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ABSTRACT 

This thesis addresses the global concern of sustainable water management in agriculture, 

particularly in Mediterranean agro-ecosystems, where water scarcity is a growing issue due to 

population growth and climate change. The primary focus was the development of a Decision 

Support System (DSS) called IrrigaSys, based on the MOHID-Land model, to optimize 

irrigation water management at the plot scale. The key objectives were to create a user-friendly 

DSS framework, calibrate the MOHID-Land model for various crops, assess the impact of 

remote sensing data assimilation, and demonstrate the DSS's effectiveness in improving 

irrigation schedules and water use efficiency. 

The DSS integrates various components, including meteorological data, the MOHID-

Land model for soil water balance, and a user-friendly interface, accessible through web and 

mobile platforms. It also incorporates Sentinel-2 imagery of Normalized Difference Vegetation 

Index (NDVI). IrrigaSys has been successfully deployed in collaboration with stakeholders in 

southern Portugal, supporting over 100 plots for five years. 

The calibration of the MOHID-Land model for maize, pasture, and vineyard crops 

demonstrated its accuracy in simulating soil water dynamics and crop growth. Additionally, the 

thesis explored the use of remote sensing data, to enhance model accuracy. While remote 

sensing data assimilation improves model estimates, it also highlights the importance of 

complementing this information with local crop datasets. This thesis introduces a novel 

approach to optimize irrigation management using the MOHID Land Irrigation Module and 

concludes with a chapter that conducts a post-evaluation of IrrigaSys employing a multicriteria 

analysis (MCA) approach. 

In summary, this research contributes significantly to sustainable water management in 

agriculture. The development of IrrigaSys, the calibration of the MOHID-Land model, and the 

utilization of remote sensing data offer valuable tools and insights for enhanced irrigation 

practices. This integrated approach empowers farmers, improves water productivity, and 

advances informed decision-making for water resource management, providing a pathway for 

more sustainable and efficient agricultural practices. 

 

Keywords: Irrigation scheduling, MOHID-Land, Decision support system, Soil water 

balance, remote sensing 
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RESUMO 

Esta tese tem com tema a preocupação global da gestão sustentável da água na 

agricultura, particularmente em agro-ecossistemas mediterrânicos, onde a escassez de água é 

uma questão crescente devido ao crescimento populacional e às mudanças climáticas. O foco 

principal foi o desenvolvimento de um Sistema de Suporte à Decisão (DSS), chamado 

IrrigaSys, com base no modelo MOHID-Land, para otimizar a gestão da água de rega à escala 

da parcela. Os principais objetivos foram criar uma estrutura DSS fácil de utilizar, calibrar o 

modelo MOHID-Land para várias culturas, avaliar o impacto de dados de deteção remota, e 

demonstrar a eficiência do DSS na melhoria da gestão de rega e na eficiência do uso da água. 

O DSS integra vários componentes, incluindo dados meteorológicos, o modelo MOHID-

Land para o balanço de água no solo e uma interface de utilizador amigável, acessível através 

de plataformas web e móveis. Também incorpora imagens do Índice de Vegetação(NDVI).  

A calibração do modelo MOHID-Land para culturas de milho, pastagem e vinha 

demonstrou a sua precisão na simulação da dinâmica da água no solo e no crescimento das 

culturas. Além disso, a tese explorou o uso da deteção remota, para melhorar a precisão do 

modelo.  A tese introduz uma nova abordagem para otimizar a gestão da rega usando o módulo 

de rega MOHID Land e conclui com um capitulo que faz uma avaliação ao IrrigaSys utilizando 

uma analise multicriterial (MCA). 

Em resumo, esta tese contribui significativamente para a gestão sustentável da água na 

agricultura. O desenvolvimento do IrrigaSys, a calibração do modelo MOHID-Land e a 

utilização de dados de deteção remota oferecem ferramentas e conhecimentos valiosos para 

práticas de rega. Esta abordagem integrada capacita os agricultores, melhora a produtividade 

da água e promove a tomada de decisões informadas para a gestão dos recursos hídricos, 

proporcionando um caminho para práticas agrícolas mais sustentáveis e eficientes. 

Palavras-chave: programação da rega, MOHID-Land, Sistemas de Apoio à Decisão, 

Balanço de Água no Solo, Deteção Remota. 
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1. Introduction  

1.1 Background 

The issue of freshwater use in agriculture has become a critical global concern due to the 

significant impact it has on the world's water resources. With agriculture being the largest user 

of freshwater, consuming more than two-thirds of total withdrawals (Gan et al., 2013), the 

increasing demand for food production, and a rapidly growing population, there are mounting 

challenges to meeting these demands sustainably.  

An estimated 310 million hectares (ha) worldwide are irrigated compared to around 100 

million ha in 1950 (Salmon et al., 2015). Meanwhile, agricultural production has grown 

between 2.5 and 3 times, thanks to significant increase in the yield of major crops. During that 

period, the world population increased by about the same factor, from 2.5 billion in 1950 to 

about 8 billion in 2023 and is expected to keep growing to 9.5 billion by 2050 (“FAO’s 

Director-General on How to Feed the World in 2050,” 2009).  

The increase of evapotranspiration (ET) corresponds to an increase of the water demand 

of crops, can lead to an increase in the amount of freshwater that needs to be withdrawn for 

agricultural purposes in certain climates. As a result, farmers may have to use more water 

resources to irrigate their crops, which can put pressure on freshwater supplies, particularly in 

regions that are already water-stressed (Hatfield et al., 2011). At the same time the increase in 

temperatures and decrease in rainfall, caused by climate change, will make water a scarcer 

resource (Farré and Faci, 2009). Competition for water from different types of users, not related 

to agriculture, is also on the rise. This is even more obvious in arid and semi-arid areas. 

In southern Europe, for example, increasing water demand and withdrawals have been 

building up the pressure on freshwater resources, with agriculture accounting for more than 

half of the total water abstraction, rising to more than 80% in some regions (Whytock, 2020). 

Aridity and droughts are becoming increasingly common in Southern Europe, which can have 

serious consequences for both the environment and the economy. To address this issue, there 

is a need for more sustainable water management practices, including the adoption of water-

efficient irrigation systems and the promotion of more efficient use of water in agriculture. 

Additionally, policy measures such as water pricing, water rights allocation, and water-use 

restrictions may also help to conserve water resources and ensure their availability for future 

generations (Dige et al., 2013). 

Irrigation plays a decisive role in increasing agricultural productivity and production 

stability in southern Europe, but erroneous irrigation practices drive unnecessary water 
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consumption and promote environmental degradation in regions ecologically sensitive to 

nutrients concentrations as well as soil degradation due to erosion and organic matter loss. 

Aware of these problems, the European Commission has given top priority to the protection of 

natural resources in the context of the Europe 2020 Strategy and Horizon Europe Strategy, 

including the sustainability of water resources (Comission, European, n.d.). Consequently, 

there has been a redirection of funding, moving away from stimulating production towards 

promoting Best Management Practices (BMP). In line with these strategic objectives, countries 

in southern Europe have implemented specific policy instruments aimed at maximizing the 

efficiency and effectiveness of irrigation water utilization. Taking Portugal as an example, 

particular policy measures like Portaria n.502015, n.d., and Portaria n.542023, Measure 7.5 

"Efficient Water Use", mandates the adoption of pressurized irrigation systems, the periodic 

inspection of irrigation systems, the precise quantification of irrigation pulses, and the 

definition of improved irrigation schedules resulting from the integration of data from 

meteorological stations, on soil water content status and crop water needs, i.e., based on the 

computation of the soil water balance at the plot scale. In mainland Portugal, individuals and 

entities engaged in agriculture may access economic support through adherence to specific 

eligibility criteria. Commitments, lasting five years, necessitate compliance of the measures 

enumerated before, to avoid administrative penalties. Optional commitments offer increased 

support for reused water usage. Support takes the form of annual non-repayable subsidies, 

contingent on varying factors. While accumulation of support is limited under certain 

interventions, non-compliance or irregularities may result in reductions or exclusions from 

support. 

Better management tools are also required for integrating different physical and 

biochemical processes and simulating the different soil-water-atmosphere transfer systems 

across scales. The MOHID-Land model is a process-based distributed model developed at IST 

(Instituto Superior Técnico) (www.mohid.com), with the capability of simulating soil water 

dynamics, solute transport, and plant development at different scales (Brito et al., 2015, Epelde 

et al., 2016, Simionesei et al., 2016), being well suited to support irrigation optimization 

considering soil water moisture, but also crop development.  

1.2 Context 

IrrigaSys emerged from a long collaboration between MARETEC (Marine Environment 

and Technology Center) and the Water Irrigation Association (ARBVS). This collaboration 

began in 2009 with a research project called Aquapath-Soil (2009 – 2012). The aim of this 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/environmental-degradation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/irrigation-system
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/irrigation-scheduling
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/soil-water-balance
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project was to provide support services for irrigation, utilizing satellite images, hydrological 

models, and meteorological data. Users could observe the project results through the website 

(http://www.agro-evapo.eu), accessing maps of Leaf Area Index (LAI) and animated maps of 

Actual Evapotranspiration (ETa), or receive SMS notifications throughout the period with 

meteorological information and actual evapotranspiration data. 

ETa maps were generated by the MOHID LAND model and represented the 

evapotranspiration accumulated weekly throughout the growing period of maize, using LAI as 

input. Two models, SWAT and MOHID LAND, were used to calculate plant growth, actual 

evapotranspiration, and soil moisture by explicitly accounting for the water balance of the soil-

plant-atmosphere system. The information provided in the SMS messages was obtained from 

the SWAT model running in forecast mode using meteorological data from the previous week 

and forecasts for the next week. The weather data included precipitation, temperature, relative 

humidity, wind speed, and solar radiation from the closest weather station to each field.  

Continuing the Aquapath-Soil project, a partnership between ARBVS, DEIMOS, and 

MARETEC (IST) initiated the MyFarm (2012 – 2015) project effectively in 2012. Within this 

project, a remote irrigation support service was provided using prediction models and remote 

production control to approximately 50 farmers. These farmers received irrigation advice via 

SMS and satellite images (NDVI maps), covering about 120 plots (pivots and covers). 

In 2013, MARETEC participated in a new research project called FIGARO (2013 – 

2016). FIGARO, or “Flexible and Precision Irrigation Platform to Improve Farm Scale Water 

Productivity,” was a European-wide research project co-funded by the European Commission 

under the 7th Framework Programme (FP7) for Research and Technological Development. 

FIGARO aimed to significantly reduce the use of fresh water on the farm level by developing 

a cost-effective precision irrigation management platform. The European-wide consortium 

developed a holistic and structured precision irrigation platform, offering farmers a flexible, 

crop-oriented management tool with a Decision Support System (DSS) module to optimize 

irrigation. The platform included comprehensive systems such as decision support systems, 

simulation and optimization models, user-friendly interface, multiple precision-technology 

sensors, as well as irrigation monitoring hardware and controls. While the platform was never 

implemented at full scale, it served as a model for IrrigaSys. 

http://www.agro-evapo.eu/
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1.3 Working hypothesis 

The hypothesis of this thesis is that irrigation water management at the plot scale can be 

improved using a process-based physical model with assimilation of data from external sources 

(e.g., remote sensing). Process-based physical models are complex tools, requiring well defined 

parameters to produce reliable estimates of the soil water balance. These include soil hydraulic 

parameters, crop growth parameters, and the inputs of the weather variables and crop 

coefficients needed for defining crop water requirements. Usually, farmers can provide little 

information about the characteristics of their plots for a correct implementation of process-

based physical models. The recent technological advances at different levels (e.g., proximal 

and remote sensors) offer alternatives to such limitations. Therefore, this thesis aims to answer 

the following questions: 

 

1. Can a process-based physical model like MOHID-Land be used for irrigation water 

management? 

2. Can a decision support system (DSS) function with the MOHID-Land model as its 

core system? 

3. Can remote sensing products be used for scaling up the DSS to plots with limited data 

availability? 

1.4 Objectives for the thesis 

The main objective of this thesis is to create a tool that will help farmers to improve water 

use efficiency at the plot scale.  

Irrigation is essential for assuring agriculture productivity and enhancing farmers’ 

economic competitiveness in the Mediterranean climate region. Inefficient practices often lead 

to soil salinization/sodification, nutrient leaching, runoff, and soil erosion, which impacts need 

to be mitigated. This thesis aims to develop a decision support system (DSS) for irrigation 

water management of annual and perennial crops in Mediterranean agro-ecosystem, 

contributing to the decision making process by optimizing irrigation schedules. 

The specific objectives are: 

• to develop a DSS built on the framework of the MOHID-Land model for 

improving irrigation water management at the plot scale.  

• to calibrate the MOHID Land model for simulating soil water dynamics and crop 

growth in annual (pasture, maize) and perennial (grapevine) crops.  
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• to assess the impact of assimilation of leaf area index and crop coefficient data 

derived from remote sensing imagery on model simulations of soil water 

dynamics and crop growth. 

• to demonstrate the capability of the MOHID-Land model in optimizing irrigation 

schedules, and improving irrigation water use and crop water productivity at the 

plot scale. 

• to assess the influence of the DSS on the evolution of crop water use and irrigation 

scheduling within the Sorraia Valley irrigation district during 5 years of 

implementation. 

1.5 Thesis structure  

The thesis presents the following structure: 

Chapter 1 - The introduction chapter presents the water issue around the world with a 

focus to Portugal. The chapter ends with the motivations for this work.  

Chapter 2 - The bibliographic revision chapter, the main papers and books published on 

the subject are reviewed. The chapter addresses several topics such as decision support systems, 

and process-based models. 

Chapter 3 - Presents the IrrigaSys DSS. This chapter further discusses the main strengths 

and limitations of IrrigaSys, with the latter being associated with difficulties in providing 

reliable estimates for all field plots based on limited data. 

Chapter 4 - Describes MOHID-Land model calibration/validation procedures and results 

for three case studies: maize, pasture, and grapevine. 

Chapter 5 – Shows the use of remote sense data as a way to improve the quality of the 

DSS, especially in the areas where other types of data cannot be collected. 

Chapter 6 – Irrigation Scheduling chapter explains the MOHID Land Irrigation Module 

and highlighting its capabilities and functionalities.  

Chapter 7 – Assesses, using multicriteria analysis, how farmers' performance compares  

with an optimized irrigation schedule provided by IrrigaSys 

Chapter 8 – General Conclusions 

1.6 Publications 

Articles published in scientific magazines during the period of the thesis (2017-2023) 
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Modeling soil water dynamics and pasture growth in the Montado ecosystem 

using MOHID land 

L Simionesei, TB Ramos, AR Oliveira, M Jongen, H Darouich, K Weber, V 

Proença, T Domingos, R Neves 

Water 10 (4), 489 2018 

This article is assessing MOHID-Land model's efficacy in simulating soil water dynamics and 

pasture growth in southern Portugal. The candidate contributed to setting up the model and 

was responsible for running the simulations. He also conducted the analysis of the results 

and wrote the paper. 

  

Assessing the impact of LAI data assimilation on simulations of the soil water 

balance and maize development using MOHID-Land 

TB Ramos, L Simionesei, AR Oliveira, H Darouich, R Neves 

Water 10 (10), 1367 
2018 

This article is assessing the impact of Landsat 8-derived leaf area index (LAI) assimilation on 

MOHID-Land's simulations of soil water balance and maize state variables. The candidate 

contributed to setting up the model and was responsible for running the simulations. The 

candidate participated in the field experiment and processed the data. Additionally, he 

conducted the analysis of the results and contributed to the writing of the paper. 

  

IrrigaSys: A web-based irrigation decision support system based on open source 

data and technology 

L Simionesei, TB Ramos, J Palma, AR Oliveira, R Neves 

Computers and Electronics in Agriculture 178, 105822 
2020 

This article is describing IrrigaSys, a plot-scale irrigation water management DSS utilizing online, 

open-source tools and meteorological data for soil water balance computation and irrigation 

scheduling. The candidate conceptualized the paper. He also contributed to setting up the 

model. Additionally, the candidate participated in the software development. He conducted 

the analysis of the results and wrote the paper. 

  

Exploring the Use of Vegetation Indices for Validating Crop Transpiration Fluxes 

Computed with the MOHID-Land Model. Application to Vineyard 

TB Ramos, L Simionesei, AR Oliveira, R Neves, H Darouich 

Agronomy 11 (6), 1228 
2021 

This article is showing the validation of soil water balance simulations in an irrigated 

vineyard using MOHID-Land and Sentinel-2 NDVI data to enhance irrigation decision 

support. The candidate contributed to setting up the model and was responsible for running 

the simulations. He also participated in image acquisition. Additionally, the candidate 

conducted the analysis of the results. 
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Assessing the Impact of IrrigaSys Decision Support System on Farmers’ Irrigation 

Practices in Southern Portugal: A Post Evaluation Study 

H Darouich, L Simionesei, AR Oliveira, R Neves, TB Ramos 

Agronomy 14 (1), 66 
2023 

This article is doing an postevaluation of farmer adherence to IrrigaSys DSS for irrigation 

scheduling in Southern Portugal using multicriteria analysis, highlighting its effectiveness 

in water conservation and economic returns over six years. The candidate contributed to 

data collection and software development. He also conducted the validation and analysis of 

the results. Additionally, the candidate contributed to writing the paper. 
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2. State of Art 

This chapter aims to give a brief description and definition of models and decision 

support systems. 

2.1 Models – general description 

Models are defined as a usually miniature representation of something, a system of 

postulates, data, and inferences presented as a mathematical description of an entity or state of 

affairs (climate model), an example for imitation or emulation, or a description or analogy used 

to help visualize something (such as an atom) that cannot be directly observed.  These are all 

definitions of how a model can be defined in just a few words. The word will be used during 

this thesis mostly with the definition of a representation of the natural world, a system of 

postulates, data, and inferences presented as a mathematical description of an entity or state of 

affairs. In our case the system we are dealing with is the soil-water-atmosphere nexus. 

Simulation is a valuable method for comprehending diverse real and conceptual systems, 

offering insights into their inner workings. By creating computer programs that mimic the key 

aspects of a system, simulation models can take input data, run the underlying software, and 

generate output data for analysis. Simulation is an important tool that is expected to experience 

further growth in the future. It will continue to aid in the understanding of intricate human, 

human-environmental, and natural systems. 

A mathematical model is a mathematical representation of reality, an abstract, 

simplified construct related to a part of reality and created for a particular purpose (Bender, 

2000). As a contrast to a physical model that is a tangible representation or simulation of a 

system or phenomenon in the physical world. It is based on equations whose forms represent 

the qualitative behavior of the flows and storage and the parameters that dictate the quantitative 

behavior. Physical models have been largely replaced by mathematical ones, with the increase 

in the computers usage. They are cheaper to use and more flexible. 

Irrigation scheduling models are used to determine the optimal timing and amount of 

water required for agricultural crops. These models take into account various factors such as 

weather conditions, soil moisture levels, crop type, and evapotranspiration rates.  

 Pereira et al. (2020) defines two types of irrigation scheduling models: water balance 

models and mechanistic soil water. Water balance models operate by solving the principle of 

mass conservation within a specified time interval, typically a day. The daily soil water balance 

is applied to the entire root zone. These models are not very demanding in terms of 

parameterization. When correctly calibrated, they offer high accuracy and are user-friendly for 
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irrigation scheduling. When coupled with or integrated into yield-water functions, these models 

can make predictions regarding crop yield based on water availability. 

The daily soil water balance (Allen et al., 1998) applied to the entire root zone may be 

expressed by computing the soil water depletion at the end of every day (Dr,t, mm), which is 

given as: 

𝐷𝑟,𝑡 = 𝐷𝑟,𝑡−1 − (𝑃𝑡 − 𝑅𝑂𝑡) − 𝐼𝑡 − 𝐶𝑅𝑡 + 𝐸𝑇𝑎,𝑡 + 𝐷𝑃𝑡    Equation 1 

where Dr,t-1 is the root zone depletion at the end of previous day t-1 (mm), Pt is 

precipitation (mm), ROt is runoff (mm), It is the net irrigation depth (mm), CRt is capillary rise 

from the shallow groundwater table (mm), ETa,t is the actual crop evapotranspiration (mm), 

and DPt is deep percolation through the bottom of the root zone (mm), with all terms referring 

to day i.  

Solving for the water balance Equation 1 necessitates having data on soil water content 

or the ability to estimate it from observed soil matric potential. These inputs are crucial for 

calculating the root zone depletion (Dr) on a daily basis. To facilitate this computation, a 

specialized algorithm is required, one that leverages knowledge of soil hydraulic properties, as 

well as information on field capacity (θFC, m3 m−3) and wilting point (θWP, m3 m−3) across 

various soil layers within the entire root zone. 

Precipitation data is obtained through meteorological observations, while irrigation is 

artificially controlled and measurable. Estimating values for runoff (RO), deep percolation 

(DP), and capillary rise (CR) is not straightforward and necessitates the use of specific 

algorithms, as discussed by Liu et al. (2006) and Allen et al. (1998).  

Deep percolation (DP) is considered to be the water lost after exceeding field capacity in 

the root zone following heavy rain or irrigation. The extent of water movement through 

capillary rise (CR) from the water table to the root zone relies on various factors, including soil 

composition, the depth of the water table, and the moisture level within the root zone. Typically, 

capillary rise is negligible when the water table lies more than approximately 1 meter beneath 

the lower boundary of the root zone. CR can be computed from parametric equations as a 

function of the water table depth, water content of the root zone, root density and soil 

characteristics (Liu et al., 2006). Runoff from the surface during precipitation can be estimated 

using standard procedures from hydrological texts. 

Runoff, deep percolation and capillary rise cannot be just estimated when an accurate 

soil water balance is to be performed. Therefore, it is imperative to employ appropriate 



10 

 

computational methods. Actual evapotranspiration is estimated using FAO56 method (Allen et 

al., 1998) in most of the soil water balance models in use today.  

𝐸𝑇𝑎 = 𝐾𝑠𝐾𝑐𝐸𝑇0         Equation 2 

where KS is the daily estimated value of stress coefficient, KC is the crop coefficient and 

ET0 is the reference evapotranspiration (mm). ET0 is estimated by Penman–Monteith method: 

𝐸𝑇0 =
0.408∆(𝑅𝑛−𝐺)+𝛾

900

𝑇+273
𝑢2(𝑒𝑠−𝑒𝑎)

∆+𝛾(1+0.34𝑢2)
      Equation 3 

where Δ represents the slope of the saturation vapor pressure-temperature relationship at 

mean air temperature (kPa °C-1), γ is the psychometric constant (kPa °C-1), T is mean daily air 

temperature (°C), Rn-G is the net balance of energy available at the surface (MJ m-2 d-1), u2 is 

wind speed (m s−1), with measurements at 2 m height, (es-ea) represents the vapor pressure 

deficit of air at the reference (weather measurement) height [kPa]  . 

Over the years, several soil water balance models have been developed, including 

AquaCrop (Raes et al., 2009),  CROPWAT (Smith, 1989), ISAREG (Teixeira and Pereira, 

1992), SIMDualKc (Rosa et al., 2012), DAISY (Boegh et al., 2009), SWB (Inthavong et al., 

2011), WISE(Andales et al., 2014) etc.. 

In contrast, mechanistic models explicitly consider the time variable and compute water 

fluxes within and across the boundaries of the soil control volume. Mechanistic models are 

more demanding in terms of data requirements and utilize mechanistic approaches to replicate 

soil water processes. They often incorporate mechanistic sub-models to simulate aspects such 

as plant growth, crop yield prediction under the influence of various environmental factors, and 

the assessment of salt, chemical, and pollutant transport that can affect agricultural water usage 

and sustainability. Mechanistic methods for analyzing soil water balance typically employ the 

computation of variably saturated water movement, a process that is characterized by Richards' 

equation. The unsaturated soil hydraulic properties are often described with the van Genuchten-

Mualem functional relationship (van Genuchten, 1980). When solving Richards' equation, 

various formulations can be used to specify boundary conditions. The upper boundary 

condition is established based on crop evapotranspiration flux and can be calculated using 

either the Penman-Monteith equation or the Kc-ET0, FAO56 method, which involves the use 

of single or dual Kc values. These kinds of models often partition of actual evapotranspiration 

with reference to leaf area index (LAI) and they are also able to accurately compute percolation, 

capillary rise, and run-off. A common approach is coupling of these models with crop growth 

and yield models. One drawback of these models is that they can be challenging to 
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parameterize. There are several mechanistic models used as irrigation scheduling models such 

as HYDRUS-1D (Šimůnek and Hopmans, 2009), SWAP (Vazifedoust et al., 2008), SWB-2D 

(Annandale et al., 2003), RZWQM2 (Hanson et al., 1999). These models have in common the 

use of Richards equation, but they differ in how they handle upper boundary conditions. In 

some cases, crop evapotranspiration is calculated using Penman-Monteith equation, as in the 

case of SWAP. HYDRUS, on the other hand, uses the Kc-ET0 approach from FAO56. 

Sometimes these models are integrated with crop growth and yield models, as seen in the case 

of SWAP and EPIC (Xu et al., 2013). 

2.2 Decision Support System 

2.2.1  Introduction 

A decision support system (DSS) is generally defined as a computer-based tool or 

software that helps individuals or organizations make decisions by analyzing data and 

presenting information in a way that facilitates decision-making. DSSs are designed to assist 

with complex decision-making tasks that require analyzing large amounts of data from multiple 

sources, considering various factors and constraints, and weighing different options. These 

systems can be used in a variety of fields, including finance, healthcare, marketing, and 

operations management. 

2.2.2 DSS application for managing irrigation 

2.2.2.1 DSS structure 

A DSS typically consists of four components: a database, a model/software, a user 

interface, and the output data.  

The database component stores and manages the data that will be used in the decision-

making process. That usually includes the input data like information about the soil, physical, 

chemical, or hydrologic characteristics. The details of information can take into account the 

spatial variability, or the vertical differences between soil’s horizons. At a field/farm scale is 

provided by the farmer while at the regional/national scale it can come from a national database 

(eg. https://projects.iniav.pt/infosolo/) or continental one (eg. 

https://esdac.jrc.ec.europa.eu/content/europ.ean-soil-database-v20-vector-and-attribute-data). 

Information about crops is also included in those databases. This information is used to 

simulate growth, water requirements, and yield. The crops that are economically important, 

have been better studied and we can find easily information for different models and 

approaches. Another component of the database is the weather data. This data comes usually 
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at a daily timescale. Again, according to the spatial scale, we have different sources of 

information, meteorological stations at a farm/plot scale and national forecast systems at a 

regional scale. 

The database is also where model simulation results are stored. Information like when 

and how much to irrigate, information about the soil and plant status, etc. 

The model/software component includes the mathematical and analytical models that the 

system uses to analyze the data. There are several models to simulate crop growth and to 

estimate crop evapotranspiration. Rinaldi and He (2014) separate these models into three 

categories, depending on the hierarchy of the process and the scales involved: a) carbon- b) 

solar-, and c) water-driven. The carbon-driven, growth is based on the carbon assimilation by 

the leaves’ photosynthetic process. The solar-driven it derives the biomass directly from 

intercepted solar radiation through a single synthetic coefficient (models like EPIC, CERES) 

(Basso et al., 2016; Neitsch et al., 2011; Williams et al., 1989). The last category, the water-

driven highlights the strong connection between cumulative seasonal crop transpiration and 

biomass production when crops are adequately supplied with water. By normalizing for 

different climatic conditions, the approach divides crop transpiration by the atmospheric 

evaporative demand, resulting in the biomass water productivity (WP) slope. After 

normalization, crops are grouped into classes with similar WP, making the approach robust for 

water-limited environments.  

The user interface component allows the user to interact with the system and input data. 

According to Loucks et al. (2005), it is an essential feature that permits easy meaningful data 

entry and display and control of the model. A friendly interface is very important for the end-

users. To achieve a friendly user interface, designers should consider factors such as visual 

aesthetics, intuitive navigation, clear instructions, feedback mechanisms, and responsiveness 

across different devices. Regular user testing and feedback collection can help refine the 

interface and identify areas for improvement, ultimately leading to a more satisfying user 

experience. 

Regarding the output data, the DSS can provide a wide range of information from simple 

alerts as SMS or more complex ones, in the shape of a report with graphs and tables. The 

information needs to be clear and well structured. The optimal format and level of detail and 

precision of the output data should depend on the needs and backgrounds of each individual 

involved in the decision making process. 
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2.2.2.2 DSS irrigation scheduling 

In irrigation scheduling, Decision Support Systems (DSS) offer various criteria to help 

users determine the appropriate time and amount of irrigation water needed. These criteria can 

be selected and customized by users based on their specific requirements. Rinaldi and He 

(2014) divide the criteria commonly implemented in DSS as: 

Soil Moisture Threshold: Users can set a desired soil water content threshold or a 

percentage of available water in a specific soil depth. Irrigation will be triggered when the soil 

moisture falls below this predetermined level. 

ET Threshold: Users can fix an Evapotranspiration (ET) threshold, and the system will 

initiate irrigation when the cumulative daily Evapotranspiration minus effective rainfall 

reaches this predefined threshold. 

Time Interval: Some schemes allow irrigation water availability only at fixed time 

intervals (e.g., every n days). Users can set these intervals to suit their irrigation needs. 

Phenology-Based Irrigation: DSS can incorporate supplemental irrigation at critical crop 

stages, aligned with the phenological development of the crop. 

DSS can provide the flexibility for users to choose among these criteria and also adjust 

the threshold levels according to their preferences and crop requirements. By offering a range 

of options, DSS enables more efficient and precise irrigation scheduling tailored to specific 

agricultural scenarios. 

2.2.2.3 Examples of DSS 

The literature shows a plethora of DSS, where the core engine is the most fundamental 

difference between systems. The simplest core engines rely on the estimation of 

evapotranspiration (ET) using water budget models, in which the total available water (TAW) 

refers to the soil water storage between field capacity (θFC) and the wilting point (θWP), with 

depletion being compared with the readily available water (RAW) for the effect of water stress 

on ET (e.g., Todorovic et al., 2016, Li et al., 2018, Abi Saab et al., 2019). Irrigation is then 

triggered based on weather forecast and a management allowed soil depletion (MAD) threshold 

that varies according to the sensitivity of crop phenological stages to water stress and 

economical goals.  

More complex DSS engines are based on direct measurements of the soil water pressure 

head (h), soil moisture (θ) or plant stress using a wide variety of sensors (tensiometers, soil 

moisture probes, dendrometers, fruit gauges, tissue water content sensors, as well as measures 

of growth, sap flow and stomatal conductance). Sensor information can then feed the previous 
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simulation models (Todorovic et al., 2016, Abi Saab et al., 2019), decision modelling systems 

(Car, 2018), or machine learning algorithms (Navarro-Hellín et al., 2016, Goap et al., 2018, 

Nawandar and Satpute, 2019), which combined with weather forecasts provide farmers with 

optimized irrigation schedules for their agricultural fields. These DSS usually require 

continuous data acquisition in the soil-plant-atmosphere system to sense the soil moisture status 

or plant stress, and ideally the automation of irrigation controllers and systems to irrigate 

whenever the monitored parameters reach a certain threshold. Irrigation automation and 

increased communication options offered by telemetry/remote controllers further fasten the 

analysis and processing of field data in real time, assisting expert agronomists in supporting a 

greater number of fields, farms, and crops. The associated cost, sensor setup, and maintenance 

are the main obstacles in running these systems.  

Other examples of web-based irrigation DSS are CIMIS (Eching et al., 2002), AIS 

(Vories et al., 2009), and TOPS-SIMS (Johnson and Trout, 2012) in use in the United States; 

IrriSatSMS (Hornbuckle et al., 2009) in Australia; IRRINET-IRRIFRAME (Mannini et al., 

2013) and IRRISAT (Belfiore et al., 2022) in Italy; and SPIDER (Calera et al., 2017) in Spain. 

All of these DSS employ tipping-based approaches, relying on FAO56 procedures (Allen et al., 

1998) to compute the soil water balance and estimate crop irrigation needs. Those incorporating 

remote sensing data further make use of preestablished relationships between canopy 

reflectance and crop transpiration to enhance the assessment of crop water requirements. 

IRRINET is an expert system for irrigation scheduling developed by the CER (Emiliano-

Romagnolo Canal Irrigation Consortium), IRRINET service is freely available on the Internet 

and provides ‘irrigation advice’ for the main water demanding crops. IRRINET system 

provides to farmers a day-by-day information on how much and when to irrigate crops, 

implementing a real-time irrigation scheduling. Climatic and meteorological data are gathered 

on a daily basis on the web-DB server from several acquisition and elaboration systems. 

Irrigation scheduling is determined by applying a mathematical model based on daily water 

balance of the soil-plant-atmosphere system. IRRINET model integrates water dynamics in the 

soil, crop growth, crop water requirements, and the contribution of the water table. The hourly 

calculations and empirical functions used in the model have been validated locally through 

extensive field trials over several decades (Mannini et al., 2013). 

The California Irrigation Management Information System (CIMIS) is a network of 145 

automated weather stations across California, providing free irrigation information and weather 

data to aid growers and landscape supervisors. The water budget method, using CIMIS 
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reference evapotranspiration values, involves three steps: determining initial soil water 

balance, subtracting daily crop water use until reaching a desired level, and applying irrigation 

to recharge the soil profile (https://cimis.water.ca.gov/).  

SAPWAT integrates FAO guidelines for improved crop irrigation decision-making. It 

features a global CLIMWAT weather database, specialized South African weather stations, 

and a four-stage crop development curve. The program simplifies climate classification, 

calculates irrigation requirements, and considers factors like system efficiency. SAPWAT 4 is 

applicable at various scales, integrates economic analysis, and includes a rainwater harvesting 

module for small areas. Overall, it provides a user-friendly and comprehensive tool for efficient 

irrigation planning (https://sapwat.org.za). 

The web-based decision support system called AQUAMAN that was developed to assist 

Australian peanut growers schedule irrigations, simulates the timing and depth of future 

irrigations by combining procedures from the food and agriculture organization (FAO) 

guidelines for irrigation scheduling (FAO-56) with those of the agricultural production systems 

simulator (APSIM) modeling framework (Chauhan et al., 2013).  

  CropIrri (Zhang and Feng, 2010) is a field crop irrigation management decision-making 

system based on the soil water balance model, crop phenology model, root growth model, crop 

water production function, and irrigation management model. The irrigation plan is made by 

predicting of soil water content in root zone and daily crop water requirement using historical 

and forecasting weather data, measured real time soil moisture data. The main function of 

CropIrri includes: real-time irrigation management decision-making support, simulation of soil 

water dynamics in the root zone, evaluation of the effect of certain irrigation plans on crop 

yield reduction, and database management.  

The IrrigaSys (Simionesei et al., 2020), in use in Portugal, exhibits important differences 

from the aforementioned systems due to their increased complexity. The core engine of this 

system, the MOHID-Land model (Ramos et al., 2017), adopts a mechanistic approach wherein 

the Richards' equation is used for computing soil water storage and fluxes in the root zone, 

meaning that a full description of soil hydraulic functions is required, i.e., the soil water 

retention and soil hydraulic conductivity curves from saturation to oven dryness. Moreover, the 

model includes the simulation of crop growth, considering factors such as intercepted light, 

conversion of intercepted light into biomass, crop stress, and the number of heat units defining 

the crop season (Neitsch et al., 2011; Williams et al., 1989). The model further includes a 

https://cimis.water.ca.gov/
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system dependent boundary condition based on soil pressure heads for irrigation scheduling 

(Ramos et al., 2017). 

2.2.2.4 Conclusion 

DSSs can help make more informed and data-driven decisions, improve efficiency, 

reduce costs, and increase productivity. 

The utilization of DSS in agriculture management has experienced significant growth in 

the last decade, enabling quick evaluations of agricultural production systems globally and 

facilitating decision-making at both the farm and district levels. However, there are obstacles 

to the successful adoption of this technology in agriculture. Water management, particularly in 

irrigation practices, is a crucial area where DSS has been applied to address water scarcity 

issues, taking into account factors such as water availability, crop requirements, land size, 

irrigation systems, and crop productivity.  
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3. IrrigaSys: A web-based irrigation decision support system based 

on open-source data and technology 

 

The material on which this chapter is based has been previously published in: Simionesei, 

L., Ramos, T.B., Palma, J., Oliveira, A.R., Neves, R., 2020. IrrigaSys: A web-based irrigation 

decision support system based on open-source data and technology. Computers and 

Electronics in Agriculture 178. https://doi.org/10.1016/j.compag.2020.105822 

 

3.1 Introduction 

 Agriculture is by far the largest consumer of water, with about 70% of all freshwater 

withdrawals being used in irrigation (Water, 2020). In water scarce regions, irrigation is 

fundamental to fulfill crop water requirements, increase food outputs through higher yields, 

meet the growing food demand, ensure food stability, and increase prosperity of rural areas. 

