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superior Técnico (Lisbon, Portugal), during the period March-August 2020, under the supervision of

Prof. Rita Nunes.

iv



Acknowledgments

I would like to express my gratitude and appreciation to my supervisors, for the invaluable guidance

and feedback throughout this project. With my thanks to my friends and family, for their unwavering

support.

v



vi



Resumo

A Ressonância Magnética Quantitativa é uma técnica de imagiologia que permite a quantificação de

propriedades inerentes aos tecidos que frequentemente implica longos tempos de exame, limitando a

utilização em contexto clı́nico. Um novo grupo de métodos de aprendizagem profunda, nomeados redes

de aprendizagem profunda baseadas em modelos fı́sicos, incorpora o modelo do sinal de ressonância

no processo de aprendizagem para estimar mapas paramétricos dos tecidos, aliviando a necessidade

de ter acesso a um grande número de dados de treino e acelerando o tempo necessário para obter os

mapas. Contudo, a maioria destas redes adota uma função exponencial para modelar o decaimento

do sinal, desprezando a contribuição de ecos estimulados e indiretos, ou heterogeneidades do campo

B1. Neste trabalho, sugere-se adaptar um desses modelos, as Máquinas de Inferência Recorrente

(RIM), para mapear o T2 do cérebro com um modelo mais preciso, baseado em Grafos de Fase Es-

tendidos (EPG), incluindo a influência do campo B1. É também proposto um novo método, Máquinas

de Inferência Recorrente com dicionários do modelo e seus gradientes (RIMFoGraD), que preserva a

configuração original das RIM, mas acelera o processo de inferência através de dicionários de curvas

de eco-modulação pré-calculadas para uma variedade de parâmetros. A RIMFoGraD estima mapas de

T2 com 320×320 pixéis 380% mais rápido do que a RIM aliada ao modelo EPG sem perda de precisão,

e 80% mais rápido do que um método de reconhecimento de padrões com precisão de 1 ms em T2,

com um erro mediano de 2.83 ms no parênquima cerebral.

Palavras-chave: Ressonância Magnética, Relaxometria, Mapeamento de T2, Grafos de Fase

Estendidos, Aprendizagem Profunda, Máquinas de Inferência Recorrente
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Abstract

Quantitative Magnetic Resonance Imaging is an imaging technique that allows the quantitative as-

sessment of inherent tissue properties which often suffers from long scan times, preventing its use in

routine clinical evaluation. A new class of deep learning frameworks, called model-based deep learning

nets, incorporate the magnetic resonance signal model into the learning process to estimate parametric

maps of the tissues, alleviating the need for a large number of training datasets and further pushing

acceleration rates. However, most of the nets previously used in this context have employed a pure

exponential curve to model the magnetic resonance signal, which does not account for stimulated or

indirect echoes, or inhomogeneity of the B1 field. In this work, one of such models, the Recurrent Infer-

ence Machine (RIM), is adapted to perform T2 mapping with a more accurate signal model based on the

Extended Phase Graphs (EPG) concept, while also considering the influence of the effective B1 field.

Additionally, Recurrent Inference Machines with forward model and gradient dictionaries (RIMFoGraD)

are proposed, which preserve the configuration of the original RIM, but speed up the inference process

through dictionaries of pre-calculated echo-modulation curves and their gradients for a large range of

parameters. RIMFoGraD was able to estimate T2 320×320 pixel maps 380 times faster than the RIM

implemented with the EPG model with no loss in accuracy, and was 80% faster than a pattern-based

recognition approach with 1 ms T2 precision, with a median T2 difference of 2.83 ms from this method

on the brain parenchyma.

Keywords: Magnetic Resonance Imaging, Relaxometry, T2 mapping, Extended Phase Graphs,

Deep Learning, Recurrent Inference Machines
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Chapter 1

Introduction

In this chapter, the motivation and main objectives of this work are presented, along with a brief

overview of the topic at hand.

1.1 Motivation

Magnetic resonance imaging (MRI) provides non-invasive imaging of the human body for a wide

variety of clinical applications. The signal intensity of a magnetic resonance (MR) image depends on

the tissue relaxation properties T1 and T2, on acquisition parameters such as repetition time (TR), echo-

spacing (ESP) and flip angle, and on the MR system conditions (homogeneities of the radiofrequency

field B1 and magnetic field B0, and uniformity of receiver coil sensitivity) [1]. MRI offers better soft-tissue

characterization and more flexible contrast mechanisms without radiation exposure, but its day-to-day

use is still very often limited to the qualitative assessment of contrast-weighted images, created based

on the variation of underlying MR tissue parameters [2], which presents a bottleneck in image analysis

and digital healthcare [1].

The term “MRI relaxometry” or “MRI mapping” refers to the quantitative assessment of inherent tissue

T1 and T2 values. Relaxometry is more sensitive to different pathologies with more specific information

on tissue composition and microstructure (enabling early clinical diagnosis) when compared with con-

ventional T1 and T2 weighted images, and also more robust to surface coil effects [3]. Relaxometry

maps depend less on hardware variations, acquisition settings and operator expertise when compared

to qualitative weighted images, and are highly reproducible [4]. Typically, the extraction of quantitative

tissue properties requires repeated acquisitions of datasets with varying MR parameters [1, 3], so relax-

ometry requires much longer scan times than qualitative contrast-weighted images. The speed of the

imaging exam is crucial in many applications, hence a large volume of research in relaxometry focuses

on accelerating parameter mapping and improving robustness to noise and artifacts.
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1.2 Topic Overview

Quantitative MRI is accomplished by scanning data in k-space, which is reconstructed into a set

of weighted images later fit into a relevant signal model. Multi-echo spin echo (ME-SE) sequences

are commonly used for T2 mapping due to their reduced scanning time, since they scan multiple time

points along the T2 decay for each k-space line during a single TR. A monoexponential curve is then

typically fit to the measured time points, resulting in the estimation of the proton density (PD) and T2

relaxation constant of each tissue. However, the magnetization in a ME-SE sequence does not actually

follow a pure exponential curve. In fact, each refocusing pulse separates the magnetization into three

coherence pathways, contaminating the signal with stimulated and indirect echoes [5]. A more precise

way to model the magnetization in T2 decay is to use a generalized echo-modulation curve (EMC)

based on the Bloch equations, which depends not only on the relaxation values, but also on a variety

of experimental and physical parameters. The extended phase graph (EPG) concept is an elegant tool

to depict the magnetization response of a variety of MR sequences, but researchers and users often

refrain from applying EPGs due to the increased complexity added to the signal model [6].

EPGs have been successfully applied to T2 estimation. For instance, Ben-Eliezer et al. [5] developed

a post-processing approach where EPGs were used to build a dictionary of EMCs, each corresponding

to a unique T2 value, and then matching the experimentally measured data against the dictionary on a

pixel-by-pixel basis. This approach bypasses the erroneous estimation of T2 values when fitting a pure

exponential curve to multi-echo EMC, and the results closely matched the maps produced from single

spin-echo data.

Research on acceleration in relaxometry typically focuses on two aspects: reducing the time required

to acquire the scanner data in k-space, and improving the speed of parameter fitting the signal model to

the set of weighted images obtained from the measurements.

To reduce the scan time of quantitative MR parameter mapping, k-space data can be undersampled

below the Nyquist rate instead of acquiring the entire k-space, and different techniques can be employed

to reconstruct a set of weighted images from the incomplete k-space data [7]. In parallel MRI, multiple-

coil arrays are used to skip certain k-space measurements; the information from multiple coils is used

to fill-in the missing k-space data and unfold aliased undersampled images. However, the maximum

acceleration that can be achieved with parallel MRI is limited by the number of coil elements and the

design of coil arrays [2]. In Compressed Sensing, the reconstructed image is assumed to be sparse in

a transform domain and regularization with the ℓ1-norm is incorporated into the framework [2].

Traditional MR parameter fitting consists in finding the least-squares solution that minimizes the er-

ror between the underlying signal evolution and the signal curve synthesized from the model param-

eters. It is typically implemented with an iterative algorithm, which is computationally taxing and time-

consuming. To tackle this issue, numerous techniques have been developed, such as pattern recognition

approaches, where a dictionary is simulated with signal evolutions from a range of possible parameters,

by considering relevant signal models or the Bloch equations, and a pattern-based recognition method is

employed to search for the dictionary signal that best matches the signal evolution observed for a given

2



pixel. The post-processing approach mentioned above, where EPGs were used to build a dictionary, is

one of such methods.

Recently, with the introduction of deep learning, acceleration rates have been pushed further thanks

to the variety of neural network configurations that find direct correlations between relaxometry images

and parameter maps. Deep learning networks have been applied to (i) improve image reconstruc-

tion from k-space, such as the variational network (VN) [8], DeepT1 [9], DeepResolve [10], and deep

complex residual network (DCRNet) [11]; (ii) directly estimate the parametric maps from the k-space

data, such as the magnetic resonance fingerprinting deep reconstruction network (MRF-DRONE) [12],

spatially constrained tissue quantification (SCQ) [13], and qualitative and quantitative magnetic reso-

nance imaging (Q2MRI) [1]; (iii) estimate the parametric maps in a model-based approach, such as

model augmented neural network with incoherent k-space sampling generative adversarial network

(MANTISGAN) [14], deep model-based magnetic resonance parameter mapping network (DOPAMINE)

[7], and recurrent inference machines (RIM) [4]. The main challenge of applying deep learning to MR

reconstruction is the acquisition of training datasets. In particular, because MR relaxometry is not rou-

tinely performed in a clinical environment, the accumulation of training datasets is severely limited [2].

The latter class of networks, called model-based deep learning nets, incorporate a physical model of the

signal into the deep learning network, thus reducing the size of the necessary training dataset.

Despite the promising results of model-based deep learning networks, most of the architectures

developed for T2 mapping consider the pure exponential approximation, and none of the literature anal-

ysed included the EPG concept to produce the signal model in a model-based deep learning approach.

Amidst the research done with deep learning and EPGs, Liu et al. [14] have developed a recurrent neu-

ral network (RNN) to speed up the computation of large scale MR signals and derivatives following an

EPG-Bloch model, while Yu et al. [15] used the EPG concept to generate synthetic data to train a mul-

tilayer perceptron (MLP) for T2 relaxometry, and Cohen et al. [12] applied the EPG concept to generate

training signals for cardiac imaging.

1.3 Objectives and Contributions

In this work, we propose adapting one of the model-based deep learning architectures, the RIM,

to perform T2 relaxometry mapping of the brain, by implementing the EPG concept to calculate the

signal model in lieu of the monoexponential approximation. The RIM has been applied to reconstruct

weighted images from k-space data by Lønning et al. [16] and to perform T1 and T2 map estimation by

Sabidussi et al. [4], using the pure exponential MR signal model, and won the 2019’s fastMRI challenge

in the single-coil track 1. Its promising results are owed to the network’s ability to learn the inference

process whilst removing the need for domain knowledge, which results in low overfitting. The main

objectives of this work are as follows: (i) adapt the RIM to a new acquisition protocol with longer echo-

train length (ETL) keeping the pure exponential model, by taking advantage of the materials made

publicly available by Sabidussi et al. [4]; (ii) implement the EPG framework and the partial derivatives

1https://fastmri.org/leaderboards/challenge/2019/
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of the corresponding MR signals to replicate the state-of-the-art dictionary matching technique; (iii)

modify the RIM’s signal model into the EPG concept; (iv) and finally, further increase the complexity

of the model by including the effect of B1 inhomogeneities into the estimation process. Additionally,

an alternative framework is proposed, recurrent inference machines coupled with forward model and

gradient dictionaries (RIMFoGraD), which shares the RIM’s configuration but uses the pre-calculated

MR signal evolutions in the EPG dictionary to perform faster inference of the T2 maps.

The work developed for this thesis was submitted as an abstract to the International Society for

Magnetic Resonance in Medicine 2023 annual meeting and exhibition with the title “Diving into Extended

Phase Graph-based Deep Learning for accurate T2 mapping with PhasE graph sigNal and Gradients

qUantitative Inference machiNe (PENGUIN)”.

1.4 Thesis Outline

This thesis is organized in 5 chapters. Chapter 1 contains the motivation for our work, and a brief

introduction to the problem and the state-of-the-art methods. Chapter 2 gives a detailed description

of the MR signal acquisition, the EPG concept, and the main principles behind deep learning and the

RIM. In Chapter 3, the proposed implementation of the EPG concept, the MR signal dictionaries, and

the RIM configuration used in this work are described. The T2 maps produced by our network and

their accuracy analysis are included in Chapter 4, as well as a performance comparison between RIM,

RIMFoGraD, and the state-of-the-art techniques. Finally, we conclude with a discussion of our findings

and suggestions for future work in Chapter 5.
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Chapter 2

Background

This chapter presents a brief introduction on the acquisition of MR signals and on the EPG concept,

and a breakdown on the general configuration of RIMs.

2.1 The Magnetic Resonance Signal

Typical MRI experiments are accomplished by manipulating the precession frequency of spins, called

the Larmor frequency ω0, in a strong external magnetic field B0, using on-resonant radio-frequency

pulses and gradient fields [17]. The magnetization vectors behave as stipulated by the Bloch equations,

which describe their dependence on physical parameters and externally controlled magnetic fields, and

results in the MR signal that can be measured.

