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A todos os elementos do Bar-Wings, Iúri, Catarina, e Diogo, por todos os bons momentos, por

todos os bons treinos, e por me terem ajudado a manter o equilı́brio na minha vida. É fundamental
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Aos meus colegas de projeto, Bento e Malveiro, que me aturaram a ser insuportável com detalhes

insignificantes, que não me matavam sempre que eu refatorizava 80% de um projeto, e que me aju-

daram a manter a sanidade quando as deadlines estavam a apertar. Qualquer projeto do Técnico se
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Abstract

ECMA-SL is a new platform for the specification and analysis of the ECMAScript standard. At the

core of the ECMA-SL platform is ECMA-SL, a new intermediate language designed to be as close

as possible to the meta-language of the ECMAScript standard. Using this intermediate language, the

ECMA-SL team has developed two reference interpreters for the 5th and 6th versions of the ECMAScript

standard, ECMARef5 and ECMARef6, respectively. Both interpreters were thoroughly tested against

Test262, the official conformance test suite for JavaScript, and are currently the most complete academic

implementations of the standard for their respective versions. An important shortcoming of the ECMA-SL

language is that it is untyped, making ECMA-SL programs extremely difficult to debug and refactor. To

address this issue, we introduce Typed ECMA-SL, an extension of ECMA-SL that adds static typing with

optional type annotations to the language. Typed ECMA-SL comes with a static type system for verifying

the adherence of programs to the supplied type declarations and provides user-friendly feedback when

type errors occur. We formalized a subset of Typed ECMA-SL, proving the soundness of our type system

for the formalized fragment. Additionally, we implemented and typed a simplified JavaScript interpreter

with a similar structure to the reference interpreters. This suggests that we will be able to fully type the

reference interpreters, enabling their extension to newer versions of the ECMAScript standard.

Keywords

ECMAScript; ECMA-SL; ECMARef6; Typed ECMA-SL; Type Declarations; Type System.
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Resumo

ECMA-SL é uma nova plataforma para a especificação e análise do ECMAScript standard. No núcleo

desta plataforma está a ECMA-SL, uma nova linguagem intermédia desenhada para ser o mais semel-

hante possı́vel à metalinguagem do ECMAScript standard. Com esta linguagem intermédia, a equipa

do projeto ECMA-SL desenvolveu dois interpretadores de referência para a quinta e sexta versão do

standard, ECMARef5 e ECMARef6, respetivamente. Ambos os interpretadores foram testados exaus-

tivamente contra o Test262, o conjunto oficial de testes de conformidade para JavaScript, e constituem

as implementações académicas mais completas do standard para as suas respetivas versões. Uma

limitação importante da linguagem ECMA-SL é que não é tipificada, tornando os programas escritos

em ECMA-SL extremamente difı́ceis de corrigir e refatorizar. Para atenuar este problema, introduzimos

Typed ECMA-SL, uma extensão de ECMA-SL que adiciona tipificação estática com anotações de tipos

opcionais. Typed ECMA-SL inclui um sistema de tipos estáticos para verificar a conformidade dos pro-

gramas com as declarações de tipos e gera feedback intuitivo quando deteta erros. Formalizámos um

subconjunto de Typed ECMA-SL, provando a consistência do sistema de tipos para o fragmento formal-

izado. Além disso, implementámos e tipificámos um interpretador simplificado de JavaScript com uma

estrutura semelhante aos interpretadores de referência. Isto sugere que seremos capazes de tipificar

completamente os interpretadores de referência, possibilitando a sua extensão para novas versões do

ECMAScript standard.

Palavras Chave

ECMAScript; ECMA-SL; ECMARef6; Typed ECMA-SL; Declarações de Tipos; Sistema de Tipos.
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Introduction

Contents
1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

ECMAScript, commonly known as JavaScript, currently stands as one of the most popular and widely

used programming languages. It is the de facto language for client-side web applications, given that

approximately 98.8% of all websites use it for their frontend development,1 and it is supported by all

major browsers. The popularity of JavaScript has also been increasing in the development of server-

side applications (through Node.js2), and the language runs even on small embedded devices.3

To ensure a consistent behaviour of JavaScript programs across browsers, the ECMA International

association develops and maintains the ECMAScript standard, a highly complex document written in

English that describes both the syntax and semantics of JavaScript. This document is written as if it was

the pseudocode of an ECMAScript interpreter, detailing the steps for the evaluation of every construct

of the language. JavaScript is in a state of constant evolution, with a new (and often bigger) version of

its specification being released annually. In fact, the language specification grew to over four times its

original size over the past two decades. Figure 1.1 illustrates the evolution of the standard’s size from

its first widely addopted release in 1999 (ES3) to its latest version in 2023 (ES14).
1Usage statistics of JavaScript as a client-side programming language on websites, October 2023, W3Techs.com - https:

//w3techs.com/technologies/details/cp-javascript
2NodeJS is an open-source cross-platform server environment that runs off the V8 JavaScript engine and executes JavaScript

code - https://nodejs.org/en/
3JerryScript, a JavaScript engine for the Internet of Things - https://jerryscript.net/

1

https://w3techs.com/technologies/details/cp-javascript
https://w3techs.com/technologies/details/cp-javascript
https://nodejs.org/en/
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Figure 1.1: Evolution of the size of the ECMAScript standard (number of pages) from 1999 to 2013.

As the complexity of the language grows, the ECMAScript standard becomes increasingly difficult to

manage and extend. When adding new features to the standard, it is extremely easy to introduce errors

that compromise the internal invariants maintained by the specification and break the behaviour of other

existing features. Furthermore, developing tests for these new features is particularly challenging, given

the convoluted nature of the semantics of the language.

To ameliorate this situation, a team of researchers at IST created the ECMA-SL project4 [1], which

aims to provide a set of tools for specifying and analysing the JavaScript language. This project is

centred around an intermediate language called ECMA-SL, designed to be as similar as possible to the

meta-language used in the standard’s pseudocode. As a result, ECMA-SL is significantly less complex

than JavaScript. To put it into perspective, while the latest version of the JavaScript specification spans

over 800 pages, the ECMA-SL specification can be described in a single one.

Using ECMA-SL, it is possible to create a reference interpreters for JavaScript that adhere to the

standard’s pseudocode line-by-line. Currently, the project includes two interpreters, ECMARef5 [1] and

ECMARef6 [2], for ES5 [3] and ES6 [4], respectively. Both interpreters were thoroughly tested against

Test262 [5], the official JavaScript test suite, being the most complete academic implementations of the

standard for their respective versions. Besides being able to evaluate JavaScript programs according to

the exact semantics of the standard, the reference interpreters offer a number of applications, including:

• Proving invariants of the standard: We can use formal methods on the implementation of the

reference interpreters to prove certain properties and invariants of the standard, ensuring that it is

free of errors and inconsistencies [6,7,8].

• Generating tests suits for implementations of the language: The interpreters can be used to auto-

matically generate test cases for new features introduced in the language, particularly by making

use of dynamic test generation techniques [9,10,11].
4Currently, the ECMA-SL project is under the responsibility and supervision of the authors of this thesis.
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• Generating documentation for the language: We can generate from the reference interpreters an

HTML version of the standard without any major differences from the official ECMAScript document

in terms of structure and content [1].

Despite the aforementioned applications, it is still not possible to replace the official JavaScript stan-

dard with its ECMA-SL implementation. This is mainly due to the standard’s rapid growth in both size

and complexity, making it difficult to extend the interpreters to newer versions. Even though the standard

is currently at the 14th version, released in 2023, the ECMA-SL project only supports up to the 6th. The

challenges associated with extending the reference interpreters are related with the time-consuming na-

ture of development in ECMA-SL. This is a direct result of ECMA-SL being an untyped language, leading

to numerous bugs and hindering the refactoring process. The addition of types to the language will help

to streamline code changes, providing greater assurance to developers that their code is bug-free.

Contributions Essentially, this project aims to address one of the biggest limitations of the ECMA-SL

language, namely its lack of a static type system. We consider this thesis to have three main contribu-

tions to the overall ECMA-SL project, including:

• Implementation of Typed ECMA-SL: The central contribution of this thesis is the design and

implementation of Typed ECMA-SL, an extension of the ECMA-SL language with type declara-

tions and a static type system for type checking programs. Throughout the development process,

we consistently prioritized the aspect of usability. In particular, we were very meticulous in our

approach for reporting type errors, ensuring that developers can easily identify the source of the

problems. Furthermore, we also provide mechanisms (e.g., syntax highlighting) to integrate the

Typed ECMA-SL language with development environments like VSCode.

• Formalization of Typed ECMA-SL: The second contribution of this work is the formalization of a

subset of Typed ECMA-SL and its type system. Additionally, we prove type safety for the formalized

fragment, particularly the soundness of the type system with respect to the operational semantics

of the language. Type safety helps in building confidence that, under Typed ECMA-SL, well-typed

programs cannot go wrong.5

• Implementation of a Simplified JavaScript Interpreter: The third contribution is the implementa-

tion of a simplified interpreter for JavaScript, developed in parallel with Typed ECMA-SL. Besides

being used to evaluate the type system of the language, this interpreter has many applications

across the entire ECMA-SL project. For instance, it can be used as the foundation for certain

types of static analysis for JavaScript that do not benefit from a precise language model.
5In reality, well-typed programs in Typed ECMA-SL can still cause runtime errors, as our formalization does not precisely model

the type system implemented in the context of this thesis.
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Evaluation The main goal of Typed ECMA-SL is to be used to fully type the ECMARef5 and ECMARef6

interpreters. However, this is a very complex and time-consuming task that extends beyond the scope

of this thesis. Therefore, to evaluate the success of this project, we used Typed ECMA-SL to implement

and fully type a simplified interpreter for the JavaScript language. This interpreter covers the most

fundamental JavaScript constructs and is sufficiently complex so that, by typing it, we employ the majority

of the type system features required to type the complete reference interpreters. As a result, typing

the simplified interpreter gives us confidence that it will be possible to type the reference interpreters.

Finally, we also attempted to identify syntactical issues within the reference interpreters by applying our

type system to them without introducing type annotations.

1.1 Thesis Outline

This document is organized as follows: In Chapter 2, we described the core aspects of the ECMAScript

standard, followed by an in-depth description of the ECMA-SL project, including its applications and

limitations. In Chapter 3, we examine operational semantics and type systems that have been studied

for the JavaScript language. In Chapter 4, we discuss the challenges and design choices associated

with Typed ECMA-SL, and we introduce the formal model of the language, including its syntax, typing

rules, operational semantics, and proof of soundness. In Chapter 5, we discuss the implementation of

Typed ECMA-SL, including its architecture, additional features not included in the formal model of the

language, and its error reporting mechanism. In Chapter 6, we evaluate the main outcomes of this thesis

and assess the quality of the implemented type system. Finally, in Chapter 7, we draw some conclusions

about our work and reflect on some future work directions.
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2
Background

Contents
2.1 ECMAScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 ECMA-SL Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 ECMA-SL Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 ECMA-SL Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 ECMA-SL Execution Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 ECMA-SL Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

In this chapter, we provide the fundamental background required to understand the context and sig-

nificance of our research. We begin with a brief analysis of the ECMAScript standard (Section 2.1). This

standard constitutes the main subject of the ECMA-SL project (Section 2.2) within which our research is

situated. We end this section by enumerating the main problems and limitations of the ECMA-SL project

(Section 2.3), with a particular focus on the ones we are attempting to mitigate.

2.1 ECMAScript

The ECMAScript standard [12] is the official document that defines the ECMAScript (ES) scripting

language, the official name for the programming language commonly known as JavaScript (JS). The

standard is developed and maintained by the Technical Committee 39 (TC39), a committee formed by
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Figure 2.1: The internal division of the 14th version of the ECMAScript standard.

developers and academics under the European Computer Manufacturers Association (ECMA) organi-

zation, and it is currently on its 14th version (ES14), published in June 2023.

This ES specification fully outlines the syntax, semantics, and behaviour of the JavaScript language,

including its data types, values, expressions, statements, functions, built-ins, and others. Furthermore,

it is written as if it was the pseudocode of a JS interpreter, with every operation being described as a

sequence of steps that must be executed to evaluate it. In the remaining section, we provide a high-level

overview of the standard, with a particular focus on its data types (our primary research focus).

The specification of the language is currently divided into 23 sections. As described in Figure 2.1,

these sections can be grouped into three different categories, namely:

• Syntax: Defines the grammatical rules for the language, including comments, tokens, names,

keywords, and other building blocks. These rules are described in BNF notation. Figure 2.2a

depicts a subset of the grammatical governing comments in JavaScript.

• Core: Defines a set of algorithms that are used to evaluate expressions, statements, and other

building blocks, according to the semantics of the language. Figure 2.2c illustrates the evaluation

rules for the assignment expression.

• Built-In Objects: Defines the interface and behaviour of the various built-in libraries available to

developers, such as the String, Array, and Date built-ins. Figure 2.2b contains the algorithm for

popping an element from an array (i.e., the Array.prototype.pop() function).
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(a) Syntactic rules for comments. (b) Algorithm to evaluate the pop method of the built-in Array.

(c) Evaluation rules for the assignment expression.

Figure 2.2: Excerpts of different sections of the ECMAScript standard.

The Data Types and Values section (Core) describes the language datatypes and values. The stan-

dard defines 7 built-in value types for the language: number, string, boolean, symbol, null, undefined,

bigint,1 and object. Arguably, objects are the most interesting datatype as they act as the foundation

for most of the standard. For example, in JavaScript, functions are modelled as objects (referred to as

function objects) that include a special method call() to allow them to be called.

Objects are simple collections of key-value pairs. Keys, also referred to as properties, are of type

string or symbol. They are used to access the object’s members, via the property accessor operator

obj.prop. There are other ways of accessing object properties, such as the index operator obj["prop"]

or object deconstructing const { prop } = obj.
1bigint - introduced in the 11th version of the standard (ES11), this type represents numeric values that are too large to be

stored by the number primitive.
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Evidently, the ES standard is an extremely complex specification. We will refrain from describing

it extensively, as it is not required to have a complete grasp of it to understand our research project.

Instead, we will describe further aspects of the standard as the need arises.

2.2 ECMA-SL Project

The ECMA-SL project was established with the goal of building an executable specification for the

ES standard. This specification takes the form of a reference interpreter called ECMARef, written to

adhere the standard’s pseudocode line-by-line. Consequently, the interpreter can execute a JS program

exactly as it is described by the standard, producing the expected output and side effects.

In this section, we provide an in-depth description of the ECMA-SL project. In Section 2.2.1, we out-

line the rationale behind the project, enumerating the purposes and advantages of having an executable

specification over the official textual standard. In Section 2.2.2, we analyse the intermediate language

employed in the development of the ECMARef interpreter. Lastly, in Section 2.2.3, we explain how we

can use the reference interpreters to execute a JS program according to the rules of the standard.

2.2.1 ECMA-SL Rationale

In addition to being easier to maintain, there are numerous advantages in having an executable speci-

fication of JavaScript instead of a textual description of its syntax and semantics. Figure 2.3 illustrates

the multiple ways in which the reference interpreters can be employed.

Figure 2.3: Applications of the ECMARef interpreter.

• Oracle for Industrial Engines: The interpreters can function as reference points for industrial

JavaScript engines [8, 13]. Real JS engines often incorporate optimizations that could lead to
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behaviours that deviate from the language specification, potentially resulting in bugs and vulnera-

bilities. By assessing these engines against the ECMARef interpreter, developers can achieve a

higher level of confidence in the quality of their engine.

• Static/Dynamic Analysis Tools: The interpreters can be employed in the creation of static and

dynamic analysis tools for JS, such as multi-level debuggers [14, 15] and symbolic execution

tools [16, 17]. Such tools can be used, for example, to improve code quality, enhance security,

optimize performance, and reason about code behaviour in complex and dynamic environments.

• Specialized Interpreters: The interpreters may be tweaked to derive a slightly different specifica-

tion for JavaScript tailored to specific requirements. For instance, one could extract an interpreter

for the language without implicit type coercions.

• Conformance Test Suits: The interpreters can facilitate the generation of tests for new features

of the language and assess the coverage of existing test suits [6, 18]. This may be achieved with

dynamic test generation techniques [9,10,11], that work by generating symbolic inputs to explore

different execution paths of the interpreter.

• Errors in the Specification: The interpreters aids in detecting inconsistencies within the ES stan-

dard [6, 7] and proving its meta-properties [8]. For instance, we can use formal methods to prove

that it is never possible for a JS variable to reference a declarative environment record; that is a

JS variable can never point to the internal object used to represent function scopes.

• English HTML Documentation: The interpreters can also be used to generate the textual version

of the standard [1]. This version can be obtained with a tool that generates faithful HTML code,

with no significant differences from the text of the real standard. Additionally, since this version is

automatically generated, it has the benefit of being more consistent than the standard, as similar

concepts are always described in the same way.

2.2.2 ECMA-SL Language

The ECMARef interpreter is implemented using an intermediate language for JavaScript known as the

ECMA Specification Language (ECMA-SL) [1]. The language is designed to be as close as possible

to the meta-language of the standard, exclusively containing the meta-constructs required to model its

pseudocode. This is essential to guarantee that the interpreter is written in the most faithful way possible.

ECMA-SL (ESL) features extensible objects and dynamic behaviour, including: (1) dynamic function

calls, (2) dynamic creation and deletion of object properties, and (3) dynamic code evaluation. How-

ever, the language lacks implicit JS behaviours such as prototype-based inheritance and implicit type

coercions. Regarding its structure, ECMA-SL contains three main syntactic categories, namely: Values,

Expressions, and Statements. In the following, we describe each of these categories.
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⟨expr⟩ ::= ⟨simple-expr⟩ | ⟨operator-expr⟩ | ⟨object-expr⟩ | ⟨call-expr⟩

⟨simple-expr⟩ ::= ⟨value⟩
| ⟨var⟩
| ’|’ ⟨var⟩ ’|’

⟨operator-expr⟩ ::= ⊖ ⟨expr⟩
| ⟨expr⟩ ⊕ ⟨expr⟩
| ⊗ (⟨expr⟩, ..., ⟨expr⟩)

⟨object-expr⟩ ::= ’{’ ⟨prop⟩ ’:’ ⟨expr⟩, ..., ⟨prop⟩ ’:’ ⟨expr⟩ ’}’
| ⟨expr⟩ . ⟨prop⟩
| ⟨expr⟩ ’in’ ⟨expr⟩

⟨call-expr⟩ ::= ⟨expr⟩ ’(’ ⟨expr⟩, ..., ⟨expr⟩ ’)’
| ⟨expr⟩ ’(’ ⟨expr⟩, ..., ⟨expr⟩ ’) catch ’ ⟨fname⟩

Figure 2.4: ECMA-SL Grammar - Expressions. The non-terminals ⟨value⟩, ⟨var⟩, ⟨prop⟩, and ⟨fname⟩ range over values,
variable names, property names, and function names, respectively.

Values Values in ECMA-SL closely resemble those found in JavaScript. They include numbers (divided

into integers and floats), booleans, strings, symbols, object locations, the special null and void values,

as well as value lists and tuples. Lists differ from tuples in that they can be dynamically extended and

shrunk during execution, while tuples maintain a constant size.

Expressions Figure 2.4 describes ECMA-SL expressions. They can be divided into four categories:

• Simple expressions: Includes value expressions and local/global variables accesses.

• Operator expressions: Includes unary, binary, and n-ary built-in operators.

• Object expressions: Includes object literals, property lookups, and the in operator used to check

if a property name exists within an object. Lookups can be categorized as either static, where

names are determined during compile time, or dynamic, which delay their evaluation until runtime.

• Call expressions: Includes function calls with and without a catch clause. This clause is used to

specify an error handler that executes when the function throws an error.

Statements Figure 2.5 describes the grammar of the ECMA-SL statements. In the language, state-

ments can be grouped into five different categories:

• Simple statements: Includes blocks, prints, and local/global variable assignments.

• Object statements: Includes static and dynamic property assignments, and property deletion. In

static property assignments, property names are known at static time. Contrarily, dynamic property

assignments evaluate property names at runtime.
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⟨stmt⟩ ::= ⟨simple-stmt⟩ | ⟨object-stmt⟩ | ⟨conditional-stmt⟩ | ⟨loop-stmt⟩ | ⟨ret-err-stmt⟩ |

⟨simple-stmt⟩ ::= ’{’ ⟨stmt⟩ ’;’ ... ’;’ ⟨stmt⟩ ’}’
| ’print’ ⟨expr⟩
| ⟨var⟩ ’:=’ ⟨expr⟩
| ’|’ ⟨var⟩ ’| :=’ ⟨expr⟩

⟨object-stmt⟩ ::= ⟨expr⟩ ’.’ ⟨var⟩ ’:=’ ⟨expr⟩
| ⟨expr⟩ ’[’ ⟨expr⟩ ’]’ ’:=’ ⟨expr⟩
| ’delete’ ⟨expr⟩ ’[’ ⟨expr⟩ ’]’

⟨conditional-stmt⟩ ::= ’if (’ ⟨expr⟩ ’) {’ ⟨stmt⟩ ’} elif (’ ⟨expr⟩ ’) ’{’ ⟨stmt⟩ ’}’ ... ’else {’ ⟨stmt⟩ ’}’
| ’switch (’ ⟨expr⟩ ’) { case’ ⟨expr⟩ ’:’ ⟨stmt⟩ ... ’default:’ ⟨stmt⟩ ’}’
| ’match’ ⟨expr⟩ ’with |’ ⟨pattern⟩ ’->’ ⟨stmt⟩ ’|’ ... ’| default ->’ ⟨stmt⟩

⟨loop-stmt⟩ ::= ’while (’ ⟨expr⟩ ’) {’ ⟨stmt⟩ ’}’
| ’repeat {’ ⟨stmt⟩ ’} until’ ⟨expr⟩
| ’foreach (’ ⟨var⟩ ’:’ ⟨expr⟩ ’) {’ ⟨stmt⟩ ’}’

⟨ret-error-stmt⟩ ::= ’return’ ⟨expr⟩
| ’throw’ ⟨expr⟩
| ’fail’ ⟨expr⟩

⟨pattern⟩ ::= ’{’ ⟨pattern-pair⟩, ..., ⟨pattern-pair⟩ ’}’

⟨pattern-pair⟩ ::= ⟨prop⟩ ’:’ ⟨value⟩
| ⟨prop⟩ ’:’ ⟨var⟩
| ⟨prop⟩ ’: None’

Figure 2.5: ECMA-SL Grammar - Statements. The non-terminals ⟨value⟩, ⟨var⟩ and ⟨prop⟩ range over values, variable
names and property names, respectively.

