.470 0.029 0.837
Mul 2 0.441 0.331 1.429 0.013 0.753

R={A,P}

S-1 1 0.406 0.334 1.475 0.026 0.852
Mul 2 0.433 0.339 1.460 0.019 0.719

R={A,B,P}

S-1 1 0.402 0.355 1.473 0.026 0.825
S-2 2 0.441 0.348 1.424 0.019 0.756
Mul 3 0.455 0.351 1.417 0.018 0.702

Table 7.2: Performance over multiple references and combination patterns on EN-DE Google
MQM annotations. S-N signifies sampling w/o replacement N references from R; Mul signi-
fies combining estimates over multiple references in R. Underlined numbers indicate the best
result for each evaluation metric and reference set.

Pearson (τ ) UPS ↑ NLL ↓ ECE ↓ Sha. ↓

R={A} 0.452 0.409 1.433 0.024 0.674
R={B} 0.442 0.400 1.406 0.015 0.782
R={P} 0.391 0.275 1.511 0.020 0.783

Table 7.3: Performance over singleton reference sets on EN-DE Google MQM annotations.
Underlined numbers indicate the best result for each evaluation metric.

We can see in Table 7.2 that when having access to multiple references, combining all available
references (Mul) results in narrower confidence intervals compared to sampling single references
(S-1) or even pairs of references (S-2) as indicated by the decreasing values in sharpness. Apart
from sharpness, the model seems to benefit from the addition of new knowledge, since we see
consistent improvement in performance for τ and NLL metrics. Thus, with the incorporation of
additional human references we obtain models that are more confident – and rightly so, since they
are more predictive too. Combining this information with the performance of singleton reference
sets in Table 7.3, we note that even among human references, the estimated reference quality seems
to have an impact both on the predictive accuracy (τ ) and confidence (UPS, NLL, Sharpness). Both
for S-N and Mul approaches, the inclusion of Human-P in the reference set results in performance
drop across all metrics. Still, the negative impact of Human-P decreases with the increase of
combined references and we can conclude that when there is no information on the estimated
quality of references the best approach is to combine them: for R = {A,B, P}, Mul results in
similar performance to Human-A.
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7.2 Quality-Aware Decoding

Despite the progress in machine translation evaluation (both QE and Metrics) in the last years,
decoding in neural machine translation (NMT) is mostly oblivious to this and centers around
finding the most probable translation according to the model (MAP decoding), approximated with
beam search. In this work we bring together these two lines of research and propose quality-aware
decoding for NMT, by leveraging recent breakthroughs in QE and MT Metrics through various
inference methods like N -best reranking and minimum Bayes risk decoding (MBR) where the
generation process is decoupled into two steps: candidate generation and candidate selection.
Figure 7.2 illustrates the described decoding framework.

Figure 7.2: Quality-aware decoding framework. First, translation candidates are generated ac-
cording to the model. Then, using reference-free and/or reference-based MT metrics, these candi-
dates are ranked, and the highest ranked one is picked as the final translation.

The main question we try to answer in this work is if we can leverage recent advances in MT
evaluation to generate better translations and, if so, how can we most effectively do so? To do so
we explored the impact of combining 4 different ranking strategies:

1. Fixed N -best Reranker: An N -best reranker using a single reference-free metric as a
feature.

2. Tuned N -best Reranker: An N -best reranker using as features several reference-free met-
rics, along with the model log-likelihood log pθ(y|x). The weights of each feature/reference-
free metric are optimized to maximize a given reference-based metric (e.g COMET) using
MERT (Och, 2003), a coordinate-ascent optimization algorithm widely used in previous
work.

3. MBR Decoding: Choosing as the utility function a reference-based metric, we estimate the
utility using a simple Monte Carlo sum where each hypothesis is compared against each
other.