MR relaxometry is performed by acquiring a set of contrast-weighted images with varying contrast

and parameters and fitting the signal evolution of each pixel to a relaxometry model across the parameter

dimension, as illustrated by figure 2.1. The weighted signals s(kx,ky, t) are measured in k-space,

where kx and ky are the spatial-frequency variables in k-space, and t is the time vector, and can be

converted into a time-dynamic image series m(x,y, t) in image space coordinates x and y using the

Fourier Transform. This conversion is typically named image reconstruction. The MR forward model for

acquiring MR data of a 2D time-dynamic image series can thus be written as equation 2.1 [2]. When

discretized, equation 2.1 can be rewritten in matrix notation with the fast Fourier transform (FFT) operator

F (equation 2.2).

s(kx,ky, t) =

∫∫
m(x,y, t)e−i2π(kxx+kyy)dxdy (2.1)

s = F ·m (2.2)

Having the reconstructed dynamic image series m, the following step in relaxometry is to fit the

data into a relevant signal model M to find the n MR parameters p = [p1,p2 . . . ,pn] by performing

least-squares minimization (equation 2.3):
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p̂ = argmin
p

||M(p)− m||22 (2.3)

Equation 2.3 can be reformulated as the optimization of the maximum a posteriori (MAP) estimator

from statistics (equation 2.4), considering the likelihood f(m|p) that model M(p) explains the observed

data m: the optimization is accomplished by minimizing the sum of the negative log-likelihood L(m|p)

that and log-prior distributions L(p) .

p̂ = argmax
p

{L(m|p) + L(p)} (2.4)

In T2 mapping, specifically, the points scanned with ME-SE pulse sequences are typically recon-

structed into a series of weighted images, which is then used to fit the exponential model in equation

2.5. Here, two MR parameters p1,p2 are estimated: the T2 decay constant and the PD of each tissue.

m(x,y, t) = PD(x,y) · exp
(
− t

T2(x,y)

)
(2.5)

Figure 2.1: Schematic representation of the general protocol to perform T2 mapping.

However, the monoexponential model in equation 2.5 is only an approximation of the magnetization

behaviour when an ME-SE sequence is used for T2 mapping. In fact, each refocusing pulse separates

the magnetization into three coherence pathways, which contaminate the signal with stimulated and

indirect echoes [5]. A more precise way of modelling the magnetization in T2 decay is to use the EPG

concept, which is introduced in the following section.

2.1.1 The Extended Phase Graph Representation

The common way to describe magnetization is using the rotation operator algorithm (ROA): the Bloch

equations are converted into rotations of classical magnetization vectors, named isochromats. Applying

a radiofrequency (RF) pulse along the x-axis rotates all isochromats around the x-axis by the flip angle
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α (rotation matrix 2.6a), while dephasing rotates each isochromat around the z-axis by a phase angle ϕ

(rotation matrix 2.6b). The magnetization response to an MR sequence can thus be estimated from an

ensemble of isochromats, each with a different dephasing angle ϕ.

RX(α) =


1 0 0

0 cosα − sinα

0 sinα cosα

 (2.6a)

RZ(ϕ) =


cosϕ − sinϕ 0

0 sinϕ − cosϕ

0 0 1

 (2.6b)

The main drawbacks of this approach are the fact that estimating each isochromat is very expensive

computationally-wise, and the fact that diagrams drawn with this method are very difficult to interpret

when it comes to deducing information about echo intensity, number of echoes and time points.

EPGs are a representation of the magnetization based on matrix operations applied over configura-

tion states which are easier to interpret. The following subsections describe the deduction of the EPG

representation.

Configuration states

A dephasing isochromat M = [Mx,My,Mz]
T rotates around the z-axis with a frequency ω ̸= 0. Let

us name r the distance of the isochromat to the isocenter, and ϕ the phase-angle, which depends on

time t′ and position. To describe dephasing, the phase-angle of the isochromat is given by equation 2.7,

where γ is the gyromagnetic ratio of protons and G is a linear gradient-field applied along z. The farther

from the isocenter the isochromat is, the larger the phase-angle ϕ will be. The position of the isochromat

can be described in xy space by equations 2.8a and 2.8b. The angular wave vector k = γ
∫ t

0
G(t′)dt′

constitutes a quantitative measure of dephasing, and is the origin of the term “k-space”.

ϕ = γr
∫ t

0

G(t′)dt′ (2.7)

Mx(r) = MT cosϕ = MT cos

(
γr
∫ t

0

G(t′)dt′
)

= MT cos (kr) (2.8a)

My(r) = MT sinϕ = MT sin

(
γr
∫ t

0

G(t′)dt′
)

= MT sin (kr) (2.8b)

The magnetization components Mx and My have mutual magnetization exchange over time, so it is

reasonable to find a more compact way of describing them. This can be accomplished with a change

of basis to complex space [Mx,My,Mz]
T → [M+,M−,Mz]

T (equations 2.9a and 2.9b). The position of

the isochromat in 3D and 2D space is illustrated in figure 2.2.
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M+(r) = Mx(r) + iMy(r) = Meiϕ(r) = Meikr (2.9a)

M−(r) = Mx(r)− iMy(r) = Me−iϕ(r) = Me−ikr (2.9b)

y

x

MT

ϕ

Mx

My

iy

x

M+

ϕ

Mx

My

M−

My

ϕ

−ϕ

Figure 2.2: Position of an isochromat in 3D and 2D space. A linear gradient is assumed to be applied
along the z direction. Isochromats rotate around the z-axis and are progressively more dephased (i.e,
larger ϕ) as they move away from the isocenter (z = 0). The position of the isochromat can be described
in Cartesian coordinates (middle diagram) or in complex space coordinates (right diagram).

The net magnetization of each spatial coordinate (F̃+, F̃− and Z̃) is calculated as the sum of all

isochromats over a macroscopic volume V (equations 2.10a, 2.10b and 2.10c). These equations are

equivalent to the Fourier transform definition.

F̃+(k) =
∫
V

M+(r)e−ikrd3r ⇔ M+(r) =
∫
V

F̃+(k)eikrd3k (2.10a)

F̃−(k) =
∫
V

M−(r)e−ikrd3r ⇔ M−(r) =
∫
V

F̃−(k)eikrd3k (2.10b)

Z̃(k) =
∫
V

Mz(r)e−ikrd3r ⇔ Mz(r) =
∫
V

Z̃(k)eikrd3k (2.10c)

Now, the magnetization is described as a sum of complex spatial harmonics, termed the configuration

states, with different wave vectors k. A change of k results in a change of the transverse magnetization

of the whole isochromat ensemble. F̃+ represents dephasing transverse magnetization and is illustrated

by a right-handed helix, while F̃− represents the counterpart, and is illustrated by a left-handed helix. Z̃

is a complex transform of the real-valued longitudinal magnetization Mz, defined for convenience.

Partitioning Effect of a radiofrequency pulse

Let us describe the matrices 2.6a and 2.6b in the configuration states notation. Applying a pair of

similarity matrices S and S−1 (2.11) to perform a change of basis, the new rotation matrices are defined

as T = SRS−1 (equations 2.12b and 2.12a).
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S =


1 +i 0

1 −i 0

0 0 1

 , S−1 =


1 1 0

−i +i 0

0 0 2

 (2.11)

TX(α) =


cos2 α

2 sin2 α
2 −i sinα

sin2 α
2 cos2 α

2 i sinα

− i
2

i
2 sinα cosα

 (2.12a)

TZ(ϕ) =


eiϕ 0 0

0 e−iϕ 0

0 0 1

 (2.12b)

A general RF pulse with an initial angle Φ ̸= 0 acting on a complex magnetization vector [M+,M−,Mz]
T

will transform it according to equation 2.13.


M+

M−

Mz


+

=


cos2 α

2 e2iΦ sin2 α
2 −ieiΦ sinα

e−2iΦ sin2 α
2 cos2 α

2 ie−iΦ sinα

− i
2e

−iΦ sinα i
2e

iΦ sinα cosα



M+

M−

Mz


−

(2.13)

M+ and M− represent the magnetization vector after and before the RF pulse has been applied,

respectively. Equation 2.13 represents a very important observation in the MR field: after an RF pulse

is applied, each magnetization component behaves as a superposition of three different parts (M+
+ ,

M+
− and M+

z ). M+
+ represents dephasing transverse magnetization, M+

− represents rephasing trans-

verse magnetization that can produce an echo, and M+
z represents longitudinal magnetization. This

phenomenon is called the Woessner Decomposition or the Partitioning effect of an RF pulse, and it is

illustrated in figure 2.3. Moreover, the fraction of the three different coherence pathways only depends

on the flip angle α; the RF pulse phase Φ is only present in complex phase terms and defines the choice

of the rotation system around the z-axis [6].

RF pulse

M−
−

M+
+

M+
z

M+
−

B

RF pulse

M−
z

M+
+

M+
z

M+
−

C

RF pulse

M−
+ M+

+

M+
z

M+
−

A

Figure 2.3: The partitioning effect of an RF pulse: when a pulse is applied, each magnetization com-
ponent is split into three different parts. a) From the perspective of initial transverse magnetization
(M−

+ ), the first pathway remains unaffected, while the second part is refocused (M+
− ) and the third part

becomes longitudinal magnetization (M+
z ). b) From the perspective of rephasing transverse magnetiza-

tion (M−
− ), the first part becomes dephasing transverse magnetization (M+

+ ), the second part remains
unaffected and the third part becomes longitudinal magnetization (M+

z ). c) From the perspective of
longitudinal magnetization (M−

z ), the first part becomes dephasing transverse magnetization (M+
+ ), the

second part becomes rephasing transverse magnetization (M+
− ) and the third part remains unaffected

[6].
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Population exchange between configuration states

Equation 2.13 applied on the configuration states becomes equation 2.14, which defines all the pos-

sible pathways for magnetization populations to exchange. Note that RF pulses only mix configuration

states with the same dephasing order k.


F̃+(k)

F̃−(k)

Z̃(k)


+

=


cos2 α

2 e2iΦ sin2 α
2 −ieiΦ sinα

e−2iΦ sin2 α
2 cos2 α

2 ie−iΦ sinα

− i
2e

−iΦ sinα i
2e

iΦ sinα cosα



F̃+(k)

F̃−(k)

Z̃(k)


−

(2.14)

When populations move from Z̃(0) to F̃±(0), there is a free induction decay (FID): the equilibrium

magnetization is excited into coherent transverse magnetization, which starts dephasing. Storing is an

exchange from F̃+(k) and F̃−(k) to Z̃(k), k ̸= 0: non-coherent transverse magnetization is converted

into longitudinal magnetization and stops dephasing.

When any repetitive sequence of RF pulses is applied to an ensemble of isochromats, there is a

combination of echoes. A spin-echo results from a phase reversal F̃+(k) → F̃−(−k),k ̸= 0, whereas a

stimulated-echo results from an exchange from Z̃(k) → F̃−(−k),k ̸= 0. When admitting the monoex-

ponential signal model approximation, the contribution of stimulated-echoes is not taken into account.

Figure 2.4 displays a graphical representation of the possible isochromat population exchanges between

configuration states due to the effect of an RF pulse.

Defocusing

Spin-echo

Stimulated-echo

Storing

Free Induction Decay

Restoring

F̃+(k) F̃−(k) Z̃(k)

Z̃(0)F̃±(0)

Storing

Excitation

Figure 2.4: All possible isochromat population exchange pathways due to the application of an RF pulse.
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Discrete configuration states

When the MR sequence has equidistant timings, it becomes more practical to use a dephasing angle

θ(r) in place of the spatial coordinate r [6]. The magnetization is then described by equations 2.15a-

2.15c, where R represents the real part of a complex quantity, and F̃ ∗
−k is the complex conjugate of

F̃k.

M+(θ) =

+∞∑
k=−∞

F̃ke
ikθ (2.15a)

M−(θ) =

+∞∑
k=−∞

F̃ ∗
−k · eikθ (2.15b)

Mz(θ) =

+∞∑
k=−∞

Z̃k · eikθ = R

( ∞∑
k=0

Z̃k · eikθ
)

(2.15c)

The effect of an RF pulse in a sequence with equidistant timings can thus be described by equation

2.16. k is now an integral number describing the state’s dephasing in units of 2π; in other words, each

state k will have a dephasing of 2πk. A visual representation of the first three states of F̃k, F̃ ∗
−k and Z̃k

can be observed in figure 2.5.


F̃k

F̃ ∗
−k

Z̃k


+

=


cos2 α

2 e2iΦ sin2 α
2 −ieiΦ sinα

e−2iΦ sin2 α
2 cos2 α

2 ie−iΦ sinα

− i
2e

−iΦ sinα i
2e

iΦ sinα cosα



F̃k

F̃ ∗
−k

Z̃k


−

(2.16)

Relaxation and dephasing

Dephasing caused by a gradient with 0th moment ∆k = γ
∫ t

t′
G(t′)dt′ can be implemented with the

EPG representation as a shift operator S (equation 2.17) [6]. Only transverse states experience phase

evolution.