• Conditional statements: Includes the if-then-else, switch, and the match-with statements.

The latter is similar to a switch statement, but it is used to match an object against a pattern. For

example, to successfully match an object against the { foo: x, bar: "literal", baz: None }

pattern, the object must have an arbitrary foo property (that will be assigned to variable x), a bar

property with the value "literal", and it must not contain the baz property. Furthermore, note

that the object may contain other properties not explicitly declared within the pattern.

• Loop statements: Includes the while, repeat and foreach statements. The repeat statement

behaves similarly to a while, but with its conditional test being done at the end of the looped block.

On the other hand, foreach statements are used to iterate through a list of elements.

• Return and error statements: Includes the return, throw, and fail statements. The difference

between a throw and a fail is that, while the former returns the execution to the closest error

handler, the latter simply terminates the program with the error message specified.
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Figure 2.6: Execution pipeline of the ECMA-SL project.

2.2.3 ECMA-SL Execution Pipeline

Figure 2.6 illustrates the pipeline for executing a JavaScript program using the ECMARef interpreter.

Besides the code of the ECMARef interpreter itself, the pipeline it composed of three main components:

1. JS2ECMASL: Models the JavaScript program in the ECMA-SL language.

2. ECMASL2Core: Compiles the ECMA-SL program to Core ECMA-SL. Core ECMA-SL (CESL)

consists of a simplified version of the ECMA-SL language, and it is described below.

3. ECMA-SL Interpreter: Interprets a Core ECMA-SL program.

Consider a input.js file, containing the program with a single variable initialization var x = 10. In

the following, we analyse each of the components by the order in which they appear within the execution

pipeline. We refer to this example to illustrate how they work.

JS2ECMASL The JS2ECMASL tool is responsible for modelling a JavaScript program in ECMA-SL.

Consider the running example described above. Listing 2.1 depicts the process of modelling this JS pro-

gram, which consists of generating an ECMA-SL representation of the program (line 18) and then eval-

uating it using the standard-compliant JS interpreter (line 19).

Representing the JavaScript input in ECMA-SL is accomplished in two steps. First, JS2ECMASL re-

sorts to Esprima [19], a standard-compliant JavaScript parser written in JavaScript, to generate the

Abstract Syntactic Tree (AST) of the input program. Then, JS2ECMASL creates the ESL function

Build AST() that reconstructs the program’s AST in the memory of ECMA-SL.
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1 function Build_AST () {

2 __n0 := { };

3 __n0["type"] := "Program";

4 ...

5 __n2 := { };

6 __n2["type"] := "VariableDeclaration";

7 ...

8 __n1 := [ __n2 ];

9 __n0["body"] := __n1;

10 return __n0

11 }

13 function JS_Interpreter_Program(ast) {

14 ...

15 }

16

17 function main() {

18 ast := Build_AST ();

19 retval := JS_Interpreter_Program(ast);

20 return retval

21 }

Listing 2.1: Compilation of a JavaScript program into ECMA-SL.

ECMASL2Core After generating the ECMA-SL program with the JS2ECMASL tool, we need to exe-

cute it. However, programs written in ECMA-SL are not directly interpreted as they still contain some

constructs that can be further simplified. Instead, they are compiled to a simpler language, referred to

as Core ECMA-SL. For example, the repeat and foreach loops can both be expressed as while state-

ments, while the match-with construct can be compiled to a sequence of if-then-else statements.

1 match s with

2 | { type: "Program", b: body } -> {

3

4 }

1 _v1 := (s["type"] = "Program");

2 _v2 := ("body" in s);

3 if (true && _v1 && _v2) {

4 b := s["body"];

5 }

Listing 2.2: Compilation of a match-with statement into an if-then-else statement.

Listing 2.2 illustrates the compilation of a match-with statement (left snippet), written in ECMA-SL,

into its equivalent if-then-else counterpart (right snippet), in Core ECMA-SL. In the left snippet, we

match variable s against a pattern with two properties: type, expected to have the value "Program",

and body, which must exist so that it can be assigned to variable b. Similarly, on the right code snippet,

there are two preconditions to enter the if statement. First, s["type"] needs to evaluate to "Program"

(variable _v1, in line 1). Second the body property must exist (variable _v2, in line 2), so that it can be

assigned to variable b within the body of the if statement (line 4).

Core ECMA-SL differs from ECMA-SL in several aspects. Firstly, expressions can only interact with

the variable store. Additionally, the language does not support global variables, and only features a

single conditional statement (if-then-else) and a single loop statement (while). Finally, Core ECMA-

SL does not incorporate any error handling mechanisms.

The ECMA-SL compiler is also responsible for resolving all imports within ESL files. This means that

the resulting program ("program.cesl", according to Figure 2.6) is self-contained, including both the

code that will be interpreted as well as the code of the interpreter itself. This makes it easier to execute

the program, as all necessary code exists in the same file.
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(a) The ECMAScript pseudocode.

1 function GetV(V, P) {

2 /* Assert: IsPropertyKey(P) is true. */

3 assert( IsPropertyKey(P) = true );

4 /* Let O be ToObject(V). */

5 O := ToObject(V);

6 /* ReturnIfAbrupt(O). */

7 @ReturnIfAbrupt(O);

8 /* Return O.[[Get]](P, V). */

9 return {O.Get}(O, P, V)

10 };

(b) The ECMARef implementation.

Figure 2.7: Comparison between the ECMAScript’s pseudocode for the GetV(V, P) function and its implementa-
tion in the ECMARef6 interpreter.

ECMA-SL Interpreter After constructing the final Core ECMA-SL file, the ECMA-SL interpreter is used

to execute the program. The interpreter is written in OCaml [20], an industrial programming language

focused on expressiveness and safety. It features two modes of operation: (1) silent mode, which

only shows the final output of the program; and (2) verbose mode, which displays all trace information

generated during the program’s execution.

ECMARef As previously mentioned, the ECMARef interpreter is specifically designed to adhere, as

much as possible, to the text of the ES standard. Moreover, the interpreter supports all built-in objects

of the standard, and it is tested against Test262 [5], the official JavaScript conformance test suite.

To show the similarities between the reference interpreter and the pseudocode of the ES specifica-

tion, consider the example of Figure 2.7. This example presents a side-by-side comparison between

the pseudocode of the GetV(V, P) function,2 responsible for retrieving the value of a specific property

within a JS object, and its corresponding implementation in the reference interpreter. By analysing the

figure, it becomes clear that the interpreter meticulously adheres to the standard, following it line-by-line.

Each instruction in the interpreter is preceded by a comment that references the corresponding step in

the standard. Take, for instance, line 2 of the standard (Let O be ToObject(V)), which is identical to

line 5 of the interpreter (O := ToObject(V)), albeit expressed in ECMA-SL instead of plain text.

2.3 ECMA-SL Limitations

In Section 2.2.1, we discussed the main advantages of the ECMARef interpreter over the official ES stan-

dard. Given these advantages, one might question if it is possible to seamlessly replace the official stan-

dard with its ESL implementation. Unfortunately, the rapid growth in size and complexity of the standard

makes it difficult to keep the implementation up to date with the newer versions of the JS specification.

In fact, the last ES version supported by the ECMA-SL project is the 6th (ES6), released in 2015.
2GetV(V, P) function - https://262.ecma-international.org/6.0/#sec-getv
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There are many reasons why extending the ECMARef interpreters is such a laborious task. Firstly,

the standard itself is a complex specification. The main problem, however, lies in the difficulty of speci-

fying the standard using ECMA-SL, due to several inherent limitations of the language, such as:

• No Separate Compilation: Separate compilation is a technique that allows developers to divide

large projects into smaller, more manageable pieces called modules. Modules are compiled in-

dependently and subsequently linked together to create the final program. Alas, the ECMA-SL

compiler lacks these encapsulation mechanisms. One immediate consequence is that ECMA-SL

developers must manually guarantee that function names are unique across all program files.

• No Easy Syntactic Checks: There are several easy syntactic checks that the ECMA-SL compiler

does not perform. These checks are valuable in helping developers identify bugs that might other-

wise be hidden until execution, where their detection becomes more challenging. They include but

are not limited to: (1) detecting naming conflicts, including duplicated function names, duplicated

function parameters, and duplicated object properties; (2) detecting calls to undefined functions or

accesses to unknown variables; and (3) detecting control paths that do not terminate with a return

or throw instruction, which is a mandatory requirement in the language.

• No Static Typing: Similarly to JS, ECMA-SL is an untyped language. Untyped languages have

several disadvantages compared to statically typed languages: (1) they pose a greater challenge

in the detection of type-related bugs, as these issues only become apparent during runtime; and

(2) maintaining an untyped program is significantly more difficult, mainly due to readability is-

sues stemming from the lack of explicit type annotations. Conversely, typed languages promote a

design-by-contract approach, where function signatures serve as a clear interface for their usage.

With our research, we aim to address the last two limitations. However, there are some challenges

associated with this endeavour. While extending the ECMA-SL compiler with syntactic checks is a

relatively straightforward task, the ECMA-SL language is a hard target for standard type systems, due

to being a highly dynamic language. Multiple research projects have attempted to solve the issues

associated with statically typing dynamic languages. In the following, we will be analysing some of these

systems for JavaScript-like languages and the specific problems they can effectively address.
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The research literature covers a large variety of analysis techniques for the JavaScript language.

They include, among others, type systems [21,22,23], abstract interpreters [24,25], point-to analysis [26,

27], program logics [28,29], operational semantics [8,13,30,31], and information flow [32,33,34,35].

In this chapter, we focus on the most important operational semantics suggested for JavaScript

(Section 3.1) as well as the key type systems proposed for the language (Section 3.2). Even though we

plan to type ECMA-SL, both languages are very similar in that ECMA-SL was designed to be as close

as possible to the meta-language used in the JavaScript specification. Consequently, the features and

challenges associated with typing ECMA-SL are identical to those of JavaScript.

3.1 Operational Semantics for JavaScript

The complexity of JavaScript has led to the development of multiple academic reference implementations

for the language. While these implementations may differ in their development methodologies, supported

versions, and evaluation methods, they have been gradually converging to a better alignment with the
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ES standard. They serve multiple purposes, such as acting as oracles for assessing the behaviour of

industrial JS engines [8, 13], facilitating the design of static analysis tools [14, 15, 16, 17], and detecting

problems within the standard [6, 7], as well as proving its meta-properties. Section 2.2.1 provides a

comprehensive description of the rationale behind the ECMA-SL project by elaborating on the general

purposes behind reference implementations and introducing others that are specific to the project itself.

Reference interpreters thus play an increasingly significant role in the management and engineering

of the ES standard. One notable example is the JISET interpreter [6], which served as the foundation

for tools such as JEST [18] for concurrent testing and JSTAR [7] for detecting type errors within the

standard. In particular, JSTAR has recently been integrated into the tooling infrastructure of the official

ECMAScript repository. However, all proposed reference implementations have significant limitations,

including: (1) limited coverage of the standard; (2) lack of modifiability, which makes it challenging to

extend them to newer versions of the standard; and (3) lack of efficiency, which can render it difficult to

use these implementations as the foundation for program analysis.

Reference
Interpreter

ES
Version

Implementation
Language EXE LBL

#Passed
Tests

#Total
Tests

Success
Rate

S5 [36] 5 S5 Core Language ✓ 8157 12074 67.56%

JSRef [8] 5 Coq + OCaml ✓ ✓ 3749 12074 31.05%

KJS [13] 5 K Framework ✓ 2782 12074 23.04%

JSExplain [14] 5 OCaml (subset) ✓ ✓ >5000 12074 41.41%

ECMARef5 [1] 5 ECMA-SL ✓ ✓ 12026 12074 99.60%

ECMARef6 [2] 6 ECMA-SL ✓ ✓ 19009 21662 87.75%

JISET [6] 10 IRES ✓ ✓ 16355 35990 45.44%

Table 3.1: The most significant reference implementations for JavaScript. The EXE column identifies executable imple-
mentations, and the LBL column identifies that an implementation followed the standard line-by-line. These imple-
mentations were tested against the Test262 conformance test suite [5].

Table 3.1 summarizes the key reference implementations of JavaScript. As the table shows, recent

implementations tend to closely adhere to the standard line-by-line. This approach has proven to be

effective and widely accepted in establishing trust in reference implementations. Additionally, they often

define their own Domain-Specific Languages (DSLs) specifically tailored to the standard’s specification,

instead of relying on general-purpose programming specification languages. Lastly, the table highlights

that the ESL reference interpreters, namely ECMARef5 and ECMARef6, are currently the most complete

academic reference implementations of the standard. They respectively pass 99.60% and 87.75% of

the tests from the Test262 conformance test suite [5], which is a considerably higher success rate than

that achieved by all other implementations. In the following, we briefly describe these implementations

as well as some other important JS formalizations. They are presented in chronological order.
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Maffeis et al. (2008) [30] were the first to develop an operational semantics for JavaScript, specif-

ically targeting the third version of its standard (ES3). These semantics accurately modelled the be-

haviour of JavaScript according to the standard, and served as a foundational tool for analysing security

aspects of the language in web applications and mashups [37,38]. Despite the complexity of their work,

the authors presented their semantics in a non-mechanized form, conveyed through an extensive textual

document with a large number of semantic rules written in their own custom-made language.

Guha et al. (2010) [31] introduced λJS, a core lambda calculus that captures essential features of

ES3, such as extensible objects, prototype-based inheritance, and dynamic function calls, while exclud-

ing the eval and certain built-in libraries. The system works by translating ES3 programs into simple

λJS expressions, which are subsequently evaluated by an interpreter written in Racket. Furthermore, it

incorporates a type system for checking a simple confinement property of λJS programs. The authors

verified the correctness of their semantics using the Mozilla JS test suite, ensuring consistency with

mainstream implementations like SpiderMonkey,1 V8,2 and Rhino.3

Politz et al. (2012) [36] extended λJS from the third version of the standard (ES3) to the fifth (ES5).

This reference implementation, referred to as S5, introduced the semantics for accessors (getters and

setters) and the eval operator. The project included a de-sugaring translation from ES5 programs to the

S5 core language and a reference interpreter for S5 written in Racket. S5 supports about 60% of the

ES5 standard library objects and was tested against Test262, passing about 70% of its tests. Many of

the unsuccessful tests derived from challenges in implementing certain built-in objects and issues with

non-strict code, suggesting some inconsistencies with the ES standard.

Bodin et al. (2014) [8] introduced JSCert, the first mechanized specification of ES semantics for the

fifth version of the standard (ES5). This formalization was achieved using the Coq proof assistant, and

aimed to closely align with the ES standard by mapping its every line into JSCert rules. Additionally, the

authors developed JSRef, a reference interpreter for JavaScript also written in Coq and subsequently

transformed into executable OCaml code for testing against Test262. JSCert proved effective in detect-

ing bugs within the JavaScript standard, in its official conformance test suite and browser implementa-

tions. To assess the level of trust in the JSCert specification, its formal rules were placed side-by-side

with the text of the standard, and their closeness ”eyeballed”. The ECMA-SL project follows a refined

version of this approach, where we instead quantify the similarities between the official standard and an

HTML version of our reference interpreter.

Park et al. (2015) [13] introduced KJS, a robust formalization of ECMAScript5 using the K frame-

work.4 KJS aimed to provide a comprehensive definition of the language’s syntax and semantics, gen-

erating parsers, interpreters, and formal analysis tools. It was able to pass all core language tests from
1SpiderMonkey - https://spidermonkey.dev/
2V8 - https://v8.dev/
3Rhino - https://mozilla.github.io/rhino/
4K Framework - https://kframework.org/
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Test262, which is challenging even for industrial JS engines. While the authors fully defined the core

semantics of the language, they considered its built-in libraries to be outside the project’s scope.

Charguéraud et al. (2018) [14] proposed a reference interpreter for JS named JSExplain, designed

to closely adhere to the language specification. The interpreter was developed in a purely functional

style using a subset of OCaml specifically designed for that purpose, and it successfully passed over

5000 tests from the Test262 test suite. The main purpose of JSExplain was to assist developers in

debugging JS code. This was done by enabling step-by-step execution of JS programs, whilst allowing

developers to simultaneously analyse the state of the program and the internal state of the interpreter.

Park et al. (2020) [6] introduced JISET, an Intermediate Representation (IR)-based toolchain for

extracting JavaScript semantics from its HTML specification. This toolchain automatically generates

parsers and AST-IR translators from the JS specification, allowing for a partial implementation of the

standard. Note that the extracted interpreter does not work out-of-the-box. The authors reported that

they needed to manually fix approximately 5% of the code generated. The JISET execution engine

was tested against Test262, passing 18,064 core language tests out of 35,990 applicable tests. The

low success rate derives from the fact that the interpreter does not support most of the language built-

in libraries, such as the RegExp, JSON, and String, mainly because of their inherent implementation

complexity. One of the main advantages of the ECMA-SL project over JISET is the comprehensive

coverage of JS built-in functions, which results in a significantly higher test success rate.

3.2 Type Systems for JavaScript

Thiemann (2005) [21] proposed the first type system for a subset of the JavaScript language. While this

system considered some dynamic aspects of JS, such as extensible objects and dynamic function calls,

it failed to account for other important features like JavaScript’s prototype-based inheritance mechanism

and implicit type coercions. The soundness of the system is achieved by tracking all type conversions

and flagging those that could result in dangerous or unexpected behaviour. Type convertibility can be

adjusted to be more or less conservative, depending on the needs of the analysis.

Anderson et al. (2005) [22] proposed JS0, a flow-sensitive type system for a subset of JavaScript

focused on runtime mutability for objects and methods. The system allows objects to evolve in a con-

trolled manner by labelling their fields based on a notion of their definite presence or potential absence.

Another improvement over Thiemann’s work is the support for recursive types. Additionally, the authors

defined a type inference algorithm capable of using well-formed constraints to annotate an untyped JS0

program, and they also included a sound proof for their algorithm.

Jensen et al. (2009) [39] presented the first type system capable of inferring detailed and sound

type information for a JavaScript program. The system uses abstract interpretation and it is designed

to support the entire language defined in the ES standard, including its implicit behaviours and all built-
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in libraries. Furthermore, the authors describe how to reason about unary and binary operations with

implicit type coercions by utilizing a complex lattice of safety types.

TypeScript (TS) (2012) [40] is a strict syntactical superset of JavaScript that adds optional static

typing to the language. It is designed to be compiled down to plain JavaScript, so it can run in any

JS environment. To minimize adoption costs, the language uses gradual typing, which allows parts of

the system to be statically checked while others are left unchecked using the special type any. This is

one of the many reasons that make TypeScript unsound by design.

Biermann et al. (2014) [41] attempted to capture the essence of TypeScript by providing a precise

definition of the system on a core subset of the language. Their mathematical formalization helped to

clarify ambiguities in the language documentation, leading to the discovery of inconsistencies and errors

in both the language specification and its compiler. Furthermore, this definition allowed for a distinction

between the sound and unsound aspects of TypeScript.

Choi et al. (2015) [42] proposed SJS, a static type system for a significant subset of JavaScript.

Their goal was to allow efficient Ahead-of-Time (AOT) compilation of JS programs by ensuring that

objects have a known layout at allocation time. One of the advantages of a fixed object layout is that

it allows the compiler to translate attribute accesses into direct memory accesses. However, ensuring

a fixed object layout while supporting prototype-based inheritance, structural subtyping, and method

updates has significant challenges, primarily due to the JS semantics regarding attribute updates.

Chandra et al. (2016) [43] expanded the previous work to contemplate abstract and recursive types,

as well as first-class methods. Furthermore, the authors developed a sound type inference algorithm for

the formulated problem. The algorithm employs a combination of lower and upper bound propagation

to infer types and discover type errors in the entire program. The system supports additional features,

such as polymorphic arrays, operator overloading, and intersection types.

Language Features TS1 TS2 TS3 TS4 TS5 TS6

Dynamic Function Calls ✓ ✓ ✓ ✓ ✓ ✓

Extensible Objects ✓ ✓ ✓ ✓

Implicit Type Coercions ✓ ✓ ✓ ✓ ✓

Prototype-Based Inheritance ✓ ✓ ✓ ✓

Table 3.2: Language features supported by type systems for JavaScript. TS1: Thiemann [21]; TS2: Anderson et al. [22];
TS3: Jensen et al. [39]; TS4: Bierman et al. [41]; TS5: Choi et al. [42]; TS6: Chandra et al. [43]

Table 3.2 identifies the key language features of JavaScript and shows which of the previously pro-

posed systems can handle them. As we can see, most of the systems support the most important JS

features. In particular, dynamic function calls, a fundamental concept in JavaScript, are supported by

all of them. Additionally, both Thiemann [21] and Anderson et at. [22] deliberately avoided prototype-
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based inheritance, which is a complex mechanism to model. Finally, the proposals of Choi et al. [42] and

Chandra et al. [43] revolve around a fixed object layout, thus not offering support for extensible objects.

Type System Features TS1 TS2 TS3 TS4 TS5 TS6

First Class Methods ✓ ✓ ✓ ✓ ✓

Subtyping ✓ ✓ ✓ ✓ ✓ ✓

Type Inference ✓ ✓ ✓ ✓ ✓

Type Recursion ✓ ✓ ✓

Flow Sensitivity ✓ ✓ ✓

Union Types ✓

Parametric Polymorphism ✓

Table 3.3: Features of the type systems for JavaScript. TS1: Thiemann [21]; TS2: Anderson et al. [22]; TS3: Jensen et
al. [39]; TS4: Bierman et al. [41]; TS5: Choi et al. [42]; TS6: Chandra et al. [43]

Table 3.3 enumerates the type system features that are particularly relevant to our project and shows

which of the previous type systems include them. First-class methods and subtyping are incorporated

by most of the systems, reflecting their significance within the JavaScript language. Additionally, except

for Thiemann’s proposal [21], all type systems contain some level of type inference, with the system

proposed bsssy Anderson et al. [22] being entirely focused on it. Features like type recursion and flow

sensitivity start to introduce problems, making it difficult to ensure soundness and thus being supported

in fewer type systems. Bierman et al. [41] adopted a different approach by intentionally developing an

unsound variant of the system to include all the features enumerated above.

