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Resumo

Hoje existe uma grande capacidade computacional na periferia da rede, que pode ser usada

para aumentar a capacidade de escala dos sistemas. Infelizmente, ao usar componentes que são

administrados por utilizadores finais, o sistema fica sujeito a comportamentos de parasitagem,

em que alguns nós tentam beneficiar do serviço sem disponibilizar os seus recursos. Neste artigo

estudamos técnicas que permitem evitar comportamentos parasitas em sistemas de difusão entre-

pares. Para este efeito, desenvolvemos uma variante de uma rede sobreposta em que todos os

nós possuem vistas parciais simétricas, de tamanho semelhante. Estas vistas são usadas para

promover interacções frequentes entre vizinhos, que facilitam a monitorização e a classificação

dos parceiros de forma localizada e eficiente. Esta classificação é usada para aplicar sistemas de

penalização simples, que permitem detectar e excluir os nós parasitas em sistemas de transmissão

cont́ınua de dados (streaming). A avaliação mostra que este mecanismo limita a assimetria na

utilização de recursos mesmo na presença de comportamentos mais sofisticados.





Abstract

Edge-computing is one of the most promising techniques to leverage the excess capacity

that exists at users’ premises. Unfortunately, edge-computing may be vulnerable to free-riding,

i.e., to nodes that attempt to benefit from the infrastructure without providing any service

in return. In this paper we address free-riding in the context of edge-assisted streaming and

propose the use of carefully crafted symmetric overlays to support message dissemination and

efficient free-rider detection. The topology maintenance procedures of our overlay encourage

nodes to maintain stable symmetric links. Leveraging the topological properties of the resulting

symmetric overlay, simple and efficient tit-for-tat mechanisms allow to detect free riders without

the signalling overhead of approaches that target at arbitrary topologies.
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1Introduction
The task of disseminating, in real-time, multimedia content to a large number of users has

been coined live-streaming(Liao, Jin, Liu, Ni, and Deng 2006; Bonald, Massoulié, Mathieu,

Perino, and Twigg 2008). Live streaming is particularly challenging when used to provide the

coverage to highly popular events, such as major sport events, concerts, breaking news, etc, due

to the extremely large number of users that need to be served. Due to this reason, the protocols

that support live-streaming need to be highly scalable. One way of achieving scalability and, at

the same time, reduce the costs and avoid bottlenecks at the provider, consists in resorting to

peer-to-peer solutions, where end-user offer some of their computing and networking resources

to help in the dissemination process. Among these solutions, dissemination protocols based

on gossip(Jenkins, Hopkinson, and Birman 2001) among peers have emerged as a promising

strategy, due to their scalability and robustness to failures and churn(Stutzbach and Rejaie

2006).

1.1 Motivation

Decentralised peer-to-peer systems are a powerful tool to explore the unused capacity at the

edges of the network. Unfortunately, it has been observed (Adar and Huberman 2000a; Cohen

2003; Hughes, Coulson, and Walkerdine 2005) that a significant fraction of nodes may free-ride

by not contributing to the system, while still benefiting from the cooperation of a sufficiently

large fraction of nodes that cooperate unconditionally, known as altruistic nodes. This not only

puts an unfair load on altruistic nodes, but also degrades the performance of the tasks executed

at the edge. Mechanisms that can detect free-riders and prevent them from dominating the

system operation are therefore extremely relevant.

In this work we address edge-assisted live-streaming. The usefulness of edge-computing

to support live streaming has been demonstrated by several large scale real-life deployments,
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including PPLive(Huang, Fu, Chiu, Lui, and Huang 2008) among others(Liao, Jin, Liu, Ni,

and Deng 2006). In this context, existing work (Li, Clement, Wong, Napper, Roy, Alvisi, and

Dahlin 2006; Li, Clement, Marchetti, Kapritsos, Robison, Alvisi, and Dahlin 2008; Guerraoui,

Huguenin, Kermarrec, Monod, and Prusty 2010) has addressed free-riding by assuming that

nodes are rational. That is, nodes do not contribute because they aim at maximising a utility,

which decreases with the amount of resources provided to other nodes. This assumption has two

main drawbacks. First, because rational nodes can deviate from the protocol in an arbitrary

fashion, sophisticated incentives are necessary, which are generally costly or require some degree

of centralised control. Second, it is unreasonable to expect any node to be capable of calculating

the optimal strategy that maximises its utility.

1.2 Contributions

This work addresses the problem of selfish users in a live streaming paradigm under a peer-

to-peer architecture. To achieve the goals above, the thesis contributes with

• A new algorithm that is an integrated topology management and peer-monitoring scheme

that can effectively and efficiently minimize the impact of free-riders in live streaming

applications.

• An extensive experimental evaluation of the proposed algorithm that provides insights on

its advantages and limitations.

1.3 Results

The results of this work can be enumerated as follows:

• A specification of the algorithm.

• An implementation using the PeerSim Framework.

• An extensive experimental evaluation using the resulting prototype.
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1.4 Research History

The aim of our work was to explore the different behaviors a user can adopt in a peer-

to-peer topology and provide a fast and low-cost algorithm when the population is willing to

contribute for the information dissemination and provide the necessary mechanisms to adopt a

different protocol when the population is trying to benefit from the system without providing

the expected contributions. To address the first part of this problem, we created a low overhead

novel algorithm based on HyParView. This algorithm has the best results when the entire

population follows the specified protocol or when selfish users are free riders. Since users can

deviate from the protocol in arbitrary ways, we rely on LiFTinG, a more costly and heavier

protocol, to address this limitation. In my work I have benefited from the collaboration of my

advisor, Prof. Lúıs Rodrigues, Prof. Hugo Miranda and Xavier Vilaça.

1.5 Structure of the Document

The rest of this document is organized as follows. For self-containment, Section 2 provides

an introduction to all background related to our work. Chapter 3 describes the proposed archi-

tecture and its implementation. Chapter 4 presents the results of the experimental evaluation

study. Finally, Chapter 5 concludes this document by summarizing its main points and future

work.
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2Related Work

In this section we survey the most relevant works that address peer-to-peer dissemination

of information in the presence of both altruistic and rational nodes. We start by discussing, in

Section 2.1 a number of mechanisms that have been used to address rational nodes in distributed

system. Then, since we are concerned with systems that can support live-streaming to a large

number of nodes, it is generally impossible for a single peer to have full knowledge of all the other

peers. Instead, these systems often rely on a membership protocol, that provides to each peer a

partial view of the system. Therefore, for self-containment, we present two membership protocols

in Section 2.2. Subsequently, in Section 2.3, we describe different dissemination protocols. As it

will be seen, there are two main approaches to implement the dissemination process. The first

consists in building some form of spanning tree. Tree-based protocols are more resource efficient

but also more fragile: faults or free-riders can easily disrupt the tree. This can be mitigated

by using multiple trees in parallel at the cost of increasing the maintenance costs. Another

approach consist in using epidemic dissemination(Agrawal, El Abbadi, and Steinke 1997). In

the later approach, each node forwards each packet it receives to a subset, selected at random, of

all nodes in its partial view. As it will be seen gossip-based protocols achieve better robustness

at the cost of larger redundancy (and therefore, high bandwidth utilization).

2.1 Addressing Rational Behavior

As we have discussed before, in many systems where end-users have opportunity to alter

the behavior of the software, such as peer-to-peer file sharing applications, free-riders tend

to appear. It has been studied that, if the fraction of altruistic nodes follows below a given

threshold, free-riders tend to dominate the system and prevent it from providing the intended

service(Feldman, Papadimitriou, Chuang, and Stoica 2006). Therefore one needs to augment the

system with mechanisms to detect and punish free-riders, for instance, by expelling free-riders

from the system. The goal of such mechanisms is to prevent free-riders from dominating the
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systems, to provide incentives for rational nodes to follow the protocol, and also to ensure that

nodes that follow the protocol have no incentives to deviate from their correct behavior. In fact,

if a rational node that is following the protocol finds that it is contributing more than most

of other nodes, it may be willing to change its behavior, and also reduce its own contribution.

This may create a cycle, in which the performance keeps on decreasing until the system comes

to an halt. In the next paragraphs we introduce some of the main mechanisms that have been

proposed to cope with rational nodes.

2.1.1 Payments

One possible mechanism to foster cooperation is to implement some payment scheme (Golle,

Leyton-Brown, Mironov, and Lillibridge 2001; Yang and Garcia-Molina 2003). Every time a node

provides a service to another nodes it gets some payment in return. In turn, a node that has

provided services in the past can use it to later request services from other nodes. The currency

can be completely virtual or have some correspondence to some real money, corresponding to real

payments that end-users make to benefit from the service they get. In this way, nodes that do

execute the protocol faithfully, i.e., that provide service, are rewarded and free-riders are quickly

depleted of currency. Unfortunately, a payment-based system is not trivial to implement. First,

it is necessary to ensure that nodes cannot fabricate currency, and this usually involves the use

of complex cryptography techniques. These systems also require some accounting module to

securely store each peer’s virtual currency and a settlement module that enforces a fair service

in virtual currency exchange. All these components are complex to implement, and often require

the use of a secure central entity that all peers would trust.