4. N -best Reranker → MBR: Using a large number of samples in MBR decoding is expen-
sive due to its quadratic cost. To circumvent this issue, we explore a two-stage ranking
approach: we first rank all the candidates using a tuned N -best reranker, followed by MBR
decoding using the top M candidates. The first ranking stage prunes the candidate list to
a smaller, higher quality subset, making possible a more accurate estimation of the utility
with less samples, and potentially allowing a better ranker than plain MBR for almost the
same computational budget.
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In this work, for both ranking and performance evaluation of MT systems we used BLEU,
CHRF, BLEURT and COMET. For N -best reranking we explore four recently proposed reference-
free metrics as features at the sentence-level:

• COMET-QE-DA, this was a reference-free model, following a similar architecture as COMET,
that was the winning submission for the “QE-as-a-metric” subtask of the WMT20 shared
task (Mathur et al., 2020b).

• TransQuest (Ranasinghe et al., 2020), the winning submission for the sentence-level DA pre-
diction subtask of the WMT20 QE shared task (Specia et al., 2020). Similarly to COMET-
QE this metric predicts a DA score. Regaring its architecture if is similar to COMETKIWI

(Section 3.8).

• MBART-QE (Zerva et al., 2021), based on the mBART Liu et al. (2020) model, trained to
predict both the mean and the variance of DA scores. It was a top performer in the WMT21
QE shared task (Specia et al., 2021).

• OpenKiwi-MQM which is trained to predict MQM and it was ranked second on the “QE-as-
a-metric” subtask from the WMT 2021 metrics shared task. This models not only produces
a sentence-level score but it also predicts word-level Ok/Bad tags.

Regarding our experimental setup we study the benefits of quality-aware decoding over
MAP-based decoding in two regimes:

• A high-resource, unconstrained, setting with large transformer models (6 layers, 16 atten-
tion heads, 1024 embedding dimensions, and 8192 hidden dimensions) trained by Ng et al.
(2019) for the WMT19 news translation task (Barrault et al., 2019), using English to Ger-
man (EN → DE) and English to Russian (EN → RU) language pairs. These models were
trained on over 20 million parallel and 100 million back-translated sentences, being the win-
ning submissions of that year’s shared task. We consider the non-ensembled version of the
model and use newstest19 for validation and newstest20 for testing.

• A more constrained scenario with a small transformer model (6 layers, 4 attention heads,
512 embedding dimensions, and 1024 hidden dimensions) trained from scratch in Fairseq
(Ott et al., 2019) on the smaller IWSLT17 datasets (Cettolo et al., 2012) for English to
German (EN → DE) and English to French (EN → FR), each with a little over 200k
training examples. We chose these datasets because they have been extensively used in
previous work (Bhattacharyya et al., 2021) and smaller model allows us to answer questions
about how the training methodology affects ranking performance.

We use beam search with a beam size of 5 as our decoding baseline because we found that it
resulted in better or similar translations than larger beam sizes. For tuned N-best reranking, we
use Travatar’s (Neubig, 2013) implementation of MERT (Och, 2003) to optimize the weight of
each feature. Finally, we evaluate each system using BLEU, CHRF, BLEURT and COMET.

Our results according to automatic evaluation can be found in Table 7.4. For fixed N -best
reranker with a single reference-free metric (1st group in Table 7.4), while none of the metrics
allows for improving the baseline results in terms of the lexical metrics (BLEU, CHRF), rerankers
using COMET-QE-DA or MBART-QE outperform the baseline according to BLEURT and COMET.
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Large (WMT20) Small (IWSLT)

BLEU chrF BLEURT COMET BLEU chrF BLEURT COMET

Baseline 36.01 63.88 0.7376 0.5795 29.12 56.23 0.6635 0.3028

F-RR w/ COMET-QE-DA 29.83 59.91 0.7457 0.6012 27.38 54.89 0.6848 0.4071
F-RR w/ MBART-QE 32.92 62.71 0.7384 0.5831 27.30 55.62 0.6765 0.3533
F-RR w/ OpenKiwi 30.38 59.56 0.7401 0.5623 25.35 51.53 0.6524 0.2200
F-RR w/ Transquest 31.28 60.94 0.7368 0.5739 26.90 54.46 0.6613 0.2999

T-RR w/ BLEU 35.34 63.82 0.7407 0.5891 30.51 57.73 0.7077 0.4536
T-RR w/ BLEURT 33.39 62.56 0.7552 0.6217 30.16 57.40 0.7127 0.4741
T-RR w/ COMET 34.26 63.31 0.7546 0.6276 30.16 57.32 0.7124 0.4721