Evaluation TS1 TS2 TS3 TS4 TS5 TS6

Implemented? ✓ ✓ ✓ ✓ ✓

Benchmarked? ✓ ✓ ✓ ✓

Sound? ✓ ✓ ✓ ✓ ✓

Table 3.4: Evaluation of the type systems for JavaScript. TS1: Thiemann [21]; TS2: Anderson et al. [22]; TS3: Jensen et
al. [39]; TS4: Bierman et al. [41]; TS5: Choi et al. [42]; TS6: Chandra et al. [43]

Table 3.4 describes the evaluation of the previous systems. Except from Bierman et al. [41], all

systems were designed with soundness as a requirement. Additionally, most of these systems were

also implemented and benchmarked. Jensen et al. [39] used Google V8 benchmark suite,5 as well as

the four most complete SunSpider benchmarks.6 Choi et al. [42] and Chandra et al. [43] made use of the

Octane benchmark suite.7 There have also been studies to compare the performance of TS and JS.8

5V8 benchmark suite - https://pages.cpsc.ucalgary.ca/~crwth/js/v8/benchmarks/run.html
6SunSpider - http://proofcafe.org/jsx-bench/js/sunspider.html
7Octane benchmark suite - https://developers.google.com/octane/
8Typescript VS Javascript (2023) - https://programming-language-benchmarks.vercel.app/typescript-vs-javascript
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3.2.1 Most Relevant Type Systems

In this section, we analyse the three type systems that are most relevant to our work. To illustrate them,

we will refer to the following example: consider real numbers in a two-dimensional plane (R2) and the

method addR2(n) that receives the R2 number n and adds it to the R2 caller object. Listing 3.1 encodes

this description in the JavaScript language.

1 function R2(x, y) {

2 this.x = x;

3 this.y = y;

4 this.add = addR2;

5 return this;

6 }

8 function addR2(n) {

9 this.x = this.x + n.x;

10 this.y = this.y + n.y;

11 return this;

12 }

14 let n1 = new R2(1, 2);

15 let n2 = new R2(2, 3);

16 n1.add(n2);

Listing 3.1: Real numbers in a two-dimensional plane (R2) defined in JavaScript.

The type systems detailed in this section are the proposals of Thiemann [21], Anderson et al. [22],

and Bierman et al. [41]. For each system, we begin with a brief overview, followed by a more compre-

hensive description of its syntax. After that, we encode the previous example according to the rules of

the system, and we enumerate some of its limitations.

Towards a Type System for Analyzing JavaScript Programs Thiemann [21] was the first to propose

a type system for a subset of JavaScript, offering support for first-class methods, extensible objects,

dynamic function calls, and subtyping. The system is designed for a subset of JavaScript, which includes

the main expressions of the language, such as literals, variables, property references, and function

expressions, as well as the most traditional conditional and loop statements.

The type system supports numbers, strings, and booleans, as well as the undefined and null

primitive types. Object types are written as:

Obj(τ)(p1 : τ1 ... pn : τn)(τ
′),

where τ describes the wrapper’s type, τ1 ... τn specify the types of properties p1 ... pn, and τ ′

represents the default property type. The wrapper’s type can be used to indicate that an object serves

as a wrapper for a primitive type, allowing it to be used as if it was that primitive type. Additionally, default

property types specify the type of all properties not explicitly declared in the object’s type. For example,

the object { x: 2, y: "foo" } has type Obj(undefined)(x: number, y: string)(undefined).

On the other hand, function types are written as:

Func(this : τ ; (x1 : τ1 ... xn : τn) → τ ′),

where τ describes the type of the caller referenced by the this property, τ1 ... τn specify the types

of parameters x1 ... xn, and τ ′ represents the function’s return type. As an example, the type of a
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function that receives a number n and returns a boolean (e.g., a function that checks if a number is

positive) is written as Func(this: undefined ; (n: number) → boolean).

1 function R2(x, y) {

2 this.x = x;

3 this.y = y;

4 this.add = addR2;

5 return this

6 }

8 function addR2(n) {

9 this.x = this.x + n.x;

10 this.y = this.y + n.y;

11 return this

12 }

14 n1 = new R2(1, 2);

15 n2 = new R2(2, 3);

16 n1.add(n2)

Listing 3.2: Real numbers in a two-dimensional plane (R2) defined in Thiemann’s type system [21].

Consider the running example of Listing 3.1 described at the beginning of this section. Listing 3.2

encodes this example in Thiemann’s type system. The constructor function R2(x, y) for numbers in R2

receives two numbers and returns an object of type τ1, defined as:

Type of R2 objects (τ1): Obj(undefined)(x: number, y: number, addR2: τ2)(undefined)

Type of the addR2(n) function (τ2): Func(this: τ3, (n: τ3) → τ3)

Type of simpler R2 objects (τ3): Obj(undefined)(x: number, y: number)(undefined)

The object returned by R2(x, y) contains two fields (lines 2 and 3) and the method addR2(n) (line 4).

Regarding the method’s type (τ2), we would expect it to be defined as Func(this: τ1, (n: τ1) → τ1),

since addR2(n) is used as a method of R2 objects (represented by the type τ1), and it also receives and

returns another R2 object. However, because this system does not support recursive type declarations,

we need to define τ2 with respect to a simpler object type τ3, such that τ3 does not contain the types τ1

and τ2 in its definition. Despite this, we can still provide an object of type τ1 to the addR2(n) function

because τ1 is a subtype of τ3. This is the case because the system supports horizontal subtyping. This

subtyping relation determines that an object type τ ′ is a subtype of τ if it contains all the fields of τ (with

their respective types), meaning that it can be used wherever a τ object is required.

This type system has several limitations. One of them, as demonstrated by the previous example,

is the lack of support for recursive type declarations. While they were not required in this particular

instance, if the addR2(n) function was defined recursively, the system would not be able to type it.

Moreover, the system does neither support prototype-base inheritance nor implicit type coercions, both

of which are fundamental features of the JavaScript language.

Towards Type Inference for JavaScript The authors of [22] proposed a type system for a small frag-

ment of the JavaScript language, referred to as JS0. In addition to first-class methods and subtyping, the

system supports recursive type declarations, and it is also flow-sensitive, meaning that object types can

evolve throughout the execution of the program. Flow sensitivity is achieved by classifying object prop-

erties as potential or definite, a concept that is explained below. Furthermore, the authors presented a

type inference algorithm and proved its soundness.
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In this type system, object types are written as a map between properties and their respective types:

{p1 : (τ1, ψ1) ... pn : (τn, ψn)} or µα.{p1 : (τ1, ψ1) ... pn : (τn, ψn)},

where (τi, ψi) specifies the type and potential/definite classification of property pi, respectively. When

objects are instantiated, all their fields are marked as potential (◦), meaning that their type can change

but they cannot be accessed. Once initialized, fields become definite (•), meaning that their are acces-

sible but their type is permanently fixed throughout the rest of the program’s execution. This constitutes

one possible approach for handling mutable objects in a sound type system.

The system allows the definition of recursive types through the use of the µ-binder. Consider the type

for a node of a circular linked list9 of numbers. This object requires a numeric value field and reference

to the next element in the list. We can write this type as µα.{ value: (number, •), next: (α, •) },

where α represents the type of the node itself.

A function type may have the following two forms:

O × τ → τ ′ or µα.(O × τ → τ ′),

where O specifies the type of the receiver, τ the type of the parameters, and τ ′ the function’s return type.

In JS0, all functions must be associated with an object type; hence, the receiver’s type τ refers to the

type of the object bound by the this keyword. Furthermore, similarly to object types, recursive function

are declared by employing the µ-binder.

1 function R2(x, y): (τ1 × (number , number) → τ2) {

2 this.x = x;

3 this.y = y;

4 this.add = addR2;

5 this

6 }

7

8 function addR2(n): (τ2 × (τ2) → τ2) {

9 this.x = this.x + n.x;

10 this.y = this.y + n.y;

11 this

12 }

14 n1 = new R2(1, 2);

15 n2 = new R2(2, 3);

16 n1.add(n2)

Listing 3.3: Real numbers in a two-dimensional plane (R2) defined in JS0 [22].

Listing 3.3 encodes the running example of Listing 3.1 in JS0. The function R2(x, y) is the con-

structor for R2 numbers. Because the this keyword refers to the object being created, the type of the

function’s receiver τ1 is the type that represents R2 objects with all fields marked as potential, indicating

that they have not yet been initialized. Therefore, we can express τ1 as:

τ1 = { x: (number, ◦), y: (number, ◦), addR2: ((τ2 × (τ2) → τ2), ◦) }.
9Circular linked list - a type of linked list in which the last node points back to the first node, forming a loop.
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By the end of the constructor (line 5), all object fields have been initialized. Consequently, the return

type of the constructor function (τ2) is identical to τ1, except that all fields are now classified as definite:

τ2 = µα.{ x: (number, •), y: (number, •), addR2: ((α × (α) → α), •) }.

Note that the definition of the type for the addR2(n) function always references τ2. This is the case

because the function requires two fully constructed R2 objects to sum. Consequently, the type τ2 shows

up in its own definition, as τ2 objects have a method that operates on τ2 objects. In order to define the

recursive type τ2, we need to use the µ-binder operator.

JS0 consists of an improvement over Thiemann’s work [21]. Nonetheless, the system is still not

perfect, as it only supports a very restricted subset of JavaScript. Furthermore, the approach for handling

mutable object properties remains somewhat limited, as their types become permanently fixed after

being initialized. In particular, this limitation prevents updates to property types in uniquely referenced

objects. Such operations could be allowed without compromising the soundness of the system.

Understanding TypeScript The authors of [41] aimed to capture the essence of TypeScript by giving a

precise definition of its type system on a core subset of the language, denoted Featherweight TypeScript

(FTS). This subset was used to define two separate calculi: (1) a ”safe” FTS fragment denoted as

safeFTS, which was proven to be sound; and (2) an unsound extension of safeFTS, called prodFTS, that

better resembles the production version of TypeScript.

In FTS, types fall into one of three categories: (1) primitive types, such as numbers, strings and

booleans; (2) the distinguished type any, used to represent unknown types; and (3) object types. Object

types are divided into literal types and interface types, respectively written as:

{ p1: τ1 ... pn: τn } | interface I { p1: τ1 ... pn: τn },

where τi specifies the type of property pi. Interface types are used to declare an alias I to an object

literal type, and can also be used to specify subtyping relationships by extending other interface types.

Function types are defined as object literal types with a special call signature in their definition:

{ p1: τ1 ... pn: τn, (xi: ψi ... xm: ψm): ψ′ },

where ψ1 ... ψm specify the types of parameters x1 ... xm, and ψ′ defines the function’s return type.

This typing approach for functions resembles the real specification of JavaScript, where functions are

represented by callable objects, often referred to as function objects.

Listing 3.4 illustrates the proposed type system by encoding the initial example of Listing 3.1 in FTS.

In this snippet, R2 numbers are typed using the I_R2 interface, declared as:

interface I_R2 { x: number , y: number , addR2: { this: I_R2 , (n: I_R2): I_R2 } }
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1 function R2(x: number , y: number ): I_R2 {

2 return { x: x, y: y, addR2: addR2 };

3 }

4

5 function addR2(n: I_R2): I_R2 {

6 this.x = this.x + n.x;

7 this.y = this.y + n.y;

8 return this;

9 }

11 n1 = R2(1, 2);

12 n2 = R2(2, 3);

13 n1.addR2(n2);

Listing 3.4: Real numbers in a two-dimensional plane (R2) defined in Featherweight TypeScript [41].

where x and y represent the numeric properties that store both values of R2 numbers, and addR2 corre-

sponds to the method for adding R2 numbers. The type of addR2 is defined as an object literal type with

two properties: (1) the special identifier this of type I_R2, which allows the method to internally access

the properties of the caller object, such as x and y; and (2) the call signature (n: I_R2): I_R2, which

allows addR2 to be called as a method that receives and returns an I_R2 object.

Bierman et al. [41] showed that it extremely hard to develop a safe type system for JavaScript without

making the language considerably less expressive. In particular, there are some important JS patterns

that cannot be typed without unsafe typing features, such as the covariance of property types (despite

their mutability) and parameter types (in addition to the contravariance that is always safe). ECMA-

SL is similar to JavaScript in terms of having a large existing codebase that cannot be broken by the

introduction of type annotations. However, one of the requirements for our type system is soundness,

which prevents us from allowing unsafe typing features to minimize disruptions to the existing codebase.

We further explore these challenges and associated design choices in Section 4.1.
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In this chapter, we introduce Typed ECMA-SL (TESL), an extension of the ECMA-SL language with

types. In Section 4.1, we start by outlining the challenges associated with designing a static type system

for TESL, as well as explaining the design choices made to accommodate those challenges. Then,

in Section 4.2, we present the simplified formal model for Typed ECMA-SL, including its syntax and

typing rules. Lastly, in Section 4.3, we describe the operational semantics for Typed ECMA-SL, and in

Section 4.4, we prove the soundness of our type system with respect to the described semantics.
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4.1 Challenges and Design Choices

In this section, we describe the most significant challenges encountered during the design of the Typed

ECMA-SL language and its associated type system. After that, we discuss the most significant design

choices made during the development of Typed ECMA-SL.

4.1.1 Challenges

As mentioned in Section 2.3, there are multiple challenges associated with statically typing highly dy-

namic languages, such as ECMA-SL. Additionally, the context in which ECMA-SL is currently being

employed introduces further obstacles that should be taken into consideration. In the following, we

describe the key challenges encountered in the development of the type system.

[C1] Large Existing Codebase One of the main challenges of extending ECMA-SL with types revolves

around the existence of a large codebase written in ESL. Currently, we maintain two reference inter-

preters, one for the 5th version and another for the 6th version of the ES standard. Both interpreters

comprise tens of thousands of lines of code. Consequently, any changes to the ECMA-SL language

must be done in a way that minimizes disruption to these existing programs.

[C2] Pervasive Use of Union Types The ECMA-SL language is primarily used in the development of

JS reference interpreters. In these interpreters, it is common to have variables that can hold multiple

types of data. From a TypeScript standpoint, we would type these variables with union types.

type JSVal_t = number | string | boolean | JSObject_t | undefined | ...

Listing 4.1: Type declaration for JavaScript values.

Listing 4.1 illustrates the type declaration for JavaScript values, JSVal_t, written in TS. JavaScript

supports multiple types of values, including integers and strings. To declare the type of a JS value,

TESL needs to support union types. Nevertheless, union types are difficult to implement and introduce

complexity to the language, as: (1) they require complex mechanisms to be simplified; and (2) they are

potential sources of unsoundness. We delve into the details of union types further in the document.

[C3] Object Mutability + Aliasing One of the most significant challenges in statically typing highly

dynamic languages pertains to the safe combination of object mutability and aliasing. Object mutability

denotes the object’s ability to change its type during the program’s execution. This ability is useful, for

example, to allow for type refinement. Type refinement refers to the process of converting a type into

one of its subtypes based on some operation performed by the program. In TypeScript, for example,

these refinements are usually associated with assignments or conditional exprssions [41,44,45].
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1 let x: { foo: number | string } = { foo: 10 }; // x.foo: number | string

2 x.foo = 20; // x.foo: number (refinement)

3

4 let a: number = x.foo; // Valid (x.foo: number)

Listing 4.2: Refining a union field type with a single reference.

Listing 4.2 demonstrates the process of refining a union field to one of its primitive types. In this

snippet, we start by creating an object that we assign to variable x (line 1). Then, we assign the number

20 to x.foo, effectively refining its type to number (line 2). This means that, even though the field is of

type number | string, the system can guarantee that x.foo is currently holding a number. As a result,

it is safe to assign the value of x.foo to a variable of type number (line 4).

Without the ability to refine union field types to a single primitive type, these fields become obsolete,

as they can only be assigned to other union types. However, these refinements create issues when the

object being mutated has multiple references pointed to it. Performing a strong update on such an object

could lead to scenarios where two references to the same object end up with different types.

1 let x: { foo: number | string } = { foo: 10 }; // x.foo: number | string

2 x.foo = 20; // x.foo: number (refinement)

3

4 let y: { foo: number | string } = x; // y.foo: number

5 y.foo = "abc"; // y.foo: string (refinement)

6

7 let a: number = x.foo; // Valid (x.foo: number)

8 let b: number = y.foo; // TypeError (y.foo: string)

Listing 4.3: Unsoundness of refining a union field type with multiple references.

Listing 4.3 illustrates the challenges associated with strong updates to object types by extending

the previous example with multiple references. In this snippet, before assigning x.foo to the numeric

variable, we create a new reference y to the object (line 4), which we then use to perform a field update

(line 5), causing the refinement of y.foo to string. Notice, however, that the system is only able to

update the type of the y.foo, leaving x.foo with the old type number, which is no longer valid. As a

result, when we execute the assignments in lines 7 and 8 (both of which should be invalid since foo now

holds a string), we only get the type error for the assignment involving the updated reference y.

The problem of safely combining object mutability and aliasing, as demonstrated by the previous

example, exists within the TypeScript language. While TypeScript allows this behaviour, it leads to

a fundamental problem: the unsoundness of its type system. In contrast, soundness is one of the

main requirements of the type system for Typed ECMA-SL. Consequently, we will need to address

this problem in the most effective manner while also maintaining the soundness of our system. This

constitutes one of the biggest challenges in the development of the type system for Typed ECMA-SL.

31



4.1.2 Design Choices

During the design of Typed ECMA-SL, we followed a philosophy of prioritizing straightforward solutions

that allowed us to type the reference interpreter with minimal changes. This decision was essential due

to the existing large codebase (Challenge C1). In the following, we present each of the main design

choices for Typed ECMA-SL. Some of these choices are associated with specific challenges, while

others may not have a direct association but were essential in shaping the overall system.

[D1] Typed Core ECMA-SL vs ECMA-SL One of our main choices pertains to the target of the typing

process. We have decided to work with ECMA-SL over Core ECMA-SL, as ECMA-SL is a higher-level

language. When compiling a high-level language into a lower-level language, programs partially lose

their structure, as compilers tend to simplify complex constructs into simpler ones. For example, as

previously illustrated by Listing 2.2, the ECMA-SL match-with construct is expressed as a sequence of

if-then-else statements when compiled into Core ECMA-SL.

Typing an intermediate language instead of the source language raises the challenge of providing

efficient feedback to the developer. To properly do this, one would have to lift the error message from

the intermediate language to the source language, which is far from trivial.

[D2] Fully Fledged vs Limited Typed Inference Another important decision in the development of

Typed ECMA-SL is related to type declarations. We consider two options: (1) requiring the program-

mer to explicitly write type declarations, similarly to what happens in languages like C and Java; and

(2) adopting a Haskell-like approach by using type inference to deduce variable types based on how

they are used by the programmer. With the latter, if we have a function f that returns a number, the type

system can deduce that any variable initialized with the result of f() is of type number.

The main benefit of type inference is the potential to eliminate the need for any refactoring of the ex-

isting ECMA-SL codebase (Challenge C1). Nevertheless, we opted to require explicit type declarations

for two primary reasons: (1) it increases code readability as the types become present in the code itself;

and (2) it is simpler and less error-prone to develop a system with explicit type annotations rather than

to deduce all of them with a type inference algorithm, which may even not be possible in some cases.

[D3] Mandatory Typing vs Optional Typing Since Typed ECMA-SL requires type annotations, we also

need to decide whether to make typing optional or mandatory. Due to its size, typing the entire ECMA-SL

codebase must be done incrementally. Therefore, it is essential that the type system does not disrupt

the existing code, meaning that typing needs to be optional at a function level. In other words, it need to

be possible to have a program where some functions are typed and others are not. Futhermore, we will

also support unchecked function signatures to declare the signature of functions that are not typed.
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[D4] Support for Algebraic Datatypes To properly type the reference interpreter, Typed ECMA-SL

requires a form of sum types, often referred to as disjoint union types. In the ES standard, most of

the language constructs can be modelled using sum types. Take, for example, the type of JavaScript

statements. Each kind of statement, such as the if-then-else, while, and return, can be represented

by an object with fields that store the components required by the statement. Using sum types, we can

safely combine all these object types into a single unified type, deconstructing it when necessary.

In Typed ECMA-SL, we decided to implement sigma types, a simplification of sum types specific to

the memory model of ECMA-SL. Sigma types are very similar to disjoint unions of object types, with sup-

port for a limited form of type recursion [46,47]. They can only be deconstructed using the match-with

operation (explained in Section 2.2.2), making them a safe way of handling unions (Challenge C2).

1 typedef JSStmt_t := Σ[α]
2 | { type: "ExprStmt", expr: JSExpr_t }

3 | { type: "WhileStmt", body: α, ... }

4 | ...

Listing 4.4: Partial declaration for the type of a JavaScript statement.

Listing 4.4 shows a simplified version of the type declaration for JavaScript statements, JSStmt_t.

This example is written in TESL, which is introduced and explained in Section 4.2. In essence, each

JS statement is modelled with an object type, which are then combined into the sigma type JSStmt_t.

Additionally, the while statement resorts to the bound variable α to recursively type its body field.

[D5] Forbit Strong Updates Recall the problem of combining object mutability with aliasing, described

in Challenge C3. This problem is known to be extremely difficult to solve and has been the subject of

a large corpus of research [22, 48, 49, 50, 51]. TypeScript, for example, is one of the languages that

undergoes this issue, and, despite currently being one of the most used programming languages, it

does not provide a sound solution for it (as shown in Listing 4.3). However, soundness is of of the core

requirements of Typed ECMA-SL, particularly because the language will be employed in the specifica-

tion of JavaScript. Therefore, we need to address this issue in the most effective way possible while

simultaneously minimizing disruptions to the existing codebase (Challenge C1).

One way we could attempt to solve this challenge is by implementing an object ownership system

inspired by programming languages like Rust. In such a system, multiple references to objects are

allowed, but only the owner reference can update union fields or refine their types. This is important to

guarantee that no other references can override refinements previously executed by the object’s owner.

Listing 4.5 addresses the unsound example of Listing 4.3 by employing the proposed object owner-

ship system. When we create the reference y to the object (line 4), the system transfers the object’s

ownership from x to y. This operation also nullifies all prior refinements (such as the one in line 2) of

the fields of x. As shown in line 5, we can still refine the type of a union field using the owner reference
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1 let x: { foo: number | string } = { foo: 10 }; // x.foo: number | string

2 x.foo = 20; // x.foo: number (refinement)

3

4 let y: { foo: number | string } = x; // y becomes the owner

5 y.foo = "abc"; // y.foo: string (refinement)

6 x.foo = "def"; // TypeError (x is not the owner)

7

8 let a: number = x.foo; // TypeError (x.foo: number | string)

9 let b: number = y.foo; // TypeError (y.foo: string)

Listing 4.5: Refining a union field type with multiple references, using ownership types.

y. However, attempting to update foo using x (line 6) results in a type error, as this operation could

potentially invalidate the strong update of line 5. Finally, both the assignments in lines 8 and 9 generate

type errors. This is the expected behaviour because foo is currently holding a string. Recall that the

system without ownership (Listing 4.3) could not detect the first error, as x.foo was still latched to an

old refinement. Conversely, the ownership system invalidates all refinements for all but one reference.