2.1.2 Reciprocity

In a reciprocity-based system, a peer monitors other peers’ behavior and evaluates their

contribution based on their past actions (Menasché, Massoulié, and Towsley ). There are two

types of reciprocity-based schemes: direct and indirect.
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2.1.2.1 Direct-reciprocity schemes

In direct-reciprocity schemes, Alice decides if she will share her information with Bob, based

on the service that Bob has provided to her. BitTorrent (Cohen 2003) is a famous example that

uses a direct-reciprocity scheme, that uses a tit-for-tat incentive mechanism in order to a user

find the best set of peers that are willing to contribute.

2.1.2.2 Indirect-reciprocity schemes

In indirect-reciprocity schemes, Alice decides if she will share her information with Bob,

based not only on the services that Bob has provided to her, but also on the service that Bob

has provided to others users in the system. Intuitively, indirect-reciprocity schemes are harder

to implement and are more expensive as they require more messages’ exchange in order to make

a decision. Another drawback in this approach is the fact that it is vulnerable to collusion

behavior: a set of peers may be colluding and will always give positive feedback to others about

users within the set.

2.1.3 Reputation

Reputation (Gupta, Judge, and Ammar 2003), can be seen as a form of indirect reciprocity,

where a numerical value, the node’s reputation, captures the past behavior of a node as it is seen

by its peers. Reputation is usually only meaningful after a reasonable amount of interactions

among nodes, such that temporary faults outside the control of the node (such as a temporary

network outage) do not affect negatively the reputation of altruistic nodes. The main difference

from reputation and indirect reciprocity is that information about peers reputation is maintained

and the system, itself, will provide better download capacity to nodes with higher reputation

(Karakaya, Korpeoglu, and Ulusoy 2009). Reputation schemes can be local or global.

2.1.3.1 Local Reputation

In local reputation, peers store, locally, information about others peers that they’ve inter-

acted with. This is the simplest approach as it does not required information to be shared and

each peer can have different reputations levels to different peers.
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2.1.3.2 Global Reputation

In a global reputation approach, the reputation of each peer is based on the information

obtained from a set of peers. Although this approach may seem more accurate, it creates a set

of problems. First, it is necessary to take into account that a rational peer may lie about the

reputation of other nodes. Second, sharing information requires additional message overhead

and it may be necessary to use a central authority to store and manage reputation information,

which is difficult to implement in pure peer-to-peer networks.

Reputation mechanism also assume that peers’ identities should be preserved across sessions.

This creates the challenge to not only uniquely identify each member of the system, but also store

this information in a reliable node. As being said, this is difficult to implement in peer-to-peer

systems and can compromise scalability.

2.1.4 Joining the System

One problem with reciprocity and reputation systems is that newcomers have no “history”.

On one hand, one would like that the procedure for joining the system is not extremely expensive

and or slow, such that new contributors are not discourage to join the system. On the other

hand, if joining the system with a new identity is very simple, this creates an opportunity for

free-riders to escape the monitoring mechanisms by repeatedly switching to a new identity (i.e.,

whitewashing). A trade off is to impose some simple but efficient penalty to newcomers, such as

a delay on startup. This time most be small enough to incentive newcomers to join the system

and long enough to not be worth to exploit it by selfish users.

2.1.4.1 Sybil Attack

A common exploitation of this a system with a very simple joining mechanism is the Sybil

attack (Douceur 2002), where a user is able to forge multiple identites and uses them to gain

a disproportionately large influence over the system. Systems with zero cost identities are the

most affected by this attack as a user does not have any kind of validation or punishment.

In order to prevent this attack, validation techniques can be used to dismiss masquerading

hostiles entities. It is possible to use a certral entity which ensures and forces a one-to-one

correspondence between an identity and an entity. This solution as the main drawbacks as the
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ones describe in the Global Reputation approach. As (Douceur 2002) mentions, without any

centralized authority, Sybil attacks are always possible except under unrealistic assumptions and

unlimited resources. Even though, full prevention is very hard, it is possible to minimize the

window of opportunity that a user had to exploit this attack, such as crypto-puzzles which its

resolution time is predefined and that the node has to dedicate all computacional resources to

its resolution (Wang and Reiter 2003; Merkle 1978; Borisov 2006).

2.1.4.2 Crypto-puzzles

are a good mechanims for mitigating the effects of undesirable network communication,

such as flooding attacks. Crypto-puzzles can reduce the rhythm of creating new identities on

the system and, therefore, prevent Sybil attacks. Crypto-puzzles should be hard to solve but

easy to validate. This means that a client should spend a considerable amount of time and

resources trying to solve it, while another client with a simple and fast operation should be able

to validate if the cryto-puzzle was successfully solved.

2.1.4.2.1 Hash-Reversal Puzzles (Juels and Brainard 1999) approach is to force clients to

reverse cryptographic hashes given the original random input with n bits hidden. The goal is to

use a brute force search mechanism to discover the hidden bits. One advantage of this approach

is how fast puzzles can be generated as single hash is performed very quickly. From the other

hand, one main disadvantage of this approach is the fact that solution time is probabilistic. This

means that a lucky client can solve the puzzle faster than a client who struggles at brute forcing

the solution.

2.1.4.2.2 Hint-Based Hash-Reversal Puzzles (Feng, Kaiser, and Luu 2005) provides a

single hash-reversal puzzle and a hint that gives the client an idea of where the asnwer of the

puzzle is. The main purpose of the hint is to solve the main disadvantage of hash-reversal

puzzles, where resolution time is not constant.
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2.2 Membership Protocols

2.2.1 SCAMP

(Ganesh, Kermarrec, and Massouli 2001) is a reactive membership protocol for gossip-based

peer-to-peer systems. The purpose of the protocol is to maintain, at every peer, a partial view of

the system, which approximates a random sample of the entire system membership. One of the

most interesting aspects os SCAMP is that the size of the partial view is not fixed; instead, it

is proportional to the size of the system, even if each individual node has no explicit knowledge

about the total number of members that exist in the system. However, from the operation of the

join procedure nodes can indirectly infer when they need to enlarge their views to accommodate

more nodes in the system.

The protocol works as follows. A new node must first obtain the contact of another node

already in the SCAMP network. This is achieved using a mechanism orthogonal to the protocol

(for instance, using localized flooding or pre-defined trackers). Then, the new node starts a join

procedure by sending a join request to the contact node. When the contact node receives a

new subscription request, it forwards the subscription request to all members of its own local

view. It also creates additional copies of the new subscription that are forwarded them to

randomly chosen nodes in its local view. When a subscription request is received by another

node it can either be accepted (with probability p) or forwarded to some other random node

(with probability 1 − p). Every time the subscription request is forwarded a time-to-live filed is

decremented. When this filed reaches zero the request is deterministically accepted and the size

of the local view is increased. In order to leave the network, a node must flood an unsubscribe

message to the entire system. If a node becomes isolated, this means that its identifier is not

present at any local view, it will resubscribe through a node in its partial view. A node may

become isolated if all nodes that contained it on their partial view leave the system, either by

crashing or unsubscribing.

2.2.2 HyParView

(Leitão, Pereira, and Rodrigues 2007) One disadvantage of the SCAMP protocol is that it

does not implement any form of failure-detection mechanism other than the periodic garbage-

collection/re-subscription described above. This requires the use of large views to keep the
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network connected and also makes the partial views highly unstable, as they are periodically

refreshed. This makes hard to use the membership service for building protocols that require

stable connections among peers, such as tree-based dissemination protocols. HyParView(Leitão,

Pereira, and Rodrigues 2007) is a membership protocol designed to eliminate these disadvan-

tages.

HyParView operates by maintaining two complementary views, namely a passive view, that

provides a good sample of the system (the passive view can be maintained by a protocols such

as SCAMP), and an active view, a smaller sub-set of views that are continuously monitored and

quickly replaced if, but only if, they have failed. Furthermore, unlike SCAMP partial views,

active views in HyParView are symmetric. This ensures that nodes maintain a fixed out-degree

but also a fixed in-degree, and cannot be easily disconnected from the network.

The active view are maintained has follows. As in SCAMP, a new node must send s sub-

scription request to a node already in the network. The node that received the join request

will add the new node to its active view. Then, it proceeds to forward the request to every

other member of its active view. As in SCAMP, subscription request perform random walks in

the network until they are eventually accepted. However, unlike in SCAMP, when the join is

accepted, a bi-directional link is created with the joining node (to ensure view symmetry). This

kink is used by each peer to actively monitor the other nodes in its active view. If one of these

nodes is detected to be failed, a candidate for replacement is picked form the passive view. In

fact, the role of the passive view is only to serve as a pool of good candidates to replace failed

nodes in the active view. As a result, is is possible to maintain the network connectivity with

active views that are short and stable.

2.3 Dissemination Protocols

2.3.1 Altruistic Dissemination

Altruistic dissemination considers the model when every node in the system is altruistic,

this means that it follows the specified protocol and it is willing to disseminate information.

