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Resumo

A formação de gelo nas aeronaves representa uma grande ameaça para a aviação em geral. A

acumulação de gelo nas superfı́cies das aeronaves, especialmente asas e cauda, pode levar a uma

diminuição da sustentação, aumento do arrasto, perda de eficácia do controlo, e degradação geral do

desempenho. Esta acumulação de gelo ocorre devido à presença de gotı́culas de água lı́quida a tem-

peraturas negativas. Por este motivo, o desenvolvimento e melhoria dos algoritmos capazes de prever

as condições favoráveis à formação de gelo são de grande importância.

Esta dissertação visa aumentar os conhecimentos sobre o ambiente propı́cio à formação de gelo

na região da Europa Ocidental. Para o efeito, foram analisados 27 relatos de pilotos (PIREPs) de

eventos de formação de gelo (19 eventos moderados e 8 eventos severos). Estes dados são compara-

dos com as previsões de variáveis atmosféricas relevantes correspondentes feitas por um modelo de

Previsão Numérica do Tempo (PNT). Este conhecimento é útil para melhorar os algoritmos utilizados

para este fim. Estes algoritmos usam funções de associação, que combinam várias variáveis previstas

pelos modelos de PNT, para prever a formação de gelo nas aeronaves. Além disso, um novo algo-

ritmo é comparado com duas outras alternativas: uma que está atualmente operacional em Portugal,

desenvolvida pelo Instituto Português do Mar e da Atmosfera (IPMA), e a outra implementada no Reino

Unido. Esta comparação é feita usando tabelas de contingência construı́das para os três algoritmos

para limiares especı́ficos, e a respetiva avaliação objetiva.

Palavras-chave: Formação de gelo nas aeronaves, algoritmo baseado em PNT, funções de

associação, PIREP, tabelas de contingência, verificação objetiva
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Abstract

Aircraft icing poses a great threat to aviation in general. Ice accumulation on aircraft surfaces, es-

pecially wings and tail, can lead to a decrease in lift, increase in drag, loss of control effectiveness,

and overall performance degradation. This ice accumulation occurs due to the presence of liquid water

droplets at sub-freezing temperatures. For this reason, the development and improvement of algorithms

capable of forecasting icing conditions are of great importance.

This dissertation aims at increasing the knowledge about the aircraft icing environment in the West-

ern European region. For that purpose, 27 Pilot Reports (PIREPs) of icing events (19 moderate events

and 8 severe events) were analyzed. These data are compared with the corresponding forecasts of

important atmospheric variables from a Numerical Weather Prediction (NWP) model output. This knowl-

edge is helpful to improve the icing algorithms based on membership functions that use NWP model

outputs to predict aircraft icing. Moreover, one new algorithm is compared with two other alternatives:

one that is currently operational in Portugal, developed by IPMA, and the other implemented by the

Met Office in the UK. This comparison is made using contingency tables derived from the three icing

algorithms for specific thresholds, and the respective scores.

Keywords: Aircraft icing, NWP based algorithm, membership functions, PIREP, contingency

tables, objective verification
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Chapter 1

Introduction

Since the first days of the civil aviation industry, one of the main concerns has been safety. In the

past few decades, a lot has been done in terms of regulations, procedures, training and technology

development to improve safety. Despite this, there are always factors impossible to control that affect

flight safety, such as meteorological conditions. In the period from 1967 to 2010, the weather was the

primary cause of the growing percentage of annual aircraft accidents. Moreover, most of the weather-

related accidents occur in latitudes between 12◦ and 38◦ N/S (Mazon et al. [1]). In particular, aircraft

icing is responsible for around 7, 10 and 9% of the weather-caused accidents in the climb, approach and

landing phases respectively (Mazon et al. [1]) Therefore, the aviation sector has access to global gridded

forecasts of major meteorological hazards to aviation, including in-flight icing (ICAO [2]), allowing aircraft

to avoid hazardous environments. These forecasts are produced routinely by two World Area Forecast

Centres (WAFC), known as WAFC London and WAFC Washington, operated by the Met Office and the

United States National Weather Services (NWS), respectively (Bowyer and Gill [3]). These forecasts

rely on the outputs of NWP models. In this thesis, the discussion revolves around NWP model outputs

used to infer aircraft icing.

1.1 Motivation

Aircraft in-flight icing is defined as ice accretion on the airframe during flight. Ice accretion occurs

in the presence of liquid water droplets at sub-freezing temperatures, which are most frequent in the

range of -20◦C to 0◦C (Sand et al. [4]; Schultz and Politovich [5]), but have also been observed at

temperatures down to -37.5◦C in deep convective clouds (Rosenfeld and Woodley [6]). Icing conditions,

and the consequent ice accretion, have a negative impact on overall aircraft performance and control,

by increasing drag and weight and decreasing lift (Petty and Floyd [7]). For these reasons, aircraft

in-flight icing remains to this date one of the greatest threats to aircraft operations. According to the

study conducted by Green [8], in the US alone, from January 1978 to December 2002, there were 645

icing events with aerodynamic consequences for the aircraft registered in National Transportation Safety

Board (NTSB) and Federal Aviation Administration (FAA) databases.
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Meteorological Watch Offices (MWO) are responsible for maintaining continuous watch over mete-

orological conditions affecting flight operations within its area of responsibility. Moreover, MWO are re-

sponsible for preparing and disseminating Significant Meteorological Information (SIGMETs)1 (Airman’s

Meteorological Information (AIRMETs)2) when severe (moderate) icing occurred, or is expected to occur

(ICAO [2]). In particular, IPMA, as a MWO, is responsible to perform these tasks for two Flight Informa-

tion Regions (FIR): Lisbon (EUR Region) and Santa Maria Oceanic (NAT Region), which cover an area

of about 6 million km2 (see Figure 1.1).

Although it is true that de-icing equipment has undergone tremendous improvements in recent years,

the best way to prevent incidents and accidents related to icing events is to avoid the areas where icing

is known to be occurring or may occur (Dillingham [9]). For these reasons, algorithms based on NWP

models are extremely important for forecasting the areas where icing is likely to occur.

Figure 1.1: FIR of Lisbon and Santa Maria Oceanic.

1.2 Topic Overview

Algorithms used to infer aircraft icing are still to this day a work in progress. The early algorithms

were based on simple atmospheric variables like Temperature (T), and Relative Humidity (RH) which,

through various methods, made possible the forecasting of icing conditions (Schultz and Politovich [5],

Thompson et al. [10]). However, an inter-comparison study made by Thompson et al. [10] showed that,

although these algorithms have a considerably high Probability of Detection (POD), they tend to over

forecast the extent of the icing areas.

1SIGMET information. Information issued by a meteorological watch office concerning the occurrence or expected occurrence
of specified en-route weather and other phenomena in the atmosphere that may affect the safety of aircraft operations.

2AIRMET information. Information issued by a meteorological watch office concerning the occurrence or expected occurrence
of specified en-route weather phenomena that may affect the safety of low-level aircraft operations, and which was not already
included in the forecast issued for low-level flights in the flight information region concerned or sub-area thereof.
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To address this issue, icing algorithms have become more complex over the years. Recent algorithms

include information from Cloud Liquid Water Content (CLWC) or Total Cloud Water (TCW), satellite and

radar observations, and Pilot Reports (PIREPs). One such example is the Current Icing Potential (CIP)

algorithm developed at the National Centre for Atmospheric Research (NCAR) described by Bernstein

et al. [11] that applies fuzzy logic and decision three logic to ”estimate the potential for the presence of

supercooled liquid water and supercooled large droplets within a given airspace”, which is a necessary

condition for ice accretion to take place. Later, a forecast algorithm called Forecast Icing Potential (FIP)

was developed at NCAR based on the CIP approach (Mcdonough et al. [12]). This allowed meteorolo-

gists to forecast the icing potential in certain areas instead of diagnosing them as was done by the CIP

algorithm.

More recently, Belo-Pereira [13] at IPMA, Portugal, developed a simplified version of the FIP algo-

rithm, called SFIP, which is based on the combination of fixed membership functions for each NWP

model output. Afterwards, this algorithm was adapted at the Met Office (Morcrette et al. [14]). These two

versions of the Simplified Forecast Icing Potential (SFIP) will be discussed further on the next sections.

1.2.1 Ice Accretion

Ice accretion takes place in the presence of liquid water at subfreezing temperatures, as said be-

fore. Water droplets in these conditions are called supercooled droplets and have been observed in

stratiform clouds (Cober et al. [15]), lenticular clouds (J. and Miloshevich [16]), cumulus clouds (Isaac

and Schemenauer [17]) and deep convective clouds (Rosenfeld and Woodley [6]). Radiometer and lidar

measurements showed that supercooled water clouds are mostly observed over the ocean near the

storm-track regions and over land rarely occur between 40◦S and 40◦N (Hu et al. [18]). Supercooled

droplets often appear as a thin layer at the cloud tops (Rauber and Tokay [19]). This layer was shown to

be approximately 30 m deep by Cooper and Vali [20].

Rauber and Tokay [19] tried to find an explanation for the existence of water in these conditions at

the upper levels of clouds. Their studies showed that ”Supercooled water develops within a parcel of

air containing ice crystals when the relative humidity with respect to water exceeds saturation and the

condensate supply rate exceeds the bulk ice crystal mass diffusional growth rate”. In other words, super-

cooled water develops when the air is supersaturated with water vapor and the rate at which this vapor

condensates surpasses the rate at which ice crystals can grow within a certain parcel of air. Another

conclusion of Rauber and Tokay [19] studies is that one important factor for the development of this liquid

layer is the existence of updrafts. The required intensity of these updrafts increases as the temperature

decreases.