However, inefficient practices often lead to increased nutrient leaching, enhanced runoff and 

soil erosion, salinity build-up in the rootzone, and the eutrophication of water bodies with 

associated biodiversity loss. Agricultural consumption of scarce water resources further faces 

an increasing competition from the multiple demands from different uses (urban consumption, 

industries, recreational), which makes it even more essential to improve water use efficiency 

in irrigated fields to cope with the increasing scarcity and contribute to the sustainability of 

agricultural systems. 

 The scientific community has invested considerable time and resources over the last 

two decades in the development of decision support systems (DSS) aimed at improving 

irrigation water management at the field and irrigation district scales. DSS are interactive 

software-based systems used to compile useful information from multiple raw data sources and 

provide optimized solutions to support farmers in the decision-making process. The 

architecture of these systems usually consists of a database for data repository, a core engine 

for computation of crop water requirements and irrigation scheduling, and a graphical interface 

for farmers’ access to outputs (Rinaldi and He, 2014). The success of these systems has been 

gaining momentum with the development of online features and smartphone applications (Abi 

Saab et al., 2019; Goap et al., 2018; Nawandar and Satpute, 2019) offering continuous 

interaction between users and tools, increased operational flexibility, further allowing the 

update of data inputs in real-time. Nevertheless, DSS still fails in many regions of the world 
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due to a perceived gap between research and farming practices, farmers’ mistrust in the 

embedded technology, and limited on-farm technology access (Car, 2018). 

Despite the automation of sensors, models, and algorithms, human expertise and 

interaction with farmers are still fundamental for a proper setup of the DSS. This is also critical 

in IrrigaSys. Inputs on soils, crops, and irrigation systems are vital to the performance of DSS 

but need to be limited to a minimum regardless of the complexity of the models or algorithms 

used (Li et al., 2018; Yang et al., 2017). The success of a DSS is also associated with the 

reliability of predictions, which can only be validated in a small number of demonstrative case 

studies. These are fundamental to improve farmers’ trust in the system, but cannot be scalable 

and available to every field supported by the DSS (Navarro-Hellín et al., 2016). 

This chapter describes the IrrigaSys DSS developed to support irrigation water 

management in the Sorraia Valley irrigation district, southern Portugal. This irrigation district 

in Sorraia Valley, is part of one of the most important agricultural areas in the country. Water 

scarcity and inappropriate land management practices have been some of the most critical 

constraints to the sustainable production of maize and other agricultural crops (Cameira et al., 

2003; Ramos et al., 2017). As a result, the government has established policy instrument 

Portaria n.502015, n.d. for improving irrigation efficiency in this and other irrigation areas, 

which amongst other actions has mandated the definition of improved irrigation schedules 

based on soil water content status and crop water needs. The specific objectives of this study 

are: (i) to present the IrrigaSys structure; (ii) to detail on the system implementation at the field 

plot scale; (iii) and to discuss the IrrigaSys strengths and weaknesses based on the experience 

gained from running the DSS over the last five years. This chapter consists of various Sections. 

After the current Introduction, Section 2 describes the structure of the IrrigaSys decision 

support system. Section 3 describes how IrrigaSys was implemented to support irrigation water 

management in the Sorraia Valley district. Section 4 discusses the main strengths and 

limitations of IrrigaSys. Finally, Section 5 presents the main conclusions. Results of this study 

may well contribute to the development of future DSS aimed at improving irrigation water 

management in water scarce regions. 

3.2 System structure 

The IrrigaSys service is composed of six main components (Figure 3.2-1): (i) an online 

platform for system administration, management, and visualization of outputs; (ii) a vadose 

zone model for computation of soil water dynamics and irrigation scheduling at the plot scale; 

(iii) a meteorological module for  the hindcast and forecast of weather data; (iv) a Structured 
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Query Language (SQL) database for data repository and management of model inputs; (v) a 

remote sensing module for complementing system’s outputs with satellite data; and (vi) several 

other dissemination platforms for facilitating users’ access to the DSS. The following sections 

provide a detailed description of the individual components of IrrigaSys. 

 

Figure 3.2-1 IrrigaSys conceptual scheme. 

3.2.1 The online platform 

IrrigaSys includes an online graphical interface (http://irrigasys.maretec.org/) to facilitate 

the system’s administration, management, and visualization of outputs. The platform has three 

levels of access: administrator, manager, and regular user. The administrator level is available 

only to the system’s developers, which are the ones authorized to add new clients to the system 

and configure field plot characteristics (soils, crops, irrigation systems). The manager level is 

available to the technicians managing the system and interacting with final users. Ideally, these 

technicians should be agronomists or irrigation managers. Every season, they are responsible 

for initiating the service provided by the DSS, activating plots and defining the sowing dates, 

crops, soil textures, and irrigation systems of every field plot served by the DSS. These plot 

characteristics are defined from the options menu created by the system’s developers. Because 

IrrigaSys is not connected to controllers or field dataloggers and farmers may well deviate from 

irrigation schedules recommended by the system, the manager needs also to introduce actual 

irrigation events carried out by farmers in their respective plots, thus requiring close contact 

with IrrigaSys final users. The role of the irrigation manager is thus fundamental to the 

successful performance of the DSS. Finally, the user level is given to farmers, who can simply 

http://irrigasys.maretec.org/
http://irrigasys.maretec.org/
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visualize the DSS outputs for their plots. Farmers can also introduce irrigation events directly 

to the system through a smartphone application if they want to get more involved in the process. 

3.2.2 The vadose zone model 

The MOHID-Land model (Ramos et al., 2017) is the core engine of IrrigaSys and is used 

to compute soil water dynamics and irrigation scheduling at the field plot scale (Figure 3.2-3).  

3.2.2.1 Introduction 

This section describes the model, MOHID Land, that was chosen as the core model for 

the DSS. The next sections will give a description of the main processes and main equations 

used. 

The chosen model, MOHID Land, serves as the central framework for the Decision 

Support System (DSS). MOHID Land is a comprehensive land surface model that specializes 

in simulating various hydrological, ecological, and environmental processes. It has been 

selected due to its versatility and robust capabilities in addressing complex interactions within 

terrestrial ecosystems. 

MOHID Land encapsulates a multitude of critical processes that contribute to the 

accurate representation of land-atmosphere interactions and the behavior of terrestrial systems.  

These processes likely include but are not limited to: water cycle, energy balance, 

vegetation dynamics, soil processes. 

By integrating these core processes and equations, MOHID Land serves as a 

comprehensive tool within the Decision Support System, enabling a better understanding of 

land-related phenomena and aiding in informed decision-making for environmental 

management and resource planning. 

3.2.2.2 MOHID Land model description 

MOHID-Land is an open-source, physically based, distributed model using a 

finite-volume approach based on mass and momentum balance equations (Trancoso et 

al., 2009). The model is capable of integrating different physical and chemical 

processes across different scales (plot, field, and catchment scales) depending on the 

specifications of the simulation domain (Bernard-Jannin et al., 2016; Brito et al., 2015; 

Epelde et al., 2016; Simionesei et al., 2016). MOHID-Land includes different modules for 

simulating soil water dynamics, solute and particle matter transport, soil biochemical reactions, 

soil erosion, and crop growth at different scales (Trancoso et al., 2009). Figure 3.2-2 shows the 

conceptual scheme of MOHID-Land and the modules included in this thesis. 
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Figure 3.2-2 The structure of MOHID Land 

The source code can be accessed at the MOHID code repository website 

(https://github.com/Mohid-Water-Modelling-System/Mohid). Below we give an 

overview of the main MOHID-Land processes that were included in this thesis (Figure 

3.2-3).  

 

https://github.com/Mohid-Water-Modelling-System/Mohid
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Figure 3.2-3 MOHID-Land conceptual scheme (Tmax, Tmin, and Tmean, maximum, minimum, and average 

surface temperature, respectively; Rs, solar radiation; RH, relative humidity; u2, wind speed; P, rainfall; I, 

irrigation; ETo, reference evapotranspiration; ETc, crop evapotranspiration; Kc, crop coefficient; Tp and Ta, 

potential and actual crop transpiration, respectively; Es and Ea, potential and actual soil evaporation, respectively; 

θ, soil water content; h, soil pressure head; ΔS, soil water storage variation; DP, deep percolation, CR, capillary 

rise; ht and h0, threshold and target soil pressure heads, respectively. 

3.2.2.2.1 Water flow 

Variably-saturated one-dimensional water flow is described using the Richards 

equation: 

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
[𝐾(ℎ)

𝜕ℎ

𝜕𝑧
− 𝐾(ℎ)] − 𝑆(𝑧, 𝑡)      Equation 4 

where θ is the volumetric soil water content (L3 L−3), t is time (T), z is the vertical space 

coordinate (L), h is the soil water pressure head (L), K is the hydraulic conductivity (L T−1), 

and S is the sink term accounting for water uptake by plant roots (L3 L−3 T−1). The unsaturated 

soil hydraulic properties were described using the van Genuchten-Mualem functional 

relationships (van Genuchten, 1980):  

 

𝑆𝑒(ℎ) =  
𝜃(ℎ)− 𝜃𝑟

𝜃𝑠− 𝜃𝑟
=

1

(1+|𝛼ℎ|𝜂)𝑚       Equation 5 

𝐾(ℎ) = 𝐾𝑠𝑎𝑡𝑆𝑒
𝑙  [1 −  (1 −  𝑆𝑒

1/𝑚
)

𝑚
]

2

     

 Equation 6 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/crop-coefficient
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/soil-water-content
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/soil-water-storage
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where Se is the effective saturation (L3 L−3), θr and θs denote the residual and 

saturated water contents (L3 L−3), respectively, Ksat is the saturated hydraulic 

conductivity (L T−1), α (L−1) and ⴄ (−) are empirical shape parameters, m = 1–1/η, and 

l is a pore connectivity/tortuosity parameter (−). 

3.2.2.2.2 Crop transpiration and soil evaporation rates 

Crop evapotranspiration (ETc, L T−1) is determined from hourly/daily ET0 values 

computed with the FAO Penman-Monteith method using the single crop coefficient 

approach (Allen et al., 1998):  

𝐸𝑇𝑐 =  𝐾𝑐𝐸𝑇0          Equation 7 

where Kc is a crop coefficient (−) incorporating crop characteristics and averaged 

effects of evaporation from the soil. ETc was then partitioned into potential soil 

evaporation (Ep, L T
−1

) and potential crop transpiration (Tp, L T
−1

) as a function of LAI 

(L
2 L

−2
) (Ritchie, 1972):  

𝑇𝑝  =  𝐸𝑇𝑐 (1 −  𝑒(−𝜆𝐿𝐴𝐼))        Equation 8 

𝐸𝑝  =  𝐸𝑇𝑐 –  𝑇𝑝         Equation 9 

where λ is the extinction coefficient of radiation attenuation within the canopy (−). Tp 

values were used to compute the sink term (S) in Equation 4 using the macroscopic 

approach introduced by Feddes et al. (1978). In this approach, Tp is distributed over the 

root zone and may be diminished by the presence of depth-varying root zone stressors, 

namely water stress (Feddes and Zaradny, 1978; Šimůnek and Hopmans, 2009; Skaggs et al., 

2006) as follows: 

𝑆(ℎ, 𝑧, 𝑡) =  𝛼(ℎ, 𝑧, 𝑡)   𝑆𝑝 = 𝛼(ℎ, 𝑧, 𝑡)  𝛽(𝑧, 𝑡)  𝑇𝑝(𝑡)   Equation 10 

where S and Sp are the actual and potential volumes of water removed from a 

unit volume of soil per unit of time (L3 L−3 T−1), respectively, β(z, t) is a normalized 

root distribution function (L−1). The actual transpiration rate (Ta, L T−1) is thus 

obtained by integrating Equation 10 over the root domain, R (L), as follows: 

𝑇𝑎(𝑡) =  𝑇𝑝(𝑡)   ∫ 𝑅 𝛼(ℎ, 𝑧, 𝑡)  𝛽(𝑧, 𝑡)  𝑑𝑧     Equation 11 

 

Root water uptake reductions due to water stress, α(h), are described using the 

piecewise linear model proposed by Feddes et al. (1978). The water uptake is at the 
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potential rate when the pressure head is between h2 and h3, dropped off linearly when 

h > h2 or h < h3, and becomes zero when h < h4 or h > h1. Ep values are limited by a 

pressure head threshold value in order to obtain the actual soil evaporation rate (Ea, L 

T
−1

) (American Society of Civil Engineers (ASCE), n.d.).  

3.2.2.2.3 Plant development 

MOHID-Land includes a modified version of the EPIC model (Neitsch et al., 2011; 

Williams et al., 1989) for simulating crop growth. This model is based on the heat unit 

theory, which considers that all heat above the base temperature will accelerate crop 

growth and development. The total number of heat units for maize to reach maturity 

is calculated as: 

𝑃𝐻𝑈 =  ∑ 𝐻𝑈 =  ∑ 𝑇𝑎𝑣
𝑚
𝑖=1 − 𝑇𝑏𝑎𝑠𝑒                    𝑤ℎ𝑒𝑛 𝑇𝑎𝑣 − 𝑇𝑏𝑎𝑠𝑒 𝑚

𝑖=1 Equation 12 

𝑃𝐻𝑈 = 0                                     𝑤ℎ𝑒𝑛 𝑇𝑎𝑣 ≤ 𝑇𝑏𝑎𝑠𝑒 

where PHU is the total heat units required for plant maturity (ºC) HU is the 

number of heat units accumulated on day i (ºC), i = 1 corresponds to the sowing date 

(−), m is the number of days required for plant maturity (−), Tav is the mean daily 

temperature (◦C), and Tbase is the minimum temperature for plant growth (ºC). 

Accordingly, MOHID-Land integrated all sub-daily temperature data into daily 

averages when computing PHU and crop growth.  

Crop growth is modelled by simulating light interception, conversion of 

intercepted light into biomass, and LAI development. Total biomass is calculated from 

the solar radiation intercepted by the crop leaf area using the Beer’s law (Monsi, 1953): 

∑ ∆𝐵𝑖𝑜𝑎𝑐𝑡,𝑖
𝑚
𝑖=1 =  ∑ ∆𝐵𝑖𝑜𝑖

𝑚
𝑖=1   𝛾𝑖 = ∑ 𝑅𝑈𝐸𝑚

𝑖=1  (0.5 𝑃𝐴𝑅𝑑𝑎𝑦,𝑖(1 − 𝑒(−𝜆𝐿𝐴𝐼))) 𝛾𝑖   

Equation 13 

where ∆Bioact,i and ∆Bioi are the actual and potential increase in total plant 

biomass on day i (kg ha
−1

), RUE is the radiation-use efficiency of the plant ((kg ha
−1

) 

(MJ m
−2

)
−1

), PARday,i is the daily incident photosynthetically active radiation (MJ m
−2

), 

λ is again the light extinction coefficient, and γi is the daily plant growth factor (0–1) 

which accounts for water and temperature stresses. RUE is estimated using the 

approach proposed by Stockle et al., 1992, while γi is computed as follows (Neitsch et 

al., 2011):  

𝛾𝑖 = 1 − 𝑚𝑎𝑥 (𝑤𝑠𝑡𝑟𝑠,𝑖, 𝑡𝑠𝑡𝑟𝑠,𝑖)      Equation 14 
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where wstrs,i and tstrs,i are the water and temperature stresses for a given day i (−), 

respectively. Water stress (wstrs,i) is calculated as (Neitsch et al., 2011):  

𝑤𝑠𝑡𝑟𝑠,𝑖 = 1 −  
𝑇𝑎 𝑐𝑢𝑚,𝑖−1

𝑇𝑝 𝑐𝑢𝑚,𝑖−𝑠
       Equation 15 

where Ta cum and Tp cum are the cumulative Ta and Tp values on day i-1. The effect 

of water stress on crop growth is thus only reflected on the following day.  

Note that although MOHID-Land computes hourly Ta (Equation 11) and Tp 

(Equation 8) values from hourly weather data, only cumulative daily values are 

considered when computing the effect of water stress on crop growth ( Equation 15). 

Temperature stress is  computed as temperature diverged from the optimal (Topt, ◦C) 

using a sigmoidal function (Williams et al., 1989), similarly influencing crop 

development as water stress. 

Leaf area index is computed as a function of heat units, crop stress, and 

development stage. During early crop stages (initial and crop development stages), the 

LAI added on day i is calculated as (Neitsch et al., 2011) : 

∆𝐿𝐴𝐼𝑎𝑐𝑡,𝑖 = ∆𝐿𝐴𝐼𝑖   √𝛾
𝑖

= (𝑓𝑟𝐿𝐴𝐼𝑚𝑎𝑥,1 −  𝑓𝑟𝐿𝐴𝐼𝑚𝑎𝑥,1−1  𝐿𝐴𝐼𝑚𝑎𝑥 ((1 −

𝑒(5(𝐿𝐴𝐼𝑖−1−𝐿𝐴𝐼𝑚𝑎𝑥))))  √𝛾𝑖       Equation 16 

where ∆LAIact,i and ∆LAIi are the actual and potential LAI increment added on 

day i (m
2 m

−2
), respectively, and frLAImax,i and frLAImax,i-1 are  the  fraction  of  the  plant’s  

maximum  LAI  (LAImax, m
2 m

−2
) on day i and i-1 (−), respectively. These fractions 

are calculated as (Neitsch et al., 2011):  

𝑓𝑟𝐿𝐴𝐼𝑚𝑎𝑥,𝑖 =  
𝑓𝑟𝑃𝐻𝑈,𝑖

𝑓𝑟𝑃𝐻𝑈,𝑖+𝑒(𝑙1−𝑙2𝑓𝑟𝑃𝐻𝑈.𝑖)      Equation 17 

where frPHU,i is the fraction of PHU accumulated up to day i (−), and l1 and l2 are 

shape coefficients (−). Once LAImax is reached, LAI remains constant until senescence 

began (frPHU > frPHU,sen). Then: 

𝐿𝐴𝐼𝑎𝑐𝑡,𝑖 = 𝐿𝐴𝐼𝑖   √𝛾
𝑖

= 𝐿𝐴𝐼𝑚𝑎𝑥
(1−𝑓𝑟𝑃𝐻𝑈,1)

(1−𝑠𝑒𝑛)
  √𝛾𝑖    Equation 18 

where frPHUsen is the fraction of PHU at which senescence begins and LAI starts 

to decline (−). 

The canopy height is computed as (Neitsch et al., 2011):  

ℎ𝑐,𝑖 =  ℎ𝑐,𝑚𝑎𝑥√𝑓𝑟𝐿𝐴𝐼𝑚𝑎𝑥,1       Equation 19 
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where hc,i is the canopy height for a given day i (m), and hc,max is the plant’s 

maximum canopy height (m). Once maximum canopy height is reached, hc remain 

constant until harvest. Root depth is also computed as a function of heat units, and 

increased linearly as follows (Neitsch et al., 2011):  

𝑧𝑟𝑜𝑜𝑡,𝑖 = 2.5  𝑓𝑟𝑃𝐻𝑈,𝑖 𝑍𝑟𝑜𝑜𝑡,𝑚𝑎𝑥    𝑖𝑓 𝑓𝑟𝑃𝐻𝑈,𝑖  ≤ 0.4    Equation 20 

𝑧𝑟𝑜𝑜𝑡,𝑖 =  𝑍𝑟𝑜𝑜𝑡,𝑚𝑎𝑥      𝑖𝑓 𝑓𝑟𝑃𝐻𝑈,𝑖  > 0.4     Equation 21 

where Zroot,I is the root depth on a given day i (m), and Zroot,max is the maximum 

root depth (m). Root depth is not affected by water stress as plants tend to expand their 

roots when water is a limiting factor.  

Finally, yield (Y) is obtained from the product of the above-ground dry biomass 

(ABG biomass, kg ha−1) and the actual harvest index (HIact): 

𝑌 = 𝐴𝐵𝐺 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ×  𝐻𝐼𝑎𝑐𝑡      Equation 22 

The ABG biomass is obtained by subtracting root biomass from the total 

biomass, while HIact was computed as (Neitsch et al., 2011):  

𝐻𝐼𝑎𝑐𝑡,𝑖 = (𝐻𝐼 − 𝐻𝐼𝑚𝑖𝑛)
𝛾𝑤,𝑖

𝛾𝑤,𝑖+𝑒𝑥𝑝(6.13−0.833 𝛾𝑤,𝑖)
+ 𝐻𝐼𝑚𝑖𝑛   Equation 23 

where HI is the potential harvest index on day i (−), HImin is the minimum harvest 

index allowed (−), and γw  is  another  water stress deficiency factor (0–1), computed 

this time as a function of the evapotranspiration deficit. HI is calculated as (Neitsch et 

al., 2011):  

𝐻𝐼𝑖 =  𝐻𝐼𝑜𝑝𝑡
100 𝑓𝑟𝑃𝐻𝑈

𝑓𝑟𝑃𝐻𝑈+𝑒𝑥𝑝 (11.1−10 𝑓𝑟𝑃𝐻𝑈))
     Equation 24 

where HIopt is the potential harvest index at crop maturity for ideal growing 

conditions (−). γw was computed as (Neitsch et al., 2011):  

𝛾𝑤,𝑖 = 100
∑ 𝐸𝑇0

𝑚
𝑖=1

∑ 𝐸𝑇𝑐
𝑚
𝑖=1

        Equation 25 

where ETa is the actual evapotranspiration (mm). 

3.2.3 Weather hindcast and forecast 

The atmospheric boundary conditions of the MOHID-Land model are defined using the 

hindcast and forecast weather data of IrrigaSys. For the hindcast period, the system is 

connected to a weather station network, downloading the data through an Application 

Programming Interface (API) written in Perl. Measured values of the maximum (Tmax, ºC) and 
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minimum (Tmin, ºC) surface air temperatures, minimum relative humidity (RH, %), wind speed 

(u2, m s-1), solar radiation (Rs, W m-2), and rainfall (mm) are extracted daily from all 

meteorological stations in that network. The model then computes the ETo rates for each plot 

using data collected from the closest station. 

For the forecast period, the system follows a hierarchical structure to provide the forecast 

data for the seven incoming days. First, weather data is provided for the area by the MM5 

mesoscale model (http://meteo.tecnico.ulisboa.pt), forced by the initial conditions from the 

NCEP (National Center for Environmental Prediction) Climate Forecast System Reanalysis, at 

a spatial resolution of 9 km. Daily values of average surface air temperature (Tmean, ºC), RH, 

u2, Rs, and rainfall are then used to compute the model’s atmospheric boundary conditions. 

When the MM5 option is not available, the same data is extracted from the Global Forecast 

System (GFS; https://www.nco.ncep.noaa.gov/pmb/products/gfs/) at a 30 km resolution. 

3.2.4 Estimates of the soil water balance and irrigation scheduling 

The soil water balance is given for the hindcast and forecast periods. First, the ETc rates 

are computed from the product of the ETo by the Kc value of each crop stage. These are then 

partitioned into Tp and Ep rates, and used for defining the atmospheric boundary conditions of 

the MOHID-Land model. The model further needs information on past irrigation events. 

Because the function of the DSS is to advise farmers and not manage irrigation plots, real 

irrigation events may well deviate from the service’s recommendations. Therefore, IrrigaSys 

provides estimates of the soil water balance always from the sowing date to the current week 

(hindcast). This procedure is carried out every time the system runs, allowing to update it with 

newly acquired information whenever the system’s irrigation manager is unable to introduce 

farmer’s weekly irrigation data on time. For the forecast period, irrigation scheduling and the 

corresponding soil water balance are provided for a 7-day period using weather forecast data 

for the same period. 

3.2.5 The database 

IrrigaSys includes a relational database for data repository developed for the MySQL 8.0 

(www.mysql.com) operating system. The database is divided into 13 tables, organized into six 

different groups (Figure 3.2-4). The first group is composed of 2 tables (USERS and 

COMPANIES) with personal information of farmers and agricultural companies (a farmer can 

manage one or more agricultural company) supported by the system: 

• USERS stores the internet protocol addresses (ip_address), usernames (username), 

names (name, first_name, last_name), contact information (email, phone, 

http://meteo.tecnico.ulisboa.pt/
https://www.nco.ncep.noaa.gov/pmb/products/gfs/
https://www.nco.ncep.noaa.gov/pmb/products/gfs/
http://www.mysql.com/
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phone_alt), and passwords (password) of farmers registered in the system. The table 

contains also a series of attributes for managing their registration, namely a system 

for password issuing (activation_code, created_on, last login), encryption (salt), and 

retrieval (forgotten_password_code, forgotten_password_time, remember_code). 

Finally, the table further allows users’ activation/deactivation (active). 

• COMPANIES lists the company names (company, company_alias), their 

identification code (user_id), their value added tax identification number (vat), and 

their contact information (address, email, phone, phone_alt); 

The second group includes 2 tables (PLOTS and SEASONS) with plot details: 

• PLOTS provides the plots’ names (name), geographical coordinates (latitude, 

longitude), and agricultural companies managing them (company_id); 

• SEASONS contains information related to irrigation systems (irrigation_system_id), 

crops (crop_id) and respective sowing dates (sowing_date), soil textures 

(soil_texture_id), and initial soil water contents (initial_theta) of plots (plot_id) 

during each growing season (season_year). The table further includes the maximum 

amount of water allowed per crop and irrigation system (depth_max) as well as 

whether probes (probes) are used to monitor soil moisture. These are requirements 

to comply with the policy instrument (Portaria n.502015, n.d.) aimed at maximizing 

the effectiveness and efficiency of irrigation water use in Portugal, through which 

farmers are subsidized. This table also activates/deactivates (active) plots in the DSS 

(so that the model can start/stop computing the weekly water balance); 

The third group covers 3 tables (IRRIGATION_SYSTEMS, SOIL_TEXTURES, and 

CROPS) describing the general options available for plot characterization: 

• IRRIGATION_SYSTEMS characterizes the irrigation methods (name), namely the 

average debit (debit) and efficiency (efficiency); 

• SOIL_TEXTURES lists the soil texture classes (name); 

• CROPS lists the crops (name) and respective codes used in the MOHID-Land model 

(mohid_crop_id), the parameters related to the computation of the irrigation 

schedule h0 (target head) and ht (threshold_head), the crop coefficients for the initial 

(kc1), mid-season (kc2), and end-season stages (kc3), the PHU (phu), and the 

fraction of the PHU when those same stages are reached (respectively hu1, hu2, and 

hu3); 
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The fourth group includes 2 tables (GIVEN_IRRIGATION and METEO_STATIONS) 

with external information to the system: 

• GIVEN_IRRIGATION compiles irrigation events (date) and amounts 

• (irrigation) provided per plot and growing season by farmers (season_id), indicating  

also whether that data is  given on a weekly or daily basis (data_type) and the 

necessary adjustments to be made during computation (modification_time); 

• METEO_STATIONS stores information related to weathers stations connected to 

the DSS, including their identification (name), location (latitude, longitude), and 

whether they are active/inactive (active); 

The fifth group (RESULTS) contains the main outputs of IrrigaSys: 

• RESULTS stores information on weather hindcast and forecast (temperature_min, 

temperature_med, temperature_max, precipitation) as well as the soil water balance 

and irrigation scheduling (evtp_reference, evtp_crop, evtp_actual, crop_coefficients, 

irrigation, water_content, soil_saturation, field_capacity, deplfract_no_stress, 

root_depth) for each week (date_results) and growing season (season_id); 

Finally, the sixth group contains 3 tables (GROUPS, USERS_GROUPS, and 

LOGIN_ATTEMPTS) with administrative functions: 

• GROUPS lists   the   level   of   access   for   different   users   (name, description); 

• USERS_GROUPS links each user (user_id) to the level of access (group_id); 

• LOGIN_ATTEMPTS provides a counter for the number of unsuccessful logins 

(ip_address, login, time). 

 

 

Figure 3.2-4 Structure and attributes of the IrrigaSys database (pk and fk correspond to primary and foreign keys, 

respectively). 
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3.2.6 Remote sensing products 

Plot information is complemented with maps of the Normalized Difference Vegetation 

Index (NDVI) (Figure 3.2-5). The following procedures are carried out every week for the area 

under management using a script developed in Python: 

1. Download of the latest Sentinel-2 image tiles having less than 10% cloud cover from the 

Copernicus Open Access Hub (Copernicus, 2022);  

2. Atmospheric correction of the downloaded tiles using the Sen2cor software (ESA, 2020), 

which is a processor for Sentinel-2 Level 2A product generation and formatting, 

performing the atmospheric, terrain and cirrus correction of Top-Of-Atmosphere Level 1C 

input data, and creating Bottom-Of-Atmosphere corrected reflectance images;  

3. Computation of the NDVI using the Sentinel-2 frequency bands 4 (Red) and 8 (NIR, Near 

Infra-Red) as follows: 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
         Equation 26 

4. Merge of all NDVI images, projection for the WGS84 reference system, and cropping for 

the border limits of the plots served by the DSS. IrrigaSys accesses then an open-source 

map server where the maps are published. 

 

Figure 3.2-5 Crop homogeneity maps for a selected plot using the Normalized Difference Vegetation Index 

(NDVI). 

3.2.7 System outputs 

Results from IrrigaSys are disseminated using different platforms every week. The 

simplest way is through a Short Message Service (SMS) sent directly to farmers. Each 

programmable SMS identifies the plot and week number, and provides estimates of Tmax (ºC), 

rainfall (mm), ETc(mm), and recommended irrigation depth (mm) for that week. 
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Farmers can also access IrrigaSys results by logging in to an application developed for 

the Android mobile operating system (Figure 3.2-6a). The main menu presents three different 

buttons (Figure 3.2-6b). The first provides access to the plots managed by farmers (Figure 

3.2-6c). Then, for each plot, the application shows the forecast for Tmax and Tmin (ºC), rainfall 

(mm), and ETc (mm) as well as the evolution of the soil water content and the recommended 

irrigation schedule (mm) for the incoming 7 days. Also available is a pie graph showing the 

cumulative irrigation amount applied from the beginning of the growing season versus the 

maximum allowed for that crop and irrigation system by legislation (Figure 3.2-6d and e). The 

second button gives access to a menu where farmers can introduce irrigation events directly 

into the system (i.e., without going through the system’s irrigation manager). Information can 

be provided on a weekly or daily basis (Figure 3.2-6f). Finally, the last button sends users to a 

configuration menu. This application is available for download from the “Google Store”. 

 

Figure 3.2-6 Smart phone application for accessing the IrrigaSys results. a) login menu; b) main menu; c) menu 

with registered plots; d) and e) menu with the weather forecast, evolution of soil water contents, and cumulative 

irrigation amounts; and f) menu for providing past irrigation events to feed the system. 
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Each farmer also receives a weekly email with reports for all respective plots in a pdf 

format. The report is divided in five parts. The first identifies the farmer, the plot, the crop, the 

sowing date, the irrigation system, and the date of the report. The second presents the water 

balance for the previous and incoming week as well as the same pie graph described earlier 

with the cumulative irrigation amounts versus the threshold limit given by legislation. The third 

component consists of two graphs, one giving the evolution of the soil water content from the 

sowing date to the present date, and another with the rainfall and irrigation events registered in 

the system during the same period. The fourth component details the estimates of the soil water 

balance as well as the forecast of Tmax and Tmin (ºC), rainfall (mm), ETo (mm), and Etc (mm) 

for the incoming 7 days. Finally, the fifth component presents the NDVI map calculated from 

the most recent cloud-free Sentinel-2 image. The IrrigaSys results can further be accessed 

through an online platform (Figure 3.2-7), which naturally includes all previous information. 

The farmers have direct access to the latest weather forecast, the soil water balance, the NDVI 

map as well as to a repository with all issued reports for each plot. 

 

Figure 3.2-7 The IrrigaSys online platform. Results menu. 

3.3 Implementation 

3.3.1 Study area 

The IrrigaSys DSS has been supporting irrigation water management in the Sorraia 

Valley irrigation district, in southern Portugal, for the last five years (38.95 N, 8.54 W). The 

climate in the region is semi-arid to dry sub-humid, with hot dry summers and mild winters 

with irregular rainfall. The mean annual rainfall is close to 500 mm, varying from 200 to 900 
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mm along the years. The annual surface air temperature averages 15 ºC, ranging from ~9 ºC in 

January to ~22 ºC in July, while the mean annual reference evapotranspiration is close to 900 

mm. The dominant soils are Fluvisols, Planosols, Cambisols, Luvisols, and Regosols. Rice 

(Oryza sativa L.) and maize (Zea mays L.) are the main crops in the region, occupying 

respectively 32.0–40.2% and 21.4–38.4% of the total irrigated area from 2007 to 2018. The 

previous crops obviously influence the choice of the irrigation method, with surface, sprinkler 

(centre pivot), and drip systems covering 7713, 6985, and 4383 ha, respectively (total area: 

19,332 ha) (ARBVS, 2019). Water access is on demand. 

Over the last 5 years, IrrigaSys has provided service to 30 farmers, managing 103 plots 

with an area varying from 0.03 to 75 ha (total area of 2080 ha). The crops included maize, 

tomato (Solanum lycopersicum L.), potato (Solanum tuberosum L.), peanut (Arachis hypogaea 

L.), bell pepper (Capsicum annuum L.), sunflower (Helianthus annuus L.), and vineyard (Vitis 

vinifera L.). Only pressure irrigation systems were supported by IrrigaSys. 

3.3.2 System setup and requirements 

The IrrigaSys DSS was developed in close cooperation with the local Water Board 

(Associação de Regantes e Beneficiarios do Vale do Sorraia, ARBVS), complementing the 

services already provided to their associates to ensure the compliance with legislation 

requirements for funding management practices aimed at improving irrigation water use 

efficiency (Portaria n.502015, n.d.). Farmers did not adhere directly to the system. It was 

ARBVS that made sure they would join the system, organizing workshops, and maintaining 

close contact with their associates during the irrigation season to collect the information needed 

to run the system and comply with legislation. Over the years, the number of associates and 

plots that received the service varied between 133 in 2017 and 101 in 2022 (Table 3.3-1). The 

measure started in 2015 and ended in 2020. It was extended in the next two years ,and it was 

replaced in 2023 by a new legislation (“Portaria n.542023,” n.d.). 

 

Table 3.3-1IrrigaSys parcels that received counseling between 2017 and 2022 

Year 
Number of 

parcels 

2017 133 

2018 128 

2019 132 

2020 110 

2021 100 

2022 101 
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The implementation of IrrigaSys requires a substantial amount of information. 

Nevertheless, farmers are only required to provide a few simple basic inputs, which include the 

plot location, the crop and respective sowing date, the irrigation system, and the soil texture 

data. Similar requirements can be found in other DSS (Li et al., 2018; Yang et al., 2017). This 

information needs to be provided at the beginning of each growing season, and most is 

transferable from one season to the other. Farmers are also required to provide the daily/weekly 

irrigation inputs, which without it IrrigaSys cannot give reliable estimates of the soil water 

balance. 

 

IrrigaSys selects then predefined MOHID-Land files from the options available in the 

database. The soil domain is always defined by a vertical grid discretized into 11 grid cells, 

with 1 m wide, 1 m long, and varying thickness from 0.05 m at the surface to 0.5 m at the 

bottom. Each grid cell then defines a control volume where the state variables (e.g. soil water 

contents) are computed in the center of the cells and fluxes (and related variables) on the faces. 

The surface boundary conditions are the Tp and Ep rates as well as rainfall and irrigation 

amounts. The bottom boundary condition is always set to free drainage. The soil hydraulic 

parameters of the Mualem-van Genuchten model (van Genuchten, 1980) are the main variables 

characterizing soils in the pre-defined MOHID-Land files. These are derived for each soil 

horizon using the texture data provided by farmers and the pedotransfer functions (PTFs) in 

Ramos et al. (2013). Exceptions are the plots where the MOHID-Land model has been 

implemented with more detail following previous studies (Ramos et al., 2017), which naturally 

adopt the locally calibrated/validated soil hydraulic parameters instead. For the initial 

conditions, all plots are set to field capacity. 

IrrigaSys is connected to a network of ten weather stations (www.meteoagri.com), which 

provide the necessary data for computing the model surface boundary conditions for the 

hindcast period. Plots are associated to a specific weather station based on plot location. This 

weather network was already part of the service provided by ARBVS to their farmers’ 

associates and needed only to be connected to IrrigaSys. The Kc values for the initial, mid-

season, and end-season stages listed in  Allen et al. (1998) are used to estimate crop water 

requirements. Gross irrigation needs are then computed from the net irrigation requirements 

and standard irrigation efficiency values characterizing irrigation systems. On the other hand, 

Tp reductions due to water stress are parametrized according to Wesseling et al. (1991) 

http://www.meteoagri.com/
http://www.meteoagri.com/
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database. The default values of the EPIC model for different crops are further considered for 

modeling crop development (Neitsch et al., 2011). Exceptions are again crops (maize, pasture, 

and vineyard) previously simulated by the MOHID-Land model in the region (Ramos et al., 

2017) which calibrated/validated parameters serve as reference for all plots with the same 

characteristics. Finally, the NDVI maps are produced from the Sentinel-2 image tiles covering 

the Sorraia Valley region. Information is provided on a weekly basis, with the system 

maintaining the previous update when cloud cover is was above the threshold value (>10%). 