We can find three different types of organizations to achieve this: Basic Gossip, Trees and a

BitTorrent fashion way.
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2.3.1.1 Basic Gossip

Basic Gossip also called epidemic protocols, is very appealing in large scale distributed

applications. These protocols are popular because their possibility to be fully decentralized,

their ability to reliability spread information among a large set of nodes, even if some of them

crash or if messages are lost. This characteristics fit, perfectly, the peer-to-peer paradigm. In

a gossip-based protocol, each member of the system exchanges information with a subset of its

neighbors. Nodes should select for who they disseminate information using a random sample of

all nodes in the system. However, gossip system can have countless members which makes very

difficult to provide a list of all members to every peer in the system, specially because nodes are

free to join the system or to leave it. This would compromise the scalability of the system as

nodes would spend more time trying to get the most updated list of members instead focusing on

disseminating information. In practice, members of a gossip system only store a partial view of

the system and may, periodically, update it by exchanging it with another member. The partial

view should provide a good sampling of the system, allowing a member to select, at random,

a subset of nodes who will receive information. One important aspect of gossip protocols, is

how large this random subset should be in order to guarantee that every member in the system

receives the information. In (Kermarrec, Massoulié, and Ganesh 2003) was proved that if there

are n nodes in the system and if every node gossips information to, at least, log n, the probability

of every node receiving the information is close to one. Basic Gossip protocols have very little

overhead necessary to maintain its structure. Nodes just need to store a sample of members that

are in the system, eventually, update this list (if churn is taken into account). Since information

is spread in a random way, nothing prevents a node to receive the same information multiple

times from different nodes, however, it is exactly this redundancy that provides gossip protocols

the robustness to support lost messages and nodes leaving the system.

2.3.1.2 Trees

Trees may be the most intuitive and natural way when thinking about disseminate infor-

mation that, in our case, always have the same origin, the streamer. The most simple approach

creates a tree where the streamer would be the root and it would disseminate information for

a subset of peers that forward it to their children. If we think about simple trees, where each

peer only has one parent, instinctively, this approach has almost no redundant message. This
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happens, because, contrarily to Basic Gossip, nodes would receive information only from one

node, their parent. Considering an heterogeneous network, where peers can have different up-

load capacities, trees offer the possibility to put nodes that have better upload capacity at the

top, while nodes with low upload capacity as leafs. This organization would contribute not only

for a better availability but also for a better resource management. Trees, however, suffer from

two main drawbacks. First, finding the best tree organization may not be a trivial process and

would require time and computational cost. Second, it is hard to handle churn. If a node that

is positioned on a top position leaves the system, a major part of the nodes can stay, until the

tree is reconstructed, without receiving any content. When a new node joins the system, the

simpler approach, would select any leaf to be its parent. However, this can lead to poor resource

management.

2.3.2 BitTorrent

BitTorrent (Cohen 2003), a file-sharing system, files are split up into chunks and the nodes

who want to get a file cooperate in a tit-for-tat-like manner. This strategy aims to try to prevent

parasitic behavior as a node is more likely to cooperate with a node who shared resources with

him in the past. Each peer will try to maximize its own download rate by contacting the best set

of peers who are willing to cooperate. Contrarily to live-streaming, in file-sharing, when a peer

finishes downloading any file, it may become an extra dissemination source. This behavior is the

opposite of Free Riding; a user will only disseminate information without expecting anything

in return. In live-streaming this is not achievable. Because the content of the stream is dy-

namic, so a node never has the full information so to keep disseminating, it has to keep receiving.

2.3.3 Dissemination with rational nodes

In reality, not all nodes are altruistic (Adar and Huberman 2000b). While it is desirable that

every node follows the protocol, some nodes either by poor upload capacities or intentional bad

intentions will not contribute for content dissemination. In simple tree topologies, a single node

can crash a major part of the system if it starts to block outgoing communication, specially if it is

a node that is positioned of the first levels of the tree. Basic Gossip protocols are also vulnerable

to selfish behavior, however due to its robustness and redundant messages system, it tolerates a



14 CHAPTER 2. RELATED WORK

higher percentage of selfish users than trees. In this section we will describe systems that aim

to prevent selfish behavior in Gossip based protocols (Li, Clement, Wong, Napper, Roy, Alvisi,

and Dahlin 2006; Guerraoui, Huguenin, Kermarrec, Monod, and Prusty 2010), Trees (Levin,

Sherwood, and Bhattacharjee 2006; Li, Xie, Qu, Keung, Lin, Liu, and Zhang 2008) and what

strategies BitTorrent has to achieve the same goal.

2.3.4 BAR Gossip

BAR Gossip (Li, Clement, Wong, Napper, Roy, Alvisi, and Dahlin 2006) was the first peer-

to-peer data streaming application that aimed at offering guaranteed predictable throughput

and low latency in the BAR (Byzantine/ Altruistic/Rational) model. The main characteristic of

gossip protocols is that each node exchanges data with randomly selected peers. This randomness

gives gossip protocols their enviable robustness. However, rational users can use this randomness

to game the system and hide selfish actions. This happens because if there is no determinism,

it is very difficult to argue that a node is sending information to the incorrect set of nodes. In

order to solve this problem, BAR Gossip relies on a verifiable pseudo-random partner selection to

eliminate non-determinism. In BAR Gossip, the streamer relies on two protocols to disseminate

information: Balanced Exchange and Optimistic Push.

2.3.4.1 Balanced Exchange

The Balanced Exchange mechanisms allows clients to trade updates one-for-one, where each

party determines the largest number of new updates it can exchange while keeping the trade

equal. A big drawback in Balanced Exchange is the overhead added by encrypted content that

is sent in order to make sure that both users act faithfully. Another problem is that if a node

has no valuable information to give, the trade will not happen.

2.3.4.2 Optimistic Push

The Optimistic Push mechanism provides a safety net for clients who have fallen behind by

allowing clients to obtain missing updates without giving back a set of updates of equivalent

value. In order to make optimistic push fair and to avoid that users use it to hide selfish

behavior, a user who has fallen behind has to send junk data when trading updates. To avoid
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abuses, the size of the junk data that a member has to send must be bigger than the size of

actual information that is received. This tries to prevent Free Riders from using it as way to

get information only by sending junk. This strategy has an obvious drawback: junk data is not

useful and it his consuming bandwidth of both sender and receiver.

BAR Gossip is also able to tolerate byzantine behavior by requiring every node to sign their

message using their private keys to provide authentication, integrity, and non-repudiation of

message contents. Overall, Bar Gossip is able to provide a good service even when all clients

are selfish or when there are less than 20% of Byzantine nodes. These properties are achievable

by using heavy communication protocols, more concretely by ciphering every message. This is

clearly an unnecessary overhead if the system is not composed by enough rational nodes that

can warm the quality of service.

2.3.5 FlightPath

(Li, Clement, Marchetti, Kapritsos, Robison, Alvisi, and Dahlin 2008) can be seen as an

evolution of BAR Gossip. One of the problems of using random gossip to stream live data is the

widely variable number of trading partners a peer may have in any given round. High numbers

of concurrent trades are not desirable for two reasons. First, a peer can be overwhelmed and be

unable to finish all of its concurrent trades within a round. Seconds, a peer is likely to waste

bandwidth by trading for several duplicates updates. To address this problem, FlightPath

distributes the number of concurrent trades more evenly by providing a limited amount of

flexibility in partner selection. This is achievable by making reservations: A peer c reserves a

trade with a partner d before the round r in which that trade should happen. Reservations are

effective in ensuring that peers are never involved in more than 4 concurrent trades.

In basic gossip trading protocols it is desirable to disseminate the most recent updates

over older ones to spread new data quickly. However, in a streaming environment, peers may

sometimes value older updates over younger ones, for example when a set of older updates is

about to expire and the peer do not have it yet. The drawback in preferring to update old

information is that the received information may not be useful in future exchanges because

many peers may already have it. Flightpath provides a peer with the possibility to receive

updates from older rounds first and then updates in most-recent-first order. One weak point

of BAR Gossip was how Optimistic Push was designed. Flightpath solves this problem using



16 CHAPTER 2. RELATED WORK

the Imbalance Ratio: Each peer tracks the number of updates sent to and received from its

neighbors, ensuring that its credits and debits for each parter are within a certain threshold of

each other. This is a similar strategy to the one we will use to compute the nodes score. The

final improvement that Flightpath offers compared to BAR Gossip is the Trouble Detector. Each

peer monitors its own performance by tracking how many updates it still needs for each round.

If its performance is low, then that peer can initiate more trades in order to avoid missing an

update.

2.3.6 LiFTinG

(Guerraoui, Huguenin, Kermarrec, Monod, and Prusty 2010) detects Free Riders in Gossip

protocols with asymmetric data exchanges. Asymmetric data exchanges happens when a node

is able to send more data to another node than it receives from him. LiFTinG, in order to

track Free Riders, requires nodes to track others nodes behavior by cross-checking the history of

their previous interactions and relies on the fact that nodes disseminate information to a subset

of random nodes. This property prevents colluding behavior, where nodes can chose to send

information always to the same subset of nodes or nodes covering each others’ bad behavior. A

node checks another node behavior according to a probability that is a constant in the system.