MBR w/ BLEU 34.94 63.21 0.7333 0.5680 29.25 56.36 0.6619 0.3017
MBR w/ BLEURT 32.90 62.34 0.7649 0.6047 28.69 56.28 0.7051 0.3799
MBR w/ COMET 33.04 62.65 0.7477 0.6359 29.43 56.74 0.6882 0.4480

T-RR+MBR w/ BLEU 35.84 63.96 0.7395 0.5888 30.23 57.34 0.6913 0.3969
T-RR+MBR w/ BLEURT 33.61 62.95 0.7658 0.6165 29.28 56.77 0.7225 0.4361
T-RR+MBR w/ COMET 34.20 63.35 0.7526 0.6418 29.46 57.13 0.7058 0.5005

Table 7.4: Evaluation metrics for EN → DE for the large and small model settings, using a
fixed N -best reranker (F-RR), a tuned N -best reranker (T-RR), MBR decoding, and a two-stage
approach. Best overall values are bolded and best for each specific group are underlined.

If we consider a tuned N -best reranker (2nd group in Table 7.4) using as features all the reference-
free metrics, and optimized using MERT for a particular metric all the rankers show improved
results over the baseline. In particular, optimizing for BLEU, leads to the best results in the lexical
metrics, while optimizing for BLEURT leads to the best performance in the others.

Table 7.4 (3rd group) shows the impact of using MBR with different utility function (BLEU,
BLEURT and COMET). For the small model, using COMET leads to the best performance accord-
ing to all the metrics except BLEURT (for which the best result is attained when optimizing itself).
For the large model, the best result according to a given metric is obtained when using that metric
as the utility function.

Finally, looking at Table 7.4 4th group we see that, for both the large and the small model, the
two-stage ranking approach (N -best Reranker → MBR) leads to the best performance according
to the fine-tuned metrics. In particular, the best result is obtained when the utility function is the
same as the evaluation metric. These results suggest that a promising research direction is to seek
more sophisticated pruning strategies for MBR decoding.

To further investigate how quality-aware decoding performs when compared to MAP-based
decoding, we perform another human study, this time based on MQM. According to Table 7.5,
despite the remarkable performance of the F-RR with COMET-QE-DA in terms of COMET, the
quality of the translations decreases when compared to the baseline, suggesting the possibility
of metric overfitting when evaluating systems using a single automatic metric that was directly
optimized for (or a similar one). However, for both language pairs, the T-RR with COMET and
the two stage approach (T-RR→MBR with COMET) achieve the highest MQM score. In addition,
these systems present the smallest number of errors when combining both major and critical errors.
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EN-DE (WMT20) EN-RU (WMT20)

Minor Major Critical MQM Minor Major Critical MQM

Reference 24 67 0 97.04 5 11 0 99.30

Baseline 8 139 0 95.66 17 239 49 79.78
F-RR w/ COMET-QE 15 204 0 93.47 13 254 80 76.25
T-RR w/ COMET 12 109 0 96.20 9 141 45 85.97†

MBR w/ COMET 11 161 0 94.38 8 182 40 83.65
T-RR + MBR w/ COMET 10 138 0 95.44 11 134 45 86.78†

Table 7.5: Error severity counts and MQM scores for WMT20 (large models). Best overall values
are bolded. Methods with † are statistically significantly better than the baseline, with p < 0.05.
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Chapter 8

Conclusion and Future Work

In this thesis, we have addressed the challenges and limitations of automatic MT evaluation and
proposed novel ways to improve the state of the field. We have focused on the following desiderata:
strong correlation with human judgments, robustness to diverse languages and domains,
interpretability, and efficiency. Our contributions can be summarized as follows:

1. We introduced COMET, a PyTorch-based framework for training highly multilingual and
adaptable MT evaluation models that can function as metrics. COMET metrics incorporate
source-language information and leverage recent advancements in cross-lingual language
modeling. These metrics have demonstrated high correlations with human judgments and
have been widely adopted by the MT community.

2. We conducted a study titled ”The Inside Story,” where we investigated the inner workings of
COMET metrics. Through the analysis of token-level neural saliency maps and comparisons
with human annotations, we revealed that these metrics effectively capture translation errors
and provide valuable insights into their decision-making process.