While this object ownership system appears promising, its development proved to be excessively

complex for our time constraints. As we delve into more intricate language constructs, such as function

calls, if-then-else statements, and nested objects, defining the proper rules of the system becomes

extremely challenging. Nevertheless, there is a lot of interest for further research in this area, as suc-

cessfully addressing the safe combination of object mutability and aliasing could potentially improve

static type systems for dynamic languages. After considering all options, we opted to prevent object mu-

tability altogether within Typed ECMA-SL. While this approach may require additional effort when typing

the reference interpreters, it offers a much more straightforward solution.

4.2 Formal Model

This section presents the formal model for a simplified version of Typed ECMA-SL. Due to its complexity,

formalizing the real language and associated type system would both entail significant challenges and

demand a substantial investment of time and effort. Nevertheless, this formalization is valuable as it

allows us to reason about some key aspects of the type system and partially prove its soundness.

We divide this section into two parts. Firstly, we describe the syntax for the simplified version of

TESL. After that, we outline the typing rules for expressions, statements, and other typing features.

4.2.1 Syntax

A Typed ECMA-SL program is a collection of functions and type declarations. TESL functions are written

as function g(x1 : τ1, ..., xn : τn){s}, where g is the function identifier, x1, ..., xn are the function’s

formal parameters with types τ1, ..., τn, and s is the function’s body. Type declarations are written as

typedef α := τ , and are used to define type variables α that behave as aliases for types τ .
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e ∈ Expr ::= v | x | ⊖ e | e1 ⊕ e2 | e as τ

s ∈ Stmt ::= skip | s1 ; s2 | x := e | x := e.f | x := {f i : ei |ni=1} | x := g(e1, ..., en) |

x.f := e | return e | if (e) {s1} else {s2} | while (e) {s} |

match e with {ψ1 → s1, ..., ψn → sn}

ψ ∈ Pat ::= {f i : ξi |ni=1}

ξ ∈ PatB ::= x | v

Table 4.1: Typed ECMA-SL Syntax - Expressions and Statements. The non-terminals ⟨v⟩, ⟨x⟩, ⟨g⟩, and ⟨f⟩ range over
values, variable names, function names, and field names, respectively.

Table 4.1 outlines the syntax for expressions and statements in Typed ECMA-SL. Expressions e ∈

Expr include: values v, variables x, unary ⊖ and binary ⊕ operators, and the type casting as operator.

In terms of values, the system supports integers, floats, strings, booleans, object locations l ∈ Loc, and

the null and undefined special values.

Statements s ∈ Stmt include: the skip, sequences, variable assignments, field lookups, the cre-

ation of new objects, function calls, field assignments, and control flow elements such as the return,

if-then-else, while, and match-with statements. Except for the match-with construct, which is ex-

plained in Section 2.2.2, all other language constructs are self-explanatory and behave as standard.

t ∈ TPrim ::= int | float | string | boolean | null | undefined | top

σ ∈ TObj ::= {f i : τ i |ni=1} | {f i : τ i |ni=1, ∗ : τ∗}

τ ∈ T ::= t | σ | ν | α | ∪ {τ1, ..., τn} | Σ[α] {σ1, ..., σn}

Table 4.2: Typed ECMA-SL Syntax - Supported Types. The non-terminals ⟨f⟩, ⟨v⟩, and ⟨α⟩, range over field names,
values, and type variable names, respectively.

Supported Types Table 4.2 depicts the types available within Typed ECMA-SL. Given that ECMA-SL is

essentially a simplification of JavaScript, the types supported in Typed ECMA-SL closely resemble those

found in TypeScript. The language encompasses a set of primitive types t ∈ TPrim, which includes

integers and floats (equivalent to TypeScript’s number type), strings, booleans, and the special null,

undefined, and top types. Additionally, the language supports: object types σ ∈ TObj, literal types

ν ∈ TLit, type variables α ∈ TV ar, union types ∪{τ1, ..., τn}, and sigma types Σ[α] {σ1, ..., σn}. In

the following, we relax the representation of union and sigma types to enhance clarity.

Object types comprise a one-to-one mapping between field names f ∈ Fld and their corresponding

types τ ∈ T . On top of that, they allow the declaration of a special summary field (∗) that specifies a

default summary type (τ∗) for all fields not explicitly declared within the object’s type. Summary fields
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are particularly useful, for example, when defining the type for environment records.1 In TESL, this type

can be written as typedef EnvRecord_t := { *: JSVal_t }, where JSVal_t is the type of JS values.

Literal types describe types that represent concrete values. In Typed ECMA-SL, integers, floats,

strings and booleans values are all typed with their respective literal value. For example, the type of the

integer 10, is the literal type 10. Formally, the set of literal types can be expressed as:

TLit = Int ∪ Flt ∪ Str ∪ Bool.

1 typedef JSNum_t := int ∪ float;

2

3 num: JSNum_t := getNum ();

4 if (typeof(num) = int) {

5 i: int := num

6 } else {

7 f: float := num

8 }

(a) Union types in Typed ECMA-SL.

1 typedef JSStmt_t := Σ[α]
2 | { type: "ExprStmt", expr: JSExpr_t }

3 | { type: "WhileStmt", body: α, ... }

4 | ...

5

6 stmt: JSStmt_t := getStmt ();

7 match stmt with

8 | { type: "ExprStmt", expr: e } → {}

9 | { type: "WhileStmt", body: s } → {

10 stmt ’: JSStmt_t := s

11 }

(b) Sigma types in Typed ECMA-SL.

Figure 4.1: Examples of the formal language of Typed ECMA-SL.

Figure 4.1a illustrates union types described in the formal model of Typed ECMA-SL. Union types

are used to combine multiple types into a single unified type, allowing variables and fields to hold values

from any of those types. In line 1, we define the type variable JSNum_t as a union of integers and

floats. Subsequently, in line 4, we employ the built-in typeof operator to check whether num is holding

an integer value. Because of this test, the type system can safely refine the type of num to int inside

the if block, allowing for the compilation of line 5. Additionally, the system can refine num to type float

inside the else block, allowing the compilation of line 7. This is considered a safe operation because, at

this point, it is impossible for num to be holding an integer value, or the execution would have proceeded

to the true case of the if-then-else statement.

Figure 4.1b shows the declaration and deconstruction of a sigma type. In the formal model of TESL,

sigma types comprise unions of object types specifically designed to be unfolded by the match-with

statement. Moreover, they can be recursively defined by typing their objects fields with the bound vari-

able α, which references the sigma type itself. In line 1, we declare the JSStmt_t type as a sigma (sum)

of JS statements, including the expression and while statement. While statements need to store their

test condition, which is of type JSExpr_t, as well as their body, which is of type JSStmt_t. Note that

JSStmt_t is the type currently being declared, turning this into a recursive type declaration. As a result,

the body field needs to be typed with the bound variable α, which will be recursively unfolded to JSStmt_t

during the match-with statement (lines 9 and 10).
1In programming languages, environment records are used to store the bindings between identifiers and their corresponding

values within a specific execution context.
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4.2.2 Type System

Before defining our system, we need to establish some essential preliminary definitions. In particular,

we resort to store typing environments Γ to bind each program variable with its corresponding type,

and global typing contexts ∆ to associate each function identifier with its corresponding function type.

Additionally, we introduce the notion of an upper bound between two store typing environments, merging

them to create a new one. The formal definitions for these functions are provided below.

Definition 1 (Store Typing Environment). A store typing environment is a partial function Γ : V ar ⇀ T ,

which maps variables x ∈ V ar to types τ ∈ T .

Definition 2 (Global Typing Context). A global typing context is a partial function ∆ : FuncID ⇀ TFunc,

which maps function identifiers g ∈ FuncID to function types in TFunc. In Typed ECMA-SL, function

types are written as (τ1, ..., τn) → τ r, with τ1, ..., τn, τ r ∈ T .

Definition 3 (Γ1 ⊔ Γ2). The upper bound between two store typing environments Γ1 and Γ2, written as

Γ1 ⊔ Γ2 : V ar ⇀ T , is defined as:

Γ1 ⊔ Γ2(x) =


Γ1(x) ∪ Γ2(x) if x ∈ Γ1 ∧ x ∈ Γ2

Γ1(x) ∪ undefined if x ∈ Γ1 ∧ x /∈ Γ2

Γ2(x) ∪ undefined if x /∈ Γ1 ∧ x ∈ Γ2

There are some additional considerations regarding the formal model of the type system. Firstly, we

assume that all type variables α ∈ TV ar are fully resolved into their respective types before employing

the type checker. To convert a value into its type, we define the function type : V al 7→ T , which maps

values v ∈ V al to types τ ∈ T . Additionally, we introduce the function typeof : TLit 7→ TPrim, which

maps literal types ν ∈ TLit to their respective primitive types t ∈ TPrim. For example, the result of

typeof(10) is the primitive type int. We provide the definition for these functions in Appendix B.

Lastly, to handle field types effectively, we introduce the partial function ft : TObj × Fld ⇀ T , which

maps pairs between object types σ ∈ TObj and field names f ∈ Fld to field types τ ∈ T . The resulting

type τ is the declared field type if the field exists, or the default summary type (when specified) if the

field does not exist. Figure 4.2 outlines the typing rules for this function.

FIELD TYPE

ft({f i : τ i |ni=1, f : τ}, f) ≜ τ

SUMMARY FIELD TYPE

f /∈ f1, ..., fn

ft({f i : τ i |ni=1, ∗ : τ∗}, f) ≜ τ∗ ∪ undefined

Figure 4.2: Typing Rules - Object Fields: ft(σ, f) ≜ τ
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Typing Rules for Expressions Let Γ be a store typing environment, e an expression, and τ a type. We

denote that Γ types the expression e with type τ as Γ ⊢ e : τ , provided there exists a valid derivation for

the judgement according to the typing rules outlined in Figure 4.3.

VALUE

type(v) = ν

Γ ⊢ v : ν

VARIABLE

Γ(x) = τ

Γ ⊢ x : τ

UNARY OPERATION

Γ ⊢ e : τe ⊖(τe) = τ

Γ ⊢ ⊖ e : τ

BINARY OPERATION

Γ ⊢ ei : τ i |2i=1 ⊕(τ1, τ2) = τ

Γ ⊢ e1 ⊕ e2 : τ

TYPE CASTING

Γ ⊢ e : τe τe ≤ τ

Γ ⊢ e as τ : τ

Figure 4.3: Typing Rules - Expressions: Γ ⊢ e : τ

To illustrate the typing rules for expressions, consider the UNARY OPERATION rule. The type τ that

results from applying the unary operation ⊖ to expression e is given by the application of the operator to

τe. The type τe is determined by typing the expression e, as Γ ⊢ e : τe.

The remaining rules are analogous to this one. In the rule for typing values, we employ the type

function to determine the type associated with the provided value. Additionally, we introduce a rule for

TYPE CASTING that allows us to type expressions with a more generic type than their original. Note that

the model does not support downcasting, as this would become a source of unsoundness.

Typing Rules for Statements Let g be a function’s identifier, ∆ a global typing context, Γ and Γ′ two

store typing environments, and s a statement. The typing judgement g,∆ ⊢ {Γ} s {Γ′} indicates that s

occurs within the body of g and that under the global typing context ∆, the execution of s on a variable

store satisfying the initial typing environment Γ results in a variable store satisfying the final variable

typing environment Γ′. The respective typing rules are depicted in Figure 4.4.

To illustrate the typing rules for statements, consider the FIELD LOOKUP rule. To type this construct,

the type system starts by typing the expression e with the object type σ, as we require the provided

expression to be an object. Following that, it employs the ft function to determine the type of field f

(referred to as τf ), within the context of σ. Lastly, the system updates the store typing environment Γ

with the new binding from variable x to type τf .

The remaining rules are standard, with the exception of the IF-THEN-ELSE and WHILE LOOP rules,

that employ the Conditional Type Refinement (CTR) mechanism to refine types according to the condi-

tional expression, and MATCH-WITH rule that employs the Type Pattern Binding (TPB) operator to update

the store typing environment with the pattern bindings. Also, note that field assignments do not modify

the store typing environment, as we do not allow for strong updates on field types (Design Choice D5).

38



SKIP

g,∆ ⊢ {Γ} skip {Γ}

SEQUENCING

g,∆ ⊢ {Γi−1} si {Γi} |2i=1

g,∆ ⊢ {Γ0} s1 ; s2 {Γ2}

VARIABLE ASSIGNMENT

Γ ⊢ e : τe
g,∆ ⊢ {Γ} x := e {Γ[x 7→ τe]}

FUNCTION CALL

∆(g′) = (τ1, ..., τn) → τ r Γ ⊢ ei : τ ′i |ni=1 τ ′i ≤ τ i |ni=1

g,∆ ⊢ {Γ} x := g′(e1, ..., en) {Γ[x 7→ τ r]}

NEW OBJECT

Γ ⊢ ei : τ i |ni=1 σ = {f i : τ i |ni=1}
g,∆ ⊢ {Γ} x := {f i : ei |ni=1} {Γ[x 7→ σ]}

FIELD LOOKUP

Γ ⊢ e : σ ft(σ, f) = τf

g,∆ ⊢ {Γ} x := e.f {Γ[x 7→ τf ]}

FIELD ASSIGNMENT

Γ(x) = σ ft(σ, f) = τf

Γ ⊢ e : τe τe ≤ τf

g,∆ ⊢ {Γ} x.f := e {Γ}

RETURN

∆(g) = (τ1, ..., τn) 7→ τ r

Γ ⊢ e : τe τe ≤ τ r

g,∆ ⊢ {Γ} return e {Γ}

IF-THEN-ELSE

Γ ⊢ e : τe τe ≤ bool βΓ(e) = Γ1

βΓ(¬e) = Γ2 g,∆ ⊢ {Γi} si {Γ′
i} |2i=1

g,∆ ⊢ {Γ} if (e) {s1} else {s2} {Γ′
1 ⊔ Γ′

2}

WHILE LOOP

Γ ⊢ e : τe τe ≤ bool

βΓ(e) = Γ′ g,∆ ⊢ {Γ′} s {Γ}
g,∆ ⊢ {Γ} while (e) {s} {Γ}

MATCH-WITH

Γ ⊢ e : τ τ = Σ[α] {σ1, ..., σn} Ψα,τ (ψi, σi,Γ) = Γi |ni=1

g,∆ ⊢ {Γi} si {Γ′
i} |ni=1 Γ′ = ⊔{Γ′

1, ..., Γ
′
n}

g,∆ ⊢ {Γ} match e with {ψi → si |ni=1} {Γ′}

Figure 4.4: Typing Rules - Statements: g,∆ ⊢ {Γ} s {Γ′}

In the following, we provide a description of both the Conditional Type Refinement (CTR) and Type

Pattern Binding (TPB) mechanisms, along with their respective typing rules. After that, we describe the

Subtyping relationship supported by the formal model of Typed ECMA-SL.

Conditional Type Refinement (CTR) The evaluation of conditional expressions within if-then-else

and while statements often leads to an enhanced comprehension of the values stored within the scope.

In Figure 4.1a, we showed how the typeof operator could be employed to narrow a variable’s type from

a union to a single primitive type. Value comparisons can also be used to further refine variable types,

particularly from primitive to literal types. For instance, the conditional expression in if (x = 10) {...}

effectively refines the type of x from int to 10, within the true branch of the if-then-else statement.
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βΓ(e1) = Γ1 βΓ1
(e2) = Γ2

β̂Γ(e1 and e2) ≜ Γ2

type(v) = τ τ ≤ Γ(x)

β̂Γ(x = v) ≜ Γ[x 7→ τ ]

type(v) = τ τ ≤ Γ(x)

β̂Γ(v = x) ≜ Γ[x 7→ τ ]

τ ≤ Γ(x)

β̂Γ(typeof(x) = τ) ≜ Γ[x 7→ τ ]

Γ(x) = ∪{τ1, ..., τn} τ ′ = ∪ ({τ1, ..., τn} \ τ)
β̂Γ(typeof(x) ̸= τ) ≜ Γ[x 7→ τ ′]

τ ≤ Γ(x)

β̂Γ(τ = typeof(x)) ≜ Γ[x 7→ τ ]

Γ(x) = ∪{τ1, ..., τn} τ ′ = ∪ ({τ1, ..., τn} \ τ)
β̂Γ(τ ̸= typeof(x)) ≜ Γ[x 7→ τ ′]

βΓ(e) ≜

{
β̂Γ(e) if e ∈ dom(β̂Γ)

Γ otherwise

Figure 4.5: Typing Rules - Conditional Type Refinement: βΓ(e) ≜ Γ′

In Typed ECMA-SL, we model the CTR mechanism with the function βΓ(e) ≜ Γ′, which uses ex-

pressions e ∈ Expr to refine variables within the store typing environment Γ, generating a new store

typing environment Γ′. Figure 4.5 outlines the typing rules for this function. Although limited, this model

effectively addresses the most common refinements of the language and supports the combination of

multiple refinements through the use of the logical and operator.

Type Pattern Binding (TPB) In the context of match-with statements, patterns ψ ∈ Pat establish a

correspondence between fields f ∈ Fld and pattern bindings ξ ∈ PatB. Formally, the set of pattern

bindings can be expressed as: PatB = V al ∪ V ar. Besides being used to define which expressions are

valid for a particular match-with case, patterns may also create new variables in the scope of that case.

In Figure 4.1b, the pattern { type: "ExprStmt", expr: e } (line 8) introduces variable e within the

first match-with case, initializing it with the value of field expr. Therefore, the system needs to update

Γ accordingly, storing a new binding between variable e and the type of field expr.

Ψα,τ ({}, σ′,Γ) ≜ Γ

Ψα,τ ({f : v} ⊎ ψ′, {f : τf} ⊎ σ′,Γ) ≜ Ψα,τ (ψ′, σ′,Γ) if type(v) ≤ τf

Ψα,τ ({f : x} ⊎ ψ′, {f : τf} ⊎ σ′,Γ) ≜ Ψα,τ (ψ′, σ′,Γ[x 7→ τf [α/τ]])

Figure 4.6: Typing Rules - Type Pattern Binding: Ψα,τ (ψ, σ,Γ) ≜ Γ′

In Typed ECMA-SL, we model the TPB mechanism with the function Ψα,τ (ψ, σ,Γ) ≜ Γ′, which uses

patterns ψ ∈ Pat and object types σ ∈ TObj (pertaining to the sigma type τ ) to update the store typing

environment Γ, generating the new environment Γ′. Figure 4.6 outlines the typing rules for this function.

In this figure, the operator ⊎ is used to represent the disjoint union of sets (patterns and objects).
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In the pattern, each field f i is mapped to the pattern binding ξi, which is either a value v ∈ V al or a

variable x ∈ V ar. If ξi is a value, then the system does not modify Γ, but it must ensure that the type of

v conforms to the field’s type. This prevents values from being bound to fields of an unrelated type.

On the other hand, if ξi is a variable, the system must update Γ with the new variable, whose type

is determined by unfolding the type of the associated field. In this context, unfolding the type involves

replacing any bound variables α found within the field’s type with the initial sigma type. To illustrate

this process, consider lines 9 and 10 in Figure 4.1b. In this example, the type of the new variable s

corresponds to the type of body (typed as the bound variable α), after being unfolded. Unfolding this

type allows the system to recover the original sigma type JSStmt_t, ensuring proper type recursion.

Subtyping Figure 4.7 depicts the typing rules concerning the subtyping relationship supported in Typed

ECMA-SL. The formal model of the language establishes subtyping for union types, literal (value) types,

object types (with and without the summary field), and sigma types.

REFLEXIVITY

τ ≤ τ

TRANSITIVITY

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

UNION SUBTYPING

τ ≤ τ i

τ ≤ ∪{τ1, ..., τn}

TOP SUBTYPING

τ ≤ top

VALUE SUBTYPING

ν ≤ typeof(ν)

HORIZONTAL SUBTYPING

{f i : τ i |ni=1, f
′
j : τ

′
j |mj=1} ≤ {f i : τ i |ni=1}

{f i : τ i |ni=1, ∗ : τ∗} ≤ {f i : τ i |ni=1}

SUMMARY SUBTYPING

{f i : τ i |ni=1, f
′
j : τ

∗ |mj=1} ≤ {f i : τ i |ni=1, ∗ : τ∗}

SIGMA CASE SUBTYPING

σi ≤ σ′
i |ni=1

Σ[α] {σ1, ..., σn} ≤ Σ[α] {σ′
1, ..., σ

′
n}

SIGMA FOLDING

Σ[α] {σ1, ..., σn} = τ σ ≤ σi[τ/α]

σ ≤ Σ[α] {σ1, ..., σn}

Figure 4.7: Typing Rules - Subtyping: τ ≤ τ ′

As expected, the subtyping relation in Typed ECMA-SL is both reflexive and transitive. The system

defines subtyping for literal types ν through the use of the typeof function (described at the beginning

of this section), and all types are inherently subtypes of top. As for union types, a type τ is considered

a subtype of the union type ∪{τ1, ..., τn} if it is a subtype of at least one of the types τ i pertaining

to the union (e.g., int ≤ ∪{ int, float }). Furthermore, the system features horizontal subtyping,

wherein an object type σ is a subtype of σ′ if it includes all fields declared for σ′ with their respective

types. The same principle applies when σ includes a summary field, as in this scenario, a summary field

is equivalent to an arbitrary number of additional fields, all of which share the same type.
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To ensure soundness, the model does not allow field covariance [41,46]. Field covariance establishes

a subtyping relationship between objects that specify a more specific type for a given field compared to

the field’s type in the base object. Under field covariance, an object value like { foo: 10 } is considered

a subtype of { foo: int } (since 10 is a subtype of int), allowing it to be assigned to an entity of this

type. Without field covariance, the previous assignment generates a type error because the types of foo

in both objects do not precisely match. This restriction significantly reduces the expressiveness of the

system, particularly when initializing objects. To circumvent it, we can employ the type casting operator

and instead define the object value as { foo: (10 as int) }.

The system also defines a subtyping rule referred to as SUMMARY SUBTYPING. According to this

rule, an object type σ is deemed a subtype of σ′ if its extra fields match the summary type specified for

σ′. Using this rule, we can assign an object of type { foo: int, bar: string } to an entity of type

{ foo: int, *: string } because the extra field bar is of type string.

Lastly, the model introduces two subtyping rules for sigma types. SIGMA CASE SUBTYPING de-

scribes a simple subtyping relationship between the sigma cases. The SIGMA FOLDING rule, however,

is particularly interesting, as it provides a mechanism to fold one of the disjoint sigma cases back into

the sigma type itself. To illustrate this, consider the partial declaration for the List_t type, defined

as Σ[α] { next: null } | { next: α }. Under this rule, { next: List_t } is a subtype of List_t

because it is a subtype of the second disjoint sigma case { next: α } after replacing α with List_t.