LiFTinG works in a generic three-phase Gossip protocol where data is disseminated following

an asymmetric push scheme. Three-phase Gossip consists in informing a node of the available

information, then the receiver sends back the list of identifiers it wants and finally the first

node sends him all requested information. Symmetric push requires additional steps in order to

negotiate the amount of packages that both nodes will exchange.

LiFTinG makes use of a deterministic and statistical distributed verifications procedures

based on the node’s past interactions. Deterministic procedures try to validate that the content

received by a node is later propagated by the same node. Statistical procedures check that

the interactions of a node are evenly distributed in the system using statistical techniques, this

means that a node should disseminate information to a random set of peers and should not

collude by choosing to who it sends informations.

LiFTinG does not rely on heavyweight cryptography and incurs only a very low overhead in

terms of bandwidth. It is also fully decentralized as nodes are in charge of verifying each others’
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actions and monitoring each others’ behavior, without the need of a dedicated server.

Detection of Free Riders is achieved by attributing a score to every node. If a node’s score

decreases below a threshold, it is assumed that it is Free Riding and the system punish it. When

a node detects that some other node is Free Riding or is not faithfully following the protocol, it

sends a blame message containing a value against the suspected node. Summing up the blames

values of a node results in a score. Each node is monitored by a set of nodes, called managers.

Managers are distributed among participants in order to avoid undesirable cooperative behavior

and they collect blame messages against the nodes they monitor. When the score of a node

drops beyond a threshold, the managers spread - through gossip - a message to inform users.

Users then remove this node from their membership, consequently that node stops being part of

the system as it will not receive any information. In the following subsections, we will describe

the procedures that LiFTinG uses in order to detect Free Riders.

2.3.6.1 Direct verifications

There are two direct verifications. The first aims at ensuring that every chunk of information

that a node requests is served. Nodes cannot arbitrary request information, however if some

node, in the first step of the gossip, purposes a certain set of chunks, then the receiver has the

right to ask for every chunk it requires. If any node refuses to send a chunk asked, the requesting

node blames the proposing node with a score that is proportional to the amount of chunks not

delivered. This detection can be done locally and it is therefore always performed.

The second verification checks that receive chunks are further proposed to another nodes

within the next gossip period. This is achieved by a cross-checking procedure that works as

follows: Alice who received a chunk C from Bob acknowledges to Bob that she proposed C to

a set of nodes. Then, Bob sends a confirm request to the same set of nodes to check whether

they effectively received a propose message from Alice containing C. If Alice refuses to send Bob

the acknowledge message, she will be blamed according to the amount of nodes that she should

disseminate the information to. Alice will also be blamed for each missing or negative answer

message that Bob receives from the set of nodes that he contacted.
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2.3.6.2 Verifications a posteriori

The random choices made in the partners selection must be checked, this is necessary to

avoid collusion. To verify it, a node requests the local history of a node. This local history

has the last interactions that a node did during the last seconds. Since the partner selection is

random, it is possible to use statistically calculations to understand if a node is try to use a

non-random algorithm to compute it. In order to confirm that a node send the correct history

and did not change it, the verifier will then pick a subset of nodes that are present in this history

and request a confirmation that validates its integrity. If the node sent a false history, his score

will be affected according to the amount of nodes who do not validate its history. LiFTinG

incurs a maximum network overhead of 8%. When Free Rides decrease their contribution by

30%, LiFTinG detects 86% of the Free Riders and wrongly expels 12% of honest nodes. False

positives were nodes that their actual contribution was smaller than required. However, it was

because poor capabilities, as opposed to Free Riders that deliberately decrease their contribution.

LiFTinG assumes that a selfish node will not send false blame messages against an altruistic

node. There are two reasons for this. First, altruistic nodes are the main reason for information

to be disseminated. Removing these members from the system may decrease the information

that its available for all nodes, including selfish users. Second, blaming a selfish node does not

guarantee that a selfish user will not get caught by another users.

2.3.7 FOX

(Levin, Sherwood, and Bhattacharjee 2006) is a tree based system for live streaming that

assumes that all peers are greedy. In addiction, it provides theoretically optimal download times

when everyone cooperates. In a simple way, FOX protocol builds multiple sub-trees being the

streamer the root of all of them. The streamer disseminates to every tree a different subset of

the information. Later, each parent node of the subtrees proceeds to spread the information to

its child until it reaches the leaves. The leaves then exchange their information with the leaves

of others subtrees in order to have the whole set of updates. After this, leaves send the new

information back to their parents. And thus, every node is the global tree receives every update.

If selfish nodes complete their downloads at different times, the system runs the risk of last-block
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collapse, in which nodes begin dropping out of the system when they finish, leaving the remaining

nodes with no help to finish their downloads. To prevent this, FOX enforces participation by

augmenting the block exchange with a novel encryption algorithm. This algorithm requires

nodes to exchanges decryption keys by sending one bit of the key at a time without letting the

other get ahead by more than one bit. In the worst case, one of the nodes in the exchange cloud

get the final bit and leave the system, but since their are exchanging bits, the remaining node

need only to try both values. In essence, all participants finish their downloads simultaneously.

A major drawback in FOX is the assumption that the system is not dynamic. After the system

structure is defined, every node from root of the subtree to the leave cannot leave or crash. This

is a strong assumption that in practice can compromise the whole system if it is not verified.

2.3.8 Coolstreaming

(Li, Xie, Qu, Keung, Lin, Liu, and Zhang 2008) uses a hybrid pull and push mechanism,

in which the video content are pushed by a parent node to a child node except for the first

block. This helps to significantly reduce the overhead associated each video block transmission,

in particular the delay in retrieving the content. Coolstreaming makes use of multiple sub-

streams scheme is implemented, which enables multi-source and multi-path delivery of the video

stream. Observed from the results, this not only enhances the video playback quality but also

significantly improves the effectiveness against system dynamics. Coolstreaming has two main

disadvantaged. First, it does not considered the Free Riding problem. More than that they

estimate that around 65% of the users do not contribute for the content dissemination. Second,

Coolstreaming places strategically a number of servers that help in content dissemination and

to reduce the start up time. Although the use of dedicated servers can help a lot the system,

either by helping uploading content or rely on them to analyze the state of the system, they

contradict the whole purpose of P2P systems.

2.3.9 BitTorrent

BitTorrent has two types of up-loaders: seeders and leechers (Locher, Moor, Schmid, and

Wattenhofer 2006).
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2.3.9.1 Seeders

are nodes that already have successfully download a file and provide its content to another

nodes. Seeders upload information to all peers in a round robin fashion way.

2.3.9.2 Leechers

are nodes that are still downloading the file. Leechers upload information mainly to peers

are able to provide some pieces of the file in return.

BitTorrent also uses a mechanism called ”Optimistic Unchoking”. Using this mechanism, a

peer will reserve part of its upload bandwidth to send pieces to random peers hoping that it will

discover better partners and to increase the possibility for newcomers to be part of the system.

This mechanism is vulnerable to white-washing (a node leaving and re-entering the system with

a new identity) and a node can abuse this strategy to download the file and minimize as much

as possible his contribution. This is a major difference between the peer-to-peer file-sharing

and live-streaming paradigm. In live-streaming paradigm, the node was little or no incentive to

white-wash because even with a low startup time, the node will lose information. This property

give us some flexibility to create a protocol that requires some time to startup.

According to BitTorrent terminology, in live-streaming application there are no seeders. This

is because new information is being constantly generated and peers may not persistence store

the information they receive. From one side, this property makes information more ‘valuable‘ as

nodes have a limited time to access it. However, this short time is why it is so important that

every node follows the protocol.

Summary

Peer-to-peer architecture are a great mechanism to spread the working load among users

in the system. However, due the hard task of controling and ensuring that every member of

the system is acting faithfully to the specified protocol, some nodes might avoid contributing

to the system and still benefit from it. In this chapter we discussed the most popular systems

that ensure that nodes follow the protocol or penalize them if a different behavior is adopted.
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Furthermore, we discussed two main approaches of supporting live-streaming systems and pro-

totypes already developed that use heavy control mechanisms or cipher overhead to guarantee

the correct and expected results.

The next chapter will introduce the architecture and implementation details of our system

FastRank.
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3FastRank
In this work we address edge-assisted live-streaming. The usefulness of edge-computing

to support live streaming has been demonstrated by several large scale real-life deployments,

including PPLive(Huang, Fu, Chiu, Lui, and Huang 2008) among others(Liao, Jin, Liu, Ni,

and Deng 2006). In this context, existing work (Li, Clement, Wong, Napper, Roy, Alvisi, and

Dahlin 2006; Li, Clement, Marchetti, Kapritsos, Robison, Alvisi, and Dahlin 2008; Guerraoui,

Huguenin, Kermarrec, Monod, and Prusty 2010) has addressed free-riding by assuming that

nodes are rational. That is, nodes do not contribute because they aim at maximising a utility,

which decreases with the amount of resources provided to other nodes. This assumption has two

main drawbacks. First, because rational nodes can deviate from the protocol in an arbitrary

fashion, sophisticated incentives are necessary, which are generally costly or require some degree

of centralised control. Second, it is unreasonable to expect any node to be capable of calculating

the optimal strategy that maximises its utility.