According to Schultz and Politovich [5], upon contact of supercooled water droplets with an aircraft’s

aerodynamic surface, two scenarios are possible. In the first, the supercooled water droplets freeze

immediately, creating a layer of rough and opaque ice, known as rime icing. Generally, this type of ice

3



does not pose a great threat because it has poor adhesion to the airframe and can be easily detected.

The second scenario occurs when the droplets spread on impact and freeze afterward, forming glacier

ice on the airframe. This type of icing is called clear icing and is associated with larger droplets in an

environment with higher supercooled water content. Clear icing alters the shape of the airfoil the most,

and, so, is the most dangerous form of icing (Hansman [21]). If the aircraft continues to fly in these

conditions, this layer tends to grow from leading edges and over upper and lower surfaces towards the

trailing edges. In certain conditions both forms of icing can develop in a process called mixed icing. In

the next subsection the aerodynamic consequences of ice accretion processes are discussed.

1.2.2 Aerodynamic Impact

The accumulation of ice on the aerodynamic surfaces of an aircraft alters the shape of said surfaces,

thus altering their aerodynamic performance usually by decreasing lift and increasing drag. In the case

of ice accumulation on control surfaces this can mean the decrease or loss of control effectiveness (Cao

et al. [22]).

The changes in the airfoil shape also tend to increase the stall speed of the aircraft which, combined

with the loss of control effectiveness mentioned, can have catastrophic consequences. This is why it is

important to provide airplanes with envelope protection systems in order to ensure that it is flown within

its limits in icing conditions and to train pilots to deal with these situations.

To quantify the aerodynamic impact of icing, Politovich [23] at NCAR conducted a series of flights over

some areas of the United States (Northeastern Colorado, Northern California and Northern Arizona)

with an instrumented research King Air 200T aircraft. After analyzing the data they concluded that the

maximum lift decrease was 35% and the maximum drag increase was 230% of the value in the same

conditions but in the absence of ice accretion. They also detected a reduction of climb capability of 6.9

m/s. These values depict very well the dangers of aircraft icing and justify the need for continuing the

development of better icing algorithms.

1.3 Objectives and Deliverables

The main objective of this thesis is to increase the knowledge about the icing environment in the

Western European region. This knowledge is helpful to improve the icing algorithms based on mem-

bership functions (similar to the SFIP algorithm referred to in section 1.2) that uses NWP model outputs

to predict aircraft icing. The icing environment will be characterized through histograms that depict the

distribution of the most relevant atmospheric variables. This contributes to an improved setting of the

thresholds used in the membership functions. Moreover, one new algorithm will be compared with other

two alternatives: one that is being currently used in Portugal by IPMA (Belo-Pereira [13]) and the other

implemented by the Met Office (Morcrette et al. [14]), in the UK. This comparison is performed using

contingency tables for different thresholds for the value of each SFIP version.
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This work also aims at giving the reader the basics of how ice accretion on aircraft aerodynamic

surfaces takes place and its effects on these surfaces’ aerodynamic performance, and consequently, on

the aircraft operations and safety.

1.4 Thesis Outline

The remainder of this dissertation is structured in the following manner: Chapter 2 presents an

overview of the state of the art regarding icing algorithms based on NWP model outputs by present-

ing the evolution of icing algorithms throughout the years, and analysing the current algorithm used in

Portugal by IPMA and the algorithm used by the Met Office, in the UK. In Chapter 3 an explanation of

the implementation put in place to solve the problem proposed is given beginning with the clarification

of the data base, and then proceeding with the introduction of the fuzzy logic and membership func-

tions concepts, and the contingency tables and scores concepts, alongside a brief explanation. The

new algorithm’s structure is also presented in this Chapter. Chapter 4 starts with the characterization of

the icing environment with histograms showing the distribution of the atmospheric variables used in the

development of the new icing algorithm. Moreover, the membership functions used in the new algorithm

are explained and compared with the functions implemented in the IPMA algorithm. The results are then

analyzed and discussed in depth with the help of specific examples of the application of the algorithms

to events from the data base, and contingency tables derived for the three icing algorithms for specific

thresholds, and the scores attained with those tables, used to assess the ability of the three icing algo-

rithms to distinguish between moderate and severe icing. Finally, in Chapter 5 the main conclusions are

drawn, and suggestions of future work are provided.
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Chapter 2

Background

In this section, an overview of the evolution of icing algorithms and of the state of the art is made.

Moreover, the algorithms currently operational in Portugal (IPMA - SFIPPT hereafter) and in the UK (Met

Office - SFIP hereafter) are presented and explained. These algorithms will be used later to compare

results with the algorithm developed in this work.

2.1 State of the Art

As already mentioned, several aircraft icing algorithms have been developed and improved over the

last decades. In the early 90’s, Schultz and Politovich [5] developed an automated procedure based

on the outputs from a NWP model, the Nested-Grid Model (NGM), and manual techniques used by

forecasters at the time at the National Aviation Weather Advisory Unit (NAWAU). This work was done

with the help of a database consisting of a year’s PIREPs from various types of aircraft and locations

and the corresponding forecasts of temperature, relative humidity, and vertical velocity from the NWP

model. The algorithm considered two levels of icing threat defined by different thresholds of temperature

and relative humidity: Class 1 defined areas where icing is likely, given the cloud formation, considering

−20◦C < T < 0◦C and RH > 50%; Class 2 was more restrictive, as an attempt to reduce forecast

areas and, consequently, the number of false alarms, and indicated a greater threat of icing, considering

−15◦C < T < −2◦C and RH > 65%. After analyzing the results, they concluded that forecasts for Class

1 criteria were of better quality than the forecasts for Class 2, regarding the miss rate, since Class 1

criteria missed about a quarter of the PIREPs, while Class 2 criteria missed approximately 50%. They

also concluded that the algorithm performed best during winter and spring (seasons with greater icing

threat) and that there was little degradation of quality as the lead time increased. Overall, despite having

a similar miss rate as the manual procedures, the algorithm allowed for the forecasters to be liberated

from the high workload task of manually analyzing the outputs from the NGM model for the risk regions,

and opened doors for successive improvements in the quality of these types of algorithms (Schultz and

Politovich [5]).
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Bernstein et al. [11] developed the Current Icing Potential (CIP) algorithm in the late 90’s, as an im-

provement of the previous index and others of its kind. CIP became operational in 2002 as an official

product of the FAA and National Weather Services (NWS). This new algorithm took a different approach

than using hard thresholds to infer icing likelihood. This new approach considers the transition from

non-icing to icing environments as a gradual process and, therefore, it adopts the use of membership

functions to mimic this transition. In addition, CIP combines observations from satellites, radar, surface,

lightning and PIREPs with outputs from NWP models. The principal forecast variables used are temper-

ature, relative humidity, liquid water content and vertical velocity. These predictors are combined using

fuzzy logic and decision tree techniques to determine the likelihood of icing and Supercooled Liquid

Droplets (SLD) at each location. As it will be discussed in Chapter 3, fuzzy logic is able to mimic the

gradual transition from non-icing to icing environments through the implementation of membership func-

tions for each relevant forecast output. After comparing the results from the algorithm against in-flight

data from a research aircraft and PIREPs, they concluded that the CIP index provided users with accu-

rate and high-resolution estimates of icing and SLD potential (Bernstein et al. [11]).

The Forecast Icing Potential (FIP) algorithm, developed at the NCAR by Mcdonough et al. [12] (2004),

is independent of the use of observations. Therefore, it can provide forecasts of the icing potential sev-

eral hours in advance. This allows pilots and ground staff to adapt the flight plans to the levels of icing

threat further in advance, making flights safer and more efficient. The FIP algorithm uses the same

structure as the CIP algorithm, but substitutes the observations of cloud and precipitation, cloud struc-

ture and precipitation type by their forecasts for the grid points of interest, which are obtained using

other variables such as temperature, relative humidity, and Quantitative Precipitation Forecasts (QPF).

Combining these inputs using fuzzy logic and decision trees, interest maps for the icing likelihood were

built, providing a forecast of the potential for icing conditions. After analyzing the results, they concluded

that the FIP algorithm provided good quality forecasts, valuable to pilots and ground staff. However,

there was still margin for improvement regarding, for example, the implementation of an icing severity

algorithm, given that the FIP algorithm provided icing potential forecasts without information about the

severity of the icing conditions (Mcdonough et al. [12]). A similar concept was later implemented by

Gencer et al. [24] in Turkey in 2010. They developed a software based on fuzzy logic and its member-

ship functions to forecast the icing potential probability using NWP model outputs in the Turkish territory.

More recently, Belo-Pereira [13] (2015) and Morcrette et al. [14] (2019) applied a simplified version

of the FIP index (named SFIP) in Portugal and in the United Kingdom, respectively. Contrary to the FIP

index, this simplified version does not use forecasts relative to precipitation, cloud structure and cloud

top temperature, neither applies decision trees. As it will be shown in the next two Sections, the fore-

casts from this index rely solely on fuzzy logic membership functions.

In Europe, other tools were developed at the same time. One such example is the Advanced Diagno-

sis and Warning System for Aircraft Icing Environments (ADWICE) developed in Germany. This system
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identifies atmospheric regions with conditions conducive to icing, more specifically, regions where su-

percooled liquid water is present, using two different algorithms: the Prognostic Icing Algorithm (PIA),

which allows for the forecast of areas with existing icing threat, and the Diagnostic Icing Algorithm (DIA),

which combines the forecast made by the previous algorithm with observations and remote sensing data

to infer the current level of icing threat (Kalinka et al. [25]). Both algorithms rely on NWP model outputs.

ADWICE forecasts cover Europe and the Mediterranean coast of North Africa with 30 vertical hybrid

levels and a horizontal grid spacing of 7km. The combination of a prognostic part (PIA) and a diagnostic

part (DIA), and the recent addition of satellite data to the latter, improved the short-term forecast quality

by reducing the over-forecasting of icing conditions and, consequently, the false alarm rate (Kalinka et al.