S(∆k) : F̃k → F̃k+∆k and Z̃k → Z̃k (2.17)

T1 and T2 relaxation can be described using a matrix operator E defined in 2.18. All configuration

states that are off-equilibrium (k ̸= 0) decay inevitably due to relaxation; longitudinal equilibrium magne-

tization is also subjected to a T1 recovery term towards Mz = M0.
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Figure 2.5: Graphical representation of the first three discrete configuration states for dephasing config-
urations (F̃k), rephasing configurations (F̃ ∗

−k) and longitudinal configuration pairs (Z̃k + Z̃−k)).

E(T1, T2, τ, k ̸= 0) =


e−

τ
T2 0 0

0 e−
τ
T2 0

0 0 e−
τ
T1



E(T1, T2, τ, k = 0) =


e−

τ
T2 0 0

0 e−
τ
T2 0

0 0 e−
τ
T1

+


0

0

M0

(
1− e−

τ
T1

)
 (2.18)

The evolution of the MR signal can thus be described by multiplying a matrix Ω containing the discrete

conjugation states by the matrices that account for the application of RF pulses (TΦ, as defined in

equation 2.5), relaxation (E) and dephasing (S).

Influence of the B1 field

In MRI, the B1 field is responsible for tipping the magnetization by the flip angle α from its initial

alignment with B⃗0. When the B1 field is homogeneous, the magnetization will be tipped by exactly α,

but this is not true if the B1 field contains inhomogeneities. In this case, if we use relative units taking

as reference the nominal B1 value that would produce the design flip angle α, the flip angle of the

magnetization will be given by αB1, that is, the larger the magnitude of the B1 field, the larger the flip
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angle, and vice-versa. Figure 2.6 schematically illustrates this effect. To model this effect with the EPG

concept, the flip angles α should be multiplied by the effective B1 field in percentage.

0.6 0.8

0.8

0.80.6

1

1

1

1

0.6

0.6

0.8

0.8

0.81.2

54◦ 72◦

72◦

72◦54◦

90◦

90◦

90◦

90◦

54◦

54◦

72◦

72◦

72◦108◦

B1 field Effective flip angle

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

90◦ 90◦ 90◦ 90◦ 90◦

90◦ 90◦ 90◦ 90◦ 90◦

90◦ 90◦ 90◦ 90◦ 90◦

Figure 2.6: Schematic representation of the effect of B1 inhomogeneities, with a design flip angle α
= 90◦. When B1 is homogeneous, the effective flip angle is α=90◦. When B1 is inhomogeneous, the
effective flip angle will be a percentage of the design flip angle.

Figure 2.7 compares estimated T2 maps of the same image data using the pure exponential approx-

imation, the EPG concept, and the EPG concept accounting for the effect of the B1 field.

Figure 2.7: Estimated T2 maps with the pure-exponential signal model, the EPG concept, and the EPG
concept accounting for the effect of the B1 field.

Extended Phase Diagrams

The magnetization response during an MR sequence can be traced with an extended phase diagram

(EPD). These describe the configuration states the system of isochromats can occupy in response to

RF pulses and dephasing. The configuration states are represented in the y-axis, while time is located

on the x-axis. Vertical solid black lines indicate an RF pulse; the other solid black lines correspond

to F̃ states and have a slope equal to the gradient being applied including B0 inhomogeneity effects.

Dashed lines represent Z̃ states, and are horizontal since longitudinal magnetization does not have
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phase evolution. Transitions to the F̃ ∗
−k and Z̃−k states are typically omitted for readability purposes.

However, their influence is still visible in the diagram — when they intersect the x-axis (F̃0 state), the

resulting echo is marked with a disc marker. Figure 2.8 showcases the main steps to build an EPD of a

ME-SE sequence.
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αRF α1 α2

F̃2, Z̃2

F̃−2, Z̃−2

∆t1 ∆t2

α3

∆t2

F̃4, Z̃4

F̃−4, Z̃−4

F̃0, Z̃0

αRF α1 α2

F̃2, Z̃2

F̃−2, Z̃−2

∆t1 ∆t2
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∆t2

F̃4, Z̃4

F̃−4, Z̃−4

F̃0, Z̃0
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F̃2, Z̃2

F̃−2, Z̃−2
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F̃−4, Z̃−4

1 2

3 4

Figure 2.8: Diagram showcasing the sequential steps to build an EPD. The black-coloured lines are the
ones typically drawn in EPDs. The purple lines correspond to the F̃ ∗

−k pathways and the orange lines
represent transitions to Z̃−k states. RF pulses are marked with a square on the horizontal aixs, while
echoes are marked with a disk. At each step, a new RF pulse is applied and each magnetization com-
ponent is divided into three pathways: F̃+k (solid black lines), F̃ ∗

−k (purple lines) and Z̃ (dashed lines).
To calculate the signal measured at each echo, the contributions of each line towards the corresponding
disk marker are summed. The slope of the lines is proportional to the gradient strength applied along z
including B0 inhomogeneity effects [6].
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2.2 Deep Learning

Deep learning is a form of machine learning that takes advantage of non-linear functions to learn

complex patterns [2]. The deep learning model used in this work was the RIM, which is based on RNNs.

2.2.1 Recurrent Neural Networks and Gated Recurrent Units

RNNs are a class of neural networks designed to model sequence data, such as audio, text, or

numerical time series [18]. RNNs have sequential memory achieved by a looping mechanism that

allows previous information from a previous step to flow to the next step. This concept of “memory”

allows the RNN to generate an input considering information of previous inputs. When training an RNN,

the forward pass is unfolded in time and the weight parameters are adjusted through backpropagation,

but where each layer shares the same weight parameter across nodes (figure 2.9).

xt

yt

=

x0

y0

x1

y1

x2

y2

xt

yt

...

Figure 2.9: General architecture of an RNN. The input xt contains sequential information that is fed
into the network, which uses a looping mechanism to calculate the output yt. This is equivalent to an
unfolded representation, where the individual layers are drawn, each mapped to an element xi of the
input.

Due to their configuration, RNNs suffer from short-term memory, caused by vanishing gradients dur-

ing backpropagation, and thus have difficulty learning earlier time-steps. Gated recurrent units (GRUs)

are a specialized neural network created to mitigate the short-term memory issue of RNNs [19]. GRU

contain a reset gate and an update gate that take advantage of sigmoid layers to allow the network to

learn what data can be forgotten, and what data needs to be memorized.

2.2.2 Recurrent Inference Machines

RIMs are a class of neural networks first proposed by Putzky and Welling [20] which employ an RNN

architecture in conjunction with a signal model m = M(p) + ε to learn a parameter inference method,

instead of a standard direct mapping between input and estimates. RIMs were developed to solve

inverse problems, i.e. finding the inverse transformation of a forward model that transforms variables p

into measurements m, with ε the noise associated with the measurements.

The main distinctive characteristic of the RIM is that its neural network portion attempts to maximize

the MAP to reconstruct the signal in an iterative procedure, while implicitly learning prior information that
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typically has to be hand-chosen in other networks [20].

Let the measurements m be described by a distribution with a probability density function f(m|p),

from which the negative log-likelihood L(m|p) can be defined. Inverse problems are typically solved

by optimizing the MAP in equation 2.19, where L(p) is negative the log-prior probability. This can be

accomplished by performing gradient descent (GD) (equation 2.20), where αj is the learning rate.

p̂ = argmin
p

(L(m|p) + L(p)) (2.19)

pj+1 = pj + αj (∇pL(m|p) +∇pL(p)) (2.20)

Since the likelihood is calculated separately from the prior, a model trained with a set of measure-

ments m can be applied to different sets of measurements successfully. However, the success of the

optimization heavily depends on the assumptions made about the model, namely the prior distribution.

RIMs tackle this setback by integrating the prior into the model and jointly learning the prior distri-

bution of the parameters and the inference model [4]. At a given time-step j ∈ {1, . . . , J}, the gradient

of the negative log-likelihood ∇pL(m|p̂j) and the current estimate p̂j are passed as inputs of an RNN

block, as well as a vector of memory states hj . The RNN block then yields an incremental step ∆p̂j and

the new vector of memory states hj+1 as output. The update equations for this framework are written in

equations 2.21:

{
∆p̂j ,hj+1

}
= RNN

(
p̂j ,∇pL(m|p̂j),hj

)
(2.21a)

p̂j+1 = p̂j +∆p̂j (2.21b)

The RNN portion is responsible for evaluating what the measurements m̂ would be if the estimate p̂j

contained the real model parameters, and how much these hypothetical measurements differ from the

real ones.

The total loss Λtotal to minimize is given by the weighted sum of the loss function Λ(p, p̂j) over all

time-steps (equation 2.22). wτ is a weight parameter which determines the emphasis put on each

reconstruction j relative to the other estimates.

Λtotal =
1

J

J∑
j=1

wjΛ(p, p̂j) (2.22)

Figure 2.10 displays a diagram of the general configuration of a RIM. Seeing that RIMs attempt

to learn the inference process of reconstructing a given signal and use internal states as part of their

recurrent architecture, they have a low tendency to overfit and a high capacity to generalize to unseen

types of data [4].
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Figure 2.10: General configuration of the RIM. The RIM performs J inference steps to obtain J esti-
mates of the variables p, taking the previous estimate p̂j−1, the gradient of the negative log-likelihood
∇pL(m|p̂j−1), and a vector of memory states hj .
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Chapter 3

Implementation

The present chapter describes the implementation of the MR signal models considered, the structure

of the dictionaries containing the EPG signal evolution, the configuration of the proposed networks and

the training and testing frameworks. Network models were implemented with PyTorch 1.10.2, trained on

a NVIDIA TESLA P100 GPU, and tested on an Intel Core i7 2.8 GHz CPU.

3.1 Magnetic Resonance Signal Models

The performance and accuracy of the proposed networks were assessed for three progressively

more complex MR signal models: the exponential model MEXP (as defined in equation 2.5), the EPG

model MEPG(T2) (as described in section 2.1.1) and the EPG model considering also the influence of

the B1 field MEPG(T2,B1). For the first two models, the networks attempted to estimate the PD and T2

maps; for the latter, the networks aimed to additionally estimate the B1 maps. It should be noted that the

PD maps estimated with the EPG models MEPG(T2) and MEPG(T2,B1) do not correspond to the physical

definition of proton density values in the tissues, but are instead included in the signal model as a simple

normalization constant and henceforth named “PD maps” for convenience.

The EPG forward model was implemented by defining a matrix of discrete configuration states Ω

where each column contains each configuration state F̃+(k), F̃−(k) and Z̃(k). The EPG signal measured

after the application of an ETL number of RF pulses can be obtained by recursively multiplying the matrix

Ω with the relaxation matrix E, the shifting operator S and the mixing matrix TΦ, in intervals equal to the

ESP of the ME-SE pulse sequence, as defined in section 2.1.1.

The partial derivatives of the EPG signal with respect to PD, T2 and B1 were hand-coded following

the work of Layton et al. [21]: they can be calculated recursively in conjunction with the EPG signal by

applying the product rule and defining the corresponding matrices ∂TΦ/∂B1 and ∂E/∂T2.

Algorithm 1 illustrates the calculation of the EPG signal evolution and the corresponding partial

derivatives, used in both MEPG(T2) and MEPG(T2,B1) models, where × denotes matrix multiplication. In

the former signal model, B1 was fixed as 1, while in the latter B1 corresponded to the effective B1 value

observed in the pixel in question. This algorithm was applied to all image pixels simultaneously by cod-
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ing an additional third dimension corresponding to the pixel dimension into all matrices and vectors. This

vectorization is crucial to greatly speed up the calculations in lieu of looping through each pixel. Figure

3.1 displays the EPD of our protocol, which offers a complementary understanding of the EPG algorithm.

Algorithm 1 Extended Phase Graph forward model and partial derivatives
1: αexc = αexc ×B1 ▷ Flip angle of the excitation pulse
2: Initialize matrix of configuration states Ω

3: Ω{Z,k=0} = 1 ▷ Z̃(0) = 1, equilibrium condition
4: Calculate TΦ(|αexc|,∡αexc) ▷ Mixing matrix
5: Ω = TΦ(|αexc|,∡αexc)× Ω ▷ Apply excitation pulse

6: Calculate ∂TΦ(|αexc|,∡αexc)/∂B1 ▷ Partial derivative of mixing matrix
7: ∂Ω/∂B1 = ∂TΦ(|αexc|,∡αexc)/∂B1 × Ω

8: Calculate S ▷ Shift operator
9: Calculate E(T1, T2,ESP/2) ▷ Relaxation matrix

10: Calculate ∂E(T1, T2,ESP/2)/∂T2 ▷ Partial derivative of relaxation matrix

11: for ech = {1, . . . ,ETL} do

12: Ω = E(T1, T2,ESP/2)× Ω

13: Ω = S × Ω

14: ∂Ω/∂T2 =S× ∂E(T1, T2,ESP/2)/∂T2 ×Ω+S×
E × ∂Ω/∂T2

15: αrefoc = αrefoc ×B1 ▷ Flip angle of the refocusing pulse
16: Calculate TΦ(|αrefoc|,∡αrefoc) ▷ Mixing matrix
17: Ω = TΦ(|αrefoc|,∡αrefoc)× Ω ▷ Apply refocusing pulse

18: Calculate ∂TΦ(|αrefoc|,∡αrefoc)/∂B1 ▷ Partial derivative of mixing matrix
19: ∂Ω/∂B1 = ∂TΦ(|αrefoc|,∡αrefoc)/∂B1 × Ω +

TΦ(|αrefoc|,∡αrefoc)× ∂Ω/∂B1

20: Ω = E(T1, T2,ESP/2)× Ω ▷ Apply relaxation
21: Ω = S × Ω

22: ∂Ω/∂T2 =S× ∂E(T1, T2,ESP/2)/∂T2 ×Ω+S×
E × ∂Ω/∂T2

23: end for

24: EPG signal = Ω{Fp,k=0} ▷ F̃ (0)

25: ∂EPG signal/∂PD = EPG signal
26: EPG signal = PD × EPG signal ▷ Normalize signal
27: return EPG signal,

∂EPG signal/∂PD,
∂EPG signal/∂T2,
∂EPG signal/∂B1
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Figure 3.1: Extended phase diagram (EPD) of the ME-SE sequence used in this work, truncated after
25 ms. The initial 90◦ RF pulse excitates the system at t = 0 s, corresponding to the application of matrix
TΦ. A first 180◦ refocusing pulse is applied after 5 ms, registered in the application of a new TΦ. The
following refocusing pulses are applied in intervals of ESP = 10 ms, with a flip angle of 160◦. Matrices
E and S are calculated for half of the ESP (5 ms), so they should be applied every 5 ms to update the
matrix of configuration states. Echoes are measured in-between refocusing pulses, as is expected in
ME-SE sequences. The weighted set of images m is obtained by collecting F̃0 from each echo.