Therefore, we make the following assumption that, we believe, characterises most realistic

settings. First, we assume that a significant fraction of nodes is altruistic. Second, we assume

that the majority of nodes that deviate are free-riders. These nodes adopt the simple behaviour

of never forwarding the stream. Third, we admit a small fraction of nodes that are rational

and may adopt a more sophisticated behaviour. In this setting, it suffices to ensure that: i)

free-riders are detected and expelled efficiently; ii) altruistic nodes have a way to detect that the

assumptions have been violated (for instance, in the case where, against the expectations, there

is a large fraction of rational nodes among the population), and can trigger a system adaptation

to use more robust (but also more costly) incentive mechanisms; and iii) rational nodes still

need to contribute to the system with a reasonable amount of resources in order to receive the

stream.

Like most live-streaming implementations, we require nodes to join an overlay network in

order to participate/receive the video broadcast. Instead of attempting to support arbitrary
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topologies, our overlay maintenance protocols include incentives for nodes to keep stable sym-

metric links with a small set of neighbours. As a result, it becomes possible to use simple

tit-for-tat mechanisms to detect free-riders, instead of complex distributed monitoring and rep-

utation mechanisms that may incur in a large signalling overhead. Based on these principles,

we propose FastRank, an integrated topology management and peer-monitoring scheme that

can effectively and efficiently minimize the impact of free-riders in live streaming applications.

FastRank implements a ranking system that allows altruistic nodes to remain in the overlay and

connect with other altruistic nodes, while free-riders are quickly penalised for not contributing

to the system. Interestingly, we also show that the approach is robust to more sophisticated

behaviour from rational nodes, such as attempts to manipulate the topology in their benefit,

white-washing attacks, or contribution with just enough resources to avoid being marked as

free-riders. In particular, we show that for these deviations to be profitable, the attackers still

have to contribute with a reasonable amount of resources to the system. Furthermore, we show

that, if the fraction of rational nodes is large, this can be detected by altruistic nodes that can

trigger a system reconfiguration and commute to use more robust incentive

We now describe FastRank, a peer-to-peer streaming service that is resilient to free-riders

and to a fraction of rational nodes. FastRank has three main components: an overlay net-

work construction and maintenance protocol, a localised neighbour ranking mechanism, and a

dissemination mechanism. These components cooperate in a synergetic manner to ensure that

free-riders are promptly identified and shunned by their neighbors, so that they stop receiving

the stream. In particular, the overlay maintenance mechanisms require nodes to preserve a small

stable symmetric view. This, in turn, forces pairs of nodes to engage in long-term interactions

called relationships. These interactions can be easily monitored locally, without requiring the

dissemination of signalling traffic. Localised monitoring becomes then very efficient: nodes at-

tribute a rank to each neighbour and expel from their view neighbours that have a low rank, i.e.,

which appear to be free-riders. Since rational nodes maximise their utility by avoiding being

expelled by their neighbours, this encourages them to forward at least a fraction of the stream,

ensuring a good streaming quality even in the presence of a significant fraction of rational nodes.

Rational nodes may also attempt to keep a large view, to maximize the opportunities to receive

new data. To prevent this, the overlay mechanisms make sure that the creation of new rela-

tionships incurs some utility loss. The same approach is used to prevent rational nodes from

significantly increasing their utility by adopting new identifiers.
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3.1 Overlay Network

The key idea behind FastRank is to leverage from the use of stable overlays with symmetric

links to support the message dissemination. After establishing a link, two altruistic nodes will

preserve it until one of them fails. The number of neighbours of each node is deliberately small

(i.e, logarithmic with regard to the system size) (Kermarrec, Massoulié, and Ganesh 2003), such

that neighbours are required to interact frequently during the message dissemination process.

As we will see, this allows to detect free-rider behaviour quickly and efficiently.

HyParView(Leitão, Pereira, and Rodrigues 2007) is a peer-to-peer protocol that constructs

and maintains an overlay with the properties required to implement our approach. Further-

more, the authors of HyParView have shown experimentally that their overlay could effectively

support reliable muticast (Leitão, Pereira, and Rodrigues 2007). Unfortunately, we could not

use HyParView as a black box while developping FastRank. In fact, HyParView appears to

have been designed under the assumption that all nodes are altruistic. Moreover, it provides no

support to prevent a node from constantly changing neighbours. Given that nodes will require

some time to identify a new neighbour as a free-rider, the free-rider will receive some packets

before it is disconnected. If the free-rider can create new links at the same pace it looses old

ones, it will still be able to receive the stream. Therefore, FastRank implements a variant of

HyParView. This adaptation of HyParView, that we call Constrained HyParView, implements

mechanisms that constrain the pace at which a node can establish new relationships.

3.1.1 Constrained HyParView

Constrained HyParView is a redesign of the original HyParView protocol that we have de-

veloped to meet the requirements of FastRank. This variant, includes mechanisms that constrain

the rate at which a node can establish new relationships in the overlay. For this purpose, when

a node i contacts another node j, to create a new relationship between i and j, node i is given a

time-consuming task that it needs to perform before the relationship request is accepted. This,

in practice, introduces a quarantine period before the establishment of a new relationship. The

quarantine period should be long enough such that multiple frames are lost and white washing

becomes unappealing. Furthermore, the task given to node i should be such that more than

one task cannot be performed in parallel by a singe node during a given quarantine period, i.e.,
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if a node attempts to establish two new relationships, it should be forced to “pay” the cost of

waiting two quarantine periods.

To achieve the goals above, in FastRank, we have opted to use crypto-puzzles. More pre-

cisely, when a node i contacts node j to establish a new relationship, node j prepares a crypto-

puzzle that needs to be solved by i in order for j to accept the relationship. The crypto-puzzle is

such that the estimated average time to solve it is the pre-defined quarantine period, even if the

entire computing resources of a node are devoted to the task. Several examples of crypto-puzzles

with these guarantees have been described in the literature(Wang and Reiter 2003; Merkle 1978;

Borisov 2006); in FastRank we have opted to use (Feng, Kaiser, and Luu 2005).

A node joining the Constrained HyParView overlay contacts a target number of neighbours,

gets a challenge from them, solves the crypto-puzzles and provides the answers to all neighbours

simultaneously. In this way, it is likely that the joining node is accepted by a number of

neighbours that is large enough to initiate its operation without risking being marked as free-

riders (because it does not receive enough information to forward). A significant advantage of

this approach is that a node attempting to join the network is constrained by its own resources,

no matter how many different nodes it tries to contact or how many identities it attempts to

use, since the number of tasks it may perform by unit of time is limited by the finite hardware

resources of the node. Therefore, FastRank also mitigates the impact of White-washing and

Sybil attacks.

The reader should notice that the mechanism above is asymmetric: while the node that

attempts to establish a relationship has to solve the crypto-puzzle, the node accepting the

relationship does not. The reason for this is that FastRank is designed to detect, and isolate,

free-riders in the overlay. Rational nodes that are isolated will likely attempt to join again, by

contacting different nodes. We aim at minimising the negative effect that this behaviour has

on altruistic nodes, while still allowing new altruistic nodes to join the overlay at any moment.

Also, if a node receives multiple relationship requests concurrently, it will submit a different

crypto-puzzle to each node attempting to establish a relationship and then it will only connect

to the first node to complete the task. Thus, if a free-rider attempts to solve multiple crypto-

puzzles at the same time, and competes with altruistic nodes for relationships, it may risk not

to be accepted, given that nodes that devote all resources to solving a single crypto-puzzle are

more likely to respond first and obtain the relationship. Furthermore, a node is forced to engage
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in repeated interactions with its neighbours immediately after the relationship is established.

A free-rider, that will only consume frames from a relationship will be detected and see the

relationship ended before it is able to acquire a new relationship.

In HyParView a node pro-actively attempts to maintain his active view full. Therefore, if

a neighbour crashes, it immediately attempts to establish a new relationship to refill its active

view. However, in Constrained HyParView, actively attempting to establish a new relationship

is costly. Furthermore, if very few nodes have empty slots in their active views, it is likely

that multiple nodes concurrently compete for that entry (and only one will succeed). This

further exacerbates the cost of joining an overlay where all nodes pro-actively attempt to fill

their views as soon as possible. On the other hand, an altruistic node can opt to wait and

refill its active view by accepting relationships from nodes attempting to join the network. If all

altruistic nodes do this, not only they avoid the costs of initiating relationships but also they

make the joining procedure easier for new altruistic nodes that want to be part of the overlay.

In Constrained HyParView we use a low watermark threshold, denoted baseview, that needs to

be reached before the node pro-actively looks for neighbours. If some relationships end but the

size of the active view is above baseview, the node simply waits for join requests, and will accept

relationships until maxview is reached. This is a safety mechanism that allows nodes to ensure

that newcomers have the possibility to join the system. When a node n has in its view maxview

relationships and n receives a join request, n will request the new node to solve a crypto-puzzle.

The first node to complete it will replace the node with the lowest rank in its view.

Finally, in FastRank, the source of the stream is treated differently from every other node.