[25]).

Recently, Boudala et al. [26] (2019) performed a study in Canada to gain a better understanding of

the conditions associated with aircraft icing. This study was motivated by the fact that icing was reported

frequently in the region of Cold Lake, Alberta, but forecasting these events proved to be a challenge.

Thus, several ground-based instruments were deployed in that area, including the weather sensors al-

ready present at the Cold Lake airport, during the 2016/2017 winter season. PIREPs of that area during

said period and the respective observations data were also analyzed. To forecast these conditions,

two aircraft icing intensity algorithms based on an Ice Accumulation Rate (IAR) for a cylindrical shape

moving at a given airspeed were tested. This cylindrical shape was used as an approximation of an

airfoil (Boudala et al. [26]). The algorithms were named IAR1 and IAR2, and the difference between

them is that IAR1 takes into consideration the density of ice, whereas the IAR2 algorithm does not. The

input forecasts were obtained from the Canadian High Resolution Regional Deterministic Prediction Sys-

tem (HRDPS), which produces forecasts for the Canadian territory with a 2.5 km horizontal resolution

and a vertical resolution that varies between 110 m near the surface to 4 km at a 40 km altitude (Boudala

et al. [26]). Both algorithms were tested for two different values of airspeed: 89 ms−1 and 60 ms−1. After

comparing the predictions against the PIREPs, they concluded that the IAR1 was not able to correctly

forecast icing conditions for that region using the inputs from the HRDPS model, probably because the

model showed an overestimation of liquid water content. On the other hand, the IAR2 algorithm with the

lower airspeed showed some skill in forecasting light icing, which represented 76% of the reported icing

events, with a tendency to underestimate the moderate icing events (Boudala et al. [26]).

Also in 2019, Thompson [27] conducted a study in the United States to assess the skill of an NWP

model, called Weather Research and Forecasting (WRF) (Skamarock and Klemp [28]), in forecasting

icing conditions on the ground and in the air by comparing the model results against PIREPs, data from

research aircraft and surface observations reported in Meteorological Aerodrome Reports (METARs).

To conduct this study, a database of about 9000 observations of icing conditions from research aircraft

flights was made available by the FAA. Moreover, 280.000 icing PIREPs reported for a 6 month period

(form October to April) from 2001 to 2011 where compiled, including PIREPs reporting the lack of icing

conditions, as well as 3.4 million METARs for the same 10-year period. Instead of running simulations
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for each date and location of all the reports collected, a simulation covering the entire US territory for a

13-year period starting on October 1st 2000 was run (Thompson [27]). Comparing the model simulations

with all the data available, the WRF model proved to be highly skilful in predicting icing conditions on the

ground and in the air. In particular, this study indicated that the more severe the reported event was, the

higher the likelihood of the model forecasting the presence of Supercooled Liquid Water (SLW). Con-

cerning surface precipitation (rain and snow), ground icing events (freezing drizzle and freezing rain)

and the occurrence of ice pellets, the model showed promising skill with approximately 60% of these

events being correctly forecast. However, the model skill decreases in the spring and fall seasons. This

is probably due to the fact that weather conditions have a higher variability during this time of year, which

makes correct forecasts harder to achieve (Thompson [27]).

One thing that these algorithms have in common is the comparison of the forecasts against PIREPs.

However, PIREPs have some shortcomings worth mentioning such as the fact that the content of the

PIREPs is left at the pilot’s discretion, the reported severity of the event is subjective because it is deter-

mined by the pilot, and the reported location of the event is often inaccurate (Schwartz [29]). Moreover,

the transmission is not obligatory, which means that not all events are reported, and there is a distribution

bias, since pilots try to avoid areas with icing conditions and reports are naturally more frequent in areas

with higher air traffic density, and a category bias towards positive events, since the non-occurence of

icing is rarely reported (Kalinka et al. [25]). That said, PIREPs are still the only widely and readily avail-

able independent source of information regarding the presence (or absence) of icing conditions (Kalinka

et al. [25]).

2.2 IPMA Algorithm

The algorithm developed at IPMA, described by Equation 2.1, consists of a simplified version of

the FIP algorithm (Mcdonough et al. [12]). It is based on fuzzy logic and membership functions. This

algorithm results from the combination of membership functions applied to the NWP model outputs

considered relevant (Belo-Pereira [13]). The weighing factors used in Equation 2.1 are a = 0.35, b = 0.2

and c = 0.45.

SFIPPT = MT (a×MRH + b×Mw + c×MLWC) (2.1)

Equation 2.2 represents the membership function of temperature

MT =



0, if T ≤ T1

T−T1

T2−T1
, if T1 < T ≥ T2

1, if T2 < T ≥ T3

1−
(

T−(−2)
1−(−2)

)
, if T3 < T ≥ T4

0, if T > T4

(2.2)
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with T1 = −28◦C, T2 = −12◦C, T3 = −1◦C and T4 = 1◦C. Equation 2.3 represents the membership

function of Relative Humidity

MRH =


0, if RH ≤ RH1(

RH−RH1

RH2−RH1

)2
, if RH1 < RH ≥ RH2

1, if RH > RH2

(2.3)

with RH1 = 0.6 and RH2 = 0.95.

The shape of the functions 2.2 and 2.3 will be discussed in Section 4.2. Note that previously for flight

levels below FL050 a slightly different function was used in Belo-Pereira [13] (her Figure 4). Presently,

the same functions are used for all levels.

The membership function for cloud liquid water is defined as follows:

MCLW =


CLW
0.4 , if CLW ≤ 0.4gkg−1

1.0, if CLW > 0.4gkg−1

(2.4)

Presently, the vertical velocity membership function is defined by Equation 2.5. This is different from

the version described in Belo-Pereira [13] (her Figure 4). The differences will be discussed in Section

4.2.

Mw =


1, if w < −0.5 Pas−1

−2w, if − 0.5 ≤ w < −0.0001 Pas−1

0, if w ≥ −0.0001 Pas−1

(2.5)

2.3 Met Office Algorithm

The algorithm implemented at Met Office (SFIP) was adapted from Belo-Pereira [13]. The differences

between the two algorithms concern the membership function for vertical velocity (Morcrette et al. [14],

Figure 2) and the fact that in Morcrette et al. [14] all membership functions are independent of the flight

level, in contrast to those implemented by Belo-Pereira [13].

Morcrette et al. [14] evaluated the new index against satellite data and ground based remote sens-

ing observations. This study showed that the new index outperforms the icing index previously used

operationally by the London WAFC.
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Chapter 3

Data and Methodology

In this chapter, an overview of the data used is presented, distinguishing between the observed data

and the data obtained from an NWP model, which is briefly explained. The association of both enables

a complete description of the icing events considered in the database. The fuzzy logic and membership

functions concepts, and the contingency tables and scores concepts are introduced and explained. Fur-

thermore, the new algorithm built to infer aircraft icing is presented and explained, establishing the link

between the database and each membership function used in the algorithm.

3.1 Data

As mentioned before, this study uses observation and model data. The observation consists of

special Air-Reports (AIREPs) of icing. It is important to note that, in this text, the terms AIREPs and

PIREPs are used synonymously despite their minor differences. The model data is from the European

Centre for Medium-Range Weather Forecasts (ECMWF) deterministic model. This model is explained

in greater detail in Subsection 3.1.2.

3.1.1 Observation

The observations used in this study include 27 icing events reported over the Iberian Peninsula, the

Balearic Sea, the United Kingdom, Ireland, and the Azores (see Figure 3.1(a)). Since there is a high

density of events over the south-east of the Iberian Peninsula and the Balearic Sea, a detailed view of

this region is given in Figure 3.1(b). The AIREPs include the information about the severity of icing, the

flight level of the base and the top of the icing layer. They also include information of location, time, and

dates.

Concerning the monthly distribution of the events, Figure 3.2 shows that most of the icing events

took place during wintertime. This is more notorious for severe icing events, which is expected since the

atmospheric conditions conducive to icing events are more common during winter months.
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Table 3.1: Characterization of the icing events.

Event No. Severity Date (dd/mm/aa) Time (hh:mm) Latitude (◦) Longitude (◦)

1 moderate 20/11/2020 08:05 52.75 -6.68
2 moderate 04/12/2020 13:10 37.05 -4.93
3 moderate 10/12/2020 06:35 38.27 -0.57
4 moderate 15/12/2020 18:55 52.00 -7.00
5 moderate 18/12/2020 07:51 52.30 -9.18
6 moderate 28/12/2020 10:08 39.53 0.37
7 moderate 24/04/2021 14:50 38.15 -3.62
8 moderate 21/05/2021 06:52 52.80 -7.83
9 moderate 28/05/2021 08:00 39.60 1.37
10 moderate 03/12/2020 21:12 43.30 -2.55
11 moderate 04/12/2020 13:05 38.70 -0.47
12 moderate 04/12/2020 16:10 37.17 -5.62
13 moderate 28/12/2020 10:20 40.27 2.08
14 moderate 28/12/2020 10:32 38.63 -0.25
15 moderate 08/03/2021 15:35 42.45 -2.87
16 moderate 18/03/2021 16:32 38.98 1.87
17 moderate 17/04/2021 10:19 39.37 1.40
18 moderate 22/04/2021 11:11 40.68 1.92
19 moderate 25/11/2020 09:16 38.55 -9.52
20 severe 30/11/2020 14:15 51.42 -1.58
21 severe 09/12/2020 10:45 50.00 -2.00
22 severe 10/12/2020 07:00 39.48 -0.47
23 severe 10/12/2020 11:30 36.80 -4.37
24 severe 20/01/2021 10:43 38.93 -4.55
25 severe 09/02/2021 13:20 37.90 -1.55
26 severe 19/02/2021 18:08 37.92 -26.10
27 severe 13/05/2021 08:35 40.37 -4.23

Figure 3.3 shows the relative frequency of the average flight level of the icing events. According

to this Figure, almost 90% of the moderate events and 63% of the severe events occurred between

FL 050 and FL 200. Nearly 37% of the severe icing events occurred above FL200. It is interesting

to note that the lapse rate is commonly 6◦C/km and, for instance, in the Lisbon area, the average

temperature at 2m is 10.5◦C in January (Portal do Clima [30]). This indicates that the layer in the

range 0◦C to -20◦C, favourable to the presence of supercooled water droplets, lies between FL055 and

FL165. Moreover, also in Lisbon area, in May, the average temperature at 2m is 15.3◦C. So, in this case.

the layer favourable to the formation of supercooled water lies between FL085 and FL200. Thus, it is

understandable that the majority of the icing events occurred between FL050 and FL200.

