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Abstract
We consider the steady Navier–Stokes equations with mixed boundary conditions,
where a regularized directional do-nothing (RDDN) condition is defined on the Neu-
mann boundary portion. An auxiliary Stokes reference flow, which also works as a
lifting of the inhomogeneous Dirichlet boundary values, is used to define the RDDN
condition. Our aim is to study the minimization of a velocity tracking cost functional
with controls localized on a part of the boundary. We prove the existence of a solution
for this optimal control problem and derive the corresponding first order necessary
optimality conditions in terms of dual variables. All results are obtained under appro-
priate assumptions on the size of the data and the controls, which, however, are less
restrictive when compared with the case of the classical do-nothing outflow condi-
tion. This is further confirmed by the numerical examples presented, which include
scenarios where only noisy data is available.
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1 Introduction

In Fluid Mechanics, including a wide range of applications in Engineering and
Biomedicine, flow control by acting on the boundary conditions of the system poses
interesting theoretical and computational challenges [1–8].

Both in the context of the forward problem and the control problem, when carrying
out numerical simulations of fluid flows in exterior domains, channels and pipes,
artificial boundaries have to be introduced in order to define or reduce the size of
computational domains and lower the computational cost of the simulations [8–20].
This motivates several theoretical and numerical studies of Navier-Stokes flow control
with open boundary conditions [1, 2, 6, 21–23].

A mathematical study on modelling and optimal control of blood flow redirected
by a bypass surgery in a tract of an artery was carried out in [6]. Specifically, in [6], the
authors consider the following optimal control problem: tracking a desired velocity
field for a Navier–Stokes fluid with inputs on a portion of the boundary of the fluid
domain and a classical do-nothing boundary condition (CDN) imposed on the outflow
part of the domain. The CDN condition involves the stress vector on a portion of the
boundary.

The so-called directional do-nothing condition (DDN) is an improved Neumann
type boundary conditionwhich has been successfully used to address classical Navier–
Stokes flow problems encountered in simulations with open boundary conditions [11,
13, 14]. It takes into account the presence of the convection term in the Navier–Stokes
equations and is used to prevent backflow in outflow boundary portions. In [10, 11],
the authors show that the DDN outflow condition also provides accuracy and stability
for higher Reynolds numbers. In [2], alternative convective-like energy-stable open
boundary conditions are tested in some numerical simulations for optimal flow control.

Inspired by the models [2, 11, 16] and by the related control problems [4, 6],
our aim is to investigate the replacement of the classical Neumann type condition in
the steady Navier-Stokes equations by a regularized directional do-nothing boundary
condition (RDDN), which is defined in terms of a reference flow associated with the
nonhomogeneous Dirichlet boundary values [13, 14, 18, 24]. Themathematical model
consists in solving a suitable Stokes problem and, afterwards, use this reference flow
in the outflow boundary conditions of the Navier-Stokes problem. In this paper, we
intend to investigate this alternative RDDN condition in the boundary control problem
for tracking of fluid flow velocity fields [4, 6]. The DDN condition corrects the CDN
condition by an inward velocity term which is defined using the (nonsmooth) negative
part of a function. Since we are interested in the derivation of first order necessary
conditions of optimality, wherein Gâteaux differentiation is an essential tool, we opted
for a RDDN outflow condition, which is similar to those considered in [2], but takes
into account the use of the reference flow. It will be clear that the reference flow also
depends on the control and this will lead to a nontrivial control-to-state mapping and
additional difficulties in the characterization of the first order optimality conditions,
namely the identification of the adjoint system.
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2 Formulation of the Problem, Structure of the Paper andMain
Results

Throughout this work, � ⊂ R
n , n ∈ {2, 3}, represents a bounded domain with a

Lipschitz continuous boundary � := ∂�. We assume that � is divided into two
disjoint parts, the Dirichlet part �D and the “Neumann part” �N , � = �D ∪ �N , such
that |�D|, |�N | > 0 (see [8, p. 99]). Our aim is to study a velocity tracking problem
via controls with support on �D . Here, we will replace the CDN outflow condition,

ν(n · ∇)v − pn = 0 on �N , (2.1)

with an alternative, more robust, Neumann type boundary condition. In (2.1) and in
what follows, n denotes the outward unit normal to �, ν > 0 is the kinematical
viscosity coefficient of the fluid, v is the velocity and p is the corresponding pressure.

The gradient of a vector-valued function of several variables is defined as the
transpose of the Jacobian matrix, (∇v)i j = ∂v j

∂xi
, i, j = 1, ..., n, so that in (2.1)

we can write (n · ∇)v = n · ∇v. Usually, the notation T(v, p) is reserved for
the stress tensor, T(v, p) := 2νD(v) − pI, where D(v) is the stretching tensor,
D(v) = 1

2

(∇v + (∇v)�
)
, and I is the identity tensor. We will use the nota-

tion T̃(v, p) := ν∇v − pI for the so-called pseudo-stress tensor and the adjoint
pseudo-stress tensor will be denoted by T̃∗(v, p) := ν∇v + pI.

The divergence of a tensor-valued function T is defined by (∇ · T ) j = ∂T i j
∂xi

,

j = 1, ..., n. When ∇ · v = 0, we have ∇ · T(v, p) = ν�v − ∇ p = ∇ · T̃(v, p).
The Navier–Stokes system with CDN boundary condition on �N can be written in

the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−∇ · T̃(v, p) + v · ∇v = f in �

∇ · v = 0 in �

v = g on �D

n · T̃(v, p) = 0 in �N .

(2.2)

In [13, 14] (see also [11] for the case of homogeneous Dirichlet boundary values) a
modification of the CDN condition was proposed which can be written as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∇ · T̃(v, p) + v · ∇v = f in �

∇ · v = 0 in �

v = g on �D

n · T̃(v, p) + 1

2
[v · n]− (v − vr ) = n · T̃(vr , pr ) on �N

(2.3)

where

[y]− := max{0,−y} = (|y| − y)/2 (y ∈ R)
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and (vr , pr ) is a reference flow associated with the nonhomogeneous Dirichlet bound-
ary condition. This reference flow can be obtained, for example, by solving, in a first
step, a steady Stokes problem. Following [13], we will consider (vr , pr ) solution of
the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇ · T̃(vr , pr ) = 0 in �

∇ · vr = 0 in �

vr = g on �D

n · T̃(vr , pr ) = 0 on �N .

(2.4)

Following [11], the Neumann boundary condition defined in (2.3) is called direc-
tional do-nothing (DDN) boundary condition. Using the reference flow (2.4), we will
formulate the problem with RDDN boundary condition as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∇ · T̃(v, p) + v · ∇v = f in �

∇ · v = 0 in �

v = g on �D

n · T̃(v, p) + 1

2
�δ(v · n)(v − vr ) = 0 on �N

(2.5)

where �δ is a regular function that depends on a parameter 0 < δ � 1. From the
computational point of view, the advantage of working with (2.5) is that the RDDN
condition allows the application of Newton’s method. Possible choices for �δ are

�δ(y) := 1

2

[
y tanh

( y

δ

)
− y + δ

]
, y ∈ R, (2.6)

and

�δ(y) :=
{√

y2 + δ2 if y ≤ 0

δ if y > 0.
(2.7)

The main properties assumed for �δ are:

(i) when δ → 0, ψδ(·) → [·]− a.e in R3,
(ii) there exists c̃ > 0 such that for all 0 < δ � 1,

[y]− < �δ(y) ≤ c̃δ + [y]−, ∀y ∈ R, (2.8)

(iii) for all 0 < δ � 1, ψ ′
δ ∈ C0,1(R) and therefore we can define the constants

M� ′
δ
= ‖� ′

δ‖∞,R, L� ′
δ
= sup

x,y∈R,x �=y

|� ′
δ(x) − � ′

δ(y)|
|x − y| . (2.9)
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Fig. 1 Different profiles of the regularization �δ(x). Function (2.7) on the left, (2.6) on the right

Condition (iii) will ensure theGâteaux differentiability of the control-to-state operator,
while (ii) implies

v · n = [v · n]+ − [v · n]− > [v · n]+ − �δ(v · n)

which is of crucial importance for establishing certain estimates in the existence
and uniqueness results. The well-posedness of the coupled problem (2.4), (2.5) for
(vr , v, p) was studied in [24] under the above assumptions for �δ .

The problem we are interested in is the minimization of the cost functional

J(v, g) := 1

2
‖v − v�‖22,� + τ

2
‖g‖21/2,�D

,

subject to (2.5), by acting on �D through boundary values g. The parameter τ ≥ 0
and the target velocity v� ∈ L2(�)n are given.