 

3.3.3 System management 

The IrrigaSys developers are the administrators of the system. The ARBVS technicians 

are granted the manager access level. They are responsible for setting up the plots in the system, 

activating it also at the beginning of each growing season. They further gather data related to 

irrigation events, every week, throughout the growing season, feeding directly the system with 

that information. By managing the system directly, the user’s interface was built specifically to 

accommodate their requests and facilitate their job. This option came after previous 

unsuccessful DSS that were developed expecting farmers to contribute directly to the set up 

and management of the DSS. That never happened. In IrrigaSys, farmers are thus only given 

the user’s access level. 

The weekly gathering of irrigation data is the most extensive work needed for running 

IrrigaSys. This effort could obviously be minimized with automatic controllers and remote 

access to flowmeters installed in monitored fields, similarly to Abi Saab et al. (2019), but which 

option is not available. As this is fundamental for running the DSS, there are a set of rules in 

place to be followed when that information is not collected in due time. Most of these rules 

assume that the farmer has been conducting irrigation according to the DSS recommendations. 

As IrrigaSys always runs model simulations from the beginning of the growing season till the 

current date, the weekly water balance is then automatically updated whenever the missing real 

irrigation data is finally provided. 

3.4 Discussion 

IrrigaSys is a DSS developed in cooperation with irrigation managers and farmers to 

provide irrigation support on a weekly basis, accommodating their needs and requests in the 

best possible way. IrrigaSys is run on a demonstrative case located in the region, which serves 

to evaluate model performance on a weekly basis. However, the representativeness of this field 

is limited, with uncertainty associated to model predictions depending much on how well the 
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system is correctly configure in each agricultural field. The DSS requires a few basic inputs to 

run, but it is highly complex, demanding much more detailed soil, crop, and climate data than 

that given by farmers. Obviously, the more information is provided, the more reliable the 

outputs will be. As an example, in terms of soil characterization, the MOHID-Land model 

requires the complete description of soil hydraulic functions, i.e., the soil water retention and 

soil hydraulic conductivity curves from soil water content at saturation to oven dryness. These 

are fundamental for solving the non-linear partial differential equation used to simulate soil 

water dynamics. The direct determination of these properties in each plot would be ideal but 

highly utopic considering soil variability and the cost and time needed to perform such 

analyses. Instead, PTFs are used to indirectly estimate soil hydraulic parameters from soil 

texture data. 

However, PTFs are also known to provide more robust estimates when additional soil 

data (e.g., dry bulk density, organic matter content) is used to complement soil texture (Van 

Looy et al., 2017). Thus, while more soil information should be provided by farmers, their 

knowledge on soil characteristics is usually limited to the texture class of the surface horizon 

and only a few know the soil particle distribution of their soils. Similar solutions were given in  

Todorovic et al., 2016, Li et al., 2018 and Abi Saab et al., 2019 to overcome the lack of soil 

hydraulic data. However, one should be aware that these DSS make use of much simpler 

simulation models for computing the soil water balance, with estimation errors associated to 

soil hydraulic data being likely smaller than in IrrigaSys. 

 

Also, crop development plays here a fundamental role in the accurate computation of the 

soil water balance, where LAI values are decisive for the correct partition of ETc rates into Tp 

and Ep. The accuracy of crop growth simulations depends much on a set of default parameters 

(Neitsch et al., 2011) that can hardly represent local conditions, much less season variability 

and the different sowing dates and crop varieties (with different cycles) that farmers adopt to 

cope with climate conditions. While IrrigaSys includes already a set of parameters calibrated/ 

validated locally for different crops, these are still insufficient to account for all possible 

variability. For this reason, farmers often contest IrrigaSys recommendations, particularly 

during the crop development and end-season stages, when the lengths of the crop stages in the 

system are misadjusted from reality. Hence, alternative options have been studied to better 

describe crop growth in the Sorraia Valley irrigation district.  Ramos et al.(2018) analyzed the 

impact of assimilation of LAI data derived from Landsat 8 imagery on MOHID-Land 
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simulations. The main conclusion was that modeling vegetation growth at the plot scale could 

not depend solely on inputs from LAI data assimilation because estimates might diverge 

substantially from the reality, thus confirming the need to use a proper data set for calibration. 

Therefore, Simionesei et al. (2019a) used LAI data derived from the same satellite sensor for 

simply adjusting crop growth parameters and calibrating/validating the model (instead of 

assimilating it directly into the model), providing a more feasible solution for rapidly 

developing a large database of crop variability at the regional scale. The literature shows that 

crop parametrization in existing DSS is usually limited to basic variables as those used in water 

budget models (crop coefficient, duration of growing cycles, minimum and maximum root 

depth, optimum yield threshold) (Li et al., 2018, Abi Saab et al., 2019)), but examples can be 

found where more complex approaches were used. For example, Gu et al. (2020) modelled 

crop growth based on growing degree days using a large set of variables from different crop 

growth models. 

One current limitation of IrrigaSys relies on not considering groundwater flow into the 

rootzone during the computation of the soil water balance. In the Sorraia Valley region, 

capillary rise plays a fundamental role in fulfilling crop water requirements in many 

agricultural plots (Cameira et al., 2003, Ramos et al., 2017), being thus essential its correct 

assessment for accurate irrigation scheduling. Solutions are still being analysed, which may 

include the remote monitoring of groundwater levels in existing piezometers or wells. The 

NDVI maps were added to IrrigaSys as farmers appreciated observing crop variability in their 

plots. Whether these maps were afterwards used for improving land management in their plots 

remains unknown. Nevertheless, the remote sensing module should be improved to also derive 

crop coefficients from vegetation indices, feeding the system with better and more reliable 

information on crop conditions. Finally, IrrigaSys outputs are nowadays accessed through a 

smartphone application developed in Android, but which is not available to all farmers since 

many use the iPhone Operation System (iOS) to which the application is not compatible. 

3.5 Conclusions 

IrrigaSys is a decision support system aimed at supporting irrigation water management 

at the field plot scale. The system provides optimized irrigation schedules as well as additional 

information (soil water balance, weather forecast for incoming days, satellite images) on a 

weekly basis to help farmers in the decision-making process. The system is highly complex but 

the data necessary to run it is minimal, and include the location of the agricultural field, the 

crop type, the sowing and harvest dates, the soil texture, and the characteristics of the irrigation 
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system in each plot as mandatory inputs. As the DSS is not remotely connected to sensors, 

information on applied daily/weekly irrigation depths is vital for the reliability of outputs. 

IrrigaSys was developed using online, open source tools, having the flexibility to be 

implemented in any location in the world. However, the major strength results from the close 

cooperation between the academy and a local Water Board during its development, with many 

details being programmed based on irrigation managers suggestions, namely the decision rules 

to follow when irrigation data is not collected in due time to feed the system. On the other hand, 

the complexity of the DSS core engine as well as the inherent difficulties in 

calibrating/validating model parameters for all case scenarios constitutes a major weakness. 

Despite all these constraints, IrrigaSys has been performing reasonably well over the years, 

with some farmers considering the weekly information provided by the system before defining 

their irrigation scheduling. Nonetheless, their irrigation plans often deviate from the 

recommended ones. The crop development and end-season stages have always been the most 

conflicting stages, with outputs raising sometimes critics from farmers when misadjusted from 

reality. Critics are thus considered (and even welcomed) to help adjust model parameters to 

field conditions and reduce the uncertainty associated to model predictions. IrrigaSys needs 

thus to continue being developed to overcome such limitations and become a more trustworthy 

tool in irrigation water management. 
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4. Model calibration for three case studies: maize, pasture and 

grapevine 

In this chapter, the calibration of the model for the main crops utilized in the Decision 

Support System (DSS), namely maize, pasture, and grapevine, is detailed. The outcomes of this 

calibration process have been documented in two scientific papers and a conference paper. The 

following succinctly presents the objectives of these articles/applications: 

Chapter 4.1: This section focuses on modeling the dynamics of soil water and maize 

growth, taking into consideration the influence of shallow groundwater conditions. The study 

was conducted in the Sorraia Valley region of Portugal. 

Chapter 4.2: In this part, the implementation of the MOHID Land model is discussed, 

specifically concerning the modeling of soil water dynamics and pasture growth. 

Chapter 4.3: This section centers on the modeling of deficit irrigation in grapevine using 

the MOHID Land model. 

These chapters collectively contribute to a deeper understanding of crop-specific 

interactions with soil and water dynamics, as well as how the MOHID Land model can 

effectively simulate these intricate processes for various crops. 

4.1 Modelling soil water and maize growth dynamics influenced by 

shallow groundwater conditions in the Sorraia Valley region, 

Portugal 

The material on which this chapter is based has been previously published in: Ramos, 

T.B., Simionesei, L., Jauch, E., Almeida, C., Neves, R., 2017. Modelling soil water and maize 

growth dynamics influenced by shallow groundwater conditions in the Sorraia Valley region, 

Portugal. Agricultural Water Management 185. https://doi.org/10.1016/j.agwat.2017.02.007 

4.1.1 Introduction 

In southern Europe, increasing water demand and withdrawals have been building up the 

pressure on  fresh  water  resources, with agriculture accounting for more than half of the total 

water abstraction, rising to more than 80% in some regions (EEA, 2009). The problem has been 

enhanced by climate change, with climate projections showing a marked  increase  of  summer  

temperatures and meteorological droughts (Kovats, 2014), and by economic development, with 

multiple economic activities (agriculture, energy production, industry, domestic use, tourism 

and recreation) competing for limited water resources. There is thus an immediate need for 

improving agricultural water management and for developing new strategies and management 
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options to address water use, performance, and productivity of agricultural systems (Todorovic 

et al., 2014).  

Although irrigation plays a decisive role in increasing agricultural productivity and 

production stability in southern Europe, erroneous irrigation practices may also promote 

environmental degradation of an already ecologically sensitive region. Therefore, the European 

Commission has given top priority to the protection of natural resources in the  context  of  the  

Europe  2020  Strategy, including the sustainability of water resources (European Commission, 

2012, 2011). Following these policies, southern European countries have established specific 

policy instruments for maximizing the effectiveness and efficiency of irrigation water use. In 

this context, it seems essential the development of modern irrigation support tools to help 

farmers comply with legislation requirements and improve irrigation water management, 

including integrative modelling operational tools capable of simulating the full soil-water-

atmosphere transfer system. These new modelling tools would not only help farmers improve 

irrigation water use at the plot scale but could also serve as support tools for evaluating the 

effectiveness of the policy instruments implemented. 

The Sorraia Valley region, located in southern Portugal, is part of one of the most 

important agricultural areas in the country. Maize (Zea mays L.) is a leading crop in the region, 

occupying 25.6–44.9% of the total area irrigated during 2004–2014 (ARBVS, 2015). Water 

scarcity and inappropriate land management practices have been some of the most critical 

constraints to the sustainable production of maize and other agricultural crops. Over the last 

decade, agronomical research has focused on studying soil water flow and solute transport 

processes in the region to improve irrigation water management and optimize water use and 

water productivity. Some of the most relevant studies included the relationships between maize 

production and irrigation strategies (Paredes et al., 2014a), evaluation of economic impacts of 

various irrigation management strategies (Paredes et al., 2014b), and the assessment of nutrient 

(Cameira et al., 2007, 2003) and pesticide (Azevedo et al., 2000) fate while considering 

farmers’ agricultural practices. However, while these studies included detailed field 

experiments and numerical modelling, and contributed in identifying the best management 

practices to be performed at the plot scale, most have only addressed part of the soil-water-

atmosphere transfer system (mainly the root water uptake process) or included models that are 

currently not suitable to run as operational tools. 

MOHID-Land is a physically-based mechanistic model developed at the Instituto 

Superior Técnico (Brito et al., 2015; Simionesei et al., 2016; Trancoso et al., 2009), capable of 
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simulating the full soil-water-atmosphere transfer system at the plot scale, including root water 

uptake, the influence of groundwater on the soil water balance, and crop development. 

Although conceptually different, MOHID-Land has embedded some of the approaches used by 

state-of-the-art  models,  such  the  HYDRUS  software  package  (Šimůnek et al., 2016) and 

the SWAP model (Kroes and Van Dam, 2003), for describing physical processes at the plot 

scale. Recently, these reference models have been coupled with MODFLOW (Harbaugh et al., 

n.d.) and are today capable of combining processes in the vadose zone and groundwater 

(Twarakavi et al., 2008; Xu et al., 2012). They have also been coupled with the EPIC model 

(Neitsch et al., 2011; Williams et al., 1989) and can further simulate plant growth under 

different soil moisture, salinity, and temperature conditions (Han et al., 2015; Wang et al., 2015; 

Xu et al., 2015, 2013). Lately, the MOHID-Land model has been integrated in the FIGARO 

decision support system (DSS) for supporting irrigation water management in the Sorraia 

Valley region at the plot scale. The FIGARO DSS is a holistic and structured irrigation platform 

that offers farmers flexible, crop-tailored irrigation scheduling protocols for their specific fields. 

The FIGARO DSS is structured for data acquisition from monitoring devices (soil moisture 

sensors) and includes different forecasting meteorological and hydrological tools, enabling full 

decision support for end users at the plot scale (Linker et al., 2016). Nonetheless, a proper 

calibration/validation of the MOHID-Land model and the processes simulated at the plot scale 

were still missing, as well as the necessary developments for converting this model into an 

operational tool capable of optimizing irrigation scheduling and supporting irrigation water 

management practices. 

Different soil-water balance models (Raes, 2002; Rosa et al., 2012; Vanuytrecht et al., 

2014) are  normally  used  for  computing the irrigation scheduling for different crops, soils, 

and climate conditions. These models usually consider the soil domain simplistically, often 

defining it based on the notions of field capacity and the wilting point, with soil-water dynamics 

and irrigation scheduling being computed based on the soil-water storage capacity and 

atmospheric demands, as proposed by  Allen et al. (1998), while other outputs such as 

percolation and capillary rise are defined using empirical or semi-empirical equations. 

Mechanistic models such as MOHID-Land are less commonly used for computing the 

irrigation scheduling as they require many parameters, including a full description of the soil 

hydraulic properties (i.e. the soil water retention and the unsaturated hydraulic conductivity 

curves), which measurements are complex and, thus, are not easily available for many regions 

of the world. Dabach et al. (2013) constitutes here a rare reference as these authors upgraded 
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the HYDRUS-1D model for computing irrigation scheduling by considering soil pressure 

heads, target thresholds, and crop evapotranspiration. Nonetheless, mechanistic models are 

usually considered to provide superior predictions of soil water contents than simpler soil water 

balance models, offering also larger capabilities in terms of irrigation water management. 

Hence, these models are today used, for example, for optimizing water saving practices in arid 

regions with shallow groundwater conditions (Ren et al., 2016; Xu et al., 2013) improving 

irrigation management with poor quality waters (Raij et al., 2016; Ramos et al., 2011); and 

quantifying the fate of agro-chemical contaminants in different ecosystems (Phogat et al., 2014; 

Ramos et al., 2012).  

The main objective of this study was to use the MOHID-Land model for simulating soil-

water flow and crop development in a plot with maize located in the Sorraia Valley region. The 

specific objectives were: (i) to predict soil water contents and fluxes, and the evolution of 

different crop growth parameters, including the leaf area index, canopy height, biomass, and 

yield during the 2014 and 2015 maize growing seasons; (ii) to compute the soil water balance 

while considering the effect of the groundwater table on soil water and maize growth dynamics; 

(iii) to implement a system-dependent boundary condition for automatically triggering 

irrigation when a certain threshold was reached at the root zone; and (iv) to optimize ’ irrigation 

scheduling practices by analyzing different groundwater levels and threshold scenarios. The 

modelling approach will help us improve the model performance in the FIGARO DSS, and 

consequently irrigation water management practices at the plot scale, in the Sorraia Valley 

region. 

4.1.2 Material and methods 

4.1.2.1 Field experiment 

This study was conducted at Herdade do Zambujeiro, located near Barrosa, Sorraia 

Valley, southern Portugal (38◦58´0.97´´N, 8◦44´46.63´´W), during the 2014 and 2015 growing 

seasons. The climate in the region is semi-arid to dry sub-humid, with hot dry summers and 

mild winters with irregular rainfall. Hourly weather data used in this study was taken from a 

meteorological station located nearby and included the average temperature (ºC), wind speed 

(m s−1), relative humidity (%), global solar radiation (W m−2), and precipitation (mm). These 

data were then used to determine the hourly reference evapotranspiration (ET0, mm d−1) using 

the FAO Penman-Monteith method (Allen et al., 1998) (Figure 4.1-1). 
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Figure 4.1-1 Hourly values of air temperature (T) and cumulative heat units (HU) during 2014 (a) and 2015 (b) 

crop seasons (top); hourly reference evapotranspiration (ET0) during 2014 (c) and 2015 (d) crop seasons (middle); 

and hourly ET0 during a random week (detailed view) of 2014 (e) and 2015 (f) crop seasons (bottom). 

 

The soil was classified as Haplic Fluvisol (IUSS Working Group WRB, 2014). The soil’s 

main physical and chemical properties are presented in Table 4.1-1. The particle size 

distribution  was obtained using the pipette method for particles having diameters <2µm (clay 

fraction) and between 2 and 20µm (silt),  and  by  sieving for particles between 20 and 200µm  

(fine  sand) and between 200 and 2000µm (coarse sand). These textural classes follow the 

Portuguese classification system (Gomes and Silva, 1962) and are based on international soil 

particle limits (Atterberg scale). The dry bulk density (pb, g cm−3) was obtained by drying 

volumetric soil samples (100 cm3) at 105 ºC for 48 h. The  organic  matter (OM, %) content 

was estimated from the organic carbon (OC, %) content determined by the Walkley–Black 

method, using the relation OM = 1.724 × OC (Nelson and Sommers, 1983). The soil water 

retention curve, θ(h), was determined on undisturbed soil samples (100 cm3) using suction 

tables with sand for pressure heads above 10 kPa (Romano et al., 2002), and a pressure plate 

apparatus for pressure heads below 33 kPa (Dane and Topp, 2020). The saturated hydraulic 

conductivity (Ksat, cm d−1) was determined on undisturbed soil samples (630 cm3) using a 

constant-head method (Stolte, 1997).  
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Table 4.1-1 Main physical and chemical soil characteristics. 

 

The field was cropped with maize hybrid P1574 (FAO  600) with a density of 

approximately 89,000 plants ha−1. Management practices, including fertilization and irrigation, 

were performed according to the standard practices in the region and were decided by the 

farmer. During 2014, maize was sown on May 24 and harvested on October 8; the net rainfall 

reached 163 mm, while the net irrigation amounted 365 mm (Figure 4.1-2). During 2015, maize 

was sown on April 16 and harvested on September 20; the net rainfall reached only 12 mm, 

while the net irrigation summed 620 mm (Figure 4.1-2). The dates of the most relevant crop 

growth stages are presented in Table 4.1-1. Irrigation was applied with the farmer’s stationary 

sprinkler system, wherein a Christiansen’s coefficient of uniformity (CU, Christiansen, 1942) 

value of 71% was measured at the beginning of the 2014 growing season. Although this CU 

value can be considered ‘low’ (CU < 84%; (Keller and Bliesner, 1990)), maize crops always 

exhibited good homogeneity throughout the seasons due to the shallow depth of the 

groundwater table (Figure 4.1-1). 

One SM1 capacitance probe (Adcon Telemetry, Klosterneuburg, Austria) and one 

ECH2O-5 capacitance probe (Decagon Devices, Pullman, WA) were installed at depths of 10, 

30, and 50 cm to continuously measure soil water contents. TDR probes with waveguides from 

the Trase System (Soil Moisture Equipment Corp., Goleta, CA) were also installed at the same 

depths and locations to measure the soil water content every 15 days. TDR readings were used 

to calibrate the capacitance probes. One LEV1 level sensor (Adcon Telemetry, Klosterneuburg, 

Austria) was used to continuously monitor the groundwater level (Figure 4.1-2). One RG1 
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(Adcon Telemetry, Klosterneuburg, Austria) and two QMR101 (Vaisala, Helsinki, Finland) rain 

gauges were used to measure the amount of water applied per irrigation event (Figure 4.1-2). 

 

 

Figure 4.1-2 Daily values of precipitation, irrigation, and groundwater depth (GWD) during 2014 (top) and 2015 

(bottom) crop seasons. 

Table 4.1-2 Dates of crop growth stages. 

 

Leaf area index (LAI, m2 m−2), crop height, and the aboveground dry biomass were 

monitored every 15 days throughout each maize growing season by harvesting 3 random plants, 

every date. The same crop parameters were measured at the end of each crop season, but by 

harvesting all plants in a random area of 1.5 m2 corresponding to approximately 12 plants). The 

length and width of crop leaves were measured in every harvested plant and then converted to 

LAI values as documented in Ramos et al. (2012a). The aboveground dry biomass was 
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determined by oven drying maize stems, leaves, and grain at 70 ºC to a constant weight. Maize 

yield was obtained from the grain’s dry biomass measured at the end of each crop season. 

4.1.2.2 Model setup, calibration and validation 

The simulation period covered the full 2014 and 2015 growing seasons, being set from 

sowing to harvest in each year (Table 4.1-2). The soil profile was specified with 2 m depth, 

divided into four soil layers according to observations (Table 4.1-2). For depths below 0.8 m, 

the soil properties were assumed to be the same as those in the last observed layer. The soil 

domain was represented using an Arkawa C-grid type (Purser and Leslie, 1988), defined by 

one vertical column discretized into 100 grid cells with 1 m wide, 1 m long, and 0.02 m 

thickness each (i.e., 1 × 1 × 0.02 m3) (Figure 4.1-3). Each grid cell then defined a control 

volume where the state variables (e.g. soil water contents) were computed in the center of the 

cells, and fluxes (and related variables) on the faces. Only vertical fluxes were possible with 

the specifications mentioned above (one-dimensional domain). 

 

Figure 4.1-3 Soil domain discretization (R, root zone domain). 

 

The upper boundary condition was determined by the actual evaporation and 

transpiration rates, and the irrigation and precipitation fluxes (Figure 4.1-2). ETc values were 
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computed from hourly ET0 values presented in Figure 4.1-1, using Kc values of 0.30, 1.20, and 

0.35 for the initial, mid-season, and late season crop stages, respectively. These values were 

taken from Allen et al. (1998)) and correspond to standard Kc values for the Mediterranean 

region. The Kc  value for  the  initial  crop  stage  was  then  adjusted  for  the  frequency of the 

wetting events (precipitation and irrigation) and average infiltration depths, while the Kc values 

for mid-season and late season crop stages were adjusted for local climate conditions taking 

into consideration crop height, wind speed, and minimum relative humidity averages for the 

periods under consideration (Allen et al., 1998). The following parameters of the Feddes et al. 

(1978) model were used to compute Tp reductions due to water stress: h1 = -15, h2 =  -30, h3 = 

-325 to  -600, h4 = -8000 cm (Wesseling et al., 1991). The bottom boundary condition was 

specified using the observed groundwater depth (GWD, Figure 4.1-1). The initial soil water 

content conditions were set to field capacity. 

Datasets relative to 2014 and 2015 were used to calibrate and validate the model, 

respectively. The soil hydraulic parameters (Table 4.1-1) and the crop parameters (Table 4.1-3) 

were calibrated until deviations between the observed and simulated values were minimized. 

A trial-and-error procedure was adopted. First, the parameters of the van Genuchten-Mualem 

equations were determined with the RETC computer program (Van Genuchten et al., 1991) 

from soil hydraulic data (θ(h) and Ksat) measured in different soil layers, and used in model 

simulations. The soil hydraulic parameters θs, α, η, and Ksat were then modified to reduce the 

deviations between the observed and simulated soil water contents. The parameter θr was not 

modified,  following  Šimůnek et al. (1998) and Jacques et al. (2002), who found that this 

parameter did not significantly influence soil moisture simulations. The connectivity/tortuosity 

parameter l was also not adjusted, being set to 1 following Schaap and Leij (2000a). Then, the 

crop parameters were calibrated by optimizing the default values of the EPIC model for maize 

(Neitsch et al., 2011) until deviations between the observed and simulated LAI, hc, and ABG 

biomass were minimized. Finally, the soil hydraulic parameters (θs, α, η, and Ksat) were again 

adjusted until the best fit between the simulated and observed soil water contents was reached. 

The model was considered calibrated when the statistical indicators obtained for the validation 

period (2015) were within the same range as those determined for the calibration period (2014). 
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Table 4.1-3 Optimized parameters of the crop growth model. 

 

Model calibration and validation was performed by comparing field measured values of 

soil water contents, LAI, hc, and ABG biomass with the MOHID-Land simulations using 

various quantitative  measures of the uncertainty, such as, the coefficient of determination (R2), 

the root mean square error (RMSE), the ratio of the RMSE to the standard deviation of observed 

data (NRMSE), the percent bias (PBIAS), and the model efficiency (EF), respectively given 

by: 
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         Equation 31 

where Oi and Pi are respectively the observed and model predicted values at time i, 𝑂 ̅ 

and �̅� are the respective mean values, and n is the number of observations. R2 values close to 

1 indicate that the model explains well the variance of observations. RMSE, NRMSE, and 

PBIAS values close to zero indicate small errors of estimate and good model predictions 

(Legates and McCabe, 1999; Moriasi et al., 2007; Wang et al., 2012) . Positive or negative 

PBIAS values refer to the occurrence of under- or over- estimation bias, respectively. Nash and 

Sutcliffe (Nash and Sutcliffe, 1970) modelling efficiency EF values close to 1 indicate that the 

residuals variance is much smaller than the observed data variance, hence the model predictions 
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are good; contrarily, when EF is very close to 0 or negative there is no gain in using the model, 

i.e., 𝑂 ̅is as good or better predictor than the model. 

4.1.3 Results and discussion 

4.1.3.1 Soil water contents 

Figure 4.1-4 shows the daily averages of the soil water contents measured with 

capacitance probes at depths of 10, 30, and 50 cm during the 2014 and 2015 growing seasons, 

and compares these values with the MOHID-Land simulations. Soil water content 

measurements increased rapidly with irrigation or precipitation and then gradually decreased 

until the next irrigation/precipitation event because of water uptake and redistribution. Soil 

water content variations were expectably larger near the soil surface where root water uptake 

and soil evaporation were more pronounced. The bottom layers (>40 cm) also showed smaller 

water content variations due to their hydraulic characteristics (Table 4.1-1), mostly affected by 

continuous heavy ploughing practices over the years which resulted in some soil compaction. 

Table 4.1-4 presents the statistical indicators used to evaluate the level of agreement 

between measured values and the MOHID-Land simulations. MOHID-Land performed 

reasonably well when simulating soil water contents during the 2014 calibration period. The 

value of R2 was relatively high (0.73), showing that the model could explain the variability of 

the observed data. The errors of the estimates were quite small, resulting in a RMSE value of 

0.018 cm3 cm−3, and a NRMSE value of 0.061. The PBIAS value was 1.53%, indicating some 

overestimation of the measured data. The modelling efficiency EF was also high (0.70), 

indicating that the residual variance was much smaller than the measured data variance. The 

goodness-of-fit indicators obtained were thus within the range of values reported in the 

literature for water content simulations using different state-of-the-art transient vadose zone 

models (Han et al., 2015; Kröbel et al., 2010; Wang et al., 2014, 2015; Xu et al., 2015, 2013; 

Yu et al., 2006). 
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Figure 4.1-4 Measured and simulated soil water contents at depths of 10 (top), 30 (middle), and 50 cm (bottom) 

during 2014 (left) and 2015 (right) crop seasons. Vertical bars correspond to the standard deviation of measured 

data. 

Similarly, the MOHID-Land model performed satisfactory when simulating soil water 

contents during the 2015 validation period. The errors of the estimates were very similar to 

those determined for the 2014 dataset, resulting in a RMSE value of 0.019 cm3 cm−3, and a 

NRMSE value of 0.063. The PBIAS value was 1.91%, this time indicating some 

underestimation of the measured data which was specially noticed at 30 cm depth (Figure 

4.1-4). The R2 value (0.37) and the modelling efficiency EF (0.11) were substantially reduced 

though Yet, the EF value can still be considered as acceptable. Ramos et al. (2012a) and Dabach 

et al. (2013) described how deviations between the measured and simulated water contents can 

be attributed to different causes, including errors related to field measurements, model inputs, 

and model structure. Most of those causes can also be considered here for explaining deviations 

observed in the 2015 dataset. 
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≥ 

4.1.3.2 Crop growth 

The LAI, hc, and the aboveground biomass values estimated with the MOHID-Land 

model were also in agreement with the 2014 field observations (Figure 4.1-5). The RMSE 

values obtained by comparing simulated and measured LAI, hc, and aboveground biomass 

values were 0.63 m2  m−2, 0.42 m, and 5128.3 kg ha−1, respectively, whereas the NRMSE values 

were 0.16, 0.22, and 0.39 for the same crop growth parameters (Table 4.1-4). The R2 values 

were higher than 0.93. The positive PBIAS values found for LAI (6.4%) and for the 

aboveground biomass (19.2%) showed a slight underestimation of the model simulations, 

whereas the negative PBIAS value found for hc (-11.83%) showed a slight overestimation of 

this parameter. Nonetheless, the modelling efficiency (EF 0.87) was very high, thus indicating 

good model performance overall for all three crop growth parameters. During the 2015 

validation period, the MOHID-Land simulations produced very similar goodness-of-fit 

indicators as those obtained for the 2014 calibration period (Table 4.1-4), proving that the crop 

parameters presented in Table 4.1-3 were properly calibrated. 

 

Table 4.1-4 Results of the statistical analysis between measured and simulated soil water contents, leaf area 

index (LAI), canopy height, and aboveground dry biomass 

 

 

The simulated and observed crop yields were 14,670 and 16,093 kg ha−1, respectively, 

during the 2014 calibration period, and 17,930 and 17,300 kg ha−1, respectively, during the 

2015 validation period. Hence, yield predictions expectably followed the same under- and 

overestimation tendencies observed in simulations of the aboveground dry biomass. 

In our study, the sowing dates varied considerably between the two growing seasons 

(Table 4.1-2). The early start of the 2015 growing season meant less heat units accumulated 

during its first weeks than in 2014. Yet, the modelling results showed that crop parameters 

presented in Table 4.1-3 were conservative enough and only one year of data was sufficient for 

their calibration. This confirmed the adequateness and robustness of the modelling approach 
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implemented in the MOHID-Land model. Likewise, similar modified versions of the EPIC 

crop growth model have been successfully coupled with different state-of-the-art transient 

vadose zone models, and the heat unit theory has been tested as a reliable predictor in many 

modelling applications (Ficklin et al., 2010; Han et al., 2015; Steduto et al., 1995; Wang et al., 

2014, 2015; Xu et al., 2015, 2013). Thus, based on Table 4.1-4 and Figure 4.1-5, it can be 

considered that the MOHID-Land could also simulate maize growth in the Sorraia Valley 

region. 

 

Figure 4.1-5 Measured and simulated leaf area index (top), canopy height (middle), and aboveground (ABG) dry 

biomass (bottom) during 2014 (left) and 2015 (right) crop seasons. 
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Table 4.1-5 Components of the soil water balance. 

 

4.1.3.3 Model inclusion in a DSS service 

As previously mentioned, a properly calibrated/validated mechanistic model such as the 

MOHID-Land model can provide very accurate predictions of soil water contents and the 

components of the soil water balance, offering many solutions for improving irrigation water 

management at the plot scale. The new system- dependent boundary condition implemented in 

the model for automatically triggering irrigation when a certain threshold is reached at the root 

zone follows a physically-based approach and seems practical enough for operational use in an 

irrigation service like the FIGARO DSS since the threshold limits for most crops can be found 

in the literature (Wesseling et al., 1991). However, users should always consider that these 

threshold values usually represent averages for particular climates or crop varieties, meaning 

that some uncertainty should always be taken into account when applying it to different 

conditions. 

However, the main challenge seems undoubtedly to be with the application of the new 

optimization tool to different soils since the model requires a detailed and accurate description 

of the soil hydraulic properties (i.e., the soil water retention and the unsaturated hydraulic 

conductivity curves). That information is usually not available as is the case of the Sorraia 

Valley irrigation district. Although alternatives are available today for the indirect estimation 

of the soil hydraulic parameters from basic soil properties using pedotransfer functions 

(Pachepsky and Rawls, 2004), these approaches also have their own limitations as most were 

never properly evaluated for describing soil water dynamics in the regions they intend to 

represent (i.e., a proper functional evaluation was mostly never done). 

Crop season  variability,  particularly  the  length  of  crop  seasons, may also have a 

direct influence on model results since shorter/longer crop seasons will necessary require 

adjustments in some crop parameters given in Table 4.1-3 (e.g., PHU). As model 

calibration/validation for every field assisted by a DSS is impractical, crop and soil databases 

are thus necessary to provide the necessary inputs for model simulations and complement the 

model running in operational mode. Hence, model recommendations should always be 

sustained by an agronomist service to assess model performance and uncertainties. 
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4.1.4 Conclusions 

The MOHID-Land model could successfully simulate soil water dynamics and maize 

development in a plot located in the Sorraia Valley region, southern Portugal. Model estimates 

of the soil water content, LAI, canopy height, aboveground biomass, and maize yields showed 

a general good agreement with field data measured during the 2014 and 2015 growing seasons. 

Farmer’s irrigation practices maintained soil water contents near field capacity, maximizing 

root water uptake and yields. Capillary rise was an important component of the soil water 

balance, contributing 14% of ETc. However, deep percolation values showed an inefficient use 

of the water applied. Thus, the irrigation scheduling practices could be improved to better 

consider the soil’s water holding capacity and the contribution of the shallow groundwater to 

the root zone. Future work should consider testing the new system-dependent boundary 

condition for different soils, particularly for soils with heavier textures, wherein the amount of 

water applied per irrigation event (Imax) needs to be also defined while considering soil 

infiltration constraints in order to prevent surface runoff and soil erosion. 

4.2 Modeling soil water dynamics and pasture growth in the montado 

ecosystem using MOHID land 

The material on which this chapter is based has been previously published in: Simionesei, L., 

Ramos, T.B., Oliveira, A.R., Jongen, M., Darouich, H., Weber, K., Proença, V., Domingos, T., 

Neves, R., 2018. Modeling soilwater dynamics and pasture growth in the montado ecosystem 

using MOHID land. Water (Switzerland) 10. https://doi.org/10.3390/w10040489 

4.2.1 Introduction 

The southern region of the Iberian Peninsula is characterized by a savanna-type agro-

silvo-pastoral ecosystem, known as montado in Portugal (hereafter adopted) and dehesa in 

Spain (Aronson et al., 2012; Pinto-Correia et al., 2011). The montado system consists of an 

open formation of cork (Quercus suber L.) and holm oak (Quercus ilex rotundifolia L.) trees, 

presenting high levels of spatial variability in terms of density, combined with fallow land or 

pastures, which can be natural, improved, or cultivated (Pinto-Correia and Mascarenhas, 1999; 

Santos et al., 2015). The structural diversity of the system combines with the good overall 

habitat connectivity over its area of distribution, allowing animals to move around their 

territories, find mates, hunt, forage, and reproduce, resulting in high levels of biodiversity. As 

a result, the montado is considered as a High Natural Value system (Pinto-Correia et al., 2011), 

providing various ecosystem services (ES) that are perceived by farmers, stakeholders, and 
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society in general as being important for human welfare (Garrido et al., 2017; Guerra and Pinto-

Correia, 2016; Pinto-Correia and Azeda, 2017). 

In the last decades, the implementation of the European Common Agricultural Policy has 

led to an intensification of grazing, which has caused additional stress to the system, promoting 

the spread of tree diseases and preventing the natural regeneration of the ecosystem (Fragoso 

et al., 2011; Pinto-Correia and Mascarenhas, 1999; Santos et al., 2015). The most significant 

transformations have been (i) the increase of the stocking (or livestock) pressure (i.e., the 

replacement of sheep by cattle, the replacement of light indigenous breeds of cattle by heavier 

breeds, and the increase of livestock units per area); and (ii) the use of heavy machinery for 

shrub control (Pinto-Correia and Azeda, 2017). These changes have exhausted the natural 

pastures, decreased tree regeneration, and degraded water and soil quality (Pinto-Correia and 

Azeda, 2017; Pinto-Correia and Mascarenhas, 1999). Therefore, there is the need for the 

development of policy instruments that consider the specificities of the montado silvopastoral 

system; otherwise, its future will be severely threatened in the short term (Guerra and Pinto-

Correia, 2016; Pinto-Correia and Azeda, 2017; Sandor et al., 2016). 