3. To address the computational cost of COMET metrics, we introduced techniques based on
pruning and knowledge distillation. These techniques led to the creation of more com-
pact and faster versions of COMET metrics, referred to as COMETINHO’s. These improved
metrics maintain high correlations with human judgments while enhancing efficiency in
scenarios where speed is crucial.

4. We developed MT-TELESCOPE, an analysis tool designed for comparing two MT systems
side-by-side under different circumstances. MT-TELESCOPE enables robust MT compari-
son by incorporating state-of-the-art evaluation metrics, statistical tests, dynamic filters, and
a visual interface. This tool facilitates the adoption of best practices in MT evaluation and
empowers researchers and industry practitioners.

The contributions presented in this thesis have advanced the field of MT evaluation by offering
new evaluation methodologies, interpretability insights, improved efficiency and best practices.
We have demonstrated the importance of strong correlation with human judgments and the value
of incorporating source-language information into MT evaluation. Our work has shed light on the
inner workings of neural fine-tuned metrics and addressed the computational cost of these metrics,
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making them more practical in various settings. Additionally, we provided a comprehensive tool
for MT system comparison.

Overall, our research has paved the way for more robust, interpretable, and efficient MT eval-
uation. The adoption of our contributions will lead to better-informed decisions in MT model
selection, system development, and deployment.

Looking ahead, there are several directions for future work that can further advance MT evalu-
ation. Firstly, there is a need to develop metrics that align better with the MQM framework. These
metrics should go beyond providing a sentence-level score and be able to identify error spans with
corresponding categories such as minor, major, and critical errors. Although attempts have been
made (Rei et al., 2021a, 2022b; Perrella et al., 2022), the results have been limited due to the
scarcity of publicly available data to train such models. Addressing this limitation by creating
larger and more diverse datasets would be crucial for progress in this area.

Secondly, orthogonal to the first direction, it is important to explore the potential of scaling.
Our research has shown that scaling a reference-free model to 10.7 billion parameters leads to
improved results. Metrics like COMET, BLEURT, and UNITE, which currently have less than 600
million parameters, represent only the tip of the iceberg. With larger models, these metrics can be
expected to continue improving. Moreover, the use of Large Language Models (LLMs) presents
an opportunity to frame the evaluation task as a generative task. This approach has the potential
to create more interpretable metrics that not only provide a score but also offer explanations in
textual form, further enhancing our understanding of the evaluation results.

Finally, in recent months, there has been a lot of interest in Reinforcement Learning (RL) from
Human Feedback. In these works, the training is split into 3 phases: 1) Pretraining, 2) Creation
of a reward model from human annotations, and 3) fine-tuning with RL. COMET and all these
new neural fine-tuned metrics can be seen as strong reward models for MT training using RL. Our
quality-aware decoding work can be seen as a first step in that direction, but there is still much
to investigate in this area, especially with QE models. This exploration could open the door to
unsupervised fine-tuning of MT models.
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Ilya Loshchilov and Frank Hutter. 2018. Decoupled weight decay regularization. In Proceedings
of the 6th International Conference on Learning Representations (ICLR).
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Steffen Eger, Diptesh Kanojia, Duarte Alves, Constantin Orăsan, Marina Fomicheva, André
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Appendix A

COMET Models Hyperparameters

Below you can find the hyperparameters used to train all the models presented in this thesis using
the unbabel-comet>=2.0.0 PyPI version of our framework.
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1 regression_metric:
2 class_path: comet.models.RegressionMetric
3 init_args:
4 nr_frozen_epochs: 0.3
5 keep_embeddings_frozen: True
6 optimizer: AdamW
7 encoder_learning_rate: 1.0e-05
8 learning_rate: 1.0e-05
9 layerwise_decay: 1.0

10 encoder_model: XLM-RoBERTa
11 pretrained_model: xlm-roberta-base
12 pool: avg
13 layer: mix
14 layer_transformation: softmax
15 layer_norm: False
16 loss: mse
17 dropout: 0.1
18 batch_size: 32
19 train_data:
20 - PATH_TO_TRAIN_DATA.csv
21 validation_data:
22 - PATH_TO_WMT21_MQM_NEWS_ENDE.csv
23 - PATH_TO_WMT21_MQM_NEWS_ENRU.csv
24 - PATH_TO_WMT21_MQM_NEWS_ZHEN.csv
25 hidden_sizes:
26 - 2304
27 - 1152
28 activations: Tanh

Listing A.1: Hyperparameters used for the Estimator models presented in Section 3.4.