4.3 Operational Semantics

In this section, we introduce our big-step operational semantics for Typed ECMA-SL. For simplicity, we

restrict ourselves to modelling the correct behaviour of the program without accounting for erroneous

executions. This approach allows us to focus on the intended functionality of Typed ECMA-SL.

To ensure a clear presentation, we break down this section into two distinct parts. First, in Sec-

tion 4.3.1, we model the semantics of the intra-procedural fragment of Typed ECMA-SL. This fragment

excludes both function calls and the return statement. Subsequently, in Section 4.3.2, we extend the

semantics of the language to incorporate these omitted elements.

4.3.1 Intra-Procedural Fragment

Before outlining the operational semantics for Typed ECMA-SL, we need to establish some preliminary

definitions. We define Typed ECMA-SL states, used to represent the current state of a Typed ECMA-SL

execution. Additionally, we use heap typing environments H to associate each heap location with the

type of object it points to, and we extend the type function (defined in Appendix B) to reason about the

type of a location at runtime. The respective formal definitions are provided below.
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Definition 4 (Typed ECMA-SL State). An ECMA-SL state is composed of a heap η : Loc × Fld ⇀

V al, which maps pairs of locations l ∈ Loc and field names f ∈ Fld to values v ∈ V al, and a store

γ : V ar ⇀ V al, which maps variables x ∈ V ar to values v ∈ V al.

In line with established methodologies for modelling the semantics of JavaScript [16, 29], we do not

model the heap as a function from locations to objects. Instead, we refrain from explicitly representing

objects in our formalism and choose to conceptualize them as heap regions [28,52]. In the following, we

use the notation η(l) to mean {(l, f) | (l, f) ∈ dom(η)} and dom(η(l)) to mean {f | (l, f) ∈ dom(l)}.

Definition 5 (Heap Typing Environment). A heap typing environment is a partial function H : Loc ⇀ T ,

which maps heap locations l ∈ Loc to types τ ∈ T .

In the following, we use H(l, f) to refer to the type of field f in the object pointed by location l.

Formally, this can be expressed as: H(l, f) = τf ⇐⇒ ∃ τ . H(l) = τ ∧ τ = {..., f : τf , ...}.

Regarding the type function, we extend it as the partial function typeH : V al ⇀ T , also allowing it to

determine the type of a location value l ∈ Loc at runtime. The extended function maps values v ∈ V al

to their respective types τ ∈ T within the context of the heap typing environment H, and is defined as:

typeH(v) =

{
H(l) if v is a location l
type(v) otherwise.

Semantics for Expressions Let γ be a store, e an expression, and v a value. We denote that under γ,

the evaluation of e yields v as JeKγ ≜ v, provided there exists a valid derivation for JeKγ ≜ v according to

the semantics outlined in Figure 4.8.

VALUE

JvKγ ≜ v

VARIABLE

JxKγ ≜ γ(x)

UNARY OPERATION

J⊖ eKγ ≜ ⊖(JeKγ)

BINARY OPERATION

Je1 ⊕ e2Kγ ≜ ⊕(Je1Kγ , Je2Kγ)
TYPE CASTING

Je as τKγ ≜ JeKγ

Figure 4.8: Operational Semantics - Expressions: JeKγ ≜ v

To illustrate the semantics of expressions, consider the UNARY OPERATION rule. To evaluate the

unary operation ⊖(e), the semantics start by evaluating the argument expression e and then apply the

semantic function of the given unary operator ⊖ to the obtained value.

The remaining rules are analogous to this one. Values evaluate to themselves and variables evaluate

to the value that they are currently storing within γ. Note that the type casting expression evaluates to

the value of the expression itself, since type casting is designed to be used solely by the type system.
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Semantics for Statements Let H and H′ be two heap typing environments, η and η′ two heaps, γ

and γ′ two stores, and s a statement. The semantic judgement ⟨H, η, γ, s⟩ ⇓i ⟨H′, η′, γ′⟩ indicates that

the evaluation of statement s in the heap η and store γ results in the heap η′ and the store γ′. This

judgement is instrumented with the heap typing environment H to keep track of the object types during

the execution. The semantic rules for the intra-procedural fragment of TESL are outlined in Figure 4.9.

SKIP

⟨H, η, γ, skip⟩ ⇓i ⟨H, η, γ⟩

SEQUENCING

⟨Hi−1, ηi−1, γi−1, si⟩ ⇓i ⟨Hi, ηi, γi⟩ |2i=1

⟨H0, η0, γ0, s1; s2⟩ ⇓i ⟨H2, η2, γ2⟩

VARIABLE ASSIGNMENT

JeKγ = v

⟨H, η, γ, x := e⟩ ⇓i ⟨H, η, γ[x 7→ v]⟩

FIELD LOOKUP

JeKγ = l η(l, f) = v

⟨H, η, γ, x := e.f⟩ ⇓i ⟨H, η, γ[x 7→ v]⟩

NEW OBJECT

l /∈ dom(η) JeiKγ = vi |ni=1 {f i : typeH(vi) |ni=1} = τ

H′ = H[l 7→ τ ] η′ = η[(l, f i) 7→ vi] |ni=1

⟨H, η, γ, x := {f i : ei |ni=1}⟩ ⇓i ⟨H′, η′, γ[x 7→ l]⟩

FIELD ASSIGNMENT

JxKγ = l (l, f) ∈ dom(η) JeKγ = v H(l)[f 7→ typeH(v)] = τ

⟨H, η, γ, x.f := e⟩ ⇓i ⟨H[l 7→ τ ], η[(l, f) 7→ v], γ⟩

IF-THEN-ELSE (TRUE)
JeKγ = true ⟨H, η, γ, s1⟩ ⇓i ⟨H′, η′, γ′⟩
⟨H, η, γ, if (e){s1} else {s2}⟩ ⇓i ⟨H′, η′, γ′⟩

IF-THEN-ELSE (FALSE)
JeKγ = false ⟨H, η, γ, s2⟩ ⇓i ⟨H′, η′, γ′⟩
⟨H, η, γ, if (e){s1} else {s2}⟩ ⇓i ⟨H′, η′, γ′⟩

WHILE LOOP (TRUE)
JeKγ = true ⟨H, η, γ, s⟩ ⇓i ⟨H′′, η′′, γ′′⟩
⟨H′′, η′′, γ′′,while (e){s}⟩ ⇓i ⟨H′, η′, γ′⟩
⟨H, η, γ,while (e){s}⟩ ⇓i ⟨H′, η′, γ′⟩

WHILE LOOP (FALSE)
JeKγ = false

⟨H, η, γ,while (e){s}⟩ ⇓i ⟨H, η, γ⟩

MATCH-WITH

JeKγ = l match(ψj , η(l), γ) = γj ⟨H, η, γj , sj⟩ ⇓i ⟨H′, η′, γ′⟩
⟨H, η, γ,match ewith {ψi → si |ni=1}⟩ ⇓i ⟨H′, η′, γ′⟩

Figure 4.9: Operational Semantics - Statements: ⟨H, η, γ, s⟩ ⇓i ⟨H′, η′, γ′⟩

To illustrate the semantic rules for statements, consider the FIELD LOOKUP rule. To evaluate this

construct, the system starts by evaluating the expression e, obtaining the object location l. Following

that, it retrieves the value v stored within field f of the object pointed to by l. Lastly, the system updates

the program store γ with the new binding from variable x to value v.
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The remaining rules are standard, with the exception of the MATCH-WITH rule. In order to update the

store γ according to the bindings in the matched pattern ψj , the semantics employs the partial function

match : Pat × Obj × γ ⇀ γ′. This function updates a store γ according to the pattern ψ ∈ Pat and an

object value (or heap region) o = {f1 : v1, ..., fn : vn}, generating a new program store γ′. Figure 4.10

outlines the semantic rules for the match function. In this figure, the operator ⊎ is used to represent the

disjoint union of sets.

match({}, o′, γ) ≜ γ

match({f : v} ⊎ ψ′, {f : v} ⊎ o′, γ) ≜ match(ψ′, o′, γ)

match({f : x} ⊎ ψ′, {f : v} ⊎ o′, γ) ≜ match(ψ′, o′, γ[x 7→ v])

Figure 4.10: Operational Semantics - Pattern Binding: match(ψ, o, γ) ≜ γ′

4.3.2 Function Calls and Returns

In this section, we extend the operational semantics with support for function calls and the return

statement. To do so, we need to extend our semantic judgement with program contexts Ω to retrieve

the function’s formal parameters and body, and statement outcomes ϕ ∈ Φ [53] to capture the flow of

execution. The extended semantic judgement has the form ⟨Ω,H, η, γ, s⟩ ⇓i ⟨H′, η′, γ′, ϕ⟩ and indicates

that, within the program context Ω, the evaluation of statement s in the heap η and store γ has the

outcome ϕ resulting in a heap η′ and the store γ′. The respective formal definitions are provided below.

Definition 6 (Program Context). A program context is a function Ω : FuncID 7→ (V ar∗ × Stmt) that

maps function identifiers g ∈ FuncID to function definitions V ar∗ × Stmt. Function definitions are

written as (x1, ..., xn) → s, with x1, ..., xn ∈ V ar and s ∈ Stmt.

A statement outcome ϕ ∈ Φ represents the outcome of evaluating a Typed ECMA-SL statement. It

can take one of two forms: (1) the continuation outcome Cont, which indicates that the execution may

continue with the next statement; and (2) the return outcome Ret(v), which indicates that the current

function has returned with value v. Formally, the set of statement outcomes can be expressed as:

Φ = {Cont} ∪ {Ret(v) | v ∈ V al}.

The semantic rules for the extended fragment of Typed ECMA-SL are outlined in Figure 4.11. This

figure depicts the extended semantics for sequences, function calls, and the return statement. Addi-

tionally, we provide the extended VARIABLE ASSIGNMENT rule to illustrate the natural adaptation of a

TESL statement to the extended semantics. The remaining rules can be adapted in an analogous way.

Illustratively, consider the FUNCTION CALL rule. To evaluate this construct, the system starts by

retrieving the formal parameters x1, ..., xn and body s of the called function g. Following that, it evaluates
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SEQUENCING (CONT)

⟨Ω,H0, η0, γ0, s1⟩ ⇓i ⟨H1, η1, γ1, Cont⟩
⟨Ω,H1, η1, γ1, s2⟩ ⇓i ⟨H2, η2, γ2, ϕ⟩

⟨Ω,H0, η0, γ0, s1; s2⟩ ⇓i ⟨H2, η2, γ2, ϕ⟩

SEQUENCING (RET)

⟨Ω,H0, η0, γ0, s1⟩ ⇓i ⟨H1, η1, γ1, Ret(v)⟩
⟨Ω,H0, η0, γ0, s1; s2⟩ ⇓i ⟨H1, η1, γ1, Ret(v)⟩

FUNCTION CALL

Ω(g) = (x1, ..., xn) → s JeiKγ = vi |ni=1

γ′′ = [xi 7→ vi |ni=1] ⟨Ω,H, η, γ′′, s⟩ ⇓i ⟨H′, η′, γ′, Ret(v)⟩
⟨Ω,H, η, γ, x := g(e1, ..., en)⟩ ⇓i ⟨H′, η′, γ[x 7→ v], ϕ⟩

RETURN

JeKγ = v

⟨Ω,H, η, γ, return e⟩ ⇓i ⟨H, η, γ,Ret(v)⟩

VARIABLE ASSIGNMENT

JeKγ = v

⟨Ω,H, η, γ, x := e⟩ ⇓i ⟨H, η, γ[x 7→ v], Cont⟩

Figure 4.11: Operational Semantics - Function Calls and Returns: ⟨Ω,H, η, γ, s⟩ ⇓i ⟨H′, η′, γ′, ϕ⟩

the arguments e1, ..., en and creates the new store γ′′ for executing the function, exclusively containing

the bindings between parameters and arguments. Afterwards, the semantics evaluates the body of the

function, and then binds the returned value v to variable x within the original store γ.

4.4 Soundness Proof

In this section, we prove type safety for the type system formalized in Section 4.2 with respect to the

semantics defined in Section 4.3. Essentially, we say that our type system is safe in that the execution

of a well-typed TESL statement preserves state satisfiability. We provide a comprehensive definition

of state satisfiability in Section 4.4.1. Following that, in Section 4.4.2, we present the main soundness

proof, based upon a few properties of well-typed TESL programs introduced within this same section.

4.4.1 State Satisfiability

Recall Typed ECMA-SL states described in Section 4.3.1. In order to define state satisfiability, we make

use of the following auxiliary definitions:

• Value Satisfiability: describes what it means for a value v to satisfy a given type τ under a heap

typing environment H — written v ⊨H τ ;

• Store Satisfiability: describes what it means for a store γ to satisfy a given store typing environ-

ment Γ under a heap typing environment H — written γ ⊨H Γ;
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• Heap Satisfiability: describes what it means for a heap η to satisfy a given heap typing environ-

ment H — written η ⊨ H.

We say that a state (η, γ) satisfies a typing environment (H,Γ) if, and only if, η ⊨ H and γ ⊨H Γ. In

the following, we use the notation η, γ ⊨ H,Γ to represent the state satisfiability condition.

Definition 7 (Value Satisfiability). A value v is said to satisfy a type τ with respect to a heap typing

environment H, written v ⊨H τ , if and only if:

typeH(v) ≤∗ τ .

The value satisfiability relation needs to ensure that a value v, given a heap typing environment H, is

compatible with τ . In other words, the type τ needs to be capable of storing a value v of type typeH(v)

(Section 4.3). The typeH function returns the object type H(l) when v is a location l, and the simple

primitive type of v in all other cases. Note that it is not enough to say that the type of v is a subtype of

τ (i.e., typeH(v) ≤ τ ) because our subtyping relationship defined in Section 4.2.2 does not allow field

covariance. As a result, a value { foo: 10 } would not satisfy the type { foo: int } since the types

of field foo are not the same (10 ̸= int). To solve this, we employ the extended subtyping relationship

≤∗ that also allows for field covariance. The typing rules for this relationship are defined in Appendix B.

Definition 8 (Store Satisfiability). Given a heap typing environment H, a store γ is said to satisfy a store

typing environment Γ, written γ ⊨H Γ, if and only if:

• dom(γ) = dom(Γ)

• ∀x∈dom(Γ) γ(x) ⊨H Γ(x).

The store satisfiability relation requires that: (1) the domain of the store γ coincides with the domain

of the store typing environment Γ; and (2) all values in γ satisfy their respective types in Γ. Note that this

relation only requires the heap typing environment H to resolve the type of object locations at runtime.

Definition 9 (Heap Satisfiability). A heap η is said to satisfy a heap typing environment H, written η ⊨ H,

if and only if:

• dom(η) = dom(H)

• ∀l∈dom(η) dom(η(l)) = dom(H(l))

• ∀l∈dom(η) ∀f∈dom(η(l)) typeH(η(l, f)) = H(l, f)

The heap satisfiability relation requires that: (1) the domain of the heap η coincides with the domain

of the heap typing environment Γ; (2) the fields of a given location l within the heap η coincide with the

fields of the corresponding object type in H(l); and (3) the value of each field f in a location l within the

heap η matches its respective type in the H.
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4.4.2 Type Safety

As mentioned in the beginning of the section, we claim that our type system is safe in that the execution

of a well-typed statement consistently preserves state satisfiability. In other words, if a statement s of a

function g is typeable with respect to a given global typing context ∆ and store typing environments Γ

and Γ′, written g,∆ ⊢ {Γ} s {Γ′}, and if one executes s in a state (η, γ) such that η, γ ⊨ H,Γ, for a given

heap typing environment H, then a completed execution will produce a state satisfying the final heap

and store typing environments. Formally, this can be expressed as:

η, γ ⊨ H,Γ ∧ g,∆ ⊢ {Γ} s {Γ′} ∧ ⟨H, η, γ, s⟩ ⇓i ⟨H′, η′, γ′⟩ =⇒ η′, γ′ ⊨ H′,Γ′

To ensure the safety of our type system, we rely on certain auxiliary properties regarding: (1) the

soundness of expression typing; (2) the soundness of conditional type refinements; and (3) the sound-

ness of pattern binding. In the remaining section, we describe these properties and subsequently

present the main soundness proof of the type system.

Well-Typed Expressions In order to establish type safety for TESL statements, we first need to estab-

lish type safety for TESL expressions. This involves demonstrating that if an expression e is typed with τ

within a store typing environment Γ, and if the evaluation of e in a store γ satisfying Γ results in the value

v, then v must satisfy τ . Lemma 1 formally establishes this property.

Lemma 1 (Type Safety for Expressions). For all store γ, store typing environments Γ, heap typing

environment H, and expression e, it holds that:

γ ⊨H Γ ∧ Γ ⊢ e : τ ∧ JeKγ = v =⇒ v ⊨H τ

Proof. The proof follows by induction on the structure of e. Assume that γ ⊨H Γ (H1), Γ ⊢ e : τ (H2), and
JeKγ = v (H3). Therefore, we have that:

[VALUE] e = v′ (H4). From H2 and H4, it follows that:

• I1.1: τ = type(v′)

From H3 and H4, it follows that:

• I2.1: v′ = v

From I1.1 and I2.1, it follows that:

• I3.1: τ = type(v)

Equation I3.1 establishes the result.

[VARIABLE] e = x (H4). From H2 and H4, it follows that:

• I1.1: Γ(x) = τ

From H3 and H4, it follows that:
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• I2.1: γ(x) = v

Equations I1.1, I2.1, and H1 establish the result.

[UNARY OPERATION] e = ⊖ e′ (H4). From H2 and H4, it follows that there exists τ ′ ∈ T such that:

• I1.1: Γ ⊢ e′ : τ ′

• I1.2: ⊖(τ ′) = τ

From H3 and H4, it follows that there exists v′ ∈ V al such that:

• I2.1: Je′Kγ = v′

• I2.2: ⊖(v′) = v

Applying the induction hypothesis to I1.1, I2.1, and H1, we conclude that:

• I3.1: v′ ⊨H τ ′

Applying the definition of UNARY OPERATION to I3.1, we conclude that:

• I4.1: ⊖(v′) ⊨H ⊖(τ ′)

Equations I1.2, I2.2, and I4.1 establish the result.

[BINARY OPERATION] e = e1 ⊕ e2 (H4). From H2 and H4, it follows that there exists τ1, τ2 ∈ T such that:

• I1.1: Γ ⊢ e1 : τ1

• I1.2: Γ ⊢ e2 : τ2

• I1.3: ⊕(τ1, τ2) = τ

From H3 and H4, it follows that there exists v1, v2 ∈ V al such that:

• I2.1: Je1Kγ = v1

• I2.2: Je2Kγ = v2

• I2.3: ⊕(e1, e2) = v

Applying the induction hypothesis to I1.1, I2.1, and H1, we conclude that:

• I3.1: v1 ⊨H τ1

Applying the induction hypothesis to I1.2, I2.2, and H1, we conclude that:

• I4.1: v2 ⊨H τ2

Applying the definition of BINARY OPERATION to I3.1 and I4.1, we conclude that:

• I5.1: ⊕(v1, v2) ⊨H ⊕(τ1, τ2)

Equations I1.3, I2.3, and I5.1 establish the result.

[TYPE CASTING] e = e′ as τ H4 From H2 and H4, it follows that there exits τ ′ ∈ T such that:

• I1.1: Γ ⊢ e′ : τ ′

• I1.2: τ ′ ≤ τ

From H3 and H4, it follows that:

• I2.1: Je′Kγ = v

Applying the induction hypothesis to I1.1, I2.1, and H1, we conclude that:

• I3.1: v ⊨H τ ′

• I3.2: v ≤∗ τ ′

By correctness of extended subtyping, equations I1.2 and I3.2 establish the result.
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Well-Typed Conditional Type Refinements In order to establish type safety for if-then-else and

while statements, we first need to establish type safety for the Conditional Type Refinement (CTR)

mechanism. Recall that this mechanism is employed to refine the type of a variable based on the vari-

able’s usage within conditional expressions, depending on whether the associated expression evaluates

to true or false. Proving type safety for the CTR mechanism involves demonstrating that if an expression

e evaluates to true under a store γ satisfying Γ, and if the CTR mechanism generates Γ′ by refining the

types in Γ based on e, then γ must also satisfy Γ′. Similarly, if e evaluates to false, γ must satisfy a Γ′

generated based on ¬e. Lemma 2 formally establishes type safety for the two cases of this property.

Lemma 2 (Type Safety for Conditional Type Refinements). For all heap η, store γ, heap typing environ-

ment H, store typing environments Γ and Γ′, and expression e, it holds that:

η, γ ⊨ H,Γ ∧ JeKγ = true ∧ βΓ(e) = Γ′ =⇒ η, γ ⊨ H,Γ′

η, γ ⊨ H,Γ ∧ JeKγ = false ∧ βΓ(¬e) = Γ′ =⇒ η, γ ⊨ H,Γ′

(The proof follows by induction on the structure of e)

Well-Typed Pattern Binding In order to establish type safety for match-with statements, we first need

to establish type safety for the Type Pattern Binding (TPB) mechanism. Recall that this mechanism is

employed to update the program store with the variables specified by the matched pattern. Proving

type safety for the TPB mechanism involves demonstrating that if an object value o satisfying the sigma

case σ of the sigma type τ is matched against a pattern ψ under the store γ satisfying Γ, and if the

TPB mechanism generates Γ′ by extending Γ with the bindings of ψ, then the new store γ′ must satisfy

Γ′. Lemma 3 formally establishes type safety for this property.

Lemma 3 (Type Safety for Pattern Binding). For all heap η, stores γ and γ′, heap typing environment H,

store typing environments Γ and Γ′, pattern ψ, object value o, object type σ, and sigma type τ , it holds

that:

η, γ ⊨ H,Γ ∧ match(ψ, o, γ) = γ′ ∧ Ψα,τ (ψ, σ,Γ) = Γ′ ∧ τ = Σ[α] {..., σ, ...} ∧ o ≤∗ σ[α/τ]

=⇒ η, γ′ ⊨ H,Γ′

(The proof follows by induction on the number of elements of ψ)

Type Safety for Typed ECMA-SL Theorem 1 states that the type system for Typed ECMA-SL satisfies

the type safety property introduced at the beginning of this section. To prove this theorem, we rely on the

three lemmas introduced earlier. In the following, we prove the theorem for some semantic rules from the

intra-procedural fragment of the language. The remaining statements are addressed in Appendix A.2.