Figure 3.4 depicts the distribution of the icing layers’ thickness. The histogram shows that around

88% of the severe icing reports had a thickness inferior to 1000 ft. This suggests severe icing events

tend to occur in a thinner layer rather than throughout a broad icing layer. Moreover, the velocity at which

the aircraft goes through the flight levels with conditions conducive to icing can be of such magnitude

that the observed icing layers appear to be smaller than the actual layers where these conditions are,
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(a) Pan view of the icing events.

(b) Detailed view of the icing events over the Iberian Peninsula.

Figure 3.1: Icing events’ locations.

in fact, present. In contrast, most of the moderate events (approximately 74%) occurred for a thickness

varying between 1000 ft and 10000 ft, with a more expressive percentage between 1000 and 2000 ft.

3.1.2 The NWP model

As said previously, the forecast data is provided by the ECMWF deterministic model. This model is

based on a cubic-octahedral spectral transform descretization, which corresponds to a grid spacing of

approximately 9 km. The model consists on a transformation, based on Fourier and Legendre trans-

forms, from the grid-point space to a ’spectral’ space where each variable (field) is descretized and

represented by the sum of analytical functions, the spherical harmonics. Finally, each field is trans-

formed back to the grid-point space and its real value is computed (Malardel et al. [31]). This model has

137 vertical levels, with the height of the lowest level around 10 m above ground. In the troposphere,
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Figure 3.2: Monthly distribution of the icing events in terms of relative frequency.

Figure 3.3: Relative frequency distribution of the icing events’ Average Flight Level.

the vertical grid-spacing increases from 20 m near the surface to 290 m above 6 km. In this study, the

analyzed variables are Temperature (T), Cloud Liquid Water Content (CLWC), Relative Humidity (RH),

Cloud Fraction (CF), Vertical Velocity and Total Cloud Content (TCC). Each model variable was ex-

tracted for the closest grid point of the model near the location of the icing reports, using the forecasts

with a lead-time of 12 hours.
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Figure 3.4: Relative frequency distribution of the Icing Layers’ Thickness.

3.2 Fuzzy Logic and Membership Functions

The concept of Fuzzy Logic was first introduced by Lotfi Zadeh in 1965, but its application in en-

vironmental sciences only gained visibility in the early 1990s following the work done by MIT Lincoln

Laboratory in 1993 and the NCAR in 1994, where fuzzy logic algorithms were developed for detecting

gust fronts and microbursts, from Doppler radar data (Williams [32]).

Fuzzy logic tries to mimic the human approach to solving a certain problem, specially those where

the decisions do not follow a sequence of well-defined logical statements, which represent most of the

problems posed to human experts, by accommodating and even taking advantage of the ambiguity of

human language, since several concepts used in everyday language do not have clear definitions and/or

boundaries (Williams [32]).

While in classical logic a given concept is either in a set or outside the set, fuzzy logic allows for this

membership to be partial. Thus, fuzzy Logic can also be interpreted as an extension of classical logic,

where boundaries are well defined, to fuzzy sets and their manipulation (Williams [32]). The degree to

which a particular concept belongs to a fuzzy set is given by its respective Membership Function. These

functions range from 0 to 1 and are often defined by experience and knowledge. In the case of the icing

algorithms they rely on the comparison between NWP models’ outputs, and the icing PIREPs and on

the forecasters’ experience. For this reason it makes sense to use this kind of functions in icing forecast

algorithms (as presented in the following section).

In the context of icing forecasts, membership functions depict the gradual transition from icing to

non-icing environments by determining the icing likelihood depending on a certain forecast variable

(Bernstein et al. [11]). As previously explained, the variables of interest for the new algorithm developed

are Temperature (T), Cloud Liquid Water Content (CLWC), Relative Humidity (RH), Cloud Fraction (CF)
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and Total Cloud Content (TCC).

3.3 The icing algorithms based on NWP model

The analysis of the predictors’ distribution, that will be presented Section 4.1, represents the first

step necessary to improve the icing algorithms. In the present section, a new algorithm (hereby called

SFIPmod - Modified SFIP) is explained.

This new algorithm, described by Equation (3.1), follows the same line of thought as the algorithms

from IPMA and the Met Office presented in Chapter 2. It uses membership functions to combine the

information of the relevant variables, each weighted by the respective coefficients, except for the mem-

bership function of Temperature. Explaining in more detail, fm(T ) represents the membership function of

the Temperature, f(RH) the membership function of Relative Humidity, f(tcc) the membership function

of the Total Water Content, and fm(CLWC) the membership function of Cloud Liquid Water Content.

In terms of coefficients, cr, ctc and cc are the coefficients of RH, TCC and CLWC (respectively), and

assume the values of 0.35, 0.2 and 0.45 in the same order, as in Belo-Pereira [13]. Other values were

tested but it was decided to use these ones because they attained the best results.

SFIPmod = fm(T )(cr × f(RH) + ctc× f(tcc) + cc× fm(CLWC)) (3.1)

fm(T ) =



0, if T ≤ −28◦C
T−(−28)

−16−(−28) , if − 28◦C < T ≥ −16◦C

1, if − 16◦C < T ≥ −2◦C

1−
(

T−(−2)
1−(−2)

)
, if − 2◦C < T ≥ 1◦C

0, if T > 1◦C

(3.2)

f(RH) =


0, if RH ≤ 0.6(

RH−0.6
0.95−0.6

)2
, if 0.6 < RH ≥ 0.95

1, if RH > 0.95

(3.3)

Considering the work done by Belo-Pereira [13] and Morcrette et al. [14], understanding the member-

ship functions of Temperature (3.2) and Relative Humidity (3.3) is straight forward. The major difference

lies in the TCC (3.4) and CLWC (3.5) membership functions. For the latter, an exponential evolution

was adopted instead of the linear evolution used by the mentioned authors. In the case of the TCC

membership function, it was introduced as a substitute for the Vertical Velocity membership functions

implemented by Belo-Pereira [13] and Morcrette et al. [14].

f(tcc) =

1.475× tcc0.3065, if tcc < 0.2813g/kg

1, if tcc ≥ 0.2813g/kg

(3.4)
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fm(CLWC) =

1.475× CLWC0.3065, if CLWC < 0.2813g/kg

1, if CLWC ≥ 0.2813g/kg

(3.5)

The thresholds of each function will be explained in the next Chapter (Section 4.2) where the analysis

of the functions is made in more detail using the plots of the functions for sets of theoretical values.

3.4 Contingency Tables and Scores

There are several methods available to evaluate the performance of forecast models. However, con-

tingency tables and the scores associated to them are the most frequent tools used to assess the quality

of a forecast model or algorithm (Thornes and Stephenson [33]; Gold et al. [34]). Hence, these tables

and scores are used in this work to evaluate the forecasting skill of the algorithm built.

A contingency table is a two by two table that shows the relation between the forecast of any given

event by a forecast model (or algorithm) and the observation of said event (icing events in the specific

case of this dissertation). Table 3.2 shows a generic example of a contingency table. In this table,

entry ”A” is the number of events that were forecast and observed. In other words, it represents the

number of correct forecasts (hits). Entry ”B” represents the number of events that were forecast but

were not observed (false alarms), and constitutes a Type 2 error (Thornes and Stephenson [33]). Entry

”C” represents the number of events that were not forecast but were observed (misses), and constitutes

a Type 1 error ([33]). Finally, entry ”D” is the number of events that were neither forecast nor observed,

which are also considered correct forecasts (correct negative forecasts).

Table 3.2: Generic example of a Contingency Table.

Forecast
Observation

Yes No

Yes A B

No C D

In terms of the scores, from the several scores that can be determined from a contingency table

(Doswell et al. [35]), five different scores are used to assess the performance of the SFIPmod algorithm.

These are: Probability of Detection (POD), True Skill Statistic (TSS), Heidke Skill Score (HSS), Sym-

metric Extreme Dependency Score (SEDS), and Symmetric Extremal Dependency Index (SEDI).

The fraction of correctly forecast events given by equation 3.6 is defined as Probability of Detection

(POD) (Doswell et al. [35]) or as hit rate (Ferro and Stephenson [36]).

POD =
A

A+ C
(3.6)
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The True Skill Statistic (TSS), also known as Hanssen-Kuipers (H-K) Discriminant (Belo-Pereira [37]),

is defined by equation 3.7. This score ”compares the number of correct forecasts, minus those at-

tributable to random guessing, to that of a hypothetical set of perfect forecasts” (Doswell et al. [35]).

TSS = POD − POFD (3.7)

where POFD = B/(B+D) corresponds to the probability of false detection, which is defined as the

ratio of false alarms to the total number of nonevents.

The Heidke Skill Score (HSS) is given by equation 3.8

HSS =
C − E

N − E
(3.8)

where C = A+D is the number of correct forecasts, N is the sample size and E = [(A+B)(A+C)+

(B+D)(C+D)]/N is the expected number of correct forecasts due solely to chance (Doswell et al. [35]).