The source does not keep an explicit active view to a fixed set of nodes. Instead, it uses a large

passive view to select a number of contact points at random for each frame it sends. Nodes

always receive frames sent directly by the source and altruistic nodes forward the frames to

the neighbours in their active view (a detailed description is provided below). The goal is to

distribute the load evenly among the members of the overlay, such that there is not a fixed set

of nodes that is close to the source (and always has to forward frames) and another set of nodes

that permanently act as leafs (and just receive frames).
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3.2 Ranking Algorithm

FastRank leverages from the topological properties of Constrained HyParView to implement

an efficient localised monitoring mechanism that can effectively detect and, ultimately, expel free-

riders from the active view of nodes. The mechanism is based on the observation that, in steady

relationships, two altruistic nodes roughly send the same amount of frames to each other. If the

balance of exchanged frames is highly asymmetric, this is a sign that the node that is receiving

but not forwarding frames is likely a free-rider or a failed node, and thus may be expelled from

the view. The fact that Constrained HyParView keeps symmetric views plays a crucial role in

this mechanism, since it ensures that altruistic nodes have a small set of neighbours with whom

they interact repeatedly. This allows to detect any unbalance quickly.

The balance of the exchanges with a neighbour is captured by FastRank as a numeric

rank(Karakaya, Korpeoglu, and Ulusoy 2009). Each node i maintains, for each neighbour j in

its active view a separate rank ij . The rank of a new neighbour is initiated to a predefined value,

denoted the baserank and then maintained using a very simple rule that consists of incrementing

the rank of the neighbour by one unit every time a frame is received from that neighbour and

by decrementing the rank also by one unit when a frame is sent to the neighbour. In FastRank,

the value of baserank is simply 0. This means that a neighbour that sends more frames than

it receives keeps a positive score, and a free-rider will have negative score. Furthermore, the

ranking algorithm also defines a minimum threshold for the rank, denoted minrank, below which

a node is expelled from the view. In Section 4, we discuss how an appropriate value for minrank

can be selected.

3.3 Dissemination Mechanism

Frame dissemination is implemented as follows. The stream source selects, for each frame, a

number f of contact points among the entire set of members of the overlay (this is achieved by

keeping a large passive view) and then sends the frames to those nodes. When a node receives

a frame, directly from the source or from one of its neighbours, first checks if the frame is a

duplicate (for this purpose, each node keeps a record with the identifiers of the last frames it

has received). Duplicate frames are simply discarded and never forwarded to any neighbour.
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If the frame is new, the node will forward the frame to each of its neighbours with a

probability that is a function of the rank of that neighbour. The size of the active views of the

overlay constructed by the Constrained HyParView are deliberately small but still large enough

to tolerate a large fraction of faulty nodes. As a result, if all nodes are altruistic, the use of

flooding in the overlay may generate many redundant messages. Therefore, an altruistic node

forwards a message to other altruistic nodes with a probability lower than 1 that is called the

base forwarding probability (or simply bfp). The value of bfp is selected such that the reliability of

the dissemination is still ensured but with a much smaller cost than that incurred when flooding

is used. Naturally, the value of the bfp depends on the size of the active view. In Section 4 we

discuss how bfp can be configured for optimal results.

Notice that, prior to forwarding any frame, all nodes in the active view have a rank above

minrank. Frames are forwarded to nodes that have a rank above baserank with the probability

bfp, and are forwarded with a probability lower than bfp but still larger than 0 for the members

of the view whose rank is above minrank. More precisely, FastRank uses the following formula

to compute the forwarding probability from node i to a neighbour j, denoted fpi(j):

fpi(j) =

 bfp if rank ij ≥ baserank

bfp
∣∣∣minrank−rankij

minrank

∣∣∣ if baserank> rank ij ≥ minrank

This guarantees that the forwarding probability to neighbours with a rank lower than min-

rank decreases with the rank, thus decreasing the expected benefit of rational nodes that forward

frames with probabilities lower than what is specified by the protocol. Such decrease persuades

rational nodes to forward frames with a probability strictly higher than the smallest possible

probability required for keeping its rank in other neighbours above minrank.

FastRank was designed for systems where most of the nodes are altruistic and just a small

fraction are free riders or racional. As described in the related work, the scenario where all

nodes are rational required heavy and high overhead protocols, therefore it is out of the scope

of FastRank. On evaluation section, we will analyze the streaming quality for different fraction

of nodes that follow different protocols, considering that nodes belong to one of the following

categories:

• Altruistics: An altruistic node will always follow the specified protocol and never adopts

a different one.
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• Free Rider: Are nodes that do not forward any message. They receive information from

their neighbours until the moment they are expelled from their views. Besides, they try

to maximize the amount of neighbours that they are connected to.

• Rational: Are nodes that try to deviate from the protocol in order to maximize their

utility. This behavior is discussed below.

3.4 Rational Behavior

We consider that a rational node is benefited everytime it receives a new packet and has

a cost everytime it forwads it or solves a crypto-puzzle. Therefore, in order to maximize its

utility, a racional tries to increase the ratio of received and sent packages. It is clear from the

description of the algorithm that, if a node does not maintain a balanced ration of received and

sent packages, it will, eventually, be considered as a free rider and expelled by that neighbor.

There are two possible strategies that a rational node might have to increase its utility:

• Decreasing the size of the active view: A rational node can opt for decreasing the size of

its active view, in order to keep receiving the information and forwarding the information

to a inferior amount of neighbors. With this behavior, the node appears to be altruistic

for its neighbors, that do not have a way of detecting that the node is using a reduced view

size. Sophisticated algorithms (e.g. LiFTinG (Guerraoui, Huguenin, Kermarrec, Monod,

and Prusty 2010)) that do not only rely on local information, were designed to detect this

attack.

• Minimum service (keep the score strictly above the threshold): A rational node can reduze

its forwarding message rate in order to maintain its own score just above the minimal

threshold and, therefore, never be expelled from the active view of altruistic nodes. Besei-

des, it might try to find as many neighbors as possible. The main goal is to try to connect

to enough neighbors, such that it can receive good quality information, although rarely

forward any information.

• Sybil attack: always accept new connections As described before, Sybil attacks are almost

impossible to prevent without the use of a central authority. Even though in our system we

try to prevent this attack by adding a cost and limiting the node capacity to establish new
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connections, a node might create a sybil identity and forward every join request to that

node which accepts unlimited connections. The idea is to avoid the cost of establishing a

new connection, while being able to have as much connections as possible.

We will show that, given the above deviations, FastRank has the following properties: i) the

reliability of an altruisitc node is only partly affected, even with a considerable fraction of nodes

with non altruistic behavior; ii) rational nodes still have to contribute with a reasonable amount

of resources in order to be able to receive the stream in an acceptable quality; iii) if there is a

big fraction of nodes adopting a rational behavior, it can be detected by the altruistics nodes.

Summary

In this chapter we described the design and implementation of FastRank. Since supporting

an arbitrary network topology is not only hard, but requires heavy mechanisms, we create a

topology where nodes maintain symmetric connections. This property eliminates the need of

having a central authority or a set of peers that are responsible for controling and validating the

behavior of every member in the system. Instead, nodes are able to directly check the behavior

of their neighbors in a simple and effective way. Using tit-for-tat strategies, nodes tend to benefit

the neighbors who have provided them information on the past, while free-riders will keep a low

probability of receiving any further update. Crypto-puzzles are used in order to limit the speed

that a node is able to establish new connections and incentive nodes to preserve their actual

connections, which also works as a Sybil attack prevention.

In the next chapter we present the experimental evaluation made using this prototype.
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4Evaluation
In this section, we provide an extensive evaluation of FastRank. All experiments were

performed using the PeerSim Framework (Montresor and Jelasity ). Simulations used 1000

nodes and consisted in the dissemination of 20000 frames, each injected in the network by the

streamer using 7 peers randomly chosen. Results presented in this section are the average of

100 independent runs using the same configuration.

The evaluation is divided into four different parts. In the first part, we support the choice

of values selected for the different parameters of the system. The second part illustrates the

operation of the system when all nodes are altruistic. The third part discusses the effects of

free-riders and the fourth part the effect of rational nodes in the system.

4.1 Configuring FastRank

The parameters that affect the operation of FastRank are the following: the size of the

active view and of minview ; the parameter of the ranking procedure (minrank); the base forward

probability bfp used in the dissemination process; and the average length of the quarantine period

(i.e., the average time needed to solve the crypto-puzzle when creating a new relationship).

Table 4.1 presents the default configuration values of FastRank. We discuss the rationale for

configuration of these different parameters in the following subsections. Unless stated otherwise,

the discussion applies to a network of 1000 nodes (the setup that has been used for the graphs

depicted in the paper).

4.1.1 View Size

We first discuss how the size of the active view is selected. For now, lets assume that flooding

is used to propagate the messages in the overlay (in the next section, we discuss why flooding is

not used in FastRank). As long as the network of altruistic nodes remains connected, all correct
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value

maxview 15

baseview 12

minrank -15

bfp 0.4

quarantine period (frames) 220

Table 4.1: Default configuration of FastRank

nodes will receive all the messages. Therefore, the baseview size must be selected such that the

likehood of an altruistic node to become isolated in the presence of faulty nodes is very small.