Theorem 1 (Soundness - Type Safety). For all heaps η, η′, stores γ, γ′, heap typing environments H,H′,

store typing environments Γ,Γ′, function g, global typing context ∆, and statement s it holds that:
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η, γ ⊨ H,Γ ∧ g,∆ ⊢ {Γ} s {Γ′} ∧ ⟨H, η, γ, s⟩ ⇓i ⟨H′, η′, γ′⟩ =⇒ η′, γ′ ⊨ H′,Γ′

Proof. The proof follows by induction on the derivation of the judgement ⟨H, η, γ, s⟩ ⇓i ⟨H′, η′, γ′⟩. As-
sume that η, γ ⊨ H,Γ (H1), g,∆ ⊢ {Γ} s {Γ′} (H2), and ⟨H, η, γ, s⟩ ⇓i ⟨H′, η′, γ′⟩ (H3). Therefore, we
have that:

[SKIP] s = skip (H4). From H2 and H4, it follows that:

• I1.1: Γ′ = Γ

From H3 and H4, it follows that:

• I2.1: H′ = H

• I2.2: η′ = η

• I2.3: γ′ = γ

Equations I1.1, I2.1, I2.2, I2.3, and H1 establish the result.

[FIELD LOOKUP] s = x := e.f (H4). From H2 and H4, it follows that there exists σ ∈ TObj and τf ∈ T
such that:

• I1.1: Γ ⊢ e : σ

• I1.2: ft(σ, f) = τf

• I1.3: Γ′ = Γ[x 7→ τf ]

From H3 and H4, it follows that there exists l ∈ Loc and v ∈ V al such that:

• I2.1: JeKγ = l

• I2.2: η(l, f) = v

• I2.3: γ′ = γ[x 7→ v]

• I2.4: H′ = H

• I2.5: η′ = η

Applying the Lemma 1 (Type Safety for Expressions) to I1.1, I2.1, and H1, we conclude that:

• I3.1: l ⊨H σ

• I3.2: H(l) ≤∗ σ

Applying the correctness of covariant object subtyping to I1.2 and I3.2, we conclude that:

• I4.1: ft(H(l), f) ≤∗ τf

Applying the typing rules of the ft function to H1, we conclude that:

• I5.1: typeH(η(l, f)) = ft(H(l), f)

From I2.2, I4.1, and I5.1, it follows that:

• I6.1: typeH(v) ≤∗ τf

• I6.2: v ⊨H τf

From I1.3, I2.3, I6.2, and H1, it follows that:
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• I7.1: γ′ ⊨H Γ′

Equations I2.4, I2.5, I7.1, and H1 establish the result.

[IF-THEN-ELSE (TRUE)] s = if (e){s1} else {s2} (H4) and JeKγ = true (H5). From H2 and H4, it follows
that there exists τe ∈ T , and store typing environments Γ1, Γ2, Γ′

1, and Γ′
2, such that:

• I1.1: Γ ⊢ e : τe

• I1.2: τe ≤ bool

• I1.3: βΓ(e) = Γ1

• I1.4: βΓ(¬e) = Γ2

• I1.5: g,∆ ⊢ {Γi} si {Γ′
i} |2i=1

• I1.6: Γ′ = Γ′
1 ⊔ Γ′

2

From H3 and H4, it follows that:

• I2.1: ⟨H, η, γ, s1⟩ ⇓i ⟨H′, η′, γ′⟩

Applying the Lemma 2 (Type Safety for Conditional Type Refinements) to H1, H5, and I1.3, we conclude
that:

• I3.1: η, γ ⊨ H,Γ1

Applying the induction hypothesis to I1.5, I2.1, and I3.1, we conclude that:

• I4.1: η′, γ′ ⊨ H′,Γ′
1

By correctness of union subtyping, equations I1.6 and I4.1 establish the result.

[MATCH-WITH] match ewith {ψi → si |ni=1} (H4) From H2 and H4, it follows that there exists τ ∈ T ,
σ1, ..., σn ∈ TObj, and store typing environments Γ1, ..., Γn,Γ

′
1, ..., Γ

′
n, such that:

• I1.1: Γ ⊢ e : τ

• I1.2: τ = Σ[α] {σ1, ..., σn}

• I1.3: Ψα,τ (ψi, σi,Γ) = Γi |ni=1

• I1.4: g,∆ ⊢ {Γi} si {Γ′
i} |ni=1

• I1.5: Γ′ = ⊔{Γ′
1, ..., Γ

′
n}

From H3 and H4, it follows that there exists j ∈ [1, n], l ∈ Loc, and a store γj , such that:

• I2.1: JeKγ = l

• I2.2: match(ψj , η(l), γ) = γj

• I2.3: ⟨H, η, γj , sj⟩ ⇓i ⟨H′, η′, γ′⟩

Applying the Lemma 1 (Type Safety for Expressions) to I1.1, I2.1, and H1, we conclude that:

• I3.1: l ⊨H τ

• I3.2: H(l) ≤∗ τ

Applying the correctness of sigma folding subtyping to I1.2 and I3.2, we conclude that there exists
σ′ ∈ TObj such that:
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• I4.1: σ′ ∈ {σ1, ..., σn}

• I4.2: H(l) ≤∗ σ′[τ/α]

Applying the semantics of the match-with statement to I1.3, I2.2, I4.2, and H1, it follows that

• I5.1: η(l) ≤∗ σj [τ/α]

Applying the Lemma 3 (Type Safety for Pattern Binding) to H1, I1.2, I1.3, I2.2, and I5.1, we conclude
that:

• I7.1: η, γj ⊨ H,Γj

Applying the induction hypothesis to I1.4, I2.3, and I7.1, we conclude that:

• I8.1: η′, γ′ ⊨ H′,Γ′
j

By correctness of union subtyping, equations I1.5 and I8.1 establish the result.
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5
Implementation
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In this chapter, we discuss the real implementation of the type system for the ECMA-SL language.

In Section 5.1, we provide a high-level overview of the system’s architecture. Then, in Section 5.2, we

enumerate the features of the real type system that were either omitted or simplified in the formal model

of the system. Lastly, in Section 5.3, we analyse the system’s error reporting mechanism, responsible

for providing user feedback regarding type-related issues found within TESL programs.
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5.1 Architecture

Recall the ESL execution pipeline depicted in Figure 2.6. Our work will be focused on the ECMASL2Core

component. As previously described, this component is responsible for compiling ECMA-SL programs

into Core ECMA-SL. Its modular architecture is portrayed in Figure 5.1. The figure is colour-coded:

green for modules that were fully implemented in the context of this thesis, yellow for partially extended

or modified modules, and red for modules that were not modified.

Figure 5.1: Architecture of the ECMA-SL compiler.

To compile an ESL program, the system starts by parsing the code and generating the program’s

AST. After this initial stage, the system resolves all imports and processes all macros. Macros are

language constructs that resemble functions in structure but differ in how they operate. Rather than

being evaluated at runtime, they are expanded by the compiler into their corresponding code at the

locations where they are used. Macros allow developers to encapsulate code patterns within a single

macro call, increasing maintainability and code reusability. We revisit ESL macros in Section 6.1.

Before finalizing the compilation into CESL, the system employs the new type checker module. This

module contains about 2000 lines of code written in OCaml [20], accounting for approximately 15% of the

total size of the ECMASL2Core component. The type checker recursively traverses the program’s AST

and evaluates the types of its elements, ensuring that they conform to the typing rules defined within

the Subtyping submodule. Additionally, it relies on the Error Reporting submodule to generate error

messages when necessary. This process ensures that the program adheres to the specified type anno-

tations and provides effective feedback regarding type-related issues otherwise. After type checking the

program, the compiler module transforms the program’s AST into a Core ECMA-SL program.
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5.2 Extra Features

Consider the formal model for the Typed ECMA-SL language described in Section 4.2. As previously

stated, this model does not precisely adhere to the type system implemented in the context of this

thesis, as several simplifications were required to facilitate the model’s formalization and soundness

proof. These differences include, among others, the simplification of some type system features, such

as the Conditional Type Refinement (CTR) mechanism and the omission of certain types.

In this section, we describe the most important aspects that have been streamlined or excluded from

the formal model of Typed ECMA-SL. For each of these aspects, we provide a concise description, a

motivating example, and a rationale for their implementation in the type system. Note that the syntax

used throughout the following examples slightly differs from that in the formal model of the language, as

we are now employing the actual syntax of Typed ECMA-SL.

5.2.1 Controlled Type Updates

The formal model of Typed ECMA-SL describes a system with no explicit type declarations for variables.

In this model, type annotations are exclusively employed in the definition of functions, type variables (α),

and as an argument of the type casting expression. In contrast, the TESL implementation allows the

declaration of a type for a variable during an assignment operation. While such annotations establish

the type that all subsequent assignments to the variable must adhere to, the language maintains the

flexibility to allow the redefinition of the variable’s type through the use of a different type annotation.

1 x: int := 10; /* typeof(x) => int */

2 x := 20; /* [Valid] 20 is subtype of int */

3 x := "abc"; /* [Error] "abc" is not compatible with int */

4 x: string := "abc"; /* [Valid] typeof(x) => string */

Listing 5.1: Controlled type updates in Typed ECMA-SL.

Listing 5.1 illustrates controlled type updates in Typed ECMA-SL. In line 1, we declare x as an integer

variable and initialize its value with the literal 10. Line 2 highlights that we can assign any value to x, as

long as the value conforms to the current type of the variable, which, in this context, is int. However,

attempting an assignment that fails to meet this criterion results in the type error depicted in line 3.

Finally, line 4 illustrates how the type of x can be redefined by employing a different type annotation

during an assignment operation.

There are scenarios where updating the type of a variable is not possible. For example, consider

a variable that was created outside a while loop. If we attempt to update its type while inside the

looped block, the type system must generate a BadTypeUpdate error. Allowing for such an operation

could potentially conflict with the typing rule for while statements, which requires the resulting typing

environment to be compatible with the initial one.
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While mainstream languages, such as C++ and Java, typically allow for the declaration of a variable’s

type, they often prohibit updates to it thereafter. In Typed ECMA-SL, controlled type updates serve as

an important feature, as they introduce flexibility and expressiveness to the language. In particular, they

allow us to accurately type functions within the reference interpreter, where the same variable is used at

different points to store different types of values.

5.2.2 Advanced Conditional Type Refinement

When presenting the formal model of Typed ECMA-SL, we introduced the Conditional Type Refinement

(CTR) mechanism. This mechanism allows the type of a variable to be refined according to how the vari-

able is employed in conditional expressions within if-then-else and while statements. For instance,

we can use the typeof operator inside a conditional expression to narrow down a union-type variable

into one of its primitive cases. While the modelled mechanism works effectively, its implementation in

Typed ECMA-SL is more sophisticated, as it supports additional types and logical operators.

1 x: 10 | string | boolean := 10; /* typeof(x) => 10 | string | boolean */

2

3 if (typeof(x) = int || x = "abc") {} /* typeof(x) => 10 | "abc" */

4 elif (x = true) {} /* typeof(x) => true */

5 else {} /* typeof(x) => string | false */

Listing 5.2: Conditional type refinements in an if-then-else statement.

Listing 5.2 illustrates some of the conditional refinements supported by the type system within an

if-then-else statement. The program starts by creating the union-type variable x, which can either

store the literal 10, a string, or a boolean value. Lines 3 to 5 test the variable against several conditions,

refining its type within each block of the if-then-else statement accordingly. In line 3, we evaluate

whether the variable is holding an integer or the string literal "abc". This test narrows the type of x

within the if block to the union of the literal 10 (the only integer value that the variable can hold) and

the literal "abc". In line 4, we check if x is true, narrowing down its type within the elif block to the

boolean literal true. Finally, in line 5, the system knows that x is neither 10 nor "abc", since it would

have passed the first test of the if-then-else statement otherwise. Additionally, it cannot be true, or

it would have passed the second test of the if-then-else statement. Consequently, the only possible

values that x may be holding are strings (excluding "abc") and the boolean literal false.

Evidently, this system is highly expressive and useful when typing the reference interpreter. In the

ES standard, there are multiple scenarios where we need to test values against multiple and complex

conditions. One such example exists within the semantics of the typeof operator,1 which needs to test

a value against all JS primitive types and, if all tests are unsuccessful, assert that the value is an object.
1typeof operator - https://262.ecma-international.org/14.0/#sec-void-operator-runtime-semantics-evaluation.
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5.2.3 Object Operations on Union Types

Some operations, such as field lookups, are specifically designed to work with object types. However,

there are scenarios where it can be useful to perform these operations directly on union types. Take, for

instance, a union of object types where all objects share a common field. In such cases, performing a

field lookup on the shared field is a safe operation, given that the field exists in all objects. The resulting

type of this operation is the union of all field types.

1 typedef FunctionObject_t := { internal: false , ... };

2 typedef InternalFunction_t := { internal: true , ... };

3

4 func: FunctionObject_t | InternalFunction_t := getFunc ();

5 if (func.internal = true) {

6 /* call internal function */

7 } else {

8 /* call JS function */

9 }

Listing 5.3: Evaluation of different types of function calls in the reference interpreter.

Listing 5.3 simplifies the mechanism responsible for evaluating function calls within our reference

interpreter. The interpreter supports two types of functions: (1) normal JS functions (line 1), stored

as function objects as described by the ES standard; and (2) internal functions (line 2), used to store

functions whose implementation resides in the interpreter’s code itself (e.g., built-in functions like the

Array.prototype.push). To distinguish between these two function types, the interpreter relies on the

object’s internal field. By inspecting its value (line 5), the interpreter can refine the type of func, and

then execute the required steps to evaluate each function accordingly. Keep in mind that this conditional

statement is only possible because the system supports field lookups on union type values.

The ability to conduct certain object operations directly on union types is valuable when handling

complex unions of objects. In particular, union lookups offer a new approach for deconstructing union

types, as shown by the previous example. While the ES standard does not mandate such usage, this

feature introduces flexibility into Typed ECMA-SL programs, allowing developers to work with union types

in a more versatile manner and enhancing the overall expressiveness of their code.

5.2.4 Sigma Types and Flexible Pattern Matching

Consider sigma types and the match-with statement described in the formal model of Typed ECMA-SL.

In the type system’s implementation, sigma types are defined as disjoint unions of object types, where

each disjoint case includes a special field known as the discriminant. This field is responsible for ensur-

ing the uniqueness of each disjoint case of the sigma type. Furthermore, rather than using the bound

variable α to define a recursive sigma type, we create them by referencing the type alias (i.e., the type

variable α) of the type currently being defined. In essence, sigma types are very similar to variant types

found in modern functional languages, such as OCaml and Haskell.
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Our implementation of the match-with offers greater flexibility and expressiveness compared to the

one described for the formal model of Typed ECMA-SL. While the model required complete matches,

where each disjoint case would appear once in the order in which they were defined within the sigma

type, our implementation provides the ability to: (1) have multiple patterns for the same disjoint case;

(2) define a default case; (3) detect incomplete matches; and (4) detect unused or invalid patterns.

1 typedef JSStmt_t := sigma[type]

2 | { type: "ExprStmt", expr: JSExpr_t }

3 | { type: "IfStmt", ..., alternative: JSStmt_t | null }

4 | ...

5

6 x: JSStmt_t := getStmt ();

7 match x with

8 | { type: "IfStmt", alternative: null } -> {} /* if statement without an else block */

9 | { type: "IfStmt", alternative: s2 } -> {} /* if statement with an else block */

10 | default -> {} /* all other statements */

Listing 5.4: Deconstruction of a JavaScript statement using the match-with construct.

Listing 5.4 shows a simplified declaration for the type of JS statements and a potential deconstruction

for it using a match-with. One example of a JavaScript statement is the if-then-else (line 3). This

statement stores an optional alternative field (i.e., the else block) which contains the code that will be

executed when the test evaluates to false. If there is no else block within the if-then-else statement,

then this field is set to null. In line 7, we match the JS statement against three different cases: (1) the

"IfStmt" case without an else block; (2) the "IfStmt" case with an else block of type JSStmt_t, that

gets assigned to variable s2; and (3) the default case, accounting for all other types of statements. Note

that if lines 7 and 8 were reversed, the system would raise an UnusedPatternCase warning because

all if-then-else statements would successfully match against the first pattern, rendering the second

one unreachable. Furthermore, without a default case at the end of the match-with statement, the

system would generate an IncompleteMatch error, as there would be no valid pattern for all other types

of statements, such as the "ExprStmt".

In the reference interpreter, there are multiple functions that rely on the match-with statement to

deconstruct complex datatypes into their multiple cases. To properly type them, our type system needs

to effectively handle complex patterns. Moreover, the ability to detect missing, invalid, and unused

pattern cases is useful, as this functionality not only enhances the robustness of the code but also

reduces the likelihood of bugs in complex pattern matching operations.

5.2.5 Additional Types

The types supported by the formal model of Typed ECMA-SL are insufficient for typing the values used

throughout the ECMAScript standard. Furthermore, there are other types that, despite not having any

associated value within the standard, are useful when typing the reference interpreters. In addition to

the types described in the formal model of the language, the type system includes:
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• The any type, which can be employed to bypass the type-checking mechanism since it stores val-

ues of any type and can also be assigned to a variable or field of any type. From an implementation

perspective, all types are a subtype of any, and any is a subtype of all types.

• The void type, mainly as the return type of functions that perform some action or side effect but

do not produce any meaningful value.

• The symbol type, which is used to type symbol values, such as ’NormalCompletion. ECMA-SL

includes a special symbol datatype used to represent immutable atomic string values that are

interned, meaning that two symbols with the same character content are considered the same

value throughout the execution of a program.

• List types, which represent ordered collections of elements. Lists are homogeneous, meaning all

elements within a list must be of the same type, and they are immutable, in that that they cannot

be modified. For example, the list type [int] can be used to store a list of integers.

• Tuple types, which group together a fixed number of elements into a single value. They are also

immutable, but unlike lists, tuples are heterogeneous, meaning they can have elements of different

types. For example, the tuple type int * string can be used as the type of a pair containing an

integer and a string value.

typedef JSBlock_t := { type: "BlockStmt", block: [JSStmt_t] }

Listing 5.5: Declaration of the type for a JavaScript block statement.

Listing 5.5 contains the type declaration for JavaScript block statements, JSBlock_t. In the ES stan-

dard, block statements are used to group multiple statements into a single compound statement. They

are commonly found in control structures like loops and conditional statements. Essentially, we can

perceive blocks as a list of statements; hence, we can type them with the list type [JSStmt_t].

These additional types are essential when typing the reference interpreter because their correspond-

ing values frequently appear in the ES standard. The void type, despite not having any associated val-

ues, is also valuable when typing procedures within the reference interpreter that do not yield any result.

These procedures are often associated with auxiliary functions that may not necessarily exist within the

text of the standard. Finally, the any type is particularly useful during the interpreter’s typing process. It

allows developers to temporarily assign a type to a variable or field, enabling the interpreter to compile

even in cases where it might not otherwise. They essentially serve as an additional mechanism to allow

developers to gradually type the reference interpreters, allowing for changes to be made incrementally

rather than all at once.
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5.2.6 Syntactic Checks

In Section 2.3, we identified the lack of easy syntactic checks as one of the most significant limitations of

the ECMA-SL language. Our implementation effectively addresses all the syntactic checks listed earlier,

such as identifying unknown variables and functions, as well as ensuring that all control paths end with

a return or throw statement. These mechanisms are available even for untyped programs.

1 typedef Obj_t := { foo: int , foo: string }; /* duplicate field error */

2

3 function main() {

4 x: int := unknownFun (); /* unknown function error */

5 y: int := unknownVar; /* unknown variable error */

6 if (y = 10) {

7 return y

8 } else {

9 /* missing return statement */

10 }

11 }

Listing 5.6: Syntactic checks in Typed ECMA-SL.

Listing 5.6 illustrates some of the issues that can now be identified in Typed ECMA-SL programs.

In this example, we start by creating the object type Obj_t, which contains two fields with the same

name foo. This is considered a syntactical error, as objects cannot have two distinct fields with the

same name. In line 4, we attempt to initialize variable x with the result of calling the undefined function

unknownFunc(), resulting in an UnknownFunction error. The error encountered in line 5 is similar to

the previous one, except that we instead attempt to reference the undefined variable unknownVar. Note

that, even though an error was detected during the initialization of y, the type system still allows this

variable to be referenced in lines 6 and 7 without producing another UnknownVariable error. Finally,

if the program enters the second branch of the if-then-else, the main() function will end without a

return or throw statement, which is not allowed according to the rules of the language.

The ability to identify syntactic errors represents a significant enhancement to the language. Without

these mechanisms, such errors might remain hidden until runtime, potentially leading to bugs that are

hard to locate. With these features in place, development in Typed ECMA-SL is expected to become

considerably more efficient and straightforward.

5.2.7 Unchecked Function Signatures

As mentioned in Section 4.1.2, Typed ECMA-SL allows the declaration of unchecked function signatures.

These signatures define the types for function parameters and return value without the need to type or

even implement the body of the function. They offer two key advantages: (1) the ability to type function

calls without having to type the function definition; and (2) the ability to call functions that are undefined

at the moment of compilation without producing the UnknownFunction syntactical error (Section 5.2.6).
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1 function Build_AST (): JSStmt_t;

2

3 function main() {

4 ast: JSStmt_t := Build_AST ();

5 return JS_Interpreter_Program(ast)

6 }

Listing 5.7: Use of unchecked function signatures to call an undefined function.

Listing 5.7 shows a simplified version of the ECMARef’s entry point. The interpreter starts by calling

the Build_AST() function to create the AST of the JavaScript program that will be executed. There are

two ways of achieving this: (1) generate the Build_AST() function in ESL, add it to the interpreters’

code, and then compile everything to CESL; or (2) generate the Build_AST() function in CESL and then

merge it with the CESL version of the interpreter. Naturally, the second approach is significantly faster

than the first, as it does not require the interpreter’s code to be recompiled every time we execute a

JS program. However, compiling the interpreter without defining the Build_AST() function raises the

UnknownFunction error; hence the need for the function signature in line 1.

Unchecked function signatures are an essential feature of Typed ECMA-SL. They offer several ad-

vantages, including the ability to gradually type the reference interpreter by providing temporary typed

function signatures before the actual functions are fully typed. Furthermore, they also enable signifi-

cant efficiency optimizations for the overall project, such as the one described in the previous example.

However, it is important not to use them excessively when typing the interpreter, as they can potentially

introduce bugs by leaving parts of the code unchecked.

5.3 Error Reporting

The primary goal of any type system is to offer developers informative feedback regarding type errors.