Observe that the state equations (2.4), (2.5) are a kind of coupled system and
therefore, when studying the control problem, we will have to take into account that
(2.4) also depends on the control.

Structure of the paper andmain results.Notations and auxiliary results, in particular,
the relevant functions spaces and operators used in the paper are presented in Sect. 3.
In Sect. 4, we give the mixed weak formulation of the state equations (simultaneously
for the velocity and pressure variables). In Theorem 4.4 we recall a result on existence
and uniqueness of weak solutions. The formulation of the control problem is given in
Sect. 5. Existence of an optimal solution is proved in Theorem 5.1, under appropriate
restrictions on the size of the data and the controls. Lipschitz estimates for the control-
to-state mapping are obtained in Sect. 6, namely, Theorem 6.2, and then, in Sect. 7,
the Gâteaux differentiability of the control-to-state mapping is investigated. The main
result of Sect. 7 is Theorem 7.1. The adjoint system is presented in Sect. 8, where
Theorem 8.1 gives existence and uniqueness of solution for such system. First order
optimality conditions and the main result of the paper, Theorem 9.1, are deduced in
Sect. 9. The theoretical results are illustrated with a numerical experiment in Sect. 10.
Finally, Sect. 11 highlights the main results of the paper.

123



24 Page 6 of 33 Applied Mathematics & Optimization (2025) 91 :24

3 Notations and Auxiliary Results

In this section, we present the framework for stating and proving the results of the
next sections.

Throughout the paper, we shall use the classical notations for Lebesgue and Sobolev
spaces, namely, Ls(�) and H1(�), with norms ‖.‖s,� and ‖.‖1,2,�, respectively. We
recall the Hilbert space

H1/2(�) =
{
u ∈ L2(�) :

‖u‖1/2,� :=
(

‖u‖22,� +
∫

�

∫

�

|u(x) − u(y)|2
|x − y|n dσxdσy

) 1
2

< ∞
⎫
⎬

⎭

and the Lions-Magenes space

H1/2
00 (�D) :=

{
u ∈ H1/2(�D) : ũ ∈ H1/2(�)

}
,

where ũ denotes extension to � by zero. The space H1/2
00 (�D) will be endowed with

the H1/2-norm. The following notations will be used for inner products: (u, v)� :=
(u, v)L2(�) and (u, v)�D := (u, v)H1/2(�D). The duality product between H−1/2(�D)

and H1/2
00 (�D) will be denoted by 〈u, v〉�D .

The non-homogeneous Dirichlet boundary values of (2.4), (2.5) will be prescribed
in the space T D := H1/2

00 (�D)n . The velocity v and pressure p will be searched in the
functional spaces X := H1(�)n and Q := L2(�), respectively.

Using the results of [25, Sect. III.3] for the equation ∇ · v = f one can show:

Lemma 3.1 Given f ∈ Q and g ∈ T D, there exists v ∈ X satisfying
{

∇ · v = f in �

v = g on �D
(3.1)

and the estimate (κb = κb(�) > 0)

‖v‖X ≤ κb
(‖ f ‖Q + ‖g‖T D

)
. (3.2)

Let

b : X × Q → R, b(v, q) = −
∫

�

(∇ · v)q dx (3.3)

and consider the subspaces of X

U :=
{
u ∈ H1(�)n : u|�D = 0

}
,

V :=
{
u ∈ U : b(u, φ) = 0,∀φ ∈ Q

}
.
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It is clear that |u|U := ‖∇u‖2,� defines a seminorm in X and is a norm in U . By
Poincaré inequality, there exists a constant CP > 0 such that

‖u‖X ≤
√
1 + C2

P |u|U =: λP |u|U , ∀u ∈ U . (3.4)

The decomposition U = V ⊕ V⊥, where V⊥ denotes the orthogonal of V in U
with respect to the inner product (·, ·)U := ∫

�
∇u : ∇vdx , is valid. The annihilator

of V in U ′ can be identified isometrically with (V⊥)′ (see, for example the proof of
[26, Corollary 2.4, p. 24]):

V ◦ := {
F ∈ U ′ : 〈F, u〉U ′,U = 0, ∀u ∈ V

} ∼= (V⊥)′.

Analogously,

(V⊥)◦ :=
{
F ∈ U ′ : 〈F, v〉U ′,U = 0, ∀v ∈ V⊥} ∼= V ′.

Then U ′ ∼= (V⊥)◦ ⊕ V ◦ ∼= V ′ ⊕ (V⊥)′.
Consider the operator

B : U → Q, (Bv, q)Q = b(v, q) = −
∫

�

(∇ · v)qdx .

From Lemma 3.1 with g = 0, it follows:

Lemma 3.2 (i) the operator B is an isomorphism from V⊥ to Q and

|v|U ≤ κb‖Bv‖Q, ∀v ∈ V⊥;

(ii) the operator B∗ is an isomorphism from Q to V ◦ and

‖q‖Q ≤ κb‖B∗q‖U ′ , ∀q ∈ Q.

4 Well-Posedness of the State Equations

Let

a : X × U → R, a(u, v) = ν

∫

�

∇u : ∇vdx .

Given g ∈ T D , the mixed weak formulation of the Stokes reference flow (2.4) is: find
(vr , pr ) ∈ X × Q such that

{
a(vr ,ϕ) + b(pr ,ϕ) − b(vr , φ) = 0, ∀(ϕ, φ) ∈ U × Q

γDvr = g.
(4.1)
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In the last equation and in what follows, γD : H1(�) → H1/2(�D) is the trace
operator.

Lemma 4.1 The weak formulation (4.1) has a unique solution and the following
estimates hold

‖vr‖X ≤ 2κ‖g‖T D , (4.2)

‖pr‖Q ≤ 2νκ2‖g‖T D . (4.3)

where κ := κbλP , κb being the constant from Lemmas 3.1 and 3.2 and λP the constant
defined in (3.4).

Proof Let g ∈ T D . From Lemma 3.1, there exists G ∈ X such that

‖G‖X ≤ κb‖g‖TD
where κb is a positive constant. The Stokes velocity is given by vr = G + z, where
z ∈ U satisfies

a(z,ϕ) = −a(G,ϕ) ∀ϕ ∈ V

and the estimate

‖∇ z‖2 ≤ ‖∇G‖2 ≤ ‖G‖X ≤ κb‖g‖T D . (4.4)

From (4.4) and the fact that λP ≥ 1, we obtain

‖vr‖X ≤ ‖G‖X + λp‖∇ z‖2 ≤ 2λPκb‖g‖T D

To bound the pressure norm ‖pr‖Q , we use inf-sup continuity, which yields

‖pr‖Q ≤ κbν‖∇vr‖2 ≤ ν2κ2
b‖g‖T D .

��
Assuming the reference flow (vr , pr ) is available from (4.1), we now consider the

Navier–Stokes system. The notationH−1(�)will be used for the dual space H−1(�)n ,
where H−1(�) = H1

0 (�)′, and the corresponding norm will be denoted by ‖ · ‖−1,�.

Lemma 4.2 Let H−1/2(�N ) := H1/2
00 (�N )′ and U = {u ∈ H1(�) : u|�D = 0}. Then

U ′ ∼= H−1(�) ⊕ H−1/2(�N ).

Proof Since H1
0 (�) is a closed subspace of U , the space U admits the orthogonal

decompositionU = H1
0 (�)⊕ (

H1
0 (�)

)⊥ (with respect to the inner product defined in
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U ). The trace operator γN : U → H1/2
00 (�N ) and the lifting operator � : H1/2

00 (�N ) →
U satisfy

Ker(γN ) = H1
0 (�), Im(�) = (

H1
0 (�)

)⊥
, (γN ◦ �)(b) = b, b ∈ H1/2

00 (�N ).

The restriction γN |(
H1
0 (�)

)⊥ =: I is linear bijective between
(
H1
0 (�)

)⊥ and

H1/2
00 (�N ). By the properties of the trace and lifting operators, I : H1

0 (�)⊥ →
H1/2
00 (�N ) and I−1 : H1/2

00 (�N ) → H1
0 (�)⊥ are continuous:

‖Iu‖1/2,2,�N = ‖γNu‖1/2,2,�N ≤ C(�)‖u‖1,2,�, u ∈ (
H1
0 (�)

)⊥
.

‖I−1b‖1,2,� = ‖�b‖1,2,� ≤ C(�N )‖b‖1/2,2,�N , b ∈ H1/2
00 (�N ).

Hence
(
H1
0 (�)

)⊥ and H1/2
00 (�N ) are isomorphic,

(
H1
0 (�)

)⊥ ∼= H1/2
00 (�N ), and

therefore

U ∼= H1
0 (�) ⊕ H1/2

00 (�N ).