1 ranking_metric:
2 class_path: comet.models.RankingMetric
3 init_args:
4 nr_frozen_epochs: 0.0
5 keep_embeddings_frozen: True
6 optimizer: AdamW
7 encoder_learning_rate: 1.0e-05
8 learning_rate: 1.0e-05
9 layerwise_decay: 1.0

10 encoder_model: XLM-RoBERTa
11 pretrained_model: xlm-roberta-base
12 pool: avg
13 layer: mix
14 layer_transformation: softmax
15 layer_norm: False
16 dropout: 0.1
17 batch_size: 32
18 train_data:
19 - PATH_TO_TRAIN_DATA.csv
20 validation_data:
21 - PATH_TO_WMT21_DARR_NEWS_ENDE.csv
22 - PATH_TO_WMT21_DARR_NEWS_ENRU.csv
23 - PATH_TO_WMT21_DARR_NEWS_ZHEN.csv

Listing A.2: Hyperparameters used for the Translation Ranking model presented in Section 3.4.
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1 regression_metric:
2 class_path: comet.models.RegressionMetric
3 init_args:
4 nr_frozen_epochs: 0.3
5 keep_embeddings_frozen: True
6 optimizer: AdamW
7 encoder_learning_rate: 1.0e-06
8 learning_rate: 1.5e-05
9 layerwise_decay: 0.95

10 encoder_model: XLM-RoBERTa
11 pretrained_model: xlm-roberta-large
12 pool: avg
13 layer: mix
14 layer_transformation: sparsemax
15 layer_norm: False
16 loss: mse
17 dropout: 0.1
18 batch_size: 16
19 train_data:
20 - PATH_TO_TRAIN_DATA.csv
21 validation_data:
22 - PATH_TO_WMT21_MQM_NEWS_ENDE.csv
23 - PATH_TO_WMT21_MQM_NEWS_ENRU.csv
24 - PATH_TO_WMT21_MQM_NEWS_ZHEN.csv
25 hidden_sizes:
26 - 3072
27 - 1024
28 activations: Tanh

Listing A.3: Hyperparameters used for the wmt22-comet-da metric presented in Section 3.5.
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1 unified_metric:
2 class_path: comet.models.UnifiedMetric
3 init_args:
4 nr_frozen_epochs: 0.3
5 keep_embeddings_frozen: True
6 optimizer: AdamW
7 encoder_learning_rate: 1.0e-06
8 learning_rate: 1.5e-05
9 layerwise_decay: 0.95

10 encoder_model: XLM-RoBERTa
11 pretrained_model: microsoft/infoxlm-large
12 sent_layer: mix
13 layer_transformation: sparsemax
14 word_layer: 24
15 loss: mse
16 dropout: 0.1
17 batch_size: 16
18 train_data:
19 - PATH_TO_TRAIN_DATA.csv
20 validation_data:
21 - PATH_TO_WMT21_MQM_NEWS_ENDE.csv
22 - PATH_TO_WMT21_MQM_NEWS_ENRU.csv
23 - PATH_TO_WMT21_MQM_NEWS_ZHEN.csv
24 hidden_sizes:
25 - 3072
26 - 1024
27 activations: Tanh
28 input_segments:
29 - mt
30 - src
31 word_level_training: False

Listing A.4: Hyperparameters used for the wmt22-cometkiwi-da metric presented in Section
3.8.
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1 unified_metric:
2 class_path: comet.models.UnifiedMetric
3 init_args:
4 nr_frozen_epochs: 0.3
5 keep_embeddings_frozen: True
6 optimizer: AdamW
7 encoder_learning_rate: 1.0e-06
8 learning_rate: 1.5e-05
9 layerwise_decay: 0.95