Some previous studies (Doswell et al. [35], Hogan et al. [38], Stephenson et al. [39]) have shown that

many scores based on 2x2 contingency tables, including the ones mentioned above, converge to trivial

values (0 or 1) as the rarity of the events increases, i.e., when the observations of non-events dominate

the contingency table. To overcome some of the drawbacks of these scores, other verification measures

have been derived, namely the Symmetric Extreme Dependency Score (SEDS) suggested by Hogan

et al. [38], defined as:

SEDS =
log(q)− log(POD)

log(BR) + log(POD)
(3.9)

where q = (A + B)/N is the relative frequency with which the event was forecast, N is the sample

size, and BR = (A + C)/N is known as the base rate and corresponds to the relative frequency of

occurrence of the event.

More recently, Ferro and Stephenson [36] proposed the Symmetric Extremal Dependency Index

(SEDI) given by equation 3.10.

SEDI =
log(POFD)− log(POD) + log(1− POD)− log(1− POFD)

log(POD) + log(POFD) + log(1− POD) + log(1− POFD)
(3.10)

It is important to note that, to evaluate a certain forecast algorithm, one should use a set of different

scores rather than a single score because, as it will be discussed in Section 4.4, the scores are sensible

to different factors.
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Chapter 4

Results and Discussion

This Chapter starts with the presentation and discussion of the distribution of the relevant atmo-

spheric variables based on the forecasts from the ECMWF model relative to the icing events from the

database. Moreover, the results are discussed in detail, namely the membership functions, the compari-

son between the three SFIP algorithms addressed in this thesis, the contingency tables derived for these

algorithms and the scores obtained. These scores will allow to draw conclusions about the performance

of each algorithm concerning the ability to discriminate between moderate and severe icing events.

4.1 Histograms

In this section the distribution of Temperature, Cloud Liquid Water Content (CLWC), Relative Humid-

ity (RH), Cloud Fraction (CF), Vertical Velocity and Total Cloud Content (TCC) based on forecasts of the

ECMWF model outputs are presented and discussed. Figure 4.1 depicts the distribution of the predicted

temperature for the icing events. As expected, the majority of the moderate events happened at temper-

atures between -20◦C and 0◦C. Moreover, nearly 70% of the severe events took place at temperatures

between -24◦C and -8◦C. The histogram also shows that a considerable percentage (approximately

44%) of the severe events occurred for temperatures lower than -20◦C. This is possible because, in the

absence of sufficient ice nuclei, liquid cloud droplets can still exist at temperatures between -20◦C and

around -40◦C (Korolev et al. [40]).This result is also in agreement with other studies (Sand et al. [4];

Schultz and Politovich [5]; Rosenfeld and Woodley [6]; Marwitz et al. [41]).

Most of both moderate and severe icing events occurred for CLWC values higher than 0.0005 g/kg

(Figure 4.2). Only roughly 36% of the moderate events and 23% of the severe events occurred for lower

values. Moreover, nearly 60% of the severe events occurred for CLWC in the range of 0.0005 to 0.05g/kg

and no severe event has values greater than 0.2g/kg.

Figure 4.3 shows that the vast majority of both moderate and severe icing events occurred for Relative

Humidity values higher than 80%. For lower values the events are more or less evenly spread, until the

range of values lower than 30%, where no severe events where registered and only a small percentage
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Figure 4.1: Temperature (T) relative frequency distribution.

Figure 4.2: Cloud Liquid Water Content (CLWC) relative frequency distribution.

(about 13%) of moderate events took place.

The histogram of Cloud Fraction (CF) illustrated in Figure 4.4 indicates that around 74% of the mod-

erate events and 53% of the severe events took place for CF values higher than 0.1. However, the

distribution of CF is widespread, revealing a low predictive skill of this variable.

Figure 4.5 shows the distribution of the maximum Vertical Velocity (in m/s) in the troposphere, where

positive values represent upward motion and negative values represent downward motion. This his-

togram shows that more than 50% of the severe events occurred in the presence of upward motion,

favouring the cloud formation. In contrast, the majority (around 56%) of the moderate events occurred in
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Figure 4.3: Relative Humidity (RH) relative frequency distribution.

Figure 4.4: Cloud Fraction (CF) relative frequency distribution.

the presence of downward motion. This suggest that the use of the vertical velocity in the prediction of

icing conditions has some limitations. A similar histogram for the Vertical Velocity but with units of Pa/s

is presented in Appendix A (Figure A.1).

Figure 4.6 depicts the distribution of Total Cloud Content (TCC), which is the sum of CLWC and

Cloud Ice Water Content (CIWC). From this figure, it is visible that more than half (about 58%) of the

moderate events happened for TCC higher than 0.01 g/kg. Regarding severe events, around 81% of the

events occurred beyond the 0.0005 g/kg threshold.
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Figure 4.5: Vertical Velocity relative frequency distribution.

Figure 4.6: Total Cloud Content (TCC) relative frequency distribution.

Figure 4.7 shows the distribution of the thickness of the icing layer satisfying certain conditions in

terms of RH and CLWC. This thickness is referred to as the THICK-RH-CLWC and is determined in

three steps. The first step determines the layer (IC-RH) that satisfies this condition:

∩

RH ≥ 80%

−20◦C < T ≤ 0◦C
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The second step determines the layer (IC-CLWC) that satisfies this condition:

∩

CLWC ≥ 0.0005g/kg

−20◦C < T ≤ 0◦C

The final step determines the maximum layer thickness of the layers IC-CLWC and IC-RH. Figure 4.7

shows the histogram of the thickness THICK-RH-CLWC, revealing that, the majority (over 60%) of both

severe and moderate icing events occurred for thicknesses between 50 hft and 100 hft. The remainder

of the severe icing events happened for thicknesses lower than 50 hft. Nearly 15% of the moderate

icing events took place for thicknesses higher than 100 hft. This information indicates that the thickness

THICK-RH-CLWC could be a useful predictor of the conditions conducive to icing events.

Figure 4.7: Distribution of the Thickness THICK-RH-CLWC.

4.2 Membership functions

Figure 4.8 compares the membership functions of Temperature used in SFIPPT algorithm (currently

operational at IPMA) and a new function, used in the new SFIPmod algorithm (see Section 3.3). According

to Figure 4.1, more than 60% of the moderate icing events took place at temperatures between -16◦C

and -2◦C. Moreover, icing events are more frequent at temperatures below -16◦C than at temperatures

above -2◦C. The new membership function (SFIPmod), shown in Figure 4.8, tries to mimic these features.

Therefore, while the old function (SFIPPT) has the maximum value at temperatures between -14◦C and

-1◦C, the new membership function reaches its maximum value at temperatures between -16◦C and

-2◦C. Moreover, the slope for temperatures below -16◦C is lower than the slope for temperatures above

-2◦C.
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Figure 4.8: Comparison between Temperature membership functions from SFIPmod algorithm (solid
blue line) and SFIPPT algorithm (dashed red line).

Figure 4.9 shows the membership function of Relative Humidity from the SFIPmod algorithm. The

membership function implemented in the SFIPPT algorithm has the same shape, therefore is not rep-

resented in the figure. Taking into consideration the histogram of Figure 4.3, from a 60% RH value on,

there is a rapid increase in the number of icing events, both moderate and severe, until the peak value is

reached above the 90% threshold. The membership function depicts this feature. A rapid increase from

a RH of 60% to a 95%, where the function reaches its highest value of 1.

Figure 4.9: Relative Humidity membership function from SFIPmod algorithm.

In subfreezing conditions, the greater the Cloud Liquid Water Content (CLWC), the higher is the

quantity of supercooled water available to accrete to the aircraft’s surfaces. Thus, higher values of

CLWC are conducive to more severe icing conditions. The membership functions shown in Figure 4.10

mimic this feature. However, the two functions have a different growth rate with CLWC. The membership

function used in the SFIPPT algorithm increases linearly, reaching the maximum value for a CLWC of

27



0.4 g/kg. On the other hand, the new membership function (SFIPmod) increases exponentially from 0,

for a CLWC of 0 g/kg, to 1, for a CLWC of 0.2813 g/kg. It is relevant to remember that over 50% of the

severe and moderate icing events occur for CLWC values lower than 0.01 g/kg. For values higher than

0.01 g/kg, the number of icing events gradually decreases (Figure 4.2). The new membership function

tries to reflect this feature by attributing higher membership values to lower values of CLWC, so that the

new function gives more importance to lower values of CLWC when compared to the SFIPPT algorithm

function.

Figure 4.10: Comparison between CLWC membership functions from SFIPmod algorithm (solid blue
line) and SFIPPT algorithm (dashed red line).

The membership function of TCC in Figure 4.11 follows the same line of thought as the previous

function. The histogram of Figure 4.6 indicates that this variable has similar features to those of CLWC.

Thus, it was decided to use the same membership function.

Figure 4.11: TCC membership function from SFIPmod algorithm.
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Figure 4.12 shows two versions of the membership function of the Vertical Velocity from the SFIPPT

algorithm. It is known that the upward vertical motion favours the cloud formation, whereas the downward

vertical motion favours cloud dissipation. The membership function tries to mimic these features. In its

preliminary version (dashed red line), the function attributed positive values for upward motion (negative

vertical velocity) and negative values for downward motion (positive vertical velocity). However, the

presence of downward vertical motion does not necessarily exclude the possibility of an icing event

taking place, as could be suggested by the negative membership value (see Figure 4.5). Thus, in the

updated version (solid blue line) of this function it was decided to assume a membership value of 0 for

downward motion.

Figure 4.12: Vertical Velocity membership function from SFIPPT algorithm: preliminary version (red
dashed line) and updated version (blue solid line).