We have opted to configure FastRank such that at least 30% of faulty nodes can be tolerated

with minimum effect on the altruistic nodes. Figure 4.1 shows the percentage of altruistic nodes

that becomes isolated from the primary components of the overlay (the primary component is

the largest connected subgraph in the overlay) for different sizes of the active view, after 30%

of simultaneous failures. As it can be seen, if the baseview is equal or larger than 11, only

0.1% of altruistic nodes are isolated. Such a small value motivated us for using the conservative

approach of selecting 12 as the default value for baseview. We have opted to add 3 additional

slots to facilitate the inclusion of joining nodes, for a maxview size of 15.

4.1.2 Forward Probability

We now explain the rationale for selecting the message base fowarding probability bfp. In

the spirit of gossip protocols, we avoid this redundancy by forwarding messages with a given

probability smaller than 1. By fixing the baseview to 12, Figure 4.2 depicts the reliability of

the streaming protocol on a FastRank overlay, as a function of the dissemination probability

and Figure 4.3 depicts the resulting redundancy. As it can be observed, by selecting a forward

probability of 0.4 on an overlay where thebaseview is 12, one can still achieve a very high

reliability with a significant reduction in the redundancy of the dissemination procedure.

4.1.3 Rank Maintenance

The goal of the rank mechanism is to detect free-riders by equating a rank below minrank

with free-riding behaviour. However, due to random fluctuations of dissemination, it is possible
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Figure 4.1: Isolated nodes after 30% failures.
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that the rank of altruistic nodes also drops below minrank, a situation that we call a false positive.

Our goal is then to promptly detect free-riders while minimising false positives. Therefore, the

value of minrank should weigh this trade-off. Figure 4.5 shows the fluctuation of the rank among

two altruistic nodes. From these graphs it is clear that minrank should not be higher than −15.

However, note that the lower the value of minrank, the less likely it is to generate a false positive

but also the longer it would take to detect a free-rider, as shown in Figure 4.6. Since we aim

at a fast detection of free riders, we have opetd to use the maximum value that ensures a small

faction of false positives, i.e, the value of −15.

4.1.4 Quarantine Time

As discussed before, the goal of the quarantine time is to ensure that nodes cannot replace

relationships faster than they are ended. From Figure 4.6 it can be observed that the last free-

rider was detected after 110 frames for a minrank of -15. Therefore, the join procedure should

use a crypto-puzzle that takes, on average, a time that is longer than the time it takes to forward

that number of frames. Since we also aim at penalizing free-riders, we have selected a quarentine

period of twice the detction time (i.e, corresponding to 220 frames). In this way, free-riders that

continuously attempt to replace old neighbours by new neighbours miss 50% of the frames.
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Figure 4.2: Reliability.

4.2 Failure-free Operation

In this subsection, we provide some additional insights on the operation of FastRank in a

failure-free scenario, i.e., in a setting where all nodes are altruistic and do not fail. For this,

we consider a stream of 24 frames per second, generated by one single stream source, during

a complete session with 14 minutes. The session starts with 1000 nodes and in the middle

of the stream (at minute 7), 100 additional nodes join the stream (i.e., at that momento we

induce an 10% increase in the overlay population). With this setting, we show: the time it

takes to setup the FastRank overlay, the reliability experienced by a node; the average number

of retransmissions per frame received during the streaming session; the percentage of false-

positives during the session; the amount of crypto-puzzles solve by each node during the session;

and, finally, the time it takes for a new node to join an ongoing streaming session with 90%

reliability. The results are depicted in Table 4.2.

As it can be seen, the amount of cripto puzzles solved by joining members, 12.2, is slightly

above the minimum (we note that a joining members must establish baseview, i.e., 12, neigh-

bours). The difference is due to the contention for the free slots in the views of nodes that

already belong to the overlay. But even in the worst case (for the last node to join) the time

corresponds to solving 14 crypto puzzles, just 2 above the minimum. This contention is minimal

and shows that having a maxview above baseview is quite effective at helping new members to
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Figure 4.3: Redundancy.

Initial network size 1000

Joining nodes 100

False positives 0.03

Global reliability 0.999

Newcomers reliability 0.995

Newcomers average puzzles 12.2

Worst case time to join stream (frames) 3116

Table 4.2: Operation in Absence of Misbehaviour

join the overlay. It can also be observed that the joining of new members does not affect the

reliability of the stream nor the accuracy of the free-rider detection mechanism.

4.3 Tolerating Free-Riders

In this section, we provide some additional insights on the operation of FastRank in the

presence of free-riders. In this experiments we let the system run with 100% altruistic nodes

until a point where a fraction of all nodes adopts the behaviour of a free-rider. Figure 4.7 shows

the evolution of the composition of the active views of nodes after the fault is injected. The figure

shows that after 110 frames, free-riders are detected and the system starts to reconfigure. After

2500 frames the system stabilizes in a configuration where 95% of the members in the active
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Figure 4.4: False positives.

view of an altruistic node are other altruistic nodes. Consequently, free-riders have become

disconnected from the network.

We have also measured how many crypto-puzzles altruistic nodes and free-riders have solved

during the reconfiguration, for 30% free-riders in the system. Since the baseview is 12, with

30% free-riders, after the attack an altruistic node must, on average, replace 4 members in its

view. However, in this experiment, an altruistic node has to solve 6.75 crypto-puzzles before

it stabilizes its active view with other altruistic nodes, i.e., almots 3 more puzzles than in the

ideal case. This is due to the fact that this experiments captures an extreme case, where all

free-riders act simultaneously, and also keep continuously solving crypto-puzzles to replace their

broken relationships, thus generating a significant contention for the free slots in the view of

altruitic nodes.

4.4 Tolerating Rational Nodes

Given that rational nodes only obtain a benefit for receiving the stream with sufficiently

high reliability, this shows that they do not have incentives to free-ride. In this subsection,

we provide some additional insights on the operation of FastRank when a fraction of nodes is

rational and deviates following strategies that maximise their utility. Recall that the utility
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Figure 4.5: Rank fluctuation.

is the difference between the benefits and the costs of executing the protocol. We consider

that the only significant costs of our protocol are those of forwarding frames and computing

crypto-puzzles. We also assume that the fraction of rational nodes is constant.

4.4.1 Strategies

Recall also a strategy of a rational node can be decomposed into the forwarding, view, and

identity strategy. We fix the identity strategy to one identity per node. Later, we discuss the

effect of strategies that use multiple identities per node. Regarding the forwarding strategy,

nodes can adopt a free-riding strategy by not forwarding anything, may follow an altruistic

strategy by following the protocol, or may follow a minimum forwarding strategy, by forwarding

the minimum number of frames required to avoid losing relationships. This covers all relevant

possibilities. First, forwarding frames to more nodes on average only increases the cost. Second,

a rational node does not benefit from forwarding a number of frames lower than the minimum

required to keep relationships but not to free-ride. Finally, the minimum forwarding strategy

models the worst-case scenario where the utility decrease due to nodes not maintaining a rank

above baserank does not dissuade them from deviating. Regarding the view, the only possibilities

are the enlarged view, the shrunk view, and the same view strategies.

We have seen that the same view or shrunk view strategies in combination with a free-
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Figure 4.6: Detection Time.

riding strategy should not provide any gain, since the reliability of the stream drops significantly.

Moreover, an altruistic strategy combined with an enlarged view increases the costs of performing

crypto-puzzles without increasing the benefit, since the reliability of the stream remains roughly

the same. Hence, we can focus on the following five deviations: free-riding with enlarged view,

altruistic with shrunk view, and minimal forwarding with same, shrunk, and enlarged views.

We evaluate these strategies according to two main criteria: (1) impact on the reliability of

rational nodes and (2) impact on the reliability of altruistic nodes when a fraction of rational

nodes deviate. We show that, whenever rational nodes may increase their utility, FastRank

exhibits the following interesting properties: (i) the reliability experienced by altruistic nodes is

only mildly affected, even for large fractions of rational nodes; (ii) rational nodes still have to

contribute with a reasonable amount of resources to the system in order to get the stream with

a minimal reliability; as a result, the unbalance between the resources committed by altruistic

nodes and rational nodes is not large (10% less, at most); and (iii) if the fraction of rational

nodes is large, then this can be detected by the altruistic nodes.

4.4.2 Free-riding with Enlarged View Strategy

The main gain of this strategy may stem from avoiding the costs of forwarding frames while

avoid becoming isolated. This may be an optimal strategy if the cost of executing crypto-puzzles
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Figure 4.7: Recovering from free-riders

is lower than that of forwarding frames and the quarantine period is not sufficient to prevent

the node from receiving the stream with minimum reliability. Figure 4.8 shows the reliability

experienced by a rational node adopting this behaviour. Knowing that, while on quarantine, a

node is unable to search for another relationship, the figure depicts reliability values for different

quarantine times. It can be observed that if the quarantine time is larger than the detection

time, then the proportion of frames received by the free-riders, drops significantly. This shows

that, with the right choice of the quarantine time, rational nodes do not increase their utility

by adopting this behaviour.