Let f ∈ H−1(�) and g ∈ H−1/2(�N ). Then the pair ( f , g) induces an element
F ∈ U ′ via

〈F, u〉U ′,U = 〈 f , Pu〉H−1(�),H1
0 (�) + 〈g, γNu〉

H−1/2(�N ),H1/2
00 (�N )

(u ∈ U )

where P is the orthogonal projection P : U → H1
0 (�). The mapping ( f , g) �→

F is linear, bounded and injective. To conclude that it is an isomorphism between
H−1(�) ⊕ H−1/2(�N ) and U ′, it remains to show surjectivity. Let F ∈ U ′ then, for
any u ∈ U , we have

〈F, u〉U ′,U = 〈F, Pu〉U ′,U + 〈F, (IU − P)u〉U ′,U

=
〈
F |H1

0 (�)
, Pu

〉

H−1(�),H1
0 (�)

+
〈
F |(

H1
0 (�)

)⊥ ◦ I−1,I ◦ (IU − P)u

〉

H−1/2(�N ),H1/2
00 (�N )

=
〈
F |H1

0 (�)
, Pu

〉

H−1(�),H1
0 (�)

+
〈
F |(

H1
0 (�)

)⊥ ◦ I−1, γN u

〉

H−1/2(�N ),H1/2
00 (�N )

.

��
Given that U ′ can be identified with H−1(�) ⊕ H− 1

2 (�N), the force term in (2.5)
will be selected to preserve the do-nothing boundary condition, that is, f ∈ H−1(�).
Consequently, there exits f 0, f 1, ..., f n ∈ L2(�)n such that

〈 f , v〉U ′,U =
∫

�

f 0 · vdx +
n∑

i=1

∫

�

f i · ∂v

∂xi
dx .

Concerning the Dirichlet data, we will take g ∈ T D .
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In order to write the weak formulation in a compact form, we define

c : X × X × U → R, c(u, v, z) =
∫

�

u · ∇v · zdx

which satisfies the estimate

|c(u, v, z)| ≤ ‖u‖4,�‖∇v‖2,�‖z‖4,� ≤ Cc‖u‖X‖∇v‖2,�|z|U . (4.5)

In (4.5) we used ‖ϕ‖4,� ≤ CS‖ϕ‖1,2,�, where CS is a constant associated with

Sobolev embedding, and set Cc := C2
S

√
1 + C2

P = C2
SλP .

We also introduce a new nonlinear operator associated with the RDDN condition:

dδ : X × U × U → R, dδ(u, v, z) = 1

2

∫

�N

�δ(u · n)(v · z)dσ.

From (2.8) and (3.4) we get

|dδ(u, v, z)| ≤ 1

2
‖Cδ + [u · n]− ‖4,�N ‖v‖2,�N ‖z‖4,�N

≤ 1

2

(
c̃δ|�N |1/4 + ‖u‖4,�N

)
‖v‖2,�N ‖z‖4,�N

≤ C̃S
(
C�N δ + ‖u‖X

) ‖v‖X‖z‖X .

≤ C0
d (δ + ‖u‖X ) |v|U |z|U .

For later purposes, recalling (2.9), we set Cd := max{C0
d ,C

0
dM� ′

δ
}, so that

|dδ(u, v, z)| ≤ Cd(δ + ‖u‖X )|v|U |z|U (4.6)

and, for w ∈ X ,

∣∣∣∣
1

2

∫

�N

(w · n)� ′
δ(u · n)v · z dσ

∣∣∣∣ ≤ Cd‖w‖X‖u‖X |v|U |z|U (4.7)

Note that the operator c is trilinear, but dδ is not linear in the first argument. When
δ → 0, we recover the operator d(u, v, z) := 1

2

∫
�N

[u·n]−(v · z)dσ and the associated
estimates for the DDN boundary condition.

Based on the notation introduced above, the weak formulation of problem (2.5)
takes the form: find (v, p) ∈ X × Q such that

⎧
⎪⎨

⎪⎩

a(v,ϕ) + b(ϕ, p) − b(v, q) + c(v, v,ϕ)

+ dδ(v, v − vr ,ϕ) = 〈 f ,ϕ〉U ′,U , ∀(ϕ, q) ∈ U × Q

γDv = g.

(4.8)
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The next lemma, which has used in a previous analysis of the state equations (see
[24]), will also be important in several stages of the study of the optimal control
problem. Recall that Cd := max{C0

d ,C
0
dM� ′

δ
} was already used in (4.6).

Lemma 4.3 For c : X × X × U → R and dδ : X × U × U → R defined above, it
holds:

1. for v(i) ∈ X , u(i) ∈ U , i = 1, 2, and ϕ ∈ U ,

c(v(1), v(1),ϕ) − c(v(2), v(2),ϕ)

+ dδ(v
(1), u(1),ϕ) − dδ(v

(2), u(2),ϕ)

= c(v(1) − v(2), v(1),ϕ) + c(v(2), v(1) − v(2),ϕ)

+ dδ(v
(2), u(1) − u(2),ϕ) + dδ(v

(1), u(1),ϕ) − dδ(v
(2), u(1),ϕ),

(4.9)

where

|dδ(v
(1), u(1),ϕ) − dδ(v

(2), u(1),ϕ)|

≤ M� ′
δ

2
‖v(1) − v(2)‖4,�N ‖u(1)‖2,�N ‖ϕ‖4,�N

≤ Cd

∥∥
∥v(1) − v(2)

∥∥
∥
X

|u(1)|U |ϕ|U ,

(4.10)

2. if v ∈ X, z ∈ V then

c(v, z, z) + dδ(v, z, z) ≥ 1

2

∫

�N

[v · n]+ |z|2dσ, (4.11)

3. for v(i) ∈ X with ∇ · v(i) ≡ 0, u(i) ∈ U , r(i) := v(i) − u(i), i = 1, 2, and
z := u(1) − u(2) we have

c(v(1), v(1), z) − c(v(2), v(2), z)

+ dδ(v
(1), u(1), z) − dδ(v

(2), u(2), z)

≥ c(z, v(1), z) + c(r(1) − r(2), v(1), z)

+ c(v(2), r(1) − r(2), z) + dδ(v
(1), u(1), z) − dδ(v

(2), u(1), z).

(4.12)

The well-posedness of the Navier–Stokes equations with RDDN condition was
proved in [24] using the above properties of c and dδ .

Theorem 4.4 Let f ∈ H−1(�) and g ∈ T D. If ‖g‖T D < ν
2κCc

then problem (4.8) has

at least a solution. Given ε ∈ (0, 1), if ‖g‖T D ≤ (1−ε)ν
2κCc

then the following estimates
hold:
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‖v‖X ≤ 2κ‖g‖T D +
(
1

ε
− 1

)
κλP‖g‖T D + λP

εν
‖ f ‖−1,�,

‖p‖Q ≤ κ c̃δCd

(
1 − ε

ε
2κ‖g‖T D + 1

εν
‖ f ‖−1,�

)
+ κ‖ f ‖−1,� + κCc‖v‖2X

+ νκ‖v‖X + κCd

(
1 − ε

ε
2κ‖g‖T D + 1

εν
‖ f ‖−1,�

)
‖v‖X .

Moreover, if, for the given ε ∈ (0, 1), the data satisfy

‖g‖T D + (Cc + Cd)

2νκ [Cc + Cd(1 − ε)]
‖ f ‖−1,� <

εν

2κλP [Cc + Cd(1 − ε)]

then the solution (v, p) of (4.8) is unique in the class of all weak solutions
corresponding to the same data g and f .

Remark 4.5 In the proof ofTheorem4.4, the velocity is obtained in the formv = vr+u.
The estimate obtained for u ∈ V is:

|u|U ≤
(
1

ε
− 1

)
2κ‖g‖T D + 1

εν
‖ f ‖−1,�.