3.2 Signal and Gradient Dictionaries

A set of EPG signal evolution dictionaries were created by calculating the forward signal model and

its partial derivatives for all combinations of a range of T2 and B1 values. Figure 3.2 shows a diagram

depicting the structure of the dictionaries. Each dictionary entry contains the evolution of the MR signal

for a given T2 and B1, as well as the signal’s partial derivatives with respect to T2 and B1.

The state-of-the-art dictionary matching technique was implemented by looping through each pixel

(x, y) on the weighted images m̂ and assigning it the parametric map p whose signal in the dictionary

mdict(p) maximizes its inner product with that pixel’s signal evolution m̂(x, y) (equation 3.1).

p̂(x, y) = argmax
p

(m̂(x, y) · mdict(p)|) (3.1)
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Figure 3.2: Diagram of the EPG dictionaries. A dictionary contains all the combinations of T2 and B1

values with a selected range and precision. Each dictionary entry, marked in this diagram with a circle,
corresponds to the MR signal calculated with the EPG framework at each measured echo. Alternatively,
each entry can contain the partial derivative of the EPG signal with respect to T2 or B1.

3.3 Training, Validation and Testing Data

The networks were fully trained with simulated data created from BrainWeb’s discrete anatomical

models 1. BrainWeb [22–25] is a simulated brain database that contains twenty three-dimensional (3D)

anatomical brain models with 362 slices and matrix dimensions (362, 434), where each voxel is la-

beled with an integer representing the tissue that contributes the most to that voxel (0=background,

1=cerebrospinal fluid (CSF), 2=grey matter, 3=white matter, 4=fat, 5=muscle, 6=muscle/skin, 7=skull,

8=vessels, 9=connective tissue, 10=dura matter, 11=bone marrow). The anatomical models were used

to simulate pairs of ground-truth maps p and weighted images m that constituted the training data. At

each new training epoch, each anatomical model in the training set was randomly split into a minibatch,

which was used as the network’s ground-truth. The total number of training images can thus be cal-

culated as the number of epochs multiplied by the size of the minibatch, multiplied by the number of

anatomical models in the training dataset. The procedure for generating the ground-truth simulated

weighted images followed the methodology described in Sabidussi et al. [4], outlined in detail in this

section and illustrated schematically in figure 3.3.

Firstly, each 3D anatomical model was randomly split into a chosen number of two-dimensional

patches of 40 × 40 pixels each, whose centers were uniformly drawn from the model’s brain mask.

Ground-truth values for PD and T2, PDGT and TGT
2 respectively, were attributed to each tissue in a

patch, following a normal distribution with mean µGT
tissue according to the literature tissue properties in

table 3.1, and standard deviation σGT = 0.3. This distribution was applied to guarantee the presence of

variability between the ground-truth values of each tissue across different patches, in order to simulate

inter-subject variability of T2 and PD values. An additional normal distribution N (µ = 0, σ2) was added

to the resulting PD and T2 ground-truth maps, followed by convolution with a Gaussian smoothing kernel

G(σ = 0.4) to simulate intra-tissue variation within each patch.

1https://brainweb.bic.mni.mcgill.ca/anatomic normal 20.html
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3D discrete anatomical
maps of the brain

Split into 40× 40 2D patches

Generate the ground truth maps p = [PD, T2, B1]

Attribute a PD value to each tissue

Attribute a T2 value to each tissue

Attribute a B1 map to each patch

Add noise to the maps

Smooth the maps

Generate the weighted images m

Apply the forward model of the signal Simulate acquisition noise

PD(patch) = |N (µGT
tissue, 0.3)|+ 0.01

T2(patch) = |N (µGT
tissue, 0.01)|+ 0.01

B1(patch) = 0.6 +N (IB1 , µB1 , σB1)

PD = PD +N (0, 0.05)

T2 = T2 +N (0, 0.01)

PD = PD ⊛ G(σ = 0.4)

T2 = T2 ⊛ G(σ = 0.4)

m = m +N (0, σacq)m = M(p)

Figure 3.3: Protocol for generating simulated pairs of ground-truth weighted images m and parametric
maps p. Three-dimensional discrete anatomical maps are split into a chosen number of two-dimensional
patches, and ground-truth parameters PD and T2 (in seconds) are attributed to each tissue in a patch,
following a normal distribution to simulate inter-subject variability. Gaussian B1 maps are simulated
separately for each patch. In this diagram, B1 maps were masked from the background region, but this
is representative only: in the following chapters, we will specify the values set on the background regions
for these maps. T2 and PD maps are smoothed after including noise addition to simulate intra-tissue
variability. The forward signal model is then applied to the ground-truth maps to obtain a set of echoes for
each patch. This diagram illustrates the process for 4 patches, represented horizontally, and 3 echoes,
represented vertically. B1 maps are only estimated when using the signal model MEPG(T2,B1).
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Table 3.1: Mean ground-truth PD and T2 values per tissue, µGT
tissue, used to simulate realistic MRI data

[4].

PD T2 [ms]

CSF 1 2 000
Grey matter 0.85 110
White matter 0.65 80
Fat 0.9 70
Muscle 0.7 50
Muscle skin 0.7 50
Skull 0.9 30
Vessels 1.0 275
Marrow 0.8 50
Connective tissue 0.7 80
Dura matter 0.7 70

The ground-truth B1 maps were randomly created from a Gaussian distribution as defined in equation

3.2, where each variable was obtained from a uniform distribution U . IB1 represents the B1 map’s

maximum intensity, and was drawn from U(0.5, 0.8); σB1 is the distribution’s standard deviation, drawn

from U(0.2, 0.3) as a percentage of the image smallest dimension; µB1 determines the position of the

Gaussian in the image and it was drawn from U(0.4, 0.6) as a percentage of the image dimension. A

new B1 map of the full 2D slice was generated for each patch and then cropped according to the patch’s

coordinates in the full anatomical model. The chosen distributions assure that all B1 values are limited

to the range [0.6, 1.4], a realistic range for this variable [26]. Figure 3.4 showcases the effect of varying

each parameter IB1 , σB1 and µB1 on the B1 maps produced.

B1(x, y) = 0.6 + IB1 exp

(
− (x− µB1)2

2(σB1)
2

)
exp

(
− (y − µB1)2

2(σB1)
2

)
(3.2)

Figure 3.4: Simulated B1 maps of a full 160×160 slice for the lower and upper bounds of IB1 , σB1 and
µB1 . a) IB1 controls the maximum B1 value achieved in the map. The lower bound, IB1=0.5, designs
maps with values in the interval [0.6, 1.1], while the upper bound, IB1=0.8, designs maps with values
in [0.6, 1.4]. b) σB1 controls the spread of the Gaussian distribution, and it is defined as a percentage
of the image dimension. c) µB1 controls the position of the Gaussian in the image. The lower bound,
µB1 , places the Gaussian 10% northwest from the image center, whereas the upper bound, µB1 , places
it 10% southeast from the image center.
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Secondly, the resulting ground-truth maps p = [PD, T2, B1] were used as the input of the forward

signal model M , outputting a set of ground-truth weighted images m. All ground-truth weighted images

will have intensity values ranging from 0 to 1.3, the maximum value the PD variable can take. Finally, a

normal distribution N (0, σacq) was added to the weighted images to simulate the presence of acquisition

noise. The standard deviation of this distribution was drawn from a log-normal distribution with underly-

ing mean µ = 0 and standard deviation σ = 1, scaled by a factor lacq that determines the distribution’s

width (equation 3.3), to ensure that the network was trained with minibatches with varying levels of noise.

σacq ∈
{

1

lacq log -N (µ = 0, σ = 1)

}
=

{
1

σacq · σ · lacq ·
√
2π

exp

(
− (lnσacq)

2

2σ2

)}
(3.3)

All networks were trained with a total of 72 000 patches, and 10 distinct anatomical models. Valida-

tion images were simulated following the same procedure, but considering a single subject, manually-

selected full two-dimensional slices instead of random patches, a user-defined σacq, and B1 maps cre-

ated with IB1 = 0.65, σB1=25 and µB1=0. Testing datasets were created in a similar fashion to the vali-

dation datasets, pertaining to a different subject. The training, validation and testing simulated datasets

specifications are included in table 3.2. Note that each simulated dataset consists of three distinct sub-

datasets: one where the images were simulated considering the signal model MEXP, another considering

MEPG(T2) and a third considering MEPG(T2,B1).

Table 3.2: Anatomical model identifier, slices and standard deviation of the acquisition noise of the
simulated datasets created for training, validation and testing. Each dataset contains three sub-datasets,
one for each signal model studied.

Subjects’ ID Slices Acquisition Noise

Training
4, 5, 6, 18, 20, 38

Random (Depends
on model)41, 42, 43 and 44

Validation (noiseless) 45
100, 120, 140, 160, 180,

None
200, 220, 240, 260, 280

Validation (noisy) 45
100, 120, 140, 160, 180,

σacq = 0.001
200, 220, 240, 260, 280

Validation (very noisy) 45
100, 120, 140, 160, 180,

σacq = 0.05
200, 220, 240, 260, 280

Testing (noiseless) 50 180 None

Testing (noisy) 50 180 σacq = 0.001

Testing (very noisy) 50 180 σacq = 0.05

All weighted images were simulated following a ME-SE acquisition protocol with an ETL of 32 echoes,

an ESP of 10 ms (T2 = 10:10:320 ms) and flip angles [180◦, 160◦, ..., 160◦]. In addition to the simulated

testing images, a testing set of in vivo brain data of a healthy subject previously acquired in a Philips

Achieva 3T scanner, using the same imaging protocol, with spatial resolution of 1.6×1.6 ×4.0 mm2, field-

of-view 250×250 mm2, and TR of 4 s was considered. Networks were evaluated on both the simulated
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testing datasets and on four in vivo datasets.

3.4 Network

Our RIM configuration was adapted from Sabidussi et al. [4]. At each optimization step, a new

ground-truth parametric map p, which can be the T2 map for instance, is simulated and the network

performs J inference steps to obtain J estimates p̂j , where each p̂j+1 is more accurate than the previous

p̂j . We used the mean squared error (MSE) as a loss function to evaluate each estimate p̂j against the

true map p (equation 3.4). The total loss to minimize, defined in equation 3.5, corresponds to the

weighted sum of the MSE obtained between p and each p̂j , where all weights wj were set to 1.

MSE(p, p̂j) =
∑
pixel

(ppixel − p̂j pixel)
2 (3.4)

Λtotal =
1

J

J∑
j=1

wj · MSE(p, p̂j) =
1

J

J∑
j=1

∑
pixel

(ppixel − p̂j pixel)
2

 (3.5)

At each inference step j, the network takes the current maps estimate p̂j into the forward signal

model M to calculate a set of weighted images m̂j . Since the noise of the acquired signal m can be

well described by a Gaussian distribution when the images have signal-to-noise ratio (SNR) larger than

three [4, 27], the negative log-likelihood L(m|p̂j) can be written as equation 3.6. This is demonstrated

in Appendix A.

L(m|p̂j) =
∑
pixel

(
mpixel −M(p̂j pixel)

)2
=
∑
pixel

(
mpixel − m̂j pixel

)2 (3.6)

The negative log-likelihood is used to obtain its partial derivatives with respect to each map in p̂j ,

∇p̂j
L(m|p̂j), in a posterior step. This gradient is then concatenated with the estimates p̂j , and submitted

to the RNN portion of the network, named RNNCell. In the experiments with the MR signal models MEXP

or MEPG(T2), this results in four input channels: the PD map estimate, the T2 map estimate, the gradient

of the likelihood function with respect to PD and the gradient of the likelihood function with respect to

T2. When the signal model is MEPG(T2,B1), there are two additional input channels: the B1 map estimate

and the gradient of the likelihood function with respect to B1. In addition, the RNNCell receives two

hidden-state vectors h1
j and h2

j as inputs, and outputs the two new hidden-state vectors h1
j+1 and h2

j+1,

and the incremental update of the maps ∆p̂j (figure 3.5).