Figure 4.13 shows the vertical distribution of the Temperature (Figure 4.13 a) and Relative Humidity

(Figure 4.13 b) membership functions for the event no.10 (see Table 3.1). This moderate icing event was

reported between Flight Levels 120 and 140. As mentioned in Section 3.2, the membership functions

mimic the gradual transition from non-icing to icing environments. Thus, the function should reach its

maximum value inside the icing environment which, in this case, is between FL120 and FL140. Both

functions from Figure 4.13 reach their peak values within these Flight Levels.
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Figure 4.13: Evolution of a) Temperature and b) Relative Humidity membership functions (for SFIPmod)
with Flight Level (data from event no.10 of Table 3.1).

Figure 4.14 shows the vertical distribution of CLWC (Figure 4.14 a) and TCC (Figure 4.14 b) mem-

bership functions for the same event (no.10). In this case, the functions do not attain their peak value

within the Flight Levels where icing was reported. Nevertheless, the functions still reach a relatively high

membership value for each variable, which is considered a good result given the fact that this event was

reported as a moderate icing event.
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Figure 4.14: Evolution of a) CLWC and b) TCC membership functions (for SFIPmod) with Flight Level
(data from event no.10 of Table 3.1).

These results for all four membership functions suggest that these four variables are good predictors

of the icing occurrence.

4.3 SFIP Algorithms

Figure 4.15 shows a comparison between the three icing forecast algorithms presented in this disser-

tation. In Figure 4.15 a) this comparison is made for a moderate icing event, namely, the event number

10 (see Table 3.1), which took place over the north of the Iberian Peninsula. Figure 4.15 b) presents this

comparison for a severe icing event, namely, the event number 23 (Table 3.1), which occurred over the

south region of the Iberian Peninsula.
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Focusing on Figure 4.15 a), the three algorithms show a similar behaviour despite having different

magnitudes. This influences greatly the algorithms’ forecasting skill. For example, considering a thresh-

old of 0.8, only the SFIPmod algorithm is able to forecast icing. In this case, the algorithm forecasts two

icing layers: one between FL070 and FL095, and the other between FL110 and FL140 (approximate

Flight Levels). Although the algorithm forecasts two icing layers when only one was observed (between

FL120 and FL140), it still performs well in forecasting icing conditions for the layer where it was ob-

served. It is important to note that the fact that no icing has been reported on the bottom layer does not

imply that no icing has occurred on that layer. Moreover, icing is only reported when observed by visual

inspection or when detected by any of the flight systems installed for this purpose.

This analysis can be made for other thresholds. For example, using a threshold of 0.68 only the

SFIPmod and the SFIPPT algorithms forecast icing conditions. The first algorithm forecasts icing be-

tween FL065 and FL140 and the second between FL065 and FL070 (approximately). In this case, the

SFIPmod algorithm forecasts only one icing layer that includes the layer where icing was, in fact, observed

but with a higher thickness than using the 0.8 threshold. The SFIPPT algorithm, in turn, forecasts icing

conditions within two flight levels that are much lower than the flight levels where the icing event actually

took place. So, in this particular case, the SFIPPT algorithm fails to forecast this icing event.

Finally, using a threshold of 0.2 all three algorithms are able to forecast icing conditions. The SFIP al-

gorithm forecasts one icing layer between FL060 and FL150, the SFIPmod algorithm forecasts one icing

layer between FL055 and FL160 and the SFIPPT algorithm forecasts one icing layer between FL050 and

FL150. All predicted layers include the layer of the event and, in all cases, the observation is located in

the upper half of the predicted layers. This information is also available in Table A.1, where the analysis

for the 0.2 threshold value is presented for all icing events. This discussion illustrates the importance of

the choice of the thresholds.

Concerning Figure 4.15 b), the three algorithms once again show a similar behaviour with different

peak values. However, this event is slightly different from the previous one because the icing event was

reported for a single flight level (FL160). Starting again with a 0.8 threshold, the only algorithm capa-

ble of forecasting icing conditions is the SFIPmod, and it forecasts these conditions between FL130 and

FL150 (approximately). Although the predicted icing layer does not include the reported flight level, this

can be considered a reasonable result due to the proximity between the predicted layer and the reported

flight level (FL160). Besides, the icing conditions may have started at lower levels.

Changing to a threshold of 0.52, both the SFIPmod and the SFIPPT algorithms forecast icing conditions.

The first algorithm forecasts icing between FL110 and FL155 and the second between FL150 and FL155

(approximately). In this case, the SFIPmod forecasts icing conditions within a larger layer than the previ-

ous example, and the forecast gets closer to the reported FL. The SFIPPT algorithm also forecasts icing

within a single layer that is close to the reported FL, but the predicted layer is much thinner than the one

forecast by the SFIPmod algorithm.
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Finally, once again, with a 0.2 threshold, all three algorithms forecast icing conditions. The SFIP algo-

rithm forecasts one icing layer between FL140 and FL150, the SFIPmod forecasts one icing layer between

FL100 and FL165 and the SFIPPT forecasts one icing layer between FL100 and FL185. In this situation,

the layer predicted by the SFIP algorithm does not include the reported FL, but the top FL of the forecast

layer is close to the observed, which is still a reasonable result. The SFIPmod algorithm forecasts icing

conditions within a larger layer than for the previous threshold value. This layer includes the reported

flight level. The SFIPPT algorithm also forecasts a single icing layer that is much larger than the previous

example. This time, the forecast layer is thicker than the one predicted by the SFIPmod algorithm.

Figure 4.15: Comparison between SFIP functions for a a) moderate (event no.10 of Table 3.1) and b)
severe (event no.23 of Table 3.1) icing event (the black line in the figure represents the top FL of the

icing layer and the red line represents the bottom FL. In the case of figure b) both lines coincide).

Figure 4.16 shows a comparison between the three icing forecast algorithms, for two other events.

The first event, a moderate icing event (panel a) took place in the Lisbon FIR near Cascais and was

reported between FL060 and FL080 (event 19, Table 3.1). Figure 4.16 b) illustrates the comparison for

a severe icing event, more specifically, the event number 24 from Table 3.1, which occurred over Spain

33



near Ciudad Real and was reported between FL170 and FL190.

As in the previous examples, the three functions have a similar shape but with different maximum

values (Figure 4.16 a). For a threshold of 0.8, the SFIPmod is the only algorithm that forecasts icing

conditions, in particular, for the layer from FL130 to FL150 (approximately), which is considerably above

the icing layer reported. So, for this threshold, this algorithm performs poorly.

For a threshold of 0.68, the SFIPmod forecasts icing conditions between FL130 and FL150 and the

SFIP algorithm forecasts icing between FL150 and FL160, clearly above the level where icing was ob-

served. The SFIPPT algorithm does not forecast icing conditions for this threshold. Thus, all algorithms

perform poorly.

For a threshold of 0.2 all three algorithms are able to forecast icing conditions. The SFIPmod algorithm in-

dicates the existence of icing conditions between FL070 and FL100 and between FL115 and FL170. The

SFIPPT algorithm forecasts icing between FL070 and FL095 and between FL125 and FL160. These two

algorithms forecast two icing layers that include about half of the reported layer in the lower layers. De-

spite this, the percentage of intersection between the predicted and the observed layers is considerably

small, so both algorithms perform poorly. The SFIP algorithm, on the other hand, forecasts one icing

layer between FL125 and FL180, that is much higher than the observed layer. Thus, this algorithm also

shows a poor performance for this threshold. Overall, all the algorithms perform poorly for this specific

icing event.

Figure 4.16 b) shows that the three algorithms are incapable of predicting icing conditions in the layer

where severe icing was reported. Moreover, all predicted icing for threshold higher than 0.2 is on a layer

below the reported one. As in the previous examples, the thickness of this layer is larger for the SFIPmod

algorithm than for the other algorithms. The disparity between the reported and the predicted levels is

of nearly 8000 ft. There are several factors that can explain this result. For instance, the climb rate of

the aircraft could be of such magnitude that the ice accretion was reported passed the region with icing

conditions. It is also possible that the NWP model used could be over forecasting the presence of CLWC

at the region were icing was forecast, since the accuracy of the predictions of quantities like CLWC from

these models still poses a challenge (Boudala et al. [26]).

Figure 4.17 shows the distribution of the icing layers’ thickness predicted by the three algorithms, for

the moderate icing events. A threshold of 0.2 was applied for these forecasts. This figure indicates that

almost 70% of the predicted layers by the SFIP algorithm have a thickness inferior to 10 hft. Concerning

the SFIPmod algorithm, nearly 70% of the predicted icing layers have a thickness greater than 60 hft and

about 5% have a thickness smaller than 10 hft. Concerning the SFIPPT algorithm, approximately 42%

of the forecast icing layers have a thickness greater than 60 hft. Another 42% of these forecasts indicate

an icing layer’s thickness between 20 hft (excluding) and 60 hft (including). Thus, it is clear that, the

SFIP algorithm tends to forecast layers with a relatively smaller thickness than the other algorithms. On

the other hand, the SFIPmod tends to forecast icing layers with higher thicknesses.

Figure 4.18 shows the same distributions as the previous figure but for the severe icing events. This
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Figure 4.16: Comparison between SFIP functions for a a) moderate (event no.19 of Table 3.1) and b)
severe (event no.24 of Table 3.1) icing event (the black line in the figure represents the top FL of the

icing layer and the red line represents the bottom FL).

figure illustrates similarities with the previous figure. Namely, for the SFIP above 60% of the forecasts

have a layer’s thickness inferior to 10 hft, while the other algorithms forecast small thicknesses only in

less that 15% of the severe icing events. The SFIPPT algorithm forecasts thicknesses greater than 60

hft for almost 40% of the severe icing events, and the SFIPmod predicts thicknesses greater than 60 hft

for more than 60% of the severe icing events.