5 Formulation of the Control Problem. Existence of an Optimal
Solution

Wewill assume that f ∈ H−1(�) is fixed, and that, together with g ∈ T D , it satisfies

⎧
⎪⎨

⎪⎩

‖g‖T D ≤ η1,ε, η1,ε := (1 − ε)ν

2κCc
, ε ∈ (0, 1)

(Cc + Cd)‖ f ‖−1,�

2κν [Cc + Cd(1 − ε)]
+ ‖g‖T D < η2,ε := εν

2κλP [Cc + Cd(1 − ε)] ,
(5.1)

which, by Theorem 4.4, is sufficient for the existence and uniqueness of a solution
(v, p) of (4.8). Motivated by the restrictions (5.1), we take

0 < η̂ < min

{

η1,ε, η2,ε −
(
Cc + Cd

)‖ f ‖−1,�

2νκ [Cc + Cd(1 − ε)]

}

(5.2)

and define the set of admissible boundary controls as

Uad = {
g ∈ T D : ‖g‖T D ≤ η̂

}
. (5.3)

Now, we introduce the reference Stokes operator Sr : Uad → X × Q, defined by
Sr (g) = (vr , pr ), and, since, for the next results, the velocity component vr is themost
relevant part of the solution, we also define the velocity operator Sr ,v : Uad → X by
Sr ,v(g) = vr . Analogously, for the Navier-Stokes problem, the operator S : Uad →
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X × Q is defined by S(g) = (v, p), where (v, p) solves (4.8), and the mapping
Sv : Uad → X gives the velocity component of the solution to the Navier–Stokes
problem.

In this framework, the minimization problem consists in finding ĝ ∈ Uad such that

J(v(̂g), ĝ) = min
g ∈ Uad ,

v(g) = Sv(g)

J(v(g), g) (5.4)

where the cost functional J is of target velocity form

J(v, g) = 1

2
‖v − v�‖22,� + τ

2
‖g‖2T D

, (5.5)

for a small parameter τ ≥ 0, and a given velocity field v� ∈ L2(�)n .
For what follows, it is convenient to introduce additional notations. If, for g ∈ Uad ,

we define

βr (‖g‖T D ) := 2κ‖g‖T D , βu(‖g‖T D ) :=
(
1

ε
− 1

)
2κ‖g‖T D + 1

εν
‖ f ‖−1,�,

(5.6)

βv(‖g‖T D ) :=2κ‖g‖T D +
(
1

ε
− 1

)
κλP‖g‖T D + λP

εν
‖ f ‖−1,�, (5.7)

βp(‖g‖T D ) := δκ c̃Cd

(
1 − ε

ε
2κ‖g‖T D + 1

εν
‖ f ‖−1,�

)
+ κ‖ f ‖−1,�

+ κCcβ
2
v + νκβv + κCd

(
1 − ε

ε
2κ‖g‖T D + 1

εν
‖ f ‖−1,�

)
βv,

(5.8)

then, from Theorem 4.4 and Remark 4.5, the estimates for the forward problem can
be written as

|u|U ≤ βu(‖g‖T D ), (5.9)

‖vr‖X ≤ βr (‖g‖T D ), ‖v‖X ≤ βv(‖g‖T D ), ‖p‖Q ≤ βp(‖g‖T D ). (5.10)

Moreover, let

α(‖g‖T D ) := ν − 2κλP [Cc + Cd(1 − ε)]‖g‖T D

ε
− λP

(
Cc + Cd

)‖ f ‖−1,�

νε

and observe that the second condition in (5.1), a restriction on the data that was used
in Theorem 4.4 to establish uniqueness of solutions for problem (4.8), is equivalent
to
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α(‖g‖T D ) > 0. (5.11)

The first main result for the control problem is the following.

Theorem 5.1 Under the assumption (5.2) there exists ĝ ∈ Uad such that ĝ and the
associated state v̂ = Sv(̂g) are a solution of the minimization problem (5.4) with the
cost functional (5.5).

Proof Let

E := {
(g, vr , v, p) ∈ Uad × X × X × Q; vr = Sr ,v(g), (v, p) = S(g)

}
.

If g ∈ Uad then Lemma 4.1 and Theorem 4.4 yield existence and uniqueness of a
state (Sr (g),S(g)) for (4.1)–(4.8). Hence, E �= ∅.

In what follows, in order to simplify the notation, we will write R = vr .
Since J := inf(g,R,v,p)∈E J(v, g) ≥ 0, there exists a minimizing sequence{

(gk, Rk, vk, pk)
}
k∈N ⊂ E, such that J(vk, gk) → J when k → ∞.

The sequence {(gk, Rk, vk, pk)}k∈N is bounded. Indeed, since {gk}k∈N ⊂ Uad , we
have ‖gk‖T D ≤ η̂, and from the estimates for the solutions obtained in Lemma 4.1
and Theorem 4.4 and (5.10), it follows that

‖Rk‖X ≤ βr (̂η), ‖vk‖X ≤ βv(̂η), ‖pk‖Q ≤ βp (̂η), ∀k ∈ N. (5.12)

We conclude that there exists a subsequence and (̂g, R̂, v̂, p̂) ∈ Uad × X × X × Q
such that

(gk′ , Rk′ , vk′ , pk′)⇀(̂g, R̂, v̂, p̂) in Uad × X × X × Q, as k′ → ∞.

The subsequence {(gk′ , vk′ , pk′)}k′∈N, which, for simplicity, we will continue to
denote by {(gk, vk, pk)}k∈N, satisfies

⎧
⎨

⎩

a(vk,ϕ) + b(ϕ, pk) − b(vk, q) + c(vk, vk,ϕ)

+ dδ(vk, vk − Rk,ϕ) = 〈 f ,ϕ〉U ′,U , ∀(ϕ, q) ∈ U × Q
γDvk = gk .

It is immediate to conclude that a(vk,ϕ) → a(̂v,ϕ), b(ϕ, pk) → b(ϕ, p̂), for all
ϕ ∈ X , and b(vk, φ) → b(̂v, φ), as k → ∞, for all φ ∈ Q.

From Lemma 4.3, (4.5) and (4.6), setting uk := vk − Rk and û := v̂ − R̂, we
deduce

|c(vk, vk,ϕ) + dδ(vk, uk,ϕ) − c(̂v, v̂,ϕ) − dδ (̂v, û,ϕ)|
≤ |c(vk − v̂, vk,ϕ)| + |c(̂v, vk − v̂,ϕ) + |dδ(vk, uk − û,ϕ)|

+ |dδ(vk, û,ϕ) − dδ (̂v, û,ϕ)|
≤ ‖vk‖2,�‖ϕ‖4,�‖vk − v̂‖4,� + |c(̂v, vk − v̂,ϕ)|

+ 1

2
‖Cδ + [vk · n]− ‖4,�N ‖uk − û‖2,�N ‖ϕ‖4,�N
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+ M� ′
δ

2
‖vk − v̂‖2,�N ‖û‖4,�N ‖ϕ‖4,�N → 0,

where, to pass to the limit k → ∞, we used the uniform estimates (5.12), the compact
embedding X ↪→↪→ L4(�)n , the compactness of the trace operator from X into
L2(�N )n , and the fact that, for fixed v̂ and ϕ, c(̂v, ·,ϕ) ∈ U ′.

Thus, the weak limit (̂g, v̂r , v̂, p̂) is also in E. Since the cost functionalJ is convex
and continuous, we conclude that it is weakly lower semicontinuous. Therefore,

J(̂v, ĝ) ≤ lim inf
k∈N J(vk, gk) = J ,

and (̂v, ĝ) is a solution to the minimization problem (5.4). ��

6 Lipschitz Continuity of the Control-to-State Operator

In this section, the assumptions on the data and the admissible controls are the same
of Sect. 5, in particular, f ∈ H−1(�) is fixed.

For i = 1, 2, suppose g(i) ∈ Uad , and let vr (i) := Sr ,v(g(i)), (v(i), p(i)) = S(g(i)).
Then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a(v(1) − v(2),ϕ) + b
(
ϕ, p(1) − p(2)

) − b(v(1) − v(2), φ)

+ c(v(1), v(1),ϕ) − c(v(2), v(2),ϕ)

+ dδ(v
(1), v(1) − vr

(1),ϕ) − dδ(v
(2), v(2) − vr

(2),ϕ)

= 0, ∀(ϕ, φ) ∈ U × Q, γD(v(1) − v(2)) = g(1) − g(2).

Firstly, we consider the velocity component and show that the mappings Sr ,v,Sv :
Uad → X are Lipschitz continuous. It is convenient to recall Remark 4.5: for i = 1, 2,
we have v(i) = u(i) + v

(i)
r , where u(i) ∈ V .

Theorem 6.1 For the velocity component of the reference flow there holds

‖Sr ,v(g(1)) − Sr ,v(g(2))‖X ≤ 2κ‖g(1) − g(2)‖T D (6.1)

and there exists a constant Lv > 0, such that

‖Sv(g(1)) − Sv(g(2))‖X ≤ Lv‖g(1) − g(2)‖T D (6.2)

for all g(1), g(2) ∈ Uad . The constant Lv is independent of g(1) and g(2).