The RNNCell block consists of a sequence of convolutional layers and GRU cells and is represented

in figure 3.6. All convolutions are padded to retain the patch size throughout the network, and are

followed by ReLu activation functions.
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Figure 3.5: RIM configuration depicted for two inference steps. The current estimate p̂j is both an input
to the RNNCell and used to calculate the gradients ∇p̂j

L(m|p̂j), alongside the simulated ground-truth
weighted images m. Two vectors of memory states h1

j and h2
j are present in this configuration. The

RNNCell block outputs the incremental update of the maps ∆p̂j , which is summed to p̂j to obtain the
new estimate p̂j+1. Estimates p̂1, . . . , p̂J are then used to perform the network optimization.

When evaluating the network, m represents the weighted images reconstructed from the scanner

data. The network initializes the parametric maps estimate p̂0 and performs J inference steps to obtain

p̂J , which corresponds to the estimate that the RIM outputs, while the intermediate estimates p̂1, . . . p̂J−1

are discarded.

All networks were trained using the Adam optimizer, and a learning-rate of 0.005. The T2 estimate

maps were initialized with 1000 ms, the B1 maps with 1 and the the PD maps with the maximum value

in the ground-truth PD maps.

In the original implementation by Sabidussi et al. [4], the partial derivatives ∇p̂j
L(m|p̂j) were cal-

culated with Pytorch’s automatic differentiation package. Since the RIM requires the calculation of the

forward signal model and its partial derivatives J times during inference, it is expected that inference

becomes a time-consuming process when the signal model is too complex. We defined a new frame-

work, RIMFoGraD, which shares RIM’s training scheme, but uses pre-defined dictionaries of the signal

model and its partial derivatives to speed up the inference stage. With RIMFoGraD, m̂j is obtained by

simply taking the EPG signal evolution in the dictionary that was simulated with the p̂j of each pixel; the

gradient ∇p̂j
L(m|p̂j) is obtained by taking the respective ∇p̂j

M(p̂j) in the dictionary, and performing

the remaining differentiation operations during inference.
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Figure 3.6: RNNCell configuration. The current parametric map estimate p̂j is concatenated with the
log-likelihood gradient ∇p̂j

L(m|p̂j) along the channel dimension, resulting in 4 or 6 input channels de-
pending on the model, and passed through the first convolutional layer. This layer has a kernel size of
3×3 and produces 36 feature maps, which are activated with a ReLu function, and passed to a GRU cell.
The GRU cell returns the first updated vector of memory states h1

j+1 and the 36 feature maps, which go
through two additional 3×3 convolutional layers. The second GRU cell returns the second updated vec-
tor of memory states h2

j+1 and the updated 36 feature maps, which go through a final convolutional layer
with kernel size 1×1. This layer outputs 2 or 3 channels, depending on the model, which correspond to
the incremental update to the parametric maps ∆p̂j .
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Chapter 4

Results

This chapter presents an analysis of the accuracy and performance of the proposed frameworks.

Firstly, networks were optimized for a range of hyper-parameters. Networks of each signal model

MEXP, MEPG(T2) and MEPG(T2,B1) were trained with distinct hyper-parameters and compared with each

other based on their performance on the validation datasets. As performance metrics, the normalized

root mean square error (NRMSE), the peak signal-to-noise ratio (PSNR) and the structural similarity

index measure (SSIM) scores are reported. The NRMSE and PSNR scores quantify the pixel-by-pixel

difference between images and are defined in equations 4.1 and 4.2, respectively. The PSNR score was

defined by setting the maximum T2 value of the true maps p as the peak signal. The SSIM score aims

to quantify loss of structure in an image compared to a reference [28, 29]. It is defined in equation 4.3,

where µp corresponds to the pixel mean in image p, σp is the variance of image p, σpp̂ represents the

covariance between the images p and p̂, and c1 and c2 are constants that stabilize division and depend

on the dynamic image range, here defined as the maximum T2 value observed in the reference images.

NRMSE =

√
Σ (p − p̂)2

Σp2
(4.1)

PSNR = 10 · log10

(
max2(p) ·#pixels∑

(p − p̂)2

)
(4.2)

SSIM =

(
2 · µp · µp̂ + c1

) (
2 · σpp̂ + c2

)(
µ2

p + µ2
p̂ + c1

)(
σ2

p + σ2
p̂ + c2

) (4.3)

Since we aim to find the true T2 values of each tissue in the images, we gave precedence to the

NRMSE and PSNR scores to validate the networks, while the SSIM score was used as a secondary

selection metric. Performance scores focused on evaluating the T2 maps estimated within the brain

parenchyma, and excluding the CSF region, since the long T2 relaxation of the CSF cannot be measured

with the selected ME-SE protocol. For all validation tests, unless mentioned otherwise, NRMSE and

PSNR scores were calculated separately on three distinct regions (white matter, grey matter and whole

image excluding the CSF), while SSIM scores were calculated on the whole image, excluding the CSF
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region. None of the scores took into account the background region. Figure 4.1 showcases the T2 maps

estimated by two distinct networks over the same validation image and the corresponding NRMSE,

PSNR and SSIM scores, highlighting the image features that each performance metric promotes.

Figure 4.1: T2 maps estimated by two different networks on the same validation image, and respective
NRMSE, PSNR and SSIM scores. NRMSE and PSNR scores were calculated on the image region
excluding the CSF, while SSIM score was calculated on the whole image. a) Estimates 1 and 2 achieved
similar NRMSE and PSNR scores, but Estimate 2 has a higher SSIM. In this case, the SSIM score is
essential to select Estimate 2 over Estimate 1, where the boundaries between grey and white matter lost
definition. b) Estimate 1 has a better NRMSE score, while Estimate 2 achieved a higher SSIM score. In
this case, the T2 values of Estimate 1 in grey and white matter are closer to the reference, but because
this estimate lost some structural definition, it would not be selected by the SSIM score.

Once the optimal hyper-parameters were identified, the selected networks of each signal model were

evaluated on the testing datasets and assessed by visual inspection. RIM and RIMFoGraD share the

same training process, so all the validation results are valid for both; furthermore, it will be verified that

the same is true for the testing results. The validation and testing results are organized per signal model

studied. Finally, a performance analysis was carried out to compare the time required to produce a

parametric map for the state-of-the-art methods, the RIM, and the RIMFoGraD.

4.1 Monoexponential Model

The first step in this work consisted in verifying the performance of the RIM with the monoexponential

signal model MEXP, as developed by Sabidussi et al. [4]. The signal model was changed from a fast spin-
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echo (FSE) sequence with 6 echoes to the acquisition protocol described in section 3.3. Networks with

the exponential signal model took on average 1.5 h to train.

4.1.1 Validation

Networks with the MEXP signal model were trained by varying the following hyper-parameters: size

of the minibatch, number of inference steps, and standard deviation of the acquisition noise added to

the training weighted images.

Size of the minibatch

Networks were trained with 12, 24, 48 and 72 patches in each minibatch. Figure 4.2 shows the

NRMSE, PSNR and SSIM scores obtained on the estimated maps of the noisy validation dataset for

networks trained with different minibatch sizes. All networks were trained with J=6 inference steps, and

variable standard deviation of the acquisition noise with lacq=60.

All performance metrics display worse scores with the lowest number of patches. The NRMSE

score is the best for the networks trained with 24 and 72 patches, while the PSNR is higher with 24

patches. We hypothesize that networks trained with 12 patches do not have enough information to

perform optimization at each step, while networks trained with 24 patches achieve the best trade-off

between enough information and small enough gradient variance to perform optimization. The SSIM

score is similar across all hyper-parameters. Since the PSNR score favours 24 patches in the grey

matter and brain parenchyma regions, we selected 24 patches for the final evaluation model.

Number of inference steps

Networks were trained using J =2, 4, 6 and 8 inference steps. The NRMSE, PSNR and SSIM scores

obtained in the noisy validation dataset are represented in figure 4.3. The optimal number of inference

steps was J=6, with the corresponding network achieving the best NRMSE and the PSNR scores in

the grey matter region and the whole image excluding the CSF. Contrarily to what was suggested in the

literature [16], increasing the number of inference steps does not necessarily guarantee a more accurate

estimate of the overall map, and results in a more unstable estimation of the white matter T2 values.
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Figure 4.2: NRMSE, PSNR and SSIM scores of the estimated T2 maps on the noisy validation dataset
by MEXP networks trained with 12, 24, 48 and 72 patches. NRMSE and PSNR scores were calculated
in three separate regions (white matter, grey matter and brain parenchyma excluding the CSF), whereas
the SSIM score was calculated on the whole map. All networks were trained with J=6 and lacq=60.
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Figure 4.3: NRMSE, PSNR and SSIM scores of the estimated T2 maps on the noisy validation dataset
by MEXP networks trained with 2, 4, 6 and 8 inference steps. NRMSE and PSNR scores were calculated
in three separate regions (white matter, grey matter and whole image excluding the CSF), whereas the
SSIM score was calculated on the whole image. All networks were trained with 24 patches and lacq=60.
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Acquisition noise of the training images

To evaluate the effect of the acquisition noise added to the training weighted images, we trained two

groups of networks: a group with a fixed value for the standard deviation of the acquisition noise σacq for

all minibatches, and another group with a variable σacq between each minibatch. Networks of the former

group were trained with σacq=0.001, 0.005, 0.01 and 0.05. Networks of the latter group were trained

with lacq=30, 45, 60 and 100, to assess the influence of the variation of σacq between minibatches. All of

these networks were evaluated on the noiseless, noisy and very noisy validation datasets in an attempt

to select a model that is robust to a large range of noise intensities in the evaluation images. All networks

were trained with 24 patches in each minibatch, and 6 inference steps.

Figure 4.4 shows the NRMSE, PSNR and SSIM scores obtained on the noiseless validation images.

The first group of networks achieved the best scores on all performance metrics when training with the

lowest σacq. The second group achieved the best NRMSE and PSNR scores with lacq=60. On this

validation dataset, both groups achieved similar NRMSE and PSNR scores.

Figure 4.4: NRMSE, PSNR and SSIM scores of the estimated T2 maps on the noiseless validation
dataset by MEXP networks trained with different acquisition noise amounts. NRMSE and PSNR scores
were calculated in three separate regions (white matter, grey matter and whole image excluding the
CSF), whereas the SSIM score was calculated on the full map. All networks were trained with 24
patches and J=6.

34



Figure 4.5 shows the NRMSE, PSNR and SSIM scores obtained on the noisy validation images.

The networks with σacq=0.001 and lacq=60 remain the best-scoring models of their respective groups in

terms of NRMSE and PSNR.

Figure 4.5: NRMSE, PSNR and SSIM scores of the estimated T2 maps on the noisy validation dataset
by MEXP networks trained with different acquisition noise amounts. NRMSE and PSNR scores were
calculated in three separate regions (white matter, grey matter and whole image excluding the CSF),
whereas the SSIM score was calculated on the full map. All networks were trained with 24 patches and
J=6.

Figure 4.6 shows the NRMSE, PSNR and SSIM scores obtained on the very noisy validation im-

ages. Networks trained with σacq=0.001 and lacq=60 remain the best-scoring networks in their respective

groups in terms of NRMSE and PSNR. Despite the fact that this validation dataset was created with the

same amount of noise that the network σacq=0.05 used to train, this network achieves the worst NRMSE

and PSNR scores in its group.

The good performance scores across all validation datasets for the network trained with σacq=0.001

seems to suggest the RIM favours training with noiseless weighted images to produce maps that are

more robust to noise in the evaluation dataset. However, the poor scores of network lacq=100 indicate

that using a narrow distribution of low-valued σacq damages the estimation process, presumably because

the RIM cannot generalize to other noise values. Given these results, we selected σacq=0.001 for the

evaluation network.
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Figure 4.6: NRMSE, PSNR and SSIM scores of the estimated T2 maps on the very noisy validation
dataset by MEXP networks trained with different acquisition noise amounts. NRMSE and PSNR scores
were calculated in three separate regions (white matter, grey matter and whole image excluding the
CSF), whereas the SSIM score was calculated on the full map. All networks were trained with 24
patches and J=6.
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4.1.2 Testing

Taking into account the results of the validation stage, a network was trained with the model MEXP, a

minibatch of 24 patches, 6 inference steps and training images with acquisition noise with σacq = 0.001.

The estimated T2 maps on the simulated testing datasets were evaluated and compared with those

estimated with standard exponential fitting, implemented with non-linear least squares and a maximum

number of iterations of 5000 (figure 4.7). The RIM produced a highly accurate T2 map on the noisy

simulated dataset and achieved a similar performance to the exponential fitting on the very noisy dataset.

On the noiseless images, the RIM could not estimate the T2 of the white matter region, possibly because

all the training images contained some noise.

Figure 4.7: T2 ground-truth maps of the simulated testing datasets and corresponding estimates pro-
duced from exponential fitting and a MEXP RIM trained with 24 patches, J=6 and σacq=0.001. Difference
maps between ground-truth and exponential fitting, and ground-truth and RIM. NRMSE scores were
calculated on the brain parenchyma, while SSIM scores were calculated on the whole image.

To evaluate whether the intra-tissue variability of the ground-truth parametric maps of the testing

images affects these results, these tests were repeated on testing datasets where the ground-truth

maps were generated with homogenous T2 values per tissue (figure 4.8). In this case, both the RIM and

the exponential fitting method estimated near-perfect T2 maps regardless of the noise of the ground-truth

weighted images.