4.4.3 Altruistic with Shrunk View Strategy

This strategy is more beneficial to rational nodes when the cost of computing crypto-puzzles

dominates communication costs, such that nodes aim at minimising the number of relationships,

while still keeping the streaming reliability to a minimum. In Table 4.3, we show the compo-

sition of the views of both altruistic and rational nodes, the reliability of the stream after the

deviation, and the increase in message latency caused by the deviation. Since rational nodes

consistently end a fraction of their relationships, altruistic nodes tend to replace those relation-

ships. Therefore, the network remains connected and the reliability is not significantly affected

by the deviation. On the other hand, since a fraction of nodes has a smaller out-degree, the
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Figure 4.8: Effect of quarantine period

Rational nodes’ active view size - 3 4 5 6

Max hop ratio 1 1.27 1.45 1.37 1.09

Avg hop 1 1.07 1.08 1.13 1.11

Altruistic reliability 0.99 0.99 0.99 0.99 0.99

Rational reliability - 0.03 0.06 0.67 0.88

Table 4.3: Effect of altruistic with shrunk view strategy (30% of rational nodes)

latency of the dissemination increases. With a sufficiently large fraction of rational nodes, the

increase in the latency is noticeable. This open the door for an adaptive solution, where we can

trigger a change from FastRank to a more costly protocol that detects and punishes rational

behaviour (e.g. LiFTinG (Guerraoui, Huguenin, Kermarrec, Monod, and Prusty 2010)).

4.4.4 Minimal Forwarding with Same and Shrunk View Strategies

The advantage of these strategies is that if a node keeps enough relationships, it may still

receive the stream with sufficiently high reliability, despite forwarding frames only seldom. Ta-

ble 4.4 show the effect of the minimal forwarding with same view strategy. As it can be seen, it

is severely penalized, as its perceived reliability drops significantly. On the other hand, even for

30% of rational nodes, this deviation has no negative impact on the reliability experienced by

altruistic nodes. Since the reliability only drops by shrinking the view, rational nodes clearly do

not gain from following the minimal forwarding with shrunk view strategy, so we opt to omit

the evaluation of this strategy.
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Reliability of altruistic nodes after the deviation 0.97

Reliability of rational nodes after the deviation 0.50

Fraction of frames sent by rational nodes 0.2

Table 4.4: Effect of minimal forwarding with same view strategy (30% of rational nodes)

4.4.5 Minimal Forwarding with Enlarged View Strategy

The previous results showed that a minimal forwarding strategy is harmful due to a signif-

icant decrease in the reliability. A rational node may circumvent this problem by enlarging the

view. Table 4.4 shows how long it takes for such a node to receive the stream with the same

reliability of an altruistic node. It can be observed that a node with a score of minrank on all

of its incoming links, needs to have a constant active view of size at least 25 to approximate

the reliability of an altruistic node. Thus, it need to solve 22 times more crypto-puzzles than

altruistic nodes to achieve that state. Furthermore, since it needs to keep all these relationships,

it still needs to forward frames, but approximately 80% of that of an altruistic node. Therefore,

this strategy is less profitable than altruistic with shrunk view, because with this deviation a

rational nodes has the same forwarding effort than a node that shrinks its view, with the penalty

of performing more crypto-puzzles.

4.4.6 Forward join request to a Sybil identity

In order to minimize the amount of solved crypto-puzzles, a node might create a sybil

identity and forward every join request that it receives to that node who accepts any connection.

Table 4.5 shows that this attack only is successful if done at the very beginning of the topology

organization. This happens not only because nodes tend to search for new connections at the

beginning rather then after the topology is stable, but also because at the beginning nodes

tend to interact with an higher percentage of total nodes of the system, which increases the

probability of requesting a join through the attacker.

4.5 White-washing and Sybil Attacks

To obtain a relationship, a node must solve a crypto-puzzle, which takes more time than

the time it takes to detect it as a free rider. Thus, a node cannot replace relationships fast
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Amount of neighbors

Beginning of topology organization 105

Middle of the topology organization 42

After topology organization 15

Table 4.5: Effect of forwarding the join requests to a Sybil identity

Rational active view size 12 20 25 30 35 40

Ratio of solved crypto puzzles 1 19 22 42 45 49
Average frame ratio 0.24 0.40 0.50 0.59 0.66 0.80
Reliability of rational 0.71 0.80 0.86 0.98 0.99 0.99

Table 4.6: Effect of minimal forwarding with enlarged view strategy (for one rational node)

enough to sustain the reception of the stream with sufficiently high quality. This mechanism is

completely independent of the identity a node opts to present to its neighbours. Also, nodes

do not maintain any record of past interactions based on identifiers, and a node that fails to

maintain a relationship active is punished with a crypto-puzzle every time it attempts to replace

that relationship, regardless of the identity it opts to present. Given this, a strategy where

a node uses multiple identifiers is equivalent to enlarging the view. This implies that White-

washing and Sybil attacks are no more effective than strategies where a node employs a single

identifier and keeps an enlarged view.

Summary

In this chapter we introduced the experimental evaluation made to FastRank and its results.

We started by motivating the choice of the selected values for the different parameters of the

system. Next, we showed how does the system operates when all nodes are altruistic. It showed

that FastRank is able to provide a reliability of 0.999% to all members of the system, including

newcomers. In the situation where not all nodes are altruistic, we showed that the system is

able to recover from free riders and an altruistic node is able to keep receiving the information

with good quality and will, eventualy, detect the free riders that it is connected to and search for

new connections in order to find a new altruistic neighbor. On the last part of the evaluation,

we showed the impact of rational nodes in the system. Even though our system is vulnerable to

certain types of attacks, we showed that its benefit its limited and incurs extra computacional
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cost, sophisticated strategies or a perfect timing in order to achieve success.

The next chapter finishes this thesis by presenting the conclusions regarding the work de-

veloped and also introduces some directions in terms of future work.
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5Conclusions
5.1 Conclusions

In this paper we have presented FastRank, a peer-to-peer streaming protocol that relies on

an overlay network with symmetric links to mitigate the effect of free riders in an efficient and

effective manner. FastRank includes overlay construction mechanisms that encourage nodes

to perform repeated interactions with a small number of nodes and then leverages from this

property to implement efficient localised scoring mechanisms that can be used to detect and

expel free riders. The resulting system can tolerate up to 30% of free riders without decreasing

the reliability of the stream. As a result, it allows for an optimised operation in the case where

free riders or rational nodes are residual (which happens often in practice). FastRank is in

contrast with more robust solutions, that tolerate wider range of attacks at a much higher cost.

Interestingly, FastRank can also tolerate a fraction of more sophisticated rational behaviour,

with small but detectable impact on the perceived streaming process. This open the door for

adaptive solutions, where FastRank is used while the number of misbehaving nodes is small,

and the operation reverts to more expensive solutions such as Lifting when the number or the

sophistication of attackers increases.

5.2 Future Work

As future work we would like to able to support three phase gossip mechanims while main-

taing the properties we are able to provide, i.e. excellent reliability, minimal false-positives and

fast free-rider behavior detection. This would reduce the overall message size distributed among

the system, but more sophisticated rational attacks would arise. We would also like to study

the impact of a dynamic population. Nodes in a dynamic population might arbitrary swap

between behaviors and this change might occurs in different points in time for different nodes.

This would simulate in a more realistic way what happens in practical situations of peer-to-peer
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networks. Considering that FastRank might not provide the best reliability for the users if a

big percentage of node are rational or free riders, we would like to, based on a set of predefined

metrics and rules, notify a central authority that would require nodes to run a different protocol

in order to ensure and maintain a good service quality, i.e. the protocol would adapt based on

how willing the population is to share their resources.
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Kermarrec, A.-M., L. Massoulié, and A. J. Ganesh (2003). Probabilistic reliable dissemination

in large-scale systems. IEEE Trans. on Parallel and Distributed Systems, 14 (3), 248–258.

Leitão, J., J. Pereira, and L. Rodrigues (2007, October). Epidemic broadcast trees. In IEEE

SRDS, Beijing, China, pp. 301–310.

Leitão, J., J. Pereira, and L. Rodrigues (2007). Hyparview: A membership protocol for reliable

gossip-based broadcast. In IEEE DSN, pp. 419–428.

Levin, D., R. Sherwood, and B. Bhattacharjee (2006). Fair file swarming with fox. In IPTPS.

Li, B., S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu, and X. Zhang (2008). Inside the new

coolstreaming: Principles, measurements and performance implications. In INFOCOM

2008. The 27th Conference on Computer Communications. IEEE. IEEE.

Li, H., A. Clement, M. Marchetti, M. Kapritsos, L. Robison, L. Alvisi, and M. Dahlin (2008).

Flightpath: Obedience vs. choice in cooperative services. In OSDI, Volume 8, pp. 355–368.

Li, H., A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisi, and M. Dahlin (2006). Bar gossip.

In OSDI, pp. 191–204.

Liao, X., H. Jin, Y. Liu, L. Ni, and D. Deng (2006). Anysee: Peer-to-peer live streaming. In

INFOCOM, Volume 25, pp. 1–10.



5.2. FUTURE WORK 51

Locher, T., P. Moor, S. Schmid, and R. Wattenhofer (2006). Free riding in bittorrent is cheap.

In Proc. Workshop on Hot Topics in Networks (HotNets), pp. 85–90. Citeseer.
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