One major challenge for improving system management is understanding soil water 

dynamics in the pasture component of the montado ecosystem, allowing for its improved 

management regarding grazing, and hence its capacity to withstand increased stocking 

pressure. Mediterranean grassland species have evolved adaptive strategies to avoid or endure 

severe summer droughts, adjusting their lifecycle to seasonal water availability (Tenhunen et 

al., 1990). The emergence of plants depends on the timing of the first autumn precipitations, 

and their active period is in winter and early spring, with senescence in May (Hussain et al., 

2009; Jongen et al., 2013a, 2013b, 2011). In montado systems, the understory plays an 

important role in the functioning of the ecosystem (Jongen et al., 2011), having a variable 

productivity that responds to the temperature and precipitation (P) regimes. The relationship 

between soil water and biomass also influences whether these ecosystems act as CO2 source or 

sink, with Jongen et al., 2011 suggesting that in dry years grasslands may act as a source of 

CO2, while in more humid years they may act as a sink. With climate change scenarios 

suggesting a decrease in annual precipitation in mid-latitude temperate regions, accompanied 

by increasing temporal variability of precipitation and drought risks (Christiansen, 1942; IPCC, 

2013; Jongen et al., 2013b), it is thus essential to develop tools for accurately quantifying the 

soil water balance and net primary production, and improving system management. The 

additional variability in precipitation also introduces the possibility of an additional 
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management alternative: the use of irrigated pastures. These both allow a smoothing of the 

effects of precipitation variability in rainfed pastures and provide a buffer of forage production, 

to release grazing pressure from rainfed pastures when that production is inadequately high. 

Today, several process-based models, such as the BIOME–BGC (White et al., 2000), 

STICS (Brisson et al., 2003), SPACSYS (Wu et al., 2007), EPIC (Williams et al., 2008), 

ARMOSA (Perego et al., 2013), and PaSim (Ma et al., 2015) models, are available for 

simulating soil water dynamics and vegetation growth in grasslands. Most of these models 

provide an integrated perspective by taking into account the various vegetation, soil, and 

weather processes regulating energy and matter exchanges in agroecosystems. Some of these 

processes though, as in the cases of the EPIC (Williams et al., 2008) and PaSim (Ma et al., 

2015) models, are described in a simplistic way. For example, soil water dynamics is usually 

defined based on the notion of field capacity and the wilting point, with soil water storage 

capacity being computed from atmospheric demands, while other outputs, such as capillary 

rise and percolation, are computed empirically. Other process-based models, such as SPACSYS 

(Wu et al., 2007), and ARMOSA (Perego et al., 2013), make use of the Richards equation for 

computing soil water dynamics, thereby providing a more physically-based approach for 

predicting soil water contents and fluxes. Another example is the MOHID-Land model 

(Trancoso et al., 2009), which is a distributed model based on primitive equations for surface 

runoff and flow in both the vadose zone and the aquifer. Flow in porous media is based on the 

Richards equation, while infiltration can be simulated using Darcy’s equation and surface 

pressure, due to the surface runoff water column or by using empirical algorithms (e.g., Green 

and Ampt). The MOHID-Land model further includes a modified version of the EPIC model 

(Williams et al., 2008) for simulating crop development and biomass growth, which can 

potentially be used for estimating the stocking rates in the montado ecosystem and prevent soil 

degradation. 

Hence, the objectives of this study were (i) to calibrate/validate the process-based 

MOHID-Land model (Trancoso et al., 2009) for estimating soil water dynamics and dry 

biomass growth in a rainfed and irrigated pasture during the 2010–2011 and 2011–2012 

seasons; (ii) to estimate pasture irrigation (I) needs, using the calibrated model for the 1979–

2009 seasons (30 years); and (iii) to compare the soil water balance and dry biomass estimates 

in rainfed and irrigated pastures during both wet and dry seasons, providing an insight on the 

influence of climate variability on model performance. The hypotheses addressed in this study 

were (i) that the MOHID-Land model could accurately estimate the soil water balance and 
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aboveground biomass growth in pastures under different management regimes; (ii) that the 

model could be used for irrigation scheduling; and (iii) that climate variability had a significant 

effect on model estimates. The results of this study will help to support the decision-making 

process regarding ecosystem management, by better accounting for the stocking rates and 

reducing the adverse impact of grazing in the montado ecosystem. 

4.2.2 Material and Methods 

4.2.2.1 Field Site Description and Data 

The field data was collected at Herdade da Machoqueira do Grou, located near Coruche, 

southern Portugal (39º08′16” N, 08º20′03” W). The climate in the region is dry and sub-humid, 

with mild winters and hot, dry summers. The mean annual temperature is 15.9 ºC, with the 

mean daily temperatures at the coolest (December) and warmest (August) months being 10.4 

and 23.8 ºC, respectively. The mean annual precipitation is 680 ± 210 mm, with 87% falling 

between October and May (over the 1955–2007 period). The weather variables (rainfall (mm), 

average temperature (ºC), wind speed (m s−1), relative humidity (%), and solar radiation (W 

m−2) were provided for the study area by the MM5 mesoscale model 

(http://meteo.tecnico.ulisboa.pt), forced by the initial conditions from the NCEP (National 

Centers for Environmental Predition) Climate Forecast System Reanalysis, at a spatial 

resolution of 9 km. 

The soil was classified as a Cambisol (FAO, n.d.). The main physical and chemical 

properties of the soil are presented in Table 4.2-1. The particle size distribution was determined 

using the pipette method (Staff, 2011) for particles with a diameter of <2 µm (clay fraction) 

and between 20 and 2 µm (silt), and by sieving for particles between 200 and 20 µm (fine sand) 

and between 2000 and 200 µm (coarse sand). These textural classes follow the Portuguese 

classification system (Gomes and Silva, 1962), and are based on international soil particle 

limits (Atterberg scale). The dry bulk density (eg, cm−3) was obtained by the core method (Staff, 

2011) (soil samples of 100 cm3). The organic matter (OM, %) content was estimated from the 

organic carbon (OC, %) content determined by the Walkley–Black method, using the relation 

OM = 1.724 × OC (Nelson and Sommers, 1983). 

 

Table 4.2-1 Main physical and chemical soil characteristics 

Soil Properties  Soil Layers  

Depth (m) 0–0.2 0.2–0.8 >0.8 

Coarse sand, 2000–200 µm (%) 65.83 56.18 63.43 

Fine sand, 200–20 µm (%) 21.70 21.64 13.91 

http://meteo.tecnico.ulisboa.pt/
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Soil Properties  Soil Layers  

Depth (m) 0–0.2 0.2–0.8 >0.8 

Silt, 20–2 µm (%) 10.98 17.34 9.35 

Clay, <2 µm (%) 1.49 9.35 13.30 

Texture Loamy-sand Sandy-loam Sandy-loam 

Bulk density (g cm−3) 1.65 1.57 - 

Organic matter (%) 1.39 0.32 0.02 

 

Montado, with a density of Quercus suber (170 trees/ha), was the main land use at the 

field site. The understory vegetation and grassland was a mixture of C3 annual species, which 

emerged after the first rains in autumn and senesced in late spring.   Initially, the dominant 

species were Agrostis pourretii Willd., Plantago coronopus L., Rumex acetosella L., Tolpis 

barbata (L.) Gaertn., Tuberaria guttata (L.) Fourr., Vulpia bromoides (L.) S.F. Gray, and Vulpia 

geniculata (L.) Link. In October 2009, the site was   ploughed   and   seeded   with   a   biodiverse   

mixture   of legumes (Biserrula pelecinum L., Ornithopus compressus L., Ornithopus sativus 

Brot., Trifolium subterraneum L., Trifolium michelanium—balansae (Boiss.) Azn., Trifolium 

incarnatum L., Trifolium glanduliferum Boiss., Trifolium resupinatum L., and Trifolium 

vesiculosum Savi.), with one grass species (Lolium multiflorum L.) (Jongen et al., 2013a). 

By the 2010–2012 seasons, the dominant species were Agrostis pourretii Willd., Bartsia 

trixago L., Ornithopus pinnatus (Mill.) Druce, Ornithopus sativus Brot., Rumex acetosella L., 

Spergula arvensis L., Tolpis barbata (L.) Gaertn., and Tuberaria guttata (L.) Fourr. The 

vegetation was therefore mostly dominated by non-sown species. 

The MOHID-Land model was calibrated/validated using data from Jongen et al. (2013a), 

Jongen et al. (2013b). These authors carried out a rainfall manipulation experiment to study the 

resilience of montado understory to precipitation variability between October 2010 and June 

2012. Eight rainfall manipulation shelters were constructed, each one covering an area of 6m 

x 5m (30m2), within a fenced area of about 3500m2. The shelters were covered with a clear, 

0.2mm, UV-transparent polyethylene greenhouse film. More details related to the shelter 

design can be found in (Jongen et al., 2013a). 

During the 2010–2011 and 2011–2012 growing seasons, the pasture within four 

manipulation shelters was irrigated every three weeks, receiving 40mm per event, with this 

quantity being defined based on historical precipitation data (1955–2007). Hereafter, these 

plots will be referred to as “irrigated pasture”. Water was applied to the experimental plots 

using an irrigation system, consisting of four 18-VAN rotary sprinklers with 90◦ arc nozzles 

(Rainbird, Azusa, CA, USA), one in each corner of the experimental plots (Jongen et al., 

2013b). In addition, four non-sheltered “control” plots receiving natural precipitation were 
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defined, referred to hereafter as rainfed pasture. All plots received an equal water input during 

the germination and seedling establishment (until the middle of November). 

The soil volumetric water content was continuously measured (every 10min) in the 

middle of each experimental plot with an EC-5 soil moisture sensor (Decagon Devices, 

Pullman, WA, USA). In the irrigated and rainfed plots, measurements were taken at 10 and 5 

cm depth, respectively. Aboveground (ABG) dry biomass was measured four times per season. 

Two 30cm × 30cm quadrats were defined in each experimental plot. All plants inside were 

harvested, oven-dried at 60ºC for 72h, and weighed. The maximum leaf area index (LAImax, 

m2 m−2) was measured using a ceptometer (AccuPAR model LP-80, Decagon Devices, 

Pullman, USA), allowing an indirect determination of LAI by measuring the fraction of 

intercepted, photosynthetically-active radiation of the canopy. Maximum root depth was 

estimated at the end of the growing season (12 June). In each of the experimental plots, three 

soil cores of 8 cm diameter and a depth of up to 20cm were taken. Roots were washed out, with 

subsequent analysis of root length for determination of specific root length (SRL) using 

WinRhizo software (Regents Instruments Inc., Québec, QC, Canada), then oven dried at 60ºC 

for 72h, and weighed (Jongen et al., 2013b). 

4.2.2.2 Model Setup, Calibration, and Validation 

In the MOHID-Land model, the simulation period covered the 2010–2011 and 2011–

2012 growing seasons, being set from emergence to senescence each year. The soil profile was 

specified with 4m depth and divided into three soil layers (Table 4.2-1). The soil domain was 

represented using an Arakawa C grid type (Purser and Leslie, 1988), defined by one vertical 

column discretized into 11 grid cells, 1m wide, 1 m long, and with variable thickness (0.05m 

on the top to 2.5m at the bottom). 

The upper boundary condition was determined by the actual evaporation and 

transpiration rates, as well as the irrigation and precipitation fluxes. ETc values were computed 

by multiplying the daily reference evapotranspiration (ET0) values with crop coefficients (Kc) 

for the initial (0.3), mid-season (0.7), and late season (0.7) stages. These values were taken 

from  Allen et al. (1998), and correspond to standard Kc values for pasture in the Mediterranean 

region. The Kc value for the initial stage was then adjusted for the frequency of the rainfall 

events and average infiltration depths, while the Kc values for mid-season and late season were 

adjusted for local climate conditions taking into consideration plant height, wind speed, and 

minimum relative humidity averages for the period under consideration (Allen et al., 1998). 
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Root water uptake reductions were computed by considering the following parameters: h1 = 

−10, h2 = −25, h3 = −200 to −800, h4 = −8000 cm (Wesseling et al., 1991). 

Model calibration and validation were carried out during the 2010–2011 and 2011–2012 

seasons, respectively, with procedures following  Ramos et al. (2017). The soil hydraulic (Table 

4.2-2) and the crop parameters (Table 4.2-3) were calibrated for both rainfed and irrigated plots 

(during the 2010–2011 growing season). A trial-and-error procedure was adopted. First, the 

parameters of the van Genuchten–Mualem equations (Equation 5 and 6) were defined 

according to the average values proposed by Carsel and Parrish (1988) for each soil texture 

class. The soil hydraulic parameters θs, α, η, and Ksat were then modified to reduce the deviation 

between the observed and the simulated soil water contents. The parameter θr was not modified, 

as it did not significantly influence soil moisture simulations. The l parameter was set to 0.5, 

as suggested by Mualem (1976). The crop parameters were calibrated by optimizing the default 

values of the EPIC model for pasture (Neitsch et al., 2011) until the deviation between the 

simulated and the observed ABG dry biomass was minimized. The values of the LAImax and 

maximum root depth were taken directly from Jongen et al. (2013a). The calibrated model 

parameters were then validated during the 2011–2012 growing season and the statistical 

indicators (given below) computed. 

 
Table 4.2-2 Van Genuchten–Mualem parameters in irrigated and rainfed plots. 

Parameter  Soil Layers  

Depth (m) 0–0.2 0.2–0.8 >0.8 

Irrigated Plots:    

θr (cm3 cm−3) 0.035 0.035 0.067 

θs (cm3 cm−3) 0.300 0.300 0.450 

α (cm−1) 0.015 0.015 0.020 

η (-) 1.80 1.80 1.41 

l (-) 0.50 0.50 0.50 

Ksat (cm d−1) 62.4 27.8 4.5 

Rainfed Plots:    

θr (cm3 cm−3) 0.035 0.035 0.067 

θs (cm3 cm−3) 0.290 0.300 0.450 

α (cm−1) 0.015 0.015 0.020 

η (-) 1.85 1.80 1.41 

l (-) 0.50 0.50 0.50 

Ksat (cm d−1) 62.4 27.8 4.5 
θr, residual water  content;  θs, saturated  water content, α and η, empirical shape parameters; l, pore 
connectivity/tortuosity parameter; Ksat, saturated hydraulic conductivity. 

 

The goodness-of-fit indicators adopted for comparing MOHID-Land model simulations 

with the observed values of θ and ABG dry biomass were the mean error (ME), the root mean 

square error (RMSE), the normalized RMSE (NRMSE), and the model efficiency (EF). ME 
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values close to zero indicate no bias. RMSE and NRMSE values close to zero indicate small 

estimation errors and good model predictions (Legates and McCabe, 1999; Moriasi et al., 2007; 

Wang et al., 2012). EF values close to one indicate that the residuals’ variance is much smaller 

than the observed data variance, hence the model predictions are good. On the contrary, when 

EF is very close to 0 or negative, there is no gain in using the model (Nash and Sutcliffe, 1970). 

 

Table 4.2-3 Optimized parameters of the crop growth model. 

Crop Parameter Irrigated 

Plot 

Rainfed Plot 

Optimal temperature for plant growth, Topt (◦C) 20.0 20.0 

Minimum temperature for plant growth, Tbase (◦C) 5.0 5.0 

Plant radiation-use efficiency, RUE [(kg ha−1) (MJ m−2)−1] 8.0 8.0 

Total heat units required for plant maturity, PHU (◦C) 1800 1800 

Fraction of PHU to reach the end of stage 1 (initial crop stage), frPHU,init (-) 0.05 0.05 

Fraction of PHU to reach the end of stage 2(canopy development stage), frPHU,dev (-) 0.20 0.60 

Fraction of PHU after which LAI starts to decline, frPHU,sen (-) 0.70 0.70 

Maximum leaf area index, LAImax (m2 m−2) 3.0 3.0 

Fraction of LAImax at the end of stage 1 (initial crop stage), frLAImax,ini (-) 0.05 0.05 

Fraction of LAImax at the end of stage 2 (canopy development stage), frLAImax,dev (-) 0.55 0.40 

Maximum canopy height, hc,max (m) 0.30 0.30 

Maximum root depth, Zroot,max (m) 0.40 0.40 

 

4.2.3 Results and Discussion 

4.2.3.1 Soil Water Contents 

Figure 4.2-1 presents the half-hourly θ measurements at 10 cm depth, and compares these 

values with the MOHID-Land model simulations during the 2010–2011 and 2011–2012 

seasons. In the irrigated plots, θ showed a fast increase after rain or irrigation events, then 

decreased gradually due to redistribution, root water uptake, and soil evaporation. In the rainfed 

plots, soil water dynamics showed a similar behavior as in the irrigated plots. However, while 

θ was kept close to field capacity in the 2010–2011 season due to rainfall, in the 2011–2012 

season θ was much lower, mainly due to the extended drought period that lasted from December 

2011 to March 2012. 

Table 4.2-4 presents the statistical indicators obtained after comparing measured values 

and model simulations. During calibration (2010–2011), the error of the estimates was small, 

producing an RMSE value of 0.018 and 0.015 cm3 cm−3 and an NRMSE value of 0.030 and 

0.039 for the rainfed and irrigated plots, respectively, while model efficiency was high (0.632–

20.780). For the validation period (2011–2012), the errors of the estimates were kept small 

(0.22 ≤ RMSE ≤ 0.26 cm3 cm−3; 0.024 ≤ NRMSE ≤ 0.047), while the model efficiency was 
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high (0.481 ≤ EF ≤ 0.863). According to Ramos et al. (2012b), Dabach et al. (2013), and Sándor 

et al. (2017), the deviation between measurements and model predictions may be attributed to 

several reasons, including model inputs, model structure, and field measurement errors, which 

can be considered also in this study. Nonetheless, the goodness-of-fit indicators were within 

the range of values reported in the literature for water content simulations using different 

process-based models (Hou et al., 2017; Ramos et al., 2017; Wang et al., 2015; Xu et al., 2013; 

Yu et al., 2006). 

 

Table 4.2-4 Results of the statistical analysis of measured and simulated soil water content and aboveground dry 

biomass. 

Statistic 

Irrigated Plot Rainfed Plot 

Water Content 

(cm
3 cm

−3
) 

Aboveground Dry 

Biomass (kg ha
−1

) 

Water Content 

(cm
3 cm

−3
) 

Aboveground Dry 

Biomass (kg ha
−1

) 

Calibration set  

(2010–2011) 
    

ME 0.001 −870.8 −0.002 −739.4 

RMSE 0.015 1286.5 0.018 1125.5 

NRMSE 0.039 0.210 0.030 0.372 

EF 0.632 0.869 0.780 0.584 

Validation set  

(2011–2012) 
    

ME -0.010 -667.6 -0.003 120.9 

RMSE 0.026 1088.1 0.022 279.8 

NRMSE 0.047 0.375 0.024 0.243 

EF 0.481 0.718 0.863 0.882 

ME, mean error; RMSE, root mean square error; NRMSE, normalized RMSE; EF, model efficiency. 

Figure 4.2-1 Measured and simulated soil water contents at 10 and 5 cm depth in irrigated and rainfed plots, 

respectively: (a) irrigated plot during the 2010–2011 season; (b) irrigated plot during the 2011–2012 season; 

(c) rainfed plot during the 2010–2011 season; and (d) rainfed plot during the 2011–2012 season. 
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4.2.3.2 Pasture Growth 

Pasture growth parameters were calibrated/validated for the irrigated and rainfed plots 

separately, based on the observed dynamics under the different regimes. However, only two 

parameters differed between the irrigation and rainfed regimes (Table 4.2-3): the fraction of 

PHU to reach the end of the canopy development stage (frPHU,dev), and the fraction of LAImax 

at the end of the canopy development stage (frLAImax,dev). These parameters influenced the time 

needed for pasture to reach the mid-season stage, with irrigated pasture reaching it faster due 

to higher water availability, and also presenting a higher LAI value at the beginning of that 

stage (i.e., higher transpiration rates). 

Regarding the aboveground dry biomass, the MOHID-Land simulations were in 

agreement with the measured values (Figure 4.2-2; Table 4.2-4). For the calibration period, the 

RMSE values were 1286.5 and 1125.5 kg ha−1 in the irrigated and rainfed plots, respectively. 

The NRMSE values were 0.210 and 0.372, and model efficiency were 0.584 and 0.869. For the 

validation period, RMSE, NRMSE, and EF values were within the same order of magnitude of 

those values. 

 

Figure 4.2-2 Measured and simulated aboveground dry biomass in irrigated and rainfed plots. (a) 

irrigated plot during the 2010–2011 season; (b) irrigated plot during the 2011–2012 season; (c) 

rainfed plot during the 2010–2011 season; and (d) rainfed plot during the 2011–2012 season (marks 

in grey were not considered in the statistical analysis as measurements showed that sites were 

grazed). 
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The general agreement between the simulated and measured data suggested that the 

calibrated parameters resulted in an adequate estimate of θ and aboveground dry biomass for 

both the calibration and validation seasons. Thus, it can be concluded that the model 

performance was generally good, and the model was properly calibrated for simulating soil 

water dynamics and crop growth in Herdade da Machoqueira do Grou. 

4.2.3.3 Soil Water Balance 

Table 4.2-5 presents the water balance for the irrigated and rainfed plots during the 2010–

2011 and 2011–2012 seasons. Precipitation varied considerably between seasons, amounting 

to 873 mm during the 2010–2011 season and 413 mm during the 2011–2012 season, 

constituting the sole water input in the rainfed plots. The irrigated plots received natural 

precipitation until mid-November during the earlier plant stages (134 mm in 2010 and 152 mm 

in 2011). From that date on, plots were sheltered from rainfall, and an additional 370–454 mm 

were applied as irrigation (Jongen et al., 2013a, 2013b) (Figure 4.2-1). 

Figure 4.2-3 shows the evolution of the Tp, Ta, and Ea values in the irrigated and rainfed 

plots during the 2010–2011 and 2011–2012 seasons. Ta varied between 143–166 mm in the 

irrigated plots, and between 56–65 mm in the rainfed plots (Table 4.2-5). These values 

corresponded to a water stress (given by the Ta/Tp ratio) between 0.86–0.95 in the irrigated 

plots, and between 0.60–0.94 in the rainfed plots. 

The largest water stress was obviously registered in the rainfed plot during the 2011–

2012 season due to the extended drought period observed between December 2011 and March 

2012. The Ea values varied between 128–155 mm in the irrigated plots, and between 182–198 

mm in the rainfed plots. Ea values were thus notoriously higher than Ta values in the rainfed 

plots. As discussed by Allen et al., 2011, when revising the various methods for field ET 

estimation, combined approaches of accurate θ observations and water balance simulation 

modeling provide for appropriate accuracy in ET estimates. Nonetheless, those results are 

further consistent with Huxman et al. (2005) and Kurc and Small (2007), who referred to the 

fact that in semi-arid ecosystems Ea may account for more than half of ET due to the near-

surface source of E (the top 20cm), and because small rainstorms only wet the top few cm of 

soil. Also, Graham et al. (2016) reported pasture losing more water to soil evaporation when 

compared to ryegrass. 

 Table 4.2-5 Components of the simulated soil water balance. 

Season 

Inputs Outputs 

P I ∆SS Ea Ta Ta/Tp DP 

(mm) (mm) (mm) (mm) (mm) (-) (mm) 

Irrigated plot        
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2010–2011 134 454 -31 128 143 0.95 296 

2011–2012 152 370 56 155 166 0.86 257 

Rainfed plot:        

2010–2011 873 0 -263 182 65 0.94 362 

2011–2012 413 0 65 198 53 0.60 226 

Precipitation; I, irrigation; Ea, actual soil evaporation; Ta, actual crop transpiration; Tp, potential. crop transpiration; 

DP, deep percolation; ∆SS, soil moisture variation. 

 

 

 

As the rainfall manipulation experiments were carried out between autumn and spring, 

most of the water applied was lost through deep percolation (226–362 mm), which was to be 

expected (Table 4.2-5), providing natural recharge to the existing aquifers. 

4.2.3.4 Future Research Needs Direction 

Although the MOHID-Land model results were relatively good, the modeling approach 

followed in this study was relatively simple, presenting still many limitations that need to be 

considered in future applications while addressing the complexity of the montado ecosystem. 

Firstly, there is the need to simulate the carbon and nutrient fluxes, in order to better 

unveil uncertainties related to whether and when grasslands act as sinks or sources of 

ecosystem carbon, providing further insight into the effects of stocking pressures on soil 

quality. The current model formulation already includes a biochemical module to conduct those 

studies, and will be the focus of future simulations. 

Secondly, there is the need to consider grazing removals during growing seasons, as the 

system should be seen as dynamic, and interactions with pasturing herds should always be 

Figure 4.2-3 Estimates of water fluxes in irrigated and rainfed plots: (a) irrigated plot during 

the 2010–2011 season; (b) irrigated plot during the 2011–2012 season; (c) rainfed plot during 

the 2010–2011 season; and (d) rainfed plot during the 2011–2012 season. 
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taken into account in a proper management tool. Managing short-term variability in plant 

growth is considered to present a greater challenge in grazing systems than in cropping systems, 

which need to be tackled when developing a proper forecasting tool for accurately assessing 

daily/weekly pasture production (Chapman et al., 2020). However, for this study grazing was 

not considered, as the objective was to show the capability of the MOHID-Land model in 

simulating the main processes related to soil water dynamics and dry biomass growth in the 

montado ecosystem. 

Thirdly, the model currently considers grasslands as a single species, while in fact they 

should be treated as a mixture of plants with different strategic properties, as suggested by van 

der Molen et al. (2011). Thus, the model needs to be able to simulate different species within 

the same cell domain. This approach also needs to be adopted for modeling the rest of the 

montado ecosystem, namely the niche located directly beneath the tree canopy, and the inter-

relationships between the understory and trees for soil water and nutrients (Hussain et al., 

2009). Only by addressing this will it be possible to further understand the ecosystem decline 

observed in different regions of the southern Iberian Peninsula over the last few decades 

(Garrido et al., 2017; Pinto-Correia and Azeda, 2017), namely the competition and synergies 

for water resources and nutrients. 

Lastly, the MOHID-Land model is a process-based model that simulates variably 

saturated water flow using the Richards equation. This means that model simulations require 

reliable information on soil hydraulic properties for computing water flows, which are usually 

not easily available, as direct measurements are expensive, difficult, and time-consuming 

(Dane and Topp, 2020). While there is the need to adopt indirect approaches, including 

pedotransfer functions (Ramos et al., 2013), in order to provide the necessary inputs to process-

based models, the approach followed in this study seems preferable to any of the existing 

simplifications, including those adopted by water-balance models. For example, Sándor et al., 

(2017) compared nine simulation models for predicting θ in the topsoil and biomass production. 

These authors found that some of the main drivers and results of the grassland processes, 

particularly θ and yield, were not represented well by common grassland models, attributing 

deviations between observations and simulations to model formulations rather than structural 

uncertainties within the models. 

4.2.4 Conclusions 

The MOHID-Land model was able to successfully simulate soil water dynamics and 

pasture development in a plot located in southern Alentejo, Portugal. Model estimates of θ and 
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aboveground dry biomass showed a general good agreement with field data collected during 

the 2010–2011 and 2011–2012 seasons. The RMSE, NRMSE, and model efficiency values 

were lower than 0.026 cm3 cm−3, lower than 0.047 cm3 cm−3, and higher than 0.481 cm3 cm−3 

for θ, respectively, and lower than 1286.5 kg ha−1, lower than 0.450, and higher than 0.60 for 

the aboveground dry biomass.  

As precise quantification of water fluxes over the pasture is essential for accurately 

quantifying ecosystem carbon and assessing uncertainties related to the source or sink behavior 

of pastures, the MOHID-Land model can be considered as a valuable tool for farmers to take 

the stocking rates into account and reduce the adverse impact of grazing in the pastures. 

4.3 Modeling deficit irrigation in vineyards with MOHID-Land 

The material on which this chapter is based has been previously published in: Simionesei, L., 

Ramos, T., Oliveira, A., Neves, R., 2019b. Modelação da rega deficitária em vinha com o 

MOHID-Land. Servicio de Publicaciones Universidad. 

https://doi.org/10.26754/c_agroing.2019.com.3373 

4.3.1 Introduction 

Once considered a dryland culture, irrigation of vineyards has become indispensable 

today to meet the water needs of the plants, especially during their most sensitive phases such 

as pre-maturation and grape ripening. This practice leads to an improved quantity and quality 

of the grapes produced (COTR, 2009). Deficit irrigation strategies are commonly adopted, 

considering the higher tolerance of certain stages of crop development to water stress. This 

promotes the development of a greater number of fruits as well as higher sugar and phenolic 

compound levels. However, these strategies depend on the desired product characteristics 

(Fandiño et al., 2012). 

On the other hand, efficient irrigation management requires detailed monitoring of the 

soil water balance. Mechanistic models such as MOHID-Land (Trancoso et al., 2009) are now 

used in various irrigation decision support systems (Ramos et al., 2017; Simionesei et al., 

2019b), along with information provided by soil moisture sensors, to increase water use 

efficiency. However, these models are more complex than the semi-empirical models 

traditionally used in irrigation management. The dynamics of water in the soil are described 

using the Richards equation. Therefore, a detailed knowledge of the hydraulic properties of the 

soil, specifically the soil water retention curve (θ(h)) and hydraulic conductivity curve (K(h)), is 

essential but not always feasible. For this reason, it is imperative that these models undergo a 

calibration and validation process prior to their use to ensure reliable predictions. 
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This study describes an application of the MOHID-Land model for calculating the soil 

water balance in an irrigated vineyard in the Ribatejo region. The results of the calibration 

process will then be used in the IrrigaSys system (Simionesei et al., 2019b) to support vineyard 

irrigation in the region. 

4.3.2 Materials and Methods 

4.3.2.1 Study Area Description  

This study was conducted in the vineyard of Adega do Catapereiro, Companhia das 

Lezírias, Samora Correia, Portugal (38.808044º N, 8.899858º W) between January 2017 and 

October 2018. The climate in the region is classified as sub-humid dry, with hot and dry 

summers and mild winters with irregular rainfall. The average annual temperature is 16.8°C, 

while the average annual precipitation reaches 669mm, mainly concentrated between October 

and April. The soil is classified as Haplic Fluvisol (FAO, n.d.), with a sandy loam texture. 

The study plot, known as the "vinha do mel," occupies approximately 14 ha out of a total 

of 130ha covered by vineyards. The "vinha do mel" has a row spacing of 2.8m and a plant 

spacing of 1.0m, irrigated by a drip irrigation system. Management practices, including 

fertilization and irrigation, were carried out according to the practices followed by Companhia 

das Lezírias. In 2017, the total irrigation applied amounted to 358mm, while net precipitation 

reached 527 mm. In 2018, the irrigation applied totaled 242mm, while net precipitation reached 

370 mm. The irrigation applied per event ranged from 3 to 5 mm. 

Soil water content was continuously measured at depths of 10, 20, 30, 40, 50, 60, 70, and 

80 cm using two EnviroPro MT capacitance probes (MAIT Industries, Australia). The irrigation 

applied in each event was monitored with a flowmeter installed in the irrigation pipe. 

Meteorological information was obtained from the Figueirinha station located nearby and 

included hourly values of precipitation (mm), air temperature (ºC), global radiation (W m-2), 

relative humidity (%), and wind speed (m s-1). Leaf area index (LAI, m2 m-2) was monitored 

using Landsat 8 satellite images. In 2017, a total of 16 images were extracted between January 

and November, with cloud coverage below 10%. In 2018, only 10 images were extracted. The 

reflectance values of each image were first corrected to eliminate atmospheric effects and solar 

angle variations. The LAI was then obtained using the following function (Richter and 

Schläpfer, n.d.): 

𝐿𝐴𝐼 =  −
1

𝑎2
𝑙𝑛 (

𝑎0−𝑆𝐴𝑉𝐼

𝑎1
)        Equation 32 

Where SAVI corresponds to “Soil Adjusted Vegetation Index”: 
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𝑆𝐴𝑉𝐼 =  
(𝜌850−𝜌650)∗1.5

𝜌850+𝜌650+0.5
        Equation 33 

And a0=0.82, a1=0.82, a2=0.6 are empirical parameters. 

4.3.2.2 Model implementation, calibration, and validation  

The simulation took place from January 2017 to October 2018. The soil profile was 

defined with a depth of 2m, divided into 2 soil layers according to the limits presented in Table 

4.3-1. The simulation domain was represented by a vertical column discretized into 20 cells, 

each with a width and length of 1 m and a variable thickness (0.05 m in the upper cell to 0.3 m 

in the lower cell). The upper boundary condition was defined by Ep and Tp as well as irrigation 

and precipitation fluxes. The ETc values were calculated by multiplying the ETo values by the 

respective Kc for each crop development phase. Kc values of 0.3, 0.7, and 0.45 were considered 

for the initial, middle, and final phases of crop development, respectively. These values were 

taken from  Allen et al. (1998) and represent the standard Kc values for vineyards in 

Mediterranean climate regions. The Kc value for the initial phase was then adjusted for the 

frequency of precipitation events and irrigation application, while the Kc values for the middle 

and final phases of the crop were adjusted for local weather conditions (average wind speed 

and relative humidity) and plant height (Allen et al., 1998). The lower boundary condition was 

defined as free drainage. Reductions in water extraction by roots were calculated considering 

the following parameters: h1 = -10, h2 = -25, h3 = -1000, h4 = -18000 cm (Wesseling et al., 

1991). 

Table 4.3-1 Soil hydraulic parameters 

Depth (m) 0-0.25 0.25-0.45 

Residual water content θr (m
3 m

-3
) 0.065 0.065 

Saturation water content θs (m
3 m

-3
) 0.500 0.450 

Empirical parameter α (m
-1

) 38 25 

Empirical parameter η (-) 1.35 1.35 

Pore connectivity/tortuosity parameter 𝑙 (-) -1 -1 

Saturated hydraulic conductivity Ksat (m s
-1

) 8.23E
-05

 3.23E
-05

 

 

The calibration and validation of the model were carried out during the years 2017 and 

2018, respectively, following the procedure described in Ramos et al. (2017). The soil hydraulic 

properties (Table 4.3-1) and crop parameters (Table 4.3-2) were adjusted through trial and error 

to reduce the discrepancies between the model simulations and the observed values of soil 

water content and LAI. 

Initially, the soil hydraulic parameters were set according to the average values proposed 

by Carsel and Parrish (1988) for each soil texture class. The parameters θs, α, η, and Ksat were 
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then modified to minimize the deviation between the observed and simulated soil water 

content. The parameter θr was not modified given its low influence on the simulations of soil 

water content. The parameter 𝑙 was set to -1.0, as proposed by Schaap and Leij (2000b). 

Subsequently, the crop parameters were adjusted based on the model's default values for 

the vineyard (Neitsch et al., 2011) until the deviation between the simulated LAI and the 

remotely sensed LAI was minimized. The calibrated parameters were then validated during the 

year 2018. 

Table 4.3-2 Crop development parameters. 

Crop Parameter Value 

Optimal temperature for plant growth, Topt (◦C) 20.0 

Minimum temperature for plant growth, Tbase (◦C) 11.0 

Plant radiation-use efficiency, RUE [(kg ha
−1

) (MJ m
−2

)
−1

] 30.0 

Total heat units required for plant maturity, PHU (◦C) 2800 

Fraction of PHU to reach the end of stage 1 (initial crop stage), frPHU,init (-) 0.05 

Fraction of PHU to reach the end of stage 2 (canopy development stage), frPHU,dev (-) 0.10 

Fraction of PHU after which LAI starts to decline, frPHU,sen (-) 0.20 

Maximum leaf area index, LAImax (m
2 m

−2
) 1.1 

Leaf Area Index during dormancy phase, LAIdorm (m
2 m

−2
) 0.5 

Fraction of LAImax at the end of stage 1 (initial crop stage), frLAImax,ini (-) 0.35 

Fraction of LAImax at the end of stage 2 (canopy development stage), frLAImax,dev (-) 0.55 

Maximum canopy height, hc,max (m) 1.5 

Maximum root depth, Zroot,max (m) 0.8 

Net radiation coefficient (-). 0.463 

Photosynthetically active radiation coefficient (-). 0.650 

 

The statistical indicators adopted to compare the results of MOHID-Land simulations 

with observed values of soil water content and LAI were: mean error (ME), root mean square 

error (RMSE), normalized RMSE (NRMSE), and model efficiency (EF). ME values close to 

zero indicate no bias. RMSE and NRMSE values close to zero indicate small estimation errors 

and good model predictions (Legates and McCabe, 1999; Moriasi et al., 2007). EF values close 

to one indicate that the variance of the residuals is much smaller than the variance of the 

observed data, indicating good model predictions. Conversely, when EF is close to zero or 

negative, there is no improvement in model performance (Nash and Sutcliffe, 1970). 