The T2 maps estimated on the in vivo datasets are compared with those estimated with the expo-

nential fitting method in figure 4.9. In the in vivo datasets, the RIM successfully estimated the T2 maps

with a median error of 3.41 ms relative to the exponential fitting maps in the worst case.
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Figure 4.8: T2 ground-truth maps of the simulated testing datasets and corresponding estimates pro-
duced from exponential fitting and a MEXP RIM trained with 24 patches, J=6 and σacq=0.001. Difference
maps between ground-truth and exponential fitting, and ground-truth and RIM. Ground-truth maps were
generated with no intra-tissue variability. NRMSE scores were calculated on the brain parenchyma,
while SSIM scores were calculated on the whole image.

4.2 Extended Phase Graphs Model

Once it was verified that the RIM could produce an accurate T2 map with the selected acquisition

protocol, the complexity of the signal model was progressively increased. New networks were trained in

a similar fashion, now with the model MEPG(T2). These networks took on average 10 h to train.

The EPG forward model requires a predefined T1 value in order to perform T2 estimation, which

may induce errors in the estimated maps. This effect is evaluated in figure 4.10, where T2 maps from

the in vivo testing dataset were estimated with the state-of-the-art dictionary matching technique, using

dictionaries created for distinct T1 values. All dictionaries were created following the MEPG(T2) signal

model, with T2 values in the range 0-300 ms, with precision 1 ms, and B1=1. For T1 values from 600

ms to 1200 ms, realistic T1 values in the brain [4], the estimated maps differ from the map estimated

with T1=1000 ms by 1 ms at most. Thus, we can be confident that the chosen T1 does not affect the

estimated T2 maps significantly, which is in accordance with the literature findings [5].

We proceeded to train networks with the MEPG(T2) signal model, considering T1= 1000 ms and B1=1

on all tissues.
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Figure 4.9: T2 maps of the in vivo testing dataset estimated with the exponential fitting method and the
MEXP RIM, and difference map between them. The dictionary matching used a dictionary with T2 values
from 0 to 300 ms and a precision of 1 ms. The RIM was trained with 24 patches, J=6 and σacq=0.001.
Median scores of the difference maps where calculated in the brain parenchyma, excluding the CSF
regions.

Figure 4.10: T2 maps estimated on one of the in vivo testing images for MEPG(T2) dictionaries with
T1=600, 800, 1000 and 1200 ms, and difference maps between them and the map estimated with
T1=1000 ms. All dictionaries were created for T2 ranging from 0 to 300 ms, with a precision of 1 ms, and
B1=1.
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4.2.1 Validation

Since it is expected that the RIM estimates T2 maps similar to those achieved with the MEXP model,

the networks in this section were only validated for different sizes of the minibatch. Networks were

trained with 36, 48, 60 and 72 patches, using 6 inference steps and a fixed simulated acquisition noise

across patches with σacq=0.001.

Figure 4.11 showcases the NRMSE, PSNR and SSIM scores obtained in the noisy validation dataset

for networks trained with different minibatch sizes. As the number of patches increases, so does the

NRMSE score improve in the overall image excluding the CSF region. The model trained with 72 patches

seems to achieve the best NRMSE scores, but contains the most extreme outliers in this performance

metric. The network trained with 60 patches is the second best in terms of NRMSE and PSNR scores

in the grey matter region and the overall image excluding the CSF, whereas the network trained with 48

patches achieves the second best PSNR score in the white matter region, and the best when considering

the outliers. The network trained with 60 patches was selected for the testing stage.

Figure 4.11: NRMSE, PSNR and SSIM scores of the estimated T2 maps on the noisy validation dataset
MEPG(T2) networks trained with 36, 48, 60 and 72 patches. NRMSE and PSNR scores were calculated
in three separate regions (white matter, grey matter and whole image excluding the CSF), whereas the
SSIM score was calculated on the full map. All networks were trained with J=6 and σacq=0.001.
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4.2.2 Testing

Figure 4.12 displays the estimated T2 maps on the simulated testing datasets by a RIM trained with

60 patches per minibatch, 6 inference steps and σacq=0.001. Similarly to the exponential model, the

RIM loses accuracy when estimating the white matter on noiseless images. The estimates on these

datasets are less accurate than those obtained with dictionary matching, but the latter loses accuracy

on the very noisy dataset, while the RIM can still estimate the T2 values of white matter. Once again, it

can be verified that the RIM cannot capture the grainy texture of the ground-truth T2 maps corresponding

to the variability of T2 values in each tissue. Figure 4.13 repeats these tests, but using testing datasets

with no intra-tissue variability in the ground-truth maps. The RIM is able to estimate T2 maps of the all

the datasets with minimal error, although less accurate than the ones obtained with dictionary matching.

We can thus conclude the RIM struggles with estimating maps with large intra-tissue variability, which is

exacerbated when the ground-truth weighted images contain noise.

Figure 4.12: T2 ground-truth maps of the simulated testing datasets and corresponding estimates ob-
tained from dictionary matching and a MEPG(T2) RIM trained with 60 patches, J=6 and σacq=0.001.
Difference maps between ground-truth and dictionary matching, and ground-truth and RIM. The dictio-
nary covered T2 values from 0 to 300 ms, with a precision of 1 ms. NRMSE scores were calculated on
the brain parenchyma, while SSIM scores were calculated on the whole image.

Figure 4.14 showcases the maps estimated by the RIM on the in vivo testing datasets, compared with

those produced with dictionary matching. The RIM successfully estimates T2 maps with a median error

of 1.66 ms in the worst case when compared to those estimated by the dictionary matching technique,

with a larger difference in the grey matter regions.

41



Figure 4.13: T2 ground-truth maps of the simulated testing datasets and corresponding estimates pro-
duced from dictionary matching and a MEPG(T2) RIM trained with 60 patches, J=6 and σacq=0.001.
Difference maps between ground-truth and dictionary matching, and ground-truth and RIM. The dictio-
nary covered T2 values from 0 to 300 ms, with a precision of 1 ms. Ground-truth maps were simulated
with no intra-tissue variability. NRMSE scores were calculated on the brain parenchyma, while SSIM
scores were calculated on the whole image.

Figure 4.14: T2 maps estimated from the in vivo testing dataset with the dictionary matching technique
and the MEPG(T2) RIM, and difference map between them. The dictionary matching used a dictionary
with T2 values from 0 to 300 ms and a precision of 1 ms. The RIM was trained with 60 patches, J=6 and
σacq=0.001. Median scores of the difference maps where calculated in the brain parenchyma, excluding
the CSF regions.
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4.3 Extended Phase Graphs including the effect of B1

Once the RIM successfully estimated images that follow the EPG model, the complexity of the prob-

lem was increased by attempting to additionally estimate the B1 maps to apply their effect on the esti-

mated T2 maps. Networks with this signal model took on average 10 hours to train. Once again, the

effect of selecting different T1 values on the estimated T2 maps was evaluated (figure 4.15). Compared

to the EPG model that disregards the effect of the B1 field, the selected T1 has a larger influence on the

T2 maps. However, the T2 values on the grey and white matters only differ 1 ms at most from the refer-

ence T1=1000 ms for T1 values in the range 600-1200 ms. Thus, this approximation can be considered

to have a negligible effect and the models MEPG(T2,B1) were built with T1= 1000 ms.

Figure 4.15: T2 maps estimated on one of the in vivo testing images for MEPG(T2,B1) dictionaries with
T1=600, 800, 1000 and 1200 ms, and difference maps between them and the map estimated with
T1=1000 ms. All dictionaries were created for T2 ranging from 0 to 300 ms, with a precision of 1 ms, and
B1 ranging from 0.6 to 1.4, with a precision of 0.01.

4.3.1 Validation

Networks with the MEPG(T2,B1) signal model were trained by varying the following hyper-parameters:

size of the minibatch, number of inference steps, and standard deviation of the noise added to the

training weighted images. In addition, the influence of the B1 ground-truth values set in the background

region of the images was also analyzed. Models identified with “B1 masked with 0” correspond to B1

maps that follow the Gaussian function defined in equation 3.2 in the image regions with anatomical

information, and are set to 0 in the background region. Similarly, models identified with “B1 masked with

0.6” have a B1 of 0.6 in the background region. All other models do not distinguish between background

and brain regions.
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Size of the minibatch

Networks were trained with 48, 60, 72 and 100 patches in each minibatch. Figure 4.16 shows the

NRMSE, PSNR and SSIM scores obtained on the estimated maps of the noisy validation dataset for

networks trained with a different minibatch size. All these networks were trained with J=6 inference

steps, and a standard deviation of the acquisition noise equal to σacq=0.001. The networks trained

with the EPG signal model performed better for a larger number of patches than those trained with

the exponential model. All networks demonstrated similar NRMSE scores in the white matter region,

whereas networks trained with 48 and 72 patches achieved the best scores in the grey matter region

and in the overall image excluding the CSF. All networks scored similarly for the SSIM metric. The

network trained with 72 patches was selected for the evaluation stage.

Figure 4.16: NRMSE, PSNR and SSIM scores of the estimated T2 maps on the noisy validation dataset
by MEPG(T2,B1) networks trained with 48, 60, 72 and 100 patches. NRMSE and PSNR scores were calcu-
lated in three separate regions (white matter, grey matter and whole image excluding the CSF), whereas
the SSIM score was calculated on the full map. All networks were trained with J=6 and σacq=0.001.
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Number of inference steps

Networks were trained with J=2, 4, 6 and 8 inference steps. The NRMSE, PSNR and SSIM scores

obtained in the noise validation set are represented in figure 4.17. All networks were trained with 72

patches and σacq=0.001. Once again, networks trained with 6 inference steps achieved the best scores

overall. The network trained with 2 inference steps achieved the best NRMSE score in the overall image,

but did not outperform the network with 6 inference steps on the white and grey matter regions. J=6

inference steps was selected for the final network.

Figure 4.17: NRMSE, PSNR and SSIM scores of the estimated T2 maps on the noisy validation dataset
by MEPG(T2,B1) networks trained with 2, 4, 6 and 8 inference steps. NRMSE and PSNR scores were
calculated in three separate regions (white matter, grey matter and whole image excluding the CSF),
whereas the SSIM score was calculated on the full map. All networks were trained with 72 patches and
σacq=0.001.

Acquisition noise of the training images

Considering the observations made with the exponential signal model, networks were trained with

σacq=0.001 and lacq=60. Each of these groups contained three variants: unmasked B1, B1 masked with
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0 and B1 masked with 0.6. Since results point to a better estimation when training with low acquisition

noise values, a network without noise addition to the ground-truth weighted images was also trained. All

networks were trained with 72 patches and J=6 inference steps.

Figure 4.18 shows the NRMSE, PSNR and SSIM scores obtained on the noiseless validation dataset.

For the networks trained with a fixed value of σacq across minibatches, masking the B1 map with 0 in

the background region results in poorer NRMSE and PSNR scores, whereas masking with 0.6 improves

the PSNR score on white matter and in the overall image. For the networks trained with a distribution of

σacq, masking the B1 map resulted in worse performance scores for both types of mask. The network

trained with noiseless weighted images and the network trained with σacq=0.001 and B1 masked with

0.6 achieved the best performance.

Figure 4.18: NRMSE, PSNR and SSIM scores of the estimated T2 maps on the noiseless validation
dataset by MEPG(T2,B1) networks trained with different acquisition noise amounts. NRMSE and PSNR
scores were calculated in three separate regions (white matter, grey matter and whole image excluding
the CSF), whereas the SSIM score was calculated on the full map. All networks were trained with 72
patches and J=6.

The NRMSE, PSNR and SSIM scores obtained in the noisy validation dataset are represented in

figure 4.19. When evaluated on a noisier dataset, the network trained with σacq=0.001 and B1 masked

with 0.6 shows more unstable performance scores. The network trained with noiseless weighted images

remains the best performing model in the overall image, while the networks trained with a distribution of
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σacq show poorer results.

Figure 4.19: NRMSE, PSNR and SSIM scores of the estimated T2 maps on the noisy validation dataset
by MEPG(T2,B1) networks trained with different acquisition noise amounts. NRMSE and PSNR scores
were calculated in three separate regions (white matter, grey matter and whole image excluding the
CSF), whereas the SSIM score was calculated on the full map. All networks were trained with 72
patches and J=6.

Figure 4.20 shows the NRMSE, PSNR and SSIM scores obtained on the very noisy validation

dataset. The network trained with σacq=0.001 and B1 masked with 0.6 becomes one of the worst-

performing models in NRMSE and PSNR scores. In both types of networks, masking the B1 in the

background region deteriorates the results. The network trained with noiseless echoes remains the best

scoring network.

From this analysis, we confirm the RIM’s preference to train with noiseless weighted images. Fur-

thermore, the results suggest that training with an unmasked B1 field is more robust to estimation on

increasingly noisier evaluation datasets.
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Figure 4.20: NRMSE, PSNR and SSIM scores of the estimated T2 maps on the very noisy validation
dataset by MEPG(T2,B1) networks trained with different acquisition noise amounts. NRMSE and PSNR
scores were calculated in three separate regions (white matter, grey matter and whole image excluding
the CSF), whereas the SSIM score was calculated on the full map. All networks were trained with 72
patches and J=6.
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4.3.2 Testing

Based on the validation results, a RIM using 72 patches, 6 inference steps, weighted images without

noise addition and ground-truth B1 fields that do not distinguish between background and brain regions

in the image was trained.