Proof Estimate (6.1) is a simple consequence of the linearity of the Stokes problem.
Let u(i) := Sv(g(i)) − Sr ,v(g(i)) = v(i) − v

(i)
r , i = 1, 2. Our aim is to derive

estimates for ‖u(1) − u(2)‖X of the form

‖u(1) − u(2)‖X ≤ Lu‖g(1) − g(2)‖T D , (6.3)
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where the constant Lu > 0 is independent of g(1) and g(2), and then

‖Sv(g(1)) − Sv(g(2))‖X ≤ ‖vr (1) − vr
(2)‖X + ‖u(1) − u(2)‖X ≤ Lv‖g(1) − g(2)‖T D ,

where Lv = 2κ + Lu . If u(1), u(2) ∈ V are related with the boundary data g(1) and
g(2) via the definition in the beginning of the proof, then u(1) − u(2) satisfies

a(u(1) − u(2),ϕ) + c(v(1), v(1),ϕ) − c(v(2), v(2),ϕ)

+ dδ(v
(1), u(1),ϕ) − dδ(v

(2), u(2),ϕ) = 0, ∀ϕ ∈ V .

Choosing ϕ = u(1) − u(2) =: z in the above equation, since ν|z|2U = a(z, z), we get

ν|z|2U = c(v(2), v(2), z) − c(v(1), v(1), z) + dδ(v
(2), u(2), z) − dδ(v

(1), u(1), z)

and from (4.12), it follows that

c(v(2), v(2), z) − c(v(1), v(1), z) + dδ(v
(2), u(2), z) − dδ(v

(1), u(1), z)

≤ c(vr
(2) − vr

(1), v(1), z) − c(z, v(1), z) + c(v(2), vr
(2) − vr

(1), z)

+ dδ(v
(2), u(1), z) − dδ(v

(1), u(1), z).

According to (5.1)–(5.3), if ‖g(i)‖T D ≤ η̂, i = 1, 2, then the estimates

‖vr (i)‖X ≤ βr (̂η), ‖v(i)‖X ≤ βv(̂η), |u(i)|U ≤ βu (̂η)

are valid. Thus

| − c(z, v(1), z)| ≤ Cc|v(1)|U |z|2U ≤ CcλP [βr (̂η) + βu (̂η)] |z|2

and

|c(vr (2) − vr
(1), v(1), z)| + |c(v(2), vr

(2) − vr
(1), z)|

≤ Cc

(
‖v(1)‖X + ‖v(2)‖X

)
‖vr (1) − vr

(2)‖X |z|U
≤ 4κCcβv(̂η)‖g(1) − g(2)‖T D |z|U .

For the integrals on �N , by (4.10) and (6.1), we obtain

|dδ(v
(2), u(1), z) − dδ(v

(1), u(1), z)|
≤Cd‖v(2) − v(1)‖X |u(1)|U |z|U
≤CdλP |u(1)|U |z|2U + Cd |u(1)|U‖vr (1) − vr

(2)‖X |z|U
≤CdλPβu (̂η)|z|2U + 2κCdβu (̂η)‖g(1) − g(2)‖T D |z|U .
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We end up with the estimate

|z|U ≤ 2Ccβv(̂η)βr (̂η) + 2κCdβu (̂η)

α(̂η)
‖g(1) − g(2)‖T D ,

where, by (5.11), α(̂η) > 0. Hence, we take Lu := 2Ccβv(̂η)βr (̂η)+2κCdβu (̂η)
α(̂η)

, which
yields

‖Sv(g(1)) − Sv(g(2))‖X ≤ ‖u(1) − u(2)‖X + ‖vr (1) − vr
(2)‖X

≤ (Lu + 2κ) ‖g(1) − g(2)‖T D

and therefore, (6.2) holds true with Lv := Lu + 2κ . ��
The result of Theorem 6.1 for the velocity part of the solution is enough for the

purposes of the next sections. However, for completeness, we provide a Lipschitz
estimate which also includes the pressure component of the solution.

Theorem 6.2 There exists a constant LS > 0 such that

‖S(g(1)) − S(g(2))‖X×Q ≤ LS‖g(1) − g(2)‖T D ,

for all g(1), g(2) ∈ Uad . The constant LS is independent of g(1) and g(2).

Proof Let F ∈ V ◦ ⊂ U ′ be given by

〈F,ϕ〉U ′,U := a(v(1) − v(2),ϕ) + c(v(1), v(1),ϕ) − c(v(2), v(2),ϕ)

+ dδ(v
(1), v(1) − vr

(1),ϕ) − dδ(v
(2), v(2) − vr

(2),ϕ).

By Lemma 3.2 (ii), there exits a unique q ∈ Q such that B∗(q) = −F and therefore
q = p(1) − p(2). Again, by Lemma 3.2 (ii),

‖p(1) − p(2)‖Q ≤ κb‖F‖U ′ .

It remains to bound the norm ‖F‖U ′ :

|a(v(1) − v(2),ϕ)| ≤ ν‖v(1) − v(2)‖X |ϕ|U ≤ νLv‖g(1) − g(2)‖T D |ϕ|U

and, by Lemma 4.3 and Theorem 6.1,

∣
∣c(v(1), v(1),ϕ) − c(v(2), v(2),ϕ)

+ dδ(v
(1), v(1) − vr

(1),ϕ) − dδ(v
(2), v(2) − vr

(2),ϕ)
∣∣

≤ Cc(‖v(1)‖X + ‖v(2)‖X )‖v(1) − v(2)‖X |ϕ|U
+ Cd‖v(2)‖X‖u(1) − u(2)‖X |ϕ|U + Cd‖v(1) − v(2)‖X |u(1)|U‖ϕ|U

≤ 2Ccβv(η̂)Lv‖g(1) − g(2)‖T D |ϕ|U
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+ Cdβv(η̂)Lu‖g(1) − g(2)‖T D |ϕ|U
+ Cd Lvβu(η̂)‖g(1) − g(2)‖T D |ϕ|U

= (
2Ccβv(η̂)Lv + Cdβv(η̂)Lu + Cdβu(η̂)Lv

) ‖g(1) − g(2)‖T D |ϕ|X .

We conclude that

‖p(1) − p(2)‖Q ≤ L p‖g(1) − g(2)‖T D (6.4)

with

L p := κb
[
νLv + 2Ccβv(η̂)Lv + Cdβv(η̂)Lu + Cdβu(η̂)Lv

]
.

Combining (6.4) and (6.2) yields

‖S(g(1)) − S(g(2))‖X×Q ≤
√
L2

v + L2
p‖g(1) − g(2)‖T D .

��

7 Gâteaux Differentiability of the Control-to-State Operator

Let ga, g ∈ Uad . Our aim is to compute the Gâteaux derivatives of Sr and S at
g ∈ Uad in the direction ga − g, by taking gh := g + h(ga − g), 0 < h < 1.

Due to the linearity of the Stokes problem, the Gâteaux derivative corresponding
to the reference flow S′

r (g)(ga − g) =: (wr , qr ) ∈ X × Q does exist and satisfies

{
a(wr ,ϕ) + b

(
ϕ, qr

) − b
(
wr , φ

) = 0, ∀(ϕ, φ) ∈ U × Q

γDwr = ga − g,
(7.1)

which in strong form reads

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇ · T̃(wr , qr ) = 0 in �

∇ · wr = 0 in �

wr = ga − g in �D

n · T̃(wr , qr ) = 0 on �N .

(7.2)

Now, our aim is to find themain component of the Gâteaux derivative of the control-
to-state map, S′(g)(ga − g). Under the assumptions of Lemma 4.1 and Theorem 4.4,
let (v, p) := S(g), vr := Sr ,v(g) and let (vh, ph) ∈ X × Q be the solution to (4.8)
corresponding to gh ∈ Uad , that is, (vh, ph) := S(gh). Then

(wh, qh) := (vh, ph) − (v, p)

h
= S(gh) − S(g)

h
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satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a(wh,ϕ) + b
(
ϕ, qh

) − b(wh, φ) + c(v,wh,ϕ) + c(wh, v,ϕ)

+h c(wh,wh,ϕ) + dδ(v,wh − wr ,ϕ)

+1

h

[
dδ(vh, vh − vr h,ϕ) − dδ(v, vh − vr h,ϕ)

] = 0, ∀(ϕ, φ) ∈ U × Q

γDwh = ga − g.

(7.3)

The next step is to pass to the limit h → 0+ in (wh, qh) and find the Gâteaux derivative
S′(g)(ga − g).