10 encoder_model: XLM-RoBERTa
11 pretrained_model: xlm-roberta-large
12 sent_layer: mix
13 layer_transformation: sparsemax
14 word_layer: 24
15 loss: mse
16 dropout: 0.1
17 batch_size: 16
18 train_data:
19 - PATH_TO_TRAIN_DATA.csv
20 validation_data:
21 - PATH_TO_WMT21_MQM_NEWS_ENDE.csv
22 - PATH_TO_WMT21_MQM_NEWS_ENRU.csv
23 - PATH_TO_WMT21_MQM_NEWS_ZHEN.csv
24 hidden_sizes:
25 - 3072
26 - 1024
27 activations: Tanh
28 input_segments:
29 - mt
30 - src
31 - ref
32 word_level_training: False

Listing A.5: Hyperparameters used for the UNITE metric presented in Chapter 4.
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Language Pair SIZE

zh-en 126947
en-de 121420
de-en 99183
en-zh 90805
ru-en 79280
en-ru 62749
en-cs 60937
fi-en 46145
en-fi 34335
tr-en 30186
et-en 29496
cs-en 27847
en-mr 26000
de-cs 13804
en-et 13376
pl-en 11816
en-pl 10572
lt-en 10315
en-ja 9578
gu-en 9063
si-en 9000
ro-en 9000
ne-en 9000
en-lt 8959
ja-en 8939
en-kk 8219
en-ta 7890
ta-en 7577
en-gu 6924
kk-en 6789
de-fr 6691
en-lv 5810
en-tr 5171
km-en 4722
ps-en 4611
fr-de 3999
Total 1027155

Table A.1: Number of direct assessments per language pair used to train wmt22-comet-da,
wmt22-cometkiwi-da (Chapter 3) and the UNITE model used in Chapter 4
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Evaluating Uncertainty

Two crucial aspects to take into account when evaluating uncertainty-aware systems are: (i) the
system should not harm the predictive accuracy compared to a system without uncertainty and
(ii) the uncertainty estimate should reflect the failure probability of the system well, meaning that
the system “knows when it does not know.” In what follows, we assume a test or validation set
D = {⟨sj , tj ,Rj , q

∗
j ⟩}

|D|
j=1with input tuples with a source s, a translation t, a set of reference

translations R = {r1, . . . , r|R|} and a ground truth scores q∗.

consisting of examples together with their ground truth quality scores.

Calibration Error One way of understanding if models can be trusted is analyzing whether
they are calibrated (Raftery et al., 2005; Jiang et al., 2011; Kendall and Gal, 2017), that is, if
the confidence estimates of its predictions are aligned with the empirical likelihoods (Guo et al.,
2017). In classification tasks, this is assessed by the expected calibration error (ECE; Naeini et al.
2015), which has been generalized to regression by (Kuleshov et al., 2018).

It is defined as:

ECE =
1

M

M∑
b=1

|acc(γb)− γb|, (1)

where each b is a bin representing a confidence level γb, and acc(γb) is the fraction of times the
ground truth q∗ falls inside the confidence interval I(γb):

acc(γb) =
1

|D|
∑

⟨s,t,R,q∗⟩∈D

1(q∗ ∈ I(γb)). (2)

We use this metric with M = 100.

Negative log-likelihood To evaluate parametric methods that represent the full distribution p̂Q(q),
we can use a single metric that captures both accuracy and uncertainty, the average negative log-
likelihood of the ground truth quality scores according to the model:

NLL = − 1

|D|
∑

⟨s,t,R,q∗⟩∈D

log p̂(q∗ | ⟨s, t,R⟩). (3)

92 of 94



Appendix B Evaluating Uncertainty

This metric penalizes predictions that are accurate but have high uncertainty (since they will be-
come flat distributions with low probability everywhere), and even more severely incorrect predic-
tions with high confidence (as they will be peaked in the wrong location), but is more forgiving to
predictions that are inaccurate but have high uncertainty.