4.3.3 Results and Discussion 

4.3.3.1 Soil Water Content 

Figure 4.3-1 presents the measurements of soil water content at depths ranging from 10 

to 80 cm and compares these values with the simulations of the MOHID-Land model during 

the years 2017 and 2018. Precipitation events, more than irrigation, generally led to a rapid 

increase in soil water content in the surface layers, followed by a gradual decrease due to water 
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redistribution, plant water uptake, and soil evaporation. In the deeper layers, the effect of 

irrigation was less noticeable, with soil water content varying primarily due to precipitation, 

although to a lesser extent than in the surface layers. 

Table 4.3-3 presents the statistical indicators obtained after comparing the measured and 

simulated values by the model. During the calibration period (2017), the estimation errors were 

relatively small, resulting in an RMSE of 0.033 m3 m-3 and an NRMSE of 0.016. The model 

overestimated the observed values by 11.25%, while the EF was acceptable (0.425). For the 

validation period (2018), the estimation errors remained within the same order of magnitude as 

those obtained during model calibration (RMSE = 0.029 m3 m-3; NRMSE = 0.012), the model 

underestimated the observed data by 3.25%, while the EF increased considerably (EF = 0.706). 

It was considered that the MOHID-Land model successfully reproduced the observed soil 

water content values in vineyard irrigation for two years, presenting similar statistical 

indicators to those obtained in other similar applications (Ramos et al., 2018, 2017; Simionesei 

et al., 2018). 

 

Table 4.3-3 statistical indicators during model calibration (2017) and validation (2018). 

Indicator Soil water content Leaf Area Index 

2017 2018 2017 2018 

R2 0.800 0.853 0.846 0.896 

RMSE 0.033 0.029 0.139 0.125 

NRMSE 0.016 0.012 0.206 0.210 

PBIAS (%) -11.25 3.25 -4.22 7.10 

NSE 0.425 0.706 0.365 0.602 
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Figure 4.3-1 Soil water content evolution 
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4.3.3.2 Leaf Area Index (LAI) evolution 

In the MOHID-Land model, the partitioning of ETc into Tp and Ep is based on LAI, so its 

evaluation should be as accurate as possible to ensure reliable estimates of the soil water 

balance. According to values derived from satellite images, the LAI of the crop began to 

increase from March/April, reaching a maximum of around 1.0-1.2 m2 m-2 in late May or early 

June. From there, LAI values gradually declined until complete leaf loss in October/November. 

During the calibration phase (2017), the RMSE and NRMSE obtained by comparing the 

simulated values with those obtained from remote sensing were 0.139 m2 m-2 and 0.206, 

respectively ( 

Table 4.3-3). The model overestimated LAI by 4.22%, while the EF was 0.365. During 

the validation phase (2018), the RMSE was 0.125 m2 m-2, NRMSE was 0.210, PBIAS was 

7.098%, indicating some underestimation of values obtained from remote sensing, and the EF 

was 0.602. The model adjustment was therefore acceptable, although the statistical indicators 

were lower than those obtained by Ramos et al. (2017,2018) for maize crop. In that case, LAI 

values were directly measured in the field, not derived from satellite images, which may 

explain the lower adjustment achieved here. 

 

 

 

Figure 4.3-2 Leaf Area Index evolution 
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4.3.3.3 Soil water balance 

Table 4.3-4 presents the water balance for the years 2017 and 2018, with Ta accumulating 

166 mm and 112 mm, respectively. The water stress, given by 1 - Ta/Tp, ranged between 5% 

and 8% during the irrigation months (April to October), indicating a relatively moderate water 

deficit. On the other hand, the values of Ea (actual evapotranspiration) amounted to 453 mm 

and 295mm for the years 2017 and 2018, respectively. These values can be considered quite 

high, partly explained by the fact that soil evaporation can account for a significant fraction of 

ETc in permanent crops, where a large portion of the soil surface is exposed to solar radiation 

(Testi et al., 2004; Villalobos et al., 2000). Furthermore, in MOHID-Land, Ea is calculated 

based on a threshold soil water pressure imposed on the values of Ep (potential evaporation). 

Therefore, it is a simplified version based on the two-phase method used by  Allen et al. (1998) 

for Ea calculation, which may also lead to some overestimation of this component of the water 

balance. Table 4.3-4 also shows considerably high values of percolation, totaling 287mm and 

330mm, respectively, mainly occurring during the periods following precipitation events. 

 

Table 4.3-4 Soil Water Balance 

Componentes (mm) 2017 2018 

Inputs:   

Precipitation 527 370 

Irrigation 358 242 

Capillary Rise 0 0 

Δ storage 21 125 

Outputs:   

RunOff 0 0 

Actual evaporation 453 295 

Actual transpiration 166 112 

Percolation 287 330 

4.3.4 Conclusions 

The MOHID-Land model successfully reproduced the measured soil water content 

values throughout the years 2017 and 2018. The actual transpiration values in the vineyard 

ranged from 112 to 166 mm, with irrigation inducing a water stress of 5% to 8%. The values 

of actual evaporation amounted to 453 mm and 295 mm in the years 2017 and 2018, 

respectively, which may be slightly overestimated due to the simplified formulation of the 

model in calculating this parameter. However, overall, the performance of MOHID-Land in 

modeling soil water dynamics in a permanent crop such as vineyard can be considered quite 

acceptable. This work serves as a reference for the IrrigaSys decision support system, which 
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provides weekly irrigation recommendations to various farmers in the region regarding how 

much and when to irrigate. 
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5. The use of remote sense data as a tool to improve the quality of 

the system 

In this chapter, we explore the utilization of remote sensing data as a tool within the 

Decision Support System (DSS) aimed at enhancing system quality. The outcomes of this 

calibration process have been documented in two scientific papers. The following succinctly 

presents the objectives of these articles/applications: 

Chapter 5.1: This section focuses on assessing the impact of LAI (Leaf Area Index) Data 

Assimilation on simulations related to Soil Water Balance and Maize Development using the 

MOHID-Land model. 

Chapter 5.2: The primary objective of this segment is to explore the use of vegetation 

indices for validating computed crop transpiration fluxes with the MOHID-Land Model, 

particularly applied to vineyards. 

Collectively, these chapters contribute to the enhancement of the Decision Support 

System by integrating remote sensing data, thereby improving modelling accuracy and 

validation techniques. 

5.1 Assessing the Impact of LAI Data Assimilation on Simulations of the 

Soil Water Balance and Maize Development Using MOHID-Land 

The material on which this chapter is based has been previously published in: Ramos, T.B., 

Simionesei, L., Oliveira, A.R., Darouich, H., Neves, R., 2018. Assessing the impact of LAI data 

assimilation on simulations of the soil water balance and maize development using MOHID-

Land. Water (Switzerland) 10. https://doi.org/10.3390/w10101367 

5.1.1 Introduction 

In recent decades, modeling has become an essential part of the decision-making process 

for improving irrigation water use (González et al., 2015; Paço et al., 2014; Paredes et al., 2018; 

Ramos et al., 2017), optimizing fertilization practices (Cameira et al., 2005; Ramos et al., 

2012), predicting crop yields (Ashraf Vaghefi et al., 2017; Jiang et al., 2015) and coping with 

climate change (Fraga et al., 2018; Valverde et al., 2015) at the field and regional scales. 

However, modeling tools require first a considerable time investment in calibration to provide 

feasible results to their users. This is often accomplished at the plot scale, where most variables 

influencing crop development (soil properties, plant physiology, groundwater levels and 

weather conditions) can be more easily monitored. The problem often arises when upscaling 

to the field or regional scales due to the difficulties in portraying landscape heterogeneity, 

including soil, land use and climate variability. 
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Remote sensing technology offers a potential solution for accurately and reliably 

describing the spatial distribution of soil properties and canopy state variables (leaf area index, 

canopy height, biomass) at the field and regional scales (Mulla, 2013).  A vast number of new 

satellite sensors (Landsat 8, Sentinel-2, Spot-6, RapidEye, Huanjing-1) together with versatile, 

light-weighted and low-cost sensors mounted in farm tractors or unmanned aerial vehicles are 

now available for providing information with high spatial and temporal resolution to farmers 

and technicians. This information can potentially be also assimilated into field or regional scale 

models, overcoming many constraints in terms of input parameterization. 

The purpose of assimilation is to optimize model input parameters by integrating, both 

in space and time, soil or canopy state variables derived from remote sensing methods (Jin et 

al., 2018). Accurate and up-to-date information has been increasingly available at low cost, 

which has led to numerous research studies focusing on assimilation of remote sensing 

measurements (Ines et al., 2013; Li et al., 2014; Linker and Ioslovich, 2017; Nearing et al., 

2012; Thorp et al., 2010; Tripathy et al., 2013; Vazifedoust et al., 2009). Some of these have 

estimated leaf area index (LAI) using different remote sensing data sources, then assimilating 

those values by directly replacing the simulated LAI to improve model estimates of the 

aboveground dry biomass, yield and crop transpiration (Thorp et al., 2010; Tripathy et al., 

2013). Other studies have used more advanced assimilation techniques, usually based on the 

Extended Kalman Filter (Evensen, 1994) and Ensemble Kalman Filter (Evensen, 2003) 

assimilation methods, for integrating remote sensing LAI into model simulations (Ines et al., 

2013; Linker and Ioslovich, 2017; Nearing et al., 2012). Overall, regardless of the technique 

used, most of those studies concluded that remote sensing provides useful measurements which 

can then be used for improving model simulations. 

While a wide variety of models exist capable of simulating crop growth processes at the 

regional scale, thus portraying landscape heterogeneity at some extent (Basso et al., 2016; 

Guzmán et al., 2018; Zhang et al., 2018), fully distributed process-based models such as MIKE 

SHE (Butts et al., 2014), SHETRAN (Ewen et al., 2000) and MOHID-Land (Trancoso et al., 

2009) are often considered ideal for further studying distributed state variables (the 

spatiotemporal variability of soil moisture) and flow paths (sediment and nutrient transport) 

(Fatichi et al., 2016). These fully distributed process-based models consider interactions 

between multiple components of the soil-water-atmosphere continuum, with fundamental 

process being formulated at fine spatial (plot) and temporal scales, contributing to the overall 

dynamics at a higher organizational level, such as the watershed (Fatichi et al., 2016). For the 
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case of MOHID-Land, the model has been used for improving irrigation practices at the plot 

and field scales (Ramos et al., 2017; Simionesei et al., 2018, 2016), understanding the 

contribution of flood events to the eutrophication of water reservoirs (Brito et al., 2018, 2017) 

and forecasting fresh water quantity and quality in coastal rivers (Brito et al., 2015). Extensive 

calibration has been normally required for characterizing soil, groundwater, crop and river flow 

properties. Thus, data assimilation may have here a decisive contribution for more accurately 

describing the spatial and temporal variability of many of the required input parameters. 

However, the impact of data assimilation on final model outputs needs to be first assessed. 

The main objective of this study was thus to understand the impact of LAI assimilation 

on MOHID-Land’s estimates of the soil water balance and crop state variables (LAI, canopy 

height, aboveground dry biomass and yield). The hypothesis addressed were that (i) the 

MOHID-Land model could accurately estimate the soil water balance and aboveground 

biomass growth in a one-dimensional domain; (ii) LAI assimilation could improve simulations 

of crop development and (iii) the related uncertainties could be assessed. Results from this 

study will help to improve hydrological modeling at the field and regional scales by quantifying 

the uncertainty related to data assimilation using the MOHID-Land model. 

5.1.2 Materials and Methods 

5.1.2.1 Field Site Description and Data 

Field data used in this study was collected at Herdade do Zambujeiro (22ha), Benavente, 

southern Portugal (38◦58′0.97′′ N, 8◦44′46.63′′ W, 6m a.s.l.) (Figure 5.1-1). The climate in the 

region is semi-arid to dry sub-humid, with hot dry summers and mild winters with irregular 

rainfall. The mean annual temperature is 16.8 ºC, with the mean daily temperatures at the 

coolest (January) and warmest (August) months reaching 11.4 and 22.7ºC, respectively. The 

mean annual precipitation is 668 mm, mostly occurring between October and May. The soil 

was a Haplic Fluvisol (IUSS Working Group WRB, 2014), with the main soil physical and 

chemical properties presented in Table 5.1-1. The bottom layers exhibited higher dry bulk 

density and lower measured saturated hydraulic conductivity values than the topsoil layers 

(Ramos et al., 2017), evidencing some soil compaction due to tillage operations carried out 

throughout the years and the relatively high soil moisture that was constant along the seasons 

because of the shallow groundwater levels. 
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The MOHID-Land model was previously implemented in the area by Ramos et al. 

(2017). These authors evaluated the model’s capacity in predicting soil water contents and 

fluxes and the evolution of different crop growth parameters, including the leaf area index 

(LAI), canopy height, aboveground dry biomass and yields during the 2014 and 2015 maize 

growing seasons. Details on the calibration/validation approach can be found in the cited 

reference. For that, the field was cropped with maize hybrid P1574 (FAO 600) with a density 

of approximately 89,000 plants ha−1. Management practices, including fertilization and 

irrigation, were performed according to the standard practices in the region and were decided 

by the farmer. During 2014, maize was sown on May 24 and harvested on October 8; the net 

rainfall reached 163mm, while the net irrigation amounted 365 mm (Figure 5.1-2). During 

2015, maize was sown on April 16 and harvested on September 20; the net rainfall reached 

only 12mm, while the net irrigation summed 620mm (Figure 5.1-2). Irrigation was applied 

with the farmer’s stationary sprinkler system. Groundwater depth (GWD) varied between 

approximately 1.5m depth at the beginning of the growing season to 1.0m depth during 

irrigation, further reaching 0.3m depth during September 2014 after successive rain events 

(Figure 5.1-2). Crop stages were set as in Table 5.1-2 based on field observations. 

One SM1 capacitance probe (Adcon Telemetry, Klosterneuburg, Austria) and one 

ECH2O-5 capacitance probe (Decagon Devices, Pullman, WA, USA) were installed at depths 

of 10, 30 and 50 cm to continuously measure soil water contents. One LEV1 level sensor 

Figure 5.1-1 Location of the study site. 
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(Adcon Telemetry, Klosterneuburg, Austria) was used to continuously monitor the groundwater 

level (Figure 5.1-2). One RG1 (Adcon Telemetry, Klosterneuburg, Austria) and two QMR101 

(Vaisala, Helsinki, Finland) rain gauges were used to measure the amount of water applied per 

irrigation event. 

LAI, canopy height and the aboveground dry biomass were further monitored by 

harvesting 3 random plants in four locations distributed randomly throughout the field plot, 

every 15 days, between May and September, during the 2014 and 2015 maize growing seasons 

(Table 5.1-3). The same crop parameters were measured at the end of each crop season, but by 

harvesting all plants in random areas of 1.5 m2 (corresponding to approximately 12 plants). 

The length and width of crop leaves were measured in every harvested plant and then converted 

to LAI values as documented in Ramos et al. (2017). The aboveground dry biomass was 

determined by oven drying maize stems, leaves and grain at 70 ºC to a constant weight. Maize 

yield was obtained from the grain’s dry biomass measured at the end of each crop season. 

Table 5.1-1 Main physical and chemical soil characteristics. 

Depth (m) 
Soil Layers 

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 

Coarse Sand, 2000–200 µm (%) 3.4 6.8 11.5 14.7 

Fine Sand, 200–20 µm (%) 44.6 47.8 53.6 48.4 

Silt, 20–2 µm (%) 33.3 28.1 20.6 23.2 

Clay, <2 µm (%) 18.8 17.3 14.3 13.7 

Texture Silty Loam Loam Loam Loam 

Bulk Density (g cm
−3

) 1.57 1.52 1.66 1.66 

Organic Matter (%) 1.73 0.96 0.57 0.59 

θFC (cm
3 cm

−3
) 0.321 0.293 0.311 0.311 

θWP (cm
3 cm

−3
) 0.209 0.235 0.223 0.223 

Van Genuchten-Mualem Parameters: 

θr (cm
3 cm

−3
) 0.078 0.067 0.065 0.065 

θs (cm
3 cm

−3
) 0.393 0.356 0.340 0.340 

α (cm
−1

) 0.009 0.016 0.005 0.005 

η (-) 1.75 1.31 1.80 1.80 

l (-) −1.0 −1.0 −1.0 −1.0 

Ksat (cm d
−1

) 500.3 22.6 0.7 0.7 

θFC, soil water content at field capacity; θWP, soil water content at the wilting point, θr,  residual water content; θs, saturated 

water content;  α and η, empirical shape parameters;  l, pore connectivity/tortuosity parameter; Ksat, saturated hydraulic 
conductivity. 
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Figure 5.1-2 Daily values of precipitation, irrigation and groundwater depth (GWD) during the 2014 (top) and 

2015 (bottom) crop seasons. 

 

Table 5.1-2 Dates of crop growth stages. 

Stage  
Days 

2014 

Date 
 

Days 

2015 

Date 

Initial 31 24 May 37 16 April 

Canopy Development 30 24 June 32 23 May 

Mid-Season 52 24 July 53 24 June 

Late Season 27 14 September 26 16 August 

Harvest - 8 October - 20 September 

 

Table 5.1-3 Measured values of Leaf Area Index (LAI), canopy height (hc) and aboveground dry biomass during 

the 2014 and 2015 crop seasons. 

Date 

LAI (m2 m−2) hc (m) Biomass (kg ha−1) 

Mean Standard 

Deviation 

Mean Standard Deviation Mean Standard Deviation 

11/06/2014 0.1 0.0 0.14 0.02 48.3 15.3 

25/06/2014 1.3 0.1 0.54 0.04 826.7 56.6 

10/07/2014 3.2 0.4 1.02 0.10 2906.7 1083.2 

24/07/2014 5.6 0.1 2.27 0.23 8279.4 339.2 
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Date 

LAI (m2 m−2) hc (m) Biomass (kg ha−1) 

Mean Standard 

Deviation 

Mean Standard Deviation Mean Standard Deviation 

11/08/2014 6.3 1.0 3.08 0.03 18,593.8 1881.7 

27/08/2014 6.0 0.6 3.11 0.10 27,228.2 594.8 

15/09/2014 5.3 0.4 3.03 0.15 34,945.6 982.8 

08/10/2014 -  - - 30,423.2 1735.6 

15/05/2015 0.2 0.0 0.19 0.03 80.0 16.8 

28/05/2015 1.3 0.3 0.49 0.01 1090.1 61.8 

11/06/2015 4.0 0.3 1.45 0.06 5309.5 280.6 

25/06/2015 5.9 0.6 2.65 0.09 11,550.0 958.9 

14/07/2015 6.4 0.3 3.12 0.02 23,711.2 812.9 

28/07/2015 6.2 0.6 3.12 0.01 27,373.9 229.2 

13/08/2015 5.2 0.2 2.78 0.06 29,434.4 7624.1 

14/09/2015 - - - - 34,540.3 2670.5 

5.1.2.2 Model Setup and Data Assimilation 

The assimilation of LAI data into MOHID-Land simulations has a direct influence on the 

water balance through the partition of ETc values into Tp (Equation 8) and Ep (Equation 9) 

and on the computation of the aboveground dry biomass (Equation 13) Three distinct 

approaches were thus considered for better understanding the impact of LAI assimilation on 

model simulations: 

A—The model was run as in T.B. Ramos et al., 2017, which simulations of soil water 

contents, LAI, hc, aboveground dry biomass and yields served as baseline for this  study  

(Calibrated model). These authors followed a traditional calibration/validation approach, where 

a trial-and-error procedure was carried out to adjust soil hydraulic (Table 5.1-1) and crop 

parameters (Table 5.1-4) until deviations between the measured 2014 dataset and simulated 

values were minimized. The calibrated parameters were then validated using the 2015 dataset, 

with model simulations being compared to measured data. 

B—The model was run using LAI values extracted from satellite data as inputs (LAI 

assimilation). LAI values were derived from the normalized difference vegetation index 

(NDVI) using the relationship shown in Figure 5.1-3. This relationship was found by 

comparing NDVI values computed from Landsat 8 satellite images (band 4 and 5) with LAI 

values measured in the study site, at multiple locations and over the 2014 and 2015 growing 

seasons. The calibrated soil hydraulic parameters were here also adopted (Table 5.1-1). 

However, the default crop parameters from the MOHID-Land’s database (Table 5.1-4) were 

considered instead so that model performance in the absence of a calibrated dataset could be 

assessed. 

C—The model was again run using LAI values extracted from satellite data as inputs. 

However, Ramos et al. (2017) calibrated crop parameters (Table 5.1-4) were here considered 



83 

 

(Calibration + LAI assimilation), as well as the calibrated soil hydraulic parameters (Table 

5.1-1). 

Table 5.1-4 Parameters of the crop growth model. 

Crop Parameter Default Calibrated 

Optimal Temperature for Plant Growth, Topt (◦C) 25.0 25.0 
Minimum Temperature for Plant Growth, Tbase (◦C) 8.0 8.0 

Plant Radiation-Use Efficiency, RUE [(kg ha−1) (MJ m−2)−1] 45.0 39.0 

Total Heat Units Required for Plant Maturity, PHU (◦C) 1700 1900 
Fraction of PHU to Reach the End of Stage 1 (Initial Crop Stage), frPHU,init (-) 0.15 0.20 

Fraction of PHU to Reach the End of Stage 2 (Canopy Development Stage), frPHU,dev (-) 0.50 0.43 
Fraction of PHU after which LAI Starts to Decline, frPHU,sen (-) 0.70 0.73 

Maximum Leaf Area Index, LAImax (m2  m−2) 6.0 6.5 

Fraction of LAImax at the End of Stage 1 (Initial Crop Stage), frLAImax,ini (-) 0.05 0.05 
Fraction of LAImax at the end of Stage 2 (Canopy Development Stage), frLAImax,dev (-) 0.95 0.95 

Maximum Canopy Height, hc,max (m) 2.5 3.1 
Maximum Root Depth, Zroot,max (m) 2.0 0.6 

Potential Harvest Index for the Crop at Maturity, HIopt (-) 0.50 0.49 

Minimum Harvest Index Allowed, HImin (-) 0.30 0.30 

 

 

Figure 5.1-3 Relationship between measured Leaf Area Index (LAI) and the Normalized Difference Vegetation 

Index (NDVI). The blue lines correspond to the 95% confidence interval. 

Landsat 8 images were first corrected to convert the TOA (Top of Atmosphere) planetary 

reflectance using reflectance rescaling coefficients provided in the Landsat 8 OLI metadata file 

and to correct the reflectance value with the sun angle. Two images were available from sowing 

to harvest during the 2014 growing season, while eight images were used during the 2015 

growing season (Table 5.1-5). These images were used to extract the NDVI values 

corresponding to the multiple locations where LAI field observations were carried out, in a 

total of 26 measurements (Figure 5.1-3). LAI and NDVI values ranged from 0.41–5.85 and 

0.23–0.88, respectively, in line with Pôças et al. (2015). 
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Table 5.1-5 Leaf Area Index (LAI) assimilation data. 

Date Assimilated LAI (m2 m−2) NDVI (-) 
LAI 95% Confidence Interval 

Lower Upper 

09/07/2014 2.75 0.41 - - 

10/08/2014 3.97 0.55 - - 

23/04/2015 0.41 0.23 0.00 1.53 

09/05/2015 0.48 0.24 0.00 1.58 

25/05/2015 3.04 0.44 2.47 3.61 

10/06/2015 5.50 0.81 4.89 6.11 

26/06/2015 5.85 0.88 5.17 6.53 

12/07/2015 5.79 0.86 5.12 6.46 

28/07/2015 5.82 0.87 5.15 6.49 

29/08/2015 5.31 0.77 4.73 5.89 

 

Data assimilation in MOHID-Land was carried out using the forcing method (Jin et al., 

2018). The approach is relatively straightforward, with the model simply replacing the 

predicted value by a new input when an image becomes available, updating then frLAImax to 

account for what still needs to be reached during a specific crop stage and more interestingly, 

the water balance and the aboveground dry biomass estimates. From that date on and until 

another image becomes available model simulations follow the parameterization given in Table 

5.1-4. Table 5.1-5 lists the assimilated LAI values and dates. 

In all simulations (Approach A–C), the soil profile was specified with 2m depth, divided 

into four soil layers according to observations (Table 5.1-1). The soil domain was represented 

using an Arakawa C-grid type (Purser and Leslie, 1988), defined by one vertical column (one-

dimensional domain) discretized into 100 grid cells with 1 m wide, 1 m long and 0.02 m 

thickness each (i.e., 1 × 1 × 0.02 m3). The simulation periods covered from sowing to harvest. 

The upper boundary condition was determined by the actual evaporation and transpiration rates 

and the irrigation and precipitation fluxes (Figure 5.1-2). Weather data used in this study was 

taken from a meteorological station located 950 m from the study site (38◦57′30.25′′ N, 

8◦44′31.70′′ W, 7 m a.s.l.; Figure 5.1-1) and included the average temperature (ºC), wind speed 

(m s−1), relative humidity (%), global solar radiation (W m−2) and precipitation (mm). ETc 

values were computed from hourly ET0 values and Kc values of 0.30, 1.20 and 0.35 for the 

initial, mid-season and late season crop stages, respectively (Brito et al., 2017). The Kc value 

for the initial crop stage was then adjusted for the frequency of the wetting events (precipitation 

and irrigation) and average infiltration depths, while the Kc values for mid-season and late 

season crop stages were adjusted for local climate conditions taking into consideration canopy 

height, wind speed and minimum relative humidity averages for the periods under 

consideration (Allen et al., 1998). The following parameters of the Feddes et al. (1978) model 
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were used to compute Tp reductions due to water stress: h1 = −15, h2 = −30, h3 = −325 to −600, 

h4 = −8000 cm (Wesseling et al., 1991). The bottom boundary condition was specified using 

the observed GWD (Figure 5.1-2). The initial soil water content conditions were set to field 

capacity. 

5.1.2.3 Statistical and Uncertainty Analysis 

Model calibration and validation was performed by comparing field measured values of 

soil water contents, LAI, hc and aboveground dry biomass with the MOHID-Land simulations 

(Approaches A–C) using various quantitative measures of the uncertainty, such as, the 

coefficient of determination (R2), the root mean square error (RMSE), the ratio of the RMSE 

to the standard deviation of observed data (NRMSE), the percent bias (PBIAS) and the model 

efficiency (EF). R2 values close to 1 indicate that the model explains well the variance of 

observations. RMSE, NRMSE and PBIAS values close to zero indicate small errors of estimate 

and good model predictions (Legates and McCabe, 1999; Moriasi et al., 2007; Wang et al., 

2012). Positive or negative PBIAS values refer to the occurrence of under- or over-estimation 

bias, respectively. Nash and Sutcliff (Nash and Sutcliffe, 1970)  modelling efficiency EF values 

close to 1 indicate that the residuals variance is much smaller than the observed data variance, 

hence the model predictions are good; contrarily, when EF is very close to 0 or negative there 

is no gain in using the model. 

Data assimilation is much dependent on the empirical relationship (Figure 5.1-3) 

established to derive LAI values from the NDVI measurements (Li et al., 2014; Thorp et al., 

2010). As such, the uncertainty related to that conversion was quantified on final model 

estimates of Ta, Ea and aboveground dry biomass using a Monte Carlo method. This evaluation 

was performed on modeling Approach C (Calibration + LAI assimilation) as the objective here 

was to assess if remote sensing data assimilation could further correct for simulation errors that 

result from model parameter uncertainty. The 2015 dataset was also considered as more satellite 

images were available during this season.   A randomly population of 10,000 LAI values was 

first created for each available image date following a normal distribution with mean equal to 

the estimated parameter given by the LAI-NDVI regression equation and range defined by the 

95% confidence intervals (Figure 5.1-3, Table 5.1-5). The model was then run following 

Approach C settings until reaching the dates of each of the eight available images (8 × 1 

simulation). Afterwards, the 10,000 LAI randomly generated values were assimilated by the 

model, which then proceeded with simulations until the end season following Approach C 

settings again (8 × 10,000 simulations). In the end, the uncertainty of final model estimates of 
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Ta, Ea and aboveground dry biomass were assessed for each assimilation date (8 dates) from 

10,000 simulations (80,000 simulations in total). The Monte Carlo simulations were performed 

with a Python script. 

5.1.3 Results and Discussion 

5.1.3.1 LAI Evolution 

Figure 5.1-4 shows the evolution of LAI estimated values using the calibrated model in 

Ramos et al. (2017) (Approach A), direct LAI assimilation (Approach B) and the combination 

of the calibrated model and LAI assimilation (Approach C). Table 5.1-6 presents the statistical 

indicators used to evaluate the agreement between model simulations and measured values. 

Ramos et al. (2017) showed that the MOHID-Land model could reasonably well simulate LAI 

evolution during the 2014 and 2015 growing seasons. In their study, the values of R2 were very 

high (0.97), showing that the model could explain well the variability of the observed data. The 

errors of the estimates were quite small, resulting in RMSE values lower than 0.63 m2 m−2 and 

NRMSE values lower than 0.16. The PBIAS values were lower than 6.40%, indicating some 

underestimation of the measured data. The modelling efficiency EF were also high (≥0.93), 

meaning that the residual variance was much smaller than the measured data variance. 

 

Figure 5.1-4 Measured and simulated leaf area index during 2014 (left) and 2015 (right) crop seasons. Vertical 

bars correspond to the standard deviation of measured data. 

Table 5.1-6 Results of the statistical analysis between measured and simulated soil water contents, leaf area 

index (LAI), canopy height and aboveground dry biomass. 

Statistic R2 RMSE NRMSE PBIAS EF 
2014      

Water Content (cm3 cm−3)      

Calibrated Model 0.73 0.018 0.061 -1.53 0.70 

Direct Assimilation 0.85 0.012 0.041 -1.16 0.87 

Calibrated Model + Assimilation 0.89 0.012 0.039 -0.95 0.88 

LAI (m2 m−2)      

Calibrated Model 0.97 0.63 0.16 6.40 0.94 

Direct Assimilation 0.60 2.13 0.54 33.82 0.26 
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Statistic R2 RMSE NRMSE PBIAS EF 
Calibrated Model + Assimilation 0.70 1.73 0.43 24.39 0.51 

Canopy Height (m)      

Calibrated Model 0.93 0.42 0.22 -11.83 0.90 

Direct Assimilation 0.86 0.58 0.31 0.96 0.80 

Calibrated Model + Assimilation 0.90 0.50 0.26 -13.87 0.85 

Dry Biomass (kg ha−1)      

Calibrated Model 0.94 5128.3 0.39 19.20 0.87 

Direct Assimilation 0.94 2183.7 0.24 4.60 0.95 

Calibrated Model + Assimilation 0.96 2518.9 0.32 14.20 0.91 

2015      

Water Content (cm3 cm−3)      

Calibrated Model 0.37 0.019 0.063 1.91 0.11 

Direct Assimilation 0.40 0.017 0.057 0.90 0.28 

Calibrated Model + Assimilation 0.39 0.018 0.060 1.58 0.18 

LAI (m2 m−2)      

Calibrated Model 0.97 0.61 0.15 6.31 0.94 

Direct Assimilation 0.35 2.16 0.52 -1.18 0.24 

Calibrated Model + Assimilation 0.63 1.58 0.38 -10.34 0.59 

Canopy Height (m)      

Calibrated Model 0.96 0.33 0.17 -11.00 0.93 

Direct Assimilation 0.85 0.65 0.33 -2.57 0.73 

Calibrated Model + Assimilation 0.88 0.60 0.30 -19.13 0.77 

Dry Biomass (kg ha−1)      

Calibrated Model 0.93 4616.8 0.33 15.27 0.89 

Direct Assimilation 0.98 6211.4 0.44 -31.49 0.80 

Calibrated Model + Assimilation 0.96 6237.8 0.44 -28.52 0.79 

R2, coeficient of determination; RMSE, root mean square error; NRMSE, normalized RMSE; PBIAS, percent bias; EF, modeling efficiency. 

 

The direct assimilation of LAI values into model simulations (Approach B) produced 

worse statistical indicators than when using the calibrated model (Approach A), with the R2 

values decreasing down to 0.35 and the RMSE and NRMSE values increasing up to 2.16 m2 

m−2 and 0.53, respectively. The PBIAS showed contrasting results, while the EF values also 

decreased down to 0.24, indicating nonetheless that the model was still able to describe field 

measurements with relative success. The direct assimilation approach made that MOHID-

Land’s LAI simulated results were directly replaced by the remote sensing LAI values in the 

dates when satellite images were available. From that date on and until another image was 

available model simulations followed the default parameterization of the MOHID-Land crop 

database given in Table 5.1-4. As a result, assimilation of remote sensing LAI values using the 

forcing method available in the MOHID-Land model resulted in several unrealistic 

discontinuities in simulated LAI (Figure 5.1-4), a common feature when using this assimilation 

approach (Thorp et al., 2010). Also, LAI increased at a much faster pace during the initial and 

development crop stages, with maize also reaching senescence earlier. The difference of 200 
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◦C in the total heat units required for plant maturity (PHU) considered between the default and 

calibrated crop parameters (Table 5.1-4) showed here to be critical for model performance. LAI 

assimilation was able to correct model simulations during the earlier crop stages but failed to 

counteract the end of the crop cycle as observed in the 2015 simulations (Figure 5.1-4). Here, 

despite assimilating higher LAI values, the model was obviously never able to extend the crop 

lifecycle longer than the allowed by the default PHU parameter. 

The previous results show the importance of considering Approach C, where data 

assimilation forced simulations of the local calibrated model.  Contrarily to the expected, LAI 

assimilation did not further improve Approach A results. The R2 values still decreased down to 

0.63, while the RMSE and NRMSE values increased up to 1.73 m2 m−2 and 0.43, respectively. 

The EF values also decreased to 0.51. However, these statistics were better than those obtained 

using only direct LAI assimilation (Approach B), showing the importance of local model 

calibration. Model simulations fully covered maize’s lifecycle this time since no constraints in 

the PHU existed. However, results were still dependent on the quality of the assimilated data, 

with LAI evolution at the end of the 2015 season suggesting that some filtering would be 

needed during the assimilation process (Figure 5.1-4). 

Despite the lower statistical indicators found when compared to those using only the 

calibrated model (Approach A), LAI evolution was also considered to be well represented when 

LAI data assimilation was included in the MOHID-Land model simulations (Approaches B 

and C), particularly during the earlier crop stages. Results further suggested that a higher time 

resolution of assimilated data would improve the agreement between model simulations and 

measured data. Nonetheless, more important than accurately predicting LAI evolution was to 

understand how data assimilation impacted the soil water balance, aboveground dry biomass 

and yield estimates during the 2014 and 2015 growing seasons, as shown below. 

5.1.3.2 Soil Water Balance 

Figure 5.1-5 presents the measured soil water contents at depths of 10, 30 and 50cm 

during the 2014 and 2015 growing seasons and compares these values with model simulations 

following the approaches referred above. Contrarily to LAI results, forcing remote sensing LAI 

data into model simulations reduced deviations between measured and simulated soil water 

content values. During the 2014 growing season, the RMSE values decreased from 0.018 to 

0.012 cm3 cm-3, while the NRMSE values reduced from 0.061 to 0.039 when considering LAI 

assimilation (Approaches B and C). Inversely, the EF values increased from 0.70 to 0.88 (Table 

5.1-6). During the 2015 growing season, the positive impact of LAI data assimilation on soil 
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water content simulation was more modest with only the EF values showing a relative 

improvement from 0.11 to 0.28. No noticeable differences were found between Approach B 

and Approach C statistical indicators. All simulations shared the same soil hydraulic parameters 

(Table 5.1-1) to better assess the actual impact of LAI assimilation on soil water content 

simulations, explaining thus the similarity of model results. 

As LAI evolution was used in the partition of ETc values into Tp (Equation 8) and Ep 

(Equation 9) (Ritchie, 1972), these two soil water balance components showed the greatest 

variation when considering LAI data assimilation (Table 5.1-7). The calibrated model 

(Approach A) produced estimates of Ta, Ea, capillary rise (CR) and deep percolation (DP), in 

line with other studies carried out in the region (Cameira et al., 2003; Paredes et al., 2014c, 

2014a), some of which highlighting the importance of CR to the soil water balance in the 

Sorraia Valley region. Direct LAI assimilation produced always the lowest Tp and Ta values 

(Ta/Tp = 1), and, naturally, the highest Ep and Ea values during both seasons. The LAI data 

forcing on the calibrated model (Approach C) produced contrasting results when compared to 

Approach A, with Tp values decreasing in 2014 when LAI evolution was underestimated 

(PBIAS = 24.39%) and increasing in 2015 when the opposite occurred (PBIAS = −10.34%). 

Accurate LAI predictions were thus essential for simulating crop transpiration and soil 

evaporation, even though other important soil water balance components such as deep 

percolation and capillary rise were not significantly affected by less accurate LAI predictions. 