Theorem 7.1 Under the assumption (5.11), let (vr , v) := (Sr ,v(g),Sv(g)) ∈ X × X
and wr := S′

r ,v(g)(ga − g) ∈ X . Then the linearized system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a(w,ϕ) + b(ϕ, q) − b
(
w, φ

)

+ c(v,w,ϕ) + c(w, v,ϕ) + dδ(v,w − wr ,ϕ)

+1

2

∫

�N

(w · n)� ′
δ(v · n)(v − vr ) · ϕ dσ = 0, ∀(ϕ, φ) ∈ U × Q

γDw = ga − g

(7.4)

has a unique solution (w, q) ∈ X × Q and S′(g)(ga − g) = (w, q).

Proof Let u := v − vr ∈ U . Firstly, we consider the problem of finding ϑ ∈ V such
that

a(ϑ,ϕ) + c(ϑ, v,ϕ) + c(v,ϑ,ϕ) + dδ(v,ϑ,ϕ)

+1

2

∫

�N

(ϑ · n)� ′
δ(v · n)u · ϕdσ

= −a(wr ,ϕ) − c(v,wr ,ϕ) − c(wr , v,ϕ)

amp; −1

2

∫

�N

(wr · n)� ′
δ(v · n)u · ϕ dσ, ∀ϕ ∈ V (7.5)

We are assuming that u and v are fixed. For ϑ,ϕ ∈ V , set

A(v, u;ϑ,ϕ) := a(ϑ,ϕ) + c(v,ϑ,ϕ) + c(ϑ, v,ϕ)

+ dδ(v,ϑ,ϕ) + 1

2

∫

�N

(ϑ · n)� ′
δ(v · n)u · ϕdσ,

〈F(v, u,wr ),ϕ〉V ′,V := − c(v,wr ,ϕ) − c(wr , v,ϕ)

− 1

2

∫

�N

(wr · n)� ′
δ(v · n)u · ϕdσ

where we used a(wr ,ϕ) = 0. Using (2.9), (4.5)–(4.7), we get

|A(v, u;ϑ,ϕ)| ≤ [
ν + Cdδ + ((1 + λP )Cc + Cd)‖v‖X
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+CdλP |u|U
]|ϑ |U |ϕ|U , ∀ϑ,ϕ ∈ V ,

|〈F(v, u,wr ),ϕ〉V ′,V | ≤ [
2Cc‖v‖X + Cd‖u‖X

]‖wr‖X |ϕ|X , ∀ϕ ∈ V .

From

c(v,ϑ,ϑ) + dδ(v,ϑ,ϑ) ≥ 1

2

∫

�N

[v · n]+ |ϑ |2dσ ≥ 0

and (5.9), (5.10), it follows that

A(v, u;ϑ,ϑ) ≥ ν|ϑ |2U −
∣∣∣c(ϑ, v,ϑ)

∣∣∣ − 1

2

∣∣∣∣

∫

�N

(ϑ · n)� ′
δ(v · n)u · ϑdσ

∣∣∣∣

≥ (
ν − CcλP‖∇v‖2,� − CdλP |u|U

) |ϑ |2U
≥ α(‖g‖T D )|ϑ |2U .

If α = α(‖g‖T D ) satisfies (5.11) then A(v, u;ϑ,ϑ) ≥ α|ϑ |2. By the Lax-Milgram
Theorem, if (5.11) holds then problem (7.5) has a unique solution ϑ ∈ V . Then w

is given by w = ϑ + wr and the pressure q is obtained and estimated by the same
reasoning used in Theorem 4.4, Step 4 (see [24]) and Theorem 6.2 of the previous
section.

Now, we pass to the limit h → 0+. Let uh := vh − vr h and (ξ h, θh) := (wh, qh)−
(w, q) ∈ V × Q, which satisfies (notice that wr h = wr , for all h)

a(ξ h,ϕ) + b
(
ϕ, θh

) − b(ξ h, φ)

+ c(v, ξ h,ϕ) + dδ(v, ξ h,ϕ) + c(ξ h, v,ϕ)

+ 1

h

[
dδ(vh, u,ϕ) − dδ(v, u,ϕ)

]

+ 1

h

[
dδ(vh, uh − u,ϕ) − dδ(v, uh − u,ϕ)

]

− 1

2

∫

�N

(w · n)� ′
δ(v · n)u · ϕ dσ

= − h c(wh,wh,ϕ), ∀(ϕ, φ) ∈ U × Q.

(7.6)

By Lemma 6.1, the following estimate holds for wh

‖wh‖X = 1

h
‖Sv(gh) − Sv(g)‖X ≤ Lv‖ga − g‖T D , 0 < h < 1,

and recalling (6.3), we have

‖uh − u‖X ≤ Lu‖gh − g‖T D = hLu‖ga − g‖T D , 0 < h < 1.

123



Applied Mathematics & Optimization (2025) 91 :24 Page 21 of 33 24

Taking ϕ = ξh in (7.6) yields

(ν − CcλP |v|U ) |ξh |2U
≤ 1

h

∣∣dδ(vh, uh − u, ξ h) − dδ(v, uh − u, ξ h)
∣∣ + h

∣∣c(wh,wh, ξ h)
∣∣

+
∣∣
∣∣
1

h

[
dδ(vh, u, ξ h) − dδ(v, u, ξ h)

] − 1

2

∫

�N

(w · n)� ′
δ(v · n)u · ξhdσ

∣∣
∣∣

where

|h c(wh,wh, ξ h)| ≤ h CcλP‖wh‖2X |ξh |U ≤ h CcλP L
2
v‖ga − g‖2T D

|ξh |U ,

1

h

[
dδ(vh, uh − u, ξ h) − dδ(v, uh − u, ξ h)

]

≤ CdλP ‖wh‖X |uh − u|U |ξh |U ≤ hCdλP LuLv‖ga − g‖2T D
|ξh |U ,

and

∣∣∣
∣
1

h

[
dδ(vh, u, ξ h) − dδ(v, u, ξ h)

] − 1

2

∫

�N

(w · n)� ′
δ(v · n)(u · ξh)dσ

∣∣∣
∣

= 1

2

∣∣∣∣

∫

�N

[
�δ(vh · n) − �δ(v · n)

h
− (w · n)� ′

δ(v · n)

]
(u · ξh)dσ

∣∣∣∣

= 1

2

∣∣∣∣

∫

�N

[
(wh · n)

∫ 1

0
� ′

δ ((vh − v) · nθ + v · n) dθ

−(w · n)� ′
δ(v · n)

]
(u · ξh)dσ

∣∣∣∣

≤ 1

2

∣∣∣∣

∫

�N

∫ 1

0
� ′

δ ((vh − v) · nθ + v · n) dθ(ξ h · n)(u · ξh)dσ

∣∣∣∣

+1

2

∣∣
∣∣

∫

�N

∫ 1

0

[
� ′

δ(hwh · nθ + v · n) − � ′
δ(v · n)

]
dθ(w · n)(u · ξ h)dσ

∣∣
∣∣ .

Analogously to (4.6), by the property (iii) of the function �δ ,

∣∣∣∣

∫

�N

∫ 1

0
� ′

δ ((vh − v) · nθ + v · n) dθ(ξh · n)(u · ξh)dσ

∣∣∣∣ ≤ CdλP |u|U |ξh |2U

and, again by property (iii) and (2.9),

∣∣
∣∣

∫

�N

∫ 1

0

[
� ′

δ(hwh · nθ + v · n) − � ′
δ(v · n)

]
dθ(w · n)(u · ξh)dσ

∣∣
∣∣

≤ C�N CdhL� ′
δ
‖wh‖X‖w‖X |u|U |ξh |U

≤ C�N CdhL� ′
δ
Lv‖ga − g‖T D‖w‖X |u|U |ξh |U .
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We conclude that

∣∣
∣∣
1

h

[
dδ(vh, u, ξ h) − dδ(v, u, ξ h)

] − 1

2

∫

�N

(w · n)� ′
δ(v · n)(u · ξh)dσ

∣∣
∣∣

≤ CdλP |u|U |ξh |2U + CdhL� ′
δ
Lv‖ga − g‖T D |u|U‖w‖X |ξh |U

Combining all the above estimates, we conclude that, under the assumption (5.11),
ξh satisfies

α|ξ h |U ≤h CcλP L
2
v‖ga − g‖2T D

+ h CdλP LuLv‖ga − g‖2T D

+ h(1 + C�N )Cd L� ′
δ
Lv‖ga − g‖T D |u|U‖w‖X

and letting h → 0+ we conclude that |ξh |U → 0. Consequently, wh → w in X . To
see that θh also goes to zero one can use, similarly to what was done in the proof of
Theorem 4.4 (see [24]), an inf-sup argument, showing that ‖θh‖Q ≤ M |ξh |U → 0.

8 Adjoint System

Assume that v� ∈ L2(�)n . Let g ∈ Uad and (vr , v) := (Sr ,v(g),Sv(g)), so that
(5.11) holds true [27].