It is relevant to note some differences between the figures 4.17 and 4.18. For the severe icing events,

only one algorithm predicts thicknesses larger than 100 hft, namely, the SFIPmod algorithm. Furthermore,

for the severe icing, the percentage of cases with a thickness inferior to 10 hft is higher than when

considering the moderate icing events.
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Figure 4.17: Forecast layers’ thickness distribution for the SFIP, SFIPmod and SFIPPT algorithms
applying a 0.2 threshold to the moderate icing events.

Figure 4.18: Distribution of predicted layers’ thickness for the SFIP, SFIPmod and SFIPPT algorithms
applying a 0.2 threshold to the severe icing events.

4.4 Contingency Tables and Scores

In this section, it is presented the analysis of the contingency tables derived for the three icing al-

gorithms for specific thresholds, and the scores attained with those tables, to assess the ability of the

three icing algorithms to distinguish between moderate and severe icing. Moreover, an explanation is

given concerning how these tables were built and the meaning of the scores associated with them in the

context of the problem at hand.
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Table 4.1 shows a contingency table built using the forecasts applying the SFIPmod algorithm. For this

specific case, a ”yes” forecast or observation corresponds to a severe icing event, and a ”no” forecast

or observation corresponds to a moderate icing event or absence of icing. This table indicates that this

algorithm has 6 hits or correct forecasts, 13 false alarms (also referred to as a Type 2 error in Section

3.4), 2 misses (also referred to as a Type 1 error in Section 3.4) and 6 correct negative forecasts. In

other words, the table indicates 6 instances where a severe icing event was forecast and reported (hit),

13 instances where a severe icing event was forecast but not observed (false alarm), 2 occurrences

where a severe icing event was not forecast but was reported (miss) and 6 occurrences where a severe

icing event was neither forecast nor reported (correct negative). Thus, the number of false alarms

dominates this table.

Table 4.1: Contingency Table of SFIPmod algorithm forecasts for a threshold1 of 0.2 and a threshold2 of
0.3.

Forecast
Observation

Yes No

Yes 6 13

No 2 6

The construction of the contingency tables depends on a series of criteria, which are listed and

explained below. Moreover, to demonstrate the application of these criteria, examples from Figures 4.15

and 4.16 as well as Table 4.1 (and its thresholds) will be used.

The criteria applied to define a hit are:

• The percentage of intersection between the forecast layer and the reported layer should be higher

than 40%, or the distance between the predicted layer and the single-level report should be inferior

to 1000 ft;

• The maximum value of the algorithm should be greater than threshold2;

• The severity of the observed event should be severe.

Figure 4.15 b) serves as an example to illustrate a hit. According to the figure, for a threshold1

(threshold of the first criterion) of 0.2, the predicted layer includes the reported flight level. In addition,

the maximum value of the SFIPmod algorithm is higher than the threshold2 (threshold of the second cri-

terion) of 0.3. Finally, the event was reported as severe. Thus, all criteria defining a hit are fulfilled.

False alarms are the defined by the following set of criteria:

• The percentage of intersection between the forecast layer and the reported layer should be higher

than 40%, or the distance between the predicted layer and the single-level report should be inferior

to 1000 ft.
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• The maximum value of the algorithm should be greater than threshold2.

• The severity of the observed event has to be reported as moderate.

An example of a false alarm is given by Figure 4.15 a). The figure shows that for a threshold1 of

0.2, the forecast layer includes the reported layer in its entirety. Moreover, the maximum value of the

SFIPmod algorithm is higher than 0.3 (threshold2). Lastly, the severity of the event was reported as mod-

erate. Therefore, the criteria for a false alarm are met.

The criteria to define a miss are:

• The percentage of intersection between the forecast layer and the reported layer should be smaller

than 40%, or the distance between the predicted layer and the single-level report should be greater

than 1000 ft.

• The maximum value of the algorithm lower than threshold2.

• The severity of the observed event has to be reported as severe.

In the case of a miss, only one of the first two criteria and the third criterion must be met. For exam-

ple, if the first and third criteria are met, the forecast is considered a miss regardless of the maximum

value of the algorithm. This is exemplified in Figure 4.16 b). For a threshold1 of 0.2, the forecast layer

does not intercept the reported layer and the event was reported as severe. This is considered a miss,

despite the fact that the maximum value of the SFIPmod algorithm is higher than the threshold2 (0.3).

Correct negative forecasts are defined by the following set of criteria:

• The percentage of intersection between the forecast layer and the reported layer should be smaller

than 40%, or the distance between the predicted layer and the single-level report should be greater

than 1000 ft.

• The maximum value of the algorithm lower than threshold2.

• The severity of the observed event has to be reported as moderate.

Correct negatives, similarly to the misses, only have to meet one of the first two criteria and the third

criterion. Figure 4.16 a) serves as an example of a correct negative forecast. The figure shows that,

although the forecast layer intersects the observed layer, the percentage of intersection is considerably

small (nearly 11%). Thus, the first criterion is met. Furthermore, the event was reported as moderate.

So, this example is a correct negative forecast.

The contingency tables were computed for the three algorithms and for four different values (0.05,

0.1, 0.15, 0.2) of the threshold1. Several values of the threshold2 were also tested. Tables 4.2 and 4.3

are the contingency tables derived from the forecasts of the SFIPPT and SFIP algorithms, respectively,
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for a threshold1 of 0.2 and a threshold2 of 0.5 and 0.35, respectively. Unlike the previous table, these

tables are dominated by the correct negative forecasts.

Table 4.2: Contingency table of SFIPPT algorithm forecasts for a threshold1 of 0.2 and a threshold2 of
0.5.

Forecast
Observation

Yes No

Yes 4 6

No 4 13

Table 4.3: Contingency table of SFIP algorithm forecasts for a threshold1 of 0.2 and a threshold2 of
0.35.

Forecast
Observation

Yes No

Yes 2 3

No 6 16

Table 4.4 presents the scores attained with the previous contingency tables (Table 4.1, Table 4.2, and

Table 4.3). The scores shown correspond to different values of threshold2 for the different algorithms.

These values of threshold2 are those that maximize the TSS score for each case. This table shows that

SFIPmod algorithm has the highest probability of detection. Namely, this algorithm forecasts 75% of all the

severe icing events. The other algorithms have lower probability of detection, 50% and 25%, respectively

for SFIPPT and SFIP algorithms. However, the other scores reveal that SFIPPT outperforms the other

algorithms and that SFIPmod has the poorest skill. This is due to fact that SFIPmod has the highest

number of false alarms. Comparing SEDS and SEDI scores, it is noticeable that the SEDS has lower

values than SEDI for all algorithms. This reflects the fact that SEDS penalizes more the over-forecasting

than SEDI (Ferro and Stephenson [36]).

Table 4.4: Scores attained with Tables 4.1, 4.2, and 4.3.

Algorithm Threshold2 POD TSS HSS SEDS SEDI

SFIPmod 0.3 0.75 0.066 0.047 0.042 0.101

SFIPPT 0.5 0.5 0.184 0.172 0.157 0.265

SFIP 0.35 0.25 0.092 0.103 0.115 0.156

Figure 4.19 indicates that if the threshold1 decreases from 0.2 to 0.1, the SFIPmod algorithm still

presents the highest POD score, when compared with the other algorithms. Besides, the POD of both
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the SFIPmod and SFIPPT algorithms increases with this decrease of the threshold1, while the POD of

the SFIP algorithm remains the same. With the new threshold1 the SFIPmod algorithm forecasts 87.5%

of the severe icing events, and SFIPPT forecasts 62.5% of the observed events. The contingency tables

relative to the new value of threshold1 can be found in Appendix A (Tables A.2, A.3 and A.4).

Figure 4.19: POD score for the three algorithms for two different values of threshold1: 0.1 and 0.2. The
values displayed are based on the values of threshold2 that maximize TSS for each algorithm.

In terms of TSS, Figure 4.20 indicates that this score also increases with the same decrease of the

threshold1 for both the SFIPmod and SFIPPT algorithms, because in both cases the number of correct

forecasts increases (see Tables A.2 and A.3). Concerning the SFIP algorithm, the TSS remains the

same despite the change in threshold1, since the contingency table is the same for both cases (see

Table A.4). Comparing the results of TSS with Figure 7 (b) from Belo-Pereira [13], the values attained

in the present study are considerably low when compared to the TSS values attained in a study with a

much larger sample of icing events.

Figure 4.20: TSS score for the three algorithms for two different values of threshold1: 0.1 and 0.2. The
values displayed are based on the values of threshold2 that maximize TSS for each algorithm.
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The HSS score has a similar behaviour to the TSS, as illustrated in Figure 4.21.

Figure 4.21: HSS score for the three algorithms for two different values of threshold1: 0.1 and 0.2. The
values displayed are based on the values of threshold2 that maximize TSS for each algorithm.

Figure 4.22 indicates that the SEDS score increases with the change of threshold1 from 0.2 to 0.1.

However, this score increases slightly less than the TSS and HSS. This is due to the fact that, the SEDS

score is less influenced by the increase in false alarms because it is harder to hedge1 than the TSS and

HSS.

Figure 4.22: SEDS score for the three algorithms for two different values of threshold1: 0.1 and 0.2.
The values displayed are based on the values of threshold2 that maximize TSS for each algorithm.

Figure 4.23 shows that the SEDI score also increases when the threshold1 decreases from 0.2 to

0.1. Given that this score is hard to hedge and base rate independent (Ferro and Stephenson [36]),

this increase in the score is solely due to the increase of the number of hits for this alteration of the

threshold1 value.

1Hedging. Act of increasing a score by increasing the number of false alarms
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Figure 4.23: SEDI score for the three algorithms for two different values of threshold1: 0.1 and 0.2. The
values displayed are based on the values of threshold2 that maximize TSS for each algorithm.