To accomplish this goal effectively, it is essential to have a robust error reporting mechanism. This mech-

anism aids developers in finding type-related issues, thereby speeding up the development process. In

particular, our objective is to ensure that developers can immediately identify the location, cause, and

solution for any type error simply by examining the error’s description. In essence, Typed ECMA-SL

error messages try to resemble those found in modern high-level languages and include:

• Error Category: Similarly to modern languages like C++ and Rust, TESL distinguishes two error

categories: type errors and type warnings. The distinction is subtle, as both errors and warnings

can potentially lead to crashes at runtime. However, while type errors inevitably lead to crashes,

type warnings may not necessarily cause issues. As a result, we allow programs to be compiled

with warnings, providing some flexibility to developers. For instance, an incomplete match-with

statement (Section 5.2.4) leads to a crash when attempting to process one of its missing cases.

Nevertheless, the programmer may know that certain cases within the respective sigma type are
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impossible based on the code’s structure, and thus, we may allow the compilation of the program.

Note that, by default, the type system does not compile programs with warnings. To change this

behaviour, programs need to be compiled with the tesl-ignore-warns flag.

• Cascading Error Descriptions: Primary error messages may be followed by a series of simpler

messages that provide additional context regarding the underlying cause of the error. For example,

the assignment x: { foo: int } := { foo: "abc" } results in the following error description:

TypeError: Value of type ’{ foo: "abc" }’ is not assignable to type ’{ foo: int }’.

Caused by: Types of property ’foo’ are incompatible.

Caused by: Value of type ’string’ is not assignable to type ’int’.

• Complete Error Location: This includes the name of the source file, the line number, and the

starting and ending characters within the line where the error occurred.

• Error Source: This includes a snippet of the code where the error occurred. If the system can

identify the segment of the code responsible for the error, then it will be highlighted.

1 function f(): string | boolean;

2

3 x: { foo: int | float } := { foo: f() };

(a) Typed ECMA-SL program.� �
TypeError: Value of type ’{ foo: (string | boolean) }’ is not assignable to type

’{ foo: (int | float) }’.

Caused by: Types of property ’foo ’ are incompatible.

Caused by: Value of type ’(string | boolean)’ is not assignable to type ’(int | float)’.

Caused by: Value of type ’string ’ is not assignable to type ’(int | float)’.

File "main.esl", line 3, characters 35 -37:

3 | x: { foo: (int | float) } := { foo: f() }

ˆ ˆ ˆ� �
(b) Output of the compilation.

Figure 5.2: Compilation of a Typed ECMA-SL program with an assignment type error.

Figure 5.2 depicts a program with an assignment type error, along with the corresponding error

message generated by the TESL compiler. Consider the code snippet in Figure 5.2a. In line 3, we

attempt to initialize variable x with the object value { foo: f() }. Since f refers to the function sig-

nature f: () → string | boolean declared in line 1, the type of the new object is determined to be

{ foo: string | boolean }. However, this type is not compatible with the one declared for variable x,

leading to the type error shown in Figure 5.2b. Note that our error reporting mechanism is able to find and

present the causes behind the incompatibility between the object types { foo: string | boolean }

and { foo: int | float }. Additionally, the compiler is able to identify and highlight the element of

the statement responsible for the type error, which in this case is the f() call.
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1 typedef Sigma_t := sigma[type]

2 | { type: "foo", foo: int }

3 | { type: "bar", bar: int };

4

5 y: Sigma_t := { type: "foo", foo: 10 };

6 match y with

7 | { type: "foo", foo: fd } -> {}

8 | { type: "foo", foo: 10 } -> {}

9 | default -> {};

(a) Typed ECMA-SL program.� �
Type Warning: This pattern -matching case is unused.

File "main.esl", line 8, characters 0 -33:

8 | | { type: "foo", foo: 10 } -> { ...

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ� �
(b) Output of the compilation.

Figure 5.3: Compilation of a Typed ECMA-SL program with an unused match-with pattern.

Figure 5.3 illustrates a match-with statement containing an UnusedPattern warning. In line 6 of

the code snippet (Figure 5.3a), we perform a matching operation on variable y of type Sigma_t. This

match-with statement contains three different patterns: (1) the pattern of line 7 that accepts all instances

of the sigma’s first disjoint case { type: "foo" } and assigns the value of the foo field to variable fd;

(2) the pattern of line 8 that also accepts instances of the first disjoint case, but only when foo is holding

the integer value 10; and (3) the default pattern of line 9 that accepts all other cases. Note that all

instances of the first disjoint case { type: "foo" } are caught by the first pattern, rendering the second

pattern unused and unreachable. The Typed ECMA-SL compiler recognizes this as a non-breaking issue

and consequently generates the corresponding type warning shown in Figure 5.3b.
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6
Evaluation

Contents
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In this chapter, we evaluate the type system developed for the Typed ECMA-SL language. Recall that

the primary goal of Typed ECMA-SL is to be used for typing the reference interpreters of the ESL project,

particularly ECMARef6. Given the size and complexity of this task, we started by using Typed ECMA-SL

to create a typed simplified interpreter for JavaScript. This interpreter supports the most fundamental

JS constructs and is structured similarly to the reference interpreters. Successfully typing the simpli-

fied interpreter suggests that it will be also possible to use Typed ECMA-SL to fully type the reference

interpreters. We describe this simplified interpreter and its typing process in Section 6.1. Following

that, in Section 6.2, we identify a number of problems that our type system is able to identify within the

ECMARef6 interpreter without adding type annotations to it.

6.1 Simplified JavaScript Interpreter

To understand the usefulness of the simplified JS interpreter in a broader context, it is helpful to revisit the

role that JS reference interpreters can play in the analysis of JavaScript programs. While certain types

of analysis require a highly precise model of the JavaScript language, such as the one implemented
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by the ECMARef6 interpreter, others do not demand such precision (e.g., the analysis of programs that

do not use unusual language features). Naturally, greater precision in more complex models comes at

a higher cost. Alternatively, one can use less precise but simpler language models. This is where our

simplified interpreter comes into play, allowing us to abstract much of the JavaScript complexity, albeit

at the cost of less precise analysis results.

In the context of this project, the simplified interpreter provides a good platform for assessing the

effectiveness of our type system, as it allows us to test complex typing features required by the reference

interpreters without having to type thousands of lines of code. Despite its relative simplicity compared

to the complete reference interpreter, our simplified interpreter is able to handle the most common JS

expressions and statements. They include, among others, variable declarations and assignments, unary

and binary operators, the most used control flow statements, function calls, and objects. Additionally,

the interpreter supports a simplified implementation of the built-in Array library, providing mechanisms

to initialize arrays as well as operations for adding, accessing, and updating array elements.

Figure 6.1: Modular architecture of the Simplified JavaScript interpreter.

Figure 6.1 depicts the architecture of the simplified interpreter developed within the context of this

thesis. Our interpreter was written in Typed ECMA-SL, using a modular approach in which each module

offers a well-defined interface for its functionality. This design approach provides the flexibility to change

the implementation of a module without compromising the overall functionality of the interpreter. A

fundamental module of the system is the Object module, which implements the behaviour of JS objects.

This module serves as the foundation for others, including: (1) the Function Object (FO), which stores

the components of a function; (2) the Global Object (GO), where internal built-in functions are stored;

and (3) the Array Object (AO), containing our partial implementation of the built-in Array library.
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The core functionality of the main interpreter resides within the Interpreter Main Loop (IML). This

component comprises the primary functions responsible for deconstructing and evaluating the elements

within the JavaScript Abstract Syntactic Tree, including:

• JS literals, such as numbers, strings, booleans, and objects;

• JS expressions, such as the AssignmentExpression, BinaryExpression, and CallExpression;

• JS statements, such as the BlockStatement, IfStatement, and BreakStatement; and

• JS declarations, such as the VariableDeclaration and FunctionDeclaration.

typedef JSStmt_t := sigma[type]

| { type: "BlockStatement", body: [JSStmt_t] }

| { type: "IfStatement", test: JSExpr_t , consequent: JSStmt_t , alternate ?: JSStmt_t }

| { type: "BreakStatement", label: null }

| ...

(a) Type declaration for JavaScript statements.

typedef JSObject_t := {

__js_props__: { *: JSVal_t },

__proto__: JSObject_t | null ,

resolveProperty: "resolveObject",

updateProperty: "updateObject"

}

(b) Type declaration for JavaScript objects.

typedef JSScope_t := {

store: { *: JSVal_t },

parent: JSScope_t | null ,

thisBinding: JSObject_t ,

globalObject: JSObject_t

}

(c) Type declaration for JavaScript scopes.

Figure 6.2: Type declarations in the Simplified JavaScript Interpreter.

Figure 6.2 illustrates three type declarations used to annotate the simplified JS interpreter. Fig-

ure 6.2a contains a partial definition of the type for JS statements, JSStmt_t. This declaration resorts to

a sigma type (discussed in Section 5.2.7), where each disjoint case represents a different JS statement.

In particular, we provide the declarations for the following JS statements: (1) BlockStatement, which

uses the list type [JSStmt_t] to type its body field; IfStatement, which resorts to the optional typing

operator ?: to type its optional alternative field; and (3) BreakStatement, where its label field is typed

as null, since the interpreter does not support labelled statements.

Figure 6.2b provides the type declaration for JS objects, JSObject_t. In our implementation, we

model each JS object with two ESL objects: one of type JSObject_t for storing its internal properties,

and another of type { *: JSVal_t } for storing its named properties. The latter is modelled with a

summary type that allows the object to store an arbitrary number of JSVal_t properties, and it is ac-

cessed via __js_props__. Additionally, the internal object has the following properties: (1) __proto__,

of type JSObject_t | null, holding the internal prototype of the object, if any; (2) resolveProperty,

of type "resolveProperty", holding the name of the function used to resolve object properties; and

(3) updateProperty, of type "updateProperty", holding the name of the function used to update object

properties. Illustratively, the structure of the object { foo: 10, bar: "abc" } is given by Figure 6.3.
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Figure 6.3: Representation of a JavaScript object in the Simplified JavaScript Interpreter.

Lastly, Figure 6.2c provides the type declaration for JS scopes, JSScope_t. Similarly to objects,

scopes include a map between identifiers and JS values (store property). Additionally, they can be

associated with a parent scope, which indicates the scope where the function was originally defined,

and they also maintain a reference to the current this environment1 and global object2 to resolve the

this expression and access JS built-in functions defined within the interpreter, respectively.

1 function interpreterStmt(scope: JSScope_t , s: JSStmt_t ): JSCompletion_t {

2 match s with

3 | { type: "ReturnStatement", argument: arg } -> {

4 retVal: JSCompletion_t := interpreterExpr(scope , arg);

5 @checkAbruptCompletion(retVal );

6 return ReturnCompletion(retVal)

7 }

8 | { type: "IfStatement", test: test , consequent: stmt1 , alternate: stm2 } -> {

9 testVal: JSCompletion_t := interpreterExpr(scope , test);

10 @checkAbruptCompletion(testVal );

11 if (typeof(testVal) != boolean) {

12 raiseError ("Illegal test expression", testVal)

13 };

14 if (testVal) {

15 return interpreter(scope , stmt1)

16 } elif (!( stmt2 = null)) {

17 return interpreterStmt(scope , stmt2)

18 } else {

19 return NormalCompletion(’empty)

20 }

21 }

22 | ...

23 }

Listing 6.1: Interpreter Main Loop (Statements) of the Simplified JavaScript Interpreter.

Listing 6.1 features a partial implementation of the interpreterStmt(scope, s) function within the

Interpreter Main Loop. This function uses the match-with statement to deconstruct JS statements into

their various types and evaluate each accordingly, returning a JSCompletion_t. In the JS specification,

completions3 are abstract data structures used to describe the runtime propagation of values and control
1this operator - https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
2Global object - https://developer.mozilla.org/en-US/docs/Glossary/Global_object
3JavaScript completions - https://262.ecma-international.org/14.0/#sec-completion-record-specification-type
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flow. The language describes normal completions for regular data propagation and abrupt completions

for exceptional non-local transfers of control. The latter includes the return, break, continue, and throw

completions associated with the return, break, continue, and throw statements, respectively.

The first statement in Listing 6.1 is the return statement. To process this statement, we start by

evaluating its argument using the JS expression interpreter (line 4). Then, we need to check the type

of the resulting completion, since evaluating the expression could have resulted in an error. To do so,

we resort to the @checkAbruptCompletion(c) macro (line 5) that, once expanded, tests if testVal is a

normal completion and extracts its value. The implementation of the macro is depicted in Listing 6.2.

If testVal is a normal completion, then we encapsulate its value on a return completion and return it;

otherwise, we simply return the obtained abrupt completion.

1 macro checkAbruptCompletion(c: JSCompletion_t) {

2 if (getCompletionType(c) = ’Normal) {

3 c: JSVal_t := getCompletionValue(c)

4 } else {

5 return c

6 }

7 }

Listing 6.2: ESL macro to test the type and extract the value of normal completions.

The second statement shown in Listing 6.1 is the if-then-else statement. In this statement, we

start by evaluating the conditional test expression and testing if the resulting value is a boolean (lines 9

to 13). If so, there are three possible evaluation scenarios: (1) if test evaluates to true, we execute

the consequent statement; (2) if test evaluates to false and there is an else block, we evaluate the

alternate statement; and (3) if test evaluates to false and there is no else block, we terminate the

if-then-else statement with a normal completion without any meaningful value.

Module / File #Lines #Functions #Typedefs #Type Annotations Typing Effort

Completion 60 8 2 16 31.42%
Object 38 3 2 10 56.19%

Function Object 29 1 2 8 86.24%
Global Object 14 2 0 4 7.56%
Array Object 48 3 1 14 27.20%

Internal Function 36 5 1 15 43.44%
Scope 85 8 1 27 27.08%

InterpreterExpr 347 7 23 65 37.45%
InterpreterStmt 131 1 12 10 65.84%

Entry Point 30 2 1 7 19.96%

9 Files 818 41 45 176 38.52%

Table 6.1: Effort metrics for the development and typing of the Simplified JavaScript Interpreter.
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To understand the effort associated with typing our simplified interpreter for JavaScript, consider

Table 6.1. This table shows the number of lines, functions, type definitions/signatures, and type an-

notations within each module of our simplified JS interpreter. Additionally, we include an extra column

indicating the typing effort for each module. The typing effort corresponds to the percentual increase in

size (number of characters) between the untyped module and its typed version. Note that the last row

contains the totals for each column, except for typing effort which shows the average instead.

As shown in the table, the increase in size between the untyped interpreter and its typed version is,

on average, 38.52%. Upon inspecting the implementation of each module, we consider this to be a pes-

simistic estimation of the effort required to type the reference interpreters, since the main contributors

to the typing effort are type declarations rather than type annotations. This observation is corroborated

by the global object module, which has the lowest typing effort and does not contain any type defini-

tions. We deduce that the effort of typing the reference interpreters will be significantly smaller, as type

definitions can be reused more often throughout a much larger codebase.

Type System Feature #Uses Example

Controlled Type Updates 1 Extract the value from a completion to the same variable
(Listing 6.2).

Conditional Type Refinements 10 Check if the object prototype is null and use it otherwise
(Object.resolveObject).

Object Operations on Unions 2 Differentiating between internal functions and JS functions
(Listing 5.3).

Sigma Types 2 Type definition for JS statements (Figure 6.2a).

Pattern Matching with Sigmas 8 Main interpreter loop for JS statements (Figure 6.2a.)

Additional Types 42 Definition of the type for the body of a BlockStatement

(Listing 5.5).

Unchecked Function Signatures 1 Signature of the buildAst() function (Listing 5.7).

Optional Typing 1 Type declaration for the alternate block in if-then-else

statements (Figure 6.2a).

Summary Types 2 Type declaration for stores (Figure 6.2c).

Recursive Types 29 Type declaration for JS statements (Figure 6.2a).

Table 6.2: Features of the type system used while typing of the Simplified JavaScript Interpreter.

Table 6.2 summarizes the key features of the TESL type system. It provides a count of occurrences

for each feature within the typed version of our simplified JS interpreter, along with a brief example of

the feature’s usage. As you can see, every fundamental feature of the type system finds at least one

application within the simplified interpreter. Additional types (in particular list types) and recursive types

play a vital role when typing the interpreter, as they are constantly required by the JavaScript’s AST.

Essentially, they are needed to define the types of multiple JS expressions and statements. Conditional

type refinements and pattern matching are also essential features throughout the interpreter.
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6.2 Syntactical Issues in the ECMARef6

As mentioned in the beginning of this chapter, typing the ESL project reference interpreters, namely the

ECMARef5 and ECMARef6, is a very time-consuming task that falls beyond the scope of this thesis.

However, as discussed in Section 5.2.6, the TESL type system includes a mechanism to perform easy

syntactic checks within an ESL program. These syntactic checks are associated with practices that,

despite compilable, can potentially generate issues when executing the program. They include, among

others, calling functions without providing all the required arguments, referencing undefined variables,

and having execution paths that do not end with a return or throw statement. We can thus employ our

type system to assess whether our reference interpreters are free of these syntactical issues.

Syntactical Error Description ECMARef5 ECMARef6

DuplicateParam Function defined with two identically named parameters - -

DuplicateFld Object defined with two identically named fields - -

DuplicatePatFld Pattern defined with two identically named fields - -

UnknownVar Referencing an uninitialized variable 19 27

UnknownFunction Calling an undefined function - -

NExpectedArgs Calling a function with missing/extra arguments 1 6

UnreachableCode Code that can never be reached - 23

OpenCodePath Execution path that does not return or throw 9 12

Table 6.3: Syntactical issues detected within the ECMARef5 and ECMARef6 interpreters.

Table 6.3 enumerates the most important syntactical checks performed by Typed ECMA-SL and, for

each of them, tallies the number of occurrences detected in the ECMARef5 and ECMARef6 interpreters.

We can use this information to check our implementation and determine whether these syntactical errors

stem from issues within our code or if they are inherent to the JS standard. This analysis reveals four

distinct error categories within our reference interpreter: unknown variables, calls with the wrong number

of arguments, unreachable code, and open code paths. The most troublesome errors are references to

unknown variables and calls with missing arguments. Even though the program can still run with these

issues, it does so by assuming that missing variables and arguments have undefined values. While this

behaviour might be expected in some scenarios, it may lead to subtle bugs that are hard to find.

Figure 6.4 illustrates one of the syntactical errors that the TESL type system is able to detect within

the ECMARef6 interpreter. The error is found at the SuperPropertyEvaluationA(scope, Expression)

function (Figure 6.4a), which is used to evaluate the JavaScript’s super expression. This function starts

by calling the JS_Interpreter_Expr(Expression, scope) function (line 10), but it fails to provide the

second argument required by it (i.e., the scope parameter). This oversight results in a bug at runtime
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1 function JS_Interpreter_Expr(Expression , scope) {

2 return JS_Interpreter_PrimaryExpression(Expression , scope)

3 };

4

5 ...

92 function SuperPropertyEvaluationA(scope , Expression) {

93 /* 1. Let propertyNameReference be the result of evaluating Expression. */

94 propertyNameReference := JS_Interpreter_Expr(Expression );

95 ...

96 }

(a) ECMARef6 implementation.� �
TypeError: Expected 2 arguments , but got 1.

File " ES6_interpreter /section 12/ section_12 .3. esl", line 94, characters 29 -59:

94 | propertyNameReference := JS_Interpreter_Expr(Expression)

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ� �
(b) Output of the compilation.

Figure 6.4: Syntactical error (missing arguments) within the ECMARef6 interpreter.

since super expression is being evaluated using an undefined scope. However, our type system can

prevent this issue by finding this fault at compile time, generating the error message in Figure 6.4b.

The fact that we were able to detect errors by applying the TESL type to the untyped versions of

the reference interpreters serves as additional evidence of the system’s value. It also suggests that

there may be other bugs within the interpreters that will become apparent once we start to introduce

type annotations. While some of these errors may be due to implementation issues, others are likely

problems within the JS specification itself.
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7
Conclusions
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As JavaScript continues to evolve, managing its standard is becoming increasingly difficult. We

believe that the best approach for addressing the complexity of the ES standard is to model it as an

executable JS specification. To do this, the ECMA-SL project introduces the ECMA-SL intermediate

language, which serves as a foundation for implementing JS reference interpreters. The project includes

two interpreters, ECMARef5 and ECMARef6, that adhere to the 5th and 6th versions of the standard

line-by-line. Despite being the most complete academic reference implementation of the standard, they

are far from being a suitable replacement for the official ES standard, which is already in its 14th version.

Extending the reference interpreter to newer versions of the standard is challenging, mainly due to the

inherent limitations of the ECMA-SL language, the most important one being the lack of static typing.

In this thesis, we proposed Typed ECMA-SL, an extension of the ECMA-SL language with type

declarations and a static type system. This extension was specifically designed to type the reference

interpreters, and thus it only includes the features essential for this purpose. We believe that Typed

ECMA-SL will substantially simplify development in ECMA-SL, as static type systems not only increase

the readability and maintainability of code, but also reduce the likelihood of bugs when extending or

refactoring a program. In addition to the system’s implementation, we formalized a subset of Typed

ECMA-SL and proved type safety for the formalized fragment.
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Typing the reference interpreters using Typed ECMA-SL was beyond the scope of this thesis. Nev-

ertheless, we used Typed ECMA-SL to type a simplified interpreter for the JavaScript language. The

interpreter was developed with the purpose of evaluating the effectiveness of our type system by serv-

ing as a platform to test all the typing features required by the JS reference interpreter. This process

also gave us an idea of the effort needed to fully type the exiting reference interpreters.

Additionally, we applied our type system to the untyped reference interpreters. Despite the lack

of type annotations, our system was able to detect several problems within the interpreters, including

references to unknown variables and function calls with the wrong number of arguments. This serves as

yet another testament to the benefits of employing static type analysis in the context of the ESL project.

7.1 Future Work

We identify two categories of future work: one that falls within the scope of the ECMA-SL project and

another that pertains to type systems and programming languages.

ECMA-SL Project Regarding the ECMA-SL project, the Typed ECMA-SL language is still a work in

progress, as the type system does not support some less common constructs of the language, such

as the switch statement and macros. Additionally, the TESL test suite, currently composed of around

50 unit tests, needs to be expanded to ensure that the type system behaves properly in complex typing

environments. This is essential to prevent scenarios where we are attempting to fix a type error in the

reference interpreter, only to later discover that the root cause lies within the type system itself. Once

Typed ECMA-SL reaches a sufficient level of robustness, our next step is to use it to fully type our

reference interpreters, so that they can then be extended to newer versions of the ES standard.

Type Systems & Programming Languages While analysing the challenges associated with designing

a static type system for Typed ECMA-SL, we identified two topics that may warrant further research.