The first part of the adjoint system is the problem of finding (z, π) ∈ U × Q which
satisfy the linearized equations

a(ϕ, z) − b(ϕ, π) + b(z, φ) + c(v,ϕ, z) + c(ϕ, v, z)

+ dδ(v,ϕ, z) + 1

2

∫

�N

(ϕ · n)� ′
δ(v · n) [(v − vr ) · z] dσ

= (v − v�,ϕ)�, ∀(ϕ, φ) ∈ U × Q.

(8.1)

Once z is obtained from (8.1), the following linear problem can be solved for (zr , πr )

∈ U × Q:

a(ϕ, zr ) + b(ϕ, πr ) − b(zr , φ) = dδ(v,ϕ, z), ∀(ϕ, φ) ∈ U × Q. (8.2)

Theorem 8.1 For g ∈ Uad , the adjoint problem (8.1), (8.2) has a unique solution.

Proof Firstly, we consider the problem of finding z ∈ V such that

a(ϕ, z) + c(v,ϕ, z) + c(ϕ, v, z) + dδ(v,ϕ, z)

+1

2

∫

�N

(ϕ · n)� ′
δ(v · n)(v − vr ) · z dσ = (v − v�,ϕ)�, ∀ϕ ∈ V ,

(8.3)

where v, vr , v� are fixed and v − v� ∈ L2(�)n .
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Let u := v − vr , and, for z,ϕ ∈ V , define

A(v, u; z,ϕ) := a(ϕ, z) + c(v,ϕ, z) + c(ϕ, v, z) + dδ(v,ϕ, z)

+1

2

∫

�N

(ϕ · n)� ′
δ(v · n)u · zdσ.

From now on the reasoning is the same as in the proof of Theorem 7.1, problem (7.5).
In particular, A satisfies

A(v, u; z, z) := a(z, z) + c(v, z, z) + c(z, v, z) + dδ(v, z, z)

+ 1

2

∫

�N

(z · n)� ′
δ(v · n)u · zdσ

≥ ν|z|2 −
∣∣
∣c(z, v, z)

∣∣
∣ − 1

2

∣∣
∣∣

∫

�N

(z · n)� ′
δ(v · n)u · zdσ

∣∣
∣∣

≥ (
ν − CcλP‖∇v‖2,� − CdλP |u|U

) |z|2U

and id (5.11) holds true then

A(v, u; z, z) ≥ α|z|2, ∀z ∈ V .

By the Lax-Milgram Theorem, problem (8.3) has a unique solution z ∈ V . The
pressure π is obtained by the same reasoning used in Theorem 4.4, see [24].

With existence of z established, existence and uniqueness for the Stokes problem
(8.2) is immediate. ��

Notice that, in strong form, problem (8.1), (8.2) takes the form: first solve

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∇ · T̃∗(z, π) + (∇v)z − (v · ∇)z = v − v� in �

∇ · z = 0 in �

z = 0 on �D

n · T̃∗(z, π) + 1

2
�δ(v · n)z

+1

2
� ′

δ(v · n) [(v − vr ) · z] n = −(v · n)z on �N

(8.4)

and then, using z, solve

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇ · T̃∗(zr , πr ) = 0 in �

∇ · zr = 0 in �

zr = 0 on �D

n · T̃∗(zr , πr ) = 1

2
�δ(v · n)z on �N .

(8.5)
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9 First Order Optimality Conditions

Let (v̂r , v̂, p̂, ĝ) be an optimal solution, in accordance to Theorem 5.1, and let ga ∈
Uad . Consider vh = Sv(gh) where gh := ĝ + h(ga − ĝ), 0 < h < 1, and wh =
(vh − v̂)/h. By Theorem 7.1, we obtain

lim
h→0

J(vh, gh) − J(̂v, ĝ)

h

= lim
h→0

[∫

�

wh · (̂v − v�)dx + h

2
‖wh‖22 + τ (̂g, ga − ĝ)�D + hτ

2
‖ga − ĝ‖2�D

]

=
∫

�

(̂v − v�) · ŵdx + τ (̂g, ga − ĝ)�D .

where ŵ := limh→0(vh − v̂)/h.
From the fact that (̂v, p̂, ĝ) is optimal, we know that J(vh, gh) −J(̂v, ĝ) ≥ 0 for

all h ∈ (0, 1), and therefore,

∫

�

(̂v − v�) · ŵ dx + τ (̂g, ga − ĝ)�D ≥ 0. (9.1)

We can dot-multiply the first equation of (8.4) by a test function ϕ ∈ W = {ϕ ∈
X : γDϕ ∈ T D} and integrate in �. Using the boundary conditions of (8.4) and
defining

σ := n · T̃∗(z, π),

we find

a(ϕ, z) − b(ϕ, π) + c(v,ϕ, z) + c(ϕ, v, z) + dδ(v,ϕ, z) − 〈σ ,ϕ〉�D

+1

2

∫

�N

(ϕ · n)� ′
δ(v · n) [(v − vr ) · z] dσ = (v − v�,ϕ), ∀ϕ ∈ W (9.2)

Analogously, defining

σ r := n · T̃∗(zr , πr ),

from (8.5), we obtain

a(ϕ, zr ) − b(ϕ, πr ) − 〈σ r ,ϕ〉�D = dδ(v,ϕ, z), ∀ϕ ∈ W . (9.3)

Now, let (̂z, π̂) be the solution to the adjoint problem (8.1) associated with the
optimal solution (v̂r , v̂) := (Sr ,v (̂g),Sv(̂g)).
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Choosing, in (9.2) and in the second equation of (8.4), ϕ = ŵ and φ = q̂ , we
obtain

⎧
⎪⎪⎨

⎪⎪⎩

a(ŵ, ẑ) − b(ŵ, π̂) + c(̂v, ŵ, ẑ) + c(ŵ, v̂, ẑ) + dδ (̂v, ŵ, ẑ) − 〈σ̂ , ŵ〉�D

+1

2

∫

�N

(ŵ · n)� ′
δ (̂v · n)(̂v − v̂r ) · ẑ dσ = (̂v − v�, ŵ)�,

b(̂z, q) = 0

(9.4)

and taking ϕ = ẑ and φ = π̂ in (7.4) yields

⎧
⎪⎪⎨

⎪⎪⎩

a(ŵ, ẑ) + b(̂z, q) + c(̂v, ŵ, ẑ) + c(ŵ, v̂, ẑ)

+ dδ (̂v, ŵ − ŵr , ẑ) + 1

2

∫

�N

(ŵ · n)� ′
δ (̂v · n)(̂v − v̂r ) · ẑ dσ = 0,

b
(
ŵ, π̂

) = 0.

(9.5)

Comparing (9.4) with (9.5), we conclude that

(̂v − v�, ŵ)� = dδ (̂v, ŵr , ẑ) − 〈σ̂ , ga − ĝ〉�D

and therefore (9.1) takes the form

dδ (̂v, ŵr , ẑ) − 〈σ̂ , ga − ĝ〉�D + τ 〈̂g, ga − ĝ〉�D ≥ 0, ∀ga ∈ Uad . (9.6)

In order to simplify the first term in (9.6), we use (7.1) with (ϕ, φ) = (̂zr , π̂r ) and
(9.3) and the second equation of (8.2) with (ϕ, φ) = (ŵr , q̂r ), to obtain

−〈σ̂ r , ga − ĝ〉�D + dδ (̂v, ŵr , ẑ) = 0

so that

J′( ĝ)(ga − ĝ) = 〈(σ̂ r − σ̂ ) + τ ĝ, ga − ĝ〉�D ≥ 0, ∀ga ∈ Uad . (9.7)

Our main result concerning the characterization of the optimal solution can then be
stated as follows.

Theorem 9.1 Let (v̂r , p̂r , v̂, p̂, ĝ) be an optimal solution of (5.4) for v� ∈ L2(�)n.
Then, there exists a unique (̂z, π̂) ∈ X × Q and ( ẑr , π̂r ) ∈ X × Q satisfying (8.1),
(8.2) and the inequality (9.7).

Remark 9.2 If Uad ⊂ H1
0(�D) then we can compute the whole gradient

J′( ĝ) = (σ̂ r − σ̂ ) + τ ĝ ∈ H−1/2(�D) = (H1/2
00 (�D))′

as an element of H1
0(�D). In fact, taking r = (σ̂ r − σ̂ ) ∈ H−1/2(�D) we have

〈r, g̃〉�D = 〈ir, g̃〉H−1(�D)×H1
0(�D)
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where i : H−1/2(�D) → H−1(�D) is the canonical identifier.
We may then look for the unique Riesz representative η̂ = R(ir) ∈ H1

0(�D) such
that

(̂η, g̃)H1
0(�D) = 〈ir, g̃〉H−1(�D)×H1

0(�D) ∀ g̃ ∈ H1
0(�D) (9.8)

and ∇J( ĝ) = η̂ + τ ĝ ∈ H1
0(�D).