As a result, LAI assimilation in MOHID-Land may thus have a direct influence on biomass 

development, while estimates of groundwater recharge or solute leaching from the root zone 

may be impacted less significantly. 
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Figure 5.1-5 Measured and simulated soil water contents (θ) at depths of 10 (top), 30 (middle) and 50 cm (bottom) 

during 2014 (left) and 2015 (right) crop seasons. Vertical bars correspond to the standard deviation of measured 

data. 

 

Table 5.1-7 Components of the soil water balance. 

Approach 

Inputs Outputs 

P 

(mm) 

I 

(mm) 

CR 

(mm) 

∆SS 

(mm) 

Ea 

(mm) 

Ta 

(mm) 

Ta/Tp 

(-) 

DP 

(mm) 

2014         

Calibrated model 163 365 78 16 164 374 0.99 74 

Direct assimilation 163 365 70 2 191 345 1.00 90 

Calibrated model + Assimilation 163 365 78 2 183 355 1.00 84 

2015         

Calibrated model 12 620 94 11 181 481 1.00 75 

Direct assimilation 12 620 84 3 199 461 1.00 82 

Calibrated model + Assimilation 12 620 95 3 150 512 1.00 75 
P,  precipitation;  I,  irrigation;  CR,  capillary  rise;  Ea,  actual  soil  evaporation;  Ta,  actual  crop  transpiration; Tp, 

potential crop transpiration; DP, deep percolation. 
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5.1.3.3 Crop Height 

The direct assimilation of LAI (Approach B) showed the maize canopy growing faster 

than that measured in the field or simulated by Ramos et al. (2017) (Approach A), similarly to 

LAI predictions (Figure 5.2-6). Canopy height then assumed a default maximum value (hc,max) 

of 2.5 m when the mid-season crop stage was reached (default value in Table 5.1-4), 

underestimating field values from that date onward and producing worse statistical indicators 

than those computed using the calibrated model (Table 5.1-6). The main problem here was thus 

the lack of a local calibrated dataset with the impact of LAI assimilation on canopy height 

simulations being only marginal as shown by the good indicators again obtained in Approach 

C. 

 

Figure 5.1-6 Measured and simulated canopy height (top) and aboveground dry biomass (bottom) during 2014 

(left) and 2015 (right) crop seasons. Vertical bars correspond to the standard deviation of measured data. 

5.1.3.4 Dry Biomass and Yields 

Simulations of the aboveground dry biomass were concordant with the estimated LAI 

values during the 2014 and 2015 growing seasons. In 2014, the underestimation of LAI values 

led also to lower aboveground dry biomass estimates following the direct LAI assimilation 

approach (Approach B), with these being further closer to field measurements than the earlier 

results from the calibrated model (Approach A). As a result, the RMSE values decreased from 
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5128.3 to 2183.7 kg ha–1, the NRMSE values reduced from 0.39 to 0.24 and the EF values 

increased from 0.87 to 0.95 when direct LAI assimilation was considered. Contrarily, the 

overestimation of LAI values produced larger errors in 2015 when compared to field 

measurements, with the RMSE values increasing from 4616.8 to 6211.4 kg ha−1, the NRMSE 

values increasing from 0.33 to 0.44 and the EF values decreasing from 0.89 to 0.79. The local 

calibrated crop dataset (Approach C) did not improve aboveground dry biomass estimates. 

Measured crop yields reached 16,093 and 17,300 kg ha−1 during the 2014 and 2015 

seasons, respectively (Table 5.1-8). Yield predictions were in line with the same under- and 

overestimation tendencies observed in simulations of the aboveground dry biomass. Yield 

estimated from the three modeling approaches were relatively close (14,670–15,518 kg ha−1) 

during the 2014 season, with Approach C producing the best estimates.  On the other hand, 

during the 2015 season, yield estimates from that same approach produced the worse results 

(23,016 kg ha−1), with all models diverging substantially from the measured value. 

Table 5.1-8 Yield (kg ha−1) estimates. 

Season Measured Approach A Approach B Approach C 

2014 16,093 14,670 15,196 15,518 

2015 17,300 17,930 20,916 23,016 

 

While many studies throughout the literature reported that precise knowledge of light 

interception and hence LAI, was critical for predicting biomass and yield accurately (Jin et al., 

2018; Tripathy et al., 2013; Yuping et al., 2008), results presented here were more in line with 

Linker and Ioslovich (2017), who found that assimilation of easy-to-obtain canopy cover 

measurements did not always improve the predictions of biomass. They explained that by 

model choice, which in their case was a purely water-driven model in which solar radiation and 

light interception were not considered explicitly, likely resulting in underestimating the overall 

impact of canopy cover on crop development. A similar reasoning can be considered here. Ines 

et al. (2013) also found that LAI assimilation could not always improve simulated aboveground 

dry biomass and yield predictions, particularly during dry conditions as the root zone soil 

moisture could not meet the increased water demand that resulted from improved canopy 

growth. Likewise, Nearing et al. (2012) referred to the failure of LAI and soil moisture data 

assimilation in improving yield estimates, especially in water-limited environments, pointing 

out similar reasons as Ines et al. (2013). From a different perspective, Trombetta et al., 2016 

made use of remote sensed LAI data derived from the MODIS satellite images for 

calibrating/validating a hydrological model at the plot scale. Remote sensing LAI data, after 
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being converted into canopy cover, was used as an alternative to field measurements during the 

calibration/validation process, with results suggesting this approach as a viable alternative for 

characterizing landscape heterogeneity (crop variability) at larger scales. 

5.1.3.5 Uncertainty of Model Estimates 

The previous sections showed that the impacts of LAI assimilation on MOHID-Land 

final estimates of Ta, Ea and aboveground biomass were substantial and that some filtering 

would be eventually needed for improving the quality of assimilated data. The uncertainty 

analysis carried out using a Monte Carlo method confirmed these early findings, with Figure 

5.1-7 showing a relatively large uncertainty of final model estimates when LAI assimilation 

was performed during the first two dates (23/04/2015, 09/05/2015) of 2015 crop growing 

season. In these dates, Ta values ranged from 460 to 527mm, while Ea values varied between 

102 and 184mm. Likewise, the aboveground dry biomass showed also considerable variation, 

ranging from 37,978 to 47,347 kg ha−1. From those dates onwards, the uncertainty of final 

model estimates decreased, being relatively small when LAI assimilation was carried out at the 

end of the crop cycle. Filtering of the assimilation data would thus be important during the 

earlier crop stages, becoming irrelevant as the crop reaches the end of its life cycle. 

The large uncertainty observed on model final estimates was already expected when LAI 

assimilation was performed during the earlier dates since the crop was still at the initial and 

development stages and thus is growth cycle was not yet well defined. Yet, the Monte Carlos 

simulation results showed that the assimilation of too low LAI values could lead the model to 

greatly underestimate crop transpiration and aboveground dry biomass, while soil 

evapotranspiration would be greatly overestimated. Hence, this can be quite problematic in the 

absence of additional information to update model simulations throughout the crop season if 

new satellite images are no longer available (e.g., due to cloud cover). In this case, the model 

will never be able to further update simulations of Ta, Ea and aboveground dry biomass, 

producing quite substantial errors. 
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Figure 5.1-7 Uncertainty of data assimilation on aboveground dry biomass (top), actual transpiration Ta (middle) 

and actual soil evaporation Ea (bottom) final model estimates for the 2015 crop season on different dates (DAS, 

days after sowing). Box-plots indicate maximum and minimum values, median (–), first and third quartiles and average 

(×) of 10,000 Monte Carlo simulations. 

5.1.4 Conclusions 

Remote sensing technology can provide valuable information for hydrological modeling 

at the field and regional scales by better characterizing the spatial and temporal variability of 

soils, land uses and climate, which otherwise are difficult to portray. This study showed that 

LAI assimilation from NDVI derived satellite data improved MOHID-Land estimates of the 

soil water balance and simulations of crop height and aboveground dry biomass during the 

early stages of the crop growing period. However, data assimilation was never sufficient to 

improve model simulations in the absence of a crop calibrated dataset, failing to simulate the 
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entire growing season when calibrated potential heat units (PHU) were missing or even crop 

maximum height when crop parameterization was misadjusted. LAI data assimilation led also 

to great uncertainty on final estimates of crop transpiration, soil evaporation and the 

aboveground dry biomass when solely performed during the initial stages of the crop growing 

period. Although model uncertainty then decreased as LAI assimilation was being carried out 

closer to the end of the crop cycle, results showed that this approach may lead to complete 

erroneous estimates of the soil water balance and crop yields even when local calibrated soil 

and crop datasets are used. Therefore, while LAI remote sensing data can help defining 

MOHID-Land’s input parameters, additional data sources should be accessed for 

complementing such characterization. The implementation of the MOHID-Land model at the 

regional scale cannot depend solely on inputs from the LAI data assimilation as estimates may 

diverge substantially from reality. 

5.2 Exploring the Use of Vegetation Indices for Validating Crop 

Transpiration Fluxes Computed with the MOHID-Land Model. 

Application to Vineyard 

The material on which this chapter is based has been previously published in: Ramos, T.B., 

Simionesei, L., Oliveira, A.R., Neves, R., Darouich, H., 2021. Exploring the use of vegetation 

indices for validating crop transpiration fluxes computed with the MOHID-land model. 

Application to vineyard. Agronomy 11. https://doi.org/10.3390/agronomy11061228 

5.2.1 Introduction 

Irrigation is fundamental to fulfill crop water requirements in many regions of the world. 

Yet, inefficient practices often lead to the degradation of soil and water resources by promoting 

nutrient leaching, surface runoff and soil erosion, salt accumulation in the rootzone, and the 

eutrophication of water bodies with associated biodiversity loss. There is thus the need for 

minimizing environmental risks through the accurate estimate of crop water requirements and 

the definition of irrigation schedules (irrigation timing, duration, and quantity) that maximize 

agricultural water productivity and farmers’ income (Pereira et al., 2002). 

Several decision support systems (DSS) were developed over the last few decades to aid 

farmers in the decision-making of irrigation. One example is the IrrigaSys DSS developed by 

academics and stakeholders to support farmers in the Sorraia valley irrigation district, in 

southern Portugal (Simionesei et al., 2020). When running in operational mode this DSS 

computes the weekly soil water balance based on hindcast and forecast weather data as well as 

inputs from farmers. It then suggests an optimized irrigation schedule for the week that follows. 
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Assuring the reliability of predictions has been fundamental for the success of the DSS. It has 

also been its most challenging issue considering that the core engine of the system is the 

MOHID-Land model (Ramos et al., 2017), which is highly complex in terms of parametrization 

of soil and crop state variables. The current support of the DSS to 103 agricultural fields 

distributed throughout the region only further presses the need for correctly accounting for a 

wide variety of crop management and soil conditions to guarantee the quality of the service. 

Remote sensing, with the ability to cover large remote areas at different spatial and 

temporal resolutions, compatible with the characterization of the state and dynamics of several 

meteorological, vegetation growth, and hydrological variables, has been a preferential 

approach for evaluating the performance of the DSS (Ramos et al., 2018; Simionesei et al., 

2018). Ramos et al. (2018) analyzed the impact of assimilation of leaf area index (LAI) data 

derived from Landsat 8 imagery on model simulations. The relevancy of this study was because 

MOHID-Land computes the soil water balance using mass and momentum conservation 

equations, with LAI being critical to the correct partition of crop evapotranspiration (ETc) rates 

into crop transpiration and soil evaporation. Their main conclusion was that modeling 

vegetation growth and the partition of the ETc components at the plot scale could not depend 

solely on inputs from LAI data assimilation because estimates of the soil water balance could 

diverge substantially from the reality, thus confirming the need to use a proper crop dataset for 

model calibration. On the other hand, Simionesei et al. (2018) used LAI data derived from the 

same satellite sensor for simply adjusting crop growth parameters to calibrate/validate model 

results, providing a more feasible solution for rapidly developing a large database of crop 

variability at the regional scale. This would, however, depend on the availability of a 

relationship to be established between field LAI data and that estimated from the satellite 

sensor. 

This paper now focuses on an alternative solution for evaluating the performance of the 

DSS, in this case by comparing MOHID-Land estimates of the transpiration component in ETc 

with those derived from remote sensing-based vegetation indices (VI). Several procedures 

already exist that make use of spectral VI for estimating crop evapotranspiration fluxes and 

irrigation needs in agricultural fields (Pôças et al., 2020). Although in most of these procedures 

the soil water balance is computed according to the FAO56 approach (Allen et al., 1998), they 

can eventually be adapted for obtaining calibrated relations between the VI and fluxes from a 

complex mechanistic model such as MOHID-Land, providing a scalable solution for assessing 

model behavior in fields with similar management. 
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Hence, the objectives of this study are (i) to simulate soil water contents in an irrigated 

vineyard (Vitis vinifera L.) using the MOHID-Land model during the 2018–2020 growing 

seasons; (ii) to compute the soil water balance for the study period; (iii) to establish 

relationships between actual transpiration rates computed by the MOHID-Land model and 

those derived from the normalized difference vegetation index (NDVI) and Sentinel-2 satellite 

(European Space Agency, European Union) imagery. Results of this study can thus help define 

better management practices to be implemented in IrrigaSys and improve its performance in 

the Sorraia Valley region. 

5.2.2 Materials and Methods 

5.2.2.1 Description of the Study Area 

This study was carried out at Companhia das Lezírias, Samora Correia, Portugal (38.808◦ 

N, 8.900◦ W, 45 m a.s.l.) from January 2018 to October 2020. The climate in the region is dry 

subhumid, with mild winters and hot, dry summers. The mean annual precipitation is 669 mm, 

mainly concentrated between October and May, while the mean annual temperature is 16.8 ◦C. 

The weather data (Figure 5.2-1) for the study area was obtained from the local weather station 

(Figueirinha) and included daily precipitation (P; mm); maximum (Tmax; ◦C) and minimum 

(Tmin; ◦C) surface air temperatures; maximum (RHmax;%), mean (RHavg; %), and minimum 

(RHmin; %) relative humidity; solar radiation (Rs; MJ m−2 d−1); wind speed measured at 2m 

height (u2; m s−1). This information was then used to compute the reference evapotranspiration 

(ETo, mm) following the FAO Penman– Monteith method (Allen et al., 1998). The soil was 

classified as a Haplic Fluvisol (IUSS Working Group WRB, 2014), with loamy-sand texture in 

the top 60cm layer and sandy texture in the bottom 60–100cm layer. 
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Figure 5.2-1 Weather data for the study period (P, precipitation, ET0, reference evapotranspiration; Tmax and Tmin, 

maximum and minimum surface air temperatures, respectively; RHavg, mean relative humidity; Rs, solar radiation, 

u2, wind speed at 2 m height). 

The selected field, planted in 2008, was relatively flat (slope < 2‰), and part of a larger 

(130 ha) vineyard area. The field was a drip-irrigated plot, 5 ha in size, planted with different 

varieties of wine grapes, with Touriga Nacional being dominant and Castelão, Moreto, and 

Alicante Bouschet in smaller proportions. The plants were grown on vertical shoot positioned 

trellis, with wood pruning during the dormant period. Plants presented a row distance of 1.0m 

and a row spacing of 2.8m, thus a plant density of approximately 3571 plants ha−1, with an 

orientation in the east–west direction. Irrigation was delivered through a drip system, with 

management practices performed according to the standard practices in the region and decided 

by the farmer. Drippers were spaced 1m apart, and the drip line was placed on the trellis 0.5 m 

above the soil surface. The total water applied through irrigation summed 470, 625, and 465 

mm in 2018, 2019, and 2020 growing seasons, respectively. The application depth during 

irrigation events varied from 1 to 12 mm. Soil water contents were continuously monitored in 
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two locations at depths of 10, 20, 30, 40, 50, 60, 70, and 80 cm using EnviroPro MT (MAIT 

Industries, Bayswater North, Australia) capacitance probes. 

5.2.2.2 Model Setup, Calibration, Validation 

The simulation period covered the 2018–2020 growing seasons. The soil profile was 

represented by one vertical column discretized into 20 grid cells, 1 m wide, 1 m long, and with 

variable thickness (0.025m on the top to 0.625m at the bottom) considering the depth of the 

simulation domain, the root zone, and the measured soil moisture data. ETc rates were 

computed by multiplying daily ETo values with the respective crop coefficients (Kc) for the 

initial, mid-season, and late-season stages. The Kc values for wine grapes listed in  Allen et al. 

(1998)  were used as default. The upper boundary condition was then determined by Ea model 

and Tc model rates, and net irrigation and precipitation fluxes. The soil hydraulic parameters were 

initially set according to the texture classes of the soil horizons/layers following the class 

pedotransfer functions in Ramos et al. (2014, 2013). The crop growth parameters in Neitsch et 

al., (2011) crop database were also used as default settings. Root water uptake reductions were 

computed by considering the following parameters: h1 = -10, h2 = -25, h3 = -1000, h4 = -18,000 

cm (Wesseling et al., 1991). Free drainage was used as the bottom boundary condition. 

Model calibration was performed during the 2018 growing season following Ramos et 

al. (2017). The trial-and-error procedure was first used to calibrate the crop growth parameters 

by making them vary within reasonable ranges until deviations between modeled and field LAI 

data were minimized. The Copernicus Global Land Service LAI dataset derived from the 

Sentinel-3 sensor at 300 m resolution was assumed here to represent field conditions 

(“Copernicus Global Land Service. Available online: 

https://land.copernicus.eu/global/index.html (accessed on 17 March 2021).,” n.d.). Only pixels 

covering the vineyard area and not affected by adjacent vegetation were used to extract LAI 

data. LAI values were also compared to the existing literature to evaluate their adequacy (Fraga 

et al., 2016; Orlando et al., 2016). LAI data corresponding to the non-growing season were 

simply ignored since it represented grass growth covering the vine’s interrow during the rainfall 

period, but which dynamics could not be considered in this application. The interrow crop had 

also little influence on soil moisture data as the capacitance probes were installed in the vine 

rows. Then, the same trial-and-error procedure was adopted for calibrating the Kc values for 

the different crop stages as well as the soil hydraulic parameters for the different soil layers. 

These parameters were also made to vary within reasonable ranges until deviations between 

observed and simulated soil water contents were minimized. The connectivity/tortuosity 
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parameter l was not adjusted, being set to 0.5 following Mualem (1976). The parameters θs, α, 

η, Ksat, and the maximum value of LAI (LAImax) are identified as the most sensitive parameters 

during model calibration (Ramos et al., 2017). The calibrated crop growth parameters, Kc 

values, and soil hydraulic parameters were then used to validate model simulations of crop 

growth and soil water contents during the 2019 and 2020 growing seasons. Seasons were run 

separately, with end results from one season being updated at the beginning of the following 

according to measured data of soil water contents. 

The goodness-of-fit indicators adopted for comparing field and simulated LAI values and 

soil water contents were the coefficient of determination (R2), the root mean square error 

(RMSE), the normalized RMSE (NRMSE), the percentage bias (PBIAS), and the model 

efficiency (NSE). R2 values close to 1 indicate that the model explains well the variance of 

observations. RMSE and NRMSE values close to zero indicate small estimation errors and 

good model predictions (Moriasi et al., 2007). PBIAS values close to zero indicate that model 

simulations are accurate, while positive or negative values indicate under- or over-estimation 

bias, respectively. NSE values close to 1 indicate that the residuals’ variance is much smaller 

than the observed data variance, hence the model predictions are good. On the contrary, if NSE 

is less than zero the model-predicted values are worse than simply using the observed mean 

(Nash and Sutcliffe, 1970). 

5.2.2.3 Data Processing of Sentinel-2 Imagery 

Tc act model rates, and respective actual basal crop coefficients (Kcb act model = Tc act model/ETo 

ratio), computed by the MOHID-Land model were compared with those derived using a second 

approach, where those variables were estimated from a vegetation index (VI). Satellite sensors 

have been extensively used for estimating crop evapotranspiration with real-time single (Kc) 

or basal crop coefficients (Kcb) estimated from VI data. Pôças et al. (2020) provided a 

comprehensive listing of the many types of Kc -VI and Kcb-VI relationships developed for 

annual and perennial crops. Examples of applications in vineyards can be found in Campos et 

al. (2016, 2010) and Er-Raki et al. (2013). Landsat imagery (National Aeronautics and Space 

Administration Agency, Washington, DC, USA) has been the most frequently used satellite 

data to generate VIs to estimate those crop coefficients. However, its revisiting period of 16 

days, which is often extended due to high levels of cloud cover, and the relatively coarse 

resolution (30m) of its multispectral imagery has limited the use of that sensor for irrigation 

water management at the field scale. In this sense, the launch of the Sentinel-2 mission 

(European Space Agency, European Union) in 2017 represented a major step forward on the 
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use of satellite data for remotely monitoring crop irrigation needs by offering a revisiting time 

of 5 days under the same viewing angle, and multispectral imagery at 10 m (visible and broad 

near-infrared spectrum), 20m (red edge and narrow and short-wave infrared), and 60 m 

(atmospheric bands) resolution. 

In this study, the red (Red; band 4) and near infra-red (NIR, band 8) bands from Sentinel-

2 image tiles having less than 10% cloud cover were downloaded from the Copernicus Open 

Access Hub (“Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ 

(accessed on 17 March 2021).,” n.d.) for the study period. The images were subjected to 

atmospheric correction of the downloaded scenes using the Sen2cor software (“European 

Space Agency. Available online: https://step.esa.int/main/third-party-plugins-2/sen2cor/  

(accessed  on  17 March 2021),” n.d.), which is a processor for Sentinel-2 Level 2A product 

generation and formatting, performing the atmospheric, terrain and cirrus correction of top-of-

atmosphere Level 1C input data, and creating bottom- of-atmosphere corrected reflectance 

images. A total of 65 images were available during the 2018–2020 growing seasons. The NDVI 

was then computed for all available images with the Equation 26 (Rouse et al., 1974). 

This VI was chosen as it is the most used for establishing Kc-VI and Kcb-VI relationships 

for annual and perennial crops in the literature (Pôças et al., 2020). Following Campos et al. 

(2010), the NDVI was calculated on a pixel-by-pixel basis and averaged for the area 

surrounding the location of soil moisture probes (100 m long 60 m width), avoiding field edge 

pixels (Figure 5.2-2). 

 

Figure 5.2-2 NDVI image for the study area on 7 July 2020. 

The NDVI data were used to derive values of the basal crop coefficients and actual 

transpiration rates for each available image date as follows (González-Dugo and Mateos, 2008; 

Pôças et al., 2020): 

 

Kcb act NDVI = min [Kcb max, Kcb max/fc max (NDVI − NDVImin)/(NDVImax − NDVImin)]  Equation 34 
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Tc act NDVI  = Kcb act NDVI  ETo        Equation 35  

where Kcb act NDVI is the actual basal crop coefficient computed from the NDVI (-), Tc act 

NDVI is the actual transpiration rate computed from the NDVI (L T−1), Kcb max is the maximum 

value of basal crop coefficient (-), fc max is the fraction of ground cover corresponding to the 

maximum Kcb (-), and NDVImin and NDVImax represent the maximum and minimum values of 

NDVI corresponding to bare soil and effective full cover, respectively (-). Thus, in this study, 

the subscript NDVI identifies the variables computed from satellite imagery. The Kcb act NDVI 

represents primarily plant transpiration as well as a residual diffusive evaporation component 

supplied by soil water below the dry surface (Allen et al., 2005; Allen et al., 1998). As the VI 

reflects the actual vegetation cover conditions, the estimated values represent actual rather than 

standard conditions (Pereira et al., 2015). For each growing season, the Kcb max (0.48) was 

defined according to Rallo et al. (2021). The fc max was obtained from the maximum LAI 

value (LAImax) and crop height following Allen and Pereira (2009). The NDVImin and NDVImax 

values were specified based on the evolution of the NDVI over the growing seasons, being set 

to 0.10 (assumed to represent bare soil conditions) and 0.58 (corresponding to a 10% increase 

of the maximum observed NDVI value), respectively, in each season. 

The Kcb act model and Tc act model values computed using the MOHID-Land model were thus 

compared with the corresponding values derived from satellite imagery (Kcb act NDVI and Tc act 

NDVI) by linear regression analysis. The estimates from the MOHID-Land model were 

considered the dependent variables since they were the objective of validation. The resulting 

linear regression models were analyzed using a cross-validation technique, in which data from 

two years were used as the training subset and data from the remaining year was used as the 

validation subset. As data from only three growing seasons was used, this procedure was 

repeated three times to include all possible combinations as calibration and validation subsets. 

For each validation test, the performance of regression models was assessed using the same 

goodness-of-fit tests referred to earlier except for the NSE. 

5.2.3 Results and Discussion 

5.2.3.1 Model Parametrization 

Table 5.2-1 presents the calibrated crop growth parameters for the vine. Like in previous 

applications of the MOHID-Land model (Ramos et al., 2017; Simionesei et al., 2018), most 

default settings used for simulating crop growth needed to be modified to accurately describe 

field data. In this case study, LAImax was set according to the maximum value extracted from 

the Copernicus Global Land Service LAI dataset (“Copernicus Global Land Service. Available 
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online: https://land.copernicus.eu/global/index.html (accessed on 17 March 2021).,” n.d.) 

during the three growing seasons. The remaining parameters of the LAI curve were then 

modified using the data available in the calibration period. The maximum canopy height (hc,max) 

was defined according to field observations while the maximum root depth (Zroot,max) was 

adjusted based on measured soil moisture profiles using the capacitance probes installed at the 

field plot. Lastly, the base temperature for vine growth (Tbase), i.e., the minimum temperature 

required for crop development, was calibrated to 8◦C, which is slightly lower than the minimum 

threshold of 10◦C generally considered for vineyard in the literature (Santos et al., 2020). The 

optimal temperature was set to 20◦C, in accordance with the existing literature. 

Table 5.2-1 Calibrated crop growth parameters. 

Crop Parameter Value 

Optimal temperature for plant growth, Topt (
◦C) 20.0 

Minimum temperature for plant growth, Tbase (
◦C) 8.0 

Plant radiation-use efficiency, RUE [(kg ha
−1

) (MJ m
−2

)
−1

] 30 

Total heat units required for plant maturity, PHU (◦C) 3500 

Fraction of PHU to reach the end of stage 1 (initial crop stage), frPHU,init (-) 0.05 
Fraction of PHU to reach the end of stage 2 (canopy development stage), frPHU,dev (-) 0.15 

Fraction of PHU after which LAI starts to decline, frPHU,sen (-) 0.55 

Maximum leaf area index, LAImax (m
2 m

−2
) 1.4 

Fraction of LAImax at the end of stage 1 (initial crop stage), frLAImax,ini (-) 0.35 
Fraction of LAImax at the end of stage 2 (canopy development stage), frLAImax,dev (-) 0.85 

Maximum canopy height, hc,max (m) 1.5 
Maximum root depth, Zroot,max (m) 0.8 

Net radiation coefficient (-) 0.463 

Photosynthetically active radiation coefficient (-) 0.650 

 

Table 5.2-2 presents the calibrated van Genuchten-Mualem parameters for different soil 

layers. Most parameters showed little variation with depth, with α and η reflecting as expected 

the characteristically relatively high values of coarse-textured soils (Ramos et al., 2014, 2013). 

The exception was the Ksat, which values increased with depth on several orders of magnitude. 

On the other hand, the calibrated Kc values for the initial (Kc ini = 0.30), mid-season (Kc mid = 

0.70), and late-season (Kc end = 0.45) crop stages agreed well with  Allen et al. (1998). The Kc 

value for the initial stage was then adjusted for the frequency of the rainfall events and average 

infiltration depths, varying between 0.3 and 0.5. The Kc values for mid-season and late-season 

were adjusted for local climate conditions taking into consideration plant height, mean u2, and 

mean RHmin for the period under consideration, varying from 0.69 to 0.71 and 0.44 to 0.46, 

respectively, during the different growing seasons. 
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Table 5.2-2 Calibrated soil hydraulic parameters. 

Depth (m) 0–0.15 0.15–0.25 0.25–0.35 0.35–0.45 0.45–0.55 0.55–0.65 0.65–0.75 0.75–2.0 

θr (m3 m−3) 0.057 0.057 0.057 0.057 0.057 0.057 0.037 0.037 

θs (m3 m−3) 0.410 0.410 0.410 0.410 0.410 0.410 0.410 0.410 

α (cm−1) 0.184 0.184 0.194 0.194 0.184 0.184 0.184 0.164 

η (-) 2.0 1.9 1.8 1.8 1.8 1.8 1.8 1.8 

l (-) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Ksat (cm d−1) 90.7 90.7 1339.2 907.2 565.9 565.9 907.2 1339.2 

θr, residual water content; θs, saturated water content; α and η, empirical shape parameters; l, pore connectivity/tortuosity parameter; Ksat, 

saturated hydraulic conductivity. 

5.2.3.2 Model Performance 

Figure 5.2-3 shows the daily averages of the soil water contents measured at depths of 

10, 40, and 80 cm during the 2018–2020 growing seasons and compares these values with the 

MOHID-Land simulations. Although measured and simulated data were compared for all 

monitored depths, results are presented graphically only for the depths mentioned above to 

limit the number of figures. Measured soil water contents increased sharply with precipitation 

to values close to saturation to then decrease also rapidly to lower levels due to the dominance 

of the gravitational gradient near saturation which promoted percolation, but also due to crop 

evapotranspiration. Irrigation was usually applied at small depths (1–12 mm) to maintain soil 

water contents relatively controlled during the growing seasons. Yet, large variations of soil 

moisture levels were still noticed during these periods, particularly at shallower depths. 

Table 5.2-3 presents the statistical indicators used for evaluating the level of agreement 

between measured and simulated values. The MOHID-Land model performed reasonably well 

when simulating soil water contents during the 2018 calibration period. The value of R2 was 

relatively high (0.671), showing that the model could explain most of the variability of the 

observed data. The errors of the estimates were quite small, resulting in a RMSE value of 0.014 

m3 m−3 and a NRMSE value of 0.102. The PBIAS value was 0.51%, indicating no under or 

overestimation trend when simulating the measured data. The NSE value was also high (0.653), 

indicating that the residual variance was much smaller than the measured data variance. The 

parameters calibrated in 2018 were then validated during the 2019 and 2020 growing seasons, 

producing similar goodness-of-fit indicators. These were also within the range of values 

reported in the literature for soil water content simulations using the MOHID-Land model 

(Ramos et al., 2017; Simionesei et al., 2018). As such, the model was considered adequate to 

simulate soil water dynamics during the three growing seasons. 

Figure 5.2-4 presents the simulated LAI using the MOHID-Land model as well as the 

Copernicus Global Land Service dataset used for representing field LAI data during the 
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growing seasons (“Copernicus Global Land Service. Available online: 

https://land.copernicus.eu/global/index.html (accessed on 17 March 2021).,” n.d.). As referred 

earlier, only satellite data corresponding to the vine growing seasons is shown, with data from 

the non-growing period being ignored since the development of the interrow plants could not 

be considered in this application. Table 5.2-3 describes the goodness-of-fit indicators obtained 

when comparing the simulated and field datasets during the three growing seasons. The 

correspondence between those datasets was quite satisfactory during the 2018 calibration 

period, resulting in relatively high R2 (0.680) and NSE (0.639) values, and relatively low 

RMSE (0.155 m2 m−2) and NRMSE (0.186) values. However, model simulations failed to 

reproduce crop growth during the 2019 validation season, with the main stressor affecting crop 

development during that year not being identified. This may have been the fire occurrence that 

affected the area west of the study vineyard at the end of the 2018 growing season, with effects 

on the 300 m resolution LAI product being then particularly noticed during the following year. 

Nevertheless, as satellite data in 2019 revealed an uncharacteristic trend of the LAI curve the 

model was also considered to be calibrated for simulating vine growth in the study area since 

the goodness-of-fit indicators were again satisfactory in 2020. 
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Figure 5.2-3 Measured and simulated soil water contents at 10, 40, and 80 cm depths during the 2018, 2019, and 

2020 seasons. 

Table 5.2-3 Statistical parameters for the agreement between model simulations and observed data. 

Statistical 

Indicator 

Soil Water Contents LAI 

Validation Validation Validation Validation Validation Validation 

 2018 2019 2020 2018 2019 2020 

R2 0.671 0.683 0.676 0.680 0.445 0.842 

RMSE (L L−1) 0.014 0.012 0.015 0.155 0.462 0.191 

NRMSE 0.102 0.097 0.115 0.186 0.794 0.246 

PBIAS (%) 0.508 −1.550 −0.614 −6.035 −67.403 14.667 

NSE 0.653 0.615 0.658 0.639 −9.311 0.513 
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Figure 5.2-4 Satellite and simulated leaf area index (LAI) data during the 2018, 2019, and 2020 growing seasons. 

5.2.3.3 Soil Water Balance 

Table 5.2-4 shows the components of the soil water balance for each growing season. 

Figure 5.2-5 also presents the daily fluxes of ETc, Tc model, Tc act model, Es act model computed 

with the MOHID-Land as well as the daily irrigation and precipitation depths during the 2018–

2020 growing seasons. The seasonal ETc values ranged from 445mm in 2018 to 555mm in 

2020. The seasonal ETc act model values were smaller due to the impact of water stress on Tc 

model, varying from 293 to 320mm in the same years. Although these values depended on the 

seasonal atmospheric demand as well as soil moisture conditions, they were found to be 

comparable to estimates of 321mm in Campos et al. (2010), 274–354 mm in Cancela et al. 

(2015), and even 395–567mm in Fandiño et al. (2012) for different regions in Spain, 239–382 

mm in Phogat et al. (2017) for South Australia, and 320–480mm in Wilson et al. (2020) for 

California, USA. 

In terms of ETc partitioning, Tc model and Es model rates varied from 130 to 177mm and 315–

378mm, respectively, throughout the different seasons, being mostly dependent of the quality 

of the adjustment of the LAI curve to the LAI dataset derived from Sentinel-3. On the other 

hand, Tc act model and Es act model rates ranged from 82 to 117mm and 203–210mm, respectively. 

Thus, the Tc act model   accounted for only 28–37% of the ETc act model. The Tc act model values were 

also comparably smaller than the range of 137–278mm estimated in Fandiño et al. (2012) or to 

the 183–263mm reported in Cancela et al. (2015) for vines subjected to different irrigation 

treatments. To refer that besides the obvious differences in climate conditions during different 

growing seasons, irrigation management, cultivars, soil textures, and soil water storage 

capabilities, the soil water balance in these latter studies was computed using the FAO56 dual-

Kc approach (Allen et al., 2005; Allen et al., 1998), which estimation of the individual 
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components of the ETc generally results more precise as commonly recognized in the literature 

(Pereira et al., 2020, 2015). Nevertheless, the small Tc act model values estimated by the MOHID-

Land model find some explanation in the coarse textures (loamy-sand to sandy) and limited 

water holding capacity of the study soil as well as irrigation management. The reduction of Tc 

model values was relatively large due to water stress (34–37%) and was usually observed from 

mid-June onwards (Figure 5.2-5) as the farmer attempted to improve berry and wine quality 

while controlling shoot vigor and ripening through deficit irrigation. 

While Tc act model values were relatively small and crop stress was significant, the amount 

of water applied through irrigation was relatively high, varying from 465mm in 2020 to 625mm 

in 2019 (Table 5.2-4). Irrigation was used to compensate for the deficit in precipitation during 

the dry period, with seasonal values increasing when annual precipitation was less. However, 

due to limited soil water storage capacity percolation losses were quite high, ranging from 

544mm in 2020 to 688mm in 2018. From these, 39–61% occurred during the irrigation period, 

corresponding to 45–58% of the total irrigation water applied. The occurrence of high 

percolation losses with the simultaneous observation of crop water stress only evidenced the 

imperative need for better irrigation protocols that duly consider the physical characteristics of 

the study soil. 

Table 5.2-4 Soil water balance in the studied vineyard. 