• Unsoundness of TypeScript: Due to the increasing popularity of TypeScript over JavaScript, it is

valuable to assess whether the unsound patterns of TS [41] are the causes of bugs in industrial

TS projects. If so, it may be beneficial to develop a sound version of TypeScript that addresses all

of these patterns while maintaining, when possible, the expressiveness of the language.

• Object Ownership System: To address the unsound combination of object mutability and alias-

ing, we briefly discussed the possibility of using ownership types [48, 48] in Typed ECMA-SL.

However, the combination of ownership types with extensible objects is extremely complicated,

and thus we were unable to model and implement such a system in the context of this thesis. Nev-

ertheless, this is an interesting research topic and could turn out to be a solution for the problem.
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A
Type Safety for Typed ECMA-SL

A.1 Auxiliary Lemmas

Lemma 2 (Type Safety for Conditional Type Refinements). For all heap η, store γ, heap typing environ-

ment H, store typing environments Γ and Γ′, and expression e, it holds that:

η, γ ⊨ H,Γ ∧ JeKγ = true ∧ βΓ(e) = Γ′ =⇒ η, γ ⊨ H,Γ′

η, γ ⊨ H,Γ ∧ JeKγ = false ∧ βΓ(¬e) = Γ′ =⇒ η, γ ⊨ H,Γ′

Proof. The proof follows by induction on the structure of e. Consider the first case of the lemma (the
proof for the second case of the lemma follows the same structure as the one for the first). Assume that
γ, η ⊨ Γ,H (H1), JeKγ = true (H2), and βΓ(e) = Γ′ (H3). Therefore, we have that:

[CASE 1] e /∈ dom(β̂Γ) (H4). From H3 and H4, it follows that:

• I1.1: βΓ(e) = Γ

• I1.2: Γ′ = Γ

Equations I1.2 and H1 establish the result.

[CASE 2] e ∈ dom(β̂Γ) (H4). We proceed by case analysis on the semantics of the β̂Γ operator.

[CASE 2.1] e = (e1 and e2) (H5). Applying the semantics of the and operator to H2 and H5, we conclude
that:

• I1.1: Je1Kγ = true

• I1.2: Je2Kγ = true
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From H3 and H5, it follows that there exists store typing environments Γ1, Γ2, such that:

• I2.1: βΓ(e1) = Γ1

• I2.2: βΓ1
(e2) = Γ2

• I2.3: Γ′ = Γ2

Applying the induction hypothesis to I1.1, I2.1, and H1, we conclude that:

• I3.1: γ, η ⊨ Γ1,H

Applying the induction hypothesis to I1.2, I2.2, and I3.1, we conclude that:

• I4.1: γ, η ⊨ Γ2,H

Equations I2.3 and I4.1 establish the result.

[CASE 2.2] e = (x = v) (H5). Applying the semantics of the comparison operator to H2 and H5, we
conclude that:

• I1.1: γ(x) = v

From H3 and H5, it follows that there exists τ ∈ T such that:

• I2.1: type(v) = τ

• I2.2: τ ≤ Γ(x)

• I2.3: Γ′ = Γ[x 7→ τ ]

From I1.1, I2.1, and I2.3, it follows that:

• I3.1: γ(x) ⊨H Γ′(x)

Equations I3.1 and H1 establish the result.

[CASE 2.3] e = (typeof(x) = τ) with τ ∈ TPrim (H5). Applying the semantics of the typeof operator to
H2 and H5, we conclude that:

• I1.1: typeH(γ(x)) ≤ τ

From H3 and H5, it follows that:

• I2.1: τ ≤ Γ(x)

• I2.2: Γ′ = Γ[x 7→ τ ]

From I1.1 and I2.2, it follows that:

• I3.1: γ(x) ⊨H Γ′(x)

Equations I3.1 and H1 establish the result.

[CASE 2.4] e = (typeof(x) ̸= τ) with τ ∈ TPrim (H5). Applying the semantics of the typeof operator to
H2 and H5, we conclude that:

• I1.1: typeH(γ(x)) ≰ τ

From H3 and H5, it follows that there exists τ1, ..., τn, τ ′ ∈ T , such that:

• I2.1: Γ(x) = ∪{τ1, ..., τn}
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• I2.2: τ ′ = ∪ ({τ1, ..., τn} \ τ)

• I2.3: Γ′ = Γ[x 7→ τ ′]

From H1, it follows that:

• I3.1: typeH(γ(x)) ≤∗ Γ(x)

Applying the correctness of union subtyping to I1.1, I2.1, I2.2, and I3.1, we conclude that:

• I4.1: typeH(γ(x)) ≤∗ τ ′

Equations I2.3, I4.1, and H1 establish the result.

[CASE 2.5] e = (v = x) (H5). This proof follows the same structure as [CASE 2.2].

[CASE 2.6] e = (τ = typeof(x)) (H5). This proof follows the same structure as [CASE 2.3].

[CASE 2.7] e = (τ ̸= typeof(x)) (H5). This proof follows the same structure as [CASE 2.4].

Lemma 3 (Type Safety for Pattern Binding). For all heap η, stores γ and γ′, heap typing environment H,

store typing environments Γ and Γ′, pattern ψ, object value o, object type σ, and sigma type τ , it holds

that:

η, γ ⊨ H,Γ ∧ match(ψ, o, γ) = γ′ ∧ Ψα,τ (ψ, σ,Γ) = Γ′ ∧ τ = Σ[α] {..., σ, ...} ∧ o ≤∗ σ[α/τ]

=⇒ η, γ′ ⊨ H,Γ′

Proof. The proof follows by induction on the number of elements of ψ. Assume that γ, η ⊨ Γ,H (H1),
match(ψ, o, γ) = γ′ (H2), Ψα,τ (ψ, σ,Γ) = Γ′ (H3), τ = Σ[α] {..., σ, ...} (H4), and o ≤∗ σ[α/τ] (H5).
Therefore, we have that:

[BASE CASE (BCASE)] ψ = {} (H6). Applying the semantics of the match function to H2 and H6, we
conclude that:

• I1.1: γ′ = γ

Applying the typing rules of the Ψα,τ function to H3, H4, H6, we conclude that:

• I2.1: Γ′ = Γ

Equations I1.1, I2.1, and H1 establish the result.

[INDUCTIVE CASE (ICASE)] ψ = {f : ξ} ⊎ ψ′ (H6), o = {f : v} ⊎ o′ (H7), and σ = {f : τf} ⊎ σ′ (H8). We
proceed by case analysis on the type of the pattern binding ξ.

[ICASE 1] ξ = v (H9). Applying the semantics of the match function to H2, H6, H7, and H9, we conclude
that:

• I1.1: γ′ = match(ψ′, o′, γ)

Applying the typing rules of the Ψ function to H3, H4, H6, H8, and H9, we conclude that:

• I2.1: Γ′ = Ψα,τ (ψ′, σ′,Γ)

Applying the induction hypothesis to I1.1, I2.1, H1, H4, and H5, we conclude that:
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• I3.1: η, γ′ ⊨ H,Γ′

Equation I3.1 establishes the result.

[ICASE 2] ξ = x (H9). Applying the semantics of the match function to H2, H6, H7, and H9, we conclude
that there exists a program store γ′′ such that:

• I1.1: γ′ = match(ψ′, o′, γ′′)

• I1.2: γ′′ = γ[x 7→ v]

Applying the typing rules of the Ψ function to H3, H4, H6, H8, and H9, we conclude that there exists a
store typing environment Γ′′ such that

• I2.1: Γ′ = Ψα,τ (ψ′, σ′,Γ′′)

• I2.2: Γ′′ = Γ[x 7→ τf [α/τ]]

Applying the correctness of covariant sigma folding subtyping to H4, H5, H7, and H8, it follows that:

• I3.1: v ≤∗ τf [α/τ]

From I1.2, I2.2, I3.1 and H1, it follows that:

• I4.1: γ′′(x) ⊨H Γ′′(x)

• I4.2: η, γ′′ ⊨ H,Γ′′

Applying the induction hypothesis to I1.1, I2.1, I4.2, H4, and H5 we conclude that:

• I5.1: η, γ′ ⊨ H,Γ′

Equation I5.1 establishes the result.

A.2 Intra-Procedural Fragment

Theorem 1 (Soundness - Type Safety). For all heaps η, η′, stores γ, γ′, heap typing environments H,H′,

store typing environments Γ,Γ′, function g, global typing context ∆, and statement s it holds that:

η, γ ⊨ H,Γ ∧ g,∆ ⊢ {Γ} s {Γ′} ∧ ⟨H, η, γ, s⟩ ⇓i ⟨H′, η′, γ′⟩ =⇒ η′, γ′ ⊨ H′,Γ′

Proof. The proof follows by induction on the derivation of the judgement ⟨H, η, γ, s⟩ ⇓i ⟨H′, η′, γ′⟩. As-
sume that η, γ ⊨ H,Γ (H1), g,∆ ⊢ {Γ} s {Γ′} (H2), and ⟨H, η, γ, s⟩ ⇓i ⟨H′, η′, γ′⟩ (H3). Therefore, we
have that:

[SKIP] s = skip (H4). From H2 and H4, it follows that:

• I1.1: Γ′ = Γ

From H3 and H4, it follows that:

• I2.1: H′ = H

• I2.2: η′ = η

• I2.3: γ′ = γ
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Equations I1.1, I2.1, I2.2, I2.3, and H1 establish the result.

[SEQUENCING] s = s1; s2 (H4). From H2 and H4, it follows that there exists a store typing environment
Γ′′ such that:

• I1.1: g,∆ ⊢ {Γ} s1 {Γ′′}

• I1.2: g,∆ ⊢ {Γ′′} s2 {Γ′}

From H3 and H4, it follows that there exists a store γ′′, heap η′′, and heap typing environment H′′ such
that:

• I2.1: ⟨H, η, γ, s1⟩ ⇓i ⟨H′′, η′′, γ′′⟩

• I2.2: ⟨H′′, η′′, γ′′, s2⟩ ⇓i ⟨H′, η′, γ′⟩

Applying the induction hypothesis to I1.1, I2.1, and H1, we conclude that:

• I3.1: η′′, γ′′ ⊨ H′′,Γ′′

Applying the induction hypothesis to I1.2, I2.2, and I3.1, we conclude that:

• I4.1: η′, γ′ ⊨ H′,Γ′

Equation I4.1 establishes the result.

[VARIABLE ASSIGNMENT] s = x := e (H4). From H2 and H4, it follows that there exists a τ ∈ T , such
that:

• I1.1: Γ ⊢ e : τ

• I1.2: Γ′ = Γ[x 7→ τ ]

From H3 and H4, it follows that there exists a v ∈ V al, such that:

• I2.1: JeKγ = v

• I2.2: γ′ = γ[x 7→ v]

• I2.3: H′ = H

• I2.4: η′ = η

Applying the Lemma 1 (Type Safety for Expressions) to I1.1, I2.1, and H1, we conclude that:

• I3.1: v ⊨H τ

From I1.2, I2.2, I3.1, H1, it follows that:

• I4.1: γ′ ⊨H Γ′

Equations I2.3, I2.4, I4.1, and H1 establish the result.

[FIELD LOOKUP] s = x := e.f (H4). From H2 and H4, it follows that there exists σ ∈ TObj and τf ∈ T
such that:

• I1.1: Γ ⊢ e : σ

• I1.2: ft(σ, f) = τf

• I1.3: Γ′ = Γ[x 7→ τf ]
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From H3 and H4, it follows that there exists l ∈ Loc and v ∈ V al such that:

• I2.1: JeKγ = l

• I2.2: η(l, f) = v

• I2.3: γ′ = γ[x 7→ v]

• I2.4: H′ = H

• I2.5: η′ = η

Applying the Lemma 1 (Type Safety for Expressions) to I1.1, I2.1, and H1, we conclude that:

• I3.1: l ⊨H σ

• I3.2: H(l) ≤∗ σ

Applying the correctness of covariant object subtyping to I1.2 and I3.2, we conclude that:

• I4.1: ft(H(l), f) ≤∗ τf

Applying the typing rules of the ft function to H1, we conclude that:

• I5.1: typeH(η(l, f)) = ft(H(l), f)

From I2.2, I4.1, and I5.1, it follows that:

• I6.1: typeH(v) ≤∗ τf

• I6.2: v ⊨H τf

From I1.3, I2.3, I6.2, and H1, it follows that:

• I7.1: γ′ ⊨H Γ′

Equations I2.4, I2.5, I7.1, and H1 establish the result.

[NEW OBJECT] s = x := {f i : ei |ni=1} (H4). From H2 and H4, it follows that there exists τ1, ..., τn ∈ T ,
and σ ∈ TObj, such that:

• I1.1: Γ ⊢ ei : τ i |ni=1

• I1.2: σ = {f i : τ i |ni=1}

• I1.3: Γ′ = Γ[x 7→ σ]

From H3 and H4, it follows that there exists l ∈ Loc and v1, ..., vn ∈ V al, and τ ∈ T , such that:

• I2.1: l /∈ dom(η)

• I2.2: JeiKγ = vi |ni=1

• I2.3: {f i : typeH(vi) |ni=1} = τ

• I2.4: H′ = H[l 7→ τ ]

• I2.5: η′ = η[(l, f i) 7→ vi] |ni=1

• I2.6: γ′ = γ[x 7→ l]

Applying the Lemma 1 (Type Safety for Expressions) to I1.1, I2.2, and H1, we conclude that:

• I3.1: vi ⊨H τ i |ni=1
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• I3.2: typeH(vi) ≤∗ τ i |ni=1

Applying the correctness of covariant object subtyping to I1.2, I2.3, I2.4, and I3.2, it follows that:

• I4.1: τ ≤∗ σ

• I4.2: l ⊨H′ σ

From I1.3, I2.6, I4.2, and H1, it follows that:

• I5.1: γ′ ⊨H′ Γ′

From I2.3, I2.4, I2.5, and H1, it follows that:

• I6.1: typeH′(η′(l, f i)) = H′(l, f i) |ni=1

• I6.2: η′ ⊨ H′

Equations I5.1 and I6.2 establish the result.

[FIELD ASSIGNMENT] s = x.f := e (H4). From H2 and H4, it follows that there exists σ ∈ TObj, and
τf , τe ∈ T , such that:

• I1.1: Γ(x) = σ

• I1.2: ft(σ, f) = τf

• I1.3: Γ ⊢ e : τe

• I1.4: τe ≤ τf

• I1.5: Γ′ = Γ

From H3 and H4, it follows that there exists v ∈ V al, l ∈ Loc such that:

• I2.1: JxKγ = l

• I2.2: (l, f) ∈ dom(η)

• I2.3: JeKγ = v

• I2.4: H(l)[f 7→ typeH(v)] = τ

• I2.5: H′ = H[l 7→ τ ]

• I2.6: η′ = η[(l, f) 7→ v]

• I2.7: γ′ = γ

Applying the Lemma 1 (Type Safety for Expressions) to I1.1, I2.1, and H1, we conclude that:

• I3.1: l ⊨H σ

• I3.2: H(l) ≤∗ σ

Applying the correctness of covariant object subtyping to I1.2 and I3.2, we conclude that:

• I4.1: H(l, f) ≤∗ τf

Applying the Lemma 1 (Type Safety for Expressions) to I1.3, I2.3, and H1, we conclude that:

• I5.1: v ⊨H τe

• I5.2: typeH(v) ≤∗ τe
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Applying the correctness of transitive subtyping to I1.4 and I5.2, we conclude that:

• I6.1: typeH(v) ≤∗ τf

From I2.4, I2.5, I4.1, and I6.1, it follows that:

• I7.1: H′(l) ≤∗ σ

From I1.5, I2.5, I2.7, I3.1, I7.1, and H1, it follows that:

• I8.1: γ ⊨H′ Γ

From I2.4, I2.5, I2.6, and H1, it follows that:

• I9.1: η′ ⊨ H′

Equations I8.1 and I9.1 establish the result.

[IF-THEN-ELSE (TRUE)] s = if (e){s1} else {s2} (H4) and JeKγ = true (H5). From H2 and H4, it follows
that there exists τe ∈ T , and store typing environments Γ1, Γ2, Γ′

1, and Γ′
2, such that:

• I1.1: Γ ⊢ e : τe

• I1.2: τe ≤ bool

• I1.3: βΓ(e) = Γ1

• I1.4: βΓ(¬e) = Γ2

• I1.5: g,∆ ⊢ {Γi} si {Γ′
i} |2i=1

• I1.6: Γ′ = Γ′
1 ⊔ Γ′

2

From H3 and H4, it follows that:

• I2.1: ⟨H, η, γ, s1⟩ ⇓i ⟨H′, η′, γ′⟩

Applying the Lemma 2 (Type Safety for Conditional Type Refinements) to H1, H5, and I1.3, we conclude
that:

• I3.1: η, γ ⊨ H,Γ1

Applying the induction hypothesis to I1.5, I2.1, and I3.1, we conclude that:

• I4.1: η′, γ′ ⊨ H′,Γ′
1

By correctness of union subtyping, equations I1.6 and I4.1 establish the result.

[IF-THEN-ELSE (FALSE)] s = if (e){s1} else {s2} (H4) and JeKγ = false (H5)
This proof follows the same structure as the IF-THEN-ELSE (TRUE) case.

[WHILE LOOP (TRUE)] while (e){s} (H4) and JeKγ = true (H5) From H2 and H4, it follows that there exists
τe ∈ T , and a store typing environment Γ′′, such that:

• I1.1 Γ ⊢ e : τe

• I1.2 τe ≤ bool

• I1.3 βΓ(e) = Γ′′

• I1.4 g,∆ ⊢ {Γ′′} s {Γ}
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• I1.5 Γ′ = Γ

From H3 and H4, it follows that there exits a heap typing environment H′′, a heap η′′, and a store γ′′,
such that:

• I2.1 ⟨H, η, γ, s⟩ ⇓i ⟨H′′, η′′, γ′′⟩

• I2.2 ⟨H′′, η′′, γ′′,while (e){s}⟩ ⇓i ⟨H′, η′, γ′⟩

Applying the Lemma 2 (Type Safety for Conditional Type Refinements) to H1, H5, and I1.3, we conclude
that:

• I3.1: η, γ ⊨ H,Γ′′

Applying the induction hypothesis to I1.4, I2.1, and I3.1, we conclude that:

• I4.1: η′′, γ′′ ⊨ H′′,Γ

Applying the induction hypothesis to H2, I2.2, and I4.1, we conclude that:

• I5.1: η′, γ′ ⊨ H′,Γ′

Equation I5.1 establishes the result.

[WHILE LOOP (FALSE)] while (e){s} (H4) and JeKγ = false (H5) From H2 and H4, it follows that there
exists τe ∈ T , and a store typing environment Γ′′, such that:

• I1.1 Γ ⊢ e : τe

• I1.2 τe ≤ bool

• I1.3 βΓ(e) = Γ′′

• I1.4 g,∆ ⊢ {Γ′′} s {Γ}

• I1.5 Γ′ = Γ

From H3 and H4, it follows that:

• I2.1: H′ = H

• I2.2: η′ = η

• I2.3: γ′ = γ

Equations I1.5, I2.1, I2.2, I2.3, and H1 establish the result.

[MATCH-WITH] match ewith {ψi → si |ni=1} (H4) From H2 and H4, it follows that there exists τ ∈ T ,
σ1, ..., σn ∈ TObj, and store typing environments Γ1, ..., Γn,Γ

′
1, ..., Γ

′
n, such that:

• I1.1: Γ ⊢ e : τ

• I1.2: τ = Σ[α] {σ1, ..., σn}

• I1.3: Ψα,τ (ψi, σi,Γ) = Γi |ni=1

• I1.4: g,∆ ⊢ {Γi} si {Γ′
i} |ni=1

• I1.5: Γ′ = ⊔{Γ′
1, ..., Γ

′
n}

From H3 and H4, it follows that there exists j ∈ [1, n], l ∈ Loc, and a store γj , such that:

• I2.1: JeKγ = l

91



• I2.2: match(ψj , η(l), γ) = γj

• I2.3: ⟨H, η, γj , sj⟩ ⇓i ⟨H′, η′, γ′⟩

Applying the Lemma 1 (Type Safety for Expressions) to I1.1, I2.1, and H1, we conclude that:

• I3.1: l ⊨H τ

• I3.2: H(l) ≤∗ τ

Applying the correctness of sigma folding subtyping to I1.2 and I3.2, we conclude that there exists
σ′ ∈ TObj such that:

• I4.1: σ′ ∈ {σ1, ..., σn}

• I4.2: H(l) ≤∗ σ′[τ/α]

Applying the semantics of the match-with statement to I1.3, I2.2, I4.2, and H1, it follows that

• I5.1: η(l) ≤∗ σj [τ/α]

Applying the Lemma 3 (Type Safety for Pattern Binding) to H1, I1.2, I1.3, I2.2, and I5.1, we conclude
that:

• I7.1: η, γj ⊨ H,Γj

Applying the induction hypothesis to I1.4, I2.3, and I7.1, we conclude that:

• I8.1: η′, γ′ ⊨ H′,Γ′
j

By correctness of union subtyping, equations I1.5 and I8.1 establish the result.
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B
Auxiliary Functions

Type of Value The static type associated with a value is obtained with the function type : V al 7→ T ,

which maps values v ∈ V al into their respective static types τ ∈ T . This function is defined as:

type(v) =


ν if v ∈ TLit

null if v = null

undefined if v = undefined

top otherwise,

where ν represents the literal type associated with value v.

Primitive of Literal Type The primitive type associated with a literal type is obtained with the function

typeof : TLit 7→ TPrim, which maps literal types ν ∈ TLit to their respective primitive types t ∈ TPrim.

This function is defined as:

typeof(ν) =


int if v ∈ Int

float if v ∈ Flt

string if v ∈ Str

boolean if v ∈ Bool,

where v represents the value associated with the literal type ν.

Extended Subtyping Figure B.1 depicts the typing rules concerning the extended subtyping relation-

ship supported in Typed ECMA-SL. This relationship extends the subtyping relationship defined in Sec-
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tion 4.2.2 with field covariance, meaning that object fields are allowed to be a subtype of the fields

specified in the most generic object. The extended subtyping relationship it is used to verify whether a

value of type τ can be stored by a variable or field of type τ ′ (Section 4.4.1).

FIELD COVARIANCE

τ i ≤∗ τ ′i |ni=1

{f i : τ i |ni=1} ≤∗ {f i : τ ′i |ni=1}

SUBTYPING

τ ≤ τ ′

τ ≤∗ τ ′

Figure B.1: Typing Rules - Extended Subtyping: τ ≤∗ τ ′
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