After the discussion presented, it is clear that the SFIPPT algorithm outperforms the other two algo-

rithms in the task of distinguishing between severe icing and moderate icing events. The SFIPmod has

the poorest performance. However, the sample is very small and this comparison should be performed

for a larger sample. Moreover, the maximum TSS is slightly lower than those found by Belo-Pereira [13].
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Chapter 5

Conclusions

Aircraft in-flight icing is defined as ice accretion on the airframe during flight. Ice accretion or ice

accumulation occurs in the presence of liquid water droplets at sub-freezing temperatures (known as

supercooled droplets). As it was made clear, aircraft icing poses a great threat to aviation in general.

Ice accumulation on aircraft surfaces, specially wings and tail, can lead to a decrease of lift, increase of

drag, loss of control effectiveness and overall performance degradation. This is why the development

and improvement of algorithms capable of forecasting icing conditions are of great importance. The

main goal of this dissertation was to increase the knowledge about the environments favourable to air-

craft icing in the Western European region. For this purpose, PIREPs of icing events and forecasts from

one NWP model were analyzed.

In this dissertation, an algorithm to infer aircraft icing was built based on the algorithms implemented

in Portugal, by IPMA, and later in the United Kingdom, by the Met Office. For this purpose, a database

consisting of 27 reports of icing (moderate or severe) and the NWP forecasts of atmospheric variables

such as temperature, relative humidity, vertical velocity and others was gathered. These events were

reported over western Europe (Iberian Peninsula, the Balearic Sea, the United Kingdom, Ireland, and

the Azores), with 19 events of moderate icing and 8 of severe icing. Most of the reported icing events

took place during wintertime, which was expected since atmospheric conditions conducive to icing are

more common during winter months. Moreover, in general, the severe icing events occur in a thin layer

(thickness inferior to 1000 ft) whereas most of the moderate events (approximately 74%) occurred for a

thickness varying between 1000 ft and 10000 ft, with a more expressive percentage between 1000 and

2000 ft.

After analyzing the data from observations, forecasts from the ECMWF deterministic model for the

dates and locations of each reported icing event were also analyzed. It was found that the majority of

the moderate icing events took place at temperatures between -20◦C and 0◦C, and nearly 70% of the

severe icing events occurred at temperatures between -24◦C and -8◦C. Moreover, approximately 44% of

severe icing events were reported at temperatures below -20◦C. In terms of CLWC, most of the severe
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and moderate events occurred for values higher than 0.0005 g/kg. A small percentage of moderate

events took place for values higher than 0.2 g/kg, while none of the severe events occurred above this

value. The forecasts of relative humidity showed that the vast majority of severe and moderate events

occurred for values greater than 80%. Concerning TCC, the model data showed more than half (about

58%) of the moderate icing events happened for TCC higher than 0.01 g/kg and around 81% of the

severe events occurred beyond the 0.0005 g/kg threshold.

A new quantity was also determined using the forecasts: the icing layer of CLWC or RH exceeding

a certain threshold. The maximum thickness between these two layers was selected for each event.

The distribution of this quantity showed that the majority (over 60%) of both severe and moderate icing

events occurred for a thickness between 50 hft and 100 hft. This suggests that this quantity could be a

useful predictor of the conditions conducive to icing events.

The results aforementioned were important to adjust the thresholds of the membership functions

used in the new algorithm, and to create the new membership function of TCC. The membership func-

tions of the new index were compared with the membership functions of the IPMA algorithm. Overall,

the functions from both algorithms were similar with the exception of the CLWC function. Since most of

icing events occurred for low CLWC, the new function gives more weight to these low values of CLWC

(when compared with the IPMA membership function).

The three algorithms were computed for all the events reported using the forecasts from the ECMWF

model. The behaviour of these algorithms was analyzed in detail for four different icing events (two mod-

erate and two severe). These examples showed that the new algorithm tends to forecast icing layers

with greater thickness than the layers forecast by the other two algorithms. This reflects the influence of

the membership function of temperature. Moreover, the vast majority of the layers predicted by the Met

Office index have thicknesses inferior to 10 hft.

The performance of the icing algorithms was also assessed using contingency tables and the re-

spective scores. These tables were built for different thresholds using a series of criteria, which were

presented and explained with practical examples. These scores show that the algorithm implemented

by IPMA has the best performance concerning the ability to distinguish between severe icing and mod-

erate icing events, while the new algorithm reveals the poorest performance. However, this result may

be influenced by the fact that, the database used was small. In a near future, this comparison should be

performed for a larger sample.

As a final remark, it is important to note that the task of forecasting the icing severity, in particular, of

distinguishing severe from moderate icing is considerably challenging, as suggested by various studies.

For example, the study conducted by Belo-Pereira [13] in 2015, showed that all the algorithms consid-

ered in the study had a better performance in forecasting the icing occurrence than its severity. Another

study made by Kalinka et al. [25] in 2017 relative to an icing warning system for European airspace
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showed that, despite the improvements in the overall skill of the system, there was still considerable

room for improvement concerning the prediction of the icing severity. Fowler et al. [42] drew similar con-

clusions relative to the CIP algorithm. Moreover, they suggested that this shortcoming could be related

in some extent to the biased and subjective nature of PIREPs. Combining this with the sample size, it

was expected that the scores attained in this study would be lower than those obtained in studies with

larger samples, and that only aimed at forecasting the icing occurrence rather than icing severity.

5.1 Future Work

In the future, it would be interesting to evaluate the impact of using a much larger database. In addi-

tion, it would be interesting to study the impact on short-term forecasts of integrating satellite and radar

observations, as this information allows for a more complete characterization of the icing environments.

Another path worth exploring is the introduction of a membership function of the CLWC or RH max-

imum thickness mentioned above, since the distribution of this quantity suggested that this could be a

useful predictor of the icing potential.

Lastly, the database used does not include PIREPs of negative icing conditions, i.e., PIREPs relative

to the non-occurrence of icing. This information is important to quantify the over-forecasting and, con-

sequently, the false alarm-rates. As it was discussed, false alarms dominated the contingency tables of

the new index. However, negative icing conditions are not provided in sufficient quality by the PIREPs

(Kalinka et al. [25]).
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Appendix A

Supporting Figures and Tables

Figure A.1 shows the distribution of the maximum Vertical Velocity in the troposphere, in Pa s−1.

Unlike Figure 4.5, positive values represent downward motion and negative values correspond to upward

motion. The values of Vertical Velocity in Pa s−1 were used to compute the vertical velocity membership

function of the SFIPPT algorithm.

Figure A.1: Vertical Velocity relative frequency distribution

Table A.1 shows information about the forecasts made by each algorithm with the data of each icing

event in the database. More specifically, it shows the number of icing layers forecast by each algorithm

for all the reported icing events and the location of the reported layer relative to the forecast layer(s).

In the case of the forecast layer not intercepting the observed layer, the second column of ”Location”

indicates the distance between those two layers (in hft).
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Table A.1: Layer forecast for each algorithm

SFIP SFIPmod SFIPPT

Event No. Layers Location Layers Location Layers Location

1 0 - - 1 1st layer upper half 1 1st layer upper half

2 1 1st layer upper half 1 1st layer upper half 1 1st layer upper half

3 0 - - 1 1st layer upper half 1 1st layer upper half

4 0 - - 2 2nd layer upper half 2 2nd layer upper half

5 0 - - 1 1st layer lower half 2 1st layer all

6 0 - - 1 1st layer 82.185 1 1st layer 41.784

7 1 1st layer lower half 1 1st layer middle 1 1st layer middle

8 0 - - 1 1st layer upper half 1 1st layer upper half

9 0 - - 1 1st layer upper half 1 1st layer 37.429

10 1 1st layer upper half 1 1st layer upper half 1 1st layer upper half

11 0 - - 1 1st layer all 1 1st layer all

12 1 1st layer all 1 1st layer upper half 1 1st layer upper half

13 0 - - 1 1st layer 71.929 0 - -

14 0 - - 1 1st layer upper half 2 1st layer all

15 0 - - 1 1st layer upper half 2 2nd layer all

16 0 - - 1 1st layer upper half 1 1st layer middle

17 0 - - 1 1st layer middle 1 1st layer middle

18 0 - - 1 1st layer 4.003 1 1st layer 4.003

19 1 1st layer 44.89 1 1st layer lower half 2 1st layer lower half

20 1 1st layer 34.225 1 1st layer 5.981 1 1st layer 5.981

21 0 - - 2 2nd layer 12,112 1 1st layer 21.611

22 0 - - 1 1st layer 3,232 1 1st layer 3.232

23 1 1st layer 11.133 1 1st layer upper half 1 1st layer upper half

24 1 1st layer 52.958 1 1st layer 14.188 1 1st layer 38.268

25 0 - - 0 - - 1 1st layer 74.752

26 1 1st layer upper half 1 1st layer upper half 1 1st layer upper half

27 0 - - 2 2nd layer lower half 2 2nd layer lower half

Tables A.2, A.3 and A.4 are the contingency tables relative to the discussion made about the scores

in Section 4.4. The scores attained with these tables are shown in the histograms from Figure 4.19 to

Figure 4.23.
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Table A.2: Contingency Table of SFIPmod algorithm forecasts for a threshold1 of 0.1 and a threshold2 of
0.1.

Forecast
Observation

Yes No

Yes 7 15

No 1 4

Table A.3: Contingency Table of SFIPPT algorithm forecasts for a threshold1 of 0.1 and a threshold2 of
0.5.

Forecast
Observation

Yes No

Yes 5 7

No 3 12

Table A.4: Contingency Table of SFIP algorithm forecasts for a threshold1 of 0.1 and a threshold2 of
0.35.

Forecast
Observation

Yes No

Yes 2 3

No 6 16
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