 Farmer’s Schedule 

Optimized Schedule 

 2018 2019 2020 2018 2019 2020 

Inputs (mm):        

P  512 241 399 512 241 399 

I  470 625 465 55 98 105 
CRmodel  0 0 0 0 0 0 

∆SSmodel  -1 9 1 −2 9 1 

Outputs (mm):        
Tc act model  82 105 117 115 139 146 

Tc model  130 164 177 130 164 177 

1-Tc act model/Tc model  0.37 0.36 0.34 0.11 0.15 0.17 

Es act model  210 210 203 68 44 49 

Es model  315 333 378 315 333 379 

DPmodel  688 560 544 382 166 309 

Runoffmodel  0 0 0 0 0 0 

Error (%)  0 0 0 0 0 0 
P, precipitation; I, irrigation; CRmodel, capillary rise; ∆SSmodel, soil water storage variation; Ta act model, actual transpiration; Tc model, 

potential transpiration; Ea act model, actual soil evaporation; Es model, potential soil evaporation; DPmodel, deep percolation. The subscript 

model corresponds to results computed with the MOHID-Land model. Model error = 100 (∑inputs − ∑outputs)/∑inputs. 
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Table 5.2-4 further shows the soil water balance in the studied vineyard following an 

optimized irrigation schedule using the MOHID-Land model. The threshold pressure head (ht) 

for triggering irrigation was set at 1200 cm, i.e., slightly below the h3 value in the Feddes (1982) 

model to induce some water stress to the plant. The target pressure head (h0) was set at 100cm, 

here assumed to represent field capacity. The maximum irrigation pulse (Imax) was set to 5mm, 

with a minimum irrigation interval (Iint) of 1 day. Following these settings, the model proposed 

the net application of only 55, 98, and 105 mm in 2018, 2019, and 2020, respectively, which 

compared to farmer’s inputs are considerably lower. This inevitably led to lower percolation, 

with values ranging now from 166 mm in 2019 to 382 mm in 2018, resulting mostly from 

precipitation events. Additionally, the Es act model decreased considerably since the soil surface 

was less moistened with the absence of successive irrigation events. On the other hand, Tc act 

model values increased between 25 and 40%, corresponding to a less pronounced, more 

controlled water stress (11–17%). Hence, this exercise exposed the advantages of using a 

modeling tool for optimizing irrigation schedules, helping to save substantial amounts of water 

in the process. Those low irrigation depths were only possible because the model was not 

subjected to constraints that usually occur in the decision-making of irrigation, being hard to 

match in field conditions. Additionally, model estimates much depended on how well soil 

hydraulic properties were able to represent actual flow conditions in the vineyard soil, how 

well the three-dimensional flow from the drip irrigation system was represented by a simple 

one-dimensional modeling approach as the one used here, how representative were the Feddes, 

1982 pressure head threshold values for describing the response of this particular variety to 

water stress, and how reliable was the partitioning of the ETc and the computation of the soil 

water balance based on LAI evolution.  
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Figure 5.2-5 Crop evapotranspiration (ETc), potential (Tc model) and actual (Tc act model) crop transpiration, actual soil 

evaporation (Es act model), irrigation (I), and precipitation (P) fluxes following (a) irrigation applied by the farmer 

and (b) an optimized irrigation schedule computed by the model (the subscript model corresponds to results computed 

with the MOHID-Land model). 

5.2.3.4 MOHID-Land vs. Remote Sensing 

Table 5.2-5 presents the regression models obtained after relating the MOHID-Land 

outputs with the corresponding ones derived from Sentinel-2 imagery. Figure 5.2-6 shows the 

scatterplots of those relations. Considering the mismatch between the simulated LAI curve and 

the field LAI dataset derived from the Sentinel-3 sensor during the 2019 growing season 

(Figure 5.2-4), the simulated LAI values were first correlated to the NDVI values computed 

from Sentinel-2 imagery to evaluate the quality of both datasets and whether the same 

disagreement was observed here. This was not verified as the comparison resulted in Pearson 

correlation coefficient (r) values of 0.80, 0.84, and 0.92 for 2018, 2019, and 2020 growing 

seasons (r = 0.65 for total data), with the correlation significant at the 0.01 level. 

Table 5.2-5 Regression models between the MOHID-Land model and satellite sensor estimates of crop 

coefficients and transpiration fluxes (values in brackets correspond to the standard deviation of errors) a. 

Model Equation 
R2  

(-) 

RMSE  

(b) 

NRMSE 
(-) 

PBIAS (%) 

1 Kcb act model = 1.006 NDVI − 0.258 0.534 

(0.050) 

0.050 

(0.008) 

0.421 

(0.113) 

-0.555 

(39.96) 

2 Kcb act model = 0.875 Kcb act NDVI − 0.168 0.550 

(0.054) 

0.049 

(0.007) 

0.414 

(0.097) 

0.041  

(39.84) 

3 Tc act model = 2.216 NDVI − 0.612 0.365 

(0.066) 

0.432 

(0.102) 

0.839 

(0.182) 

57.057 

(10.55) 

4 Tc act model = 0.718 Tc act NDVI − 0.443 0.782 

(0.069) 

0.174 

(0.022) 

0.339 

(0.119) 

0.065 

 (10.07) 
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a Kcb act model and Kcb act NDVI, actual basal crop coefficient computed, respectively, from the MOHID-Land and satellite imagery; 
NDVI, normalized difference vegetation index; Ta act model and Ta act NDVI, actual transpiration computed, respectively, from the 

MOHID-Land and satellite imagery; R2, coefficient of determination; RMSE, root mean square error; NRMSE, normalized 

RMSE; PBIAS, percentage bias. b Units are the same as the variable units. 

 

The direct relationships between the NDVI and the estimated Kcb act model or Tc act model 

values generally resulted in poor regression models (models 1 and 3). On the other hand, the 

scaling of the NDVI values between minimum and maximum values defined based on observed 

data improved the agreement between the MOHID-Land outputs and those derived from the 

satellite sensor. This improvement was only minor for Kcb act model (model 2), with the resulting 

R2 value (0.55) remaining relatively low. This was attributed to the fact that the lowest NDVI 

value (0.232), computed at the end of the 2020 growing season (11/10/2020), corresponded to 

a Kcb act NDVI value of 0.16, which is close to the minimum Kcb value (0.15) to be expected for 

bare soils in the FAO56 procedure. However, in mechanistic models such as the MOHID-Land 

model where LAI is used for the partition of ETc rates, this does not occur. At the beginning or 

close to the end of the crop growing season, when LAI values are null or very small, the 

corresponding Tc model/ETo ratio (or Kcb) is equally null or very small. For that, the Kcb act model 

values varied from 0 to 0.27 in MOHID-Land simulations while the range of variation for the 

Kcb act NDVI was from 0.16 to 0.48. This conceptual difference also affected the relationship 

between Tc act model and the Tc act NDVI, with the latter values being slightly higher than the former. 

Yet, the regression model obtained between these two parameters (model 4) was quite good, 

with the R2 value (0.782) showing the ability of the model to explain most of the variability 

observed in the MOHID-Land dataset while the RMSE of 0.174 mm d−1 showed the low error 

of the estimate. On the other hand, the large variation in the PBIAS revealed the conceptual 

differences in the two approaches that need to be considered in the IrrigaSys decision support 

system. Nevertheless, the relatively low RMSE suggested that the satellite approach if duly 

calibrated could be considered as a reliable approach for validating transpiration fluxes from 

the MOHID-Land model and assuring the reliability of the weekly recommendations issued by 

IrrigaSys to farmers. The assimilation of these independent predictions into IrrigaSys may, 

however, be dependent on the plot location as the number of Sentinel-2 images available in this 

case study was much lower compared to Ramos et al. (2020), who had twice as many images 

for a study carried out 15 km north during the 2017–2019 growing seasons. 
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Figure 5.2-6 Scatterplots of the relationships between the actual basal crop coefficients (Kcb act model) and actual 

transpiration rates (Tc act model) computed using the MOHID-Land model (subscript model) and the corresponding 

indicators (Kcb act NDVI and Tc act NDVI) derived from the normalized difference vegetation index (subscript NDVI).  

5.2.4 Conclusions 

In this study, the MOHID-Land model was able to successfully estimate the soil water 

balance in an irrigated vineyard located in southern Portugal. Estimated actual transpiration 

rates were relatively low, revealing considerable water stress during the three monitored 

growing seasons. At the same time, percolation losses were high, showing the need for 

improved agricultural water use. Precise irrigation scheduling tools such as the one in MOHID-

Land may thus contribute to ensuring optimum soil moisture levels for vine growth. Yet, the 

particularity of vine irrigation management is difficult to scale up in a decision support system 

such as IrrigaSys, much influenced by the characteristics of crop variety and fruit quality. 

Expert knowledge on these issues seems thus fundamental for setting up the model correctly 

and ensuring the accuracy of the irrigation schedules provided by the DSS. While model 

support can be validated by remote sensing data, the established relationships between model 

outputs and the NDVI were much dependent on experimental conditions, including irrigation 

management and climate conditions. This should be always considered when generalizing 

these products to other vineyards in the region. Nonetheless, taking the necessary precautions, 
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Sentinel-2 data can well provide important information to validate model outputs during the 

decision-making of irrigation on a regular basis. In the absence of calibration datasets, the 

regression models developed in this study can be further helpful to rapidly identify fields 

covered by the DSS where the hydrological model may be acting poorly. 
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6. Irrigation scheduling 

6.1 Introduction 

In this chapter, we introduce the MOHID Land Irrigation Module, highlighting its 

capabilities and functionalities. Based on previously calibrated and validated models, we 

explore the practical applications of the MOHID Land Irrigation Module in optimizing 

irrigation management for maize and pasture crops and we present the methodology used. The 

chapter ends with conclusions about the use of this module. 

6.2 Material and Methods 

6.2.1 MOHID Irrigation scheduling 

MOHID-Land was extended with a system-dependent boundary condition that triggered 

irrigation when a certain threshold pressure head (ht) was obtained in different grid cells of the 

root zone domain. Irrigation then ceased after a second target pressure head (h0) was obtained 

in the same grid cells. Since the root zone domain is typically defined by a large and variable 

number of grid cells MOHID-Land further included a series of constraints that prevented the 

application of meaningless irrigation amounts and countess irrigation events, namely a 

minimum irrigation pulse (Imin), a maximum irrigation pulse (Imax), and a minimum irrigation 

interval (Iint). The model was thus automatized for triggering irrigation whenever soil pressure 

heads dropped below ht in different cells of the root zone domain, supplying them sufficient 

water to reach h0 in those same cells based on a pre-defined irrigation strategy. 
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Figure 6.2-1Feddes plant water stress function. Root water uptake commences with the onset of desaturation at 

h1 (anoxic moisture conditions), optimum root water uptake is given between h2 (field capacity, FC) and h3 (onset 

of drought-stress). From optimum root water uptake towards h4 (permanent wilting point, WP) the plants 

experience increasing drought stress. 

 

MOHID-Land’s irrigation parameters should be specified as follows: 

• ht should be defined based on crop characteristics and irrigation strategy. For full 

irrigation strategies, ht should be set between h2 and h3 to prevent Tp reductions 

(Feddes and Zaradny, 1978), while for deficit irrigation strategies ht should drop 

below h3, thus inducing some water stress; 

• h0 should be defined based on soil characteristics and irrigation strategy. h0 should 

be set: (i) at field capacity to fulfil soil storage capacity; (ii) at higher heads than field 

capacity to promote percolation (e.g., for saline conditions); or (iii) at lower heads 

than field capacity to induce deficit conditions in the root zone domain; 

• Imin, Imax, and Iint should consider the constraints of the irrigation system (application 

rates, number of irrigation blocks, water availability, energy costs, etc.). 

6.2.2 Model setup maize scenario 

The soil profile consisted of four layers with a total depth of 2 meters, represented using 

a one-dimensional Arkawa C-grid (Purser and Leslie, 1988) with 100 grid cells. Each cell has 

dimensions of 1 meter wide, 1 meter long, and 0.02 meters thick (Figure 4.1-3). The state 
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variables such as water content were calculated at the center of each cell, with fluxes computed 

on the faces of the cells. Only vertical fluxes are considered. 

The upper boundary condition was determined by actual evaporation, transpiration rates, 

and precipitation fluxes. Crop evapotranspiration (ETc) was calculated from hourly reference 

evapotranspiration (ET0) values multiplied with crop coefficients (Kc) for different crop stages. 

These Kc values were adjusted based on local climate conditions and crop characteristics. The 

bottom boundary condition was specified using observed groundwater depth, and initial soil 

water content conditions were set to field capacity. 

Datasets relative to 2014 and 2015 were used to calibrate and validate the model, 

respectively. Details about the calibration and the validation of the model for the maize 

scenario, as well as the model setup, can be found in Chapter 4 - Section 4.1. 

6.2.3 Model setup pasture scenario 

The soil profile consisted of three layers with a total depth of 4 meters, represented 

using a one-dimensional Arkawa C-grid (Purser and Leslie, 1988) with 11 grid cells. Each cell 

has dimensions of 1 meter wide, 1 meter long, and with variable thickness (0.05 m on the top 

to 2.5 m at the bottom). The upper boundary condition was determined by actual evaporation, 

transpiration rates, irrigation and precipitation fluxes. Crop evapotranspiration (ETc) was 

calculated by multiplying hourly reference evapotranspiration (ET0) values with crop 

coefficients (Kc) for different crop stages. These Kc values correspond to standard Kc values 

for pasture in the Mediterranean region, and were adjusted based on local climate conditions 

and crop characteristics. The bottom boundary condition was specified using observed 

groundwater depth, and initial soil water content conditions were set to field capacity. 

Model calibration and validation were carried out during the 2010–2011 and 2011–

2012 seasons, respectively, with procedures following Ramos et al. (2017). Details about the 

calibration and the validation of the model for the pasture scenario, as well as the model setup, 

can be found in the Chapter 4 – Section 4.2 

6.2.4 Maize irrigation scenario 

Different irrigation scenarios were set to help demonstrate the new system-dependent 

boundary condition implemented in the MOHID-Land model and improve irrigation 

scheduling performed by the farmer. In this study, the experimental field was limited north by 

the Sorraia river, whereas rice (Oryza sativa L.) fields bordered the area in all remaining 

directions. These field boundary conditions, particularly the large irrigation pulses applied in 

neighboring rice fields partially explain the shallow groundwater levels monitored during each 
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season. The contribution of the shallow groundwater table to the soil-water balance was thus 

high under the local climate conditions, but was significantly influenced by the GWD. For each 

growing season, and after model calibration and validation, two hypotheses related to GWD 

were analyzed: (i) a constant GWD was set based on the average depth monitored in each 

season (-1.08 m in 2014, and 1.12 m in 2015), thus considering the current field conditions; (ii) 

a constant GWD was set to 1.50 m, corresponding to the initial depth monitored before the 

beginning of each growing season, thus assuming land use changes in the vicinity of the 

experimental field (i.e., no rice fields in the vicinity of the study area). Irrigation scheduling in 

each of the above scenarios should expectably reduce irrigation needs, promote capillary rise, 

and eventually increase water use efficiency in the study area. Each of these GWD scenarios, 

was further extended by setting ht to different irrigation trigger thresholds (-500, -1000, -1500, 

and -2000 cm) in order to assess model performance under increasing water stress conditions. 

For all 16 scenarios (2 GWD × 4 ht × 2 seasons), h0 was always set close to field capacity (h0 

= -300 cm; Imin  was set to 5 mm; Imax  was set to 24 mm after considering the limitations of the 

local irrigation system (application rate of 8 mm d−1; 6 irrigation blocks; maximum irrigation 

duration per block of 3 h); and Iint was set to 3 days. The same climatic data of 2014 and 2015 

were used for the hypothetical scenarios. 

Water productivity (WP) was computed for both monitored irrigation seasons and 

irrigation scenarios, being here defined as the ratio between actual crop yields (kg ha−1) and the 

total water use (m3), including the net precipitation, the seasonal net irrigation depth, CR, and 

soil storage . 

6.2.5 Pasture Irrigation Scenario 

After model calibration/validation, the MOHID-Land model was used to compute the 

water balance and dry biomass yields in rainfed and irrigated pastures, hypothetically grown 

in the studied area during the 1979–2009 seasons (30 years). Climatic data was also provided 

by the same numerical mesoscale MM5 used earlier (http://meteo.tecnico.ulisboa.pt), and 

expresses the typical climatic variability found in the Mediterranean region (Figure 6.2-2), with 

annual precipitation amounting to between 68 and 805 mm. 

In irrigated pastures, irrigation needs were further computed with a system-dependent 

boundary condition that automatically triggered irrigation when a certain threshold pressure 

head (ht) was obtained in different grid cells of the root zone domain. Irrigation then ceased 

after a second target pressure head (h0) was obtained in the same grid cells. This system-

dependent boundary condition further included a series of constraints that prevented the 

http://meteo.tecnico.ulisboa.pt/


118 

 

application of meaningless irrigation amounts and countless irrigation events, namely a 

minimum irrigation pulse (Imin), a maximum irrigation pulse (Imax), and a minimum irrigation 

interval (Iint).  The  model  was  thus  capable of automatizing irrigation whenever  soil pressure 

heads  dropped  below ht  in different cells  of the root zone domain, supplying them sufficient 

water to reach h0 in those same cells based on a pre-defined irrigation strategy (Ramos et al., 

2017). Simulations for irrigation pastures were thus run with the following settings: ht = −800 

cm, corresponding to h3 in the Feddes et al. (1978) model (i.e., no water stress was allowed); 

h0 = −200 cm, corresponding to field capacity; Imin = 5 mm; Imax = 20 mm; and Iint= 1 day. 

 

Results of the soil water balance components (Ea, Tp, and Ta), LAI, and dry biomass 

yields in rainfed and irrigated pastures were then compared for the 30-year period (1979–2019) 

and for the 10 driest and 10 wettest years (Figure 6.2-2). Averages were compared using a 

paired, double-tailed Student t-test, in which a p value of <0.05 was considered significant. 

Figure 6.2-2 Annual precipitation and reference evapotranspiration (ET0) between the 

1979–980 and 2007–2008 seasons. 
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6.3 Results and discussion 

6.3.1 Maize scenario 

Table 6.3-1 Components of the soil water balance. 

 

6.3.1.1 Soil water balance  

Table 6.3-1 shows the components of the soil water balance during the 2014 and 

2015 growing seasons. Precipitation amounts varied substantially between years. 

Irrigation needs consequently differed, with September’s 2014 precipitation events 

making irrigation even unnecessary during that period. The 2014 growing season 

further registered lower average daily temperatures and higher relative humidity 

conditions than in 2015. These differences were obviously reflected in the irrigation 

requirements, with ETc estimates summating to 542 and 662 mm in 2014 and 2015, 

respectively, while Tp values amounted to 378 and 481 mm in the same respective 

years. The MOHID-Land model estimated no ETc and Tp reductions due to water stress 

during both seasons, i.e., ETa /ETc and Ta/Tp were always 1.0 (Table 6.3-1). As discussed 

by Allen et al. (2011) when revising the various methods for field ET estimation, 

combined approaches of accurate soil water observations and water balance simulation 

modelling provide for appropriate accuracy in ET estimates. Figure 6.3-6 presents the 

seasonal variation of Tp, Ta, and Ea during the 2014 and 2015 growing seasons. These 

values were in line with those estimated for the same region and for maize by Paredes 

et al. (2014a) using a simpler soil water balance model. Also, Cameira et al. (2003) 

estimated similar ETc values for maize by measuring the upward fluxes in different 

soils in the region. 
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The seasonal variation of GWD was significantly affected by irrigation applied 

to the maize, but also by irrigation practices in neighboring rice fields. Thus, GWD 

became progressively shallower, rising from 1.50 m in the beginning of each season 

to an average depth of 1.10 m during most parts of both growing periods. Hence, the 

shallow GWD conditions ended up favoring capillary rise (CR), depending on the 

farmer’s irrigation scheduling, root water uptake, and the established hydraulic head 

gradients. CR became an important component of the soil water balance, reaching 14% 

of ETc in both seasons (Table 6.3-1). Cameira et al. (2003) had already highlighted the 

importance of CR to the soil water balance in the Sorraia Valley region, with this 

component contributing up to 45% of ETc in their case studies. 

Deep percolation (DP) values amounted to 12% (2014) and 10% (2015) of the 

water inputs (precipitation, net irrigation, and CR), explaining most of the GWD 

variations monitored after excessive irrigation or precipitation events (Figure 4.1-2). 

Based on model estimates, WP reached 2.36 and 2.43 kg m
−3 in the 2014 and 

2015 growing seasons, respectively (Table 6.3-1). Although these values can be 

considered relatively satisfactory, and were perfectly within the range of WP values 

reported by Paredes et al. (2014b) for different irrigation management strategies studied 

in the same region (1.48-3.15 kg m
−3

), model results showed still an opportunity for 

improving WP in the study area, namely by optimizing irrigation scheduling and 

groundwater contribution to the root zone. 
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6.3.1.2 Improving irrigation scheduling in the Sorraia valley region 

 

Figure 6.3-1 Monitored and simulated soil pressure heads (h) at depths of 10 (top), 30 (middle), and 50 cm 

(bottom) during 2014 (left) and 2015 (right) crop seasons. Irrigation scenarios with groundwater depth at −1.50 

m, and trigger thresholds (ht) at different pressure heads. 

 

Figure 6.3-2 Seasonal variation of potential crop transpiration (Tp), actual crop transpiration (Ta), and actual soil 

evaporation (Ea) during 2014 crop season. Irrigation scenarios with groundwater depth at −1.50 m, and trigger 

thresholds (ht) at different pressure heads. 



122 

 

 

Figure 6.3-3 Seasonal variation of potential crop transpiration (Tp), actual crop transpiration (Ta), and actual soil 

evaporation (Ea) during 2015 crop season. Irrigation scenarios with groundwater depth at −1.50 m, and trigger 

thresholds (ht) at different pressure heads. 

Figure 6.3-1 shows the simulated soil pressure heads for the 2015 irrigation 

scenarios with GWD at 1.50 m, and ht at different pressure heads. The simulations of 

the remaining irrigation scenarios are not presented graphically in order to limit the 

number of figures, and because Figure 6.3-1 illustrates well the functioning of the new 

system- dependent boundary condition implemented in the MOHID-Land model. Soil 

pressure heads became increasingly lower, with the rate decrease depending on the 

transpiration rate. Naturally, the lower the ht value considered in the irrigation 

scenarios, the lower the simulated soil pressure heads in the soil profile. Irrigation was 

then triggered when ht was reached in the grid cells located closer to the soil surface, 

where root water uptake and soil evaporation were more pronounced. However, at 10 

cm depth, soil pressure heads approached but never dropped below ht. At lower depths, 

soil pressure heads were even mostly within the range where no water stress occurs 

(between h2 and h3). After the model triggered irrigation, soil pressure heads increased 

back to h0 = –300 cm in all layers of the soil profile, meaning that Imax was enough to 

increase soil water contents of the different layers close to field capacity. 

Since ht was reached faster in the cells closer to the soil surface, the MOHID-

Land model further included a constraint to trigger irrigation only when the amount 

of water required to increase soil pressure heads from ht to h0 was higher than Imin (5 
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mm), thus taking into account the deficit of water in multiple cells, and avoiding countless 

irrigation events. Following a different approach, Dabach et al. (2013), implemented a system-

dependent boundary condition which initiated irrigation whenever the soil pressure head at a 

predetermined location dropped below ht. In their simulations, that specific location 

corresponded to the position of tensiometers, and ht was defined based on the average of their 

readings. Depending on the position of the tensiometers, this approach would likely better 

assess the soil moisture condition in the root zone domain than that implemented in the 

MOHID-Land model. However, these authors had to set ht empirically based on experimental 

data, while in the MOHID-Land model ht was fixed directly based on the pressure head 

parameters of the Feddes et al. (1978) model used for computing Tp reductions due to water 

stress, thus simplifying its use in an irrigation service like FIGARO DSS. 

The soil water balances of the monitored 2014 and 2015 irrigation practices 

showed that the maize crop was well supplied with water (Table 6.3-1). Simulated soil 

pressure heads were always within the range where water uptake was at the potential 

rate (Figure 6.3-1). Farmer’s irrigation scheduling maintained soil water contents near 

field capacity, maximizing crop production and preventing water shortages caused by 

unforeseen problems in the irrigation system or water distribution. However, the 

analyses  of  the  full  irrigation scenarios (Table 6.3-1; ht = –500 cm) showed that it 

could have been still possible to reduce the amount of water applied to the crop and 

maintain root water uptake at the maximum rates. All scenarios with ht values at 500 

cm showed a reduction of the irrigation needs between 20 and 40% while still 

maintaining a Ta/Tp = 1 ratio. In these scenarios, irrigation needs decreased from 365 to 

218–286 mm in 2014, and from 620 mm to 377–499 mm in 2015, depending on the 

GWD. Higher water savings were obviously obtained when considering GWD at 

shallower depths ( 1.08 m in 2014, and 1.12 m in 2015) since groundwater contribution 

to the root zone was higher. Irrigation reductions were compensated by the increase 

of CR, with groundwater contributing for 17.7-36.8% of ETc. For the ht = − 500 cm 

scenarios, CR increased from 78 to 191–101 mm in 2014, and from 94 to 243–117 mm 

in 2014, again depending on the level of the GWD. Also, WP increased from 2.36 to 

2.60-2.64 kg m
−3 in 2014, and from 2.43 to 2.65-2.68 kg m

−3 in 2015, demonstrating 

the importance of adjusting irrigation scheduling practices to the soil’s water holding 

capacity and groundwater conditions. 



124 

 

In the deficit irrigation scenarios (ht < h3), the lower the ht value, the longer it took 

for the matric head to reach it and initiate irrigation, resulting in a smaller number of 

irrigation pulses (Figure 6.3-1). For example, irrigation events decreased from 13 to 7 

and from 23 to 15 in the 2014 and 2015 scenarios (GWD at −1.50 mm), respectively, 

after ht  was modified from 500 to 2000 cm (Table 6.3-1). I rrigation amounts also 

decreased from 286 to 159 mm, and from 499 to 272 mm in the same corresponding 

years. In all deficit scenarios, groundwater contribution increased to 47.4-66.9% and 

26.8-37.6% of ETa when considering the current average and hypothetical GWDs, 

respectively. The former values very much approximated those computed by Cameira 

et al., 2003 for maize grown in a similar silty loam Fluvisol of the Sorraia Valley 

region (45% of ETc; 200 mm). Percolation was practically irrelevant, resulting mostly 

from water drained below the root zone after larger precipitation events. 

All deficit irrigation scenarios further showed reductions of the Tp values due to 

water stress. The lower the ht value, the lower the Ta/Tp ratio (Table 4.1-5), decreasing 

from 1.0 in the ht = –500 cm scenarios to a minimum of 0.72 in one of the ht = −2000 

scenarios (GWD = −1.12 m; 2015). Figure 6.3-2 and Figure 6.3-3 describe the seasonal 

variation of Tp and Ta following the hypothetical irrigation scheduling scenarios 

considered for the 2014 and 2015 crop seasons (GWD at 1.50 m), respectively. The 

Ta values gradually dropped as the soil dried up, increasing again to the potential 

values with irrigation, whereas CR was never able to fully compensate the soil water 

deficit caused by increasingly lower ht values. This was certainly because no root 

water uptake compensation mechanism was considered in the MOHID-Land model.  

For example,  Šimůnek and Hopmans (2009b) described a compensation mechanism 

where water uptake is increased in non-stressed soil layers, compensating for 

reductions in soil layers where pressure heads are below the wilting point or above the 

anaerobiosis point (González et al., 2015; Rosa et al., 2016). Since the MOHID-Land 

model grid cells reaching ht were mostly located close to the soil surface, and as 

mentioned earlier soil pressure heads at deeper soil layers were mostly within the range 

where no water stress occurs (Figure 6.3-1), a similar procedure in the  MOHID-Land 

model as that documented by  Šimůnek and Hopmans (2009b) would certainly increase 

root water uptake in deeper soil layers, eliminating much of the predicted water stress. 

Irrigation reductions and the corresponding increase of CR in the deficit scenarios did 

not result in a direct increase of the WP values when compared to the full irrigation 
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scenarios (ht values at -500 cm). Generally, the lower the ht value defined for triggering 

irrigation, the lower the computed WP value. The 2014 scenarios with ht at 1000 

cm were the exception. These were mostly explained by the effect of the water stress 

on LAI development and the aboveground biomass simulated with the MOHID-Land 

model (Figure 6.3-4). Thus, yields were also reduced up to 25% depending on the GWD 

and the ht value. Nonetheless, WP values in the deficit irrigation scenarios were always 

higher than those computed from the farmer’s irrigation practices. 

 

Figure 6.3-4 Simulated leaf area index (top), and aboveground (ABG) dry biomass (bottom) during 2014 (left) 

and 2015 (right) crop seasons. Irrigation scenarios with groundwater depth at −1.50 m, and trigger thresholds (ht) 

at different pressure heads. 

6.3.2 Pasture scenario 

Dry Biomass and Water Balance Estimates in Wet and Dry Seasons 

Model estimates of aboveground dry biomass ranged from 1331 to 2681 kg ha
−1 and 

from 2778 to 5092 kg ha
−1 in rainfed and irrigated pasture, respectively, for the period 1979–

2009 (Figure 6.3-5). Mean differences between the two pasture regimes were found to be 

statistically different. Likewise, model estimates of the aboveground dry biomass for the 10 
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driest and the 10 wettest seasons were found to be statistically different. Mean values reached 

2055 (1340–2469) and 4395 (3675–5092) kg ha
−1 in the rainfed and irrigated regimes, 

respectively, during the 10 driest seasons, and 2132 (1476–2681) and 3802 (2778–4653) kg 

ha
−1 in the same regimes during the 10 wettest seasons (Figure 6.3-5). While mean values in 

the rainfed regime were relatively close, dry biomass estimates during the wet seasons were 

more regular, with the first (2067 kg ha
−1

) and third (2293 kg ha
−1

) quartiles being relatively 

close when compared with the dry seasons (Figure 6.3-5). Note that simulations of dry 

biomass values started to differ between pasture regimes during spring when water became 

a limiting factor. In these simulations, and based on the field data used for calibrating the 

model, irrigated pasture was modelled only until June/July, when plants reached their PHU. 

Therefore, pastures with longer life cycles—namely permanently irrigated pastures—will 

reach higher dry biomass values, since they are not limited by temperature and water stresses 

during spring and summer months. 

 

Figure 6.3-5 Aboveground dry biomass and leaf area index (LAI) values estimated 

in rainfed and irrigated pastures between the 1979–1980 and 2007–2008 seasons: 

(a,d) average years; (b,e) 10 wettest years; and (c,f) 10 driest years. 
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Irrigation was thus a determining factor for pasture’s dry biomass increase. Irrigation 

needs varied between 20 and 360 mm, being higher during the dry seasons (220–360 mm) 

than during the wet seasons (20–200 mm). Irrigation needs were obviously dependent of 

rainfall (R
2 = 0.513), with the model trying to maintain soil water contents within the 

predefined threshold (ht) and target (h0) pressure heads. Figure 6.3-6 gives, as an example, 

the irrigation scheduling estimated by MOHID-Land for the 1980–1981 (P = 220 mm; I = 

360 mm), 1995–1996 (P = 805 mm; I = 140 mm), and 2002–2003 (P = 592 mm; I = 20 mm) 

seasons. Results showed that rainfall amount and distribution had a notorious influence when 

computing the soil–water balance and irrigation scheduling with MOHID-Land. 
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Tp values were also found to be statistically different between rainfed and irrigated 

pastures. The difference was justified by the LAI values found in each pasture regime (Figure 

6.3-5), these also being statistically different. As explained earlier, LAI had a direct influence on 

the partition of ETc values into Ep and Tp. Similarly, Ta values ranged between 32–73 mm and 

128–266 mm in rainfed and irrigated pastures Figure 6.3-7, respectively, indicating a water stress 

that varied between 0.71–5.88% and 0.47–1.97% in the same plots. Water stress was generally 

higher during the 10 driest seasons, ranging from 1.42 to 5.88% in rainfed pasture and from 0.54–

1.97% in irrigated pasture. During the 10 wettest seasons, these values tended to decrease (0.71–

2.44% in rainfed pasture, and 0.55–0.99% in irrigated pasture). 

Figure 6.3-6 Seasonal variation of actual evaporation (Ea), potential 

transpiration (Tp), and actual transpiration (Ea) values during the 1980–

1981 (a), 1995–1996 (b), and 2002–2003 (c) seasons. 
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As in model calibration/validation, in rainfed pasture, Ea values were always higher 

than Ta values (83–256 mm). In irrigated pasture, Ea  values (133–293 mm) tended to be 

more similar to Ta values (128–266 mm)( Figure 6.3-7), as plants’ canopy considerably increased 

with the temperature increase during the final stages of pasture development (spring), covering 

the soil and decreasing the fraction of the soil surface exposed to radiation. During the wet 

seasons, Ea values estimated for rainfed (118–156 mm) and irrigated (133–293 mm) pasture 

were more similar to one another than during the 10 driest seasons when the former decreased 

(83–185 mm) and the latter increased (172–252 mm). 

6.4 Conclusions 

A system-dependent boundary condition was implemented in the MOHID-Land model 

to automatically trigger irrigation when a certain threshold pressure head was reached in the 

grid cells of the root zone domain. The lower the ht value, the longer it took for the matric head 

to attain it and initiate irrigation, resulting in smaller number of irrigation pulses and less water 

applied.  

Figure 6.3-7 Actual evaporation (Ea), potential transpiration (Tp), and actual transpiration (Ea) values 

estimated in rainfed and irrigated pastures between the 1979–1980 and 2007–2008 seasons: (a,d,g) 

average years; (b,e,h) 10 wettest years; and (c,f,i) 10 driest years. 
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The irrigation scheduling tool was then tested in two scenarios on previously calibrated 

and validated models for maize and pasture crops. 

In the case of the maize scenario, the new irrigation scheduling tool was thus able to 

improve water productivity up to 12% when compared with the farmer’s standard irrigation 

practices. The CR contribution also increased between 17.7 and 66.9% of ETa.  

The second case, where the MOHID-Land was applied in a pasture, the model was 

able to successfully simulate soil water dynamics and pasture development in a plot located 

in southern Alentejo, Portugal. The MOHID-Land model was further shown to take into 

account climate variability when estimating the soil water balance and biomass growth in two 

different pasture regimes (rainfed and irrigated). Irrigation played a decisive role in the 

production of dry biomass, with irrigation amounts varying between 20 and 360 mm. As a 

result, actual transpiration values (128–266 mm) increased considerably when compared with the 

corresponding values estimated for rainfed pasture (32–73 mm), being closer to the actual 

evaporation values observed in both regimes (83–256 mm in rainfed pasture; 133–293 mm in 

irrigated pasture). However, the higher actual evaporation values show the inefficiency of the 

system, where most soil water is consumed through a non-beneficial use instead of being 

converted into biomass. 

As precise quantification of water fluxes over the pasture is essential for accurately 

quantifying ecosystem carbon and assessing uncertainties related to the source or sink 

behavior of pastures, the MOHID-Land model can be considered as a valuable tool for farmers 

to take the stocking rates into account and reduce the adverse impact of grazing in the 

pastures.  

The MOHID-Land model may thus be considered a useful tool for establishing sound 

irrigation policies and improving irrigation water management at the plot scale in the Sorraia 

Valley region. Future work should consider testing the new system-dependent boundary 

condition for different soils, particularly for soils with heavier textures, wherein the 

amount of water applied per irrigation event (Imax) needs to be also defined while 

considering soil infiltration constraints in order to prevent surface runoff and soil 

erosion. 
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7. Assessing the impact of IrrigaSys decision support system on 

farmers' irrigation practices in Southern Portugal: A post-evaluation 

7.1 Introduction 

The development of decision support systems (DSS) was driven by the imperative need 

to assure the sustainability of agricultural systems, focusing on improving irrigation water 

management at both the field and irrigation district scales. 

DSS are interactive software-based tools employed to gather valuable information from 

various raw data sources (e.g., soil moisture sensors, proximal and remote sensing platforms, 

soil water balance models) and deliver optimized solutions (e.g., irrigation scheduling), aiding 

farmers in the decision-making process (Rinaldi and He, 2014). 

The IrrigaSys Decision Support System (DSS) has supported farmers' decision-making 

regarding irrigation scheduling in the Sorraia Valley irrigation district in Southern Portugal 

over a span of six years (2017-2022). The IrrigaSys DSS (Simionesei et al., 2020) uses a 

complex model as a core engine. The MOHID-Land model (Ramos et al., 2017), adopts a 

mechanistic approach wherein the Richards' equation is used for computing soil water storage 

and fluxes in the root zone, meaning that a full description of soil hydraulic functions is 

required, i.e., the soil water retention and soil hydraulic conductivity curves from saturation to 

oven dryness. Moreover, the model includes the simulation of crop growth, considering factors 

such as intercepted light, conversion of intercepted light into biomass, crop stress, and the 

number of heat units defining the crop season (Neitsch et al., 2011; Williams et al., 1989). The 

model includes a system dependent boundary condition based on soil pressure heads for 

irrigation scheduling (Ramos et al., 2017). 

Despite the complexity of the model, the DSS requires only a limited set of inputs from 

farmers, which include the location of the agricultural field, crop type, sowing and harvest 

dates, soil texture, and characteristics of the irrigation system (Simionesei et al., 2020). Since 

the DSS is not connected remotely to sensors, information regarding applied daily or weekly 

irrigation depths is gathered through weekly surveys conducted by the technical staff from the 

local Water Board. This information is critical for the reliability of outputs. Furthermore, a 

series of demonstrative case studies have been implemented over the years to gain farmers' 

confidence in the system (Ramos et al., 2021, 2018, 2017; Simionesei et al., 2018). However, 

there is still uncertainty regarding the willingness of farmers to adhere to the recommended 

irrigation schedules generated by IrrigaSys. Multicriteria analysis (MCA) may provide insights 

into the extent to which farmers follow the IrrigaSys recommendations by comparing their 
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performance with irrigation schedules generated by the DSS using a range of environmental 

and economic indicators. 