Figures 4.21 and 4.22 showcase the maps estimated by the RIM on the simulated testing datasets,

as well as the maps estimated with the standard dictionary matching technique, using testing datasets

with and without intra-tissue variability in the parametric maps, respectively. The maps obtained with

the RIM show a clear difference in accuracy between regions with a higher B1 and regions with a lower

B1: the accuracy is lower where the ground-truth B1 field is closer to 0.6. In the remaining regions, the

RIM proves to be robust to the noise on the testing set. On the other hand, the dictionary matching

technique has a much higher accuracy on the noiseless and noisy datasets, regardless of the presence

of intra-tissue variability on the ground-truth maps, but shows poor performance on very noisy images

when compared to the RIM, achieving lower NRMSE and SSIM scores. When removing the intra-tissue

variability of the ground-truth maps, the artifacts induced by a wrong estimation of the B1 field become

more clear. In this case, the dictionary method outperforms the RIM in all datasets.

Figure 4.21: T2 ground-truth maps of the simulated testing datasets and corresponding estimates ob-
tained with dictionary matching and a MEPG(T2,B1) RIM trained with 72 patches, J=6 and noiseless
weighted images. Difference maps between ground-truth and dictionary matching, and ground-truth
and RIM. The dictionary covered T2 values from 0 to 300 ms, with a precision of 1 ms, and B1 values
from 0.6 to 1.4, with a precision of 0.01. NRMSE scores were calculated on the brain parenchyma, while
SSIM scores were calculated on the whole image.
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Figure 4.22: T2 ground-truth maps of the simulated testing datasets and corresponding estimates pro-
duced from dictionary matching and a MEPG(T2,B1) RIM trained with 72 patches, J=6 and noiseless
weighted images. Difference maps between ground-truth and dictionary matching, and ground-truth
and RIM. The dictionary covered T2 values from 0 to 300 ms, with a precision of 1 ms, and B1 values
from 0.6 to 1.4, with a precision of 0.01. Testing datasets parametric maps were simulated with no intra-
tissue variability. NRMSE scores were calculated on the brain parenchyma, while SSIM scores were
calculated on the whole image.

The RIM’s performance for variants of the noisy testing dataset with different B1 fields, including intra-

tissue variability in the ground-truth parametric maps, is evaluated in figure 4.23. The RIM shows a clear

difficulty to accurately estimate the B1 maps, and the estimate particularly loses quality on images where

the B1 presents a large range of values, whereas with smoother B1 fields the estimates become more

accurate. It is also possible to observe that the regions where the RIM’s map estimate is more accurate

are the ones corresponding to a B1 field closer to 1, and the ones with less accuracy correspond to more

extreme values. This suggests that the network did not train with enough distinct B1 maps to learn how

to estimate T2 values for a wide range of B1 values.

To assess whether the RIM is capable of estimating maps from realistic images, the network was

tested on the in vivo datasets in figure 4.24(a). The ground-truth T2 map of these datasets is not known,

so the RIM was compared with the maps estimated through dictionary matching. The RIM finds the

overall range of T2 values in grey and white matter with a maximum median error of 4.20 ms in relation

to the maps estimated with dictionary matching, but seems to slightly overestimate the larger T2 values.
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Figure 4.23: B1 and T2 ground-truth maps of the simulated noisy testing dataset with three different
B1 fields and corresponding estimates produced from a MEPG(T2,B1) RIM trained with 72 patches, J=6
and noiseless weighted images. Difference maps between ground-truth and RIM. NRMSE scores were
calculated on the brain parenchyma, while SSIM scores were calculated on the whole image.

It can be verified that the in vivo T2 values in the grey and white matter regions were lower than

those reported in section 3.3 and used to train the networks. In figure 4.24(b), the previous analysis is

repeated for a network trained with lower ground-truth T2 values for grey and white matter, µGT
grey matter

= 85 ms and µGT
white matter=65 ms respectively. The estimated T2 maps are now closer to those obtained

through dictionary matching, with a maximum median error of 2.83 ms, now with some underestimation

of T2 values in grey matter. We conclude that the training data was simulated with insufficient variability

in the T2 values, thus increasing the network’s sensitivity towards µGT. Nevertheless, given the small

range of T2 values of each tissue that the RIM could access during training, the network can still produce

accurate T2 maps that are very close to those produced with the dictionary matching technique.
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(a) µGT
white matter = 80 ms, µGT

grey matter = 100 ms

(b) µGT
white matter = 65 ms, µGT

grey matter = 85 ms

Figure 4.24: T2 maps of the in vivo testing dataset estimated with the dictionary matching technique
and the MEPG(T2,B1) RIM, and difference map between them. The dictionary matching technique used a
dictionary with T2 values from 0 to 300 ms and a precision of 1 ms, and B1 values from 0.6 to 1.4 with a
precision of 0.01. The RIM was trained with 72 patches, J=6, and noiseless weighted images. Median
scores of the difference maps where calculated in the brain parenchyma, excluding the CSF regions.
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4.4 Performance Analysis

During the training, validation and testing experiments, we verified that the time required to produce

a T2 map with the RIM using EPG signal models was quite large when compared with the exponential

model. This was to be expected since not only is the EPG model more complex, thus requiring a larger

number of calculations, but the signal measured in each echo can also only be computed once the

signals of all the previous echoes have been calculated. Contrary to the exponential model, where

only the time point and the T2 and PD maps are required, the EPG needs to calculate the measured

signals of all echoes before arriving at the desired time-point, which results in larger computational times,

especially when calculating the derivatives of the signal with respect to T2 and B1 using automatic

differentiation methods due to the complexity of the computational graph. Furthermore, because of

the very complex structure of the RIM, the forward signal model and its partial derivatives need to be

calculated every inference step. For these reasons, RIMs may not be suited for very complex signal

models like the EPG framework: despite the accuracy of the estimated maps, there may not be an

advantage in performance compared to state-of-the-art methods.

In this work, RIMFoGraD was introduced to tackle this setback. RIMFoGraD networks share the

same configuration as the RIM, but use pre-calculated dictionaries containing the forward signal model

and its partial derivatives for a wide range of parameters (as defined in section 3.2) to avoid complex

calculations during the inference stage. The performance of the RIMFoGraD compared to the RIM will

only depend on the time required to load the dictionary into the network and to access the signal and

derivatives corresponding to each pixel in the set of weighted images. All RIMFoGraDs were trained in

a similar fashion to RIMs, calculating the signal model at each step and using automatic differentiation

tools to obtain the derivatives, in order to preserve the precision of the network; dictionaries were only

applied during evaluation. Therefore, all results presented so far are also valid for the RIMFoGraD.

In figure 4.25, the time required to obtain a T2 map with varying dimensions with the MEPG(T2,B1)

signal model, for protocols with 12 and 32 echoes, by the RIM, RIMFoGraDs with dictionaries with

varying precision, and the state-of-the-art dictionary matching technique with dictionaries with varying

sizes is compared. In 4.25(a), the dictionaries were created for T2 values ranging 0-2000 ms, which

corresponds to the range of values considered when training; in 4.25(b), the dictionaries were created

for T2 values ranging 0-300 ms, which is a smaller interval that still allows a precise estimation of the T2

maps on grey and white matter using standard dictionary matching.

As expected, the time required to produce a T2 map from a set of weighted images increases expo-

nentially as the image dimensions increase. The average time to produce a 320×320 pixel T2 map of a

sequence with 32 echoes was 1931±130 s and 1578±82 s for the state-of-the-art dictionary matching

and for the RIM, respectively. If we account for potential errors in the RIM estimate, we can compare

its performance with matching with a dictionary with a precision of 2 ms, which required an average

of 980±149 s to produce the same map. In sequences with a lower ETL, the RIM can outperform

the dictionary matching: for a sequence with 12 echoes, the RIM is 2.6% faster than the low-precision

dictionary matching. However, when considering dictionaries with a lower range of T2 values, the RIM
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(a) T2 dictionaries created for T2 values from 0 ms to 2000 ms; B1 dictionaries created for B1 values from 0.6 to 1.4.

(b) T2 dictionaries created for T2 values from 0 ms to 300 ms; B1 dictionaries created for B1 values from 0.6 to 1.4.

Figure 4.25: Average time needed to obtain a T2 map from a set of squared weighted images with varying
dimensions, for protocols with 12 and 32 echoes, for the following models: RIM — standard RIM, where
the forward signal model and the partial derivatives are calculated during inference; RIMFoGraD — RIM
coupled with dictionaries with varying T2 and B1 precision; standard dictionary matching — standard
matching with dictionaries with varying T2 and B1 precision. Points and error bars result from the mean
and standard deviation over set of 10 repeated measurements, respectively.

underperforms, as expected.

On the other hand, all the RIMFoGraD networks outperform both the RIM and the dictionary matching

method in all cases. The RIMFoGraD with the most precise dictionary (0.1 ms in T2 and 0.005 in B1)

can produce a 320×320 T2 map from 32 echoes in 11.27±1.77 s on average, whereas the one with

less precision (1 ms in T2 and 0.01 in B1) accomplishes the same task in 4.16±0.10 s. The counterpart

RIMFoGraD networks with dictionaries with a smaller range of T2 values produce the same T2 maps in

5.60±0.26 s and 4.56±0.09 s, respectively. Furthermore, we verify that the time required to produce a

map with the RIMFoGraD does not increase as steeply with the map dimension as the other methods:

creating a 20×20 map versus creating a 320×320 map results in a 1574 s (471%) increase with the

RIM, a 979 s (2177%) increase with the smallest dictionary matching, and a 5 s (1.8%) increase with

the RIMFoGraD with the largest dictionary.

To evaluate the loss of precision of the estimates produced by the RIMFoGraD with varying dic-

tionaries, we compared the T2 maps obtained from the in vivo testing dataset between the RIM and
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RIMFoGraDs with dictionaries with decreasing precision (figure 4.26(a)). Surprisingly, the RIMFoGraD

with the most precise dictionary is the one that differs the most from the automatic calculation. We hy-

pothesize this is the case due to losses of precision in the intermediate steps of the automatic method.

Nevertheless, we confirm that all RIMFoGraD networks tested produce T2 maps without any significant

loss of precision from the ones produced by RIMs. Thus, we can use the least precise dictionary to

achieve the best time-performance without loss of accuracy.

To evaluate the legitimacy of using dictionaries with a lower T2 value range than the values encoun-

tered during the training process, we compared the T2 maps obtained from the in vivo dataset between

the RIM and RIMFoGraDs with different dictionaries (figure 4.26(b)). We verified that none of the T2

maps produced accurately describes the T2 values of the tissues. We conclude that the dictionaries in

the RIMFoGraD must match the range of values observed during the network training.

(a) T2 dictionaries created for T2 values from 0 ms to 2000 ms; B1 dictionaries created for B1 values
from 0.6 to 1.4.

(b) T2 dictionaries created for T2 values from 0 ms to 300 ms; B1 dictionaries created for B1 values from
0.6 to 1.4.

Figure 4.26: T2 maps estimated from one image of the in vivo testing dataset with the RIM network and
with the RIMFoGraD networks for varying dictionaries with decreasing precision, and difference maps
between the RIM and respective RIMFoGraD.

Since the precision of the dictionaries in the RIMFoGraD networks evaluated does not affect the

quality of the results, we selected the network with the dictionary with smallest precision (1 ms in T2 and
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0.01 in B1) as our final model. Thus, we conclude that RIMFoGraD can accurately produce a 320×320

pixel map from 32 weighted images in 4.16±0.10 s, and it is 25% faster than the dictionary matching

method with a dictionary with T2 ranging from 0-300 ms and precision 2 ms, and the same B1 range and

precision.

The RIMFoGraD is also more reliable than the RIM when applied to protocols that eventually pro-

mote a larger number of inference steps. Figure 4.27 compares the average time needed to produce a

160×160 pixel map between the two methods as the number of inference steps increases. An increase

from 2 to 8 inference steps results in a 3.9% slower RIM and a 2.9% slower RIMFoGraD.

Figure 4.27: Average time needed to obtain a T2 160×160 map from a set of squared weighted images
with varying dimensions, for a protocol with 32 echoes, with the RIM and the RIMFoGraD. Points and
error bars result from the mean and standard deviation over set of 10 repeated measurements, respec-
tively.

Finally, figure 4.28 is included as a comparison of the average time needed to produce T2 maps with

increasing dimensions between: the exponential fitting method, the standard EPG dictionary matching

method, the RIM with the exponential signal model, the RIM with the EPG signal model considering the

B1 field and the RIMFoGraD. When estimating a 320×320 pixel map from 32 echoes, the RIMFoGraD

is 380% faster than the RIM and 80% faster than the dictionary matching technique, and estimates T2

maps that are more accurate than the exponential RIM with only 1.2 s of difference in the estimation

time.
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Figure 4.28: Average time required to estimate a T2 map with increasing dimensions, for a protocol with
32 echoes, with the MEXP RIM, the MEPG(T2,B1) RIM, the RIMFoGraD, exponential fitting and dictionary
matching. Points and error bars result from the mean and standard deviation over set of 10 repeated
measurements, respectively.
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Chapter 5

Conclusions

This chapter presents a discussion of this project’s findings and suggestions of future work.