Sharpness The metrics above do not sufficiently account for how “tight” the uncertainty inter-
val is around the predicted value, and thus might generally favour predictors that produce wide
and uninformative confidence intervals. To guarantee useful uncertainty estimation, confidence
intervals should not only be calibrated, but also sharp. We measure sharpness using the predicted
variance σ̂2, as defined in (Kuleshov et al., 2018):

sha(p̂Q) =
1

|D|
∑

⟨s,t,R⟩∈D

σ̂2. (4)

Pearson correlations As shown by Ashukha et al. (2020), NLL and ECE alone might not be
enough to evaluate uncertainty-aware systems. Therefore, we complement the indicators above
with two Pearson correlations involving the system’s predictions and the ground truth quality
scores coming from human judgements. The first, which we call the predictive Pearson score
(PPS), is useful to assess the predictive accuracy of the system, regardless of the uncertainty es-
timate – it is the Pearson correlation r(q∗, µ̂) between the ground truth quality scores q∗ and the
average system predictions µ̂ in the dataset D (for the baseline point estimate system, we use q̂
instead of µ̂). We expect this score to be similar to the baseline or slightly better due to the ensem-
ble effect. The second is the uncertainty Pearson score (UPS) r(|q∗ − µ̂|, σ̂), which measures
the alignment between the prediction errors |q∗ − µ̂| and the uncertainty estimates σ̂. Note that
achieving a high UPS is much more challenging – a model with a very high score would know
how to correct its own predictions to obtain perfect accuracy. We confirm this claim later in our
experiments.
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PPS ↑ UPS ↑ NLL ↓ ECE ↓ Sha. ↓

E
N

-D
E MCD 0.576 0.284 1.330 0.014 0.645

DE 0.581 0.246 1.364 0.023 0.523
Basel. 0.576 - 1.337 0.079 0.845

E
N

-Z
H MCD 0.333 0.064 1.779 0.024 0.701

DE 0.354 0.477 1.435 0.020 0.762
Basel. 0.329 - 1.570 0.090 1.342

E
N

-T
A MCD 0.658 0.015 1.226 0.022 0.585

DE 0.675 0.068 1.200 0.018 0.564
Basel. 0.655 - 1.237 0.028 0.691

Z
H

-E
N MCD 0.314 0.109 1.628 0.015 0.971

DE 0.319 0.174 1.591 0.016 0.928
Basel. 0.313 - 1.580 0.059 1.374

E
N

-J
A MCD 0.640 0.165 1.237 0.011 0.591

DE 0.651 0.093 1.225 0.015 0.556
Basel. 0.636 - 1.259 0.035 0.725

E
N

-C
S MCD 0.691 0.207 1.163 0.013 0.548

DE 0.729 0.163 1.100 0.013 0.455
Basel. 0.695 - 1.172 0.036 0.608

E
N

-R
U MCD 0.536 0.142 1.378 0.021 0.767

DE 0.578 0.139 1.320 0.023 0.670
Basel. 0.532 - 1.383 0.041 0.925

E
N

-P
L MCD 0.611 0.199 1.275 0.015 0.650

DE 0.650 0.176 1.224 0.012 0.581
Basel. 0.608 - 1.301 0.042 0.783

E
N

-I
U MCD 0.300 0.223 1.600 0.016 1.016

DE 0.308 0.319 1.682 0.026 1.052
Basel. 0.292 - 1.594 0.077 1.410

Table B.1: Results for segment-level DA prediction. Underlined numbers indicate the best result
for each language pair and evaluation metric.

PPS ↑ UPS ↑ NLL ↓ ECE ↓ Sha. ↓

E
N

-D
E MCD 0.765 0.384 1.054 0.023 0.325

DE 0.703 0.408 1.110 0.017 0.406
Basel. 0.761 - 1.052 0.120 0.478

D
E

-E
N MCD 0.769 0.475 0.964 0.029 0.329

DE 0.702 0.498 1.100 0.040 0.330
Basel. 0.767 - 1.046 0.140 0.469

E
N

-L
V MCD 0.778 0.376 1.209 0.020 0.284

DE 0.709 0.377 1.064 0.022 0.328
Basel. 0.772 - 1.017 0.108 0.454

E
N

-C
S MCD 0.753 0.173 1.097 0.038 0.413

DE 0.672 0.216 1.222 0.024 0.536
Basel. 0.752 - 1.076 0.050 0.498

Table B.2: Results for segment-level HTER prediction in QT21. Underlined numbers indicate the
best result for each language pair and evaluation metric.
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