MCA emerged in the 1960s as a decision-making tool, facilitating a comparative 

evaluation of diverse alternatives or heterogeneous scenarios, considering multiple criteria 

simultaneously within complex situations. Its structure is designed to yield conclusions based 

on the preferences and priorities of multiple decision-makers, or to generate single synthetic 

conclusions at the end of the evaluation (e Costa, 2012). This method aids integrating various 

options, incorporating the perspectives of involved decision-makers within a prospective or 

retrospective framework. Additionally, MCA aims to organize and merge diverse evaluations 

considered by decision-makers to find conclusions based on multiple choices. Ultimately, this 

process provides operational suggestions or recommendations for future activities (Keen and 

Scott Morton, 1978; Linkov et al., 2006). MCA finds application across various fields such as 

hydrology, environment, and agronomy. In irrigation agriculture, MCA improves the 

understanding of impacts, allowing for a satisfactory compromise between conflicting 

decision-maker objectives (Hajkowicz and Collins, 2007; Huang and Chen, 2005; Ishizaka and 

Nemery, 2013). MCA is further considered as a valuable tool for addressing water management 

issues, highlighting social, economic, environmental, and water-related aspects that require 

careful consideration to meet sustainability objectives in the irrigated agriculture sector. As 

such, MCA has been extensively applied in irrigation scheduling, design, and management, 

aiding in finding suitable solutions for specific environmental conditions (Darouich et al., 2017, 

2012, 2014; Gonçalves et al., 2009; Pedras and Pereira, 2009). 

Therefore, the primary objective of this chapter is to gain insights into farmers' adherence 

to IrrigaSys recommendations using MCA. The specific aim is to compare different sets of 

farmers' and model applications from both water-saving and economic perspectives. The 

ultimate goal is to assess how closely farmers' performance aligns with an optimized irrigation 

schedule provided by IrrigaSys. 

7.2 Materials and methods 

7.2.1 Study area description  

The plots selected for this study are located in the Sorraia Valley irrigation district, in 

southern Portugal (38.95 N, 8.54 W). IrrigaSys supported 30 farmers in managing 103 plots 

ranging from 0.03 to 75 ha, covering a total area of 2080 ha, between 2017 and 2022. The 

climate in the region is semi-arid to dry sub-humid, with hot dry summers and mild winters 

with irregular rainfall. The mean annual rainfall is close to 500 mm, varying from 200 to 900 
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mm along the years. The annual surface air temperature averages 15 ºC, ranging from ~9 ºC in 

January to ~22 ºC in July. The mean annual reference evapotranspiration (ETo), calculated 

using the FAO56 Penman-Monteith (PM) equation (Allen et al., 1998),  is close to 900 mm. 

The dominant soils are Fluvisols, Planosols, Cambisols, Luvisols, and Regosols (IUSS 

Working Group WRB, 2014). Maize (Zea mays L.) is one of the main crops in the region, after 

rice (Oryza sativa) and most recently olives (Olea europaea), occupying 21% from the 

cultivated area, and 24% of the total irrigated area from 2013 to 2022 (Figure 7.2-1). Surface 

irrigation and center pivots were used in 36.7-39.9% and 30.0-36.1% of the total irrigated area 

during the same period (2017-2022). IrrigaSys only supported irrigation management of plots 

equipped with pressurized systems. The district is overseen by a local water board, the 

Associação de Regantes e Beneficiários do Vale do Sorraia (ARBVS, 2022). Water access is 

on demand. 

 

Figure 7.2-1 Maize cultivated plots in Sorraia Valey, 2022 

7.2.2 Data selection 

For each plot, IrrigaSys generated weekly reports with the irrigation schedule for the 

upcoming week. During its operation, the system retrieved daily weather data from the closest 

weather station in the local network, which was subsequently used to compute the ETo using 

the FAO-PM equation. Crop evapotranspiration (ETc) rates were then determined following 

the single crop coefficient (Kc) approach (Allen et al., 1998), and were used for defining the 

atmospheric boundary conditions in MOHID-Land. Following this, the model calculated the 

soil water balance for both the preceding and forthcoming week using irrigation data provided 

by farmers through ARBVS technicians. In instances, where irrigation data from farmers were 

not inputted promptly, the system incorporated a set of procedures, as elaborated in Simionesei 

et al. (2020). Most of these procedures assumed that farmers had adhered to the irrigation 

schedule outlined in the previous report. Upon receiving the delayed data, the system proceeded 
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to update the soil water balance, incorporating all information from the time of sowing up to 

the provided date using farmers data. When issuing recommendations, irrigation scheduling 

aimed to maximize crop yields by equalizing actual evapotranspiration (ETa) rates with 

potential values. 

Twenty plots were selected for conducting the MCA based on the following criteria: (i) 

maize was chosen as the most representative crop in IrrigaSys, and (ii) center pivot was selected 

as the most represented pressurized irrigation system in the region. The selected plots included 

the same crop grown in both the driest year (2019) and the average year (2022) served by 

IrrigaSys for seasonal comparison. Data extracted for each plot included the seasonal gross 

irrigation amount, the seasonal ETa, and crop yield (Y)(Table 7.2-1, Table 7.2-2). For each plot, 

the data from farmers was compared to the corresponding optimized values generated by the 

MOHID-Land model. Model estimates of gross irrigation amounts assumed an application 

efficiency of center pivot of 85%  (Keller and Bliesner, 1990). Farmers data on ETa and crop 

yields was estimated by the model following farmers’ irrigation data instead of the optimized 

schedules. In both scenarios (farmers vs. model), ETa values were computed from the soil water 

balance by following a macroscopic approach proposed by Feddes et al. (1978), where potential 

transpiration rates are linearly distributed over the rootzone and eventually reduced due to 

water stress when soil pressure heads fall outside predefined threshold limits. On the other 

hand, soil evaporation rates are limited by a pressure head threshold value (American Society 

of Civil Engineers (ASCE), 1996.). Yields were obtained as the product of the aboveground 

biomass and a harvest index (Ramos et al., 2017). This procedure can be found in many other 

modeling applications (e.g., Han et al., 2015; Vanuytrecht et al., 2014; Xu et al., 2013). 

 

Table 7.2-1 Maximum and minimum values Actual Evapotranspiration, Total irrigation, Yield and Precipitation 

for 2019 

2019  ETa (mm) 
Total 
irrigation 
(mm) 

Yield 
(kg/ha) 

P (mm) 

Farmer 
Max 622.9 954.1 20062 114.9 

Min 244.3 343.4 8018 14.2 

Model 
Max 657.4 834.1 20338 114.9 

Min 396.0 623.4 15499 14.2 
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Table 7.2-2 Maximum and minimum values Actual Evapotranspiration, Total irrigation, Yield and Precipitation 

for 2022 

2022  ETa (mm) 
Total  
irrigation 
(mm) 

Yield (kg/ha) P (mm) 

Farmer 
Max 731.8 771.6 16902 102.4 

Min 402.0 547.6 14337 32.3 

Model 
Max 590.1 766.5 25387 119.9 

Min 402.0 619.6 14339 32.3 

7.2.3 Multicriteria Analysis (MCA) 

The MCA was organized into five phases, as depicted in Figure 7.2-2. Phase 1 involved 

defining the study objectives, specifically comparing farmers' performance in each plot against 

irrigation schedules recommended by the model using a set of environmental and economic 

indicators. 

 

Figure 7.2-2 Functional diagram of MCA model 

Phase 2 involved a sequence of steps. The first step referred to the definition of the criteria 

attributes, which were applicable to two scenarios: Scenario 1 (S1), focusing on environmental 

and water-saving assessment in relation to irrigation performance, and Scenario 2 (S2), 

addressing the benefit and economic assessment associated with farmers' economic 

perspectives. For S1, the following criteria attributes were considered (Fernández et al., 2020; 

Pereira et al., 2012): 

• Irrigation water use (IWU, m3 ha-1), representing to the total or gross irrigation 

applied each season. 

• Water use efficiency (WUE, dimensionless), calculated as the ratio of ETa to the 

sum of IWU and precipitation (P). 
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• Crop water productivity (WPc, kg m-3), given by the ratio of the actual marketable 

yield (Y) to ETa. 

• Irrigation water productivity (WPi, kg m-3), calculated as the ratio of Y to IWU. 

For S2, the criteria attributes were the following (Fernández et al., 2020; Pereira et al., 

2012): 

• Land productivity (LP, kg ha-1), corresponding to Y. 

• Economic land productivity (ELP, € ha-1), representing the value of Y in current 

prices. In this study, maize yield was 0.26 € kg-1 following market prices in 2022. 

• Economic crop water productivity (EWPc, € m-3), given by the ratio of ELP and 

ETa. 

• Economic irrigation water productivity (EWPi, € m-3), calculated by the ratio 

between the ELP and IWU. 

The second and third steps in Phase 2 involved creating a payoff matrix that put together 

alternatives (total of 40 results from both farmers and models for each season) against attributes 

(environmental and economic indicators). The last step in Phase 2 involved defining the utility 

function (Uj) for each attribute value (xj) considered in criterion j using a linear model 

(Darouich et al., 2012; Gonçalves et al., 2011a; Saaty, 1977), as follows: 

 

Uj(xj) = αj xj + β
j
          Equation 36 

where α is the slope’s function, and β is the utility value of Uj(xj) for a null value of the 

attribute. In this function, Uj is normalized from 0 to 1; 0 corresponds to the most adverse 

condition, while 1 signifies the most advantageous result. As commonly observed in irrigation 

studies (Darouich et al., 2017; Miao et al., 2018) the slope α is negative (Figure 7.2-3b) for 

criteria associated with water savings (IWU) and positive (Figure 7.2-3a) for the water 

productivities, WUE, and economic criteria. 
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Figure 7.2-3 Linear utility functions relating two points of type a) “more is better” and b) “more is worst” 

In Phase 3, a pay-off matrix of the alternatives verse utilities of each criterion (normalized 

environmental and economic indicators) was established. Phase 4 started by pre-analyzing all 

set of alternatives to eliminate unsatisfactory results. The viable alternatives were then 

subjected to outranking. Outranking methods are based on multiple comparisons of the type: 

"does Measure A outrank Measure B from the point of view of the environmental or economic 

criterion?” (Roy and Vincke, 1981; Simpson, 1996; Vetschera, 1986; Vincke, 1992). Among 

various available methods, the Linear Weighted Sum (LWS) (Pomerol and Barba-Romero, 

2000) was used. LWS has the advantage of simplicity, facilitating a clearer understanding of 

the procedures and results. However, a drawback lies in the full compensatory assumption of 

the LWS method, meaning any criterion with lower results can be compensated by another one 

with better results. 

In this method, a global utility value (U) is computed for each alternative by integrating 

the utilities of the different criteria attributes using weights that are assigned to reflect users’ 

priorities (Darouich et al., 2017, 2012, 2014; Gonçalves et al., 2011a, 2011b; Saaty, 1977), as 

follows: 

 

 U = ∑ λj Uj(xj)
n
j=1          Equation 37 

where U is the global utility (scaled from 0 to 1), n is the number of criteria attributes 

(n=8), and λj is the corresponding attribute weight. In this study, criterion weights aimed to 

emphasize the environmental and economic perspectives. Table 7.2-3 presents the weights 

assigned to attributes for water saving and economic result priorities. These were used in Phase 

5 to compare global utilities and rank alternatives by building the prioritization scenarios. S1 

U, Value

X, AttributeX, Attribute

U, Value

XmaxXmin

1

0
slope = Mk

Xmax
Xmin

1

0

slope = Mj
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assumed a 90% weight for water saving results and 10% for farm economic results. S2 was the 

opposite, assuming 10% weight for water saving results and 90% for farm economic results. 

Table 7.2-3 Criteria attributes, utility functions, and criteria weights 

7.3 Results and discussion 

7.3.1 Environmental and economic indicators 

Figure 7.3-1 presents the environmental and economic indicators computed for each plot 

based on the outputs derived from irrigation schedules adopted by farmers or recommended by 

the MOHID-Land model for the 2019 and 2022 growing seasons. Plots are designated from P1 

to P20, with the letters F and M representing results from farmers and the model, respectively. 

Figure 7.3-1a shows model alternatives for WUE ranging from 0.60 to 0.73 in 2019 and 

0.53 to 0.74 in 2022. Correspondingly, the results from farmers showed a wider dispersion in 

both seasons, varying from 0.46 to 0.84 in 2019 and 0.42 to 0.86 in 2022. Moreover, except for 

a few plots (P2, P3, and P17), WUE values computed from farmers results were generally lower 

during the average (wetter) season of 2022 than the drier season of 2019. They were also 

generally lower than the WUE values computed from model results. Therefore, despite 

relatively high and comparable WUE values during the dry season, Figure 7.3-1a highlights 

some challenges farmers face in incorporating precipitation forecasts, whether provided by 

IrrigaSys or other sources, into their irrigation scheduling during the wetter season. 

Figure 7.3-1b indicates that IWU values from both farmers and the model were relatively 

close, averaging 7800 and 8650 m3 ha-1 in 2019 and 7940 and 7800 m3 ha-1 in 2022, 

respectively. IWU values from farmers being higher than those recommended by the model 

during the average (wetter) season aligns with the earlier observation regarding the challenges 

Criteria attributes (x) Symbol Units 
Weights (λj) assigned to 

two scenarios 
Utility functions  

 

   S1 S2  

Economic productivity   10 90  

Land productivity LP kg ha-1 3 30 U(x) =5.75E-5 – 0.46 

Economic land 
productivity 

ELP € ha-1 3 30 U(x) = 1.1E-4 x – 0.22 

Economic crop water 
productivity 

EWPc € m-3 2 15 U(x) = 0.690 x – 0.41 

Economic irrigation water 
productivity 

EWPi € m-3 2 15 U(x) = 0.769 – 0.31 

Water saving   90 10  

Irrigation water use IWU m3 ha-1 25 3 U(x) = 1− (1.4E-4 x − 0.42) 

WUE (ETa/(IWU+P)) WUE Ratio 25 3 U(x) = 1.18 x − 0.29 

Crop water productivity WPc kg m-3 20 2 U(x) = 0.263 x – 0.63 

Irrigation water 
productivity 

WPi kg m-3 20 2 U(x) = 0.53 x – 0.89 
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of assimilating weather forecasts into irrigation schedules. Larger differences between IWU 

values from farmers schedules and those recommended by the model were noticed in P2, P3, 

and P16 in 2019, and P2 and P3 in 2022. Because WUE values in these plots are comparable 

to others, these differences may be explained by the contribution of upward water fluxes from 

a shallow groundwater table to the soil water balance. As reported by Cameira et al. (2003) and 

Ramos et al. (2017), capillary fluxes may constitute a significant component of the soil water 

balance in certain locations of the Vale Sorraia irrigation district, contributing up to 45% of 

crop evapotranspiration. However, IrrigaSys does not consider such fluxes because modelling 

the groundwater table requires a regional approach, while the service uses a one-dimensional 

plot-scale model for computation of the soil water balance. Therefore, farmers' performance, 

for example in plots P2 and P16, appears to outperform the IrrigaSys service. 

Figure 7.3-1b further shows the WPc and WPi values computed from farmers and model 

results. It should be noted that yields were estimated in both cases using the MOHID-Land 

model while assuming the irrigation schedules defined by farmers or those recommended by 

the model. Therefore, farmers' results reflect solely the impact of the irrigation schedule on 

crop yields and do not account for the effect of pests and diseases on crop yields that eventually 

occurred during the two studied seasons. Farmers’ consumptive WPc values ranged from 2.75 

to 4.08 kg m-3 in 2019 and 2.47 to 4.22 kg m-3 in 2022. These values are comparable to those 

reported in Ramos et al. (2017) for maize grown in the same region (2.71-2.73 kg m-3). Model’s 

optimized schedules returned similar values, ranging from 2.71 to 4.08 kg m-3 in 2019 and 2.74 

to 6.12 kg m-3 in 2022. However, average WPc values notably differed in the average (wetter) 

season, with farmers' results averaging 3.66 kg m-3, while the model reached an average of 4.19 

kg m-3. Similar findings were observed for WPi (1.71-3.34 kg m-3), despite yielding smaller 

values than WPc. Nonetheless, values were within the WPi range reported by Paredes et al. 

(2014c)) for the same crop and region. 

Lastly, Figure 7.3-1c presents the land productivity and economic indicators computed 

for the study plots. In 2019, LP values in farmers' results varied from 8 to 20 Mg ha-1. However, 

only results from P16 stand out from the others, being abnormally low. As previously 

hypothesized, this low LP may have resulted from not considering the contribution of 

groundwater flows to the root zone when computing the soil water balance, with actual yield 

values being substantially higher than estimated here. In this case, model parametrization in 

this plot should be reevaluated. Alternatively, the lower LP value could reflect some 

mismanagement of irrigation water during that season, as the same was not observed in 2022. 
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In this year, farmers’ LP values were found to be within the 16 to 20 Mg ha-1 range. The same 

was observed for the model's LP values in both seasons, despite some high values (>23.5 Mg 

ha-1) estimated in five plots for 2022. These higher yields can be attributed to farmers choosing 

longer crop cycle, and more productive varieties of maize in that year. 

EWPc and EWPi trends naturally aligned with the yield variations observed between plots 

and seasons (Figure 7.3-1c). EWPc values computed from farmers' results ranged from 0.72 to 

1.06 € m-3 in 2019 and 0.64 to 1.10 € m-3 in 2022. The corresponding values computed from 

model results were similar for 2019, and again higher for 2022 (0.71-1.59 € m-3). Similar 

findings and interpretations can be applied to the EWPi values, with farmers' values ranging 

from 0.48 to 0.78 € m-3 in 2019 and 0.44 € m-3 to 0.71 in 2022. Nonetheless, all reported values 

were found to be higher than the EWPc (0.29-0.51 € m-3) and EWPi (0.31-0.69 € m-3) values 

reported in Paredes et al. (2014c)) for the same crop and region, which can be explained by the 

lower commodity price of maize (0.21 € m-3) at the time of that study compared to today's 

prices (0.26 € m-3). 
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Figure 7.3-1 Farmers versus model alternatives during the growing seasons of 2019 and 2022 relative to: a,b) 

water use efficiency (WUE, ratio); c,d) gross irrigation water use (IWU, m3 ha-1), and crop and irrigation water 

productivities (WPc, WPi, kg m-3); and e,f) land productivity (LP, €∙ha−1), economic crop. and irrigation water 

productivities (EWPc, EWPi, € m-3). 

7.3.2 Results of multicriteria analysis 

The global utilities (U) characterizing farmers and model alternatives when priorities are 

assigned to water saving (S1) or farm economic returns (S2) during 2019 and 2022 are 

presented in Figure 7.3-2. In the water-saving S1 scenario, farmers' U values varied from 0.21 

to 0.55 in 2019 and from 0.16 to 0.45 in 2022. The corresponding model U values ranged from 

0.23 to 0.38 in 2019 and from 0.26 to 0.55 in 2022. The results clearly indicate that farmers' 

performance during the dry season (2019) approached or even surpassed model performance 

in most fields. This means that, during the dry season, farmers, in general, adopted irrigation 

schedules deemed comparable to those optimized by the physically based model. The reasons 

for surpassing model results in some plots were previously discussed and refer to challenges 
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associated with incorporating upward fluxes from the groundwater table in the one-dimensional 

modeling of the soil water balance, as implemented in IrrigaSys. 

During the wetter season of 2022, farmers' U values consistently fell below those of the 

model, highlighting the difficulties in integrating dependable information from precipitation 

forecasts into decision-making processes. The relevance of this information for computing the 

soil water balance increases with the earlier sowing dates, which, depending on the farmer and 

season, may vary in the region from April to July. Hence, it appears that the most crucial factor 

for increasing the efficient use of water in the region is reliable precipitation forecast 

information. Regarding other factors considered in this analysis, farmers demonstrate an 

acceptable level of knowledge in terms of irrigation scheduling and irrigation water 

management. However, as demonstrated by Linker et al. (2018), who assessed the quality of 

current weather forecasts, including those for the Sorraia Valley region, precipitation forecasts 

exhibited significant shortcomings at the locations studied by those authors. This inadequacy 

was observed not only in terms of predicting rain amounts but also in predicting rain/no rain 

events. 

Relative to farmers' economic returns S2 scenario, farmers' U values varied from 0.12 to 

0.43 in 2019 and from 0.24 to 0.38 in 2022. The corresponding model U values ranged from 

0.26 to 0.41 in 2019 and from 0.24 to 0.65 in 2022. The results were highly consistent in both 

years, indicating that farmers achieved economic returns comparable to those obtained by 

following the model's recommendations. It is crucial to reiterate that yield estimates in farmers' 

applications do not incorporate the impacts of pests, diseases, or other transient stresses. These 

estimates solely reflect the effects of water stresses resulting from non-optimal irrigation 

schedules on transpiration rates and, consequently, on yields. The actual yield values 

undoubtedly varied from the estimates considered here, which are contingent solely upon 

irrigation schedules. Economic indicators also did not account for variable costs (e.g., 

operation, maintenance, labor, energy) that certainly differed from one plot to the other. 

However, from a water management perspective, both farmers and the model exhibited 

equivalent performances. 

Lastly, Table 7.3-1 ranks the first best 20 alternatives based on water-saving and 

economic returns priorities. The table confirms that in the dry year of 2019, farmers' 

applications proved to be feasible and effective solutions concerning water conservation and 

economic considerations. Additionally, model solutions exhibited progress in ranking, securing 

the 6th and 3rd positions for S1 and S2, respectively. The top common applications for farmers 
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in both S1 and S2, ranked among the best 10, were P17, P5, and P6. Conversely, for model 

applications, P15 emerged as the most common choice. 

In 2022, model solutions took the lead in the rankings showing superiority in both 

scenarios S1 and S2, having P1, P7, P8, P11, and P12 in the first top rank order when the 

priority is assigned to water saving, while a set of plots of P1, P5, P7, P8, P11 and P12 shows 

high ranking order when the priority is assigned to economic return. Some of these best 

common applications show up as good options for both S1 and S2. However, farmers also 

present viable and satisfactory solutions, such as P9, which is applicable in both scenarios. In 

general in S2, without including the abnormal values of yield (>23.5 Mg ha-1) simulated in 5 

plots in 2022, farmers and models applications show very similar results for both seasons, and 

the differences in ranking are very small. In S1, the difference is larger, with farmers' solutions 

showing superiority compared to model applications in some plots.  

 

Figure 7.3-2 Global utilities, U, for farmers versus model alternatives, when prioritizing water conservation (a, b) 

or economic returns (c, d) during the growing seasons of 2019 and 2022. 

 

Table 7.3-1 . Ranking of the best 20 alternative solutions for water saving and economic priorities in 2019 and 

2022. 

 2019 2022 

Alternatives 
Water 

priority (S1) 

Economic 

priority (S2) 

Water 

priority (S1) 

Economic 

priority (S2) 

1 F_P2 F_P5 M_P7 M_P12 

2 F_P16 F_P17 M_P8 M_P11 
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 2019 2022 

Alternatives 
Water 

priority (S1) 

Economic 

priority (S2) 

Water 

priority (S1) 

Economic 

priority (S2) 

3 F_P17 M_P14 M_P11 M_P1 

4 F_P3 M_P5 M_P12 M_P7 

5 F_P5 M_P15 M_P1 M_P8 

6 M_P9 F_P15 F_P9 M_P5 

7 F_P6 F_P6 F_P17 F_P9 

8 M_P8 M_P6 F_P2 M_P18 

9 M_P15 M_P8 F_P3 M_P17 

10 F_P7 F_P14 F_P7 F_P5 

11 M_P6 M_P17 M_P17 M_P6 

12 F_P12 F_P8 M_P15 M_P15 

13 F_P19 F_P7 M_P6 M_P16 

14 M_P17 F_P19 M_P13 M_P9 

15 M_P16 M_P7 M_P5 F_P7 

16 M_P1 M_P1 M_P16 M_P13 

17 M_P5 M_P19 M_P9 F_P6 

18 M_P14 F_P1 M_P19 F_P18 

19 M_P19 M_P16 F_P10 M_P19 

20 M_P7 F_P2 M_P18 F_P15 

7.4 Conclusions 

This study aimed to conduct a post-evaluation of IrrigaSys, a DSS that facilitated farmers' 

decision-making regarding irrigation scheduling in the Sorraia Valley irrigation district in 

Southern Portugal from 2017 to 2022. This post-evaluation primarily focused on comparing 

farmers' performance with recommendations generated by the model running the DSS. The 

comparison was conducted using a set of environmental and economic indicators, employing 

a multicriteria analysis approach. 

Although it cannot be directly assumed that farmers strictly adhered to the system, the 

results of the MCA unequivocally demonstrate that farmers demonstrated a commendable level 

of expertise in irrigation scheduling, closely aligning with the environmental and economic 

indicators derived from model's recommendations, particularly during the dry season. 

However, in a wetter season, a noticeable disparity emerged between farmers and model 

indicators, primarily due to the difficulties associated with incorporating reliable information 

from precipitation forecasts into the decision-making process. Addressing this challenge 

appears to be the key factor for enhancing the future utilization of IrrigaSys. 
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8. General conclusions 

 

The primary objective of this thesis was to develop a tool aimed at assisting decision-

makers in enhancing water use efficiency at the plot scale, particularly focusing on irrigated 

agro-ecosystems in southern Portugal. This goal was achieved through the creation of the 

IrrigaSys Decision Support System (DSS). 

Additionally, another key objective was the calibration of the MOHID Land model for 

various crops. This objective was accomplished by calibrating the main crops of the Sorraia 

Valley region, which included maize, pasture, and vine. 

Furthermore, the thesis aimed to assess the utilization and impact of remote sensing, 

specifically LAI (Leaf Area Index) data, on model simulations. This was accomplished by 

evaluating the effects of LAI data assimilation on simulations related to soil water balance and 

maize development. Additionally, the study explored the potential of using vegetation indices 

to validate crop transpiration fluxes, with a specific application to vineyards. 

The final chapter of the thesis also aimed to conduct a post-evaluation of IrrigaSys, a 

DSS that facilitated farmers' decision-making regarding irrigation scheduling. 

In summary, the thesis addressed the following objectives: 

Development of the IrrigaSys DSS to improve water use efficiency in irrigated agro-

ecosystems. 

Calibration of the MOHID Land model for key crops in the Sorraia Valley. 

Assessment of the impact of remote sensing data (LAI) on model simulations, including 

LAI data assimilation effects and vegetation index utilization for validating crop transpiration 

fluxes, applied to vineyards. 

 

These analyses allowed, therefore, answering the following questions: 

Can a distributed model like the MOHID-Land model be used for irrigation water 

management? 

The MOHID-Land model has been utilized for various aspects of irrigation water 

management in different agricultural scenarios. The model demonstrates its capability to 

simulate soil water dynamics, biomass growth, and plant development in different types of 

ecosystems, including maize, pastures, and vineyards, located in different regions of Portugal. 

In the Sorraia Valley region, the MOHID-Land model was used to simulate soil water 

dynamics and maize development. The model's estimations of soil water content, leaf area 
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index (LAI), canopy height, aboveground biomass, and maize yields were found to be in good 

agreement with field data. The study indicated that the irrigation scheduling practices could be 

improved by considering soil water holding capacity and groundwater contributions, leading 

to increased water productivity and more efficient irrigation practices. 

Similarly, in southern Alentejo, the model simulated soil water dynamics and pasture 

development. The model took into account climate variability and demonstrated the impact of 

irrigation on biomass production. Irrigation was shown to play a significant role in biomass 

growth, with transpiration values increasing considerably under irrigation. However, it also 

highlighted the inefficiencies in water use, where a significant portion of soil water was lost to 

non-beneficial evaporation instead of being converted into biomass. 

Furthermore, the MOHID-Land model was applied to a vineyard ecosystem, replicating 

measured soil water content values and providing insights into irrigation-induced water stress 

and evaporation dynamics. Although the model's calculation of actual evaporation is a 

simplified formulation, its overall performance in modeling soil water dynamics for a 

permanent crop like a vineyard was considered acceptable. 

The MOHID-Land model's capabilities extend to providing valuable information for 

decision support systems like IrrigaSys, aiding farmers in making informed irrigation choices. 

These instances collectively demonstrate the model's potential as a useful tool for establishing 

irrigation policies, optimizing irrigation practices, and improving water management in various 

agricultural settings. 

However, it's important to note that the model's success is largely contextual and 

dependent on the specific characteristics of the ecosystems and regions being studied. Different 

soils, climates, and crops may require adjustments and validations to ensure accurate results. 

 

Can a decision support system (DSS) function with the MOHID-Land model as its 

core system? 

Irrigasys decision support system (DSS), was designed to support irrigation water 

management at the field plot scale. The system relies on various inputs such as location, crop 

type, soil texture, irrigation system characteristics, and more, to generate optimized irrigation 

schedules and provide additional information like soil water balance, weather forecasts, and 

satellite images. 

The DSS works with the MOHID-Land model as its core system. IrrigaSys DSS is 

integrated with the MOHID-Land model, and integrating a DSS with a specific model like 
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MOHID-Land depends on various factors like: compatibility, data-exchange, calibration and 

validation, user experience, performance and reliability, and maintenance. IrrigaSys and the 

MOHID-Land model and their data inputs, outputs, and processing methods of both systems 

are compatible. IrrigaSys and MOHID-Land work with similar data types or share common 

data. The interface is designed to facilitate data exchange between the two systems. MOHID-

Land was calibrated and validated for several crops and scenarios. Other crops and locations 

might need to require adapting or recalibrating to ensure accurate results within the context of 

irrigation management. Irrigasys offers an attractive interface to deal with the input data to 

MOHID-Land but also to visualize the model results. In terms of performance and reliability, 

the integration was thoroughly tested to ensure that the combined system performs reliably and 

provides accurate recommendations to users. Both IrrigaSys and MOHID-Land receive regular 

updates and improvements over time, and the integrated system has been designed to 

accommodate these updates seamlessly. 

 

Can remote sensing products be used for scaling up the DSS to plots with limited 

data availability? 

The use of remote sensing products in Decision Support Systems (DSS) for scaling up to 

plots with limited data availability can provide valuable information to improve model 

estimates and validate outputs. However, it's important to note that the effectiveness of using 

remote sensing data for such purposes is context-dependent and has its limitations. 

In the first study, the assimilation of Leaf Area Index (LAI) data from NDVI-derived 

satellite data improved certain aspects of the MOHID-Land model's performance, particularly 

during the early stages of the crop growing period. This indicates that incorporating remote 

sensing data can enhance the accuracy of model simulations, especially when there's limited 

ground-based calibration data available. However, the study also pointed out several 

limitations: 

Calibration Data Requirement: Remote sensing data assimilation was insufficient to 

improve model simulations when a crop calibrated dataset was absent. This suggests that while 

remote sensing data can enhance model performance, it cannot entirely replace the need for 

ground-based calibration data. 

Temporal Considerations: The timing of remote sensing data assimilation is crucial. 

While model uncertainty decreased when LAI assimilation was carried out closer to the end of 

the crop cycle, using remote sensing data solely during the initial stages of the crop growing 
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period led to erroneous estimates. This emphasizes the importance of selecting appropriate 

timeframes for assimilation. 

Model Complexity: The study highlights that using remote sensing data for LAI 

assimilation doesn't guarantee accurate simulations of all model outputs, such as crop 

transpiration, soil evaporation, and aboveground dry biomass. The complexity of the model 

and its various components can affect the success of data assimilation. 

The second study suggests that while remote sensing data, particularly Sentinel-2 data, 

can validate model outputs, there are nuances to consider: 

Dependence on Conditions: The relationships established between model outputs and 

NDVI were found to be dependent on experimental conditions like irrigation management and 

climate conditions. This implies that the effectiveness of using remote sensing data for 

validation can vary based on specific circumstances. 

Generalization Limitations: The study warns against generalizing the results to other 

vineyards without considering the local conditions. Variability in environmental factors can 

influence the applicability of remote sensing-based relationships across different regions. 

Use in Decision-Making: Despite the limitations, Sentinel-2 data proved useful for 

validating model outputs during irrigation decision-making. This demonstrates that remote 

sensing data can provide timely information to guide operational choices, even without 

extensive calibration datasets. 

In both studies, it's evident that while remote sensing data can be a valuable tool for 

improving and validating models within a DSS framework, they are not a standalone solution. 

They need to be used in conjunction with other data sources and considerations, and their 

application must be tailored to the specific context and conditions of the study area. 

Additionally, model calibration and validation remain crucial components of ensuring accurate 

and reliable DSS outcomes. 

A post-evaluation of IrrigaSys was conducted, primarily focused on comparing farmers' 

performance with recommendations generated by the model running the DSS. The comparison 

used a set of environmental and economic indicators, employing a multicriteria analysis 

approach. The results of the MCA demonstrate that farmers demonstrated a commendable level 

of expertise in irrigation scheduling, closely aligning with the environmental and economic 

indicators derived from the model's recommendations, particularly during the dry season. 

However, in a wetter season, a noticeable disparity emerged between farmers and model 
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indicators, primarily due to the difficulties associated with incorporating reliable information 

from precipitation forecasts into the decision-making process.  

All the investigation done here for this thesis shows the usefulness and versatility of using 

a DSS and more specifically, using Irrigasys DSS as a water management tool at a plot scale 

in order to respond to the increase of water demand and withdrawals that have been building 

up the pressure on freshwater resources. 

Taking into account the results, these kinds of tools are essential for water management 

at plot scale and can also be in the future used in other scales and in a water basin management 

tool. The major strength results from the close cooperation between the academy and a local 

Water Board during its development. On the other hand, the complexity of the DSS core engine 

as well as the inherent difficulties in calibrating/validating model parameters for all case 

scenarios constitutes a major weakness. IrrigaSys needs thus to continue being developed to 

overcome such limitations and become a more trustworthy tool in irrigation water management. 

Related to the use of remote sensing, this technology can provide valuable information 

for hydrological modeling at the field and regional scales by better characterizing the spatial 

and temporal variability of soils, land uses, and climate, which otherwise are difficult to 

portray. The studies showed that data derived from satellites can provide valuable 

information to improve model estimates and validate outputs. However, it's important to note 

that the effectiveness of using remote sensing data for such purposes is context-dependent and 

has its limitations. 

Also, it is important to mention the importance of taking into consideration the 

uncertainties that may be associated with the models, data, and implementation of DSS’s it’s 

not always an easy task to quantify. Besides that, this tool remains quite effective given its 

simplified and integrative approach in the study of complex processes of nature such as those 

occurring in soils related water balance leaching, among others. 

Some specific recommendations for improving the use of DSSs for irrigation water 

management can include making DSSs more user-friendly and easier to use, developing DSSs 

that are tailored to the specific needs of farmers in different regions, improving the accuracy of 

DSS outputs by using better quality input data and conducting more research on the use of 

DSSs for irrigation water management. This can make DSSs a more effective tool for irrigation 

water management and help to improve water productivity and sustainability in agriculture. 

Further advancements are needed for the reimplementation of IrrigaSys in the Sorraia 

Valley region. Specifically, attention should be directed toward addressing the outdated process 
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of gathering information on irrigation applications in different plots through surveys. 

Numerous solutions, particularly those utilizing remote sensing data, are now accessible for 

automatically collecting this information. This use of remote sensing automatically should be 

tested, validated, and integrated into the system. 

Big data analytics can revolutionize agriculture by empowering farmers to make well-

informed irrigation decisions. Through the analysis of vast datasets comprising historical 

weather patterns combined with past irrigation behaviors, yearly reports generated from this 

data can highlight the significant water conservation achieved. This tangible evidence 

underscores the benefits of data-driven decision-making. Moreover, by comparing these 

outcomes with traditional methods, the effectiveness of the analytics model becomes apparent, 

fostering the adoption of more sustainable farming practices.  

Future research into the integration of machine learning in agriculture should focus on 

the integration of ensemble models and machine learning techniques can bring a significant 

advancement in irrigation services. Ensemble models, which combine multiple predictive 

models to improve accuracy, can be particularly effective in forecasting water demand and 

availability, thus optimizing irrigation schedules. Machine learning algorithms can analyze vast 

amounts of data from sensors and weather stations to predict optimal irrigation times and 

quantities, leading to more efficient water use and potentially higher crop yields. Together, 

these technologies can revolutionize irrigation practices, making them more responsive to 

environmental conditions and reducing waste. 

These research directions have the potential to advance the field, resulting in agricultural 

systems that are more sustainable, efficient, and resilient. 

The research presented in this thesis has the potential to contribute to the improvement 

of irrigation water management in agricultural settings. The findings of this research can be 

used to develop more accurate and reliable DSS for irrigation water management. This can help 

farmers to make more informed irrigation decisions, leading to increased water productivity 

and improved water management practices. 
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