5.1 Achievements

In this work, the EPG signal model was successfully implemented into the RIM to produce more

accurate T2 maps compared with state-of-the-art methods admitting the monoexponential approxima-

tion. With RIMFoGraD, the RIM’s ability to learn the inference process was combined with the dictionary

matching technique’s speed to maintain the RIM’s performance when applied to a more complex signal

model. We verified that the RIM is not suitable for complex signal models due to the need to calculate the

forward model and respective gradients repeatedly for a chosen number of inference steps, whereas the

RIMFoGraD preserved the performance of a RIM implemented with simple signal models, and was able

to estimate a T2 map 380-fold faster than a RIM implemented with the EPG framework. Seeing that the

RIMFoGraD infers parametric maps using pre-calculated signal evolutions, it is possible to add as much

complexity to the signal model as desired without a loss of estimation speed, while taking advantage of

RIM’s low tendency to overfit and high capability of estimating the inference process. Furthermore, we

verified that the time required to produce a T2 map with the RIMFoGraD does not increase as steeply

with the map’s image dimensions as with the other state-of-the-art methods, which constitutes a major

advantage when applying these techniques to a clinical setting.

While the RIMFoGraD can estimate T2 maps in a reduced time, the accuracy of the maps estimated

on simulated data was inferior to the state-of-the-art dictionary matching technique for data with large

SNR, presumably due to the difficulties in estimating the B1 field map. However, the RIMFoGraD was

slightly more robust to datasets strongly contaminated with noise and with larger intra-tissue T2 variabil-

ity. Evaluating the estimated maps on in vivo data is complicated by the fact that the ground-truth map

of the data is not known, which limits the analysis. For this reason, we cannot easily assess whether

the dictionary matching estimate or the RIMFoGraD estimate are indeed accurate on in vivo datasets,

especially when admitting the presence of noise: the difference of the estimated maps between the two

methods may result from either one method being more robust to noise, or one method producing less
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accurate estimates. Nevertheless, we confirmed the RIMFoGraD estimates maps with a similar range

of values of the state-of-the-art dictionary matching methods. Caution is needed when comparing the

RIMFoGraD’s performance with the dictionary matching technique: we believe our dictionary matching

implementation may be further optimized with parallel processing tools, for instance, which would make

this method more competitive time-wise, depending on the hardware available to the user. Moreover,

the larger the error considered for the RIMFoGraD’s estimates, the smaller the dictionary that produces

an equivalent map will be, and the faster the dictionary matching technique becomes.

A minor limitation of the RIMFoGraD is the time-consuming setup required for each acquisition proto-

col. Not only does this method share the deep learning tools’ need to train a new network for each new

acquisition protocol, but it also requires the creation of dictionaries containing the signal evolution and

partial derivatives for a desired combination of T2 and B1 values, which may burden the user with the

need of expensive hardware. In this work, the RIMFoGraD was trained using the RIM framework, but it

is possible that the training time can be reduced when also taking advantage of dictionaries during that

stage. However, additional studies are needed to confirm that this does not lead to a precision loss in the

estimated T2 maps. Further, we verified that the optimal RIM hyper-parameters of our protocol varied

from those applied in the literature [4], which suggests new validation tests may need to be performed

when changing the signal acquisition protocol. In particular, the RIM benefits from training with larger

minibatches as the forward signal model complexity increases. We hypothesize this may also be true

when changing the ETL of the protocol, which would explain why the tests in this work promoted training

with a larger number of patches per minibatch than those reported for similar applications with a shorter

ETL. Nevertheless, the training process and the dictionary creation only need to be performed once per

protocol, and we believe this is a good compromise for the short inference times.

The choice of hyper-parameters was accomplished with an analysis of performance metrics across

a number of different datasets, but it is unclear whether these metrics are a good evaluation of the

quality of the estimated maps. We verified that distinct performance metrics promote different image

characteristics, which may not always correlate to a good quality image. Furthermore, selecting hyper-

parameters with performance scores entails choosing a metric to give preference to in detriment of the

other metrics, and taking into account the presence of outliers, which increases the uncertainty of the

metrics’ reliability. Validation results suggest networks trained with noiseless sets of weighted images

are more robust to noise in the evaluation images, yet the networks that were trained with images with a

selected noise standard deviation demonstrated to be unable to estimate maps from noiseless data with

the same level of accuracy, and produced more accurate maps on datasets that matched the noise used

during training. Thus, it remains unclear whether the RIM should be trained with noiseless weighted

images, or images with a range of distinct acquisition noise amounts.

This work’s implementation also considered a number of approximations. Firstly, we implemented

the RF pulses while admitting the small tip angle approximation, where the Bloch equations are used to

compute a pulse via the Fourier Transform of the desired slice profile. When using large flip angles, this

results in excitation error that could be reduced by decomposing each pulse into multiple pulses applied

during shorter time intervals. The result of each sub-RF pulse can once again be calculated using the
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tip angle approximation [30]. Secondly, the EPG implementation also requires the user to select a T1

value valid for all tissues. While we confirmed the chosen T1 had a negligible effect on the estimated T2

maps of the brain, this may not remain true when acquiring images of other anatomical regions. Finally,

the objective function of the optimization process considered all estimates from the inference stage to

be equally meaningful, despite the latter estimates being more accurate than the former. We believe the

accuracy of the estimated maps may somewhat improve when giving more weight to the latter estimates

in the objective function [16].

Because the RIM has a high generalization capability, it can be trained with simulated data that

can contain any combination of parameter values and be arbitrarily large [4], yet this encumbers the

user with additional decisions on the ground-truth T2 values of each tissue. We verified that the RIM

is somewhat sensitive to the chosen distribution of T2 relaxation times, which may be a limitation when

considering the reported T2 values of the same tissue in the literature vary depending on the signal

model considered, the number of sample points, the presence of noise, differences in hardware and

sequence design protocol and [31]. Nevertheless, given the lack of MRI annotated datasets that can be

used in machine learning applications, we consider the ability to train with simulated data an advantage

over other deep learning methods.

5.2 Future Work

Future work may focus on further improving the RIMFoGraD parametric map estimation with the EPG

framework. It was verified the RIM was somewhat able to estimate an additional B1 map in in vivo data to

produce more accurate T2 maps without altering the network configuration or employing regularization.

Follow-up studies may focus on adjusting the RNNCell configuration and employing various forms of

regularization to improve the accuracy of maps estimated with the EPG framework for a wider range

of B1 fields. Concurrently, it may be worthwhile to compare other schemes for the creation of the B1

ground-truth fields, namely using a uniform field per patch, or increasing the range of B1 values observed

in a patch to improve the network’s performance on images with a high B1 contrast.

Secondly, given the network’s ability to generalize to unseen data, the training simulated images

may be created with PD and T2 values pertaining to other anatomical regions so that the RIM is able

to estimate parametric maps on other anatomical regions while training with brain data. Future work

should also focus on studying the ability of the RIMFoGraD to detect pathologies unseen during training.

Finally, we propose applying the RIMFoGraD framework directly to the acquisition data from the MRI

scanner instead of their image reconstruction, by including the Fourier Transform on the signal model.

The dictionaries will contain the k-space measurements obtained for each combination of T2 and B1, and

the corresponding partial derivatives. The RIMFoGraD may also be combined with other acceleration

techniques such as compressed sensing.
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Appendix A

Statistics

In this chapter, we provide a demonstration of the log-likelihood expression defined in equation 3.6.

Let p be the population parameter we aim to estimate from a set of I observations m with a probability

distribution f . In the case of MR relaxometry, p(x) denotes the parametric maps, while m(x) corresponds

to the set of weighted images obtained from the scanner measurements at each spatial coordinate x.

The likelihood function that corresponds to the probability of observing m when the population parameter

is p is expressed by f(m|p).

The population parameter p can be estimated with the maximum likelihood estimator (MLE) method

following equation A.1, where L stands for the negative log-likelihood.

p̂ = argmax
p

f(m|p) = argmax
p

log(f(m|p)) = argmin
p

L(m|p) (A.1)

Alternatively, we can use the MAP estimator (equation A.2) to find p. This technique consists in-

stead on maximizing the posterior probability f(p|m), which can be calculated with the Bayes theorem.

The MAP estimate takes into account the prior probability f(p) and coincides with the MLE when this

probability is uniform. Notice that f(m) is always positive and does not play a role in the optimization

process.

p̂ = argmax
p

f(p|m) = argmax
p

f(m|p)f(p) = argmax
p

{log(f(m|p) + log(f(p))} (A.2)

Let M be the forward model that transforms the population parameters into the observations such

that m = M(p) + ε, with ε representing the noise associated with the measurements. Let us further as-

sume the observations m are corrupted by independent and identically distributed measurement errors

that follow a normal distribution with variance σ2. The observations m will themselves follow a normal

distribution defined in A.3.

f(m) = (2πσ2)−1/2 exp

(
−1

2

(m −M(p)2

σ2

)
(A.3)

The negative log-likelihood function L(m|p) is then calculated in A.4.
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f(m|p) =

I∏
i=1

f(mi|p)

=

I∏
i=1

(2πσ2)−1/2 exp

(
−1

2

(mi −M(p))2

σ2

)

= (2πσ2)−n/2 exp

(
− 1

2σ2

I∑
i=1

(mi − p)2
)

⇒ log f(m|p) = log
(
(2πσ2)−n/2

)
+ log

(
exp

(
−1

2

(m −M(p))2

σ2

))
(A.4)

= −I

2
log(2π)− I

2
log(σ2)− 1

2σ2

I∑
i=1

(mi −M(p))2

⇒ L(m|p) =
I

2
log(2π) +

I

2
log(σ2) +

1

2σ2

I∑
i=1

(mi −M(p))2

The minimization of L(m|p) with respect to the unknown parameter p is equivalent to least squares

fitting (equation A.5).

p̂ = argmin
p

I∑
i=1

||M(p)− m||2 (A.5)
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The intermediate results of this project were displayed in the International Society for Magnetic

Resonance in Medicine’s 2022 Iberian Chapter as a poster presentation, included in the next page.
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Quantitative MRI requires a time-consuming parameter fitting operation. In

this work, we attempt to reduce the fitting time in T2 maps with a model-based

recurrent inference machine (RIM), which incorporates the MRI signal model

into its framework.

The methodology developed by Sabidussi et al [1] was adapted to a distinct

multi spin-echo (MSE) acquisition protocol, and the results were compared with

standard exponential fitting.

HYPERPARAMETER TESTS

• Modify the RIM MRI signal model from a monoexponential curve into

the Extended Phase Graph representation [3] for better accuracy.

• Include invivo images in the training stage.

• Number of patches in each batch (24, 72 and 200);

• Inclusion/absence of empty patches corresponding to background noise;

• Amount of simulated noise in the images (standard deviation with a fixed value for all patches or chosen from a standard log-normal distribution).

Optimal training 

hyperparameters:

• 72 patches per batch;

• Including patches 

without anatomical 

information;

• Acquisition noise with a 

variable standard 

deviation across 

patches.

10 discrete anatomical 

models from BrainWeb [2]

Training and validation images 

simulated with the exponential 

model

40x40 random patches

TRAINING DATA

72 000 patches

VALIDATION DATA

7 200 patches

TESTING DATA

invivo MSE sequence at 3T, 

T2 = 10:10:320 ms

Generating a T2 map with

a trained RIM took an

average of 0.92 s across 15

experiments, 3.6 times

faster than performing

exponential fitting.
A) RIM architecture for optimization step j. B) T2 maps obtained with exponential fitting, the RIM with the optimal training hyperparameters, and

difference between them. C) Relative bias maps for 4 of the models studied, with respect to the exponential fit.

[1] E. R. Sabidussi et al, Medical Image Analysis, 2021, 74:102220

[2] C.A. Cocosco et al, NeuroImage, 1997, 5(4):425

[3] M. Weigel, Journal of Magnetic Resonance Imaging, 2015, 41:266-295

• T2 maps obtained with the RIM closely resemble the maps obtained by 

exponential fitting for grey and white matter.

• Training hyperparameters strongly influence the quality of the maps and may 

need to be adjusted when applying the RIM to different acquisition protocols.

CONCLUSION FUTURE WORK


	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Topic Overview
	1.3 Objectives and Contributions
	1.4 Thesis Outline

	2 Background
	2.1 The Magnetic Resonance Signal
	2.1.1 The Extended Phase Graph Representation

	2.2 Deep Learning
	2.2.1 Recurrent Neural Networks and Gated Recurrent Units
	2.2.2 Recurrent Inference Machines


	3 Implementation
	3.1 Magnetic Resonance Signal Models
	3.2 Signal and Gradient Dictionaries
	3.3 Training, Validation and Testing Data
	3.4 Network

	4 Results
	4.1 Monoexponential Model
	4.1.1 Validation
	4.1.2 Testing

	4.2 Extended Phase Graphs Model
	4.2.1 Validation
	4.2.2 Testing

	4.3 Extended Phase Graphs including the effect of B1
	4.3.1 Validation
	4.3.2 Testing

	4.4 Performance Analysis

	5 Conclusions
	5.1 Achievements
	5.2 Future Work

	Bibliography
	A Statistics