10 Numerical Experiments

In this section, we present some numerical experiments related to a common problem
in different fields such as atmospheric sciences or cardiovascular modeling, which is
the data assimilation problem (DAP). For artificially truncated computational domains,
the DAP consists of identifying the boundary condition which is able to produce a
solution minimizing the mismatch with respect to data that has been acquired. Math-
ematically, this can be considered as the minimization of a fitting functional, having
the form (5.5), with respect to a noisy target solution, denoted by v�, which has
been corrupted by random errors. To solve the optimization problem, we opted for a
steepest descent method, with an optimize-then-discretize approach. As explained in
Remark 9.2, assuming some extra regularity, the gradient of the cost functional can
be represented as

∇J( ĝ) = τ ĝ + η̂, (10.1)

where η̂ ∈ H1
0(�in) solves (9.8), which corresponds to solving the weak formulation

of the 1D Poisson equation

− �η̂ = σ̂ r − σ̂ in �in . (10.2)

See, for instance, [6, 7]where this approachwas also used.We implementedAlgorithm
1 in FreeFem++. To simplify the calculations, a fixed step � = 0.05 was used in every
iteration. As stopping criteria, a cost threshold can be used instead of the gradient
norm threshold.

Algorithm 1 Steepest Descent for NS-RDDN
0. Define an initial guess g0 for the optimization procedure;
while (niter<nmax and norm > tol) do

1. Compute the Reference Flow (vkr , p
k
r ) for the given control gk ;

2. Compute the NS-RDDN Flow (vk , pk ) for gk , and the cost Jk = J(vk , gk );
3. Using (vk , pk ), compute (zk , qk ), solution to the Adjoint Problem (8.1);
4. Compute the Reference Adjoint (zkr , q

k
r ), using (zk , qk ) and (vk , πk );

5. Solve the 1D equation (10.2) and determine the gradient ∇Jk from (10.1);
6. Update the control gk+1 = gk − �∇Jk ;
7. Set norm= ‖∇Jk‖2,�in and niter++

end while
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For the numerical approximation of the state and adjoint equations, we employ
P2/P1 finite elements, which are known to be LBB-stable.

10.1 Example 1

Inspired by biomedical applications in computational hemodinamics, we consider the
problem of adjusting an artificial Dirichlet boundary condition in order to reproduce a
flow profile from which we only have noisy measurements available. In the tests that
follow we use the cost functional (5.5) with τ = 10−5.

We consider the stenotic domain represented in Fig. 2a. The inlet is located at
�in := {0} × (0, 1), a RDDN condition with (2.6) and δ = 10−6 is prescribed at
�N = {3.5} × (0, 1), and the highest depth of the stenosis is � = 0.45. A parabolic
inflow g(x) = g(x1, x2) = (V (1 − x2)x2, 0) is considered at �in , and v = 0 on
� \ (�in ∪ �N ). The parabolic profile presents a mean velocity Vmean = V /6 and
therefore the Reynolds number can be defined as Re = 2�Vmean

/
ν = 0.15V /ν. The

target velocity v� is the solution to the system (2.4), (2.5) with ν = 10−3, RDDN
condition defined above and parabolic inflow with V = 1.2, which corresponds to
Re = 180. At first, we consider the basic situation in which the target velocity v� is
perfectly known. It serves the purpose of verifying our solution approach.

As previously stated, we use P2/P1 finite elements, defined in ameshwith diameter
h = 0.0405875, 33443 triangles, 67666 velocity nodes and 17112 pressure nodes.
Moreover, 241 nodes are placed at �in , where the control is applied. All numerical
results have been obtained by Newton’s method with a stabilization in the linearized
Navier–Stokes systems. It is important to highlight that with the CDN, for Re = 180,
a solution cannot be computed. In fact, the CDN produces solutions until Re = 120.
The RDDN condition was tested in simulations of the Navier-Stokes equations until
reaching Re = 225.

We tested this minimization scheme assuming as initial guess g(0) = 0.
After 100 iterations, we arrived at the result shown in Fig. 2a, with the following

relative errors for the velocity in �:

‖v − v�‖2
‖v‖2 = 0.000763927.

10.2 Example 2

In this example, we simulate a realistic scenario where only noisy data is available.
To do so, we revisit the previous example, but now assume that the target velocity is
corrupted by white noise (see Fig. 3). The target has a discrepancy of 33.8 % from the
"exact" solution, which we recall is given by Sδ(g), with

g(x1, x2) =
{

(1.2x2 × (1 − x2), 0), x1 = 1

(0, 0), otherwise
(10.3)
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Fig. 2 Results from Example 1. a Numerical solution attained after 100 iteration. b Shows the difference
v − v�. c Shows the cost functional value along iteration and d illustrates the progression of the controls
profiles at �in for some selected cases

and δ being the regularization parameter and equal to 10−6. Using the same model
parameters and discretization assumptions as in the previous example, and after per-
forming 50 iterations of the descent method (Algorithm 1), we obtained the numerical
solution shown in Fig. 3b.

The relative error (L2-norm) for the optimal state velocity is approximately 1%
when compared to the ground truth solution obtained prior to the introduction of
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Fig. 3 Results fromExample 2: a represents the target. After 50 iterations, the flow depicted in b is obtained.
c Illustrates the evolution of the cost functional over the iterations. Finally, d presents the trace profiles at
�in for selected cases

noise. In Fig. 3d, we represent the control variable (Dirichlet boundary condition) after
several iterations and compare it with the (exact) profile which was used to obtain the
ground truth solution, as well as the noisy solution at the controlled boundary.The
optimal solution obtained after 50 iterations closely matches the exact solution. In
Fig. 3c, a consistent decrease of the cost functional can be observed.
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10.3 Example 3

Finally, we test the algorithm for an open cavity configuration. Modeling cavity flows
is of major importance in several engineering applications. Again, we consider the
problem of flow reconstruction from noisy measurements. Concerning the computa-
tional domain, we consider � = (0, 1)2, �N = (0, 1) × {0}, �D = � \ �N and we
control de Dirichlet boundary condition at �in = (0, 1) × {1}. The mesh is composed
by 5000 uniform triangles, 10201 velocity nodes, 2601 pressure nodes and grid size
h = 0.02828. To mimic the acquired data, we started by generating a ground truth
solution as Sδ(g), where δ = 10−6 and

g(x1, x2) =
{

(x1(1 − x1), 0), x2 = 1

(0, 0), otherwise.
(10.4)

We then perturbed the ground truth solution until reaching a target solution corre-
sponding to 25% of relative error (in the L2−norm), with respect to the exact solution.
After the minimization process, which took 300 iterations, we achieved a relative error
of only 4%. Figure4a and b show the reconstructed (optimized) solution compared
with the data (target). In the bottom row we can appreciate the cost function reduction
as well as the progression of the control variable at several iterations of the algorithm.

11 Conclusions

Velocity tracking by means of localized boundary controls has been investigated for
the Navier–Stokes equations with mixed Dirichlet and RDDN outflow boundary con-
ditions. The state equations are actually a coupled problem which requires to obtain a
suitable reference flow whose velocity component is subsequently used to define the
outflow boundary condition for the Navier–Stokes equations. Therefore, a two stage
analysis was carried out for the control-to-state mapping, as the reference flow, which
we defined as a Stokes flow, also depends on the control. The regularity of the RDDN
condition is quite relevant when computing the Gâteaux derivative of the control-to-
state mapping, as seen throughout the proof of Theorem 7.1. This justifies studying
the RDDN condition before the DDN condition in the context of optimal control of
Navier–Stokes flows. The first order optimality conditions, stated in Theorem 9.1, are
described, as usual, in terms of the solution of the adjoint problem. This is a nontrivial
coupled problem, (8.4), (8.5) in strong form, consisting of a linearized Navier–Stokes
system, followed by a Stokes system. Our study was supplemented with numerical
simulations to demonstrate the advantages of the RDDN condition over the CDN, as
well as applications involving cases with only noisy measurements available. Another
important reason for preferring the RDDN condition over the DDN condition is the
possibility of applying the classical Newton method in the numerical simulations of
the state equations.
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Fig. 4 Results from Example 3. a Is the target. After 50 iterations, the flow in b is achieved. c Illustrates
the cost functional development along iterations. d Shows the trace profiles at �in for a selection of cases
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